Science.gov

Sample records for bacteria regulated polymerization

  1. Phylogenetic Analysis Identifies Many Uncharacterized Actin-like Proteins (Alps) in Bacteria: Regulated Polymerization, Dynamic Instability, and Treadmilling in Alp7A

    PubMed Central

    Derman, Alan I.; Becker, Eric C.; Truong, Bao D.; Fujioka, Akina; Tucey, Timothy M.; Erb, Marcella L.; Patterson, Paula C.; Pogliano, Joe

    2010-01-01

    Summary Actin, one of the most abundant proteins in the eukaryotic cell, also has an abundance of relatives in the eukaryotic proteome. To date though, only five families of actins have been characterized in bacteria. We have conducted a phylogenetic search and uncovered more than 35 highly divergent families of actin-like proteins (Alps) in bacteria. Their genes are found primarily on phage genomes, on plasmids, and on integrating conjugative elements, and are likely to be involved in a variety of functions. We characterize three Alps and find that all form filaments in the cell. The filaments of Alp7A, a plasmid partitioning protein and one of the most divergent of the Alps, display dynamic instability and also treadmill. Alp7A requires other elements from the plasmid to assemble into dynamic polymers in the cell. Our findings suggest that most if not all of the Alps are indeed actin relatives, and that actin is very well represented in bacteria. PMID:19602153

  2. Regulating alternative lifestyles in entomopathogenic bacteria.

    PubMed

    Crawford, Jason M; Kontnik, Renee; Clardy, Jon

    2010-01-12

    Bacteria belonging to the genera Photorhabdus and Xenorhabdus participate in a trilateral symbiosis in which they enable their nematode hosts to parasitize insect larvae. The bacteria switch from persisting peacefully in a nematode's digestive tract to a lifestyle in which pathways to produce insecticidal toxins, degrading enzymes to digest the insect for consumption, and antibiotics to ward off bacterial and fungal competitors are activated. This study addresses three questions: (1) What molecular signal triggers antibiotic production in the bacteria? (2) What small molecules are regulated by the signal? And (3), how do the bacteria recognize the signal? Differential metabolomic profiling in Photorhabdus luminescens TT01 and Xenorhabdus nematophila revealed that L-proline in the insect's hemolymph initiates a metabolic shift. Small molecules known to be crucial for virulence and antibiosis in addition to previously unknown metabolites are dramatically upregulated by L-proline, linking the recognition of host environment to bacterial metabolic regulation. To identify the L-proline-induced signaling pathway, we deleted the proline transporters putP and proU in P. luminescens TT01. Studies of these strains support a model in which acquisition of L-proline both regulates the metabolic shift and maintains the bacterial proton motive force that ultimately regulates the downstream bacterial pathways affecting virulence and antibiotic production. PMID:20022247

  3. DNA methyltransferases and epigenetic regulation in bacteria.

    PubMed

    Adhikari, Satish; Curtis, Patrick D

    2016-09-01

    Epigenetics is a change in gene expression that is heritable without a change in DNA sequence itself. This phenomenon is well studied in eukaryotes, particularly in humans for its role in cellular differentiation, X chromosome inactivation and diseases like cancer. However, comparatively little is known about epigenetic regulation in bacteria. Bacterial epigenetics is mainly present in the form of DNA methylation where DNA methyltransferases add methyl groups to nucleotides. This review focuses on two methyltransferases well characterized for their roles in gene regulation: Dam and CcrM. Dam methyltransferase in Escherichia coli is important for expression of certain genes such as the pap operon, as well as other cellular processes like DNA replication initiation and DNA repair. In Caulobacter crescentus and other Alphaproteobacteria, the methyltransferase CcrM is cell cycle regulated and is involved in the cell-cycle-dependent regulation of several genes. The diversity of regulatory targets as well as regulatory mechanisms suggests that gene regulation by methylation could be a widespread and potent method of regulation in bacteria. PMID:27476077

  4. Extracellular polymeric substances of bacteria and their potential environmental applications.

    PubMed

    More, T T; Yadav, J S S; Yan, S; Tyagi, R D; Surampalli, R Y

    2014-11-01

    Biopolymers are considered a potential alternative to conventional chemical polymers because of their ease of biodegradability, high efficiency, non-toxicity and non-secondary pollution. Recently, extracellular polymeric substances (EPS, biopolymers produced by the microorganisms) have been recognised by many researchers as a potential flocculent for their applications in various water, wastewater and sludge treatment processes. In this context, literature information on EPS is widely dispersed and is very scarce. Thus, this review marginalizes various studies conducted so far about EPS nature-production-recovery, properties, environmental applications and moreover, critically examines future research needs and advanced application prospective of the EPS. One of the most important aspect of chemical composition and structural details of different moieties of EPS in terms of carbohydrates, proteins, extracellular DNA, lipid and surfactants and humic substances are described. These chemical characteristics of EPS in relation to formation and properties of microbial aggregates as well as degradation of EPS in the matrix (biomass, flocs etc) are analyzed. The important engineering properties (based on structural characteristics) such as adsorption, biodegradability, hydrophilicity/hydrophobicity of EPS matrix are also discussed in details. Different aspects of EPS production process such as bacterial strain maintenance; inoculum and factors affecting EPS production were presented. The important factors affecting EPS production include growth phase, carbon and nitrogen sources and their ratio, role of other nutrients (phosphorus, micronutrients/trace elements, and vitamins), impact of pH, temperature, metals, aerobic versus anaerobic conditions and pure and mixed culture. The production of EPS in high concentration with high productivity is essential due to economic reasons. Therefore, the knowledge about all the aspects of EPS production (listed above) is highly

  5. Extracellular polymeric substances of bacteria and their potential environmental applications.

    PubMed

    More, T T; Yadav, J S S; Yan, S; Tyagi, R D; Surampalli, R Y

    2014-11-01

    Biopolymers are considered a potential alternative to conventional chemical polymers because of their ease of biodegradability, high efficiency, non-toxicity and non-secondary pollution. Recently, extracellular polymeric substances (EPS, biopolymers produced by the microorganisms) have been recognised by many researchers as a potential flocculent for their applications in various water, wastewater and sludge treatment processes. In this context, literature information on EPS is widely dispersed and is very scarce. Thus, this review marginalizes various studies conducted so far about EPS nature-production-recovery, properties, environmental applications and moreover, critically examines future research needs and advanced application prospective of the EPS. One of the most important aspect of chemical composition and structural details of different moieties of EPS in terms of carbohydrates, proteins, extracellular DNA, lipid and surfactants and humic substances are described. These chemical characteristics of EPS in relation to formation and properties of microbial aggregates as well as degradation of EPS in the matrix (biomass, flocs etc) are analyzed. The important engineering properties (based on structural characteristics) such as adsorption, biodegradability, hydrophilicity/hydrophobicity of EPS matrix are also discussed in details. Different aspects of EPS production process such as bacterial strain maintenance; inoculum and factors affecting EPS production were presented. The important factors affecting EPS production include growth phase, carbon and nitrogen sources and their ratio, role of other nutrients (phosphorus, micronutrients/trace elements, and vitamins), impact of pH, temperature, metals, aerobic versus anaerobic conditions and pure and mixed culture. The production of EPS in high concentration with high productivity is essential due to economic reasons. Therefore, the knowledge about all the aspects of EPS production (listed above) is highly

  6. Peroxide-Sensing Transcriptional Regulators in Bacteria

    PubMed Central

    Mongkolsuk, Skorn

    2012-01-01

    The ability to maintain intracellular concentrations of toxic reactive oxygen species (ROS) within safe limits is essential for all aerobic life forms. In bacteria, as well as other organisms, ROS are produced during the normal course of aerobic metabolism, necessitating the constitutive expression of ROS scavenging systems. However, bacteria can also experience transient high-level exposure to ROS derived either from external sources, such as the host defense response, or as a secondary effect of other seemingly unrelated environmental stresses. Consequently, transcriptional regulators have evolved to sense the levels of ROS and coordinate the appropriate oxidative stress response. Three well-studied examples of these are the peroxide responsive regulators OxyR, PerR, and OhrR. OxyR and PerR are sensors of primarily H2O2, while OhrR senses organic peroxide (ROOH) and sodium hypochlorite (NaOCl). OxyR and OhrR sense oxidants by means of the reversible oxidation of specific cysteine residues. In contrast, PerR senses H2O2 via the Fe-catalyzed oxidation of histidine residues. These transcription regulators also influence complex biological phenomena, such as biofilm formation, the evasion of host immune responses, and antibiotic resistance via the direct regulation of specific proteins. PMID:22797754

  7. Do bacteria need to be regulated?

    PubMed

    Silley, P

    2006-09-01

    Additives for use in animal nutrition are regulated under Regulation (EC) No. 1831/2003. The scope of this paper addresses the specific microbiological issues relevant to a microbial feed additive, containing a Bacillus spp. and uses as an example a product with the trade name, Calsporin. Bacillus subtilis C-3102 is the active ingredient in Calsporin and is added to animal feed to favourably affect animal production and performance (growth and feed efficiency), by modulating the gastrointestinal flora. It is not the purpose of this review to present the raw data for Calsporin but rather to use Calsporin as an example of the type of data required by the European regulatory authorities. At the time of preparation of this manuscript Calsporin has yet to be reviewed by the authorities. The regulatory system under the auspices of the EFSA FEEDAP Panel is clearly attempting to move in line with development of scientific opinion and is to be applauded for such efforts. Bacteria do need to be regulated, and the regulations clearly provide adequate and appropriate protection to human health and to environmental considerations.

  8. Transcriptional regulation by Ferric Uptake Regulator (Fur) in pathogenic bacteria.

    PubMed

    Troxell, Bryan; Hassan, Hosni M

    2013-01-01

    In the ancient anaerobic environment, ferrous iron (Fe(2+)) was one of the first metal cofactors. Oxygenation of the ancient world challenged bacteria to acquire the insoluble ferric iron (Fe(3+)) and later to defend against reactive oxygen species (ROS) generated by the Fenton chemistry. To acquire Fe(3+), bacteria produce low-molecular weight compounds, known as siderophores, which have extremely high affinity for Fe(3+). However, during infection the host restricts iron from pathogens by producing iron- and siderophore-chelating proteins, by exporting iron from intracellular pathogen-containing compartments, and by limiting absorption of dietary iron. Ferric Uptake Regulator (Fur) is a transcription factor which utilizes Fe(2+) as a corepressor and represses siderophore synthesis in pathogens. Fur, directly or indirectly, controls expression of enzymes that protect against ROS damage. Thus, the challenges of iron homeostasis and defense against ROS are addressed via Fur. Although the role of Fur as a repressor is well-documented, emerging evidence demonstrates that Fur can function as an activator. Fur activation can occur through three distinct mechanisms (1) indirectly via small RNAs, (2) binding at cis regulatory elements that enhance recruitment of the RNA polymerase holoenzyme (RNAP), and (3) functioning as an antirepressor by removing or blocking DNA binding of a repressor of transcription. In addition, Fur homologs control defense against peroxide stress (PerR) and control uptake of other metals such as zinc (Zur) and manganese (Mur) in pathogenic bacteria. Fur family members are important for virulence within bacterial pathogens since mutants of fur, perR, or zur exhibit reduced virulence within numerous animal and plant models of infection. This review focuses on the breadth of Fur regulation in pathogenic bacteria.

  9. Bacteria-polymeric membrane interactions: atomic force microscopy and XDLVO predictions.

    PubMed

    Thwala, Justice M; Li, Minghua; Wong, Mavis C Y; Kang, Seoktae; Hoek, Eric M V; Mamba, Bhekie B

    2013-11-12

    Atomic force microscopy (AFM) in conjunction with a bioprobe developed using a polydopamine wet adhesive was used to directly measure the adhesive force between bacteria and different polymeric membrane surfaces. Bacterial cells of Pseudomonas putida and Bacillus subtilis were immobilized onto the tip of a standard AFM cantilever, and force measurements made using the modified cantilever on various membranes. Interaction forces measured with the bacterial probe were compared, qualitatively, to predictions by the extended Derjaguin-Landau-Verwey-Overbeek (XDLVO) theory with steric interactions included. The XDLVO theory predicted attractive interactions between low energy hydrophobic membranes with high energy hydrophilic bacterium (P. putida). It also predicted a shallow primary maximum with the most hydrophilic bacterium, B. subtilis . Discrepancies between predictions using the XDLVO theory and theory require involvement of factors such as bridging effects. Differences in interaction between P. putida and B. subtilis are attributed to acid-base interactions and steric interactions. P. putida is Gram negative with lipopolysaccharides present in the outer cell membrane. A variation in forces of adhesion for bacteria on polymeric membranes studied was interpreted in terms of hydrophilicity and interfacial surface potential calculated from physicochemical properties.

  10. Silver nanoparticles formation by extracellular polymeric substances (EPS) from electroactive bacteria.

    PubMed

    Li, Shan-Wei; Zhang, Xing; Sheng, Guo-Ping

    2016-05-01

    Microbial extracellular polymeric substances (EPS) excreted from microorganisms were a complex natural biological polymer mixture of proteins and polysaccharides, which played an important roles in the transport of metals, such as Ag(+). Electroactive bacteria, is an important class of environmental microorganisms, which can use iron or manganese mineral as terminal electron acceptors to generate energy for biosynthesis and cell maintenance. In this work, the EPS extracted of three electroactive bacteria (Shewanella oneidensis, Aeromonas hydrophila, and Pseudomonas putida) were used for reducing Ag(+) and forming silver nanoparticles (AgNPs). Results showed that all the three microbial EPS could reduce Ag(+) to AgNPs. The formed AgNPs were characterized in depth by the UV-visible spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy, and high-resolution transmission electron microscopy. The main components in the EPS from the three electroactive bacteria were analyzed. The presence of cytochrome c in these EPS was confirmed, and they were found to contribute to the reduction of Ag(+) to AgNPs. The results indicated that the EPS of electroactive bacteria could act as a reductant for AgNPs synthesis and could provide new information to understand the fate of metals and their metal nanoparticles in the natural environments. PMID:26797954

  11. Extracellular polymeric substances mediate bioleaching/biocorrosion via interfacial processes involving iron(III) ions and acidophilic bacteria.

    PubMed

    Sand, Wolfgang; Gehrke, Tilman

    2006-01-01

    Extracellular polymeric substances seem to play a pivotal role in biocorrosion of metals and bioleaching, biocorrosion of metal sulfides for the winning of precious metals as well as acid rock drainage. For better control of both processes, the structure and function of extracellular polymeric substances of corrosion-causing or leaching bacteria are of crucial importance. Our research focused on the extremophilic bacteria Acidithiobacillus ferrooxidans and Leptospirillum ferrooxidans, because of the "simplicity" and knowledge about the interactions of these bacteria with their substrate/substratum and their environment. For this purpose, the composition of the corresponding extracellular polymeric substances and their functions were analyzed. The extracellular polymeric substances of both species consist mainly of neutral sugars and lipids. The functions of the exopolymers seem to be: (i) to mediate attachment to a (metal) sulfide surface, and (ii) to concentrate iron(III) ions by complexation through uronic acids or other residues at the mineral surface, thus, allowing an oxidative attack on the sulfide. Consequently, dissolution of the metal sulfide is enhanced, which may result in an acceleration of 20- to 100-fold of the bioleaching process over chemical leaching. Experiments were performed to elucidate the importance of the iron(III) ions complexed by extracellular polymeric substances for strain-specific differences in oxidative activity for pyrite. Strains of A. ferrooxidans with a high amount of iron(III) ions in their extracellular polymeric substances possess greater oxidation activity than those with fewer iron(III) ions. These data provide insight into the function of and consequently the advantages that extracellular polymeric substances provide to bacteria. The role of extracellular polymeric substances for attachment under the conditions of a space station and resulting effects like biofouling, biocorrosion, malodorous gases, etc. will be discussed.

  12. The Interaction of Bacteria with Engineered Nanostructured Polymeric Materials: A Review

    PubMed Central

    Armentano, Ilaria; Arciola, Carla Renata; Fortunati, Elena; Ferrari, Davide; Mattioli, Samantha; Amoroso, Concetta Floriana; Rizzo, Jessica; Kenny, Jose M.; Imbriani, Marcello; Visai, Livia

    2014-01-01

    Bacterial infections are a leading cause of morbidity and mortality worldwide. In spite of great advances in biomaterials research and development, a significant proportion of medical devices undergo bacterial colonization and become the target of an implant-related infection. We present a review of the two major classes of antibacterial nanostructured materials: polymeric nanocomposites and surface-engineered materials. The paper describes antibacterial effects due to the induced material properties, along with the principles of bacterial adhesion and the biofilm formation process. Methods for antimicrobial modifications of polymers using a nanocomposite approach as well as surface modification procedures are surveyed and discussed, followed by a concise examination of techniques used in estimating bacteria/material interactions. Finally, we present an outline of future sceneries and perspectives on antibacterial applications of nanostructured materials to resist or counteract implant infections. PMID:25025086

  13. Calcium carbonate mineralization: involvement of extracellular polymeric materials isolated from calcifying bacteria.

    PubMed

    Ercole, Claudia; Bozzelli, Paola; Altieri, Fabio; Cacchio, Paola; Del Gallo, Maddalena

    2012-08-01

    This study highlights the role of specific outer bacterial structures, such as the glycocalix, in calcium carbonate crystallization in vitro. We describe the formation of calcite crystals by extracellular polymeric materials, such as exopolysaccharides (EPS) and capsular polysaccharides (CPS) isolated from Bacillus firmus and Nocardia calcarea. Organic matrices were isolated from calcifying bacteria grown on synthetic medium--in the presence or absence of calcium ions--and their effect on calcite precipitation was assessed. Scanning electron microscopy observations and energy dispersive X-ray spectrometry analysis showed that CPS and EPS fractions were involved in calcium carbonate precipitation, not only serving as nucleation sites but also through a direct role in crystal formation. The utilization of different synthetic media, with and without addition of calcium ions, influenced the biofilm production and protein profile of extracellular polymeric materials. Proteins of CPS fractions with a molecular mass between 25 and 70 kDa were overexpressed when calcium ions were present in the medium. This higher level of protein synthesis could be related to the active process of bioprecipitation.

  14. Calcium carbonate mineralization: involvement of extracellular polymeric materials isolated from calcifying bacteria.

    PubMed

    Ercole, Claudia; Bozzelli, Paola; Altieri, Fabio; Cacchio, Paola; Del Gallo, Maddalena

    2012-08-01

    This study highlights the role of specific outer bacterial structures, such as the glycocalix, in calcium carbonate crystallization in vitro. We describe the formation of calcite crystals by extracellular polymeric materials, such as exopolysaccharides (EPS) and capsular polysaccharides (CPS) isolated from Bacillus firmus and Nocardia calcarea. Organic matrices were isolated from calcifying bacteria grown on synthetic medium--in the presence or absence of calcium ions--and their effect on calcite precipitation was assessed. Scanning electron microscopy observations and energy dispersive X-ray spectrometry analysis showed that CPS and EPS fractions were involved in calcium carbonate precipitation, not only serving as nucleation sites but also through a direct role in crystal formation. The utilization of different synthetic media, with and without addition of calcium ions, influenced the biofilm production and protein profile of extracellular polymeric materials. Proteins of CPS fractions with a molecular mass between 25 and 70 kDa were overexpressed when calcium ions were present in the medium. This higher level of protein synthesis could be related to the active process of bioprecipitation. PMID:22697480

  15. Stuttering Min oscillations within E. coli bacteria: a stochastic polymerization model

    NASA Astrophysics Data System (ADS)

    Sengupta, Supratim; Derr, Julien; Sain, Anirban; Rutenberg, Andrew D.

    2012-10-01

    We have developed a 3D off-lattice stochastic polymerization model to study the subcellular oscillation of Min proteins in the bacteria Escherichia coli, and used it to investigate the experimental phenomenon of Min oscillation stuttering. Stuttering was affected by the rate of immediate rebinding of MinE released from depolymerizing filament tips (processivity), protection of depolymerizing filament tips from MinD binding and fragmentation of MinD filaments due to MinE. Processivity, protection and fragmentation each reduce stuttering, speed oscillations and MinD filament lengths. Neither processivity nor tip protection were, on their own, sufficient to produce fast stutter-free oscillations. While filament fragmentation could, on its own, lead to fast oscillations with infrequent stuttering; high levels of fragmentation degraded oscillations. The infrequent stuttering observed in standard Min oscillations is consistent with short filaments of MinD, while we expect that mutants that exhibit higher stuttering frequencies will exhibit longer MinD filaments. Increased stuttering rate may be a useful diagnostic to find observable MinD polymerization under experimental conditions.

  16. RNA-Mediated Regulation in Pathogenic Bacteria

    PubMed Central

    Caldelari, Isabelle; Chao, Yanjie; Romby, Pascale; Vogel, Jörg

    2013-01-01

    Pathogenic bacteria possess intricate regulatory networks that temporally control the production of virulence factors, and enable the bacteria to survive and proliferate after host infection. Regulatory RNAs are now recognized as important components of these networks, and their study may not only identify new approaches to combat infectious diseases but also reveal new general control mechanisms involved in bacterial gene expression. In this review, we illustrate the diversity of regulatory RNAs in bacterial pathogens, their mechanism of action, and how they can be integrated into the regulatory circuits that govern virulence-factor production. PMID:24003243

  17. Sorption of ferrous and ferric iron by extracellular polymeric substances (EPS) from acidophilic bacteria.

    PubMed

    Tapia, Jaime M; Muñoz, Jesús; González, Felisa; Blázquez, Maria L; Ballester, Antonio

    2013-01-01

    The sorption of Fe(II) and Fe(III) by extracellular polymeric substances (EPS) of acidophilic bacteria Acidiphilium 3.2Sup(5) and Acidithiobacillus ferrooxidans, harvested from the ecosystem of the Tinto River (Huelva, Spain), was investigated. EPS from mixed cultures of both bacteria (EPS(mixed)) and pure cultures of A. 3.2Sup(5) (EPS(pure)) were extracted with ethylenediamine tetraacetic acid (EDTA) and were characterized by Fourier-transform infrared (FTIR), electron photoemission (XPS), x-ray diffraction (DRX), and energy dispersive x-ray (EDX) spectroscopy and scanning electron microscopy (SEM). EPS pure were loaded, in sorption tests, with Fe(II) and Fe(III). The results obtained indicate that the biochemical composition and structure of EPS(mixed) was very similar to that of EPS(pure). Besides, results indicate that EPS(mixed) adsorbed Fe(II) and Fe(III) by preferential interaction with the carboxyl group, which favored the formation of Fe(II)/Fe(III) oxalates. These species were also formed in EPS(pure) loaded with Fe(II)/Fe(III). All this behavior suggested that the sorption of iron by EPS(mixed) was similar to sorption of EPS(pure), which fitted the Freundlich model. Thus, the iron uptake of EPS(mixed) reached 516.7 ± 23.4 mg Fe/g-EPS at an initial concentration of 2.0 g/L of Fe(total) and Fe(II)/Fe(III) ratio of 1.0.

  18. The Formin Diaphanous Regulates Myoblast Fusion through Actin Polymerization and Arp2/3 Regulation.

    PubMed

    Deng, Su; Bothe, Ingo; Baylies, Mary K

    2015-08-01

    The formation of multinucleated muscle cells through cell-cell fusion is a conserved process from fruit flies to humans. Numerous studies have shown the importance of Arp2/3, its regulators, and branched actin for the formation of an actin structure, the F-actin focus, at the fusion site. This F-actin focus forms the core of an invasive podosome-like structure that is required for myoblast fusion. In this study, we find that the formin Diaphanous (Dia), which nucleates and facilitates the elongation of actin filaments, is essential for Drosophila myoblast fusion. Following cell recognition and adhesion, Dia is enriched at the myoblast fusion site, concomitant with, and having the same dynamics as, the F-actin focus. Through analysis of Dia loss-of-function conditions using mutant alleles but particularly a dominant negative Dia transgene, we demonstrate that reduction in Dia activity in myoblasts leads to a fusion block. Significantly, no actin focus is detected, and neither branched actin regulators, SCAR or WASp, accumulate at the fusion site when Dia levels are reduced. Expression of constitutively active Dia also causes a fusion block that is associated with an increase in highly dynamic filopodia, altered actin turnover rates and F-actin distribution, and mislocalization of SCAR and WASp at the fusion site. Together our data indicate that Dia plays two roles during invasive podosome formation at the fusion site: it dictates the level of linear F-actin polymerization, and it is required for appropriate branched actin polymerization via localization of SCAR and WASp. These studies provide new insight to the mechanisms of cell-cell fusion, the relationship between different regulators of actin polymerization, and invasive podosome formation that occurs in normal development and in disease.

  19. Component analysis and heavy metal adsorption ability of extracellular polymeric substances (EPS) from sulfate reducing bacteria.

    PubMed

    Yue, Zheng-Bo; Li, Qing; Li, Chuan-chuan; Chen, Tian-hu; Wang, Jin

    2015-10-01

    Extracellular polymeric substances (EPS) play an important role in the treatment of acid mine drainage (AMD) by sulfate-reducing bacteria (SRB). In this paper, Desulfovibrio desulfuricans was used as the test strain to explore the effect of heavy metals on the components and adsorption ability of EPS. Fourier-transform infrared (FTIR) spectroscopy analysis results showed that heavy metals did not influence the type of functional groups of EPS. Potentiometric titration results indicated that the acidic constants (pKa) of the EPS fell into three ranges of 3.5-4.0, 5.9-6.7, and 8.9-9.8. The adsorption site concentrations of the surface functional groups also increased. Adsorption results suggested that EPS had a specific binding affinity for the dosed heavy metal, and that EPS extracted from the Zn(2+)-dosed system had a higher binding affinity for all heavy metals. Additionally, Zn(2+) decreased the inhibitory effects of Cd(2+) and Cu(2+) on the SRB.

  20. Modeling the development of biofilm density including active bacteria, inert biomass, and extracellular polymeric substances.

    PubMed

    Laspidou, Chrysi S; Rittmann, Bruce E

    2004-01-01

    We present the unified multi-component cellular automaton (UMCCA) model, which predicts quantitatively the development of the biofilm's composite density for three biofilm components: active bacteria, inert or dead biomass, and extracellular polymeric substances. The model also describes the concentrations of three soluble organic components (soluble substrate and two types of soluble microbial products) and oxygen. The UMCCA model is a hybrid discrete-differential mathematical model and introduces the novel feature of biofilm consolidation. Our hypothesis is that the fluid over the biofilm creates pressures and vibrations that cause the biofilm to consolidate, or pack itself to a higher density over time. Each biofilm compartment in the model output consolidates to a different degree that depends on the age of its biomass. The UMCCA model also adds a cellular automaton algorithm that identifies the path of least resistance and directly moves excess biomass along that path, thereby ensuring that the excess biomass is distributed efficiently. A companion paper illustrates the trends that the UMCCA model is able to represent and shows a comparison with experimental results. PMID:15276752

  1. Regulation of kinesin-transport by microtubule age and polymerization conditions

    NASA Astrophysics Data System (ADS)

    Xu, Jing; Liang, Winnie; King, Stephen; Faysal, K.

    2015-03-01

    Microtubules are fundamental biopolymers in cells, formed via self-assembly (``polymerization'') of tubulin dimers. Microtubule polymerization conditions have been shown to alter the presence of defects in microtubule lattices, including point defects (missing tubulin dimers) and line defects (protofilament disruption). Potential impact of these lattice defects on molecular motor-based transport is not yet understood. Here we investigate the impact of microtubule polymerization conditions on multiple-kinesin transport, using single-molecule-type optical trapping experiments. We find that kinesin-based cargoes pause preferentially at specific locations along individual microtubules, and that the pause frequency and duration is strongly dependent on microtubule age and polymerization condition. Within each polymerization condition and for fresh microtubules, we also observe significant variations in multiple-kinesin travel distances, depending on which microtubules the motors travel along. Taken together, our study suggests an important role of microtubule lattice defect in regulating intracellular transport.

  2. Regulation of Flagellar Gene Expression in Bacteria.

    PubMed

    Osterman, I A; Dikhtyar, Yu Yu; Bogdanov, A A; Dontsova, O A; Sergiev, P V

    2015-11-01

    The flagellum of a bacterium is a supramolecular structure of extreme complexity comprising simultaneously both a unique system of protein transport and a molecular machine that enables the bacterial cell movement. The cascade of expression of genes encoding flagellar components is closely coordinated with the steps of molecular machine assembly, constituting an amazing regulatory system. Data on structure, assembly, and regulation of flagellar gene expression are summarized in this review. The regulatory mechanisms and correlation of the process of regulation of gene expression and flagellum assembly known from the literature are described. PMID:26615435

  3. Yersinia effector YopO uses actin as bait to phosphorylate proteins that regulate actin polymerization

    PubMed Central

    Lee, Wei Lin; Grimes, Jonathan M; Robinson, Robert C

    2016-01-01

    Pathogenic Yersinia species evade host immune systems through the injection of Yersinia outer proteins (Yops) into phagocytic cells. One Yop, YopO, also known as YpkA, induces actin-filament disruption, impairing phagocytosis. Here we describe the X-ray structure of Yersinia enterocolitica YopO in complex with actin, which reveals that YopO binds to an actin monomer in a manner that blocks polymerization yet allows the bound actin to interact with host actin-regulating proteins. SILAC-MS and biochemical analyses confirm that actin-polymerization regulators such as VASP, EVL, WASP, gelsolin and the formin diaphanous 1 are directly sequestered and phosphorylated by YopO through formation of ternary complexes with actin. This leads to a model in which YopO at the membrane sequesters actin from polymerization while using the bound actin as bait to recruit, phosphorylate and misregulate host actin-regulating proteins to disrupt phagocytosis. PMID:25664724

  4. Yersinia effector YopO uses actin as bait to phosphorylate proteins that regulate actin polymerization.

    PubMed

    Lee, Wei Lin; Grimes, Jonathan M; Robinson, Robert C

    2015-03-01

    Pathogenic Yersinia species evade host immune systems through the injection of Yersinia outer proteins (Yops) into phagocytic cells. One Yop, YopO, also known as YpkA, induces actin-filament disruption, impairing phagocytosis. Here we describe the X-ray structure of Yersinia enterocolitica YopO in complex with actin, which reveals that YopO binds to an actin monomer in a manner that blocks polymerization yet allows the bound actin to interact with host actin-regulating proteins. SILAC-MS and biochemical analyses confirm that actin-polymerization regulators such as VASP, EVL, WASP, gelsolin and the formin diaphanous 1 are directly sequestered and phosphorylated by YopO through formation of ternary complexes with actin. This leads to a model in which YopO at the membrane sequesters actin from polymerization while using the bound actin as bait to recruit, phosphorylate and misregulate host actin-regulating proteins to disrupt phagocytosis.

  5. [Biosorption properties of extracellular polymeric substances produced by sulfate-reducing bacteria towards Cu(II) ion].

    PubMed

    Fang, Di; Zhang, Rui-Chang; Zhao, Yang-Guo

    2011-10-01

    The purpose of the present study was to investigate the Cu2+ biosorption properties of extracellular polymeric substances (EPS) produced by sulfate-reducing bacteria. The composition and physicochemical characteristics of EPS were determined. The adsorption characteristics of EPS towards Cu2+ were examined using thermodynamic equilibrium equations and determined by FTIR and SEM-EDS. The EPS was shown to have a strong copper-binding capacity and the biosorption data obtained were well described by the Freundlich isotherm model. The results of FTIR spectra and SEM-EDS confirmed the importance of the C-O-C group, -OH group and carbonyl group from polysaccharides and proteins in Cu2+ sorption by EPS. These findings suggest the potential of EPS produced by sulfate-reducing bacteria for the removal of Cu(II) ion from aqueous solution.

  6. Regulation of glycogen metabolism in yeast and bacteria

    PubMed Central

    Wilson, Wayne A.; Roach, Peter J.; Montero, Manuel; Baroja-Fernández, Edurne; Muñoz, Francisco José; Eydallin, Gustavo; Viale, Alejandro M.; Pozueta-Romero, Javier

    2010-01-01

    Microorganisms have the capacity to utilize a variety of nutrients and adapt to continuously changing environmental conditions. Many microorganisms, including yeast and bacteria, accumulate carbon and energy reserves to cope with starvation conditions temporarily present in the environment. Glycogen biosynthesis is a main strategy for such metabolic storage and a variety of sensing and signaling mechanisms have evolved in evolutionarily distant species to guarantee the production of this homopolysaccharide. At the most fundamental level, the processes of glycogen synthesis and degradation in yeast and bacteria share certain broad similarities. However, the regulation of these processes is sometimes quite distinct, indicating that they have evolved separately to respond optimally to the habitat conditions of each species. This review aims to highlight the mechanisms, both at the transcriptional and post-transcriptional levels, which regulate glycogen metabolism in yeast and bacteria, focusing on selected areas where the greatest increase in knowledge has occurred during the last few years. In the yeast system, we focus particularly on the various signaling pathways that control the activity of the enzymes of glycogen storage. We also discuss our recent understanding of the important role played by the vacuole in glycogen metabolism. In the case of bacterial glycogen, especial emphasis is given to aspects related with genetic regulation of glycogen metabolism and its connection with other biological processes. PMID:20412306

  7. A Structural Basis for Regulation of Actin Polymerization by Pectenotoxins

    PubMed Central

    Allingham, John S.; Miles, Christopher O.; Rayment, Ivan

    2007-01-01

    Pectenotoxins (PTXs) are polyether macrolides found in certain dinoflagellates, sponges and shellfish, and have been associated with diarrhetic shellfish poisoning. In addition to their in vivo toxicity, some PTXs are potently cytotoxic in human cancer cell lines. Recent studies have demonstrated that disruption of the actin cytoskeleton may be a key function of these compounds, although no clarification their mechanism of action at a molecular level was available. We have obtained an X-ray crystal structure of PTX-2 bound to actin which, in combination with analyses of the effect of PTX-2 on purified actin filament dynamics, provides a molecular explanation for its effects on actin. PTX-2 formed a 1:1 complex with actin and engaged a novel site between subdomains 1 and 3. Based on models of the actin filament, PTX binding would disrupt key lateral contacts between the PTX-bound actin monomer and the lower lateral actin monomer within the filament, thereby capping the barbed-end. The location of this binding position within the interior of the filament indicates that it may not be accessible once polymerization has occurred, a hypothesis supported by our observation that PTX-2 caused filament capping without inducing filament severing. This mode of action is unique, as other actin filament destabilizing toxins appear to exclusively disrupt longitudinal monomer contacts allowing many of them to sever filaments in addition to capping them. Examination of the PTX-binding site on actin provides a rationalization for the structure–activity relationships observed in vivo and in vitro, and may provide a basis for predicting toxicity of PTX analogues. PMID:17599353

  8. Redox regulation by reversible protein S-thiolation in bacteria

    PubMed Central

    Loi, Vu Van; Rossius, Martina; Antelmann, Haike

    2015-01-01

    Low molecular weight (LMW) thiols function as thiol-redox buffers to maintain the reduced state of the cytoplasm. The best studied LMW thiol is the tripeptide glutathione (GSH) present in all eukaryotes and Gram-negative bacteria. Firmicutes bacteria, including Bacillus and Staphylococcus species utilize the redox buffer bacillithiol (BSH) while Actinomycetes produce the related redox buffer mycothiol (MSH). In eukaryotes, proteins are post-translationally modified to S-glutathionylated proteins under conditions of oxidative stress. S-glutathionylation has emerged as major redox-regulatory mechanism in eukaryotes and protects active site cysteine residues against overoxidation to sulfonic acids. First studies identified S-glutathionylated proteins also in Gram-negative bacteria. Advances in mass spectrometry have further facilitated the identification of protein S-bacillithiolations and S-mycothiolation as BSH- and MSH-mixed protein disulfides formed under oxidative stress in Firmicutes and Actinomycetes, respectively. In Bacillus subtilis, protein S-bacillithiolation controls the activities of the redox-sensing OhrR repressor and the methionine synthase MetE in vivo. In Corynebacterium glutamicum, protein S-mycothiolation was more widespread and affected the functions of the maltodextrin phosphorylase MalP and thiol peroxidase (Tpx). In addition, novel bacilliredoxins (Brx) and mycoredoxins (Mrx1) were shown to function similar to glutaredoxins in the reduction of BSH- and MSH-mixed protein disulfides. Here we review the current knowledge about the functions of the bacterial thiol-redox buffers glutathione, bacillithiol, and mycothiol and the role of protein S-thiolation in redox regulation and thiol protection in model and pathogenic bacteria. PMID:25852656

  9. Profilin Regulates Apical Actin Polymerization to Control Polarized Pollen Tube Growth.

    PubMed

    Liu, Xiaonan; Qu, Xiaolu; Jiang, Yuxiang; Chang, Ming; Zhang, Ruihui; Wu, Youjun; Fu, Ying; Huang, Shanjin

    2015-12-01

    Pollen tube growth is an essential step during flowering plant reproduction, whose growth depends on a population of dynamic apical actin filaments. Apical actin filaments were thought to be involved in the regulation of vesicle fusion and targeting in the pollen tube. However, the molecular mechanisms that regulate the construction of apical actin structures in the pollen tube remain largely unclear. Here, we identify profilin as an important player in the regulation of actin polymerization at the apical membrane in the pollen tube. Downregulation of profilin decreased the amount of filamentous actin and induced disorganization of apical actin filaments, and reduced tip-directed vesicle transport and accumulation in the pollen tube. Direct visualization of actin dynamics revealed that the elongation of actin filaments originating at the apical membrane decreased in profilin mutant pollen tubes. Mutant profilin that is defective in binding poly-L-proline only partially rescues the actin polymerization defect in profilin mutant pollen tubes, although it fully rescues the actin turnover phenotype. We propose that profilin controls the construction of actin structures at the pollen tube tip, presumably by favoring formin-mediated actin polymerization at the apical membrane.

  10. Sequence-regulated copolymers via tandem catalysis of living radical polymerization and in situ transesterification.

    PubMed

    Nakatani, Kazuhiro; Ogura, Yusuke; Koda, Yuta; Terashima, Takaya; Sawamoto, Mitsuo

    2012-03-01

    Sequence regulation of monomers is undoubtedly a challenging issue as an ultimate goal in polymer science. To efficiently produce sequence-controlled copolymers, we herein developed the versatile tandem catalysis, which concurrently and/or sequentially involved ruthenium-catalyzed living radical polymerization and in situ transesterification of methacrylates (monomers: RMA) with metal alkoxides (catalysts) and alcohols (ROH). Typically, gradient copolymers were directly obtained from the synchronization of the two reactions: the instantaneous monomer composition in feed gradually changed via the transesterification of R(1)MA into R(2)MA in the presence of R(2)OH during living polymerization to give R(1)MA/R(2)MA gradient copolymers. The gradient sequence of monomers along a chain was catalytically controlled by the reaction conditions such as temperature, concentration and/or species of catalysts, alcohols, and monomers. The sequence regulation of multimonomer units was also successfully achieved in one-pot by monomer-selective transesterification in concurrent tandem catalysis and iterative tandem catalysis, providing random-gradient copolymers and gradient-block counterparts, respectively. In contrast, sequential tandem catalysis via the variable initiation of either polymerization or in situ transesterification led to random or block copolymers. Due to the versatile adaptability of common and commercially available reagents (monomers, alcohols, catalysts), this tandem catalysis is one of the most efficient, convenient, and powerful tools to design tailor-made sequence-regulated copolymers.

  11. Isolation and characterization of polymeric galloyl-ester-degrading bacteria from a tannery discharge place.

    PubMed

    Franco, A R; Calheiros, C S C; Pacheco, C C; De Marco, P; Manaia, C M; Castro, P M L

    2005-11-01

    The culturable bacteria colonizing the rhizosphere of plants growing in the area of discharge of a tannery effluent were characterized. Relative proportions of aerobic, denitrifying, and sulfate-reducing bacteria were determined in the rhizosphere of Typha latifolia, Canna indica, and Phragmites australis. Aerobic bacteria were observed to be the most abundant group in the rhizosphere, and plant type did not seem to influence the abundance of the bacterial types analyzed. To isolate bacteria able to degrade polyphenols used in the tannery industry, enrichments were conducted under different conditions. Bacterial cultures were enriched with individual polyphenols (tannins Tara, Quebracho, or Mimosa) or with an undefined mixture of tannins present in the tannery effluent as carbon source. Cultures enriched with the effluent or Tara tannin were able to degrade tannic acid. Six bacterial isolates purified from these mixed cultures were able to use tannic acid as a sole carbon source in axenic culture. On the basis of 16S ribosomal DNA sequence analysis, these isolates were closely related to organisms belonging to the taxa Serratia, Stenotrophomonas maltophilia, Klebsiella oxytoca, Herbaspirillum chlorophenolicum, and Pseudomonas putida.

  12. Sequence-regulated vinyl copolymers by metal-catalysed step-growth radical polymerization.

    PubMed

    Satoh, Kotaro; Ozawa, Satoshi; Mizutani, Masato; Nagai, Kanji; Kamigaito, Masami

    2010-04-12

    Proteins and nucleic acids are sequence-regulated macromolecules with various properties originating from their perfectly sequenced primary structures. However, the sequence regulation of synthetic polymers, particularly vinyl polymers, has not been achieved and is one of the ultimate goals in polymer chemistry. In this study, we report a strategy to obtain sequence-regulated vinyl copolymers consisting of styrene, acrylate and vinyl chloride units using metal-catalysed step-growth radical polyaddition of designed monomers prepared from common vinyl monomer building blocks. Unprecedented ABCC-sequence-regulated copolymers with perfect vinyl chloride-styrene-acrylate-acrylate sequences were obtained by copper-catalysed step-growth radical polymerization of designed monomers possessing unconjugated C=C and reactive C-Cl bonds. This strategy may open a new route in the study of sequence-regulated synthetic polymers.

  13. Competitive adsorption of heavy metal by extracellular polymeric substances (EPS) extracted from sulfate reducing bacteria.

    PubMed

    Wang, Jin; Li, Qing; Li, Ming-Ming; Chen, Tian-Hu; Zhou, Yue-Fei; Yue, Zheng-Bo

    2014-07-01

    Competitive adsorption of heavy metals by extracellular polymeric substances (EPS) extracted from Desulfovibrio desulfuricans was investigated. Chemical analysis showed that different EPS compositions had different capacities for the adsorption of heavy metals which was investigated using Cu(2+) and Zn(2+). Batch adsorption tests indicated that EPS had a higher combined ability with Zn(2+) than Cu(2+). This was confirmed and explained by Fourier transform infrared (FTIR) and excitation-emission matrix (EEM) spectroscopy analysis. FTIR analysis showed that both polysaccharides and protein combined with Zn(2+) while only protein combined with Cu(2+). EEM spectra further revealed that tryptophan-like substances were the main compositions reacted with the heavy metals. Moreover, Zn(2+) had a higher fluorescence quenching ability than Cu(2+).

  14. Genghis Khan (Gek) as a putative effector for Drosophila Cdc42 and regulator of actin polymerization.

    PubMed

    Luo, L; Lee, T; Tsai, L; Tang, G; Jan, L Y; Jan, Y N

    1997-11-25

    The small GTPases Cdc42 and Rac regulate a variety of biological processes, including actin polymerization, cell proliferation, and JNK/mitogen-activated protein kinase activation, conceivably via distinct effectors. Whereas the effector for mitogen-activated protein kinase activation appears to be p65PAK, the identity of effector(s) for actin polymerization remains unclear. We have found a putative effector for Drosophila Cdc42, Genghis Khan (Gek), which binds to Dcdc42 in a GTP-dependent and effector domain-dependent manner. Gek contains a predicted serine/threonine kinase catalytic domain that is 63% identical to human myotonic dystrophy protein kinase and has protein kinase activities. It also possesses a large coiled-coil domain, a putative phorbol ester binding domain, a pleckstrin homology domain, and a Cdc42 binding consensus sequence that is required for its binding to Dcdc42. To study the in vivo function of gek, we generated mutations in the Drosophila gek locus. Egg chambers homozygous for gek mutations exhibit abnormal accumulation of F-actin and are defective in producing fertilized eggs. These phenotypes can be rescued by a wild-type gek transgene. Our results suggest that this multidomain protein kinase is an effector for the regulation of actin polymerization by Cdc42.

  15. Regulation of enzyme localization by polymerization: polymer formation by the SAM domain of diacylglycerol kinase delta1.

    PubMed

    Harada, Bryan T; Knight, Mary Jane; Imai, Shin-Ichi; Qiao, Feng; Ramachander, Ranjini; Sawaya, Michael R; Gingery, Mari; Sakane, Fumio; Bowie, James U

    2008-03-01

    The diacylglycerol kinase (DGK) enzymes function as regulators of intracellular signaling by altering the levels of the second messengers, diacylglycerol and phosphatidic acid. The DGK delta and eta isozymes possess a common protein-protein interaction module known as a sterile alpha-motif (SAM) domain. In DGK delta, SAM domain self-association inhibits the translocation of DGK delta to the plasma membrane. Here we show that DGK delta SAM forms a polymer and map the polymeric interface by a genetic selection for soluble mutants. A crystal structure reveals that DGKSAM forms helical polymers through a head-to-tail interaction similar to other SAM domain polymers. Disrupting polymerization by polymer interface mutations constitutively localizes DGK delta to the plasma membrane. Thus, polymerization of DGK delta regulates the activity of the enzyme by sequestering DGK delta in an inactive cellular location. Regulation by dynamic polymerization is an emerging theme in signal transduction.

  16. Airway bacteria drive a progressive COPD-like phenotype in mice with polymeric immunoglobulin receptor deficiency

    PubMed Central

    Richmond, Bradley W.; Brucker, Robert M.; Han, Wei; Du, Rui-Hong; Zhang, Yongqin; Cheng, Dong-Sheng; Gleaves, Linda; Abdolrasulnia, Rasul; Polosukhina, Dina; Clark, Peter E.; Bordenstein, Seth R.; Blackwell, Timothy S.; Polosukhin, Vasiliy V.

    2016-01-01

    Mechanisms driving persistent airway inflammation in chronic obstructive pulmonary disease (COPD) are incompletely understood. As secretory immunoglobulin A (SIgA) deficiency in small airways has been reported in COPD patients, we hypothesized that immunobarrier dysfunction resulting from reduced SIgA contributes to chronic airway inflammation and disease progression. Here we show that polymeric immunoglobulin receptor-deficient (pIgR−/−) mice, which lack SIgA, spontaneously develop COPD-like pathology as they age. Progressive airway wall remodelling and emphysema in pIgR−/− mice are associated with an altered lung microbiome, bacterial invasion of the airway epithelium, NF-κB activation, leukocyte infiltration and increased expression of matrix metalloproteinase-12 and neutrophil elastase. Re-derivation of pIgR−/− mice in germ-free conditions or treatment with the anti-inflammatory phosphodiesterase-4 inhibitor roflumilast prevents COPD-like lung inflammation and remodelling. These findings show that pIgR/SIgA deficiency in the airways leads to persistent activation of innate immune responses to resident lung microbiota, driving progressive small airway remodelling and emphysema. PMID:27046438

  17. Airway bacteria drive a progressive COPD-like phenotype in mice with polymeric immunoglobulin receptor deficiency.

    PubMed

    Richmond, Bradley W; Brucker, Robert M; Han, Wei; Du, Rui-Hong; Zhang, Yongqin; Cheng, Dong-Sheng; Gleaves, Linda; Abdolrasulnia, Rasul; Polosukhina, Dina; Clark, Peter E; Bordenstein, Seth R; Blackwell, Timothy S; Polosukhin, Vasiliy V

    2016-01-01

    Mechanisms driving persistent airway inflammation in chronic obstructive pulmonary disease (COPD) are incompletely understood. As secretory immunoglobulin A (SIgA) deficiency in small airways has been reported in COPD patients, we hypothesized that immunobarrier dysfunction resulting from reduced SIgA contributes to chronic airway inflammation and disease progression. Here we show that polymeric immunoglobulin receptor-deficient (pIgR(-/-)) mice, which lack SIgA, spontaneously develop COPD-like pathology as they age. Progressive airway wall remodelling and emphysema in pIgR(-/-) mice are associated with an altered lung microbiome, bacterial invasion of the airway epithelium, NF-κB activation, leukocyte infiltration and increased expression of matrix metalloproteinase-12 and neutrophil elastase. Re-derivation of pIgR(-/-) mice in germ-free conditions or treatment with the anti-inflammatory phosphodiesterase-4 inhibitor roflumilast prevents COPD-like lung inflammation and remodelling. These findings show that pIgR/SIgA deficiency in the airways leads to persistent activation of innate immune responses to resident lung microbiota, driving progressive small airway remodelling and emphysema. PMID:27046438

  18. Preferential adsorption of extracellular polymeric substances from bacteria on clay minerals and iron oxide.

    PubMed

    Cao, Yuanyuan; Wei, Xing; Cai, Peng; Huang, Qiaoyun; Rong, Xinming; Liang, Wei

    2011-03-01

    The adsorption of extracellular polymeric substances (EPS) from Bacillus subtilis on montmorillonite, kaolinite and goethite was investigated as a function of pH and ionic strength using batch studies coupled with Fourier transform infrared (FTIR) spectroscopy. The adsorption isotherms of EPS on minerals conformed to the Langmuir equation. The amount of EPS-C and -N adsorbed followed the sequence of montmorillonite>goethite>kaolinite. However, EPS-P adsorption was in the order of goethite>montmorillonite>kaolinite. A marked decrease in the mass fraction of EPS adsorption on minerals was observed with the increase of final pH from 3.1 to 8.3. Calcium ion was more efficient than sodium ion in promoting EPS adsorption on minerals. At various pH values and ionic strength, the mass fraction of EPS-N was higher than those of EPS-C and -P on montmorillonite and kaolinite, while the mass fraction of EPS-P was the highest on goethite. These results suggest that proteinaceous constituents were adsorbed preferentially on montmorillonite and kaolinite, and phosphorylated macromolecules were absorbed preferentially on goethite. Adsorption of EPS on clay minerals resulted in obvious shifts of infrared absorption bands of adsorbed water molecules, showing the importance of hydrogen bonding in EPS adsorption. The highest K values in equilibrium adsorption and FTIR are consistent with ligand exchange of EPS phosphate groups for goethite surface. The information obtained is of fundamental significance for understanding interfacial reactions between microorganisms and minerals. PMID:21130614

  19. Elaboration of highly hydrophobic polymeric surface--a potential strategy to reduce the adhesion of pathogenic bacteria?

    PubMed

    Poncin-Epaillard, F; Herry, J M; Marmey, P; Legeay, G; Debarnot, D; Bellon-Fontaine, M N

    2013-04-01

    Different polymeric surfaces have been modified in order to reach a high hydrophobic character, indeed the superhydrophobicity property. For this purpose, polypropylene and polystyrene have been treated by RF or μwaves CF4 plasma with different volumes, the results were compared according to the density of injected power. The effect of pretreatment such as mechanical abrasion or plasma activation was also studied. The modified surfaces were shown as hydrophobic, or even superhydrophobic depending of defects density. They were characterized by measurement of wettability and roughness at different scales, i.e. macroscopic, mesoscopic and atomic. It has been shown that a homogeneous surface at the macroscopic scale could be heterogeneous at lower mesoscopic scale. This was associated with the crystallinity of the material. The bioadhesion tests were performed with Gram positive and negative pathogenic strains: Listeria monocytogenes, Pseudomonas aeruginosa and Hafnia alvei. They have demonstrated an antibacterial efficiency of very hydrophobic and amorphous PS treated for all strains tested and a strain-dependent efficiency with modified PP surface being very heterogeneous at the mesoscopic scale. Thus, these biological results pointed out not only the respective role of the surface chemistry and topography in bacterial adhesion, but also the dependence on the peaks and valley distribution at bacteria dimension scale. PMID:23827554

  20. Selectively bonded polymeric glaucoma drainage device for reliable regulation of intraocular pressure.

    PubMed

    Moon, Seunghwan; Im, Seongmin; An, Jaeyong; Park, Chang Ju; Kim, Hwang Gyun; Park, Sang Woo; Kim, Hyoung Ihl; Lee, Jong-Hyun

    2012-04-01

    A novel glaucoma drainage device (GDD) using a polymeric micro check valve with no reverse flow is presented for the effective regulation of intraocular pressure (IOP). A significant functional improvement was achieved by reducing the possible incidence of hypotony, as the proposed GDD only drains aqueous humor at a certain cracking pressure or higher. The device consists of three biocompatible polymer layers: a top layer (cover), an intermediate layer (membrane), and a bottom layer (base plate with a cannula). All three layers, made of soft polydimethylsiloxane (PDMS), were bonded together to realize the thin GDDs. The bottom layer was selectively coated with chromium (Cr)/gold (Au) to prevent stiction between the valve seat and the valve orifice so that the device could show enhanced reliability in operation and high yield in production. Two types of polymeric devices were fabricated; one was a glaucoma drainage device for humans (GDDH) and the other was a glaucoma drainage device for animals (GDDA). From subsequent in vitro tests, the cracking pressures were 18.33 ± 0.66 mmHg (mean ± standard deviation) for GDDH and 12.42 mmHg for GDDA, both of which were very close to the corresponding normal IOPs. From in vivo tests of GDDA, the IOP of all implanted devices was properly regulated within the target pressure (10-15 mmHg). The experimental results showed that the proposed polymeric GDD has high potential for use in the treatment of glaucoma disease in terms of its repeatability of the cracking pressure and patients' relief from post-operative discomfort. PMID:22094823

  1. Inhibitory serpins. New insights into their folding, polymerization, regulation and clearance.

    PubMed

    Gettins, Peter G W; Olson, Steven T

    2016-08-01

    Serpins are a widely distributed family of high molecular mass protein proteinase inhibitors that can inhibit both serine and cysteine proteinases by a remarkable mechanism-based kinetic trapping of an acyl or thioacyl enzyme intermediate that involves massive conformational transformation. The trapping is based on distortion of the proteinase in the complex, with energy derived from the unique metastability of the active serpin. Serpins are the favoured inhibitors for regulation of proteinases in complex proteolytic cascades, such as are involved in blood coagulation, fibrinolysis and complement activation, by virtue of the ability to modulate their specificity and reactivity. Given their prominence as inhibitors, much work has been carried out to understand not only the mechanism of inhibition, but how it is fine-tuned, both spatially and temporally. The metastability of the active state raises the question of how serpins fold, whereas the misfolding of some serpin variants that leads to polymerization and pathologies of liver disease, emphysema and dementia makes it clinically important to understand how such polymerization might occur. Finally, since binding of serpins and their proteinase complexes, particularly plasminogen activator inhibitor-1 (PAI-1), to the clearance and signalling receptor LRP1 (low density lipoprotein receptor-related protein 1), may affect pathways linked to cell migration, angiogenesis, and tumour progression, it is important to understand the nature and specificity of binding. The current state of understanding of these areas is addressed here. PMID:27470592

  2. Regulating the Intersection of Metabolism and Pathogenesis in Gram-positive Bacteria

    PubMed Central

    RICHARDSON, ANTHONY R.; SOMERVILLE, GREG A.; SONENSHEIN, ABRAHAM L.

    2015-01-01

    Pathogenic bacteria must contend with immune systems that actively restrict the availability of nutrients and cofactors, and create a hostile growth environment. To deal with these hostile environments, pathogenic bacteria have evolved or acquired virulence determinants that aid in the acquisition of nutrients. This connection between pathogenesis and nutrition may explain why regulators of metabolism in nonpathogenic bacteria are used by pathogenic bacteria to regulate both metabolism and virulence. Such coordinated regulation is presumably advantageous because it conserves carbon and energy by aligning synthesis of virulence determinants with the nutritional environment. In Gram-positive bacterial pathogens, at least three metabolite-responsive global regulators, CcpA, CodY, and Rex, have been shown to coordinate the expression of metabolism and virulence genes. In this chapter, we discuss how environmental challenges alter metabolism, the regulators that respond to this altered metabolism, and how these regulators influence the host-pathogen interaction. PMID:26185086

  3. Phenotypic variation in bacteria: the role of feedback regulation.

    PubMed

    Smits, Wiep Klaas; Kuipers, Oscar P; Veening, Jan-Willem

    2006-04-01

    To survive in rapidly changing environmental conditions, bacteria have evolved a diverse set of regulatory pathways that govern various adaptive responses. Recent research has reinforced the notion that bacteria use feedback-based circuitry to generate population heterogeneity in natural situations. Using artificial gene networks, it has been shown that a relatively simple 'wiring' of a bacterial genetic system can generate two or more stable subpopulations within an overall genetically homogeneous population. This review discusses the ubiquity of these processes throughout nature, as well as the presumed molecular mechanisms responsible for the heterogeneity observed in a selection of bacterial species. PMID:16541134

  4. Design of a self-tuning regulator for temperature control of a polymerization reactor.

    PubMed

    Vasanthi, D; Pranavamoorthy, B; Pappa, N

    2012-01-01

    The temperature control of a polymerization reactor described by Chylla and Haase, a control engineering benchmark problem, is used to illustrate the potential of adaptive control design by employing a self-tuning regulator concept. In the benchmark scenario, the operation of the reactor must be guaranteed under various disturbing influences, e.g., changing ambient temperatures or impurity of the monomer. The conventional cascade control provides a robust operation, but often lacks in control performance concerning the required strict temperature tolerances. The self-tuning control concept presented in this contribution solves the problem. This design calculates a trajectory for the cooling jacket temperature in order to follow a predefined trajectory of the reactor temperature. The reaction heat and the heat transfer coefficient in the energy balance are estimated online by using an unscented Kalman filter (UKF). Two simple physically motivated relations are employed, which allow the non-delayed estimation of both quantities. Simulation results under model uncertainties show the effectiveness of the self-tuning control concept.

  5. Capsules of Streptococcus pneumoniae and other bacteria: paradigms for polysaccharide biosynthesis and regulation.

    PubMed

    Yother, Janet

    2011-01-01

    Capsular polysaccharides and exopolysaccharides play critical roles in bacterial survival strategies, and they can have important medical and industrial applications. An immense variety of sugars and glycosidic linkages leads to an almost unlimited diversity of potential polysaccharide structures. This diversity is reflected in the large number of serologically and chemically distinct polysaccharides that have been identified among both gram-positive and gram-negative bacteria. Despite this diversity, however, the genetic loci and mechanisms responsible for polysaccharide biosynthesis exhibit conserved features and can be classified into a small number of groups. In Streptococcus pneumoniae, capsule synthesis occurs by one of two distinct mechanisms that involve the polymerization of either individual sugars in a processive reaction (synthase dependent) or discrete repeat units in a nonprocessive reaction (Wzy dependent). Characterization of these systems has provided novel insights that are applicable to polymers synthesized by many gram-positive and gram-negative bacteria, as well as eukaryotes.

  6. Regulation by transcription factors in bacteria: beyond description.

    PubMed

    Balleza, Enrique; López-Bojorquez, Lucia N; Martínez-Antonio, Agustino; Resendis-Antonio, Osbaldo; Lozada-Chávez, Irma; Balderas-Martínez, Yalbi I; Encarnación, Sergio; Collado-Vides, Julio

    2009-01-01

    Transcription is an essential step in gene expression and its understanding has been one of the major interests in molecular and cellular biology. By precisely tuning gene expression, transcriptional regulation determines the molecular machinery for developmental plasticity, homeostasis and adaptation. In this review, we transmit the main ideas or concepts behind regulation by transcription factors and give just enough examples to sustain these main ideas, thus avoiding a classical ennumeration of facts. We review recent concepts and developments: cis elements and trans regulatory factors, chromosome organization and structure, transcriptional regulatory networks (TRNs) and transcriptomics. We also summarize new important discoveries that will probably affect the direction of research in gene regulation: epigenetics and stochasticity in transcriptional regulation, synthetic circuits and plasticity and evolution of TRNs. Many of the new discoveries in gene regulation are not extensively tested with wetlab approaches. Consequently, we review this broad area in Inference of TRNs and Dynamical Models of TRNs. Finally, we have stepped backwards to trace the origins of these modern concepts, synthesizing their history in a timeline schema. PMID:19076632

  7. Regulation by transcription factors in bacteria: beyond description

    PubMed Central

    Balleza, Enrique; López-Bojorquez, Lucia N; Martínez-Antonio, Agustino; Resendis-Antonio, Osbaldo; Lozada-Chávez, Irma; Balderas-Martínez, Yalbi I; Encarnación, Sergio; Collado-Vides, Julio

    2009-01-01

    Transcription is an essential step in gene expression and its understanding has been one of the major interests in molecular and cellular biology. By precisely tuning gene expression, transcriptional regulation determines the molecular machinery for developmental plasticity, homeostasis and adaptation. In this review, we transmit the main ideas or concepts behind regulation by transcription factors and give just enough examples to sustain these main ideas, thus avoiding a classical ennumeration of facts. We review recent concepts and developments: cis elements and trans regulatory factors, chromosome organization and structure, transcriptional regulatory networks (TRNs) and transcriptomics. We also summarize new important discoveries that will probably affect the direction of research in gene regulation: epigenetics and stochasticity in transcriptional regulation, synthetic circuits and plasticity and evolution of TRNs. Many of the new discoveries in gene regulation are not extensively tested with wetlab approaches. Consequently, we review this broad area in Inference of TRNs and Dynamical Models of TRNs. Finally, we have stepped backwards to trace the origins of these modern concepts, synthesizing their history in a timeline schema. PMID:19076632

  8. Theoretical studies on sRNA-mediated regulation in bacteria

    NASA Astrophysics Data System (ADS)

    Chang, Xiao-Xue; Xu, Liu-Fang; Shi, Hua-Lin

    2015-12-01

    Small RNA(sRNA)-mediated post-transcriptional regulation differs from protein-mediated regulation. Through base-pairing, sRNA can regulate the target mRNA in a catalytic or stoichiometric manner. Some theoretical models were built for comparison of the protein-mediated and sRNA-mediated modes in the steady-state behaviors and noise properties. Many experiments demonstrated that a single sRNA can regulate several mRNAs, which causes crosstalk between the targets. Here, we focus on some models in which two target mRNAs are silenced by the same sRNA to discuss their crosstalk features. Additionally, the sequence-function relationship of sRNA and its role in the kinetic process of base-pairing have been highlighted in model building. Project supported by the National Basic Research Program of China (Grant No. 2013CB834100), the National Natural Science Foundation of China (Grant Nos. 11121403 and 11274320), the Open Project Program of State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, China (Grant No. Y4KF171CJ1), the National Natural Science Foundation for Young Scholar of China (Grant No. 11304115), and the China Postdoctoral Science Foundation (Grant No. 2013M541282).

  9. Parvulin 17-catalyzed Tubulin Polymerization Is Regulated by Calmodulin in a Calcium-dependent Manner.

    PubMed

    Burgardt, Noelia Inés; Schmidt, Andreas; Manns, Annika; Schutkowski, Alexandra; Jahreis, Günther; Lin, Yi-Jan; Schulze, Bianca; Masch, Antonia; Lücke, Christian; Weiwad, Matthias

    2015-07-01

    Recently we have shown that the peptidyl-prolyl cis/trans isomerase parvulin 17 (Par17) interacts with tubulin in a GTP-dependent manner, thereby promoting the formation of microtubules. Microtubule assembly is regulated by Ca(2+)-loaded calmodulin (Ca(2+)/CaM) both in the intact cell and under in vitro conditions via direct interaction with microtubule-associated proteins. Here we provide the first evidence that Ca(2+)/CaM interacts also with Par17 in a physiologically relevant way, thus preventing Par17-promoted microtubule assembly. In contrast, parvulin 14 (Par14), which lacks only the first 25 N-terminal residues of the Par17 sequence, does not interact with Ca(2+)/CaM, indicating that this interaction is exclusive for Par17. Pulldown experiments and chemical shift perturbation analysis with (15)N-labeled Par17 furthermore confirmed that calmodulin (CaM) interacts in a Ca(2+)-dependent manner with the Par17 N terminus. The reverse experiment with (15)N-labeled Ca(2+)/CaM demonstrated that the N-terminal Par17 segment binds to both CaM lobes simultaneously, indicating that Ca(2+)/CaM undergoes a conformational change to form a binding channel between its two lobes, apparently similar to the structure of the CaM-smMLCK(796-815) complex. In vitro tubulin polymerization assays furthermore showed that Ca(2+)/CaM completely suppresses Par17-promoted microtubule assembly. The results imply that Ca(2+)/CaM binding to the N-terminal segment of Par17 causes steric hindrance of the Par17 active site, thus interfering with the Par17/tubulin interaction. This Ca(2+)/CaM-mediated control of Par17-assisted microtubule assembly may provide a mechanism that couples Ca(2+) signaling with microtubule function.

  10. Parvulin 17-catalyzed Tubulin Polymerization Is Regulated by Calmodulin in a Calcium-dependent Manner*

    PubMed Central

    Burgardt, Noelia Inés; Schmidt, Andreas; Manns, Annika; Schutkowski, Alexandra; Jahreis, Günther; Lin, Yi-Jan; Schulze, Bianca; Masch, Antonia; Lücke, Christian; Weiwad, Matthias

    2015-01-01

    Recently we have shown that the peptidyl-prolyl cis/trans isomerase parvulin 17 (Par17) interacts with tubulin in a GTP-dependent manner, thereby promoting the formation of microtubules. Microtubule assembly is regulated by Ca2+-loaded calmodulin (Ca2+/CaM) both in the intact cell and under in vitro conditions via direct interaction with microtubule-associated proteins. Here we provide the first evidence that Ca2+/CaM interacts also with Par17 in a physiologically relevant way, thus preventing Par17-promoted microtubule assembly. In contrast, parvulin 14 (Par14), which lacks only the first 25 N-terminal residues of the Par17 sequence, does not interact with Ca2+/CaM, indicating that this interaction is exclusive for Par17. Pulldown experiments and chemical shift perturbation analysis with 15N-labeled Par17 furthermore confirmed that calmodulin (CaM) interacts in a Ca2+-dependent manner with the Par17 N terminus. The reverse experiment with 15N-labeled Ca2+/CaM demonstrated that the N-terminal Par17 segment binds to both CaM lobes simultaneously, indicating that Ca2+/CaM undergoes a conformational change to form a binding channel between its two lobes, apparently similar to the structure of the CaM-smMLCK796–815 complex. In vitro tubulin polymerization assays furthermore showed that Ca2+/CaM completely suppresses Par17-promoted microtubule assembly. The results imply that Ca2+/CaM binding to the N-terminal segment of Par17 causes steric hindrance of the Par17 active site, thus interfering with the Par17/tubulin interaction. This Ca2+/CaM-mediated control of Par17-assisted microtubule assembly may provide a mechanism that couples Ca2+ signaling with microtubule function. PMID:25940090

  11. Epigenetic Regulation of Enteric Neurotransmission by Gut Bacteria.

    PubMed

    Savidge, Tor C

    2015-01-01

    The Human Microbiome Project defined microbial community interactions with the human host, and provided important molecular insight into how epigenetic factors can influence intestinal ecosystems. Given physiological context, changes in gut microbial community structure are increasingly found to associate with alterations in enteric neurotransmission and disease. At present, it is not known whether shifts in microbial community dynamics represent cause or consequence of disease pathogenesis. The discovery of bacterial-derived neurotransmitters suggests further studies are needed to establish their role in enteric neuropathy. This mini-review highlights recent advances in bacterial communications to the autonomic nervous system and discusses emerging epigenetic data showing that diet, probiotic and antibiotic use may regulate enteric neurotransmission through modulation of microbial communities. A particular emphasis is placed on bacterial metabolite regulation of enteric nervous system function in the intestine. PMID:26778967

  12. Epigenetic Regulation of Enteric Neurotransmission by Gut Bacteria

    PubMed Central

    Savidge, Tor C.

    2016-01-01

    The Human Microbiome Project defined microbial community interactions with the human host, and provided important molecular insight into how epigenetic factors can influence intestinal ecosystems. Given physiological context, changes in gut microbial community structure are increasingly found to associate with alterations in enteric neurotransmission and disease. At present, it is not known whether shifts in microbial community dynamics represent cause or consequence of disease pathogenesis. The discovery of bacterial-derived neurotransmitters suggests further studies are needed to establish their role in enteric neuropathy. This mini-review highlights recent advances in bacterial communications to the autonomic nervous system and discusses emerging epigenetic data showing that diet, probiotic and antibiotic use may regulate enteric neurotransmission through modulation of microbial communities. A particular emphasis is placed on bacterial metabolite regulation of enteric nervous system function in the intestine. PMID:26778967

  13. Structural Basis of Glycogen Biosynthesis Regulation in Bacteria.

    PubMed

    Cifuente, Javier O; Comino, Natalia; Madariaga-Marcos, Julene; López-Fernández, Sonia; García-Alija, Mikel; Agirre, Jon; Albesa-Jové, David; Guerin, Marcelo E

    2016-09-01

    ADP-glucose pyrophosphorylase (AGPase) catalyzes the rate-limiting step of bacterial glycogen and plant starch biosynthesis, the most common carbon storage polysaccharides in nature. A major challenge is to understand how AGPase activity is regulated by metabolites in the energetic flux within the cell. Here we report crystal structures of the homotetrameric AGPase from Escherichia coli in complex with its physiological positive and negative allosteric regulators, fructose-1,6-bisphosphate (FBP) and AMP, and sucrose in the active site. FBP and AMP bind to partially overlapping sites located in a deep cleft between glycosyltransferase A-like and left-handed β helix domains of neighboring protomers, accounting for the fact that sensitivity to inhibition by AMP is modulated by the concentration of the activator FBP. We propose a model in which the energy reporters regulate EcAGPase catalytic activity by intra-protomer interactions and inter-protomer crosstalk, with a sensory motif and two regulatory loops playing a prominent role.

  14. Structural Basis of Glycogen Biosynthesis Regulation in Bacteria.

    PubMed

    Cifuente, Javier O; Comino, Natalia; Madariaga-Marcos, Julene; López-Fernández, Sonia; García-Alija, Mikel; Agirre, Jon; Albesa-Jové, David; Guerin, Marcelo E

    2016-09-01

    ADP-glucose pyrophosphorylase (AGPase) catalyzes the rate-limiting step of bacterial glycogen and plant starch biosynthesis, the most common carbon storage polysaccharides in nature. A major challenge is to understand how AGPase activity is regulated by metabolites in the energetic flux within the cell. Here we report crystal structures of the homotetrameric AGPase from Escherichia coli in complex with its physiological positive and negative allosteric regulators, fructose-1,6-bisphosphate (FBP) and AMP, and sucrose in the active site. FBP and AMP bind to partially overlapping sites located in a deep cleft between glycosyltransferase A-like and left-handed β helix domains of neighboring protomers, accounting for the fact that sensitivity to inhibition by AMP is modulated by the concentration of the activator FBP. We propose a model in which the energy reporters regulate EcAGPase catalytic activity by intra-protomer interactions and inter-protomer crosstalk, with a sensory motif and two regulatory loops playing a prominent role. PMID:27545622

  15. Rapid start-up of the anammox process: Effects of five different sludge extracellular polymeric substances on the activity of anammox bacteria.

    PubMed

    Guo, Jianbo; Wang, Sihui; Lian, Jing; Ngo, Huu Hao; Guo, Wenshan; Liu, Yunman; Song, Yuanyuan

    2016-11-01

    This study investigated the rapid start-up of the anaerobic ammonium oxidation (anammox) strategy by inoculating different biomass ratios of denitrifying granular sludge and anammox bacteria. The results demonstrated that two reactors (R1 and R2) were rapidly and successfully started-up on days 25 and 28, respectively, with nitrogen removal rates (NRRs) of 0.70kg/(m(3)·d) and 0.72kg/(m(3)·d) at biomass ratios of 10:1 (R1) and 50:1 (R2). The explanation for rapid start-up was found by examining the effect of five different sludge extracellular polymeric substances (EPS) on the activity of anammox bacteria in the batch experiments. Batch experiments results first demonstrated that the denitrification sludge EPS (DS-EPS) enhanced the anammox bacteria activity the most, and NO2(-)-N, NH4(+)-N removal rates were 1.88- and 1.53-fold higher than the control with optimal DS-EPS volume of 10mL. The rapid start-up strategy makes possible the application of anammox to practical engineering. PMID:27612401

  16. Nitric Oxide Regulation of H-NOX Signaling Pathways in Bacteria.

    PubMed

    Nisbett, Lisa-Marie; Boon, Elizabeth M

    2016-09-01

    Nitric oxide (NO) is a freely diffusible, radical gas that has now been established as an integral signaling molecule in eukaryotes and bacteria. It has been demonstrated that NO signaling is initiated upon ligation to the heme iron of an H-NOX domain in mammals and in some bacteria. Bacterial H-NOX proteins have been found to interact with enzymes that participate in signaling pathways and regulate bacterial processes such as quorum sensing, biofilm formation, and symbiosis. Here, we review the biochemical characterization of these signaling pathways and, where available, describe how ligation of NO to H-NOX specifically regulates the activity of these pathways and their associated bacterial phenotypes.

  17. Regulation of Pyrimidine Biosynthetic Gene Expression in Bacteria: Repression without Repressors

    PubMed Central

    Turnbough, Charles L.; Switzer, Robert L.

    2008-01-01

    Summary: DNA-binding repressor proteins that govern transcription initiation in response to end products generally regulate bacterial biosynthetic genes, but this is rarely true for the pyrimidine biosynthetic (pyr) genes. Instead, bacterial pyr gene regulation generally involves mechanisms that rely only on regulatory sequences embedded in the leader region of the operon, which cause premature transcription termination or translation inhibition in response to nucleotide signals. Studies with Escherichia coli and Bacillus subtilis pyr genes reveal a variety of regulatory mechanisms. Transcription attenuation via UTP-sensitive coupled transcription and translation regulates expression of the pyrBI and pyrE operons in enteric bacteria, whereas nucleotide effects on binding of the PyrR protein to pyr mRNA attenuation sites control pyr operon expression in most gram-positive bacteria. Nucleotide-sensitive reiterative transcription underlies regulation of other pyr genes. With the E. coli pyrBI, carAB, codBA, and upp-uraA operons, UTP-sensitive reiterative transcription within the initially transcribed region (ITR) leads to nonproductive transcription initiation. CTP-sensitive reiterative transcription in the pyrG ITRs of gram-positive bacteria, which involves the addition of G residues, results in the formation of an antiterminator RNA hairpin and suppression of transcription attenuation. Some mechanisms involve regulation of translation rather than transcription. Expression of the pyrC and pyrD operons of enteric bacteria is controlled by nucleotide-sensitive transcription start switching that produces transcripts with different potentials for translation. In Mycobacterium smegmatis and other bacteria, PyrR modulates translation of pyr genes by binding to their ribosome binding site. Evidence supporting these conclusions, generalizations for other bacteria, and prospects for future research are presented. PMID:18535147

  18. Vasodilator-stimulated phosphoprotein (VASP) regulates actin polymerization and contraction in airway smooth muscle by a vinculin-dependent mechanism.

    PubMed

    Wu, Yidi; Gunst, Susan J

    2015-05-01

    Vasodilator-stimulated phosphoprotein (VASP) can catalyze actin polymerization by elongating actin filaments. The elongation mechanism involves VASP oligomerization and its binding to profilin, a G-actin chaperone. Actin polymerization is required for tension generation during the contraction of airway smooth muscle (ASM); however, the role of VASP in regulating actin dynamics in ASM is not known. We stimulated ASM cells and tissues with the contractile agonist acetylcholine (ACh) or the adenylyl cyclase activator, forskolin (FSK), a dilatory agent. ACh and FSK stimulated VASP Ser(157) phosphorylation by different kinases. Inhibition of VASP Ser(157) phosphorylation by expression of the mutant VASP S157A in ASM tissues suppressed VASP phosphorylation and membrane localization in response to ACh, and also inhibited contraction and actin polymerization. ACh but not FSK triggered the formation of VASP-VASP complexes as well as VASP-vinculin and VASP-profilin complexes at membrane sites. VASP-VASP complex formation and the interaction of VASP with vinculin and profilin were inhibited by expression of the inactive vinculin mutant, vinculin Y1065F, but VASP phosphorylation and membrane localization were unaffected. We conclude that VASP phosphorylation at Ser(157) mediates its localization at the membrane, but that VASP Ser(157) phosphorylation and membrane localization are not sufficient to activate its actin catalytic activity. The interaction of VASP with activated vinculin at membrane adhesion sites is a necessary prerequisite for VASP-mediated molecular processes necessary for actin polymerization. Our results show that VASP is a critical regulator of actin dynamics and tension generation during the contractile activation of ASM.

  19. Control of magnetite nanocrystal morphology in magnetotactic bacteria by regulation of mms7 gene expression.

    PubMed

    Yamagishi, Ayana; Tanaka, Masayoshi; Lenders, Jos J M; Thiesbrummel, Jarla; Sommerdijk, Nico A J M; Matsunaga, Tadashi; Arakaki, Atsushi

    2016-01-01

    Living organisms can produce inorganic materials with unique structure and properties. The biomineralization process is of great interest as it forms a source of inspiration for the development of methods for production of diverse inorganic materials under mild conditions. Nonetheless, regulation of biomineralization is still a challenging task. Magnetotactic bacteria produce chains of a prokaryotic organelle comprising a membrane-enveloped single-crystal magnetite with species-specific morphology. Here, we describe regulation of magnetite biomineralization through controlled expression of the mms7 gene, which plays key roles in the control of crystal growth and morphology of magnetite crystals in magnetotactic bacteria. Regulation of the expression level of Mms7 in bacterial cells enables switching of the crystal shape from dumbbell-like to spherical. The successful regulation of magnetite biomineralization opens the door to production of magnetite nanocrystals of desired size and morphology. PMID:27417732

  20. Control of magnetite nanocrystal morphology in magnetotactic bacteria by regulation of mms7 gene expression

    PubMed Central

    Yamagishi, Ayana; Tanaka, Masayoshi; Lenders, Jos J. M.; Thiesbrummel, Jarla; Sommerdijk, Nico A. J. M.; Matsunaga, Tadashi; Arakaki, Atsushi

    2016-01-01

    Living organisms can produce inorganic materials with unique structure and properties. The biomineralization process is of great interest as it forms a source of inspiration for the development of methods for production of diverse inorganic materials under mild conditions. Nonetheless, regulation of biomineralization is still a challenging task. Magnetotactic bacteria produce chains of a prokaryotic organelle comprising a membrane-enveloped single-crystal magnetite with species-specific morphology. Here, we describe regulation of magnetite biomineralization through controlled expression of the mms7 gene, which plays key roles in the control of crystal growth and morphology of magnetite crystals in magnetotactic bacteria. Regulation of the expression level of Mms7 in bacterial cells enables switching of the crystal shape from dumbbell-like to spherical. The successful regulation of magnetite biomineralization opens the door to production of magnetite nanocrystals of desired size and morphology. PMID:27417732

  1. Common patterns - unique features: nitrogen metabolism and regulation in Gram-positive bacteria.

    PubMed

    Amon, Johannes; Titgemeyer, Fritz; Burkovski, Andreas

    2010-07-01

    Gram-positive bacteria have developed elaborate mechanisms to control ammonium assimilation, at the levels of both transcription and enzyme activity. In this review, the common and specific mechanisms of nitrogen assimilation and regulation in Gram-positive bacteria are summarized and compared for the genera Bacillus, Clostridium, Streptomyces, Mycobacterium and Corynebacterium, with emphasis on the high G+C genera. Furthermore, the importance of nitrogen metabolism and control for the pathogenic lifestyle and virulence is discussed. In summary, the regulation of nitrogen metabolism in prokaryotes shows an impressive diversity. Virtually every phylum of bacteria evolved its own strategy to react to the changing conditions of nitrogen supply. Not only do the transcription factors differ between the phyla and sometimes even between families, but the genetic targets of a given regulon can also differ between closely related species.

  2. New insights into regulation of the tryptophan biosynthetic operon in Gram-positive bacteria.

    PubMed

    Gutierrez-Preciado, A; Jensen, R A; Yanofsky, C; Merino, E

    2005-08-01

    The tryptophan operon of Bacillus subtilis serves as an excellent model for investigating transcription regulation in Gram-positive bacteria. In this article, we extend this knowledge by analyzing the predicted regulatory regions in the trp operons of other fully sequenced Gram-positive bacteria. Interestingly, it appears that in eight of the organisms examined, transcription of the trp operon appears to be regulated by tandem T-box elements. These regulatory elements have recently been described in the trp operons of two bacterial species. Single T-box elements are commonly found in Gram-positive bacteria in operons encoding aminoacyl tRNA synthetases and proteins performing other functions. Different regulatory mechanisms appear to be associated with variations of trp gene organization within the trp operon. PMID:15953653

  3. [Quorum sensing mechanism as a factor regulating virulence of Gram-negative bacteria].

    PubMed

    Myszka, Kamila; Czaczyk, Katarzyna

    2010-11-25

    The metabolism of a high density population of bacteria is regulated by a quorum sensing mechanism. Cell-to-cell communication of microorganisms regulates the process of production of pathogenicity factors including formation and differentiation of bacterial biofilms. The role of the quorum sensing system in the expression of virulence features is described in this paper. The possibility of application of the quorum sensing mechanism in medicine is also discussed.

  4. Inducible gene expression and environmentally regulated genes in lactic acid bacteria.

    PubMed

    Kok, J

    1996-10-01

    Relatively recently, a number of genes and operons have been identified in lactic acid bacteria that are inducible and respond to environmental factors. Some of these genes/operons had been isolated and analysed because of their importance in the fermentation industry and, consequently, their transcription was studied and found to be regulatable. Examples are the lactose operon, the operon for nisin production, and genes in the proteolytic pathway of Lactococcus lactis, as well as xylose metabolism in Lactobacillus pentosus. Some other operons were specifically targetted with the aim to compare their mode of regulation with known regulatory mechanisms in other well-studied bacteria. These studies, dealing with the biosynthesis of histidine, tryptophan, and of the branched chain amino acids in L. lactis, have given new insights in gene regulation and in the occurrence of auxotrophy in these bacteria. Also, nucleotide sequence analyses of a number of lactococcal bacteriophages was recently initiated to, among other things, specifically learn more about regulation of the phage life cycle. Yet another approach in the analysis of regulated genes is the 'random' selection of genetic elements that respond to environmental stimuli and the first of such sequences from lactic acid bacteria have been identified and characterized. The potential of these regulatory elements in fundamental research and practical (industrial) applications will be discussed.

  5. Modeling classic attenuation regulation of gene expression in bacteria.

    PubMed

    Lyubetsky, Vassily A; Pirogov, Sergey A; Rubanov, Lev I; Seliverstov, Alexander V

    2007-02-01

    A model is proposed primarily for the classical RNA attenuation regulation of gene expression through premature transcription termination. The model is based on the concept of the RNA secondary structure macrostate within the regulatory region between the ribosome and RNA-polymerase, on hypothetical equation describing deceleration of RNA-polymerase by a macrostate and on views of transcription and translation initiation and elongation, under different values of the four basic model parameters which were varied. A special effort was made to select adequate model parameters. We first discuss kinetics of RNA folding and define the concept of the macrostate as a specific parentheses structure used to construct a conventional set of hairpins. The originally developed software that realizes the proposed model offers functionality to fully model RNA secondary folding kinetics. Its performance is compared to that of a public server described in Ref. 1. We then describe the delay in RNA-polymerase shifting to the next base or its premature termination caused by an RNA secondary structure or, herefrom, a macrostate. In this description, essential concepts are the basic and excited states of the polymerase first introduced in Ref. 2: the polymerase shifting to the next base can occur only in the basic state, and its detachment from DNA strand - only in excited state. As to the authors' knowledge, such a model incorporating the above-mentioned attenuation characteristics is not published elsewhere. The model was implemented in an application with command line interface for running in batch mode in Windows and Linux environments, as well as a public web server.(3) The model was tested with a conventional Monte Carlo procedure. In these simulations, the estimate of correlation between the premature transcription termination probability p and concentration c of charged amino acyl-tRNA was obtained as function p(c) for many regulatory regions in many bacterial genomes, as well as

  6. Ferredoxin:thioredoxin reductase (FTR) links the regulation of oxygenic photosynthesis to deeply rooted bacteria.

    PubMed

    Balsera, Monica; Uberegui, Estefania; Susanti, Dwi; Schmitz, Ruth A; Mukhopadhyay, Biswarup; Schürmann, Peter; Buchanan, Bob B

    2013-02-01

    Uncovered in studies on photosynthesis 35 years ago, redox regulation has been extended to all types of living cells. We understand a great deal about the occurrence, function, and mechanism of action of this mode of regulation, but we know little about its origin and its evolution. To help fill this gap, we have taken advantage of available genome sequences that make it possible to trace the phylogenetic roots of members of the system that was originally described for chloroplasts-ferredoxin, ferredoxin:thioredoxin reductase (FTR), and thioredoxin as well as target enzymes. The results suggest that: (1) the catalytic subunit, FTRc, originated in deeply rooted microaerophilic, chemoautotrophic bacteria where it appears to function in regulating CO(2) fixation by the reverse citric acid cycle; (2) FTRc was incorporated into oxygenic photosynthetic organisms without significant structural change except for addition of a variable subunit (FTRv) seemingly to protect the Fe-S cluster against oxygen; (3) new Trxs and target enzymes were systematically added as evolution proceeded from bacteria through the different types of oxygenic photosynthetic organisms; (4) an oxygenic type of regulation preceded classical light-dark regulation in the regulation of enzymes of CO(2) fixation by the Calvin-Benson cycle; (5) FTR is not universally present in oxygenic photosynthetic organisms, and in certain early representatives is seemingly functionally replaced by NADP-thioredoxin reductase; and (6) FTRc underwent structural diversification to meet the ecological needs of a variety of bacteria and archaea.

  7. Light-Regulated Polymerization under Near-Infrared/Far-Red Irradiation Catalyzed by Bacteriochlorophyll a.

    PubMed

    Shanmugam, Sivaprakash; Xu, Jiangtao; Boyer, Cyrille

    2016-01-18

    Photoregulated polymerizations are typically conducted using high-energy (UV and blue) light, which may lead to undesired side reactions. Furthermore, as the penetration of visible light is rather limited, the range of applications with such wavelengths is likewise limited. We herein report the first living radical polymerization that can be activated and deactivated by irradiation with near-infrared (NIR) and far-red light. Bacteriochlorophyll a (Bachl a) was employed as a photoredox catalyst for photoinduced electron transfer/reversible addition-fragmentation chain transfer (PET-RAFT) polymerization. Well-defined polymers were thus synthesized within a few hours under NIR (λ=850 nm) and far-red (λ=780 nm) irradiation with excellent control over the molecular weight (M(n)/M(w)<1.25). Taking advantage of the good penetration of NIR light, we showed that the polymerization also proceeded smoothly when a translucent barrier was placed between light source and reaction vessel. PMID:26633583

  8. Light-Regulated Polymerization under Near-Infrared/Far-Red Irradiation Catalyzed by Bacteriochlorophyll a.

    PubMed

    Shanmugam, Sivaprakash; Xu, Jiangtao; Boyer, Cyrille

    2016-01-18

    Photoregulated polymerizations are typically conducted using high-energy (UV and blue) light, which may lead to undesired side reactions. Furthermore, as the penetration of visible light is rather limited, the range of applications with such wavelengths is likewise limited. We herein report the first living radical polymerization that can be activated and deactivated by irradiation with near-infrared (NIR) and far-red light. Bacteriochlorophyll a (Bachl a) was employed as a photoredox catalyst for photoinduced electron transfer/reversible addition-fragmentation chain transfer (PET-RAFT) polymerization. Well-defined polymers were thus synthesized within a few hours under NIR (λ=850 nm) and far-red (λ=780 nm) irradiation with excellent control over the molecular weight (M(n)/M(w)<1.25). Taking advantage of the good penetration of NIR light, we showed that the polymerization also proceeded smoothly when a translucent barrier was placed between light source and reaction vessel.

  9. Polarized Exocytosis Induces Compensatory Endocytosis by Sec4p-Regulated Cortical Actin Polymerization

    PubMed Central

    Johansen, Jesper; Alfaro, Gabriel; Beh, Christopher T.

    2016-01-01

    Polarized growth is maintained by both polarized exocytosis, which transports membrane components to specific locations on the cell cortex, and endocytosis, which retrieves these components before they can diffuse away. Despite functional links between these two transport pathways, they are generally considered to be separate events. Using live cell imaging, in vivo and in vitro protein binding assays, and in vitro pyrene-actin polymerization assays, we show that the yeast Rab GTPase Sec4p couples polarized exocytosis with cortical actin polymerization, which induces endocytosis. After polarized exocytosis to the plasma membrane, Sec4p binds Las17/Bee1p (yeast Wiskott—Aldrich Syndrome protein [WASp]) in a complex with Sla1p and Sla2p during actin patch assembly. Mutations that inactivate Sec4p, or its guanine nucleotide exchange factor (GEF) Sec2p, inhibit actin patch formation, whereas the activating sec4-Q79L mutation accelerates patch assembly. In vitro assays of Arp2/3-dependent actin polymerization established that GTPγS-Sec4p overrides Sla1p inhibition of Las17p-dependent actin nucleation. These results support a model in which Sec4p relocates along the plasma membrane from polarized sites of exocytic vesicle fusion to nascent sites of endocytosis. Activated Sec4p then promotes actin polymerization and triggers compensatory endocytosis, which controls surface expansion and kinetically refines cell polarization. PMID:27526190

  10. Effects of Extracellular Polymeric Substance Composition on Bacteria Disinfection by Monochloramine: Application of MALDI-TOF/TOF-MS and Multivariate Analysis.

    PubMed

    Coburn, Kimberly M; Wang, Qinzhe; Rediske, Dustin; Viola, Ronald E; Hanson, B Leif; Xue, Zheng; Seo, Youngwoo

    2016-09-01

    In our previous study, we reported that the transport of monochloramine is affected by the extracellular polymeric substance (EPS) composition, which in turn affects the cell viability of both biofilm and detached clusters.11 However, although the transport and reaction of monochloramine in biofilm could be observed, the specific biomolecules reacting with the disinfectant and the mechanism of disinfection remains elusive. In this study, the impact of EPS composition on bacteria disinfection by monochloramine was qualitatively determined using both wild-type and isogenic mutant Pseudomonas strains with different EPS-secretion capacity and composition. To evaluate their EPS reactivity and contribution to susceptibility to monochloramine, we investigated the bacteria disinfection process using Fourier transform infrared spectroscopy (FTIR) and matrix-assisted laser desorption-ionization time-of-flight/time-of-flight mass spectrometry (MALDI-TOF/TOF-MS). Canonical correlation analysis and partial least-squares regression modeling were employed to explore the changes that EPS underwent during the monochloramine disinfection process. The analyses results suggested significant reactions of the monochloramine with peptide fragments of proteins that are associated with carbohydrate utilization. Selected enzymes also showed different levels of inhibition by monochloramine when tested. PMID:27366970

  11. Inactivation of bacteria by electric current in the presence of carbon nanotubes embedded within a polymeric membrane.

    PubMed

    Zhu, Anna; Liu, Harris K; Long, Feng; Su, Erzheng; Klibanov, Alexander M

    2015-01-01

    Uniform conductive composite membranes were prepared using a phase inversion method by blending carboxyl-functionalized multi-walled carbon nanotubes (CNTs) with a polysulfone polymer. At 6 % of the embedded CNTs, the membrane pore size measured by transmission electron microscopy (TEM) was approximately 50 nm. Electric current in the presence of the composite membranes markedly inactivated the model pathogenic bacteria Escherichia coli and Staphylococcus aureus, with the extent of bacterial inactivation rising when the current was increased. Over 99.999 % inactivation of both bacteria was observed in deionized water after 40 min at 5 mA direct current (DC); importantly, no appreciable inactivation occurred in the absence of either the electric field or the CNTs within the membranes under otherwise the same conditions. A much lower, although still pronounced, inactivation was seen with alternating current (AC) in a 25 mM NaCl aqueous solution.

  12. Inactivation of bacteria by electric current in the presence of carbon nanotubes embedded within a polymeric membrane.

    PubMed

    Zhu, Anna; Liu, Harris K; Long, Feng; Su, Erzheng; Klibanov, Alexander M

    2015-01-01

    Uniform conductive composite membranes were prepared using a phase inversion method by blending carboxyl-functionalized multi-walled carbon nanotubes (CNTs) with a polysulfone polymer. At 6 % of the embedded CNTs, the membrane pore size measured by transmission electron microscopy (TEM) was approximately 50 nm. Electric current in the presence of the composite membranes markedly inactivated the model pathogenic bacteria Escherichia coli and Staphylococcus aureus, with the extent of bacterial inactivation rising when the current was increased. Over 99.999 % inactivation of both bacteria was observed in deionized water after 40 min at 5 mA direct current (DC); importantly, no appreciable inactivation occurred in the absence of either the electric field or the CNTs within the membranes under otherwise the same conditions. A much lower, although still pronounced, inactivation was seen with alternating current (AC) in a 25 mM NaCl aqueous solution. PMID:25342266

  13. Bacteria Associated with Benthic Diatoms from Lake Constance: Phylogeny and Influences on Diatom Growth and Secretion of Extracellular Polymeric Substances▿

    PubMed Central

    Bruckner, Christian G.; Bahulikar, Rahul; Rahalkar, Monali; Schink, Bernhard; Kroth, Peter G.

    2008-01-01

    The composition of diatom-associated bacterial communities was studied with 14 different unialgal xenic diatom cultures isolated from freshwater epilithic biofilms of Lake Constance, Germany. A clear dominance of Alphaproteobacteria was observed, followed by Betaproteobacteria, Gammaproteobacteria, Bacteroidetes, and Verrucomicrobia. Pure cultures of the diatom Cymbella microcephala, which was found to be dominant in epilithic biofilms in Lake Constance, were cocultivated with six associated bacterial strains. All these bacterial strains were able to grow in C. microcephala cultures in the absence of organic cosubstrates. Diatom growth was generally enhanced in the presence of bacteria, and polysaccharide secretion was generally increased in the presence of Proteobacteria. The monomer composition of extracellular polysaccharides of C. microcephala changed in relation to the presence of different bacteria, but the dominant monomers were less affected. Our results indicate that these changes were caused by the diatom itself rather than by specific bacterial degradation. One Bacteroidetes strain strongly influenced carbohydrate secretion by the alga via extracellular soluble compounds. Biofilms were formed only in the presence of bacteria. Phylogenetic analysis and coculture studies indicate an adaptation of Proteobacteria and Bacteroidetes to the microenvironment created by the diatom biofilm. PMID:18931294

  14. Term-seq reveals abundant ribo-regulation of antibiotics resistance in bacteria.

    PubMed

    Dar, Daniel; Shamir, Maya; Mellin, J R; Koutero, Mikael; Stern-Ginossar, Noam; Cossart, Pascale; Sorek, Rotem

    2016-04-01

    Riboswitches and attenuators are cis-regulatory RNA elements, most of which control bacterial gene expression via metabolite-mediated, premature transcription termination. We developed an unbiased experimental approach for genome-wide discovery of such ribo-regulators in bacteria. We also devised an experimental platform that quantitatively measures the in vivo activity of all such regulators in parallel and enables rapid screening for ribo-regulators that respond to metabolites of choice. Using this approach, we detected numerous antibiotic-responsive ribo-regulators that control antibiotic resistance genes in pathogens and in the human microbiome. Studying one such regulator in Listeria monocytogenes revealed an attenuation mechanism mediated by antibiotic-stalled ribosomes. Our results expose broad roles for conditional termination in regulating antibiotic resistance and provide a tool for discovering riboswitches and attenuators that respond to previously unknown ligands.

  15. Coupling Physiology and Gene Regulation in Bacteria: The Phosphotransferase Sugar Uptake System Delivers the Signals

    NASA Astrophysics Data System (ADS)

    Stülke, Jörg; Hillen, Wolfgang

    In many bacteria a crucial link between metabolism and regulation of catabolic genes is based on the phosphotransferase sugar uptake system (PTS). We summarize the mechanisms of the signaling pathways originating from PTS and leading to regulation of transcription. A protein domain, called PTS regulation domain (PRD), is linked to many antiterminators and transcriptional activators and regulates their activity depending on its state of phosphorylation. Two sites can be phosphorylated in most PRDs: HPr-dependent modification at one site leads to activation while enzyme II dependent phosphorylation of the other site renders it inactive. In addition, PTS components are used to generate cofactors for regulators of transcription. The paradigm is the enzyme II dependent activity of adenylate cyclase determining the cyclic AMP level in Escherichia coli and thereby the activity of the catabolite activator protein. In many gram-positive bacteria catabolite repression is mediated by the catabolite control protein CcpA, which requires HPr Ser-46 phosphate as a cofactor to regulate transcription of catabolic genes. HPr Ser-46 phosphate is produced by HPr kinase, the activity of which is under metabolic control via the concentrations of glycolytic intermediates. These recent results establish a multifaceted regulatory role for PTS in addition to its well-established function in active sugar uptake.

  16. Vector for regulated expression of cloned genes in a wide range of gram-negative bacteria.

    PubMed Central

    Mermod, N; Ramos, J L; Lehrbach, P R; Timmis, K N

    1986-01-01

    A pKT231-based broad-host-range plasmid vector was constructed which enabled regulation of expression of cloned genes in a wide range of gram-negative bacteria. This vector, pNM185, contained upstream of its EcoRI, SstI, and SstII cloning sites the positively activated pm twin promoters of the TOL plasmid and xylS, the gene of the positive regulator of these promoters. Expression of cloned genes was induced with micromolar quantities of benzoate or m-toluate, the inexpensive coinducers of the pm promoters. Expression of a test gene, xylE, which specifies catechol 2,3-dioxygenase, cloned in this vector was tested in representative strains of a variety of gram-negative bacteria. Regulated expression of xylE was observed in most strains examined, and induced levels of enzyme representing up to 5% of total cellular protein and ratios of induced:noninduced levels of enzyme up to a factor of 600 were observed. The level of xylE gene expression in different bacteria tended to be correlated with their phylogenetic distance from Pseudomonas putida. Images PMID:3525513

  17. Molecular Regulation of Photosynthetic Carbon Dioxide Fixation in Nonsulfur Purple Bacteria

    SciTech Connect

    Tabita, Fred Robert

    2015-12-01

    The overall objective of this project is to determine the mechanism by which a transcriptional activator protein affects CO2 fixation (cbb) gene expression in nonsulfur purple photosynthetic bacteria, with special emphasis to Rhodobacter sphaeroides and with comparison to Rhodopseudomonas palustris. These studies culminated in several publications which indicated that additional regulators interact with the master regulator CbbR in both R. sphaeroides and R. palustris. In addition, the interactive control of the carbon and nitrogen assimilatory pathways was studied and unique regulatory signals were discovered.

  18. Amino acid sequence surrounding the chondroitin sulfate attachment site of thrombomodulin regulates chondroitin polymerization.

    PubMed

    Izumikawa, Tomomi; Kitagawa, Hiroshi

    2015-05-01

    Thrombomodulin (TM) is a cell-surface glycoprotein and a critical mediator of endothelial anticoagulant function. TM exists as both a chondroitin sulfate (CS) proteoglycan (PG) form and a non-PG form lacking a CS chain (α-TM); therefore, TM can be described as a part-time PG. Previously, we reported that α-TM bears an immature, truncated linkage tetrasaccharide structure (GlcAβ1-3Galβ1-3Galβ1-4Xyl). However, the biosynthetic mechanism to generate part-time PGs remains unclear. In this study, we used several mutants to demonstrate that the amino acid sequence surrounding the CS attachment site influences the efficiency of chondroitin polymerization. In particular, the presence of acidic residues surrounding the CS attachment site was indispensable for the elongation of CS. In addition, mutants defective in CS elongation did not exhibit anti-coagulant activity, as in the case with α-TM. Together, these data support a model for CS chain assembly in which specific core protein determinants are recognized by a key biosynthetic enzyme involved in chondroitin polymerization.

  19. Identification of immune factors regulating anti-tumor immunity using polymeric vaccines with multiple adjuvants

    PubMed Central

    Ali, Omar A.; Verbeke, Catia; Johnson, Chris; Sands, Warren; Lewin, Sarah A.; White, Des; Doherty, Edward; Dranoff, Glenn; Mooney, David J.

    2014-01-01

    The innate cellular and molecular components required to mediate effective vaccination against weak tumor-associated antigens remain unclear. In this study we utilized polymeric cancer vaccines incorporating different classes of adjuvants to induce tumor protection, in order to identify dendritic cell subsets and cytokines critical to this efficacy. Three-dimensional, porous polymer matrices loaded with tumor lysates and presenting distinct combinations of GM-CSF and various TLR agonists effected 70–90% prophylactic tumor protection in B16-F10 melanoma models. In aggressive, therapeutic B16 models, the vaccine systems incorporating GM-CSF in combination with P(I:C) or CpG-ODN induced the complete regression of solid tumors (≤40mm2) resulting in 33% long-term survival. Regression analysis revealed that the numbers of vaccine-resident CD8(+) DCs and plasmacytoid DCs, along with local IL-12, and G-CSF concentrations correlated strongly to vaccine efficacy regardless of adjuvant type. Further, vaccine studies in Batf3−/− mice revealed that CD8(+) DCs are required to effect tumor protection, as vaccines in these mice were deficient in cytotoxic T cell priming, and IL-12 induction in comparison to wild-type. These studies broadly demonstrate that three-dimensional polymeric vaccines provide a potent platform for prophylactic and therapeutic protection, and can be used as a tool to identify critical components of a desired immune response. Specifically, these results suggest that CD8(+) DCs, plasmacytoid DCs, IL-12, and G-CSF play important roles in priming effective anti-tumor responses with these vaccines. PMID:24480625

  20. Regulation of the pts operon in low G+C Gram-positive bacteria.

    PubMed

    Vadeboncoeur, C; Frenette, M; Lortie, L A

    2000-10-01

    The sugar transport system called phosphoenolpyruvate: sugar phosphotransferase (PTS) is widespread among eubacteria. Its is generally composed of two cytoplasmic proteins, HPr and El, which are found in all bacteria possessing a PTS, and a family of Ells whose number, specificity, and molecular structure in terms of domain arrangement vary from species to species. In low G+C Gram-positive bacteria, the genes coding for the general proteins HPr and El, designated ptsH and ptsl respectively, are organized into the pts operon. In this paper, we summarize current knowledge about the regulation of the pts operon in low G+C Gram-positive bacteria. Physiological data indicate that El and most particularly HPr make up a substantial proportion of cellular proteins. Their synthesis is not coordinated and is influenced by environmental factors. The principal DNA cis-elements involved in the regulation of pts operon transcription are a strong promoter whose sequence and structure are very similar to those of the canonical promoter recognized by the Escherichia coli and Bacillus subtilis major RNA polymerases, a 5'-untranslated region, a rho-dependent terminator located at the 5' end of ptsl, and an intrinsic terminator located downstream from ptsl. Analysis of ptsH and ptsl Shine-Dalgarno sequences as well as experimental results obtained with a Streptococcus salivarius mutant suggest that the expression of HPr and El is also controlled at the translation level.

  1. [Regulation of sulfates, hydrogen sulfide and heavy metals in technogenic reservoirs by sulfate-reducing bacteria].

    PubMed

    Hudz', S P; Peretiatko, T B; Moroz, O M; Hnatush, S O; Klym, I R

    2011-01-01

    Sulfate-reducing bacteria Desulfovibrio desulfuricans Ya-11 in the presence of sulfates and organic compounds in the medium reduce sulfates to hydrogen sulfide (dissimilatory sulfate reduction). Heavy metals in concentration over 2 mM inhibit this process. Pb2+, Zn2+, Ni2+, Co2+, Fe2+ and Cd2+ ions in concentration 1-1.5 mM display insignificant inhibiting effect on sulfate reduction process, and metals precipitate in the form of sulfides. At concentrations of heavy metals 2-3 mM one can observe a decrease of sulfates reduction intensity, and a percent of metals binding does not exceed 72%. Obtained results give reason to confirm, that sulfate-reducing bacteria play an important role in regulation of the level of sulfates, hydrogen sulfide and heavy metals in reservoirs and they may be used for purification of water environment from these compounds.

  2. New insights on molecular regulation of biofilm formation in plant-associated bacteria.

    PubMed

    Castiblanco, Luisa F; Sundin, George W

    2016-04-01

    Biofilms are complex bacterial assemblages with a defined three-dimensional architecture, attached to solid surfaces, and surrounded by a self-produced matrix generally composed of exopolysaccharides, proteins, lipids and extracellular DNA. Biofilm formation has evolved as an adaptive strategy of bacteria to cope with harsh environmental conditions as well as to establish antagonistic or beneficial interactions with their host. Plant-associated bacteria attach and form biofilms on different tissues including leaves, stems, vasculature, seeds and roots. In this review, we examine the formation of biofilms from the plant-associated bacterial perspective and detail the recently-described mechanisms of genetic regulation used by these organisms to orchestrate biofilm formation on plant surfaces. In addition, we describe plant host signals that bacterial pathogens recognize to activate the transition from a planktonic lifestyle to multicellular behavior. PMID:26377849

  3. Organism-adapted specificity of the allosteric regulation of pyruvate kinase in lactic acid bacteria.

    PubMed

    Veith, Nadine; Feldman-Salit, Anna; Cojocaru, Vlad; Henrich, Stefan; Kummer, Ursula; Wade, Rebecca C

    2013-01-01

    Pyruvate kinase (PYK) is a critical allosterically regulated enzyme that links glycolysis, the primary energy metabolism, to cellular metabolism. Lactic acid bacteria rely almost exclusively on glycolysis for their energy production under anaerobic conditions, which reinforces the key role of PYK in their metabolism. These organisms are closely related, but have adapted to a huge variety of native environments. They include food-fermenting organisms, important symbionts in the human gut, and antibiotic-resistant pathogens. In contrast to the rather conserved inhibition of PYK by inorganic phosphate, the activation of PYK shows high variability in the type of activating compound between different lactic acid bacteria. System-wide comparative studies of the metabolism of lactic acid bacteria are required to understand the reasons for the diversity of these closely related microorganisms. These require knowledge of the identities of the enzyme modifiers. Here, we predict potential allosteric activators of PYKs from three lactic acid bacteria which are adapted to different native environments. We used protein structure-based molecular modeling and enzyme kinetic modeling to predict and validate potential activators of PYK. Specifically, we compared the electrostatic potential and the binding of phosphate moieties at the allosteric binding sites, and predicted potential allosteric activators by docking. We then made a kinetic model of Lactococcus lactis PYK to relate the activator predictions to the intracellular sugar-phosphate conditions in lactic acid bacteria. This strategy enabled us to predict fructose 1,6-bisphosphate as the sole activator of the Enterococcus faecalis PYK, and to predict that the PYKs from Streptococcus pyogenes and Lactobacillus plantarum show weaker specificity for their allosteric activators, while still having fructose 1,6-bisphosphate play the main activator role in vivo. These differences in the specificity of allosteric activation may

  4. Non-coding RNA regulation in pathogenic bacteria located inside eukaryotic cells

    PubMed Central

    Ortega, Álvaro D.; Quereda, Juan J.; Pucciarelli, M. Graciela; García-del Portillo, Francisco

    2014-01-01

    Intracellular bacterial pathogens have evolved distinct lifestyles inside eukaryotic cells. Some pathogens coexist with the infected cell in an obligate intracellular state, whereas others transit between the extracellular and intracellular environment. Adaptation to these intracellular lifestyles is regulated in both space and time. Non-coding small RNAs (sRNAs) are post-transcriptional regulatory molecules that fine-tune important processes in bacterial physiology including cell envelope architecture, intermediate metabolism, bacterial communication, biofilm formation, and virulence. Recent studies have shown production of defined sRNA species by intracellular bacteria located inside eukaryotic cells. The molecules targeted by these sRNAs and their expression dynamics along the intracellular infection cycle remain, however, poorly characterized. Technical difficulties linked to the isolation of “intact” intracellular bacteria from infected host cells might explain why sRNA regulation in these specialized pathogens is still a largely unexplored field. Transition from the extracellular to the intracellular lifestyle provides an ideal scenario in which regulatory sRNAs are intended to participate; so much work must be done in this direction. This review focuses on sRNAs expressed by intracellular bacterial pathogens during the infection of eukaryotic cells, strategies used with these pathogens to identify sRNAs required for virulence, and the experimental technical challenges associated to this type of studies. We also discuss varied techniques for their potential application to study RNA regulation in intracellular bacterial infections. PMID:25429360

  5. Non-coding RNA regulation in pathogenic bacteria located inside eukaryotic cells.

    PubMed

    Ortega, Alvaro D; Quereda, Juan J; Pucciarelli, M Graciela; García-del Portillo, Francisco

    2014-01-01

    Intracellular bacterial pathogens have evolved distinct lifestyles inside eukaryotic cells. Some pathogens coexist with the infected cell in an obligate intracellular state, whereas others transit between the extracellular and intracellular environment. Adaptation to these intracellular lifestyles is regulated in both space and time. Non-coding small RNAs (sRNAs) are post-transcriptional regulatory molecules that fine-tune important processes in bacterial physiology including cell envelope architecture, intermediate metabolism, bacterial communication, biofilm formation, and virulence. Recent studies have shown production of defined sRNA species by intracellular bacteria located inside eukaryotic cells. The molecules targeted by these sRNAs and their expression dynamics along the intracellular infection cycle remain, however, poorly characterized. Technical difficulties linked to the isolation of "intact" intracellular bacteria from infected host cells might explain why sRNA regulation in these specialized pathogens is still a largely unexplored field. Transition from the extracellular to the intracellular lifestyle provides an ideal scenario in which regulatory sRNAs are intended to participate; so much work must be done in this direction. This review focuses on sRNAs expressed by intracellular bacterial pathogens during the infection of eukaryotic cells, strategies used with these pathogens to identify sRNAs required for virulence, and the experimental technical challenges associated to this type of studies. We also discuss varied techniques for their potential application to study RNA regulation in intracellular bacterial infections.

  6. Coxiella burnetii Transcriptional Analysis Reveals Serendipity Clusters of Regulation in Intracellular Bacteria

    PubMed Central

    Leroy, Quentin; Lebrigand, Kevin; Armougom, Fabrice; Barbry, Pascal; Thiéry, Richard; Raoult, Didier

    2010-01-01

    Coxiella burnetii, the causative agent of the zoonotic disease Q fever, is mainly transmitted to humans through an aerosol route. A spore-like form allows C. burnetii to resist different environmental conditions. Because of this, analysis of the survival strategies used by this bacterium to adapt to new environmental conditions is critical for our understanding of C. burnetii pathogenicity. Here, we report the early transcriptional response of C. burnetii under temperature stresses. Our data show that C. burnetii exhibited minor changes in gene regulation under short exposure to heat or cold shock. While small differences were observed, C. burnetii seemed to respond similarly to cold and heat shock. The expression profiles obtained using microarrays produced in-house were confirmed by quantitative RT-PCR. Under temperature stresses, 190 genes were differentially expressed in at least one condition, with a fold change of up to 4. Globally, the differentially expressed genes in C. burnetii were associated with bacterial division, (p)ppGpp synthesis, wall and membrane biogenesis and, especially, lipopolysaccharide and peptidoglycan synthesis. These findings could be associated with growth arrest and witnessed transformation of the bacteria to a spore-like form. Unexpectedly, clusters of neighboring genes were differentially expressed. These clusters do not belong to operons or genetic networks; they have no evident associated functions and are not under the control of the same promoters. We also found undescribed but comparable clusters of regulation in previously reported transcriptomic analyses of intracellular bacteria, including Rickettsia sp. and Listeria monocytogenes. The transcriptomic patterns of C. burnetii observed under temperature stresses permits the recognition of unpredicted clusters of regulation for which the trigger mechanism remains unidentified but which may be the result of a new mechanism of epigenetic regulation. PMID:21203564

  7. The Mannitol Operon Repressor MTIR belongs to a new class of transcription regulators in bacteria.

    SciTech Connect

    Tan, K.; Borovilos, M.; Zhou, M; Horer, S; Clancy, S; Moy, S; Volkart, LL; Sassoon, J; Baumann, U; Joachimiak, A

    2009-12-25

    Many bacteria express phosphoenolpyruvate-dependent phosphotransferase systems (PTS). The mannitol-specific PTS catalyze the uptake and phosphorylation of d-mannitol. The uptake system comprises several genes encoded in the single operon. The expression of the mannitol operon is regulated by a proposed transcriptional factor, mannitol operon repressor (MtlR) that was first studied in Escherichia coli. Here we report the first crystal structures of MtlR from Vibrio parahemeolyticus (Vp-MtlR) and its homolog YggD protein from Shigella flexneri (Sf-YggD). MtlR and YggD belong to the same protein family (Pfam05068). Although Vp-MtlR and Sf-YggD share low sequence identity (22%), their overall structures are very similar, representing a novel all {alpha}-helical fold, and indicate similar function. However, their lack of any known DNA-binding structural motifs and their unfavorable electrostatic properties imply that MtlR/YggD are unlikely to bind a specific DNA operator directly as proposed earlier. This structural observation is further corroborated by in vitro DNA-binding studies of E. coli MtlR (Ec-MtlR), which detected no interaction of Ec-MtlR with the well characterized mannitol operator/promoter region. Therefore, MtlR/YggD belongs to a new class of transcription factors in bacteria that may regulate gene expression indirectly as a part of a larger transcriptional complex.

  8. Ribosome Inactivation Leads to Attenuation of Intestinal Polymeric Ig Receptor Expression via Differential Regulation of Human Antigen R.

    PubMed

    Do, Kee Hun; Park, Seong-Hwan; Kim, Juil; Yu, Mira; Moon, Yuseok

    2016-08-01

    The polymeric IgR (pIgR) is a central component in the transport of IgA across enterocytes and thereby plays a crucial role in the defense against enteropathogens and in the regulation of circulating IgA levels. The present study was performed to address the novel regulation of pIgR expression in intestinal epithelia undergoing ribosome inactivation. Insults to mucosa that led to ribosome inactivation attenuated pIgR expression in enterocytes. However, IFN regulatory factor-1 (IRF-1) as a central transcription factor of pIgR induction was superinduced by ribosome inactivation in the presence of IFN-γ as a result of mRNA stabilization by the RNA-binding protein HuR. Another important transcription factor for pIgR expression, NF-κB, was marginally involved in suppression of pIgR by ribosome inactivation. In contrast to a positive contribution of HuR in early induction of IRF-1 expression, extended exposure to ribosome inactivation caused nuclear entrapment of HuR, resulting in destabilization of late-phase-induced pIgR mRNA. These HuR-linked differential regulations of pIgR and of IRF-1 led to a reduced mucosal secretion of IgA and, paradoxically, an induction of IRF-1-activated target genes, including colitis-associated IL-7. Therefore, these events can account for ribosome inactivation-related mucosal disorders and provide new insight into interventions for HuR-linked pathogenesis in diverse mucosa-associated diseases, including inflammatory bowel disease and IgA nephritis.

  9. One carbon metabolism in anaerobic bacteria: Regulation of carbon and electron flow during organic acid production

    SciTech Connect

    Zeikus, J.G.; Jain, M.

    1993-12-31

    The project deals with understanding the fundamental biochemical mechanisms that physiologically control and regulate carbon and electron flow in anaerobic chemosynthetic bacteria that couple metabolism of single carbon compounds and hydrogen to the production of organic acids (formic, acetic, butyric, and succinic) or methane. The authors compare the regulation of carbon dioxide and hydrogen metabolism by fermentation, enzyme, and electron carrier analysis using Butyribacterium methylotrophicum, Anaeroblospirillum succiniciproducens, Methanosarcina barkeri, and a newly isolated tri-culture composed of a syntrophic butyrate degrader strain IB, Methanosarcina mazei and Methanobacterium formicicum as model systems. To understand the regulation of hydrogen metabolism during butyrate production or acetate degradation, hydrogenase activity in B. methylotrophicum or M. barkeri is measured in relation to growth substrate and pH; hydrogenase is purified and characterized to investigate number of hydrogenases; their localization and functions; and, their sequences are determined. To understand the mechanism for catabolic CO{sub 2} fixation to succinate the PEP carboxykinase enzyme and gene of A. succiniciproducens are purified and characterized. Genetically engineered strains of Escherichia coli containing the phosphoenolpyruvate (PEP) carboxykinase gene are examined for their ability to produce succinate in high yield. To understand the mechanism of fatty acid degradation by syntrophic acetogens during mixed culture methanogenesis formate and hydrogen production are characterized by radio tracer studies. It is intended that these studies provide strategies to improve anaerobic fermentations used for the production of organic acids or methane and, new basic understanding on catabolic CO{sub 2} fixation mechanisms and on the function of hydrogenase in anaerobic bacteria.

  10. Stimulation of growth by proteorhodopsin phototrophy involves regulation of central metabolic pathways in marine planktonic bacteria.

    PubMed

    Palovaara, Joakim; Akram, Neelam; Baltar, Federico; Bunse, Carina; Forsberg, Jeremy; Pedrós-Alió, Carlos; González, José M; Pinhassi, Jarone

    2014-09-01

    Proteorhodopsin (PR) is present in half of surface ocean bacterioplankton, where its light-driven proton pumping provides energy to cells. Indeed, PR promotes growth or survival in different bacteria. However, the metabolic pathways mediating the light responses remain unknown. We analyzed growth of the PR-containing Dokdonia sp. MED134 (where light-stimulated growth had been found) in seawater with low concentrations of mixed [yeast extract and peptone (YEP)] or single (alanine, Ala) carbon compounds as models for rich and poor environments. We discovered changes in gene expression revealing a tightly regulated shift in central metabolic pathways between light and dark conditions. Bacteria showed relatively stronger light responses in Ala compared with YEP. Notably, carbon acquisition pathways shifted toward anaplerotic CO2 fixation in the light, contributing 31 ± 8% and 24 ± 6% of the carbon incorporated into biomass in Ala and YEP, respectively. Thus, MED134 was a facultative double mixotroph, i.e., photo- and chemotrophic for its energy source and using both bicarbonate and organic matter as carbon sources. Unexpectedly, relative expression of the glyoxylate shunt genes (isocitrate lyase and malate synthase) was >300-fold higher in the light--but only in Ala--contributing a more efficient use of carbon from organic compounds. We explored these findings in metagenomes and metatranscriptomes and observed similar prevalence of the glyoxylate shunt compared with PR genes and highest expression of the isocitrate lyase gene coinciding with highest solar irradiance. Thus, regulatory interactions between dissolved organic carbon quality and central metabolic pathways critically determine the fitness of surface ocean bacteria engaging in PR phototrophy.

  11. New family of tungstate-responsive transcriptional regulators in sulfate-reducing bacteria.

    PubMed

    Kazakov, Alexey E; Rajeev, Lara; Luning, Eric G; Zane, Grant M; Siddartha, Kavya; Rodionov, Dmitry A; Dubchak, Inna; Arkin, Adam P; Wall, Judy D; Mukhopadhyay, Aindrila; Novichkov, Pavel S

    2013-10-01

    The trace elements molybdenum and tungsten are essential components of cofactors of many metalloenzymes. However, in sulfate-reducing bacteria, high concentrations of molybdate and tungstate oxyanions inhibit growth, thus requiring the tight regulation of their homeostasis. By a combination of bioinformatic and experimental techniques, we identified a novel regulator family, tungstate-responsive regulator (TunR), controlling the homeostasis of tungstate and molybdate in sulfate-reducing deltaproteobacteria. The effector-sensing domains of these regulators are similar to those of the known molybdate-responsive regulator ModE, while their DNA-binding domains are homologous to XerC/XerD site-specific recombinases. Using a comparative genomics approach, we identified DNA motifs and reconstructed regulons for 40 TunR family members. Positional analysis of TunR sites and putative promoters allowed us to classify most TunR proteins into two groups: (i) activators of modABC genes encoding a high-affinity molybdenum and tungsten transporting system and (ii) repressors of genes for toluene sulfonate uptake (TSUP) family transporters. The activation of modA and modBC genes by TunR in Desulfovibrio vulgaris Hildenborough was confirmed in vivo, and we discovered that the activation was diminished in the presence of tungstate. A predicted 30-bp TunR-binding motif was confirmed by in vitro binding assays. A novel TunR family of bacterial transcriptional factors controls tungstate and molybdate homeostasis in sulfate-reducing deltaproteobacteria. We proposed that TunR proteins participate in protection of the cells from the inhibition by these oxyanions. To our knowledge, this is a unique case of a family of bacterial transcriptional factors evolved from site-specific recombinases.

  12. Redox regulation of energy transfer efficiency in antennas of green photosynthetic bacteria

    NASA Technical Reports Server (NTRS)

    Blankenship, R. E.; Cheng, P.; Causgrove, T. P.; Brune, D. C.; Wang, J.

    1993-01-01

    The efficiency of energy transfer from the peripheral chlorosome antenna structure to the membrane-bound antenna in green sulfur bacteria depends strongly on the redox potential of the medium. The fluorescence spectra and lifetimes indicate that efficient quenching pathways are induced in the chlorosome at high redox potential. The midpoint redox potential for the induction of this effect in isolated chlorosomes from Chlorobium vibrioforme is -146 mV at pH 7 (vs the normal hydrogen electrode), and the observed midpoint potential (n = 1) decreases by 60 mV per pH unit over the pH range 7-10. Extraction of isolated chlorosomes with hexane has little effect on the redox-induced quenching, indicating that the component(s) responsible for this effect are bound and not readily extractable. We have purified and partially characterized the trimeric water-soluble bacteriochlorophyll a-containing protein from the thermophilic green sulfur bacterium Chlorobium tepidum. This protein is located between the chlorosome and the membrane. Fluorescence spectra of the purified protein indicate that it also contains groups that quench excitations at high redox potential. The results indicate that the energy transfer pathway in green sulfur bacteria is regulated by redox potential. This regulation appears to operate in at least two distinct places in the energy transfer pathway, the oligomeric pigments in the interior of the chlorosome and in the bacteriochlorophyll a protein. The regulatory effect may serve to protect the cell against superoxide-induced damage when oxygen is present. By quenching excitations before they reach the reaction center, reduction and subsequent autooxidation of the low potential electron acceptors found in these organisms is avoided.

  13. Redox regulation of energy transfer efficiency in antennas of green photosynthetic bacteria.

    PubMed

    Blankenship, R E; Cheng, P; Causgrove, T P; Brune, D C; Wang SH-H; Choh J-U; Wang, J

    1993-01-01

    The efficiency of energy transfer from the peripheral chlorosome antenna structure to the membrane-bound antenna in green sulfur bacteria depends strongly on the redox potential of the medium. The fluorescence spectra and lifetimes indicate that efficient quenching pathways are induced in the chlorosome at high redox potential. The midpoint redox potential for the induction of this effect in isolated chlorosomes from Chlorobium vibrioforme is -146 mV at pH 7 (vs the normal hydrogen electrode), and the observed midpoint potential (n = 1) decreases by 60 mV per pH unit over the pH range 7-10. Extraction of isolated chlorosomes with hexane has little effect on the redox-induced quenching, indicating that the component(s) responsible for this effect are bound and not readily extractable. We have purified and partially characterized the trimeric water-soluble bacteriochlorophyll a-containing protein from the thermophilic green sulfur bacterium Chlorobium tepidum. This protein is located between the chlorosome and the membrane. Fluorescence spectra of the purified protein indicate that it also contains groups that quench excitations at high redox potential. The results indicate that the energy transfer pathway in green sulfur bacteria is regulated by redox potential. This regulation appears to operate in at least two distinct places in the energy transfer pathway, the oligomeric pigments in the interior of the chlorosome and in the bacteriochlorophyll a protein. The regulatory effect may serve to protect the cell against superoxide-induced damage when oxygen is present. By quenching excitations before they reach the reaction center, reduction and subsequent autooxidation of the low potential electron acceptors found in these organisms is avoided.

  14. Signal transduction and transcriptional and posttranscriptional control of iron-regulated genes in bacteria.

    PubMed Central

    Crosa, J H

    1997-01-01

    Iron is an essential element for nearly all living cells. Thus, the ability of bacteria to utilize iron is a crucial survival mechanism independent of the ecological niche in which the microorganism lives, because iron is scarce both in potential biological hosts, where it is bound by high-affinity iron-binding proteins, and in the environment, where it is present as part of insoluble complex hydroxides. Therefore, pathogens attempting to establish an infection and environmental microorganisms must all be able to utilize the otherwise unavailable iron. One of the strategies to perform this task is the possession of siderophore-mediated iron uptake systems that are capable of scavenging the hoarded iron. This metal is, however, a double-edged sword for the cell because it can catalyze the production of deadly free hydroxyl radicals, which are harmful to the cells. It is therefore imperative for the cell to control the concentration of iron at levels that permit key metabolic steps to occur without becoming a messenger of cell death. Early work identified a repressor, Fur, which as a complex with iron repressed the expression of most iron uptake systems as well as other iron-regulated genes when the iron concentration reached a certain level. However, later work demonstrated that this regulation by Fur was not the only answer under low-iron conditions, there was a need for activation of iron uptake genes as well as siderophore biosynthetic genes. Furthermore, it was also realized that in some instances the actual ferric iron-siderophore complex induced the transcription of the cognate receptor and transport genes. It became evident that control of the expression of iron-regulated genes was more complex than originally envisioned. In this review, I analyze the processes of signal transduction, transcriptional control, and posttranscriptional control of iron-regulated genes as reported for the ferric dicitrate system in Escherichia coli; the pyochelin, pyoverdin, and

  15. Silencing of Anopheles stephensi Heme Peroxidase HPX15 Activates Diverse Immune Pathways to Regulate the Growth of Midgut Bacteria.

    PubMed

    Kajla, Mithilesh; Choudhury, Tania P; Kakani, Parik; Gupta, Kuldeep; Dhawan, Rini; Gupta, Lalita; Kumar, Sanjeev

    2016-01-01

    Anopheles mosquito midgut harbors a diverse group of endogenous bacteria that grow extensively after the blood feeding and help in food digestion and nutrition in many ways. Although, the growth of endogenous bacteria is regulated by various factors, however, the robust antibacterial immune reactions are generally suppressed in this body compartment by a heme peroxidase HPX15 crosslinked mucins barrier. This barrier is formed on the luminal side of the midgut and blocks the direct interactions and recognition of bacteria or their elicitors by the immune reactive midgut epithelium. We hypothesized that in the absence of HPX15, an increased load of exogenous bacteria will enormously induce the mosquito midgut immunity and this situation in turn, can easily regulate mosquito-pathogen interactions. In this study, we found that the blood feeding induced AsHPX15 gene in Anopheles stephensi midgut and promoted the growth of endogenous as well as exogenous fed bacteria. In addition, the mosquito midgut also efficiently regulated the number of these bacteria through the induction of classical Toll and Imd immune pathways. In case of AsHPX15 silenced midguts, the growth of midgut bacteria was largely reduced through the induction of nitric oxide synthase (NOS) gene, a downstream effector molecule of the JAK/STAT pathway. Interestingly, no significant induction of the classical immune pathways was observed in these midguts. Importantly, the NOS is a well known negative regulator of Plasmodium development, thus, we proposed that the induction of diverged immune pathways in the absence of HPX15 mediated midgut barrier might be one of the strategies to manipulate the vectorial capacity of Anopheles mosquito. PMID:27630620

  16. Silencing of Anopheles stephensi Heme Peroxidase HPX15 Activates Diverse Immune Pathways to Regulate the Growth of Midgut Bacteria

    PubMed Central

    Kajla, Mithilesh; Choudhury, Tania P.; Kakani, Parik; Gupta, Kuldeep; Dhawan, Rini; Gupta, Lalita; Kumar, Sanjeev

    2016-01-01

    Anopheles mosquito midgut harbors a diverse group of endogenous bacteria that grow extensively after the blood feeding and help in food digestion and nutrition in many ways. Although, the growth of endogenous bacteria is regulated by various factors, however, the robust antibacterial immune reactions are generally suppressed in this body compartment by a heme peroxidase HPX15 crosslinked mucins barrier. This barrier is formed on the luminal side of the midgut and blocks the direct interactions and recognition of bacteria or their elicitors by the immune reactive midgut epithelium. We hypothesized that in the absence of HPX15, an increased load of exogenous bacteria will enormously induce the mosquito midgut immunity and this situation in turn, can easily regulate mosquito-pathogen interactions. In this study, we found that the blood feeding induced AsHPX15 gene in Anopheles stephensi midgut and promoted the growth of endogenous as well as exogenous fed bacteria. In addition, the mosquito midgut also efficiently regulated the number of these bacteria through the induction of classical Toll and Imd immune pathways. In case of AsHPX15 silenced midguts, the growth of midgut bacteria was largely reduced through the induction of nitric oxide synthase (NOS) gene, a downstream effector molecule of the JAK/STAT pathway. Interestingly, no significant induction of the classical immune pathways was observed in these midguts. Importantly, the NOS is a well known negative regulator of Plasmodium development, thus, we proposed that the induction of diverged immune pathways in the absence of HPX15 mediated midgut barrier might be one of the strategies to manipulate the vectorial capacity of Anopheles mosquito.

  17. Silencing of Anopheles stephensi Heme Peroxidase HPX15 Activates Diverse Immune Pathways to Regulate the Growth of Midgut Bacteria

    PubMed Central

    Kajla, Mithilesh; Choudhury, Tania P.; Kakani, Parik; Gupta, Kuldeep; Dhawan, Rini; Gupta, Lalita; Kumar, Sanjeev

    2016-01-01

    Anopheles mosquito midgut harbors a diverse group of endogenous bacteria that grow extensively after the blood feeding and help in food digestion and nutrition in many ways. Although, the growth of endogenous bacteria is regulated by various factors, however, the robust antibacterial immune reactions are generally suppressed in this body compartment by a heme peroxidase HPX15 crosslinked mucins barrier. This barrier is formed on the luminal side of the midgut and blocks the direct interactions and recognition of bacteria or their elicitors by the immune reactive midgut epithelium. We hypothesized that in the absence of HPX15, an increased load of exogenous bacteria will enormously induce the mosquito midgut immunity and this situation in turn, can easily regulate mosquito-pathogen interactions. In this study, we found that the blood feeding induced AsHPX15 gene in Anopheles stephensi midgut and promoted the growth of endogenous as well as exogenous fed bacteria. In addition, the mosquito midgut also efficiently regulated the number of these bacteria through the induction of classical Toll and Imd immune pathways. In case of AsHPX15 silenced midguts, the growth of midgut bacteria was largely reduced through the induction of nitric oxide synthase (NOS) gene, a downstream effector molecule of the JAK/STAT pathway. Interestingly, no significant induction of the classical immune pathways was observed in these midguts. Importantly, the NOS is a well known negative regulator of Plasmodium development, thus, we proposed that the induction of diverged immune pathways in the absence of HPX15 mediated midgut barrier might be one of the strategies to manipulate the vectorial capacity of Anopheles mosquito. PMID:27630620

  18. A novel transcriptional regulator of L-arabinose utilization in human gut bacteria

    PubMed Central

    Chang, Changsoo; Tesar, Christine; Li, Xiaoqing; Kim, Youngchang; Rodionov, Dmitry A.; Joachimiak, Andrzej

    2015-01-01

    Carbohydrate metabolism plays a crucial role in the ecophysiology of human gut microbiota. Mechanisms of transcriptional regulation of sugar catabolism in commensal and prevalent human gut bacteria such as Bacteroides thetaiotaomicron remain mostly unknown. By a combination of bioinformatics and experimental approaches, we have identified an NrtR family transcription factor (BT0354 in B. thetaiotaomicron, BtAraR) as a novel regulator controlling the arabinose utilization genes. L-arabinose was confirmed to be a negative effector of BtAraR. We have solved the crystal structures of the apo and L-arabinose-bound BtAraR proteins, as well as the complex of apo-protein with a specific DNA operator. BtAraR forms a homodimer with each subunit comprised of the ligand-binding Nudix hydrolase-like domain and the DNA-binding winged-helix-turn-helix (wHTH) domain. We have identified the residues involved in binding of L-arabinose and recognition of DNA. The majority of these residues are well conserved in the AraR orthologs in Bacteroidetes. In the structure of the BtAraR–DNA complex, we found the unique interaction of arginine intercalating its guanidinum moiety into the base pair stacking of B-DNA. L-arabinose binding induces movement of wHTH domains, resulting in a conformation unsuitable for DNA binding. Our analysis facilitates reconstruction of the metabolic and regulatory networks involved in carbohydrate utilization in human gut Bacteroides. PMID:26438537

  19. A novel transcriptional regulator of L-arabinose utilization in human gut bacteria.

    PubMed

    Chang, Changsoo; Tesar, Christine; Li, Xiaoqing; Kim, Youngchang; Rodionov, Dmitry A; Joachimiak, Andrzej

    2015-12-01

    Carbohydrate metabolism plays a crucial role in the ecophysiology of human gut microbiota. Mechanisms of transcriptional regulation of sugar catabolism in commensal and prevalent human gut bacteria such as Bacteroides thetaiotaomicron remain mostly unknown. By a combination of bioinformatics and experimental approaches, we have identified an NrtR family transcription factor (BT0354 in B. thetaiotaomicron, BtAraR) as a novel regulator controlling the arabinose utilization genes. L-arabinose was confirmed to be a negative effector of BtAraR. We have solved the crystal structures of the apo and L-arabinose-bound BtAraR proteins, as well as the complex of apo-protein with a specific DNA operator. BtAraR forms a homodimer with each subunit comprised of the ligand-binding Nudix hydrolase-like domain and the DNA-binding winged-helix-turn-helix (wHTH) domain. We have identified the residues involved in binding of L-arabinose and recognition of DNA. The majority of these residues are well conserved in the AraR orthologs in Bacteroidetes. In the structure of the BtAraR-DNA complex, we found the unique interaction of arginine intercalating its guanidinum moiety into the base pair stacking of B-DNA. L-arabinose binding induces movement of wHTH domains, resulting in a conformation unsuitable for DNA binding. Our analysis facilitates reconstruction of the metabolic and regulatory networks involved in carbohydrate utilization in human gut Bacteroides.

  20. MAP1S Protein Regulates the Phagocytosis of Bacteria and Toll-like Receptor (TLR) Signaling.

    PubMed

    Shi, Ming; Zhang, Yifan; Liu, Leyuan; Zhang, Tingting; Han, Fang; Cleveland, Joseph; Wang, Fen; McKeehan, Wallace L; Li, Yu; Zhang, Dekai

    2016-01-15

    Phagocytosis is a critical cellular process for innate immune defense against microbial infection. The regulation of phagocytosis process is complex and has not been well defined. An intracellular molecule might regulate cell surface-initiated phagocytosis, but the underlying molecular mechanism is poorly understood (1). In this study, we found that microtubule-associated protein 1S (MAP1S), a protein identified recently that is involved in autophagy (2), is expressed primarily in macrophages. MAP1S-deficient macrophages are impaired in the phagocytosis of bacteria. Furthermore, we demonstrate that MAP1S interacts directly with MyD88, a key adaptor of Toll-like receptors (TLRs), upon TLR activation and affects the TLR signaling pathway. Intriguingly, we also observe that, upon TLR activation, MyD88 participates in autophagy processing in a MAP1S-dependent manner by co-localizing with MAP1 light chain 3 (MAP1-LC3 or LC3). Therefore, we reveal that an intracellular autophagy-related molecule of MAP1S controls bacterial phagocytosis through TLR signaling.

  1. Polymeric microspheres

    DOEpatents

    Walt, David R.; Mandal, Tarun K.; Fleming, Michael S.

    2004-04-13

    The invention features core-shell microsphere compositions, hollow polymeric microspheres, and methods for making the microspheres. The microspheres are characterized as having a polymeric shell with consistent shell thickness.

  2. Creation of biological module for self-regulating ecological system by the way of polymerization of composite materials in free space.

    PubMed

    Kondyurin, A; Lauke, B; Kondyurina, I; Orba, E

    2004-01-01

    The large-size frame of space ship and space station can be created with the use of the technology of the polymerization of fiber-filled composites and a liquid reactionable matrix applied in free space or on the other space body when the space ship or space station will be used during a long period of time. For the polymerization of the station frame the fabric impregnated with a long-life polymer matrix (prepreg) is prepared in terrestrial conditions and, after folding, can be shipped in a compact container to orbit and kept folded on board the station. In due time the prepreg is carried out into free space and unfolded. Then a reaction of matrix polymerization starts. After reaction of polymerization the durable frame is ready for exploitation. After that, the frame can be filled out with air, the apparatus and life support systems. The technology can be used for creation of biological frame as element of self regulating ecological system, and for creation of technological frame which can be used for a production of new materials on Earth orbit in microgravity conditions and on other space bodies (Mars, Moon, asteroids) for unique high price mineral extraction. Based on such technology a future space base on Earth orbit with volume of 10(6) m3 and a crew of 100 astronauts is considered. PMID:15880896

  3. Novel Innate Immune Genes Regulating the Macrophage Response to Gram Positive Bacteria.

    PubMed

    Alper, Scott; Warg, Laura A; De Arras, Lesly; Flatley, Brenna R; Davidson, Elizabeth J; Adams, Jenni; Smith, Keith; Wohlford-Lenane, Christine L; McCray, Paul B; Pedersen, Brent S; Schwartz, David A; Yang, Ivana V

    2016-09-01

    Host variation in Toll-like receptors and other innate immune signaling molecules alters infection susceptibility. However, only a portion of the variability observed in the innate immune response is accounted for by known genes in these pathways. Thus, the identification of additional genes that regulate the response to Gram positive bacteria is warranted. Bone marrow-derived macrophages (BMMs) from 43 inbred mouse strains were stimulated with lipotechoic acid (LTA), a major component of the Gram positive bacterial cell wall. Concentrations of the proinflammatory cytokines IL-6, IL-12, and TNF-α were measured. In silico whole genome association (WGA) mapping was performed using cytokine responses followed by network analysis to prioritize candidate genes. To determine which candidate genes could be responsible for regulating the LTA response, candidate genes were inhibited using RNA interference (RNAi) and were overexpressed in RAW264.7 macrophages. BMMs from Bdkrb1-deficient mice were used to assess the effect of Bdkrb1 gene deletion on the response to LTA, heat-killed Streptococcus pneumoniae, and heat-killed Staphylococcus aureus WGA mapping identified 117 loci: IL-6 analysis yielded 20 loci (average locus size = 0.133 Mb; 18 genes), IL-12 analysis produced 5 loci (0.201 Mb average; 7 genes), and TNF-α analysis yielded 92 loci (0.464 Mb average; 186 genes of which 46 were prioritized by network analysis). The follow-up small interfering RNA screen of 71 target genes identified four genes (Bdkrb1, Blnk, Fbxo17, and Nkx6-1) whose inhibition resulted in significantly reduced cytokine production following LTA stimulation. Overexpression of these four genes resulted in significantly increased cytokine production in response to LTA. Bdkrb1-deficient macrophages were less responsive to LTA and heat-killed S. aureus, validating the genetic and RNAi approach to identify novel regulators of the response to LTA. We have identified four innate immune response genes that

  4. A novel transcriptional regulator of L-arabinose utilization in human gut bacteria

    SciTech Connect

    Chang, Changsoo; Tesar, Christine; Li, Xiaoqing; Kim, Youngchang; Rodionov, Dmitry A.; Joachimiak, Andrzej

    2015-10-04

    We report that carbohydrate metabolism plays a crucial role in the ecophysiology of human gut microbiota. Mechanisms of transcriptional regulation of sugar catabolism in commensal and prevalent human gut bacteria such as Bacteroides thetaiotaomicron remain mostly unknown. By a combination of bioinformatics and experimental approaches, we have identified an NrtR family transcription factor (BT0354 in B. thetaiotaomicron, BtAraR) as a novel regulator controlling the arabinose utilization genes. L-arabinose was confirmed to be a negative effector of BtAraR. We have solved the crystal structures of the apo and L-arabinose-bound BtAraR proteins, as well as the complex of apo-protein with a specific DNA operator. BtAraR forms a homodimer with each subunit comprised of the ligand-binding Nudix hydrolase-like domain and the DNA-binding winged-helix-turn-helix (wHTH) domain. We have identified the residues involved in binding of L-arabinose and recognition of DNA. The majority of these residues are well conserved in the AraR orthologs in Bacteroidetes. In the structure of the BtAraR–DNA complex, we found the unique interaction of arginine intercalating its guanidinum moiety into the base pair stacking of B-DNA. L-arabinose binding induces movement of wHTH domains, resulting in a conformation unsuitable for DNA binding. Furthermore, our analysis facilitates reconstruction of the metabolic and regulatory networks involved in carbohydrate utilization in human gut Bacteroides.

  5. A novel transcriptional regulator of L-arabinose utilization in human gut bacteria

    DOE PAGESBeta

    Chang, Changsoo; Tesar, Christine; Li, Xiaoqing; Kim, Youngchang; Rodionov, Dmitry A.; Joachimiak, Andrzej

    2015-10-04

    We report that carbohydrate metabolism plays a crucial role in the ecophysiology of human gut microbiota. Mechanisms of transcriptional regulation of sugar catabolism in commensal and prevalent human gut bacteria such as Bacteroides thetaiotaomicron remain mostly unknown. By a combination of bioinformatics and experimental approaches, we have identified an NrtR family transcription factor (BT0354 in B. thetaiotaomicron, BtAraR) as a novel regulator controlling the arabinose utilization genes. L-arabinose was confirmed to be a negative effector of BtAraR. We have solved the crystal structures of the apo and L-arabinose-bound BtAraR proteins, as well as the complex of apo-protein with a specificmore » DNA operator. BtAraR forms a homodimer with each subunit comprised of the ligand-binding Nudix hydrolase-like domain and the DNA-binding winged-helix-turn-helix (wHTH) domain. We have identified the residues involved in binding of L-arabinose and recognition of DNA. The majority of these residues are well conserved in the AraR orthologs in Bacteroidetes. In the structure of the BtAraR–DNA complex, we found the unique interaction of arginine intercalating its guanidinum moiety into the base pair stacking of B-DNA. L-arabinose binding induces movement of wHTH domains, resulting in a conformation unsuitable for DNA binding. Furthermore, our analysis facilitates reconstruction of the metabolic and regulatory networks involved in carbohydrate utilization in human gut Bacteroides.« less

  6. N2 fixation in marine heterotrophic bacteria: dynamics of environmental and molecular regulation.

    PubMed Central

    Coyer, J A; Cabello-Pasini, A; Swift, H; Alberte, R S

    1996-01-01

    Molecular and immunological techniques were used to examine N2 fixation in a ubiquitous heterotrophic marine bacterium, the facultative anaerobic Vibrio natriegens. When batch cultures were shifted from aerobic N-replete to anaerobic N-deplete conditions, transcriptional and post-translational regulation of N2 fixation was observed. Levels of nifHDK mRNA encoding the nitrogenase enzyme were highest at 140 min postshift and undetectable between 6 and 9 h later. Immunologically determined levels of nitrogenase enzyme (Fe protein) were highest between 6 and 15 h postshift, and nitrogenase activity peaked between 6 and 9 h postshift, declining by a factor of 2 after 12-15 h. Unlike their regulation in cyanobacteria, Fe protein and nitrogenase activity were present when nifHDK mRNA was absent in V. natriegens, indicating that nitrogenase is stored and stable under anaerobic conditions. Both nifHDK mRNA and Fe protein disappeared within 40 min after cultures were shifted from N2-fixing conditions (anaerobic, N-deplete) to non- N2-fixing conditions (aerobic, N-enriched) but reappeared when shifted to conditions favoring N2 fixation. Thus, unlike other N2-fixing heterotrophic bacteria, nitrogenase must be resynthesized after aerobic exposure in V. natriegens. Immunological detection based on immunoblot (Western) analysis and immunogold labeling correlated positively with nitrogenase activity; no localization of nitrogenase was observed. Because V. natriegens continues to fix N2 for many hours after anaerobic induction, this species may play an important role in providing "new" nitrogen in marine ecosystems. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 PMID:11607653

  7. Regulation of the activity of lactate dehydrogenases from four lactic acid bacteria.

    PubMed

    Feldman-Salit, Anna; Hering, Silvio; Messiha, Hanan L; Veith, Nadine; Cojocaru, Vlad; Sieg, Antje; Westerhoff, Hans V; Kreikemeyer, Bernd; Wade, Rebecca C; Fiedler, Tomas

    2013-07-19

    Despite high similarity in sequence and catalytic properties, the l-lactate dehydrogenases (LDHs) in lactic acid bacteria (LAB) display differences in their regulation that may arise from their adaptation to different habitats. We combined experimental and computational approaches to investigate the effects of fructose 1,6-bisphosphate (FBP), phosphate (Pi), and ionic strength (NaCl concentration) on six LDHs from four LABs studied at pH 6 and pH 7. We found that 1) the extent of activation by FBP (Kact) differs. Lactobacillus plantarum LDH is not regulated by FBP, but the other LDHs are activated with increasing sensitivity in the following order: Enterococcus faecalis LDH2 ≤ Lactococcus lactis LDH2 < E. faecalis LDH1 < L. lactis LDH1 ≤ Streptococcus pyogenes LDH. This trend reflects the electrostatic properties in the allosteric binding site of the LDH enzymes. 2) For L. plantarum, S. pyogenes, and E. faecalis, the effects of Pi are distinguishable from the effect of changing ionic strength by adding NaCl. 3) Addition of Pi inhibits E. faecalis LDH2, whereas in the absence of FBP, Pi is an activator of S. pyogenes LDH, E. faecalis LDH1, and L. lactis LDH1 and LDH2 at pH 6. These effects can be interpreted by considering the computed binding affinities of Pi to the catalytic and allosteric binding sites of the enzymes modeled in protonation states corresponding to pH 6 and pH 7. Overall, the results show a subtle interplay among the effects of Pi, FBP, and pH that results in different regulatory effects on the LDHs of different LABs.

  8. Role of Protein Phosphorylation in the Regulation of Cell Cycle and DNA-Related Processes in Bacteria

    PubMed Central

    Garcia-Garcia, Transito; Poncet, Sandrine; Derouiche, Abderahmane; Shi, Lei; Mijakovic, Ivan; Noirot-Gros, Marie-Françoise

    2016-01-01

    In all living organisms, the phosphorylation of proteins modulates various aspects of their functionalities. In eukaryotes, protein phosphorylation plays a key role in cell signaling, gene expression, and differentiation. Protein phosphorylation is also involved in the global control of DNA replication during the cell cycle, as well as in the mechanisms that cope with stress-induced replication blocks. Similar to eukaryotes, bacteria use Hanks-type kinases and phosphatases for signal transduction, and protein phosphorylation is involved in numerous cellular processes. However, it remains unclear whether protein phosphorylation in bacteria can also regulate the activity of proteins involved in DNA-mediated processes such as DNA replication or repair. Accumulating evidence supported by functional and biochemical studies suggests that phospho-regulatory mechanisms also take place during the bacterial cell cycle. Recent phosphoproteomics and interactomics studies identified numerous phosphoproteins involved in various aspect of DNA metabolism strongly supporting the existence of such level of regulation in bacteria. Similar to eukaryotes, bacterial scaffolding-like proteins emerged as platforms for kinase activation and signaling. This review reports the current knowledge on the phosphorylation of proteins involved in the maintenance of genome integrity and the regulation of cell cycle in bacteria that reveals surprising similarities to eukaryotes. PMID:26909079

  9. Role of Protein Phosphorylation in the Regulation of Cell Cycle and DNA-Related Processes in Bacteria.

    PubMed

    Garcia-Garcia, Transito; Poncet, Sandrine; Derouiche, Abderahmane; Shi, Lei; Mijakovic, Ivan; Noirot-Gros, Marie-Françoise

    2016-01-01

    In all living organisms, the phosphorylation of proteins modulates various aspects of their functionalities. In eukaryotes, protein phosphorylation plays a key role in cell signaling, gene expression, and differentiation. Protein phosphorylation is also involved in the global control of DNA replication during the cell cycle, as well as in the mechanisms that cope with stress-induced replication blocks. Similar to eukaryotes, bacteria use Hanks-type kinases and phosphatases for signal transduction, and protein phosphorylation is involved in numerous cellular processes. However, it remains unclear whether protein phosphorylation in bacteria can also regulate the activity of proteins involved in DNA-mediated processes such as DNA replication or repair. Accumulating evidence supported by functional and biochemical studies suggests that phospho-regulatory mechanisms also take place during the bacterial cell cycle. Recent phosphoproteomics and interactomics studies identified numerous phosphoproteins involved in various aspect of DNA metabolism strongly supporting the existence of such level of regulation in bacteria. Similar to eukaryotes, bacterial scaffolding-like proteins emerged as platforms for kinase activation and signaling. This review reports the current knowledge on the phosphorylation of proteins involved in the maintenance of genome integrity and the regulation of cell cycle in bacteria that reveals surprising similarities to eukaryotes. PMID:26909079

  10. Overview of the gene regulation network and the bacteria biotope tasks in BioNLP'13 shared task

    PubMed Central

    2015-01-01

    Background We present the two Bacteria Track tasks of BioNLP 2013 Shared Task (ST): Gene Regulation Network (GRN) and Bacteria Biotope (BB). These tasks were previously introduced in the 2011 BioNLP-ST Bacteria Track as Bacteria Gene Interaction (BI) and Bacteria Biotope (BB). The Bacteria Track was motivated by a need to develop specific BioNLP tools for fine-grained event extraction in bacteria biology. The 2013 tasks expand on the 2011 version by better addressing the biological knowledge modeling needs. New evaluation metrics were designed for the new goals. Moving beyond a list of gene interactions, the goal of the GRN task is to build a gene regulation network from the extracted gene interactions. BB'13 is dedicated to the extraction of bacteria biotopes, i.e. bacterial environmental information, as was BB'11. BB'13 extends the typology of BB'11 to a large diversity of biotopes, as defined by the OntoBiotope ontology. The detection of entities and events is tackled by distinct subtasks in order to measure the progress achieved by the participant systems since 2011. Results This paper details the corpus preparations and the evaluation metrics, as well as summarizing and discussing the participant results. Five groups participated in each of the two tasks. The high diversity of the participant methods reflects the dynamism of the BioNLP research community. The highest scores for the GRN and BB'13 tasks are similar to those obtained by the participants in 2011, despite of the increase in difficulty. The high density of events in short text segments (multi-event extraction) was a difficult issue for the participating systems for both tasks. The analysis of the BB'13 results also shows that co-reference resolution and entity boundary detection remain major hindrances. Conclusion The evaluation results suggest new research directions for the improvement and development of Information Extraction for molecular and environmental biology. The Bacteria Track tasks

  11. Diffusion-regulated phase-transfer catalysis for atom transfer radical polymerization of methyl methacrylate in an aqueous/organic biphasic system.

    PubMed

    Ding, Mingqiang; Jiang, Xiaowu; Peng, Jinying; Zhang, Lifen; Cheng, Zhenping; Zhu, Xiulin

    2015-03-01

    A concept based on diffusion-regulated phase-transfer catalysis (DRPTC) in an aqueous-organic biphasic system with copper-mediated initiators for continuous activator regeneration is successfully developed for atom transfer radical polymerization (ICAR ATRP) (termed DRPTC-based ICAR ATRP here), using methyl methacrylate (MMA) as a model monomer, ethyl α-bromophenylacetate (EBrPA) as an initiator, and tris(2-pyridylmethyl)amine (TPMA) as a ligand. In this system, the monomer and initiating species in toluene (organic phase) and the catalyst complexes in water (aqueous phase) are simply mixed under stirring at room temperature. The trace catalyst complexes transfer into the organic phase via diffusion to trigger ICAR ATRP of MMA with ppm level catalyst content once the system is heated to the polymerization temperature (75 °C). It is found that well-defined PMMA with controlled molecular weights and narrow molecular weight distributions can be obtained easily. Furthermore, the polymerization can be conducted in the presence of limited amounts of air without using tedious degassed procedures. After cooling to room temperature, the upper organic phase is decanted and the lower aqueous phase is reused for another 10 recycling turnovers with ultra low loss of catalyst and ligand loading. At the same time, all the recycled catalyst complexes retain nearly perfect catalytic activity and controllability, indicating a facile and economical strategy for catalyst removal and recycling.

  12. Development and Use of a Selectable, Broad-Host-Range Reporter Transposon for Identifying Environmentally Regulated Promoters in Bacteria

    PubMed Central

    Spinler, Jennifer K.; Zajdowicz, Sheryl L. W.; Haller, Jon C.; Oram, Diana Marra; Gill, Ronald E.; Holmes, Randall K.

    2009-01-01

    This report describes the development and use of TnKnXSp, a selectable broad-host-range reporter transposon with a promoterless aphA gene. Insertion of TnKnXSp into the chromosome of a kanamycin-susceptible bacterium confers resistance to kanamycin only if aphA is transcribed from an active promoter adjacent to the insertion site. We designed TnKnXSp as a tool for identifying environmentally regulated promoters in bacteria and developed general methods for initial characterization of any TnKnXSp integrant. To identify putative iron-regulated promoters in Corynebacterium diphtheriae, we constructed TnKnXSp integrants and identified a subgroup that expressed kanamycin resistance under low-iron, but not high-iron, conditions. We characterized representative integrants with this phenotype, located the TnKnXSp insertion in each, and demonstrated that transcription of aphA was repressed under high-iron vs. low-iron growth conditions. We also demonstrated that TnKnXSp can be used in bacteria other than C. diphtheriae, including Escherichia coli and Bacillus subtilus. Our findings validate TnKnXSp as a useful tool for identifying environmentally regulated promoters in bacteria. PMID:19146571

  13. Formulations of polymeric biodegradable low-cost foam by melt extrusion to deliver plant growth-promoting bacteria in agricultural systems.

    PubMed

    Marcelino, Paulo Ricardo Franco; Milani, Karina Maria Lima; Mali, Suzana; Santos, Odair José Andrade Pais Dos; de Oliveira, André Luiz Martinez

    2016-08-01

    The extrusion technology of blends formed by compounds with different physicochemical properties often results in new materials that present properties distinctive from its original individual constituents. Here, we report the use of melt extrusion of blends made from low-cost materials to produce a biodegradable foam suitable for use as an inoculant carrier of plant growth-promoting bacteria (PGPB). Six formulations were prepared with variable proportions of the raw materials; the resulting physicochemical and structural properties are described, as well as formulation performance in the maintenance of bacterial viability during 120 days of storage. Differences in blend composition influenced foam density, porosity, expansion index, and water absorption. Additionally, differences in the capability of sustaining bacterial viability for long periods of time were more related to the foam composition than to the resulting physicochemical characteristics. Microscopic analyses showed that the inoculant bacteria had firmly attached to the extruded material by forming biofilms. Inoculation assays using maize plants demonstrated that the bacteria attached to the extruded foams could survive in the soil for up to 10 days before maize sowing, without diminishing its ability to promote plant growth. The results presented demonstrate the viability of the new matrix as a biotechnological material for bacterial delivery not only in agriculture but also in other biotechnological applications, according to the selected bacterial strains.

  14. Zonulin Regulates Intestinal Permeability and Facilitates Enteric Bacteria Permeation in Coronary Artery Disease

    PubMed Central

    Li, Chuanwei; Gao, Min; Zhang, Wen; Chen, Caiyu; Zhou, Faying; Hu, Zhangxu; Zeng, Chunyu

    2016-01-01

    Several studies have reported an association between enteric bacteria and atherosclerosis. Bacterial 16S ribosomal RNA (rRNA) gene belong to Enterobacteriaceae have been detected in atherosclerotic plaques. How intestinal bacteria go into blood is not known. Zonulin reversibly modulate intestinal permeability (IP), the circulating zonulin levels were increased in diabetes, obesity, all of which are risk factors for atherosclerosis. It is unclear whether the circulating zonulin levels were changed in coronary artery disease (CAD) patients and modulate IP. The 16S rRNA gene of bacteria in blood sample was checked by 454 pyrosequencing. The zonulin levels were determined by enzyme-linked immunosorbent assay (ELISA) methods. The distribution of zonulin was detected by confocal immunofluorescence microscopy. Bacteria and Caco-2 cell surface micro-structure were checked by transmission electron microscopy. A high diversity of bacterial 16S rRNA gene can be detected in samples from CAD patients, most of them (99.4%) belong to Enterobacteriaceaes, eg. Rahnella. The plasma zonulin levels were significantly higher in CAD patients. Pseudomonas fluorescens exposure significantly increased zonulin expression and decreased IP in a time dependent manner. The elevated zonulin increase IP and may facilitate enteric translocation by disassembling the tight junctions, which might explain the observed high diversity of bacterial 16S rRNA genes in blood samples. PMID:27353603

  15. Regulating the surface poly(ethylene glycol) density of polymeric nanoparticles and evaluating its role in drug delivery in vivo.

    PubMed

    Du, Xiao-Jiao; Wang, Ji-Long; Liu, Wei-Wei; Yang, Jin-Xian; Sun, Chun-Yang; Sun, Rong; Li, Hong-Jun; Shen, Song; Luo, Ying-Li; Ye, Xiao-Dong; Zhu, Yan-Hua; Yang, Xian-Zhu; Wang, Jun

    2015-11-01

    Poly(ethylene glycol) (PEG) is usually used to protect nanoparticles from rapid clearance in blood. The effects are highly dependent on the surface PEG density of nanoparticles. However, there lacks a detailed and informative study in PEG density and in vivo drug delivery due to the critical techniques to precisely control the surface PEG density when maintaining other nano-properties. Here, we regulated the polymeric nanoparticles' size and surface PEG density by incorporating poly(ε-caprolactone) (PCL) homopolymer into poly(ethylene glycol)-block-poly(ε-caprolactone) (PEG-PCL) and adjusting the mass ratio of PCL to PEG-PCL during the nanoparticles preparation. We further developed a library of polymeric nanoparticles with different but controllable sizes and surface PEG densities by changing the molecular weight of the PCL block in PEG-PCL and tuning the molar ratio of repeating units of PCL (CL) to that of PEG (EG). We thus obtained a group of nanoparticles with variable surface PEG densities but with other nano-properties identical, and investigated the effects of surface PEG densities on the biological behaviors of nanoparticles in mice. We found that, high surface PEG density made the nanoparticles resistant to absorption of serum protein and uptake by macrophages, leading to a greater accumulation of nanoparticles in tumor tissue, which recuperated the defects of decreased internalization by tumor cells, resulting in superior antitumor efficacy when carrying docetaxel.

  16. Why do bacteria regulate public goods by quorum sensing?-How the shapes of cost and benefit functions determine the form of optimal regulation.

    PubMed

    Heilmann, Silja; Krishna, Sandeep; Kerr, Benjamin

    2015-01-01

    Many bacteria secrete compounds which act as public goods. Such compounds are often under quorum sensing (QS) regulation, yet it is not understood exactly when bacteria may gain from having a public good under QS regulation. Here, we show that the optimal public good production rate per cell as a function of population size (the optimal production curve, OPC) depends crucially on the cost and benefit functions of the public good and that the OPC will fall into one of two categories: Either it is continuous or it jumps from zero discontinuously at a critical population size. If, e.g., the public good has accelerating returns and linear cost, then the OPC is discontinuous and the best strategy thus to ramp up production sharply at a precise population size. By using the example of public goods with accelerating and diminishing returns (and linear cost) we are able to determine how the two different categories of OPSs can best be matched by production regulated through a QS signal feeding back on its own production. We find that the optimal QS parameters are different for the two categories and specifically that public goods which provide accelerating returns, call for stronger positive signal feedback.

  17. Why do bacteria regulate public goods by quorum sensing?—How the shapes of cost and benefit functions determine the form of optimal regulation

    PubMed Central

    Heilmann, Silja; Krishna, Sandeep; Kerr, Benjamin

    2015-01-01

    Many bacteria secrete compounds which act as public goods. Such compounds are often under quorum sensing (QS) regulation, yet it is not understood exactly when bacteria may gain from having a public good under QS regulation. Here, we show that the optimal public good production rate per cell as a function of population size (the optimal production curve, OPC) depends crucially on the cost and benefit functions of the public good and that the OPC will fall into one of two categories: Either it is continuous or it jumps from zero discontinuously at a critical population size. If, e.g., the public good has accelerating returns and linear cost, then the OPC is discontinuous and the best strategy thus to ramp up production sharply at a precise population size. By using the example of public goods with accelerating and diminishing returns (and linear cost) we are able to determine how the two different categories of OPSs can best be matched by production regulated through a QS signal feeding back on its own production. We find that the optimal QS parameters are different for the two categories and specifically that public goods which provide accelerating returns, call for stronger positive signal feedback. PMID:26284049

  18. The mutual co-regulation of extracellular polymeric substances and iron ions in biocorrosion of cast iron pipes.

    PubMed

    Jin, Juntao; Guan, Yuntao

    2014-10-01

    New insights into the biocorrosion process may be gained through understanding of the interaction between extracellular polymeric substances (EPS) and iron. Herein, the effect of iron ions on the formation of biofilms and production of EPS was investigated. Additionally, the impact of EPS on the corrosion of cast iron coupons was explored. The results showed that a moderate concentration of iron ions (0.06 mg/L) promoted both biofilm formation and EPS production. The presence of EPS accelerated corrosion during the initial stage, while inhibited corrosion at the later stage. The functional groups of EPS acted as electron shuttles to enable the binding of iron ions. Binding of iron ions with EPS led to anodic dissolution and promoted corrosion, while corrosion was later inhibited through oxygen reduction and availability of phosphorus from EPS. The presence of EPS also led to changes in crystalline phases of corrosion products.

  19. Identification of TLR2/TLR6 signalling lactic acid bacteria for supporting immune regulation

    PubMed Central

    Ren, Chengcheng; Zhang, Qiuxiang; de Haan, Bart J.; Zhang, Hao; Faas, Marijke M.; de Vos, Paul

    2016-01-01

    Although many lactic acid bacteria (LAB) influence the consumer’s immune status it is not completely understood how this is established. Bacteria-host interactions between bacterial cell-wall components and toll-like receptors (TLRs) have been suggested to play an essential role. Here we investigated the interaction between LABs with reported health effects and TLRs. By using cell-lines expressing single or combination of TLRs, we show that LABs can signal via TLR-dependent and independent pathways. The strains only stimulated and did not inhibit TLRs. We found that several strains such as L. plantarum CCFM634, L. plantarum CCFM734, L. fermentum CCFM381, L. acidophilus CCFM137, and S. thermophilus CCFM218 stimulated TLR2/TLR6. TLR2/TLR6 is essential in immune regulatory processes and of interest for prevention of diseases. Specificity of the TLR2/TLR6 stimulation was confirmed with blocking antibodies. Immunomodulatory properties of LABs were also studied by assessing IL-10 and IL-6 secretion patterns in bacteria-stimulated THP1-derived macrophages, which confirmed species and strain specific effects of the LABs. With this study we provide novel insight in LAB specific host-microbe interactions. Our data demonstrates that interactions between pattern recognition receptors such as TLRs is species and strain specific and underpins the importance of selecting specific strains for promoting specific health effects. PMID:27708357

  20. A super-family of transcriptional activators regulates bacteriophage packaging and lysis in Gram-positive bacteria.

    PubMed

    Quiles-Puchalt, Nuria; Tormo-Más, María Ángeles; Campoy, Susana; Toledo-Arana, Alejandro; Monedero, Vicente; Lasa, Iñigo; Novick, Richard P; Christie, Gail E; Penadés, José R

    2013-08-01

    The propagation of bacteriophages and other mobile genetic elements requires exploitation of the phage mechanisms involved in virion assembly and DNA packaging. Here, we identified and characterized four different families of phage-encoded proteins that function as activators required for transcription of the late operons (morphogenetic and lysis genes) in a large group of phages infecting Gram-positive bacteria. These regulators constitute a super-family of proteins, here named late transcriptional regulators (Ltr), which share common structural, biochemical and functional characteristics and are unique to this group of phages. They are all small basic proteins, encoded by genes present at the end of the early gene cluster in their respective phage genomes and expressed under cI repressor control. To control expression of the late operon, the Ltr proteins bind to a DNA repeat region situated upstream of the terS gene, activating its transcription. This involves the C-terminal part of the Ltr proteins, which control specificity for the DNA repeat region. Finally, we show that the Ltr proteins are the only phage-encoded proteins required for the activation of the packaging and lysis modules. In summary, we provide evidence that phage packaging and lysis is a conserved mechanism in Siphoviridae infecting a wide variety of Gram-positive bacteria.

  1. A super-family of transcriptional activators regulates bacteriophage packaging and lysis in Gram-positive bacteria

    PubMed Central

    Quiles-Puchalt, Nuria; Tormo-Más, María Ángeles; Campoy, Susana; Toledo-Arana, Alejandro; Monedero, Vicente; Lasa, Íñigo; Novick, Richard P.; Christie, Gail E.; Penadés, José R.

    2013-01-01

    The propagation of bacteriophages and other mobile genetic elements requires exploitation of the phage mechanisms involved in virion assembly and DNA packaging. Here, we identified and characterized four different families of phage-encoded proteins that function as activators required for transcription of the late operons (morphogenetic and lysis genes) in a large group of phages infecting Gram-positive bacteria. These regulators constitute a super-family of proteins, here named late transcriptional regulators (Ltr), which share common structural, biochemical and functional characteristics and are unique to this group of phages. They are all small basic proteins, encoded by genes present at the end of the early gene cluster in their respective phage genomes and expressed under cI repressor control. To control expression of the late operon, the Ltr proteins bind to a DNA repeat region situated upstream of the terS gene, activating its transcription. This involves the C-terminal part of the Ltr proteins, which control specificity for the DNA repeat region. Finally, we show that the Ltr proteins are the only phage-encoded proteins required for the activation of the packaging and lysis modules. In summary, we provide evidence that phage packaging and lysis is a conserved mechanism in Siphoviridae infecting a wide variety of Gram-positive bacteria. PMID:23771138

  2. A super-family of transcriptional activators regulates bacteriophage packaging and lysis in Gram-positive bacteria.

    PubMed

    Quiles-Puchalt, Nuria; Tormo-Más, María Ángeles; Campoy, Susana; Toledo-Arana, Alejandro; Monedero, Vicente; Lasa, Iñigo; Novick, Richard P; Christie, Gail E; Penadés, José R

    2013-08-01

    The propagation of bacteriophages and other mobile genetic elements requires exploitation of the phage mechanisms involved in virion assembly and DNA packaging. Here, we identified and characterized four different families of phage-encoded proteins that function as activators required for transcription of the late operons (morphogenetic and lysis genes) in a large group of phages infecting Gram-positive bacteria. These regulators constitute a super-family of proteins, here named late transcriptional regulators (Ltr), which share common structural, biochemical and functional characteristics and are unique to this group of phages. They are all small basic proteins, encoded by genes present at the end of the early gene cluster in their respective phage genomes and expressed under cI repressor control. To control expression of the late operon, the Ltr proteins bind to a DNA repeat region situated upstream of the terS gene, activating its transcription. This involves the C-terminal part of the Ltr proteins, which control specificity for the DNA repeat region. Finally, we show that the Ltr proteins are the only phage-encoded proteins required for the activation of the packaging and lysis modules. In summary, we provide evidence that phage packaging and lysis is a conserved mechanism in Siphoviridae infecting a wide variety of Gram-positive bacteria. PMID:23771138

  3. Regulation Systems of Bacteria such as Escherichia coli in Response to Nutrient Limitation and Environmental Stresses

    PubMed Central

    Shimizu, Kazuyuki

    2013-01-01

    An overview was made to understand the regulation system of a bacterial cell such as Escherichia coli in response to nutrient limitation such as carbon, nitrogen, phosphate, sulfur, ion sources, and environmental stresses such as oxidative stress, acid shock, heat shock, and solvent stresses. It is quite important to understand how the cell detects environmental signals, integrate such information, and how the cell system is regulated. As for catabolite regulation, F1,6B P (FDP), PEP, and PYR play important roles in enzyme level regulation together with transcriptional regulation by such transcription factors as Cra, Fis, CsrA, and cAMP-Crp. αKG plays an important role in the coordinated control between carbon (C)- and nitrogen (N)-limitations, where αKG inhibits enzyme I (EI) of phosphotransferase system (PTS), thus regulating the glucose uptake rate in accordance with N level. As such, multiple regulation systems are co-ordinated for the cell synthesis and energy generation against nutrient limitations and environmental stresses. As for oxidative stress, the TCA cycle both generates and scavenges the reactive oxygen species (ROSs), where NADPH produced at ICDH and the oxidative pentose phosphate pathways play an important role in coping with oxidative stress. Solvent resistant mechanism was also considered for the stresses caused by biofuels and biochemicals production in the cell. PMID:24958385

  4. Regulated pH-Responsive Polymeric Micelles for Doxorubicin Delivery to the Nucleus of Liver Cancer Cells.

    PubMed

    Li, Hao; Li, Xian; Zhang, Chao; Sun, Qiquan; Yi, Wei; Wang, Xuan; Cheng, Du; Chen, Shupeng; Liang, Biling; Shuai, Xintao

    2016-06-01

    A diblock copolymer of poly(ethylene glycol) (PEG) and poly(γ-benzyl L-glutamate) (PBLG), PEG-PBLG, was synthesized via the ring-opening polymerization of γ-benzyl L-glutamate N-carboxyanhydride (BLG-NCA) using allyl-PEG-NH2 as a macroinitiator. After deprotection of the benzyl groups, N,N-diisopropyl ethylenediamine (DIP) was conjugated to poly(L-glutamic acid) (PGA) blocks as side groups. The pendant DIP groups on the PGA blocks greatly enhance the pH-sensitivity of poly(ethylene glycol)-block-poly[N-(N',N'-diisopropylaminoethyl) glutamide] [PEG-PGA(DIP)] micelles, and a higher grafting percentage of DIP favors a faster acid-response. In neutral aqueous solution, the PEG-PGA(DIP) can self-assemble into stable micelles featuring an acid-responsive PGA(DIP) core with the encapsulated anticancer drug doxorubicin (DOX). In an acidic environment, the hydrophobic-hydrophilic transition of the PGA block leads to the gradual expansion and disassembly of these micelles and, consequently, an accelerated release of DOX. Thus, DOX transported by PEG-PGA(DIP) micelles can be entrapped more efficiently into the nuclei of hepatoma Bel 7402 cells.

  5. Regulation of genetic flux between bacteria by restriction–modification systems

    PubMed Central

    Touchon, Marie

    2016-01-01

    Restriction–modification (R-M) systems are often regarded as bacteria's innate immune systems, protecting cells from infection by mobile genetic elements (MGEs). Their diversification has been recently associated with the emergence of particularly virulent lineages. However, we have previously found more R-M systems in genomes carrying more MGEs. Furthermore, it has been suggested that R-M systems might favor genetic transfer by producing recombinogenic double-stranded DNA ends. To test whether R-M systems favor or disfavor genetic exchanges, we analyzed their frequency with respect to the inferred events of homologous recombination and horizontal gene transfer within 79 bacterial species. Genetic exchanges were more frequent in bacteria with larger genomes and in those encoding more R-M systems. We created a recognition target motif predictor for Type II R-M systems that identifies genomes encoding systems with similar restriction sites. We found more genetic exchanges between these genomes, independently of their evolutionary distance. Our results reconcile previous studies by showing that R-M systems are more abundant in promiscuous species, wherein they establish preferential paths of genetic exchange within and between lineages with cognate R-M systems. Because the repertoire and/or specificity of R-M systems in bacterial lineages vary quickly, the preferential fluxes of genetic transfer within species are expected to constantly change, producing time-dependent networks of gene transfer. PMID:27140615

  6. Scavenger receptor B protects shrimp from bacteria by enhancing phagocytosis and regulating expression of antimicrobial peptides.

    PubMed

    Bi, Wen-Jie; Li, Dian-Xiang; Xu, Yi-Hui; Xu, Sen; Li, Jing; Zhao, Xiao-Fan; Wang, Jin-Xing

    2015-07-01

    Scavenger receptors (SRs) are involved in innate immunity through recognizing pathogen-associated molecular patterns (PAMPs) and in pathogenesis of diseases through interactions with damage-associated molecular patterns (DAMPs). The roles of SRs in invertebrate innate immunity still need to be elucidated. Here we identify a class B scavenger receptor from kuruma shrimp, Marsupenaeus japonicus, designated MjSR-B1. The recombinant MjSR-B1 agglutinated bacteria in a calcium dependent manner and bound lipopolysaccharide and lipoteichoic acid. After knockdown of MjSR-B1, both the bacterial clearance and phagocytotic ability of M. japonicus against V. anguillarum and S. aureus were impaired, and several phagocytosis related genes were downregulated. The expression levels of antimicrobial peptides were also downregulated. Overexpression of MjSR-B1 led to enhanced bacterial clearance, phagocytosis rate and upregulation of phagocytosis-related and antimicrobial peptide genes. However, overexpression of mutant MjSR-B1ΔC, which lacks the carboxyl tail of MjSR-B1, had none of these effects. Our results indicate that MjSR-B1 can protect shrimp from bacteria by promoting phagocytosis and by enhancing the expression of antimicrobial peptides.

  7. Regulation of the vitamin B12 metabolism and transport in bacteria by a conserved RNA structural element

    PubMed Central

    VITRESCHAK, ALEXEY G.; RODIONOV, DMITRY A.; MIRONOV, ANDREY A.; GELFAND, MIKHAIL S.

    2003-01-01

    Cobalamin in the form of adenosylcobalamin (Ado-CBL) is known to repress expression of genes for vitamin B12 biosynthesis and be transported by a posttranscriptional regulatory mechanism, which involves direct binding of Ado-CBL to 5′untranslated gene regions (5′UTR). Using comparative analysis of genes and regulatory regions, we identified a highly conserved RNA structure, the B12-element, which is widely distributed in 5′UTRs of vitamin B12-related genes in eubacteria. Multiple alignment of approximately 200 B12-elements from 66 bacterial genomes reveals their common secondary structure and several extended regions of sequence conservation, including the previously known B12-box motif. In analogy to the model of regulation of the riboflavin and thiamin biosynthesis, we suggest Ado-CBL-mediated regulation based on formation of alternative RNA structures including the B12-element. In Gram-negative proteobacteria, as well as in cyanobacteria, actinobacteria, and the CFB group, the cobalamin biosynthesis and vitamin B12 transport genes are predicted to be regulated by inhibition of translation initiation, whereas in the Bacillus/Clostridium group of Gram-positive bacteria, these genes seem to be regulated by transcriptional antitermination. Phylogenetic analysis of the B12-elements reveals a large number of likely duplications of B12-elements in several bacterial genomes. These lineage-specific duplications of RNA regulatory elements seem to be a major evolutionary mechanism for expansion of the vitamin B12 regulon. PMID:12923257

  8. Regulation of the vitamin B12 metabolism and transport in bacteria by a conserved RNA structural element.

    PubMed

    Vitreschak, Alexey G; Rodionov, Dmitry A; Mironov, Andrey A; Gelfand, Mikhail S

    2003-09-01

    Cobalamin in the form of adenosylcobalamin (Ado-CBL) is known to repress expression of genes for vitamin B(12) biosynthesis and be transported by a posttranscriptional regulatory mechanism, which involves direct binding of Ado-CBL to 5'untranslated gene regions (5'UTR). Using comparative analysis of genes and regulatory regions, we identified a highly conserved RNA structure, the B12-element, which is widely distributed in 5'UTRs of vitamin B(12)-related genes in eubacteria. Multiple alignment of approximately 200 B12-elements from 66 bacterial genomes reveals their common secondary structure and several extended regions of sequence conservation, including the previously known B12-box motif. In analogy to the model of regulation of the riboflavin and thiamin biosynthesis, we suggest Ado-CBL-mediated regulation based on formation of alternative RNA structures including the B12-element. In Gram-negative proteobacteria, as well as in cyanobacteria, actinobacteria, and the CFB group, the cobalamin biosynthesis and vitamin B(12) transport genes are predicted to be regulated by inhibition of translation initiation, whereas in the Bacillus/Clostridium group of Gram-positive bacteria, these genes seem to be regulated by transcriptional antitermination. Phylogenetic analysis of the B12-elements reveals a large number of likely duplications of B12-elements in several bacterial genomes. These lineage-specific duplications of RNA regulatory elements seem to be a major evolutionary mechanism for expansion of the vitamin B(12) regulon. PMID:12923257

  9. Separate regulation of transport and biosynthesis of leucine, isoleucine, and valine in bacteria.

    PubMed Central

    Quay, S C; Oxender, D L; Tsuyumu, S; Umbarger, H E

    1975-01-01

    Since both transport activity and the leucine biosynthetic enzymes are repressed by growth on leucine, the regulation of leucine, isoleucine, and valine biosynthetic enzymes was examined in Escherichia coli K-12 strain EO312, a constitutively derepressed branched-chain amino acid transport mutant, to determine if the transport derepression affected the biosynthetic enzymes. Neither the iluB gene product, acetohydroxy acid synthetase (acetolactate synthetase, EC 4.1.3.18), NOR THE LEUB gene product, 3-isopropylmalate dehydrogenase (2-hydroxy-4-methyl-3-carboxyvalerate-nicotinamide adenine dinucleotide oxido-reductase, EC 1.1.1.85), were significantly affected in their level of derepression or repression compared to the parental strain. A number of strains with alterations in the regulation of the branched-chain amino acid biosynthetic enzymes were examined for the regulation of the shock-sensitive transport system for these amino acids (LIV-I). When transport activity was examined in strains with mutations leading to derepression of the iluB, iluADE, and leuABCD gene clusters, the regulation of the LIV-I transport system was found to be normal. The regulation of transport in an E. coli strain B/r with a deletion of the entire leucine biosynthetic operon was normal, indicating none of the gene products of this operon are required for regulation of transport. Salmonella typhimurium LT2 strain leu-500, a single-site mutation affecting both promotor-like and operator-like function of the leuABCD gene cluster, also had normal regulation of the LIV-I transport system. All of the strains contained leucine-specific transport activity, which was also repressed by growth in media containing leucine, isoleucine and valine. The concentrated shock fluids from these strains grown in minimal medium or with excess leucine, isoleucine, and valine were examined for proteins with leucine-binding activity, and the levels of these proteins were found to be regulated normally. It appears

  10. Structure, Function, and Regulation of Antenna Complexes of Green Photosynthetic Bacteria

    SciTech Connect

    Robert E. Blankenship

    2001-04-27

    This project is concerned with the structure and function of the chlorosome antennas found in green photosynthetic bacteria. Chlorosomes are ellipsoidal structures attached to the cytoplasmic side of the inner cell membrane. These antenna complexes provide a very large absorption cross section for light capture. Evidence is overwhelming that the chlorosome represents a very different type of antenna from that found in any other photosynthetic system yet studied. It is now clear that chlorosomes do not contain traditional pigment-proteins, in which the pigments bind to specific sites on proteins. Instead, the chlorosome pigments are organized in vivo into pigment oligomers in which direct pigment-pigment interactions are of dominant importance. Our group has used a multidisciplinary approach to investigate this unique system, including model systems, ultrafast spectroscopy, molecular biology, protein chemistry and X-ray crystallography.

  11. One carbon metabolism in anaerobic bacteria: Regulation of carbon and electron flow during organic acid production

    SciTech Connect

    Zeikus, J.G.; Jain, M.K.

    1992-01-01

    This reporting period, progress is reported on the following: metabolic pathway of solvent production in B. methylotrophicum; the biochemical mechanism for metabolic regulation of the succinate fermentation; models to understand the physiobiochemical function of formate metabolism in anaerobes and; models for understanding the influence of low pH on one carbon metabolism. (CBS)

  12. Gene regulation of plasmid- and chromosome-determined inorganic ion transport in bacteria.

    PubMed Central

    Silver, S; Walderhaug, M

    1992-01-01

    Regulation of chromosomally determined nutrient cation and anion uptake systems shows important similarities to regulation of plasmid-determined toxic ion resistance systems that mediate the outward transport of deleterious ions. Chromosomally determined transport systems result in accumulation of K+, Mg2+, Fe3+, Mn2+, PO4(3-), SO4(2-), and additional trace nutrients, while bacterial plasmids harbor highly specific resistance systems for AsO2-, AsO4(3-), CrO4(2-), Cd2+, Co2+, Cu2+, Hg2+, Ni2+, SbO2-, TeO3(2-), Zn2+, and other toxic ions. To study the regulation of these systems, we need to define both the trans-acting regulatory proteins and the cis-acting target operator DNA regions for the proteins. The regulation of gene expression for K+ and PO4(3-) transport systems involves two-component sensor-effector pairs of proteins. The first protein responds to an extracellular ionic (or related) signal and then transmits the signal to an intracellular DNA-binding protein. Regulation of Fe3+ transport utilizes the single iron-binding and DNA-binding protein Fur. The MerR regulatory protein for mercury resistance both represses and activates transcription. The ArsR regulatory protein functions as a repressor for the arsenic and antimony(III) efflux system. Although the predicted cadR regulatory gene has not been identified, cadmium, lead, bismuth, zinc, and cobalt induce this system in a carefully regulated manner from a single mRNA start site. The cadA Cd2+ resistance determinant encodes an E1(1)-1E2-class efflux ATPase (consisting of two polypeptides, rather than the one earlier identified). Cadmium resistance is also conferred by the czc system (which confers resistances to zinc and cobalt in Alcaligenes species) via a complex efflux pump consisting of four polypeptides. These two cadmium efflux systems are not otherwise related. For chromate resistance, reduced cellular accumulation is again the resistance mechanism, but the regulatory components are not identified

  13. Potential of lactic acid bacteria at regulating Escherichia coli infection and inflammation of bovine endometrium.

    PubMed

    Genís, Sandra; Bach, Àlex; Fàbregas, Francesc; Arís, Anna

    2016-03-01

    About 40% of dairy cattle develop uterine disease during postpartum period, causing infertility. Some studies indicate that uterine infection, predominantly by Escherichia coli in the first week postpartum, is associated with metritis, an uterus inflammation in which the cow fails to completely clear bacterial contaminants. The aim of this study was to evaluate the potential of four lactic acid bacteria (LAB) (Lactobacillus rhamnosus, Pediococcus acidilactici, Lactobacillus reuteri, and Lactobacillus sakei) to modulate the E coli infection and inflammation in endometrial cells. Primary endometrial epithelial cells were isolated from fresh endometrium of a healthy cow and cultured in vitro to evaluate the effects of LAB at three different doses. Cell extracts were obtained to analyze the expression of proinflammatory cytokines and to quantify E coli infection on MacConkey agar plates. L sakei and L reuteri showed a positive effect preventing E coli infection (87% and 78%, respectively, P < 0.001); however, they were also associated to a dose-variable effect on tissular inflammation that could further exacerbate the proinflammatory status. Infection of E coli was clearly reduced (P < 0.001) up to an 83% with P acidilactici, whereas, the expression of proinflammatory cytokines IL-8 and IL-1β dropped significantly (P < 0.001) up to 85.11 and 5.24 folds, respectively, in the presence of L rhamnosus. In conclusion, these results demonstrate a clear potential of some LAB in the modulation of endometrial infection and inflammation in cattle. PMID:26549120

  14. An Ancient Riboswitch Class in Bacteria Regulates Purine Biosynthesis and One-carbon Metabolism

    PubMed Central

    Kim, Peter B.; Nelson, James W.; Breaker, Ronald R.

    2015-01-01

    SUMMARY Over thirty years ago, ZTP (5-amino-4-imidazole carboxamide riboside 5'-triphosphate), a modified purine biosynthetic intermediate, was proposed to signal 10-formyl-tetrahydrofolate (10f-THF) deficiency in bacteria. However, the mechanisms by which this putative alarmone or its precursor ZMP (5-aminoimidazole-4-carboxamide ribonucleotide, also known as AICAR) brings about any metabolic changes remain unexplained. Herein we report the existence of a widespread riboswitch class that is most commonly associated with genes related to de novo purine biosynthesis and one carbon metabolism. Biochemical data confirms that members of this riboswitch class selectively bind ZMP and ZTP with nanomolar affinity, while strongly rejecting numerous natural analogs. Indeed, increases in the ZMP/ZTP pool, caused by folate stress in bacterial cells, trigger changes in the expression of a reporter gene fused to representative ZTP riboswitches in vivo. The wide distribution of this riboswitch class suggests that ZMP/ZTP signaling is important for species in numerous bacterial lineages. PMID:25616067

  15. Chlamydomonas reinhardtii Secretes Compounds That Mimic Bacterial Signals and Interfere with Quorum Sensing Regulation in Bacteria1

    PubMed Central

    Teplitski, Max; Chen, Hancai; Rajamani, Sathish; Gao, Mengsheng; Merighi, Massimo; Sayre, Richard T.; Robinson, Jayne B.; Rolfe, Barry G.; Bauer, Wolfgang D.

    2004-01-01

    The unicellular soil-freshwater alga Chlamydomonas reinhardtii was found to secrete substances that mimic the activity of the N-acyl-l-homoserine lactone (AHL) signal molecules used by many bacteria for quorum sensing regulation of gene expression. More than a dozen chemically separable but unidentified substances capable of specifically stimulating the LasR or CepR but not the LuxR, AhyR, or CviR AHL bacterial quorum sensing reporter strains were detected in ethyl acetate extracts of C. reinhardtii culture filtrates. Colonies of C. reinhardtii and Chlorella spp. stimulated quorum sensing-dependent luminescence in Vibrio harveyi, indicating that these algae may produce compounds that affect the AI-2 furanosyl borate diester-mediated quorum sensing system of Vibrio spp. Treatment of the soil bacterium Sinorhizobium meliloti with a partially purified LasR mimic from C. reinhardtii affected the accumulation of 16 of the 25 proteins that were altered in response to the bacterium's own AHL signals, providing evidence that the algal mimic affected quorum sensing-regulated functions in this wild-type bacterium. Peptide mass fingerprinting identified 32 proteins affected by the bacterium's AHLs or the purified algal mimic, including GroEL chaperonins, the nitrogen regulatory protein PII, and a GTP-binding protein. The algal mimic was able to cancel the stimulatory effects of bacterial AHLs on the accumulation of seven of these proteins, providing evidence that the secretion of AHL mimics by the alga could be effective in disruption of quorum sensing in naturally encountered bacteria. PMID:14671013

  16. A bioinformatic survey of distribution, conservation, and probable functions of LuxR solo regulators in bacteria.

    PubMed

    Subramoni, Sujatha; Florez Salcedo, Diana Vanessa; Suarez-Moreno, Zulma R

    2015-01-01

    LuxR solo transcriptional regulators contain both an autoinducer binding domain (ABD; N-terminal) and a DNA binding Helix-Turn-Helix domain (HTH; C-terminal), but are not associated with a cognate N-acyl homoserine lactone (AHL) synthase coding gene in the same genome. Although a few LuxR solos have been characterized, their distributions as well as their role in bacterial signal perception and other processes are poorly understood. In this study we have carried out a systematic survey of distribution of all ABD containing LuxR transcriptional regulators (QS domain LuxRs) available in the InterPro database (IPR005143), and identified those lacking a cognate AHL synthase. These LuxR solos were then analyzed regarding their taxonomical distribution, predicted functions of neighboring genes and the presence of complete AHL-QS systems in the genomes that carry them. Our analyses reveal the presence of one or multiple predicted LuxR solos in many proteobacterial genomes carrying QS domain LuxRs, some of them harboring genes for one or more AHL-QS circuits. The presence of LuxR solos in bacteria occupying diverse environments suggests potential ecological functions for these proteins beyond AHL and interkingdom signaling. Based on gene context and the conservation levels of invariant amino acids of ABD, we have classified LuxR solos into functionally meaningful groups or putative orthologs. Surprisingly, putative LuxR solos were also found in a few non-proteobacterial genomes which are not known to carry AHL-QS systems. Multiple predicted LuxR solos in the same genome appeared to have different levels of conservation of invariant amino acid residues of ABD questioning their binding to AHLs. In summary, this study provides a detailed overview of distribution of LuxR solos and their probable roles in bacteria with genome sequence information.

  17. A bioinformatic survey of distribution, conservation, and probable functions of LuxR solo regulators in bacteria

    PubMed Central

    Subramoni, Sujatha; Florez Salcedo, Diana Vanessa; Suarez-Moreno, Zulma R.

    2015-01-01

    LuxR solo transcriptional regulators contain both an autoinducer binding domain (ABD; N-terminal) and a DNA binding Helix-Turn-Helix domain (HTH; C-terminal), but are not associated with a cognate N-acyl homoserine lactone (AHL) synthase coding gene in the same genome. Although a few LuxR solos have been characterized, their distributions as well as their role in bacterial signal perception and other processes are poorly understood. In this study we have carried out a systematic survey of distribution of all ABD containing LuxR transcriptional regulators (QS domain LuxRs) available in the InterPro database (IPR005143), and identified those lacking a cognate AHL synthase. These LuxR solos were then analyzed regarding their taxonomical distribution, predicted functions of neighboring genes and the presence of complete AHL-QS systems in the genomes that carry them. Our analyses reveal the presence of one or multiple predicted LuxR solos in many proteobacterial genomes carrying QS domain LuxRs, some of them harboring genes for one or more AHL-QS circuits. The presence of LuxR solos in bacteria occupying diverse environments suggests potential ecological functions for these proteins beyond AHL and interkingdom signaling. Based on gene context and the conservation levels of invariant amino acids of ABD, we have classified LuxR solos into functionally meaningful groups or putative orthologs. Surprisingly, putative LuxR solos were also found in a few non-proteobacterial genomes which are not known to carry AHL-QS systems. Multiple predicted LuxR solos in the same genome appeared to have different levels of conservation of invariant amino acid residues of ABD questioning their binding to AHLs. In summary, this study provides a detailed overview of distribution of LuxR solos and their probable roles in bacteria with genome sequence information. PMID:25759807

  18. RegPrecise 3.0 – A resource for genome-scale exploration of transcriptional regulation in bacteria

    PubMed Central

    2013-01-01

    Background Genome-scale prediction of gene regulation and reconstruction of transcriptional regulatory networks in prokaryotes is one of the critical tasks of modern genomics. Bacteria from different taxonomic groups, whose lifestyles and natural environments are substantially different, possess highly diverged transcriptional regulatory networks. The comparative genomics approaches are useful for in silico reconstruction of bacterial regulons and networks operated by both transcription factors (TFs) and RNA regulatory elements (riboswitches). Description RegPrecise (http://regprecise.lbl.gov) is a web resource for collection, visualization and analysis of transcriptional regulons reconstructed by comparative genomics. We significantly expanded a reference collection of manually curated regulons we introduced earlier. RegPrecise 3.0 provides access to inferred regulatory interactions organized by phylogenetic, structural and functional properties. Taxonomy-specific collections include 781 TF regulogs inferred in more than 160 genomes representing 14 taxonomic groups of Bacteria. TF-specific collections include regulogs for a selected subset of 40 TFs reconstructed across more than 30 taxonomic lineages. Novel collections of regulons operated by RNA regulatory elements (riboswitches) include near 400 regulogs inferred in 24 bacterial lineages. RegPrecise 3.0 provides four classifications of the reference regulons implemented as controlled vocabularies: 55 TF protein families; 43 RNA motif families; ~150 biological processes or metabolic pathways; and ~200 effectors or environmental signals. Genome-wide visualization of regulatory networks and metabolic pathways covered by the reference regulons are available for all studied genomes. A separate section of RegPrecise 3.0 contains draft regulatory networks in 640 genomes obtained by an conservative propagation of the reference regulons to closely related genomes. Conclusions RegPrecise 3.0 gives access to the

  19. pH regulates ammonia-oxidizing bacteria and archaea in paddy soils in Southern China.

    PubMed

    Li, Hu; Weng, Bo-Sen; Huang, Fu-Yi; Su, Jian-Qiang; Yang, Xiao-Ru

    2015-07-01

    Ammonia-oxidizing archaea (AOA) and bacteria (AOB) play important roles in nitrogen cycling. However, the effects of environmental factors on the activity, abundance, and diversity of AOA and AOB and the relative contributions of these two groups to nitrification in paddy soils are not well explained. In this study, potential nitrification activity (PNA), abundance, and diversity of amoA genes from 12 paddy soils in Southern China were determined by potential nitrification assay, quantitative PCR, and cloning. The results showed that PNA was highly variable between paddy soils, ranging from 4.05 ± 0.21 to 9.81 ± 1.09 mg NOx-N kg(-1) dry soil day(-1), and no significant correlation with soil parameters was found. The abundance of AOA was predominant over AOB, indicating that AOA may be the major members in aerobic ammonia oxidation in these paddy soils. Community compositions of AOA and AOB were highly variable among samples, but the variations were best explained by pH. AOA sequences were affiliated to the Nitrosopumilus cluster and Nitrososphaera cluster, and AOB were classified into the lineages of Nitrosospira and Nitrosomonas, with Nitrosospira being predominant over Nitrosomonas, accounting for 83.6 % of the AOB community. Moreover, the majority of Nitrosomonas was determined in neutral soils. Canonical correspondence analysis (CCA) analysis further demonstrated that AOA and AOB community structures were significantly affected by pH, soil total organic carbon, total nitrogen, and C/N ratio, suggesting that these factors exert strong effects on the distribution of AOB and AOA in paddy soils in Southern China. In conclusion, our results imply that soil pH was a key explanatory variable for both AOA and AOB community structure and nitrification activity.

  20. Concentrations of antibiotics predicted to select for resistant bacteria: Proposed limits for environmental regulation.

    PubMed

    Bengtsson-Palme, Johan; Larsson, D G Joakim

    2016-01-01

    There are concerns that selection pressure from antibiotics in the environment may accelerate the evolution and dissemination of antibiotic-resistant pathogens. Nevertheless, there is currently no regulatory system that takes such risks into account. In part, this is due to limited knowledge of environmental concentrations that might exert selection for resistant bacteria. To experimentally determine minimal selective concentrations in complex microbial ecosystems for all antibiotics would involve considerable effort. In this work, our aim was to estimate upper boundaries for selective concentrations for all common antibiotics, based on the assumption that selective concentrations a priori need to be lower than those completely inhibiting growth. Data on Minimal Inhibitory Concentrations (MICs) were obtained for 111 antibiotics from the public EUCAST database. The 1% lowest observed MICs were identified, and to compensate for limited species coverage, predicted lowest MICs adjusted for the number of tested species were extrapolated through modeling. Predicted No Effect Concentrations (PNECs) for resistance selection were then assessed using an assessment factor of 10 to account for differences between MICs and minimal selective concentrations. The resulting PNECs ranged from 8 ng/L to 64 μg/L. Furthermore, the link between taxonomic similarity between species and lowest MIC was weak. This work provides estimated upper boundaries for selective concentrations (lowest MICs) and PNECs for resistance selection for all common antibiotics. In most cases, PNECs for selection of resistance were below available PNECs for ecotoxicological effects. The generated PNECs can guide implementation of compound-specific emission limits that take into account risks for resistance promotion.

  1. Theoretical models for the regulation of DNA replication in fast-growing bacteria

    NASA Astrophysics Data System (ADS)

    Creutziger, Martin; Schmidt, Mischa; Lenz, Peter

    2012-09-01

    Growing in always changing environments, Escherichia coli cells are challenged by the task to coordinate growth and division. In particular, adaption of their growth program to the surrounding medium has to guarantee that the daughter cells obtain fully replicated chromosomes. Replication is therefore to be initiated at the right time, which is particularly challenging in media that support fast growth. Here, the mother cell initiates replication not only for the daughter but also for the granddaughter cells. This is possible only if replication occurs from several replication forks that all need to be correctly initiated. Despite considerable efforts during the last 40 years, regulation of this process is still unknown. Part of the difficulty arises from the fact that many details of the relevant molecular processes are not known. Here, we develop a novel theoretical strategy for dealing with this general problem: instead of analyzing a single model, we introduce a wide variety of 128 different models that make different assumptions about the unknown processes. By comparing the predictions of these models we are able to identify the key quantities that allow the experimental discrimination of the different models. Analysis of these quantities yields that out of the 128 models 94 are not consistent with available experimental data. From the remaining 34 models we are able to conclude that mass growth and DNA replication need either to be truly coupled, by coupling DNA replication initiation to the event of cell division, or to the amount of accumulated mass. Finally, we make suggestions for experiments to further reduce the number of possible regulation scenarios.

  2. Structural insights into de novo actin polymerization

    PubMed Central

    Dominguez, Roberto

    2010-01-01

    Summary Many cellular functions depend on rapid and localized actin polymerization/depolymerization. Yet, the de novo polymerization of actin in cells is kinetically unfavorable because of the instability of polymerization intermediates (small actin oligomers) and the actions of actin monomer binding proteins. Cells use filament nucleation and elongation factors to initiate and sustain polymerization. Structural biology is beginning to shed light on the diverse mechanisms by which these unrelated proteins initiate polymerization, undergo regulation, and mediate the transition of monomeric actin onto actin filaments. A prominent role is played by the W domain, which in some of these proteins occurs in tandem repeats that recruit multiple actin subunits. Pro-rich regions are also abundant and mediate the binding of profilin-actin complexes, which are the main source of polymerization competent actin in cells. Filament nucleation and elongation factors frequently interact with Rho family GTPases, which relay signals from membrane receptors to regulate actin cytoskeleton remodeling. PMID:20096561

  3. Chain Reaction Polymerization.

    ERIC Educational Resources Information Center

    McGrath, James E.

    1981-01-01

    The salient features and importance of chain-reaction polymerization are discussed, including such topics as the thermodynamics of polymerization, free-radical polymerization kinetics, radical polymerization processes, copolymers, and free-radical chain, anionic, cationic, coordination, and ring-opening polymerizations. (JN)

  4. Papaverine Prevents Vasospasm by Regulation of Myosin Light Chain Phosphorylation and Actin Polymerization in Human Saphenous Vein

    PubMed Central

    Hocking, Kyle M.; Putumbaka, Gowthami; Wise, Eric S.; Cheung-Flynn, Joyce; Brophy, Colleen M.; Komalavilas, Padmini

    2016-01-01

    Objective Papaverine is used to prevent vasospasm in human saphenous veins (HSV) during vein graft preparation prior to implantation as a bypass conduit. Papaverine is a nonspecific inhibitor of phosphodiesterases, leading to increases in both intracellular cGMP and cAMP. We hypothesized that papaverine reduces force by decreasing intracellular calcium concentrations ([Ca2+]i) and myosin light chain phosphorylation, and increasing actin depolymerization via regulation of actin regulatory protein phosphorylation. Approach and Results HSV was equilibrated in a muscle bath, pre-treated with 1 mM papaverine followed by 5 μM norepinephrine, and force along with [Ca2+]i levels were concurrently measured. Filamentous actin (F-actin) level was measured by an in vitro actin assay. Tissue was snap frozen to measure myosin light chain and actin regulatory protein phosphorylation. Pre-treatment with papaverine completely inhibited norepinephrine-induced force generation, blocked increases in [Ca2+]i and led to a decrease in the phosphorylation of myosin light chain. Papaverine pre-treatment also led to increased phosphorylation of the heat shock-related protein 20 (HSPB6) and the vasodilator stimulated phosphoprotein (VASP), as well as decreased filamentous actin (F-actin) levels suggesting depolymerization of actin. Conclusions These results suggest that papaverine-induced force inhibition of HSV involves [Ca2+]i-mediated inhibition of myosin light chain phosphorylation and actin regulatory protein phosphorylation-mediated actin depolymerization. Thus, papaverine induces sustained inhibition of contraction of HSV by the modulation of both myosin cross-bridge formation and actin cytoskeletal dynamics and is a pharmacological alternative to high pressure distention to prevent vasospasm. PMID:27136356

  5. Retinoic acid-loaded polymeric nanoparticles enhance vascular regulation of neural stem cell survival and differentiation after ischaemia

    NASA Astrophysics Data System (ADS)

    Ferreira, R.; Fonseca, M. C.; Santos, T.; Sargento-Freitas, J.; Tjeng, R.; Paiva, F.; Castelo-Branco, M.; Ferreira, L. S.; Bernardino, L.

    2016-04-01

    Stroke is one of the leading causes of death and disability worldwide. However, current therapies only reach a small percentage of patients and may cause serious side effects. We propose the therapeutic use of retinoic acid-loaded nanoparticles (RA-NP) to safely and efficiently repair the ischaemic brain by creating a favourable pro-angiogenic environment that enhances neurogenesis and neuronal restitution. Our data showed that RA-NP enhanced endothelial cell proliferation and tubule network formation and protected against ischaemia-induced death. To evaluate the effect of RA-NP on vascular regulation of neural stem cell (NSC) survival and differentiation, endothelial cell-conditioned media (EC-CM) were collected. EC-CM from healthy RA-NP-treated cells reduced NSC death and promoted proliferation while EC-CM from ischaemic RA-NP-treated cells decreased cell death, increased proliferation and neuronal differentiation. In parallel, human endothelial progenitor cells (hEPC), which are part of the endogenous repair response to vascular injury, were collected from ischaemic stroke patients. hEPC treated with RA-NP had significantly higher proliferation, which further highlights the therapeutic potential of this formulation. To conclude, RA-NP protected endothelial cells from ischaemic death and stimulated the release of pro-survival, proliferation-stimulating factors and differentiation cues for NSC. RA-NP were shown to be up to 83-fold more efficient than free RA and to enhance hEPC proliferation. These data serve as a stepping stone to use RA-NP as vasculotrophic and neurogenic agents for vascular disorders and neurodegenerative diseases with compromised vasculature.

  6. A conserved structural module regulates transcriptional responses to diverse stress signals in bacteria

    SciTech Connect

    Campbell, Elizabeth A.; Greenwell, Roger S.; Anthony, Jennifer R.; Wang, Sheng; Lim, Lee; Das, Kakoli; Sofia, Heidi J.; Donohue, Timothy J.; Darst, Seth A.

    2007-09-07

    In Rhodbacter sphaeroides, transcriptional response to singlet oxygen is controlled by the ECF (extracytoplasmic function) transcription factor, σΕ. ECF σ’s comprise the largest and most divergent group of the σ70-family members and are negatively regulated by their cognate anti-σ factor. Here, we determine the crystal structure of the Rhodobacter sphaeroides ECF σ factor, σE, in an inhibitory complex with its anti-σ, ChrR. The structure reveals that ChrR is composed of two structural domains separated by a flexible linker. The N-terminal domain sterically occludes the two primary binding determinants on σE for core RNA polymerase and is thus referred to as the ASD (anti-σ domain). Genetic and biochemical characterization of the two domains show that the ASD is sufficient to inhibit σE dependant transcription and the C-terminal domain is required for response to singlet oxygen and the release of σE from the ASD. In addition, structural and sequence analyses of the ASD of ChrR and other ECF anti-σ’s, reveal that the N-terminal domain of different groups of ECF anti-σ’s share a common structural fold with some sequence similarity. Bioinformatics studies show that the ASD occurs in as many as one third of ECF anti-σ’s, many of which have diverse C-terminal domains. The conserved ASD are sometimes fused to diverse C-terminal domains. These studies reveal that the ASD class of anti-σ’s are extraordinarily diverse, based on the type of σΕ factors they are associated with and the C-terminal domains to which they are linked.

  7. Pro-angiogenic and anti-inflammatory regulation by functional peptides loaded in polymeric implants for soft tissue regeneration.

    PubMed

    Zachman, Angela L; Crowder, Spencer W; Ortiz, Ophir; Zienkiewicz, Katarzyna J; Bronikowski, Christine M; Yu, Shann S; Giorgio, Todd D; Guelcher, Scott A; Kohn, Joachim; Sung, Hak-Joon

    2013-02-01

    Inflammation and angiogenesis are inevitable in vivo responses to biomaterial implants. Continuous progress has been made in biomaterial design to improve tissue interactions with an implant by either reducing inflammation or promoting angiogenesis. However, it has become increasingly clear that the physiological processes of inflammation and angiogenesis are interconnected through various molecular mechanisms. Hence, there is an unmet need for engineering functional tissues by simultaneous activation of pro-angiogenic and anti-inflammatory responses to biomaterial implants. In this work, the modulus and fibrinogen adsorption of porous scaffolds were tuned to meet the requirements (i.e., ~100 kPa and ~10 nm, respectively), for soft tissue regeneration by employing tyrosine-derived combinatorial polymers with polyethylene glycol crosslinkers. Two types of functional peptides (i.e., pro-angiogenic laminin-derived C16 and anti-inflammatory thymosin β4-derived Ac-SDKP) were loaded in porous scaffolds through collagen gel embedding so that peptides were released in a controlled fashion, mimicking degradation of the extracellular matrix. The results from (1) in vitro coculture of human umbilical vein endothelial cells and human blood-derived macrophages and (2) in vivo subcutaneous implantation revealed the directly proportional relationship between angiogenic activities (i.e., tubulogenesis and perfusion capacity) and inflammatory activities (i.e., phagocytosis and F4/80 expression) upon treatment with either type of peptide. Interestingly, cotreatment with both types of peptides upregulated the angiogenic responses, while downregulating the inflammatory responses. Also, anti-inflammatory Ac-SDKP peptides reduced production of pro-inflammatory cytokines (i.e., interleukin [IL]-1β, IL-6, IL-8, and tumor necrosis factor alpha) even when treated in combination with pro-angiogenic C16 peptides. In addition to independent regulation of angiogenesis and inflammation, this

  8. Pro-angiogenic and Anti-inflammatory Regulation by Functional Peptides Loaded in Polymeric Implants for Soft Tissue Regeneration

    PubMed Central

    Zachman, Angela L.; Crowder, Spencer W.; Ortiz, Ophir; Zienkiewicz, Katarzyna J.; Bronikowski, Christine M.; Yu, Shann S.; Giorgio, Todd D.; Guelcher, Scott A.; Kohn, Joachim

    2013-01-01

    Inflammation and angiogenesis are inevitable in vivo responses to biomaterial implants. Continuous progress has been made in biomaterial design to improve tissue interactions with an implant by either reducing inflammation or promoting angiogenesis. However, it has become increasingly clear that the physiological processes of inflammation and angiogenesis are interconnected through various molecular mechanisms. Hence, there is an unmet need for engineering functional tissues by simultaneous activation of pro-angiogenic and anti-inflammatory responses to biomaterial implants. In this work, the modulus and fibrinogen adsorption of porous scaffolds were tuned to meet the requirements (i.e., ∼100 kPa and ∼10 nm, respectively), for soft tissue regeneration by employing tyrosine-derived combinatorial polymers with polyethylene glycol crosslinkers. Two types of functional peptides (i.e., pro-angiogenic laminin-derived C16 and anti-inflammatory thymosin β4-derived Ac-SDKP) were loaded in porous scaffolds through collagen gel embedding so that peptides were released in a controlled fashion, mimicking degradation of the extracellular matrix. The results from (1) in vitro coculture of human umbilical vein endothelial cells and human blood-derived macrophages and (2) in vivo subcutaneous implantation revealed the directly proportional relationship between angiogenic activities (i.e., tubulogenesis and perfusion capacity) and inflammatory activities (i.e., phagocytosis and F4/80 expression) upon treatment with either type of peptide. Interestingly, cotreatment with both types of peptides upregulated the angiogenic responses, while downregulating the inflammatory responses. Also, anti-inflammatory Ac-SDKP peptides reduced production of pro-inflammatory cytokines (i.e., interleukin [IL]-1β, IL-6, IL-8, and tumor necrosis factor alpha) even when treated in combination with pro-angiogenic C16 peptides. In addition to independent regulation of angiogenesis and inflammation

  9. Immunobiotic lactic acid bacteria beneficially regulate immune response triggered by poly(I:C) in porcine intestinal epithelial cells.

    PubMed

    Hosoya, Shoichi; Villena, Julio; Shimazu, Tomoyuki; Tohno, Masanori; Fujie, Hitomi; Chiba, Eriko; Shimosato, Takeshi; Aso, Hisashi; Suda, Yoshihito; Kawai, Yasushi; Saito, Tadao; Alvarez, Susana; Ikegami, Shuji; Itoh, Hiroyuki; Kitazawa, Haruki

    2011-11-03

    This study analyzed the functional expression of TLR3 in various gastrointestinal tissues from adult swine and shows that TLR3 is expressed preferentially in intestinal epithelial cells (IEC), CD172a(+)CD11R1(high) and CD4(+) cells from ileal Peyer's patches. We characterized the inflammatory immune response triggered by TLR3 activation in a clonal porcine intestinal epitheliocyte cell line (PIE cells) and in PIE-immune cell co-cultures, and demonstrated that these systems are valuable tools to study in vitro the immune response triggered by TLR3 on IEC and the interaction between IEC and immune cells. In addition, we selected an immunobiotic lactic acid bacteria strain, Lactobacillus casei MEP221106, able to beneficially regulate the anti-viral immune response triggered by poly(I:C) stimulation in PIE cells. Moreover, we deepened our understanding of the possible mechanisms of immunobiotic action by demonstrating that L. casei MEP221106 modulates the interaction between IEC and immune cells during the generation of a TLR3-mediated immune response.

  10. Genome-wide study predicts promoter-G4 DNA motifs regulate selective functions in bacteria: radioresistance of D. radiodurans involves G4 DNA-mediated regulation.

    PubMed

    Beaume, Nicolas; Pathak, Rajiv; Yadav, Vinod Kumar; Kota, Swathi; Misra, Hari S; Gautam, Hemant K; Chowdhury, Shantanu

    2013-01-01

    A remarkable number of guanine-rich sequences with potential to adopt non-canonical secondary structures called G-quadruplexes (or G4 DNA) are found within gene promoters. Despite growing interest, regulatory role of quadruplex DNA motifs in intrinsic cellular function remains poorly understood. Herein, we asked whether occurrence of potential G4 (PG4) DNA in promoters is associated with specific function(s) in bacteria. Using a normalized promoter-PG4-content (PG4(P)) index we analysed >60,000 promoters in 19 well-annotated species for (a) function class(es) and (b) gene(s) with enriched PG4(P). Unexpectedly, PG4-associated functional classes were organism specific, suggesting that PG4 motifs may impart specific function to organisms. As a case study, we analysed radioresistance. Interestingly, unsupervised clustering using PG4(P) of 21 genes, crucial for radioresistance, grouped three radioresistant microorganisms including Deinococcus radiodurans. Based on these predictions we tested and found that in presence of nanomolar amounts of the intracellular quadruplex-binding ligand N-methyl mesoporphyrin (NMM), radioresistance of D. radiodurans was attenuated by ~60%. In addition, important components of the RecF recombinational repair pathway recA, recF, recO, recR and recQ genes were found to harbour promoter-PG4 motifs and were also down-regulated in presence of NMM. Together these results provide first evidence that radioresistance may involve G4 DNA-mediated regulation and support the rationale that promoter-PG4s influence selective functions. PMID:23161683

  11. Bacteria clustering by polymers induces the expression of quorum-sensing-controlled phenotypes

    NASA Astrophysics Data System (ADS)

    Lui, Leong T.; Xue, Xuan; Sui, Cheng; Brown, Alan; Pritchard, David I.; Halliday, Nigel; Winzer, Klaus; Howdle, Steven M.; Fernandez-Trillo, Francisco; Krasnogor, Natalio; Alexander, Cameron

    2013-12-01

    Bacteria deploy a range of chemistries to regulate their behaviour and respond to their environment. Quorum sensing is one method by which bacteria use chemical reactions to modulate pre-infection behaviour such as surface attachment. Polymers that can interfere with bacterial adhesion or the chemical reactions used for quorum sensing are therefore a potential means to control bacterial population responses. Here, we report how polymericbacteria sequestrants’, designed to bind to bacteria through electrostatic interactions and therefore inhibit bacterial adhesion to surfaces, induce the expression of quorum-sensing-controlled phenotypes as a consequence of cell clustering. A combination of polymer and analytical chemistry, biological assays and computational modelling has been used to characterize the feedback between bacteria clustering and quorum sensing signalling. We have also derived design principles and chemical strategies for controlling bacterial behaviour at the population level.

  12. Effects of interactions of auxin-producing bacteria and bacterial-feeding nematodes on regulation of peanut growths.

    PubMed

    Xu, Li; Xu, Wensi; Jiang, Ying; Hu, Feng; Li, Huixin

    2015-01-01

    The influences of an IAA (indole-3-acetic acid)-producing bacterium (Bacillus megaterium) and two bacterial-feeding nematodes (Cephalobus sp. or Mesorhabditis sp.) on the growth of peanut (Arachis hypogaea L. cv. Haihua 1) after various durations of time were investigated in natural soils. The addition of bacteria and nematodes and incubation time all significantly affected plant growth, plant root growth, plant nutrient concentrations, soil nutrient concentrations, soil microorganisms and soil auxin concentration. The addition of nematodes caused greater increases in these indices than those of bacteria, while the addition of the combination of bacteria and nematodes caused further increases. After 42-day growth, the increases in soil respiration differed between the additions of two kinds of nematodes because of differences in their life strategies. The effects of the bacteria and nematodes on the nutrient and hormone concentrations were responsible for the increases in plant growth. These results indicate the potential for promoting plant growth via the addition of nematodes and bacteria to soil.

  13. The reconstitution of actin polymerization on liposomes.

    PubMed

    Stamnes, Mark; Xu, Weidong

    2010-01-01

    Membrane-associated actin polymerization is of considerable interest due to its role in cell migration and the motility of intracellular organelles. Intensive research efforts are underway to investigate the physiological role of membrane-associated actin as well as the regulation and mechanics of actin assembly. Branched actin polymerization on membranes is catalyzed by the Arp2/3 complex. Signaling events leading to the activation of the guanosine triphosphate (GTP)-binding protein Cdc42 stimulate Arp2/3-dependent actin polymerization. We have studied the role of Cdc42 at the Golgi apparatus in part by reconstituting actin polymerization on isolated Golgi membranes and on liposomes. In this manner, we showed that cytosolic proteins are sufficient for actin assembly on a phospholipid bilayer. Here we describe methods for the cell-free reconstitution of membrane-associated actin polymerization using liposomes and brain cytosol.

  14. Polymerization of perfluorobutadiene

    NASA Technical Reports Server (NTRS)

    Newman, J.; Toy, M. S.

    1970-01-01

    Diisopropyl peroxydicarbonate dissolved in liquid perfluorobutadiene is conducted in a sealed vessel at the autogenous pressure of polymerization. Reaction temperature, ratio of catalyst to monomer, and amount of agitation determine degree of polymerization and product yield.

  15. Polymerization Reactor Engineering.

    ERIC Educational Resources Information Center

    Skaates, J. Michael

    1987-01-01

    Describes a polymerization reactor engineering course offered at Michigan Technological University which focuses on the design and operation of industrial polymerization reactors to achieve a desired degree of polymerization and molecular weight distribution. Provides a list of the course topics and assigned readings. (TW)

  16. Delivery of antibiotics with polymeric particles.

    PubMed

    Xiong, Meng-Hua; Bao, Yan; Yang, Xian-Zhu; Zhu, Yan-Hua; Wang, Jun

    2014-11-30

    Despite the wide use of antibiotics, bacterial infection is still one of the leading causes of hospitalization and mortality. The clinical failure of antibiotic therapy is linked with low bioavailability, poor penetration to bacterial infection sites, and the side effects of antibiotics, as well as the antibiotic resistance properties of bacteria. Antibiotics encapsulated in nanoparticles or microparticles made up of a biodegradable polymer have shown great potential in replacing the administration of antibiotics in their "free" form. Polymeric particles provide protection to antibiotics against environmental deactivation and alter antibiotic pharmacokinetics and biodistribution. Polymeric particles can overcome tissue and cellular barriers and deliver antibiotics into very dense tissues and inaccessible target cells. Polymeric particles can be modified to target or respond to particular tissues, cells, and even bacteria, and thereby facilitate the selective concentration or release of the antibiotic at infection sites, respectively. Thus, the delivery of antibiotics with polymeric particles augments the level of the bioactive drug at the site of infection while reducing the dosage and the dosing frequency. The end results are improved therapeutic effects as well as decreased "pill burden" and drug side effects in patients. The main objective of this review is to analyze recent advances and current perspectives in the use of polymeric antibiotic delivery systems in the treatment of bacterial infection.

  17. Cellulose biosynthesis and function in bacteria.

    PubMed Central

    Ross, P; Mayer, R; Benziman, M

    1991-01-01

    The current model of cellulose biogenesis in plants, as well as bacteria, holds that the membranous cellulose synthase complex polymerizes glucose moieties from UDP-Glc into beta-1,4-glucan chains which give rise to rigid crystalline fibrils upon extrusion at the outer surface of the cell. The distinct arrangement and degree of association of the polymerizing enzyme units presumably govern extracellular chain assembly in addition to the pattern and width of cellulose fibril deposition. Most evident for Acetobacter xylinum, polymerization and assembly appear to be tightly coupled. To date, only bacteria have been effectively studied at the biochemical and genetic levels. In A. xylinum, the cellulose synthase, composed of at least two structurally similar but functionally distinct subunits, is subject to a multicomponent regulatory system. Regulation is based on the novel nucleotide cyclic diguanylic acid, a positive allosteric effector, and the regulatory enzymes maintaining its intracellular turnover: diguanylate cyclase and Ca2(+)-sensitive bis-(3',5')-cyclic diguanylic acid (c-di-GMP) phosphodiesterase. Four genes have been isolated from A. xylinum which constitute the operon for cellulose synthesis. The second gene encodes the catalytic subunit of cellulose synthase; the functions of the other three gene products are still unknown. Exclusively an extracellular product, bacterial cellulose appears to fulfill diverse biological roles within the natural habitat, conferring mechanical, chemical, and physiological protection in A. xylinum and Sarcina ventriculi or facilitating cell adhesion during symbiotic or infectious interactions in Rhizobium and Agrobacterium species. A. xylinum is proving to be most amenable for industrial purposes, allowing the unique features of bacterial cellulose to be exploited for novel product applications. Images PMID:2030672

  18. Metabolic Regulation and Coordination of the Metabolism in Bacteria in Response to a Variety of Growth Conditions.

    PubMed

    Shimizu, Kazuyuki

    2016-01-01

    Living organisms have sophisticated but well-organized regulation system. It is important to understand the metabolic regulation mechanisms in relation to growth environment for the efficient design of cell factories for biofuels and biochemicals production. Here, an overview is given for carbon catabolite regulation, nitrogen regulation, ion, sulfur, and phosphate regulations, stringent response under nutrient starvation as well as oxidative stress regulation, redox state regulation, acid-shock, heat- and cold-shock regulations, solvent stress regulation, osmoregulation, and biofilm formation, and quorum sensing focusing on Escherichia coli metabolism and others. The coordinated regulation mechanisms are of particular interest in getting insight into the principle which governs the cell metabolism. The metabolism is controlled by both enzyme-level regulation and transcriptional regulation via transcription factors such as cAMP-Crp, Cra, Csr, Fis, P(II)(GlnB), NtrBC, CysB, PhoR/B, SoxR/S, Fur, MarR, ArcA/B, Fnr, NarX/L, RpoS, and (p)ppGpp for stringent response, where the timescales for enzyme-level and gene-level regulations are different. Moreover, multiple regulations are coordinated by the intracellular metabolites, where fructose 1,6-bisphosphate (FBP), phosphoenolpyruvate (PEP), and acetyl-CoA (AcCoA) play important roles for enzyme-level regulation as well as transcriptional control, while α-ketoacids such as α-ketoglutaric acid (αKG), pyruvate (PYR), and oxaloacetate (OAA) play important roles for the coordinated regulation between carbon source uptake rate and other nutrient uptake rate such as nitrogen or sulfur uptake rate by modulation of cAMP via Cya.

  19. [Regulation of hydrogen sulfide level by acidophobic bacteria of Thiobacillus genus in technogenic reservoirs of sulfur mining regions].

    PubMed

    Moroz, O M

    2010-01-01

    An increase of acidophobic thione bacteria quantity in Rozdil and Yavoriv reservoirs of sulfur mining regions during 2005-2009 years, which correlates with a decrease of hydrogen sulfide content in water surface layers, was shown. The ability of acidophobic bacteria of Thiobacillus genus, isolated from "Yavorivske" lake, to oxidize effectively hydrogen sulfide added into Beijerinck medium instead of thiosulfate, was discovered. It was established, that hydrogen sulfide oxidizing efficiency by Thiobacillus sp. Yav-8, Yav-11 and Yav-14 strains is the highest (78.48-84.56%) when its content in cultivation medium was increased twice: to 2584 mg/l. An increase of sulfur quantity in sodium sulfide form from to six times as compared with its standard content in sodium thiosulfate form in the Beijerinck medium does not lead to the increase of hydrogen sulfide oxidizing efficiency by cells.

  20. Composition, Reactivity, and Regulations of Extracellular Metal-Reducing Structures (Bacterial Nanowires) Produced by Dissimilatory Metal Reducing Bacteria

    SciTech Connect

    Scholten, Johannes

    2006-06-01

    This research proposal seeks to describe the composition and function of electrically conductive appendages known as bacterial nanowires. This project targets bacterial nanowires produced by dissimilatory metal reducing bacteria Shewanella and Geobacter. Specifically, this project will investigate the role of these structures in the reductive transformation of iron oxides as solid phase electron acceptors, as well as uranium as a dissolved electron acceptor that forms nanocrystalline particles of uraninite upon reduction.

  1. Differential regulation of polysaccharide-specific antibody responses to isolated polysaccharides, conjugate vaccines, and intact Gram-positive versus Gram-negative extracellular bacteria.

    PubMed

    Snapper, Clifford M

    2016-06-24

    Bacterial capsular polysaccharides are major virulence factors and are key targets in a number of licensed anti-bacterial vaccines. Their major characteristics are their large molecular weight and expression of repeating antigenic epitopes that mediate multivalent B cell receptor cross-linking. In addition, since the majority of these antigens cannot associate with MHC-II they fail to recruit CD4+ T cell help and are referred to as T cell-independent antigens. In this review I will discuss a series of studies from my laboratory that have underscored the importance of understanding polysaccharide-specific antibody responses within the context in which the PS is expressed (i.e. in isolation, as a component of conjugate vaccines, and expressed naturally by intact bacteria). We have shown that multivalent B cell receptor crosslinking, as mediated by polysaccharides, uniquely determines the qualitative response of the B cell to subsequent stimuli, but by itself is insufficient to induce antibody secretion or class switching. For these latter events to occur, second signals must act in concert with primary signals derived from the B cell receptor. The co-expression of polysaccharide and protein within intact bacteria promotes recruitment of CD4+ T cell help for the associated PS-specific IgG response, in contrast to isolated polysaccharides. Further, the particulate nature of extracellular bacteria confers properties to the polysaccharide-specific IgG response that makes it distinct immunologically from soluble conjugate vaccines. Finally, the underlying biochemical and/or structural differences that distinguish Gram-positive and Gram-negative bacteria appear to play critical roles in differentially regulating the associated polysaccharide-specific IgG responses to these groups of pathogens. These studies have a number of implications for the understanding and future design of polysaccharide-based vaccines.

  2. Differential regulation of polysaccharide-specific antibody responses to isolated polysaccharides, conjugate vaccines, and intact Gram-positive versus Gram-negative extracellular bacteria.

    PubMed

    Snapper, Clifford M

    2016-06-24

    Bacterial capsular polysaccharides are major virulence factors and are key targets in a number of licensed anti-bacterial vaccines. Their major characteristics are their large molecular weight and expression of repeating antigenic epitopes that mediate multivalent B cell receptor cross-linking. In addition, since the majority of these antigens cannot associate with MHC-II they fail to recruit CD4+ T cell help and are referred to as T cell-independent antigens. In this review I will discuss a series of studies from my laboratory that have underscored the importance of understanding polysaccharide-specific antibody responses within the context in which the PS is expressed (i.e. in isolation, as a component of conjugate vaccines, and expressed naturally by intact bacteria). We have shown that multivalent B cell receptor crosslinking, as mediated by polysaccharides, uniquely determines the qualitative response of the B cell to subsequent stimuli, but by itself is insufficient to induce antibody secretion or class switching. For these latter events to occur, second signals must act in concert with primary signals derived from the B cell receptor. The co-expression of polysaccharide and protein within intact bacteria promotes recruitment of CD4+ T cell help for the associated PS-specific IgG response, in contrast to isolated polysaccharides. Further, the particulate nature of extracellular bacteria confers properties to the polysaccharide-specific IgG response that makes it distinct immunologically from soluble conjugate vaccines. Finally, the underlying biochemical and/or structural differences that distinguish Gram-positive and Gram-negative bacteria appear to play critical roles in differentially regulating the associated polysaccharide-specific IgG responses to these groups of pathogens. These studies have a number of implications for the understanding and future design of polysaccharide-based vaccines. PMID:27133879

  3. Anaerobic bacteria

    MedlinePlus

    Anaerobic bacteria are bacteria that do not live or grow when oxygen is present. In humans, these ... Goldstein EJ. Diseases caused by non-spore forming anaerobic bacteria. In: Goldman L, Schafer AI, eds. Goldman's ...

  4. Isolation and characterization of endophytic plant growth-promoting (PGPB) or stress homeostasis-regulating (PSHB) bacteria associated to the halophyte Prosopis strombulifera.

    PubMed

    Sgroy, Verónica; Cassán, Fabricio; Masciarelli, Oscar; Del Papa, María Florencia; Lagares, Antonio; Luna, Virginia

    2009-11-01

    This study was designed to isolate and characterize endophytic bacteria from halophyte Prosopis strombulifera grown under extreme salinity and to evaluate in vitro the bacterial mechanisms related to plant growth promotion or stress homeostasis regulation. Isolates obtained from P. strombulifera were compared genotypically by BOX-polymerase chain reaction, grouped according to similarity, and identified by amplification and partial sequences of 16S DNAr. Isolates were grown until exponential growth phase to evaluate the atmospheric nitrogen fixation, phosphate solubilization, siderophores, and phytohormones, such as indole-3-acetic acid, zeatin, gibberellic acid and abscisic acid production, as well as antifungal, protease, and 1-aminocyclopropane-1-carboxylate (ACC) deaminase activity. A total of 29 endophytic strains were grouped into seven according to similarity. All bacteria were able to grow and to produce some phytohormone in chemically defined medium with or without addition of a nitrogen source. Only one was able to produce siderophores, and none of them solubilized phosphate. ACC deaminase activity was positive for six strains. Antifungal and protease activity were confirmed for two of them. In this work, we discuss the possible implications of these bacterial mechanisms on the plant growth promotion or homeostasis regulation in natural conditions.

  5. Contrasting regulation of macrophage iron homeostasis in response to infection with Listeria monocytogenes depending on localization of bacteria.

    PubMed

    Haschka, David; Nairz, Manfred; Demetz, Egon; Wienerroither, Sebastian; Decker, Thomas; Weiss, Günter

    2015-06-01

    Due to its multiple roles for the proliferation and pathogenicity of many microbes on the one hand and via modulation of immune effector functions on the other hand the control over iron homeostasis is thought to play a decisive role in the course of infections. Diversion of cellular iron traffic is considered as an important defense mechanism of macrophages to reduce metal availability for intracellular bacteria residing in the phagosome. However, evidence is lacking whether such alterations of iron homeostasis also become evident upon infection with bacteria gaining access to the cytosol like Listeria monocytogenes. Here we show that infection of macrophages with L. monocytogenes triggers the expression of the major cellular iron exporter ferroportin1 and induces cellular iron egress. As the growth of Listeria within macrophages is promoted by iron, stimulation of ferroportin1 functionality limits the availability of the metal for Listeria residing in the cytoplasm, whereas ferroportin1 degradation upon hepcidin treatment increases intracellular bacterial growth. In parallel to an increase of ferroportin1 expression, infected macrophages induce anti-microbial immune effector mechanisms such as TNFα formation or NO expression which are aggravated upon iron deficiency. These adaptive changes of iron homeostasis and immune response pathways are only found in macrophages infected with Listeria which express listeriolysin O and are therefore able to escape from the phagosome to the cytoplasm. Listeriolysin O deficient Listeria which are restricted to the phagosome are even killed by excess iron which may be based on "iron intoxification" via macrophage radical formation, because iron supplementation in that setting is paralleled by increased ROS formation. Our results indicate that ferroportin1 mediated iron export is a nutritional immune effector pathway to control infection with Listeria residing in the cytoplasm, whereas a different strategy is observed in mutant

  6. Cu(II)-mediated atom transfer radical polymerization of methyl methacrylate via a strategy of thermo-regulated phase-separable catalysis in a liquid/liquid biphasic system: homogeneous catalysis, facile heterogeneous separation, and recycling.

    PubMed

    Pan, Jinlong; Zhang, Bingjie; Jiang, Xiaowu; Zhang, Lifen; Cheng, Zhenping; Zhu, Xiulin

    2014-09-01

    A strategy of thermo-regulated phase-separable catalysis (TPSC) is applied to the Cu(II)-mediated atom transfer radical polymerization (ATRP) of methyl methacrylate (MMA) in a p-xylene/PEG-200 biphasic system. Initiators for continuous activator regeneration ATRP (ICAR ATRP) are used to establish the TPSC-based ICAR ATRP system using water-soluble TPMA as a ligand, EBPA as an initiator, CuBr2 as a catalyst, and AIBN as a reducing agent. By heating to 70 °C, unlimited miscibility of both solvents is achieved and the polymerization can be carried out under homogeneous conditions; then on cooling to 25 °C, the mixture separates into two phases again. As a result, the catalyst complex remains in the PEG-200 phase while the obtained polymers stay in the p-xylene phase. The catalyst can therefore be removed from the resultant polymers by easily separating the two different layers and can be reused again. It is important that well-defined PMMA with a controlled molecular weight and narrow molecular weight distribution could be obtained using this TPSC-based ICAR ATRP system.

  7. Cu(II)-mediated atom transfer radical polymerization of methyl methacrylate via a strategy of thermo-regulated phase-separable catalysis in a liquid/liquid biphasic system: homogeneous catalysis, facile heterogeneous separation, and recycling.

    PubMed

    Pan, Jinlong; Zhang, Bingjie; Jiang, Xiaowu; Zhang, Lifen; Cheng, Zhenping; Zhu, Xiulin

    2014-09-01

    A strategy of thermo-regulated phase-separable catalysis (TPSC) is applied to the Cu(II)-mediated atom transfer radical polymerization (ATRP) of methyl methacrylate (MMA) in a p-xylene/PEG-200 biphasic system. Initiators for continuous activator regeneration ATRP (ICAR ATRP) are used to establish the TPSC-based ICAR ATRP system using water-soluble TPMA as a ligand, EBPA as an initiator, CuBr2 as a catalyst, and AIBN as a reducing agent. By heating to 70 °C, unlimited miscibility of both solvents is achieved and the polymerization can be carried out under homogeneous conditions; then on cooling to 25 °C, the mixture separates into two phases again. As a result, the catalyst complex remains in the PEG-200 phase while the obtained polymers stay in the p-xylene phase. The catalyst can therefore be removed from the resultant polymers by easily separating the two different layers and can be reused again. It is important that well-defined PMMA with a controlled molecular weight and narrow molecular weight distribution could be obtained using this TPSC-based ICAR ATRP system. PMID:25155655

  8. Composition, Reactivity and Regulation of Extracellular Metal-Reducing Structures (Bacterial Nanowires) Produced by Dissimilatory Metal - Reducing Bacteria.

    SciTech Connect

    Beveridge, Terrance J; Whitfield, Christopher

    2013-03-06

    This is the final technical report for the project. There were two objectives in the proposal. The first was to describe the composition and function of electrically conductive appendages, known as bacterial nanowires, which resemble pili but are longer and are electrically conductive. They were first identified on the dissimilatory metal-reducing bacteria (DMRB), Shewanella and Geobacter. Specifically, this project investigated the role of these structures in: (i) the reductive transformation of iron oxides as solid phase electron acceptors; (ii) the use of as uranium as a dissolved electron acceptor to form nanocrystalline particles of uraninite upon reduction. The Beveridge group investigated these processes using advanced cryo-transmission electron microscopy (cryoTEM) to visualize the points of connection between the distal ends of nanowires and the effect they have on solid phase Fe minerals. At the same time, immuno-electron microscopy was applied in an attempt to identify where metal reductases and cytochromes are located on the cell surface, or in the nanowires. The second objective was to define the surface physicochemistry of Shewanella spp. in an attempt to decipher how weak bonding (electrostatics and hydrophobicity) affects the adherence of the bacteria to Fe oxides. This bonding could be dictated by the chemistry of lipopolysaccharide (LPS), or the presence/absence of capsular polysaccharide.

  9. The Potential of N-Rich Plasma-Polymerized Ethylene (PPE:N) Films for Regulating the Phenotype of the Nucleus Pulposus

    PubMed Central

    Mwale, Fackson; Petit, Alain; Tian Wang, Hong; Epure, Laura M; Girard-Lauriault, Pierre-Luc; Ouellet, Jean A; Wertheimer, Michael R; Antoniou, John

    2008-01-01

    We recently developed a nitrogen-rich plasma-polymerized biomaterial, designated “PPE:N” (N-doped plasma-polymerized ethylene) that is capable of suppressing cellular hypertrophy while promoting type I collagen and aggrecan expression in mesenchymal stem cells from osteoarthritis patients. We then hypothesized that these surfaces would form an ideal substrate on which the nucleus pulposus (NP) phenotype would be maintained. Recent evidence using microarrays showed that in young rats, the relative mRNA levels of glypican-3 (GPC3) and pleiotrophin binding factor (PTN) were significantly higher in nucleus pulposus (NP) compared to annulus fibrosus (AF) and articular cartilage. Furthermore, vimentin (VIM) mRNA levels were higher in NP versus articular cartilage. In contrast, the levels of expression of cartilage oligomeric matrix protein (COMP) and matrix gla protein precursor (MGP) were lower in NP compared to articular cartilage. The objective of this study was to compare the expression profiles of these genes in NP cells from fetal bovine lumbar discs when cultured on either commercial polystyrene (PS) tissue culture dishes or on PPE:N with time. We found that the expression of these genes varies with the concentration of N ([N]). More specifically, the expression of several genes of NP was sensitive to [N], with a decrease of GPC3, VIM, PTN, and MGP in function of decreasing [N]. The expression of aggrecan, collagen type I, and collagen type II was also studied: no significant differences were observed in the cells on different surfaces with different culture time. The results support the concept that PPE:N may be a suitable scaffold for the culture of NP cells. Further studies are however necessary to better understand their effects on cellular phenotypes. PMID:19478889

  10. Step-Growth Polymerization.

    ERIC Educational Resources Information Center

    Stille, J. K.

    1981-01-01

    Following a comparison of chain-growth and step-growth polymerization, focuses on the latter process by describing requirements for high molecular weight, step-growth polymerization kinetics, synthesis and molecular weight distribution of some linear step-growth polymers, and three-dimensional network step-growth polymers. (JN)

  11. Halley's polymeric organic molecules

    NASA Technical Reports Server (NTRS)

    Huebner, W. F.; Boice, D. C.; Korth, A.

    1989-01-01

    The detection of polymeric organic compounds in the mass spectrum of Comet Halley obtained with the Positive Ion Cluster Composition analyzer on Giotto are examined. It is found that, in addition to polyoxymethylene, other polymers and complex molecules may exist in the comet. It is suggested that polymerized hydrogen cyanide may be a source for the observed CN and NH2 jets.

  12. Interleukin-8 and Intercellular Adhesion Molecule 1 Regulation in Oral Epithelial Cells by Selected Periodontal Bacteria: Multiple Effects of Porphyromonas gingivalis via Antagonistic Mechanisms

    PubMed Central

    Huang, George T.-J.; Kim, Daniel; Lee, Jonathan K.-H.; Kuramitsu, Howard K.; Haake, Susan Kinder

    2001-01-01

    Interaction of bacteria with mucosal surfaces can modulate the production of proinflammatory cytokines and adhesion molecules produced by epithelial cells. Previously, we showed that expression of interleukin-8 (IL-8) and intercellular adhesion molecule 1 (ICAM-1) by gingival epithelial cells increases following interaction with several putative periodontal pathogens. In contrast, expression of IL-8 and ICAM-1 is reduced after Porphyromonas gingivalis ATCC 33277 challenge. In the present study, we investigated the mechanisms that govern the regulation of these two molecules in bacterially infected gingival epithelial cells. Experimental approaches included bacterial stimulation of gingival epithelial cells by either a brief challenge (1.5 to 2 h) or a continuous coculture throughout the incubation period. The kinetics of IL-8 and ICAM-1 expression following brief challenge were such that (i) secretion of IL-8 by gingival epithelial cells reached its peak 2 h following Fusobacterium nucleatum infection whereas it rapidly decreased within 2 h after P. gingivalis infection and remained decreased up to 30 h and (ii) IL-8 and ICAM-1 mRNA levels were up-regulated rapidly 2 to 4 h postinfection and then decreased to basal levels 8 to 20 h after infection with either Actinobacillus actinomycetemcomitans, F. nucleatum, or P. gingivalis. Attenuation of IL-8 secretion was facilitated by adherent P. gingivalis strains. The IL-8 secreted from epithelial cells after F. nucleatum stimulation could be down-regulated by subsequent infection with P. gingivalis or its culture supernatant. Although these results suggested that IL-8 attenuation at the protein level might be associated with P. gingivalis proteases, the Arg- and Lys-gingipain proteases did not appear to be solely responsible for IL-8 attenuation. In addition, while P. gingivalis up-regulated IL-8 mRNA expression, this effect was overridden when the bacteria were continuously cocultured with the epithelial cells. The IL-8

  13. A large family of antivirulence regulators modulates the effects of transcriptional activators in Gram-negative pathogenic bacteria.

    PubMed

    Santiago, Araceli E; Ruiz-Perez, Fernando; Jo, Noah Y; Vijayakumar, Vidhya; Gong, Mei Q; Nataro, James P

    2014-05-01

    We have reported that transcription of a hypothetical small open reading frame (orf60) in enteroaggregative E. coli (EAEC) strain 042 is impaired after mutation of aggR, which encodes a global virulence activator. We have also reported that the cryptic orf60 locus was linked to protection against EAEC diarrhea in two epidemiologic studies. Here, we report that the orf60 product acts as a negative regulator of aggR itself. The orf60 protein product lacks homology to known repressors, but displays 44-100% similarity to at least fifty previously undescribed small (<10 kDa) hypothetical proteins found in many gram negative pathogen genomes. Expression of orf60 homologs from enterotoxigenic E. coli (ETEC) repressed the expression of the AraC-transcriptional ETEC regulator CfaD/Rns and its regulon in ETEC strain H10407. Complementation in trans of EAEC 042orf60 by orf60 homologs from ETEC and the mouse pathogen Citrobacter rodentium resulted in dramatic suppression of aggR. A C. rodentium orf60 homolog mutant showed increased levels of activator RegA and increased colonization of the adult mouse. We propose the name Aar (AggR-activated regulator) for the clinically and epidemiologically important orf60 product in EAEC, and postulate the existence of a large family of homologs among pathogenic Enterobacteriaceae and Pasteurellaceae. We propose the name ANR (AraC Negative Regulators) for this family. PMID:24875828

  14. A Large Family of Antivirulence Regulators Modulates the Effects of Transcriptional Activators in Gram-negative Pathogenic Bacteria

    PubMed Central

    Santiago, Araceli E.; Ruiz-Perez, Fernando; Jo, Noah Y.; Vijayakumar, Vidhya; Gong, Mei Q.; Nataro, James P.

    2014-01-01

    We have reported that transcription of a hypothetical small open reading frame (orf60) in enteroaggregative E. coli (EAEC) strain 042 is impaired after mutation of aggR, which encodes a global virulence activator. We have also reported that the cryptic orf60 locus was linked to protection against EAEC diarrhea in two epidemiologic studies. Here, we report that the orf60 product acts as a negative regulator of aggR itself. The orf60 protein product lacks homology to known repressors, but displays 44–100% similarity to at least fifty previously undescribed small (<10 kDa) hypothetical proteins found in many gram negative pathogen genomes. Expression of orf60 homologs from enterotoxigenic E. coli (ETEC) repressed the expression of the AraC-transcriptional ETEC regulator CfaD/Rns and its regulon in ETEC strain H10407. Complementation in trans of EAEC 042orf60 by orf60 homologs from ETEC and the mouse pathogen Citrobacter rodentium resulted in dramatic suppression of aggR. A C. rodentium orf60 homolog mutant showed increased levels of activator RegA and increased colonization of the adult mouse. We propose the name Aar (AggR-activated regulator) for the clinically and epidemiologically important orf60 product in EAEC, and postulate the existence of a large family of homologs among pathogenic Enterobacteriaceae and Pasteurellaceae. We propose the name ANR (AraC Negative Regulators) for this family. PMID:24875828

  15. Polymeric Carbon Dioxide

    SciTech Connect

    Yoo, C-S.

    1999-11-02

    Synthesis of polymeric carbon dioxide has long been of interest to many chemists and materials scientists. Very recently we discovered the polymeric phase of carbon dioxide (called CO{sub 2}-V) at high pressures and temperatures. Our optical and x-ray results indicate that CO{sub 2}-V is optically non-linear, generating the second harmonic of Nd: YLF laser at 527 nm and is also likely superhard similar to cubic-boron nitride or diamond. CO{sub 2}-V is made of CO{sub 4} tetrahedra, analogous to SiO{sub 2} polymorphs, and is quenchable at ambient temperature at pressures above 1 GPa. In this paper, we describe the pressure-induced polymerization of carbon dioxide together with the stability, structure, and mechanical and optical properties of polymeric CO{sub 2}-V. We also present some implications of polymeric CO{sub 2} for high-pressure chemistry and new materials synthesis.

  16. Protein Export According to Schedule: Architecture, Assembly, and Regulation of Type III Secretion Systems from Plant- and Animal-Pathogenic Bacteria

    PubMed Central

    2012-01-01

    Summary: Flagellar and translocation-associated type III secretion (T3S) systems are present in most Gram-negative plant- and animal-pathogenic bacteria and are often essential for bacterial motility or pathogenicity. The architectures of the complex membrane-spanning secretion apparatuses of both systems are similar, but they are associated with different extracellular appendages, including the flagellar hook and filament or the needle/pilus structures of translocation-associated T3S systems. The needle/pilus is connected to a bacterial translocon that is inserted into the host plasma membrane and mediates the transkingdom transport of bacterial effector proteins into eukaryotic cells. During the last 3 to 5 years, significant progress has been made in the characterization of membrane-associated core components and extracellular structures of T3S systems. Furthermore, transcriptional and posttranscriptional regulators that control T3S gene expression and substrate specificity have been described. Given the architecture of the T3S system, it is assumed that extracellular components of the secretion apparatus are secreted prior to effector proteins, suggesting that there is a hierarchy in T3S. The aim of this review is to summarize our current knowledge of T3S system components and associated control proteins from both plant- and animal-pathogenic bacteria. PMID:22688814

  17. [Ability of representatives of Pantoea agglomerans, as well as Bacillus subtilis and some Pseudomonas species to suppress the development of phytopathgenic bacteria and micromycetes in regulating plant growth].

    PubMed

    Romanenko, V M; Alimov, D M

    2000-01-01

    The ability of representatives of Pantoea agglomerans (Erwinia herbicola (Lohnis) Dye [21]), Bacillus subtilis and some species of Pseudomonas genus to inhibit the growth of phytopathogenic bacteria and micromycetes and to regulate the growth of plants has been comparatively studied. The ability to inhibit the growth of mycellium of phytopathogenic Fusarium avenaceum, F. gibbosum, F. oxysporum was found out in all of 13 investigated strains of P. agglomerans, while the growth of F. culmorum is inhibited by 2 strains and Bipolaris sorokiniana is inhibited by 7 strains. The strains of P. agglomerans and Bacillus subtilis inhibit the growth of mycellium of these mycromycetes to the greater extent than the representatives of Pseudomonas genus. The mycellium growth of B. sorokiniana is better inhibited by B. subtilis and representatives of Pseudomonas genus. Besides the antifungal action 8 strains of P. agglomerans manifested the antagonistic activity in respect to phytopathogenic Agrobacterium tumefaciens and representatives of genera Clavibacter, Erwinia, Pseudomonas, Xanthomonas and also in respect to the microflora which is present in the cabbage and wheat seeds. The strains have been revealed which, parallel with high antagonistic activity in respect to phytopathogenic micromycetes and bacteria, stimulate the seed germination and increase the weight of the cabbage and wheat sprouts.

  18. Regulation of the rplY gene encoding 5S rRNA binding protein L25 in Escherichia coli and related bacteria.

    PubMed

    Aseev, Leonid V; Bylinkina, Natalia S; Boni, Irina V

    2015-05-01

    Ribosomal protein (r-protein) L25 is one of the three r-proteins (L25, L5, L18) that interact with 5S rRNA in eubacteria. Specific binding of L25 with a certain domain of 5S r-RNA, a so-called loop E, has been studied in detail, but information about regulation of L25 synthesis has remained totally lacking. In contrast to the rplE (L5) and rplR (L18) genes that belong to the polycistronic spc-operon and are regulated at the translation level by r-protein S8, the rplY (L25) gene forms an independent transcription unit. The main goal of this work was to study the regulation of the rplY expression in vivo. We show that the rplY promoter is down-regulated by ppGpp and its cofactor DksA in response to amino acid starvation. At the level of translation, the rplY expression is subjected to the negative feedback control. The 5'-untranslated region of the rplY mRNA comprises specific sequence/structure features, including an atypical SD-like sequence, which are highly conserved in a subset of gamma-proteobacterial families. Despite the lack of a canonical SD element, the rplY'-'lacZ single-copy reporter showed unusually high translation efficiency. Expression of the rplY gene in trans decreased the translation yield, indicating the mechanism of autogenous repression. Site-directed mutagenesis of the rplY 5' UTR revealed an important role of the conserved elements in the translation control. Thus, the rplY expression regulation represents one more example of regulatory pathways that control ribosome biogenesis in Escherichia coli and related bacteria.

  19. Regulation of the rplY gene encoding 5S rRNA binding protein L25 in Escherichia coli and related bacteria

    PubMed Central

    Aseev, Leonid V.; Bylinkina, Natalia S.; Boni, Irina V.

    2015-01-01

    Ribosomal protein (r-protein) L25 is one of the three r-proteins (L25, L5, L18) that interact with 5S rRNA in eubacteria. Specific binding of L25 with a certain domain of 5S r-RNA, a so-called loop E, has been studied in detail, but information about regulation of L25 synthesis has remained totally lacking. In contrast to the rplE (L5) and rplR (L18) genes that belong to the polycistronic spc-operon and are regulated at the translation level by r-protein S8, the rplY (L25) gene forms an independent transcription unit. The main goal of this work was to study the regulation of the rplY expression in vivo. We show that the rplY promoter is down-regulated by ppGpp and its cofactor DksA in response to amino acid starvation. At the level of translation, the rplY expression is subjected to the negative feedback control. The 5′-untranslated region of the rplY mRNA comprises specific sequence/structure features, including an atypical SD-like sequence, which are highly conserved in a subset of gamma-proteobacterial families. Despite the lack of a canonical SD element, the rplY’-‘lacZ single-copy reporter showed unusually high translation efficiency. Expression of the rplY gene in trans decreased the translation yield, indicating the mechanism of autogenous repression. Site-directed mutagenesis of the rplY 5′ UTR revealed an important role of the conserved elements in the translation control. Thus, the rplY expression regulation represents one more example of regulatory pathways that control ribosome biogenesis in Escherichia coli and related bacteria. PMID:25749694

  20. Use of the lactococcal nisA promoter to regulate gene expression in gram-positive bacteria: comparison of induction level and promoter strength.

    PubMed

    Eichenbaum, Z; Federle, M J; Marra, D; de Vos, W M; Kuipers, O P; Kleerebezem, M; Scott, J R

    1998-08-01

    We characterized the regulated activity of the lactococcal nisA promoter in strains of the gram-positive species Streptococcus pyogenes, Streptococcus agalactiae, Streptococcus pneumoniae, Enterococcus faecalis, and Bacillus subtilis. nisA promoter activity was dependent on the proteins NisR and NisK, which constitute a two-component signal transduction system that responds to the extracellular inducer nisin. The nisin sensitivity and inducer concentration required for maximal induction varied among the strains. Significant induction of the nisA promoter (10- to 60-fold induction) was obtained in all of the species studied at a nisin concentration just below the concentration at which growth is inhibited. The efficiency of the nisA promoter was compared to the efficiencies of the Spac, xylA, and lacA promoters in B. subtilis and in S. pyogenes. Because nisA promoter-driven expression is regulated in many gram-positive bacteria, we expect it to be useful for genetic studies, especially studies with pathogenic streptococci in which no other regulated promoters have been described. PMID:9687428

  1. Polymerized nano-curcumin attenuates neurological symptoms in EAE model of multiple sclerosis through down regulation of inflammatory and oxidative processes and enhancing neuroprotection and myelin repair.

    PubMed

    Mohajeri, Maryam; Sadeghizadeh, Majid; Najafi, Farhood; Javan, Mohammad

    2015-12-01

    Multiple Sclerosis (MS) is an inflammatory demyelinating disorder of central nervous system (CNS). Polyphenol curcumin has been used in traditional medicine as an effective drug for a variety of diseases. Different formulations of curcumin are introduced to increase its stability and effectiveness. Here we have examined the effect of polymerized form of nano-curcumin (PNC) on experimental autoimmune encephalomyelitis (EAE) as an animal model of MS. EAE was induced in female Lewis rats and PNC or curcumin was daily administrated intraperitonealy from day 12-29 post immunization. When the prophylactic effect of PNC was under investigation, rats received PNC from the first day of immunization. Treatment with PNC resulted in decreased scores of disease in therapeutic and prophylactic administration when compared with control group. Staining by luxol fast blue and H&E and immuno-staining of lumbar spinal cord cross sections, confirmed a significant decrease in the amounts of demyelination, inflammation and BBB breaking down. Gene expression studies in lumbar spinal cord showed a corrected balance of pro-inflammatory and anti-inflammatory genes expression, decreased oxidative stress, improved remyelination and increased progenitor cell markers after treatment with PNC. Our results demonstrated an efficient therapeutic effect of PNC as an anti-inflammatory and anti-oxidative stress agent, with significant effects on the EAE scores and myelin repair mechanisms.

  2. Catabolism of Phenol and Its Derivatives in Bacteria: Genes, Their Regulation, and Use in the Biodegradation of Toxic Pollutants.

    PubMed

    Nešvera, Jan; Rucká, Lenka; Pátek, Miroslav

    2015-01-01

    Phenol and its derivatives (alkylphenols, halogenated phenols, nitrophenols) are natural or man-made aromatic compounds that are ubiquitous in nature and in human-polluted environments. Many of these substances are toxic and/or suspected of mutagenic, carcinogenic, and teratogenic effects. Bioremediation of the polluted soil and water using various bacteria has proved to be a promising option for the removal of these compounds. In this review, we describe a number of peripheral pathways of aerobic and anaerobic catabolism of various natural and xenobiotic phenolic compounds, which funnel these substances into a smaller number of central catabolic pathways. Finally, the metabolites are used as carbon and energy sources in the citric acid cycle. We provide here the characteristics of the enzymes that convert the phenolic compounds and their catabolites, show their genes, and describe regulatory features. The genes, which encode these enzymes, are organized on chromosomes and plasmids of the natural bacterial degraders in various patterns. The accumulated data on similarities and the differences of the genes, their varied organization, and particularly, an astonishingly broad range of intricate regulatory mechanism may be read as an exciting adventurous book on divergent evolutionary processes and horizontal gene transfer events inscribed in the bacterial genomes. In the end, the use of this wealth of bacterial biodegradation potential and the manipulation of its genetic basis for purposes of bioremediation is exemplified. It is envisioned that the integrated high-throughput techniques and genome-level approaches will enable us to manipulate systems rather than separated genes, which will give birth to systems biotechnology.

  3. Effects of short chain fatty acid producing bacteria on epigenetic regulation of FFAR3 in type 2 diabetes and obesity.

    PubMed

    Remely, Marlene; Aumueller, Eva; Merold, Christine; Dworzak, Simone; Hippe, Berit; Zanner, Julia; Pointner, Angelika; Brath, Helmut; Haslberger, Alexander G

    2014-03-01

    The human gut microbiota and microbial influences on lipid and glucose metabolism, satiety, and chronic low-grade inflammation are known to be involved in metabolic syndrome. Fermentation end products, especially short chain fatty acids, are believed to engage the epigenetic regulation of inflammatory reactions via FFARs (free fatty acid receptor) and other short chain fatty acid receptors. We studied a potential interaction of the microbiota with epigenetic regulation in obese and type 2 diabetes patients compared to a lean control group over a four month intervention period. Intervention comprised a GLP-1 agonist (glucagon-like peptide 1) for type 2 diabetics and nutritional counseling for both intervention groups. Microbiota was analyzed for abundance, butyryl-CoA:acetate CoA-transferase gene and for diversity by polymerase chain reaction and 454 high-throughput sequencing. Epigenetic methylation of the promoter region of FFAR3 and LINE1 (long interspersed nuclear element 1) was analyzed using bisulfite conversion and pyrosequencing. The diversity of the microbiota as well as the abundance of Faecalibacterium prausnitzii were significantly lower in obese and type 2 diabetic patients compared to lean individuals. Results from Clostridium cluster IV and Clostridium cluster XIVa showed a decreasing trend in type 2 diabetics in comparison to the butyryl-CoA:acetate CoA-transferase gene and according to melt curve analysis. During intervention no significant changes were observed in either intervention group. The analysis of five CpGs in the promoter region of FFAR3 showed a significant lower methylation in obese and type 2 diabetics with an increase in obese patients over the intervention period. These results disclosed a significant correlation between a higher body mass index and lower methylation of FFAR3. LINE-1, a marker of global methylation, indicated no significant differences between the three groups or the time points, although methylation of type 2

  4. Spatial control of actin polymerization during neutrophil chemotaxis

    PubMed Central

    Weiner, Orion D.; Servant, Guy; Welch, Matthew D.; Mitchison, Timothy J.; Sedat, John W.; Bourne, Henry R.

    2010-01-01

    Neutrophils respond to chemotactic stimuli by increasing the nucleation and polymerization of actin filaments, but the location and regulation of these processes are not well understood. Here, using a permeabilized-cell assay, we show that chemotactic stimuli cause neutrophils to organize many discrete sites of actin polymerization, the distribution of which is biased by external chemotactic gradients. Furthermore, the Arp2/3 complex, which can nucleate actin polymerization, dynamically redistributes to the region of living neutrophils that receives maximal chemotactic stimulation, and the least-extractable pool of the Arp2/3 complex co-localizes with sites of actin polymerization. Our observations indicate that chemoattractant-stimulated neutrophils may establish discrete foci of actin polymerization that are similar to those generated at the posterior surface of the intracellular bacterium Listeria monocytogenes. We propose that asymmetrical establishment and/or maintenance of sites of actin polymerization produces directional migration of neutrophils in response to chemotactic gradients. PMID:10559877

  5. Concise polymeric materials encyclopedia

    SciTech Connect

    Salamone, J.C.

    1999-01-01

    This comprehensive, accessible resource abridges the ``Polymeric Materials Encyclopedia'', presenting more than 1,100 articles and featuring contributions from more than 1,800 scientists from all over the world. The text discusses a vast array of subjects related to the: (1) synthesis, properties, and applications of polymeric materials; (2) development of modern catalysts in preparing new or modified polymers; (3) modification of existing polymers by chemical and physical processes; and (4) biologically oriented polymers.

  6. Molecular approaches to understand the regulation of N2O emission from denitrifying bacteria - model strains and soil communities (Invited)

    NASA Astrophysics Data System (ADS)

    Frostegard, A.; Bakken, L. R.

    2010-12-01

    Emissions of N2O from agricultural soils are largely caused by denitrifying bacteria. Field measurements of N2O fluxes show large variations and depend on several environmental factors, and possibly also on the composition of the denitrifying microbial community. The temporal and spatial variation of fluxes are not adequately captured by biogeochemical models, and few options for mitigations have been invented, which underscores the need to understand the mechanisms underlying the emissions of N2O. Analyses of denitrification genes and transcripts extracted from soils are important for describing the system, but may have limited value for prediction of N2O emissions. In contrast, phenotypic analyses are direct measures of the organisms’ responses to changing environmental conditions. Our approach is to combine phenotypic characterizations using high-resolution gas kinetics, with gene transcription analyses to study denitrification regulatory phenotypes (DRP) of bacterial strains or complex microbial communities. The rich data sets obtained provide a basis for refinement of biochemical and physiological research on this key process in the nitrogen cycle. The strength of this combined approach is illustrated by a series of experiments investigating effects of soil pH on denitrification. Soil pH emerges as a master variable determining the microbial community composition as well as its denitrification product ratio (N2O/N2), with higher ratio in acid than in alkaline soil. It is therefore likely that emissions of N2O from agro-ecosystems will increase in large parts of the world where soil pH is decreasing due to intensified management and increased use of chemical fertilizers. Considering its immense implications, surprisingly few attempts have been made to unravel the mechanisms involved in the pH-control of the product stoichiometry of denitrification. We investigated the kinetics of gas transformations (O2, NO, N2O and N2) and transcription of functional genes

  7. Radical-Mediated Enzymatic Polymerizations.

    PubMed

    Zavada, Scott R; Battsengel, Tsatsral; Scott, Timothy F

    2016-01-01

    Polymerization reactions are commonly effected by exposing monomer formulations to some initiation stimulus such as elevated temperature, light, or a chemical reactant. Increasingly, these polymerization reactions are mediated by enzymes--catalytic proteins--owing to their reaction efficiency under mild conditions as well as their environmental friendliness. The utilization of enzymes, particularly oxidases and peroxidases, for generating radicals via reduction-oxidation mechanisms is especially common for initiating radical-mediated polymerization reactions, including vinyl chain-growth polymerization, atom transfer radical polymerization, thiol-ene step-growth polymerization, and polymerization via oxidative coupling. While enzyme-mediated polymerization is useful for the production of materials intended for subsequent use, it is especially well-suited for in situ polymerizations, where the polymer is formed in the place where it will be utilized. Such polymerizations are especially useful for biomedical adhesives and for sensing applications. PMID:26848652

  8. Radical-Mediated Enzymatic Polymerizations

    PubMed Central

    Zavada, Scott R.; Battsengel, Tsatsral; Scott, Timothy F.

    2016-01-01

    Polymerization reactions are commonly effected by exposing monomer formulations to some initiation stimulus such as elevated temperature, light, or a chemical reactant. Increasingly, these polymerization reactions are mediated by enzymes―catalytic proteins―owing to their reaction efficiency under mild conditions as well as their environmental friendliness. The utilization of enzymes, particularly oxidases and peroxidases, for generating radicals via reduction-oxidation mechanisms is especially common for initiating radical-mediated polymerization reactions, including vinyl chain-growth polymerization, atom transfer radical polymerization, thiol–ene step-growth polymerization, and polymerization via oxidative coupling. While enzyme-mediated polymerization is useful for the production of materials intended for subsequent use, it is especially well-suited for in situ polymerizations, where the polymer is formed in the place where it will be utilized. Such polymerizations are especially useful for biomedical adhesives and for sensing applications. PMID:26848652

  9. Antimicrobial selenium nanoparticle coatings on polymeric medical devices

    NASA Astrophysics Data System (ADS)

    Tran, Phong A.; Webster, Thomas J.

    2013-04-01

    Bacteria colonization on medical devices remains one of the most serious complications following implantation. Traditional antibiotic treatment has proven ineffective, creating an increasingly high number of drug-resistant bacteria. Polymeric medical devices represent a significant portion of the total medical devices used today due to their excellent mechanical properties (such as durability, flexibility, etc). However, many polymers (such as polyvinyl chloride (PVC), polyurethane (PU) and silicone) become readily colonized and infected by bacteria immediately after use. Therefore, in this study, a novel antimicrobial coating was developed to inhibit bacterial growth on PVC, PU and silicone. Specifically, here, the aforementioned polymeric substrates were coated with selenium (Se) nanoparticles in situ. The Se-coated substrates were characterized using scanning electron microscopy, energy dispersive x-ray spectroscopy and bacteria assays. Most importantly, bacterial growth was significantly inhibited on the Se-coated substrates compared to their uncoated counterparts. The reduction of bacteria growth directly correlated with the density of Se nanoparticles on the coated substrate surfaces. In summary, these results demonstrate that Se should be further studied as a novel anti-bacterial polymeric coating material which can decrease bacteria functions without the use of antibiotics.

  10. Colchicine activates actin polymerization by microtubule depolymerization.

    PubMed

    Jung, H I; Shin, I; Park, Y M; Kang, K W; Ha, K S

    1997-06-30

    Swiss 3T3 fibroblasts were treated with the microtubule-disrupting agent colchicine to study any interaction between microtubule dynamics and actin polymerization. Colchicine increased the amount of filamentous actin (F-actin), in a dose- and time-dependent manner with a significant increase at 1 h by about 130% over control level. Confocal microscopic observation showed that colchicine increased F-actin contents by stress fiber formation without inducing membrane ruffling. Colchicine did not activate phospholipase C and phospholipase D, whereas lysophosphatidic acid did, indicating that colchicine may have a different mechanism of actin polymerization regulation from LPA. A variety of microtubule-disrupting agents stimulated actin polymerization in Swiss 3T3 and Rat-2 fibroblasts as did colchicine, but the microtubule-stabilizing agent taxol inhibited actin polymerization induced by the above microtubule-disrupting agents. In addition, colchicine-induced actin polymerization was blocked by two protein phosphatase inhibitors, okadaic acid and calyculin A. These results suggest that microtubule depolymerization activates stress fiber formation by serine/threonine dephosphorylation in fibroblasts. PMID:9264034

  11. Organocatalyzed Group Transfer Polymerization.

    PubMed

    Chen, Yougen; Kakuchi, Toyoji

    2016-08-01

    In contrast to the conventional group transfer polymerization (GTP) using a catalyst of either an anionic nucleophile or a transition-metal compound, the organocatalyzed GTP has to a great extent improved the living characteristics of the polymerization from the viewpoints of synthesizing structurally well-defined acrylic polymers and constructing defect-free polymer architectures. In this article, we describe the organocatalyzed GTP from a relatively personal perspective to provide our colleagues with a perspicuous and systematic overview on its recent progress as well as a reply to the curiosity of how excellently the organocatalysts have performed in this field. The stated perspectives of this review mainly cover five aspects, in terms of the assessment of the livingness of the polymerization, limit and scope of applicable monomers, mechanistic studies, control of the polymer structure, and a new GTP methodology involving the use of tris(pentafluorophenyl)borane and hydrosilane. PMID:27427399

  12. Polymerization of vegetable oils

    SciTech Connect

    Korus, R.A.; Mousetis, T.L.; Lloyd, L.

    1982-01-01

    The addition of antioxidants and dispersants is not sufficient to eliminate gum formation in vegetable oils. Even with relatively unsaturated oils like rapeseed the extent of unsaturation overwhelms these additives. Fuel deterioration during storage will be minimized in an anaerobic storage environment and, to a lesser extent, with a lower degree of oil unsaturation. Gum formation and carbon coking can also occur immediately preceding and during combustion. Thermal polymerization may be the dominant gum forming reaction under combustion conditions since thermal polymerization has a higher activation energy than oxidative polymerization and anaerobic conditions can occur within atomized fuel droplets. Carbon coking can be reduced with a lower degree of oil unsaturation and with better atomization of the fuel. 4 figures, 1 table.

  13. Diversity of innate immune recognition mechanism for bacterial polymeric meso-diaminopimelic acid-type peptidoglycan in insects.

    PubMed

    Yu, Yang; Park, Ji-Won; Kwon, Hyun-Mi; Hwang, Hyun-Ok; Jang, In-Hwan; Masuda, Akiko; Kurokawa, Kenji; Nakayama, Hiroshi; Lee, Won-Jae; Dohmae, Naoshi; Zhang, Jinghai; Lee, Bok Luel

    2010-10-22

    In Drosophila, the synthesis of antimicrobial peptides in response to microbial infections is under the control of the Toll and immune deficiency (Imd) signaling pathway. The Toll signaling pathway responds mainly to the lysine-type peptidoglycan of Gram-positive bacteria and fungal β-1,3-glucan, whereas the Imd pathway responds to the meso-diaminopimelic acid (DAP)-type peptidoglycan of Gram-negative bacteria and certain Gram-positive bacilli. Recently we determined the activation mechanism of a Toll signaling pathway biochemically using a large beetle, Tenebrio molitor. However, DAP-type peptidoglycan recognition mechanism and its signaling pathway are still unclear in the fly and beetle. Here, we show that polymeric DAP-type peptidoglycan, but not its monomeric form, formed a complex with Tenebrio peptidoglycan recognition protein-SA, and this complex activated the three-step proteolytic cascade to produce processed Spätzle, a Toll receptor ligand, and induced Drosophila defensin-like antimicrobial peptide in Tenebrio larvae similarly to polymeric lysine-type peptidoglycan. Monomeric DAP-type peptidoglycan induced Drosophila diptericin-like antimicrobial peptide in Tenebrio hemocytes. In addition, both polymeric and monomeric DAP-type peptidoglycans induced expression of Tenebrio peptidoglycan recognition protein-SC2, which is DAP-type peptidoglycan-selective N-acetylmuramyl-l-alanine amidase that functions as a DAP-type peptidoglycan scavenger, appearing to function as a negative regulator of the DAP-type peptidoglycan signaling by cleaving DAP-type peptidoglycan in Tenebrio larvae. Taken together, these results demonstrate that molecular recognition mechanism for polymeric DAP-type peptidoglycan is different between Tenebrio larvae and Drosophila adults, providing biochemical evidences of biological diversity of innate immune responses in insects. PMID:20702416

  14. Variable Effect during Polymerization

    ERIC Educational Resources Information Center

    Lunsford, S. K.

    2005-01-01

    An experiment performing the polymerization of 3-methylthiophene(P-3MT) onto the conditions for the selective electrode to determine the catechol by using cyclic voltammetry was performed. The P-3MT formed under optimized conditions improved electrochemical reversibility, selectivity and reproducibility for the detection of the catechol.

  15. Protein specific polymeric immunomicrospheres

    NASA Technical Reports Server (NTRS)

    Rembaum, Alan (Inventor); Yen, Shiao-Ping S. (Inventor); Dreyer, William J. (Inventor)

    1980-01-01

    Small, round, bio-compatible microspheres capable of covalently bonding proteins and having a uniform diameter below about 3500 A are prepared by substantially instantaneously initiating polymerization of an aqueous emulsion containing no more than 35% total monomer including an acrylic monomer substituted with a covalently bondable group such as hydroxyl, amino or carboxyl and a minor amount of a cross-linking agent.

  16. Programmable Supramolecular Polymerizations.

    PubMed

    van der Zwaag, Daan; de Greef, Tom F A; Meijer, E W

    2015-07-13

    Living large: Rational design of self-assembly pathways has been demonstrated in supramolecular polymers. By controlling the concentration of an aggregation-competent monomer through intramolecular interactions, living supramolecular polymerization conditions were achieved. This universal approach can be used to obtain aggregates of well-defined length and narrow dispersity, and allows access to new supramolecular polymer architectures. PMID:26095705

  17. Effective integrative supramolecular polymerization.

    PubMed

    Zhang, Qiwei; Tian, He

    2014-09-26

    Exercise control: By taking advantage of self-sorting processes among host-guest components, a controlled supramolecular polymerization can be realized, as demonstrated recently with the preparation of a cucurbit[n]uril-based supramolecular polymer. This method may be used for the design of more ordered supramolecular polymers from complex and discrete components. PMID:25080388

  18. Polymerized and functionalized triglycerides

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plant oils are useful sustainable raw materials for the development of new chemical products. As part of our research emphasis in sustainability and green polymer chemistry, we have explored a new method for polymerizing epoxidized triglycerides with the use of fluorosulfonic acid. Depending on the ...

  19. Magnetic Bacteria.

    ERIC Educational Resources Information Center

    Nelson, Jane Bray; Nelson, Jim

    1992-01-01

    Describes the history of Richard Blakemore's discovery of magnetotaxic organisms. Discusses possible reasons why the magnetic response in bacteria developed. Proposes research experiments integrating biology and physics in which students investigate problems using cultures of magnetotaxic organisms. (MDH)

  20. [Molecular/polymeric magnetism

    SciTech Connect

    Not Available

    1993-01-01

    New materials were synthesized to test the generality of magnetism in molecular/polymeric systems. The first room temperature molecular based magnet V(TCNE)[sub x][center dot]y(solvent) (1) is disclosed. The ferromagnetic and related transitions were studied in decamethylferrocenium tetracyanoethanide (TCNE), (1), and related materials. Our and others' models were tested for ferromagnetic and antiferromagnetic exchange between local sites; models for control of [Tc] were also tested.

  1. Surface polymerization agents

    SciTech Connect

    Taylor, C.; Wilkerson, C.

    1996-12-01

    This is the final report of a 1-year, Laboratory-Directed R&D project at LANL. A joint technical demonstration was proposed between US Army Missile Command (Redstone Arsenal) and LANL. Objective was to demonstrate that an unmanned vehicle or missile could be used as a platform to deliver a surface polymerization agent in such a manner as to obstruct the filters of an air-breathing mechanism, resulting in operational failure.

  2. Polymeric Bicontinuous Microemulsions

    NASA Astrophysics Data System (ADS)

    Bates, Frank S.; Maurer, Wayne W.; Lipic, Paul M.; Hillmyer, Marc A.; Almdal, Kristoffer; Mortensen, Kell; Fredrickson, Glenn H.; Lodge, Timothy P.

    1997-08-01

    High molecular weight block copolymers can be viewed as macromolecular surfactants when blended with thermodynamically incompatible homopolymers. This Letter describes the formation of polymeric bicontinuous microemulsions in mixtures containing a model diblock copolymer and two homopolymers. Although we attribute development of this equilibrium morphology to the effects of fluctuations, mean-field theory provides a quantitative strategy for preparing the bicontinuous state at blend compositions near an isotropic Lifshitz point.

  3. Methanotrophic bacteria.

    PubMed Central

    Hanson, R S; Hanson, T E

    1996-01-01

    Methane-utilizing bacteria (methanotrophs) are a diverse group of gram-negative bacteria that are related to other members of the Proteobacteria. These bacteria are classified into three groups based on the pathways used for assimilation of formaldehyde, the major source of cell carbon, and other physiological and morphological features. The type I and type X methanotrophs are found within the gamma subdivision of the Proteobacteria and employ the ribulose monophosphate pathway for formaldehyde assimilation, whereas type II methanotrophs, which employ the serine pathway for formaldehyde assimilation, form a coherent cluster within the beta subdivision of the Proteobacteria. Methanotrophic bacteria are ubiquitous. The growth of type II bacteria appears to be favored in environments that contain relatively high levels of methane, low levels of dissolved oxygen, and limiting concentrations of combined nitrogen and/or copper. Type I methanotrophs appear to be dominant in environments in which methane is limiting and combined nitrogen and copper levels are relatively high. These bacteria serve as biofilters for the oxidation of methane produced in anaerobic environments, and when oxygen is present in soils, atmospheric methane is oxidized. Their activities in nature are greatly influenced by agricultural practices and other human activities. Recent evidence indicates that naturally occurring, uncultured methanotrophs represent new genera. Methanotrophs that are capable of oxidizing methane at atmospheric levels exhibit methane oxidation kinetics different from those of methanotrophs available in pure cultures. A limited number of methanotrophs have the genetic capacity to synthesize a soluble methane monooxygenase which catalyzes the rapid oxidation of environmental pollutants including trichloroethylene. PMID:8801441

  4. The fecal bacteria

    USGS Publications Warehouse

    Sadowsky, Michael J.; Whitman, Richard L.

    2011-01-01

    The Fecal Bacteria offers a balanced, integrated discussion of fecal bacteria and their presence and ecology in the intestinal tract of mammals, in the environment, and in the food supply. This volume covers their use in examining and assessing water quality in order to offer protection from illnesses related to swimming in or ingesting contaminated water, in addition to discussing their use in engineering considerations of water quality, modeling, monitoring, and regulations. Fecal bacteria are additionally used as indicators of contamination of ready-to-eat foods and fresh produce. The intestinal environment, the microbial community structure of the gut microbiota, and the physiology and genomics of this broad group of microorganisms are explored in the book. With contributions from an internationally recognized group of experts, the book integrates medicine, public health, environmental, and microbiological topics in order to provide a unique, holistic understanding of fecal bacteria. Moreover, it shows how the latest basic science and applied research findings are helping to solve problems and develop effective management strategies. For example, readers will discover how the latest tools and molecular approaches have led to our current understanding of fecal bacteria and enabled us to improve human health and water quality. The Fecal Bacteria is recommended for microbiologists, clinicians, animal scientists, engineers, environmental scientists, food safety experts, water quality managers, and students. It will help them better understand fecal bacteria and use their knowledge to protect human and environmental health. They can also apply many of the techniques and molecular tools discussed in this book to the study of a broad range of microorganisms in a variety of habitats.

  5. Stress responses of bacteria.

    PubMed

    Marles-Wright, Jon; Lewis, Richard J

    2007-12-01

    Bacteria, irrespective of natural habitat, are exposed to constant fluctuations in their growth conditions. Consequently they have developed sophisticated responses, modulated by the re-modelling of protein complexes and by phosphorylation-dependent signal transduction systems, to adapt to and to survive a variety of insults. Ultimately these signalling systems affect transcriptional regulons either by activating an alternative sigma factor subunit of RNA polymerase, for example, sigma E (sigma(E)) of Escherichia coli and sigma B (sigma(B)) and sigma F (sigma(F)) in Bacillus subtilis or by activating DNA-binding two-component response regulators. Recent structure determinations, and systems biology analysis of key regulators in well-characterised stress-responsive pathways, illustrate conserved and novel mechanisms in these representative model bacteria.

  6. Bimorphic polymeric photomechanical actuator

    NASA Technical Reports Server (NTRS)

    Sarkisov, Sergey S. (Inventor); Curley, Michael J. (Inventor); Adamovsky, Grigory (Inventor); Sarkisov, Jr., Sergey S. (Inventor); Fields, Aisha B. (Inventor)

    2006-01-01

    A bimorphic polymeric photomechanical actuator, in one embodiment using polyvinylidene fluoride (PVDF) as a photosensitive body, transmitting light over fiber optic cables, and controlling the shape and pulse duration of the light pulse to control movement of the actuator. Multiple light beams are utilized to generate different ranges of motion for the actuator from a single photomechanical body and alternative designs use multiple light beams and multiple photomechanical bodies to provide controlled movement. Actuator movement using one or more ranges of motion is utilized to control motion to position an actuating element in three dimensional space.

  7. Living olefin polymerization processes

    DOEpatents

    Schrock, Richard R.; Baumann, Robert

    2003-08-26

    Processes for the living polymerization of olefin monomers with terminal carbon-carbon double bonds are disclosed. The processes employ initiators that include a metal atom and a ligand having two group 15 atoms and a group 16 atom or three group 15 atoms. The ligand is bonded to the metal atom through two anionic or covalent bonds and a dative bond. The initiators are particularly stable under reaction conditions in the absence of olefin monomer. The processes provide polymers having low polydispersities, especially block copolymers having low polydispersities. It is an additional advantage of these processes that, during block copolymer synthesis, a relatively small amount of homopolymer is formed.

  8. Living olefin polymerization processes

    DOEpatents

    Schrock, Richard R.; Baumann, Robert

    1999-01-01

    Processes for the living polymerization of olefin monomers with terminal carbon-carbon double bonds are disclosed. The processes employ initiators that include a metal atom and a ligand having two group 15 atoms and a group 16 atom or three group 15 atoms. The ligand is bonded to the metal atom through two anionic or covalent bonds and a dative bond. The initiators are particularly stable under reaction conditions in the absence of olefin monomer. The processes provide polymers having low polydispersities, especially block copolymers having low polydispersities. It is an additional advantage of these processes that, during block copolymer synthesis, a relatively small amount of homopolymer is formed.

  9. Living olefin polymerization processes

    DOEpatents

    Schrock, R.R.; Baumann, R.

    1999-03-30

    Processes for the living polymerization of olefin monomers with terminal carbon-carbon double bonds are disclosed. The processes employ initiators that include a metal atom and a ligand having two group 15 atoms and a group 16 atom or three group 15 atoms. The ligand is bonded to the metal atom through two anionic or covalent bonds and a dative bond. The initiators are particularly stable under reaction conditions in the absence of olefin monomer. The processes provide polymers having low polydispersities, especially block copolymers having low polydispersities. It is an additional advantage of these processes that, during block copolymer synthesis, a relatively small amount of homopolymer is formed.

  10. Living olefin polymerization processes

    DOEpatents

    Schrock, Richard R.; Bauman, Robert

    2006-11-14

    Processes for the living polymerization of olefin monomers with terminal carbon-carbon double bonds are disclosed. The processes employ initiators that include a metal atom and a ligand having two group 15 atoms and a group 16 atom or three group 15 atoms. The ligand is bonded to the metal atom through two anionic or covalent bonds and a dative bond. The initiators are particularly stable under reaction conditions in the absence of olefin monomer. The processes provide polymers having low polydispersities, especially block copolymers having low polydispersities. It is an additional advantage of these processes that, during block copolymer synthesis, a relatively small amount of homopolymer is formed.

  11. Sustainable polymerizations in recoverable microemulsions.

    PubMed

    Chen, Zhenzhen; Yan, Feng; Qiu, Lihua; Lu, Jianmei; Zhou, Yinxia; Chen, Jiaxin; Tang, Yishan; Texter, John

    2010-03-16

    Free radical and atom-transfer radical polymerizations were conducted in monomer/ionic liquid microemulsions. After the polymerization and isolation of the resultant polymers, the mixture of the catalyst and ionic liquids (surfactant and continuous phase) can be recovered and reused, thereby dramatically improving the environmental sustainability of such chemical processing. The addition of monomer to recovered ionic liquid mixtures regenerates transparent, stable microemulsions that are ready for the next polymerization cycle upon addition of initiator. The method combines the advantages of IL recycling and microemulsion polymerization and minimizes environmental disposable effects from surfactants and heavy metal ions. PMID:20170175

  12. Polymerization Evaluation by Spectrophotometric Measurements.

    ERIC Educational Resources Information Center

    Dunach, Jaume

    1985-01-01

    Discusses polymerization evaluation by spectrophotometric measurements by considering: (1) association degrees and molar absorptivities; (2) association degrees and equilibrium constants; and (3) absorbance and equilibrium constants. (JN)

  13. Importance of Extracellular Polymeric Substances from Thiobacillus ferrooxidans for Bioleaching

    PubMed Central

    Gehrke, Tilman; Telegdi, Judit; Thierry, Dominique; Sand, Wolfgang

    1998-01-01

    Leaching bacteria such as Thiobacillus ferrooxidans attach to pyrite or sulfur by means of extracellular polymeric substances (EPS) (lipopolysaccharides). The primary attachment to pyrite at pH 2 is mediated by exopolymer-complexed iron(III) ions in an electrochemical interaction with the negatively charged pyrite surface. EPS from sulfur cells possess increased hydrophobic properties and do not attach to pyrite, indicating adaptability to the substrate or substratum. PMID:9647862

  14. Organometallic Polymeric Conductors

    NASA Technical Reports Server (NTRS)

    1997-01-01

    For aerospace applications, the use of polymers can result in tremendous weight savings over metals. Suitable polymeric materials for some applications like EMI shielding, spacecraft grounding, and charge dissipation must combine high electrical conductivity with long-term environmental stability, good processability, and good mechanical properties. Recently, other investigators have reported hybrid films made from an electrically conductive polymer combined with insulating polymers. In all of these instances, the films were prepared by infiltrating an insulating polymer with a precursor for a conductive polymer (either polypyrrole or polythiophene), and oxidatively polymerizing the precursor in situ. The resulting composite films have good electrical conductivity, while overcoming the brittleness inherent in most conductive polymers. The highest conductivities reported (approximately 4/Scm) were achieved with polythiophene in a polystyrene host polymer. The best films using a polyamide as base polymer were four orders of magnitude less conductive than the polystyrene films. The authors suggested that this was because polyimides were unable to swell sufficiently for infiltration of monomer as in the polystyrene. It was not clear, however, if the different conductivities obtained were merely the result of differing oxidation conditions. Oxidation time, temperature and oxidant concentration varied widely among the studies.

  15. Bacteria Counter

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Science Applications, Inc.'s ATP Photometer makes a rapid and accurate count of the bacteria in a body fluid sample. Instrument provides information on the presence and quantity of bacteria by measuring the amount of light emitted by the reaction between two substances. Substances are ATP adenosine triphosphate and luciferase. The reactants are applied to a human body sample and the ATP Photometer observes the intensity of the light emitted displaying its findings in a numerical output. Total time lapse is usually less than 10 minutes, which represents a significant time savings in comparison of other techniques. Other applications are measuring organisms in fresh and ocean waters, determining bacterial contamination of foodstuffs, biological process control in the beverage industry, and in assay of activated sewage sludge.

  16. Amplification of actin polymerization forces

    PubMed Central

    Dmitrieff, Serge; Nédélec, François

    2016-01-01

    The actin cytoskeleton drives many essential processes in vivo, using molecular motors and actin assembly as force generators. We discuss here the propagation of forces caused by actin polymerization, highlighting simple configurations where the force developed by the network can exceed the sum of the polymerization forces from all filaments. PMID:27002174

  17. Coating of plasma polymerized film

    NASA Technical Reports Server (NTRS)

    Morita, S.; Ishibashi, S.

    1980-01-01

    Plasma polymerized thin film coating and the use of other coatings is suggested for passivation film, thin film used for conducting light, and solid body lubrication film of dielectrics of ultra insulators for electrical conduction, electron accessories, etc. The special features of flow discharge development and the polymerized film growth mechanism are discussed.

  18. Gold-promoted styrene polymerization.

    PubMed

    Urbano, Juan; Hormigo, A Jesús; de Frémont, Pierre; Nolan, Steven P; Díaz-Requejo, M Mar; Pérez, Pedro J

    2008-02-14

    Styrene can be polymerized at room temperature in the presence of equimolar mixtures of the gold(III) complexes (NHC)AuBr3 (NHC = N-heterocyclic carbene ligand) and NaBAr'4, in the first example of a gold-induced olefin polymerization reaction.

  19. [Synthesis of anabiosis autoinducers in non-spore-forming bacteria as a mechanism regulating their activity in soil and subsoil sedimentary rocks].

    PubMed

    Muliukin, A L; Demkina, E V; Kozlova, A N; Soina, V S; El'-Registan, G I

    2001-01-01

    Non-spore-forming bacteria of the genera Arthrobacter and Micrococcus, isolated from permafrost subsoil, were found to produce greater amounts of the d1 extracellular factor than closely related collection strains isolated from soil. The effect of this factor, responsible for cell transition to anabiosis, was not species-specific. Thus, the d1 crude preparation isolated from the culture liquid of the permafrost isolate Arthrobacter globiformis 245 produced an effect on the collection strain Arthrobacter globiformis B-1112 and also on Micrococcus luteus and Bacillus cereus. The crude d1 preparation from the permafrost isolate of Arthrobacter differed from the chemical analogue of this factor, 4n-hexylresorcinol, in the level of the induced cell response, which may have resulted from different cell sensitivity to various homologs of alkylhydroxybenzenes contained in the d1 preparation. Thus, additional evidence was obtained indicating that autoregulation of bacterial growth and development is implemented at the level of intercellular interactions in microbial communities. Abundant production of the d1 anabiosis-inducing factors by bacteria isolated from permafrost subsoil is probably a result of special antistress mechanisms responsible for the survival of these bacteria under extreme conditions of natural deep cooling.

  20. Production of monodisperse, polymeric microspheres

    NASA Technical Reports Server (NTRS)

    Rembaum, Alan (Inventor); Rhim, Won-Kyu (Inventor); Hyson, Michael T. (Inventor); Chang, Manchium (Inventor)

    1990-01-01

    Very small, individual polymeric microspheres with very precise size and a wide variation in monomer type and properties are produced by deploying a precisely formed liquid monomer droplet, suitably an acrylic compound such as hydroxyethyl methacrylate into a containerless environment. The droplet which assumes a spheroid shape is subjected to polymerizing radiation such as ultraviolet or gamma radiation as it travels through the environment. Polymeric microspheres having precise diameters varying no more than plus or minus 5 percent from an average size are recovered. Many types of fillers including magnetic fillers may be dispersed in the liquid droplet.

  1. Organometallic Polymeric Conductors

    NASA Technical Reports Server (NTRS)

    Youngs, Wiley J.

    1997-01-01

    For aerospace applications, the use of polymers can result in tremendous weight savings over metals. Suitable polymeric materials for some applications like EMI shielding, spacecraft grounding, and charge dissipation must combine high electrical conductivity with long-term environmental stability, good processability, and good mechanical properties. Recently, other investigators have reported hybrid films made from an electrically conductive polymer combined with insulating polymers. In all of these instances, the films were prepared by infiltrating an insulating polymer with a precursor for a conductive polymer (either polypyrrole or polythiophene), and oxidatively polymerizing the precursor in situ. The resulting composite films have good electrical conductivity, while overcoming the brittleness inherent in most conductive polymers. Many aerospace applications require a combination of properties. Thus, hybrid films made from polyimides or other engineering resins are of primary interest, but only if conductivities on the same order as those obtained with a polystyrene base could be obtained. Hence, a series of experiments was performed to optimize the conductivity of polyimide-based composite films. The polyimide base chosen for this study was Kapton. 3-MethylThiophene (3MT) was used for the conductive phase. Three processing variables were identified for producing these composite films, namely time, temperature, and oxidant concentration for the in situ oxidation. Statistically designed experiments were used to examine the effects of these variables and synergistic/interactive effects among variables on the electrical conductivity and mechanical strength of the films. Multiple linear regression analysis of the tensile data revealed that temperature and time have the greatest effect on maximum stress. The response surface of maximum stress vs. temperature and time (for oxidant concentration at 1.2 M) is shown. Conductivity of the composite films was measured for

  2. High temperature structural, polymeric foams from high internal emulsion polymerization

    SciTech Connect

    Hoisington, M.A.; Duke, J.R.; Apen, P.G.

    1996-02-01

    In 1982, a high internal phase emulsion (HIPE) polymerization process to manufacture microcellular, polymeric foam systems was patented by Unilever. This patent discloses a polymerization process that occurs in a water-in-oil emulsion in which the water represents at least 76% of the emulsion by volume. The oil phase consists of vinyl monomers such as styrene and acrylates that are crosslinked by divinyl monomers during polymerization. After polymerization and drying to remove the water phase, the result is a crosslinked polymer foam with an open cell microstructure that is homogeneous throughout in terms of morphology, density, and mechanical properties. Since 1982, numerous patents have examined various HIPE polymerized foam processing techniques and applications that include absorbents for body fluids, cleaning materials, and ion exchange systems. All the published HIPE polymerized foams have concentrated on materials for low temperature applications. Copolymerization of styrene with maleic anhydride and N-substituted maleimides to produce heat resistant thermoplastics has been studied extensively. These investigations have shown that styrene will free radically copolymerize with N-substituted maleimides to create an alternating thermoplastic copolymer with a Tg of approximately 200{degrees}C. However, there are many difficulties in attempting the maleimide styrene copolymerization in a HIPE such as lower polymerization temperatures, maleimide solubility difficulties in both styrene and water, and difficulty obtaining a stable HIPE with a styrene/maleimide oil phase. This work describes the preparation of copolymer foams from N-ethylmaleimide and Bis(3-ethyl-5-methyl-4-maleimide-phenyl)methane with styrene based monomers and crosslinking agents.

  3. Stimulation of actin polymerization by vacuoles via Cdc42p-dependent signaling.

    PubMed

    Isgandarova, Sabina; Jones, Lynden; Forsberg, Daniel; Loncar, Ana; Dawson, John; Tedrick, Kelly; Eitzen, Gary

    2007-10-19

    We have previously shown that actin ligands inhibit the fusion of yeast vacuoles in vitro, which suggests that actin remodeling is a subreaction of membrane fusion. Here, we demonstrate the presence of vacuole-associated actin polymerization activity, and its dependence on Cdc42p and Vrp1p. Using a sensitive in vitro pyrene-actin polymerization assay, we found that vacuole membranes stimulated polymerization, and this activity increased when vacuoles were preincubated under conditions that support membrane fusion. Vacuoles purified from a VRP1-gene deletion strain showed reduced polymerization activity, which could be recovered when reconstituted with excess Vrp1p. Cdc42p regulates this activity because overexpression of dominant-negative Cdc42p significantly reduced vacuole-associated polymerization activity, while dominant-active Cdc42p increased activity. We also used size-exclusion chromatography to directly examine changes in yeast actin induced by vacuole fusion. This assay confirmed that actin undergoes polymerization in a process requiring ATP. To further confirm the need for actin polymerization during vacuole fusion, an actin polymerization-deficient mutant strain was examined. This strain showed in vivo defects in vacuole fusion, and actin purified from this strain inhibited in vitro vacuole fusion. Affinity isolation of vacuole-associated actin and in vitro binding assays revealed a polymerization-dependent interaction between actin and the SNARE Ykt6p. Our results suggest that actin polymerization is a subreaction of vacuole membrane fusion governed by Cdc42p signal transduction.

  4. Dynamic bioactive stimuli-responsive polymeric surfaces

    NASA Astrophysics Data System (ADS)

    Pearson, Heather Marie

    This dissertation focuses on the design, synthesis, and development of antimicrobial and anticoagulant surfaces of polyethylene (PE), polypropylene (PP), and poly(tetrafluoroethylene) (PTFE) polymers. Aliphatic polymeric surfaces of PE and PP polymers functionalized using click chemistry reactions by the attachment of --COOH groups via microwave plasma reactions followed by functionalization with alkyne moieties. Azide containing ampicillin (AMP) was synthesized and subsequently clicked into the alkyne prepared PE and PP surfaces. Compared to non-functionalized PP and PE surfaces, the AMP clicked surfaces exhibited substantially enhanced antimicrobial activity against Staphylococcus aureus bacteria. To expand the biocompatibility of polymeric surface anticoagulant attributes, PE and PTFE surfaces were functionalized with pH-responsive poly(2-vinyl pyridine) (P2VP) and poly(acrylic acid) (PAA) polyelectrolyte tethers terminated with NH2 and COOH groups. The goal of these studies was to develop switchable stimuli-responsive polymeric surfaces that interact with biological environments and display simultaneous antimicrobial and anticoagulant properties. Antimicrobial AMP was covalently attached to --COOH terminal ends of protected PAA, while anticoagulant heparin (HEP) was attached to terminal --NH2 groups of P2VP. When pH < 2.3, the P2VP segments are protonated and extend, but for pH > 5.5, they collapse while the PAA segments extend. Such surfaces, when exposed to Staphylococcus aureus, inhibit bacterial growth due to the presence of AMP, as well as are effective anticoagulants due to the presence of covalently attached HEP. Comparison of these "dynamic" pH responsive surfaces with "static" surfaces terminated with AMP entities show significant enhancement of longevity and surface activity against microbial film formation. The last portion of this dissertation focuses on the covalent attachment of living T1 and Φ11 bacteriophages (phages) on PE and PTFE surface

  5. Kinetics of silica polymerization

    SciTech Connect

    Weres, O.; Yee, A.; Tsao, L.

    1980-05-01

    The polymerization of silicic acid in geothermal brine-like aqueous solutions to produce amorphous silica in colloidal form has been studied experimentally and theoretically. A large amount of high quality experimental data has been generated over the temperature rang 23 to 100{sup 0}C. Wide ranges of dissolved silica concentration, pH, and sodium chloride concentration were covered. The catalytic effects of fluoride and the reaction inhibiting effects of aluminum and boron were studied also. Two basic processes have been separately studied: the formation of new colloidal particles by the homogeneous nucleation process and the deposition of dissolved silica on pre-existing colloidal particles. A rigorous theory of the formation of colloidal particles of amorphous silica by homogeneous nucleation was developed. This theory employs the Lothe-Pound formalism, and is embodied in the computer code SILNUC which quantitatively models the homogeneous nucleation and growth of colloidal silica particles in more than enough detail for practical application. The theory and code were extensively used in planning the experimental work and analyzing the data produced. The code is now complete and running in its final form. It is capable of reproducing most of the experimental results to within experimental error. It is also capable of extrapolation to experimentally inaccessible conditions, i.e., high temperatures, rapidly varying temperature and pH, etc.

  6. Some novel polymeric nanocomposites.

    PubMed

    Mark, James E

    2006-12-01

    The nanocomposites described here all involve polymers and were chosen because they are already of commercial importance, show some promise of becoming so, or simply seem interesting. The field is so broad that some topics are mentioned only very briefly, and there is considerable emphasis on the polysiloxane nanocomposites studied by the author's research group. Some are typically prepared using techniques very similar to those used in the new sol-gel approach to ceramics, with either the polymer or the ceramic being the continuous phase. Other dispersed phases include particles responsive to an applied magnetic field, intercalated or exfoliated platelets obtained from clays, mica, or graphite, silsesquioxane nanocages, nanotubes, dual fillers, porous particles, spherical and ellipsoidal polymeric particles, and nanocatalysts. Also described are some typical studies involving theory or simulations on such particle reinforcement. Experiments on ceramics modified by dispersed polymers are equally interesting, but there is less relevant theory. Many of the fields mentioned have become so vast that the approach taken here is simply to describe general approaches and characteristics of the composites, list some specific examples, and provide leading references (with some emphasis on studies that are relatively recent or in the nature of reviews).

  7. Polymerization of anionic wormlike micelles.

    PubMed

    Zhu, Zhiyuan; González, Yamaira I; Xu, Hangxun; Kaler, Eric W; Liu, Shiyong

    2006-01-31

    Polymerizable anionic wormlike micelles are obtained upon mixing the hydrotropic salt p-toluidine hydrochloride (PTHC) with the reactive anionic surfactant sodium 4-(8-methacryloyloxyoctyl)oxybenzene sulfonate (MOBS). Polymerization captures the cross-sectional radius of the micelles (approximately 2 nm), induces micellar growth, and leads to the formation of a stable single-phase dispersion of wormlike micellar polymers. The unpolymerized and polymerized micelles were characterized using static and dynamic laser light scattering, small-angle neutron scattering, 1H NMR, and stopped-flow light scattering. Stopped-flow light scattering was also used to measure the average lifetime of the unpolymerized wormlike micelles. A comparison of the average lifetime of unpolymerized wormlike micelles with the surfactant monomer propagation rate was used to elucidate the mechanism of polymerization. There is a significant correlation between the ratio of the average lifetime to the monomer propagation rate and the average aggregation number of the polymerized wormlike micelles.

  8. Polymerization of anionic wormlike micelles.

    PubMed

    Zhu, Zhiyuan; González, Yamaira I; Xu, Hangxun; Kaler, Eric W; Liu, Shiyong

    2006-01-31

    Polymerizable anionic wormlike micelles are obtained upon mixing the hydrotropic salt p-toluidine hydrochloride (PTHC) with the reactive anionic surfactant sodium 4-(8-methacryloyloxyoctyl)oxybenzene sulfonate (MOBS). Polymerization captures the cross-sectional radius of the micelles (approximately 2 nm), induces micellar growth, and leads to the formation of a stable single-phase dispersion of wormlike micellar polymers. The unpolymerized and polymerized micelles were characterized using static and dynamic laser light scattering, small-angle neutron scattering, 1H NMR, and stopped-flow light scattering. Stopped-flow light scattering was also used to measure the average lifetime of the unpolymerized wormlike micelles. A comparison of the average lifetime of unpolymerized wormlike micelles with the surfactant monomer propagation rate was used to elucidate the mechanism of polymerization. There is a significant correlation between the ratio of the average lifetime to the monomer propagation rate and the average aggregation number of the polymerized wormlike micelles. PMID:16430253

  9. Impact of Carbon Nanomaterials on Actin Polymerization.

    PubMed

    Dong, Ying; Sun, Haiyan; Li, Xu; Li, Xin; Zhao, Lina

    2016-03-01

    Many nanomaterials have entered people's daily lives and impact the normal process of biological entities consequently. As one kind of the important nanomaterials, carbon based nanomaterials have invoked a lot of concerns from scientific researches because of their unique physicochemical properties. In eukaryotes, actin is the most abundantly distributed protein in both cytoplasm and cell nucleus, and closely controls the cell proliferation and mobility. Recently, many investigations have found some carbon based nanomaterials can affect actin cytoskeleton remarkably, including fullerenes derivatives, carbon nanotubes, graphene and its derivatives. However, these interaction processes are complicated and the underlying mechanism is far from being understood clearly. In this review, we discussed the different mechanisms of carbon nanomaterials impact on actin polymerization into three pathways, as triggering the signaling pathways from carbon nanomaterials outside of cells, increasing the production of reactive oxygen species from carbon nanomaterials inside of cells and direct interaction from carbon nanomaterials inside of cells. As a result, the dimension and size of carbon nanomaterials play a key role in regulation of actin cytoskeleton. Furthermore, we forecasted the possible investigation strategy for meeting the challenges of the future study on this topic. We hope the findings are helpful in understanding the molecular mechanism in carbon nanomaterials regulating actin polymerization, and provide new insight in novel nanomedicine development for inhibition tumor cell migration. PMID:27455649

  10. Stochastic model of profilin-actin polymerization

    NASA Astrophysics Data System (ADS)

    Horan, Brandon; Vavylonis, Dimitrios

    A driving factor in cell motility and other processes that involve changes of cell shape is the rapid polymerization of actin subunits into long filaments. This process is regulated by profilin, a protein which binds to actin subunits and regulates elongation of actin filaments. Whether profilin stimulates polymerization by coupling to hydrolysis of ATP-bound actin is debated. Previous studies have proposed indirect coupling to ATP hydrolysis using rate equations, but did not include the effects of fluctuations that are important near the critical concentration. We developed stochastic simulations using the Gillespie algorithm to study single filament elongation at the barbed end in the presence of profilin. We used recently measured rate constants and estimated the rate of profilin binding to the barbed end such that detailed balance is satisfied. Fast phosphate release at the tip of the filament was accounted for. The elongation rate and length diffusivity as functions of profilin and actin concentration were calculated and used to extract the critical concentrations of free actin and of total actin. We show under what conditions profilin leads to an increase in the critical concentration of total actin but a decrease in the critical concentration of free actin.

  11. Polymeric materials in Space

    NASA Astrophysics Data System (ADS)

    Skurat, Vladimir

    Paper of short review type. It is the continuation of and addition to previous review papers "V. E. Skurat. Polymers in Space. In: Encyclopedia of aerospace engineering, vol. 4, Wiley and sons, 2010; Ibid., 2012 (on line)". Following topics are considered: (1) Destruction of polymers by solar radiation with various wavelengths in different spectral regions (visible-UV, vacuum UV (VUV), deep UV, soft and hard X-rays) are discussed. In difference with common polymer photochemistry induced by UV radiation, directions of various routs of polymer phototransformations and their relative yields are greatly dependent on wavelength of light (photon energy) during illuminations in VUV, deep UV and X-ray regions. During last twenty years, intensive spacecraft investigations of solar spectrum show great periodic and spontaneous variations of radiation intensities in short-wavelengths regions - up to one - two decimal orders of magnitude for X-rays. As a result, during solar flares the absorbed dose on the polymer surfaces from X-rays can be compared with absorbed dose from VUV radiation. (2) Some new approaches to predictions of reaction efficiencies of fast orbital atomic oxygen in their interaction with polymeric materials are considered. (3) Some aspects of photocatalitic destruction of polymers in vacuum conditions by full-spectrum solar radiation are discussed. This process can take place in enamels containing semiconducting particles (TiO2, ZnO) as pigments. (4) Contamination of spacecraft surfaces from intrinsic outer atmosphere play important role not only from the point of view of deterioration of optical and thermophysical properties. Layers of SiO2 contaminations with nanometer thicknesses can greatly diminish mass losses from perfluorinated polymers under VUV irradiation.

  12. Polymeric materials for neovascularization

    NASA Astrophysics Data System (ADS)

    DeVolder, Ross John

    Revascularization therapies have emerged as a promising strategy to treat various acute and chronic wounds, cardiovascular diseases, and tissue defects. It is common to either administer proangiogenic growth factors, such as vascular endothelial growth factor (VEGF), or transplant cells that endogenously express multiple proangiogenic factors. Additionally, these strategies utilize a wide variety of polymeric systems, including hydrogels and biodegradable plastics, to deliver proangiogenic factors in a sophisticated manner to maintain a sustained proangiogenic environment. Despite some impressive results in rebuilding vascular networks, it is still a challenging task to engineer mature and functional neovessels in target tissues, because of the increasing complexities involved with neovascularization applications. To resolve these challenges, this work aims to design a wide variety of proangiogenic biomaterial systems with tunable properties used for neovascularization therapies. This thesis describes the design of several biomaterial systems used for the delivery of proangiogenic factors in neovascularization therapies, including: an electrospun/electrosprayed biodegradable plastic patch used for directional blood vessel growth (Chapter 2), an alginate-g-pyrrole hydrogel system that biochemically stimulates cellular endogenous proangiogenic factor expression (Chapter 3), an enzyme-catalyzed alginate-g-pyrrole hydrogel system for VEGF delivery (Chapter 4), an enzyme-activated alginate-g-pyrrole hydrogel system with systematically controllable electrical and mechanical properties (Chapter 5), and an alginate-g-pyrrole hydrogel that enables the decoupled control of electrical conductivity and mechanical rigidity and is use to electrically stimulate cellular endogenous proangiogenic factor expression (Chapter 6). Overall, the biomaterial systems developed in this thesis will be broadly useful for improving the quality of a wide array of molecular and cellular based

  13. Mechanochemical solid-state polymerization. VIII. Novel composite polymeric prodrugs prepared by mechanochemical polymerization in the presence of pharmaceutical aids.

    PubMed

    Kondo, S; Hosaka, S; Kuzuya, M

    1998-04-01

    We carried out the mechanochemical polymerization of methacryloyl derivatives of acetoaminophen and 5-fluorouracil in the presence of lactose. The reaction proceeded readily and the polymeric prodrugs were quantitatively produced. This method produces powdered polymeric prodrugs in which fine particles of lactose are homogeneously dispersed, since the reaction proceeds quantitatively through a totally dry process. It is difficult to prepare such a powdered polymeric prodrug by conventional solution polymerization. The rate of drug release of polymeric prodrugs increases with increasing content of lactose, as is shown to be true of the specific surface of polymeric prodrugs. These results suggest that lactose is homogeneously dispersed in powdered polymeric prodrugs. The present method seems applicable to a wide variety of pharmaceutical aids. If one takes the physiochemical property of pharmaceutical aids into consideration, novel polymeric prodrugs with a variety of drug release rates can be synthesized simultaneously with mixing. PMID:9579043

  14. One carbon metabolism in anaerobic bacteria: Regulation of carbon and electron flow during organic acid production. Progress report, June 1990--May 1992

    SciTech Connect

    Zeikus, J.G.; Jain, M.K.

    1992-04-01

    This reporting period, progress is reported on the following: metabolic pathway of solvent production in B. methylotrophicum; the biochemical mechanism for metabolic regulation of the succinate fermentation; models to understand the physiobiochemical function of formate metabolism in anaerobes and; models for understanding the influence of low pH on one carbon metabolism. (CBS)

  15. Beneficial bacteria inhibit cachexia

    PubMed Central

    Varian, Bernard J.; Goureshetti, Sravya; Poutahidis, Theofilos; Lakritz, Jessica R.; Levkovich, Tatiana; Kwok, Caitlin; Teliousis, Konstantinos; Ibrahim, Yassin M.; Mirabal, Sheyla; Erdman, Susan E.

    2016-01-01

    Muscle wasting, known as cachexia, is a debilitating condition associated with chronic inflammation such as during cancer. Beneficial microbes have been shown to optimize systemic inflammatory tone during good health; however, interactions between microbes and host immunity in the context of cachexia are incompletely understood. Here we use mouse models to test roles for bacteria in muscle wasting syndromes. We find that feeding of a human commensal microbe, Lactobacillus reuteri, to mice is sufficient to lower systemic indices of inflammation and inhibit cachexia. Further, the microbial muscle-building phenomenon extends to normal aging as wild type animals exhibited increased growth hormone levels and up-regulation of transcription factor Forkhead Box N1 [FoxN1] associated with thymus gland retention and longevity. Interestingly, mice with a defective FoxN1 gene (athymic nude) fail to inhibit sarcopenia after L. reuteri therapy, indicating a FoxN1-mediated mechanism. In conclusion, symbiotic bacteria may serve to stimulate FoxN1 and thymic functions that regulate inflammation, offering possible alternatives for cachexia prevention and novel insights into roles for microbiota in mammalian ontogeny and phylogeny. PMID:26933816

  16. Nitrogen control in bacteria.

    PubMed

    Merrick, M J; Edwards, R A

    1995-12-01

    Nitrogen metabolism in prokaryotes involves the coordinated expression of a large number of enzymes concerned with both utilization of extracellular nitrogen sources and intracellular biosynthesis of nitrogen-containing compounds. The control of this expression is determined by the availability of fixed nitrogen to the cell and is effected by complex regulatory networks involving regulation at both the transcriptional and posttranslational levels. While the most detailed studies to date have been carried out with enteric bacteria, there is a considerable body of evidence to show that the nitrogen regulation (ntr) systems described in the enterics extend to many other genera. Furthermore, as the range of bacteria in which the phenomenon of nitrogen control is examined is being extended, new regulatory mechanisms are also being discovered. In this review, we have attempted to summarize recent research in prokaryotic nitrogen control; to show the ubiquity of the ntr system, at least in gram-negative organisms; and to identify those areas and groups of organisms about which there is much still to learn. PMID:8531888

  17. Beneficial bacteria inhibit cachexia.

    PubMed

    Varian, Bernard J; Goureshetti, Sravya; Poutahidis, Theofilos; Lakritz, Jessica R; Levkovich, Tatiana; Kwok, Caitlin; Teliousis, Konstantinos; Ibrahim, Yassin M; Mirabal, Sheyla; Erdman, Susan E

    2016-03-15

    Muscle wasting, known as cachexia, is a debilitating condition associated with chronic inflammation such as during cancer. Beneficial microbes have been shown to optimize systemic inflammatory tone during good health; however, interactions between microbes and host immunity in the context of cachexia are incompletely understood. Here we use mouse models to test roles for bacteria in muscle wasting syndromes. We find that feeding of a human commensal microbe, Lactobacillus reuteri, to mice is sufficient to lower systemic indices of inflammation and inhibit cachexia. Further, the microbial muscle-building phenomenon extends to normal aging as wild type animals exhibited increased growth hormone levels and up-regulation of transcription factor Forkhead Box N1 [FoxN1] associated with thymus gland retention and longevity. Interestingly, mice with a defective FoxN1 gene (athymic nude) fail to inhibit sarcopenia after L. reuteri therapy, indicating a FoxN1-mediated mechanism. In conclusion, symbiotic bacteria may serve to stimulate FoxN1 and thymic functions that regulate inflammation, offering possible alternatives for cachexia prevention and novel insights into roles for microbiota in mammalian ontogeny and phylogeny. PMID:26933816

  18. Nitrogen control in bacteria.

    PubMed Central

    Merrick, M J; Edwards, R A

    1995-01-01

    Nitrogen metabolism in prokaryotes involves the coordinated expression of a large number of enzymes concerned with both utilization of extracellular nitrogen sources and intracellular biosynthesis of nitrogen-containing compounds. The control of this expression is determined by the availability of fixed nitrogen to the cell and is effected by complex regulatory networks involving regulation at both the transcriptional and posttranslational levels. While the most detailed studies to date have been carried out with enteric bacteria, there is a considerable body of evidence to show that the nitrogen regulation (ntr) systems described in the enterics extend to many other genera. Furthermore, as the range of bacteria in which the phenomenon of nitrogen control is examined is being extended, new regulatory mechanisms are also being discovered. In this review, we have attempted to summarize recent research in prokaryotic nitrogen control; to show the ubiquity of the ntr system, at least in gram-negative organisms; and to identify those areas and groups of organisms about which there is much still to learn. PMID:8531888

  19. Stereospecific olefin polymerization catalysts

    DOEpatents

    Bercaw, John E.; Herzog, Timothy A.

    1998-01-01

    A metallocene catalyst system for the polymerization of .alpha.-olefins to yield stereospecific polymers including syndiotactic, and isotactic polymers. The catalyst system includes a metal and a ligand of the formula ##STR1## wherein: R.sup.1, R.sup.2, and R.sup.3 are independently selected from the group consisting of hydrogen, C.sub.1 to C.sub.10 alkyl, 5 to 7 membered cycloalkyl, which in turn may have from 1 to 3 C.sub.1 to C.sub.10 alkyls as a substituent, C.sub.6 to C.sub.15 aryl or arylalkyl in which two adjacent radicals may together stand for cyclic groups having 4 to 15 carbon atoms which in turn may be substituted, or Si(R.sup.8).sub.3 where R.sup.8 is selected from the group consisting of C.sub.1 to C.sub.10 alkyl, C.sub.6 to C.sub.15 aryl or C.sub.3 to C.sub.10 cycloalkyl; R.sup.4 and R.sup.6 are substituents both having van der Waals radii larger than the van der Waals radii of groups R.sup.1 and R.sup.3 ; R.sup.5 is a substituent having a van der Waals radius less than about the van der Waals radius of a methyl group; E.sup.1, E.sup.2 are independently selected from the group consisting of Si(R.sup.9).sub.2, Si(R.sup.9).sub.2 --Si(R.sup.9).sub.2, Ge(R.sup.9).sub.2, Sn(R.sup.9).sub.2, C(R.sup.9).sub.2, C(R.sup.9).sub.2 --C(R.sup.9).sub.2, where R.sup.9 is C.sub.1 to C.sub.10 alkyl, C.sub.6 to C.sub.15 aryl or C.sub.3 to C.sub.10 cycloalkyl; and the ligand may have C.sub.S or C.sub.1 -symmetry. Preferred metals are selected from the group consisting of group III, group IV, group V or lanthanide group elements. The catalysts are used to prepare stereoregular polymers including polypropylene from .alpha.-olefin monomers.

  20. Stereospecific olefin polymerization catalysts

    DOEpatents

    Bercaw, J.E.; Herzog, T.A.

    1998-01-13

    A metallocene catalyst system is described for the polymerization of {alpha}-olefins to yield stereospecific polymers including syndiotactic, and isotactic polymers. The catalyst system includes a metal and a ligand of the formula shown wherein: R{sup 1}, R{sup 2}, and R{sup 3} are independently selected from the group consisting of hydrogen, C{sub 1} to C{sub 10} alkyl, 5 to 7 membered cycloalkyl, which in turn may have from 1 to 3 C{sub 1} to C{sub 10} alkyls as a substituent, C{sub 6} to C{sub 15} aryl or arylalkyl in which two adjacent radicals may together stand for cyclic groups having 4 to 15 carbon atoms which in turn may be substituted, or Si(R{sup 8}){sub 3} where R{sup 8} is selected from the group consisting of C{sub 1} to C{sub 10} alkyl, C{sub 6} to C{sub 15} aryl or C{sub 3} to C{sub 10} cycloalkyl; R{sup 4} and R{sup 6} are substituents both having van der Waals radii larger than the van der Waals radii of groups R{sup 1} and R{sup 3}; R{sup 5} is a substituent having a van der Waals radius less than about the van der Waals radius of a methyl group; E{sup 1}, E{sup 2} are independently selected from the group consisting of Si(R{sup 9}){sub 2}, Si(R{sup 9}){sub 2}--Si(R{sup 9}){sub 2}, Ge(R{sup 9}){sub 2}, Sn(R{sup 9}){sub 2}, C(R{sup 9}){sub 2}, C(R{sup 9}){sub 2}--C(R{sup 9}){sub 2}, where R{sup 9} is C{sub 1} to C{sub 10} alkyl, C{sub 6} to C{sub 15} aryl or C{sub 3} to C{sub 10} cycloalkyl; and the ligand may have C{sub S} or C{sub 1}-symmetry. Preferred metals are selected from the group consisting of group III, group IV, group V or lanthanide group elements. The catalysts are used to prepare stereoregular polymers including polypropylene from {alpha}-olefin monomers.

  1. Polymeric bicontinuous microemulsions

    NASA Astrophysics Data System (ADS)

    Krishnan, Kasiraman

    Rheology of complex fluids has been a topic of considerable interest recently. Bicontinuous microemulsions (BmuE), made by mixing appropriate amounts of oil, water and a surfactant, form a unique class of complex fluids. They possess a characteristic nanostructure consisting of undulating surfaces with vanishingly small interfacial curvature. BmuEs can also be generated in polymers by mixing appropriate amounts of two homopolymers and their corresponding diblock copolymer. The main objective of the present research is to study effects of shear on a model polymeric BmuE. Scattering is used as a predominant tool with in situ flow devices, along with optical microscopy and rheology. The model BmuE consists of a ternary blend of poly(ethyl ethylene) (PEE), poly(dimethyl siloxane) (PDMS) and a PEE-PDMS diblock copolymer. Steady shear experiments reveal four regimes as a function of shear rate. At low shear rates (regime I), Newtonian behavior is observed; there is onset of shear thinning at higher rates (regime II). In regime III, the stress is independent of shear rate, whereas it increases with shear rate once again in regime IV. Morphological characterization was carried out for each of these four regimes using scattering and microscopy, the key result being the evidence for flow-induced phase separation in regime III. Transient rheological measurements were conducted for startup and step changes in shear rate, and the BmuE exhibits features similar to worm-like micellar colloidal systems. Time-resolved light scattering and microscopy also reveal interesting characteristics. Dynamic mechanical spectroscopy indicates similarities with neat block copolymers near the order-disorder transition. The equilibrium rheological behavior is intriguing and detailed comparisons are made with Landau-Ginzburg theoretical models. Other areas of research as a part of this thesis include study of structural dynamics of BmuEs with dynamic light scattering, and the rheological

  2. Distribution of tetracycline resistance genes in anaerobic treatment of waste sludge: The role of pH in regulating tetracycline resistant bacteria and horizontal gene transfer.

    PubMed

    Huang, Haining; Chen, Yinguang; Zheng, Xiong; Su, Yinglong; Wan, Rui; Yang, Shouye

    2016-10-01

    Although pH value has been widely regarded as an important factor that affects resource recovery of waste sludge, the potential influence of diverse pHs on the distribution of tetracycline resistance genes (TRGs) during sludge anaerobic treatment is largely unknown. Here we reported that in the range of pH 4-10, 0.58-1.18 log unit increase of target TRGs was observed at pH 4, compared with that at pH 7, while 0.70-1.31 log unit further removal were obtained at pH 10. Mechanism study revealed that varied pHs not only altered the community structures of tetracycline resistant bacteria (TRB), but also changed their relative abundances, benefitting the propagation (acidic pHs) or attenuation (alkaline pHs) of TRB. Further investigation indicated that the amount and gene-possessing abilities of key genetic vectors for horizontal TRGs transfer were greatly promoted at acidic pHs but restricted under alkaline conditions. PMID:27485281

  3. Ternary complex formation between AmtB, GlnZ and the nitrogenase regulatory enzyme DraG reveals a novel facet of nitrogen regulation in bacteria.

    PubMed

    Huergo, Luciano F; Merrick, Mike; Pedrosa, Fábio O; Chubatsu, Leda S; Araujo, Luíza M; Souza, Emanuel M

    2007-12-01

    Ammonium movement across biological membranes is facilitated by a class of ubiquitous channel proteins from the Amt/Rh family. Amt proteins have also been implicated in cellular responses to ammonium availability in many organisms. Ammonium sensing by Amt in bacteria is mediated by complex formation with cytosolic proteins of the P(II) family. In this study we have characterized in vitro complex formation between the AmtB and P(II) proteins (GlnB and GlnZ) from the diazotrophic plant-associative bacterium Azospirillum brasilense. AmtB-P(II) complex formation only occurred in the presence of adenine nucleotides and was sensitive to 2-oxoglutarate when Mg(2+) and ATP were present, but not when ATP was substituted by ADP. We have also shown in vitro complex formation between GlnZ and the nitrogenase regulatory enzyme DraG, which was stimulated by ADP. The stoichiometry of this complex was 1:1 (DraG monomer : GlnZ trimer). We have previously reported that in vivo high levels of extracellular ammonium cause DraG to be sequestered to the cell membrane in an AmtB and GlnZ-dependent manner. We now report the reconstitution of a ternary complex involving AmtB, GlnZ and DraG in vitro. Sequestration of a regulatory protein by the membrane-bound AmtB-P(II) complex defines a new regulatory role for Amt proteins in Prokaryotes.

  4. clpP of Streptococcus salivarius Is a Novel Member of the Dually Regulated Class of Stress Response Genes in Gram-Positive Bacteria

    PubMed Central

    Chastanet, Arnaud; Msadek, Tarek

    2003-01-01

    Nucleotide sequence analysis of the Streptococcus salivarius clpP locus revealed potential binding sites for both the CtsR and HrcA repressors. Dual regulation by HrcA and CtsR was demonstrated by using Bacillus subtilis as a heterologous host, and CtsR was shown to bind directly to the clpP promoter sequence. This is the first example of a clpP gene under the control of HrcA. PMID:12511518

  5. Magnetic bacteria against MIC

    SciTech Connect

    Javaherdashti, R.

    1997-12-01

    In this article, it is suggested to use the sensitivity of magnetotactic bacteria to changes of magnetic field direction and the natural ability of this bacteria in rapid growth during relatively short time intervals against corrosion-enhancing bacteria and especially sulfate-reducing bacteria. If colonies of sulfate-reducing bacteria could be packed among magnetotactic bacteria, then, by applying sufficiently powerful magnetic field (about 0.5 gauss), all of these bacteria (magnetic and non-magnetic) will be oriented towards an Anti-bacteria agent (oxygen or biocide). So, Microbiologically-Influenced Corrosion in the system would be controlled to a large extent.

  6. Back To Bacteria.

    ERIC Educational Resources Information Center

    Flannery, Maura C.

    1997-01-01

    Explores new research about bacteria. Discusses bacterial genomes, archaea, unusual environments, evolution, pathogens, bacterial movement, biofilms, bacteria in the body, and a bacterial obsession. Contains 29 references. (JRH)

  7. Factors regulating community composition of methanogens and sulfate-reducing bacteria in brackish marsh sediments in the Min River estuary, southeastern China

    NASA Astrophysics Data System (ADS)

    She, C. X.; Zhang, Z. C.; Cadillo-Quiroz, H.; Tong, C.

    2016-11-01

    Assessing the diverse communities of methanogenic Archaea and sulfate-reducing bacteria (SRB) is important to understand methane (CH4) production in wetland ecosystems. However, the vertical distribution of composition and diversity, and the effects of environmental factors on the methanogen and SRB communities in the sediments of subtropical estuarine brackish marshes have been poorly characterized. To assess the effects of variable environmental conditions on methanogenic and SRB communities in marshes, we studied three brackish marsh zones dominated by Phragmites australis, Cyperus malaccensis and Spartina alterniflora, respectively, in the Min River estuary, southeastern China. Methanogens of the Methanomicrobiales order was the dominant group at sediment depths of 0-30 cm, which indicated that the main pathway of methane production was H2/CO2 in this zone. In general, methanogens of the genus Methanoregula were dominant in the three marsh zones. For SRB, Desulfobacterales was the dominant group, and Desulfobacterium and Desulfosarcina were the predominant genera at the depth of 0-30 cm. The community composition of methanogens and SRB changed with vegetation type and soil depth. Compared with SRB, vegetation type demonstrated a stronger influence on the community composition of methanogens. Canonical correspondence analysis (CCA) analysis further revealed that the main factors affecting the methanogens community composition were EC (electric conductivity) and pH, and the main factors affecting SRB community composition were pH, SOC and TN, suggesting that pH is a common factor influencing the community compositions of both methanogen and SRB in the sediments of brackish marshes.

  8. On-demand photoinitiated polymerization

    SciTech Connect

    Boydston, Andrew J; Grubbs, Robert H; Daeffler, Chris; Momcilovic, Nebojsa

    2013-12-10

    Compositions and methods for adjustable lenses are provided. In some embodiments, the lenses contain a lens matrix material, a masking compound, and a prepolymer. The lens matrix material provides structure to the lens. The masking compound is capable of blocking polymerization or crosslinking of the prepolymer, until photoisomerization of the compound is triggered, and the compound is converted from a first isomer to a second isomer having a different absorption profile. The prepolymer is a composition that can undergo a polymerization or crosslinking reaction upon photoinitiation to alter one or more of the properties of the lenses.

  9. On-demand photoinitiated polymerization

    SciTech Connect

    Boydston, Andrew J; Grubbs, Robert H; Daeffler, Chris; Momcilovic, Nebojsa

    2015-01-13

    Compositions and methods for adjustable lenses are provided. In some embodiments, the lenses contain a lens matrix material, a masking compound, and a prepolymer. The lens matrix material provides structure to the lens. The masking compound is capable of blocking polymerization or crosslinking of the prepolymer, until photoisomerization of the compound is triggered, and the compound is converted from a first isomer to a second isomer having a different absorption profile. The prepolymer is a composition that can undergo a polymerization or crosslinking reaction upon photoinitiation to alter one or more of the properties of the lenses.

  10. Thermally Stable, Piezoelectric and Pyroelectric Polymeric Substrates

    NASA Technical Reports Server (NTRS)

    Simpson, Joycely O. (Inventor); St.Clair, Terry L. (Inventor)

    1999-01-01

    A thermally stable, piezoelectric and pyroelectric polymeric substrate was prepared. This thermally stable, piezoelectric and pyroelectric polymeric substrate may be used to prepare electromechanical transducers, thermomechanical transducers, accelerometers. acoustic sensors, infrared sensors, pressure sensors, vibration sensors, impact sensors, in-situ temperature sensors, in-situ stress/strain sensors, micro actuators, switches, adjustable fresnel lenses, speakers, tactile sensors. weather sensors, micro positioners, ultrasonic devices, power generators, tunable reflectors, microphones, and hydrophones. The process for preparing these polymeric substrates includes: providing a polymeric substrate having a softening temperature greater than 1000 C; depositing a metal electrode material onto the polymer film; attaching a plurality of electrical leads to the metal electrode coated polymeric substrate; heating the metal electrode coated polymeric substrate in a low dielectric medium; applying a voltage to the heated metal electrode coated polymeric substrate to induce polarization; and cooling the polarized metal electrode coated polymeric electrode while maintaining a constant voltage.

  11. Novel polymeric materials from triglycerides

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Triglycerides are good platforms for new polymeric products that can substitute for petroleum-based materials. As part of our research emphasis in sustainability and green polymer chemistry, we have explored a number of reactions in efforts to produce a wide range of value-added products. In this ...

  12. Supramolecular polymerization: Living it up

    NASA Astrophysics Data System (ADS)

    Würthner, Frank

    2014-03-01

    Protein fibril formation is involved in many human diseases and thus has been mechanistically elucidated in the context of understanding -- and in turn treating -- them. This biological phenomenon has now also inspired the design of a supramolecular system that undergoes living polymerization.

  13. The absorption of polymeric composites

    NASA Astrophysics Data System (ADS)

    Řídký, R.; Popovič, M.; Rolc, S.; Drdlová, M.; Krátký, J.

    2016-06-01

    An absorption capacity of soft, viscoelastic materials at high strain rates is important for wide range of practical applications. Nowadays there are many variants of numerical models suitable for this kind of analysis. The main difficulty is in selection of the most realistic numerical model and a correct setup of many unknown material constants. Cooperation between theoretical simulations and real testing is next crucial point in the investigation process. Standard open source material database offer material properties valid for strain rates less than 250 s-1. There are experiments suitable for analysis of material properties with strain rates close to 2000 s-1. The high strain-rate characteristics of a specific porous blast energy absorbing material measured by modified Split Hopkinson Pressure Bar apparatus is presented in this study. Testing these low impedance materials using a metallic split Hopkinson pressure bar setup results in poor signal to noise ratios due to impedance mismatching. These difficulties are overcome by using polymeric Hopkinson bars. Conventional Hopkinson bar analysis cannot be used on the polymeric bars due to the viscoelastic nature of the bar material. One of the possible solution leads to complex and frequency depended Young modulus of testing bars material. This testing technique was applied to materials composed of porous glass/ceramic filler and polymeric binder, with density of 125 - 300 kg/m3 and particle size in range of 50 µm - 2 mm. The achieved material model was verified in practical application of sandwich structure includes polymeric composites under a blast test.

  14. The Viscosity of Polymeric Fluids.

    ERIC Educational Resources Information Center

    Perrin, J. E.; Martin, G. C.

    1983-01-01

    To illustrate the behavior of polymeric fluids and in what respects they differ from Newtonian liquids, an experiment was developed to account for the shear-rate dependence of non-Newtonian fluids. Background information, procedures, and results are provided for the experiment. Useful in transport processes, fluid mechanics, or physical chemistry…

  15. Buckling of polymerized monomolecular films

    NASA Astrophysics Data System (ADS)

    Bourdieu, L.; Daillant, J.; Chatenay, D.; Braslau, A.; Colson, D.

    1994-03-01

    The buckling of a two-dimensional polymer network at the air-water interface has been evidenced by grazing incidence x-ray scattering. A comprehensive description of the inhomogeneous octadecyltrichlorosilane polymerized film was obtained by atomic force microscopy and x-ray scattering measurements. The buckling occurs with a characteristic wavelength ~=10 μm.

  16. Nonlinear optical and conductive polymeric material

    DOEpatents

    Barton, Thomas J.; Ijadi-Maghsoodi, Sina; Pang, Yi

    1992-05-19

    A polymeric material which exhibits nonlinear optical properties if undoped and conductive properties if doped. The polymer is prepared by polymerizing diethynylsilane compositions, the resulting polymeric material having a weight average molecular weight between about 20,000 and about 200,000 grams per mole. The polymer is prepared and catalytically polymerized by exposure to a catalyst, such as MoCl.sub.5 or W(CO).sub.6 /hv.

  17. Nonlinear optical and conductive polymeric material

    DOEpatents

    Barton, Thomas J.; Ijadi-Maghsoodi, Sina; Pang, Yi

    1993-10-19

    A polymeric material which exhibits nonlinear optical properties if undoped and conductive properties if doped. The polymer is prepared by polymerizing diethynylsilane compositions, the resulting polymeric material having a weight average molecular weight between about 20,000 and about 200,000 grams per mole. The polymer is prepared and catalytically polymerized by exposure to a catalyst, such as MoCl.sub.5 or W(CO).sub.6 /hv.

  18. Nonlinear optical and conductive polymeric material

    DOEpatents

    Barton, T.J.; Ijadi-Maghsooodi, S; Yi Pang.

    1993-10-19

    A polymeric material is described which exhibits nonlinear optical properties if undoped and conductive properties if doped. The polymer is prepared by polymerizing diethynylsilane compositions, the resulting polymeric material having a weight average molecular weight between about 20,000 and about 200,000 grams per mole. The polymer is prepared and catalytically polymerized by exposure to a catalyst, such as MoCl[sub 5] or W(CO)[sub 6].

  19. Nonlinear optical and conductive polymeric material

    DOEpatents

    Barton, T.J.; Ijadi-Maghsoodi, S.; Pang, Y.

    1992-05-19

    A polymeric material which exhibits nonlinear optical properties if undoped and conductive properties if doped. The polymer is prepared by polymerizing diethynylsilane compositions, the resulting polymeric material having a weight average molecular weight between about 20,000 and about 200,000 grams per mole. The polymer is prepared and catalytically polymerized by exposure to a catalyst, such as MoCl[sub 5] or W(CO)[sub 6]/hv.

  20. Glycine Polymerization on Oxide Minerals

    NASA Astrophysics Data System (ADS)

    Kitadai, Norio; Oonishi, Hiroyuki; Umemoto, Koichiro; Usui, Tomohiro; Fukushi, Keisuke; Nakashima, Satoru

    2016-07-01

    It has long been suggested that mineral surfaces played an important role in peptide bond formation on the primitive Earth. However, it remains unclear which mineral species was key to the prebiotic processes. This is because great discrepancies exist among the reported catalytic efficiencies of minerals for amino acid polymerizations, owing to mutually different experimental conditions. This study examined polymerization of glycine (Gly) on nine oxide minerals (amorphous silica, quartz, α-alumina and γ-alumina, anatase, rutile, hematite, magnetite, and forsterite) using identical preparation, heating, and analytical procedures. Results showed that a rutile surface is the most effective site for Gly polymerization in terms of both amounts and lengths of Gly polymers synthesized. The catalytic efficiency decreased as rutile > anatase > γ-alumina > forsterite > α- alumina > magnetite > hematite > quartz > amorphous silica. Based on reported molecular-level information for adsorption of Gly on these minerals, polymerization activation was inferred to have arisen from deprotonation of the NH3 + group of adsorbed Gly to the nucleophilic NH2 group, and from withdrawal of electron density from the carboxyl carbon to the surface metal ions. The orientation of adsorbed Gly on minerals is also a factor influencing the Gly reactivity. The examination of Gly-mineral interactions under identical experimental conditions has enabled the direct comparison of various minerals' catalytic efficiencies and has made discussion of polymerization mechanisms and their relative influences possible Further systematic investigations using the approach reported herein (which are expected to be fruitful) combined with future microscopic surface analyses will elucidate the role of minerals in the process of abiotic peptide bond formation.

  1. Chemical communication in bacteria

    NASA Astrophysics Data System (ADS)

    Suravajhala, Srinivasa Sandeep; Saini, Deepak; Nott, Prabhu

    Luminescence in Vibrio fischeri is a model for quorum-sensing-gene-regulation in bacteria. We study luminescence response of V. fischeri to both internal and external cues at the single cell and population level. Experiments with ES114, a wild-type strain, and ainS mutant show that luminescence induction in cultures is not always proportional to cell-density and there is always a basal level of luminescence. At any given concentration of the exogenously added signals, C6-HSL and C8-HSL, luminescence per cell reaches a maximum during the exponential phase and decreases thereafter. We hypothesize that (1) C6-HSL production and LuxR activity are not proportional to cell-density, and (2) there is a shift in equilibrium from C6-HSL to C8-HSL during the later stages of growth of the culture. RT-PCR analysis of luxI and luxR shows that the expression of these genes is maximum corresponding to the highest level of luminescence. The shift in equilibrium is shown by studying competitive binding of C6-HSL and C8-HSL to LuxR. We argue that luminescence is a unicellular behaviour, and an intensive property like per cell luminescence is more important than gross luminescence of the population in understanding response of bacteria to chemical signalling. Funding from the Department of Science and Technology, India is acknowledged.

  2. Bioinspired anchoring AgNPs onto micro-nanoporous TiO2 orthopedic coatings: Trap-killing of bacteria, surface-regulated osteoblast functions and host responses.

    PubMed

    Jia, Zhaojun; Xiu, Peng; Li, Ming; Xu, Xuchen; Shi, Yuying; Cheng, Yan; Wei, Shicheng; Zheng, Yufeng; Xi, Tingfei; Cai, Hong; Liu, Zhongjun

    2016-01-01

    The therapeutic applications of silver nanoparticles (AgNPs) against biomedical device-associated infections (BAI), by local delivery, are encountered with risks of detachment, instability and nanotoxicity in physiological milieus. To firmly anchor AgNPs onto modified biomaterial surfaces through tight physicochemical interactions would potentially relieve these concerns. Herein, we present a strategy for hierarchical TiO2/Ag coating, in an attempt to endow medical titanium (Ti) with anticorrosion and antibacterial properties whilst maintaining normal biological functions. In brief, by harnessing the adhesion and reactivity of bioinspired polydopamine, silver nanoparticles were easily immobilized onto peripheral surface and incorporated into interior cavity of a micro/nanoporous TiO2 ceramic coating in situ grown from template Ti. The resulting coating protected the substrate well from corrosion and gave a sustained release of Ag(+) up to 28 d. An interesting germicidal effect, termed "trap-killing", was observed against Staphylococcus aureus strain. The multiple osteoblast responses, i.e. adherence, spreading, proliferation, and differentiation, were retained normal or promoted, via a putative surface-initiated self-regulation mechanism. After subcutaneous implantation for a month, the coated specimens elicited minimal, comparable inflammatory responses relative to the control. Moreover, this simple and safe functionalization strategy manifested a good degree of flexibility towards three-dimensional sophisticated objects. Expectedly, it can become a prospective bench to bedside solution to current challenges facing orthopedics.

  3. Plasma polymerized carvone as an antibacterial and biocompatible coating.

    PubMed

    Chan, Yuen Wah; Siow, Kim Shyong; Ng, Pei Yuen; Gires, Usup; Yeop Majlis, Burhanuddin

    2016-11-01

    Antibacterial coating is important to prevent the colonization of medical devices by biofilm forming bacteria that would cause infection and sepsis in patients. Current coating techniques such as immobilization of antimicrobial compounds, time-releasing antibiotic agents and silver nanoparticles, require multiple processing steps, and they have low efficacy and low stability. We proposed a single-step plasma polymerization of an essential oil known as carvone to produce a moderately hydrophobic antibacterial coating (ppCar) with an average roughness of <1nm. ppCar had a static water contact angle of 78°, even after 10days of air aging and it maintained its stability throughout 24h of LB broth immersion. ppCar showed promising results in the live-dead fluorescence assay and crystal violet assay. The biofilm assay showed an effective reduction of E. coli and S. aureus bacteria by 86% and 84% respectively. ppCar is also shown to rupture the bacteria membrane for its bactericidal effects. The cytotoxicity test indicated that the coating is not cytotoxic to the human cell line. This study would be of interest to researcher keen on producing a bacteria-resistance and biocompatible coating on different substrates in a cost-effective manner. PMID:27524089

  4. Plasma polymerized carvone as an antibacterial and biocompatible coating.

    PubMed

    Chan, Yuen Wah; Siow, Kim Shyong; Ng, Pei Yuen; Gires, Usup; Yeop Majlis, Burhanuddin

    2016-11-01

    Antibacterial coating is important to prevent the colonization of medical devices by biofilm forming bacteria that would cause infection and sepsis in patients. Current coating techniques such as immobilization of antimicrobial compounds, time-releasing antibiotic agents and silver nanoparticles, require multiple processing steps, and they have low efficacy and low stability. We proposed a single-step plasma polymerization of an essential oil known as carvone to produce a moderately hydrophobic antibacterial coating (ppCar) with an average roughness of <1nm. ppCar had a static water contact angle of 78°, even after 10days of air aging and it maintained its stability throughout 24h of LB broth immersion. ppCar showed promising results in the live-dead fluorescence assay and crystal violet assay. The biofilm assay showed an effective reduction of E. coli and S. aureus bacteria by 86% and 84% respectively. ppCar is also shown to rupture the bacteria membrane for its bactericidal effects. The cytotoxicity test indicated that the coating is not cytotoxic to the human cell line. This study would be of interest to researcher keen on producing a bacteria-resistance and biocompatible coating on different substrates in a cost-effective manner.

  5. Polymeric cationic substituted acrylamide surfactants

    SciTech Connect

    Nieh, E.C.Y.

    1983-11-15

    A new composition of matter comprises a copolymer of a surface active quaternary ammonium monomer salt and from 50 to 97% by wt of acrylamide. The new copolymers can have molecular weights substantially greater than 10,000 and still remain water soluble and surface active. Copolymers are prepared by polymerization techniques known in the art. The quaternary ammonium monomer is dispersed under inert atmosphere in aqueous solution which may additionally contain dissolved therein a low molecular weight alcohol such as ethanol, isopropanol, and the like. Acidic polymerization initiator such as the azo initiators, organic peroxides, or redox initiators such as the sulfite- persulfate system is then added in an amount calculated to yield a polymer product of desired molecular weight. (14 claims.

  6. Metal containing polymeric functional microspheres

    NASA Technical Reports Server (NTRS)

    Yen, Shiao-Ping S. (Inventor); Rembaum, Alan (Inventor); Molday, Robert S. (Inventor)

    1979-01-01

    Polymeric functional microspheres containing metal or metal compounds are formed by addition polymerization of a covalently bondable olefinic monomer such as hydroxyethylmethacrylate in the presence of finely divided metal or metal oxide particles, such as iron, gold, platinum or magnetite, which are embedded in the resulting microspheres. The microspheres can be covalently bonded to chemotherapeutic agents, antibodies, or other proteins providing a means for labeling or separating labeled cells. Labeled cells or microspheres can be concentrated at a specific body location such as in the vicinity of a malignant tumor by applying a magnetic field to the location and then introducing the magnetically attractable microspheres or cells into the circulatory system of the subject. Labeled cells can be separated from a cell mixture by applying a predetermined magnetic field to a tube in which the mixture is flowing. After collection of the labeled cells, the magnetic field is discontinued and the labeled sub-cell population recovered.

  7. Bacteria isolated from amoebae/bacteria consortium

    DOEpatents

    Tyndall, R.L.

    1995-05-30

    New protozoan derived microbial consortia and method for their isolation are provided. Consortia and bacteria isolated therefrom are useful for treating wastes such as trichloroethylene and trinitrotoluene. Consortia, bacteria isolated therefrom, and dispersants isolated therefrom are useful for dispersing hydrocarbons such as oil, creosote, wax, and grease.

  8. Bacteria isolated from amoebae/bacteria consortium

    DOEpatents

    Tyndall, Richard L.

    1995-01-01

    New protozoan derived microbial consortia and method for their isolation are provided. Consortia and bacteria isolated therefrom are useful for treating wastes such as trichloroethylene and trinitrotoluene. Consortia, bacteria isolated therefrom, and dispersants isolated therefrom are useful for dispersing hydrocarbons such as oil, creosote, wax, and grease.

  9. The indentation of pressurized elastic shells: from polymeric capsules to yeast cells

    PubMed Central

    Vella, Dominic; Ajdari, Amin; Vaziri, Ashkan; Boudaoud, Arezki

    2012-01-01

    Pressurized elastic capsules arise at scales ranging from the 10 m diameter pressure vessels used to store propane at oil refineries to the microscopic polymeric capsules that may be used in drug delivery. Nature also makes extensive use of pressurized elastic capsules: plant cells, bacteria and fungi have stiff walls, which are subject to an internal turgor pressure. Here, we present theoretical, numerical and experimental investigations of the indentation of a linearly elastic shell subject to a constant internal pressure. We show that, unlike unpressurized shells, the relationship between force and displacement demonstrates two linear regimes. We determine analytical expressions for the effective stiffness in each of these regimes in terms of the material properties of the shell and the pressure difference. As a consequence, a single indentation experiment over a range of displacements may be used as a simple assay to determine both the internal pressure and elastic properties of capsules. Our results are relevant for determining the internal pressure in bacterial, fungal or plant cells. As an illustration of this, we apply our results to recent measurements of the stiffness of baker's yeast and infer from these experiments that the internal osmotic pressure of yeast cells may be regulated in response to changes in the osmotic pressure of the external medium. PMID:21831894

  10. A structured interdomain linker directs self-polymerization of human uromodulin

    PubMed Central

    Bokhove, Marcel; Nishimura, Kaoru; Brunati, Martina; Han, Ling; de Sanctis, Daniele; Rampoldi, Luca

    2016-01-01

    Uromodulin (UMOD)/Tamm–Horsfall protein, the most abundant human urinary protein, plays a key role in chronic kidney diseases and is a promising therapeutic target for hypertension. Via its bipartite zona pellucida module (ZP-N/ZP-C), UMOD forms extracellular filaments that regulate kidney electrolyte balance and innate immunity, as well as protect against renal stones. Moreover, salt-dependent aggregation of UMOD filaments in the urine generates a soluble molecular net that captures uropathogenic bacteria and facilitates their clearance. Despite the functional importance of its homopolymers, no structural information is available on UMOD and how it self-assembles into filaments. Here, we report the crystal structures of polymerization regions of human UMOD and mouse ZP2, an essential sperm receptor protein that is structurally related to UMOD but forms heteropolymers. The structure of UMOD reveals that an extensive hydrophobic interface mediates ZP-N domain homodimerization. This arrangement is required for filament formation and is directed by an ordered ZP-N/ZP-C linker that is not observed in ZP2 but is conserved in the sequence of deafness/Crohn’s disease-associated homopolymeric glycoproteins α-tectorin (TECTA) and glycoprotein 2 (GP2). Our data provide an example of how interdomain linker plasticity can modulate the function of structurally similar multidomain proteins. Moreover, the architecture of UMOD rationalizes numerous pathogenic mutations in both UMOD and TECTA genes. PMID:26811476

  11. Relative contribution of biomolecules in bacterial extracellular polymeric substances to disinfection byproduct formation.

    PubMed

    Wang, Zhikang; Choi, Onekyun; Seo, Youngwoo

    2013-09-01

    In this study, detailed chemical compositions of the biomolecules in extracellular polymeric substances (EPS) from both pure cultures of bacteria and mixed species biofilm isolated from a water utility were analyzed. Then, based on detailed EPS analysis results, the DBP yield experiments were conducted with both extracted EPS and surrogate chemicals to indirectly identify the influence of biomolecules and their structures on DBP formation and speciation. DBP yield results of both extracted EPS and EPS surrogates indicated that proteins in EPS have a greater influence on DBP formation, especially on the formation of nitrogenous DBPs (N-DBPs), where amino acids containing unsaturated organic carbon or conjugated bonds in R-group produced higher amount of DBPs. For regulated DBPs, HAA yields were higher than THM yields, while haloacetonitriles were the dominant DBP species formed among unregulated DBPs. However, DBP yields of polysaccharide monomers were lower than those of tested amino acids groups and the DBP yields of polysaccharide monomers were not significantly influenced by their structures. Considering the results obtained in this study, biofilm needs to be considered an important precursor to DBP formation and biofilm eradication methods for water distribution systems need to be carefully selected to minimize subsequent DBP formation.

  12. Radiation-hardened polymeric films

    DOEpatents

    Arnold, C. Jr.; Hughes, R.C.; Kepler, R.G.; Kurtz, S.R.

    1984-07-16

    The radiation-induced conductivity of polymeric dielectrics with low electronic mobility is reduced by doping with electron donor or electron acceptor compounds at a level of 10/sup 15/ to 10/sup 21/ molecules of dopant/cm/sup 3/. Polyesters, polyolefins, perfluoropolyolefins, vinyl polymers, vinylidene polymers, polycarbonates, polysulfones and polyimides can benefit from such a treatment. Usable dopants include 2,4,7-trinitro-9-fluorenone, tetracyanethylene, 7,7,8,8-tetracyanoquinodimethane, m-dinitrobenzene, 2-isopropylcarbazole, and triphenylamine.

  13. Radiation-hardened polymeric films

    DOEpatents

    Arnold, Jr., Charles; Hughes, Robert C.; Kepler, R. Glen; Kurtz, Steven R.

    1986-01-01

    The radiation-induced conductivity of polymeric dielectrics with low electronic mobility is reduced by doping with electron donor or electron acceptor compounds at a level of 10.sup.15 to 10.sup.21 molecules of dopant/cm.sup.3. Polyesters, polyolefins, perfluoropolyolefins, vinyl polymers, vinylidene polymers, polycarbonates, polysulfones and polyimides can benefit from such a treatment. Usable dopants include 2,4,7-trinitro-9-fluorenone, tetracyanethylene, 7,7,8,8-tetracyanoquinodimethane, m-dinitrobenzene, 2-isopropylcarbazole, and triphenylamine.

  14. Two Photon Polymerization of Ormosils

    NASA Astrophysics Data System (ADS)

    Matei, A.; Zamfirescu, M.; Jipa, F.; Luculescu, C.; Dinescu, M.; Buruiana, E. C.; Buruiana, T.; Sima, L. E.; Petrescu, S. M.

    2010-10-01

    In this work, 3D structures of hybrid polymers—ORMOSILS (organically modified silicates) were produced via Two Photon Polymerization (2PP) of hybrid methacrylates based on silane derivates. Synthetic routes have been used to obtain series of hybrid monomers, their structure and purity being checked by NMR Spectroscopy and Fourier Transform Infrared Spectroscopy. Two photon polymerization method (a relatively new technology which allows fast micro and nano processing of three-dimensional structures with application in medical devices, tissue scaffolds, photonic crystals etc) was used for monomers processing. As laser a Ti: Sapphire laser was used, with 200 fs pulse duration and 2 kHz repetition rate, emitting at 775 nm. A parametric study on the influence of the processing parameters (laser fluence, laser scanning velocity, photo initiator) on the written structures was carried out. The as prepared polymeric scaffolds were tested in mesenchymal stem cells and fibroblasts cell cultures, with the aim of further obtaining bone and dermal grafts. Cells morphology, proliferation, adhesion and alignment were analyzed for different experimental conditions.

  15. Bacteria-Targeting Nanoparticles for Managing Infections

    NASA Astrophysics Data System (ADS)

    Radovic-Moreno, Aleksandar Filip

    Bacterial infections continue to be a significant concern particularly in healthcare settings and in the developing world. Current challenges include the increasing spread of drug resistant (DR) organisms, the side effects of antibiotic therapy, the negative consequences of clearing the commensal bacterial flora, and difficulties in developing prophylactic vaccines. This thesis was an investigation of the potential of a class of polymeric nanoparticles (NP) to contribute to the management of bacterial infections. More specifically, steps were taken towards using these NPs (1) to achieve greater spatiotemporal control over drug therapy by more targeted antibiotic delivery to bacteria, and (2) to develop a prophylactic vaccine formulation against the common bacterial sexually transmitted disease (STD) caused by Chlamydia trachomatis. In the first part, we synthesized polymeric NPs containing poly(lactic-co-glycolic acid)-block-poly(L-histidine)-block-poly(ethylene glycol) (PLGA-PLH-PEG). We show that these NPs are able to bind to bacteria under model acidic infection conditions and are able to encapsulate and deliver vancomycin to inhibit the growth of Staphylococcus aureus bacteria in vitro. Further work showed that the PLGA-PLH-PEG-based NPs demonstrated the potential for competition for binding bacteria at a site of infection from soluble protein and model phagocytic and tissue-resident cells in a NP composition dependent manner. The NPs demonstrated low toxicity in vitro, were well tolerated by mice in vivo, and circulated in the blood on timescales comparable to control PLGA-PEG NPs. In the second part, we used PLGA-PLH-PEG-based NPs to design a prophylactic vaccine against the obligate intracellular bacterium Chlamydia trachomatis, the most common cause of bacterial STD in the world. Currently, no vaccines against this pathogen are approved for use in humans. We first formulated NPs encapsulating the TLR7 agonist R848 conjugated to poly(lactic acid) (R848-PLA

  16. Ultrasound-Mediated Polymeric Micelle Drug Delivery.

    PubMed

    Xia, Hesheng; Zhao, Yue; Tong, Rui

    2016-01-01

    The synthesis of multi-functional nanocarriers and the design of new stimuli-responsive means are equally important for drug delivery. Ultrasound can be used as a remote, non-invasive and controllable trigger for the stimuli-responsive release of nanocarriers. Polymeric micelles are one kind of potential drug nanocarrier. By combining ultrasound and polymeric micelles, a new modality (i.e., ultrasound-mediated polymeric micelle drug delivery) has been developed and has recently received increasing attention. A major challenge remaining in developing ultrasound-responsive polymeric micelles is the improvement of the sensitivity or responsiveness of polymeric micelles to ultrasound. This chapter reviews the recent advance in this field. In order to understand the interaction mechanism between ultrasound stimulus and polymeric micelles, ultrasound effects, such as thermal effect, cavitation effect, ultrasound sonochemistry (including ultrasonic degradation, ultrasound-initiated polymerization, ultrasonic in-situ polymerization and ultrasound site-specific degradation), as well as basic micellar knowledge are introduced. Ultrasound-mediated polymeric micelle drug delivery has been classified into two main streams based on the different interaction mechanism between ultrasound and polymeric micelles; one is based on the ultrasound-induced physical disruption of the micelle and reversible release of payload. The other is based on micellar ultrasound mechanochemical disruption and irreversible release of payload.

  17. Thermal control of virulence factors in bacteria: A hot topic

    PubMed Central

    Lam, Oliver; Wheeler, Jun; Tang, Christoph M

    2014-01-01

    Pathogenic bacteria sense environmental cues, including the local temperature, to control the production of key virulence factors. Thermal regulation can be achieved at the level of DNA, RNA or protein and although many virulence factors are subject to thermal regulation, the exact mechanisms of control are yet to be elucidated in many instances. Understanding how virulence factors are regulated by temperature presents a significant challenge, as gene expression and protein production are often influenced by complex regulatory networks involving multiple transcription factors in bacteria. Here we highlight some recent insights into thermal regulation of virulence in pathogenic bacteria. We focus on bacteria which cause disease in mammalian hosts, which are at a significantly higher temperature than the outside environment. We outline the mechanisms of thermal regulation and how understanding this fundamental aspect of the biology of bacteria has implications for pathogenesis and human health. PMID:25494856

  18. Controlled release of ethylene via polymeric films for food packaging

    NASA Astrophysics Data System (ADS)

    Pisano, Roberto; Bazzano, Marco; Capozzi, Luigi Carlo; Ferri, Ada; Sangermano, Marco

    2015-12-01

    In modern fruit supply chain a common method to trigger ripening is to keep fruits inside special chambers and initiate the ripening process through administration of ethylene. Ethylene is usually administered through cylinders with inadequate control of its final concentration in the chamber. The aim of this study is the development of a new technology to accurately regulate ethylene concentration in the atmosphere where fruits are preserved: a polymeric film, containing an inclusion complex of α-cyclodextrin with ethylene, was developed. The complex was prepared by molecular encapsulation which allows the entrapment of ethylene into the cavity of α-cyclodextrin. After encapsulation, ethylene can be gradually released from the inclusion complex and its release rate can be regulated by temperature and humidity. The inclusion complex was dispersed into a thin polymeric film produced by UV-curing. This method was used because is solvent-free and involves low operating temperature; both conditions are necessary to prevent rapid release of ethylene from the film. The polymeric films were characterized with respect to thermal behaviour, crystalline structure and kinetics of ethylene release, showing that can effectively control the release of ethylene within confined volume.

  19. Intracellular Bacteria in Protozoa

    NASA Astrophysics Data System (ADS)

    Görtz, Hans-Dieter; Brigge, Theo

    Intracellular bacteria in humans are typically detrimental, and such infections are regarded by the patients as accidental and abnormal. In protozoa it seems obvious that many bacteria have coevolved with their hosts and are well adapted to the intracellular way of life. Manifold interactions between hosts and intracellular bacteria are found, and examples of antibacterial resistance of unknown mechanisms are observed. The wide diversity of intracellular bacteria in protozoa has become particularly obvious since they have begun to be classified by molecular techniques. Some of the bacteria are closely related to pathogens; others are responsible for the production of toxins.

  20. Ionene modified small polymeric beads

    NASA Technical Reports Server (NTRS)

    Rembaum, Alan (Inventor)

    1977-01-01

    Linear ionene polyquaternary cationic polymeric segments are bonded by means of the Menshutkin reaction (quaternization) to biocompatible, extremely small, porous particles containing halide or tertiary amine sites which are centers for attachment of the segments. The modified beads in the form of emulsions or suspensions offer a large, positively-charged surface area capable of irreversibly binding polyanions such as heparin, DNA, RNA or bile acids to remove them from solution or of reversibly binding monoanions such as penicillin, pesticides, sex attractants and the like for slow release from the suspension.

  1. Marketing NASA Langley Polymeric Materials

    NASA Technical Reports Server (NTRS)

    Flynn, Diane M.

    1995-01-01

    A marketing tool was created to expand the knowledge of LaRC developed polymeric materials, in order to facilitate the technology transfer process and increase technology commercialization awareness among a non-technical audience. The created brochure features four materials, LaRC-CP, LaRC-RP46, LaRC-SI, and LaRC-IA, and highlights their competitive strengths in potential commercial applications. Excellent opportunities exist in the $40 million per year microelectronics market and the $6 billion adhesives market. It is hoped that the created brochure will generate inquiries regarding the use of the above materials in markets such as these.

  2. Electrically controlled polymeric gel actuators

    DOEpatents

    Adolf, D.B.; Shahinpoor, M.; Segalman, D.J.; Witkowski, W.R.

    1993-10-05

    Electrically controlled polymeric gel actuators or synthetic muscles are described capable of undergoing substantial expansion and contraction when subjected to changing pH environments, temperature, or solvent. The actuators employ compliant containers for the gels and their solvents. The gels employed may be cylindrical electromechanical gel fibers such as polyacrylamide fibers or a mixture of poly vinyl alcohol-polyacrylic acid arranged in a parallel aggregate and contained in an electrolytic solvent bath such as salt water. The invention includes smart, electrically activated devices exploiting this phenomenon. These devices are capable of being manipulated via active computer control as large displacement actuators for use in adaptive structure such as robots. 11 figures.

  3. Computational studies of polymeric systems

    NASA Astrophysics Data System (ADS)

    Carrillo, Jan-Michael Y.

    Polymeric systems involving polyelectrolytes in surfaces and interfaces, semiflexible polyelectrolytes and biopolymers in solution, complex polymeric systems that had applications in nanotechnology were modeled using coarse grained molecular dynamics simulation. In the area of polyelectrolytes in surfaces and interfaces, the phenomena of polyelectrolyte adsorption at oppositely charge surface was investigated. Simulations found that short range van der Waals interaction was a major factor in determining morphology and thickness of the adsorbed layer. Hydrophobic polyelectrolytes adsorbed in hydrophobic surfaces tend to be the most effective in forming multi-layers because short range attraction enhances the adsorption process. Adsorbed polyelectrolytes could move freely along the surface which was in contrast to polyelectrolyte brushes. The morphologies of hydrophobic polyelectrolyte brushes were investigated and simulations found that brushes had different morphologies depending on the strength of the short range monomer-monomer attraction, electrostatic interaction and counterion condensation. Planar polyelectrolyte brushes formed: (1) vertically oriented cylindrical aggregates, (2) maze-like aggregate structures, or (3) thin polymeric layer covering a substrate. While, the spherical polyelectrolyte brushes could be in any of the previous morphologies or be in a micelle-like conformation with a dense core and charged corona. In the area of biopolymers and semiflexible polyelectrolytes in solution, simulations demonstrated that the bending rigidity of these polymers was scale-dependent. The bond-bond correlation function describing a chain's orientational memory could be approximated by a sum of two exponential functions manifesting the existence of the two characteristic length scales. The existence of the two length scales challenged the current practice of describing chain stretching experiments using a single length scale. In the field of nanotechnology

  4. Multicomponent diffusion in polymeric liquids.

    PubMed Central

    Curtiss, C F; Bird, R B

    1996-01-01

    It is shown how the phase-space kinetic theory of polymeric liquid mixtures leads to a set of extended Maxwell-Stefan equations describing multicomponent diffusion. This expression reduces to standard results for dilute solutions and for undiluted polymers. The polymer molecules are modeled as flexible bead-spring structures. To obtain the Maxwell-Stefan equations, the usual expression for the hydrodynamic drag force on a bead, used in previous kinetic theories, must be replaced by a new expression that accounts explicitly for bead-bead interactions between different molecules. PMID:11607693

  5. Electrically controlled polymeric gel actuators

    DOEpatents

    Adolf, Douglas B.; Shahinpoor, Mohsen; Segalman, Daniel J.; Witkowski, Walter R.

    1993-01-01

    Electrically controlled polymeric gel actuators or synthetic muscles capable of undergoing substantial expansion and contraction when subjected to changing pH environments, temperature, or solvent. The actuators employ compliant containers for the gels and their solvents. The gels employed may be cylindrical electromechanical gel fibers such as polyacrylamide fibers or a mixture of poly vinyl alcohol-polyacrylic acid arranged in a parallel aggregate and contained in an electrolytic solvent bath such as salt water. The invention includes smart, electrically activated devices exploiting this phenomenon. These devices are capable of being manipulated via active computer control as large displacement actuators for use in adaptive structure such as robots.

  6. Ketoprofen as a photoinitiator for anionic polymerization.

    PubMed

    Wang, Yu-Hsuan; Wan, Peter

    2015-06-01

    A new photoinitiating system for anionic polymerization of acrylates based on the efficient photodecarboxylation of Ketoprofen (1) and the related derivatives 3 and 4 that generate the corresponding carbanion intermediates is presented. Carbanion intermediates are confirmed by deuterium incorporation in the trapped Michael adducts and by spectroscopic detection using laser flash photolysis (LFP). This novel anionic initiating system features excitation in the near UV and visible regions, potential characteristics of photocontrolled living polymerization, and metal-free photoinitiators generated from photoexcitation, different from typical anionic polymerization where the polymerizations are initiated by heat and strong base containing alkali metals.

  7. Polymeric materials combustion: Toxicity hazards and legal aspects. January 1973-December 1989 (Citations from the Rubber and Plastics Research Association data base). Report for January 1973-December 1989

    SciTech Connect

    Not Available

    1989-12-01

    This bibliography contains citations concerning toxicity hazards and legal aspects of polymeric materials combustion in building, electrical and electronic applications. Flammability assessment, flame retardant additives, and toxicity standards of polymeric materials are discussed. Regulations and legislation on polymer flammability are presented. Health hazards caused by toxic gases from polymeric materials combustion are considered. (This updated bibliography contains 238 citations, 28 of which are new entries to the previous edition.)

  8. Enteric bacteria: friend or foe?

    PubMed

    Batt, R M; Rutgers, H C; Sancak, A A

    1996-06-01

    The normal gastrointestinal tract contains an enormous number of aerobic and anaerobic bacteria which normally enjoy a symbiotic relationship with the host but can have adverse effects with local and systemic consequences. The small intestine constitutes a zone of transition between the sparsely populated stomach and the luxuriant bacterial flora of the colon. Regulation of the intestinal flora depends on complex interactions between many factors including secretion of gastric acid, intestinal motility, biliary and pancreatic secretions, local immunity, the surface glycocalyx and mucus layer, and diet. Microbial interactions are also important, and can involve alterations in redox potential, substrate depletion and production of substances such as bacteriocins that inhibit bacterial growth. The beneficial effect of the normal enteric flora include the competitive exclusion of potentially pathogenic organisms, and the production of nutrients such as short-chain fatty acids (which represent an important energy source for the colonic mucosa) and vitamins. Detrimental effects of the enteric flora include competition for calories and essential nutrients, particularly by bacteria located in the small intestine, and a capacity to damage the mucosa, in some circumstances causing or contributing to inflammatory bowel disease. These problems can be accentuated by interference with the physiological regulation of intraluminal bacteria allowing overgrowth by a normal resident, or colonisation by transient pathogens. The pathophysiological consequences may involve direct damage to the intestinal mucosa, and bacterial metabolism of intraluminal constituents, for example forming deconjugated bile acids and hydroxylated fatty acids which stimulate fluid secretion. Additional problems arise if there is interference with the mucosal barrier since this can result in increased passage of bacteria and bacterial products stimulating mucosal inflammation, while bacterial translocation

  9. Durable Nanolayer Graft Polymerization of Functional Finishes Using Atmospheric Plasma

    NASA Astrophysics Data System (ADS)

    Mazloumpour, Maryam

    . Furthermore, spunbond nonwoven polypropylene fabric, commonly used for hygienic products, was treated with diallyldimethylammonium chloride (DADMAC). Atmospheric pressure glow discharge plasma was used to induce free radical chain polymerization of the ADMAC monomer, which conferred a graft polymerized network on the fabric with durable antimicrobial properties. The effect of different DADMAC concentration, and plasma conditions including the RF power and the time of plasma exposure were studied and the optimum treatment conditions were identified by calculating the surface charge density on the treated fabrics. The presence of poly-DADMAC on the polypropylene surface was confirmed using SEM, FT-IR and TOF-SIMS. Antibacterial performance was investigated using standard test methods (AATCC TM 100) for both gram positive and gram negative bacteria. The antimicrobial results showed 6 log reductions in the bacterial activities of K. pneumoniae and S .aureus, which was unprecedented using a plasma-induced graft polymerization approach.

  10. Self-folding polymeric containers for encapsulation and delivery of drugs

    PubMed Central

    Fernandes, Rohan; Gracias, David H.

    2012-01-01

    Self-folding broadly refers to self-assembly processes wherein thin films or interconnected planar templates curve, roll-up or fold into three dimensional (3D) structures such as cylindrical tubes, spirals, corrugated sheets or polyhedra. The process has been demonstrated with metallic, semiconducting and polymeric films and has been used to curve tubes with diameters as small as 2 nm and fold polyhedra as small as 100 nm, with a surface patterning resolution of 15 nm. Self-folding methods are important for drug delivery applications since they provide a means to realize 3D, biocompatible, all-polymeric containers with well-tailored composition, size, shape, wall thickness, porosity, surface patterns and chemistry. Self-folding is also a highly parallel process, and it is possible to encapsulate or self-load therapeutic cargo during assembly. A variety of therapeutic cargos such as small molecules, peptides, proteins, bacteria, fungi and mammalian cells have been encapsulated in self-folded polymeric containers. In this review, we focus on self-folding of all-polymeric containers. We discuss the mechanistic aspects of self-folding of polymeric containers driven by differential stresses or surface tension forces, the applications of self-folding polymers in drug delivery and we outline future challenges. PMID:22425612

  11. VOLUMETRIC POLYMERIZATION SHRINKAGE OF CONTEMPORARY COMPOSITE RESINS

    PubMed Central

    Nagem, Halim; Nagem, Haline Drumond; Francisconi, Paulo Afonso Silveira; Franco, Eduardo Batista; Mondelli, Rafael Francisco Lia; Coutinho, Kennedy Queiroz

    2007-01-01

    The polymerization shrinkage of composite resins may affect negatively the clinical outcome of the restoration. Extensive research has been carried out to develop new formulations of composite resins in order to provide good handling characteristics and some dimensional stability during polymerization. The purpose of this study was to analyze, in vitro, the magnitude of the volumetric polymerization shrinkage of 7 contemporary composite resins (Definite, Suprafill, SureFil, Filtek Z250, Fill Magic, Alert, and Solitaire) to determine whether there are differences among these materials. The tests were conducted with precision of 0.1 mg. The volumetric shrinkage was measured by hydrostatic weighing before and after polymerization and calculated by known mathematical equations. One-way ANOVA (á=0.05) was used to determine statistically significant differences in volumetric shrinkage among the tested composite resins. Suprafill (1.87±0.01) and Definite (1.89±0.01) shrank significantly less than the other composite resins. SureFil (2.01±0.06), Filtek Z250 (1.99±0.03), and Fill Magic (2.02±0.02) presented intermediate levels of polymerization shrinkage. Alert and Solitaire presented the highest degree of polymerization shrinkage. Knowing the polymerization shrinkage rates of the commercially available composite resins, the dentist would be able to choose between using composite resins with lower polymerization shrinkage rates or adopting technical or operational procedures to minimize the adverse effects deriving from resin contraction during light-activation. PMID:19089177

  12. Polymeric Additives For Graphite/Epoxy Composites

    NASA Technical Reports Server (NTRS)

    Kourtides, D. A.; Nir, Z.

    1990-01-01

    Report describes experimental studies of properties of several graphite/epoxy composites containing polymeric additives as flexibilizing or toughening agents. Emphasizes effects of brominated polymeric additives (BPA's) with or without carboxy-terminated butadiene acrylonitrile rubber. Reviews effects of individual and combined additives on fracture toughnesses, environmental stabilities, hot/wet strengths, thermomechanical behaviors, and other mechanical properties of composites.

  13. Radiation polymerization of diethyl fumarate [rapid communication

    NASA Astrophysics Data System (ADS)

    Alkassiri, Haroun

    2005-05-01

    Diethyl fumarate (DEF) has been polymerized by gamma irradiation using doses in the range 50-300 kGy, and in this dose range the polymerization yield increased almost linearly. The polymer has a glass transition temperature of about -20 °C, softening point about 15 °C, and decomposition temperature 300 °C.

  14. Molecular recognition driven catalysis using polymeric nanoreactors.

    PubMed

    Cotanda, Pepa; O'Reilly, Rachel K

    2012-10-25

    The concept of using polymeric micelles to catalyze organic reactions in water is presented and compared to surfactant based micelles in the context of molecular recognition. We report for the first time enzyme-like specific catalysis by tethering the catalyst in the well-defined hydrophobic core of a polymeric micelle.

  15. Spring-loaded polymeric gel actuators

    DOEpatents

    Shahinpoor, Mohsen

    1995-01-01

    Spring-loaded electrically controllable polymeric gel actuators are disclosed. The polymeric gels can be polyvinyl alcohol, polyacrylic acid, or polyacrylamide, and are contained in an electrolytic solvent bath such as water plus acetone. The action of the gel is mechanically biased, allowing the expansive and contractile forces to be optimized for specific applications.

  16. Spring-loaded polymeric gel actuators

    DOEpatents

    Shahinpoor, M.

    1995-02-14

    Spring-loaded electrically controllable polymeric gel actuators are disclosed. The polymeric gels can be polyvinyl alcohol, polyacrylic acid, or polyacrylamide, and are contained in an electrolytic solvent bath such as water plus acetone. The action of the gel is mechanically biased, allowing the expansive and contractile forces to be optimized for specific applications. 5 figs.

  17. Escalation of polymerization in a thermal gradient

    PubMed Central

    Mast, Christof B.; Schink, Severin; Gerland, Ulrich; Braun, Dieter

    2013-01-01

    For the emergence of early life, the formation of biopolymers such as RNA is essential. However, the addition of nucleotide monomers to existing oligonucleotides requires millimolar concentrations. Even in such optimistic settings, no polymerization of RNA longer than about 20 bases could be demonstrated. How then could self-replicating ribozymes appear, for which recent experiments suggest a minimal length of 200 nt? Here, we demonstrate a mechanism to bridge this gap: the escalated polymerization of nucleotides by a spatially confined thermal gradient. The gradient accumulates monomers by thermophoresis and convection while retaining longer polymers exponentially better. Polymerization and accumulation become mutually self-enhancing and result in a hyperexponential escalation of polymer length. We describe this escalation theoretically under the conservative assumption of reversible polymerization. Taking into account the separately measured thermophoretic properties of RNA, we extrapolate the results for primordial RNA polymerization inside a temperature gradient in pores or fissures of rocks. With a dilute, nanomolar concentration of monomers the model predicts that a pore length of 5 cm and a temperature difference of 10 K suffice to polymerize 200-mers of RNA in micromolar concentrations. The probability to generate these long RNAs is raised by a factor of >10600 compared with polymerization in a physical equilibrium. We experimentally validate the theory with the reversible polymerization of DNA blocks in a laser-driven thermal trap. The results confirm that a thermal gradient can significantly enlarge the available sequence space for the emergence of catalytically active polymers. PMID:23630280

  18. Genomics of Probiotic Bacteria

    NASA Astrophysics Data System (ADS)

    O'Flaherty, Sarah; Goh, Yong Jun; Klaenhammer, Todd R.

    Probiotic bacteria from the Lactobacillus and Bifidobacterium species belong to the Firmicutes and the Actinobacteria phylum, respectively. Lactobacilli are members of the lactic acid bacteria (LAB) group, a broadly defined family of microorganisms that ferment various hexoses into primarily lactic acid. Lactobacilli are typically low G + C gram-positive species which are phylogenetically diverse, with over 100 species documented to date. Bifidobacteria are heterofermentative, high G + C content bacteria with about 30 species of bifidobacteria described to date.

  19. Targeted polymeric nanoparticles for cancer gene therapy

    PubMed Central

    Kim, Jayoung; Wilson, David R.; Zamboni, Camila G.; Green, Jordan J.

    2015-01-01

    In this article, advances in designing polymeric nanoparticles for targeted cancer gene therapy are reviewed. Characterization and evaluation of biomaterials, targeting ligands, and transcriptional elements are each discussed. Advances in biomaterials have driven improvements to nanoparticle stability and tissue targeting, conjugation of ligands to the surface of polymeric nanoparticles enable binding to specific cancer cells, and the design of transcriptional elements has enabled selective DNA expression specific to the cancer cells. Together, these features have improved the performance of polymeric nanoparticles as targeted non-viral gene delivery vectors to treat cancer. As polymeric nanoparticles can be designed to be biodegradable, non-toxic, and to have reduced immunogenicity and tumorigenicity compared to viral platforms, they have significant potential for clinical use. Results of polymeric gene therapy in clinical trials and future directions for the engineering of nanoparticle systems for targeted cancer gene therapy are also presented. PMID:26061296

  20. Targeted polymeric nanoparticles for cancer gene therapy.

    PubMed

    Kim, Jayoung; Wilson, David R; Zamboni, Camila G; Green, Jordan J

    2015-01-01

    In this article, advances in designing polymeric nanoparticles for targeted cancer gene therapy are reviewed. Characterization and evaluation of biomaterials, targeting ligands, and transcriptional elements are each discussed. Advances in biomaterials have driven improvements to nanoparticle stability and tissue targeting, conjugation of ligands to the surface of polymeric nanoparticles enable binding to specific cancer cells, and the design of transcriptional elements has enabled selective DNA expression specific to the cancer cells. Together, these features have improved the performance of polymeric nanoparticles as targeted non-viral gene delivery vectors to treat cancer. As polymeric nanoparticles can be designed to be biodegradable, non-toxic, and to have reduced immunogenicity and tumorigenicity compared to viral platforms, they have significant potential for clinical use. Results of polymeric gene therapy in clinical trials and future directions for the engineering of nanoparticle systems for targeted cancer gene therapy are also presented.

  1. Photoacoustic analysis of dental resin polymerization

    NASA Astrophysics Data System (ADS)

    Coloiano, E. C. R.; Rocha, R.; Martin, A. A.; da Silva, M. D.; Acosta-Avalos, D.; Barja, P. R.

    2005-06-01

    In this work, we use the photoacoustic technique to monitor the curing process of diverse dental materials, as the resins chemically activated (RCA). The results obtained reveal that the composition of a determined RCA significantly alters its activation kinetics. Photoacoustic data also show that temperature is a significant parameter in the activation kinetics of resins. The photoacoustic technique was also applied to evaluate the polymerization kinetics of photoactivated resins. Such resins are photoactivated by incidence of continuous light from a photodiode. This leads to the polymerization of the resin, modifying its thermal properties and, consequently, the level of the photoacoustic signal. Measurements show that the polymerization of the resin changes the photoacoustic signal amplitude, indicating that photoacoustic measurements can be utilized to monitor the polymerization kinetic and the degree of polymerization of photoactivated dental resins.

  2. Modeling liquid crystal polymeric devices

    NASA Astrophysics Data System (ADS)

    Gimenez Pinto, Vianney Karina

    The main focus of this work is the theoretical and numerical study of materials that combine liquid crystal and polymer. Liquid crystal elastomers are polymeric materials that exhibit both the ordered properties of the liquid crystals and the elastic properties of rubbers. Changing the order of the liquid crystal molecules within the polymer network can induce shape change. These materials are very valuable for applications such as actuators, sensors, artificial muscles, haptic displays, etc. In this work we apply finite element elastodynamics simulations to study the temperature induced shape deformation in nematic elastomers with complex director microstructure. In another topic, we propose a novel numerical method to model the director dynamics and microstructural evolution of three dimensional nematic and cholesteric liquid crystals. Numerical studies presented in this work are in agreement with experimental observations and provide insight into the design of application devices.

  3. Polymeric materials from renewable resources

    NASA Astrophysics Data System (ADS)

    Frollini, Elisabete; Rodrigues, Bruno V. M.; da Silva, Cristina G.; Castro, Daniele O.; Ramires, Elaine C.; de Oliveira, Fernando; Santos, Rachel P. O.

    2016-05-01

    The goals of our studies have been the use of renewable raw materials in the preparation of polymeric materials with diversified properties. In this context, lignosulfonate, which is produced in large scale around the world, but not widely used in the production of polymeric materials, was used to replace phenol and polyols in the preparation of phenolic- (Ligno-PH) and polyurethane-type (Ligno-PU) polymers, respectively. These polymers were used to prepare composites reinforced with sisal lignocellulosic fibers. The use of lignosulfonate in the formulation of both types of polymers was beneficial, because in general composites with improved properties, specially impact strength, were obtained. Composites were also prepared from the so called "biopolyethylene" (HDPE), curaua lignocellulosic fiber, and castor oil (CO). All composites HDBPE/CO/Fiber exhibited higher impact strength, when compared to those of the corresponding HDBPE/Fiber. These results, combined with others (eg SEM images of the fractured surfaces) indicated that, in addition to acting as a plasticizer, this oil may have acted as a compatibilizer of the hydrophilic fiber with the hydrophobic polymer. The set of results indicated that (i) mats with nano (diameter ≤ 100nm) and/or ultrafine (submicron scale) fibers were produced, (ii) hybrid fibers were produced (bio-based mats composites), (iii) cellulosic pulp (CP) and/or lignin (Lig) can be combined with PET matrices to control properties such as stiffness and hydrophilicity of the respective mats. Materials with diversified properties were prepared from high content of renewable raw materials, thus fulfilling the proposed targets.

  4. Characterization of microbes which polymerize and depolymerize lignite coals

    SciTech Connect

    Polman, J.K.; Breckenridge, C.R.; Quigley, D.R.

    1991-12-01

    Several bacteria were tested for their ability to modify the macromolecular structure of different coals. When grown in the presence of Mississippi Wilcox lignite, North Dakota Beulah Zap lignite, and North Dakota lenoardite, strain Con5-1L produces polymerization products that are derived from coal. This bacterium was characterized extensively with respect to physiology and morphology and may be a member of the genus Arthrobacter. Strain UPLCPS2-B, which was identified as Pseudomonas chlororaphis, may be capable of limited depolymerization of Mississippi Wilcox lignite and leonardite, but not Beulah Zap lignite. Fermentative strain Con5-5C, which may extensively depolymerize Mississippi Wilcox lignite, was characterized according to morphology and physiology. Other strains tested had little or no effect on coal macromolecular structure. These included Escherichia coli, Arthrobacter paraffineus, and strain BED1. 21 refs., 2 figs.

  5. Characterization of microbes which polymerize and depolymerize lignite coals

    SciTech Connect

    Polman, J.K.; Breckenridge, C.R.; Quigley, D.R.

    1991-01-01

    Several bacteria were tested for their ability to modify the macromolecular structure of different coals. When grown in the presence of Mississippi Wilcox lignite, North Dakota Beulah Zap lignite, and North Dakota lenoardite, strain Con5-1L produces polymerization products that are derived from coal. This bacterium was characterized extensively with respect to physiology and morphology and may be a member of the genus Arthrobacter. Strain UPLCPS2-B, which was identified as Pseudomonas chlororaphis, may be capable of limited depolymerization of Mississippi Wilcox lignite and leonardite, but not Beulah Zap lignite. Fermentative strain Con5-5C, which may extensively depolymerize Mississippi Wilcox lignite, was characterized according to morphology and physiology. Other strains tested had little or no effect on coal macromolecular structure. These included Escherichia coli, Arthrobacter paraffineus, and strain BED1. 21 refs., 2 figs.

  6. Kinetics and thermodynamics of reversible polymerization in closed systems

    NASA Astrophysics Data System (ADS)

    Lahiri, Sourabh; Wang, Yang; Esposito, Massimiliano; Lacoste, David

    2015-08-01

    Motivated by a recent study on the metabolism of carbohydrates in bacteria, we study the kinetics and thermodynamics of two classic models for reversible polymerization, one preserving the total polymer concentration and the other one not. The chemical kinetics is described by rate equations following the mass-action law. We consider a closed system and nonequilibrium initial conditions and show that the system dynamically evolves towards equilibrium where a detailed balance is satisfied. The entropy production during this process can be expressed as the time derivative of a Lyapunov function. When the solvent is not included in the description and the dynamics conserves the total concentration of polymer, the Lyapunov function can be expressed as a Kullback-Leibler divergence between the nonequilibrium and the equilibrium polymer length distribution. The same result holds true when the solvent is explicitly included in the description and the solution is assumed dilute, whether or not the total polymer concentration is conserved. Furthermore, in this case a consistent nonequilibrium thermodynamic formulation can be established and the out-of-equilibrium thermodynamic enthalpy, entropy and free energy can be identified. Such a framework is useful in complementing standard kinetics studies with the dynamical evolution of thermodynamic quantities during polymerization.

  7. Bleach vs. Bacteria

    MedlinePlus

    ... Inside Life Science > Bleach vs. Bacteria Inside Life Science View All Articles | Inside Life Science Home Page Bleach vs. Bacteria By Sharon Reynolds ... For Proteins, Form Shapes Function This Inside Life Science article also appears on LiveScience . Learn about related ...

  8. Bacteria turn tiny gears

    SciTech Connect

    2009-01-01

    Swarms of bacteria turn two 380-micron long gears, opening the possibility of building hybrid biological machines at the microscopic scale. Read more at Wired: http://www.wired.com/wiredscience/2009/12/bacterial-micro-machine/#more-15684 or Scientific American: http://www.scientificamerican.com/article.cfm?id=brownian-motion-bacteria

  9. Some Bacteria Are Beneficial!

    USGS Publications Warehouse

    McMahon, Peter B.

    1995-01-01

    Most people would agree that bacteria usually spell trouble where the quality of drinking water is con cerned. However, recent studies conducted by the U.S. Geological Survey (USGS) under the National Water-Quality Assessment (NAWQA) program have shown that some bacteria can improve the quality of water.

  10. Effects of inulin chain length on fermentation by equine fecal bacteria and Streptococcus bovis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fructans from pasture can be fermented by Gram-positive bacteria (e.g., Streptococcus bovis) in the equine hindgut, increasing production of lactic acid and decreasing pH. The degree of polymerization (DP) of fructans has been suggested to influence fermentation rates. The objective of the current ...

  11. Antimicrobial Peptide Mimicking Primary Amine and Guanidine Containing Methacrylamide Copolymers Prepared by Raft Polymerization

    PubMed Central

    Exley, Sarah E.; Paslay, Lea C.; Sahukhal, Gyan S.; Abel, Brooks A.; Brown, Tyler D.; McCormick, Charles L.; Heinhorst, Sabine; Koul, Veena; Choudhary, Veena; Elasri, Mohamed O.; Morgan, Sarah E.

    2016-01-01

    Naturally occurring antimicrobial peptides (AMPs) display the ability to eliminate a wide variety of bacteria, without toxicity to the host eukaryotic cells. Synthetic polymers containing moieties mimicking lysine and arginine components found in AMPs have been reported to show effectiveness against specific bacteria, with the mechanism of activity purported to depend on the nature of the amino acid mimic. In an attempt to incorporate the antimicrobial activity of both amino acids into a single water-soluble copolymer, a series of copolymers containing lysine mimicking aminopropyl methacrylamide (APMA) and arginine mimicking guanadinopropyl methacrylamide (GPMA) were prepared via aqueous RAFT polymerization. Copolymers were prepared with varying ratios of the comonomers, with degree of polymerization of 35–40 and narrow molecular weight distribution to simulate naturally occurring AMPs. Antimicrobial activity was determined against Gram-negative and Gram-positive bacteria under conditions with varying salt concentration. Toxicity to mammalian cells was assessed by hemolysis of red blood cells and MTT assays of MCF-7 cells. Antimicrobial activity was observed for APMA homopolymer and copolymers with low concentrations of GPMA against all bacteria tested, with low toxicity toward mammalian cells. PMID:26558609

  12. Method for forming polymerized microfluidic devices

    DOEpatents

    Sommer, Gregory J.; Hatch, Anson V.; Wang, Ying-Chih; Singh, Anup K.; Renzi, Ronald F.; Claudnic, Mark R.

    2011-11-01

    Methods for making a micofluidic device according to embodiments of the present invention include defining a cavity. Polymer precursor solution is positioned in the cavity, and exposed to light to begin the polymerization process and define a microchannel. In some embodiments, after the polymerization process is partially complete, a solvent rinse is performed, or fresh polymer precursor introduced into the microchannel. This may promote removal of unpolymerized material from the microchannel and enable smaller feature sizes. The polymer precursor solution may contain an iniferter. Polymerized features therefore may be capped with the iniferter, which is photoactive. The iniferter may aid later binding of a polyacrylamide gel to the microchannel surface.

  13. Polymerized nanotips via two-photon photopolymerization

    NASA Astrophysics Data System (ADS)

    Qi, Fengjie; Li, Yan; Tan, Dengfeng; Yang, Hong; Gong, Qihuang

    2007-02-01

    We present new methods to produce polymerized nanotips via two-photon photopolymerization. By gradually changing the laser power, we fabricate a single polymerized tip with the size of 120nm. When two rectangle anchors with protuberances are close enough, lines with the slimmest part of about 20-30nm and tips with the widths of about 35nm are produced between anchors, which are the best resolution obtained with the resin SCR-500 to our knowledge. As the tips are adhered to larger polymerized structures, they can survive post processing in spite of their small sizes.

  14. Method for forming polymerized microfluidic devices

    SciTech Connect

    Sommer, Gregory J.; Hatch, Anson V.; Wang, Ying-Chih; Singh, Anup K.; Renzi, Ronald F.; Claudnic, Mark R.

    2013-03-12

    Methods for making a microfluidic device according to embodiments of the present invention include defining.about.cavity. Polymer precursor solution is positioned in the cavity, and exposed to light to begin the polymerization process and define a microchannel. In some embodiments, after the polymerization process is partially complete, a solvent rinse is performed, or fresh polymer precursor introduced into the microchannel. This may promote removal of unpolymerized material from the microchannel and enable smaller feature sizes. The polymer precursor solution may contain an iniferter. Polymerized features therefore may be capped with the iniferter, which is photoactive. The iniferter may aid later binding of a polyacrylamide gel to the microchannel surface.

  15. Polymeric MST - high precision at low cost

    NASA Astrophysics Data System (ADS)

    Elderstig, Håkan; Larsson, Olle

    1997-09-01

    A low-cost production process for fabrication of polymeric microstructures from micromachined silicon is demonstrated in a splice for the splicing of optical fibers and an optical motherboard. Measurements on splices showed less than 0.5 dB insertion losses. The prototype polymeric motherboard concisted of an optical receiver module. The detector that was mounted on the polymeric optical motherboard detected about 70% of the transferred light. Measurements with modulated light indicates an optical bandwidth of 5 GHz at 2 V reverse current on the pin-diode.

  16. Polymerization in emulsion microdroplet reactors

    NASA Astrophysics Data System (ADS)

    Carroll, Nick J.

    The goal of this research project is to utilize emulsion droplets as chemical reactors for execution of complex polymerization chemistries to develop unique and functional particle materials. Emulsions are dispersions of immiscible fluids where one fluid usually exists in the form of drops. Not surprisingly, if a liquid-to-solid chemical reaction proceeds to completion within these drops, the resultant solid particles will possess the shape and relative size distribution of the drops. The two immiscible liquid phases required for emulsion polymerization provide unique and complex chemical and physical environments suitable for the engineering of novel materials. The development of novel non-ionic fluorosurfactants allows fluorocarbon oils to be used as the continuous phase in a water-free emulsion. Such emulsions enable the encapsulation of almost any hydrocarbon compound in droplets that may be used as separate compartments for water-sensitive syntheses. Here, we exemplify the promise of this approach by suspension polymerization of polyurethanes (PU), in which the liquid precursor is emulsified into droplets that are then converted 1:1 into polymer particles. The stability of the droplets against coalescence upon removal of the continuous phase by evaporation confirms the formation of solid PU particles. These results prove that the water-free environment of fluorocarbon based emulsions enables high conversion. We produce monodisperse, cross-linked, and fluorescently labeled PU-latexes with controllable mesh size through microfluidic emulsification in a simple one-step process. A novel method for the fabrication of monodisperse mesoporous silica particles is presented. It is based on the formation of well-defined equally sized emulsion droplets using a microfluidic approach. The droplets contain the silica precursor/surfactant solution and are suspended in hexadecane as the continuous oil phase. The solvent is then expelled from the droplets, leading to

  17. Polymeric Coatings for Electrodynamic Tethers

    NASA Technical Reports Server (NTRS)

    Vaughn, Jason A.; Kamenetzky, Rachel R.; Finckenor, Miria M.; Schuler, Peter

    2000-01-01

    Two polymeric coatings have been developed for the Propulsive Small Expendable Deployer System (ProSEDS) mission. ProSEDS is designed to provide an on-orbit demonstration of the electrodynamic propulsion capabilities of tethers in space. The ProSEDS experiment will be a secondary payload on a Delta II unmanned expendable booster scheduled for launch in August 2000. A 5-km conductive tether is attached to the Delta 11 second stage and collects current from the low Earth orbit (LEO) plasma to facilitate de-orbit of the spent stage. The conductive tether is attached to a 10-km non-conductive tether, the other end of which is attached to an endmass containing several scientific instruments. A bare metal tether would have the best conductivity but thermal concerns preclude this design. A conductive polymer developed by Triton Systems has been optimized for conductivity and thermo-optical properties. The current design for the ProSEDS conductive tether is seven strands of 28 AWG aluminum wire individually coated with 8.7 micrometers (0.35 mil) of an atomic oxygen-resistant conductive polymer composed of a mixture of 87% Clear Oxygen-Resistant polymer (COR) and 13% polyanaline (PANi), wrapped around a braided Kevlar (TM) 49 core. Extensive testing has been performed at the Marshall Space Flight Center (MSFC) to qualify this material for flight on ProSEDS. Atomic oxygen exposure was performed, with solar absorptance and infrared emittance measured before and after exposure. Conductivity was measured before and after atomic oxygen exposure. High voltage tests, up to 1500 V, of the current collecting ability of the COR/PANi have been completed. Approximately 160 meters of the conductive tether closest to the Delta 11 second stage is insulated to prevent any electron reconnection to the tether from the plasma contactor. The insulation is composed of polyimide overcoated with TOR-BP, another polymeric coating developed by Triton for this mission. TOR-BP acts as both insulator

  18. Mechanical force-induced polymerization and depolymerization of F-actin at water/solid interfaces

    NASA Astrophysics Data System (ADS)

    Zhang, Xueqiang; Hu, Xiuyuan; Lei, Haozhi; Hu, Jun; Zhang, Yi

    2016-03-01

    Actin molecules are among the three main cytoskeleton proteins of cells and undergo rapid cycling to regulate critical processes such as endocytosis, cytokinesis, cell polarity, and cell morphogenesis. Although extensive studies have been carried out on the dynamics as well as biological functions of actin polymerization and depolymerization both in vivo and in vitro, the molecular mechanisms by which cells sense and respond to mechanical signals are not fully understood. In particular, little attention has been paid to the effect of a physical force that is exerted directly on the actin cytoskeleton. In this paper, we have explored how the mechanical force affects the actin polymerization and depolymerization behaviors at water/solid interfaces using an atomic force microscope (AFM) operated in liquid. By raster scanning an AFM probe on a substrate surface with a certain load, it was found that actin monomers could polymerize into filaments without the help of actin related proteins (ARPs). Further study indicated that actin monomers were inclined to form filaments only under a small scanning load. The polymerized actin filaments would be depolymerized when the mechanical force was stronger. A possible mechanism has been suggested to explain the mechanical force induced actin polymerization.Actin molecules are among the three main cytoskeleton proteins of cells and undergo rapid cycling to regulate critical processes such as endocytosis, cytokinesis, cell polarity, and cell morphogenesis. Although extensive studies have been carried out on the dynamics as well as biological functions of actin polymerization and depolymerization both in vivo and in vitro, the molecular mechanisms by which cells sense and respond to mechanical signals are not fully understood. In particular, little attention has been paid to the effect of a physical force that is exerted directly on the actin cytoskeleton. In this paper, we have explored how the mechanical force affects the actin

  19. Effect of chitosan coating on a bacteria-based alginate microrobot.

    PubMed

    Park, Sung Jun; Lee, Yu Kyung; Cho, Sunghoon; Uthaman, Saji; Park, In-Kyu; Min, Jung-Joon; Ko, Seong Young; Park, Jong-Oh; Park, Sukho

    2015-04-01

    To develop an efficient bacteria-based microrobot, first, therapeutic bacteria should be encapsulated into microbeads using biodegradable and biocompatible materials; second, the releasing rate of the encapsulated bacteria for theragnostic function should be regulated; and finally, flagellated bacteria should be attached on the microbeads to ensure the motility of the microrobot. For the therapeutic bacteria encapsulation, an alginate can be a promising candidate as a biodegradable and biocompatible material. Owing to the non-regulated releasing rate of the encapsulated bacteria in alginate microbeads and the weak attachment of flagellated bacteria on the surface of alginate microbeads, however, the alginate microbeads cannot be used as effective cargo for a bacteria-based microrobot. In this paper, to enhance the stability of the bacteria encapsulation and the adhesion of flagellated bacteria in alginate microbeads, we performed a surface modification of alginate microbeads using chitosan coating. The bacteria-encapsulated alginate microbeads with 1% chitosan coating maintained their structural integrity up to 72 h, whereas the control alginate microbead group without chitosan coating showed severe degradations after 24 h. The chitosan coating in alginate microbeads shows the enhanced attachment of flagellated bacteria on the surface of alginate microbeads. The bacteria-actuated microrobot with the enhanced flagellated bacteria attachment could show approximately 4.2 times higher average velocities than the control bacteria-actuated microrobot without chitosan coating. Consequently, the surface modification using chitosan coating enhanced the structural stability and the motility of the bacteria-based alginate microrobots.

  20. Antibiotics from predatory bacteria

    PubMed Central

    Korp, Juliane; Vela Gurovic, María S

    2016-01-01

    Summary Bacteria, which prey on other microorganisms, are commonly found in the environment. While some of these organisms act as solitary hunters, others band together in large consortia before they attack their prey. Anecdotal reports suggest that bacteria practicing such a wolfpack strategy utilize antibiotics as predatory weapons. Consistent with this hypothesis, genome sequencing revealed that these micropredators possess impressive capacities for natural product biosynthesis. Here, we will present the results from recent chemical investigations of this bacterial group, compare the biosynthetic potential with that of non-predatory bacteria and discuss the link between predation and secondary metabolism. PMID:27340451

  1. Antibiotics from predatory bacteria.

    PubMed

    Korp, Juliane; Vela Gurovic, María S; Nett, Markus

    2016-01-01

    Bacteria, which prey on other microorganisms, are commonly found in the environment. While some of these organisms act as solitary hunters, others band together in large consortia before they attack their prey. Anecdotal reports suggest that bacteria practicing such a wolfpack strategy utilize antibiotics as predatory weapons. Consistent with this hypothesis, genome sequencing revealed that these micropredators possess impressive capacities for natural product biosynthesis. Here, we will present the results from recent chemical investigations of this bacterial group, compare the biosynthetic potential with that of non-predatory bacteria and discuss the link between predation and secondary metabolism. PMID:27340451

  2. Regulation of CTP Synthase Filament Formation During DNA Endoreplication in Drosophila.

    PubMed

    Wang, Pei-Yu; Lin, Wei-Cheng; Tsai, Yi-Cheng; Cheng, Mei-Ling; Lin, Yu-Hung; Tseng, Shu-Heng; Chakraborty, Archan; Pai, Li-Mei

    2015-12-01

    CTP synthase (CTPsyn) plays an essential role in DNA, RNA, and lipid synthesis. Recent studies in bacteria, yeast, and Drosophila all reveal a polymeric CTPsyn structure, which dynamically regulates its enzymatic activity. However, the molecular mechanism underlying the formation of CTPsyn polymers is not completely understood. In this study, we found that reversible ubiquitination regulates the dynamic assembly of the filamentous structures of Drosophila CTPsyn. We further determined that the proto-oncogene Cbl, an E3 ubiquitin ligase, controls CTPsyn filament formation in endocycles. While the E3 ligase activity of Cbl is required for CTPsyn filament formation, Cbl does not affect the protein levels of CTPsyn. It remains unclear whether the regulation of CTPsyn filaments by Cbl is through direct ubiquitination of CTPsyn. In the absence of Cbl or with knockdown of CTPsyn, the progression of the endocycle-associated S phase was impaired. Furthermore, overexpression of wild-type, but not enzymatically inactive CTPsyn, rescued the endocycle defect in Cbl mutant cells. Together, these results suggest that Cbl influences the nucleotide pool balance and controls CTPsyn filament formation in endocycles. This study links Cbl-mediated ubiquitination to the polymerization of a metabolic enzyme and reveals a role for Cbl in endocycles during Drosophila development.

  3. Radiation effects on polymeric materials

    NASA Technical Reports Server (NTRS)

    Kiefer, Richard L.

    1988-01-01

    It is important to study changes in properties of polymeres after irradiation with charged particles, with ultraviolet radiation, and with combinations of both. An apparatus for this purpose has been built at the NASA Langley Research Center. It consists of a chamber 9 inches in diameter and 9 inches high with a port for an electron gun, another port for a mass spectrometer, and a quartz window through which an ultraviolet lamp can be focused. The chamber, including the electron gun and the mass spectrometer, can be evacuated to a pressure of 10 to the 8th power torr. A sample placed in the chamber can be irradiated with electrons and ultraviolet radiation separately, sequentially, or simultaneously, while volatile products can be monitored during all irradiations with the mass spectrometer. The apparatus described above has been used to study three different polymer films: lexan; a polycarbonate; P1700, a polysulfone; and mylar, a polyethylene terephthalate. All three polymers had been studied extensively with both electrons and ultraviolet radiation separately, but not simultaneously. Also, volatile products had not been monitored during irradiation for the materials. A high electron dose rate of 530 Mrads/hr was used so that a sufficient concentration of volatile products would be formed to yield a reasonable mass spectrum.

  4. Highly elastic conductive polymeric MEMS

    NASA Astrophysics Data System (ADS)

    Ruhhammer, J.; Zens, M.; Goldschmidtboeing, F.; Seifert, A.; Woias, P.

    2015-02-01

    Polymeric structures with integrated, functional microelectrical mechanical systems (MEMS) elements are increasingly important in various applications such as biomedical systems or wearable smart devices. These applications require highly flexible and elastic polymers with good conductivity, which can be embedded into a matrix that undergoes large deformations. Conductive polydimethylsiloxane (PDMS) is a suitable candidate but is still challenging to fabricate. Conductivity is achieved by filling a nonconductive PDMS matrix with conductive particles. In this work, we present an approach that uses new mixing techniques to fabricate conductive PDMS with different fillers such as carbon black, silver particles, and multiwalled carbon nanotubes. Additionally, the electrical properties of all three composites are examined under continuous mechanical stress. Furthermore, we present a novel, low-cost, simple three-step molding process that transfers a micro patterned silicon master into a polystyrene (PS) polytetrafluoroethylene (PTFE) replica with improved release features. This PS/PTFE mold is used for subsequent structuring of conductive PDMS with high accuracy. The non sticking characteristics enable the fabrication of delicate structures using a very soft PDMS, which is usually hard to release from conventional molds. Moreover, the process can also be applied to polyurethanes and various other material combinations.

  5. Polymeric conjugates for drug delivery

    PubMed Central

    Larson, Nate; Ghandehari, Hamidreza

    2012-01-01

    The field of polymer therapeutics has evolved over the past decade and has resulted in the development of polymer-drug conjugates with a wide variety of architectures and chemical properties. Whereas traditional non-degradable polymeric carriers such as poly(ethylene glycol) (PEG) and N-(2-hydroxypropyl methacrylamide) (HPMA) copolymers have been translated to use in the clinic, functionalized polymer-drug conjugates are increasingly being utilized to obtain biodegradable, stimuli-sensitive, and targeted systems in an attempt to further enhance localized drug delivery and ease of elimination. In addition, the study of conjugates bearing both therapeutic and diagnostic agents has resulted in multifunctional carriers with the potential to both “see and treat” patients. In this paper, the rational design of polymer-drug conjugates will be discussed followed by a review of different classes of conjugates currently under investigation. The design and chemistry used for the synthesis of various conjugates will be presented with additional comments on their potential applications and current developmental status. PMID:22707853

  6. Polymerization as a Model Chain Reaction

    ERIC Educational Resources Information Center

    Morton, Maurice

    1973-01-01

    Describes the features of the free radical, anionic, and cationic mechanisms of chain addition polymerization. Indicates that the nature of chain reactions can be best taught through the study of macromolecules. (CC)

  7. Hydrocarbon polymeric binder for advanced solid propellant

    NASA Technical Reports Server (NTRS)

    Potts, J. E. (Editor)

    1972-01-01

    A series of DEAB initiated isoprene polymerizations were run in the 5-gallon stirred autoclave reactor. Polymerization run parameters such as initiator concentration and feed rate were correlated with the molecular weight to provide a basis for molecular weight control in future runs. Synthetic methods were developed for the preparation of n-1,3-alkadienes. By these methods, 1,3-nonadiene was polymerized using DEAB initiator to give an ester-telechelic polynonadiene. This was subsequently hydrogenated with copper chromite catalyst to give a hydroxyl terminated saturated liquid hydrocarbon prepolymer having greatly improved viscosity characteristics and a Tg 18 degrees lower than that of the hydrogenated polyisoprenes. The hydroxyl-telechelic saturated polymers prepared by the hydrogenolysis of ester-telechelic polyisoprene were reached with diisocyanates under conditions favoring linear chain extension gel permeation chromatography was used to monitor this condensation polymerization. Fractions having molecular weights above one million were produced.

  8. Reverse-osmosis membranes by plasma polymerization

    NASA Technical Reports Server (NTRS)

    Hollahan, J. R.; Wydeven, T.

    1972-01-01

    Thin allyl amine polymer films were developed using plasma polymerization. Resulting dry composite membranes effectively reject sodium chloride during reverse osmosis. Films are 98% sodium chloride rejective, and 46% urea rejective.

  9. Isothermal Titration Calorimetry of Chiral Polymeric Nanoparticles.

    PubMed

    Werber, Liora; Preiss, Laura C; Landfester, Katharina; Muñoz-Espí, Rafael; Mastai, Yitzhak

    2015-09-01

    Chiral polymeric nanoparticles are of prime importance, mainly due to their enantioselective potential, for many applications such as catalysis and chiral separation in chromatography. In this article we report on the preparation of chiral polymeric nanoparticles by miniemulsion polymerization. In addition, we describe the use of isothermal titration calorimetry (ITC) to measure the chiral interactions and the energetics of the adsorption of enantiomers from aqueous solutions onto chiral polymeric nanoparticles. The characterization of chirality in nano-systems is a very challenging task; here, we demonstrate that ITC can be used to accurately determine the thermodynamic parameters associated with the chiral interactions of nanoparticles. The use of ITC to measure the energetics of chiral interactions and recognition at the surfaces of chiral nanoparticles can be applied to other nanoscale chiral systems and can provide further insight into the chiral discrimination processes of nanomaterials.

  10. Physicochemically functional ultrathin films by interfacial polymerization

    DOEpatents

    Lonsdale, H.K.; Babcock, W.C.; Friensen, D.T.; Smith, K.L.; Johnson, B.M.; Wamser, C.C.

    1990-08-14

    Interfacially-polymerized ultrathin films containing physicochemically functional groups are disclosed, both with and without supports. Various applications are disclosed, including membrane electrodes, selective membranes and sorbents, biocompatible materials, targeted drug delivery, and narrow band optical absorbers. 3 figs.

  11. Physicochemically functional ultrathin films by interfacial polymerization

    DOEpatents

    Lonsdale, Harold K.; Babcock, Walter C.; Friensen, Dwayne T.; Smith, Kelly L.; Johnson, Bruce M.; Wamser, Carl C.

    1990-01-01

    Interfacially-polymerized ultrathin films containing physicochemically functional groups are disclosed, both with and without supports. Various applications are disclsoed, including membrane electrodes, selective membranes and sorbents, biocompatible materials, targeted drug delivery, and narrow band optical absorbers.

  12. Engineered polymeric nanoparticles for bioremediation of hydrophobic contaminants.

    PubMed

    Tungittiplakorn, Warapong; Cohen, Claude; Lion, Leonard W

    2005-03-01

    Sorption of hydrophobic organic contaminants, such as polycyclic aromatic hydrocarbons (PAHs), to soil has been shown to limit their solubilization rate and mobility. In addition, sequestration of contaminants by sorption to soil and by partitioning in nonaqueous phase liquids (NAPLs) reduces their bioavailability. Polymeric nano-network particles have been demonstrated to increase the "effective" solubility of a representative hydrophobic organic contaminant, phenanthrene (PHEN) and to enhance the release of PHEN from contaminated aquifer material. In this study, we investigate the usefulness of nanoparticles made from a poly(ethylene) glycol modified urethane acrylate (PMUA) precursor chain, in enhancing the bioavailability of PHEN. PMUA nanoparticles are shown to increase the mineralization rate of PHEN crystal in water, PHEN sorbed on aquifer material, and PHEN dissolved in a model NAPL (hexadecane) in the presence of aquifer media. These results show that PMUA particles not only enhance the release of sorbed and NAPL-sequestered PHEN but also increase its mineralization rate. The accessibility of contaminants in PMUA particles to bacteria also suggests that particle application may be an effective means to enhance the in-situ biodegradation rate in remediation through natural attenuation of contaminants. In pump-and-treat or soil washing remediation schemes, bioreactors could be used to recycle extracted nanoparticles. The properties of PMUA nanoparticles are shown to be stable in the presence of a heterogeneous active bacterial population, enabling them to be reused after PHEN bound to the particles has been degraded by bacteria.

  13. DNA detection with a polymeric nanochannel device.

    PubMed

    Fanzio, Paola; Mussi, Valentina; Manneschi, Chiara; Angeli, Elena; Firpo, Giuseppe; Repetto, Luca; Valbusa, Ugo

    2011-09-01

    We present the development and the electrical characterization of a polymeric nanochannel device. Standard microfabrication coupled to Focused Ion Beam (FIB) nanofabrication is used to fabricate a silicon master, which can be then replicated in a polymeric material by soft lithography. Such an elastomeric nanochannel device is used to study DNA translocation events during electrophoresis experiments. Our results demonstrate that an easy and low cost fabrication technique allows creation of a low noise device for single molecule analysis.

  14. Biaxially oriented film on flexible polymeric substrate

    DOEpatents

    Finkikoglu, Alp T.; Matias, Vladimir

    2009-10-13

    A flexible polymer-based template having a biaxially oriented film grown on the surface of a polymeric substrate. The template having the biaxially oriented film can be used for further epitaxial growth of films of interest for applications such as photovoltaic cells, light emitting diodes, and the like. Methods of forming such a flexible template and providing the polymeric substrate with a biaxially oriented film deposited thereon are also described.

  15. Post polymerization cure shape memory polymers

    SciTech Connect

    Wilson, Thomas S; Hearon, Michael Keith; Bearinger, Jane P

    2014-11-11

    This invention relates to chemical polymer compositions, methods of synthesis, and fabrication methods for devices regarding polymers capable of displaying shape memory behavior (SMPs) and which can first be polymerized to a linear or branched polymeric structure, having thermoplastic properties, subsequently processed into a device through processes typical of polymer melts, solutions, and dispersions and then crossed linked to a shape memory thermoset polymer retaining the processed shape.

  16. Nonperturbative Renormalization Group Approach to Polymerized Membranes

    NASA Astrophysics Data System (ADS)

    Essafi, Karim; Kownacki, Jean-Philippe; Mouhanna, Dominique

    2014-03-01

    Membranes or membrane-like materials play an important role in many fields ranging from biology to physics. These systems form a very rich domain in statistical physics. The interplay between geometry and thermal fluctuations lead to exciting phases such flat, tubular and disordered flat phases. Roughly speaking, membranes can be divided into two group: fluid membranes in which the molecules are free to diffuse and thus no shear modulus. On the other hand, in polymerized membranes the connectivity is fixed which leads to elastic forces. This difference between fluid and polymerized membranes leads to a difference in their critical behaviour. For instance, fluid membranes are always crumpled, whereas polymerized membranes exhibit a phase transition between a crumpled phase and a flat phase. In this talk, I will focus only on polymerized phantom, i.e. non-self-avoiding, membranes. The critical behaviour of both isotropic and anisotropic polymerized membranes are studied using a nonperturbative renormalization group approach (NPRG). This allows for the investigation of the phase transitions and the low temperature flat phase in any internal dimension D and embedding d. Interestingly, graphene behaves just as a polymerized membrane in its flat phase.

  17. Catalytic living ring-opening metathesis polymerization

    NASA Astrophysics Data System (ADS)

    Nagarkar, Amit A.; Kilbinger, Andreas F. M.

    2015-09-01

    In living ring-opening metathesis polymerization (ROMP), a transition-metal-carbene complex polymerizes ring-strained olefins with very good control of the molecular weight of the resulting polymers. Because one molecule of the initiator is required for each polymer chain, however, this type of polymerization is expensive for widespread use. We have now designed a chain-transfer agent (CTA) capable of reducing the required amount of metal complex while still maintaining full control over the living polymerization process. This new method introduces a degenerative transfer process to ROMP. We demonstrate that substituted cyclohexene rings are good CTAs, and thereby preserve the ‘living’ character of the polymerization using catalytic quantities of the metal complex. The resulting polymers show characteristics of a living polymerization, namely narrow molecular-weight distribution, controlled molecular weights and block copolymer formation. This new technique provides access to well-defined polymers for industrial, biomedical and academic use at a fraction of the current costs and significantly reduced levels of residual ruthenium catalyst.

  18. Equilibrium polymerization of cyclic carbonate oligomers

    NASA Astrophysics Data System (ADS)

    Ballone, P.; Jones, R. O.

    2001-08-01

    A model of the polymerization of ring oligomers of bisphenol A polycarbonate (BPA-PC) is used to investigate the influence of dimensionality (2D or 3D), density and temperature on the size distribution of the polymer chains. The polymerization step is catalyzed by a single active particle, conserves the number and type of the chemical bonds, and occurs without a significant gain in either potential energy or configurational entropy. Monte Carlo and molecular dynamics simulations show that polymerization of cyclic oligomers occurs readily at high density and is driven by the entropy associated with the distribution of interparticle bonds. Polymerization competes at lower densities with long range diffusion, which favors small molecular species, and is prevented if the system is sufficiently dilute. Polymerization occurs in 2D via a weakly first order transition as a function of density and is characterized by low hysteresis and large fluctuations in the size of polymer chains. Polymerization occurs more readily in 3D than in 2D, and is favored by increasing temperature, as expected for an entropy-driven process.

  19. Polymeric micelles for acyclovir drug delivery.

    PubMed

    Sawdon, Alicia J; Peng, Ching-An

    2014-10-01

    Polymeric prodrug micelles for delivery of acyclovir (ACV) were synthesized. First, ACV was used directly to initiate ring-opening polymerization of ɛ-caprolactone to form ACV-polycaprolactone (ACV-PCL). Through conjugation of hydrophobic ACV-PCL with hydrophilic methoxy poly(ethylene glycol) (MPEG) or chitosan, polymeric micelles for drug delivery were formed. (1)H NMR, FTIR, and gel permeation chromatography were employed to show successful conjugation of MPEG or chitosan to hydrophobic ACV-PCL. Through dynamic light scattering, zeta potential analysis, transmission electron microscopy, and critical micelle concentration (CMC), the synthesized ACV-tagged polymeric micelles were characterized. It was found that the average size of the polymeric micelles was under 200nm and the CMCs of ACV-PCL-MPEG and ACV-PCL-chitosan were 2.0mgL(-1) and 6.6mgL(-1), respectively. The drug release kinetics of ACV was investigated and cytotoxicity assay demonstrates that ACV-tagged polymeric micelles were non-toxic.

  20. [Darwin and bacteria].

    PubMed

    Ledermann D, Walter

    2009-02-01

    As in 2009 the scientific world celebrates two hundreds years from the birthday of Charles Darwin and one hundred and fifty from the publication of The Origin of Species, an analysis of his complete work is performed, looking for any mention of bacteria. But it seems that the great naturahst never took knowledge about its existence, something rather improbable in a time when the discovery of bacteria shook the medical world, or he deliberately ignored them, not finding a place for such microscopic beings into his theory of evolution. But the bacteria badly affected his familiar life, killing scarlet fever one of his children and worsening to death the evolution of tuberculosis of his favourite Annie. Darwin himself could suffer the sickness of Chagas, whose etiological agent has a similar level to bacteria in the scale of evolution. PMID:19350162

  1. Bacteria subsisting on antibiotics.

    PubMed

    Dantas, Gautam; Sommer, Morten O A; Oluwasegun, Rantimi D; Church, George M

    2008-04-01

    Antibiotics are a crucial line of defense against bacterial infections. Nevertheless, several antibiotics are natural products of microorganisms that have as yet poorly appreciated ecological roles in the wider environment. We isolated hundreds of soil bacteria with the capacity to grow on antibiotics as a sole carbon source. Of 18 antibiotics tested, representing eight major classes of natural and synthetic origin, 13 to 17 supported the growth of clonal bacteria from each of 11 diverse soils. Bacteria subsisting on antibiotics are surprisingly phylogenetically diverse, and many are closely related to human pathogens. Furthermore, each antibiotic-consuming isolate was resistant to multiple antibiotics at clinically relevant concentrations. This phenomenon suggests that this unappreciated reservoir of antibiotic-resistance determinants can contribute to the increasing levels of multiple antibiotic resistance in pathogenic bacteria. PMID:18388292

  2. Indicator For Pseudomonas Bacteria

    NASA Technical Reports Server (NTRS)

    Margalit, Ruth

    1990-01-01

    Characteristic protein extracted and detected. Natural protein marker found in Pseudomonas bacteria. Azurin, protein containing copper readily extracted, purified, and used to prepare antibodies. Possible to develop simple, fast, and accurate test for marker carried out in doctor's office.

  3. [Darwin and bacteria].

    PubMed

    Ledermann D, Walter

    2009-02-01

    As in 2009 the scientific world celebrates two hundreds years from the birthday of Charles Darwin and one hundred and fifty from the publication of The Origin of Species, an analysis of his complete work is performed, looking for any mention of bacteria. But it seems that the great naturahst never took knowledge about its existence, something rather improbable in a time when the discovery of bacteria shook the medical world, or he deliberately ignored them, not finding a place for such microscopic beings into his theory of evolution. But the bacteria badly affected his familiar life, killing scarlet fever one of his children and worsening to death the evolution of tuberculosis of his favourite Annie. Darwin himself could suffer the sickness of Chagas, whose etiological agent has a similar level to bacteria in the scale of evolution.

  4. Gut bacteria and cancer

    PubMed Central

    Erdman, Susan E.; Poutahidis, Theofilos

    2015-01-01

    Microbiota on the mucosal surfaces of the gastrointestinal (GI) tract greatly outnumber the cells in the human body. Effects of antibiotics indicate that GI tract bacteria may be determining the fate of distal cancers. Recent data implicate dysregulated host responses to enteric bacteria leading to cancers in extra-intestinal sites. Together these findings point to novel anti-cancer strategies aimed at promoting GI tract homeostasis. PMID:26050963

  5. Pervasive transcription: detecting functional RNAs in bacteria.

    PubMed

    Lybecker, Meghan; Bilusic, Ivana; Raghavan, Rahul

    2014-01-01

    Pervasive, or genome-wide, transcription has been reported in all domains of life. In bacteria, most pervasive transcription occurs antisense to protein-coding transcripts, although recently a new class of pervasive RNAs was identified that originates from within annotated genes. Initially considered to be non-functional transcriptional noise, pervasive transcription is increasingly being recognized as important in regulating gene expression. The function of pervasive transcription is an extensively debated question in the field of transcriptomics and regulatory RNA biology. Here, we highlight the most recent contributions addressing the purpose of pervasive transcription in bacteria and discuss their implications.

  6. Genetics in methylotrophic bacteria: Appendix. Final report

    SciTech Connect

    Lidstrom, M.E.

    1998-09-01

    This research has focused primarily on promoters in Methylobacterium extorquens AM1 and in methanotrophic bacteria. In Methylobacterium extorquens work continued on the moxF promoter. The author constructed chromosomal lacZ fusions of this promoter to avoid the regulation problems of plasmid-borne fragments and has shown that this is regulated normally in the chromosome. She has constructed lacZ fusions to some of the mox genes involved in the synthesis of the cofactor, PQQ, in order to carry out similar analysis of transcription of PQQ genes. The author has continued to isolate mox genes in methanotrophs for the purpose of studying their promoters and transcriptional regulation.

  7. Urea/phenol/melamine formaldehyde polymeric resins. (Latest citations from the NTIS data base). Published Search

    SciTech Connect

    Not Available

    1992-04-01

    The bibliography contains citations concerning characteristics, safe use regulations and standards, and applications of formaldehyde polymeric resins. Modelling, test procedures, and test results for identifying the hazards of formaldehyde resin system emissions are presented. Methods of preparation and modification of formaldehyde foams for use in the building industry are included. Corrosion of formaldehyde polymeric foam thermal insulation, crosslinking and catalysis of phenol-formaldehyde polymer concrete, and disposal of urea-formaldehyde waste are considered. (Contains a minimum of 103 citations and includes a subject term index and title list.)

  8. Force-Driven Polymerization and Turgor-Induced Wall Expansion.

    PubMed

    Ali, Olivier; Traas, Jan

    2016-05-01

    While many molecular players involved in growth control have been identified in the past decades, it is often unknown how they mechanistically act to induce specific shape changes during development. Plant morphogenesis results from the turgor-induced yielding of the extracellular and load-bearing cell wall. Its mechanochemical equilibrium appears as a fundamental link between molecular growth regulation and the effective shape evolution of the tissue. We focus here on force-driven polymerization of the cell wall as a central process in growth control. We propose that mechanical forces facilitate the insertion of wall components, in particular pectins, a process that can be modulated through genetic regulation. We formalize this idea in a mathematical model, which we subsequently test with published experimental results.

  9. Polymerization in emulsion microdroplet reactors

    NASA Astrophysics Data System (ADS)

    Carroll, Nick J.

    The goal of this research project is to utilize emulsion droplets as chemical reactors for execution of complex polymerization chemistries to develop unique and functional particle materials. Emulsions are dispersions of immiscible fluids where one fluid usually exists in the form of drops. Not surprisingly, if a liquid-to-solid chemical reaction proceeds to completion within these drops, the resultant solid particles will possess the shape and relative size distribution of the drops. The two immiscible liquid phases required for emulsion polymerization provide unique and complex chemical and physical environments suitable for the engineering of novel materials. The development of novel non-ionic fluorosurfactants allows fluorocarbon oils to be used as the continuous phase in a water-free emulsion. Such emulsions enable the encapsulation of almost any hydrocarbon compound in droplets that may be used as separate compartments for water-sensitive syntheses. Here, we exemplify the promise of this approach by suspension polymerization of polyurethanes (PU), in which the liquid precursor is emulsified into droplets that are then converted 1:1 into polymer particles. The stability of the droplets against coalescence upon removal of the continuous phase by evaporation confirms the formation of solid PU particles. These results prove that the water-free environment of fluorocarbon based emulsions enables high conversion. We produce monodisperse, cross-linked, and fluorescently labeled PU-latexes with controllable mesh size through microfluidic emulsification in a simple one-step process. A novel method for the fabrication of monodisperse mesoporous silica particles is presented. It is based on the formation of well-defined equally sized emulsion droplets using a microfluidic approach. The droplets contain the silica precursor/surfactant solution and are suspended in hexadecane as the continuous oil phase. The solvent is then expelled from the droplets, leading to

  10. Gating mechanosensitive channels in bacteria with an atomic force microscope

    NASA Astrophysics Data System (ADS)

    Garces, Renata; Miller, Samantha; Schmidt, Christoph F.; Third Institute of Physics Team; School of Medical Sciences Collaboration

    The regulation of growth and integrity of bacteria is critically linked to mechanical stress. Bacteria typically maintain a high difference of osmotic pressure (turgor pressure) with respect to the environment. This pressure difference (on the order of 1 atm) is supported by the cell envelope, a composite of lipid membranes and a rigid cell wall. Turgor pressure is controlled by the ratio of osmolytes inside and outside bacteria and thus, can abruptly increase upon osmotic downshock. For structural integrity bacteria rely on the mechanical stability of the cell wall and on the action of mechanosensitive (MS) channels: membrane proteins that release solutes in response to stress in the cell envelope. We here present experimental data on MS channels gating. We activate channels by indenting living bacteria with the cantilever of an atomic force microscope (AFM). We compare responses of wild-type and mutant bacteria in which some or all MS channels have been eliminated.

  11. Stereo- and Temporally Controlled Coordination Polymerization Triggered by Alternating Addition of a Lewis Acid and Base.

    PubMed

    Liu, Bo; Cui, Dongmei; Tang, Tao

    2016-09-19

    Significant progress has been made with regard to temporally controlled radical and ring-opening polymerizations, for example, by means of chemical reagents, light, and voltage, whereas quantitative switch coordination polymerization is still challenging. Herein, we report the temporally and stereocontrolled 3,4-polymerization of isoprene through allosterically regulating the active metal center by alternating addition of Lewis basic pyridine to "poison" the Lewis acidic active metal species through acid-base interactions and Lewis acidic Al(i) Bu3 to release the original active species through pyridine abstraction. This process is quick, quantitative, and can be repeated multiple times while maintaining high 3,4-selectivity. Moreover, this strategy is also effective for the switch copolymerization of isoprene and styrene with dual 3,4- and syndiotactic selectivity. Tuning the switch cycles and intervals enables the isolation of various copolymers with different distributions of 3,4-polyisoprene and syndiotactic polystyrene sequences. PMID:27539866

  12. Engineering an artificial amoeba propelled by nanoparticle-triggered actin polymerization

    NASA Astrophysics Data System (ADS)

    Yi, Jinsoo; Schmidt, Jacob; Chien, Aichi; Montemagno, Carlo D.

    2009-02-01

    We have engineered an amoeba system combining nanofabricated inorganic materials with biological components, capable of propelling itself via actin polymerization. The nanofabricated materials have a mechanism similar to the locomotion of the Listeria monocytogenes, food poisoning bacteria. The propulsive force generation utilizes nanoparticles made from nickel and gold functionalized with the Listeria monocytogenes transmembrane protein, ActA. These Listeria-mimic nanoparticles were in concert with actin, actin binding proteins, ATP (adenosine triphosphate) and encapsulated within a lipid vesicle. This system is an artificial cell, such as a vesicle, where artificial nanobacteria and actin polymerization machinery are used in driving force generators inside the cell. The assembled structure was observed to crawl on a glass surface analogously to an amoeba, with the speed of the movement dependent on the amount of actin monomers and ATP present.

  13. Engineering an artificial amoeba propelled by nanoparticle-triggered actin polymerization.

    PubMed

    Yi, Jinsoo; Schmidt, Jacob; Chien, Aichi; Montemagno, Carlo D

    2009-02-25

    We have engineered an amoeba system combining nanofabricated inorganic materials with biological components, capable of propelling itself via actin polymerization. The nanofabricated materials have a mechanism similar to the locomotion of the Listeria monocytogenes, food poisoning bacteria. The propulsive force generation utilizes nanoparticles made from nickel and gold functionalized with the Listeria monocytogenes transmembrane protein, ActA. These Listeria-mimic nanoparticles were in concert with actin, actin binding proteins, ATP (adenosine triphosphate) and encapsulated within a lipid vesicle. This system is an artificial cell, such as a vesicle, where artificial nanobacteria and actin polymerization machinery are used in driving force generators inside the cell. The assembled structure was observed to crawl on a glass surface analogously to an amoeba, with the speed of the movement dependent on the amount of actin monomers and ATP present. PMID:19417437

  14. Mixing in polymeric microfluidic devices.

    SciTech Connect

    Schunk, Peter Randall; Sun, Amy Cha-Tien; Davis, Robert H.; Brotherton, Christopher M. (University of Colorado at Boulder, Boulder, CO)

    2006-04-01

    This SAND report describes progress made during a Sandia National Laboratories sponsored graduate fellowship. The fellowship was funded through an LDRD proposal. The goal of this project is development and characterization of mixing strategies for polymeric microfluidic devices. The mixing strategies under investigation include electroosmotic flow focusing, hydrodynamic focusing, physical constrictions and porous polymer monoliths. For electroosmotic flow focusing, simulations were performed to determine the effect of electroosmotic flow in a microchannel with heterogeneous surface potential. The heterogeneous surface potential caused recirculations to form within the microchannel. These recirculations could then be used to restrict two mixing streams and reduce the characteristic diffusion length. Maximum mixing occurred when the ratio of the mixing region surface potential to the average channel surface potential was made large in magnitude and negative in sign, and when the ratio of the characteristic convection time to the characteristic diffusion time was minimized. Based on these results, experiments were performed to evaluate the manipulation of surface potential using living-radical photopolymerization. The material chosen to manipulate typically exhibits a negative surface potential. Using living-radical surface grafting, a positive surface potential was produced using 2-(Dimethylamino)ethyl methacrylate and a neutral surface was produced using a poly(ethylene glycol) surface graft. Simulations investigating hydrodynamic focusing were also performed. For this technique, mixing is enhanced by using a tertiary fluid stream to constrict the two mixing streams and reduce the characteristic diffusion length. Maximum mixing occurred when the ratio of the tertiary flow stream flow-rate to the mixing streams flow-rate was maximized. Also, like the electroosmotic focusing mixer, mixing was also maximized when the ratio of the characteristic convection time to the

  15. Fire-Retardant Polymeric Additives

    NASA Technical Reports Server (NTRS)

    Williams, Martha K.; Smith, Trent M.

    2011-01-01

    component forms polybenzoxazole (PBO) in a reaction that absorbs heat from its surroundings. PBO under thermal stress cross-links, forming a protective char layer, which thermally insulates the polymer. Thus, the formation of the char layer further assists to extinguish the fire by preventing vaporization of the polymeric fuel.

  16. Pilins in gram-positive bacteria: A structural perspective.

    PubMed

    Krishnan, Vengadesan

    2015-07-01

    Pilins or fimbrilins are a class of proteins found in bacterial surface pilus, a hair-like surface appendage. Both the Gram-negative and -positive bacteria produce pilins to assemble pili on their cell-surface for different purposes including adherence, twitching motility, conjugation, immunomodulation, biofilm formation, and electron transfer. Immunogenic properties of the pilins make them attractive vaccine candidates. The polymerized pilins play a key role in the initiation of host adhesion, which is a critical step for bacterial colonization and infection. Because of their key role in adhesion and exposure on the cell surface, targeting the pilins-mediated adhesion (anti-adhesion therapy) is also seen as a promising alternative approach for preventing and treating bacterial infections, one that may overcome their ever-increasing repertoires of resistance mechanisms. Individual pilins interact with each other non-covalently to assemble the pilus fiber with the help of associated proteins like chaperones and Usher in Gram-negative bacteria. In contrast, the pilins in Gram-positive bacteria often connect with each other covalently, with the help of sortases. Certain unique structural features present on the pilins distinguish them from one another across different bacterial strains, and these dictate their cellular targets and functions. While the structure of pilins has been extensively studied in Gram-negative pathogenic bacteria, the pilins in Gram-positive pathogenic bacteria have been in only during the last decade. Recently, the discovery of pilins in non-pathogenic bacteria, such as Lactobacillus rhamnosus GG, has received great attention, though traditionally the attention was on pathogenic bacteria. This review summarizes and discusses the current structural knowledge of pilins in Gram-positive bacteria with emphasis on those pilins which are sortase substrates.

  17. Polymerization of Actin from Maize Pollen.

    PubMed Central

    Yen, L. F.; Liu, X.; Cai, S.

    1995-01-01

    Here we describe the in vitro polymerization of actin from maize (Zea mays) pollen. The purified actin from maize pollen reported in our previous paper (X. Liu, L.F. Yen [1992] Plant Physiol 99: 1151-1155) is biologically active. In the presence of ATP, KCl, and MgCl2 the purified pollen actin polymerized into filaments. During polymerization the spectra of absorbance at 232 nm increased gradually. Polymerization of pollen actin was evidently accompanied by an increase in viscosity of the pollen actin solution. Also, the specific viscosity of pollen F-actin increased in a concentration-dependent manner. The ultraviolet difference spectrum of pollen actin is very similar to that of rabbit muscle actin. The activity of myosin ATPase from rabbit muscle was activated 7-fold by the polymerized pollen actin (F-actin). The actin filaments were visualized under the electron microscope as doubly wound strands of 7 nm diameter. If cytochalasin B was added before staining, no actin filaments were observed. When actin filaments were treated with rabbit heavy meromyosin, the actin filaments were decorated with an arrowhead structure. These results imply that there is much similarity between pollen and muscle actin. PMID:12228343

  18. How do polymeric micelles cross epithelial barriers?

    PubMed

    Pepić, Ivan; Lovrić, Jasmina; Filipović-Grčić, Jelena

    2013-09-27

    Non-parenteral delivery of drugs using nanotechnology-based delivery systems is a promising non-invasive way to achieve effective local or systemic drug delivery. The efficacy of drugs administered non-parenterally is limited by their ability to cross biological barriers, and epithelial tissues particularly present challenges. Polymeric micelles can achieve transepithelial drug delivery because of their ability to be internalized into cells and/or cross epithelial barriers, thereby delivering drugs either locally or systematically following non-parenteral administration. This review discusses the particular characteristics of various epithelial barriers and assesses their potential as non-parenteral routes of delivery. The material characteristics of polymeric micelles (e.g., size, surface charge, and surface decoration) and of unimers dissociated from polymeric micelles determine their interactions (non-specific and/or specific) with mucus and epithelial cells as well as their intracellular fate. This paper outlines the mechanisms governing the major modes of internalization of polymeric micelles into epithelial cells, with an emphasis on specific recent examples of the transport of drug-loaded polymeric micelles across epithelial barriers.

  19. Volatilization of alachlor from polymeric formulations.

    PubMed

    Dailey, Oliver D

    2004-11-01

    Pesticides may be dispersed throughout the environment by several means, including groundwater contamination, surface water contamination, and volatilization with subsequent atmospheric transport and deposition. In earlier research primarily directed at reducing the potential for groundwater contamination, a number of herbicides were microencapsulated within several different polymers. These polymeric formulations were evaluated for efficacy in the greenhouse. In the studies described in this paper, three polymeric alachlor formulations that were the most effective in the greenhouse were evaluated in laboratory volatility studies using pure alachlor and a commercial formulation (Lasso 4EC) for comparison purposes. In a given experiment, technical alachlor, Lasso 4EC, and two polymeric formulations were applied to soil and evaluated in a contained system under 53% humidity with a fixed flow rate. Evolved alachlor was collected in ethylene glycol, recovered with C18 solid phase extraction cartridges, and analyzed by reverse-phase high-performance thin-layer chromatography with densitometry. Duration of the studies ranged from 32 to 39 days. In studies in which all formulations were uniformly incorporated in the soil, total alachlor volatilization from the polymeric microcapsules was consistently lower than that from the alachlor and Lasso 4EC formulations. In studies in which the polymeric formulations were sprinkled on the surface of the soil, microcapsules prepared with the polymer cellulose acetate butyrate released the smallest quantity of volatilized alachlor.

  20. Tankyrase Requires SAM Domain-Dependent Polymerization to Support Wnt-β-Catenin Signaling.

    PubMed

    Mariotti, Laura; Templeton, Catherine M; Ranes, Michael; Paracuellos, Patricia; Cronin, Nora; Beuron, Fabienne; Morris, Edward; Guettler, Sebastian

    2016-08-01

    The poly(ADP-ribose) polymerase (PARP) Tankyrase (TNKS and TNKS2) is paramount to Wnt-β-catenin signaling and a promising therapeutic target in Wnt-dependent cancers. The pool of active β-catenin is normally limited by destruction complexes, whose assembly depends on the polymeric master scaffolding protein AXIN. Tankyrase, which poly(ADP-ribosyl)ates and thereby destabilizes AXIN, also can polymerize, but the relevance of these polymers has remained unclear. We report crystal structures of the polymerizing TNKS and TNKS2 sterile alpha motif (SAM) domains, revealing versatile head-to-tail interactions. Biochemical studies informed by these structures demonstrate that polymerization is required for Tankyrase to drive β-catenin-dependent transcription. We show that the polymeric state supports PARP activity and allows Tankyrase to effectively access destruction complexes through enabling avidity-dependent AXIN binding. This study provides an example for regulated signal transduction in non-membrane-enclosed compartments (signalosomes), and it points to novel potential strategies to inhibit Tankyrase function in oncogenic Wnt signaling. PMID:27494558

  1. Mechanical force-induced polymerization and depolymerization of F-actin at water/solid interfaces.

    PubMed

    Zhang, Xueqiang; Hu, Xiuyuan; Lei, Haozhi; Hu, Jun; Zhang, Yi

    2016-03-21

    Actin molecules are among the three main cytoskeleton proteins of cells and undergo rapid cycling to regulate critical processes such as endocytosis, cytokinesis, cell polarity, and cell morphogenesis. Although extensive studies have been carried out on the dynamics as well as biological functions of actin polymerization and depolymerization both in vivo and in vitro, the molecular mechanisms by which cells sense and respond to mechanical signals are not fully understood. In particular, little attention has been paid to the effect of a physical force that is exerted directly on the actin cytoskeleton. In this paper, we have explored how the mechanical force affects the actin polymerization and depolymerization behaviors at water/solid interfaces using an atomic force microscope (AFM) operated in liquid. By raster scanning an AFM probe on a substrate surface with a certain load, it was found that actin monomers could polymerize into filaments without the help of actin related proteins (ARPs). Further study indicated that actin monomers were inclined to form filaments only under a small scanning load. The polymerized actin filaments would be depolymerized when the mechanical force was stronger. A possible mechanism has been suggested to explain the mechanical force induced actin polymerization.

  2. Anaerobic bacteria in otitis media.

    PubMed

    Fulghum, R S; Daniel, H J; Yarborough, J G

    1977-01-01

    Anaerobic bacteria, Peptostrepotococcus intermedius and Propionibacterium acnes, were found in mixed culture specimens from four to ten tested cases of chronic secretory otitis media. These anaerobic bacteria were in a mixed infection flora with aerobic bacteria most often Staphylococcus epidermidis and Cornybacterium sp. which do not fit any established species. The findings of anaerobic bacteria in otitis media is consistent with the sporadic report of the involvement of anaerobic bacteria in otitis media in the literature since 1898.

  3. Supramolecular Polymerization Engineered with Molecular Recognition.

    PubMed

    Haino, Takeharu

    2015-10-01

    Supramolecular polymeric assemblies represent an emerging, promising class of molecular assemblies with enormous versatility compared with their covalent polymeric counterparts. Although a large number of host-guest motifs have been produced over the history of supramolecular chemistry, only a limited number of recognition motifs have been utilized as supramolecular connections in polymeric assemblies. This account describes the molecular recognition of host molecules based on calix[5]arene and bisporphyrin that demonstrate unique guest encapsulations; subsequently, these host-guest motifs are applied to the synthesis of supramolecular polymers that display polymer-like properties in solution and solid states. In addition, new bisresorcinarenes are developed to form supramolecular polymers that are connected via a rim-to-rim hydrogen-bonded dimeric structure, which is composed of two resorcinarene moieties. PMID:26178364

  4. Self-Healing of biocompatible polymeric nanocomposities

    NASA Astrophysics Data System (ADS)

    Espino, Omar; Chipara, Dorina

    2014-03-01

    Polymers are vulnerable to damage in form of cracks deep within the structure, where detection is difficult and repair is near to impossible. These cracks lead to mechanical degradation of the polymer. A method has been created to solve this problem named polymeric self healing. Self healing capabilities implies the dispersion within the polymeric matrix of microcapsules filled with a monomer and of catalyst. Poly urea-formaldehyde microcapsules used in this method are filled with dicyclopentadiene that is liberated after being ruptured by the crack propagation in the material. Polymerization is assisted by a catalyst FGGC that ignites the self healing process. Nanocomposites, such as titanium oxide, will be used as an integration of these polymers that will be tested by rupturing mechanically slowly. In order to prove the self healing process, Raman spectroscopy, FTIR, and SEM are used.

  5. Immobilization of Polymeric Luminophor on Nanoparticles Surface

    NASA Astrophysics Data System (ADS)

    Bolbukh, Yuliia; Podkoscielna, Beata; Lipke, Agnieszka; Bartnicki, Andrzej; Gawdzik, Barbara; Tertykh, Valentin

    2016-04-01

    Polymeric luminophors with reduced toxicity are of the priorities in the production of lighting devices, sensors, detectors, bioassays or diagnostic systems. The aim of this study was to develop a method of immobilization of the new luminophor on a surface of nanoparticles and investigation of the structure of the grafted layer. Monomer 2,7-(2-hydroxy-3-methacryloyloxypropoxy)naphthalene (2,7-NAF.DM) with luminophoric properties was immobilized on silica and carbon nanotubes in two ways: mechanical mixing with previously obtained polymer and by in situ oligomerization with chemisorption after carrier's modification with vinyl groups. The attached polymeric (or oligomeric) surface layer was studied using thermal and spectral techniques. Obtained results confirm the chemisorption of luminophor on the nanotubes and silica nanoparticles at the elaborated synthesis techniques. The microstructure of 2,7-NAF.DM molecules after chemisorption was found to be not changed. The elaborated modification approach allows one to obtain nanoparticles uniformly covered with polymeric luminophor.

  6. Universal metastability of sickle hemoglobin polymerization

    NASA Astrophysics Data System (ADS)

    Weng, Weijun

    Sickle hemoglobin (HbS) is a natural mutation of the normal hemoglobin (HbA) found in the red blood cells of human body. Polymerization of HbS occurs when the concentration of deoxyHbS exceeds a well-defined solubility, which is the underlying cause of the Sickle Cell Disease. It has long been assumed that thermodynamic equilibrium is reached when polymerization comes to an end. However, in this thesis we demonstrate that in confined volume as well as in bulk solution, HbS polymerization terminates prematurely, leaving the solution in a metastable state. A newly developed Reservoir method as well as modulated excitation method were adopted for the study. This discovery of universal metastability gives us new insights into understanding the mechanism of sickle cell disease.

  7. Reversible addition-fragmentation chain transfer polymerization in microemulsion.

    PubMed

    O'Donnell, Jennifer M

    2012-04-21

    This tutorial review first details the uncontrolled microemulsion polymerization mechanism, and the RAFT polymerization mechanism to provide the necessary background for examining the RAFT microemulsion polymerization mechanism. The effect of the chain transfer agent per micelle ratio and the chain transfer agent aqueous solubility on the RAFT microemulsion polymerization kinetics, polymer molecular weight and polydispersity, and polymer nanoparticle size are discussed with a focus on oil-in-water microemulsions. Modeling of RAFT microemulsion polymerization kinetics and the resulting final polymer molecular weight are presented to assist with the analysis of observed experimental trends. Lastly, the current significance of RAFT microemulsion polymerization and the future directions are discussed. PMID:22246214

  8. Thrombin interaction with fibrin polymerization sites.

    PubMed

    Hsieh, K

    1997-05-15

    Thrombin is central to hemostasis, and postclotting fibrinolysis and wound healing. During clotting, thrombin transforms plasma fibrinogen into polymerizing fibrin, which selectively adsorbs the enzyme into the clot. This protects thrombin from heparin-antithrombin inactivation, thus preserving the enzyme for postclotting events. To determine how the fibrin N-terminal polymerization sites of A alpha 17-23 (GPRVVER) and B beta 15-25 (GHRPLDKKREE) and their analogs may interact with thrombin, amidolysis vs. plasma- and fibrinogen-clotting assays were used to differentiate blockade of catalytic site vs. other thrombin domains. Amidolysis studies suggest GPRVVER inhibition of thrombin catalytic site through hydrophobic interaction, and GPRVVER inhibited clotting. Neither GPRP nor VVER nor the B beta 15-25 homologs inhibited amidolysis. Contrary to heparin, acyl-DKKREE promoted plasma-clotting, but inhibited fibrinogen-clotting. In addition, acyl-DKKREE reversed the anticoagulant effect of heparin (0.1 U/ml) in plasma. The results suggest fibrin B beta 15-25 interaction with thrombin, possibly by blocking the heparin-binding site. Together with the reported fibrin A alpha 27-50 binding to thrombin, polymerizing fibrin appears to initially bind to thrombin catalytic site and exosite-1 through A alpha 17-50, and to another thrombin site through B beta 15-25. As these fibrin sites are also involved in polymerization, competition of the polymerization process with thrombin-binding could subsequently dislodge thrombin from fibrin alpha-chain. This may re-expose the catalytic site and exosite-1, thus explaining the thrombogenicity of clot-bound thrombin. The implications of these findings in polymerization mechanism and anticoagulant design are discussed.

  9. Clay-Bacteria Systems and Biofilm Production

    NASA Astrophysics Data System (ADS)

    Steiner, J.; Alimova, A.; Katz, A.; Steiner, N.; Rudolph, E.; Gottlieb, P.

    2007-12-01

    Soil clots and the aerosol transport of bacteria and spores are promoted by the formation of biofilms (bacteria cells in an extracellular polymeric matrix). Biofilms protect microorganisms by promoting adhesion to both organic and inorganic surfaces. Time series experiments on bacteria-clay suspensions demonstrate that biofilm growth is catalyzed by the presence of hectorite in minimal growth media for the studied species: Gram negatives (Pseudomonas syringae and Escherichia coli,) and Gram positives (Staphylococcus aureus and Bacillus subtilis). Soil organisms (P. syringae, B. subtilis) and organisms found in the human population (E. coli, S. aureus) are both used to demonstrate the general applicability of clay involvement. Fluorescent images of the biofilms are acquired by staining with propidium iodide, a component of the BacLightTM Live/Dead bacterial viability staining kit (Molecular Probes, Eugene, OR). The evolving polysaccharide-rich biofilm reacts with the clay interlayer site causing a complex substitution of the two-water hectorite interlayer with polysaccharide. The result is often a three-peak composite of the (001) x-ray diffraction maxima resulting from polysaccharide-expanded clays and an organic-driven contraction of a subset of the clays in the reaction medium. X-ray diffractograms reveal that the expanded set creates a broad maximum with clay subsets at 1.84 nm and 1.41 nm interlayer spacings as approximated by a least squares double Lorentzian fit, and a smaller shoulder at larger 2q, deriving from a contraction of the interlayer spacing. Washing with chlorox removes organic material from the contracted clay and creates a 1-water hectorite single peak in place of the double peak. The clay response can be used as an indirect indicator of biofilm in an environmental system.

  10. Polymeric matrix materials for infrared metamaterials

    DOEpatents

    Dirk, Shawn M; Rasberry, Roger D; Rahimian, Kamyar

    2014-04-22

    A polymeric matrix material exhibits low loss at optical frequencies and facilitates the fabrication of all-dielectric metamaterials. The low-loss polymeric matrix material can be synthesized by providing an unsaturated polymer, comprising double or triple bonds; partially hydrogenating the unsaturated polymer; depositing a film of the partially hydrogenated polymer and a crosslinker on a substrate; and photopatterning the film by exposing the film to ultraviolet light through a patterning mask, thereby cross-linking at least some of the remaining unsaturated groups of the partially hydrogenated polymer in the exposed portions.

  11. Possible mediators of the ``living'' radical polymerization

    NASA Astrophysics Data System (ADS)

    Motyakin, M. V.; Wasserman, A. M.; Stott, P. E.; Zaikov, G. E.

    2006-03-01

    The stable radicals derived from different compounds were detected in process of styrene autopolymerization. The nitroxide radicals are produced from nitrosocompound, hindered hydroxylamine, nitrophenols and nitroanisoles. The phenoxyl radicals are formed from quinine methides, and naphtoxyl radicals are generated from 2-nitro-1-naphtol. The radicals are identified, the kinetics of their formation and follow-up evolution are studied. These radicals can participate in process of living radical polymerization as the mediators and can effect significantly on kinetics of polymerization and structure of the resulting polymer.

  12. Producing ORMOSIL scaffolds by femtosecond laser polymerization

    NASA Astrophysics Data System (ADS)

    Matei, A.; Zamfirescu, M.; Radu, C.; Buruiana, E. C.; Buruiana, T.; Mustaciosu, C.; Petcu, I.; Radu, M.; Dinescu, M.

    2012-07-01

    Structures with different geometries and sizes were built via direct femtosecond laser writing, starting from new organic/inorganic hybrid monomers based on hybrid methacrylate containing triethoxysilane, in addition to urethane and urea groups. Multifunctional oligomer of urethane dimethacrylate type was chosen as comonomer in polymerization experiments because dimethacrylates give rise to the formation of a polymer network, having a number of favorable properties including biocompatibility and surface nanostructuring. Free standing polymeric structures were designed and created in order to be tested in fibroblast cells culture. Investigations of the cellular adhesion, proliferation, and viability of L929 mouse fibroblasts on free-standing laser processed scaffolds were performed for different scaffold designs.

  13. Molecular diffusion in plasma-polymerized tetrafluoroethylene

    SciTech Connect

    Butler, M.A.; Buss, R.J. )

    1992-11-01

    Diffusion of an array of molecules in micrometer-thick films of plasma-polymerized tetrafluoroethylene has been measured using an optical interferometric technique. The diffusivity is approximately independent of molecular size up to a molar volume of about 100 cm{sup 3} and drops rapidly for larger molecules. For much larger molecules no penetration of the films is observed. These results suggest that plasma-polymerized tetrafluoroethylene films are heavily cross linked and that this limits the size of the molecules that can penetrate the polymer. The temperature dependence and the molecular size dependence of the diffusivities are discussed in the context of free-volume theory.

  14. Flat phase of quantum polymerized membranes

    NASA Astrophysics Data System (ADS)

    Coquand, O.; Mouhanna, D.

    2016-09-01

    We investigate the flat phase of quantum polymerized phantom membranes by means of a nonperturbative renormalization group approach. We first implement this formalism for general quantum polymerized membranes and derive the flow equations that encompass both quantum and thermal fluctuations. We then deduce and analyze the flow equations relevant to study the flat phase and discuss their salient features: quantum to classical crossover and, in each of these regimes, strong to weak coupling crossover. We finally illustrate these features in the context of free-standing graphene physics.

  15. Polymeric materials science in the microgravity environment

    NASA Technical Reports Server (NTRS)

    Coulter, Daniel R.

    1989-01-01

    The microgravity environment presents some interesting possibilities for the study of polymer science. Properties of polymeric materials depend heavily on their processing history and environment. Thus, there seem to be some potentially interesting and useful new materials that could be developed. The requirements for studying polymeric materials are in general much less rigorous than those developed for studying metals, for example. Many of the techniques developed for working with other materials, including heat sources, thermal control hardware and noncontact temperature measurement schemes should meet the needs of the polymer scientist.

  16. Polymerization Initiated by Organic Electron Donors.

    PubMed

    Broggi, Julie; Rollet, Marion; Clément, Jean-Louis; Canard, Gabriel; Terme, Thierry; Gigmes, Didier; Vanelle, Patrice

    2016-05-10

    Polymerization reactions with organic electron donors (OED) as initiators are presented herein. The metal-free polymerization of various activated alkene and cyclic ester monomers was performed in short reaction times, under mild conditions, with small amounts of organic reducing agents, and without the need for co-initiators or activation by photochemical, electrochemical, or other methods. Hence, OED initiators enabled the development of an efficient, rapid, room-temperature process that meets the technical standards expected for industrial processes, such as energy savings, cost-effectiveness and safety. Mechanistic investigations support an electron-transfer initiation pathway that leads to the reduction of the monomer. PMID:27061743

  17. A Fluidic Device with Polymeric Textured Ratchets

    PubMed Central

    Sekeroglu, Koray; Demirel, Melik C.

    2014-01-01

    Nanotextured surfaces are widely used throughout nature for adhesion, wetting, and transport. Chemistry, geometry, and morphology are important factors for creating tunable textured surfaces, in which directionality of droplets can be controlled. Here, we fabricated nano textured polymeric surfaces, and studied the effect of tilting on the mobility of frequency modulated water droplet transported on asymmetric nano-PPX tracks. Plastically-deformed tracks guided water droplets for sorting, gating, and merging them as a function on their volume. Polymeric ratchets open up new avenues for the fields of digital fluidics and flexible device fabrication. PMID:25641987

  18. Bacteria-surface interactions

    PubMed Central

    Tuson, Hannah H.; Weibel, Douglas B.

    2013-01-01

    The interaction of bacteria with surfaces has important implications in a range of areas, including bioenergy, biofouling, biofilm formation, and the infection of plants and animals. Many of the interactions of bacteria with surfaces produce changes in the expression of genes that influence cell morphology and behavior, including genes essential for motility and surface attachment. Despite the attention that these phenotypes have garnered, the bacterial systems used for sensing and responding to surfaces are still not well understood. An understanding of these mechanisms will guide the development of new classes of materials that inhibit and promote cell growth, and complement studies of the physiology of bacteria in contact with surfaces. Recent studies from a range of fields in science and engineering are poised to guide future investigations in this area. This review summarizes recent studies on bacteria-surface interactions, discusses mechanisms of surface sensing and consequences of cell attachment, provides an overview of surfaces that have been used in bacterial studies, and highlights unanswered questions in this field. PMID:23930134

  19. Communication among Oral Bacteria

    PubMed Central

    Kolenbrander, Paul E.; Andersen, Roxanna N.; Blehert, David S.; Egland, Paul G.; Foster, Jamie S.; Palmer, Robert J.

    2002-01-01

    Human oral bacteria interact with their environment by attaching to surfaces and establishing mixed-species communities. As each bacterial cell attaches, it forms a new surface to which other cells can adhere. Adherence and community development are spatiotemporal; such order requires communication. The discovery of soluble signals, such as autoinducer-2, that may be exchanged within multispecies communities to convey information between organisms has emerged as a new research direction. Direct-contact signals, such as adhesins and receptors, that elicit changes in gene expression after cell-cell contact and biofilm growth are also an active research area. Considering that the majority of oral bacteria are organized in dense three-dimensional biofilms on teeth, confocal microscopy and fluorescently labeled probes provide valuable approaches for investigating the architecture of these organized communities in situ. Oral biofilms are readily accessible to microbiologists and are excellent model systems for studies of microbial communication. One attractive model system is a saliva-coated flowcell with oral bacterial biofilms growing on saliva as the sole nutrient source; an intergeneric mutualism is discussed. Several oral bacterial species are amenable to genetic manipulation for molecular characterization of communication both among bacteria and between bacteria and the host. A successful search for genes critical for mixed-species community organization will be accomplished only when it is conducted with mixed-species communities. PMID:12209001

  20. PATHOGENICITY OF BIOFILM BACTERIA

    EPA Science Inventory

    There is a paucity of information concerning any link between the microorganisms commonly found in biofilms of drinking water systems and their impacts on human health. For bacteria, culture-based techniques detect only a limited number of the total microorganisms associated wit...

  1. Antibiotic-Resistant Bacteria.

    ERIC Educational Resources Information Center

    Longenecker, Nevin E.; Oppenheimer, Dan

    1982-01-01

    A study conducted by high school advanced bacteriology students appears to confirm the hypothesis that the incremental administration of antibiotics on several species of bacteria (Escherichia coli, Staphylococcus epidermis, Bacillus sublitus, Bacillus megaterium) will allow for the development of antibiotic-resistant strains. (PEB)

  2. Development of new catalysts for living polymerizations: From interesting reaction mechanisms to new polymeric materials

    NASA Astrophysics Data System (ADS)

    Hustad, Phillip Dene

    Synthetic polymers have revolutionized the modern world. The synthesis of these new materials has relied heavily on the development of new catalytic methods. Remarkable advances have been reported over the past twenty years concerning development of homogeneous olefin polymerization catalysts. Single-site catalysts are now available that are unparalleled in all of polymer chemistry concerning the detailed control of macromolecular stereochemistry. Despite years of fervent research, very few catalytic systems are available for living/controlled polymerization of olefins. While various methods for living anionic, cationic, and radical-based polymerizations have been exploited for the synthesis of complex polymer architectures, the lack of methodology concerning olefin polymerization has limited the development of new polyolefin-based materials. As part of an ongoing effort in the development of new methods for controlled polymerization reactions, a catalyst for the highly stereospecific and living polymerization of propylene was discovered. The complex, a titanium chloride bearing two perfluorinated phenoxyimine ligands, was originally designed for isospecific propylene polymerization. However, the activated catalyst gave highly syndiotactic polypropylene with a narrow molecular weight distribution. The living nature of the polymerization was demonstrated by the synthesis of a series of new ethylene/propylene block copolymers. Mechanistic studies, including a new propagation-based approach, determined that this unexpected microstructure was the result of chain-end control enhanced by an unusual secondary monomer insertion. This mechanism was exploited for the synthesis of vinyl-functional polyolefins, and these polymers were transformed to a series of functional polymers through chemical modification. Although polyolefins are currently indispensable materials, the search for degradable polymeric materials derived from renewable resources is critical for

  3. Stress-Induced Mutagenesis in Bacteria

    PubMed Central

    Foster, Patricia L.

    2009-01-01

    Bacteria spend their lives buffeted by changing environmental conditions. To adapt to and survive these stresses, bacteria have global response systems that result in sweeping changes in gene expression and cellular metabolism. These responses are controlled by master regulators, which include: alternative sigma factors, such as RpoS and RpoH; small molecule effectors, such as ppGpp; gene repressors such as LexA; and, inorganic molecules, such as polyphosphate. The response pathways extensively overlap and are induced to various extents by the same environmental stresses. These stresses include nutritional deprivation, DNA damage, temperature shift, and exposure to antibiotics. All of these global stress responses include functions that can increase genetic variability. In particular, up-regulation and activation of error-prone DNA polymerases, down-regulation of error-correcting enzymes, and movement of mobile genetic elements are common features of several stress responses. The result is that under a variety of stressful conditions, bacteria are induced for genetic change. This transient mutator state may be important for adaptive evolution. PMID:17917873

  4. Identification of bacteria in scuba divers' rinse tanks.

    PubMed

    Washburn, Brian K; Levin, Andrew E; Hennessy, Kristen; Miller, Michael R

    2010-01-01

    Scuba divers typically rinse equipment in communal tanks. Studies show these tanks are contaminated with bacteria, but the types of bacteria have not been studied. We sought to identify bacteria in rinse tanks at a dive facility at San Pedro, Belize, to determine the origin of the bacteria and determine whether the bacteria represented potential threats to human health. The identity of bacteria was investigated using reverse line blot (RLB) assays based on 28 different rDNA probes designed to detect known pathogens of sepsis, as well as by sequencing 23S rDNA from isolates and performing VITEK identification of several isolates. Based on the identities of bacteria in divers' rinse tanks, many likely originate from the ocean, and others likely originate from the divers themselves. None of the bacteria identified would be considered overt human pathogens. However, some of the bacteria found in the tanks are known to be associated with unsanitary conditions and can cause opportunistic infections, which may pose health problems to some individuals. Rinsing scuba equipment in communal tanks has the potential to transmit disease among some divers. Equipment, especially regulators and masks, should be rinsed/cleaned individually and not be placed in communal tanks.

  5. Browning of freeze-dried probiotic bacteria cultures in relation to loss of viability during storage.

    PubMed

    Kurtmann, Lone; Skibsted, Leif H; Carlsen, Charlotte U

    2009-08-12

    Freeze-dried cultures of Lactobacillus acidophilus (La-5) showed visible brown discoloration even after a short storage at relatively mild conditions (a(w) = 0.22 and 30 degrees C), and the browning processes were found to coincide with bacteria inactivation. It was demonstrated, by using high-pressure treatment for obtaining bacteria samples with different ratios of live/dead bacteria, that death of bacteria is not a prerequisite for the browning processes. Furthermore, it was shown that hydroxymethylfurfural (HMF) (or condensation products of HMF) introduces accelerated viability loss when HMF is added to the freeze-drying medium. Discoloration of bacteria cultures containing only sucrose/maltodextrin or lactose/maltodextrin in the freeze-drying matrices is suggested to be related to various types of nonenzymatic browning reactions, including carbonyl-protein (or carbonyl-DNA) interactions and carbohydrate condensation/polymerization (without involvement of proteins), the latter proceeding at low a(w) following hydrolysis of the peptidoglycan layer in the bacteria cell wall. More than one single type of browning reaction is accordingly concluded to be related to bacteria death, and the loss of viability in freeze-dried bacteria seems to be influenced by oxidation reactions, browning reactions, and the physical instability of the bacteria membrane/cell wall. PMID:19591471

  6. Polymerization Initiated at the Sidewalls of Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Tour, James M.; Hudson, Jared L.

    2011-01-01

    A process has been developed for growing polymer chains via anionic, cationic, or radical polymerization from the side walls of functionalized carbon nanotubes, which will facilitate greater dispersion in polymer matrices, and will greatly enhance reinforcement ability in polymeric material.

  7. Method of Making Thermally Stable, Piezoelectric and Proelectric Polymeric Substrates

    NASA Technical Reports Server (NTRS)

    Simpson, Joycelyn O. (Inventor); St.Clair, Terry L. (Inventor)

    1999-01-01

    A thermally stable, piezoelectric and pyroelectric polymeric substrate was prepared. This thermally stable, piezoelectric and pyroelectric polymeric substrate may be used to prepare electromechanical transducers, thermomechanical transducers, accelerometers, acoustic sensors, infrared sensors, pressure sensors, vibration sensors, impact sensors. in-situ temperature sensors, in-situ stress/strain sensors, micro actuators, switches, adjustable fresnel lenses, speakers, tactile sensors, weather sensors, micro positioners, ultrasonic devices, power generators, tunable reflectors, microphones, and hydrophones. The process for preparing these polymeric substrates includes: providing a polymeric substrate having a softening temperature greater than 100 C; depositing a metal electrode material onto the polymer film; attaching a plurality of electrical leads to the metal electrode coated polymeric substrate; heating the metal electrode coated polymeric substrate in a low dielectric medium: applying a voltage to the heated metal electrode coated polymeric substrate to induce polarization; and cooling the polarized metal electrode coated polymeric electrode while maintaining a constant voltage.

  8. Biocompatibility of Experimental Polymeric Tracheal Matrices.

    PubMed

    Kiselevskii, M V; Chikileva, I O; Vlasenko, R Ya; Sitdikova, S M; Tenchurin, T Kh; Mamagulashvili, V G; Shepelev, A D; Grigoriev, T A; Chvalun, S N

    2016-08-01

    Biocompatibility of a new tracheal matrix is studied. The new matrix is based on polymeric ultra-fiber material colonized by mesenchymal multipotent stromal cells. The experiments demonstrate cytoconductivity of the synthetic matrices and no signs of their degradation within 2 months after their implantation to recipient mice. These data suggest further studies of the synthetic tracheal matrices on large laboratory animals. PMID:27591876

  9. The morphology of emulsion polymerized latex particles

    SciTech Connect

    Wignall, G.D.; Ramakrishnan, V.R.; Linne, M.A.; Klein, A.; Sperling, L.H.; Wai, M.P.; Gelman, R.A.; Fatica, M.G.; Hoerl, R.H.; Fisher, L.W.

    1987-11-01

    Under monomer starved feed conditions, emulsion polymerization of perdeuterated methyl methacrylate and styrene in the presence of preformed polymethylmethacrylate latexes resulted in particles with a core-shell morphology, as determined by small-angle neutron scattering (SANS) analysis for a hollow sphere. The locus of polymerization of the added deuterated monomer is therefore at the particle surface. In similar measurements a statistical copolymer of styrene and methyl methacrylate was used as seed particles for further polymerization of trideuteromethyl methacrylate. The resulting polymer latex was again shown to have a core-shell morphological structre as determined by SANS. SANS experiments were also undertaken on polystyrene latexes polymerized by equilibrium swelling methods, with deuterated polymer forming the first or second step. The experiments covered a molecular weight range of 6 x 10/sup 4/ < M < 6 x 10/sup 6/ g/mol. For M > 10/sup 6/ the molecular weights are consistent with the experimental errors, indicating that the deuterium labeled molecules are randomly distributed in the latex. These results led to the finding that the polymer chains were constrained in the latex particles by factors of 2 to 4 from the relaxed coil dimensions. For M < 10/sup 6/ g/mol SANS gave zero angle scattering intensities much higher than expected on the basis of a random distribution of labeled molecules. Several models were examined, including the possible development of core-shell structures at lower molecular weights. 25 refs., 6 figs., 3 tabs.

  10. Polymerization of epoxidized triglycerides with fluorosulfonic acid

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The use of triglycerides as agri-based renewable raw materials for the development of new products is highly desirable in view of uncertain future petroleum prices. A new method of polymerizing epoxidized soybean oil has been devised with the use of fluorosulfonic acid. Depending on the reaction con...

  11. Impregnated metal-polymeric functional beads

    NASA Technical Reports Server (NTRS)

    Rembaum, Alan (Inventor); Volksen, Willi (Inventor)

    1978-01-01

    Amine containing polymeric microspheres such as polyvinyl pyridine are complexed with metal salts or acids containing metals such as gold, platinum or iron. After reduction with sodium borohydride, the salt is reduced to finely divided free metal or metal oxides, useful as catalysts. Microspheres containing covalent bonding sites can be used for labeling or separating proteins.

  12. The Morphology of Emulsion Polymerized Latex Particles

    DOE R&D Accomplishments Database

    Wignall, G. D.; Ramakrishnan, V. R.; Linne, M. A.; Klein, A.; Sperling, L. H.; Wai, M. P.; Gelman, R. A.; Fatica, M. G.; Hoerl, R. H.; Fisher, L. W.

    1987-11-01

    Under monomer starved feed conditions, emulsion polymerization of perdeuterated methyl methacrylate and styrene in the presence of preformed polymethylmethacrylate latexes resulted in particles with a core-shell morphology, as determined by small-angle neutron scattering (SANS) analysis for a hollow sphere. The locus of polymerization of the added deuterated monomer is therefore at the particle surface. In similar measurements a statistical copolymer of styrene and methyl methacrylate was used as seed particles for further polymerization of trideuteromethyl methacrylate. The resulting polymer latex was again shown to have a core-shell morphological structure as determined by SANS. SANS experiments were also undertaken on polystyrene latexes polymerized by equilibrium swelling methods, with deuterated polymer forming the first or second step. The experiments covered a molecular weight range of 6 x 10{sup 4} 10{sup 6} the molecular weights are consistent with the experimental errors, indicating that the deuterium labeled molecules are randomly distributed in the latex. These results led to the finding that the polymer chains were constrained in the latex particles by factors of 2 to 4 from the relaxed coil dimensions. For M < 10{sup 6} g/mol SANS gave zero angle scattering intensities much higher than expected on the basis of a random distribution of labeled molecules. Several models were examined, including the possible development of core-shell structures at lower molecular weights.

  13. Polymeric Electrolytic Hygrometer For Harsh Environments

    NASA Technical Reports Server (NTRS)

    Lawson, Daniel D.; Shakkottai, Parthasarathy; Venkateshan, Shakkottai P.

    1989-01-01

    Design of polymeric electrolytic hygrometer improved to meet need for reliable measurements of relative humidity in harsh environments of pulpmills and papermills. Redesigned sensor head features shorter, more-rigidly-held sensing element, less vulnerable than previous version to swell and loss of electrical contact. Useful for control of batch dryers in food and pharmaceutical industries.

  14. Hot-embossed polymeric optical waveguides

    NASA Astrophysics Data System (ADS)

    Choi, Choon-Gi; Kim, Jin-Tae; Han, Sang-Pil; Ahn, Seung-Ho

    2004-10-01

    Polymer waveguides have attracted a great deal of attention for their potential applications as optical components in optical communications, optical interconnections and optical sensors because they are easy to manufacture at a low temperature, and they have a low processing cost. Hot embossing is powerful and effective tools to produce a large volume of waveguides and structure high-precision micro/nano patterns of thin polymer films using a stamp for optical applications. In this work, fabrication techniques of hot embossed polymeric optical waveguides for parallel optical interconnection module, multi-channel variable optical attenuator and optical printed circuit boards are demonstrated. The single- and multi-mode waveguides are produced by core filling and UV curing processes. New approaches to fabricating single-mode polymeric waveguides with the high thermal stability in thermosetting polymers and two-dimensional multi-mode polymeric waveguides for high-density parallel optical interconnections as well as a simultaneous fabrication of single-mode polymeric waveguides with micro pedestals for passive fiber alignment are also reported.

  15. Impregnated metal-polymeric functional beads

    NASA Technical Reports Server (NTRS)

    Rembaum, Alan (Inventor); Volksen, Willi (Inventor)

    1980-01-01

    Amine containing polymeric microspheres such as polyvinyl pyridine are complexed with metal salts or acids containing metals such as gold, platinum or iron. After reduction with sodium borohydride, the salt is reduced to finely divided free metal or metal oxides, useful as catalysts. Microspheres containing covalent bonding sites can be used for labeling or separating proteins.

  16. TRANSITION METAL CATALYSIS IN CONTROLLED RADICAL POLYMERIZATION: ATOM TRANSFER RADICAL POLYMERIZATION. (R826735)

    EPA Science Inventory

    Novel and diversified macromolecular structures, which include polymers with designed topologies (top), compostions (middle), and functionalities (bottom), can be prepared by atom transfer radical polymerization processes. These polymers can be synthesized from a large variety of...

  17. A simple polymeric model describes cell nuclear mechanical response

    NASA Astrophysics Data System (ADS)

    Banigan, Edward; Stephens, Andrew; Marko, John

    The cell nucleus must continually resist inter- and intracellular mechanical forces, and proper mechanical response is essential to basic cell biological functions as diverse as migration, differentiation, and gene regulation. Experiments probing nuclear mechanics reveal that the nucleus stiffens under strain, leading to two characteristic regimes of force response. This behavior depends sensitively on the intermediate filament protein lamin A, which comprises the outer layer of the nucleus, and the properties of the chromatin interior. To understand these mechanics, we study a simulation model of a polymeric shell encapsulating a semiflexible polymer. This minimalistic model qualitatively captures the typical experimental nuclear force-extension relation and observed nuclear morphologies. Using a Flory-like theory, we explain the simulation results and mathematically estimate the force-extension relation. The model and experiments suggest that chromatin organization is a dominant contributor to nuclear mechanics, while the lamina protects cell nuclei from large deformations.

  18. Free heme and sickle hemoglobin polymerization

    NASA Astrophysics Data System (ADS)

    Uzunova, Veselina V.

    This work investigates further the mechanism of one of the most interesting of the protein self-assembly systems---the polymerization of sickle hemoglobin and the role of free heme in it. Polymerization of sickle hemoglobin is the primary event in the pathology of a chronic hemolytic condition called sickle cell anemia with complex pathogenesis, unexplained variability and symptomatic treatment. Auto-oxidation develops in hemoglobin solutions exposed to room temperature and causes release of ferriheme. The composition of such solutions is investigated by mass spectrometry. Heme dimers whose amount corresponds to the initial amounts of heme released from the protein are followed. Differences in the dimer peak height are established for hemoglobin variants A, S and C and depending on the exposure duration. The effects of free heme on polymerization kinetics are studied. Growth rates and two characteristic parameters of nucleation are measured for stored Hb S. After dialysis of polymerizing solutions, no spherulites are detected at moderately high supersaturation and prolonged exposure times. The addition of 0.16-0.26 mM amounts of heme to dialyzed solutions leads to restoration of polymerization. The measured kinetic parameters have higher values compared to the ones before dialysis. The amount of heme in non-dialyzed aged solution is characterized using spectrophotometry. Three methods are used: difference in absorbance of dialyzed and non-dialyzed solutions, characteristic absorbance of heme-albumin complex and absorbance of non-dialyzed solutions with added potassium cyanide. The various approaches suggest the presence of 0.12 to 0.18 mM of free ferriheme in such solutions. Open questions are whether the same amounts of free heme are present in vivo and whether the same mechanism operates intracellulary. If the answer to those questions is positive, then removal of free heme from erythrocytes can influence their readiness to sickle.

  19. 21 CFR 177.2250 - Filters, microporous polymeric.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Filters, microporous polymeric. 177.2250 Section... as Components of Articles Intended for Repeated Use § 177.2250 Filters, microporous polymeric. Microporous polymeric filters identified in paragraph (a) of this section may be safely used, subject to...

  20. 21 CFR 870.3650 - Pacemaker polymeric mesh bag.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Pacemaker polymeric mesh bag. 870.3650 Section 870...) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Prosthetic Devices § 870.3650 Pacemaker polymeric mesh bag. (a) Identification. A pacemaker polymeric mesh bag is an implanted device used to hold...

  1. 21 CFR 870.3650 - Pacemaker polymeric mesh bag.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Pacemaker polymeric mesh bag. 870.3650 Section 870...) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Prosthetic Devices § 870.3650 Pacemaker polymeric mesh bag. (a) Identification. A pacemaker polymeric mesh bag is an implanted device used to hold...

  2. 21 CFR 870.3650 - Pacemaker polymeric mesh bag.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Pacemaker polymeric mesh bag. 870.3650 Section 870...) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Prosthetic Devices § 870.3650 Pacemaker polymeric mesh bag. (a) Identification. A pacemaker polymeric mesh bag is an implanted device used to hold...

  3. 21 CFR 177.2250 - Filters, microporous polymeric.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Filters, microporous polymeric. 177.2250 Section... as Components of Articles Intended for Repeated Use § 177.2250 Filters, microporous polymeric. Microporous polymeric filters identified in paragraph (a) of this section may be safely used, subject to...

  4. 21 CFR 177.2250 - Filters, microporous polymeric.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Filters, microporous polymeric. 177.2250 Section... as Components of Articles Intended for Repeated Use § 177.2250 Filters, microporous polymeric. Microporous polymeric filters identified in paragraph (a) of this section may be safely used, subject to...

  5. 21 CFR 177.2250 - Filters, microporous polymeric.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Filters, microporous polymeric. 177.2250 Section... as Components of Articles Intended for Repeated Use § 177.2250 Filters, microporous polymeric. Microporous polymeric filters identified in paragraph (a) of this section may be safely used, subject to...

  6. 40 CFR 721.10299 - Polymeric MDI based polyurethanes (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Polymeric MDI based polyurethanes... Specific Chemical Substances § 721.10299 Polymeric MDI based polyurethanes (generic). (a) Chemical... as polymeric MDI based polyurethanes (PMNs P-00-2, P-00-5, and P-00-6) are subject to reporting...

  7. 40 CFR 721.10299 - Polymeric MDI based polyurethanes (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Polymeric MDI based polyurethanes... Specific Chemical Substances § 721.10299 Polymeric MDI based polyurethanes (generic). (a) Chemical... as polymeric MDI based polyurethanes (PMNs P-00-2, P-00-5, and P-00-6) are subject to reporting...

  8. 40 CFR 721.10299 - Polymeric MDI based polyurethanes (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Polymeric MDI based polyurethanes... Specific Chemical Substances § 721.10299 Polymeric MDI based polyurethanes (generic). (a) Chemical... as polymeric MDI based polyurethanes (PMNs P-00-2, P-00-5, and P-00-6) are subject to reporting...

  9. Flowthrough Bacteria-Detection System

    NASA Technical Reports Server (NTRS)

    Grana, D. C.; Wilkins, J. R.

    1983-01-01

    Online system allows repetitive cycling of sample intake, bacteria counting and sterilization. System measures bacteria count by using sample/incubate/ measure cycle. Steps in cycle are on/off operations to cycle automated easily.

  10. Lipoprotein sorting in bacteria.

    PubMed

    Okuda, Suguru; Tokuda, Hajime

    2011-01-01

    Bacterial lipoproteins are synthesized as precursors in the cytoplasm and processed into mature forms on the cytoplasmic membrane. A lipid moiety attached to the N terminus anchors these proteins to the membrane surface. Many bacteria are predicted to express more than 100 lipoproteins, which play diverse functions on the cell surface. The Lol system, composed of five proteins, catalyzes the localization of Escherichia coli lipoproteins to the outer membrane. Some lipoproteins play vital roles in the sorting of other lipoproteins, lipopolysaccharides, and β-barrel proteins to the outer membrane. On the basis of results from biochemical, genetic, and structural studies, we discuss the biogenesis of lipoproteins in bacteria, their importance in cellular functions, and the molecular mechanisms underlying efficient sorting of hydrophobic lipoproteins to the outer membrane through the hydrophilic periplasm. PMID:21663440

  11. Manufacture of Probiotic Bacteria

    NASA Astrophysics Data System (ADS)

    Muller, J. A.; Ross, R. P.; Fitzgerald, G. F.; Stanton, C.

    Lactic acid bacteria (LAB) have been used for many years as natural biopreservatives in fermented foods. A small group of LAB are also believed to have beneficial health effects on the host, so called probiotic bacteria. Probiotics have emerged from the niche industry from Asia into European and American markets. Functional foods are one of the fastest growing markets today, with estimated growth to 20 billion dollars worldwide by 2010 (GIA, 2008). The increasing demand for probiotics and the new food markets where probiotics are introduced, challenges the industry to produce high quantities of probiotic cultures in a viable and stable form. Dried concentrated probiotic cultures are the most convenient form for incorporation into functional foods, given the ease of storage, handling and transport, especially for shelf-stable functional products. This chapter will discuss various aspects of the challenges associated with the manufacturing of probiotic cultures.

  12. Bacteria, food, and cancer

    PubMed Central

    Rooks, Michelle G.

    2011-01-01

    Gut microbes are essential components of the human organism—helping us metabolize food into energy, produce micronutrients, and shape our immune systems. Having a particular pattern of gut microbes is also increasingly being linked to medical conditions including obesity, inflammatory bowel disease, and diabetes. Recent studies now indicate that our resident intestinal bacteria may also play a critical role in determining one's risk of developing cancer, ranging from protection against cancer to promoting its initiation and progression. Gut bacteria are greatly influenced by diet and in this review we explore evidence that they may be the missing piece that explains how dietary intake influences cancer risk, and discuss possible prevention and treatment strategies. PMID:21876723

  13. Reanimation of Ancient Bacteria

    SciTech Connect

    Vreeland, Russell H.

    2009-01-09

    Recent highly publicized experiments conducted on salt crystals taken from the Permian Salado Formation in Southeastern New Mexico have shown that some ancient crystals contain viable microorganisms trapped within fluid inclusions. Stringent geological and microbiological selection criteria were used to select crystals and conduct all sampling. This talk will focus on how each of these lines of data support the conclusion that such isolated bacteria are as old as the rock in which they are trapped. In this case, the isolated microbes are salt tolerant bacilli that grow best in media containing 8% NaCl, and respond to concentrated brines by forming spores. One of the organisms is phylogenetically related to several bacilli, but does have several unique characteristics. This talk will trace the interdisciplinary data and procedures supporting these discoveries, and describe the various isolated bacteria.

  14. Bacteria in Confined Spaces

    NASA Astrophysics Data System (ADS)

    Wilking, Connie; Weitz, David

    2010-03-01

    Bacterial cells can display differentiation between several developmental pathways, from planktonic to matrix-producing, depending upon the colony conditions. We study the confinement of bacteria in hydrogels as well as in liquid-liquid double emulsion droplets and observe the growth and morphology of these colonies as a function of time and environment. Our results can give insight into the behavior of bacterial colonies in confined spaces that can have applications in the areas of food science, cosmetics, and medicine.

  15. Chromatin binding and polymerization of the endogenous Xenopus egg lamins: the opposing effects of glycogen and ATP.

    PubMed

    Lourim, D; Krohne, G

    1998-12-18

    We have previously identified and quantitated three B-type lamin isoforms present in the nuclei of mature Xenopus laevis oocytes, and in cell-free egg extracts. As Xenopus egg extracts are frequently used to analyze nuclear envelope assembly and lamina functions, we felt it was imperative that the polymerization and chromatin-binding properties of the endogenous B-type egg lamins be investigated. While we have demonstrated that soluble B-type lamins bind to chromatin, we have also observed that the polymerization of egg lamins does not require membranes or chromatin. Lamin assembly is enhanced by the addition of glycogen/glucose, or by the depletion of ATP from the extract. Moreover, the polymerization of egg cytosol lamins and their binding to demembranated sperm or chromatin assembled from naked lambda-DNA is inhibited by an ATP regeneration system. These ATP-dependent inhibitory activities can be overcome by the coaddition of glycogen to egg cytosol. We have observed that glycogen does not alter ATP levels during cytosol incubation, but rather, as glycogen-enhanced lamin polymerization is inhibited by okadaic acid, we conclude that glycogen activates protein phosphatases. Because protein phosphatase 1 (PP1) is the only phosphatase known to be specifically regulated by glycogen our data indicate that PP1 is involved in lamin polymerization. Our results show that ATP and glycogen effect lamin polymerization and chromatin binding by separate and opposing mechanisms. PMID:9819358

  16. Growing Unculturable Bacteria

    PubMed Central

    2012-01-01

    The bacteria that can be grown in the laboratory are only a small fraction of the total diversity that exists in nature. At all levels of bacterial phylogeny, uncultured clades that do not grow on standard media are playing critical roles in cycling carbon, nitrogen, and other elements, synthesizing novel natural products, and impacting the surrounding organisms and environment. While molecular techniques, such as metagenomic sequencing, can provide some information independent of our ability to culture these organisms, it is essentially impossible to learn new gene and pathway functions from pure sequence data. A true understanding of the physiology of these bacteria and their roles in ecology, host health, and natural product production requires their cultivation in the laboratory. Recent advances in growing these species include coculture with other bacteria, recreating the environment in the laboratory, and combining these approaches with microcultivation technology to increase throughput and access rare species. These studies are unraveling the molecular mechanisms of unculturability and are identifying growth factors that promote the growth of previously unculturable organisms. This minireview summarizes the recent discoveries in this area and discusses the potential future of the field. PMID:22661685

  17. Denitrification by extremely halophilic bacteria

    NASA Technical Reports Server (NTRS)

    Hochstein, L. I.; Tomlinson, G. A.

    1985-01-01

    Extremely halophilic bacteria were isolated from widely separated sites by anaerobic enrichment in the presence of nitrate. The anaerobic growth of several of these isolates was accompanied by the production of nitrite, nitrous oxide, and dinitrogen. These results are a direct confirmation of the existence of extremely halophilic denitrifying bacteria, and suggest that such bacteria may be common inhabitants of hypersaline environments.

  18. Mitochondria: a target for bacteria.

    PubMed

    Lobet, Elodie; Letesson, Jean-Jacques; Arnould, Thierry

    2015-04-01

    Eukaryotic cells developed strategies to detect and eradicate infections. The innate immune system, which is the first line of defence against invading pathogens, relies on the recognition of molecular patterns conserved among pathogens. Pathogen associated molecular pattern binding to pattern recognition receptor triggers the activation of several signalling pathways leading to the establishment of a pro-inflammatory state required to control the infection. In addition, pathogens evolved to subvert those responses (with passive and active strategies) allowing their entry and persistence in the host cells and tissues. Indeed, several bacteria actively manipulate immune system or interfere with the cell fate for their own benefit. One can imagine that bacterial effectors can potentially manipulate every single organelle in the cell. However, the multiple functions fulfilled by mitochondria especially their involvement in the regulation of innate immune response, make mitochondria a target of choice for bacterial pathogens as they are not only a key component of the central metabolism through ATP production and synthesis of various biomolecules but they also take part to cell signalling through ROS production and control of calcium homeostasis as well as the control of cell survival/programmed cell death. Furthermore, considering that mitochondria derived from an ancestral bacterial endosymbiosis, it is not surprising that a special connection does exist between this organelle and bacteria. In this review, we will discuss different mitochondrial functions that are affected during bacterial infection as well as different strategies developed by bacterial pathogens to subvert functions related to calcium homeostasis, maintenance of redox status and mitochondrial morphology.

  19. Lactic acid bacteria as probiotics.

    PubMed

    Ljungh, Asa; Wadström, Torkel

    2006-09-01

    A number of Lactobacillus species, Bifidobacterium sp, Saccharomyces boulardii, and some other microbes have been proposed as and are used as probiotic strains, i.e. live microorganisms as food supplement in order to benefit health. The health claims range from rather vague as regulation of bowel activity and increasing of well-being to more specific, such as exerting antagonistic effect on the gastroenteric pathogens Clostridium difficile, Campylobacter jejuni, Helicobacter pylori and rotavirus, neutralising food mutagens produced in colon, shifting the immune response towards a Th2 response, and thereby alleviating allergic reactions, and lowering serum cholesterol (Tannock, 2002). Unfortunately, most publications are case reports, uncontrolled studies in humans, or reports of animal or in vitro studies. Whether or not the probiotic strains employed shall be of human origin is a matter of debate but this is not a matter of concern, as long as the strains can be shown to survive the transport in the human gastrointestinal (GI) tract and to colonise the human large intestine. This includes survival in the stressful environment of the stomach - acidic pH and bile - with induction of new genes encoding a number of stress proteins. Since the availability of antioxidants decreases rostrally in the GI tract production of antioxidants by colonic bacteria provides a beneficial effect in scavenging free radicals. LAB strains commonly produce antimicrobial substance(s) with activity against the homologous strain, but LAB strains also often produce microbicidal substances with effect against gastric and intestinal pathogens and other microbes, or compete for cell surface and mucin binding sites. This could be the mechanism behind reports that some probiotic strains inhibit or decrease translocation of bacteria from the gut to the liver. A protective effect against cancer development can be ascribed to binding of mutagens by intestinal bacteria, reduction of the enzymes beta

  20. Metabolic regulation via enzyme filamentation

    PubMed Central

    Aughey, Gabriel N.; Liu, Ji-Long

    2016-01-01

    Abstract Determining the mechanisms of enzymatic regulation is central to the study of cellular metabolism. Regulation of enzyme activity via polymerization-mediated strategies has been shown to be widespread, and plays a vital role in mediating cellular homeostasis. In this review, we begin with an overview of the filamentation of CTP synthase, which forms filamentous structures termed cytoophidia. We then highlight other important examples of the phenomenon. Moreover, we discuss recent data relating to the regulation of enzyme activity by compartmentalization into cytoophidia. Finally, we hypothesize potential roles for enzyme filament formation in the regulation of metabolism, development and disease. PMID:27098510

  1. Polarity and the diversity of growth mechanisms in bacteria

    PubMed Central

    Brown, Pamela J.B.; Kysela, David T.; Brun, Yves V.

    2011-01-01

    Bacterial cell growth is a complex process consisting of two distinct phases: cell elongation and septum formation prior to cell division. Although bacteria have evolved several different mechanisms for cell growth, it is clear that tight spatial and temporal regulation of peptidoglycan synthesis is a common theme. In this review, we discuss bacterial cell growth with a particular emphasis on bacteria that utilize tip extension as a mechanism for cell elongation. We describe polar growth among diverse bacteria and consider the advantages and consequences of this mode of cell elongation. PMID:21736947

  2. Nontoxic hydrophilic polymeric nanocomposites containing silver nanoparticles with strong antimicrobial activity

    PubMed Central

    Pozdnyakov, Alexander S; Emel’yanov, Artem I; Kuznetsova, Nadezhda P; Ermakova, Tamara G; Fadeeva, Tat’yana V; Sosedova, Larisa M; Prozorova, Galina F

    2016-01-01

    New nontoxic hydrophilic nanocomposites containing metallic silver nanoparticles (AgNPs) in a polymer matrix were synthesized by the chemical reduction of silver ions in an aqueous medium. A new nontoxic water soluble copolymer of 1-vinyl-1,2,4-triazole and N-vinylpyrrolidone synthesized by free radical-initiated polymerization was used as a stabilizing agent. Transmission electron microscopy, scanning electron microscopy, ultraviolet–visible spectroscopy, Fourier transform infrared spectroscopy, X-ray diffraction, atomic absorption, and thermogravimetric analysis were used to characterize polymeric AgNPs nanocomposites. The results showed that the diameter of the synthesized AgNPs ranged from 2 to 6 nm. The toxicity of the initial copolymer of 1-vinyl-1,2,4-triazole and N-vinylpyrrolidone and its nanocomposite with AgNPs was found to be more than 5,000 mg/kg. The synthesized AgNP polymeric nanocomposite showed significant antimicrobial activity against different strains of Gram-negative and -positive bacteria. The minimum inhibitory concentrations suppressing the growth of the microorganisms ranged from 0.5 to 8 µg/mL and the minimum bactericidal concentrations ranged from 0.5 to 16 µg/mL. The fabricated AgNP nanocomposites are promising materials for the design of novel nontoxic hydrophilic antiseptics and antimicrobial components for medical purposes. PMID:27099492

  3. Structure, Function, and Assembly of Adhesive Organelles by Uropathogenic Bacteria

    PubMed Central

    Chahales, Peter; Thanassi, David G.

    2015-01-01

    Bacteria assemble a wide range of adhesive proteins, termed adhesins, to mediate binding to receptors and colonization of surfaces. For pathogenic bacteria, adhesins are critical for early stages of infection, allowing the bacteria to initiate contact with host cells, colonize different tissues, and establish a foothold within the host. The adhesins expressed by a pathogen are also critical for bacterial-bacterial interactions and the formation of bacterial communities such as biofilms. The ability to adhere to host tissues is particularly important for bacteria that colonize sites such as the urinary tract, where the flow of urine functions to maintain sterility by washing away non-adherent pathogens. Adhesins vary from monomeric proteins that are directly anchored to the bacterial surface to polymeric, hairlike fibers that extend out from the cell surface. These latter fibers are termed pili or fimbriae, and were among the first identified virulence factors of uropathogenic Escherichia coli. Studies since then have identified a range of both pilus and non-pilus adhesins that contribute to bacterial colonization of the urinary tract, and have revealed molecular details of the structures, assembly pathways, and functions of these adhesive organelles. In this review, we describe the different types of adhesins expressed by both Gram-negative and Gram-positive uropathogens, what is known about their structures, how they are assembled on the bacterial surface, and the functions of specific adhesins in the pathogenesis of urinary tract infections. PMID:26542038

  4. Mechanisms of Drug Diffusion from Polymeric Devices.

    NASA Astrophysics Data System (ADS)

    Sharma, Kuldeepak

    1987-09-01

    A detailed mechanistic study of drug diffusion and the factors which influence drug diffusion through polymeric controlled release systems was undertaken to understand drug diffusion through hydrophilic and hydrophobic polymeric systems. The effect of improved aqueous solubility of the salt form (ionizable form) of selected drugs on diffusion through hydrophilic and hydrophobic polymeric membranes was compared to diffusion of the less soluble (unionizable form) of the drugs. Model drugs chosen for these studies were prednisolone, prednisolone phosphate sodium (prednisolone phosphoric acid disodium salt), pilocarpine, pilocarpine hydrochloride, sulfacetamide and sodium sulfacetamide. The hydrophilic polymers were hydrogels of hydroxyethylmethacrylate (PHEMA) and hydrophobic polymers were copolyether-urethane -urea (Biomer) and polydimethylsiloxane (PDMS). Salt forms of the drugs permeated faster than the free forms through the hydrophilic polymers because of higher aqueous solubility. The free forms of the drugs had higher diffusion rates than the salt forms due to increased solubility in the hydrophobic polymers. Drug solubility in polymers and the water fraction of the polymeric membrane were determined to be the primary factors in diffusion through polymeric membranes. Drug aqueous solubility was of secondary importance. Two controlled release systems were then designed to further study drug release. The Biomer and copolymers of polystyrene and PHEMA were chosen as the polymers for the fabrication of the devices. These copolymers incorporated the favorable attributes of hydrophobic and hydrophilic homopolymers into single polymers. Prednisolone was used as a model drug for these studies. The effects of initial drug load, drug loading solvents and the drug polymer interactions on drug release from the devices were then studied. The drug release from these devices increased as the initial drug load increased. Drug loading solvents had a marked effect on drug

  5. The starvation tolerance of anammox bacteria culture at 35°C.

    PubMed

    Wu, Xuan; Liu, Sitong; Dong, Guanlan; Hou, Xiaolin

    2015-10-01

    Anammox is an environmental-friendly and cost-effective technology for nitrogen removal. This study provides the nitrogen removal profiles, physiological traits of anammox bacteria culture under the substrate deficiency conditions at the optimal cultivation temperature 35°C. The determined period of starvation tolerance was 4 weeks in the absence of nitrite, 5 weeks in the absence of ammonium, as well as 7 weeks for the absence of these two substrates at 36°C, pH 7-8 and anaerobic conditions. The physiological traits of bacteria consortium were identified through flow cytometry (FCM) analysis, and the ordinal change of increased RNA synthesizing amounts, phosphatidylserine exposure and bacteria death occurred under starvation stress. In addition, the starvation induced the increased protein content in extracellular polymeric substances and the poorer bacteria settling capacity. This study helps to develop a better understanding of anammox process in engineering environment.

  6. BioNLP Shared Task - The Bacteria Track

    PubMed Central

    2012-01-01

    Background We present the BioNLP 2011 Shared Task Bacteria Track, the first Information Extraction challenge entirely dedicated to bacteria. It includes three tasks that cover different levels of biological knowledge. The Bacteria Gene Renaming supporting task is aimed at extracting gene renaming and gene name synonymy in PubMed abstracts. The Bacteria Gene Interaction is a gene/protein interaction extraction task from individual sentences. The interactions have been categorized into ten different sub-types, thus giving a detailed account of genetic regulations at the molecular level. Finally, the Bacteria Biotopes task focuses on the localization and environment of bacteria mentioned in textbook articles. We describe the process of creation for the three corpora, including document acquisition and manual annotation, as well as the metrics used to evaluate the participants' submissions. Results Three teams submitted to the Bacteria Gene Renaming task; the best team achieved an F-score of 87%. For the Bacteria Gene Interaction task, the only participant's score had reached a global F-score of 77%, although the system efficiency varies significantly from one sub-type to another. Three teams submitted to the Bacteria Biotopes task with very different approaches; the best team achieved an F-score of 45%. However, the detailed study of the participating systems efficiency reveals the strengths and weaknesses of each participating system. Conclusions The three tasks of the Bacteria Track offer participants a chance to address a wide range of issues in Information Extraction, including entity recognition, semantic typing and coreference resolution. We found commond trends in the most efficient systems: the systematic use of syntactic dependencies and machine learning. Nevertheless, the originality of the Bacteria Biotopes task encouraged the use of interesting novel methods and techniques, such as term compositionality, scopes wider than the sentence. PMID:22759457

  7. Prebiotic potential of Agave angustifolia Haw fructans with different degrees of polymerization.

    PubMed

    Velázquez-Martínez, José Rodolfo; González-Cervantes, Rina M; Hernández-Gallegos, Minerva Aurora; Mendiola, Roberto Campos; Aparicio, Antonio R Jiménez; Ocampo, Martha L Arenas

    2014-01-01

    Inulin-type fructans are the most studied prebiotic compounds because of their broad range of health benefits. In particular, plants of the Agave genus are rich in fructans. Agave-derived fructans have a branched structure with both β-(2→1) and β-(2→6) linked fructosyl chains attached to the sucrose start unit with a degree of polymerization (DP) of up to 80 fructose units. The objective of this work was to assess the prebiotic potential of three Agave angustifolia Haw fructan fractions (AFF) with different degrees of polymerization. The three fructan fractions were extracted from the agave stem by lixiviation and then purified by ultrafiltration and ion exchange chromatography: AFF1, AFF2 and AFF3 with high (3-60 fructose units), medium (2-40) and low (2-22) DP, respectively. The fructan profile was determined with high-performance anion exchange chromatography with pulsed amperometric detection (HPAEC-PAD), which confirmed a branched fructan structure. Structural elucidation was performed by Fourier Transform Infra-Red Spectroscopy. The AFF spectrum shows characteristic fructan bands. The prebiotic effect of these fractions was assessed in vitro through fermentation by Bifidobacterium and Lactobacillus strains. Four growth patterns were observed. Some bacteria did not grow with any of the AFF, while other strains grew with only AFF3. Some bacteria grew according to the molecular weight of the AFF and some grew indistinctly with the three fructan fractions. PMID:25153877

  8. Prebiotic potential of Agave angustifolia Haw fructans with different degrees of polymerization.

    PubMed

    Velázquez-Martínez, José Rodolfo; González-Cervantes, Rina M; Hernández-Gallegos, Minerva Aurora; Mendiola, Roberto Campos; Aparicio, Antonio R Jiménez; Ocampo, Martha L Arenas

    2014-08-19

    Inulin-type fructans are the most studied prebiotic compounds because of their broad range of health benefits. In particular, plants of the Agave genus are rich in fructans. Agave-derived fructans have a branched structure with both β-(2→1) and β-(2→6) linked fructosyl chains attached to the sucrose start unit with a degree of polymerization (DP) of up to 80 fructose units. The objective of this work was to assess the prebiotic potential of three Agave angustifolia Haw fructan fractions (AFF) with different degrees of polymerization. The three fructan fractions were extracted from the agave stem by lixiviation and then purified by ultrafiltration and ion exchange chromatography: AFF1, AFF2 and AFF3 with high (3-60 fructose units), medium (2-40) and low (2-22) DP, respectively. The fructan profile was determined with high-performance anion exchange chromatography with pulsed amperometric detection (HPAEC-PAD), which confirmed a branched fructan structure. Structural elucidation was performed by Fourier Transform Infra-Red Spectroscopy. The AFF spectrum shows characteristic fructan bands. The prebiotic effect of these fractions was assessed in vitro through fermentation by Bifidobacterium and Lactobacillus strains. Four growth patterns were observed. Some bacteria did not grow with any of the AFF, while other strains grew with only AFF3. Some bacteria grew according to the molecular weight of the AFF and some grew indistinctly with the three fructan fractions.

  9. Bacteria counting method based on polyaniline/bacteria thin film.

    PubMed

    Zhihua, Li; Xuetao, Hu; Jiyong, Shi; Xiaobo, Zou; Xiaowei, Huang; Xucheng, Zhou; Tahir, Haroon Elrasheid; Holmes, Mel; Povey, Malcolm

    2016-07-15

    A simple and rapid bacteria counting method based on polyaniline (PANI)/bacteria thin film was proposed. Since the negative effects of immobilized bacteria on the deposition of PANI on glass carbon electrode (GCE), PANI/bacteria thin films containing decreased amount of PANI would be obtained when increasing the bacteria concentration. The prepared PANI/bacteria film was characterized with cyclic voltammetry (CV) technique to provide quantitative index for the determination of the bacteria count, and electrochemical impedance spectroscopy (EIS) was also performed to further investigate the difference in the PANI/bacteria films. Good linear relationship of the peak currents of the CVs and the log total count of bacteria (Bacillus subtilis) could be established using the equation Y=-30.413X+272.560 (R(2)=0.982) over the range of 5.3×10(4) to 5.3×10(8)CFUmL(-1), which also showed acceptable stability, reproducibility and switchable ability. The proposed method was feasible for simple and rapid counting of bacteria. PMID:26921555

  10. A mathematical model of quorum sensing regulated EPS production in biofilm communities

    PubMed Central

    2011-01-01

    Background Biofilms are microbial communities encased in a layer of extracellular polymeric substances (EPS). The EPS matrix provides several functional purposes for the biofilm, such as protecting bacteria from environmental stresses, and providing mechanical stability. Quorum sensing is a cell-cell communication mechanism used by several bacterial taxa to coordinate gene expression and behaviour in groups, based on population densities. Model We mathematically model quorum sensing and EPS production in a growing biofilm under various environmental conditions, to study how a developing biofilm impacts quorum sensing, and conversely, how a biofilm is affected by quorum sensing-regulated EPS production. We investigate circumstances when using quorum-sensing regulated EPS production is a beneficial strategy for biofilm cells. Results We find that biofilms that use quorum sensing to induce increased EPS production do not obtain the high cell populations of low-EPS producers, but can rapidly increase their volume to parallel high-EPS producers. Quorum sensing-induced EPS production allows a biofilm to switch behaviours, from a colonization mode (with an optimized growth rate), to a protection mode. Conclusions A biofilm will benefit from using quorum sensing-induced EPS production if bacteria cells have the objective of acquiring a thick, protective layer of EPS, or if they wish to clog their environment with biomass as a means of securing nutrient supply and outcompeting other colonies in the channel, of their own or a different species. PMID:21477365

  11. Enzymatic polymerization of dihydroquercetin using bilirubin oxidase.

    PubMed

    Khlupova, M E; Vasil'eva, I S; Shumakovich, G P; Morozova, O V; Chertkov, V A; Shestakova, A K; Kisin, A V; Yaropolov, A I

    2015-02-01

    Dihydroquercetin (or taxifolin) is one of the most famous flavonoids and is abundant in Siberian larch (Larix sibirica). The oxidative polymerization of dihydroquercetin (DHQ) using bilirubin oxidase as a biocatalyst was investigated and some physicochemical properties of the products were studied. DHQ oligomers (oligoDHQ) with molecular mass of 2800 and polydispersity of 8.6 were obtained by enzymatic reaction under optimal conditions. The oligomers appeared to be soluble in dimethylsulfoxide, dimethylformamide, and methanol. UV-visible spectra of oligoDHQ in dimethylsulfoxide indicated the presence of highly conjugated bonds. The synthesized oligoDHQ was also characterized by FTIR and (1)H and (13)C NMR spectroscopy. Comparison of NMR spectra of oligoDHQ with DHQ monomer and the parent flavonoids revealed irregular structure of a polymer formed via the enzymatic oxidation of DHQ followed by nonselective radical polymerization. As compared with the monomer, oligoDHQ demonstrated higher thermal stability and high antioxidant activity.

  12. Orthogonal gradient networks via post polymerization reaction

    NASA Astrophysics Data System (ADS)

    Chinnayan Kannan, Pandiyarajan; Genzer, Jan

    2015-03-01

    We report a novel synthetic route to generate orthogonal gradient networks through post polymerization reaction using pentaflurophenylmethacrylate (PFPMAc) active ester chemistry. These chemoselective monomers were successfully copolymerized with 5 mole% of the photo (methacryloyloxybenzophenone) and thermal (styrenesulfonylazide) crosslinkers. Subsequently, the copolymers were modified by a series of amines having various alkyl chain lengths. The conversion of post polymerization reaction was monitored using Fourier Transform Infrared Spectroscopy (FT-IR) and noticed that almost all pentaflurophenyl moieties are substituted by amines within in an hour without affecting the crosslinkers. In addition, the incorporation of photo and thermal crosslinkers in the polymer enabled us to achieve stable and covalently surface-bound polymer gradient networks (PGN) in an orthogonal manner, i.e. complete control over the crosslink density of the network in two opposite directions (i.e. heat vs photo). The network properties such as wettability, swelling and tensile modulus of the gradient coatings are studied and revealed in the paper.

  13. Cooperative polymerization of one-patch colloids

    SciTech Connect

    Vissers, Teun; Smallenburg, Frank; Munaò, Gianmarco; Preisler, Zdeněk; Sciortino, Francesco

    2014-04-14

    We numerically investigate cooperative polymerization in an off-lattice model based on a pairwise additive potential using particles with a single attractive patch that covers 30% of the colloid surface. Upon cooling, these particles self-assemble into small clusters which, below a density-dependent temperature, spontaneously reorganize into long straight tubes. We evaluate the partition functions of clusters of all sizes to provide an accurate description of the chemical reaction constants governing this process. Our calculations show that, for intermediate sizes, the partition functions retain contributions from two different structures, differing in both energy and entropy. We illustrate the microscopic mechanism behind the complex polymerization process in this system and provide a detailed evaluation of its thermodynamics.

  14. Hierarchical Nanowires Synthesized by Supramolecular Stepwise Polymerization.

    PubMed

    Zhuang, Zeliang; Jiang, Tao; Lin, Jiaping; Gao, Liang; Yang, Chaoying; Wang, Liquan; Cai, Chunhua

    2016-09-26

    The self-organization of pre-assembled aggregates is an efficient stepwise strategy for fabricating nanostructures with a second level of hierarchy. Herein, we report that anisotropic spindle-like micelles, self-assembled from polypeptide graft copolymers with rigid backbones, can serve as ideal pre-assembled subunits for constructing one-dimensional materials with hierarchical structures. By adding organic solvents and dialyzing against water, reactive points can be generated at the ends of the spindle-like micelles, which subsequently drive the anisotropic micelles to grow as rods in a chain and eventually self-assemble into hierarchical nanowires in a stepwise manner. The second self-assembly step is a hierarchical process that resembles step polymerization. Hierarchical structures can be precisely synthesized by this new type of polymerization. These nanostructures can be tailored by the activity of the reactive points, which depends on the nature of the solvent and the molecular architecture. PMID:27604499

  15. Polymeric synthesis of silicon carbide with microwaves.

    PubMed

    Aguilar, Juan; Urueta, Luis; Valdez, Zarel

    2007-01-01

    The aim of this work is conducting polymeric synthesis with microwaves for producing beta-SiC. A polymeric precursor was prepared by means of hydrolysis and condensation reactions from pheniltrimethoxysilane, water, methanol, ammonium hydroxide and chloride acid. The precursor was placed into a quartz tube in vacuum; pyrolysis was carried out conventionally in a tube furnace, and by microwaves at 2.45 GHz in a multimode cavity. Conventional tests took place in a scheme where temperature was up to 1500 degrees C for 120 minutes. Microwave heating rate was not controlled and tests lasted 60 and 90 minutes, temperature was around 900 degrees C. Products of the pyrolysis were analyzed by means of x-ray diffraction; in the microwave case the diffraction patterns showed a strong background of either very fine particles or amorphous material, then infrared spectroscopy was also employed for confirming carbon bonds. In both processes beta-SiC was found as the only produced carbide.

  16. Polymeric multilayer capsules in drug delivery.

    PubMed

    De Cock, Liesbeth J; De Koker, Stefaan; De Geest, Bruno G; Grooten, Johan; Vervaet, Chris; Remon, Jean Paul; Sukhorukov, Gleb B; Antipina, Maria N

    2010-09-17

    Recent advances in medicine and biotechnology have prompted the need to develop nanoengineered delivery systems that can encapsulate a wide variety of novel therapeutics such as proteins, chemotherapeutics, and nucleic acids. Moreover, these delivery systems should be "intelligent", such that they can deliver their payload at a well-defined time, place, or after a specific stimulus. Polymeric multilayer capsules, made by layer-by-layer (LbL) coating of a sacrificial template followed by dissolution of the template, allow the design of microcapsules in aqueous conditions by using simple building blocks and assembly procedures, and provide a previously unmet control over the functionality of the microcapsules. Polymeric multilayer capsules have recently received increased interest from the life science community, and many interesting systems have appeared in the literature with biodegradable components and biospecific functionalities. In this Review we give an overview of the recent breakthroughs in their application for drug delivery.

  17. All-polymeric control of nanoferronics

    PubMed Central

    Xu, Beibei; Li, Huashan; Hall, Asha; Gao, Wenxiu; Gong, Maogang; Yuan, Guoliang; Grossman, Jeffrey; Ren, Shenqiang

    2015-01-01

    In the search for light and flexible nanoferronics, significant research effort is geared toward discovering the coexisting magnetic and electric orders in crystalline charge-transfer complexes. We report the first example of multiferroicity in centimeter-sized crystalline polymeric charge-transfer superstructures that grow at the liquid-air interface and are controlled by the regioregularity of the polymeric chain. The charge order–driven ferroic mechanism reveals spontaneous and hysteretic polarization and magnetization at the donor-acceptor interface. The charge transfer and ordering in the ferroic assemblies depend critically on the self-organizing and molecular packing of electron donors and acceptors. The invention described here not only represents a new coupling mechanism of magnetic and electric ordering but also creates a new class of emerging all-organic nanoferronics. PMID:26824068

  18. Polymeric Gel Electrolytes for Electrochemical Capacitors

    NASA Astrophysics Data System (ADS)

    Morita, Masayuki; Qiao, Jin-Li; Ohsumi, Naoki; Yoshimoto, Nobuko; Egashira, Minato

    2006-06-01

    Three kinds of the polymer matrix, poly(ethylene oxide)-grafted polymethacrylate (PEO-PMA), poly(vinyldene fluoride) (PVdF) and poly(vinyldene-co-hexafluoropripylene) (PVdF-HFP), were used for gel preparation. A proper amount of organic salts or acids were dissolved in the polymer matrix together with organic plasticizers, dimethylformamide (DMF) and/or poly-(efhylene glycol)-dimethylether (PEGDE), without water. Thin films of the polymeric gel were obtained by either direct polymerization of the mixed monomer solution or a thermal casting method. The composition of the polymer-electrolyte complex system is optimized to obtain good capacitor performances of the electrochemical capacitor (ECC) system.

  19. Simultaneous covalent and noncovalent hybrid polymerizations

    NASA Astrophysics Data System (ADS)

    Yu, Zhilin; Tantakitti, Faifan; Yu, Tao; Palmer, Liam C.; Schatz, George C.; Stupp, Samuel I.

    2016-01-01

    Covalent and supramolecular polymers are two distinct forms of soft matter, composed of long chains of covalently and noncovalently linked structural units, respectively. We report a hybrid system formed by simultaneous covalent and supramolecular polymerizations of monomers. The process yields cylindrical fibers of uniform diameter that contain covalent and supramolecular compartments, a morphology not observed when the two polymers are formed independently. The covalent polymer has a rigid aromatic imine backbone with helicoidal conformation, and its alkylated peptide side chains are structurally identical to the monomer molecules of supramolecular polymers. In the hybrid system, covalent chains grow to higher average molar mass relative to chains formed via the same polymerization in the absence of a supramolecular compartment. The supramolecular compartments can be reversibly removed and re-formed to reconstitute the hybrid structure, suggesting soft materials with novel delivery or repair functions.

  20. Simultaneous covalent and noncovalent hybrid polymerizations.

    PubMed

    Yu, Zhilin; Tantakitti, Faifan; Yu, Tao; Palmer, Liam C; Schatz, George C; Stupp, Samuel I

    2016-01-29

    Covalent and supramolecular polymers are two distinct forms of soft matter, composed of long chains of covalently and noncovalently linked structural units, respectively. We report a hybrid system formed by simultaneous covalent and supramolecular polymerizations of monomers. The process yields cylindrical fibers of uniform diameter that contain covalent and supramolecular compartments, a morphology not observed when the two polymers are formed independently. The covalent polymer has a rigid aromatic imine backbone with helicoidal conformation, and its alkylated peptide side chains are structurally identical to the monomer molecules of supramolecular polymers. In the hybrid system, covalent chains grow to higher average molar mass relative to chains formed via the same polymerization in the absence of a supramolecular compartment. The supramolecular compartments can be reversibly removed and re-formed to reconstitute the hybrid structure, suggesting soft materials with novel delivery or repair functions. PMID:26823427

  1. Therapeutic strategies based on polymeric microparticles.

    PubMed

    Vilos, C; Velasquez, L A

    2012-01-01

    The development of the field of materials science, the ability to perform multidisciplinary scientific work, and the need for novel administration technologies that maximize therapeutic effects and minimize adverse reactions to readily available drugs have led to the development of delivery systems based on microencapsulation, which has taken one step closer to the target of personalized medicine. Drug delivery systems based on polymeric microparticles are generating a strong impact on preclinical and clinical drug development and have reached a broad development in different fields supporting a critical role in the near future of medical practice. This paper presents the foundations of polymeric microparticles based on their formulation, mechanisms of drug release and some of their innovative therapeutic strategies to board multiple diseases.

  2. Living anionic polymerization using a microfluidic reactor

    SciTech Connect

    Iida, Kazunori; Chastek, Thomas Q.; Beers, Kathryn L.; Cavicchi, Kevin A.; Chun, Jaehun; Fasolka, Michael J.

    2009-02-01

    Living anionic polymerizations were conducted within aluminum-polyimide microfluidic devices. Polymerizations of styrene in cyclohexane were carried out at various conditions, including elevated temperature (60 °C) and high monomer concentration (42%, by volume). The reactions were safely maintained at a controlled temperature at all points in the reactor. Conducting these reactions in a batch reactor results in uncontrolled heat generation with potentially dangerous rises in pressure. Moreover, the microfluidic nature of these devices allows for flexible 2D designing of the flow channel. Four flow designs were examined (straight, periodically pinched, obtuse zigzag, and acute zigzag channels). The ability to use the channel pattern to increase the level of mixing throughout the reactor was evaluated. When moderately high molecular mass polymers with increased viscosity were made, the patterned channels produced polymers with narrower PDI, indicating that passive mixing arising from the channel design is improving the reaction conditions.

  3. Durability of Polymeric Glazing and Absorber Materials

    SciTech Connect

    Jorgensen, G.; Terwilliger, K.; Bingham, C.; Milbourne, M.

    2005-01-01

    The Solar Heating and Lighting Program has set the goal of reducing the cost of solar water heating systems by at least 50%. An attractive approach to such large cost reduction is to replace glass and metal parts with less-expensive, lighter-weight, more-integrated polymeric components. The key challenge with polymers is to maintain performance and assure requisite durability for extended lifetimes. The objective of this task is to quantify lifetimes through measurement of the optical and mechanical stability of candidate polymeric glazing and absorber materials. Polycarbonate sheet glazings, as proposed by two industry partners, have been tested for resistance to UV radiation with three complementary methods. Incorporation of a specific 2-mil thick UV-absorbing screening layer results in glazing lifetimes of at least 15 years; improved screens promise even longer lifetimes. Proposed absorber materials were tested for creep and embrittlement under high temperature, and appear adequate for planned ICS absorbers.

  4. Formation of Micro Lens by Laser Polymerization

    NASA Astrophysics Data System (ADS)

    Mori, Akira; Horiuchi, Takashi; Mizumachi, Manabu; Seino, Satoshi; Nakagawa, Takuya; Suzuki, Kaoru

    Recently, a micro lens has been demanded in uniting a laser device and an optical fiber. We have fabricated a new type of plastic micro lens by laser polymerization. The amount of the resin polymerized by exposing laser light, namely light-curing, depends on the laser power and exposing time. The shape of the lens can be controlled by changing the condition of laser irradiation. In this paper, the characteristic of the lens formed by this method was examined. Moreover, the relation between the lens shape and the condition of laser irradiation was investigated, and the condition to reducing a transverse spherical aberration was examined. As the result, the lens of 390μm in diameter was formed. The area which can be used for light coupling from a laser diode to a multimode fiber will be 81 % in the total lens area.

  5. [Molecular/polymeric magnetism]. Progress report

    SciTech Connect

    Not Available

    1993-03-01

    New materials were synthesized to test the generality of magnetism in molecular/polymeric systems. The first room temperature molecular based magnet V(TCNE){sub x}{center_dot}y(solvent) (1) is disclosed. The ferromagnetic and related transitions were studied in decamethylferrocenium tetracyanoethanide (TCNE), (1), and related materials. Our and others` models were tested for ferromagnetic and antiferromagnetic exchange between local sites; models for control of {Tc} were also tested.

  6. INHIBITING THE POLYMERIZATION OF NUCLEAR COOLANTS

    DOEpatents

    Colichman, E.L.

    1959-10-20

    >The formation of new reactor coolants which contain an additive tbat suppresses polymerization of the primary dissoclation free radical products of the pyrolytic and radiation decomposition of the organic coolants is described. The coolants consist of polyphenyls and condensed ring compounds having from two to about four carbon rings and from 0.1 to 5% of a powdered metal hydride chosen from the group consisting of the group IIA and IVA dispersed in the hydrocarbon.

  7. Biologically produced acid precipitable polymeric lignin

    DOEpatents

    Crawford, Don L.; Pometto, III, Anthony L.

    1984-01-01

    A water soluble, acid precipitable polymeric degraded lignin (APPL), having a molecular weight of at least 12,000 daltons, and comprising, by percentage of total weight, at least three times the number of phenolic hydroxyl groups and carboxylic acid groups present in native lignin. The APPL may be modified by chemical oxidation and reduction to increase its phenolic hydroxyl content and reduce the number of its antioxidant inhibitory side chains, thereby improving antioxidant properties.

  8. Bimetallic complexes and polymerization catalysts therefrom

    DOEpatents

    Patton, Jasson T.; Marks, Tobin J.; Li, Liting

    2000-11-28

    Group 3-6 or Lanthanide metal complexes possessing two metal centers, catalysts derived therefrom by combining the same with strong Lewis acids, Bronsted acid salts, salts containing a cationic oxidizing agent or subjected to bulk electrolysis in the presence of compatible, inert non-coordinating anions and the use of such catalysts for polymerizing olefins, diolefins and/or acetylenically unsaturated monomers are disclosed.

  9. Biologically responsive polymeric nanoparticles for drug delivery.

    PubMed

    Colson, Yolonda L; Grinstaff, Mark W

    2012-07-24

    Responsive nanoparticles that release their drug cargo in accordance with a change in pH or oxidative stress are of significant clinical interest as this approach offers the opportunity to link drug delivery to a specific location or disease state. This research news article reviews the current state of this field by examining a series of published articles that highlight the novelty and benefits of using responsive polymeric particles to achieve functionally-targeted drug delivery. PMID:22988558

  10. Polymeric assemblies for sensitive colorimetric assays

    DOEpatents

    Charych, Deborah

    2000-01-01

    The presently claimed invention relates to polymeric assemblies which visibly change color in the presence of analyte. In particular, the presently claimed invention relates to liposomes comprising a plurality of lipid monomers, which comprises a polymerizable group, a hydrophilic head group and a hydrophobic tail group, and one or more ligands. Overall carbon chain length, and polymerizable group positioning on the monomer influence color change sensitivity to analyte concentrations.

  11. Supported polymeric liquid membranes for wastewater treatment

    SciTech Connect

    Ho, S.V.

    1997-12-31

    The removal or elimination of organic residues from aqueous waste streams represents a major need in the chemical industry. A class of membrane has been developed called supported polymeric liquid membranes capable of removing and concentrating low molecular weight organic compounds from dilute aqueous solutions, especially those that also contain high concentrations of inorganic salts. These membranes are prepared by filling the pores of microfiltration or ultrafiltration membranes with polymeric (oligomeric) liquids having affinity for the organic compounds of interest. With this approach, membrane`s separation characteristics are decoupled from its mechanical stability and depend primarily on the chemical properties of the liquid polymer used. As a result, membranes of diverse separation capabilities can be conveniently prepared using liquid polymers possessing the appropriate functional groups. Physical properties typical of polymeric liquids such as high viscosity, extremely low volatility and insolubility in water contribute to the observed stability of the membranes under broad operating conditions. This membrane process has been successfully applied to several aqueous waste streams. This paper describes the early development activities for treating a waste stream containing a dilute mixture of C2-C6 carboxylic acids. Feasibility testings were initially carried out with flat sheet membranes in a small stirred cell. Scaleup was then conducted using hollow fiber membranes, first with small modules prepared in the laboratory, then with a much larger commercial module. Attractive features of this membrane process include the ability to recover the contaminants in concentrated form for either recycle or more economical disposal, low pressure (ambient) operation, simple scale-up using commercial hollow fiber modules, and ease of in-situ regeneration of the polymeric liquid.

  12. Cyclic diguanylate signaling in Gram-positive bacteria.

    PubMed

    Purcell, Erin B; Tamayo, Rita

    2016-09-01

    The nucleotide second messenger 3'-5' cyclic diguanylate monophosphate (c-di-GMP) is a central regulator of the transition between motile and non-motile lifestyles in bacteria, favoring sessility. Most research investigating the functions of c-di-GMP has focused on Gram-negative species, especially pathogens. Recent work in Gram-positive species has revealed that c-di-GMP plays similar roles in Gram-positives, though the precise targets and mechanisms of regulation may differ. The majority of bacterial life exists in a surface-associated state, with motility allowing bacteria to disseminate and colonize new environments. c-di-GMP signaling regulates flagellum biosynthesis and production of adherence factors and appears to be a primary mechanism by which bacteria sense and respond to surfaces. Ultimately, c-di-GMP influences the ability of a bacterium to alter its transcriptional program, physiology and behavior upon surface contact. This review discusses how bacteria are able to sense a surface via flagella and type IV pili, and the role of c-di-GMP in regulating the response to surfaces, with emphasis on studies of Gram-positive bacteria.

  13. Cyclic diguanylate signaling in Gram-positive bacteria.

    PubMed

    Purcell, Erin B; Tamayo, Rita

    2016-09-01

    The nucleotide second messenger 3'-5' cyclic diguanylate monophosphate (c-di-GMP) is a central regulator of the transition between motile and non-motile lifestyles in bacteria, favoring sessility. Most research investigating the functions of c-di-GMP has focused on Gram-negative species, especially pathogens. Recent work in Gram-positive species has revealed that c-di-GMP plays similar roles in Gram-positives, though the precise targets and mechanisms of regulation may differ. The majority of bacterial life exists in a surface-associated state, with motility allowing bacteria to disseminate and colonize new environments. c-di-GMP signaling regulates flagellum biosynthesis and production of adherence factors and appears to be a primary mechanism by which bacteria sense and respond to surfaces. Ultimately, c-di-GMP influences the ability of a bacterium to alter its transcriptional program, physiology and behavior upon surface contact. This review discusses how bacteria are able to sense a surface via flagella and type IV pili, and the role of c-di-GMP in regulating the response to surfaces, with emphasis on studies of Gram-positive bacteria. PMID:27354347

  14. Homogeneous catalysts for stereoregular olefin polymerization

    DOEpatents

    Marks, T.J.; Eisen, M.S.; Giardello, M.A.

    1995-10-03

    The synthesis, and use as precatalysts of chiral organozirconium complexes for olefin polymerization are disclosed, having the structure (C{sub 5}R{prime}{sub 4{minus}x}R*{sub x})A(C{sub 5}R{double_prime}{sub 4{minus}y}R{double_prime}{prime}{sub y})MQ{sub p}, where x and y represent the number of unsubstituted locations on the cyclopentadienyl ring; R{prime}, R{double_prime}, R{double_prime}{prime}, and R* represent substituted and unsubstituted alkyl groups having 1--30 carbon atoms and R* is a chiral ligand; A is a fragment containing a Group 13, 14, 15, or 16 element of the Periodic Table; M is a Group 3, 4, or 5 metal of the Periodic Table; and Q is a hydrocarbyl radical, or halogen radical, with 3{>=}p{>=}0. Related complexes may be prepared by alkylation of the corresponding dichlorides. In the presence of methylalumoxane or triarylborane cocatalysts, these complexes form ``cation-like`` species which are highly active for olefin polymerization. In combination with a Lewis acid cocatalyst, propylene or other {alpha}-olefin polymerization can be effected with very high efficiency and isospecificity. 1 fig.

  15. Homogeneous catalysts for stereoregular olefin polymerization

    DOEpatents

    Marks, T.J.; Eisen, M.S.; Giardello, M.A.

    1994-07-19

    The synthesis, and use as precatalysts of chiral organozirconium complexes for olefin polymerization are disclosed, having the structure (C[sub 5]R[prime][sub 4[minus]x]R*[sub x])-A-(C[sub 5]R[double prime][sub 4[minus]y]R[prime][double prime][sub y])-M-Q[sub p], where x and y represent the number of unsubstituted locations on the cyclopentadienyl ring; R[prime], R[double prime], R[prime][double prime], and R* represent substituted and unsubstituted alkyl groups having 1--30 carbon atoms and R* is a chiral ligand; A is a fragment containing a Group 13, 14, 15, or 16 element of the Periodic Table; M is a Group 3, 4, or 5 metal of the Periodic Table; and Q is a hydrocarbyl radical, or halogen radical, with 3 [<=] p [<=] 0. Related complexes may be prepared by alkylation of the corresponding dichlorides. In the presence of methylalumoxane or triarylborane cocatalysts, these complexes form cation-like'' species which are highly active for olefin polymerization. In combination with a Lewis acid cocatalyst, propylene or other [alpha]-olefin polymerization can be effected with very high efficiency and isospecificity. 1 fig.

  16. Performance of selected polymeric materials on LDEF

    NASA Technical Reports Server (NTRS)

    Young, Philip R.; Slemp, Wayne S.; Stein, Bland A.

    1993-01-01

    The NASA Long Duration Exposure Facility (LDEF) provided a unique environmental exposure of a wide variety of materials for potential advanced spacecraft application. This paper examines the molecular level response of selected polymeric materials which flew onboard this vehicle. Polymers include epolyimide, polysulfone, and polystyrene film and polyimide, polysulfone, and epoxy matrix resin/graphite fiber reinforced composites. Several promising experimental films were also studied. Most specimens received 5.8 years of low Earth orbital (LEO) exposure on LDEF. Several samples received on 10 months of exposure. Chemical characterization techniques included ultraviolet-visible and infrared spectroscopy, thermal analysis, x-ray photoelectron spectroscopy, and selected solution property measurements. Results suggest that many molecular level effects present during the first 10 months of exposure were not present after 5.8 years of exposure for specimens on or near Row 9. Increased AO fluence near the end of the mission likely eroded away much environmentally induced surface phenomena. The objective of this work is to provide fundamental information for use in improving the performance of polymeric materials for LEO application. A secondary objective is to gain an appreciation for the constraints and limitations of results from LDEF polymeric materials experiments.

  17. Homogeneous catalysts for stereoregular olefin polymerization

    DOEpatents

    Marks, Tobin J.; Eisen, Moris S.; Giardello, Michael A.

    1994-01-01

    The synthesis, and use as precatalysts of chiral organozirconium complexes for olefin polymerization are disclosed, having the structure (C.sub.5 R'.sub.4-x R*.sub.x) A (C.sub.5 R".sub.4-y R'".sub.y) M Q.sub.p, where x and y represent the number of unsubstituted locations on the cyclopentadienyl ring; R', R", R'", and R* represent substituted and unsubstituted alkyl groups having 1-30 carbon atoms and R* is a chiral ligand; A is a fragment containing a Group 13, 14, 15, or 16 element of the Periodic Table; M is a Group 3, 4, or 5 metal of the Periodic Table; and Q is a hydrocarbyl radical, or halogen radical, with 3.ltoreq.p.ltoreq.o. Related complexes may be prepared by alkylation of the corresponding dichorides. In the presence of methylalumoxane or triarylborane cocatalysts, these complexes form "cation-like" species which are highly active for olefin polymerization. In combination with a Lewis acid cocatalyst, propylene or other .alpha.-olefin polymerization can be effected with very high efficiency and isospecificity.

  18. Homogeneous catalysts for stereoregular olefin polymerization

    DOEpatents

    Marks, Tobin J.; Eisen, Moris S.; Giardello, Michael A.

    1995-01-01

    The synthesis, and use as precatalysts of chiral organozirconium complexes for olefin polymerization are disclosed, having the structure (C.sub.5 R'.sub.4-x R*.sub.x) A (C.sub.5 R".sub.4-y R"'.sub.y) M Q.sub.p, where x and y represent the number of unsubstituted locations on the cyclopentadienyl ring; R', R", R"', and R* represent substituted and unsubstituted alkyl groups having 1-30 carbon atoms and R* is a chiral ligand; A is a fragment containing a Group 13, 14, 15, or 16 element of the Periodic Table; M is a Group 3, 4, or 5 metal of the Periodic Table; and Q is a hydrocarbyl radical, or halogen radical, with 3.ltoreq.p.ltoreq.o. Related complexes may be prepared by alkylation of the corresponding dichorides. In the presence of methylalumoxane or triarylborane cocatalysts, these complexes form "cation-like" species which are highly active for olefin polymerization. In combination with a Lewis acid cocatalyst, propylene or other .alpha.-olefin polymerization can be effected with very high efficiency and isospecificity.

  19. Polymerization initated at sidewalls of carbon nanotubes

    NASA Technical Reports Server (NTRS)

    Tour, James M. (Inventor); Hudson, Jared L. (Inventor); Krishnamoorti, Ramanan (Inventor); Yurekli, Koray (Inventor); Mitchell, Cynthia A. (Inventor)

    2011-01-01

    The present invention is directed to aryl halide (such as aryl bromide) functionalized carbon nanotubes that can be utilized in anionic polymerization processes to form polymer-carbon nanotube materials with improved dispersion ability in polymer matrices. In this process the aryl halide is reacted with an alkyllithium species or is reacted with a metal to replace the aryl-bromine bond with an aryl-lithium or aryl-metal bond, respectively. It has further been discovered that other functionalized carbon nanotubes, after deprotonation with a deprotonation agent, can similarly be utilized in anionic polymerization processes to form polymer-carbon nanotube materials. Additionally or alternatively, a ring opening polymerization process can be performed. The resultant materials can be used by themselves due to their enhanced strength and reinforcement ability when compared to their unbound polymer analogs. Additionally, these materials can also be blended with pre-formed polymers to establish compatibility and enhanced dispersion of nanotubes in otherwise hard to disperse matrices resulting in significantly improved material properties. The resultant polymer-carbon nanotube materials can also be used in drug delivery processes due to their improved dispersion ability and biodegradability, and can also be used for scaffolding to promote cellular growth of tissue.

  20. Computational modeling of the quorum-sensing network in bacteria

    NASA Astrophysics Data System (ADS)

    Fenley, Andrew; Banik, Suman; Kulkarni, Rahul

    2007-03-01

    Certain species of bacteria are able produce and sense the concentration of small molecules called autodinducers in order to coordinate gene regulation in response to population density, a process known as ``quorum-sensing''. The resulting regulation of gene expression involves both transcriptional and post-transcriptional regulators. In particular, the species of bacteria in the Vibrio genus use small RNAs to regulate the master protein controlling the quorum-sensing response (luminescence, biofilm formation, virulence...). We model the network of interactions using a modular approach which provides a quantitative understanding of how signal transduction occurs. The parameters of the input-module are fit to current experimental results allowing for testable predictions to be made for future experiments. The results of our analysis offer a revised perspective on quorum-sensing based regulation.

  1. Study on stimulus-responsive cellulose-based polymeric materials

    NASA Astrophysics Data System (ADS)

    Luo, Hongsheng

    Stimulus-responsive cellulose-based polymeric materials were developed by physical and chemical approaches. The thermal, structural, mechanical and morphological properties of the samples were comprehensively investigated by multiple tools. Shape memory effect (SME), programming-structure-property relationship and underling mechanisms were emphasized in this study. Some new concepts, such as heterogeneous-twin-switch, path-dependent multi-shape, rapidly switchable water-sensitive SME were established. The samples were divided into two categories. For the first category, cellulose nano-whiskers (CNWs) were incorporated into crystalline shape memory polyurethane (SMPU) and thermal plastic polyurethane (TPU). The CNW-SMPU nano-composites had heterogeneous switches. Triple- and multi-shape effects were achieved for the CNW-SMPU nano-composites by applying into appropriate thermal-aqueous-mechanical programming. Furthermore, the thermally triggered shape recovery of the composites was found to be tuneable, depending on the PCN content. Theoretical prediction along with numerical analysis was conducted, providing evidence on the possible microstructure of the CNW-SMPU nano-composites. Rapidly switchable water-sensitive SME of the CNW-TPU nano-composites was unprecedentedly studied, which originated from the reversible regulation of hydrogen bonding by water. The samples in the second category consisted of cellulose-polyurethane (PU) blends, cellulose-poly(acrylic acid) (PAA) composites and modified cellulose with supramolecular switches, featuring the requirement of homogeneous cellulose solution in the synthesis process. The reversible behaviours of the cellulose-PU blends in wet-dry cycles as well as the underlying shape memory mechanism were characterized and disclosed. The micro-patterns of the blends were found to be self-similar in fractal dimensions. Cellulose-PAA semi-interpenetrating networks exhibited mechanical adaptability in wet-dry cycles. A type of

  2. Evaluation of antibacterial activity of nitric oxide-releasing polymeric particles against Staphylococcus aureus and Escherichia coli from bovine mastitis.

    PubMed

    Cardozo, Viviane F; Lancheros, Cesar A C; Narciso, Adélia M; Valereto, Elaine C S; Kobayashi, Renata K T; Seabra, Amedea B; Nakazato, Gerson

    2014-10-01

    Bovine mastitis is a serious veterinary disease that causes great loss to the dairy industry worldwide. It is a major infectious disease and is difficult to manage and control. Furthermore, emerging multidrug resistant bacteria that cause mastitis have complicated such management. The free radical nitric oxide (NO) is a potent antimicrobial agent. Thus, the aims of this study were to prepare and evaluate the antibacterial activity of nitric oxide-releasing polymeric particles against Staphylococcus aureus (MBSA) and Escherichia coli (MBEC), which were isolated from bovine mastitis. Fifteen MBSA isolates and fifteen MBEC were collected from subclinical and clinical bovine mastitis. Biocompatible polymeric particles composed of alginate/chitosan or chitosan/sodium tripolyphosphate (TPP) were prepared and used to encapsulate mercaptosuccinic acid (MSA), which is a thiol-containing molecule. Nitrosation of thiol groups of MSA-containing particles formed S-nitroso-MSA particles, which are NO donors. The NO release kinetics from the S-nitroso-MSA particles showed sustained and controlled NO release over several hours. The antibacterial activity of NO-releasing particles was evaluated by incubating the particles with an MBSA multi-resistant strain, which is responsible for bovine mastitis. The minimum inhibitory concentration for S-nitroso-MSA-alginate/chitosan particles against MBSA ranged from 125 μg/mL to 250 μg/mL. The results indicate that NO-releasing polymeric particles are an interesting approach to combating bacteria resistance in bovine mastitis treatment and prevention.

  3. Extracellular polymeric substances govern the development of biofilm and mass transfer of polycyclic aromatic hydrocarbons for improved biodegradation.

    PubMed

    Zhang, Yinping; Wang, Fang; Zhu, Xiaoshu; Zeng, Jun; Zhao, Qiguo; Jiang, Xin

    2015-10-01

    The hypothesis that extracellular polymeric substances (EPS) affect the formation of biofilms for subsequent enhanced biodegradation of polycyclic aromatic hydrocarbons was tested. Controlled formation of biofilms on humin particles and biodegradation of phenanthrene and pyrene were performed with bacteria and EPS-extracted bacteria of Micrococcus sp. PHE9 and Mycobacterium sp. NJS-P. Bacteria without EPS extraction developed biofilms on humin, in contrast the EPS-extracted bacteria could not attach to humin particles. In the subsequent biodegradation of phenanthrene and pyrene, the biodegradation rates by biofilms were significantly higher than those of EPS-extracted bacteria. Although, both the biofilms and EPS-extracted bacteria showed increases in EPS contents, only the EPS contents in biofilms displayed significant correlations with the biodegradation efficiencies of phenanthrene and pyrene. It is proposed that the bacterial-produced EPS was a key factor to mediate bacterial attachment to other surfaces and develop biofilms, thereby increasing the bioavailability of poorly soluble PAH for enhanced biodegradation.

  4. Multiscale Model of Swarming Bacteria

    NASA Astrophysics Data System (ADS)

    Alber, Mark

    2011-03-01

    Many bacteria can rapidly traverse surfaces from which they are extracting nutrient for growth. They generate flat, spreading colonies, called swarms because they resemble swarms of insects. In the beginning of the talk, swarms of the M. xanthus will be described in detail. Individual M. xanthus cells are elongated; they always move in the direction of their long axis; and they are in constant motion, repeatedly touching each other. As a cell glides, the slime capsule of a cell interacts with the bare agar surface, non-oriented slime which arises from the surface contact with the slime capsule, or oriented slime trails. Remarkably, cells regularly reverse their gliding directions. In this talk a detailed cell- and behavior-based computational model of M. xanthus swarming will be used to demonstrate that reversals of gliding direction and cell bending are essential for swarming and that specific reversal frequencies result in optimal swarming rate of the whole population. This suggests that the circuit regulating reversals evolved to its current sensitivity under selection for growth achieved by swarming.

  5. Microbial influenced corrosion by thermophilic bacteria

    NASA Astrophysics Data System (ADS)

    Lata, Suman; Sharma, Chhaya; Singh, Ajay

    2012-03-01

    The present study was undertaken to investigate microbial influenced corrosion (MIC) on stainless steels due to thermophilic bacteria Desulfotomaculum nigrificans. The objective of the study was to measure the extent of corrosion and correlate it with the growth of the biofilm by monitoring the composition of its extracellular polymeric substances (EPS). The toxic effect of heavy metals on MIC was also observed. For this purpose, stainless steels 304L, 316L and 2205 were subjected to electrochemical polarization and immersion tests in the modified Baar's media, control and inoculated, in anaerobic conditions at room temperature. Scanning electron microscopy (SEM)/energy dispersive spectroscopy (EDS) were used to identify the chemicals present in/outside the pit. The results show maximum corrosive conditions when bacterial activity is highest, which in turn minimizes the amount of carbohydrate and protein along with the increase in the fraction of uronic acid in carbohydrate in EPS of the biofilm. However, although bacterial activity and corrosion rate decreases, the amount of biofilm components continue to increase. It is also observed that the toxicity of metals ions affect the bacterial activity and EPS production. It was observed that Desulfotomaculum sp. has the ability to biodegrade its own EPS.

  6. Actin polymerization and intracellular solvent flow in cell surface blebbing

    PubMed Central

    1995-01-01

    The cortical actin gel of eukaryotic cells is postulated to control cell surface activity. One type of protrusion that may offer clues to this regulation are the spherical aneurysms of the surface membrane known as blebs. Blebs occur normally in cells during spreading and alternate with other protrusions, such as ruffles, suggesting similar protrusive machinery is involved. We recently reported that human melanoma cell lines deficient in the actin filament cross-linking protein, ABP-280, show prolonged blebbing, thus allowing close study of blebs and their dynamics. Blebs expand at different rates of volume increase that directly predict the final size achieved by each bleb. These rates decrease as the F-actin concentration of the cells increase over time after plating on a surface, but do so at lower concentrations in ABP-280 expressing cells. Fluorescently labeled actin and phalloidin injections of blebbing cells indicate that a polymerized actin structure is not present initially, but appears later and is responsible for stopping further bleb expansion. Therefore, it is postulated that blebs occur when the fluid-driven expansion of the cell membrane is sufficiently rapid to initially outpace the local rate of actin polymerization. In this model, the rate of intracellular solvent flow driving this expansion decreases as cortical gelation is achieved, whether by factors such as ABP-280, or by concentrated actin polymers alone, thereby leading to decreased size and occurrence of blebs. Since the forces driving bleb extension would always be present in a cell, this process may influence other cell protrusions as well. PMID:7790356

  7. Polymeric nanocomposite proton exchange membranes prepared by radiation-induced polymerization for direct methanol fuel cell

    NASA Astrophysics Data System (ADS)

    Kim, Young-Seok; Seo, Kwang-Seok; Choi, Seong-Ho

    2016-01-01

    The vinyl group-modified montmorillonite clay (F-MMT), vinyl group-modified graphene oxide (F-GO), and vinyl group-modified multi-walled carbon nanotube (F-MWNT) were first prepared by ion exchange reaction of 1-[(4-ethylphenyl)methyl]-3-butyl-imidazolium chloride in order to use the materials for protection against methanol cross-over in direct methanol fuel cell (DMFC) membrane. Then polymeric nanocomposite membranes with F-MMT, F-GO, and F-MWNT were prepared by the solvent casting method after radiation-induced polymerization of vinyl monomers in water-methanol mixture solvents. The proton conductivity, water uptake, ion-exchange capacity, methanol permeability, and DMFC performance of the polymeric nanocomposite membranes with F-MMT, F-GO, and F-MWNT were evaluated.

  8. Photothermal determination of thermal diffusivity and polymerization depth profiles of polymerized dental resins

    NASA Astrophysics Data System (ADS)

    Martínez-Torres, P.; Mandelis, A.; Alvarado-Gil, J. J.

    2009-12-01

    The degree and depth of curing due to photopolymerization in a commercial dental resin have been studied using photothermal radiometry. The sample consisted of a thick layer of resin on which a thin metallic gold layer was deposited, thus guaranteeing full opacity. Purely thermal-wave inverse problem techniques without the interference of optical profiles were used. Thermal depth profiles were obtained by heating the gold coating with a modulated laser beam and by performing a frequency scan. Prior to each frequency scan, photopolymerization was induced using a high power blue light emitted diode (LED). Due to the highly light dispersive nature of dental resins, the polymerization process depends strongly on optical absorption of the blue light, thereby inducing a depth dependent thermal diffusivity profile in the sample. A robust depth profilometric method for reconstructing the thermal diffusivity depth dependence on degree and depth of polymerization has been developed. The thermal diffusivity depth profile was linked to the polymerization kinetics.

  9. Programmed Death in Bacteria

    PubMed Central

    Lewis, Kim

    2000-01-01

    Programmed cell death (PCD) in bacteria plays an important role in developmental processes, such as lysis of the mother cell during sporulation of Bacillus subtilis and lysis of vegetative cells in fruiting body formation of Myxococcus xanthus. The signal transduction pathway leading to autolysis of the mother cell includes the terminal sporulation sigma factor EςK, which induces the synthesis of autolysins CwlC and CwlH. An activator of autolysin in this and other PCD processes is yet to be identified. Autolysis plays a role in genetic exchange in Streptococcus pneumoniae, and the gene for the major autolysin, lytA, is located in the same operon with recA. DNA from lysed cells is picked up by their neighbors and recombined into the chromosome by RecA. LytA requires an unknown activator controlled by a sensory kinase, VncS. Deletion of vncS inhibits autolysis and also decreases killing by unrelated antibiotics. This observation suggests that PCD in bacteria serves to eliminate damaged cells, similar to apoptosis of defective cells in metazoa. The presence of genes affecting survival without changing growth sensitivity to antibiotics (vncS, lytA, hipAB, sulA, and mar) indicates that bacteria are able to control their fate. Elimination of defective cells could limit the spread of a viral infection and donate nutrients to healthy kin cells. An altruistic suicide would be challenged by the appearance of asocial mutants without PCD and by the possibility of maladaptive total suicide in response to a uniformly present lethal factor or nutrient depletion. It is proposed that a low rate of mutation serves to decrease the probability that asocial mutants without PCD will take over the population. It is suggested that PCD is disabled in persistors, rare cells that are resistant to killing, to ensure population survival. It is suggested that lack of nutrients leads to the stringent response that suppresses PCD, producing a state of tolerance to antibiotics, allowing cells to

  10. Hippocampal Dendritic Spines Are Segregated Depending on Their Actin Polymerization

    PubMed Central

    Domínguez-Iturza, Nuria; Calvo, María; Benoist, Marion; Esteban, José Antonio; Morales, Miguel

    2016-01-01

    Dendritic spines are mushroom-shaped protrusions of the postsynaptic membrane. Spines receive the majority of glutamatergic synaptic inputs. Their morphology, dynamics, and density have been related to synaptic plasticity and learning. The main determinant of spine shape is filamentous actin. Using FRAP, we have reexamined the actin dynamics of individual spines from pyramidal hippocampal neurons, both in cultures and in hippocampal organotypic slices. Our results indicate that, in cultures, the actin mobile fraction is independently regulated at the individual spine level, and mobile fraction values do not correlate with either age or distance from the soma. The most significant factor regulating actin mobile fraction was the presence of astrocytes in the culture substrate. Spines from neurons growing in the virtual absence of astrocytes have a more stable actin cytoskeleton, while spines from neurons growing in close contact with astrocytes show a more dynamic cytoskeleton. According to their recovery time, spines were distributed into two populations with slower and faster recovery times, while spines from slice cultures were grouped into one population. Finally, employing fast lineal acquisition protocols, we confirmed the existence of loci with high polymerization rates within the spine. PMID:26881098

  11. Trail following by gliding bacteria.

    PubMed Central

    Burchard, R P

    1982-01-01

    Slime trails, which are deposited on surfaces by gliding bacteria and which serve as preferential pathways for gliding motility, were tested for the species specificity of their support of movement. Among the pairs of bacteria tested, a variety of gliding bacteria and a flagellated bacterium moved along trails of unrelated species. Thus, the trails did not serve as pheromones. Rather, they may have guided gliding elasticotactically. Some biological implications of this finding are considered. Images PMID:6811562

  12. The Pho regulon: a huge regulatory network in bacteria

    PubMed Central

    Santos-Beneit, Fernando

    2015-01-01

    One of the most important achievements of bacteria is its capability to adapt to the changing conditions of the environment. The competition for nutrients with other microorganisms, especially in the soil, where nutritional conditions are more variable, has led bacteria to evolve a plethora of mechanisms to rapidly fine-tune the requirements of the cell. One of the essential nutrients that are normally found in low concentrations in nature is inorganic phosphate (Pi). Bacteria, as well as other organisms, have developed several systems to cope for the scarcity of this nutrient. To date, the unique mechanism responding to Pi starvation known in detail is the Pho regulon, which is normally controlled by a two component system and constitutes one of the most sensible and efficient regulatory mechanisms in bacteria. Many new members of the Pho regulon have emerged in the last years in several bacteria; however, there are still many unknown questions regarding the activation and function of the whole system. This review describes the most important findings of the last three decades in relation to Pi regulation in bacteria, including: the PHO box, the Pi signaling pathway and the Pi starvation response. The role of the Pho regulon in nutritional regulation cross-talk, secondary metabolite production, and pathogenesis is discussed in detail. PMID:25983732

  13. Bacteriophages of methanotrophic bacteria

    SciTech Connect

    Tyutikow, F.M.; Bespalova, I.A.; Rebentish, B.A.; Aleksandrushkina, N.N.; Krivisky, A.S.

    1980-10-01

    Bacteriophages of methanotrophic bacteria have been found in 16 out of 88 studied samples (underground waters, pond water, soil, gas and oil installation waters, fermentor cultural fluids, bacterial paste, and rumen of cattle) taken in different geographic zones of the Soviet Union. Altogether, 23 phage strains were isolated. By fine structure, the phages were divided into two types (with very short or long noncontractile tails); by host range and serological properties, they fell into three types. All phages had guanine- and cytosine-rich double-stranded deoxyribonucleic acid consisting of common nitrogen bases. By all of the above-mentioned properties, all phages within each of the groups were completely identical to one another, but differed from phages of other groups.

  14. Kin Recognition in Bacteria.

    PubMed

    Wall, Daniel

    2016-09-01

    The ability of bacteria to recognize kin provides a means to form social groups. In turn these groups can lead to cooperative behaviors that surpass the ability of the individual. Kin recognition involves specific biochemical interactions between a receptor(s) and an identification molecule(s). Recognition specificity, ensuring that nonkin are excluded and kin are included, is critical and depends on the number of loci and polymorphisms involved. After recognition and biochemical perception, the common ensuing cooperative behaviors include biofilm formation, quorum responses, development, and swarming motility. Although kin recognition is a fundamental mechanism through which cells might interact, microbiologists are only beginning to explore the topic. This review considers both molecular and theoretical aspects of bacterial kin recognition. Consideration is also given to bacterial diversity, genetic relatedness, kin selection theory, and mechanisms of recognition. PMID:27359217

  15. Acyltransferases in Bacteria

    PubMed Central

    Röttig, Annika

    2013-01-01

    SUMMARY Long-chain-length hydrophobic acyl residues play a vital role in a multitude of essential biological structures and processes. They build the inner hydrophobic layers of biological membranes, are converted to intracellular storage compounds, and are used to modify protein properties or function as membrane anchors, to name only a few functions. Acyl thioesters are transferred by acyltransferases or transacylases to a variety of different substrates or are polymerized to lipophilic storage compounds. Lipases represent another important enzyme class dealing with fatty acyl chains; however, they cannot be regarded as acyltransferases in the strict sense. This review provides a detailed survey of the wide spectrum of bacterial acyltransferases and compares different enzyme families in regard to their catalytic mechanisms. On the basis of their studied or assumed mechanisms, most of the acyl-transferring enzymes can be divided into two groups. The majority of enzymes discussed in this review employ a conserved acyltransferase motif with an invariant histidine residue, followed by an acidic amino acid residue, and their catalytic mechanism is characterized by a noncovalent transition state. In contrast to that, lipases rely on completely different mechanism which employs a catalytic triad and functions via the formation of covalent intermediates. This is, for example, similar to the mechanism which has been suggested for polyester synthases. Consequently, although the presented enzyme types neither share homology nor have a common three-dimensional structure, and although they deal with greatly varying molecule structures, this variety is not reflected in their mechanisms, all of which rely on a catalytically active histidine residue. PMID:23699259

  16. Supramolecular 1-D polymerization of DNA origami through a dynamic process at the 2-dimensionally confined air-water interface.

    PubMed

    Yonamine, Yusuke; Cervantes-Salguero, Keitel; Minami, Kosuke; Kawamata, Ibuki; Nakanishi, Waka; Hill, Jonathan P; Murata, Satoshi; Ariga, Katsuhiko

    2016-05-14

    In this study, a Langmuir-Blodgett (LB) system has been utilized for the regulation of polymerization of a DNA origami structure at the air-water interface as a two-dimensionally confined medium, which enables dynamic condensation of DNA origami units through variation of the film area at the macroscopic level (ca. 10-100 cm(2)). DNA origami sheets were conjugated with a cationic lipid (dioctadecyldimethylammonium bromide, 2C18N(+)) by electrostatic interaction and the corresponding LB-film was prepared. By applying dynamic pressure variation through compression-expansion processes, the lipid-modified DNA origami sheets underwent anisotropic polymerization forming a one-dimensionally assembled belt-shaped structure of a high aspect ratio although the thickness of the polymerized DNA origami was maintained at the unimolecular level. This approach opens up a new field of mechanical induction of the self-assembly of DNA origami structures. PMID:27091668

  17. Small Talk: Cell-to-Cell Communication in Bacteria

    ScienceCinema

    Bassler, Bonnie [Princeton University, Princeton, New Jersey, United States

    2016-07-12

    Cell-cell communication in bacteria involves the production, release, and subsequent detection of chemical signaling molecules called autoinducers. This process, called quorum sensing, allows bacteria to regulate gene expression on a population-wide scale. Processes controlled by quorum sensing are usually ones that are unproductive when undertaken by an individual bacterium but become effective when undertaken by the group. For example, quorum sensing controls bioluminescence, secretion of virulence factors, biofilm formation, sporulation, and the exchange of DNA. Thus, quorum sensing is a mechanism that allows bacteria to function as multi-cellular organisms. Bacteria make, detect, and integrate information from multiple autoinducers, some of which are used exclusively for intra-species communication while others enable communication between species. Research is now focused on the development of therapies that interfere with quorum sensing to control bacterial virulence.

  18. Small Talk: Cell-to-Cell Communication in Bacteria

    SciTech Connect

    Bassler, Bonnie

    2008-05-14

    Cell-cell communication in bacteria involves the production, release, and subsequent detection of chemical signaling molecules called autoinducers. This process, called quorum sensing, allows bacteria to regulate gene expression on a population-wide scale. Processes controlled by quorum sensing are usually ones that are unproductive when undertaken by an individual bacterium but become effective when undertaken by the group. For example, quorum sensing controls bioluminescence, secretion of virulence factors, biofilm formation, sporulation, and the exchange of DNA. Thus, quorum sensing is a mechanism that allows bacteria to function as multi-cellular organisms. Bacteria make, detect, and integrate information from multiple autoinducers, some of which are used exclusively for intra-species communication while others enable communication between species. Research is now focused on the development of therapies that interfere with quorum sensing to control bacterial virulence.

  19. Small Talk: Cell-to-Cell Communication in Bacteria

    SciTech Connect

    Bassler, Bonnie

    2008-12-03

    Cell-cell communication in bacteria involves the production, release, and subsequent detection of chemical signaling molecules called autoinducers. This process, called quorum sensing, allows bacteria to regulate gene expression on a population-wide scale. Processes controlled by quorum sensing are usually ones that are unproductive when undertaken by an individual bacterium but become effective when undertaken by the group. For example, quorum sensing controls bioluminescence, secretion of virulence factors, biofilm formation, sporulation, and the exchange of DNA. Thus, quorum sensing is a mechanism that allows bacteria to function as multi-cellular organisms. Bacteria make, detect, and integrate information from multiple autoinducers, some of which are used exclusively for intra-species communication while others enable communication between species. Research is now focused on the development of therapies that interfere with quorum sensing to control bacterial virulence.

  20. Targeting intracellular compartments by magnetic polymeric nanoparticles.

    PubMed

    Kocbek, Petra; Kralj, Slavko; Kreft, Mateja Erdani; Kristl, Julijana

    2013-09-27

    Superparamagnetic iron oxide nanoparticles (SPIONs) show a great promise for a wide specter of bioapplications, due to their characteristic magnetic properties exhibited only in the presence of magnetic field. Their advantages in the fields of magnetic drug targeting and imaging are well established and their safety is assumed, since iron oxide nanoparticles have already been approved for in vivo application, however, according to many literature reports the bare metal oxide nanoparticles may cause toxic effects on treated cells. Therefore, it is reasonable to prevent the direct interactions between metal oxide core and surrounding environment. In the current research ricinoleic acid coated maghemite nanoparticles were successfully synthesized, characterized and incorporated in the polymeric matrix, resulting in nanosized magnetic polymeric particles. The carrier system was shown to exhibit superparamagnetic properties and was therefore responsive towards external magnetic field. Bioevaluation using T47-D breast cancer cells confirmed internalization of magnetic polymeric nanoparticles (MNPs) and their intracellular localization in various subcellular compartments, depending on presence/absence of external magnetic field. However, the number of internalized MNPs observed by fluorescent and transmission electron microscopy was relatively low, making such way of targeting effective only for delivery of highly potent drugs. The scanning electron microscopy of treated cells revealed that MNPs influenced the cell adhesion, when external magnetic field was applied, and that treatment resulted in damaged apical plasma membrane right after exposure to the magnetic carrier. On the other hand, MNPs showed only reversibly reduced cellular metabolic activity in concentrations up to 200 μg/ml and, in the tested concentration the cell cycle distribution was within the normal range, indicating safety of the established magnetic carrier system for the treated cells.

  1. Uptake of Nitroaromatic Compounds by Polymeric Tubing

    SciTech Connect

    BOUNKEUA, VIENGNGEUN; RODACY, PHILIP J.

    2001-04-01

    The type of polymeric material used in the manufacturing of tubing determines its strength, elasticity, and durability. Tubing made of polymeric material is commonly used for analytical work because it is readily available, inexpensive and can be relatively inert. Polymeric tubing is used in many sampling applications for explosive compounds. A major concern is the uptake of the explosive compounds into or onto the tubing during sampling. Because of the reactive nature of explosives, it is important that as little of the detectable explosive as possible is lost by tubing uptake. It is also important that nothing leaches out of the tubing to interfere with the detection of explosives. High Performance Liquid Chromatography (HPLC) is commonly used for the analysis of trace levels of explosive compounds in the range of parts per billion (ppb) to parts per million (ppm). This study attempts to determine which types of polymers are most conducive to sampling applications where large volumes of dilute explosive solutions are collected through a length of tubing for analysis. This was determined by analyzing the amount of explosive lost from solution per cm{sup 2} of tubing in solution. It was determined that tubing made of polyethylene, teflon, polypropylene, or KYNAR{reg_sign} is recommended for dilute trinitrotoluene (TNT) solution analyses. Tubing made of polypropylene, PHARMED{reg_sign}, KYNAR{reg_sign}, or polyethylene is recommended for analyses involving dilute explosive solutions of RDX. Tubing made from polyurethane, TYGON{reg_sign}, nylon, vinyl, gum rubber, or reinforced PVC are not recommended because they leach contaminants into solution that may interfere with HPLC analysis of explosive peaks.

  2. Light-Driven Polymeric Bimorph Actuators

    NASA Technical Reports Server (NTRS)

    Adamovsky, Gregory; Sarkisov, Sergey S.; Curley, Michael J.

    2009-01-01

    Light-driven polymeric bimorph actuators are being developed as alternatives to prior electrically and optically driven actuators in advanced, highly miniaturized devices and systems exemplified by microelectromechanical systems (MEMS), micro-electro-optical-mechanical systems (MEOMS), and sensor and actuator arrays in smart structures. These light-driven polymeric bimorph actuators are intended to satisfy a need for actuators that (1) in comparison with the prior actuators, are simpler and less power-hungry; (2) can be driven by low-power visible or mid-infrared light delivered through conventional optic fibers; and (3) are suitable for integration with optical sensors and multiple actuators of the same or different type. The immediate predecessors of the present light-driven polymeric bimorph actuators are bimorph actuators that exploit a photorestrictive effect in lead lanthanum zirconate titanate (PLZT) ceramics. The disadvantages of the PLZT-based actuators are that (1) it is difficult to shape the PLZT ceramics, which are hard and brittle; (2) for actuation, it is necessary to use ultraviolet light (wavelengths < 380 nm), which must be generated by use of high-power, high-pressure arc lamps or lasers; (3) it is difficult to deliver sufficient ultraviolet light through conventional optical fibers because of significant losses in the fibers; (4) the response times of the PLZT actuators are of the order of several seconds unacceptably long for typical applications; and (5) the maximum mechanical displacements of the PLZT-based actuators are limited to those characterized by low strains beyond which PLZT ceramics disintegrate because of their brittleness. The basic element of a light-driven bimorph actuator of the present developmental type is a cantilever beam comprising two layers, at least one of which is a polymer that exhibits a photomechanical effect (see figure). The dominant mechanism of the photomechanical effect is a photothermal one: absorption of

  3. Diacetylene mixed Langmuir monolayers for interfacial polymerization.

    PubMed

    Ariza-Carmona, Luisa; Rubia-Payá, Carlos; García-Espejo, G; Martín-Romero, María T; Giner-Casares, Juan J; Camacho, Luis

    2015-05-19

    Polydiacetylene (PDA) and its derivatives are promising materials for applications in a vast number of fields, from organic electronics to biosensing. PDA is obtained through polymerization of diacetylene (DA) monomers, typically using UV irradiation. DA polymerization is a 1-4 addition reaction with both initiation and growth steps with topochemical control, leading to the "blue" polymer form as primary reaction product in bulk and at interfaces. Herein, the diacetylene monomer 10,12-pentacosadiynoic acid (DA) and the amphiphilic cationic N,N'-dioctadecylthiapentacarbocyanine (OTCC) have been used to build a mixed Langmuir monolayer. The presence of OTCC imposes a monolayer supramolecular structure instead of the typical trilayer of pure DA. Surface pressure, Brewster angle microscopy, and UV-vis reflection spectroscopy measurements, as well as computer simulations, have been used to assess in detail the supramolecular structure of the DA:OTCC Langmuir monolayer. Our experimental results indicate that the DA and OTCC molecules are sequentially arranged, with the two OTCC alkyl chains acting as spacing diacetylene units. Despite this configuration is expected to prevent photopolymerization of DA, the polymerization takes place without phase segregation, thus exclusively leading to the red polydiacetylene form. We propose a simple model for the initial formation of the "blue" or "red" PDA forms as a function of the relative orientation of the DA units. The structural insights and the proposed model concerning the supramolecular structure of the "blue" and "red" forms of the PDA are aimed at the understanding of the relation between the molecular and macroscopical features of PDAs.

  4. Studies of molecular properties of polymeric materials

    NASA Technical Reports Server (NTRS)

    Harries, W. L.; Long, Sheila Ann T.; Long, Edward R., Jr.

    1990-01-01

    Aerospace environment effects (high energy electrons, thermal cycling, atomic oxygen, and aircraft fluids) on polymeric and composite materials considered for structural use in spacecraft and advanced aircraft are examined. These materials include Mylar, Ultem, and Kapton. In addition to providing information on the behavior of the materials, attempts are made to relate the measurements to the molecular processes occurring in the material. A summary and overview of the technical aspects are given along with a list of the papers that resulted from the studies. The actual papers are included in the appendices and a glossary of technical terms and definitions is included in the front matter.

  5. Space environmental effects on polymeric materials

    NASA Technical Reports Server (NTRS)

    Kiefer, Richard L.; Orwoll, Robert A.

    1988-01-01

    Polymer-matrix composites have considerable potential for use in the construction of orbiting structures such as the space station and space antennas because of their light weight, high strength, and low thermal expansion. However, they can suffer surface erosion by interaction with atomic oxygen in low-Earth orbit and degradation and/or embrittlement by electrons and ultraviolet radiation especially in geosynchronous orbit. Thus, a study of the effect of these environmental hazards on polymeric materials is an important step in the assessment of such materials for future use in space.

  6. Novel hybrid polymeric materials for barrier coatings

    NASA Astrophysics Data System (ADS)

    Pavlacky, Erin Christine

    Polymer-clay nanocomposites, described as the inclusion of nanometer-sized layered silicates into polymeric materials, have been widely researched due to significant enhancements in material properties with the incorporation of small levels of filler (1--5 wt.%) compared to conventional micro- and macro-composites (20--30 wt.%). One of the most promising applications for polymer-clay nanocomposites is in the field of barrier coatings. The development of UV-curable polymer-clay nanocomposite barrier coatings was explored by employing a novel in situ preparation technique. Unsaturated polyesters were synthesized in the presence of organomodified clays by in situ intercalative polymerization to create highly dispersed clays in a precursor resin. The resulting clay-containing polyesters were crosslinked via UV-irradiation using donor-acceptor chemistry to create polymer-clay nanocomposites which exhibited significantly enhanced barrier properties compared to alternative clay dispersion techniques. The impact of the quaternary alkylammonium organic modifiers, used to increase compatibility between the inorganic clay and organic polymer, was studied to explore influence of the organic modifier structure on the nanocomposite material properties. By incorporating just the organic modifiers, no layered silicates, into the polyester resins, reductions in film mechanical and thermal properties were observed, a strong indicator of film plasticization. An alternative in situ preparation method was explored to further increase the dispersion of organomodified clay within the precursor polyester resins. In stark contrast to traditional in situ polymerization methods, a novel "reverse" in situ preparation method was developed, where unmodified montmorillonite clay was added during polyesterification to a reaction mixture containing the alkylammonium organic modifier. The resulting nanocomposite films exhibited reduced water vapor permeability and increased mechanical properties

  7. Fiberoptic microphone using a polymeric cavity

    NASA Astrophysics Data System (ADS)

    Wang, Wei-Chih; Soetanto, William; Gu, Kebin

    2011-04-01

    The fabrication and experimental investigation of a fiberoptic microphone is described. The sensing element is a silicon diaphragm with gold thin film coating that is positioned inside a silicone rubber mold at the end of a single mode optical fiber. Thus, a Fabry-Perot interferometer is formed between the inner fiber and the diaphragm. An acoustic pressure change is detected by using the developed microphone. The polymeric cavity and silicon diaphragm-based system exhibits excellent physicochemical properties with a small, simple, low cost, and lightweight design. The system is also electromagnetic interference / radio frequency interference immunity due to the use of fiberoptics.

  8. Polymeric precursors for fibers and matrices

    NASA Technical Reports Server (NTRS)

    Hurwitz, Frances I.

    1992-01-01

    Candidate polymeric precursors for ceramic fiber and matrix processing are discussed, with a view to the advantages and disadvantages of this approach relative to existing alternatives. The properties of ceramic products thus derived are noted to strongly depend on the molecular weight and structure of the starting polymer; in particular, the ceramic's composition and morphology are dependent on the character and extent of crosslinking, as well as on the path of pyrolysis. While large and complex structural ceramic components may ultimately be obtainable by these means, the polymer-precursor method is still in its developmental infancy.

  9. Polymer microcantilevers fabricated via multiphoton absorption polymerization

    NASA Astrophysics Data System (ADS)

    Bayindir, Z.; Sun, Y.; Naughton, M. J.; LaFratta, C. N.; Baldacchini, T.; Fourkas, J. T.; Stewart, J.; Saleh, B. E. A.; Teich, M. C.

    2005-02-01

    We have used multiphoton absorption polymerization to fabricate a series of microscale polymer cantilevers. Atomic force microscopy has been used to characterize the mechanical properties of microcantilevers with spring constants that were found to span more than four decades. From these data, we extracted a Young's modulus of E =0.44GPa for these microscale cantilevers. The wide stiffness range and relatively low elastic modulus of the microstructures make them attractive candidates for a range of microcantilever applications, including measurements on soft matter.

  10. Polysaccharide-Modified Synthetic Polymeric Biomaterials

    PubMed Central

    Baldwin, Aaron D.; Kiick, Kristi L.

    2010-01-01

    This review presents an overview of polysaccharide-conjugated synthetic polymers and their use in tissue-engineered scaffolds and drug-delivery applications. This topic will be divided into four categories: (1) polymeric materials modified with non-mammalian polysaccharides such as alginate, chitin, and dextran; (2) polymers modified with mammalian polysaccharides such as hyaluronan, chondroitin sulfate, and heparin; (3) multi-polysaccharide-derivatized polymer conjugate systems; and (4) polymers containing polysaccharide-mimetic molecules. Each section will discuss relevant conjugation techniques, analysis, and the impact of these materials as micelles, particles, or hydrogels used in in-vitro and in-vivo biomaterial applications. PMID:20091875

  11. Frontal Polymerization in Microgravity Summary of Research

    NASA Technical Reports Server (NTRS)

    Pojman, John A.

    2002-01-01

    The project began with frontal polymerization (FP). We studied many aspects of FP on the ground and performed two successful weeks of flying on the KC-135. The project evolved into the current flight investigation, Transient Interfacial Phenomena in Miscible Polymer Systems (TIPMPS), as we recognized that an essential question could best be studied using a non-frontal approach. We present detailed results from our ground-based work on FP, KC-135 results and the background, justification and numerical work for the TIPMPS project.

  12. Functional Lactide Monomers: Methodology and Polymerization

    PubMed Central

    Gerhardt, Warren W.; Noga, David E.; Hardcastle, Kenneth I.; García, Andrés J.; M. Collard, David; Weck, Marcus

    2008-01-01

    Side-chain functionalized lactide analogues have been synthesized from commercially available amino acids and polymerized using stannous octoate as a catalyst. The synthetic strategy presented allows for the incorporation of any protected amino acid for the preparation of functionalized diastereomerically pure lactide monomers. The resulting functionalized cyclic monomers can be homopolymerized, and copolymerized with lactides, then quantitatively deprotected forming new functional poly(lactide)-based materials. This strategy allows for the introduction of functional groups along a poly(lactide) (PLA) backbone that after deprotection can be viewed as chemical handles for further functionalization of PLA, yielding improved biomaterials for a variety of applications. PMID:16768392

  13. Polysaccharide-modified synthetic polymeric biomaterials.

    PubMed

    Baldwin, Aaron D; Kiick, Kristi L

    2010-01-01

    This review presents an overview of polysaccharide-conjugated synthetic polymers and their use in tissue-engineered scaffolds and drug-delivery applications. This topic will be divided into four categories: (1) polymeric materials modified with non-mammalian polysaccharides such as alginate, chitin, and dextran; (2) polymers modified with mammalian polysaccharides such as hyaluronan, chondroitin sulfate, and heparin; (3) multi-polysaccharide-derivatized polymer conjugate systems; and (4) polymers containing polysaccharide-mimetic molecules. Each section will discuss relevant conjugation techniques, analysis, and the impact of these materials as micelles, particles, or hydrogels used in in-vitro and in-vivo biomaterial applications. PMID:20091875

  14. Swelling of plasma-polymerized tetrafluoroethylene films

    SciTech Connect

    Butler, M.A.; Buss, R.J.; Seager, C.H. )

    1991-11-25

    Swelling of micrometer thick-films of plasma-polymerized tetrafluoroethylene has been measured for a range of solvents using an optical-interferometric technique. For low gas-phase concentrations of the solvent, the swelling is found to correlate with the ionization potential of the solvent. Photo-thermal deflection spectroscopy of the films shows optical absorption in the infrared, which changes with exposure to different solvents. Both of these results suggest weak electron transfer from the solvent to the polymer as the dominant interaction mechanism.

  15. Smart Polymeric Nanoparticles for Cancer Gene Delivery

    PubMed Central

    2015-01-01

    The massive amount of human genetic information already available has accelerated the identification of target genes, making gene and nucleic acid therapy the next generation of medicine. Nanoparticle (NP)-based anticancer gene therapy treatment has received significant interest in this evolving field. Recent advances in vector technology have improved gene transfection efficiencies of nonviral vectors to a level similar to viruses. This review serves as an introduction to surface modifications of NPs based on polymeric structural improvements and target moieties. A discussion regarding the future perspective of multifunctional NPs in cancer therapy is also included. PMID:25531409

  16. Multiphoton polymerization using optical trap assisted nanopatterning

    NASA Astrophysics Data System (ADS)

    Leitz, Karl-Heinz; Tsai, Yu-Cheng; Flad, Florian; Schäffer, Eike; Quentin, Ulf; Alexeev, Ilya; Fardel, Romain; Arnold, Craig B.; Schmidt, Michael

    2013-06-01

    In this letter, we show the combination of multiphoton polymerization and optical trap assisted nanopatterning (OTAN) for the additive manufacturing of structures with nanometer resolution. User-defined patterns of polymer nanostructures are deposited on a glass substrate by a 3.5 μm polystyrene sphere focusing IR femtosecond laser pulses, showing minimum feature sizes of λ/10. Feature size depends on the applied laser fluence and the bead surface spacing. A finite element model describes the intensity enhancement in the microbead focus. The results presented suggest that OTAN in combination with multiphoton processing is a viable technique for additive nanomanufacturing with sub-diffraction-limited resolution.

  17. Diffusive transport in modern polymeric materials

    SciTech Connect

    Doering, C.; Bier, M.; Christodoulou, K.

    1996-10-01

    This is the final report of a one-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). Polymers, composites, and synthetic modern materials are replacing traditional materials in many older scientific, engineering, commercial, and military applications. This project sought to focus on the new polymeric materials, deriving and analyzing models that predict their seemingly mysterious transport properties. It sought to identify the dominant physical mechanisms and the pertinent dimensionless parameters, produce viable theoretical models, and devise asymptotic and numerical methods for use in specific problems.

  18. Polymeric micelles as carriers of diagnostic agents.

    PubMed

    Trubetskoy

    1999-04-01

    This review deals with diagnostic applications of polymeric micelles composed of amphiphilic block-copolymers. In aqueous solutions these polymers spontaneously form particles with diameter 20-100 nm. A variety of diagnostic moieties can be incorporated covalently or non-covalently into the particulates with high loads. Resulting particles can be used as particulate agents for diagnostic imaging using three major imaging modalities: gamma-scintigraphy, magnetic resonance imaging and computed tomography. The use of polyethyleneoxide-diacyllipid micelles loaded with chelated (111)In/Gd(3+) as well as iodine-containing amphiphilic copolymer in percutaneous lymphography and blood pool/liver imaging are discussed as specific examples.

  19. A polymeric flame retardant additive for rubbers

    SciTech Connect

    Ghosh, S.N.; Maiti, S.

    1993-12-31

    Synthesis of a polyphosphonate by the interfacial polymerization of bisphenol-A (BPA) and dichloro-phenyl phosphine oxide (DCPO) using cetyltrimethyl ammonium chloride (TMAC) as phase transfer catalyst (PTC) was reported. The polyphosphonate was characterized by elemental analysis, IR, TGA, DSC and 1H-NMR spectroscopy. The flame retardancy of the polymer was done by OI study. The polymer was used as a fire retardant additive to rubbers such as natural rubber (NR), styrene-butadiene rubber(SBR), nitrile rubber (NBR) and chloroprene rubber (CR). The efficiency of the fire retardant property of this additive was determined by LOI measurements of the various rubber samples.

  20. Durability of Polymeric Glazing and Absorber Materials

    SciTech Connect

    Jorgensen, G.; Terwilliger, K.; Bingham, C.; Lindquist, C.; Milbourne, M.

    2005-11-01

    The Solar Heating and Lighting Program has set the goal of reducing the cost of solar water heating systems by at least 50%. An attractive approach to such large cost reduction is to replace glass and metal parts with less-expensive, lighter-weight, more-integrated polymeric components. The key challenge with polymers is to maintain performance and assure requisite durability for extended lifetimes. We have begun evaluation of several new UV-screened polycarbonate sheet glazing constructions. This has involved interactions with several major polymer industry companies to obtain improved candidate samples. Proposed absorber materials were tested for UV resistance, and appear adequate for unglazed ICS absorbers.