Sample records for bacteria rhodobacter sphaeroides

  1. Biosorption of heavy metal ions on Rhodobacter sphaeroides and Alcaligenes eutrophus H16

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seki, Hideshi; Suzuki, Akira; Mitsueda, Shinichiro

    1998-01-15

    A fundamental study of the application of bacteria to the recovery of toxic heavy metals from aqueous environments was carried out. The biosorption characteristics of cadmium and lead ions were determined with purple nonsulfur bacteria, Rhodobacter sphaeroides and hydrogen bacteria, Alcaligenes eutrophus H16 that were inactivated by steam sterilization. A simplified version of the metal binding model proposed by Plette et al. was used for the description of meal binding data. The results showed that the biosorption of bivalent metal ions to whole cell bodies of the bacteria was due to monodentate binding to two different types of acidic sites:more » carboxilic and phosphatic-type sites. The number of metal binding sites of A. eutrophus was 2.4-fold larger than that of R. sphaeroides.« less

  2. Bioremediation of lead contaminated soil with Rhodobacter sphaeroides.

    PubMed

    Li, Xiaomin; Peng, Weihua; Jia, Yingying; Lu, Lin; Fan, Wenhong

    2016-08-01

    Bioremediation with microorganisms is a promising technique for heavy metal contaminated soil. Rhodobacter sphaeroides was previously isolated from oil field injection water and used for bioremediation of lead (Pb) contaminated soil in the present study. Based on the investigation of the optimum culturing conditions and the tolerance to Pb, we employed the microorganism for the remediation of Pb contaminated soil simulated at different contamination levels. It was found that the optimum temperature, pH, and inoculum size for R. sphaeroides is 30-35 °C, 7, and 2 × 10(8) mL(-1), respectively. Rhodobacter sphaeroides did not remove the Pb from soil but did change its speciation. During the bioremediation process, more available fractions were transformed to less accessible and inert fractions; in particular, the exchangeable phase was dramatically decreased while the residual phase was substantially increased. A wheat seedling growing experiment showed that Pb phytoavailability was reduced in amended soils. Results inferred that the main mechanism by which R. sphaeroides treats Pb contaminated soil is the precipitation formation of inert compounds, including lead sulfate and lead sulfide. Although the Pb bioremediation efficiency on wheat was not very high (14.78% root and 24.01% in leaf), R. sphaeroides remains a promising alternative for Pb remediation in contaminated soil. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Gene co-expression network analysis in Rhodobacter capsulatus and application to comparative expression analysis of Rhodobacter sphaeroides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pena-Castillo, Lourdes; Mercer, Ryan; Gurinovich, Anastasia

    2014-08-28

    The genus Rhodobacter contains purple nonsulfur bacteria found mostly in freshwater environments. Representative strains of two Rhodobacter species, R. capsulatus and R. sphaeroides, have had their genomes fully sequenced and both have been the subject of transcriptional profiling studies. Gene co-expression networks can be used to identify modules of genes with similar expression profiles. Functional analysis of gene modules can then associate co-expressed genes with biological pathways, and network statistics can determine the degree of module preservation in related networks. In this paper, we constructed an R. capsulatus gene co-expression network, performed functional analysis of identified gene modules, and investigatedmore » preservation of these modules in R. capsulatus proteomics data and in R. sphaeroides transcriptomics data. Results: The analysis identified 40 gene co-expression modules in R. capsulatus. Investigation of the module gene contents and expression profiles revealed patterns that were validated based on previous studies supporting the biological relevance of these modules. We identified two R. capsulatus gene modules preserved in the protein abundance data. We also identified several gene modules preserved between both Rhodobacter species, which indicate that these cellular processes are conserved between the species and are candidates for functional information transfer between species. Many gene modules were non-preserved, providing insight into processes that differentiate the two species. In addition, using Local Network Similarity (LNS), a recently proposed metric for expression divergence, we assessed the expression conservation of between-species pairs of orthologs, and within-species gene-protein expression profiles. Conclusions: Our analyses provide new sources of information for functional annotation in R. capsulatus because uncharacterized genes in modules are now connected with groups of genes that constitute a joint functional

  4. Cloning and heterologous expression of chlorophyll a synthase in Rhodobacter sphaeroides.

    PubMed

    Ipekoğlu, Emre M; Göçmen, Koray; Öz, Mehmet T; Gürgan, Muazzez; Yücel, Meral

    2017-03-01

    Rhodobacter sphaeroides is a purple non-sulfur bacterium which photoheterotrophically produces hydrogen from organic acids under anaerobic conditions. A gene coding for putative chlorophyll a synthase (chlG) from cyanobacterium Prochlorococcus marinus was amplified by nested polymerase chain reaction and cloned into an inducible-expression plasmid which was subsequently transferred to R. sphaeroides for heterologous expression. Induced expression of chlG in R. sphaeroides led to changes in light absorption spectrum within 400-700 nm. The hydrogen production capacity of the mutant strain was evaluated on hydrogen production medium with 15 mM malate and 2 mM glutamate. Hydrogen yield and productivity were increased by 13.6 and 22.6%, respectively, compared to the wild type strain. The results demonstrated the feasibility of genetic engineering to combine chlorophyll and bacteriochlorophyll biosynthetic pathways which utilize common intermediates. Heterologous expression of key enzymes from biosynthetic pathways of various pigments is proposed here as a general strategy to improve absorption spectra and yield of photosynthesis and hydrogen gas production in bacteria. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Biohydrogen production by purple non-sulfur bacteria Rhodobacter sphaeroides: Effect of low-intensity electromagnetic irradiation.

    PubMed

    Gabrielyan, Lilit; Sargsyan, Harutyun; Trchounian, Armen

    2016-09-01

    The present work was focused on the effects of low-intensity (the flux capacity was of 0.06mWcm(-2)) electromagnetic irradiation (EMI) of extremely high frequencies or millimeter waves on the growth and hydrogen (H2) photoproduction by purple non-sulfur bacteria Rhodobacter sphaeroides MDC6521 (from Armenian mineral springs). After exposure of R. sphaeroides, grown under anaerobic conditions upon illumination, to EMI (51.8GHz and 53.0GHz) for 15min an increase of specific growth rate by ~1.2-fold, in comparison with control (non-irradiated cells), was obtained. However, the effect of EMI depends on the duration of irradiation: the exposure elongation up to 60min caused the delay of the growth lag phase and the decrease specific growth rate by ~1.3-fold, indicating the bactericidal effect of EMI. H2 yield of the culture, irradiated by EMI for 15min, determined during 72h growth, was ~1.2-fold higher than H2 yield of control cells, whereas H2 production by cultures, irradiated by EMI for 60min was not observed during 72h growth. This difference in the effects of extremely high frequency EMI indicates a direct effect of radiation on the membrane transfer and the enzymes of these bacteria. Moreover, EMI increased DCCD-inhibited H(+) fluxes across the bacterial membrane and DCCD-sensitive ATPase activity of membrane vesicles, indicating that the proton FoF1-ATPase is presumably a basic target for extremely high frequency EMI related to H2 production by cultures. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. DNA sequence analysis of the photosynthesis region of Rhodobacter sphaeroides 2.4.1.

    PubMed

    Choudhary, M; Kaplan, S

    2000-02-15

    This paper describes the DNA sequence of the photosynthesis region of Rhodobacter sphaeroides 2.4.1 (T). The photosynthesis gene cluster is located within a approximately 73 kb Ase I genomic DNA fragment containing the puf, puhA, cycA and puc operons. A total of 65 open reading frames (ORFs) have been identified, of which 61 showed significant similarity to genes/proteins of other organisms while only four did not reveal any significant sequence similarity to any gene/protein sequences in the database. The data were compared with the corresponding genes/ORFs from a different strain of R.sphaeroides and Rhodobacter capsulatus, a close relative of R. sphaeroides. A detailed analysis of the gene organization in the photosynthesis region revealed a similar gene order in both species with some notable differences located to the pucBAC = cycA region. In addition, photosynthesis gene regulatory protein (PpsR, FNR, IHF) binding motifs in upstream sequences of a number of photosynthesis genes have been identified and shown to differ between these two species. The difference in gene organization relative to pucBAC and cycA suggests that this region originated independently of the photosynthesis gene cluster of R.sphaeroides.

  7. Structural and genetic analysis of a mutant of Rhodobacter sphaeroides WS8 deficient in hook length control.

    PubMed Central

    González-Pedrajo, B; Ballado, T; Campos, A; Sockett, R E; Camarena, L; Dreyfus, G

    1997-01-01

    Motility in the photosynthetic bacterium Rhodobacter sphaeroides is achieved by the unidirectional rotation of a single subpolar flagellum. In this study, transposon mutagenesis was used to obtain nonmotile flagellar mutants from this bacterium. We report here the isolation and characterization of a mutant that shows a polyhook phenotype. Morphological characterization of the mutant was done by electron microscopy. Polyhooks were obtained by shearing and were used to purify the hook protein monomer (FlgE). The apparent molecular mass of the hook protein was 50 kDa. N-terminal amino acid sequencing and comparisons with the hook proteins of other flagellated bacteria indicated that the Rhodobacter hook protein has consensus sequences common to axial flagellar components. A 25-kb fragment from an R. sphaeroides WS8 cosmid library restored wild-type flagellation and motility to the mutant. Using DNA adjacent to the inserted transposon as a probe, we identified a 4.6-kb SalI restriction fragment that contained the gene responsible for the polyhook phenotype. Nucleotide sequence analysis of this region revealed an open reading frame with a deduced amino acid sequence that was 23.4% identical to that of FliK of Salmonella typhimurium, the polypeptide responsible for hook length control in that enteric bacterium. The relevance of a gene homologous to fliK in the uniflagellated bacterium R. sphaeroides is discussed. PMID:9352903

  8. Novel Methods for Analysing Bacterial Tracks Reveal Persistence in Rhodobacter sphaeroides

    PubMed Central

    Rosser, Gabriel; Fletcher, Alexander G.; Wilkinson, David A.; de Beyer, Jennifer A.; Yates, Christian A.; Armitage, Judith P.; Maini, Philip K.; Baker, Ruth E.

    2013-01-01

    Tracking bacteria using video microscopy is a powerful experimental approach to probe their motile behaviour. The trajectories obtained contain much information relating to the complex patterns of bacterial motility. However, methods for the quantitative analysis of such data are limited. Most swimming bacteria move in approximately straight lines, interspersed with random reorientation phases. It is therefore necessary to segment observed tracks into swimming and reorientation phases to extract useful statistics. We present novel robust analysis tools to discern these two phases in tracks. Our methods comprise a simple and effective protocol for removing spurious tracks from tracking datasets, followed by analysis based on a two-state hidden Markov model, taking advantage of the availability of mutant strains that exhibit swimming-only or reorientating-only motion to generate an empirical prior distribution. Using simulated tracks with varying levels of added noise, we validate our methods and compare them with an existing heuristic method. To our knowledge this is the first example of a systematic assessment of analysis methods in this field. The new methods are substantially more robust to noise and introduce less systematic bias than the heuristic method. We apply our methods to tracks obtained from the bacterial species Rhodobacter sphaeroides and Escherichia coli. Our results demonstrate that R. sphaeroides exhibits persistence over the course of a tumbling event, which is a novel result with important implications in the study of this and similar species. PMID:24204227

  9. Bioremediation of cadmium- and zinc-contaminated soil using Rhodobacter sphaeroides.

    PubMed

    Peng, Weihua; Li, Xiaomin; Song, Jingxiang; Jiang, Wei; Liu, Yingying; Fan, Wenhong

    2018-04-01

    Bioremediation using microorganisms is a promising technique to remediate soil contaminated with heavy metals. In this study, Rhodobacter sphaeroides was used to bioremediate soils contaminated with cadmium (Cd) and zinc (Zn). The study found that the treatment reduced the overall bioavailable fractions (e.g., exchangeable and carbonate bound phases) of Cd and Zn. More stable fractions (e.g., Fe-Mn oxide, organic bound, and residual phases (only for Zn)) increased after bioremediation. A wheat seedling experiment revealed that the phytoavailability of Cd was reduced after bioremediation using R. sphaeroides. After bioremediation, the exchangeable phases of Cd and Zn in soil were reduced by as much as 30.7% and 100.0%, respectively; the Cd levels in wheat leaf and root were reduced by as much as 62.3% and 47.2%, respectively. However, when the soils were contaminated with very high levels of Cd and Zn (Cd 54.97-65.33 mg kg -1 ; Zn 813.4-964.8 mg kg -1 ), bioremediation effects were not clear. The study also found that R. sphaeroides bioremediation in soil can enhance the Zn/Cd ratio in the harvested wheat leaf and root overall. This indicates potentially favorable application in agronomic practice and biofortification. Although remediation efficiency in highly contaminated soil was not significant, R. sphaeroides may be potentially and practically applied to the bioremediation of soils co-contaminated by Cd and Zn. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Modelling and analysis of bacterial tracks suggest an active reorientation mechanism in Rhodobacter sphaeroides

    PubMed Central

    Rosser, Gabriel; Baker, Ruth E.; Armitage, Judith P.; Fletcher, Alexander G.

    2014-01-01

    Most free-swimming bacteria move in approximately straight lines, interspersed with random reorientation phases. A key open question concerns varying mechanisms by which reorientation occurs. We combine mathematical modelling with analysis of a large tracking dataset to study the poorly understood reorientation mechanism in the monoflagellate species Rhodobacter sphaeroides. The flagellum on this species rotates counterclockwise to propel the bacterium, periodically ceasing rotation to enable reorientation. When rotation restarts the cell body usually points in a new direction. It has been assumed that the new direction is simply the result of Brownian rotation. We consider three variants of a self-propelled particle model of bacterial motility. The first considers rotational diffusion only, corresponding to a non-chemotactic mutant strain. Two further models incorporate stochastic reorientations, describing ‘run-and-tumble’ motility. We derive expressions for key summary statistics and simulate each model using a stochastic computational algorithm. We also discuss the effect of cell geometry on rotational diffusion. Working with a previously published tracking dataset, we compare predictions of the models with data on individual stopping events in R. sphaeroides. This provides strong evidence that this species undergoes some form of active reorientation rather than simple reorientation by Brownian rotation. PMID:24872500

  11. Hydrogen Production by Co-cultures of Rhizopus oryzae and a Photosynthetic Bacterium, Rhodobacter sphaeroides RV

    NASA Astrophysics Data System (ADS)

    Asada, Yasuo; Ishimi, Katsuhiro; Nagata, Yoko; Wakayama, Tatsuki; Miyake, Jun; Kohno, Hideki

    Hydrogen production with glucose by using co-immobilized cultures of a fungus, Rhizopus oryzae NBRC5384, and a photosynthetic bacterium, Rhodobacter sphaeroides RV, in agar gels was studied. The co-immobilized cultures converted glucose to hydrogen via lactate in a high molar yield of about 8moles of hydrogen per glucose at a maximum under illuminated conditions.

  12. Phytoavailability and geospeciation of cadmium in contaminated soil remediated by Rhodobacter sphaeroides.

    PubMed

    Fan, Wenhong; Jia, Yingying; Li, Xiaomin; Jiang, Wei; Lu, Lin

    2012-07-01

    A microorganism was isolated from oil field injection water and identified as Rhodobacter sphaeroides. It was used for the remediation of simulated cadmium-contaminated soil. The phytoavailability of Cd was investigated through wheat seedling method to determine the efficiency of remediation. It was found that after remediation, the accumulation of Cd in wheat roots and leaves decreased by 67% and 53%, respectively. The Cd speciation in soil was determined with Tessier extraction procedure. It was found that the total Cd content in soil did not change during the experiments, but the geo-speciation of Cd changed remarkably. Among the five fractions, the concentration of exchangeable phases decreased by 27-46% and that of the phases bound to Fe-Mn oxides increased by 22-44%. The decrease of Cd accumulation in wheat showed significant positive correlation with the decrease of exchangeable phases. It could be concluded that the remediation of R. sphaeroides was carried out through the conversion of Cd to more stable forms. The decrease of sulfate concentration in supernatant indicated that the R. sphaeroides consumed sulfate. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Effect of pH on optimization of photofermentative hydrogen production by co-culture of Rhodobacter sphaeroides-NMBL-02 and Bacillus firmus-NMBL-03.

    PubMed

    Pandey, A; Dolly, S; Semwal, D; Pandey, A

    2017-07-31

    Rhodobacter sphaeroides NMBL-02, photosynthetic purple non sulfur (PNS) bacteria and associated Bacillus firmus NMBL-03 were isolated from water sample collected from 15-20 inches beneath the surface of ponds from Northern region of India in modified Sistrom's media (120 ml) containing 3 g/L malate and 1.2 g/L ammonium sulfate. The isolation was done in air tight serum bottles (120 ml) under tungsten bulb (1.8 kLux light intensity) at 30 oC ± 2 oC. The PNS and heterotrophic bacteria associated with the culture was purified by clonal selection method and characterized by 16S rDNA sequencing. The PNS isolate was identified as Rhodobacter sphaeroides NMBL-02 (ID: 1467407, Accession BANKIT: JN256030) and associated heterotroph as Bacillus firmus NMBL-03 (Gene Bank Accession no.: JN 256029). The effect of initial medium pH on optimization of hydrogen production was investigated in batch process. The maximum hydrogen potential and hydrogen production rate was 2310 ± 55 ml/L and 4.75 ml/L culture/h respectively using glutamate (1.7 mmol/L) as nitrogen source and malate (22.38 mmol/L) as carbon source with 76.39% malate conversion efficiency at initial medium pH 5.0. This co-culture has the ability to produce significant amount of hydrogen in the pH range of 5.0 to 10.0 with 76.39% to 35.71% malate conversion respectively.

  14. Engineering of a calcium-ion binding site into the RC-LH1-PufX complex of Rhodobacter sphaeroides to enable ion-dependent spectral red-shifting.

    PubMed

    Swainsbury, David J K; Martin, Elizabeth C; Vasilev, Cvetelin; Parkes-Loach, Pamela S; Loach, Paul A; Neil Hunter, C

    2017-11-01

    The reaction centre-light harvesting 1 (RC-LH1) complex of Thermochromatium (Tch.) tepidum has a unique calcium-ion binding site that enhances thermal stability and red-shifts the absorption of LH1 from 880nm to 915nm in the presence of calcium-ions. The LH1 antenna of mesophilic species of phototrophic bacteria such as Rhodobacter (Rba.) sphaeroides does not possess such properties. We have engineered calcium-ion binding into the LH1 antenna of Rba. sphaeroides by progressively modifying the native LH1 polypeptides with sequences from Tch. tepidum. We show that acquisition of the C-terminal domains from LH1 α and β of Tch. tepidum is sufficient to activate calcium-ion binding and the extent of red-shifting increases with the proportion of Tch. tepidum sequence incorporated. However, full exchange of the LH1 polypeptides with those of Tch. tepidum results in misassembled core complexes. Isolated α and β polypeptides from our most successful mutant were reconstituted in vitro with BChl a to form an LH1-type complex, which was stabilised 3-fold by calcium-ions. Additionally, carotenoid specificity was changed from spheroidene found in Rba. sphaeroides to spirilloxanthin found in Tch. tepidum, with the latter enhancing in vitro formation of LH1. These data show that the C-terminal LH1 α/β domains of Tch. tepidum behave autonomously, and are able to transmit calcium-ion induced conformational changes to BChls bound to the rest of a foreign antenna complex. Thus, elements of foreign antenna complexes, such as calcium-ion binding and blue/red switching of absorption, can be ported into Rhodobacter sphaeroides using careful design processes. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.

  15. Free Fe(3+)/Fe(2+) improved the biomass resource recovery and organic matter removal in Rhodobacter sphaeroides purification of sewage.

    PubMed

    Liu, Rijia; Wu, Pan; Lang, Lang; Xu, Changru; Wang, Yanling

    2016-01-01

    The enhancement in biomass production and organic matter removal of Rhodobacter sphaeroides (R. sphaeroides) through iron ions in soybean protein wastewater treatment was investigated. Different dosages of ferric ions were introduced in the reactors under light-anaerobic conditions. Free ferric and ferrous ions in wastewater were formed and their concentrations were the optimal for the growth of R. sphaeroides when the total Fe dosage was 20 mg/L. At the optimal dosage, biomass production (4000 mg/L) and protease activity improved by 50% and 48% when compared to the controls, respectively. The organic matter and protein removal reached above 90% and hydraulic retention time was shortened from 96 to 72 h. A mechanism analysis indicated that iron ions can effectively improve the adenosine triphosphate production, which may furthermore encourage the synthesis of protease and the cellular material.

  16. The organization of LH2 complexes in membranes from Rhodobacter sphaeroides.

    PubMed

    Olsen, John D; Tucker, Jaimey D; Timney, John A; Qian, Pu; Vassilev, Cvetelin; Hunter, C Neil

    2008-11-07

    The mapping of the photosynthetic membrane of Rhodobacter sphaeroides by atomic force microscopy (AFM) revealed a unique organization of arrays of dimeric reaction center-light harvesting I-PufX (RC-LH1-PufX) core complexes surrounded and interconnected by light-harvesting LH2 complexes (Bahatyrova, S., Frese, R. N., Siebert, C. A., Olsen, J. D., van der Werf, K. O., van Grondelle, R., Niederman, R. A., Bullough, P. A., Otto, C., and Hunter, C. N. (2004) Nature 430, 1058-1062). However, membrane regions consisting solely of LH2 complexes were under-represented in these images because these small, highly curved areas of membrane rendered them difficult to image even using gentle tapping mode AFM and impossible with contact mode AFM. We report AFM imaging of membranes prepared from a mutant of R. sphaeroides, DPF2G, that synthesizes only the LH2 complexes, which assembles spherical intracytoplasmic membrane vesicles of approximately 53 nm diameter in vivo. By opening these vesicles and adsorbing them onto mica to form small, < or =120 nm, largely flat sheets we have been able to visualize the organization of these LH2-only membranes for the first time. The transition from highly curved vesicle to the planar sheet is accompanied by a change in the packing of the LH2 complexes such that approximately half of the complexes are raised off the mica surface by approximately 1 nm relative to the rest. This vertical displacement produces a very regular corrugated appearance of the planar membrane sheets. Analysis of the topographs was used to measure the distances and angles between the complexes. These data are used to model the organization of LH2 complexes in the original, curved membrane. The implications of this architecture for the light harvesting function and diffusion of quinones in native membranes of R. sphaeroides are discussed.

  17. Combining Genome-Scale Experimental and Computational Methods To Identify Essential Genes in Rhodobacter sphaeroides

    DOE PAGES

    Burger, Brian T.; Imam, Saheed; Scarborough, Matthew J.; ...

    2017-06-06

    Rhodobacter sphaeroides is one of the best-studied alphaproteobacteria from biochemical, genetic, and genomic perspectives. To gain a better systems-level understanding of this organism, we generated a large transposon mutant library and used transposon sequencing (Tn-seq) to identify genes that are essential under several growth conditions. Using newly developed Tn-seq analysis software (TSAS), we identified 493 genes as essential for aerobic growth on a rich medium. We then used the mutant library to identify conditionally essential genes under two laboratory growth conditions, identifying 85 additional genes required for aerobic growth in a minimal medium and 31 additional genes required for photosyntheticmore » growth. In all instances, our analyses confirmed essentiality for many known genes and identified genes not previously considered to be essential. We used the resulting Tn-seq data to refine and improve a genome-scale metabolic network model (GEM) for R. sphaeroides. Together, we demonstrate how genetic, genomic, and computational approaches can be combined to obtain a systems-level understanding of the genetic framework underlying metabolic diversity in bacterial species.« less

  18. Time-resolved tryptophan fluorescence in photosynthetic reaction centers from Rhodobacter sphaeroides

    NASA Technical Reports Server (NTRS)

    Godik, V. I.; Blankenship, R. E.; Causgrove, T. P.; Woodbury, N.

    1993-01-01

    Tryptophan fluorescence of reaction centers isolated from Rhodobacter sphaeroides, both stationary and time-resolved, was studied. Fluorescence kinetics were found to fit best a sum of four discrete exponential components. Half of the initial amplitude was due to a component with a lifetime of congruent to 60 ps, belonging to Trp residues, capable of efficient transfer of excitation energy to bacteriochlorophyll molecules of the reaction center. The three other components seem to be emitted by Trp ground-state conformers, unable to participate in such a transfer. Under the influence of intense actinic light, photooxidizing the reaction centers, the yield of stationary fluorescence diminished by congruent to 1.5 times, while the number of the kinetic components and their life times remained practically unchanged. Possible implications of the observed effects for the primary photosynthesis events are considered.

  19. Construction, expression, and localization of a CycA::PhoA fusion protein in Rhodobacter sphaeroides and Escherichia coli.

    PubMed Central

    Varga, A R; Kaplan, S

    1989-01-01

    We demonstrated the utility of Escherichia coli alkaline phosphatase, encoded by phoA, as a reporter molecule for genetic fusions in Rhodobacter sphaeroides. A portion of the R. sphaeroides cycA gene was fused to phoA, yielding a fusion protein comprising the putative signal sequence and first 10 amino acids of the cytochrome c2 apoprotein joined to the sixth amino acid of alkaline phosphatase. The fusion protein was efficiently transported to the periplasm of R. sphaeroides as determined by enzyme activity, Western immunoblot analysis, and immunogold electron microscopy. We also documented the ability of an R. sphaeroides mutant, RS104, with gross defects in photosynthetic membrane morphology to efficiently recognize and translocate the fusion protein to the periplasmic compartment. The inclusion of 500 base pairs of R. sphaeroides DNA in cis to the cycA structural gene resulted in a 2.5-fold increase in alkaline phosphatase activity in photosynthetically grown cells compared with the activity in aerobically grown cells, demonstrating that the fusion protein is regulated in a manner similar to that of cytochrome c2 regulation. We also constructed two pUC19-based plasmids suitable for the construction of translational fusions to phoA. In these plasmids, translational fusions of phoA to the gene under consideration can be made in all three reading frames, thus facilitating construction and expression of fusion protein systems utilizing phoA. Images PMID:2553661

  20. Expression of endogenous and foreign ribulose 1,5-bisphosphate carboxylase-oxygenase (RubisCO) genes in a RubisCO deletion mutant of Rhodobacter sphaeroides.

    PubMed Central

    Falcone, D L; Tabita, F R

    1991-01-01

    A Rhodobacter sphaeroides ribulose 1,5-bisphosphate carboxylase-oxygenase (RubisCO) deletion strain was constructed that was complemented by plasmids containing either the form I or form II CO2 fixation gene cluster. This strain was also complemented by genes encoding foreign RubisCO enzymes expressed from a Rhodospirillum rubrum RubisCO promoter. In R. sphaeroides, the R. rubrum promoter was regulated, resulting in variable levels of disparate RubisCO molecules under different growth conditions. Photosynthetic growth of the R. sphaeroides deletion strain complemented with cyanobacterial RubisCO revealed physiological properties reflective of the unique cellular environment of the cyanobacterial enzyme. The R. sphaeroides RubisCO deletion strain and R. rubrum promoter system may be used to assess the properties of mutagenized proteins in vivo, as well as provide a potential means to select for altered RubisCO molecules after random mutagenesis of entire genes or gene regions encoding RubisCO enzymes. Images PMID:1900508

  1. Supplementing Rhodobacter sphaeroides in the diet of lactating Holstein cows may naturally produce coenzyme Q10-enriched milk

    PubMed Central

    Bae, Gui-Seck; Choi, Ahreum; Yeo, Joon Mo; Kim, Jong Nam; Song, Jaeyong; Kim, Eun Joong; Chang, Moon Baek

    2018-01-01

    Objective To examine the effects of Rhodobacter sphaeroides (R. sphaeroides) supplementation as a direct-fed microbial (DFM) on rumen fermentation in dairy cows and on coenzyme Q10 (CoQ10) transition into milk, an in vitro rumen simulation batch culture and an in vivo dairy cow experiment were conducted. Methods The characteristics of in vitro ruminal fermentation were investigated using rumen fluids from six cannulated Holstein dairy cows at 2 h post-afternoon feeding. A control treatment was included in the experiments based on a typified total mixed ration (TMR) for lactating dairy cows, which was identical to the one used in the in vivo study, plus R. sphaeroides at 0.1%, 0.3%, and 0.5% TMR dry matter. The in vivo study employed six ruminally cannulated lactating Holstein cows randomly allotted to either the control TMR (C-TMR) treatment or to a diet supplemented with a 0.5% R. sphaeroides culture (S-TMR, dry matter basis) ad libitum. The presence of R. sphaeroides was verified using denaturing gradient gel electrophoresis (DGGE) applied to the bacterial samples obtained from the in vivo study. The concentration of CoQ10 in milk and in the supernatant from the in vitro study was determined using high performance liquid chromatography. Results The results of the in vitro batch culture and DGGE showed that the concentration of CoQ10 significantly increased after 2 h of R. sphaeroides supplementation above 0.1%. When supplemented to the diet of lactating cows at the level of 0.5%, R. sphaeroides did not present any adverse effect on dry matter intake and milk yield. However, the concentration of CoQ10 in milk dramatically increased, with treated cows producing 70.9% more CoQ10 than control cows. Conclusion The CoQ10 concentration in milk increased via the use of a novel DFM, and R. sphaeroides might be used for producing value-added milk and dairy products in the future. PMID:28427254

  2. Biohydrogen and polyhydroxyalkanoate co-production by Enterobacter aerogenes and Rhodobacter sphaeroides from Calophyllum inophyllum oil cake.

    PubMed

    Arumugam, A; Sandhya, M; Ponnusami, V

    2014-07-01

    The feasibility of coupled biohydrogen and polyhydroxyalkanoate production by Enterobacter aerogenes and Rhodobacter sphaeroides using Calophyllum inophyllum oil cake was studied under dark and photo fermentation conditions. The utilization of a non-edible acidic oil cake (C. inophyllum), and exploitation of a modified minimal salt media led to reduction in the cost of media. Cost of fermentation is reduced by implementation of alternate dark-photo fermentative periods and through the use of a co-culture consisting of a dark fermentative (E. aerogenes) and a photo fermentative (R. sphaeroides) bacterium. The biohydrogen and polyhydroxyalkanoate produced were 7.95 L H2/L media and 10.73 g/L media, respectively, under alternate dark and photo fermentation and were 3.23 L H2/L media and 5.6g/L media, respectively under complete dark fermentation. The characteristics of the oil cake and alternate dark (16 h) and photo (8h) fermentative conditions were found to be supportive in producing high biohydrogen and polyhydroxyalkanoate (PHA) yield. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Characterization of D-tagatose-3-epimerase from Rhodobacter sphaeroides that converts D-fructose into D-psicose.

    PubMed

    Zhang, Longtao; Mu, Wanmeng; Jiang, Bo; Zhang, Tao

    2009-06-01

    A non-characterized gene, previously proposed as the D-tagatose-3-epimerase gene from Rhodobacter sphaeroides, was cloned and expressed in Escherichia coli. Its molecular mass was estimated to be 64 kDa with two identical subunits. The enzyme specificity was highest with D-fructose and decreased for other substrates in the order: D-tagatose, D-psicose, D-ribulose, D-xylulose and D-sorbose. Its activity was maximal at pH 9 and 40 degrees C while being enhanced by Mn(2+). At pH 9 and 40 degrees C, 118 g D-psicose l(-1) was produced from 700 g D-fructose l(-1) after 3 h.

  4. Biocontrol activity and patulin-removal effects of Bacillus subtilis, Rhodobacter sphaeroides and Agrobacterium tumefaciens against Penicillium expansum.

    PubMed

    Wang, Y; Yuan, Y; Liu, B; Zhang, Z; Yue, T

    2016-11-01

    This study was conducted to evaluate the biocontrol potential of Bacillus subtilis CICC 10034, Rhodobacter sphaeroides CGMCC 1.2182 and Agrobacterium tumefaciens CGMCC 1.2554 against patulin (PAT)-producer Penicillium expansum and their ability to remove PAT. Bacillus subtilis effectively inhibited P. expansum both on apples and in in vitro experiments, which reduced the rot diameter on apples by 38% compared with the control. The reduction was followed by those induced by A. tumefaciens (27·63%) and R. sphaeroides (23·67%). None of the cell-free supernatant (CFS) was able to prevent pathogen growth. Three antagonists could suppress PAT production by P. expansum on apples by 98·5, 93·7 and 94·99% after treatment with B. subtilis, R. sphaeroides and A. tumefaciens respectively. In addition, the three strains led to a 0·56-1·47 log CFU g -1 reduction in colony number of P. expansum on apples. Survival of antagonists on apple wounds revealed their tolerance to PAT. Furthermore, both live and autoclaved cells of three strains efficiently adsorbed artificially spiked PAT from medium. The selected antagonists could be applied before harvesting to control apple infection by PAT-producing fungi and also during processing to act as PAT detoxifiers. Since little information related to the capability of R. sphaeroides and A. tumefaciens to inhibit P. expansum is currently available, the results of this study provide some new perspectives to the biocontrol field. © 2016 The Society for Applied Microbiology.

  5. Construction and Validation of the Rhodobacter sphaeroides 2.4.1 DNA Microarray: Transcriptome Flexibility at Diverse Growth Modes

    PubMed Central

    Pappas, Christopher T.; Sram, Jakub; Moskvin, Oleg V.; Ivanov, Pavel S.; Mackenzie, R. Christopher; Choudhary, Madhusudan; Land, Miriam L.; Larimer, Frank W.; Kaplan, Samuel; Gomelsky, Mark

    2004-01-01

    A high-density oligonucleotide DNA microarray, a genechip, representing the 4.6-Mb genome of the facultative phototrophic proteobacterium, Rhodobacter sphaeroides 2.4.1, was custom-designed and manufactured by Affymetrix, Santa Clara, Calif. The genechip contains probe sets for 4,292 open reading frames (ORFs), 47 rRNA and tRNA genes, and 394 intergenic regions. The probe set sequences were derived from the genome annotation generated by Oak Ridge National Laboratory after extensive revision, which was based primarily upon codon usage characteristic of this GC-rich bacterium. As a result of the revision, numerous missing ORFs were uncovered, nonexistent ORFs were deleted, and misidentified start codons were corrected. To evaluate R. sphaeroides transcriptome flexibility, expression profiles for three diverse growth modes—aerobic respiration, anaerobic respiration in the dark, and anaerobic photosynthesis—were generated. Expression levels of one-fifth to one-third of the R. sphaeroides ORFs were significantly different in cells under any two growth modes. Pathways involved in energy generation and redox balance maintenance under three growth modes were reconstructed. Expression patterns of genes involved in these pathways mirrored known functional changes, suggesting that massive changes in gene expression are the major means used by R. sphaeroides in adaptation to diverse conditions. Differential expression was observed for genes encoding putative new participants in these pathways (additional photosystem genes, duplicate NADH dehydrogenase, ATP synthases), whose functionality has yet to be investigated. The DNA microarray data correlated well with data derived from quantitative reverse transcription-PCR, as well as with data from the literature, thus validating the R. sphaeroides genechip as a powerful and reliable tool for studying unprecedented metabolic versatility of this bacterium. PMID:15231807

  6. Connectivity of the intracytoplasmic membrane of Rhodobacter sphaeroides: a functional approach.

    PubMed

    Verméglio, André; Lavergne, Jérôme; Rappaport, Fabrice

    2016-01-01

    The photosynthetic apparatus in the bacterium Rhodobacter sphaeroides is mostly present in intracytoplasmic membrane invaginations. It has long been debated whether these invaginations remain in topological continuity with the cytoplasmic membrane, or form isolated chromatophore vesicles. This issue is revisited here by functional approaches. The ionophore gramicidin was used as a probe of the relative size of the electro-osmotic units in isolated chromatophores, spheroplasts, or intact cells. The decay of the membrane potential was monitored from the electrochromic shift of carotenoids. The half-time of the decay induced by a single channel in intact cells was about 6 ms, thus three orders of magnitude slower than in isolated chromatophores. In spheroplasts obtained by lysis of the cell wall, the single channel decay was still slower (~23 ms) and the sensitivity toward the gramicidin concentration was enhanced 1,000-fold with respect to isolated chromatophores. These results indicate that the area of the functional membrane in cells or spheroplasts is about three orders of magnitude larger than that of isolated chromatophores. Intracytoplasmic vesicles, if present, could contribute to at most 10% of the photosynthetic apparatus in intact cells of Rba. sphaeroides. Similar conclusions were obtained from the effect of a ∆pH-induced diffusion potential in intact cells. This caused a large electrochromic response of carotenoids, of similar amplitude as the light-induced change, indicating that most of the system is sensitive to a pH change of the external medium. A single internal membrane and periplasmic space may offer significant advantages concerning renewal of the photosynthetic apparatus and reallocation of the components shared with other bioenergetic pathways.

  7. Spectral diffusion and electron-phonon coupling of the B800 BChl a molecules in LH2 complexes from three different species of purple bacteria.

    PubMed

    Baier, J; Gabrielsen, M; Oellerich, S; Michel, H; van Heel, M; Cogdell, R J; Köhler, J

    2009-11-04

    We have investigated the spectral diffusion and the electron-phonon coupling of B800 bacteriochlorophyll a molecules in the peripheral light-harvesting complex LH2 for three different species of purple bacteria, Rhodobacter sphaeroides, Rhodospirillum molischianum, and Rhodopseudomonas acidophila. We come to the conclusion that B800 binding pockets for Rhodobacter sphaeroides and Rhodopseudomonas acidophila are rather similar with respect to the polarity of the protein environment but that the packaging of the alphabeta-polypeptides seems to be less tight in Rb. sphaeroides with respect to the other two species.

  8. Timescales of Coherent Dynamics in the Light Harvesting Complex 2 (LH2) of Rhodobacter sphaeroides.

    PubMed

    Fidler, Andrew F; Singh, Ved P; Long, Phillip D; Dahlberg, Peter D; Engel, Gregory S

    2013-05-02

    The initial dynamics of energy transfer in the light harvesting complex 2 from Rhodobacter sphaeroides were investigated with polarization controlled two-dimensional spectroscopy. This method allows only the coherent electronic motions to be observed revealing the timescale of dephasing among the excited states. We observe persistent coherence among all states and assign ensemble dephasing rates for the various coherences. A simple model is utilized to connect the spectroscopic transitions to the molecular structure, allowing us to distinguish coherences between the two rings of chromophores and coherences within the rings. We also compare dephasing rates between excited states to dephasing rates between the ground and excited states, revealing that the coherences between excited states dephase on a slower timescale than coherences between the ground and excited states.

  9. Assembly of functional photosystem complexes in Rhodobacter sphaeroides incorporating carotenoids from the spirilloxanthin pathway

    PubMed Central

    Chi, Shuang C.; Mothersole, David J.; Dilbeck, Preston; Niedzwiedzki, Dariusz M.; Zhang, Hao; Qian, Pu; Vasilev, Cvetelin; Grayson, Katie J.; Jackson, Philip J.; Martin, Elizabeth C.; Li, Ying; Holten, Dewey; Neil Hunter, C.

    2015-01-01

    Carotenoids protect the photosynthetic apparatus against harmful radicals arising from the presence of both light and oxygen. They also act as accessory pigments for harvesting solar energy, and are required for stable assembly of many light-harvesting complexes. In the phototrophic bacterium Rhodobacter (Rba.) sphaeroides phytoene desaturase (CrtI) catalyses three sequential desaturations of the colourless carotenoid phytoene, extending the number of conjugated carbon–carbon double bonds, N, from three to nine and producing the yellow carotenoid neurosporene; subsequent modifications produce the yellow/red carotenoids spheroidene/spheroidenone (N = 10/11). Genomic crtI replacements were used to swap the native three-step Rba. sphaeroides CrtI for the four-step Pantoea agglomerans enzyme, which re-routed carotenoid biosynthesis and culminated in the production of 2,2′-diketo-spirilloxanthin under semi-aerobic conditions. The new carotenoid pathway was elucidated using a combination of HPLC and mass spectrometry. Premature termination of this new pathway by inactivating crtC or crtD produced strains with lycopene or rhodopin as major carotenoids. All of the spirilloxanthin series carotenoids are accepted by the assembly pathways for LH2 and RC–LH1–PufX complexes. The efficiency of carotenoid-to-bacteriochlorophyll energy transfer for 2,2′-diketo-spirilloxanthin (15 conjugated C 000000000000 000000000000 000000000000 111111111111 000000000000 111111111111 000000000000 000000000000 000000000000 C bonds; N = 15) in LH2 complexes is low, at 35%. High energy transfer efficiencies were obtained for neurosporene (N = 9; 94%), spheroidene (N = 10; 96%) and spheroidenone (N = 11; 95%), whereas intermediate values were measured for lycopene (N = 11; 64%), rhodopin (N = 11; 62%) and spirilloxanthin (N = 13; 39%). The variety and stability of these novel Rba. sphaeroides antenna complexes make them useful experimental models for investigating the

  10. Assembly of functional photosystem complexes in Rhodobacter sphaeroides incorporating carotenoids from the spirilloxanthin pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chi, Shuang C.; Mothersole, David J.; Dilbeck, Preston

    Carotenoids protect the photosynthetic apparatus against harmful radicals arising from the presence of both light and oxygen. They also act as accessory pigments for harvesting solar energy, and are required for stable assembly of many light-harvesting complexes. In the phototrophic bacterium Rhodobacter (Rba.) sphaeroides phytoene desaturase (CrtI) catalyses three sequential desaturations of the colourless carotenoid phytoene, extending the number of conjugated carbon-carbon double bonds, N, from three to nine and producing the yellow carotenoid neurosporene; subsequent modifications produce the yellow/red carotenoids spheroidene/spheroidenone (N=10/11). Genomic crtI replacements were used to swap the native three-step Rba. sphaeroides CrtI for the four-step Pantoeamore » agglomerans enzyme, which re-routed carotenoid biosynthesis and culminated in the production of 2,2'-diketo-spirilloxanthin under semi-aerobic conditions. The new carotenoid pathway was elucidated using a combination of HPLC and mass spectrometry. Premature termination of this new pathway by inactivating crtC or crtD produced strains with lycopene or rhodopin as major carotenoids. All of the spirilloxanthin series carotenoids are accepted by the assembly pathways for LH2 and RC-LH1-PufX complexes. The efficiency of carotenoid-to-bacteriochlorophyll energy transfer for 2,2'-diketo-spirilloxanthin (15 conjugated CC bonds; N=15) in LH2 complexes is low, at 35%. High energy transfer efficiencies were obtained for neurosporene (N=9; 94%), spheroidene (N=10; 96%) and spheroidenone (N=11; 95%), whereas intermediate values were measured for lycopene (N=11; 64%), rhodopin (N=11; 62%) and spirilloxanthin (N=13; 39%). In conclusion, the variety and stability of these novel Rba. sphaeroides antenna complexes make them useful experimental models for investigating the energy transfer dynamics of carotenoids in bacterial photosynthesis.« less

  11. Assembly of functional photosystem complexes in Rhodobacter sphaeroides incorporating carotenoids from the spirilloxanthin pathway

    DOE PAGES

    Chi, Shuang C.; Mothersole, David J.; Dilbeck, Preston; ...

    2014-10-27

    Carotenoids protect the photosynthetic apparatus against harmful radicals arising from the presence of both light and oxygen. They also act as accessory pigments for harvesting solar energy, and are required for stable assembly of many light-harvesting complexes. In the phototrophic bacterium Rhodobacter (Rba.) sphaeroides phytoene desaturase (CrtI) catalyses three sequential desaturations of the colourless carotenoid phytoene, extending the number of conjugated carbon-carbon double bonds, N, from three to nine and producing the yellow carotenoid neurosporene; subsequent modifications produce the yellow/red carotenoids spheroidene/spheroidenone (N=10/11). Genomic crtI replacements were used to swap the native three-step Rba. sphaeroides CrtI for the four-step Pantoeamore » agglomerans enzyme, which re-routed carotenoid biosynthesis and culminated in the production of 2,2'-diketo-spirilloxanthin under semi-aerobic conditions. The new carotenoid pathway was elucidated using a combination of HPLC and mass spectrometry. Premature termination of this new pathway by inactivating crtC or crtD produced strains with lycopene or rhodopin as major carotenoids. All of the spirilloxanthin series carotenoids are accepted by the assembly pathways for LH2 and RC-LH1-PufX complexes. The efficiency of carotenoid-to-bacteriochlorophyll energy transfer for 2,2'-diketo-spirilloxanthin (15 conjugated CC bonds; N=15) in LH2 complexes is low, at 35%. High energy transfer efficiencies were obtained for neurosporene (N=9; 94%), spheroidene (N=10; 96%) and spheroidenone (N=11; 95%), whereas intermediate values were measured for lycopene (N=11; 64%), rhodopin (N=11; 62%) and spirilloxanthin (N=13; 39%). In conclusion, the variety and stability of these novel Rba. sphaeroides antenna complexes make them useful experimental models for investigating the energy transfer dynamics of carotenoids in bacterial photosynthesis.« less

  12. Delipidation of Cytochrome c Oxidase from Rhodobacter sphaeroides Destabilizes its Quaternary Structure

    PubMed Central

    Musatov, Andrej; Varhač, Rastislav; Hosler, Jonathan P.; Sedlák, Erik

    2016-01-01

    Delipidation of detergent-solubilized cytochrome c oxidase isolated from Rhodobacter sphaeroides (Rbs-CcO) has no apparent structural and/or functional effect on the protein, however affects its resistance against thermal or chemical denaturation. Phospholipase A2 (PLA2) hydrolysis of phospholipids that are co-purified with the enzyme removes all but two tightly bound phosphatidylethanolamines. Replacement of the removed phospholipids with nonionic detergent decreases both thermal stability of the enzyme and its resilience against the effect of chemical denaturants such as urea. In contrast to nondelipidated Rbs-CcO, the enzymatic activity of PLA2-treated Rbs-CcO is substantially diminished after exposure to high (>4M) urea concentration at room temperature without an alteration of its secondary structure. Absorbance spectroscopy and sedimentation velocity experiments revealed a strong correlation between intact tertiary structure of heme regions and quaternary structure, respectively, and the enzymatic activity of the protein. We concluded that phospholipid environment of Rbs-CcO has the protective role for stability of its tertiary and quaternary structures. PMID:26923069

  13. An Extract of Rhodobacter sphaeroides Reduces Cisplatin-Induced Nephrotoxicity in Mice

    PubMed Central

    Chang, Wen-Wei; Liu, Jau-Jin; Liu, Chi-Fan; Liu, Wen-Sheng; Lim, Yun-Ping; Cheng, Yu-Jung; Lee, Che-Hsin

    2013-01-01

    Cisplatin is used as a treatment for various types of solid tumors. Renal injury severely limits the use of cisplatin. Renal cell apoptosis, oxidative stress, and inflammation contribute to cisplatin-induced nephrotoxicity. Previously, we found that an extract of Rhodobacter sphaeroides (Lycogen™) inhibited proinflammatory cytokines and the production of nitric oxide in activated macrophages in a dextran sodium sulfate (DSS)-induced colitis model. Here, we evaluated the effect of Lycogen™, a potent anti-inflammatory agent, in mice with cisplatin-induced renal injury. We found that attenuated renal injury correlated with decreased apoptosis due to a reduction in caspase-3 expression in renal cells. Oral administration of Lycogen™ significantly reduced the expression of tumor necrosis factor-α and interleukin-1β in mice with renal injury. Lycogen™ reduces renal dysfunction in mice with cisplatin-induced renal injury. The protective effects of the treatment included blockage of the cisplatin-induced elevation in serum urea nitrogen and creatinine. Meanwhile, Lycogen™ attenuated body weight loss and significantly prolonged the survival of mice with renal injury. We propose that Lycogen™ exerts anti-inflammatory activities that represent a promising strategy for the treatment of cisplatin-induced renal injury. PMID:24335753

  14. A cryptochrome-like protein is involved in the regulation of photosynthesis genes in Rhodobacter sphaeroides.

    PubMed

    Hendrischk, Anne-Kathrin; Frühwirth, Sebastian Walter; Moldt, Julia; Pokorny, Richard; Metz, Sebastian; Kaiser, Gebhard; Jäger, Andreas; Batschauer, Alfred; Klug, Gabriele

    2009-11-01

    Blue light receptors belonging to the cryptochrome/photolyase family are found in all kingdoms of life. The functions of photolyases in repair of UV-damaged DNA as well as of cryptochromes in the light-dependent regulation of photomorphogenetic processes and in the circadian clock in plants and animals are well analysed. In prokaryotes, the only role of members of this protein family that could be demonstrated is DNA repair. Recently, we identified a gene for a cryptochrome-like protein (CryB) in the alpha-proteobacterium Rhodobacter sphaeroides. The protein lacks the typical C-terminal extension of cryptochromes, and is not related to the Cry DASH family. Here we demonstrate that CryB binds flavin adenine dinucleotide that can be photoreduced by blue light. CryB binds single-stranded DNA with very high affinity (K(d) approximately 10(-8) M) but double-stranded DNA and single-stranded RNA with far lower affinity (K(d) approximately 10(-6) M). Despite of that, no in vitro repair activity for pyrimidine dimers in single-stranded DNA could be detected. However, we show that CryB clearly affects the expression of genes for pigment-binding proteins and consequently the amount of photosynthetic complexes in R. sphaeroides. Thus, for the first time a role of a bacterial cryptochrome in gene regulation together with a biological function is demonstrated.

  15. Femtosecond dynamics of energy transfer in B800-850 light-harvesting complexes of Rhodobacter sphaeroides.

    PubMed Central

    Trautman, J K; Shreve, A P; Violette, C A; Frank, H A; Owens, T G; Albrecht, A C

    1990-01-01

    We report femtosecond transient absorption studies of energy transfer dynamics in the B800-850 light-harvesting complex (LHC) of Rhodobacter sphaeroides 2.4.1. For complexes solubilized in lauryldimethylamine-N-oxide (LDAO), the carotenoid to bacteriochlorophyll (Bchl) B800 and carotenoid to Bchl B850 energy transfer times are 0.34 and 0.20 ps, respectively. The B800 to B850 energy transfer time is 2.5 ps. For complexes treated with lithium dodecyl sulfate (LDS), a carotenoid to B850 energy transfer time of less than or equal to 0.2 ps is seen, and a portion of the total carotenoid population is decoupled from Bchl. In both LDAO-solubilized and LDS-treated complexes an intensity-dependent picosecond decay component of the excited B850 population is ascribed to excitation annihilation within minimal units of the LHC. PMID:2404276

  16. Structural Characterization of the Fla2 Flagellum of Rhodobacter sphaeroides

    PubMed Central

    de la Mora, Javier; Uchida, Kaoru; del Campo, Ana Martínez; Camarena, Laura; Aizawa, Shin-Ichi

    2015-01-01

    ABSTRACT Rhodobacter sphaeroides is a free-living alphaproteobacterium that contains two clusters of functional flagellar genes in its genome: one acquired by horizontal gene transfer (fla1) and one that is endogenous (fla2). We have shown that the Fla2 system is normally quiescent and under certain conditions produces polar flagella, while the Fla1 system is always active and produces a single flagellum at a nonpolar position. In this work we purified and characterized the structure and analyzed the composition of the Fla2 flagellum. The number of polar filaments per cell is 4.6 on average. By comparison with the Fla1 flagellum, the prominent features of the ultra structure of the Fla2 HBB are the absence of an H ring, thick and long hooks, and a smoother zone at the hook-filament junction. The Fla2 helical filaments have a pitch of 2.64 μm and a diameter of 1.4 μm, which are smaller than those of the Fla1 filaments. Fla2 filaments undergo polymorphic transitions in vitro and showed two polymorphs: curly (right-handed) and coiled. However, in vivo in free-swimming cells, we observed only a bundle of filaments, which should probably be left-handed. Together, our results indicate that Fla2 cell produces multiple right-handed polar flagella, which are not conventional but exceptional. IMPORTANCE R. sphaeroides possesses two functional sets of flagellar genes. The fla1 genes are normally expressed in the laboratory and were acquired by horizontal transfer. The fla2 genes are endogenous and are expressed in a Fla1− mutant grown phototrophically and in the absence of organic acids. The Fla1 system produces a single lateral or subpolar flagellum, and the Fla2 system produces multiple polar flagella. The two kinds of flagella are never expressed simultaneously, and both are used for swimming in liquid media. The two sets of genes are certainly ready for responding to specific environmental conditions. The characterization of the Fla2 system will help us to understand

  17. Effect of high pressure on the photochemical reaction center from Rhodobacter sphaeroides R26.1.

    PubMed Central

    Gall, A; Ellervee, A; Bellissent-Funel, M C; Robert, B; Freiberg, A

    2001-01-01

    High-pressure studies on the photochemical reaction center from the photosynthetic bacterium Rhodobacter sphaeroides, strain R26.1, shows that, up to 0.6 GPa, this carotenoid-less membrane protein does not loose its three-dimensional structure at room temperature. However, as evidenced by Fourier-transform preresonance Raman and electronic absorption spectra, between the atmospheric pressure and 0.2 GPa, the structure of the bacterial reaction center experiences a number of local reorganizations in the binding site of the primary electron donor. Above that value, the apparent compressibility of this membrane protein is inhomogeneous, being most noticeable in proximity to the bacteriopheophytin molecules. In this elevated pressure range, no more structural reorganization of the primary electron donor binding site can be observed. However, its electronic structure becomes dramatically perturbed, and the oscillator strength of its Q(y) electronic transition drops by nearly one order of magnitude. This effect is likely due to very small, pressure-induced changes in its dimeric structure. PMID:11222309

  18. Accumulation of a novel glycolipid and a betaine lipid in cells of Rhodobacter sphaeroides grown under phosphate limitation.

    PubMed

    Benning, C; Huang, Z H; Gage, D A

    1995-02-20

    Cells of the photosynthetic bacterium Rhodobacter sphaeroides grown under phosphate-limiting conditions accumulated nonphosphorous glycolipids and lipids carrying head groups derived from amino acids. Concomitantly, the relative amount of phosphoglycerolipids decreased from 90 to 22 mol% of total polar lipids in the membranes. Two lipids, not detectable in cells grown under standard conditions, were synthesized during phosphate-limited growth. Fast atom bombardment mass spectroscopy, exact mass measurements, 1H NMR spectroscopy, sugar composition analysis, and methylation analysis of the predominant glycolipid led to the identification of the novel compound 1,2-di-O-acyl-3-O-[alpha-D-glucopyranosyl-(1-->4)-O-beta-D-galactopyr anosyl]glycerol. The second lipid was identified as the betaine lipid 1,2-di-O-acyl-[4'-(N,N,N-trimethyl)-homoserine]glycerol by cochromatography employing an authentic standard from Chlamydomonas reinhardtii, fast atom bombardment mass spectroscopy, exact mass measurements, and 1H NMR spectroscopy. Prior to this observation, the occurrence of this lipid was thought to be restricted to lower plants and algae. Apparently, these newly synthesized nonphosphorous lipids, in addition to the sulfo- and the ornithine lipid also found in R. sphaeroides grown under optimal conditions, take over the role of phosphoglycerolipids in phosphate-deprived cells.

  19. The nature of the lower excited state of the special pair of bacterial photosynthetic reaction center of Rhodobacter Sphaeroides and the dynamics of primary charge separation

    NASA Astrophysics Data System (ADS)

    Ivashin, N. V.; Shchupak, E. E.

    2016-08-01

    Quantum-chemical calculations of the structure in the ground and lower singlet excited states and the vibrations (in the ground state) of special pair P of photosynthetic reaction center of purple bacteria (RCPb) Rhodobacter Sphaeroides, consisting of two bacteriochlorophyll molecules PA and PB, have been carried out. It is shown that excitation of the special pair is followed by fast relaxation dynamics, accompanied by the transformation of the initial P* state into the P A δ+ P B δ- state (δ ~ 0.5) with charge separation. This behavior is due to the presence of several nonplanar vibrations with participation of the acetyl group of macrocycle PB in the nuclear wave packet on the potential surface of the P* state; these vibrations facilitate destabilization of the lowest unoccupied molecular orbital (LUMO) and highest occupied molecular orbital (HOMO) of the macrocycle PA and formation of the P A δ+ P B δ- state. The structural transformations in the P* state are due to its linking character in the contact region of the acetyl group-containing pyrrole rings of PA and PB. The transition from the P* state to specifically the P A δ+ P B δ- state is related to the fact that the acetyl group PA is involved in the intermolecular hydrogen bond with amino acid residue HisL168; for this reason, this group and the pyrrole ring linked with it can hardly participate in structural transformations. The electronic matrix element H12 of the electron transfer from the special pair in the P A δ+ P B δ- state to a molecule of accessory bacteriochlorophyll BA greatly exceeds that for the transfer to BB. This circumstance and the fact that the P A δ+ P B δ- state is energetically more favorable than the P* state facilitate the preferred directionality of the electron transfer in RCPb Rhodobacter Sphaeroides with participation of the cofactors located in its subunit L.

  20. Photodynamics of the small BLUF protein BlrB from Rhodobacter sphaeroides.

    PubMed

    Zirak, P; Penzkofer, A; Schiereis, T; Hegemann, P; Jung, A; Schlichting, I

    2006-06-01

    The BLUF protein BlrB from the non-sulphur anoxyphototrophic purple bacterium Rhodobacter sphaeroides is characterized by absorption and emission spectroscopy. BlrB expressed from E. coli binding FAD, FMN, and riboflavin (called BrlB(I)) and recombinant BlrB containing only FAD (called BlrB(II)) are investigated. The dark-adapted proteins exist in two different receptor conformations (receptor states) with different sub-nanosecond fluorescence lifetimes (BLUF(r,f) and BLUF(r,sl)). Some of the flavin-cofactor (ca. 8%) is unbound in thermodynamic equilibrium with the bound cofactor. The two receptor conformations are transformed to putative signalling states (BLUF(s,f) and BLUF(s,sl)) of decreased fluorescence efficiency and shortened fluorescence lifetime by blue-light excitation. In the dark at room temperature both signalling states recover back to the initial receptor states with a time constant of about 2s. Quantum yields of signalling state formation of about 90% for BlrB(II) and about 40% for BlrB(I) were determined by intensity dependent transmission measurements. Extended blue-light excitation causes unbound flavin degradation (formation of lumichrome and lumiflavin-derivatives) and bound cofactor conversion to the semiquinone form. The flavin-semiquinone further reduces and the reduced flavin re-oxidizes back in the dark. A photo-dynamics scheme is presented and relevant quantum efficiencies and time constants are determined.

  1. Quenching Capabilities of Long-Chain Carotenoids in Light-Harvesting-2 Complexes from Rhodobacter sphaeroides with an Engineered Carotenoid Synthesis Pathway

    PubMed Central

    2016-01-01

    Six light-harvesting-2 complexes (LH2) from genetically modified strains of the purple photosynthetic bacterium Rhodobacter (Rb.) sphaeroides were studied using static and ultrafast optical methods and resonance Raman spectroscopy. These strains were engineered to incorporate carotenoids for which the number of conjugated groups (N = NC=C + NC=O) varies from 9 to 15. The Rb. sphaeroides strains incorporate their native carotenoids spheroidene (N = 10) and spheroidenone (N = 11), as well as longer-chain analogues including spirilloxanthin (N = 13) and diketospirilloxantion (N = 15) normally found in Rhodospirillum rubrum. Measurements of the properties of the carotenoid first singlet excited state (S1) in antennas from the Rb. sphaeroides set show that carotenoid-bacteriochlorophyll a (BChl a) interactions are similar to those in LH2 complexes from various other bacterial species and thus are not significantly impacted by differences in polypeptide composition. Instead, variations in carotenoid-to-BChl a energy transfer are primarily regulated by the N-determined energy of the carotenoid S1 excited state, which for long-chain (N ≥ 13) carotenoids is not involved in energy transfer. Furthermore, the role of the long-chain carotenoids switches from a light-harvesting supporter (via energy transfer to BChl a) to a quencher of the BChl a S1 excited state B850*. This quenching is manifested as a substantial (∼2-fold) reduction of the B850* lifetime and the B850* fluorescence quantum yield for LH2 housing the longest carotenoids. PMID:27285777

  2. Quenching Capabilities of Long-Chain Carotenoids in Light-Harvesting-2 Complexes from Rhodobacter sphaeroides with an Engineered Carotenoid Synthesis Pathway.

    PubMed

    Dilbeck, Preston L; Tang, Qun; Mothersole, David J; Martin, Elizabeth C; Hunter, C Neil; Bocian, David F; Holten, Dewey; Niedzwiedzki, Dariusz M

    2016-06-23

    Six light-harvesting-2 complexes (LH2) from genetically modified strains of the purple photosynthetic bacterium Rhodobacter (Rb.) sphaeroides were studied using static and ultrafast optical methods and resonance Raman spectroscopy. These strains were engineered to incorporate carotenoids for which the number of conjugated groups (N = NC═C + NC═O) varies from 9 to 15. The Rb. sphaeroides strains incorporate their native carotenoids spheroidene (N = 10) and spheroidenone (N = 11), as well as longer-chain analogues including spirilloxanthin (N = 13) and diketospirilloxantion (N = 15) normally found in Rhodospirillum rubrum. Measurements of the properties of the carotenoid first singlet excited state (S1) in antennas from the Rb. sphaeroides set show that carotenoid-bacteriochlorophyll a (BChl a) interactions are similar to those in LH2 complexes from various other bacterial species and thus are not significantly impacted by differences in polypeptide composition. Instead, variations in carotenoid-to-BChl a energy transfer are primarily regulated by the N-determined energy of the carotenoid S1 excited state, which for long-chain (N ≥ 13) carotenoids is not involved in energy transfer. Furthermore, the role of the long-chain carotenoids switches from a light-harvesting supporter (via energy transfer to BChl a) to a quencher of the BChl a S1 excited state B850*. This quenching is manifested as a substantial (∼2-fold) reduction of the B850* lifetime and the B850* fluorescence quantum yield for LH2 housing the longest carotenoids.

  3. Early bacteriopheophytin reduction in charge separation in reaction centers of Rhodobacter sphaeroides.

    PubMed

    Zhu, Jingyi; van Stokkum, Ivo H M; Paparelli, Laura; Jones, Michael R; Groot, Marie Louise

    2013-06-04

    A question at the forefront of biophysical sciences is, to what extent do quantum effects and protein conformational changes play a role in processes such as biological sensing and energy conversion? At the heart of photosynthetic energy transduction lie processes involving ultrafast energy and electron transfers among a small number of tetrapyrrole pigments embedded in the interior of a protein. In the purple bacterial reaction center (RC), a highly efficient ultrafast charge separation takes place between a pair of bacteriochlorophylls: an accessory bacteriochlorophyll (B) and bacteriopheophytin (H). In this work, we applied ultrafast spectroscopy in the visible and near-infrared spectral region to Rhodobacter sphaeroides RCs to accurately track the timing of the electron on BA and HA via the appearance of the BA and HA anion bands. We observed an unexpectedly early rise of the HA⁻ band that challenges the accepted simple picture of stepwise electron transfer with 3 ps and 1 ps time constants. The implications for the mechanism of initial charge separation in bacterial RCs are discussed in terms of a possible adiabatic electron transfer step between BA and HA, and the effect of protein conformation on the electron transfer rate. Copyright © 2013 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  4. Bioremediation of petroleum hydrocarbon contaminated soil by Rhodobacter sphaeroides biofertilizer and plants.

    PubMed

    Jiao, Haihua; Luo, Jinxue; Zhang, Yiming; Xu, Shengjun; Bai, Zhihui; Huang, Zhanbin

    2015-09-01

    Bio-augmentation is a promising technique for remediation of polluted soils. This study aimed to evaluate the bio-augmentation effect of Rhodobacter sphaeroides biofertilizer (RBF) on the bioremediation of total petroleum hydrocarbons (TPH) contaminated soil. A greenhouse pot experiment was conducted over a period of 120 days, three methods for enhancing bio-augmentation were tested on TPH contaminated soils, including single addition RBF, planting, and combining of RBF and three crop species, such as wheat (W), cabbage (C) and spinach (S), respectively. The results demonstrated that the best removal of TPH from contaminated soil in the RBF bio-augmentation rhizosphere soils was found to be 46.2%, 65.4%, 67.5% for W+RBF, C+RBF, S+RBF rhizosphere soils respectively. RBF supply impacted on the microbial community diversity (phospholipid fatty acids, PLFA) and the activity of soil enzymes, such as dehydrogenase (DH), alkaline phosphatase (AP) and urease (UR). There were significant difference among the soil only containing crude oil (CK), W, C and S rhizosphere soils and RBF bio-augmentation soils. Moreover, the changes were significantly distinct depended on crops species. It was concluded that the RBF is a valuable material for improving effect of remediation of TPH polluted soils.

  5. Multi-PAS domain-mediated protein oligomerization of PpsR from Rhodobacter sphaeroides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heintz, Udo; Meinhart, Anton; Winkler, Andreas, E-mail: andreas.winkler@mpimf-heidelberg.mpg.de

    2014-03-01

    Crystal structures of two truncated variants of the transcription factor PpsR from R. sphaeroides are presented that enabled the phasing of a triple PAS domain construct. Together, these structures reveal the importance of α-helical PAS extensions for multi-PAS domain-mediated protein oligomerization and function. Per–ARNT–Sim (PAS) domains are essential modules of many multi-domain signalling proteins that mediate protein interaction and/or sense environmental stimuli. Frequently, multiple PAS domains are present within single polypeptide chains, where their interplay is required for protein function. Although many isolated PAS domain structures have been reported over the last decades, only a few structures of multi-PAS proteinsmore » are known. Therefore, the molecular mechanism of multi-PAS domain-mediated protein oligomerization and function is poorly understood. The transcription factor PpsR from Rhodobacter sphaeroides is such a multi-PAS domain protein that, in addition to its three PAS domains, contains a glutamine-rich linker and a C-terminal helix–turn–helix DNA-binding motif. Here, crystal structures of two N-terminally and C-terminally truncated PpsR variants that comprise a single (PpsR{sub Q-PAS1}) and two (PpsR{sub N-Q-PAS1}) PAS domains, respectively, are presented and the multi-step strategy required for the phasing of a triple PAS domain construct (PpsR{sub ΔHTH}) is illustrated. While parts of the biologically relevant dimerization interface can already be observed in the two shorter constructs, the PpsR{sub ΔHTH} structure reveals how three PAS domains enable the formation of multiple oligomeric states (dimer, tetramer and octamer), highlighting that not only the PAS cores but also their α-helical extensions are essential for protein oligomerization. The results demonstrate that the long helical glutamine-rich linker of PpsR results from a direct fusion of the N-cap of the PAS1 domain with the C-terminal extension of the N

  6. Spectral and kinetic effects accompanying the assembly of core complexes of Rhodobacter sphaeroides.

    PubMed

    Freiberg, Arvi; Chenchiliyan, Manoop; Rätsep, Margus; Timpmann, Kõu

    2016-11-01

    In the present work, spectral and kinetic changes accompanying the assembly of the light-harvesting 1 (LH1) complex with the reaction center (RC) complex into monomeric RC-LH1 and dimeric RC-LH1-PufX core complexes of the photosynthetic purple bacterium Rhodobacter sphaeroides are systematically studied over the temperature range of 4.5-300K. The samples were interrogated with a combination of optical absorption, hole burning, fluorescence excitation, steady state and picosecond time resolved fluorescence spectroscopy. Fair additivity of the LH1 and RC absorption spectra suggests rather weak electronic coupling between them. A low-energy tail revealed at cryogenic temperatures in the absorption spectra of both monomeric and dimeric core complexes is proved to be due to the special pair of the RC. At selected excitation intensity and temperature, the fluorescence decay time of core complexes is shown to be a function of multiple factors, most importantly of the presence/absence of RCs, the supramolecular architecture (monomeric or dimeric) of the complexes, and whether the complexes were studied in a native membrane environment or in a detergent - purified state. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. The two photocycles of photoactive yellow protein from Rhodobacter sphaeroides.

    PubMed

    Haker, Andrea; Hendriks, Johnny; van Stokkum, Ivo H M; Heberle, Joachim; Hellingwerf, Klaas J; Crielaard, Wim; Gensch, Thomas

    2003-03-07

    The absorption spectrum of the photoactive yellow protein from Rhodobacter sphaeroides (R-PYP) shows two maxima, absorbing at 360 nm (R-PYP(360)) and 446 nm (R-PYP(446)), respectively. Both forms are photoactive and part of a temperature- and pH-dependent equilibrium (Haker, A., Hendriks, J., Gensch, T., Hellingwerf, K. J., and Crielaard, W. (2000) FEBS Lett. 486, 52-56). At 20 degrees C, for PYP characteristic, the 446-nm absorbance band displays a photocycle, in which the depletion of the 446-nm ground state absorption occurs in at least three phases, with time constants of <30 ns, 0.5 micros, and 17 micros. Intermediates with both blue- and red-shifted absorption maxima are transiently formed, before a blue-shifted intermediate (pB(360), lambda(max) = 360 nm) is established. The photocycle is completed with a monophasic recovery of the ground state with a time constant of 2.5 ms. At 7 degrees C these photocycle transitions are slowed down 2- to 3-fold. Upon excitation of R-PYP(360) with a UV-flash (330 +/- 50 nm) a species with a difference absorption maximum at approximately 435 nm is observed that returns to R-PYP(360) on a minute time scale. Recovery can be accelerated by a blue light flash (450 nm). R-PYP(360) and R-PYP(446) differ in their overall protein conformation, as well as in the isomerization and protonation state of the chromophore, as determined with the fluorescent polarity probe Nile Red and Fourier Transform Infrared spectroscopy, respectively.

  8. Augmenting light coverage for photosynthesis through YFP-enhanced charge separation at the Rhodobacter sphaeroides reaction centre

    DOE PAGES

    Grayson, Katie J.; Faries, Kaitlyn M.; Huang, Xia; ...

    2017-01-05

    Photosynthesis uses a limited range of the solar spectrum, so enhancing spectral coverage could improve the efficiency of light capture. Here, we show that a hybrid reaction centre (RC)/yellow fluorescent protein (YFP) complex accelerates photosynthetic growth in the bacterium Rhodobacter sphaeroides. The structure of the RC/YFP-light-harvesting 1 (LH1) complex shows the position of YFP attachment to the RC-H subunit, on the cytoplasmic side of the RC complex. Fluorescence lifetime microscopy of whole cells and ultrafast transient absorption spectroscopy of purified RC/YFP complexes show that the YFP–RC intermolecular distance and spectral overlap between the emission of YFP and the visible-region (Qmore » X) absorption bands of the RC allow energy transfer via a Fo¨rster mechanism, with an efficiency of 40±10%. Finally, this proof-of-principle study demonstrates the feasibility of increasing spectral coverage for harvesting light using non-native genetically-encoded light-absorbers, thereby augmenting energy transfer and trapping in photosynthesis.« less

  9. Augmenting light coverage for photosynthesis through YFP-enhanced charge separation at the Rhodobacter sphaeroides reaction centre

    PubMed Central

    Grayson, Katie J.; Faries, Kaitlyn M.; Huang, Xia; Qian, Pu; Dilbeck, Preston; Martin, Elizabeth C.; Hitchcock, Andrew; Vasilev, Cvetelin; Yuen, Jonathan M.; Niedzwiedzki, Dariusz M.; Leggett, Graham J.; Holten, Dewey; Kirmaier, Christine; Neil Hunter, C.

    2017-01-01

    Photosynthesis uses a limited range of the solar spectrum, so enhancing spectral coverage could improve the efficiency of light capture. Here, we show that a hybrid reaction centre (RC)/yellow fluorescent protein (YFP) complex accelerates photosynthetic growth in the bacterium Rhodobacter sphaeroides. The structure of the RC/YFP-light-harvesting 1 (LH1) complex shows the position of YFP attachment to the RC-H subunit, on the cytoplasmic side of the RC complex. Fluorescence lifetime microscopy of whole cells and ultrafast transient absorption spectroscopy of purified RC/YFP complexes show that the YFP–RC intermolecular distance and spectral overlap between the emission of YFP and the visible-region (QX) absorption bands of the RC allow energy transfer via a Förster mechanism, with an efficiency of 40±10%. This proof-of-principle study demonstrates the feasibility of increasing spectral coverage for harvesting light using non-native genetically-encoded light-absorbers, thereby augmenting energy transfer and trapping in photosynthesis. PMID:28054547

  10. Augmenting light coverage for photosynthesis through YFP-enhanced charge separation at the Rhodobacter sphaeroides reaction centre

    NASA Astrophysics Data System (ADS)

    Grayson, Katie J.; Faries, Kaitlyn M.; Huang, Xia; Qian, Pu; Dilbeck, Preston; Martin, Elizabeth C.; Hitchcock, Andrew; Vasilev, Cvetelin; Yuen, Jonathan M.; Niedzwiedzki, Dariusz M.; Leggett, Graham J.; Holten, Dewey; Kirmaier, Christine; Neil Hunter, C.

    2017-01-01

    Photosynthesis uses a limited range of the solar spectrum, so enhancing spectral coverage could improve the efficiency of light capture. Here, we show that a hybrid reaction centre (RC)/yellow fluorescent protein (YFP) complex accelerates photosynthetic growth in the bacterium Rhodobacter sphaeroides. The structure of the RC/YFP-light-harvesting 1 (LH1) complex shows the position of YFP attachment to the RC-H subunit, on the cytoplasmic side of the RC complex. Fluorescence lifetime microscopy of whole cells and ultrafast transient absorption spectroscopy of purified RC/YFP complexes show that the YFP-RC intermolecular distance and spectral overlap between the emission of YFP and the visible-region (QX) absorption bands of the RC allow energy transfer via a Förster mechanism, with an efficiency of 40+/-10%. This proof-of-principle study demonstrates the feasibility of increasing spectral coverage for harvesting light using non-native genetically-encoded light-absorbers, thereby augmenting energy transfer and trapping in photosynthesis.

  11. Resonance Raman spectroscopy of 2H-labelled spheroidenes in petroleum ether and in the Rhodobacter sphaeroides reaction centre.

    PubMed

    Kok, P; Köhler, J; Groenen, E J; Gebhard, R; van der Hoef, I; Lugtenburg, J; Farhoosh, R; Frank, H A

    1997-03-01

    As a step towards the structural analysis of the carotenoid spheroidene in the Rhodobacter sphaeroides reaction centre, we present the resonance Raman spectra of 14-2H, 15-2H, 15'-2H, 14'-2H, 14,15'-2H2 and 15-15'-2H2 spheroidenes in petroleum ether and, except for 14,15'-2H2 spheroidene, in the Rb. sphaeroides R26 reaction center (RC). Analysis of the spectral changes upon isotopic substitution allows a qualitative assignment of most of the vibrational bands to be made. For the all-trans spheroidenes in solution the resonance enhancement of the Raman bands is determined by the participation of carbon carbon stretching modes in the centre of the conjugated chain, the C9 to C15' region. For the RC-bound 15,15'-cis spheroidenes, enhancement is determined by the participation of carbon-carbon stretching modes in the centre of the molecule, the C13 to C13' region. Comparison of the spectra in solution and in the RC reveals evidence for an out-of-plane distortion of the RC-bound spheroidene in the central C14 to C14' region of the carotenoid. The characteristic 1240 cm-1 band in the spectrum of the RC-bound spheroidene has been assigned to a normal mode that contains the coupled C12-C13 and C13'-C12' stretch vibrations.

  12. Quenching capabilities of long-chain carotenoids in light-harvesting-2 complexes from Rhodobacter sphaeroides with an engineered carotenoid synthesis pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dilbeck, Preston L.; Tang, Qun; Mothersole, David J.

    Here, six light-harvesting-2 complexes (LH2) from genetically modified strains of the purple photosynthetic bacterium Rhodobacter (Rb.) sphaeroides were studied using static and ultrafast optical methods and resonance Raman spectroscopy. These strains were engineered to incorporate carotenoids for which the number of conjugated groups (N = N C=C + N C=O) varies from 9 to 15. The Rb. sphaeroides strains incorporate their native carotenoids spheroidene (N = 10) and spheroidenone (N = 11), as well as longer-chain analogues including spirilloxanthin (N = 13) and diketospirilloxantion (N = 15) normally found in Rhodospirillum rubrum. Measurements of the properties of the carotenoid firstmore » singlet excited state (S1) in antennas from the Rb. sphaeroides set show that carotenoid-bacteriochlorophyll a (BChl a) interactions are similar to those in LH2 complexes from various other bacterial species and thus are not significantly impacted by differences in polypeptide composition. Instead, variations in carotenoid-to-BChl a energy transfer are primarily regulated by the N-determined energy of the carotenoid S 1 excited state, which for long-chain (N ≥ 13) carotenoids is not involved in energy transfer. Furthermore, the role of the long-chain carotenoids switches from a lightharvesting supporter (via energy transfer to BChl a) to a quencher of the BChl a S 1 excited state B850*. This quenching is manifested as a substantial (~2-fold) reduction of the B850* lifetime and the B850* fluorescence quantum yield for LH2 housing the longest carotenoids« less

  13. Quenching capabilities of long-chain carotenoids in light-harvesting-2 complexes from Rhodobacter sphaeroides with an engineered carotenoid synthesis pathway

    DOE PAGES

    Dilbeck, Preston L.; Tang, Qun; Mothersole, David J.; ...

    2016-06-10

    Here, six light-harvesting-2 complexes (LH2) from genetically modified strains of the purple photosynthetic bacterium Rhodobacter (Rb.) sphaeroides were studied using static and ultrafast optical methods and resonance Raman spectroscopy. These strains were engineered to incorporate carotenoids for which the number of conjugated groups (N = N C=C + N C=O) varies from 9 to 15. The Rb. sphaeroides strains incorporate their native carotenoids spheroidene (N = 10) and spheroidenone (N = 11), as well as longer-chain analogues including spirilloxanthin (N = 13) and diketospirilloxantion (N = 15) normally found in Rhodospirillum rubrum. Measurements of the properties of the carotenoid firstmore » singlet excited state (S1) in antennas from the Rb. sphaeroides set show that carotenoid-bacteriochlorophyll a (BChl a) interactions are similar to those in LH2 complexes from various other bacterial species and thus are not significantly impacted by differences in polypeptide composition. Instead, variations in carotenoid-to-BChl a energy transfer are primarily regulated by the N-determined energy of the carotenoid S 1 excited state, which for long-chain (N ≥ 13) carotenoids is not involved in energy transfer. Furthermore, the role of the long-chain carotenoids switches from a lightharvesting supporter (via energy transfer to BChl a) to a quencher of the BChl a S 1 excited state B850*. This quenching is manifested as a substantial (~2-fold) reduction of the B850* lifetime and the B850* fluorescence quantum yield for LH2 housing the longest carotenoids« less

  14. Transient absorption study of two-photon excitation mechanism in the LH2 complex from purple bacterium Rhodobacter sphaeroides.

    PubMed

    Stepanenko, Ilya; Kompanetz, Viktor; Makhneva, Zoya; Chekalin, Sergey; Moskalenko, Andrei; Razjivin, Andrei

    2012-03-08

    The mechanism of two-photon excitation of a peripheral light-harvesting complex LH2 (B800-850) from purple bacterium Rhodobacter sphaeroides was explained on the basis of femtosecond transient absorption data. Fast bleaching of the B850 absorption band was measured under two-photon excitation by 1350 nm femtosecond pulses, showing fast subpicosecond arrival of excitation energy to B850 circular aggregates. Any spectral changes connected with the B800 absorption band of B800-BChl molecules were absent. A similar picture was observed under one-photon excitation of the LH2 complex by 675 nm femtosecond pulses. We believe these effects may be attributed to direct excitation of high-energy excitonic states of a B850 circular aggregate or its vibrational manifold in accordance with the model of Abe [Chem. Phys. 2001, 264, 355-363].

  15. Native Mass Spectrometry Characterizes the Photosynthetic Reaction Center Complex from the Purple Bacterium Rhodobacter sphaeroides

    NASA Astrophysics Data System (ADS)

    Zhang, Hao; Harrington, Lucas B.; Lu, Yue; Prado, Mindy; Saer, Rafael; Rempel, Don; Blankenship, Robert E.; Gross, Michael L.

    2017-01-01

    Native mass spectrometry (MS) is an emerging approach to study protein complexes in their near-native states and to elucidate their stoichiometry and topology. Here, we report a native MS study of the membrane-embedded reaction center (RC) protein complex from the purple photosynthetic bacterium Rhodobacter sphaeroides. The membrane-embedded RC protein complex is stabilized by detergent micelles in aqueous solution, directly introduced into a mass spectrometer by nano-electrospray (nESI), and freed of detergents and dissociated in the gas phase by collisional activation. As the collision energy is increased, the chlorophyll pigments are gradually released from the RC complex, suggesting that native MS introduces a near-native structure that continues to bind pigments. Two bacteriochlorophyll a pigments remain tightly bound to the RC protein at the highest collision energy. The order of pigment release and their resistance to release by gas-phase activation indicates the strength of pigment interaction in the RC complex. This investigation sets the stage for future native MS studies of membrane-embedded photosynthetic pigment-protein and related complexes.

  16. A new nitrilase-producing strain named Rhodobacter sphaeroides LHS-305: biocatalytic characterization and substrate specificity.

    PubMed

    Yang, Chunsheng; Wang, Xuedong; Wei, Dongzhi

    2011-12-01

    The characteristics of the new nitrilase-producing strain Rhodobacter sphaeroides LHS-305 were investigated. By investigating several parameters influencing nitrilase production, the specific cell activity was ultimately increased from 24.5 to 75.0 μmol g(-1) min(-1), and hereinto, the choice of inducer proved the most important factor. The aromatic nitriles (such as 3-cyanopyridine and benzonitrile) were found to be the most favorable substrates of the nitrilase by analyzing the substrate spectrum. It was speculated that the unsaturated carbon atom attached to the cyano group was crucial for this type of nitrilase. The value of apparent K (m), substrate inhibition constant, and product inhibition constant of the nitrilase against 3-cyanopyridine were 4.5 × 10(-2), 29.2, and 8.6 × 10(-3) mol L(-1), respectively. When applied in nicotinic acid preparation, the nitrilase is able to hydrolyze 200 mmol L(-1) 3-cyanopyridine with 93% conversion rate in 13 h by 6.1 g L(-1) cells (dry cell weight).

  17. Kinetic and spectroscopic characterization of tungsten-substituted DMSO reductase from Rhodobacter sphaeroides.

    PubMed

    Pacheco, Josué; Niks, Dimitri; Hille, Russ

    2018-03-01

    We have examined the kinetic and spectroscopic properties of a tungsten-substituted form of DMSO reductase from Rhodobacter sphaeroides, an enzyme that normally possesses molybdenum. Partial reduction with sodium dithionite yields a well-resolved W(V) EPR signal of the so-called "high-g split" type that exhibits markedly greater g-anisotropy than the corresponding Mo(V) signal of the native form of the enzyme, with the g values shifted to higher magnetic field by as much as Δg ave  = 0.056. Deuteration of the enzyme confirms that the coupled proton is solvent-exchangeable, allowing us to accurately simulate the tungsten hyperfine coupling. Global curve-fitting analysis of UV/vis absorption spectra observed in the course of the reaction of the tungsten-substituted enzyme with sodium dithionite affords a well-defined absorption spectrum for the W(V) species. Surprisingly, the absorption spectrum for this species exhibits significantly larger molar extinction coefficients than either the reduced or the oxidized spectrum. This spectrum, in conjunction with those for fully oxidized W(VI) and fully reduced W(IV) enzyme, has been used to deconvolute the absorption spectra seen in the course of turnover, in the which enzyme is reacted with sodium dithionite and DMSO, demonstrating that the W(V) is an authentic catalytic intermediate that accumulates to approximately 50% of the total enzyme in the steady state.

  18. Absorption and fluorescence spectroscopic characterization of BLUF domain of AppA from Rhodobacter sphaeroides

    NASA Astrophysics Data System (ADS)

    Zirak, P.; Penzkofer, A.; Schiereis, T.; Hegemann, P.; Jung, A.; Schlichting, I.

    2005-08-01

    The BLUF domain of the transcriptional anti-repressor protein AppA from the non-sulfur anoxyphototrophic purple bacterium Rhodobacter sphaeroides was characterized by absorption and emission spectroscopy. The BLUF domain constructs AppA 148 (consisting of amino-acid residues 1-148) and AppA 126 (amino-acid residues 1-126) are investigated. The cofactor of the investigated domains is found to consist of a mixture of the flavins riboflavin, FMN, and FAD. The dark-adapted domains exist in two different active receptor conformations (receptor states) with different sub-nanosecond fluorescence lifetimes (BLUF r,f and BLUF r,sl) and a small non-interacting conformation (BLUF nc). The active receptor conformations are transformed to putative signalling states (BLUF s,f and BLUF s,sl) of low fluorescence efficiency and picosecond fluorescence lifetime by blue-light excitation (light-adapted domains). In the dark at room temperature both signalling states recover back to the initial receptor states with a time constant of about 17 min. A quantum yield of signalling state formation of about 25% was determined by intensity dependent transmission measurements. A photo-cycle scheme is presented including photo-induced charge transfer complex formation, charge recombination, and protein binding pocket reorganisation.

  19. A novel nitrilase from Rhodobacter sphaeroides LHS-305: cloning, heterologous expression and biochemical characterization.

    PubMed

    Wang, Hualei; Li, Guinan; Li, Mingyang; Wei, Dongzhi; Wang, Xuedong

    2014-01-01

    In this study, a novel nitrilase gene from Rhodobacter sphaeroides was cloned and overexpressed in Escherichia coli. The open reading frame of the nitrilase gene includes 969 base pairs, which encodes a putative polypeptide of 322 amino acid residues. The molecular weight of the purified native nitrilase was about 560 kDa determined by size exclusion chromatography. This nitrilase showed one single band on SDS-PAGE with a molecular weight of 40 kDa. This suggested that the native nitrilase consisted of 14 subunits with identical size. The optimal pH and temperature of the purified enzyme were 7.0 and 40 °C, respectively. The kinetic parameters V max and K m toward 3-cyanopyridine were 77.5 μmol min(-1) mg(-1) and 73.1 mmol/l, respectively. The enzyme can easily convert aliphatic nitrile and aromatic nitriles to their corresponding acids. Furthermore, this enzyme demonstrated regioselectivity in hydrolysis of aliphatic dinitriles. This specific characteristic makes this nitrilase have a great potential for commercial production of various cyanocarboxylic acids by hydrolyzing readily available dinitriles.

  20. Treatment of anaerobically digested swine wastewater by Rhodobacter blasticus and Rhodobacter capsulatus.

    PubMed

    Wen, Shan; Liu, Hongyu; He, Huijun; Luo, Le; Li, Xiang; Zeng, Guangming; Zhou, Zili; Lou, Wei; Yang, Chunping

    2016-12-01

    Two strains of photosynthetic bacteria, Rhodobacter blasticus and Rhodobacter capsulatus, were used in this work to investigate the feasibility of using photosynthetic bacteria for the treatment of anaerobically digested swine wastewater. The effects of crucial factors which influence the pollutants removal efficiency were also examined. Results showed that anaerobically digested swine wastewater could be treated effectively by photosynthetic bacteria. The treatment efficiency was significantly higher by the mixed photosynthetic bacteria than that by any unitary bacterium. The optimal treatment condition by mixed bacteria was inoculation of 10.0%(v/v) of the two bacteria by 1:1, initial pH of 7.0 and initial chemical oxygen demand of 4800mgL -1 . Under these conditions, the removal rate of chemical oxygen demand was 83.3%, which was 19.3% higher than when using Rhodobacter blasticus or 10.6% higher than when using Rhodobacter capsulatus separately. This mixed photosynthetic bacteria achieved high chemical oxygen demand removal and cell yields. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. The observation of ultrafast excited-state dynamical evolution in B800- partially or completely released LH2 of Rhodobacter sphaeroides 601 at room temperature.

    PubMed

    Liu, Weimin; Liu, Yuan; Yan, Yongli; Liu, Kangjun; Guo, Lijun; Xu, Chunhe; Qian, Shixiong

    2006-04-01

    Photodynamics of two kinds of peripheral antenna complexes (LH2 of Rhodobacter sphaeroides, native LH2 (RS601) and B800-released LH2 where B800-BChls were partially or completely removed with different pH treatments), were studied using femtosecond pump-probe technique at different laser wavelengths. The obtained results for these samples with different B800/B850 ratios demonstrated that under the excitation around B800 nm, the photoabsorption and photobleaching dynamics were caused by the direct excitation of upper excitonic levels of B850 and excited state of B800 pigments, respectively. Furthermore, the removal of B800 pigments had little effect on the energy transfer processes of B850 interband/intraband transfer.

  2. Comparison of the fluorescence kinetics of detergent-solubilized and membrane-reconstituted LH2 complexes from Rps. acidophila and Rb. sphaeroides.

    PubMed

    Pflock, Tobias; Dezi, Manuela; Venturoli, Giovanni; Cogdell, Richard J; Köhler, Jürgen; Oellerich, Silke

    2008-01-01

    Picosecond time-resolved fluorescence spectroscopy has been used in order to compare the fluorescence kinetics of detergent-solubilized and membrane-reconstituted light-harvesting 2 (LH2) complexes from the purple bacteria Rhodopseudomonas (Rps.) acidophila and Rhodobacter (Rb.) sphaeroides. LH2 complexes were reconstituted in phospholipid model membranes at different lipid:protein-ratios and all samples were studied exciting with a wide range of excitation densities. While the detergent-solubilized LH2 complexes from Rps. acidophila showed monoexponential decay kinetics (tau(f )= 980 ps) for excitation densities of up to 3.10(13) photons/(pulse.cm(2)), the membrane-reconstituted LH2 complexes showed multiexponential kinetics even at low excitation densities and high lipid:protein-ratios. The latter finding indicates an efficient clustering of LH2 complexes in the phospholipid membranes. Similar results were obtained for the LH2 complexes from Rb. sphaeroides.

  3. Direct Visualization of Exciton Reequilibration in the LH1 and LH2 Complexes of Rhodobacter sphaeroides by Multipulse Spectroscopy

    PubMed Central

    Cohen Stuart, Thomas A.; Vengris, Mikas; Novoderezhkin, Vladimir I.; Cogdell, Richard J.; Hunter, C. Neil; van Grondelle, Rienk

    2011-01-01

    The dynamics of the excited states of the light-harvesting complexes LH1 and LH2 of Rhodobacter sphaeroides are governed, mainly, by the excitonic nature of these ring-systems. In a pump-dump-probe experiment, the first pulse promotes LH1 or LH2 to its excited state and the second pulse dumps a portion of the excited state. By selective dumping, we can disentangle the dynamics normally hidden in the excited-state manifold. We find that by using this multiple-excitation technique we can visualize a 400-fs reequilibration reflecting relaxation between the two lowest exciton states that cannot be directly explored by conventional pump-probe. An oscillatory feature is observed within the exciton reequilibration, which is attributed to a coherent motion of a vibrational wavepacket with a period of ∼150 fs. Our disordered exciton model allows a quantitative interpretation of the observed reequilibration processes occurring in these antennas. PMID:21539791

  4. Direct visualization of exciton reequilibration in the LH1 and LH2 complexes of Rhodobacter sphaeroides by multipulse spectroscopy.

    PubMed

    Cohen Stuart, Thomas A; Vengris, Mikas; Novoderezhkin, Vladimir I; Cogdell, Richard J; Hunter, C Neil; van Grondelle, Rienk

    2011-05-04

    The dynamics of the excited states of the light-harvesting complexes LH1 and LH2 of Rhodobacter sphaeroides are governed, mainly, by the excitonic nature of these ring-systems. In a pump-dump-probe experiment, the first pulse promotes LH1 or LH2 to its excited state and the second pulse dumps a portion of the excited state. By selective dumping, we can disentangle the dynamics normally hidden in the excited-state manifold. We find that by using this multiple-excitation technique we can visualize a 400-fs reequilibration reflecting relaxation between the two lowest exciton states that cannot be directly explored by conventional pump-probe. An oscillatory feature is observed within the exciton reequilibration, which is attributed to a coherent motion of a vibrational wavepacket with a period of ∼150 fs. Our disordered exciton model allows a quantitative interpretation of the observed reequilibration processes occurring in these antennas. Copyright © 2011 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  5. Control of photosynthetic membrane assembly in Rhodobacter sphaeroides mediated by puhA and flanking sequences.

    PubMed Central

    Sockett, R E; Donohue, T J; Varga, A R; Kaplan, S

    1989-01-01

    A reaction center H- strain (RCH-) of Rhodobacter sphaeroides, PUHA1, was made by in vitro deletion of an XhoI restriction endonuclease fragment from the puhA gene coupled with insertion of a kanamycin resistance gene cartridge. The resulting construct was delivered to R. sphaeroides wild-type 2.4.1, with the defective puhA gene replacing the wild-type copy by recombination, followed by selection for kanamycin resistance. When grown under conditions known to induce intracytoplasmic membrane development, PUHA1 synthesized a pigmented intracytoplasmic membrane. Spectral analysis of this membrane showed that it was deficient in B875 spectral complexes as well as functional reaction centers and that the level of B800-850 spectral complexes was greater than in the wild type. The RCH- strain was photosythetically incompetent, but photosynthetic growth was restored by complementation with a 1.45-kilobase (kb) BamHI restriction endonuclease fragment containing the puhA gene carried in trans on plasmid pRK404. B875 spectral complexes were not restored by complementation with the 1.45-kb BamHI restriction endonuclease fragment containing the puhA gene but were restored along with photosynthetic competence by complementation with DNA from a cosmid carrying the puhA gene, as well as a flanking DNA sequence. Interestingly, B875 spectral complexes, but not photosynthetic competence, were restored to PUHA1 by introduction in trans of a 13-kb BamHI restriction endonuclease fragment carrying genes encoding the puf operon region of the DNA. The effect of the puhA deletion was further investigated by an examination of the levels of specific mRNA species derived from the puf and puc operons, as well as by determinations of the relative abundances of polypeptides associated with various spectral complexes by immunological methods. The roles of puhA and other genetic components in photosynthetic gene expression and membrane assembly are discussed. Images PMID:2644200

  6. Rhodobacter sphaeroides spd mutations allow cytochrome c2-independent photosynthetic growth.

    PubMed Central

    Rott, M A; Donohue, T J

    1990-01-01

    In Rhodobacter sphaeroides, cytochrome c2 (cyt c2) is a periplasmic redox protein required for photosynthetic electron transfer. cyt c2-deficient mutants created by replacing the gene encoding the apoprotein for cyt c2 (cycA) with a kanamycin resistance cartridge are photosynthetically incompetent. Spontaneous mutations that suppress this photosynthesis deficiency (spd mutants) arise at a frequency of 1 to 10 in 10(7). We analyzed the cytochrome content of several spd mutants spectroscopically and by heme peroxidase assays. These suppressors lacked detectable cyt c2, but they contained a new soluble cytochrome which was designated isocytochrome c2 (isocyt c2) that was not detectable in either cycA+ or cycA mutant cells. When spd mutants were grown photosynthetically, isocyt c2 was present at approximately 20 to 40% of the level of cyt c2 found in photosynthetically grown wild type cells, and it was found in the periplasm with cytochromes c' and c554. These spd mutants also had several other pleiotropic phenotypes. Although photosynthetic growth rates of the spd mutants were comparable to those of wild-type strains at all light intensities tested, they contained elevated levels of B800-850 pigment-protein complexes. Several spd mutants contained detectable amounts of isocyt c2 under aerobic conditions. Finally, heme peroxidase assays indicated that, under anaerobic conditions, the spd mutants may contain another new cytochrome in addition to isocyt c2. These pleiotropic phenotypes, the frequency at which the spd mutants arise, and the fact that a frameshift mutagen is very effective in generating the spd phenotype suggest that some spd mutants contain a mutation in loci which regulate cytochrome synthesis. Images FIG. 1 FIG. 2 FIG. 3 FIG. 4 PMID:2156806

  7. Characterization of the flgG operon of Rhodobacter sphaeroides WS8 and its role in flagellum biosynthesis.

    PubMed

    González-Pedrajo, Bertha; de la Mora, Javier; Ballado, Teresa; Camarena, Laura; Dreyfus, Georges

    2002-11-13

    In this work, we show evidence regarding the functionality of a large cluster of flagellar genes in Rhodobacter sphaeroides. The genes of this cluster, flgGHIJKL and orf-1, are mainly involved in the formation of the basal body, and flgK and flgL encode the hook-associated proteins HAP1 and HAP3. In general, these genes showed a good similarity as compared with those reported for Salmonella enterica. However, flgJ and flgK showed particular features that make them unique among the flagellar sequences already reported. flgJ is only a third of the size reported for flgJ from Salmonella; whereas flgK is about three times larger than any other flgK sequence previously known. Our results indicate that both genes are functional, and their products are essential for flagellar assembly. In contrast, the interruption of orf-1, did not affect motility suggesting that this sequence, if functional, is not indispensable for flagellar assembly. Finally, we present genetic evidence suggesting that the flgGHIJKL genes are expressed as a single transcriptional unit depending on the sigma-54 factor.

  8. Optimization of Biomass and 5-Aminolevulinic Acid Production by Rhodobacter sphaeroides ATCC17023 via Response Surface Methodology.

    PubMed

    Liu, Shuli; Zhang, Guangming; Li, Jianzheng; Li, Xiangkun; Zhang, Jie

    2016-06-01

    Microbial 5-aminolevulinic acid (ALA) produced from wastewater is considered as potential renewable energy. However, many hurdles are needed to be overcome such as the regulation of key influencing factors on ALA yield. Biomass and ALA production by Rhodobacter sphaeroides was optimized using response surface methodology. The culturing medium was artificial volatile fatty acids wastewater. Three additives were optimized, namely succinate and glycine that are precursors of ALA biosynthesis, and D-glucose that is an inhibitor of ALA dehydratase. The optimal conditions were achieved by analyzing the response surface plots. Statistical analysis showed that succinate at 8.56 mmol/L, glycine at 5.06 mmol/L, and D-glucose at 7.82 mmol/L were the best conditions. Under these optimal conditions, the highest biomass production and ALA yield of 3.55 g/L and 5.49 mg/g-biomass were achieved. Subsequent verification experiments at optimal values had the maximum biomass production of 3.41 ± 0.002 g/L and ALA yield of 5.78 ± 0.08 mg/g-biomass.

  9. An extended model for the repression of photosynthesis genes by the AppA/PpsR system in Rhodobacter sphaeroides.

    PubMed

    Pandey, Rakesh; Flockerzi, Dietrich; Hauser, Marcus J B; Straube, Ronny

    2012-09-01

    Purple bacteria derive energy from aerobic respiration or photosynthesis depending on the availability of oxygen and light. Under aerobic conditions, photosynthesis genes are specifically repressed by the PpsR protein. In Rhodobacter sphaeroides, the repressive action of PpsR is antagonized by the blue-light and redox-sensitive flavoprotein AppA, which sequesters PpsR under anaerobic conditions into transcriptionally inactive complexes. However, under semi-aerobic conditions, blue-light excitation of AppA causes the AppA-PpsR complexes to dissociate, again leading to a repression of photosynthesis genes. We have recently developed a simple mathematical model suggesting that this phenotype arises from the formation of a maximum in the response curve of reduced PpsR at intermediate oxygen concentrations. However, this model focused mainly on the oxygen-dependent interactions whereas light regulation was only implemented in a simplified manner. In the present study, we incorporate a more detailed mechanism for the light-dependent interaction between AppA and PpsR, which now allows for a direct comparison with experiments. Specifically, we take into account that, upon blue-light excitation, AppA undergoes a conformational change, creating a long-lived signalling state causing the dissociation of the AppA-PpsR complexes. The predictions of the extended model are found to be in good agreement with experimental results on the light-dependent repression of photosynthesis genes under semi-aerobic conditions. We also identify the potential kinetic and stoichiometric constraints that the interplay between light and redox regulation imposes on the functionality of the AppA/PpsR system, especially with respect to a possible bistable response. © 2012 The Authors Journal compilation © 2012 FEBS.

  10. Resonance Raman and surface-enhanced resonance Raman spectra of LH2 antenna complex from Rhodobacter sphaeroides and Ectothiorhodospira sp. excited in the Qx and Qy transitions.

    PubMed

    Chumanov, G; Picorel, R; Ortiz de Zarate, I; Cotton, T M; Seibert, M

    2000-05-01

    Well-resolved vibrational spectra of LH2 complex isolated from two photosynthetic bacteria, Rhodobacter sphaeroides and Ectothiorhodospira sp., were obtained using surface-enhanced resonance Raman scattering (SERRS) exciting into the Qx and the Qy transitions of bacteriochlorophyll a. High-quality SERRS spectra in the Qy region were accessible because the strong fluorescence background was quenched near the roughened Ag surface. A comparison of the spectra obtained with 590 nm and 752 nm excitation in the mid- and low-frequency regions revealed spectral differences between the two LH2 complexes as well as between the LH2 complexes and isolated bacteriochlorophyll a. Because peripheral modes of pigments contribute mainly to the low-frequency spectral region, frequencies and intensities of many vibrational bands in this region are affected by interactions with the protein. The results demonstrate that the microenvironment surrounding the pigments within the two LH2 complexes is somewhat different, despite the fact that the complexes exhibit similar electronic absorption spectra. These differences are most probably due to specific pigment-pigment and pigment-protein interactions within the LH2 complexes, and the approach might be useful for addressing subtle static and dynamic structural variances between pigment-protein complexes from different sources or in complexes altered chemically or genetically.

  11. Redox potential tuning through differential quinone binding in the photosynthetic reaction center of Rhodobacter sphaeroides

    DOE PAGES

    Vermaas, Josh V.; Taguchi, Alexander T.; Dikanov, Sergei A.; ...

    2015-03-03

    Ubiquinone forms an integral part of the electron transport chain in cellular respiration and photosynthesis across a vast number of organisms. Prior experimental results have shown that the photosynthetic reaction center (RC) from Rhodobacter sphaeroides is only fully functional with a limited set of methoxy-bearing quinones, suggesting that specific interactions with this substituent are required to drive electron transport and the formation of quinol. The nature of these interactions has yet to be determined. Through parameterization of a CHARMM-compatible quinone force field and subsequent molecular dynamics simulations of the quinone-bound RC, in this paper we have investigated and characterized themore » interactions of the protein with the quinones in the Q A and Q B sites using both equilibrium simulation and thermodynamic integration. In particular, we identify a specific interaction between the 2-methoxy group of ubiquinone in the Q B site and the amide nitrogen of GlyL225 that we implicate in locking the orientation of the 2-methoxy group, thereby tuning the redox potential difference between the quinones occupying the Q A and Q B sites. Finally, disruption of this interaction leads to weaker binding in a ubiquinone analogue that lacks a 2-methoxy group, a finding supported by reverse electron transfer electron paramagnetic resonance experiments of the Q A–Q B– biradical and competitive binding assays.« less

  12. Redox potential tuning through differential quinone binding in the photosynthetic reaction center of Rhodobacter sphaeroides.

    PubMed

    Vermaas, Josh V; Taguchi, Alexander T; Dikanov, Sergei A; Wraight, Colin A; Tajkhorshid, Emad

    2015-03-31

    Ubiquinone forms an integral part of the electron transport chain in cellular respiration and photosynthesis across a vast number of organisms. Prior experimental results have shown that the photosynthetic reaction center (RC) from Rhodobacter sphaeroides is only fully functional with a limited set of methoxy-bearing quinones, suggesting that specific interactions with this substituent are required to drive electron transport and the formation of quinol. The nature of these interactions has yet to be determined. Through parameterization of a CHARMM-compatible quinone force field and subsequent molecular dynamics simulations of the quinone-bound RC, we have investigated and characterized the interactions of the protein with the quinones in the Q(A) and Q(B) sites using both equilibrium simulation and thermodynamic integration. In particular, we identify a specific interaction between the 2-methoxy group of ubiquinone in the Q(B) site and the amide nitrogen of GlyL225 that we implicate in locking the orientation of the 2-methoxy group, thereby tuning the redox potential difference between the quinones occupying the Q(A) and Q(B) sites. Disruption of this interaction leads to weaker binding in a ubiquinone analogue that lacks a 2-methoxy group, a finding supported by reverse electron transfer electron paramagnetic resonance experiments of the Q(A)⁻Q(B)⁻ biradical and competitive binding assays.

  13. Aspects of Rhodobacter sphaeroides ChrR required for stimuli to promote dissociation of σE/ChrR complexes

    PubMed Central

    Greenwell, Roger; Nam, Tae-Wook; Donohue, Timothy J.

    2011-01-01

    In the photosynthetic bacterium Rhodobacter sphaeroides, a transcriptional response to the reactive oxygen species singlet oxygen (1O2) is mediated by ChrR, a zinc metalloprotein that binds to and inhibits activity of the alternative sigma factor, σE. We provide evidence that 1O2 promotes dissociation of σE from ChrR to activate transcription in vivo. To identify what is required for 1O2 to promote dissociation of σE/ChrR complexes, we analyzed the in vivo properties of variant ChrR proteins with amino acid changes in conserved residues of the C-terminal cupin-like domain (ChrR-CLD). We found that 1O2 was unable to promote detectable dissociation of σE/ChrR complexes when the ChrR-CLD zinc ligands (His141, His143, Glu147, and His177) were substituted with alanine, even though individual substitutions caused a 2- to 10-fold decrease in zinc affinity for this domain relative to that of wild-type ChrR (Kd ∼4.6 × 10−10 M). We conclude that the side chains of these invariant residues play a crucial role in the response to 1O2. Additionally, we found that cells containing variant ChrR proteins with single amino acid substitutions at Cys187 or Cys189 exhibited σE activity similar to those containing wild-type ChrR when exposed to 1O2, suggesting that these thiol side chains are not required for 1O2 to induce σE activity in vivo. Finally, we found that the same aspects of R. sphaeroides ChrR needed for a response to 1O2 are required for dissociation of σE/ChrR in the presence of the organic hydroperoxide, tert-butyl hydroperoxide (t-BOOH). PMID:21295582

  14. Regulation of a polyamine transporter by the conserved 3' UTR-derived sRNA SorX confers resistance to singlet oxygen and organic hydroperoxides in Rhodobacter sphaeroides.

    PubMed

    Peng, Tao; Berghoff, Bork A; Oh, Jeong-Il; Weber, Lennart; Schirmer, Jasmin; Schwarz, Johannes; Glaeser, Jens; Klug, Gabriele

    2016-10-02

    Singlet oxygen is generated by bacteriochlorophylls when light and oxygen are simultaneously present in Rhodobacter sphaeroides. Singlet oxygen triggers a specific response that is partly regulated by the alternative sigma factor RpoHI/HII. The sRNA RSs2461 has previously been identified as an RpoHI/HII-dependent sRNA and is derived from the 3' UTR of the mRNA for an OmpR-type transcriptional regulator. Similar to the RpoHI/HII-dependent CcsR and SorY sRNAs, RSs2461 affects the resistance of R. sphaeroides against singlet oxygen and was therefore renamed here SorX. Furthermore, SorX has a strong impact on resistance against organic hydroperoxides that usually occur as secondary damages downstream of singlet oxygen. The 75-nt SorX 3' fragment, which is generated by RNase E cleavage and highly conserved among related species, represents the functional entity. A target search identified potA mRNA, which encodes a subunit of a polyamine transporter, as a direct SorX target and stress resistance via SorX could be linked to potA. The PotABCD transporter is an uptake system for spermidine in E. coli. While spermidine is generally described as beneficial during oxidative stress, we observed significantly increased sensitivity of R. sphaeroides to organic hydroperoxides in the presence of spermidine. We therefore propose that the diminished import of spermidine, due to down-regulation of potA by SorX, counteracts oxidative stress. Together with results from other studies this underlines the importance of regulated transport to bacterial stress defense.

  15. Elimination of polarity in the carotenoid terminus promotes the exposure of B850-binding sites (Tyr 44, 45) and ANS-mediated energy transfer in LH2 complexes of Rhodobacter sphaeroides.

    PubMed

    Liu, Yuan; Wu, Yongqiang; Xu, Chunhe

    2004-12-10

    Carotenoids in the peripheral light-harvesting complexes (LH2) of the green mutant (GM309) of Rhodobacter sphaeroides were identified as containing neurosporenes, which lack the polar CH(3)O group, compared to spheroidenes in native-LH2 of R. sphaeroides 601. After LH2 complexes were treated with 1-anilino-8-naphthalene sulfonate (ANS), new energy transfer pathways from ANS or tryptophan to carotenoids were discovered in both native- and GM309-LH2. The carotenoid fluorescence intensity of GM309-LH2 was greater than that of native-LH2 when bound with ANS, suggesting that the elimination of polarity in the neurosporene increases the energy transfer from ANS to carotenoid. The fact that two alpha-tyrosines (alpha-Tyr 44, 45, B850-binding sites) in each alpha-apoprotein of GM309-LH2 were more easily modified than those of native-LH2 by N-acetylimidazole (NAI) indicates that the elimination of polarity in the neurosporene terminus increases the exposure of these sites to solution.

  16. Hierarchical regulation of photosynthesis gene expression by the oxygen-responsive PrrBA and AppA-PpsR systems of Rhodobacter sphaeroides.

    PubMed

    Gomelsky, Larissa; Moskvin, Oleg V; Stenzel, Rachel A; Jones, Denise F; Donohue, Timothy J; Gomelsky, Mark

    2008-12-01

    In the facultatively phototrophic proteobacterium Rhodobacter sphaeroides, formation of the photosynthetic apparatus is oxygen dependent. When oxygen tension decreases, the response regulator PrrA of the global two-component PrrBA system is believed to directly activate transcription of the puf, puh, and puc operons, encoding structural proteins of the photosynthetic complexes, and to indirectly upregulate the photopigment biosynthesis genes bch and crt. Decreased oxygen also results in inactivation of the photosynthesis-specific repressor PpsR, bringing about derepression of the puc, bch, and crt operons. We uncovered a hierarchical relationship between these two regulatory systems, earlier thought to function independently. We also more accurately assessed the spectrum of gene targets of the PrrBA system. First, expression of the appA gene, encoding the PpsR antirepressor, is PrrA dependent, which establishes one level of hierarchical dominance of the PrrBA system over AppA-PpsR. Second, restoration of the appA transcript to the wild-type level is insufficient for rescuing phototrophic growth impairment of the prrA mutant, whereas inactivation of ppsR is sufficient. This suggests that in addition to controlling appA transcription, PrrA affects the activity of the AppA-PpsR system via an as yet unidentified mechanism(s). Third, PrrA directly activates several bch and crt genes, traditionally considered to be the PpsR targets. Therefore, in R. sphaeroides, the global PrrBA system regulates photosynthesis gene expression (i) by rigorous control over the photosynthesis-specific AppA-PpsR regulatory system and (ii) by extensive direct transcription activation of genes encoding structural proteins of photosynthetic complexes as well as genes encoding photopigment biosynthesis enzymes.

  17. Structural and preliminary molecular dynamics studies of the Rhodobacter sphaeroides reaction center and its mutant form L(M196)H + H(M202)L

    NASA Astrophysics Data System (ADS)

    Klyashtorny, V. G.; Fufina, T. Yu.; Vasilieva, L. G.; Shuvalov, V. A.; Gabdulkhakov, A. G.

    2014-07-01

    Pigment-protein interactions are responsible for the high efficiency of the light-energy transfer and conversion in photosynthesis. The reaction center (RC) from the purple bacterium Rhodobacter sphaeroides is the most convenient model for studying the mechanisms of primary processes of photosynthesis. Site-directed mutagenesis can be used to study the effect of the protein environment of electron-transfer cofactors on the optical properties, stability, pigment composition, and functional activity of RC. The preliminary analysis of RC was performed by computer simulation of the amino acid substitutions L(M196)H + H(M202)L at the pigment-protein interface and by estimating the stability of the threedimensional structure of the mutant RC by the molecular dynamics method. The doubly mutated reaction center was overexpressed, purified, and crystallized. The three-dimensional structure of this mutant was determined by X-ray crystallography and compared with the molecular dynamics model.

  18. Regulation of a polyamine transporter by the conserved 3′ UTR-derived sRNA SorX confers resistance to singlet oxygen and organic hydroperoxides in Rhodobacter sphaeroides

    PubMed Central

    Peng, Tao; Berghoff, Bork A.; Oh, Jeong-Il; Weber, Lennart; Schirmer, Jasmin; Schwarz, Johannes; Glaeser, Jens; Klug, Gabriele

    2016-01-01

    ABSTRACT Singlet oxygen is generated by bacteriochlorophylls when light and oxygen are simultaneously present in Rhodobacter sphaeroides. Singlet oxygen triggers a specific response that is partly regulated by the alternative sigma factor RpoHI/HII. The sRNA RSs2461 has previously been identified as an RpoHI/HII-dependent sRNA and is derived from the 3′ UTR of the mRNA for an OmpR-type transcriptional regulator. Similar to the RpoHI/HII-dependent CcsR and SorY sRNAs, RSs2461 affects the resistance of R. sphaeroides against singlet oxygen and was therefore renamed here SorX. Furthermore, SorX has a strong impact on resistance against organic hydroperoxides that usually occur as secondary damages downstream of singlet oxygen. The 75-nt SorX 3′ fragment, which is generated by RNase E cleavage and highly conserved among related species, represents the functional entity. A target search identified potA mRNA, which encodes a subunit of a polyamine transporter, as a direct SorX target and stress resistance via SorX could be linked to potA. The PotABCD transporter is an uptake system for spermidine in E. coli. While spermidine is generally described as beneficial during oxidative stress, we observed significantly increased sensitivity of R. sphaeroides to organic hydroperoxides in the presence of spermidine. We therefore propose that the diminished import of spermidine, due to down-regulation of potA by SorX, counteracts oxidative stress. Together with results from other studies this underlines the importance of regulated transport to bacterial stress defense. PMID:27420112

  19. Insights into the species-specific TLR4 signaling mechanism in response to Rhodobacter sphaeroides lipid A detection

    NASA Astrophysics Data System (ADS)

    Anwar, Muhammad Ayaz; Panneerselvam, Suresh; Shah, Masaud; Choi, Sangdun

    2015-01-01

    TLR4 in complex with MD2 senses the presence of lipid A (LA) and initiates a signaling cascade that curb the infection. This complex is evolutionarily conserved and can initiate the immune system in response to a variety of LAs. In this study, molecular dynamics simulation (25 ns) was performed to elucidate the differential behavior of TLR4/MD2 complex in response to Rhodobacter sphaeroides lipid A (RsLA). Penta-acyl chain-containing RsLA is at the verge of agonist (6 acyl-chains) and antagonist (4 acyl-chains) structure, and activates the TLR4 pathway in horses and hamsters, while inhibiting in humans and murine. In the time-evolved coordinates, the promising factors that dictated the differential response included the local and global mobility pattern of complexes, solvent-accessible surface area of ligand, and surface charge distributions of TLR4 and MD2. We showed that the GlcN1-GlcN2 backbone acquires agonist (3FXI)-like configurations in horses and hamsters, while acquiring antagonist (2E59)-like configurations in humans and murine systems. Moreover, analysis of F126 behavior in the MD2 F126 loop (amino acids 123-129) and loop EF (81-89) suggested that certain sequence variations also contribute to species-specific response. This study underlines the TLR4 signaling mechanism and provides new therapeutic opportunities.

  20. Photo dynamics of BLUF domain mutant H44R of AppA from Rhodobacter sphaeroides

    NASA Astrophysics Data System (ADS)

    Zirak, P.; Penzkofer, A.; Hegemann, P.; Mathes, T.

    2007-05-01

    The photo-cycle dynamics of the H44R mutant of the BLUF domain of the transcriptional anti-repressor protein AppA (AppA-H44R) from the non-sulfur anoxyphototropic purple bacterium Rhodobacter sphaeroides is studied in order to gain information on the involvement of His44 in the photo-cyclic mechanism of the AppA BLUF domain and to add information to the involved processes. The amino acid residue histidine at position 44 is replaced by arginine. A 12 nm red-shifted signalling state is formed upon blue-light excitation, while in wild-type AppA (AppA-wt) the red-shift is 16 nm. The recovery to the receptor dark state is approximately a factor of 2.5 faster ( τrec ≈ 6.5 min) than the recovery of the wild-type counterpart. Extended light exposure of the mutant causes photo-degradation of flavin (mainly free flavin conversion to lumichrome and re-equilibration between free and non-covalently bound flavin) and protein aggregation (showing up as light scattering). No photo-degradation was observed for AppA-wt. The quantum efficiency of signalling-state formation determined by intensity dependent absorption measurements is found to be ϕs ≈ 0.3 (for AppA-wt: ϕs ≈ 0.24). A two-component single-exponential fluorescence relaxation was observed, which is interpreted as fast fluorescence quenching to an equilibrium value by photo-induced electron transfer followed by slower fluorescence decay due to charge recombination. Based on the experimental findings, an extended photo-cycle model for BLUF domains is proposed.

  1. Profiling of ornithine lipids in bacterial extracts of Rhodobacter sphaeroides by reversed-phase liquid chromatography with electrospray ionization and multistage mass spectrometry (RPLC-ESI-MS(n)).

    PubMed

    Granafei, Sara; Losito, Ilario; Trotta, Massimo; Italiano, Francesca; de Leo, Vincenzo; Agostiano, Angela; Palmisano, Francesco; Cataldi, Tommaso R I

    2016-01-15

    Ornithine lipids (OLs), a sub-group of the large (and of emerging interest) family of lipoamino acids of bacterial origin, contain a 3-hydroxy fatty acyl chain linked via an amide bond to the α-amino group of ornithine and via an ester bond to a second fatty acyl chain. OLs in extracts of Rhodobacter sphaeroides (R. sphaeroides) were investigated by high-performance reversed phase liquid chromatography (RPLC) with electrospray ionization mass spectrometry (ESI-MS) in negative ion mode using a linear ion trap (LIT). The presence of OLs bearing both saturated (i.e, 16:0, 17:0, 18:0, 19:0 and 20:0) and unsaturated chains (i.e., 18:1, 19:1, 19:2 and 20:1) was ascertained and their identification, even for isomeric, low abundance and partially co-eluting species, was achieved by low-energy collision induced dissociation (CID) multistage mass spectrometry (MS(n), n = 2-4). OLs signatures found in two R. sphaeroides strains, i.e., wild type 2.4.1 and mutant R26, were examined and up to 16 and 17 different OL species were successfully identified, respectively. OLs in both bacterial strains were characterized by several combinations of fatty chains on ester-linked and amide-linked 3-OH fatty acids. Multistage MS spectra of monoenoic amide-linked 3-OH acyl chains, allowed the identification of positional isomer of OL containing 18:1 (i.e. 9-octadecenoic) and 20:1 (i.e. 11-eicosenoic) fatty acids. The most abundant OL ([M-H](-) at m/z 717.5) in R. sphaeroides R26 was identified as OL 3-OH 20:1/19:1 (i.e., 3-OH-eicosenoic acid amide-linked to ornithine and esterified to a nonadecenoic chain containing a cyclopropane ring). An unusual OL (m/z 689.5 for the [M-H](-) ion), most likely containing a cyclopropene ester-linked acyl chain (i.e., OL 3-OH 18:0/19:2), was retrieved only in the carotenoidless mutant strain R26. Based on the biosynthetic pathways already known for cyclopropa(e)ne ring-including acyl chains, a plausible explanation was invoked for the enzymatic

  2. Physical Mapping of bchG, orf427, and orf177 in the Photosynthesis Gene Cluster of Rhodobacter sphaeroides: Functional Assignment of the Bacteriochlorophyll Synthetase Gene

    PubMed Central

    Addlesee, Hugh A.; Fiedor, Leszek; Hunter, C. Neil

    2000-01-01

    The purple photosynthetic bacterium Rhodobacter sphaeroides has within its genome a cluster of photosynthesis-related genes approximately 41 kb in length. In an attempt to identify genes involved in the terminal esterification stage of bacteriochlorophyll biosynthesis, a previously uncharacterized 5-kb region of this cluster was sequenced. Four open reading frames (ORFs) were identified, and each was analyzed by transposon mutagenesis. The product of one of these ORFs, bchG, shows close homologies with (bacterio)chlorophyll synthetases, and mutants in this gene were found to accumulate bacteriopheophorbide, the metal-free derivative of the bacteriochlorophyll precursor bacteriochlorophyllide, suggesting that bchG is responsible for the esterification of bacteriochlorophyllide with an alcohol moiety. This assignment of function to bchG was verified by the performance of assays demonstrating the ability of BchG protein, heterologously synthesized in Escherichia coli, to esterify bacteriochlorophyllide with geranylgeranyl pyrophosphate in vitro, thereby generating bacteriochlorophyll. This step is pivotal to the assembly of a functional photosystem in R. sphaeroides, a model organism for the study of structure-function relationships in photosynthesis. A second gene, orf177, is a member of a large family of isopentenyl diphosphate isomerases, while sequence homologies suggest that a third gene, orf427, may encode an assembly factor for photosynthetic complexes. The function of the remaining ORF, bchP, is the subject of a separate paper (H. Addlesee and C. N. Hunter, J. Bacteriol. 181:7248–7255, 1999). An operonal arrangement of the genes is proposed. PMID:10809697

  3. Probing energy transfer events in the light harvesting complex 2 (LH2) of Rhodobacter sphaeroides with two-dimensional spectroscopy.

    PubMed

    Fidler, Andrew F; Singh, Ved P; Long, Phillip D; Dahlberg, Peter D; Engel, Gregory S

    2013-10-21

    Excitation energy transfer events in the photosynthetic light harvesting complex 2 (LH2) of Rhodobacter sphaeroides are investigated with polarization controlled two-dimensional electronic spectroscopy. A spectrally broadened pulse allows simultaneous measurement of the energy transfer within and between the two absorption bands at 800 nm and 850 nm. The phased all-parallel polarization two-dimensional spectra resolve the initial events of energy transfer by separating the intra-band and inter-band relaxation processes across the two-dimensional map. The internal dynamics of the 800 nm region of the spectra are resolved as a cross peak that grows in on an ultrafast time scale, reflecting energy transfer between higher lying excitations of the B850 chromophores into the B800 states. We utilize a polarization sequence designed to highlight the initial excited state dynamics which uncovers an ultrafast transfer component between the two bands that was not observed in the all-parallel polarization data. We attribute the ultrafast transfer component to energy transfer from higher energy exciton states to lower energy states of the strongly coupled B850 chromophores. Connecting the spectroscopic signature to the molecular structure, we reveal multiple relaxation pathways including a cyclic transfer of energy between the two rings of the complex.

  4. Stereoselective oxidation of aliphatic diols and reduction of hydroxy-ketones with galactitol dehydrogenase from Rhodobacter sphaeroides D.

    PubMed

    Kohring, G W; Wiehr, P; Jeworski, M; Giffhorn, F

    2003-01-01

    From the Rhodobacter sphaeroides mutant D a galactitol dehydrogenase (GDH) was isolated and characterized in an earlier investigation (1). The enzyme expressed activity with a wide spread substrate spectrum, like sugars, sugar alcohols, secondary alcohols or the corresponding ketones and it can be used for the production of the rare sugar L-tagatose by regioselective oxidation of galactitol (2). This study focuses on the preparation of optically pure aliphatic diols by oxidation of one enantiomer or stereospecific reduction of keto-alcohols and diketones. The oxidation of 1,2-propanediol, 1,2-butanediol, 1,2-pentanediol and 1,2-hexanediol occurred highly specific with the S-enantiomer leaving the R-enantiomer of the diols in the reaction vessel. Also (S)-1,2,6-hexanetriol was oxidized by GDH to 1,6-dihydroxy-2-hexanone. The Km values of these reactions decreased with increasing length of the carbon chain. Reduction of hydroxyacetone or 1-hydroxy-2-butanone resulted in an excess of 93% (S)-1,2-propanediol and more than 98% of (S)-1,2-butanediol, respectively. The diketone 2,3-hexanedione was only reduced to (2R,3S)-2,3-hexanediol, one of the possible four configurations. The wide substrate spectrum on one hand and the selectivity in the reaction on the other hand make GDH a very interesting enzyme for the production of optically pure building blocks in the chemical synthesis of bioactive compounds.

  5. Photochemical hole-burned spectra of protonated and deuterated reaction centers of Rhodobacter sphaeroides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lyle, P.A.; Kolaczkowski, S.V.; Small, G.J.

    1993-07-01

    Photochemical hole-burned spectra with improved signal-to-noise ratio ([times]20) are reported for the protonated and deuterated reaction center of the purple bacterium Rhodobacter sphaeroides. Spectra obtained as a function of burn frequency ([omega][sub B]) establish that the lifetime of P870*, the primary electron-donor state, is invariant to location of [omega][sub B] within the inhomogeneous distribution of P870 zero-phonon line transition frequencies. For both the protonated and deuterated RC, which exhibit P870 absorption widths at 4.2 K of only 440 and 420 cm[sup [minus]1], the zero-phonon holes yield a lifetime of 0.93 [+-] 0.10 ps. This lifetime is independent of temperature betweenmore » 1.6 and 8.0 K (range over which the zero-phonon hole could be studied). The invariance of the P870* lifetime to [omega][sub B] and other data indicates that the nonexponential decay of P870* (Vos et al. Proc. Natl. Acad. Sci. U.S.A. 1991, 88, 8885) is due neither to a distribution of values from the electronic coupling matrix element associated with electron transfer, which one might expect from the normal glasslike structural heterogeneity of the RC, nor to gross heterogeneity. The higher quality of the hole spectra has allowed for more stringent testing of the theoretical model previously used to simulate the P870 hole profiles and absorption spectrum. Although the essential findings reported earlier (see, e.g., Reddy et al. Photosyn. Res. 1992, 31, 167) are not altered, it is concluded that the modeling of the distribution of low-frequency phonons (mean frequency approximately 30 cm[sup [minus]1]), which couples to P870*, in terms of a Debye distribution is inadequate. The anomalous low-frequency modes of glasses and polymers are suggested to be important also for proteins. 60 refs., 8 figs., 2 tabs.« less

  6. Bioaugmentation of Lactobacillus delbrueckii ssp. bulgaricus TISTR 895 to enhance bio-hydrogen production of Rhodobacter sphaeroides KKU-PS5.

    PubMed

    Laocharoen, Sucheera; Reungsang, Alissara; Plangklang, Pensri

    2015-01-01

    Bioaugmentation or an addition of the desired microorganisms or specialized microbial strains into the anaerobic digesters can enhance the performance of microbial community in the hydrogen production process. Most of the studies focused on a bioaugmentation of native microorganisms capable of producing hydrogen with the dark-fermentative hydrogen producers while information on bioaugmentation of purple non-sulfur photosynthetic bacteria (PNSB) with lactic acid-producing bacteria (LAB) is still limited. In our study, bioaugmentation of Rhodobacter sphaeroides KKU-PS5 with Lactobacillus delbrueckii ssp. bulgaricus TISTR 895 was conducted as a method to produce hydrogen. Unfortunately, even though well-characterized microorganisms were used in the fermentation system, a cultivation of two different organisms in the same bioreactor was still difficult because of the differences in their metabolic types, optimal conditions, and nutritional requirements. Therefore, evaluation of the physical and chemical factors affecting hydrogen production of PNSB augmented with LAB was conducted using a full factorial design followed by response surface methodology (RSM) with central composite design (CCD). A suitable LAB/PNSB ratio and initial cell concentration were found to be 1/12 (w/w) and 0.15 g/L, respectively. The optimal initial pH, light intensity, and Mo concentration obtained from RSM with CCD were 7.92, 8.37 klux and 0.44 mg/L, respectively. Under these optimal conditions, a cumulative hydrogen production of 3396 ± 66 mL H2/L, a hydrogen production rate (HPR) of 9.1 ± 0.2 mL H2/L h, and a hydrogen yield (HY) of 9.65 ± 0.23 mol H2/mol glucose were obtained. KKU-PS5 augmented with TISTR 895 produced hydrogen from glucose at a relatively high HY, 9.65 ± 0.23 mol H2/mol glucose, i.e., 80 % of the theoretical yield. The ratio of the strains TISTR 895/KKU-PS5 and their initial cell concentrations affected the rate of lactic acid production and its

  7. Functional characteristics of spirilloxanthin and keto-bearing Analogues in light-harvesting LH2 complexes from Rhodobacter sphaeroides with a genetically modified carotenoid synthesis pathway.

    PubMed

    Niedzwiedzki, Dariusz M; Dilbeck, Preston L; Tang, Qun; Mothersole, David J; Martin, Elizabeth C; Bocian, David F; Holten, Dewey; Hunter, C Neil

    2015-01-01

    Light-harvesting 2 (LH2) complexes from a genetically modified strain of the purple photosynthetic bacterium Rhodobacter (Rba.) sphaeroides were studied using static and ultrafast optical methods and resonance Raman spectroscopy. Carotenoid synthesis in the Rba. sphaeroides strain was engineered to redirect carotenoid production away from spheroidene into the spirilloxanthin synthesis pathway. The strain assembles LH2 antennas with substantial amounts of spirilloxanthin (total double-bond conjugation length N=13) if grown anaerobically and of keto-bearing long-chain analogs [2-ketoanhydrorhodovibrin (N=13), 2-ketospirilloxanthin (N=14) and 2,2'-diketospirilloxanthin (N=15)] if grown semi-aerobically (with ratios that depend on growth conditions). We present the photophysical, electronic, and vibrational properties of these carotenoids, both isolated in organic media and assembled within LH2 complexes. Measurements of excited-state energy transfer to the array of excitonically coupled bacteriochlorophyll a molecules (B850) show that the mean lifetime of the first singlet excited state (S1) of the long-chain (N≥13) carotenoids does not change appreciably between organic media and the protein environment. In each case, the S1 state appears to lie lower in energy than that of B850. The energy-transfer yield is ~0.4 in LH2 (from the strain grown aerobically or semi-aerobically), which is less than half that achieved for LH2 that contains short-chain (N≤11) analogues. Collectively, the results suggest that the S1 excited state of the long-chain (N≥13) carotenoids participates little if at all in carotenoid-to-BChl a energy transfer, which occurs predominantly via the carotenoid S2 excited state in these antennas. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Evaluation of Lighting Systems, Carbon Sources, and Bacteria Cultures on Photofermentative Hydrogen Production.

    PubMed

    Hu, Chengcheng; Choy, Sing-Ying; Giannis, Apostolos

    2018-05-01

    Fluorescent and incandescent lighting systems were applied for batch photofermentative hydrogen production by four purple non-sulfur photosynthetic bacteria (PNSB). The hydrogen production efficiency of Rhodopseudomonas palustris, Rhodobacter sphaeroides, Rhodobacter capsulatus, and Rhodospirillum rubrum was evaluated using different carbon sources (acetate, butyrate, lactate, and malate). Incandescent light was found to be more effective for bacteria cell growth and hydrogen production. It was observed that PNSB followed substrate selection criteria for hydrogen production. Only R. palustris was able to produce hydrogen using most carbon sources. Cell density was almost constant, but cell growth rate and hydrogen production were significantly varied under the different lighting systems. The kinetics study suggested that initial substrate concentration had a positive correlation with lag phase duration. Among the PNSB, R. palustris grew faster and had higher hydrogen yields of 1.58, 4.92, and 2.57 mol H 2 /mol using acetate, butyrate, and lactate, respectively. In the integrative approach with dark fermentation effluents rich in organic acids, R. palustris should be enriched in the phototrophic microbial consortium of the continuous hydrogen production system.

  9. Exploitation of dark fermented effluent of cheese whey by co-culture of Rhodobacter sphaeroides and Bacillus firmus for photo-hydrogen production.

    PubMed

    Pandey, A; Pandey, A

    2017-07-31

    In this study photo-hydrogen production from cheese whey dark fermentation (DF) effluent by the co-culture of Rhodobacter sphaeroides -NMBL-01 and Bacillus firmus - NMBL-03 has been reported. The effect of pH, initial chemical oxygen demand (COD) and the concentration effect of FeSO4.7H2O on photo-hydrogen production have been investigated. The end products of dark fermentation effluent of cheese whey were mainly comprised of soluble organic acids, i.e. butyric acid and lactic acid. The batch process was carried out under light intensity of 2.5 kLux at 32 ± 2oC without any addition of extra carbon and nitrogen source. The single parameter optimization studies revealed optimum pH 6.5, initial COD 4.71 g/L and supplementation of Fe2+ concentration 100 mg/L. The maximum cumulative hydrogen production and yield were found to be 469 ± 45.8 ml H2/L and 146.56 ± 14.31 ml H2/g COD reduced (67.9% reduction in COD) respectively. The mutual interactions among the process parameters were also investigated by three factorial Box-Behnken design of response surface methodology. The optimized experimental values were found concurrent with the calculated values obtained from the theoretical model.

  10. Integration of energy and electron transfer processes in the photosynthetic membrane of Rhodobacter sphaeroides

    DOE PAGES

    Cartron, Michaël L.; Olsen, John D.; Sener, Melih; ...

    2014-02-13

    Photosynthesis converts absorbed solar energy to a protonmotive force, which drives ATP synthesis. The membrane network of chlorophyll–protein complexes responsible for light absorption, photochemistry and quinol (QH 2) production has been mapped in the purple phototrophic bacterium Rhodobacter (Rba.) sphaeroides using atomic force microscopy (AFM), but the membrane location of the cytochrome bc 1 (cytbc 1) complexes that oxidise QH 2 to quinone (Q) to generate a protonmotive force is unknown. We labelled cytbc 1 complexes with gold nanobeads, each attached by a Histidine 10 (His 10)-tag to the C-terminus of cytc1. Electron microscopy (EM) of negatively stained chromatophore vesiclesmore » showed that the majority of the cytbc 1 complexes occur as dimers in the membrane. The cytbc 1 complexes appeared to be adjacent to reaction centre light-harvesting 1-PufX (RC-LH1-PufX) complexes, consistent with AFM topographs of a gold-labelled membrane. His-tagged cytbc1 complexes were retrieved from chromatophores partially solubilised by detergent; RC-LH1-PufX complexes tended to co-purify with cytbc 1, whereas LH2 complexes became detached, consistent with clusters of cytbc1 complexes close to RC-LH1-PufX arrays, but not with a fixed, stoichiometric cytbc 1-RC-LH1- PufX supercomplex. This information was combined with a quantitative mass spectrometry (MS) analysis of the RC, cytbc 1, ATP synthase, cytaa 3 and cytcbb 3 membrane protein complexes, to construct an atomic-level model of a chromatophore vesicle comprising 67 LH2 complexes, 11 LH1-RC-PufX dimers & 2 RC-LH1-PufX monomers, 4 cytbc 1 dimers and 2 ATP synthases. In conclusion, simulation of the interconnected energy, electron and proton transfer processes showed a halfmaximal ATP turnover rate for a light intensity equivalent to only 1% of bright sunlight. Thus, the photosystem architecture of the chromatophore is optimised for growth at low light intensities.« less

  11. Differences in the binding of the primary quinone receptor in Photosystem I and reaction centres of Rhodobacter sphaeroides-R26 studied with transient EPR spectroscopy

    NASA Astrophysics Data System (ADS)

    van der Est, A.; Sieckmann, I.; Lubitz, W.; Stehlik, D.

    1995-05-01

    The binding of the primary quinone acceptor, Q, in Photosystem I (PS I) and reaction centres (RC's) of Rhodobacter Sphaeroide-R26 in which, the non-heme iron has been replaced by zinc (Zn-bRC's) is studied using transient EPR spectroscopy. In PS I, Q is phylloquinone (vitamin K 1, VK 1) and is referred to as A 1. In Zn-bRC's, it is ubiquinone-10 (UQ 10) and called Q A. Native samples of the two RC's as well as those in which A 1 and Q A have been replaced by perdeuterated napthoquinone (NQ- d6) and duroquinone (DQ- d12) are compared. The spin polarized K-band (24 GHz) spectra of the charge separated state P +.Q -. (P = primary chlorophyll donor) in Zn-bRC's show that substitution of Q A, with NQ- d6 and DQ- d12 does not have a measurable effect on the quinone orientation in the Q A site. In contrast, large differences in the orientation of VK 1, NQ- d6 and DQ- d12 in the A 1 site in PS I are found. In addition, all three quinones in PS I are oriented differently than Q A in Zn-bRC's. Further, the x and y principal values of the g-tensors of VK 1-., NQ -. and DQ -. in PS I are shown to be significantly larger than in frozen alcohol and Zn-bRC's. It is suggested that the differences in the orientation and a g-values of the quinones in the two RC's arise from a weaker binding to the protein in PS I.

  12. Grain dust-induced lung inflammation is reduced by Rhodobacter sphaeroides diphosphoryl lipid A.

    PubMed

    Jagielo, P J; Quinn, T J; Qureshi, N; Schwartz, D A

    1998-01-01

    To further determine the importance of endotoxin in grain dust-induced inflammation of the lower respiratory tract, we evaluated the efficacy of pentaacylated diphosphoryl lipid A derived from the lipopolysaccharide of Rhodobacter sphaeroides (RsDPLA) as a partial agonist of grain dust-induced airway inflammation. RsDPLA is a relatively inactive compound compared with lipid A derived from Escherichia coli (LPS) and has been demonstrated to act as a partial agonist of LPS-induced inflammation. To assess the potential stimulatory effect of RsDPLA in relation to LPS, we incubated THP-1 cells with RsDPLA (0.001-100 micrograms/ml), LPS (0.02 microgram endotoxin activity/ml), or corn dust extract (CDE; 0.02 microgram endotoxin activity/ml). Incubation with RsDPLA revealed a tumor necrosis factor (TNF)-alpha stimulatory effect at 100 micrograms/ml. In contrast, incubation with LPS or CDE resulted in TNF-alpha release at 0.02 microgram/ml. Pretreatment of THP-1 cells with varying concentrations of RsDPLA before incubation with LPS or CDE (0.02 microgram endotoxin activity/ml) resulted in a dose-dependent reduction in the LPS- or CDE-induced release of TNF-alpha with concentrations of RsDPLA of up to 10 micrograms/ml but not at 100 micrograms/ml. To further understand the role of endotoxin in grain dust-induced airway inflammation, we utilized the unique LPS inhibitory property of RsDPLA to determine the inflammatory response to inhaled CDE in mice in the presence of RsDPLA. Ten micrograms of RsDPLA intratracheally did not cause a significant inflammatory response compared with intratracheal saline. However, pretreatment of mice with 10 micrograms of RsDPLA intratracheally before exposure to CDE (5.4 and 0.2 micrograms/m3) or LPS (7.2 and 0.28 micrograms/m3) resulted in significant reductions in the lung lavage concentrations of total cells, neutrophils, and specific proinflammatory cytokines compared with mice pretreated with sterile saline. These results confirm the LPS

  13. Ultrafast Electron Transfer Kinetics in the LM Dimer of Bacterial Photosynthetic Reaction Center from Rhodobacter sphaeroides.

    PubMed

    Sun, Chang; Carey, Anne-Marie; Gao, Bing-Rong; Wraight, Colin A; Woodbury, Neal W; Lin, Su

    2016-06-23

    It has become increasingly clear that dynamics plays a major role in the function of many protein systems. One system that has proven particularly facile for studying the effects of dynamics on protein-mediated chemistry is the bacterial photosynthetic reaction center from Rhodobacter sphaeroides. Previous experimental and computational analysis have suggested that the dynamics of the protein matrix surrounding the primary quinone acceptor, QA, may be particularly important in electron transfer involving this cofactor. One can substantially increase the flexibility of this region by removing one of the reaction center subunits, the H-subunit. Even with this large change in structure, photoinduced electron transfer to the quinone still takes place. To evaluate the effect of H-subunit removal on electron transfer to QA, we have compared the kinetics of electron transfer and associated spectral evolution for the LM dimer with that of the intact reaction center complex on picosecond to millisecond time scales. The transient absorption spectra associated with all measured electron transfer reactions are similar, with the exception of a broadening in the QX transition and a blue-shift in the QY transition bands of the special pair of bacteriochlorophylls (P) in the LM dimer. The kinetics of the electron transfer reactions not involving quinones are unaffected. There is, however, a 4-fold decrease in the electron transfer rate from the reduced bacteriopheophytin to QA in the LM dimer compared to the intact reaction center and a similar decrease in the recombination rate of the resulting charge-separated state (P(+)QA(-)). These results are consistent with the concept that the removal of the H-subunit results in increased flexibility in the region around the quinone and an associated shift in the reorganization energy associated with charge separation and recombination.

  14. Chronic Exposure to Rhodobacter Sphaeroides Extract Lycogen™ Prevents UVA-Induced Malondialdehyde Accumulation and Procollagen I Down-Regulation in Human Dermal Fibroblasts

    PubMed Central

    Yang, Tsai-Hsiu; Lai, Ying-Hsiu; Lin, Tsuey-Pin; Liu, Wen-Sheng; Kuan, Li-Chun; Liu, Chia-Chyuan

    2014-01-01

    UVA contributes to the pathogenesis of skin aging by downregulation of procollagen I content and induction of matrix metalloproteinase (MMP)-associated responses. Application of antioxidants such as lycopene has been demonstrated as a convenient way to achieve protection against skin aging. Lycogen™, derived from the extracts of Rhodobacter sphaeroides, exerts several biological effects similar to that of lycopene whereas most of its anti-aging efficacy remains uncertain. In this study, we attempted to examine whether Lycogen™ could suppress malondialdehyde (MDA) accumulation and restore downregulated procollagen I expression induced by UVA exposure. In human dermal fibroblasts Hs68 cells, UVA repressed cell viability and decreased procollagen I protein content accompanied with the induction of MMP-1 and MDA accumulation. Remarkably, incubation with 50 μM Lycogen™ for 24 h ameliorated UVA-induced cell death and restored UVA-induced downregulation of procollagen in a dose-related manner. Lycogen™ treatment also prevented the UVA-induced MMP-1 upregulation and intracellular MDA generation in Hs68 cells. Activation of NFκB levels, one of the downstream events induced by UVA irradiation and MMP-1 induction, were also prevented by Lycogen™ administration. Taken together, our findings demonstrate that Lycogen™ may be an alternative agent that prevents UVA-induced skin aging and could be used in cosmetic and pharmaceutical applications. PMID:24463291

  15. Biochemical analysis and the preliminary crystallographic characterization of D-tagatose 3-epimerase from Rhodobacter sphaeroides.

    PubMed

    Qi, Zhengliang; Zhu, Zhangliang; Wang, Jian-Wen; Li, Songtao; Guo, Qianqian; Xu, Panpan; Lu, Fuping; Qin, Hui-Min

    2017-11-09

    D-Tagatose 3-epimerase epimerizes D-fructose to yield D-psicose, which is a rare sugar that exists in small quantities in nature and is difficult to synthesize chemically. We aim to explore potential industrial biocatalysts for commercial-scale manufacture of this rare sugar. A D-tagatose 3-epimerase from Rhodobacter sphaeroides (RsDTE) has recently been identified as a D-tagatose 3-epimerase that can epimerize D-fructose to yield D-psicose with a high conversion rate. The purified RsDTE by Ni-affinity chromatography, ionic exchange chromatography and gel filtration forms a tetramer in solution. The maximal activity was in Tris-HCl buffer pH 8.5, and the optimal temperature was at 35 °C. The product, D-psicose, was confirmed using HPLC and NMR. Crystals of RsDTE were obtained using crystal kits and further refined under crystallization conditions such as 10% PEG 8000,0.1 M HEPES pH 7.5, and 8% ethylene glycol at 20 °C using the sitting-drop vapor diffusion method. The RsDTE homology model showed that it possessed the characteristic TIM-barrel fold. Four residues, Glu156, Asp189, Gln215 and Glu250, forms a hydrogen bond network with the active Mn(II) for the hydride transfer reaction. These residues may constitute the catalytic tetrad of RsDTE. The residues around O1, O2 and O3 of the substrates were conserved. However, the binding-site residues are different at O4, O5 and O6. Arg118 formed the unique hydrogen bond with O4 of D-fructose which indicates RsDTE's preference of D-fructose more than any other family enzymes. RsDTE possesses a different metal-binding site. Arg118, forming unique hydrogen bond with O4 of D-fructose, regulates the substrate recognition. The research on D-tagatose 3-epimerase or D-psicose 3-epimerase enzymes attracts enormous commercial interest and would be widely used for rare sugar production in the future.

  16. Binding and Energetics of Electron Transfer between an Artificial Four-Helix Mn-Protein and Reaction Centers from Rhodobacter sphaeroides.

    PubMed

    Espiritu, Eduardo; Olson, Tien L; Williams, JoAnn C; Allen, James P

    2017-12-12

    The ability of an artificial four-helix bundle Mn-protein, P1, to bind and transfer an electron to photosynthetic reaction centers from the purple bacterium Rhodobacter sphaeroides was characterized using optical spectroscopy. Upon illumination of reaction centers, an electron is transferred from P, the bacteriochlorophyll dimer, to Q A , the primary electron acceptor. The P1 Mn-protein can bind to the reaction center and reduce the oxidized bacteriochlorophyll dimer, P + , with a dissociation constant of 1.2 μM at pH 9.4, comparable to the binding constant of c-type cytochromes. Amino acid substitutions of surface residues on the Mn-protein resulted in increases in the dissociation constant to 8.3 μM. The extent of reduction of P + by the P1 Mn-protein was dependent on the P/P + midpoint potential and the pH. Analysis of the free energy difference yielded a midpoint potential of approximately 635 mV at pH 9.4 for the Mn cofactor of the P1 Mn-protein, a value similar to those found for other Mn cofactors in proteins. The linear dependence of -56 mV/pH is consistent with one proton being released upon Mn oxidation, allowing the complex to maintain overall charge neutrality. These outcomes demonstrate the feasibility of designing four-helix bundles and other artificial metalloproteins to bind and transfer electrons to bacterial reaction centers and establish the usefulness of this system as a platform for designing sites to bind novel metal cofactors capable of performing complex oxidation-reduction reactions.

  17. Transcriptome dynamics during the transition from anaerobic photosynthesis to aerobic respiration in Rhodobacter sphaeroides 2.4.1.

    PubMed

    Arai, Hiroyuki; Roh, Jung Hyeob; Kaplan, Samuel

    2008-01-01

    Rhodobacter sphaeroides 2.4.1 is a facultative photosynthetic anaerobe that grows by anoxygenic photosynthesis under anaerobic-light conditions. Changes in energy generation pathways under photosynthetic and aerobic respiratory conditions are primarily controlled by oxygen tensions. In this study, we performed time series microarray analyses to investigate transcriptome dynamics during the transition from anaerobic photosynthesis to aerobic respiration. Major changes in gene expression profiles occurred in the initial 15 min after the shift from anaerobic-light to aerobic-dark conditions, with changes continuing to occur up to 4 hours postshift. Those genes whose expression levels changed significantly during the time series were grouped into three major classes by clustering analysis. Class I contained genes, such as that for the aa3 cytochrome oxidase, whose expression levels increased after the shift. Class II contained genes, such as those for the photosynthetic apparatus and Calvin cycle enzymes, whose expression levels decreased after the shift. Class III contained genes whose expression levels temporarily increased during the time series. Many genes for metabolism and transport of carbohydrates or lipids were significantly induced early during the transition, suggesting that those endogenous compounds were initially utilized as carbon sources. Oxidation of those compounds might also be required for maintenance of redox homeostasis after exposure to oxygen. Genes for the repair of protein and sulfur groups and uptake of ferric iron were temporarily upregulated soon after the shift, suggesting they were involved in a response to oxidative stress. The flagellar-biosynthesis genes were expressed in a hierarchical manner at 15 to 60 min after the shift. Numerous transporters were induced at various time points, suggesting that the cellular composition went through significant changes during the transition from anaerobic photosynthesis to aerobic respiration

  18. Two-photon excitation spectroscopy of carotenoid-containing and carotenoid-depleted LH2 complexes from purple bacteria.

    PubMed

    Stepanenko, Ilya; Kompanetz, Viktor; Makhneva, Zoya; Chekalin, Sergey; Moskalenko, Andrei; Razjivin, Andrei

    2009-08-27

    We applied two-photon fluorescence excitation spectroscopy to LH2 complex from purple bacteria Allochromatium minutissimum and Rhodobacter sphaeroides . Bacteriochlorophyll fluorescence was measured under two-photon excitation of the samples within the 1200-1500 nm region. Spectra were obtained for both carotenoid-containing and -depleted complexes of each bacterium to allow their direct comparison. The depletion of carotenoids did not alter the two-photon excitation spectra of either bacteria. The spectra featured a wide excitation band around 1350 nm (2x675 nm, 14,800 cm(-1)) which strongly resembled two-photon fluorescence excitation spectra of similar complexes published by other authors. We consider obtained experimental data to be evidence of direct two-photon excitation of bacteriochlorophyll excitonic states in this spectral region.

  19. Trypsin treatment of reaction centers from Rhodobacter sphaeroides in the dark and under illumination: protein structural changes follow charge separation.

    PubMed

    Brzezinski, P; Andréasson, L E

    1995-06-06

    Reaction centers from Rhodobacter sphaeroides R-26 were treated with trypsin in the dark and during illumination (in the charge-separated state). Trypsination resulted in a time-dependent modification of the reaction centers, reflected in changes in the charge recombination rate, in the inhibition of QA- to QB electron transfer, and eventually to inhibition of charge separation. Comparisons of centers with ubiquinone or anthraquinone in the QA site, in which the charge recombination pathways are different, indicate that trypsination affects charges close to the QA(-)-binding site. Studies of light-induced voltage changes from moving charges in reaction centers incorporated in lipid layers on a Teflon film, a technique which allows the discrimination of effects on donor and acceptor sides, indicate that the acceptor side is preferentially degraded by trypsin in the dark. Tryptic digestion during illumination generally resulted in a marked strengthening and acceleration of the effects seen already during dark treatment, but new effects were also detected in gel electrophoretic peptide patterns, in optical spectra, and in the kinetic measurements. Optical kinetic measurements revealed that the donor side of the reaction centers became susceptible to modification by trypsin during illumination as seen in the value of the binding constant for soluble cytochrome c2 which increased by a factor of 2, whereas it was much less affected after trypsination of reaction centers in the dark. The influence of illumination on the rate and mode by which trypsin acts on reaction centers indicates that changes in the protein conformation follow charge separation.(ABSTRACT TRUNCATED AT 250 WORDS)

  20. Studies on Hydrogen Production by Photosynthetic Bacteria after Anaerobic Fermentation of Starch by a Hyperthermophile, Pyrococcus furiosus

    NASA Astrophysics Data System (ADS)

    Sugitate, Toshihiro; Fukatsu, Makoto; Ishimi, Katsuhiro; Kohno, Hideki; Wakayama, Tatsuki; Nakamura, Yoshihiro; Miyake, Jun; Asada, Yasuo

    In order to establish the sequential hydrogen production from waste starch using a hyperthermophile, Pyrococcus furiosus, and a photosynthetic bacterium, basic studies were done. P. furiosus produced hydrogen and acetate by anaerobic fermentation at 90°C. A photosynthetic bacterium, Rhodobacter sphaeroides RV, was able to produce hydrogen from acetate under anaerobic and light conditions at 30°C. However, Rb. sphaeroides RV was not able to produce hydrogen from acetate in the presence of sodium chloride that was essential for the growth and hydrogen production of P. furiosus although it produced hydrogen from lactate at a reduced rate with 1% sodium chloride. A newly isolated strain, CST-8, from natural environment was, however, able to produce hydrogen from acetate, especially with 3 mM L-alanine and in the presence of 1% sodium chloride. The sequential hydrogen production with P. furiosus and salt-tolerant photosynthetic bacteria could be probable at least in the laboratory experiment scale.

  1. The unusually strong hydrogen bond between the carbonyl of Q(A) and His M219 in the Rhodobacter sphaeroides reaction center is not essential for efficient electron transfer from Q(A)(-) to Q(B).

    PubMed

    Breton, Jacques; Lavergne, Jérôme; Wakeham, Marion C; Nabedryk, Eliane; Jones, Michael R

    2007-06-05

    In native reaction centers (RCs) from photosynthetic purple bacteria the primary quinone (QA) and the secondary quinone (QB) are interconnected via a specific His-Fe-His bridge. In Rhodobacter sphaeroides RCs the C4=O carbonyl of QA forms a very strong hydrogen bond with the protonated Npi of His M219, and the Ntau of this residue is in turn coordinated to the non-heme iron atom. The second carbonyl of QA is engaged in a much weaker hydrogen bond with the backbone N-H of Ala M260. In previous work, a Trp side chain was introduced by site-directed mutagenesis at the M260 position in the RC of Rb. sphaeroides, resulting in a complex that is completely devoid of QA and therefore nonfunctional. A photochemically competent derivative of the AM260W mutant was isolated that contains a Cys side chain at the M260 position (denoted AM260(W-->C)). In the present work, the interactions between the carbonyl groups of QA and the protein in the AM260(W-->C) suppressor mutant have been characterized by light-induced FTIR difference spectroscopy of the photoreduction of QA. The QA-/QA difference spectrum demonstrates that the strong interaction between the C4=O carbonyl of QA and His M219 is lost in the mutant, and the coupled CO and CC modes of the QA- semiquinone are also strongly perturbed. In parallel, a band assigned to the perturbation of the C5-Ntau mode of His M219 upon QA- formation in the native RC is lacking in the spectrum of the mutant. Furthermore, a positive band between 2900 and 2400 cm-1 that is related to protons fluctuating within a network of highly polarizable hydrogen bonds in the native RC is reduced in amplitude in the mutant. On the other hand, the QB-/QB FTIR difference spectrum is essentially the same as for the native RC. The kinetics of electron transfer from QA- to QB were measured by the flash-induced absorption changes at 780 nm. Compared to native RCs the absorption transients are slowed by a factor of about 2 for both the slow phase (in the

  2. Phylogenetic origins of the plant mitochondrion based on a comparative analysis of 5S ribosomal RNA sequences

    NASA Technical Reports Server (NTRS)

    Villanueva, E.; Delihas, N.; Luehrsen, K. R.; Fox, G. E.; Gibson, J.

    1985-01-01

    The complete nucleotide sequences of 5S ribosomal RNAs from Rhodocyclus gelatinosa, Rhodobacter sphaeroides, and Pseudomonas cepacia were determined. Comparisons of these 5S RNA sequences show that rather than being phylogenetically related to one another, the two photosynthetic bacterial 5S RNAs share more sequence and signature homology with the RNAs of two nonphotosynthetic strains. Rhodobacter sphaeroides is specifically related to Paracoccus denitrificans and Rc. gelatinosa is related to Ps. cepacia. These results support earlier 16S ribosomal RNA studies and add two important groups to the 5S RNA data base. Unique 5S RNA structural features previously found in P. denitrificans are present also in the 5S RNA of Rb. sphaeroides; these provide the basis for subdivisional signatures. The immediate consequence of obtaining these new sequences is that it is possible to clarify the phylogenetic origins of the plant mitochondrion. In particular, a close phylogenetic relationship is found between the plant mitochondria and members of the alpha subdivision of the purple photosynthetic bacteria, namely, Rb. sphaeroides, P. denitrificans, and Rhodospirillum rubrum.

  3. Expression of glnB and a glnB-Like Gene (glnK) in a Ribulose Bisphosphate Carboxylase/Oxygenase-Deficient Mutant of Rhodobacter sphaeroides

    PubMed Central

    Qian, Yilei; Tabita, F. Robert

    1998-01-01

    In a ribulose 1,5-bisphosphate carboxylase/oxygenase (RubisCO)-deficient mutant of Rhodobacter sphaeroides, strain 16PHC, nitrogenase activity was derepressed in the presence of ammonia under photoheterotrophic growth conditions. Previous studies also showed that reintroduction of a functional RubisCO and Calvin-Benson-Bassham (CBB) pathway suppressed the deregulation of nitrogenase synthesis in this strain. In this study, the derepression of nitrogenase synthesis in the presence of ammonia in strain 16PHC was further explored by using a glnB::lacZ fusion, since the product of the glnB gene is known to have a negative effect on ammonia-regulated nif control. It was found that glnB expression was repressed in strain 16PHC under photoheterotrophic growth conditions with either ammonia or glutamate as the nitrogen source; glutamine synthetase (GS) levels were also affected in this strain. However, when cells regained a functional CBB pathway by trans complementation of the deleted genes, wild-type levels of GS and glnB expression were restored. Furthermore, a glnB-like gene, glnK, was isolated from this organism, and its expression was found to be under tight nitrogen control in the wild type. Surprisingly, glnK expression was found to be derepressed in strain 16PHC under photoheterotrophic conditions in the presence of ammonia. PMID:9721307

  4. Electron-Transfer Secondary Reaction Matrices for MALDI MS Analysis of Bacteriochlorophyll a in Rhodobacter sphaeroides and Its Zinc and Copper Analogue Pigments

    NASA Astrophysics Data System (ADS)

    Calvano, Cosima Damiana; Ventura, Giovanni; Trotta, Massimo; Bianco, Giuliana; Cataldi, Tommaso R. I.; Palmisano, Francesco

    2017-01-01

    Bacteriochlorophyll a ( BChl a), a photosynthetic pigment performing the same functions of chlorophylls in plants, features a bacteriochlorin macrocycle ring (18 π electrons) with two reduced pyrrole rings along with a hydrophobic terpenoid side chain (i.e., the phytol residue). Chlorophylls analysis by matrix-assisted laser desorption/ionization mass spectrometry (MALDI MS) is not so straightforward since pheophytinization (i.e., release of the central metal ion) and cleavage of the phytol-ester linkage are invariably observed by employing protonating matrices such as 2,5-dihydroxybenzoic acid, sinapinic acid, and α-cyano-4-hydroxycinnamic acid. Using BChl a from Rhodobacter sphaeroides R26 strain as a model system, different electron-transfer (ET) secondary reaction matrices, leading to the formation of almost stable radical ions in both positive ([M]+•) and negative ([M]-•) ionization modes at m/z 910.55, were evaluated. Compared with ET matrices such as trans-2-[3-(4-t-butyl-phenyl)-2-methyl-2-propenylidene]malononitrile (DCTB), 2,2':5',2''-terthiophene (TER), anthracene (ANT), and 9,10-diphenylanthracene (DP-ANT), 1,5-diaminonaphthalene (DAN) was found to provide the highest ionization yield with a negligible fragmentation. DAN also displayed excellent ionization properties for two metal ion-substituted bacteriochlorophylls, (i.e., Zn- and Cu-BChl a at m/z 950.49 and 949.49), respectively. MALDI MS/MS of both radical charged molecular species provide complementary information, thus making analyte identification more straightforward.

  5. In vivo effects on photosynthesis gene expression of base pair exchanges in the gene encoding the light-responsive BLUF domain of AppA in Rhodobacter sphaeroides.

    PubMed

    Metz, Sebastian; Hendriks, Johnny; Jäger, Andreas; Hellingwerf, Klaas; Klug, Gabriele

    2010-01-01

    The Rhodobacter sphaeroides protein AppA has the unique quality of sensing and transmitting light and redox signals. By acting as antirepressor to the PpsR protein, it acts as a major regulator in photosynthesis gene expression. In this study, we show that by introducing amino acid exchanges into the AppA protein, the in vivo activity as an antirepressor can be greatly altered. The tryptophan 104 to phenylalanine (W104F) base exchange greatly diminished blue-light sensitivity of the BLUF domain. From the obtained in vivo data, the difference in thermal recovery rate of the signaling state of the BLUF domain between the wild type and mutated protein was calculated, predicting an about 10-fold faster recovery in the mutant, which is consistent with in vitro data. Introduction of a tyrosine 21 to phenylalanine (Y21F) or to cysteine (Y21C) mutation led to a complete loss of AppA antirepressor activity, while additionally leading to an increase of photosynthesis gene expression after illumination with high blue-light quantities. Interestingly, this effect is not visible in a W104F/Y21F double mutant that again shows a wild-type-like behavior of the BLUF domain after blue-light illumination, thus restoring the activity of AppA.

  6. Mechanisms for hydrogen production by different bacteria during mixed-acid and photo-fermentation and perspectives of hydrogen production biotechnology.

    PubMed

    Trchounian, Armen

    2015-03-01

    H2 has a great potential as an ecologically-clean, renewable and capable fuel. It can be mainly produced via hydrogenases (Hyd) by different bacteria, especially Escherichia coli and Rhodobacter sphaeroides. The operation direction and activity of multiple Hyd enzymes in E. coli during mixed-acid fermentation might determine H2 production; some metabolic cross-talk between Hyd enzymes is proposed. Manipulating the activity of different Hyd enzymes is an effective way to enhance H2 production by E. coli in biotechnology. Moreover, a novel approach would be the use of glycerol as feedstock in fermentation processes leading to H2 production. Mixed carbon (sugar and glycerol) utilization studies enlarge the kind of organic wastes used in biotechnology. During photo-fermentation under limited nitrogen conditions, H2 production by Rh. sphaeroides is observed when carbon and nitrogen sources are supplemented. The relationship of H2 production with H(+) transport across the membrane and membrane-associated ATPase activity is shown. On the other hand, combination of carbon sources (succinate, malate) with different nitrogen sources (yeast extract, glutamate, glycine) as well as different metal (Fe, Ni, Mg) ions might regulate H2 production. All these can enhance H2 production yield by Rh. sphaeroides in biotechnology Finally, two of these bacteria might be combined to develop and consequently to optimize two stages of H2 production biotechnology with high efficiency transformation of different organic sources.

  7. Structure of the dimeric PufX-containing core complex of Rhodobacter blasticus by in situ atomic force microscopy.

    PubMed

    Scheuring, Simon; Busselez, Johan; Lévy, Daniel

    2005-01-14

    We have studied photosynthetic membranes of wild type Rhodobacter blasticus, a closely related strain to the well studied Rhodobacter sphaeroides, using atomic force microscopy. High-resolution atomic force microscopy topographs of both cytoplasmic and periplasmic surfaces of LH2 and RC-LH1-PufX (RC, reaction center) complexes were acquired in situ. The LH2 is a nonameric ring inserted into the membrane with the 9-fold axis perpendicular to the plane. The core complex is an S-shaped dimer composed of two RCs, each encircled by 13 LH1 alpha/beta-heterodimers, and two PufXs. The LH1 assembly is an open ellipse with a topography-free gap of approximately 25 A. The two PufXs, one of each core, are located at the dimer center. Based on our data, we propose a model of the core complex, which provides explanation for the PufX-induced dimerization of the Rhodobacter core complex. The QB site is located facing a approximately 25-A wide gap within LH1, explaining the PufX-favored quinone passage in and out of the core complex.

  8. Dynamics of energy transfer from lycopene to bacteriochlorophyll in genetically-modified LH2 complexes of Rhodobacter sphaeroides.

    PubMed

    Hörvin Billsten, H; Herek, J L; Garcia-Asua, G; Hashøj, L; Polívka, T; Hunter, C N; Sundström, V

    2002-03-26

    LH2 complexes from Rb. sphaeroides were modified genetically so that lycopene, with 11 saturated double bonds, replaced the native carotenoids which contain 10 saturated double bonds. Tuning the S1 level of the carotenoid in LH2 in this way affected the dynamics of energy transfer within LH2, which were investigated using both steady-state and time-resolved techniques. The S1 energy of lycopene in n-hexane was determined to be approximately 12 500 +/- 150 cm(-1), by direct measurement of the S1-S2 transient absorption spectrum using a femtosecond IR-probing technique, thus placing an upper limit on the S1 energy of lycopene in the LH2 complex. Fluorescence emission and excitation spectra demonstrated that energy can be transferred from lycopene to the bacteriochlorophyll molecules within this LH2 complex. The energy-transfer dynamics within the mutant complex were compared to wild-type LH2 from Rb. sphaeroides containing the carotenoid spheroidene and from Rs. molischianum, in which lycopene is the native carotenoid. The results show that the overall efficiency for Crt --> B850 energy transfer is approximately 80% in lyco-LH2 and approximately 95% in WT-LH2 of Rb. sphaeroides. The difference in overall Crt --> BChl transfer efficiency of lyco-LH2 and WT-LH2 mainly relates to the low efficiency of the Crt S(1) --> BChl pathway for complexes containing lycopene, which was 20% in lyco-LH2. These results show that in an LH2 complex where the Crt S1 energy is sufficiently high to provide efficient spectral overlap with both B800 and B850 Q(y) states, energy transfer via the Crt S1 state occurs to both pigments. However, the introduction of lycopene into the Rb. sphaeroides LH2 complex lowers the S1 level of the carotenoid sufficiently to prevent efficient transfer of energy to the B800 Q(y) state, leaving only the Crt S1 --> B850 channel, strongly suggesting that Crt S1 --> BChl energy transfer is controlled by the relative Crt S1 and BChl Q(y) energies.

  9. The crystal structures of the tri-functional Chloroflexus aurantiacus and bi-functional Rhodobacter sphaeroides malyl-CoA lyases and comparison with CitE-like superfamily enzymes and malate synthases.

    PubMed

    Zarzycki, Jan; Kerfeld, Cheryl A

    2013-11-09

    Malyl-CoA lyase (MCL) is a promiscuous carbon-carbon bond lyase that catalyzes the reversible cleavage of structurally related Coenzyme A (CoA) thioesters. This enzyme plays a crucial, multifunctional role in the 3-hydroxypropionate bi-cycle for autotrophic CO2 fixation in Chloroflexus aurantiacus. A second, phylogenetically distinct MCL from Rhodobacter sphaeroides is involved in the ethylmalonyl-CoA pathway for acetate assimilation. Both MCLs belong to the large superfamily of CitE-like enzymes, which includes the name-giving β-subunit of citrate lyase (CitE), malyl-CoA thioesterases and other enzymes of unknown physiological function. The CitE-like enzyme superfamily also bears sequence and structural resemblance to the malate synthases. All of these different enzymes share highly conserved catalytic residues, although they catalyze distinctly different reactions: C-C bond formation and cleavage, thioester hydrolysis, or both (the malate synthases). Here we report the first crystal structures of MCLs from two different phylogenetic subgroups in apo- and substrate-bound forms. Both the C. aurantiacus and the R. sphaeroides MCL contain elaborations on the canonical β8/α8 TIM barrel fold and form hexameric assemblies. Upon ligand binding, changes in the C-terminal domains of the MCLs result in closing of the active site, with the C-terminal domain of one monomer forming a lid over and contributing side chains to the active site of the adjacent monomer. The distinctive features of the two MCL subgroups were compared to known structures of other CitE-like superfamily enzymes and to malate synthases, providing insight into the structural subtleties that underlie the functional versatility of these enzymes. Although the C. aurantiacus and the R. sphaeroides MCLs have divergent primary structures (~37% identical), their tertiary and quaternary structures are very similar. It can be assumed that the C-C bond formation catalyzed by the MCLs occurs as proposed for

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tabita, Fred Robert

    The overall objective of this project is to determine the mechanism by which a transcriptional activator protein affects CO 2 fixation (cbb) gene expression in nonsulfur purple photosynthetic bacteria, with special emphasis to Rhodobacter sphaeroides and with comparison to Rhodopseudomonas palustris. These studies culminated in several publications which indicated that additional regulators interact with the master regulator CbbR in both R. sphaeroides and R. palustris. In addition, the interactive control of the carbon and nitrogen assimilatory pathways was studied and unique regulatory signals were discovered.

  11. Monomeric RC-LH1 core complexes retard LH2 assembly and intracytoplasmic membrane formation in PufX-minus mutants of Rhodobacter sphaeroides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adams, Peter G.; Mothersole, David J.; Ng, Irene W.

    2011-01-01

    In the model photosynthetic bacterium Rhodobacter sphaeroides domains of light-harvesting 2 (LH2) complexes surround and interconnect dimeric reaction centre–light-harvesting 1–PufX (RC–LH1–PufX) ‘core’ complexes, forming extensive networks for energy transfer and trapping. These complexes are housed in spherical intracytoplasmic membranes (ICMs), which are assembled in a stepwise process where biosynthesis of core complexes tends to dominate the early stages of membrane invagination. The kinetics of LH2 assembly were measured in PufX mutants that assemble monomeric core complexes, as a consequence of either a twelve-residue N-terminal truncation of PufX (PufXΔ12) or the complete removal of PufX (PufX -). Lower rates of LH2more » assembly and retarded maturation of membrane invagination were observed for the larger and less curved ICM from the PufX - mutant, consistent with the proposition that local membrane curvature, initiated by arrays of bent RC–LH1–PufX dimers, creates a favourable environment for stable assembly of LH2 complexes. Transmission electron microscopy and high-resolution atomic force microscopy were used to examine ICM morphology and membrane protein organisation in these mutants. Some partitioning of core and LH2 complexes was observed in PufX - membranes, resulting in locally ordered clusters of monomeric RC–LH1 complexes. The distribution of core and LH2 complexes in the three types of membrane examined is consistent with previous models of membrane curvature and domain formation (Frese et al., 2008), which demonstrated that a combination of crowding and asymmetries in sizes and shapes of membrane protein complexes drives membrane organisation.« less

  12. Monomeric RC-LH1 core complexes retard LH2 assembly and intracytoplasmic membrane formation in PufX-minus mutants of Rhodobacter sphaeroides.

    PubMed

    Adams, Peter G; Mothersole, David J; Ng, Irene W; Olsen, John D; Hunter, C Neil

    2011-09-01

    In the model photosynthetic bacterium Rhodobacter sphaeroides domains of light-harvesting 2 (LH2) complexes surround and interconnect dimeric reaction centre-light-harvesting 1-PufX (RC-LH1-PufX) 'core' complexes, forming extensive networks for energy transfer and trapping. These complexes are housed in spherical intracytoplasmic membranes (ICMs), which are assembled in a stepwise process where biosynthesis of core complexes tends to dominate the early stages of membrane invagination. The kinetics of LH2 assembly were measured in PufX mutants that assemble monomeric core complexes, as a consequence of either a twelve-residue N-terminal truncation of PufX (PufXΔ12) or the complete removal of PufX (PufX(-)). Lower rates of LH2 assembly and retarded maturation of membrane invagination were observed for the larger and less curved ICM from the PufX(-) mutant, consistent with the proposition that local membrane curvature, initiated by arrays of bent RC-LH1-PufX dimers, creates a favourable environment for stable assembly of LH2 complexes. Transmission electron microscopy and high-resolution atomic force microscopy were used to examine ICM morphology and membrane protein organisation in these mutants. Some partitioning of core and LH2 complexes was observed in PufX(-) membranes, resulting in locally ordered clusters of monomeric RC-LH1 complexes. The distribution of core and LH2 complexes in the three types of membrane examined is consistent with previous models of membrane curvature and domain formation (Frese et al., 2008), which demonstrated that a combination of crowding and asymmetries in sizes and shapes of membrane protein complexes drives membrane organisation. 2011 Elsevier B.V. All rights reserved.

  13. Culturable Rhodobacter and Shewanella species are abundant in estuarine turbidity maxima of the Columbia River

    PubMed Central

    Bräuer, S. L.; Adams, C.; Kranzler, K.; Murphy, D.; Xu, M.; Zuber, P.; Simon, H. M.; Baptista, A. M.; Tebo, B. M.

    2017-01-01

    Summary Measurements of dissolved, ascorbate-reducible and total Mn by ICP-OES revealed significantly higher concentrations during estuarine turbidity maxima (ETM) events, compared with non-events in the Columbia River. Most probable number (MPN) counts of Mn-oxidizing or Mn-reducing heterotrophs were not statistically different from that of other heterotrophs (103–104 cells ml−1) when grown in defined media, but counts of Mn oxidizers were significantly lower in nutrient-rich medium (13 cells ml−1). MPN counts of Mn oxidizers were also significantly lower on Mn(III)-pyrophosphate and glycerol (21 cells ml−1). Large numbers of Rhodobacter spp. were cultured from dilutions of 10−2 to 10−5, and many of these were capable of Mn(III) oxidation. Up to c. 30% of the colonies tested LBB positive, and all 77 of the successfully sequenced LBB positive colonies (of varying morphology) yielded sequences related to Rhodobacter spp. qPCR indicated that a cluster of Rhodobacter isolates and closely related strains (95–99% identity) represented approximately 1–3% of the total Bacteria, consistent with clone library results. Copy numbers of SSU rRNA genes for either Rhodobacter spp. or Bacteria were four to eightfold greater during ETM events compared with non-events. Strains of a Shewanella sp. were retrieved from the highest dilutions (10−5) of Mn reducers, and were also capable of Mn oxidation. The SSU rRNA gene sequences from these strains shared a high identity score (98%) with sequences obtained in clone libraries. Our results support previous findings that ETMs are zones with high microbial activity. Results indicated that Shewanella and Rhodobacter species were present in environmentally relevant concentrations, and further demonstrated that a large proportion of culturable bacteria, including Shewanella and Rhodobacter spp., were capable of Mn cycling in vitro. PMID:20977571

  14. Role of PufX protein in photosynthetic growth of Rhodobacter sphaeroides. 1. PufX is required for efficient light-driven electron transfer and photophosphorylation under anaerobic conditions.

    PubMed

    Barz, W P; Francia, F; Venturoli, G; Melandri, B A; Verméglio, A; Oesterhelt, D

    1995-11-21

    The pufX gene is essential for photoheterotrophic growth of the purple bacterium Rhodobacter sphaeroides. In order to analyze the molecular function of the PufX membrane protein, we constructed a chromosomal pufX deletion mutant and phenotypically compared it to a pufX+ control strain and to two suppressor mutants which are able to grow photosynthetically in the absence of pufX. Using this genetic background, we confirmed that PufX is required for photoheterotrophic growth under anaerobic conditions, although all components of the photosynthetic apparatus were present in similar amounts in all strains investigated. We show that the deletion of PufX is not lethal for illuminated pufX- cells, suggesting that PufX is required for photosynthetic cell division. Since chromatophores isolated from the pufX- mutant were found to be unsealed vesicles, the role of PufX in photosynthetic energy transduction was studied in vivo. We show that PufX is essential for light-induced ATP synthesis (photophosphorylation) in anaerobically incubated cells. Measurements of absorption changes induced by a single turnover flash demonstrated that PufX is not required for electron flow through the reaction center and the cytochrome bc1 complex under anaerobic conditions. During prolonged illumination, however, PufX is essential for the generation of a sufficiently large membrane potential to allow photosynthetic growth. These in vivo results demonstrate that under anaerobic conditions PufX plays an essential role in facilitating effective interaction of the components of the photosynthetic apparatus.

  15. Evolutionary implications of phylogenetic analyses of the gene transfer agent (GTA) of Rhodobacter capsulatus.

    PubMed

    Lang, Andrew S; Taylor, Terumi A; Beatty, J Thomas

    2002-11-01

    The gene transfer agent (GTA) of the a-proteobacterium Rhodobacter capsulatus is a cell-controlled genetic exchange vector. Genes that encode the GTA structure are clustered in a 15-kb region of the R. capsulatus chromosome, and some of these genes show sequence similarity to known bacteriophage head and tail genes. However, the production of GTA is controlled at the level of transcription by a cellular two-component signal transduction system. This paper describes homologues of both the GTA structural gene cluster and the GTA regulatory genes in the a-proteobacteria Rhodopseudomonas palustris, Rhodobacter sphaeroides, Caulobacter crescentus, Agrobacterium tumefaciens and Brucella melitensis. These sequences were used in a phylogenetic tree approach to examine the evolutionary relationships of selected GTA proteins to these homologues and (pro)phage proteins, which was compared to a 16S rRNA tree. The data indicate that a GTA-like element was present in a single progenitor of the extant species that contain both GTA structural cluster and regulatory gene homologues. The evolutionary relationships of GTA structural proteins to (pro)phage proteins indicated by the phylogenetic tree patterns suggest a predominantly vertical descent of GTA-like sequences in the a-proteobacteria and little past gene exchange with (pro)phages.

  16. Role of B800 in carotenoid-bacteriochlorophyll energy and electron transfer in LH2 complexes from the purple bacterium Rhodobacter sphaeroides.

    PubMed

    Polívka, Tomas; Niedzwiedzki, Dariusz; Fuciman, Marcel; Sundström, Villy; Frank, Harry A

    2007-06-28

    The role of the B800 in energy and electron transfer in LH2 complexes has been studied using femtosecond time-resolved transient absorption spectroscopy. The B800 site was perturbed by application of lithium dodecyl sulfate (LDS), and comparison of treated and untreated LH2 complexes from Rhodobacter sphaeroides incorporating carotenoids neurosporene, spheroidene, and spheroidenone was used to explore the role of B800 in carotenoid to bacteriochlorophyll-a (BChla) energy transfer and carotenoid radical formation. Efficiencies of the S1-mediated energy transfer in the LDS-treated complexes were 86, 61, and 57% in the LH2 complexes containing neurosporene, spheroidene, and spheroidenone, respectively. Analysis of the carotenoid S1 lifetimes in solution, LDS-treated, and untreated LH2 complexes allowed determination of B800/B850 branching ratio in the S1-mediated energy transfer. It is shown that B800 is a major acceptor, as approximately 60% of the energy from the carotenoid S1 state is accepted by B800. This value is nearly independent of conjugation length of the carotenoid. In addition to its role in energy transfer, the B800 BChla is the only electron acceptor in the event of charge separation between carotenoid and BChla in LH2 complexes, which is demonstrated by prevention of carotenoid radical formation in the LDS-treated LH2 complexes. In the untreated complexes containing neurosporene and spheroidene, the carotenoid radical is formed with a time constant of 300-400 fs. Application of different excitation wavelengths and intensity dependence of the carotenoid radical formation showed that the carotenoid radical can be formed only after excitation of the S2 state of carotenoid, although the S2 state itself is not a precursor of the charge-separated state. Instead, either a hot S1 state or a charge-transfer state lying between S2 and S1 states of the carotenoid are discussed as potential precursors of the charge-separated state.

  17. Enhanced photo-fermentative H2 production using Rhodobacter sphaeroides by ethanol addition and analysis of soluble microbial products

    PubMed Central

    2014-01-01

    Background Biological fermentation routes can provide an environmentally friendly way of producing H2 since they use renewable biomass as feedstock and proceed under ambient temperature and pressure. In particular, photo-fermentation has superior properties in terms of achieving high H2 yield through complete degradation of substrates. However, long-term H2 production data with stable performance is limited, and this data is essential for practical applications. In the present work, continuous photo-fermentative H2 production from lactate was attempted using the purple non-sulfur bacterium, Rhodobacter sphaeroides KD131. As a gradual drop in H2 production was observed, we attempted to add ethanol (0.2% v/v) to the medium. Results As continuous operation went on, H2 production was not sustained and showed a negligible H2 yield (< 0.5 mol H2/mol lactateadded) within two weeks. Electron balance analysis showed that the reason for the gradual drop in H2 production was ascribed to the increase in production of soluble microbial products (SMPs). To see the possible effect of ethanol addition, a batch test was first conducted. The presence of ethanol significantly increased the H2 yield from 1.15 to 2.20 mol H2/mol lactateadded, by suppressing the production of SMPs. The analysis of SMPs by size exclusion chromatography showed that, in the later period of fermentation, more than half of the low molecular weight SMPs (< 1 kDa) were consumed and used for H2 production when ethanol had been added, while the concentration of SMPs continuously increased in the absence of ethanol. It was found that the addition of ethanol facilitated the utilization of reducing power, resulting in an increase in the cellular levels of NAD+ and NADP+. In continuous operation, ethanol addition was effective, such that stable H2 production was attained with an H2 yield of 2.5 mol H2/mol lactateadded. Less than 15% of substrate electrons were used for SMP production, whereas 35% were used in

  18. Use of transcriptomic data for extending a model of the AppA/PpsR system in Rhodobacter sphaeroides.

    PubMed

    Pandey, Rakesh; Armitage, Judith P; Wadhams, George H

    2017-12-28

    Photosynthetic (PS) gene expression in Rhodobacter sphaeroides is regulated in response to changes in light and redox conditions mainly by PrrB/A, FnrL and AppA/PpsR systems. The PrrB/A and FnrL systems activate the expression of them under anaerobic conditions while the AppA/PpsR system represses them under aerobic conditions. Recently, two mathematical models have been developed for the AppA/PpsR system and demonstrated how the interaction between AppA and PpsR could lead to a phenotype in which PS genes are repressed under semi-aerobic conditions. These models have also predicted that the transition from aerobic to anaerobic growth mode could occur via a bistable regime. However, they lack experimentally quantifiable inputs and outputs. Here, we extend one of them to include such quantities and combine all relevant micro-array data publically available for a PS gene of this bacterium and use that to parameterise the model. In addition, we hypothesise that the AppA/PpsR system alone might account for the observed trend of PS gene expression under semi-aerobic conditions. Our extended model of the AppA/PpsR system includes the biological input of atmospheric oxygen concentration and an output of photosynthetic gene expression. Following our hypothesis that the AppA/PpsR system alone is sufficient to describe the overall trend of PS gene expression we parameterise the model and suggest that the rate of AppA reduction in vivo should be faster than its oxidation. Also, we show that despite both the reduced and oxidised forms of PpsR binding to the PS gene promoters in vitro, binding of the oxidised form as a repressor alone is sufficient to reproduce the observed PS gene expression pattern. Finally, the combination of model parameters which fit the biological data well are broadly consistent with those which were previously determined to be required for the system to show (i) the repression of PS genes under semi-aerobic conditions, and (ii) bistability. We found

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Norris, J.R.; Budil, D.E.; Gast, P.

    The orientation of the principal axes of the primary electron donor triplet state measured in single crystals of photosynthetic reaction centers is compared to the x-ray structures of the bacteria Rhodobacter (Rb.) sphaeroides R-26 and Rhodopseudomonas (Rps.) viridis. The primary donor of Rps. viridis is significantly different from that of Rb. sphaeroides. The measured directions of the axes indicate that triplet excitation is almost completely localized on the L-subunit half of the dimer in Rps. viridis but is more symmetrically distributed on the dimeric donor in Rb. sphaeroides R-26. The large reduction of the zero field splitting parameters relative tomore » monomeric bacteriochlorophyll triplet in vitro suggests significant participation of asymmetrical charge transfer electronic configurations in the special pair triplet state of both organisms.« less

  20. Mutation-Induced Changes in the Protein Environment and Site Energies in the (M)L214G Mutant of the Rhodobacter sphaeroides Bacterial Reaction Center.

    PubMed

    Jankowiak, Ryszard; Rancova, Olga; Chen, Jinhai; Kell, Adam; Saer, Rafael G; Beatty, J Thomas; Abramavicius, Darius

    2016-08-18

    This work focuses on the low-temperature (5 K) photochemical (transient) hole-burned (HB) spectra within the P870 absorption band, and their theoretical analysis, for the (M)L214G mutant of the photosynthetic Rhodobacter sphaeroides bacterial reaction center (bRC). To provide insight into system-bath interactions of the bacteriochlorophyll a (BChl a) special pair, i.e., P870, in the mutated bRC, the optical line shape function for the P870 band is calculated numerically. On the basis of the modeling studies, we demonstrate that (M)L214G mutation leads to a heterogeneous population of bRCs with modified (increased) total electron-phonon coupling strength of the special pair BChl a and larger inhomogeneous broadening. Specifically, we show that after mutation in the (M)L214G bRC a large fraction (∼50%) of the bacteriopheophytin (HA) chromophores shifts red and the 800 nm absorption band broadens, while the remaining fraction of HA cofactors retains nearly the same site energy as HA in the wild-type bRC. Modeling using these two subpopulations allowed for fits of the absorption and nonresonant (transient) HB spectra of the mutant bRC in the charge neutral, oxidized, and charge-separated states using the Frenkel exciton Hamiltonian, providing new insight into the mutant's complex electronic structure. Although the average (M)L214G mutant quantum efficiency of P(+)QA(-) state formation seems to be altered in comparison with the wild-type bRC, the average electron transfer time (measured via resonant transient HB spectra within the P870 band) was not affected. Thus, mutation in the vicinity of the electron acceptor (HA) does not tune the charge separation dynamics. Finally, quenching of the (M)L214G mutant excited states by P(+) is addressed by persistent HB spectra burned within the B band in chemically oxidized samples.

  1. Role of Rhodobacter sphaeroides photosynthetic reaction center residue M214 in the composition, absorbance properties, and conformations of H(A) and B(A) cofactors.

    PubMed

    Saer, Rafael G; Hardjasa, Amelia; Rosell, Federico I; Mauk, A Grant; Murphy, Michael E P; Beatty, J Thomas

    2013-04-02

    In the native reaction center (RC) of Rhodobacter sphaeroides, the side chain of (M)L214 projects orthogonally toward the plane and into the center of the A branch bacteriopheophytin (BPhe) macrocycle. The possibility that this side chain is responsible for the dechelation of the central Mg(2+) of bacteriochlorophyll (BChl) was investigated by replacement of (M)214 with residues possessing small, nonpolar side chains that can neither coordinate nor block access to the central metal ion. The (M)L214 side chain was also replaced with Cys, Gln, and Asn to evaluate further the requirements for assembly of the RC with BChl in the HA pocket. Photoheterotrophic growth studies showed no difference in growth rates of the (M)214 nonpolar mutants at a low light intensity, but the growth of the amide-containing mutants was impaired. The absorbance spectra of purified RCs indicated that although absorbance changes are associated with the nonpolar mutations, the nonpolar mutant RC pigment compositions are the same as in the wild-type protein. Crystal structures of the (M)L214G, (M)L214A, and (M)L214N mutants were determined (determined to 2.2-2.85 Å resolution), confirming the presence of BPhe in the HA pocket and revealing alternative conformations of the phytyl tail of the accessory BChl in the BA site of these nonpolar mutants. Our results demonstrate that (i) BChl is converted to BPhe in a manner independent of the aliphatic side chain length of nonpolar residues replacing (M)214, (ii) BChl replaces BPhe if residue (M)214 has an amide-bearing side chain, (iii) (M)214 side chains containing sulfur are not sufficient to bind BChl in the HA pocket, and (iv) the (M)214 side chain influences the conformation of the phytyl tail of the BA BChl.

  2. Purple non-sulfur photosynthetic bacteria monitor environmental stresses.

    PubMed

    Kis, Mariann; Sipka, Gábor; Asztalos, Emese; Rázga, Zsolt; Maróti, Péter

    2015-10-01

    Heavy metal ion pollution and oxygen deficiency are major environmental risks for microorganisms in aqueous habitat. The potential of purple non-sulfur photosynthetic bacteria for biomonitoring and bioremediation was assessed by investigating the photosynthetic capacity in heavy metal contaminated environments. Cultures of bacterial strains Rhodobacter sphaeroides, Rhodospirillum rubrum and Rubrivivax gelatinosus were treated with heavy metal ions in micromolar (Hg(2+)), submillimolar (Cr(6+)) and millimolar (Pb(2+)) concentration ranges. Functional assays (flash-induced absorption changes and bacteriochlorophyll fluorescence induction) and electron micrographs were taken to specify the harmful effects of pollution and to correlate to morphological changes of the membrane. The bacterial strains and functional tests showed differentiated responses to environmental stresses, revealing that diverse mechanisms of tolerance and/or resistance are involved. The microorganisms were vulnerable to the prompt effect of Pb(2+), showed weak tolerance to Hg(2+) and proved to be tolerant to Cr(6+). The reaction center controlled electron transfer in Rvx. gelatinosus demonstrated the highest degree of resistance against heavy metal exposure. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elkabbani, Ossama; Chang, Chonghwan; Tiede, D.

    Photosynthetic reaction centers (RCs) from the photosynthetic bacteria Rhodobacter sphaeroides and Rhodopseudomonas viridis are protein complexes closely related in both structure and function. The structure of the Rps. viridis RC was used to determine the structure of the RC from Rb. sphaeroides. Small but meaningful differences between the positions of the helices and the cofactors in the two complexes were identified. The distances between helices A{sub L} adn A{sub M}, between B{sub L} and B{sub M}, and between bacteriopheophytins BP{sub L} and BP{sub M} are significantly shorter in Rps. viridis than they are in Rb. sphaeroides RCs. There are amore » number of differences in the amino acid residues that surround the cofactors; some of these residues form hydrogen bonds with the cofactors. Differences in chemical properties of the two RCs.« less

  4. Incorporation of spheroidene and spheroidenone into light-harvesting complexes from purple sulfur bacteria.

    PubMed

    Ashikhmin, Aleksandr; Makhneva, Zoya; Bolshakov, Maksim; Moskalenko, Andrey

    2017-05-01

    Spheroidene and spheroidenone from the non-sulfur bacterium Rhodobacter (Rba.) sphaeroides were incorporated into diphenylamine (DPA) LH1-RC and LH2 complexes from sulfur bacteria Allochromatium (Alc.) minutissimum and Ectothiorhodospira (Ect.) haloalkaliphila in which carotenoid (Car) biosynthesis was inhibited by ~95%. A series of biochemical characteristics of the modified LH2 complexes was studied (electrophoretic mobility, absorption and CD spectra, Car composition, Car-to-BChl energy transfer and thermal stability). It was found that the electrophoretic mobility of the complexes with incorporated Cars did not change compared to that of the control and DPA-complexes, indicating the absence of any significant change in the structure of LH complexes upon DPA-treatment and subsequent incorporation of Cars. The analysis of fluorescence excitation spectra of the spheroidene-incorporated LH2 complex (LH2:sph) and the spheroidenone-incorporated LH2 complex (LH2:sph-ne) showed that spheroidene and spheroidenone exhibited relatively low efficiencies of energy transfer to BChl, when incorporated into the LH2 DPA-complexes from Alc. minutissimum and Ect. haloalkaliphila, although, they showed high efficiencies, being in their natural state in the LH2 complexes from Rba. sphaeroides. A significant increase in thermostability observed for the LH2:sph and LH2:sph-ne complexes with respect to the LH2 DPA-complexes indicated that the two incorporated Cars stabilized the structure of the LH2 complexes. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Gene transfer agent (GTA) genes reveal diverse and dynamic Roseobacter and Rhodobacter populations in the Chesapeake Bay.

    PubMed

    Zhao, Yanlin; Wang, Kui; Budinoff, Charles; Buchan, Alison; Lang, Andrew; Jiao, Nianzhi; Chen, Feng

    2009-03-01

    Within the bacterial class Alphaproteobacteria, the order Rhodobacterales contains the Roseobacter and Rhodobacter clades. Roseobacters are abundant and play important biogeochemical roles in marine environments. Roseobacter and Rhodobacter genomes contain a conserved gene transfer agent (GTA) gene cluster, and GTA-mediated gene transfer has been observed in these groups of bacteria. In this study, we investigated the genetic diversity of these two groups in Chesapeake Bay surface waters using a specific PCR primer set targeting the conserved Rhodobacterales GTA major capsid protein gene (g5). The g5 gene was successfully amplified from 26 Rhodobacterales isolates and the bay microbial communities using this primer set. Four g5 clone libraries were constructed from microbial assemblages representing different regions and seasons of the bay and yielded diverse sequences. In total, 12 distinct g5 clusters could be identified among 158 Chesapeake Bay clones, 11 fall within the Roseobacter clade, and one falls in the Rhodobacter clade. The vast majority of the clusters (10 out of 12) lack cultivated representatives. The composition of g5 sequences varied dramatically along the bay during the wintertime, and a distinct Roseobacter population composition between winter and summer was observed. The congruence between g5 and 16S rRNA gene phylogenies indicates that g5 may serve as a useful genetic marker to investigate diversity and abundance of Roseobacter and Rhodobacter in natural environments. The presence of the g5 gene in the natural populations of Roseobacter and Rhodobacter implies that genetic exchange through GTA transduction could be an important mechanism for maintaining the metabolic flexibility of these groups of bacteria.

  6. Engineered photoproteins that give rise to photosynthetically-incompetent bacteria are effective as photovoltaic materials for biohybrid photoelectrochemical cells.

    PubMed

    Liu, Juntai; Friebe, Vincent M; Swainsbury, David J K; Crouch, Lucy I; Szabo, David A; Frese, Raoul N; Jones, Michael R

    2018-04-17

    Reaction centre/light harvesting proteins such as the RCLH1X complex from Rhodobacter sphaeroides carry out highly quantum-efficient conversion of solar energy through ultrafast energy transfer and charge separation, and these pigment-proteins have been incorporated into biohybrid photoelectrochemical cells for a variety of applications. In this work we demonstrate that, despite not being able to support normal photosynthetic growth of Rhodobacter sphaeroides, an engineered variant of this RCLH1X complex lacking the PufX protein and with an enlarged light harvesting antenna is unimpaired in its capacity for photocurrent generation in two types of bio-photoelectrochemical cells. Removal of PufX also did not impair the ability of the RCLH1 complex to act as an acceptor of energy from synthetic light harvesting quantum dots. Unexpectedly, the removal of PufX led to a marked improvement in the overall stability of the RCLH1 complex under heat stress. We conclude that PufX-deficient RCLH1 complexes are fully functional in solar energy conversion in a device setting and that their enhanced structural stability could make them a preferred choice over their native PufX-containing counterpart. Our findings on the competence of RCLH1 complexes for light energy conversion in vitro are discussed with reference to the reason why these PufX-deficient proteins are not capable of light energy conversion in vivo.

  7. Engineered photoproteins that give rise to photosynthetically-incompetent bacteria are effective as photovoltaic materials for biohybrid photoelectrochemical cells

    PubMed Central

    Liu, Juntai; Friebe, Vincent M.; Swainsbury, David J. K.; Crouch, Lucy I.; Szabo, David A.; Frese, Raoul N.

    2018-01-01

    Reaction centre/light harvesting proteins such as the RCLH1X complex from Rhodobacter sphaeroides carry out highly quantum-efficient conversion of solar energy through ultrafast energy transfer and charge separation, and these pigment-proteins have been incorporated into biohybrid photoelectrochemical cells for a variety of applications. In this work we demonstrate that, despite not being able to support normal photosynthetic growth of Rhodobacter sphaeroides, an engineered variant of this RCLH1X complex lacking the PufX protein and with an enlarged light harvesting antenna is unimpaired in its capacity for photocurrent generation in two types of bio-photoelectrochemical cells. Removal of PufX also did not impair the ability of the RCLH1 complex to act as an acceptor of energy from synthetic light harvesting quantum dots. Unexpectedly, the removal of PufX led to a marked improvement in the overall stability of the RCLH1 complex under heat stress. We conclude that PufX-deficient RCLH1 complexes are fully functional in solar energy conversion in a device setting and that their enhanced structural stability could make them a preferred choice over their native PufX-containing counterpart. Our findings on the competence of RCLH1 complexes for light energy conversion in vitro are discussed with reference to the reason why these PufX-deficient proteins are not capable of light energy conversion in vivo. PMID:29364305

  8. Response kinetics of tethered bacteria to stepwise changes in nutrient concentration.

    PubMed

    Chernova, Anna A; Armitage, Judith P; Packer, Helen L; Maini, Philip K

    2003-09-01

    We examined the changes in swimming behaviour of the bacterium Rhodobacter sphaeroides in response to stepwise changes in a nutrient (propionate), following the pre-stimulus motion, the initial response and the adaptation to the sustained concentration of the chemical. This was carried out by tethering motile cells by their flagella to glass slides and following the rotational behaviour of their cell bodies in response to the nutrient change. Computerised motion analysis was used to analyse the behaviour. Distributions of run and stop times were obtained from rotation data for tethered cells. Exponential and Weibull fits for these distributions, and variability in individual responses are discussed. In terms of parameters derived from the run and stop time distributions, we compare the responses to stepwise changes in the nutrient concentration and the long-term behaviour of 84 cells under 12 propionate concentration levels from 1 nM to 25 mM. We discuss traditional assumptions for the random walk approximation to bacterial swimming and compare them with the observed R. sphaeroides motile behaviour.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thompson, M.A.; Zerner, M.C.

    Photosynthetic electron transfer is arguably the most important series of chemical transformations for life on this planet. In recent years the structure of the reaction centers (RC) from the photosynthetic bacteria Rhodopseudomonas viridis and Rhodobacter sphaeroides have been presented. On the basis of these structures, several mechanisms have been proposed to explain the primary electron-transfer event with as yet no consensus. The authors report here INDO/S calculations of the excited states of a model of the RC of Rps. viridis in both the absence and presence of a polarizable medium.

  10. Communication: Coherences observed in vivo in photosynthetic bacteria using two-dimensional electronic spectroscopy

    NASA Astrophysics Data System (ADS)

    Dahlberg, Peter D.; Norris, Graham J.; Wang, Cheng; Viswanathan, Subha; Singh, Ved P.; Engel, Gregory S.

    2015-09-01

    Energy transfer through large disordered antenna networks in photosynthetic organisms can occur with a quantum efficiency of nearly 100%. This energy transfer is facilitated by the electronic structure of the photosynthetic antennae as well as interactions between electronic states and the surrounding environment. Coherences in time-domain spectroscopy provide a fine probe of how a system interacts with its surroundings. In two-dimensional electronic spectroscopy, coherences can appear on both the ground and excited state surfaces revealing detailed information regarding electronic structure, system-bath coupling, energy transfer, and energetic coupling in complex chemical systems. Numerous studies have revealed coherences in isolated photosynthetic pigment-protein complexes, but these coherences have not been observed in vivo due to the small amplitude of these signals and the intense scatter from whole cells. Here, we present data acquired using ultrafast video-acquisition gradient-assisted photon echo spectroscopy to observe quantum beating signals from coherences in vivo. Experiments were conducted on isolated light harvesting complex II (LH2) from Rhodobacter sphaeroides, whole cells of R. sphaeroides, and whole cells of R. sphaeroides grown in 30% deuterated media. A vibronic coherence was observed following laser excitation at ambient temperature between the B850 and the B850∗ states of LH2 in each of the 3 samples with a lifetime of ˜40-60 fs.

  11. Isolation and characterization of heterotrophic bacteria able to grow aerobically with quaternary ammonium alcohols as sole source of carbon and nitrogen.

    PubMed

    Kaech, Andres; Vallotton, Nathalie; Egli, Thomas

    2005-04-01

    The quaternary ammonium alcohols (QAAs) 2,3-dihydroxypropyl-trimethyl-ammonium (TM), dimethyl-diethanol-ammonium (DM) and methyl-triethanol-ammonium (MM) are hydrolysis products of their parent esterquat surfactants, which are widely used as softeners in fabric care. We isolated several bacteria growing with QAAs as the sole source of carbon and nitrogen. The strains were compared with a previously isolated TM-degrading bacterium, which was identified as a representative of the species Pseudomonas putida (Syst. Appl. Microbiol. 24 (2001) 252). Two bacteria were isolated with DM, referred to as strains DM 1 and DM 2, respectively. Based on 16S-rDNA analysis, they provided 97% (DM 1) and 98% (DM 2) identities to the closest related strain Zoogloea ramigera Itzigsohn 1868AL. Both strains were long, slim, motile rods but only DM 1 showed the floc forming activity, which is typical for representatives of the genus Zoogloea. Using MM we isolated a Gram-negative, non-motile rod referred to as strain MM 1. The 16S-rDNA sequence of the isolated bacterium revealed 94% identities (best match) to Rhodobacter sphaeroides only. The strains MM 1 and DM 1 exclusively grew with the QAA which was used for their isolation. DM 2 was also utilizing TM as sole source of carbon and nitrogen. However, all of the isolated bacteria were growing with the natural and structurally related compound choline.

  12. Different Functions of Phylogenetically Distinct Bacterial Complex I Isozymes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spero, Melanie A.; Brickner, Joshua R.; Mollet, Jordan T.

    NADH:quinone oxidoreductase (complex I) is a bioenergetic enzyme that transfers electrons from NADH to quinone, conserving the energy of this reaction by contributing to the proton motive force. While the importance of NADH oxidation to mitochondrial aerobic respiration is well documented, the contribution of complex I to bacterial electron transport chains has been tested in only a few species. Here, we analyze the function of two phylogenetically distinct complex I isozymes in Rhodobacter sphaeroides, an alphaproteobacterium that contains well-characterized electron transport chains. We found that R. sphaeroides complex I activity is important for aerobic respiration and required for anaerobic dimethylmore » sulfoxide (DMSO) respiration (in the absence of light), photoautotrophic growth, and photoheterotrophic growth (in the absence of an external electron acceptor). Our data also provide insight into the functions of the phylogenetically distinct R. sphaeroides complex I enzymes (complex I A and complex I E) in maintaining a cellular redox state during photoheterotrophic growth. We propose that the function of each isozyme during photoheterotrophic growth is either NADH synthesis (complex I A) or NADH oxidation (complex I E). The canonical alphaproteobacterial complex I isozyme (complex I A) was also shown to be important for routing electrons to nitrogenase-mediated H 2 production, while the horizontally acquired enzyme (complex I E) was dispensable in this process. Unlike the singular role of complex I in mitochondria, we predict that the phylogenetically distinct complex I enzymes found across bacterial species have evolved to enhance the functions of their respective electron transport chains. Cells use a proton motive force (PMF), NADH, and ATP to support numerous processes. In mitochondria, complex I uses NADH oxidation to generate a PMF, which can drive ATP synthesis. This study analyzed the function of complex I in bacteria, which contain more

  13. Different Functions of Phylogenetically Distinct Bacterial Complex I Isozymes

    DOE PAGES

    Spero, Melanie A.; Brickner, Joshua R.; Mollet, Jordan T.; ...

    2016-02-01

    NADH:quinone oxidoreductase (complex I) is a bioenergetic enzyme that transfers electrons from NADH to quinone, conserving the energy of this reaction by contributing to the proton motive force. While the importance of NADH oxidation to mitochondrial aerobic respiration is well documented, the contribution of complex I to bacterial electron transport chains has been tested in only a few species. Here, we analyze the function of two phylogenetically distinct complex I isozymes in Rhodobacter sphaeroides, an alphaproteobacterium that contains well-characterized electron transport chains. We found that R. sphaeroides complex I activity is important for aerobic respiration and required for anaerobic dimethylmore » sulfoxide (DMSO) respiration (in the absence of light), photoautotrophic growth, and photoheterotrophic growth (in the absence of an external electron acceptor). Our data also provide insight into the functions of the phylogenetically distinct R. sphaeroides complex I enzymes (complex I A and complex I E) in maintaining a cellular redox state during photoheterotrophic growth. We propose that the function of each isozyme during photoheterotrophic growth is either NADH synthesis (complex I A) or NADH oxidation (complex I E). The canonical alphaproteobacterial complex I isozyme (complex I A) was also shown to be important for routing electrons to nitrogenase-mediated H 2 production, while the horizontally acquired enzyme (complex I E) was dispensable in this process. Unlike the singular role of complex I in mitochondria, we predict that the phylogenetically distinct complex I enzymes found across bacterial species have evolved to enhance the functions of their respective electron transport chains. Cells use a proton motive force (PMF), NADH, and ATP to support numerous processes. In mitochondria, complex I uses NADH oxidation to generate a PMF, which can drive ATP synthesis. This study analyzed the function of complex I in bacteria, which contain more

  14. The Flagellar Protein FliL Is Essential for Swimming in Rhodobacter sphaeroides▿ †

    PubMed Central

    Suaste-Olmos, Fernando; Domenzain, Clelia; Mireles-Rodríguez, José Cruz; Poggio, Sebastian; Osorio, Aurora; Dreyfus, Georges; Camarena, Laura

    2010-01-01

    In this work we characterize the function of the flagellar protein FliL in Rhodobacter sphaeroides. Our results show that FliL is essential for motility in this bacterium and that in its absence flagellar rotation is highly impaired. A green fluorescent protein (GFP)-FliL fusion forms polar and lateral fluorescent foci that show different spatial dynamics. The presence of these foci is dependent on the expression of the flagellar genes controlled by the master regulator FleQ, suggesting that additional components of the flagellar regulon are required for the proper localization of GFP-FliL. Eight independent pseudorevertants were isolated from the fliL mutant strain. In each of these strains a single nucleotide change in motB was identified. The eight mutations affected only three residues located on the periplasmic side of MotB. Swimming of the suppressor mutants was not affected by the presence of the wild-type fliL allele. Pulldown and yeast two-hybrid assays showed that that the periplasmic domain of FliL is able to interact with itself but not with the periplasmic domain of MotB. From these results we propose that FliL could participate in the coupling of MotB with the flagellar rotor in an indirect fashion. PMID:20889747

  15. Soluble Variants of Rhodobacter capsulatus Membrane-anchored Cytochrome cy Are Efficient Photosynthetic Electron Carriers*

    PubMed Central

    Öztürk, Yavuz; Lee, Dong-Woo; Mandaci, Sevnur; Osyczka, Artur; Prince, Roger C.; Daldal, Fevzi

    2008-01-01

    Photosynthetic (Ps) electron transport pathways often contain multiple electron carriers with overlapping functions. Here we focus on two c-type cytochromes (cyt) in facultative phototrophic bacteria of the Rhodobacter genus: the diffusible cyt c2 and the membrane-anchored cyt cy. In species like R. capsulatus, cyt cy functions in both Ps and respiratory electron transport chains, whereas in other species like R. sphaeroides, it does so only in respiration. The molecular bases of this difference was investigated by producing a soluble variant of cyt cy (S-cy), by fusing genetically the cyt c2 signal sequence to the cyt c domain of cyt cy. This novel electron carrier was unable to support the Ps growth of R. capsulatus. However, strains harboring cyt S-cy regained Ps growth ability by acquiring mutations in its cyt c domain. They produced cyt S-cy variants at amounts comparable with that of cyt c2, and conferred Ps growth. Chemical titration indicated that the redox midpoint potential of cyt S-cy was about 340 mV, similar to that of cyts c2 or cy. Remarkably, electron transfer kinetics from the cyt bc1 complex to the photochemical reaction center (RC) mediated by cyt S-cy was distinct from those seen with the cyt c2 or cyt cy. The kinetics exhibited a pronounced slow phase, suggesting that cyt S-cy interacted with the RC less tightly than cyt c2. Comparison of structural models of cyts c2 and S-cy revealed that several of the amino acid residues implicated in long-range electrostatic interactions promoting binding of cyt c2 to the RC are not conserved in cyt cy, whereas those supporting short-range hydrophobic interactions are conserved. These findings indicated that attaching electron carrier cytochromes to the membrane allowed them to weaken their interactions with their partners so that they could accommodate more rapid multiple turnovers. PMID:18343817

  16. PucC and LhaA direct efficient assembly of the light‐harvesting complexes in Rhodobacter sphaeroides

    PubMed Central

    Mothersole, David J.; Jackson, Philip J.; Vasilev, Cvetelin; Tucker, Jaimey D.; Brindley, Amanda A.; Dickman, Mark J.

    2015-01-01

    Summary The mature architecture of the photosynthetic membrane of the purple phototroph R hodobacter sphaeroides has been characterised to a level where an atomic‐level membrane model is available, but the roles of the putative assembly proteins LhaA and PucC in establishing this architecture are unknown. Here we investigate the assembly of light‐harvesting LH2 and reaction centre‐light‐harvesting1‐PufX (RC‐LH1‐PufX) photosystem complexes using spectroscopy, pull‐downs, native gel electrophoresis, quantitative mass spectrometry and fluorescence lifetime microscopy to characterise a series of lha A and puc C mutants. LhaA and PucC are important for specific assembly of LH1 or LH2 complexes, respectively, but they are not essential; the few LH1 subunits found in Δlha A mutants assemble to form normal RC‐LH1‐PufX core complexes showing that, once initiated, LH1 assembly round the RC is cooperative and proceeds to completion. LhaA and PucC form oligomers at sites of initiation of membrane invagination; LhaA associates with RCs, bacteriochlorophyll synthase (BchG), the protein translocase subunit YajC and the YidC membrane protein insertase. These associations within membrane nanodomains likely maximise interactions between pigments newly arriving from BchG and nascent proteins within the SecYEG‐SecDF‐YajC‐YidC assembly machinery, thereby co‐ordinating pigment delivery, the co‐translational insertion of LH polypeptides and their folding and assembly to form photosynthetic complexes. PMID:26419219

  17. Biosynthesis of Chlorophyll a in a Purple Bacterial Phototroph and Assembly into a Plant Chlorophyll-Protein Complex.

    PubMed

    Hitchcock, Andrew; Jackson, Philip J; Chidgey, Jack W; Dickman, Mark J; Hunter, C Neil; Canniffe, Daniel P

    2016-09-16

    Improvements to photosynthetic efficiency could be achieved by manipulating pigment biosynthetic pathways of photosynthetic organisms in order to increase the spectral coverage for light absorption. The development of organisms that can produce both bacteriochlorophylls and chlorophylls is one way to achieve this aim, and accordingly we have engineered the bacteriochlorophyll-utilizing anoxygenic phototroph Rhodobacter sphaeroides to make chlorophyll a. Bacteriochlorophyll and chlorophyll share a common biosynthetic pathway up to the precursor chlorophyllide. Deletion of genes responsible for the bacteriochlorophyll-specific modifications of chlorophyllide and replacement of the native bacteriochlorophyll synthase with a cyanobacterial chlorophyll synthase resulted in the production of chlorophyll a. This pigment could be assembled in vivo into the plant water-soluble chlorophyll protein, heterologously produced in Rhodobacter sphaeroides, which represents a proof-of-principle for the engineering of novel antenna complexes that enhance the spectral range of photosynthesis.

  18. Role of the PufX protein in photosynthetic growth of Rhodobacter sphaeroides. 2. PufX is required for efficient ubiquinone/ubiquinol exchange between the reaction center QB site and the cytochrome bc1 complex.

    PubMed

    Barz, W P; Verméglio, A; Francia, F; Venturoli, G; Melandri, B A; Oesterhelt, D

    1995-11-21

    The PufX membrane protein is essential for photosynthetic growth of Rhodobacter sphaeroides because it is required for multiple-turnover electron transfer under anaerobic conditions [see accompanying article; Barz, W. P., Francia, F., Venturoli, G., Melandri, B. A., Verméglio, A., & Oesterhelt, D. (1995) Biochemistry 34, 15235-15247]. In order to understand the molecular role of PufX, light-induced absorption spectroscopy was performed using a pufX- mutant, a pufX+ strain, and two suppressor mutants. We show that the reaction center (RC) requires PufX for its functionality under different redox conditions than the cytochrome bc1 complex: When the kinetics of flash-induced reduction of cytochrome b561 were monitored in chromatophores, we observed a requirement of PufX for turnover of the cytochrome bc1 complex only at high redox potential (Eh > 140 mV), suggesting a function of PufX in lateral ubiquinol transfer from the RC. In contrast, PufX is required for multiple turnover of the RC only under reducing conditions: When the Q pool was partially oxidized in vivo using oxygen or electron acceptors like dimethyl sulfoxide or trimethylamine N-oxide, the deletion of PufX had no effect on light-driven electron flow through the RC. Flash train experiments under anaerobic in vivo conditions revealed that RC photochemistry does not depend on PufX for the first two flash excitations. Following the third and subsequent flashes, however, efficient charge separation requires PufX, indicating an important role of PufX for fast Q/QH2 exchange at the QB site of the RC. We show that the Q/QH2 exchange rate is reduced approximately 500-fold by the deletion of PufX when the Q pool is nearly completely reduced, demonstrating an essential role of PufX for the access of ubiquinone to the QB site. The fast ubiquinone/ubiquinol exchange is partially restored by suppressor mutations altering the macromolecular antenna structure. These results suggest an indirect role of PufX in

  19. Harnessing Solar Power: Novel Strategies for Rational Design of Photocatalysts and Photovoltaic Materials

    DTIC Science & Technology

    2015-09-01

    Complex 2 ( LH2 ) of Rhodobacter sphaeroides with Two- Dimensional Spectroscopy” J. Chem. Phys. 139, 155101 2013. A.F. Fidler, V.P. Singh, P.D. Long...P.D. Dahlberg, and G.S. Engel, “Time Scales of Coherent Dynamics in the Light-Harvesting Complex 2 ( LH2 ) of Rhodobacter sphaeroides” J. Phys. Chem...Spectroscopy of the Light-harvesting Complex LH2 ” Opt. Lett. 36:9 1665-1667 2011 E. Harel, A.F. Fidler, and G.S. Engel, “Single-Shot GRadient

  20. Interaction and Synergism of Microbial Fuel Cell Bacteria within Methanogenesis

    NASA Technical Reports Server (NTRS)

    Klaus, David

    2004-01-01

    Biological hydrogen production from waste biomass has both terrestrial and Martian advanced life support applications. On earth, biological hydrogen production is being explored as a greenhouse neutral form of clean and efficient energy. In a permanently enclosed space habitat, carbon loop closure is required to reduce mission costs. Plants are grown to revitalize oxygen supply and are consumed by habitat inhabitants. Unharvested portions must then be recycled for reuse in the habitat. Several biological degradation techniques exist, but one process, biophotolysis, can be used to produce hydrogen from inedible plant biomass. This process is two-stage, with one stage using dark fermentation to convert plant wastes into organic acids. The second stage, photofermentation, uses photoheterotrophic purple non-sulfur bacteria with the addition of light to turn the organic acids into hydrogen and carbon dioxide. Such a system can prove useful as a co-generation scheme, providing some of the energy needed to power a larger primary carbon recovery system, such as composting. Since butyrate is expected as one of the major inputs into photofermentation, a characterization study was conducted with the bacterium Rhodobacter sphaeroides SCJ, a novel photoheterotrophic non-sulfur purple bacteria, to examine hydrogen production performance at 10 mM-100 mM butyrate concentrations. As butyrate levels increased, hydrogen production increased up to 25 mM, and then decreased and ceased by 100 mM. Additionally, lag phase increased with butyrate concentration, possibly indicating some product inhibition. Maximal substrate conversion efficiency was 8.0%; maximal light efficiency was 0.89%; and maximal hydrogen production rate was 7.7 Umol/mg/cdw/hr (173 ul/mg cdw/hr). These values were either consistent or lower than expected from literature.

  1. Structure and function of cytochrome c2 in electron transfer complexes with the photosynthetic reaction center of Rhodobacter sphaeroides: optical linear dichroism and EPR.

    PubMed

    Drepper, F; Mathis, P

    1997-02-11

    The photosynthetic reaction center (RC) and its secondary electron donor the water-soluble cytochrome (cyt) c2 from the purple bacterium Rhodobacter sphaeroides have been used in cross-linked and non-cross-linked complexes, oriented in compressed gels or partially dried multilayers, to study the respective orientation of the primary donor P (BChl dimer) and of cyt c2. Three methods were used: (i) Polarized optical absorption spectra at 295 and 10 K were measured and the linear dichroism of the two individual transitions (Qx, Qy), which are nearly degenerate within the alpha-band of reduced cyt c2, was determined. Attribution of the polarization directions to the molecular axes within the heme plane yielded the average cyt orientation in the complexes. (ii) Time-resolved flash absorption measurements using polarized light allowed determination of the orientation of cyt c2 in complexes which differ in their kinetics of electron transfer. (iii) EPR spectroscopy of ferricyt c2 in cross-linked RC-cyt c2 complexes was used to determine the angle between the heme and the membrane plane. The results suggest the following structural properties for the docking of cyt c2 to the RC: (i) In cross-linked complexes, the two cytochromes displaying half-lives of 0.7 and 60 micros for electron transfer to P+ are similarly oriented (difference < 10 degrees). (ii) For cross-linked cyt c2 the heme plane is parallel to the symmetry axis of the RC (0 degrees +/- 10 degrees). Moreover, the Qy transition, which is assumed to be polarized within the ring III-ring I direction of the heme plane, makes an angle of 56 degrees +/- 1 degree with the symmetry axis. (iii) The dichroism spectrum for the fast phase (0.7 micros) for the non-cross-linked cyt c2-RC complex suggests an orientation similar to that of cross-linked cyt c2, but the heme plane is tilted about 20 degrees closer to the membrane. An alternative model is that two or more bound states of cyt c2 with heme plane tilt angles between

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Utschig, L. M.; Poluektov, O.; Schlesselman, S. L.

    The interaction of metal ions with isolated photosynthetic reaction centers (RCs) from the purple bacteria Rhodobacter sphaeroides, Rhodobacter capsulatus, and Rhodopseudomonas viridis has been investigated with transient optical and magnetic resonance techniques. In RCs from all species, the electrochromic response of the bacteriopheophytin cofactors associated with Q{sub A}{sup -}Q{sub B} {yields} Q{sub A}Q{sub B}{sup -} electron transfer is slowed in the presence of Cu{sup 2+}. This slowing is similar to the metal ion effect observed for RCs from Rb. sphaeroides where Zn{sup 2+} was bound to a specific site on the surface of the RC [Utschig et al. (1998) Biochemistrymore » 37, 8278]. The coordination environments of the Cu{sup 2+} sites were probed with electron paramagnetic resonance (EPR) spectroscopy, providing the first direct spectroscopic evidence for the existence of a second metal site in RCs from Rb. capsulatus and Rps. viridis. In the dark, RCs with Cu{sup 2+} bound to the surface exhibit axially symmetric EPR spectra. Electron spin echo envelope modulation (ESEEM) spectral results indicate multiple weakly hyperfine coupled {sup 14}N nuclei in close proximity to Cu{sup 2+}. These ESEEM spectra resemble those observed for Cu{sup 2+} RCs from Rb. sphaeroides [Utschig et al. (2000) Biochemistry 39, 2961] and indicate that two or more histidines ligate the Cu{sup 2+} at the surface site in each RC. Thus, RCs from Rb. sphaeroides, Rb. capsulatus, and Rps. viridis each have a structurally analogous Cu{sup 2+} binding site that is involved in modulating the Q{sub A}{sup -}Q{sub B} {yields} Q{sub A}Q{sub B}{sup -} electron-transfer process. Inspection of the Rps. viridis crystal structure reveals four potential histidine ligands from three different subunits (M16, H178, H72, and L211) located beneath the Q{sub B} binding pocket. The location of these histidines is surprisingly similar to the grouping of four histidine residues (H68, H126, H128, and L211

  3. Mechanism of energy transfer from carotenoids to bacteriochlorophyll : light-harvesting by carotenoids having different extents of {pi}-electron conjugation incorporated into the B850 antenna complex from the carotenoidless bacterium Rhodobacter sphaeroides R-26.1.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Desamero, R. Z. B.; Chynwat, V.; van der Hoef, I.

    1998-10-15

    Spheroidene and a series of spheroidene analogues with extents of p-electron conjugation ranging from 7 to 13 carbon-carbon double bonds were incorporated into the B850 light-harvesting complex of Rhodobacter sphaeroides R-26.1. The structures and spectroscopic properties of the carotenoids and the dynamics of energy transfer from the carotenoid to bacteriochlorophyll (BChl) in the B850 complex were studied by using steady-state absorption, fluorescence, fluorescence excitation, resonance Raman, and time-resolved absorption spectroscopy. The spheroidene analogues used in this study were 5',6'-dihydro-7',8'-didehydrospheroidene, 7',8'-didehydrospheroidene, and 1',2'-dihydro-3',4',7',8'-tetradehydrospheroidene. These data, taken together with results from 3,4,7,8-tetrahydrospheroidene, 3,4,5,6-tetrahydrospheroidene, 3,4-dihydrospheroidene, and spheroidene already published (Frank, H. A.; Farhoosh,more » R.; Aldema, M. L.; DeCoster, B.; Christensen, R. L.; Gebhard, R.; Lugtenburg, J. Photochem. Photobiol. 1993, 57, 49. Farhoosh, R.; Chynwat, V.; Gebhard, R.; Lugtenburg, J.; Frank, H. A. Photosynth. Res. 1994, 42, 157), provide a systematic series of molecules for understanding the molecular features that determine the mechanism of energy transfer from carotenoids to BChl in photosynthetic bacterial light-harvesting complexes. The data support the hypothesis that only carotenoids having 10 or less carbon-carbon double bonds transfer energy via their 21Ag (S1) states to BChl to any significant degree. Energy transfer via the 11Bu (S2) state of the carotenoid becomes more important than the S1 route as the number of conjugated carbon-carbon double bonds increases. The results also suggest that the S2 state associated with the Qx transition of the B850 BChl is the most likely acceptor state for energy transfer originating from both the 2{sup 1}A{sub g} (S{sub 1}) and 1{sup 1}B{sub u} (S{sub 2}) states of all carotenoids.« less

  4. Ultrafast time-resolved carotenoid to-bacteriochlorophyll energy transfer in LH2 complexes from photosynthetic bacteria.

    PubMed

    Cong, Hong; Niedzwiedzki, Dariusz M; Gibson, George N; LaFountain, Amy M; Kelsh, Rhiannon M; Gardiner, Alastair T; Cogdell, Richard J; Frank, Harry A

    2008-08-28

    Steady-state and ultrafast time-resolved optical spectroscopic investigations have been carried out at 293 and 10 K on LH2 pigment-protein complexes isolated from three different strains of photosynthetic bacteria: Rhodobacter (Rb.) sphaeroides G1C, Rb. sphaeroides 2.4.1 (anaerobically and aerobically grown), and Rps. acidophila 10050. The LH2 complexes obtained from these strains contain the carotenoids, neurosporene, spheroidene, spheroidenone, and rhodopin glucoside, respectively. These molecules have a systematically increasing number of pi-electron conjugated carbon-carbon double bonds. Steady-state absorption and fluorescence excitation experiments have revealed that the total efficiency of energy transfer from the carotenoids to bacteriochlorophyll is independent of temperature and nearly constant at approximately 90% for the LH2 complexes containing neurosporene, spheroidene, spheroidenone, but drops to approximately 53% for the complex containing rhodopin glucoside. Ultrafast transient absorption spectra in the near-infrared (NIR) region of the purified carotenoids in solution have revealed the energies of the S1 (2(1)Ag-)-->S2 (1(1)Bu+) excited-state transitions which, when subtracted from the energies of the S0 (1(1)Ag-)-->S2 (1(1)Bu+) transitions determined by steady-state absorption measurements, give precise values for the positions of the S1 (2(1)Ag-) states of the carotenoids. Global fitting of the ultrafast spectral and temporal data sets have revealed the dynamics of the pathways of de-excitation of the carotenoid excited states. The pathways include energy transfer to bacteriochlorophyll, population of the so-called S* state of the carotenoids, and formation of carotenoid radical cations (Car*+). The investigation has found that excitation energy transfer to bacteriochlorophyll is partitioned through the S1 (1(1)Ag-), S2 (1(1)Bu+), and S* states of the different carotenoids to varying degrees. This is understood through a consideration of the

  5. Crystallographic snapshot of cellulose synthesis and membrane translocation.

    PubMed

    Morgan, Jacob L W; Strumillo, Joanna; Zimmer, Jochen

    2013-01-10

    Cellulose, the most abundant biological macromolecule, is an extracellular, linear polymer of glucose molecules. It represents an essential component of plant cell walls but is also found in algae and bacteria. In bacteria, cellulose production frequently correlates with the formation of biofilms, a sessile, multicellular growth form. Cellulose synthesis and transport across the inner bacterial membrane is mediated by a complex of the membrane-integrated catalytic BcsA subunit and the membrane-anchored, periplasmic BcsB protein. Here we present the crystal structure of a complex of BcsA and BcsB from Rhodobacter sphaeroides containing a translocating polysaccharide. The structure of the BcsA-BcsB translocation intermediate reveals the architecture of the cellulose synthase, demonstrates how BcsA forms a cellulose-conducting channel, and suggests a model for the coupling of cellulose synthesis and translocation in which the nascent polysaccharide is extended by one glucose molecule at a time.

  6. Energies and excited-state dynamics of 1Bu+, 1Bu- and 3Ag- states of carotenoids bound to LH2 antenna complexes from purple photosynthetic bacteria

    NASA Astrophysics Data System (ADS)

    Christiana, Rebecca; Miki, Takeshi; Kakitani, Yoshinori; Aoyagi, Shiho; Koyama, Yasushi; Limantara, Leenawaty

    2009-10-01

    Time-resolved pump-probe stimulated-emission and transient-absorption spectra were recorded after excitation with ˜30 fs pulses to the 1Bu+(0) and optically-forbidden diabatic levels of carotenoids, neurosporene, spheroidene and lycopene having n = 9-11 double bonds, bound to LH2 antenna complexes from Rhodobacter sphaeroides G1C, 2.4.1 and Rhodospirillum molischianum. The low-energy shift of stimulated emission from the covalent 1Bu-(0) and 3Ag-(0) levels slightly larger than that from the ionic 1Bu+(0) state suggests the polarization, whereas more efficient triplet generation suggests the twisting of the conjugated chain in Cars bound to the LH2 complexes, when compared to Cars free in solution.

  7. A Conserved Structural Module Regulates Transcriptional Responses to Diverse Stress Signals in Bacteria

    PubMed Central

    Campbell, Elizabeth A.; Greenwell, Roger; Anthony, Jennifer R.; Wang, Sheng; Lim, Lionel; Das, Kalyan; Sofia, Heidi J.; Donohue, Timothy J.; Darst, Seth A.

    2008-01-01

    SUMMARY A transcriptional response to singlet oxygen in Rhodobacter sphaeroides is controlled by the group IV σ factor σE and its cognate anti-σ ChrR. Crystal structures of the σE/ChrR complex reveal a modular, two-domain architecture for ChrR. The ChrR N-terminal anti-σ domain (ASD) binds a Zn2+ ion, contacts σE, and is sufficient to inhibit σE-dependent transcription. The ChrR C-terminal domain adopts a cupin fold, can coordinate an additional Zn2+, and is required for the transcriptional response to singlet oxygen. Structure-based sequence analyses predict that the ASD defines a common structural fold among predicted group IV antiσs. These ASDs are fused to diverse C-terminal domains that are likely involved in responding to specific environmental signals that control the activity of their cognate σ factor. PMID:17803943

  8. The PpaA/AerR regulators of photosynthesis gene expression from anoxygenic phototrophic proteobacteria contain heme-binding SCHIC domains.

    PubMed

    Moskvin, Oleg V; Gilles-Gonzalez, Marie-Alda; Gomelsky, Mark

    2010-10-01

    The SCHIC domain of the B12-binding domain family present in the Rhodobacter sphaeroides AppA protein binds heme and senses oxygen. Here we show that the predicted SCHIC domain PpaA/AerR regulators also bind heme and respond to oxygen in vitro, despite their low sequence identity with AppA.

  9. The energies and kinetics of triplet carotenoids in the LH2 antenna complexes as determined by phosphorescence spectroscopy

    NASA Astrophysics Data System (ADS)

    Rondonuwu, Ferdy S.; Taguchi, Tokio; Fujii, Ritsuko; Yokoyama, Kyosuke; Koyama, Yasushi; Watanabe, Yasutaka

    2004-01-01

    The triplet (T 1) states of carotenoids (Cars) and bacteriochlorophyll a (BChl) in the LH2 antenna complexes from Rhodobacter sphaeroides G1C, Rba. sphaeroides 2.4.1 and Rhodospirillum molischianum, containing neurosporene, spheroidene and lycopene, respectively, were examined by stationary-state and time-resolved phosphorescence spectroscopy. The T 1 energies of Cars were determined, irrespective of the Car or BChl excitation, to be 7030 cm -1 (neurosporene), 6920 cm -1 (spheroidene) and 6870 cm -1 (lycopene), respectively, whereas that of BChl to be 7590 cm -1. In the Rba. sphaeroides G1C, the Car and BChl triplet states decayed in similar time constant as the BChl Q y state, a fact which indicates that the pair of triplet states decays through the triplet-triplet annihilation mechanism.

  10. Effects of light intensity and quality on phycobiliprotein accumulation in the cyanobacterium Nostoc sphaeroides Kützing.

    PubMed

    Ma, Rui; Lu, Fan; Bi, Yonghong; Hu, Zhengyu

    2015-08-01

    To assess the effects of light intensity and quality on the growth and phycobiliproteins (PBP) accumulation in Nostoc sphaeroides Kützing (N. sphaeroides). Dry weights, dry matter, protein, chlorophyll and PBP contents were higher under 90 μmol m(-2) s(-1) than under other intensities (both higher and lower). Phycocyanin and allophycocyanin increased with light intensity while phycoerythrin decreased. Fresh weights, protein and PBP contents increased at the highest rates under blue light. Red light resulted in higher values of dry matter, phycocyanin and chlorophyll a. White light at 90 μmol m(-2) s(-1) or blue light 30 μmol m(-2) s(-1) were optimal for the growth and phycobiliprotein accumulation in N. sphaeroides.

  11. Electrostatic dominoes: long distance propagation of mutational effects in photosynthetic reaction centers of Rhodobacter capsulatus.

    PubMed

    Sebban, P; Maróti, P; Schiffer, M; Hanson, D K

    1995-07-04

    Two point mutants from the purple bacterium Rhodobacter capsulatus, both modified in the M protein of the photosynthetic reaction center, have been studied by flash-induced absorbance spectroscopy. These strains carry either the M231Arg --> Leu or M43ASN --> Asp mutations, which are located 9 and 15 A, respectively, from the terminal electron acceptor QB. In the wild-type Rb. sphaeroides structure, M231Arg is involved in a conserved salt bridge with H125Glu and H232Glu and M43Asn is located among several polar residues that form or surround the QB binding site. These substitutions were originally uncovered in phenotypic revertants isolated from the photosynthetically incompetent L212Glu-L213Asp --> Ala-Ala site-specific double mutant. As second-site suppressor mutations, they have been shown to restore the proton transfer function that is interrupted in the L212Ala-L213Ala double mutant. The electrostatic effects that are induced in reaction centers by the M231Arg --> Leu and M43Asn --> Asp substitutions are roughly the same in either the double-mutant or wild-type backgrounds. In a reaction center that is otherwise wild type in sequence, they decrease the free energy gap between the QA- and QB- states by 24 +/- 5 and 45 +/- 5 meV, respectively. The pH dependences of K2, the QA-QB <--> QAQB- equilibrium constant, are altered in reaction centers that carry either of these substitutions, revealing differences in the pKas of titratable groups compared to the wild type.(ABSTRACT TRUNCATED AT 250 WORDS)

  12. Nostoc sphaeroides Kützing, an excellent candidate producer for CELSS

    NASA Astrophysics Data System (ADS)

    Hao, Zongjie; Li, Dunhai; Li, Yanhui; Wang, Zhicong; Xiao, Yuan; Wang, Gaohong; Liu, Yongding; Hu, Chunxiang; Liu, Qifang

    2011-11-01

    Some phytoplankton can be regarded as possible candidates in the establishment of Controlled Ecological Life Support System (CELSS) for some intrinsic characteristics, the first characteristic is that they should grow rapidly, secondly, they should be able to endure some stress factors and develop some corresponding adaptive strategies; also it is very important that they could provide food rich in nutritious protein and vitamins for the crew; the last but not the least is they can also fulfill the other main functions of CELSS, including supplying oxygen, removing carbon dioxide and recycling the metabolic waste. According to these characteristics, Nostoc sphaeroides, a potential healthy food in China, was selected as the potential producer in CELSS. It was found that the oxygen average evolution rate of this algae is about 150 μmol O 2 mg -1 h -1, and the size of them are ranged from 2 to 20 mm. Also it can be cultured with high population density, which indicated that the potential productivity of Nostoc sphaeroides is higher than other algae in limited volume. We measured the nutrient contents of the cyanobacterium and concluded it was a good food for the crew. Based on above advantages, Nostoc sphaeroides was assumed to a suitable phytoplankton for the establishment of Controlled Ecological Life Support System. We plan to develop suitable bioreactor with the cyanobacterium for supplying oxygen and food in future space missions.

  13. The photosynthetic bacteria Rhodobacter capsulatus and Synechocystis sp. PCC 6803 as new hosts for cyclic plant triterpene biosynthesis

    PubMed Central

    Hage-Hülsmann, Jennifer; Dietsch, Maximilian; Kranz-Finger, Sarah; Hüren, Vanessa; Metzger, Sabine; Urlacher, Vlada B.; Gigolashvili, Tamara; Kopriva, Stanislav; Axmann, Ilka M.; Jaeger, Karl-Erich

    2017-01-01

    Cyclic triterpenes constitute one of the most diverse groups of plant natural products. Besides the intriguing biochemistry of their biosynthetic pathways, plant triterpenes exhibit versatile bioactivities, including antimicrobial effects against plant and human pathogens. While prokaryotes have been extensively used for the heterologous production of other classes of terpenes, the synthesis of cyclic triterpenes, which inherently includes the two-step catalytic formation of the universal linear precursor 2,3-oxidosqualene, is still a major challenge. We thus explored the suitability of the metabolically versatile photosynthetic α-proteobacterium Rhodobacter capsulatus SB1003 and cyanobacterium Synechocystis sp. PCC 6803 as alternative hosts for biosynthesis of cyclic plant triterpenes. Therefore, 2,3-oxidosqualene production was implemented and subsequently combined with different cyclization reactions catalyzed by the representative oxidosqualene cyclases CAS1 (cycloartenol synthase), LUP1 (lupeol synthase), THAS1 (thalianol synthase) and MRN1 (marneral synthase) derived from model plant Arabidopsis thaliana. While successful accumulation of 2,3-oxidosqualene could be detected by LC-MS analysis in both hosts, cyclase expression resulted in differential production profiles. CAS1 catalyzed conversion to only cycloartenol, but expression of LUP1 yielded lupeol and a triterpenoid matching an oxidation product of lupeol, in both hosts. In contrast, THAS1 expression did not lead to cyclic product formation in either host, whereas MRN1-dependent production of marnerol and hydroxymarnerol was observed in Synechocystis but not in R. capsulatus. Our findings thus indicate that 2,3-oxidosqualene cyclization in heterologous phototrophic bacteria is basically feasible but efficient conversion depends on both the respective cyclase enzyme and individual host properties. Therefore, photosynthetic α-proteo- and cyanobacteria are promising alternative candidates for providing

  14. My daily constitutional in martinsried.

    PubMed

    Allen, James P

    2004-01-01

    The three-dimensional structures of bacterial reaction centers have served as the framework for much of our understanding of anoxygenic photosynthesis. A key step in the determination of the structure of the reaction center from Rhodobacter sphaeroides was the use the molecular replacement technique. For this technique, we made use of two sets of data. First, X-ray diffraction data had been measured from crystals of the reaction center from R. sphaeroides by our research group in California, led by George Feher and Douglas Rees. The second data set consisted of the coordinates of the three-dimensional structure of the reaction center from Rhodopseudomonas (now Blastochloris) viridis, which had been solved in the pioneering efforts of a group in Martinsried, led by Johann Deisenhofer, Robert Huber and Hartmut Michel. The collaborative efforts of these two groups to determine the structure of the reaction center from R. sphaeroides is described.

  15. Analysis of the kinetics of P+ HA- recombination in membrane-embedded wild-type and mutant Rhodobacter sphaeroides reaction centers between 298 and 77 K indicates that the adjacent negatively charged QA ubiquinone modulates the free energy of P+ HA- and may influence the rate of the protein dielectric response.

    PubMed

    Gibasiewicz, Krzysztof; Pajzderska, Maria; Dobek, Andrzej; Brettel, Klaus; Jones, Michael R

    2013-09-26

    Time-resolved spectroscopic studies of recombination of the P(+)HA(-) radical pair in photosynthetic reaction centers (RCs) from Rhodobacter sphaeroides give an opportunity to study protein dynamics triggered by light and occurring over the lifetime of P(+)HA(-). The state P(+)HA(-) is formed after the ultrafast light-induced electron transfer from the primary donor pair of bacteriochlorophylls (P) to the acceptor bacteriopheophytin (HA). In order to increase the lifetime of this state, and thus increase the temporal window for the examination of protein dynamics, it is possible to block forward electron transfer from HA(-) to the secondary electron acceptor QA. In this contribution, the dynamics of P(+)HA(-) recombination were compared at a range of temperatures from 77 K to room temperature, electron transfer from HA(-) to QA being blocked either by prereduction of QA or by genetic removal of QA. The observed P(+)HA(-) charge recombination was significantly slower in the QA-deficient RCs, and in both types of complexes, lowering the temperature from RT to 77 K led to a slowing of charge recombination. The effects are explained in the frame of a model in which charge recombination occurs via competing pathways, one of which is thermally activated and includes transient formation of a higher-energy state, P(+)BA(-). An internal electrostatic field supplied by the negative charge on QA increases the free energy levels of the state P(+)HA(-), thus decreasing its energetic distance to the state P(+)BA(-). In addition, the dielectric response of the protein environment to the appearance of the state P(+)HA(-) is accelerated from ∼50-100 ns in the QA-deficient mutant RCs to ∼1-16 ns in WT RCs with a negatively charged QA(-). In both cases, the temperature dependence of the protein dynamics is weak.

  16. Optimal chemotactic responses in stochastic environments

    PubMed Central

    Godány, Martin

    2017-01-01

    Although the “adaptive” strategy used by Escherichia coli has dominated our understanding of bacterial chemotaxis, the environmental conditions under which this strategy emerged is still poorly understood. In this work, we study the performance of various chemotactic strategies under a range of stochastic time- and space-varying attractant distributions in silico. We describe a novel “speculator” response in which the bacterium compare the current attractant concentration to the long-term average; if it is higher then they tumble persistently, while if it is lower than the average, bacteria swim away in search of more favorable conditions. We demonstrate how this response explains the experimental behavior of aerobically-grown Rhodobacter sphaeroides and that under spatially complex but slowly-changing nutrient conditions the speculator response is as effective as the adaptive strategy of E. coli. PMID:28644830

  17. The Single Superoxide Dismutase of Rhodobacter capsulatus Is a Cambialistic, Manganese-Containing Enzyme

    PubMed Central

    Tabares, Leandro C.; Bittel, Cristian; Carrillo, Néstor; Bortolotti, Ana; Cortez, Néstor

    2003-01-01

    The phototrophic bacterium Rhodobacter capsulatus contains a single, oxygen-responsive superoxide dismutase (SODRc) homologous to iron-containing superoxide dismutase enzymes. Recombinant SODRc, however, displayed higher activity after refolding with Mn2+, especially when the pH of the assay mixture was raised. SODRc isolated from Rhodobacter cells also preferentially contains manganese, but metal discrimination depends on the culture conditions, with iron fractions increasing from 7% in aerobic cultures up to 40% in photosynthetic cultures. Therefore, SODRc behaves as a Mn-containing dismutase with cambialistic properties. PMID:12730184

  18. Surface-attached and suspended bacterial community structure as affected by C/N ratios: relationship between bacteria and fish production.

    PubMed

    Yu, Ermeng; Xie, Jun; Wang, Jinlin; Ako, Harry; Wang, Guangjun; Chen, Zhanghe; Liu, Yongfeng

    2016-07-01

    Bacteria play crucial roles in the combined system of substrate addition and C/N control, which has been demonstrated to improve aquaculture production. However, the complexity of surface-attached bacteria on substrates and suspended bacteria in the water column hamper further application of this system. This study firstly applied this combined system into the culture of grass carp, and then explored the relationship between microbial complexes from surface-attached and suspended bacteria in this system and the production of grass carp. In addition, this study investigated bacterial community structures as affected by four C/N ratios using Illumina sequencing technology. The results demonstrated that the weight gain rate and specific growth rate of grass carp in the CN20 group (C/N ratio 20:1) were the highest (P < 0.05), and dietary supplementation of the microbial complex had positive effects on the growth of grass carp (P < 0.05). Sequencing data revealed that, (1) the proportions of Verrucomicrobiae and Rhodobacter (surface-attached), sediminibacterium (suspended), and emticicia (surface-attached and suspended) were much higher in the CN20 group compared with those in the other groups (P < 0.05); (2) Rhodobacter, Flavobacterium, Acinetobacter, Pseudomonas, Planctomyces, and Cloacibacterium might be important for the microbial colonization on substrates; (3) as the C/N ratio increased, proportions of Hydrogenophaga (surface-attached and suspended), Zoogloea, and Flectobacillus (suspended) increased, but proportions of Bacillus, Clavibacter, and Cellvibro (surface-attached and suspended) decreased. In summary, a combined system of substrate addition and C/N control increased the production of grass carp, and Verrucomicrobiae and Rhodobacter in the surface-attached bacterial community were potential probiotic bacteria that contributed to the enhanced growth of grass carp.

  19. The reaction center is the sensitive target of the mercury(II) ion in intact cells of photosynthetic bacteria.

    PubMed

    Asztalos, Emese; Sipka, Gábor; Kis, Mariann; Trotta, Massimo; Maróti, Péter

    2012-06-01

    The sensitivity of intact cells of purple photosynthetic bacterium Rhodobacter sphaeroides wild type to low level (<100 μM) of mercury (Hg²⁺) contamination was evaluated by absorption and fluorescence spectroscopies of the bacteriochlorophyll-protein complexes. All assays related to the function of the reaction center (RC) protein (induction of the bacteriochlorophyll fluorescence, delayed fluorescence and light-induced oxidation and reduction of the bacteriochlorophyll dimer and energization of the photosynthetic membrane) showed prompt and later effects of the mercury ions. The damage expressed by decrease of the magnitude and changes of rates of the electron transfer kinetics followed complex (spatial and temporal) pattern according to the different Hg²⁺ sensitivities of the electron transport (donor/acceptor) sites including the reduced bound and free cytochrome c₂ and the primary reduced quinone. In contrast to the RC, the light harvesting system and the bc₁ complex demonstrated much higher resistance against the mercury pollution. The 850 and 875 nm components of the peripheral and core complexes were particularly insensitive to the mercury(II) ions. The concentration of the photoactive RCs and the connectivity of the photosynthetic units decreased upon mercury treatment. The degree of inhibition of the photosynthetic apparatus was always higher when the cells were kept in the light than in the dark indicating the importance of metabolism in active transport of the mercury ions from outside to the intracytoplasmic membrane. Any of the tests applied in this study can be used for detection of changes in photosynthetic bacteria at the early stages of the action of toxicants.

  20. Effects of radio frequency and high pressure steam sterilisation on the colour and flavour of prepared Nostoc sphaeroides.

    PubMed

    Xu, Jicheng; Zhang, Min; An, Yanjun; Roknul, Azam Sm; Adhikari, Benu

    2018-03-01

    Nostoc sphaeroides has been used as a highly effective herbal medicine and dietary supplement for thousands of years. The desired dark green colour of fresh N. sphaeroides is converted into an undesirable dark brown during conventional high pressure (HP) steam sterilisation. Radio frequency (RF) sterilisation technology was used in this study to determine its effectiveness in sterilising N. sphaeroides and to achieve better preservation of natural colour and desirable flavour. Sterilisation was carried out using a 6 kW, 27 MHz RF instrument for 10, 20 and 30 min. The degree of microbial kill and the effects of RF sterilisation on colour and flavour were determined and compared with those obtained from HP steam (121 °C, 30 min) sterilisation. The effects of RF sterilisation on colour and flavour (measured using electronic nose) parameters were significantly lower than that in HP steam sterilisation. The RF sterilisation carried out for 20 min achieved logarithmic reduction of bacterial population and met China's national standard while preserving the colour and flavour better. Results of the present study indicated that application of RF sterilisation would improve the quality of sterilised N. sphaeroides and broaden its application in the food and health food industries. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  1. Strong Coupling of Localized Surface Plasmons to Excitons in Light-Harvesting Complexes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsargorodska, Anna; Cartron, Michaël L.; Vasilev, Cvetelin

    Gold nanostructure arrays exhibit surface plasmon resonances that split after attaching light harvesting complexes 1 and 2 (LH1 and LH2) from purple bacteria. The splitting is attributed to strong coupling between the localized surface plasmon resonances and excitons in the light-harvesting complexes. Wild-type and mutant LH1 and LH2 from Rhodobacter sphaeroides containing different carotenoids yield different splitting energies, demonstrating that the coupling mechanism is sensitive to the electronic states in the light harvesting complexes. Plasmon–exciton coupling models reveal different coupling strengths depending on the molecular organization and the protein coverage, consistent with strong coupling. Strong coupling was also observed formore » self-assembling polypeptide maquettes that contain only chlorins. However, it is not observed for monolayers of bacteriochlorophyll, indicating that strong plasmon–exciton coupling is sensitive to the specific presentation of the pigment molecules.« less

  2. Strong Coupling of Localized Surface Plasmons to Excitons in Light-Harvesting Complexes

    DOE PAGES

    Tsargorodska, Anna; Cartron, Michaël L.; Vasilev, Cvetelin; ...

    2016-09-30

    Gold nanostructure arrays exhibit surface plasmon resonances that split after attaching light harvesting complexes 1 and 2 (LH1 and LH2) from purple bacteria. The splitting is attributed to strong coupling between the localized surface plasmon resonances and excitons in the light-harvesting complexes. Wild-type and mutant LH1 and LH2 from Rhodobacter sphaeroides containing different carotenoids yield different splitting energies, demonstrating that the coupling mechanism is sensitive to the electronic states in the light harvesting complexes. Plasmon–exciton coupling models reveal different coupling strengths depending on the molecular organization and the protein coverage, consistent with strong coupling. Strong coupling was also observed formore » self-assembling polypeptide maquettes that contain only chlorins. However, it is not observed for monolayers of bacteriochlorophyll, indicating that strong plasmon–exciton coupling is sensitive to the specific presentation of the pigment molecules.« less

  3. Effect of integral membrane proteins on the lateral mobility of plastoquinone in phosphatidylcholine proteoliposomes.

    PubMed

    Blackwell, M F; Whitmarsh, J

    1990-11-01

    PYRENE FLUORESCENCE QUENCHING BY PLASTOQUINONE WAS USED TO ESTIMATE THE RATE OF PLASTOQUINONE LATERAL DIFFUSION IN SOYBEAN PHOSPHATIDYLCHOLINE PROTEOLIPOSOMES CONTAINING THE FOLLOWING INTEGRAL MEMBRANE PROTEINS: gramicidin D, spinach cytochrome bf complex, spinach cytochrome f, reaction centers from Rhodobacter sphaeroides, beef heart mitochondrial cytochrome bc(1), and beef heart mitochondrial cytochrome oxidase. The measured plastoquinone lateral diffusion coefficient varied between 1 and 3 . 10(-7) cm(2) s(-1) in control liposomes that lacked protein. When proteins were added, these values decreased: a 10-fold decrease was observed when 16-26% of the membrane surface area was occupied by protein for all the proteins but gramicidin. The larger protein complexes (cytochrome bf, Rhodobacter sphaeroides reaction centers, cytochrome bc(1), and cytochrome oxidase), whose hydrophobic volumes were 15-20 times as large as that of cytochrome f and the gramicidin transmembrane dimer, were 15-20 times as effective in decreasing the lateral-diffusion coefficient over the range of concentrations studied. These proteins had a much stronger effect than that observed for bacteriorhodopsin in fluorescence photobleaching recovery measurements. The effect of high-protein concentrations in gramicidin proteoliposomes was in close agreement with fluorescence photobleaching measurements. The results are compared with the predictions of several theoretical models of lateral mobility as a function of integral membrane concentration.

  4. An integrated approach to reconstructing genome-scale transcriptional regulatory networks

    DOE PAGES

    Imam, Saheed; Noguera, Daniel R.; Donohue, Timothy J.; ...

    2015-02-27

    Transcriptional regulatory networks (TRNs) program cells to dynamically alter their gene expression in response to changing internal or environmental conditions. In this study, we develop a novel workflow for generating large-scale TRN models that integrates comparative genomics data, global gene expression analyses, and intrinsic properties of transcription factors (TFs). An assessment of this workflow using benchmark datasets for the well-studied γ-proteobacterium Escherichia coli showed that it outperforms expression-based inference approaches, having a significantly larger area under the precision-recall curve. Further analysis indicated that this integrated workflow captures different aspects of the E. coli TRN than expression-based approaches, potentially making themmore » highly complementary. We leveraged this new workflow and observations to build a large-scale TRN model for the α-Proteobacterium Rhodobacter sphaeroides that comprises 120 gene clusters, 1211 genes (including 93 TFs), 1858 predicted protein-DNA interactions and 76 DNA binding motifs. We found that ~67% of the predicted gene clusters in this TRN are enriched for functions ranging from photosynthesis or central carbon metabolism to environmental stress responses. We also found that members of many of the predicted gene clusters were consistent with prior knowledge in R. sphaeroides and/or other bacteria. Experimental validation of predictions from this R. sphaeroides TRN model showed that high precision and recall was also obtained for TFs involved in photosynthesis (PpsR), carbon metabolism (RSP_0489) and iron homeostasis (RSP_3341). In addition, this integrative approach enabled generation of TRNs with increased information content relative to R. sphaeroides TRN models built via other approaches. We also show how this approach can be used to simultaneously produce TRN models for each related organism used in the comparative genomics analysis. Our results highlight the advantages of

  5. Carotenoid radical cation formation in LH2 of purple bacteria: a quantum chemical study.

    PubMed

    Wormit, Michael; Dreuw, Andreas

    2006-11-30

    In LH2 complexes of Rhodobacter sphaeroides the formation of a carotenoid radical cation has recently been observed upon photoexcitation of the carotenoid S2 state. To shed more light onto the yet unknown molecular mechanism leading to carotenoid radical formation in LH2, the interactions between carotenoid and bacteriochlorophyll in LH2 are investigated by means of quantum chemical calculations for three different carotenoids--neurosporene, spheroidene, and spheroidenone--using time-dependent density functional theory. Crossings of the calculated potential energy curve of the electron transfer state with the bacteriochlorophyll Qx state and the carotenoid S1 and S2 states occur along an intermolecular distance coordinate for neurosporene and spheroidene, but for spheroidenone no crossing of the electron transfer state with the carotenoid S1 state could be found. By comparison with recent experiments where no formation of a spheroidenone radical cation has been observed, a molecular mechanism for carotenoid radical cation formation is proposed in which it is formed via a vibrationally excited carotenoid S1 or S*state. Arguments are given why the formation of the carotenoid radical cation does not proceed via the Qx, S2, or higher excited electron transfer states.

  6. Structural basis for the recognition of guide RNA and target DNA heteroduplex by Argonaute.

    PubMed

    Miyoshi, Tomohiro; Ito, Kosuke; Murakami, Ryo; Uchiumi, Toshio

    2016-06-21

    Argonaute proteins are key players in the gene silencing mechanisms mediated by small nucleic acids in all domains of life from bacteria to eukaryotes. However, little is known about the Argonaute protein that recognizes guide RNA/target DNA. Here, we determine the 2 Å crystal structure of Rhodobacter sphaeroides Argonaute (RsAgo) in a complex with 18-nucleotide guide RNA and its complementary target DNA. The heteroduplex maintains Watson-Crick base-pairing even in the 3'-region of the guide RNA between the N-terminal and PIWI domains, suggesting a recognition mode by RsAgo for stable interaction with the target strand. In addition, the MID/PIWI interface of RsAgo has a system that specifically recognizes the 5' base-U of the guide RNA, and the duplex-recognition loop of the PAZ domain is important for the DNA silencing activity. Furthermore, we show that Argonaute discriminates the nucleic acid type (RNA/DNA) by recognition of the duplex structure of the seed region.

  7. Detection of Singlet Oxygen Formation inside Photoactive Biohybrid Composite Material.

    PubMed

    Hajdu, Kata; Ur Rehman, Ateeq; Vass, Imre; Nagy, László

    2017-12-26

    Photosynthetic reaction center proteins (RCs) are the most efficient light energy converter systems in nature. The first steps of the primary charge separation in photosynthesis take place in these proteins. Due to their unique properties, combining RCs with nano-structures promising applications can be predicted in optoelectronic systems. In the present work RCs purified from Rhodobacter sphaeroides purple bacteria were immobilized on multiwalled carbon nanotubes (CNTs). Carboxyl-and amine-functionalised CNTs were used, so different binding procedures, physical sorption and chemical sorption as well, could be applied as immobilization techniques. Light-induced singlet oxygen production was measured in the prepared photoactive biocomposites in water-based suspension by histidine mediated chemical trapping. Carbon nanotubes were applied under different conditions in order to understand their role in the equilibration of singlet oxygen concentration in the suspension. CNTs acted as effective quenchers of ¹O₂ either by physical (resonance) energy transfer or by chemical (oxidation) reaction and their efficiency showed dependence on the diffusion distance of ¹O₂.

  8. Atomic force microscopy reveals multiple patterns of antenna organization in purple bacteria: implications for energy transduction mechanisms and membrane modeling.

    PubMed

    Sturgis, James N; Niederman, Robert A

    2008-01-01

    Recent topographs of the intracytoplasmic membrane (ICM) of purple bacteria obtained by atomic force microscopy (AFM) have provided the first surface views of the native architecture of a multicomponent biological membrane at submolecular resolution, representing an important landmark in structural biology. A variety of species-dependent, closely packed arrangements of light-harvesting (LH) complexes was revealed: the most highly organized was found in Rhodobacter sphaeroides in which the peripheral LH2 antenna was seen either in large clusters or in fixed rows interspersed among ordered arrays of dimeric LH1-reaction center (RC) core complexes. A more random organization was observed in other species containing both the LH1 and LH2 complexes, as typified by Rhododspirillum photometricum with randomly packed monomeric LH1-RC core complexes intermingled with large, paracrystalline domains of LH2 antenna. Surprisingly, no structures that could be identified as the ATP synthase or cytochrome bc (1) complexes were observed, which may reflect their localization at ICM vesicle poles or in curved membrane areas, out of view from the flat regions imaged by AFM. This possible arrangement of energy transducing complexes has required a reassessment of energy tranduction mechanisms which place the cytochrome bc (1) complex in close association with the RC. Instead, more plausible proposals must account for the movement of quinone redox species over considerable membrane distances on appropriate time scales. AFM, together with atomic resolution structures are also providing the basis for molecular modeling of the ICM that is leading to an improved picture of the supramolecular organization of photosynthetic complexes, as well as the forces that drive their segregation into distinct domains.

  9. Overall energy conversion efficiency of a photosynthetic vesicle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sener, Melih; Strumpfer, Johan; Singharoy, Abhishek

    The chromatophore of purple bacteria is an intracellular spherical vesicle that exists in numerous copies in the cell and that efficiently converts sunlight into ATP synthesis, operating typically under low light conditions. Building on an atomic-level structural model of a low-light-adapted chromatophore vesicle from Rhodobacter sphaeroides, we investigate the cooperation between more than a hundred protein complexes in the vesicle. The steady-state ATP production rate as a function of incident light intensity is determined after identifying quinol turnover at the cytochrome bc1 complex (cytbc1) as rate limiting and assuming that the quinone/quinol pool of about 900 molecules acts in amore » quasi-stationary state. For an illumination condition equivalent to 1% of full sunlight, the vesicle exhibits an ATP production rate of 82 ATP molecules/s. The energy conversion efficiency of ATP synthesis at illuminations corresponding to 1%–5% of full sunlight is calculated to be 0.12-0.04, respectively. The vesicle stoichiometry, evolutionarily adapted to the low light intensities in the habitat of purple bacteria, is suboptimal for steady-state ATP turnover for the benefit of protection against over-illumination.« less

  10. The role of pH control on biohydrogen production by single stage hybrid dark- and photo-fermentation.

    PubMed

    Zagrodnik, R; Laniecki, M

    2015-10-01

    The role of pH control on biohydrogen production by co-culture of dark-fermentative Clostridium acetobutylicum and photofermentative Rhodobacter sphaeroides was studied. Single stage dark fermentation, photofermentation and hybrid co-culture systems were studied at different values of controlled and uncontrolled pH. Increasing pH during dark fermentation resulted in lower hydrogen production rate (HPR) and longer lag time for both controlled and uncontrolled conditions. However, it only slightly affected cumulative H2 volume. Results have shown that pH control at pH 7.5 increased photofermentative hydrogen production from 0.966 to 2.502 L H2/L(medium) when compared to uncontrolled process. Fixed pH value has proven to be an important control strategy also for the hybrid process and resulted in obtaining balanced co-culture of dark and photofermentative bacteria. Control of pH at 7.0 was found optimum for bacteria cooperation in the co-culture what resulted in obtaining 2.533 L H2/L(medium) and H2 yield of 6.22 mol H2/mol glucose. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Overall energy conversion efficiency of a photosynthetic vesicle

    DOE PAGES

    Sener, Melih; Strumpfer, Johan; Singharoy, Abhishek; ...

    2016-08-26

    The chromatophore of purple bacteria is an intracellular spherical vesicle that exists in numerous copies in the cell and that efficiently converts sunlight into ATP synthesis, operating typically under low light conditions. Building on an atomic-level structural model of a low-light-adapted chromatophore vesicle from Rhodobacter sphaeroides, we investigate the cooperation between more than a hundred protein complexes in the vesicle. The steady-state ATP production rate as a function of incident light intensity is determined after identifying quinol turnover at the cytochrome bc1 complex (cytbc1) as rate limiting and assuming that the quinone/quinol pool of about 900 molecules acts in amore » quasi-stationary state. For an illumination condition equivalent to 1% of full sunlight, the vesicle exhibits an ATP production rate of 82 ATP molecules/s. The energy conversion efficiency of ATP synthesis at illuminations corresponding to 1%–5% of full sunlight is calculated to be 0.12-0.04, respectively. The vesicle stoichiometry, evolutionarily adapted to the low light intensities in the habitat of purple bacteria, is suboptimal for steady-state ATP turnover for the benefit of protection against over-illumination.« less

  12. Replacement of sugars to hydrogen production by Rhodobacter capsulatus using dark fermentation effluent as substrate.

    PubMed

    Silva, Felipe Thales Moreira; Moreira, Luiza Rojas; de Souza Ferreira, Juliana; Batista, Fabiana Regina Xavier; Cardoso, Vicelma Luiz

    2016-01-01

    Hydrogen is a promising alternative for the increased global energy demand since it has high energy density and is a clean fuel. The aim of this work was to evaluate the photo-fermentation by Rhodobacter capsulatus, using the dark fermentation effluent as substrate. Different systems were tested by changing the type of sugar in the dark fermentation, investigating the influence of supplementing DFE with sugar and adding alternate and periodically lactose and glucose throughout the process. The supplementation of the DFE with sugar resulted in higher H2 productivity and the replacement of the sugars repeatedly during the photo-fermentation process was important to maintain the cell culture active. By controlling the residual amount of sugar, bacteria inhibition was avoided; lactic acid, that was toxic to the biomass, was consumed and the metabolic route of butyric acid production was predominant. Under optimum conditions, the H2 productivity reached 208.40mmolH2/Ld in 52h. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Effect of integral membrane proteins on the lateral mobility of plastoquinone in phosphatidylcholine proteoliposomes

    PubMed Central

    Blackwell, Mary F.; Whitmarsh, John

    1990-01-01

    Pyrene fluorescence quenching by plastoquinone was used to estimate the rate of plastoquinone lateral diffusion in soybean phosphatidylcholine proteoliposomes containing the following integral membrane proteins: gramicidin D, spinach cytochrome bf complex, spinach cytochrome f, reaction centers from Rhodobacter sphaeroides, beef heart mitochondrial cytochrome bc1, and beef heart mitochondrial cytochrome oxidase. The measured plastoquinone lateral diffusion coefficient varied between 1 and 3 · 10-7 cm2 s-1 in control liposomes that lacked protein. When proteins were added, these values decreased: a 10-fold decrease was observed when 16-26% of the membrane surface area was occupied by protein for all the proteins but gramicidin. The larger protein complexes (cytochrome bf, Rhodobacter sphaeroides reaction centers, cytochrome bc1, and cytochrome oxidase), whose hydrophobic volumes were 15-20 times as large as that of cytochrome f and the gramicidin transmembrane dimer, were 15-20 times as effective in decreasing the lateral-diffusion coefficient over the range of concentrations studied. These proteins had a much stronger effect than that observed for bacteriorhodopsin in fluorescence photobleaching recovery measurements. The effect of high-protein concentrations in gramicidin proteoliposomes was in close agreement with fluorescence photobleaching measurements. The results are compared with the predictions of several theoretical models of lateral mobility as a function of integral membrane concentration. PMID:19431774

  14. Role of Rhodobacter sp. Strain PS9, a Purple Non-Sulfur Photosynthetic Bacterium Isolated from an Anaerobic Swine Waste Lagoon, in Odor Remediation

    PubMed Central

    Do, Young S.; Schmidt, Thomas M.; Zahn, James A.; Boyd, Eric S.; de la Mora, Arlene; DiSpirito, Alan A.

    2003-01-01

    Temporal pigmentation changes resulting from the development of a purple color in anaerobic swine waste lagoons were investigated during a 4-year period. The major purple photosynthetic bacterium responsible for these color changes and the corresponding reductions in odor was isolated from nine photosynthetic lagoons. By using morphological, physiological, and phylogenetic characterization methods we identified the predominant photosynthetic bacterium as a new strain of Rhodobacter, designated Rhodobacter sp. strain PS9. Rhodobacter sp. strain PS9 is capable of photoorganotrophic growth on a variety of organic compounds, including all of the characteristic volatile organic compounds (VOC) responsible for the odor associated with swine production facilities (J. A. Zahn, A. A. DiSpirito, Y. S. Do, B. E. Brooks, E. E. Copper, and J. L. Hatfield, J. Environ. Qual. 30:624-634, 2001). The seasonal variations in airborne VOC emitted from waste lagoons showed that there was a 80 to 93% decrease in the concentration of VOC during a photosynthetic bloom. During the height of a bloom, the Rhodobacter sp. strain PS9 population accounted for 10% of the total community and up to 27% of the eubacterial community based on 16S ribosomal DNA signals. Additional observations based on seasonal variations in meteorological, biological, and chemical parameters suggested that the photosynthetic blooms of Rhodobacter sp. strain PS9 were correlated with lagoon water temperature and with the concentrations of sulfate and phosphate. In addition, the photosynthetic blooms of Rhodobacter sp. strain PS9 were inversely correlated with the concentrations of protein and fluoride. PMID:12620863

  15. Arbitrary-detuning asynchronous optical sampling pump-probe spectroscopy of bacterial reaction centers.

    PubMed

    Antonucci, Laura; Bonvalet, Adeline; Solinas, Xavier; Jones, Michael R; Vos, Marten H; Joffre, Manuel

    2013-09-01

    A recently reported variant of asynchronous optical sampling compatible with arbitrary unstabilized laser repetition rates is applied to pump-probe spectroscopy. This makes possible the use of a 5.1 MHz chirped pulse oscillator as the pump laser, thus extending the available time window to almost 200 ns with a time resolution as good as about 320 fs. The method is illustrated with the measurement in a single experiment of the complete charge transfer dynamics of the reaction center from Rhodobacter sphaeroides.

  16. Light-field-characterization in a continuous hydrogen-producing photobioreactor by optical simulation and computational fluid dynamics.

    PubMed

    Krujatz, Felix; Illing, Rico; Krautwer, Tobias; Liao, Jing; Helbig, Karsten; Goy, Katharina; Opitz, Jörg; Cuniberti, Gianaurelio; Bley, Thomas; Weber, Jost

    2015-12-01

    Externally illuminated photobioreactors (PBRs) are widely used in studies on the use of phototrophic microorganisms as sources of bioenergy and other photobiotechnology research. In this work, straightforward simulation techniques were used to describe effects of varying fluid flow conditions in a continuous hydrogen-producing PBR on the rate of photofermentative hydrogen production (rH2 ) by Rhodobacter sphaeroides DSM 158. A ZEMAX optical ray tracing simulation was performed to quantify the illumination intensity reaching the interior of the cylindrical PBR vessel. 24.2% of the emitted energy was lost through optical effects, or did not reach the PBR surface. In a dense culture of continuously producing bacteria during chemostatic cultivation, the illumination intensity became completely attenuated within the first centimeter of the PBR radius as described by an empirical three-parametric model implemented in Mathcad. The bacterial movement in chemostatic steady-state conditions was influenced by varying the fluid Reynolds number. The "Computational Fluid Dynamics" and "Particle Tracing" tools of COMSOL Multiphysics were used to visualize the fluid flow pattern and cellular trajectories through well-illuminated zones near the PBR periphery and dark zones in the center of the PBR. A moderate turbulence (Reynolds number = 12,600) and fluctuating illumination of 1.5 Hz were found to yield the highest continuous rH2 by R. sphaeroides DSM 158 (170.5 mL L(-1) h(-1) ) in this study. © 2015 Wiley Periodicals, Inc.

  17. Evidence that Altered Cis Element Spacing Affects PpsR Mediated Redox Control of Photosynthesis Gene Expression in Rubrivivax gelatinosus.

    PubMed

    Shimizu, Takayuki; Cheng, Zhuo; Matsuura, Katsumi; Masuda, Shinji; Bauer, Carl E

    2015-01-01

    PpsR is a major regulator of photosynthesis gene expression among all characterized purple photosynthetic bacteria. This transcription regulator has been extensively characterized in Rhodobacter (Rba.) capsulatus and Rba. sphaeroides which are members of the α-proteobacteria lineage. In this study, we have investigated the biochemical properties and mutational effects of a ppsR deletion strain in the β-proteobacterium Rubrivivax (Rvi.) gelatinosus in order to reveal phylogenetically conserved mechanisms and species-specific characteristics. A deletion of the ppsR gene resulted in de-repression of photosystem synthesis showing that PpsR functions as a repressor of photosynthesis genes in this species. We also constructed a Rvi. gelatinosus PpsR mutant in which a conserved cysteine at position 436 was changed to an alanine to examine whether or not this residue is important for sensing redox, as reported in Rhodobacter species. Surprisingly, the Cys436 Ala mutant retained the ability to repress photosynthesis gene expression under aerobic conditions, suggesting that PpsR from Rvi. gelatinosus has different redox-responding characteristics. Furthermore, biochemical analyses demonstrated that Rvi. gelatinosus PpsR only shows redox-dependent binding to promoters with 9-bp spacing, but not 8-bp spacing, between two PpsR-recognition sequences. These results indicate that redox-dependent binding of PpsR requires appropriate cis configuration of PpsR target sequences in Rvi. gelatinosus. These results also indicate that PpsR homologs from different species regulate photosynthesis genes with altered biochemical properties.

  18. Triazine herbicide resistance in the photosynthetic bacterium Rhodopseudomonas sphaeroides

    PubMed Central

    Brown, Alfred E.; Gilbert, Carl W.; Guy, Rachel; Arntzen, Charles J.

    1984-01-01

    The photoaffinity herbicide azidoatrazine (2-azido-4-ethylamino-6-isopropylamino-s-triazine) selectively labels the L subunit of the reaction center of the photosynthetic bacterium Rhodopseudomonas sphaeroides. Herbicide-resistant mutants retain the L subunit and have altered binding properties for methylthio- and chloro-substituted triazines as well as altered equilibrium constants for electron transfer between primary and secondary electron acceptors. We suggest that a subtle alteration in the L subunit is responsible for herbicide resistance and that the L subunit is the functional analog of the 32-kDa QB protein of chloroplast membranes. Images PMID:16593520

  19. Electron spin relaxation enhancement measurements of interspin distances in human, porcine, and Rhodobacter electron transfer flavoprotein ubiquinone oxidoreductase (ETF QO)

    NASA Astrophysics Data System (ADS)

    Fielding, Alistair J.; Usselman, Robert J.; Watmough, Nicholas; Simkovic, Martin; Frerman, Frank E.; Eaton, Gareth R.; Eaton, Sandra S.

    2008-02-01

    Electron transfer flavoprotein-ubiquinone oxidoreductase (ETF-QO) is a membrane-bound electron transfer protein that links primary flavoprotein dehydrogenases with the main respiratory chain. Human, porcine, and Rhodobacter sphaeroides ETF-QO each contain a single [4Fe-4S] 2+,1+ cluster and one equivalent of FAD, which are diamagnetic in the isolated enzyme and become paramagnetic on reduction with the enzymatic electron donor or with dithionite. The anionic flavin semiquinone can be reduced further to diamagnetic hydroquinone. The redox potentials for the three redox couples are so similar that it is not possible to poise the proteins in a state where both the [4Fe-4S] + cluster and the flavoquinone are fully in the paramagnetic form. Inversion recovery was used to measure the electron spin-lattice relaxation rates for the [4Fe-4S] + between 8 and 18 K and for semiquinone between 25 and 65 K. At higher temperatures the spin-lattice relaxation rates for the [4Fe-4S] + were calculated from the temperature-dependent contributions to the continuous wave linewidths. Although mixtures of the redox states are present, it was possible to analyze the enhancement of the electron spin relaxation of the FAD semiquinone signal due to dipolar interaction with the more rapidly relaxing [4Fe-4S] + and obtain point-dipole interspin distances of 18.6 ± 1 Å for the three proteins. The point-dipole distances are within experimental uncertainty of the value calculated based on the crystal structure of porcine ETF-QO when spin delocalization is taken into account. The results demonstrate that electron spin relaxation enhancement can be used to measure distances in redox poised proteins even when several redox states are present.

  20. Electron Spin Relaxation Enhancement Measurements of Interspin Distances in Human, Porcine, and Rhodobacter Electron Transfer Flavoprotein-ubiquinone Oxidoreductase (ETF-QO)

    PubMed Central

    Fielding, Alistair J.; Usselman, Robert J.; Watmough, Nicholas; Simkovic, Martin; Frerman, Frank E.; Eaton, Gareth R.; Eaton, Sandra S.

    2008-01-01

    Electron transfer flavoprotein-ubiquinone oxidoreductase (ETF-QO) is a membrane-bound electron transfer protein that links primary flavoprotein dehydrogenases with the main respiratory chain. Human, porcine, and Rhodobacter sphaeroides ETF-QO each contain a single [4Fe-4S]2+,1+ cluster and one equivalent of FAD, which are diamagnetic in the isolated enzyme and become paramagnetic on reduction with the enzymatic electron donor or with dithionite. The anionic flavin semiquinone can be reduced further to diamagnetic hydroquinone. The redox potentials for the three redox couples are so similar that it is not possible to poise the proteins in a state where both the [4Fe-4S]+ cluster and the flavoquinone are fully in the paramagnetic form. Inversion recovery was used to measure the electron spin-lattice relaxation rates for the [4Fe-4S]+ between 8 and 18 K and for semiquinone between 25 and 65 K. At higher temperatures the spin-lattice relaxation rates for the [4Fe-4S]+ were calculated from the temperature-dependent contributions to the continuous wave linewidths. Although mixtures of the redox states are present, it was possible to analyze the enhancement of the electron spin relaxation of the FAD semiquinone signal due to dipolar interaction with the more rapidly relaxing [4Fe-4S]+ and obtain point dipole interspin distances of 18.6 ± 1 Å for the three proteins. The point-dipole distances are within experimental uncertainty of the value calculated based on the crystal structure of porcine ETF-QO when spin delocalization is taken into account. The results demonstrate that electron spin relaxation enhancement can be used to measure distances in redox poised proteins even when several redox states are present. PMID:18037314

  1. Electron spin relaxation enhancement measurements of interspin distances in human, porcine, and Rhodobacter electron transfer flavoprotein-ubiquinone oxidoreductase (ETF-QO).

    PubMed

    Fielding, Alistair J; Usselman, Robert J; Watmough, Nicholas; Simkovic, Martin; Frerman, Frank E; Eaton, Gareth R; Eaton, Sandra S

    2008-02-01

    Electron transfer flavoprotein-ubiquinone oxidoreductase (ETF-QO) is a membrane-bound electron transfer protein that links primary flavoprotein dehydrogenases with the main respiratory chain. Human, porcine, and Rhodobacter sphaeroides ETF-QO each contain a single [4Fe-4S](2+,1+) cluster and one equivalent of FAD, which are diamagnetic in the isolated enzyme and become paramagnetic on reduction with the enzymatic electron donor or with dithionite. The anionic flavin semiquinone can be reduced further to diamagnetic hydroquinone. The redox potentials for the three redox couples are so similar that it is not possible to poise the proteins in a state where both the [4Fe-4S](+) cluster and the flavoquinone are fully in the paramagnetic form. Inversion recovery was used to measure the electron spin-lattice relaxation rates for the [4Fe-4S](+) between 8 and 18K and for semiquinone between 25 and 65K. At higher temperatures the spin-lattice relaxation rates for the [4Fe-4S](+) were calculated from the temperature-dependent contributions to the continuous wave linewidths. Although mixtures of the redox states are present, it was possible to analyze the enhancement of the electron spin relaxation of the FAD semiquinone signal due to dipolar interaction with the more rapidly relaxing [4Fe-4S](+) and obtain point-dipole interspin distances of 18.6+/-1A for the three proteins. The point-dipole distances are within experimental uncertainty of the value calculated based on the crystal structure of porcine ETF-QO when spin delocalization is taken into account. The results demonstrate that electron spin relaxation enhancement can be used to measure distances in redox poised proteins even when several redox states are present.

  2. Genetic analysis of a bacterial genetic exchange element: The gene transfer agent of Rhodobacter capsulatus

    PubMed Central

    Lang, Andrew S.; Beatty, J. T.

    2000-01-01

    An unusual system of genetic exchange exists in the purple nonsulfur bacterium Rhodobacter capsulatus. DNA transmission is mediated by a small bacteriophage-like particle called the gene transfer agent (GTA) that transfers random 4.5-kb segments of the producing cell's genome to recipient cells, where allelic replacement occurs. This paper presents the results of gene cloning, analysis, and mutagenesis experiments that show that GTA resembles a defective prophage related to bacteriophages from diverse genera of bacteria, which has been adopted by R. capsulatus for genetic exchange. A pair of cellular proteins, CckA and CtrA, appear to constitute part of a sensor kinase/response regulator signaling pathway that is required for expression of GTA structural genes. This signaling pathway controls growth-phase-dependent regulation of GTA gene messages, yielding maximal gene expression in the stationary phase. We suggest that GTA is an ancient prophage remnant that has evolved in concert with the bacterial genome, resulting in a genetic exchange process controlled by the bacterial cell. PMID:10639170

  3. Nostoc sphaeroides Kütz, a candidate producer par excellence for CELSS

    NASA Astrophysics Data System (ADS)

    Wang, Gaohong; Hao, Zongjie; Liu, Yongding

    A lot of aquatic organisms could be regarded as suitable candidates par excellence in the establishment of CELSS, since they are relatively easy and fast to grow and resistant to changes in environmental condition as well as providing nutritious, protein-and vitamin-rich foods for the crew, which can fulfill the main functions of CELSS, including supplying oxygen, water and food, removing carbon dioxide and making daily life waste reusable. Our labotory has developed mass culture of Nostoc sphaeroides Kütz, which is one of traditional healthy food in China and. The oxygen evolution rate of the cyanobacterium is about 150 molO2.mg-1.h-1, and it usually grows into colony with size between 2-20mm, which is easy to be harvested. It also can be cultured with high density, which show that the productivity of the cyanobacterium in limited volume is higher than other microalgae. We had measured the nutrient content of the cyanobacterium and developed some Chinese Dishes and Soups with Nostoc sphaeroides Kütz, which showed that it was a good food for crew. Using remote sensing technique, we also investigated its growth in Closed System under microgravity by SHENZHOU-2 spacecraft in January 2001. We plan to develop suitable bioreactor with the cyanobacterium for supplying oxygen and food to crew in future.

  4. Structural basis for the recognition of guide RNA and target DNA heteroduplex by Argonaute

    PubMed Central

    Miyoshi, Tomohiro; Ito, Kosuke; Murakami, Ryo; Uchiumi, Toshio

    2016-01-01

    Argonaute proteins are key players in the gene silencing mechanisms mediated by small nucleic acids in all domains of life from bacteria to eukaryotes. However, little is known about the Argonaute protein that recognizes guide RNA/target DNA. Here, we determine the 2 Å crystal structure of Rhodobacter sphaeroides Argonaute (RsAgo) in a complex with 18-nucleotide guide RNA and its complementary target DNA. The heteroduplex maintains Watson–Crick base-pairing even in the 3′-region of the guide RNA between the N-terminal and PIWI domains, suggesting a recognition mode by RsAgo for stable interaction with the target strand. In addition, the MID/PIWI interface of RsAgo has a system that specifically recognizes the 5′ base-U of the guide RNA, and the duplex-recognition loop of the PAZ domain is important for the DNA silencing activity. Furthermore, we show that Argonaute discriminates the nucleic acid type (RNA/DNA) by recognition of the duplex structure of the seed region. PMID:27325485

  5. The swimming of a perfect deforming helix

    NASA Astrophysics Data System (ADS)

    Koens, Lyndon; Zhang, Hang; Mourran, Ahmed; Lauga, Eric

    2017-11-01

    Many bacteria rotate helical flagellar filaments in order to swim. When at rest or rotated counter-clockwise these flagella are left handed helices but they undergo polymorphic transformations to right-handed helices when the motor is reversed. These helical deformations themselves can generate motion, with for example Rhodobacter sphaeroides using the polymorphic transformation of the flagellum to generate rotation, or Spiroplasma propagating a change of helix handedness across its body's length to generate forward motion. Recent experiments reported on an artificial helical microswimmer generating motion without a propagating change in handedness. Made of a temperature sensitive gel, these swimmers moved by changing the dimensions of the helix in a non-reciprocal way. Inspired by these results and helix's ubiquitous presence in the bacterial world, we investigate how a deforming helix moves within a viscous fluid. Maintaining a single handedness along its entire length, we discuss how a perfect deforming helix can create a non-reciprocal swimming stroke, identify its principle directions of motion, and calculate the swimming kinematics asymptotically.

  6. Overall energy conversion efficiency of a photosynthetic vesicle

    PubMed Central

    Sener, Melih; Strumpfer, Johan; Singharoy, Abhishek; Hunter, C Neil; Schulten, Klaus

    2016-01-01

    The chromatophore of purple bacteria is an intracellular spherical vesicle that exists in numerous copies in the cell and that efficiently converts sunlight into ATP synthesis, operating typically under low light conditions. Building on an atomic-level structural model of a low-light-adapted chromatophore vesicle from Rhodobacter sphaeroides, we investigate the cooperation between more than a hundred protein complexes in the vesicle. The steady-state ATP production rate as a function of incident light intensity is determined after identifying quinol turnover at the cytochrome bc1 complex (cytb⁢c1) as rate limiting and assuming that the quinone/quinol pool of about 900 molecules acts in a quasi-stationary state. For an illumination condition equivalent to 1% of full sunlight, the vesicle exhibits an ATP production rate of 82 ATP molecules/s. The energy conversion efficiency of ATP synthesis at illuminations corresponding to 1%–5% of full sunlight is calculated to be 0.12–0.04, respectively. The vesicle stoichiometry, evolutionarily adapted to the low light intensities in the habitat of purple bacteria, is suboptimal for steady-state ATP turnover for the benefit of protection against over-illumination. DOI: http://dx.doi.org/10.7554/eLife.09541.001 PMID:27564854

  7. Rhodobase, a meta-analytical tool for reconstructing gene regulatory networks in a model photosynthetic bacterium.

    PubMed

    Moskvin, Oleg V; Bolotin, Dmitry; Wang, Andrew; Ivanov, Pavel S; Gomelsky, Mark

    2011-02-01

    We present Rhodobase, a web-based meta-analytical tool for analysis of transcriptional regulation in a model anoxygenic photosynthetic bacterium, Rhodobacter sphaeroides. The gene association meta-analysis is based on the pooled data from 100 of R. sphaeroides whole-genome DNA microarrays. Gene-centric regulatory networks were visualized using the StarNet approach (Jupiter, D.C., VanBuren, V., 2008. A visual data mining tool that facilitates reconstruction of transcription regulatory networks. PLoS ONE 3, e1717) with several modifications. We developed a means to identify and visualize operons and superoperons. We designed a framework for the cross-genome search for transcription factor binding sites that takes into account high GC-content and oligonucleotide usage profile characteristic of the R. sphaeroides genome. To facilitate reconstruction of directional relationships between co-regulated genes, we screened upstream sequences (-400 to +20bp from start codons) of all genes for putative binding sites of bacterial transcription factors using a self-optimizing search method developed here. To test performance of the meta-analysis tools and transcription factor site predictions, we reconstructed selected nodes of the R. sphaeroides transcription factor-centric regulatory matrix. The test revealed regulatory relationships that correlate well with the experimentally derived data. The database of transcriptional profile correlations, the network visualization engine and the optimized search engine for transcription factor binding sites analysis are available at http://rhodobase.org. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  8. Comparison of the nucleotide and amino acid sequences of the RsrI and EcoRI restriction endonucleases.

    PubMed

    Stephenson, F H; Ballard, B T; Boyer, H W; Rosenberg, J M; Greene, P J

    1989-12-21

    The RsrI endonuclease, a type-II restriction endonuclease (ENase) found in Rhodobacter sphaeroides, is an isoschizomer of the EcoRI ENase. A clone containing an 11-kb BamHI fragment was isolated from an R. sphaeroides genomic DNA library by hybridization with synthetic oligodeoxyribonucleotide probes based on the N-terminal amino acid (aa) sequence of RsrI. Extracts of E. coli containing a subclone of the 11-kb fragment display RsrI activity. Nucleotide sequence analysis reveals an 831-bp open reading frame encoding a polypeptide of 277 aa. A 50% identity exists within a 266-aa overlap between the deduced aa sequences of RsrI and EcoRI. Regions of 75-100% aa sequence identity correspond to key structural and functional regions of EcoRI. The type-II ENases have many common properties, and a common origin might have been expected. Nevertheless, this is the first demonstration of aa sequence similarity between ENases produced by different organisms.

  9. Structural and phylogenetic analysis of Rhodobacter capsulatus NifF: uncovering general features of nitrogen-fixation (nif)-flavodoxins.

    PubMed

    Pérez-Dorado, Inmaculada; Bortolotti, Ana; Cortez, Néstor; Hermoso, Juan A

    2013-01-09

    Analysis of the crystal structure of NifF from Rhodobacter capsulatus and its homologues reported so far reflects the existence of unique structural features in nif flavodoxins: a leucine at the re face of the isoalloxazine, an eight-residue insertion at the C-terminus of the 50's loop and a remarkable difference in the electrostatic potential surface with respect to non-nif flavodoxins. A phylogenetic study on 64 sequences from 52 bacterial species revealed four clusters, including different functional prototypes, correlating the previously defined as "short-chain" with the firmicutes flavodoxins and the "long-chain" with gram-negative species. The comparison of Rhodobacter NifF structure with other bacterial flavodoxin prototypes discloses the concurrence of specific features of these functional electron donors to nitrogenase.

  10. Functional Characterization of the FoxE Iron Oxidoreductase from the Photoferrotroph Rhodobacter ferrooxidans SW2*

    PubMed Central

    Saraiva, Ivo H.; Newman, Dianne K.; Louro, Ricardo O.

    2012-01-01

    Photoferrotrophy is presumed to be an ancient type of photosynthetic metabolism in which bacteria use the reducing power of ferrous iron to drive carbon fixation. In this work the putative iron oxidoreductase of the photoferrotroph Rhodobacter ferrooxidans SW2 was cloned, purified, and characterized for the first time. This protein, FoxE, was characterized using spectroscopic, thermodynamic, and kinetic techniques. It is a c-type cytochrome that forms a trimer or tetramer in solution; the two hemes of each monomer are hexacoordinated by histidine and methionine. The hemes have positive reduction potentials that allow downhill electron transfer from many geochemically relevant ferrous iron forms to the photosynthetic reaction center. The reduction potentials of the hemes are different and are cross-assigned to fast and slow kinetic phases of ferrous iron oxidation in vitro. Lower reactivity was observed at high pH and may contribute to prevent ferric iron precipitation inside or at the surface of the cell. These results help fill in the molecular details of a metabolic process that likely contributed to the deposition of precambrian banded iron formations, globally important sedimentary rocks that are found on every continent today. PMID:22661703

  11. Species differences in unlocking B-side electron transfer in bacterial reaction centers

    DOE PAGES

    Dylla, Nicholas P.; Faries, Kaitlyn M.; Wyllie, Ryan M.; ...

    2016-06-21

    The structure of the bacterial photosynthetic reaction center (RC) reveals symmetry-related electron transfer (ET) pathways, but only one path is used in native RCs. Analogous mutations have been made in two Rhodobacter (R.) species. A glutamic acid at position 133 in the M subunit increases transmembrane charge separation via the naturally inactive (B-side) path through impacts on primary ET in mutant R. sphaeroidesRCs. Prior work showed that the analogous substitution in the R. capsulatusRC also increases B-side activity, but mainly affects secondary ET. Finally, the overall yields of transmembrane ET are similar, but enabled in fundamentally different ways.

  12. A Conserved Steroid Binding Site in Cytochrome c Oxidase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qin, Ling; Mills, Denise A.; Buhrow, Leann

    2010-09-02

    Micromolar concentrations of the bile salt deoxycholate are shown to rescue the activity of an inactive mutant, E101A, in the K proton pathway of Rhodobacter sphaeroides cytochrome c oxidase. A crystal structure of the wild-type enzyme reveals, as predicted, deoxycholate bound with its carboxyl group at the entrance of the K path. Since cholate is a known potent inhibitor of bovine oxidase and is seen in a similar position in the bovine structure, the crystallographically defined, conserved steroid binding site could reveal a regulatory site for steroids or structurally related molecules that act on the essential K proton path.

  13. Species differences in unlocking B-side electron transfer in bacterial reaction centers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dylla, Nicholas P.; Faries, Kaitlyn M.; Wyllie, Ryan M.

    The structure of the bacterial photosynthetic reaction center (RC) reveals symmetry-related electron transfer (ET) pathways, but only one path is used in native RCs. Analogous mutations have been made in two Rhodobacter (R.) species. A glutamic acid at position 133 in the M subunit increases transmembrane charge separation via the naturally inactive (B-side) path through impacts on primary ET in mutant R. sphaeroidesRCs. Prior work showed that the analogous substitution in the R. capsulatusRC also increases B-side activity, but mainly affects secondary ET. Finally, the overall yields of transmembrane ET are similar, but enabled in fundamentally different ways.

  14. Membrane development in purple photosynthetic bacteria in response to alterations in light intensity and oxygen tension.

    PubMed

    Niederman, Robert A

    2013-10-01

    Studies on membrane development in purple bacteria during adaptation to alterations in light intensity and oxygen tension are reviewed. Anoxygenic phototrophic such as the purple α-proteobacterium Rhodobacter sphaeroides have served as simple, dynamic, and experimentally accessible model organisms for studies of the photosynthetic apparatus. A major landmark in photosynthesis research, which dramatically illustrates this point, was provided by the determination of the X-ray structure of the reaction center (RC) in Blastochloris viridis (Deisenhofer and Michel, EMBO J 8:2149-2170, 1989), once it was realized that this represented the general structure for the photosystem II RC present in all oxygenic phototrophs. This seminal advance, together with a considerable body of subsequent research on the light-harvesting (LH) and electron transfer components of the photosynthetic apparatus has provided a firm basis for the current understanding of how phototrophs acclimate to alterations in light intensity and quality. Oxygenic phototrophs adapt to these changes by extensive thylakoid membrane remodeling, which results in a dramatic supramolecular reordering to assure that an appropriate flow of quinone redox species occurs within the membrane bilayer for efficient and rapid electron transfer. Despite the high level of photosynthetic unit organization in Rba. sphaeroides as observed by atomic force microscopy (AFM), fluorescence induction/relaxation measurements have demonstrated that the addition of the peripheral LH2 antenna complex in cells adapting to low-intensity illumination results in a slowing of the rate of electron transfer turnover by the RC of up to an order of magnitude. This is ascribed to constraints in quinone redox species diffusion between the RC and cytochrome bc1 complexes arising from the increased packing density as the intracytoplasmic membrane (ICM) bilayer becomes crowded with LH2 rings. In addition to downshifts in light intensity as a paradigm

  15. The effects of protein crowding in bacterial photosynthetic membranes on the flow of quinone redox species between the photochemical reaction center and the ubiquinol-cytochrome c2 oxidoreductase.

    PubMed

    Woronowicz, Kamil; Sha, Daniel; Frese, Raoul N; Sturgis, James N; Nanda, Vikas; Niederman, Robert A

    2011-08-01

    Atomic force microscopy (AFM) of the native architecture of the intracytoplasmic membrane (ICM) of a variety of species of purple photosynthetic bacteria, obtained at submolecular resolution, shows a tightly packed arrangement of light harvesting (LH) and reaction center (RC) complexes. Since there are no unattributed structures or gaps with space sufficient for the cytochrome bc(1) or ATPase complexes, they are localized in membrane domains distinct from the flat regions imaged by AFM. This has generated a renewed interest in possible long-range pathways for lateral diffusion of UQ redox species that functionally link the RC and the bc(1) complexes. Recent proposals to account for UQ flow in the membrane bilayer are reviewed, along with new experimental evidence provided from an analysis of intrinsic near-IR fluorescence emission that has served to test these hypotheses. The results suggest that different mechanism of UQ flow exist between species such as Rhodobacter sphaeroides, with a highly organized arrangement of LH and RC complexes and fast RC electron transfer turnover, and Phaeospirillum molischianum with a more random organization and slower RC turnover. It is concluded that packing density of the peripheral LH2 antenna in the Rba. sphaeroides ICM imposes constraints that significantly slow the diffusion of UQ redox species between the RC and cytochrome bc(1) complex, while in Phs. molischianum, the crowding of the ICM with LH3 has little effect upon UQ diffusion. This supports the proposal that in this type of ICM, a network of RC-LH1 core complexes observed in AFM provides a pathway for long-range quinone diffusion that is unaffected by differences in LH complex composition or organization.

  16. Long-term biological hydrogen production by agar immobilized Rhodobacter capsulatus in a sequential batch photobioreactor.

    PubMed

    Elkahlout, Kamal; Alipour, Siamak; Eroglu, Inci; Gunduz, Ufuk; Yucel, Meral

    2017-04-01

    In this study, agar immobilization technique was employed for biological hydrogen production using Rhodobacter capsulatus DSM 1710 (wild type) and YO3 (hup-mutant) strains in sequential batch process. Different agar and glutamate concentrations were tested with defined nutrient medium. Agar concentration 4% (w/v) and 4 mM glutamate were selected for bacterial immobilization in terms of rate and longevity of hydrogen production. Acetate concentration was increased from 40 to 60-100 and 60 mM gave best results with both bacterial strains immobilized in 4% (w/v) agar. Cell concentration was increased from 2.5 to 5 mg dcw mL -1 agar and it was found that increasing cell concentration of wild-type strain caused decrease in yield and productivity while these parameters improved by increasing cell concentration of mutant strain. Also, the hydrogen production time has extended from 17 days up to 60 days according to the process conditions and parameters. Hydrogen production by immobilized photosynthetic bacteria is a convenient technology for hydrogen production as it enables to produce hydrogen with high organic acid concentrations comparing to suspended cultures. Besides, immobilization increases the stability of the system and allowed sequential batch operation for long-term application.

  17. Structure of Methylobacterium extorquens malyl-CoA lyase: CoA-substrate binding correlates with domain shift

    DOE PAGES

    Gonzalez, Javier M.; Marti-Arbona, Ricardo; Chen, Julian C. -H.; ...

    2017-01-27

    Malyl-CoA lyase (MCL) is an Mg 2+-dependent enzyme that catalyzes the reversible cleavage of (2 S)-4-malyl-CoA to yield acetyl-CoA and glyoxylate. MCL enzymes, which are found in a variety of bacteria, are members of the citrate lyase-like family and are involved in the assimilation of one- and two-carbon compounds. Here, the 1.56 Å resolution X-ray crystal structure of MCL from Methylobacterium extorquens AM1 with bound Mg 2+is presented. Structural alignment with the closely related Rhodobacter sphaeroides malyl-CoA lyase complexed with Mg 2+, oxalate and CoA allows a detailed analysis of the domain motion of the enzyme caused by substrate binding.more » Alignment of the structures shows that a simple hinge motion centered on the conserved residues Phe268 and Thr269 moves the C-terminal domain by about 30° relative to the rest of the molecule. Furthermore, this domain motion positions a conserved aspartate residue located in the C-terminal domain in the active site of the adjacent monomer, which may serve as a general acid/base in the catalytic mechanism.« less

  18. Structure of Methylobacterium extorquens malyl-CoA lyase: CoA-substrate binding correlates with domain shift

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gonzalez, Javier M.; Marti-Arbona, Ricardo; Chen, Julian C. -H.

    Malyl-CoA lyase (MCL) is an Mg 2+-dependent enzyme that catalyzes the reversible cleavage of (2 S)-4-malyl-CoA to yield acetyl-CoA and glyoxylate. MCL enzymes, which are found in a variety of bacteria, are members of the citrate lyase-like family and are involved in the assimilation of one- and two-carbon compounds. Here, the 1.56 Å resolution X-ray crystal structure of MCL from Methylobacterium extorquens AM1 with bound Mg 2+is presented. Structural alignment with the closely related Rhodobacter sphaeroides malyl-CoA lyase complexed with Mg 2+, oxalate and CoA allows a detailed analysis of the domain motion of the enzyme caused by substrate binding.more » Alignment of the structures shows that a simple hinge motion centered on the conserved residues Phe268 and Thr269 moves the C-terminal domain by about 30° relative to the rest of the molecule. Furthermore, this domain motion positions a conserved aspartate residue located in the C-terminal domain in the active site of the adjacent monomer, which may serve as a general acid/base in the catalytic mechanism.« less

  19. Construction and validation of an atomic model for bacterial TSPO from electron microscopy density, evolutionary constraints, and biochemical and biophysical data.

    PubMed

    Hinsen, Konrad; Vaitinadapoule, Aurore; Ostuni, Mariano A; Etchebest, Catherine; Lacapere, Jean-Jacques

    2015-02-01

    The 18 kDa protein TSPO is a highly conserved transmembrane protein found in bacteria, yeast, animals and plants. TSPO is involved in a wide range of physiological functions, among which the transport of several molecules. The atomic structure of monomeric ligand-bound mouse TSPO in detergent has been published recently. A previously published low-resolution structure of Rhodobacter sphaeroides TSPO, obtained from tubular crystals with lipids and observed in cryo-electron microscopy, revealed an oligomeric structure without any ligand. We analyze this electron microscopy density in view of available biochemical and biophysical data, building a matching atomic model for the monomer and then the entire crystal. We compare its intra- and inter-molecular contacts with those predicted by amino acid covariation in TSPO proteins from evolutionary sequence analysis. The arrangement of the five transmembrane helices in a monomer of our model is different from that observed for the mouse TSPO. We analyze possible ligand binding sites for protoporphyrin, for the high-affinity ligand PK 11195, and for cholesterol in TSPO monomers and/or oligomers, and we discuss possible functional implications. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Rhodobacter sp. Rb3, an aerobic anoxygenic phototroph which thrives in the polyextreme ecosystem of the Salar de Huasco, in the Chilean Altiplano.

    PubMed

    Pérez, Vilma; Dorador, Cristina; Molina, Verónica; Yáñez, Carolina; Hengst, Martha

    2018-03-22

    The Salar de Huasco is an evaporitic basin located in the Chilean Altiplano, which presents extreme environmental conditions for life, i.e. high altitude (3800 m.a.s.l.), negative water balance, a wide salinity range, high daily temperature changes and the occurrence of the highest registered solar radiation on the planet (> 1200 W m -2 ). This ecosystem is considered as a natural laboratory to understand different adaptations of microorganisms to extreme conditions. Rhodobacter, an anoxygenic aerobic phototrophic bacterial genus, represents one of the most abundant groups reported based on taxonomic diversity surveys in this ecosystem. The bacterial mat isolate Rhodobacter sp. strain Rb3 was used to study adaptation mechanisms to stress-inducing factors potentially explaining its success in a polyextreme ecosystem. We found that the Rhodobacter sp. Rb3 genome was characterized by a high abundance of genes involved in stress tolerance and adaptation strategies, among which DNA repair and oxidative stress were the most conspicuous. Moreover, many other molecular mechanisms associated with oxidative stress, photooxidation and antioxidants; DNA repair and protection; motility, chemotaxis and biofilm synthesis; osmotic stress, metal, metalloid and toxic anions resistance; antimicrobial resistance and multidrug pumps; sporulation; cold shock and heat shock stress; mobile genetic elements and toxin-antitoxin system were detected and identified as potential survival mechanism features in Rhodobacter sp. Rb3. In total, these results reveal a wide set of strategies used by the isolate to adapt and thrive under environmental stress conditions as a model of polyextreme environmental resistome.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burger, Brian T.; Imam, Saheed; Scarborough, Matthew J.

    Rhodobacter sphaeroides is one of the best-studied alphaproteobacteria from biochemical, genetic, and genomic perspectives. To gain a better systems-level understanding of this organism, we generated a large transposon mutant library and used transposon sequencing (Tn-seq) to identify genes that are essential under several growth conditions. Using newly developed Tn-seq analysis software (TSAS), we identified 493 genes as essential for aerobic growth on a rich medium. We then used the mutant library to identify conditionally essential genes under two laboratory growth conditions, identifying 85 additional genes required for aerobic growth in a minimal medium and 31 additional genes required for photosyntheticmore » growth. In all instances, our analyses confirmed essentiality for many known genes and identified genes not previously considered to be essential. We used the resulting Tn-seq data to refine and improve a genome-scale metabolic network model (GEM) for R. sphaeroides. Together, we demonstrate how genetic, genomic, and computational approaches can be combined to obtain a systems-level understanding of the genetic framework underlying metabolic diversity in bacterial species.« less

  2. Stability of integral membrane proteins under high hydrostatic pressure: the LH2 and LH3 antenna pigment-protein complexes from photosynthetic bacteria.

    PubMed

    Kangur, Liina; Timpmann, Kõu; Freiberg, Arvi

    2008-07-03

    The bacteriochlorophyll a-containing LH2 and LH3 antenna complexes are the integral membrane proteins that catalyze the photosynthetic process in purple photosynthetic bacteria. The LH2 complex from Rhodobacter sphaeroides shows characteristic strong absorbance at 800 and 850 nm due to the pigment molecules confined in two separate areas of the protein. In the LH3 complex from Rhodopesudomonas acidophila the corresponding bands peak at 800 and 820 nm. Using the bacteriochlorophyll a cofactors as intrinsic probes to monitor local changes in the protein structure, we investigate spectral responses of the antenna complexes to very high hydrostatic pressures up to 2.5 GPa when embedded into natural membrane environment or extracted with detergent. We first demonstrate that high pressure does induce significant alterations to the tertiary structure of the proteins not only in proximity of the 800 nm-absorbing bacteriochlorophyll a molecules known previously (Gall, A.; et al. Biochemistry 2003, 42, 13019) but also of the 850 nm- and 820 nm-absorbing molecules, including breakage of the hydrogen bond they are involved in. The membrane-protected complexes appear more resilient to damaging effects of the compression compared with the complexes extracted into mixed detergent-buffer environment. Increased resistance of the isolated complexes is observed at high protein concentration resulting aggregation as well as when cosolvent (glycerol) is added into the solution. These stability variations correlate with ability of penetration of the surrounding polar solvent (water) into the hydrophobic protein interiors, being thus the principal reason of the pressure-induced denaturation of the proteins. Considerable variability of elastic properties of the isolated complexes was also observed, tentatively assigned to heterogeneous protein packing in detergent micelles. While a number of the isolated complexes release most of their bacteriochlorophyll a content under high pressure

  3. Prediction and Biochemical Demonstration of a Catabolic Pathway for the Osmoprotectant Proline Betaine

    PubMed Central

    Kumar, Ritesh; Zhao, Suwen; Vetting, Matthew W.; Wood, B. McKay; Sakai, Ayano; Cho, Kyuil; Solbiati, José; Almo, Steven C.; Sweedler, Jonathan V.; Jacobson, Matthew P.; Gerlt, John A.; Cronan, John E.

    2014-01-01

    ABSTRACT Through the use of genetic, enzymatic, metabolomic, and structural analyses, we have discovered the catabolic pathway for proline betaine, an osmoprotectant, in Paracoccus denitrificans and Rhodobacter sphaeroides. Genetic and enzymatic analyses showed that several of the key enzymes of the hydroxyproline betaine degradation pathway also function in proline betaine degradation. Metabolomic analyses detected each of the metabolic intermediates of the pathway. The proline betaine catabolic pathway was repressed by osmotic stress and cold stress, and a regulatory transcription factor was identified. We also report crystal structure complexes of the P. denitrificans HpbD hydroxyproline betaine epimerase/proline betaine racemase with l-proline betaine and cis-hydroxyproline betaine. PMID:24520058

  4. A mixed incoherent feed-forward loop contributes to the regulation of bacterial photosynthesis genes.

    PubMed

    Mank, Nils N; Berghoff, Bork A; Klug, Gabriele

    2013-03-01

    Living cells use a variety of regulatory network motifs for accurate gene expression in response to changes in their environment or during differentiation processes. In Rhodobacter sphaeroides, a complex regulatory network controls expression of photosynthesis genes to guarantee optimal energy supply on one hand and to avoid photooxidative stress on the other hand. Recently, we identified a mixed incoherent feed-forward loop comprising the transcription factor PrrA, the sRNA PcrZ and photosynthesis target genes as part of this regulatory network. This point-of-view provides a comparison to other described feed-forward loops and discusses the physiological relevance of PcrZ in more detail.

  5. A mixed incoherent feed-forward loop contributes to the regulation of bacterial photosynthesis genes

    PubMed Central

    Mank, Nils N.; Berghoff, Bork A.; Klug, Gabriele

    2013-01-01

    Living cells use a variety of regulatory network motifs for accurate gene expression in response to changes in their environment or during differentiation processes. In Rhodobacter sphaeroides, a complex regulatory network controls expression of photosynthesis genes to guarantee optimal energy supply on one hand and to avoid photooxidative stress on the other hand. Recently, we identified a mixed incoherent feed-forward loop comprising the transcription factor PrrA, the sRNA PcrZ and photosynthesis target genes as part of this regulatory network. This point-of-view provides a comparison to other described feed-forward loops and discusses the physiological relevance of PcrZ in more detail. PMID:23392242

  6. The mechanisms of protection of antioxidants on Nostoc sphaeroides against UV-B radiation

    NASA Astrophysics Data System (ADS)

    Wang, G. H.

    UV radiation is one of space harmful factor for earth organisms in space exploration In the present work we studied on the role of antioxidant system in Nostoc sphaeroides K u tz Cyanobacteria and the effects of exogenous antioxidant molecules on its photosynthetic rate under UV-B radiation It was found that UV-B radiation decreased the photosynthetic activity of cyanobacterium but promoted the activity of antioxidant system to protect photosystem II PSII and exogenous antioxidant sodium nitroprusside SNP N-acetylcysteine NAC had an obvious protection on PSII activity under UV-B radiation The activity of SOD Superoxide Dismutase EC 1 15 1 1 CAT Catalase EC 1 11 1 6 POD Peroxidase EC 1 11 1 7 and content of MDA and ASC were improved by 0 5mM and 1mM SNP but 0 1mM SNP decreased the activity of antioxide system Exogenous NAC addition decreased the activity of SOD POD CAT and the content MDA and ASC but exogenous NAC addition increased the content of GSH The results suggested that exogenous SNP and NAC may protect algae by different mechanisms in which SNP maybe play double roles as sources of reactive free radicals or ROS scavengers in formation of algae s protection of PSII under UV-B radiation while NAC does function as antioxidant reagent or precursor of glutathione which could protect PSII directly from UV-B radiation Keyword antioxidant system exogenous or endogenous antioxidant Nostoc sphaeroides photosynthesis UV-B radiation

  7. Convergence of the transcriptional responses to heat shock and singlet oxygen stresses.

    PubMed

    Dufour, Yann S; Imam, Saheed; Koo, Byoung-Mo; Green, Heather A; Donohue, Timothy J

    2012-09-01

    Cells often mount transcriptional responses and activate specific sets of genes in response to stress-inducing signals such as heat or reactive oxygen species. Transcription factors in the RpoH family of bacterial alternative σ factors usually control gene expression during a heat shock response. Interestingly, several α-proteobacteria possess two or more paralogs of RpoH, suggesting some functional distinction. We investigated the target promoters of Rhodobacter sphaeroides RpoH(I) and RpoH(II) using genome-scale data derived from gene expression profiling and the direct interactions of each protein with DNA in vivo. We found that the RpoH(I) and RpoH(II) regulons have both distinct and overlapping gene sets. We predicted DNA sequence elements that dictate promoter recognition specificity by each RpoH paralog. We found that several bases in the highly conserved TTG in the -35 element are important for activity with both RpoH homologs; that the T-9 position, which is over-represented in the RpoH(I) promoter sequence logo, is critical for RpoH(I)-dependent transcription; and that several bases in the predicted -10 element were important for activity with either RpoH(II) or both RpoH homologs. Genes that are transcribed by both RpoH(I) and RpoH(II) are predicted to encode for functions involved in general cell maintenance. The functions specific to the RpoH(I) regulon are associated with a classic heat shock response, while those specific to RpoH(II) are associated with the response to the reactive oxygen species, singlet oxygen. We propose that a gene duplication event followed by changes in promoter recognition by RpoH(I) and RpoH(II) allowed convergence of the transcriptional responses to heat and singlet oxygen stress in R. sphaeroides and possibly other bacteria.

  8. Oxygen-­dependent regulation of bacterial lipid production

    DOE PAGES

    Lemmer, Kimberly C.; Dohnalkova, Alice C.; Noguera, Daniel R.; ...

    2015-05-02

    Understanding the mechanisms of lipid accumulation in microorganisms is important for several reasons. In addition to providing insight into assembly of biological membranes, lipid accumulation has important applications in the production of renewable fuels and chemicals. The photosynthetic bacterium Rhodobacter sphaeroides is an attractive organism to study lipid accumulation, as it has the somewhat unique ability to increase membrane production at low O₂ tensions. Under these conditions, R. sphaeroides develops invaginations of the cytoplasmic membrane to increase its membrane surface area for housing of the membrane-bound components of its photosynthetic apparatus. Here we use fatty acid levels as a reportermore » of membrane lipid content. We show that, under low-O₂ and anaerobic conditions, the total fatty acid content per cell increases 3-fold. We also find that the increases in the amount of fatty acid and photosynthetic pigment per cell are correlated as O₂ tensions or light intensity are changed. To ask if lipid and pigment accumulation were genetically separable, we analyzed strains with mutations in known photosynthetic regulatory pathways. While a strain lacking AppA failed to induce photosynthetic pigment-protein complex accumulation, it increased fatty acid content under low O2 conditions. We also found that an intact PrrBA pathway is required for low O2-induced fatty acid accumulation. In conclusion, our findings suggest a previously unknown role of R. sphaeroides transcriptional regulators in increasing fatty acid and phospholipid accumulation in response to decreased O₂ tension.« less

  9. Absorption spectral change of peripheral-light harvesting complexes 2 induced by magnesium protoporphyrin IX monomethyl ester association

    NASA Astrophysics Data System (ADS)

    Yue, Huiying; Zhao, Chungui; Li, Kai; Yang, Suping

    2015-02-01

    Several spectrally different types of peripheral light harvesting complexes (LH) have been reported in anoxygenic phototrophic bacteria in response to environmental changes. In this study, two spectral forms of LH2 (T-LH2 and U-LH2) were isolated from Rhodobacter azotoformans. The absorption of T-LH2 was extremely similar to the LH2 isolated from Rhodobacter sphaeroides. U-LH2 showed an extra peak at ∼423 nm in the carotenoid region. To explore the spectral origin of this absorption peak, the difference in pigment compositions of two LH2 was analyzed. Spheroidene and bacteriochlorophyll aP were both contained in the two LH2. And magnesium protoporphyrin IX monomethyl ester (MPE) was only contained in U-LH2. It is known that spheroidene and bacteriochlorophyll aP do not produce ∼423 nm absorption peak either in vivo or in vitro. Whether MPE accumulation was mainly responsible for the formation of the ∼423 nm peak? The interactions between MPE and different proteins were further studied. The results showed that the maximum absorption of MPE was red-shifted from ∼415 nm to ∼423 nm when it was mixed with T-LH2 and its apoproteins, nevertheless, the Qy transitions of the bound bacteriochlorophylls in LH2 were almost unaffected, which indicated that the formation of the ∼423 nm peak was related to MPE-LH2 protein interaction. MPE did not bind to sites involved in the spectral tuning of BChls, but the conformation of integral LH2 was affected by MPE association, the alkaline stability of U-LH2 was lower than T-LH2, and the fluorescence intensity at 860 nm was decreased after MPE combination.

  10. Absorption spectral change of peripheral-light harvesting complexes 2 induced by magnesium protoporphyrin IX monomethyl ester association.

    PubMed

    Yue, Huiying; Zhao, Chungui; Li, Kai; Yang, Suping

    2015-02-25

    Several spectrally different types of peripheral light harvesting complexes (LH) have been reported in anoxygenic phototrophic bacteria in response to environmental changes. In this study, two spectral forms of LH2 (T-LH2 and U-LH2) were isolated from Rhodobacter azotoformans. The absorption of T-LH2 was extremely similar to the LH2 isolated from Rhodobacter sphaeroides. U-LH2 showed an extra peak at ∼423 nm in the carotenoid region. To explore the spectral origin of this absorption peak, the difference in pigment compositions of two LH2 was analyzed. Spheroidene and bacteriochlorophyll aP were both contained in the two LH2. And magnesium protoporphyrin IX monomethyl ester (MPE) was only contained in U-LH2. It is known that spheroidene and bacteriochlorophyll aP do not produce ∼423 nm absorption peak either in vivo or in vitro. Whether MPE accumulation was mainly responsible for the formation of the ∼423 nm peak? The interactions between MPE and different proteins were further studied. The results showed that the maximum absorption of MPE was red-shifted from ∼415 nm to ∼423 nm when it was mixed with T-LH2 and its apoproteins, nevertheless, the Qy transitions of the bound bacteriochlorophylls in LH2 were almost unaffected, which indicated that the formation of the ∼423 nm peak was related to MPE-LH2 protein interaction. MPE did not bind to sites involved in the spectral tuning of BChls, but the conformation of integral LH2 was affected by MPE association, the alkaline stability of U-LH2 was lower than T-LH2, and the fluorescence intensity at 860 nm was decreased after MPE combination. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Production of bioplastics and hydrogen gas by photosynthetic microorganisms

    NASA Astrophysics Data System (ADS)

    Yasuo, Asada; Masato, Miyake; Jun, Miyake

    1998-03-01

    Our efforts have been aimed at the technological basis of photosynthetic-microbial production of materials and an energy carrier. We report here accumulation of poly-(3-hydroxybutyrate) (PHB), a raw material of biodegradable plastics and for production of hydrogen gas, and a renewable energy carrier by photosynthetic microorganisms (tentatively defined as cyanobacteria plus photosynthetic bateria, in this report). A thermophilic cyanobacterium, Synechococcus sp. MA19 that accumulates PHB at more than 20% of cell dry wt under nitrogen-starved conditions was isolated and microbiologically identified. The mechanism of PHB accumulation was studied. A mesophilic Synechococcus PCC7942 was transformed with the genes encoding PHB-synthesizing enzymes from Alcaligenes eutrophus. The transformant accumulated PHB under nitrogen-starved conditions. The optimal conditions for PHB accumulation by a photosynthetic bacterium grown on acetate were studied. Hydrogen production by photosynthetic microorganisms was studied. Cyanobacteria can produce hydrogen gas by nitrogenase or hydrogenase. Hydrogen production mediated by native hydrogenase in cyanobacteria was revealed to be in the dark anaerobic degradation of intracellular glycogen. A new system for light-dependent hydrogen production was targeted. In vitro and in vivo coupling of cyanobacterial ferredoxin with a heterologous hydrogenase was shown to produce hydrogen under light conditions. A trial for genetic trasformation of Synechococcus PCC7942 with the hydrogenase gene from Clostridium pasteurianum is going on. The strong hydrogen producers among photosynthetic bacteria were isolated and characterized. Co-culture of Rhodobacter and Clostriumdium was applied to produce hydrogen from glucose. Conversely in the case of cyanobacteria, genetic regulation of photosynthetic proteins was intended to improve conversion efficiency in hydrogen production by the photosynthetic bacterium, Rhodobacter sphaeroides RV. A mutant acquired by

  12. Tuning cofactor redox potentials: the 2-methoxy dihedral angle generates a redox potential difference of >160 mV between the primary (Q(A)) and secondary (Q(B)) quinones of the bacterial photosynthetic reaction center.

    PubMed

    Taguchi, Alexander T; Mattis, Aidas J; O'Malley, Patrick J; Dikanov, Sergei A; Wraight, Colin A

    2013-10-15

    Only quinones with a 2-methoxy group can act simultaneously as the primary (QA) and secondary (QB) electron acceptors in photosynthetic reaction centers from Rhodobacter sphaeroides. (13)C hyperfine sublevel correlation measurements of the 2-methoxy in the semiquinone states, SQA and SQB, were compared with quantum mechanics calculations of the (13)C couplings as a function of the dihedral angle. X-ray structures support dihedral angle assignments corresponding to a redox potential gap (ΔEm) between QA and QB of ~180 mV. This is consistent with the failure of a ubiquinone analogue lacking the 2-methoxy to function as QB in mutant reaction centers with a ΔEm of ≈160-195 mV.

  13. Extracytoplasmic function σ factors of the widely distributed group ECF41 contain a fused regulatory domain

    PubMed Central

    Wecke, Tina; Halang, Petra; Staroń, Anna; Dufour, Yann S; Donohue, Timothy J; Mascher, Thorsten

    2012-01-01

    Bacteria need signal transducing systems to respond to environmental changes. Next to one- and two-component systems, alternative σ factors of the extra-cytoplasmic function (ECF) protein family represent the third fundamental mechanism of bacterial signal transduction. A comprehensive classification of these proteins identified more than 40 phylogenetically distinct groups, most of which are not experimentally investigated. Here, we present the characterization of such a group with unique features, termed ECF41. Among analyzed bacterial genomes, ECF41 σ factors are widely distributed with about 400 proteins from 10 different phyla. They lack obvious anti-σ factors that typically control activity of other ECF σ factors, but their structural genes are often predicted to be cotranscribed with carboxymuconolactone decarboxylases, oxidoreductases, or epimerases based on genomic context conservation. We demonstrate for Bacillus licheniformis and Rhodobacter sphaeroides that the corresponding genes are preceded by a highly conserved promoter motif and are the only detectable targets of ECF41-dependent gene regulation. In contrast to other ECF σ factors, proteins of group ECF41 contain a large C-terminal extension, which is crucial for σ factor activity. Our data demonstrate that ECF41 σ factors are regulated by a novel mechanism based on the presence of a fused regulatory domain. PMID:22950025

  14. Albirhodobacter marinus gen. nov., sp. nov., a member of the family Rhodobacteraceae isolated from sea shore water of Visakhapatnam, India.

    PubMed

    Nupur; Vaidya, Bhumika; Tanuku, Naga Radha Srinivas; Pinnaka, Anil Kumar

    2013-02-01

    A novel marine, Gram-negative, rod-shaped bacterium, designated strain N9(T), was isolated from a water sample of the sea shore at Visakhapatnam, Andhra Pradesh (India). Strain N9(T) was found to be positive for oxidase and catalase activities. The fatty acids were found to be dominated by C(16:0), C(18:1) ω7c and summed in feature 3 (C(16:1) ω7c and/or C(16:1) ω6c). Strain N9(T) was determined to contain Q-10 as the major respiratory quinone and phosphatidylethanolamine, phosphatidylglycerol, two aminophospholipids, two phospholipids and four unidentified lipids as polar lipids. The DNA G+C content of the strain N9(T) was found to be 63 mol%. 16S rRNA gene sequence analysis indicated that Rhodobacter sphaeroides, Rhodobacter johrii, Pseudorhodobacter ferrugineus, Rhodobacter azotoformans, Rhodobacter ovatus and Pseudorhodobacter aquimaris were the nearest phylogenetic neighbours, with pair-wise sequence similarities of 95.43, 95.36, 94.24, 95.31, 95.60 and 94.74 %, respectively. Phylogenetic analysis showed that strain N9(T) formed a distinct branch within the family Rhodobacteraceae and clustered with the clade comprising species of the genus Pseudorhodobacter, together with species of the genera Roseicitreum, Roseinatronobacter, Roseibaca and Rhodobaca. Species of the genus Pseudorhodobacter are phylogenetically close with a 16S rRNA gene sequence dissimilarity of 5.9-7.3 % (92.7-94.1 % similarity). Based on the above-mentioned phenotypic characteristics and on phylogenetic inference, strain N9(T) is proposed as a representative of a new genus and a novel species of the family Rhodobacteraceae as Albirhodobacter marinus gen. nov., sp. nov. The type strain of Albirhodobacter marinus is N9 (= MTCC 11277(T) = JCM 17680(T)).

  15. Terminal steps of bacteriochlorophyll a phytol formation in purple photosynthetic bacteria

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shioi, Y.; Sasa, T.

    1984-04-01

    Four chemically different bacteriochlorophylls (Bchls) a esterified with geranylgeraniol, dihydrogeranyl-geraniol, tetrahydrogeraniol, and phytol have been detected by high-pressure liquid chromatography in cell extracts from Rhodopseudomonas sphaeroides and Chromatium vinosum. Bchl a containing phytol is the principal component, and the other three Bchls a comprise about 4% of the total Bchls a in stationary-phase cells of R. sphaeroides and C. vinosum. The high levels of the minor pigments occur in the beginning of Bchl a phytol formation, indicating that they are not degradation products, but intermediates of Bchl a phytol formation.

  16. Regulation of bacterial photosynthesis genes by the small noncoding RNA PcrZ

    PubMed Central

    Mank, Nils N.; Berghoff, Bork A.; Hermanns, Yannick N.; Klug, Gabriele

    2012-01-01

    The small RNA PcrZ (photosynthesis control RNA Z) of the facultative phototrophic bacterium Rhodobacter sphaeroides is induced upon a drop of oxygen tension with similar kinetics to those of genes for components of photosynthetic complexes. High expression of PcrZ depends on PrrA, the response regulator of the PrrB/PrrA two-component system with a central role in redox regulation in R. sphaeroides. In addition the FnrL protein, an activator of some photosynthesis genes at low oxygen tension, is involved in redox-dependent expression of this small (s)RNA. Overexpression of full-length PcrZ in R. sphaeroides affects expression of a small subset of genes, most of them with a function in photosynthesis. Some mRNAs from the photosynthetic gene cluster were predicted to be putative PcrZ targets and results from an in vivo reporter system support these predictions. Our data reveal a negative effect of PcrZ on expression of its target mRNAs. Thus, PcrZ counteracts the redox-dependent induction of photosynthesis genes, which is mediated by protein regulators. Because PrrA directly activates photosynthesis genes and at the same time PcrZ, which negatively affects photosynthesis gene expression, this is one of the rare cases of an incoherent feed-forward loop including an sRNA. Our data identified PcrZ as a trans acting sRNA with a direct regulatory function in formation of photosynthetic complexes and provide a model for the control of photosynthesis gene expression by a regulatory network consisting of proteins and a small noncoding RNA. PMID:22988125

  17. Regulation of bacterial photosynthesis genes by the small noncoding RNA PcrZ.

    PubMed

    Mank, Nils N; Berghoff, Bork A; Hermanns, Yannick N; Klug, Gabriele

    2012-10-02

    The small RNA PcrZ (photosynthesis control RNA Z) of the facultative phototrophic bacterium Rhodobacter sphaeroides is induced upon a drop of oxygen tension with similar kinetics to those of genes for components of photosynthetic complexes. High expression of PcrZ depends on PrrA, the response regulator of the PrrB/PrrA two-component system with a central role in redox regulation in R. sphaeroides. In addition the FnrL protein, an activator of some photosynthesis genes at low oxygen tension, is involved in redox-dependent expression of this small (s)RNA. Overexpression of full-length PcrZ in R. sphaeroides affects expression of a small subset of genes, most of them with a function in photosynthesis. Some mRNAs from the photosynthetic gene cluster were predicted to be putative PcrZ targets and results from an in vivo reporter system support these predictions. Our data reveal a negative effect of PcrZ on expression of its target mRNAs. Thus, PcrZ counteracts the redox-dependent induction of photosynthesis genes, which is mediated by protein regulators. Because PrrA directly activates photosynthesis genes and at the same time PcrZ, which negatively affects photosynthesis gene expression, this is one of the rare cases of an incoherent feed-forward loop including an sRNA. Our data identified PcrZ as a trans acting sRNA with a direct regulatory function in formation of photosynthetic complexes and provide a model for the control of photosynthesis gene expression by a regulatory network consisting of proteins and a small noncoding RNA.

  18. Interface for Light-Driven Electron Transfer by Photosynthetic Complexes Across Block Copolymer Membranes.

    PubMed

    Kuang, Liangju; Olson, Tien L; Lin, Su; Flores, Marco; Jiang, Yunjiang; Zheng, Wan; Williams, JoAnn C; Allen, James P; Liang, Hongjun

    2014-03-06

    Incorporation of membrane proteins into nanodevices to mediate recognition and transport in a collective and scalable fashion remains a challenging problem. We demonstrate how nanoscale photovoltaics could be designed using robust synthetic nanomembranes with incorporated photosynthetic reaction centers (RCs). Specifically, RCs from Rhodobacter sphaeroides are reconstituted spontaneously into rationally designed polybutadiene membranes to form hierarchically organized proteopolymer membrane arrays via a charge-interaction-directed reconstitution mechanism. Once incorporated, the RCs are fully active for prolonged periods based upon a variety of spectroscopic measurements, underscoring preservation of their 3D pigment configuration critical for light-driven charge transfer. This result provides a strategy to construct solar conversion devices using structurally versatile proteopolymer membranes with integrated RC functions to harvest broad regions of the solar spectrum.

  19. Investigation of Stability of Photosynthetic Reaction Center and Quantum Dot Hybrid Films.

    PubMed

    Lukashev, E P; Knox, P P; Oleinikov, I P; Seifullina, N Kh; Grishanova, N P

    2016-01-01

    The efficiency of interaction (efficiency of energy transfer) between various quantum dots (QDs) and photosynthetic reaction centers (RCs) from the purple bacterium Rhodobacter sphaeroides and conditions of long-term stability of functioning of such hybrid complexes in film preparations were investigated. It was found that dry films containing RCs and QDs and maintained at atmospheric humidity are capable to keep their functional activity for at least some months as judging by results of measurement of their spectral characteristics, efficiency of energy transfer from QDs to RCs, and RC electron-transport activity. Addition of trehalose to the films giving them still greater stability is especially expressed for films maintained at low humidity. These stable hybrid film structures are promising for further biotechnological studies for developing new phototransformation devices.

  20. A glimpse into the proteome of phototrophic bacterium Rhodobacter capsulatus.

    PubMed

    Onder, Ozlem; Aygun-Sunar, Semra; Selamoglu, Nur; Daldal, Fevzi

    2010-01-01

    A first glimpse into the proteome of Rhodobacter capsulatus revealed more than 450 (with over 210 cytoplasmic and 185 extracytoplasmic known as well as 55 unknown) proteins that are identified with high degree of confidence using nLC-MS/MS analyses. The accumulated data provide a solid platform for ongoing efforts to establish the proteome of this species and the cellular locations of its constituents. They also indicate that at least 40 of the identified proteins, which were annotated in genome databases as unknown hypothetical proteins, correspond to predicted translation products that are indeed present in cells under the growth conditions used in this work. In addition, matching the identification labels of the proteins reported between the two available R. capsulatus genome databases (ERGO-light with RRCxxxxx and NT05 with NT05RCxxxx numbers) indicated that 11 such proteins are listed only in the latter database.

  1. Diverse bacteria isolated from microtherm oil-production water.

    PubMed

    Sun, Ji-Quan; Xu, Lian; Zhang, Zhao; Li, Yan; Tang, Yue-Qin; Wu, Xiao-Lei

    2014-02-01

    In total, 435 pure bacterial strains were isolated from microtherm oil-production water from the Karamay Oilfield, Xinjiang, China, by using four media: oil-production water medium (Cai medium), oil-production water supplemented with mineral salt medium (CW medium), oil-production water supplemented with yeast extract medium (CY medium), and blood agar medium (X medium). The bacterial isolates were affiliated with 61 phylogenetic groups that belong to 32 genera in the phyla Actinobacteria, Firmicutes, and Proteobacteria. Except for the Rhizobium, Dietzia, and Pseudomonas strains that were isolated using all the four media, using different media led to the isolation of bacteria with different functions. Similarly, nonheme diiron alkane monooxygenase genes (alkB/alkM) also clustered according to the isolation medium. Among the bacterial strains, more than 24 % of the isolates could use n-hexadecane as the sole carbon source for growth. For the first time, the alkane-degrading ability and alkB/alkM were detected in Rhizobium, Rhodobacter, Trichococcus, Micrococcus, Enterococcus, and Bavariicoccus strains, and the alkM gene was detected in Firmicutes strains.

  2. The diversity of PAH-degrading bacteria in a deep-sea water column above the Southwest Indian Ridge.

    PubMed

    Yuan, Jun; Lai, Qiliang; Sun, Fengqin; Zheng, Tianling; Shao, Zongze

    2015-01-01

    The bacteria involved in organic pollutant degradation in pelagic deep-sea environments are largely unknown. In this report, the diversity of polycyclic aromatic hydrocarbon (PAH)-degrading bacteria was analyzed in deep-sea water on the Southwest Indian Ridge (SWIR). After enrichment with a PAH mixture (phenanthrene, anthracene, fluoranthene, and pyrene), nine bacterial consortia were obtained from depths of 3946-4746 m. While the consortia degraded all four PAHs when supplied in a mixture, when PAHs were tested individually, only phenanthrene supported growth. Thus, degradation of the PAH mixture reflected a cometabolism of anthracene, fluoranthene, and pyrene with phenanthrene. Further, both culture-dependent and independent methods revealed many new bacteria involved in PAH degradation. Specifically, the alpha and gamma subclasses of Proteobacteria were confirmed as the major groups within the communities. Additionally, Actinobacteria, the CFB group and Firmicutes were detected. Denaturing Gradient Gel Electrophoresis (DGGE) analysis showed that bacteria closely affiliated with Alcanivorax, Novosphingobium, and Rhodovulum occurred most frequently in different PAH-degrading consortia. By using general heterotrophic media, 51 bacteria were isolated from the consortia and of these 34 grew with the PAH mixture as a sole carbon source. Of these, isolates most closely related to Alterierythrobacter, Citricella, Erythrobacter, Idiomarina, Lutibacterium, Maricaulis, Marinobacter, Martelella, Pseudidiomarina, Rhodobacter, Roseovarius, Salipiger, Sphingopyxis, and Stappia were found to be PAH degraders. To the best of our knowledge, this is the first time these bacteria have been identified in this context. In summary, this report revealed significant diversity among the PAH-degrading bacteria in the deep-sea water column. These bacteria may play a role in PAH removal in deep-sea environments.

  3. The diversity of PAH-degrading bacteria in a deep-sea water column above the Southwest Indian Ridge

    PubMed Central

    Yuan, Jun; Lai, Qiliang; Sun, Fengqin; Zheng, Tianling; Shao, Zongze

    2015-01-01

    The bacteria involved in organic pollutant degradation in pelagic deep-sea environments are largely unknown. In this report, the diversity of polycyclic aromatic hydrocarbon (PAH)-degrading bacteria was analyzed in deep-sea water on the Southwest Indian Ridge (SWIR). After enrichment with a PAH mixture (phenanthrene, anthracene, fluoranthene, and pyrene), nine bacterial consortia were obtained from depths of 3946–4746 m. While the consortia degraded all four PAHs when supplied in a mixture, when PAHs were tested individually, only phenanthrene supported growth. Thus, degradation of the PAH mixture reflected a cometabolism of anthracene, fluoranthene, and pyrene with phenanthrene. Further, both culture-dependent and independent methods revealed many new bacteria involved in PAH degradation. Specifically, the alpha and gamma subclasses of Proteobacteria were confirmed as the major groups within the communities. Additionally, Actinobacteria, the CFB group and Firmicutes were detected. Denaturing Gradient Gel Electrophoresis (DGGE) analysis showed that bacteria closely affiliated with Alcanivorax, Novosphingobium, and Rhodovulum occurred most frequently in different PAH-degrading consortia. By using general heterotrophic media, 51 bacteria were isolated from the consortia and of these 34 grew with the PAH mixture as a sole carbon source. Of these, isolates most closely related to Alterierythrobacter, Citricella, Erythrobacter, Idiomarina, Lutibacterium, Maricaulis, Marinobacter, Martelella, Pseudidiomarina, Rhodobacter, Roseovarius, Salipiger, Sphingopyxis, and Stappia were found to be PAH degraders. To the best of our knowledge, this is the first time these bacteria have been identified in this context. In summary, this report revealed significant diversity among the PAH-degrading bacteria in the deep-sea water column. These bacteria may play a role in PAH removal in deep-sea environments. PMID:26379634

  4. Expression in Escherichia coli and characterization of a recombinant 7Fe ferredoxin of Rhodobacter capsulatus.

    PubMed Central

    Jouanneau, Y; Duport, C; Meyer, C; Gaillard, J

    1992-01-01

    The 7Fe ferredoxin of Rhodobacter capsulatus (FdII) could be expressed in Escherichia coli by cloning the fdxA gene coding for FdII downstream from the lac promoter. The expressed recombinant ferredoxin appeared as a brown protein which was specifically recognized in E. coli cell-free extracts by anti-FdII serum. The purified recombinant ferredoxin was indistinguishable from R. capsulatus FdII on the basis of its molecular, redox and spectroscopic properties. These results indicate that the [3Fe-4S] and [4Fe-4S] clusters were correctly inserted into the recombinant ferredoxin. Images Fig. 2. PMID:1325780

  5. The evolution of glutathione metabolism in phototrophic microorganisms

    NASA Technical Reports Server (NTRS)

    Fahey, R. C.; Buschbacher, R. M.; Newton, G. L.

    1987-01-01

    Of the many roles ascribed to glutathione (GSH) the one most clearly established is its role in the protection of higher eucaryotes against oxygen toxicity through destruction of thiol-reactive oxygen byproducts. If this is the primary function of GSH then GSH metabolism should have evolved during or after the evolution of oxygenic photosynthesis. That many bacteria do not produce GSH is consistent with this view. In the present study we have examined the low-molecular-weight thiol composition of a variety of phototrophic microorganisms to ascertain how evolution of GSH production is related to evolution of oxygenic photosynthesis. Cells were extracted in the presence of monobromobimane (mBBr) to convert thiols to fluorescent derivatives, which were analyzed by high-pressure liquid chromatography. Significant levels of GSH were not found in the green bacteria (Chlorobium thiosulfatophilum and Chloroflexus aurantiacus). Substantial levels of GSH were present in the purple bacteria (Chromatium vinosum, Rhodospirillum rubrum, Rhodobacter sphaeroides, and Rhodocyclus gelatinosa), the cyanobacteria [Anacystis nidulans, Microcoleus chthonoplastes S.G., Nostoc muscorum, Oscillatoria amphigranulata, Oscillatoria limnetica, Oscillatoria sp. (Stinky Spring, Utah), Oscillatoria terebriformis, Plectonema boryanum, and Synechococcus lividus], and eucaryotic algae (Chlorella pyrenoidsa, Chlorella vulgaris, Euglena gracilis, Scenedesmus obliquus, and Chlamydomonas reinhardtii). Other thiols measured included cysteine, gamma-glutamylcysteine, thiosulfate, coenzyme A, and sulfide; several unidentified thiols were also detected. Many of the organisms examined also exhibited a marked ability to reduce mBBr to syn-(methyl,methyl)bimane, an ability that was quenched by treatment with 2-pyridyl disulfide or 5,5'-bisdithio-(2-nitrobenzoic acid) prior to reaction with mBBr. These observations indicate the presence of a reducing system capable of electron transfer to mBBr and reduction of

  6. RpoH2 sigma factor controls the photooxidative stress response in a non-photosynthetic rhizobacterium, Azospirillum brasilense Sp7.

    PubMed

    Kumar, Santosh; Rai, Ashutosh Kumar; Mishra, Mukti Nath; Shukla, Mansi; Singh, Pradhyumna Kumar; Tripathi, Anil Kumar

    2012-12-01

    Bacteria belonging to the Alphaproteobacteria normally harbour multiple copies of the heat shock sigma factor (known as σ(32), σ(H) or RpoH). Azospirillum brasilense, a non-photosynthetic rhizobacterium, harbours five copies of rpoH genes, one of which is an rpoH2 homologue. The genes around the rpoH2 locus in A. brasilense show synteny with that found in rhizobia. The rpoH2 of A. brasilense was able to complement the temperature-sensitive phenotype of the Escherichia coli rpoH mutant. Inactivation of rpoH2 in A. brasilense results in increased sensitivity to methylene blue and to triphenyl tetrazolium chloride (TTC). Exposure of A. brasilense to TTC and the singlet oxygen-generating agent methylene blue induced several-fold higher expression of rpoH2. Comparison of the proteome of A. brasilense with its rpoH2 deletion mutant and with an A. brasilense strain overexpressing rpoH2 revealed chaperone GroEL, elongation factors (Ef-Tu and EF-G), peptidyl prolyl isomerase, and peptide methionine sulfoxide reductase as the major proteins whose expression was controlled by RpoH2. Here, we show that the RpoH2 sigma factor-controlled photooxidative stress response in A. brasilense is similar to that in the photosynthetic bacterium Rhodobacter sphaeroides, but that RpoH2 is not involved in the detoxification of methylglyoxal in A. brasilense.

  7. A comparative spectroscopic and kinetic study of photoexcitations in detergent-isolated and membrane-embedded LH2 light-harvesting complexes.

    PubMed

    Freiberg, Arvi; Rätsep, Margus; Timpmann, Kõu

    2012-08-01

    Integral membrane proteins constitute more than third of the total number of proteins present in organisms. Solubilization with mild detergents is a common technique to study the structure, dynamics, and catalytic activity of these proteins in purified form. However beneficial the use of detergents may be for protein extraction, the membrane proteins are often denatured by detergent solubilization as a result of native lipid membrane interactions having been modified. Versatile investigations of the properties of membrane-embedded and detergent-isolated proteins are, therefore, required to evaluate the consequences of the solubilization procedure. Herein, the spectroscopic and kinetic fingerprints have been established that distinguish excitons in individual detergent-solubilized LH2 light-harvesting pigment-protein complexes from them in the membrane-embedded complexes of purple photosynthetic bacteria Rhodobacter sphaeroides. A wide arsenal of spectroscopic techniques in visible optical range that include conventional broadband absorption-fluorescence, fluorescence anisotropy excitation, spectrally selective hole burning and fluorescence line-narrowing, and transient absorption-fluorescence have been applied over broad temperature range between physiological and liquid He temperatures. Significant changes in energetics and dynamics of the antenna excitons upon self-assembly of the proteins into intracytoplasmic membranes are observed, analyzed, and discussed. This article is part of a Special Issue entitled: Photosynthesis Research for Sustainability: from Natural to Artificial. Copyright © 2011. Published by Elsevier B.V.

  8. Autodisplay of active sorbitol dehydrogenase (SDH) yields a whole cell biocatalyst for the synthesis of rare sugars.

    PubMed

    Jose, Joachim; von Schwichow, Steffen

    2004-04-02

    Whole cell biocatalysts are attractive technological tools for the regio- and enantioselective synthesis of products, especially from substrates with several identical reactive groups. In the present study, a whole cell biocatalyst for the synthesis of rare sugars from polyalcohols was constructed. For this purpose, sorbitol dehydrogenase (SDH) from Rhodobacter sphaeroides, a member of the short-chain dehydrogenase/reductase (SDR) family, was expressed on the surface of Escherichia coli using Autodisplay. Autodisplay is an efficient surface display system for Gram-negative bacteria and is based on the autotransporter secretion pathway. Transport of SDH to the outer membrane was monitored by SDS-PAGE and Western blotting of different cell fractions. The surface exposure of the enzyme could be verified by immunofluorescence microscopy and fluorescence activated cell sorting (FACS). The activity of whole cells displaying SDH at the surface was determined in an optical test. Specific activities were found to be 12 mU per 3.3 x 10(8) cells for the conversion of D-glucitol (sorbitol) to D-fructose, 7 mU for the conversion D-galactitol to D-tagatose, and 17 mU for the conversion of L-arabitol to L-ribulose. The whole cell biocatalyst obtained by surface display of SDH could also produce D-glucitol from D-fructose (29 mU per 3.3 x 10(8) cells).

  9. Differing growth responses of major phylogenetic groups of marine bacteria to natural phytoplankton blooms in the western North Pacific Ocean.

    PubMed

    Tada, Yuya; Taniguchi, Akito; Nagao, Ippei; Miki, Takeshi; Uematsu, Mitsuo; Tsuda, Atsushi; Hamasaki, Koji

    2011-06-01

    Growth and productivity of phytoplankton substantially change organic matter characteristics, which affect bacterial abundance, productivity, and community structure in aquatic ecosystems. We analyzed bacterial community structures and measured activities inside and outside phytoplankton blooms in the western North Pacific Ocean by using bromodeoxyuridine immunocytochemistry and fluorescence in situ hybridization (BIC-FISH). Roseobacter/Rhodobacter, SAR11, Betaproteobacteria, Alteromonas, SAR86, and Bacteroidetes responded differently to changes in organic matter supply. Roseobacter/Rhodobacter bacteria remained widespread, active, and proliferating despite large fluctuations in organic matter and chlorophyll a (Chl-a) concentrations. The relative contribution of Bacteroidetes to total bacterial production was consistently high. Furthermore, we documented the unexpectedly large contribution of Alteromonas to total bacterial production in the bloom. Bacterial abundance, productivity, and growth potential (the proportion of growing cells in a population) were significantly correlated with Chl-a and particulate organic carbon concentrations. Canonical correspondence analysis showed that organic matter supply was critical for determining bacterial community structures. The growth potential of each bacterial group as a function of Chl-a concentration showed a bell-shaped distribution, indicating an optimal organic matter concentration to promote growth. The growth of Alteromonas and Betaproteobacteria was especially strongly correlated with organic matter supply. These data elucidate the distinctive ecological role of major bacterial taxa in organic matter cycling during open ocean phytoplankton blooms.

  10. Purification and characterization of the restriction endonuclease RsrI, an isoschizomer of EcoRI.

    PubMed

    Greene, P J; Ballard, B T; Stephenson, F; Kohr, W J; Rodriguez, H; Rosenberg, J M; Boyer, H W

    1988-08-15

    Rhodobacter sphaeroides strain 630 produces restriction enzyme RsrI which is an isoschizomer of EcoRI. We have purified this enzyme and initiated a comparison with the EcoRI endonuclease. The properties of RsrI are consistent with a reaction mechanism similar to that of EcoRI: the position of cleavage within the -GAATTC-site is identical, the MgCl2 optimum for the cleavage is identical, and the pH profile is similar. Methylation of the substrate sequence by the EcoRI methylase protects the site from cleavage by the RsrI endonuclease. RsrI cross-reacts strongly with anti-EcoRI serum indicating three-dimensional structural similarities. We have determined the sequence of 34 N terminal amino acids for RsrI and this sequence possesses significant similarity to the EcoRI N terminus.

  11. Lipopolysaccharide and Its Analog Antagonists Display Differential Serum Factor Dependencies for Induction of Cytokine Genes in Murine Macrophages

    PubMed Central

    Perera, Pin-Yu; Qureshi, Nilofer; Christ, William J.; Stütz, Peter; Vogel, Stefanie N.

    1998-01-01

    Monocytes/macrophages play a central role in mediating the effects of lipopolysaccharide (LPS) derived from gram-negative bacteria by the production of proinflammatory mediators. Recently, it was shown that the expression of cytokine genes for tumor necrosis factor alpha (TNF-α), interleukin-1β (IL-1β), and interferon-inducible protein-10 (IP-10) by murine macrophages in response to low concentrations of LPS is entirely CD14 dependent. In this report, we show that murine macrophages respond to low concentrations of LPS (≤2 ng/ml) in the complete absence of serum, leading to the induction of TNF-α and IL-1β genes. In contrast to the TNF-α and IL-1β genes, the IP-10 gene is poorly induced in the absence of serum. The addition of recombinant human soluble CD14 (rsCD14) had very little effect on the levels of serum-free, LPS-induced TNF-α, IL-1β, and IP-10 genes. In contrast, the addition of recombinant human LPS-binding protein (rLBP) had opposing effects on the LPS-induced TNF-α or IL-1β and IP-10 genes. rLBP inhibited LPS-induced TNF-α and IL-1β genes, while it reconstituted IP-10 gene expression to levels induced in the presence of serum. These results provide further evidence that the induction of TNF-α or IL-1β genes occurs via a pathway that is distinct from one that leads to the induction of the IP-10 gene and that the pathways diverge at the level of the initial interaction between LPS and cellular CD14. Additionally, the results presented here indicate that LPS structural analog antagonists Rhodobacter sphaeroides diphosphoryl lipid A and SDZ 880.431 are able to inhibit LPS-induced TNF-α and IL-1β in the absence of serum, while a synthetic analog of Rhodobacter capsulatus lipid A (B 975) requires both rsCD14 and rLBP to function as an inhibitor. PMID:9596717

  12. RNA degradation in Archaea and Gram-negative bacteria different from Escherichia coli.

    PubMed

    Evguenieva-Hackenberg, Elena; Klug, Gabriele

    2009-01-01

    Exoribonucleolytic and endoribonucleolytic activities are important for controlled degradation of RNA and contribute to the regulation of gene expression at the posttranscriptional level by influencing the half-lives of specific messenger RNAs. The RNA half-lives are determined by the characteristics of the RNA substrates and by the availability and the properties of the involved proteins-ribonucleases and assisting polypeptides. Much is known about RNA degradation in Eukarya and Bacteria, but there is limited information about RNA-degrading enzymes and RNA destabilizing or stabilizing elements in the domain of the Archaea. The recent progress in the understanding of the structure and function of the archaeal exosome, a protein complex with RNA-degrading and RNA-tailing capabilities, has given some first insights into the mechanisms of RNA degradation in the third domain of life and into the evolution of RNA-degrading enzymes. Moreover, other archaeal RNases with degrading potential have been described and a new mechanism for protection of the 5'-end of RNA in Archaea was discovered. Here, we summarize the current knowledge on RNA degradation in the Archaea. Additionally, RNA degradation mechanisms in Rhodobacter capsulatus and Pseudomonas syringae are compared to those in the major model organism for Gram-negatives, Escherichia coli, which dominates our view on RNA degradation in Bacteria.

  13. Differing Growth Responses of Major Phylogenetic Groups of Marine Bacteria to Natural Phytoplankton Blooms in the Western North Pacific Ocean ▿ †

    PubMed Central

    Tada, Yuya; Taniguchi, Akito; Nagao, Ippei; Miki, Takeshi; Uematsu, Mitsuo; Tsuda, Atsushi; Hamasaki, Koji

    2011-01-01

    Growth and productivity of phytoplankton substantially change organic matter characteristics, which affect bacterial abundance, productivity, and community structure in aquatic ecosystems. We analyzed bacterial community structures and measured activities inside and outside phytoplankton blooms in the western North Pacific Ocean by using bromodeoxyuridine immunocytochemistry and fluorescence in situ hybridization (BIC-FISH). Roseobacter/Rhodobacter, SAR11, Betaproteobacteria, Alteromonas, SAR86, and Bacteroidetes responded differently to changes in organic matter supply. Roseobacter/Rhodobacter bacteria remained widespread, active, and proliferating despite large fluctuations in organic matter and chlorophyll a (Chl-a) concentrations. The relative contribution of Bacteroidetes to total bacterial production was consistently high. Furthermore, we documented the unexpectedly large contribution of Alteromonas to total bacterial production in the bloom. Bacterial abundance, productivity, and growth potential (the proportion of growing cells in a population) were significantly correlated with Chl-a and particulate organic carbon concentrations. Canonical correspondence analysis showed that organic matter supply was critical for determining bacterial community structures. The growth potential of each bacterial group as a function of Chl-a concentration showed a bell-shaped distribution, indicating an optimal organic matter concentration to promote growth. The growth of Alteromonas and Betaproteobacteria was especially strongly correlated with organic matter supply. These data elucidate the distinctive ecological role of major bacterial taxa in organic matter cycling during open ocean phytoplankton blooms. PMID:21515719

  14. The SOS Response Master Regulator LexA Regulates the Gene Transfer Agent of Rhodobacter capsulatus and Represses Transcription of the Signal Transduction Protein CckA.

    PubMed

    Kuchinski, Kevin S; Brimacombe, Cedric A; Westbye, Alexander B; Ding, Hao; Beatty, J Thomas

    2016-02-01

    The gene transfer agent of Rhodobacter capsulatus (RcGTA) is a genetic exchange element that combines central aspects of bacteriophage-mediated transduction and natural transformation. RcGTA particles resemble a small double-stranded DNA bacteriophage, package random ∼4-kb fragments of the producing cell genome, and are released from a subpopulation (<1%) of cells in a stationary-phase culture. RcGTA particles deliver this DNA to surrounding R. capsulatus cells, and the DNA is integrated into the recipient genome though a process that requires homologs of natural transformation genes and RecA-mediated homologous recombination. Here, we report the identification of the LexA repressor, the master regulator of the SOS response in many bacteria, as a regulator of RcGTA activity. Deletion of the lexA gene resulted in the abolition of detectable RcGTA production and an ∼10-fold reduction in recipient capability. A search for SOS box sequences in the R. capsulatus genome sequence identified a number of putative binding sites located 5' of typical SOS response coding sequences and also 5' of the RcGTA regulatory gene cckA, which encodes a hybrid histidine kinase homolog. Expression of cckA was increased >5-fold in the lexA mutant, and a lexA cckA double mutant was found to have the same phenotype as a ΔcckA single mutant in terms of RcGTA production. The data indicate that LexA is required for RcGTA production and maximal recipient capability and that the RcGTA-deficient phenotype of the lexA mutant is largely due to the overexpression of cckA. This work describes an unusual phenotype of a lexA mutant of the alphaproteobacterium Rhodobacter capsulatus in respect to the phage transduction-like genetic exchange carried out by the R. capsulatus gene transfer agent (RcGTA). Instead of the expected SOS response characteristic of prophage induction, this lexA mutation not only abolishes the production of RcGTA particles but also impairs the ability of cells to receive Rc

  15. Photoprotection in a purple phototrophic bacterium mediated by oxygen-dependent alteration of carotenoid excited-state properties

    PubMed Central

    Šlouf, Václav; Chábera, Pavel; Olsen, John D.; Martin, Elizabeth C.; Qian, Pu; Hunter, C. Neil; Polívka, Tomáš

    2012-01-01

    Carotenoids are known to offer protection against the potentially damaging combination of light and oxygen encountered by purple phototrophic bacteria, but the efficiency of such protection depends on the type of carotenoid. Rhodobacter sphaeroides synthesizes spheroidene as the main carotenoid under anaerobic conditions whereas, in the presence of oxygen, the enzyme spheroidene monooxygenase catalyses the incorporation of a keto group forming spheroidenone. We performed ultrafast transient absorption spectroscopy on membranes containing reaction center-light-harvesting 1-PufX (RC-LH1-PufX) complexes and showed that when oxygen is present the incorporation of the keto group into spheroidene, forming spheroidenone, reconfigures the energy transfer pathway in the LH1, but not the LH2, antenna. The spheroidene/spheroidenone transition acts as a molecular switch that is suggested to twist spheroidenone into an s-trans configuration increasing its conjugation length and lowering the energy of the lowest triplet state so it can act as an effective quencher of singlet oxygen. The other consequence of converting carotenoids in RC-LH1-PufX complexes is that S2/S1/triplet pathways for spheroidene is replaced with a new pathway for spheroidenone involving an activated intramolecular charge-transfer (ICT) state. This strategy for RC-LH1-PufX-spheroidenone complexes maintains the light-harvesting cross-section of the antenna by opening an active, ultrafast S1/ICT channel for energy transfer to LH1 Bchls while optimizing the triplet energy for singlet oxygen quenching. We propose that spheroidene/spheroidenone switching represents a simple and effective photoprotective mechanism of likely importance for phototrophic bacteria that encounter light and oxygen. PMID:22586075

  16. Isolation of Acetogenic Bacteria That Induce Biocorrosion by Utilizing Metallic Iron as the Sole Electron Donor

    PubMed Central

    Yumoto, Isao; Kamagata, Yoichi

    2014-01-01

    Corrosion of iron occurring under anoxic conditions, which is termed microbiologically influenced corrosion (MIC) or biocorrosion, is mostly caused by microbial activities. Microbial activity that enhances corrosion via uptake of electrons from metallic iron [Fe(0)] has been regarded as one of the major causative factors. In addition to sulfate-reducing bacteria and methanogenic archaea in marine environments, acetogenic bacteria in freshwater environments have recently been suggested to cause MIC under anoxic conditions. However, no microorganisms that perform acetogenesis-dependent MIC have been isolated or had their MIC-inducing mechanisms characterized. Here, we enriched and isolated acetogenic bacteria that induce iron corrosion by utilizing Fe(0) as the sole electron donor under freshwater, sulfate-free, and anoxic conditions. The enriched communities produced significantly larger amounts of Fe(II) than the abiotic controls and produced acetate coupled with Fe(0) oxidation prior to CH4 production. Microbial community analysis revealed that Sporomusa sp. and Desulfovibrio sp. dominated in the enrichments. Strain GT1, which is closely related to the acetogen Sporomusa sphaeroides, was eventually isolated from the enrichment. Strain GT1 grew acetogenetically with Fe(0) as the sole electron donor and enhanced iron corrosion, which is the first demonstration of MIC mediated by a pure culture of an acetogen. Other well-known acetogenic bacteria, including Sporomusa ovata and Acetobacterium spp., did not grow well on Fe(0). These results indicate that very few species of acetogens have specific mechanisms to efficiently utilize cathodic electrons derived from Fe(0) oxidation and induce iron corrosion. PMID:25304512

  17. Isolation of acetogenic bacteria that induce biocorrosion by utilizing metallic iron as the sole electron donor.

    PubMed

    Kato, Souichiro; Yumoto, Isao; Kamagata, Yoichi

    2015-01-01

    Corrosion of iron occurring under anoxic conditions, which is termed microbiologically influenced corrosion (MIC) or biocorrosion, is mostly caused by microbial activities. Microbial activity that enhances corrosion via uptake of electrons from metallic iron [Fe(0)] has been regarded as one of the major causative factors. In addition to sulfate-reducing bacteria and methanogenic archaea in marine environments, acetogenic bacteria in freshwater environments have recently been suggested to cause MIC under anoxic conditions. However, no microorganisms that perform acetogenesis-dependent MIC have been isolated or had their MIC-inducing mechanisms characterized. Here, we enriched and isolated acetogenic bacteria that induce iron corrosion by utilizing Fe(0) as the sole electron donor under freshwater, sulfate-free, and anoxic conditions. The enriched communities produced significantly larger amounts of Fe(II) than the abiotic controls and produced acetate coupled with Fe(0) oxidation prior to CH4 production. Microbial community analysis revealed that Sporomusa sp. and Desulfovibrio sp. dominated in the enrichments. Strain GT1, which is closely related to the acetogen Sporomusa sphaeroides, was eventually isolated from the enrichment. Strain GT1 grew acetogenetically with Fe(0) as the sole electron donor and enhanced iron corrosion, which is the first demonstration of MIC mediated by a pure culture of an acetogen. Other well-known acetogenic bacteria, including Sporomusa ovata and Acetobacterium spp., did not grow well on Fe(0). These results indicate that very few species of acetogens have specific mechanisms to efficiently utilize cathodic electrons derived from Fe(0) oxidation and induce iron corrosion. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  18. The electron transfer flavoprotein: ubiquinone oxidoreductases.

    PubMed

    Watmough, Nicholas J; Frerman, Frank E

    2010-12-01

    Electron transfer flavoprotein: ubiqionone oxidoreductase (ETF-QO) is a component of the mitochondrial respiratory chain that together with electron transfer flavoprotein (ETF) forms a short pathway that transfers electrons from 11 different mitochondrial flavoprotein dehydrogenases to the ubiquinone pool. The X-ray structure of the pig liver enzyme has been solved in the presence and absence of a bound ubiquinone. This structure reveals ETF-QO to be a monotopic membrane protein with the cofactors, FAD and a [4Fe-4S](+1+2) cluster, organised to suggests that it is the flavin that serves as the immediate reductant of ubiquinone. ETF-QO is very highly conserved in evolution and the recombinant enzyme from the bacterium Rhodobacter sphaeroides has allowed the mutational analysis of a number of residues that the structure suggested are involved in modulating the reduction potential of the cofactors. These experiments, together with the spectroscopic measurement of the distances between the cofactors in solution have confirmed the intramolecular pathway of electron transfer from ETF to ubiquinone. This approach can be extended as the R. sphaeroides ETF-QO provides a template for investigating the mechanistic consequences of single amino acid substitutions of conserved residues that are associated with a mild and late onset variant of the metabolic disease multiple acyl-CoA dehydrogenase deficiency (MADD). Copyright © 2010 Elsevier B.V. All rights reserved.

  19. Cellulose synthases: new insights from crystallography and modeling.

    PubMed

    Slabaugh, Erin; Davis, Jonathan K; Haigler, Candace H; Yingling, Yaroslava G; Zimmer, Jochen

    2014-02-01

    Detailed information about the structure and biochemical mechanisms of cellulose synthase (CelS) proteins remained elusive until a complex containing the catalytic subunit (BcsA) of CelS from Rhodobacter sphaeroides was crystalized. Additionally, a 3D structure of most of the cytosolic domain of a plant CelS (GhCESA1 from cotton, Gossypium hirsutum) was produced by computational modeling. This predicted structure contributes to our understanding of how plant CelS proteins may be similar and different as compared with BcsA. In this review, we highlight how these structures impact our understanding of the synthesis of cellulose and other extracellular polysaccharides. We show how the structures can be used to generate hypotheses for experiments testing mechanisms of glucan synthesis and translocation in plant CelS. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Directed formation of micro- and nanoscale patterns of functional light-harvesting LH2 complexes.

    PubMed

    Reynolds, Nicholas P; Janusz, Stefan; Escalante-Marun, Maryana; Timney, John; Ducker, Robert E; Olsen, John D; Otto, Cees; Subramaniam, Vinod; Leggett, Graham J; Hunter, C Neil

    2007-11-28

    The precision placement of the desired protein components on a suitable substrate is an essential prelude to any hybrid "biochip" device, but a second and equally important condition must also be met: the retention of full biological activity. Here we demonstrate the selective binding of an optically active membrane protein, the light-harvesting LH2 complex from Rhodobacter sphaeroides, to patterned self-assembled monolayers at the micron scale and the fabrication of nanometer-scale patterns of these molecules using near-field photolithographic methods. In contrast to plasma proteins, which are reversibly adsorbed on many surfaces, the LH2 complex is readily patterned simply by spatial control of surface polarity. Near-field photolithography has yielded rows of light-harvesting complexes only 98 nm wide. Retention of the native optical properties of patterned LH2 molecules was demonstrated using in situ fluorescence emission spectroscopy.

  1. Alternative initial proton acceptors for the D pathway of Rhodobacter sphaeroides cytochrome c oxidase

    PubMed Central

    Varanasi, Lakshman; Hosler, Jonathan

    2011-01-01

    In order to characterize protein structures that control proton uptake, forms of cytochrome c oxidase (CcO) containing a carboxyl or a thiol group in line with the initial, internal waters of the D pathway for proton transfer have been assayed in the presence and absence of subunit III. Subunit III provides approximately half of the protein surrounding the entry region of the D pathway. The mutant N139D-D132N contains a carboxyl group 6Å within the D pathway and lacks the normal, surface-exposed proton acceptor, Asp-132. With subunit III, the steady-state activity of this mutant is slow but once subunit III is removed its activity is the same as wild-type CcO lacking subunit III (∼1800 H+ s-1). Thus, a carboxyl group ∼25% within the pathway enhances proton uptake even though the carboxyl has no direct contact with bulk solvent. Protons from solvent apparently move to internal Asp-139 through a short file of waters, normally blocked by subunit III. Cysteine-139 also supports rapid steady-state proton uptake, demonstrating that an anion other than a carboxyl can attract and transfer protons into the D pathway. When both Asp-132 and Asp/Cys-139 are present, the removal of subunit III increases CcO activity to rates greater than that of normal CcO due to simultaneous proton uptake by two initial acceptors. The results show how the environment of the initial proton acceptor for the D pathway in these CcO forms dictates the pH range of CcO activity, with implications for the function of Asp-132, the normal proton acceptor. PMID:21344856

  2. Bacterial Survival under Extreme UV Radiation: A Comparative Proteomics Study of Rhodobacter sp., Isolated from High Altitude Wetlands in Chile

    PubMed Central

    Pérez, Vilma; Hengst, Martha; Kurte, Lenka; Dorador, Cristina; Jeffrey, Wade H.; Wattiez, Ruddy; Molina, Veronica; Matallana-Surget, Sabine

    2017-01-01

    Salar de Huasco, defined as a polyextreme environment, is a high altitude saline wetland in the Chilean Altiplano (3800 m.a.s.l.), permanently exposed to the highest solar radiation doses registered in the world. We present here the first comparative proteomics study of a photoheterotrophic bacterium, Rhodobacter sp., isolated from this remote and hostile habitat. We developed an innovative experimental approach using different sources of radiation (in situ sunlight and UVB lamps), cut-off filters (Mylar, Lee filters) and a high-throughput, label-free quantitative proteomics method to comprehensively analyze the effect of seven spectral bands on protein regulation. A hierarchical cluster analysis of 40 common proteins revealed that all conditions containing the most damaging UVB radiation induced similar pattern of protein regulation compared with UVA and visible light spectral bands. Moreover, it appeared that the cellular adaptation of Rhodobacter sp. to osmotic stress encountered in the hypersaline environment from which it was originally isolated, might further a higher resistance to damaging UV radiation. Indeed, proteins involved in the synthesis and transport of key osmoprotectants, such as glycine betaine and inositol, were found in very high abundance under UV radiation compared to the dark control, suggesting the function of osmolytes as efficient reactive oxygen scavengers. Our study also revealed a RecA-independent response and a tightly regulated network of protein quality control involving proteases and chaperones to selectively degrade misfolded and/or damaged proteins. PMID:28694800

  3. Bacterial cell identification in differential interference contrast microscopy images.

    PubMed

    Obara, Boguslaw; Roberts, Mark A J; Armitage, Judith P; Grau, Vicente

    2013-04-23

    Microscopy image segmentation lays the foundation for shape analysis, motion tracking, and classification of biological objects. Despite its importance, automated segmentation remains challenging for several widely used non-fluorescence, interference-based microscopy imaging modalities. For example in differential interference contrast microscopy which plays an important role in modern bacterial cell biology. Therefore, new revolutions in the field require the development of tools, technologies and work-flows to extract and exploit information from interference-based imaging data so as to achieve new fundamental biological insights and understanding. We have developed and evaluated a high-throughput image analysis and processing approach to detect and characterize bacterial cells and chemotaxis proteins. Its performance was evaluated using differential interference contrast and fluorescence microscopy images of Rhodobacter sphaeroides. Results demonstrate that the proposed approach provides a fast and robust method for detection and analysis of spatial relationship between bacterial cells and their chemotaxis proteins.

  4. Cell biology and molecular basis of denitrification.

    PubMed Central

    Zumft, W G

    1997-01-01

    Denitrification is a distinct means of energy conservation, making use of N oxides as terminal electron acceptors for cellular bioenergetics under anaerobic, microaerophilic, and occasionally aerobic conditions. The process is an essential branch of the global N cycle, reversing dinitrogen fixation, and is associated with chemolithotrophic, phototrophic, diazotrophic, or organotrophic metabolism but generally not with obligately anaerobic life. Discovered more than a century ago and believed to be exclusively a bacterial trait, denitrification has now been found in halophilic and hyperthermophilic archaea and in the mitochondria of fungi, raising evolutionarily intriguing vistas. Important advances in the biochemical characterization of denitrification and the underlying genetics have been achieved with Pseudomonas stutzeri, Pseudomonas aeruginosa, Paracoccus denitrificans, Ralstonia eutropha, and Rhodobacter sphaeroides. Pseudomonads represent one of the largest assemblies of the denitrifying bacteria within a single genus, favoring their use as model organisms. Around 50 genes are required within a single bacterium to encode the core structures of the denitrification apparatus. Much of the denitrification process of gram-negative bacteria has been found confined to the periplasm, whereas the topology and enzymology of the gram-positive bacteria are less well established. The activation and enzymatic transformation of N oxides is based on the redox chemistry of Fe, Cu, and Mo. Biochemical breakthroughs have included the X-ray structures of the two types of respiratory nitrite reductases and the isolation of the novel enzymes nitric oxide reductase and nitrous oxide reductase, as well as their structural characterization by indirect spectroscopic means. This revealed unexpected relationships among denitrification enzymes and respiratory oxygen reductases. Denitrification is intimately related to fundamental cellular processes that include primary and secondary

  5. Investigation on characteristics of 3D printing using Nostoc sphaeroides biomass.

    PubMed

    An, Yan-Jun; Guo, Chao-Fan; Zhang, Min; Zhong, Ze-Ping

    2018-06-27

    Gel-like constructs can be produced using an extrusion-based 3D food printing (3D-FP) technique. Nostoc sphaeroides biomass is a natural gel material. Considering its good nutrition and rheological properties, these algae were chosen in this study as supply material (ink) for 3D-FP. With this gel material, the extrusion-based 3D printing system was set as a model, and the printing behavior was investigated. Furthermore, the 3D-FP mechanisms were explained through low-field nuclear magnetic resonance and rheological measurements. Results indicated that although fresh biomass gel was printable, nonuniformity and instability occurred during printing. Blanched inks showed nonsmooth printing behavior, which was associated with a decrease in elasticity and viscosity. The printability was improved by increasing the rehydration time to 24 h when rehydrated powder was used. Increasing the rehydration time increased the water-binding degree. Pre-gelatinized potato starch was added to the mixture at ratios ranging from 1 to 100 g kg -1 . The best printing outcome was observed at 40 g kg -1 potato starch. We emphasize that elasticity and viscosity balance is an essential parameter to achieve printability. The strategies adopted in this work provide new insights into the development of personalized food regarding texture and nutritional additive content. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grayson, Katie J.; Faries, Kaitlyn M.; Huang, Xia

    Photosynthesis uses a limited range of the solar spectrum, so enhancing spectral coverage could improve the efficiency of light capture. Here, we show that a hybrid reaction centre (RC)/yellow fluorescent protein (YFP) complex accelerates photosynthetic growth in the bacterium Rhodobacter sphaeroides. The structure of the RC/YFP-light-harvesting 1 (LH1) complex shows the position of YFP attachment to the RC-H subunit, on the cytoplasmic side of the RC complex. Fluorescence lifetime microscopy of whole cells and ultrafast transient absorption spectroscopy of purified RC/YFP complexes show that the YFP–RC intermolecular distance and spectral overlap between the emission of YFP and the visible-region (Qmore » X) absorption bands of the RC allow energy transfer via a Fo¨rster mechanism, with an efficiency of 40±10%. Finally, this proof-of-principle study demonstrates the feasibility of increasing spectral coverage for harvesting light using non-native genetically-encoded light-absorbers, thereby augmenting energy transfer and trapping in photosynthesis.« less

  7. Demonstration of asymmetric electron conduction in pseudosymmetrical photosynthetic reaction centre proteins in an electrical circuit

    PubMed Central

    Kamran, Muhammad; Friebe, Vincent M.; Delgado, Juan D.; Aartsma, Thijs J.; Frese, Raoul N.; Jones, Michael R.

    2015-01-01

    Photosynthetic reaction centres show promise for biomolecular electronics as nanoscale solar-powered batteries and molecular diodes that are amenable to atomic-level re-engineering. In this work the mechanism of electron conduction across the highly tractable Rhodobacter sphaeroides reaction centre is characterized by conductive atomic force microscopy. We find, using engineered proteins of known structure, that only one of the two cofactor wires connecting the positive and negative termini of this reaction centre is capable of conducting unidirectional current under a suitably oriented bias, irrespective of the magnitude of the bias or the applied force at the tunnelling junction. This behaviour, strong functional asymmetry in a largely symmetrical protein–cofactor matrix, recapitulates the strong functional asymmetry characteristic of natural photochemical charge separation, but it is surprising given that the stimulus for electron flow is simply an externally applied bias. Reasons for the electrical resistance displayed by the so-called B-wire of cofactors are explored. PMID:25751412

  8. A ternary AppA-PpsR-DNA complex mediates light regulation of photosynthesis-related gene expression.

    PubMed

    Winkler, Andreas; Heintz, Udo; Lindner, Robert; Reinstein, Jochen; Shoeman, Robert L; Schlichting, Ilme

    2013-07-01

    The anoxygenic phototrophic bacterium Rhodobacter sphaeroides uses different energy sources, depending on environmental conditions including aerobic respiration or, in the absence of oxygen, photosynthesis. Photosynthetic genes are repressed at high oxygen tension, but at intermediate levels their partial expression prepares the bacterium for using light energy. Illumination, however, enhances repression under semiaerobic conditions. Here, we describe molecular details of two proteins mediating oxygen and light control of photosynthesis-gene expression: the light-sensing antirepressor AppA and the transcriptional repressor PpsR. Our crystal structures of both proteins and their complex and hydrogen/deuterium-exchange data show that light activation of AppA-PpsR2 affects the PpsR effector region within the complex. DNA binding studies demonstrate the formation of a light-sensitive ternary AppA-PpsR-DNA complex. We discuss implications of these results for regulation by light and oxygen, highlighting new insights into blue light-mediated signal transduction.

  9. Demonstration of asymmetric electron conduction in pseudosymmetrical photosynthetic reaction centre proteins in an electrical circuit.

    PubMed

    Kamran, Muhammad; Friebe, Vincent M; Delgado, Juan D; Aartsma, Thijs J; Frese, Raoul N; Jones, Michael R

    2015-03-09

    Photosynthetic reaction centres show promise for biomolecular electronics as nanoscale solar-powered batteries and molecular diodes that are amenable to atomic-level re-engineering. In this work the mechanism of electron conduction across the highly tractable Rhodobacter sphaeroides reaction centre is characterized by conductive atomic force microscopy. We find, using engineered proteins of known structure, that only one of the two cofactor wires connecting the positive and negative termini of this reaction centre is capable of conducting unidirectional current under a suitably oriented bias, irrespective of the magnitude of the bias or the applied force at the tunnelling junction. This behaviour, strong functional asymmetry in a largely symmetrical protein-cofactor matrix, recapitulates the strong functional asymmetry characteristic of natural photochemical charge separation, but it is surprising given that the stimulus for electron flow is simply an externally applied bias. Reasons for the electrical resistance displayed by the so-called B-wire of cofactors are explored.

  10. Carbon Isotope Fractionation during Catabolism and Anabolism in Acetogenic Bacteria Growing on Different Substrates

    PubMed Central

    Freude, Christoph

    2016-01-01

    Homoacetogenic bacteria are versatile microbes that use the acetyl coenzyme A (acetyl-CoA) pathway to synthesize acetate from CO2 and hydrogen. Likewise, the acetyl-CoA pathway may be used to incorporate other 1-carbon substrates (e.g., methanol or formate) into acetate or to homoferment monosaccharides completely to acetate. In this study, we analyzed the fractionation of pure acetogenic cultures grown on different carbon substrates. While the fractionation of Sporomusa sphaeroides grown on C1 compounds was strong (εC1, −49‰ to −64‰), the fractionation of Moorella thermoacetica and Thermoanaerobacter kivui using glucose (εGlu = −14.1‰) was roughly one-third as strong, suggesting a contribution of less-depleted acetate from fermentative processes. For M. thermoacetica, this could indeed be validated by the addition of nitrate, which inhibited the acetyl-CoA pathway, resulting in fractionation during fermentation (εferm = −0.4‰). In addition, we determined the fractionation into microbial biomass of T. kivui grown on H2/CO2 (εanabol. = −28.6‰) as well as on glucose (εanabol. = +2.9‰). PMID:26921422

  11. Carbon Isotope Fractionation during Catabolism and Anabolism in Acetogenic Bacteria Growing on Different Substrates.

    PubMed

    Freude, Christoph; Blaser, Martin

    2016-05-01

    Homoacetogenic bacteria are versatile microbes that use the acetyl coenzyme A (acetyl-CoA) pathway to synthesize acetate from CO2 and hydrogen. Likewise, the acetyl-CoA pathway may be used to incorporate other 1-carbon substrates (e.g., methanol or formate) into acetate or to homoferment monosaccharides completely to acetate. In this study, we analyzed the fractionation of pure acetogenic cultures grown on different carbon substrates. While the fractionation of Sporomusa sphaeroides grown on C1 compounds was strong (εC1, -49‰ to -64‰), the fractionation of Moorella thermoacetica and Thermoanaerobacter kivui using glucose (εGlu= -14.1‰) was roughly one-third as strong, suggesting a contribution of less-depleted acetate from fermentative processes. ForM. thermoacetica, this could indeed be validated by the addition of nitrate, which inhibited the acetyl-CoA pathway, resulting in fractionation during fermentation (εferm= -0.4‰). In addition, we determined the fractionation into microbial biomass of T. kivui grown on H2/CO2(εanabol.= -28.6‰) as well as on glucose (εanabol.= +2.9‰). Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  12. In vitro assembly of a prohead-like structure of the Rhodobacter capsulatus gene transfer agent

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spano, Anthony J.; Chen, Frank S.; Goodman, Benjamin E.

    2007-07-20

    The gene transfer agent (GTA) is a phage-like particle capable of exchanging double-stranded DNA fragments between cells of the photosynthetic bacterium Rhodobacter capsulatus. Here we show that the major capsid protein of GTA, expressed in E. coli, can be assembled into prohead-like structures in the presence of calcium ions in vitro. Transmission electron microscopy (TEM) of uranyl acetate staining material and thin sections of glutaraldehyde-fixed material demonstrates that these associates have spherical structures with diameters in the range of 27-35 nm. The analysis of scanning TEM images revealed particles of mass {approx} 4.3 MDa, representing 101 {+-} 11 copies ofmore » the monomeric subunit. The establishment of this simple and rapid method to form prohead-like particles permits the GTA system to be used for genome manipulation within the photosynthetic bacterium, for specific targeted drug delivery, and for the construction of biologically based distributed autonomous sensors for environmental monitoring.« less

  13. Extracellular production of tellurium nanoparticles by the photosynthetic bacterium Rhodobacter capsulatus.

    PubMed

    Borghese, Roberto; Brucale, Marco; Fortunato, Gianuario; Lanzi, Massimiliano; Mezzi, Alessio; Valle, Francesco; Cavallini, Massimiliano; Zannoni, Davide

    2016-05-15

    The toxic oxyanion tellurite (TeO3(2-)) is acquired by cells of Rhodobacter capsulatus grown anaerobically in the light, via acetate permease ActP2 and then reduced to Te(0) in the cytoplasm as needle-like black precipitates. Interestingly, photosynthetic cultures of R. capsulatus can also generate Te(0) nanoprecipitates (TeNPs) outside the cells upon addition of the redox mediator lawsone (2-hydroxy-1,4-naphtoquinone). TeNPs generation kinetics were monitored to define the optimal conditions to produce TeNPs as a function of various carbon sources and lawsone concentration. We report that growing cultures over a 10 days period with daily additions of 1mM tellurite led to the accumulation in the growth medium of TeNPs with dimensions from 200 up to 600-700 nm in length as determined by atomic force microscopy (AFM). This result suggests that nucleation of TeNPs takes place over the entire cell growth period although the addition of new tellurium Te(0) to pre-formed TeNPs is the main strategy used by R. capsulatus to generate TeNPs outside the cells. Finally, X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared (FT-IR) analysis of TeNPs indicate they are coated with an organic material which keeps the particles in solution in aqueous solvents. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Field evidence for the potential of Rhodobacter capsulatus as Biofertilizer for flooded rice.

    PubMed

    Gamal-Eldin, Hosny; Elbanna, Khaled

    2011-02-01

    In a previous study, we evaluated the effects of inoculating rice plants with the phototrophic purple nonsulfur bacterium Rhodobacter capsulatus (Rc) on growth and yield of rice in pots and lysimeter experiments and the results obtained have been highly encouraging. In this study, we carried out two field experiments: one in the experimental farm of the Faculty of Agriculture, Fayoum University, and the second in a farmer's field in Kafr El-sheikh, to assess the effects of Rc on growth and yield of rice in comparison and in combination with chemical nitrogen fertilizer (CNF) and farmyard manure. The results indicated that both biological and grain yields in all the Rc inoculated treatments were significantly higher than those in the uninoculated corresponding treatments in both fields. With regard to grain yield, the major factor for determining the effectiveness of any agricultural treatment, inoculation with Rc in combination with 50% of the recommended CNF rate gave a grain yield that was statistically equivalent to that obtained with 100% of the recommended CNF rate. These results provide a clear evidence for the potential of Rc as biofertilizer for flooded rice under field conditions.

  15. Inactivation of suppressor T cell activity by the nontoxic lipopolysaccharide of Rhodopseudomonas sphaeroides.

    PubMed Central

    Baker, P J; Taylor, C E; Stashak, P W; Fauntleroy, M B; Hasløv, K; Qureshi, N; Takayama, K

    1990-01-01

    Antibody responses of mice immunized with type III pneumococcal polysaccharide were examined with and without treatment with nontoxic lipopolysaccharide from Rhodopseudomonas sphaeroides (Rs-LPS). The results obtained were similar to those described previously for mice treated with monophosphoryl lipid A (MPL) except that lower amounts of Rs-LPS were needed. Both were without effect when given at the time of immunization with type III pneumococcal polysaccharide but elicited significant enhancement when given 2 to 3 days later. Such enhancement was T cell dependent and not due to polyclonal activation of immunoglobulin M synthesis by B cells. Treatment with either Rs-LPS or MPL abolished the expression but not induction of low-dose paralysis, a form of immunological unresponsiveness known to be mediated by suppressor T cells (Ts). The in vitro treatment of cell suspensions containing Ts with extremely small amounts of Rs-LPS or MPI completely eliminated the capacity of such cells to transfer suppression to other mice. These findings indicate that the immunomodulatory effects of both MPL and Rs-LPS are mainly the result of eliminating the inhibitors effects of Ts; this permits the positive effects of amplifier T cells to be more fully expressed, thereby resulting in an increased antibody response. The significance of these and other findings to the use of Rs-LPS as a pharmacotherapeutic agent for gram-negative bacterial sepsis is discussed. PMID:2143752

  16. Atomic force microscopy studies of native photosynthetic membranes.

    PubMed

    Sturgis, James N; Tucker, Jaimey D; Olsen, John D; Hunter, C Neil; Niederman, Robert A

    2009-05-05

    In addition to providing the earliest surface images of a native photosynthetic membrane at submolecular resolution, examination of the intracytoplasmic membrane (ICM) of purple bacteria by atomic force microscopy (AFM) has revealed a wide diversity of species-dependent arrangements of closely packed light-harvesting (LH) antennae, capable of fulfilling the basic requirements for efficient collection, transmission, and trapping of radiant energy. A highly organized architecture was observed with fused preparations of the pseudocrystalline ICM of Blastochloris viridis, consiting of hexagonally packed monomeric reaction center light-harvesting 1 (RC-LH1) core complexes. Among strains which also form a peripheral LH2 antenna, images of ICM patches from Rhodobacter sphaeroides exhibited well-ordered, interconnected networks of dimeric RC-LH1 core complexes intercalated by rows of LH2, coexisting with LH2-only domains. Other peripheral antenna-containing species, notably Rhodospirillum photometricum and Rhodopseudomonas palustris, showed a less regular organization, with mixed regions of LH2 and RC-LH1 cores, intermingled with large, paracrystalline domains. The ATP synthase and cytochrome bc(1) complex were not observed in any of these topographs and are thought to be localized in the adjacent cytoplasmic membrane or in inaccessible ICM regions separated from the flat regions imaged by AFM. The AFM images have served as a basis for atomic-resolution modeling of the ICM vesicle surface, as well as forces driving segregation of photosynthetic complexes into distinct domains. Docking of atomic-resolution molecular structures into AFM topographs of Rsp. photometricum membranes generated precise in situ structural models of the core complex surrounded by LH2 rings and a region of tightly packed LH2 complexes. A similar approach has generated a model of the highly curved LH2-only membranes of Rba. sphaeroides which predicts that sufficient space exists between LH2 complexes

  17. Structure of the cellulose synthase complex of Gluconacetobacter hansenii at 23.4 Å resolution

    DOE PAGES

    Du, Juan; Vepachedu, Venkata; Cho, Sung Hyun; ...

    2016-05-23

    Bacterial crystalline cellulose is used in biomedical and industrial applications, but the molecular mechanisms of synthesis are unclear. Unlike most bacteria, which make non-crystalline cellulose, Gluconacetobacter hansenii extrudes profuse amounts of crystalline cellulose. Its cellulose synthase (AcsA) exists as a complex with accessory protein AcsB, forming a 'terminal complex' (TC) that has been visualized by freeze-fracture TEM at the base of ribbons of crystalline cellulose. The catalytic AcsAB complex is embedded in the cytoplasmic membrane. The C-terminal portion of AcsC is predicted to form a translocation channel in the outer membrane, with the rest of AcsC possibly interacting with AcsDmore » in the periplasm. It is thus believed that synthesis from an organized array of TCs coordinated with extrusion by AcsC and AcsD enable this bacterium to make crystalline cellulose. The only structural data that exist for this system are the above mentioned freeze-fracture TEM images, fluorescence microscopy images revealing that TCs align in a row, a crystal structure of AcsD bound to cellopentaose, and a crystal structure of PilZ domain of AcsA. Here we advance our understanding of the structural basis for crystalline cellulose production by bacterial cellulose synthase by determining a negative stain structure resolved to 23.4 angstrom for highly purified AcsAB complex that catalyzed incorporation of UDP-glucose into β-1,4-glucan chains, and responded to the presence of allosteric activator cyclic diguanylate. Although the AcsAB complex was functional in vitro, the synthesized cellulose was not visible in TEM. The negative stain structure revealed that AcsAB is very similar to that of the BcsAB synthase of Rhodobacter sphaeroides, a non-crystalline cellulose producing bacterium. Furthermore, the results indicate that the crystalline cellulose producing and non-crystalline cellulose producing bacteria share conserved catalytic and membrane translocation

  18. Structure of the Cellulose Synthase Complex of Gluconacetobacter hansenii at 23.4 Å Resolution

    PubMed Central

    Du, Juan; Vepachedu, Venkata; Cho, Sung Hyun; Kumar, Manish; Nixon, B. Tracy

    2016-01-01

    Bacterial crystalline cellulose is used in biomedical and industrial applications, but the molecular mechanisms of synthesis are unclear. Unlike most bacteria, which make non-crystalline cellulose, Gluconacetobacter hansenii extrudes profuse amounts of crystalline cellulose. Its cellulose synthase (AcsA) exists as a complex with accessory protein AcsB, forming a 'terminal complex' (TC) that has been visualized by freeze-fracture TEM at the base of ribbons of crystalline cellulose. The catalytic AcsAB complex is embedded in the cytoplasmic membrane. The C-terminal portion of AcsC is predicted to form a translocation channel in the outer membrane, with the rest of AcsC possibly interacting with AcsD in the periplasm. It is thus believed that synthesis from an organized array of TCs coordinated with extrusion by AcsC and AcsD enable this bacterium to make crystalline cellulose. The only structural data that exist for this system are the above mentioned freeze-fracture TEM images, fluorescence microscopy images revealing that TCs align in a row, a crystal structure of AcsD bound to cellopentaose, and a crystal structure of PilZ domain of AcsA. Here we advance our understanding of the structural basis for crystalline cellulose production by bacterial cellulose synthase by determining a negative stain structure resolved to 23.4 Å for highly purified AcsAB complex that catalyzed incorporation of UDP-glucose into β-1,4-glucan chains, and responded to the presence of allosteric activator cyclic diguanylate. Although the AcsAB complex was functional in vitro, the synthesized cellulose was not visible in TEM. The negative stain structure revealed that AcsAB is very similar to that of the BcsAB synthase of Rhodobacter sphaeroides, a non-crystalline cellulose producing bacterium. The results indicate that the crystalline cellulose producing and non-crystalline cellulose producing bacteria share conserved catalytic and membrane translocation components, and support the

  19. Structure of the cellulose synthase complex of Gluconacetobacter hansenii at 23.4 Å resolution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Du, Juan; Vepachedu, Venkata; Cho, Sung Hyun

    Bacterial crystalline cellulose is used in biomedical and industrial applications, but the molecular mechanisms of synthesis are unclear. Unlike most bacteria, which make non-crystalline cellulose, Gluconacetobacter hansenii extrudes profuse amounts of crystalline cellulose. Its cellulose synthase (AcsA) exists as a complex with accessory protein AcsB, forming a 'terminal complex' (TC) that has been visualized by freeze-fracture TEM at the base of ribbons of crystalline cellulose. The catalytic AcsAB complex is embedded in the cytoplasmic membrane. The C-terminal portion of AcsC is predicted to form a translocation channel in the outer membrane, with the rest of AcsC possibly interacting with AcsDmore » in the periplasm. It is thus believed that synthesis from an organized array of TCs coordinated with extrusion by AcsC and AcsD enable this bacterium to make crystalline cellulose. The only structural data that exist for this system are the above mentioned freeze-fracture TEM images, fluorescence microscopy images revealing that TCs align in a row, a crystal structure of AcsD bound to cellopentaose, and a crystal structure of PilZ domain of AcsA. Here we advance our understanding of the structural basis for crystalline cellulose production by bacterial cellulose synthase by determining a negative stain structure resolved to 23.4 angstrom for highly purified AcsAB complex that catalyzed incorporation of UDP-glucose into β-1,4-glucan chains, and responded to the presence of allosteric activator cyclic diguanylate. Although the AcsAB complex was functional in vitro, the synthesized cellulose was not visible in TEM. The negative stain structure revealed that AcsAB is very similar to that of the BcsAB synthase of Rhodobacter sphaeroides, a non-crystalline cellulose producing bacterium. Furthermore, the results indicate that the crystalline cellulose producing and non-crystalline cellulose producing bacteria share conserved catalytic and membrane translocation

  20. Hydrogen bonds in the vicinity of the special pair of the bacterial reaction center probed by hydrostatic high-pressure absorption spectroscopy.

    PubMed

    Kangur, Liina; Jones, Michael R; Freiberg, Arvi

    2017-12-01

    Using the native bacteriochlorophyll a pigment cofactors as local probes, we investigated the response to external hydrostatic high pressure of reaction center membrane protein complexes from the photosynthetic bacterium Rhodobacter sphaeroides. Wild-type and engineered complexes were used with a varied number (0, 1 or 2) of hydrogen bonds that bind the reaction center primary donor bacteriochlorophyll cofactors to the surrounding protein scaffold. A pressure-induced breakage of hydrogen bonds was established for both detergent-purified and membrane-embedded reaction centers, but at rather different pressures: between 0.2 and 0.3GPa and at about 0.55GPa, respectively. The free energy change associated with the rupture of the single hydrogen bond present in wild-type reaction centers was estimated to be equal to 13-14kJ/mol. In the mutant with two symmetrical hydrogen bonds (FM197H) a single cooperative rupture of the two bonds was observed corresponding to an about twice stronger bond, rather than a sequential rupture of two individual bonds. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Redox thermodynamics of the native and alkaline forms of eukaryotic and bacterial class I cytochromes c.

    PubMed

    Battistuzzi, G; Borsari, M; Sola, M; Francia, F

    1997-12-23

    The reduction potentials of beef heart cytochrome c and cytochromes c2 from Rhodopseudomonas palustris, Rhodobacter sphaeroides, and Rhodobacter capsulatus were measured through direct electrochemistry at a surface-modified gold electrode as a function of temperature in nonisothermal experiments carried out at neutral and alkaline pH values. The thermodynamic parameters for protein reduction (DeltaS degrees rc and DeltaH degrees rc) were determined for the native and alkaline conformers. Enthalpy and entropy terms underlying species-dependent differences in E degrees and pH- and temperature-induced E degrees changes for a given cytochrome were analyzed. The difference of about +0.1 V in E degrees between cytochromes c2 and the eukaryotic species can be separated into an enthalpic term (-DeltaDeltaH degrees rc/F) of +0.130 V and an entropic term (TDeltaDeltaS degrees rc/F) of -0.040 V. Hence, the higher potential of the bacterial species appears to be determined entirely by a greater enthalpic stabilization of the reduced state. Analogously, the much lower potential of the alkaline conformer(s) as compared to the native species is by far enthalpic in origin for both protein families, and is largely determined by the substitution of Met for Lys in axial heme ligation. Instead, the biphasic E degrees /temperature profile for the native cytochromes is due to a difference in reduction entropy between the conformers at low and high temperatures. Temperature-dependent 1H NMR experiments suggest that the temperature-induced transition also involves a change in orientation of the axial methionine ligand with respect to the heme plane.

  2. Primary charge separation between P* and B A: Electron-transfer pathways in native and mutant GM203L bacterial reaction centers

    NASA Astrophysics Data System (ADS)

    Yakovlev, Andrey G.; Jones, Michael R.; Potter, Jane A.; Fyfe, Paul K.; Vasilieva, Lyudmila G.; Shkuropatov, Anatoli Ya.; Shuvalov, Vladimir A.

    2005-12-01

    Coherent components in the dynamics of decay of stimulated emission from the primary electron donor excited state P*, and of population of the product charge-separated states P+BA- and P+HA-, were studied in GM203L mutant reaction centers (RCs) of Rhodobacter (Rb.) sphaeroides by measuring oscillations in the kinetics of absorbance changes at 940 nm (P* stimulated emission region), 1020 nm ( BA- absorption region) and 760 nm (H A bleaching region). Absorbance changes were induced by excitation of P (870 nm) with 18 fs pulses at 90 K. In the GM203L mutant, replacement of Gly M203 by Leu results in exclusion of the crystallographically defined water molecule (HOH55) located close to the oxygen of the 13 1-keto carbonyl group of B A and to His M202, which provides the axial ligand to the Mg of the P B bacteriochlorophyll. The results of femtosecond measurements were compared with those obtained with Rb. sphaeroides R-26 RCs containing an intact water HOH55. The main consequences of the GM203L mutation were found to be as follows: (i) a low-frequency oscillation at 32 cm -1, which is characteristic of the HOH55-containing RCs, disappears from the kinetics of absorbance changes at 1020 and 760 nm in the mutant RC; (ii) electron transfer from P* to B A in the wild type RC was characterized by two time constants of 1.1 ps (80%) and 4.3 ps (20%), but in the GM203L mutant was characterized by a single time constant of 4.3 ps, demonstrating a slowing of primary charge separation. The previously postulated rotation of water HOH55 with a fundamental frequency of 32 cm -1, triggered by electron transfer from P* to B A, was confirmed by observation of an isotopic shift of the 32 cm -1 oscillation in the kinetics of P+BA- population in deuterated, pheophytin-modified RCs of Rb. sphaeroides R-26, by a factor of 1.6. These data are discussed in terms of the influence of water HOH55 on the energetics of the P∗→P+BA- reaction, and protein dynamic events that occur on the time

  3. Zinc biosorption by the purple non-sulfur bacterium Rhodobacter capsulatus.

    PubMed

    Magnin, Jean-Pierre; Gondrexon, Nicolas; Willison, John C

    2014-12-01

    This paper presents the first report providing information on the zinc (Zn) biosorption potentialities of the purple non-sulfur bacterium Rhodobacter capsulatus. The effects of various biological, physical, and chemical parameters on Zn biosorption were studied in both the wild-type strain B10 and a strain, RC220, lacking the endogenous plasmid. At an initial Zn concentration of 10 mg·L(-1), the Zn biosorption capacity at pH 7 for bacterial biomass grown in synthetic medium containing lactate as carbon source was 17 and 16 mg Zn·(g dry mass)(-1) for strains B10 and RC220, respectively. Equilibrium was achieved in a contact time of 30-120 min, depending on the initial Zn concentration. Zn sorption by live biomass was modelled, at equilibrium, according to the Redlich-Peterson and Langmuir isotherms, in the range of 1-600 mg Zn·L(-1). The wild-type strain showed a maximal Zn uptake capacity (Qm) of 164 ± 8 mg·(g dry mass)(-1) and an equilibrium constant (Kads) of 0.017 ± 0.00085 L·(mg Zn)(-1), compared with values of 73.9 mg·(g dry mass)(-1) and 0.361 L·mg(-1) for the strain lacking the endogenous plasmid. The Qm value observed for R. capsulatus B10 is one of the highest reported in the literature, suggesting that this strain may be useful for Zn bioremediation. The lower Qm value and higher equilibrium constant observed for strain RC220 suggest that the endogenous plasmid confers an enhanced biosorption capacity in this bacterium, although no genetic determinants for Zn resistance appear to be located on the plasmid, and possible explanations for this are discussed.

  4. Effects of karaya saponin and Rhodobacter capsulatus on yolk cholesterol in laying hens.

    PubMed

    Afrose, S; Hossain, M S; Maki, T; Tsujii, H

    2010-06-01

    1. It has been reported that karaya saponin and Rhodobacter capsulatus individually have hypocholesterolaemic activity in laying hens. This study focuses on the effect of adding karaya saponin with R. capsulatus to hen's diet with regard to serum and egg yolk cholesterol and triglycerides. 2. A total of 56 Boris Brown laying hens were divided into 7 groups at 20 weeks of age. Combinations of 25, 50, 75 mg kg(-1) karaya saponin and R. capsulatus 200 and 400 mg kg(-1) were used as treatment groups. 3. After 8 weeks of supplementation, the effects of all the combinations of karaya saponin and R. capsulatus on serum and egg yolk cholesterol, triglycerides, and high-density lipoprotein (HDL)-cholesterol were greater than either karaya saponin or R. capsulatus alone. The combination of karaya saponin 50 mg kg(-1)+ R. capsulatus 400 mg kg(-1) exhibited the greatest reduction of serum (325%) and yolk (225%) cholesterol and the greatest increase of faecal, liver bile acids and yolk fatty acid (oleic, linoleic and linolenic) concentrations. In addition, egg production and yolk colour were significantly improved by the combined use of karaya saponin and R. capsulatus supplementation. 4. Therefore, the dietary supplementation of karaya saponin and R. capsulatus may lead to the production of a low-cholesterol egg, with production performance maintained at a standard level.

  5. Automated ensemble assembly and validation of microbial genomes.

    PubMed

    Koren, Sergey; Treangen, Todd J; Hill, Christopher M; Pop, Mihai; Phillippy, Adam M

    2014-05-03

    The continued democratization of DNA sequencing has sparked a new wave of development of genome assembly and assembly validation methods. As individual research labs, rather than centralized centers, begin to sequence the majority of new genomes, it is important to establish best practices for genome assembly. However, recent evaluations such as GAGE and the Assemblathon have concluded that there is no single best approach to genome assembly. Instead, it is preferable to generate multiple assemblies and validate them to determine which is most useful for the desired analysis; this is a labor-intensive process that is often impossible or unfeasible. To encourage best practices supported by the community, we present iMetAMOS, an automated ensemble assembly pipeline; iMetAMOS encapsulates the process of running, validating, and selecting a single assembly from multiple assemblies. iMetAMOS packages several leading open-source tools into a single binary that automates parameter selection and execution of multiple assemblers, scores the resulting assemblies based on multiple validation metrics, and annotates the assemblies for genes and contaminants. We demonstrate the utility of the ensemble process on 225 previously unassembled Mycobacterium tuberculosis genomes as well as a Rhodobacter sphaeroides benchmark dataset. On these real data, iMetAMOS reliably produces validated assemblies and identifies potential contamination without user intervention. In addition, intelligent parameter selection produces assemblies of R. sphaeroides comparable to or exceeding the quality of those from the GAGE-B evaluation, affecting the relative ranking of some assemblers. Ensemble assembly with iMetAMOS provides users with multiple, validated assemblies for each genome. Although computationally limited to small or mid-sized genomes, this approach is the most effective and reproducible means for generating high-quality assemblies and enables users to select an assembly best tailored to

  6. Proton environment of reduced Rieske iron-sulfur cluster probed by two-dimensional ESEEM spectroscopy

    PubMed Central

    Kolling, Derrick R. J.; Samoilova, Rimma I.; Shubin, Alexander A.; Crofts, Antony R.; Dikanov, Sergei A.

    2008-01-01

    The proton environment of the reduced [2Fe-2S] cluster in the water-soluble head domain of the Rieske iron—sulfur protein (ISF) from the cytochrome bc1 complex of Rhodobacter sphaeroides has been studied by orientation-selected X-band 2D ESEEM. The 2D spectra show multiple cross-peaks from protons, with considerable overlap. Samples in which 1H2O water was replaced by 2H2O were used to determine which of the observed peaks belong to exchangeable protons, likely involved in hydrogen bonds in the neighborhood of the cluster. By correlating the cross-peaks from 2D spectra recorded at different parts of the EPR spectrum, lines from nine distinct proton signals were identified. Assignment of the proton signals was based on a point-dipole model for interaction with electrons of Fe(III) and Fe(II) ions, using the high-resolution structure of ISF from Rb. sphaeroides. Analysis of experimental and calculated tensors has led us to conclude that even 2D spectra do not completely resolve all contributions from nearby protons. Particularly, the seven resolved signals from non-exchangeable protons could be produced by at least thirteen protons. The contributions from exchangeable protons were resolved by difference spectra (1H2O minus 2H2O), and assigned to two groups of protons with distinct anisotropic hyperfine values. The largest measured coupling exceeded any calculated value. This discrepancy could result from limitations of the point dipole approximation in dealing with the distribution of spin density over the sulfur atoms of the cluster and the cysteine ligands, or from differences between the structure in solution and the crystallographic structure. The approach demonstrated here provides a paradigm for a wide range of studies in which hydrogen-bonding interactions with metallic centers has a crucial role in understanding of function. PMID:19099453

  7. Static and dynamic protein impact on electronic properties of light-harvesting complex LH2.

    PubMed

    Zerlauskiene, O; Trinkunas, G; Gall, A; Robert, B; Urboniene, V; Valkunas, L

    2008-12-11

    A comparative analysis of the temperature dependence of the absorption spectra of the LH2 complexes from different species of photosynthetic bacteria, i.e., Rhodobacter sphaeroides, Rhodoblastus acidophilus, and Phaeospirillum molischianum, was performed in the temperature range from 4 to 300 K. Qualitatively, the temperature dependence is similar for all of the species studied. The spectral bandwidths of both B800 and B850 bands increases with temperature while the band positions shift in opposite directions: the B800 band shifts slightly to the red while the B850 band to the blue. These results were analyzed using the modified Redfield theory based on the exciton model. The main conclusion drawn from the analysis was that the spectral density function (SDF) is the main factor underlying the strength of the temperature dependence of the bandwidths for the B800 and B850 electronic transitions, while the bandwidths themselves are defined by the corresponding inhomogeneous distribution function (IDF). Slight variation of the slope of the temperature dependence of the bandwidths between species can be attributed to the changes of the values of the reorganization energies and characteristic frequencies determining the SDF. To explain the shift of the B850 band position with temperature, which is unusual for the conventional exciton model, a temperature dependence of the IDF must be postulated. This dependence can be achieved within the framework of the modified (dichotomous) exciton model. The slope of the temperature dependence of the B850 bandwidth is then defined by the value of the reorganization energy and by the difference between the transition energies of the dichotomous states of the pigment molecules. The equilibration factor between these dichotomous states mainly determines the temperature dependence of the peak shift.

  8. BcsA and BcsB form the catalytically active core of bacterial cellulose synthase sufficient for in vitro cellulose synthesis.

    PubMed

    Omadjela, Okako; Narahari, Adishesh; Strumillo, Joanna; Mélida, Hugo; Mazur, Olga; Bulone, Vincent; Zimmer, Jochen

    2013-10-29

    Cellulose is a linear extracellular polysaccharide. It is synthesized by membrane-embedded glycosyltransferases that processively polymerize UDP-activated glucose. Polymer synthesis is coupled to membrane translocation through a channel formed by the cellulose synthase. Although eukaryotic cellulose synthases function in macromolecular complexes containing several different enzyme isoforms, prokaryotic synthases associate with additional subunits to bridge the periplasm and the outer membrane. In bacteria, cellulose synthesis and translocation is catalyzed by the inner membrane-associated bacterial cellulose synthase (Bcs)A and BcsB subunits. Similar to alginate and poly-β-1,6 N-acetylglucosamine, bacterial cellulose is implicated in the formation of sessile bacterial communities, termed biofilms, and its synthesis is likewise stimulated by cyclic-di-GMP. Biochemical studies of exopolysaccharide synthesis are hampered by difficulties in purifying and reconstituting functional enzymes. We demonstrate robust in vitro cellulose synthesis reconstituted from purified BcsA and BcsB proteins from Rhodobacter sphaeroides. Although BcsA is the catalytically active subunit, the membrane-anchored BcsB subunit is essential for catalysis. The purified BcsA-B complex produces cellulose chains of a degree of polymerization in the range 200-300. Catalytic activity critically depends on the presence of the allosteric activator cyclic-di-GMP, but is independent of lipid-linked reactants. Our data reveal feedback inhibition of cellulose synthase by UDP but not by the accumulating cellulose polymer and highlight the strict substrate specificity of cellulose synthase for UDP-glucose. A truncation analysis of BcsB localizes the region required for activity of BcsA within its C-terminal membrane-associated domain. The reconstituted reaction provides a foundation for the synthesis of biofilm exopolysaccharides, as well as its activation by cyclic-di-GMP.

  9. BcsA and BcsB form the catalytically active core of bacterial cellulose synthase sufficient for in vitro cellulose synthesis

    PubMed Central

    Omadjela, Okako; Narahari, Adishesh; Strumillo, Joanna; Mélida, Hugo; Mazur, Olga; Bulone, Vincent; Zimmer, Jochen

    2013-01-01

    Cellulose is a linear extracellular polysaccharide. It is synthesized by membrane-embedded glycosyltransferases that processively polymerize UDP-activated glucose. Polymer synthesis is coupled to membrane translocation through a channel formed by the cellulose synthase. Although eukaryotic cellulose synthases function in macromolecular complexes containing several different enzyme isoforms, prokaryotic synthases associate with additional subunits to bridge the periplasm and the outer membrane. In bacteria, cellulose synthesis and translocation is catalyzed by the inner membrane-associated bacterial cellulose synthase (Bcs)A and BcsB subunits. Similar to alginate and poly-β-1,6 N-acetylglucosamine, bacterial cellulose is implicated in the formation of sessile bacterial communities, termed biofilms, and its synthesis is likewise stimulated by cyclic-di-GMP. Biochemical studies of exopolysaccharide synthesis are hampered by difficulties in purifying and reconstituting functional enzymes. We demonstrate robust in vitro cellulose synthesis reconstituted from purified BcsA and BcsB proteins from Rhodobacter sphaeroides. Although BcsA is the catalytically active subunit, the membrane-anchored BcsB subunit is essential for catalysis. The purified BcsA-B complex produces cellulose chains of a degree of polymerization in the range 200–300. Catalytic activity critically depends on the presence of the allosteric activator cyclic-di-GMP, but is independent of lipid-linked reactants. Our data reveal feedback inhibition of cellulose synthase by UDP but not by the accumulating cellulose polymer and highlight the strict substrate specificity of cellulose synthase for UDP-glucose. A truncation analysis of BcsB localizes the region required for activity of BcsA within its C-terminal membrane-associated domain. The reconstituted reaction provides a foundation for the synthesis of biofilm exopolysaccharides, as well as its activation by cyclic-di-GMP. PMID:24127606

  10. Identification of "Haematobacter," a new genus of aerobic Gram-negative rods isolated from clinical specimens, and reclassification of Rhodobacter massiliensis as "Haematobacter massiliensis comb. nov.".

    PubMed

    Helsel, Leta O; Hollis, Dannie; Steigerwalt, Arnold G; Morey, Roger E; Jordan, Jean; Aye, Tin; Radosevic, Jon; Jannat-Khah, Deanna; Thiry, Dorothy; Lonsway, David R; Patel, Jean B; Daneshvar, Maryam I; Levett, Paul N

    2007-04-01

    Twelve strains of gram-negative, nonfermenting rods recovered mainly from septicemic patients were studied using conventional and molecular methods. The phenotypic profiles of these strains most closely resembled Psychrobacter phenylpyruvicus. They produced catalase, oxidase, urease, and H(2)S (lead acetate paper) but did not produce indole, reduce nitrate or nitrite, or hydrolyze gelatin or esculin. No acid production was observed in a King's oxidation-fermentation base containing d-glucose, d-xylose, d-mannitol, sucrose, lactose, or maltose. All strains were nonmotile and nonpigmented. Most strains produced green discoloration on blood agar. All strains grew at 25 degrees C and 35 degrees C and most grew on MacConkey agar. They shared a common cellular fatty acid (CFA) profile characterized by large amounts (56% to 90%) of 18:1omega7c and the presence of 3-OH-10:0, 16:1omega7c, 16:0, and 19:0cycomega8c that overall was most similar to that of Rhodobacter species but was quite distinct from that of P. phenylpyruvicus. The MICs for most beta-lactams, fluoroquinolones, aminoglycosides, and carbapenems were low. MICs for aztreonam and piperacillin were higher, with MICs for some strains of > 64 mg/liter and > 128 mg/liter, respectively. Polyphasic analysis of these strains, including morphological, biochemical, CFA composition, DNA-DNA hybridization, 16S rRNA gene sequencing, and percent guanine-plus-cytosine (G+C) content analysis, demonstrated that these strains and Rhodobacter massiliensis represent a new genus, "Haematobacter" (proposed name), with the species H. missouriensis (type strain H1892(T) = CCUG 52307(T) = CIP 109176(T)) and H. massiliensis comb. nov. (type strain Framboise(T) = CCUG 47968(T) = CIP 107725(T)) and an unnamed genomospecies.

  11. Development of a Rhodobacter capsulatus self-reporting model system for optimizing light-dependent, [FeFe]-hydrogenase-driven H 2 production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wecker, Matt S. A.; Beaton, Stephen E.; Chado, Robert A.

    The photosynthetic bacterium Rhodobacter capsulatus normally photoproduces H 2 as a by-product of its nitrogenase-catalyzed nitrogen-fixing activity. Such H 2 production, however, is expensive from a metabolic perspective, requiring nearly four times as many photons as the equivalent algal hydrogenase-based system. Here we report the insertion of a Clostridium acetobutylicum [FeFe]-hydrogenase and its three attendant hydrogenase assembly proteins into an R. capsulatus strain lacking its native uptake hydrogenase. Further, this strain is modified to fluoresce upon sensing H 2. The resulting strain photoproduces H 2 and self-reports its own H 2 production through fluorescence. Furthermore, this model system represents amore » unique method of developing hydrogenase-based H 2 production in R. capsulatus, may serve as a powerful system for in vivo directed evolution of hydrogenases and hydrogenase-associated genes, and provides a means of screening for increased metabolic production of H 2.« less

  12. Development of a Rhodobacter capsulatus self-reporting model system for optimizing light-dependent, [FeFe]-hydrogenase-driven H 2 production

    DOE PAGES

    Wecker, Matt S. A.; Beaton, Stephen E.; Chado, Robert A.; ...

    2016-08-17

    The photosynthetic bacterium Rhodobacter capsulatus normally photoproduces H 2 as a by-product of its nitrogenase-catalyzed nitrogen-fixing activity. Such H 2 production, however, is expensive from a metabolic perspective, requiring nearly four times as many photons as the equivalent algal hydrogenase-based system. Here we report the insertion of a Clostridium acetobutylicum [FeFe]-hydrogenase and its three attendant hydrogenase assembly proteins into an R. capsulatus strain lacking its native uptake hydrogenase. Further, this strain is modified to fluoresce upon sensing H 2. The resulting strain photoproduces H 2 and self-reports its own H 2 production through fluorescence. Furthermore, this model system represents amore » unique method of developing hydrogenase-based H 2 production in R. capsulatus, may serve as a powerful system for in vivo directed evolution of hydrogenases and hydrogenase-associated genes, and provides a means of screening for increased metabolic production of H 2.« less

  13. Triplet Excitation Transfer between Carotenoids in the LH2 Complex from Photosynthetic Bacterium Rhodopseudomonas palustris.

    PubMed

    Feng, Juan; Wang, Qian; Wu, Yi-Shi; Ai, Xi-Cheng; Zhang, Xu-Jia; Huang, You-Guo; Zhang, Xing-Kang; Zhang, Jian-Ping

    2004-01-01

    We have studied, by means of sub-microsecond time-resolved absorption spectroscopy, the triplet-excited state dynamics of carotenoids (Cars) in the intermediate-light adapted LH2 complex (ML-LH2) from Rhodopseudomonas palustris containing Cars with different numbers of conjugated double bonds. Following pulsed photo-excitation at 590 nm at room temperature, rapid spectral equilibration was observed either as a red shift of the isosbestic wavelength on a time scale of 0.6-1.0 mus, or as a fast decay in the shorter-wavelength side of the T(n)<--T(1) absorption of Cars with a time constant of 0.5-0.8 mus. Two major spectral components assignable to Cars with 11 and 12 conjugated double bonds were identified. The equilibration was not observed in the ML-LH2 at 77 K, or in the LH2 complex from Rhodobacter sphaeroides G1C containing a single type of Car. The unique spectral equilibration was ascribed to temperature-dependent triplet excitation transfer among different Car compositions. The results suggest that Cars of 11 and 12 conjugated bonds, both in close proximity of BChls, may coexist in an alpha,beta-subunit of the ML-LH2 complex.

  14. Field-cycling NMR with high-resolution detection under magic-angle spinning: determination of field-window for nuclear hyperpolarization in a photosynthetic reaction center.

    PubMed

    Gräsing, Daniel; Bielytskyi, Pavlo; Céspedes-Camacho, Isaac F; Alia, A; Marquardsen, Thorsten; Engelke, Frank; Matysik, Jörg

    2017-09-21

    Several parameters in NMR depend on the magnetic field strength. Field-cycling NMR is an elegant way to explore the field dependence of these properties. The technique is well developed for solution state and in relaxometry. Here, a shuttle system with magic-angle spinning (MAS) detection is presented to allow for field-dependent studies on solids. The function of this system is demonstrated by exploring the magnetic field dependence of the solid-state photochemically induced nuclear polarization (photo-CIDNP) effect. The effect allows for strong nuclear spin-hyperpolarization in light-induced spin-correlated radical pairs (SCRPs) under solid-state conditions. To this end, 13 C MAS NMR is applied to a photosynthetic reaction center (RC) of the purple bacterium Rhodobacter (R.) sphaeroides wildtype (WT). For induction of the effect in the stray field of the magnet and its subsequent observation at 9.4 T under MAS NMR conditions, the sample is shuttled by the use of an aerodynamically driven sample transfer technique. In the RC, we observe the effect down to 0.25 T allowing to determine the window for the occurrence of the effect to be between about 0.2 and 20 T.

  15. X-ray Transparent Microfluidic Chip for Mesophase-Based Crystallization of Membrane Proteins and On-Chip Structure Determination

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khvostichenko, Daria S.; Schieferstein, Jeremy M.; Pawate, Ashtamurthy S.

    2014-10-01

    Crystallization from lipidic mesophase matrices is a promising route to diffraction-quality crystals and structures of membrane proteins. The microfluidic approach reported here eliminates two bottlenecks of the standard mesophase-based crystallization protocols: (i) manual preparation of viscous mesophases and (ii) manual harvesting of often small and fragile protein crystals. In the approach reported here, protein-loaded mesophases are formulated in an X-ray transparent microfluidic chip using only 60 nL of the protein solution per crystallization trial. The X-ray transparency of the chip enables diffraction data collection from multiple crystals residing in microfluidic wells, eliminating the normally required manual harvesting and mounting ofmore » individual crystals. We validated our approach by on-chip crystallization of photosynthetic reaction center, a membrane protein from Rhodobacter sphaeroides, followed by solving its structure to a resolution of 2.5 Å using X-ray diffraction data collected on-chip under ambient conditions. A moderate conformational change in hydrophilic chains of the protein was observed when comparing the on-chip, room temperature structure with known structures for which data were acquired under cryogenic conditions.« less

  16. X-ray transparent microfluidic chip for mesophase-based crystallization of membrane proteins and on-chip structure determination

    DOE PAGES

    Khvostichenko, Daria S.; Schieferstein, Jeremy M.; Pawate, Ashtamurthy S.; ...

    2014-08-21

    Crystallization from lipidic mesophase matrices is a promising route to diffraction-quality crystals and structures of membrane proteins. The microfluidic approach reported here eliminates two bottlenecks of the standard mesophase-based crystallization protocols: (i) manual preparation of viscous mesophases and (ii) manual harvesting of often small and fragile protein crystals. In the approach reported here, protein-loaded mesophases are formulated in an X-ray transparent microfluidic chip using only 60 nL of the protein solution per crystallization trial. The X-ray transparency of the chip enables diffraction data collection from multiple crystals residing in microfluidic wells, eliminating the normally required manual harvesting and mounting ofmore » individual crystals. In addition, we validated our approach by on-chip crystallization of photosynthetic reaction center, a membrane protein from Rhodobacter sphaeroides, followed by solving its structure to a resolution of 2.5 Å using X-ray diffraction data collected on-chip under ambient conditions. A moderate conformational change in hydrophilic chains of the protein was observed when comparing the on-chip, room temperature structure with known structures for which data were acquired under cryogenic conditions.« less

  17. Interaction of two photoreceptors in the regulation of bacterial photosynthesis genes

    PubMed Central

    Metz, Sebastian; Haberzettl, Kerstin; Frühwirth, Sebastian; Teich, Kristin; Hasewinkel, Christian; Klug, Gabriele

    2012-01-01

    The expression of photosynthesis genes in the facultatively photosynthetic bacterium Rhodobacter sphaeroides is controlled by the oxygen tension and by light quantity. Two photoreceptor proteins, AppA and CryB, have been identified in the past, which are involved in this regulation. AppA senses light by its N-terminal BLUF domain, its C-terminal part binds heme and is redox-responsive. Through its interaction to the transcriptional repressor PpsR the AppA photoreceptor controls expression of photosynthesis genes. The cryptochrome-like protein CryB was shown to affect regulation of photosynthesis genes, but the underlying signal chain remained unknown. Here we show that CryB interacts with the C-terminal domain of AppA and modulates the binding of AppA to the transcriptional repressor PpsR in a light-dependent manner. Consequently, binding of the transcription factor PpsR to its DNA target is affected by CryB. In agreement with this, all genes of the PpsR regulon showed altered expression levels in a CryB deletion strain after blue-light illumination. These results elucidate for the first time how a bacterial cryptochrome affects gene expression. PMID:22434878

  18. Interaction of two photoreceptors in the regulation of bacterial photosynthesis genes.

    PubMed

    Metz, Sebastian; Haberzettl, Kerstin; Frühwirth, Sebastian; Teich, Kristin; Hasewinkel, Christian; Klug, Gabriele

    2012-07-01

    The expression of photosynthesis genes in the facultatively photosynthetic bacterium Rhodobacter sphaeroides is controlled by the oxygen tension and by light quantity. Two photoreceptor proteins, AppA and CryB, have been identified in the past, which are involved in this regulation. AppA senses light by its N-terminal BLUF domain, its C-terminal part binds heme and is redox-responsive. Through its interaction to the transcriptional repressor PpsR the AppA photoreceptor controls expression of photosynthesis genes. The cryptochrome-like protein CryB was shown to affect regulation of photosynthesis genes, but the underlying signal chain remained unknown. Here we show that CryB interacts with the C-terminal domain of AppA and modulates the binding of AppA to the transcriptional repressor PpsR in a light-dependent manner. Consequently, binding of the transcription factor PpsR to its DNA target is affected by CryB. In agreement with this, all genes of the PpsR regulon showed altered expression levels in a CryB deletion strain after blue-light illumination. These results elucidate for the first time how a bacterial cryptochrome affects gene expression.

  19. Proteomic Analysis and Identification of the Structural and Regulatory Proteins of the Rhodobacter capsulatus Gene Transfer Agent

    PubMed Central

    Chen, Frank; Spano, Anthony; Goodman, Benjamin E.; Blasier, Kiev R.; Sabat, Agnes; Jeffery, Erin; Norris, Andrew; Shabanowitz, Jeffrey; Hunt, Donald F.; Lebedev, Nikolai

    2010-01-01

    The gene transfer agent of Rhodobacter capsulatus (GTA) is a unique phage-like particle that exchanges genetic information between members of this same species of bacterium. Besides being an excellent tool for genetic mapping, the GTA has a number of advantages for biotechnological and nanoengineering purposes. To facilitate the GTA purification and identify the proteins involved in GTA expression, assembly and regulation, in the present work we construct and transform into R. capsulatus Y262 a gene coding for a C-terminally His-tagged capsid protein. The constructed protein was expressed in the cells, assembled into chimeric GTA particles inside the cells and excreted from the cells into surrounding medium. Transmission electron micrographs of phosphotungstate-stained, NiNTA-purified chimeric GTA confirm that its structure is similar to normal GTA particles, with many particles composed both of a head and a tail. The mass spectrometric proteomic analysis of polypeptides present in the GTA recovered outside the cells shows that GTA is composed of at least 9 proteins represented in the GTA gene cluster including proteins coded for by Orf’s 3, 5, 6–9, 11, 13, and 15. PMID:19105630

  20. Proteomic analysis and identification of the structural and regulatory proteins of the Rhodobacter capsulatus gene transfer agent.

    PubMed

    Chen, Frank; Spano, Anthony; Goodman, Benjamin E; Blasier, Kiev R; Sabat, Agnes; Jeffery, Erin; Norris, Andrew; Shabanowitz, Jeffrey; Hunt, Donald F; Lebedev, Nikolai

    2009-02-01

    The gene transfer agent of Rhodobacter capsulatus (GTA) is a unique phage-like particle that exchanges genetic information between members of this same species of bacterium. Besides being an excellent tool for genetic mapping, the GTA has a number of advantages for biotechnological and nanoengineering purposes. To facilitate the GTA purification and identify the proteins involved in GTA expression, assembly and regulation, in the present work we construct and transform into R. capsulatus Y262 a gene coding for a C-terminally His-tagged capsid protein. The constructed protein was expressed in the cells, assembled into chimeric GTA particles inside the cells and excreted from the cells into surrounding medium. Transmission electron micrographs of phosphotungstate-stained, NiNTA-purified chimeric GTA confirm that its structure is similar to normal GTA particles, with many particles composed both of a head and a tail. The mass spectrometric proteomic analysis of polypeptides present in the GTA recovered outside the cells shows that GTA is composed of at least 9 proteins represented in the GTA gene cluster including proteins coded for by Orf's 3, 5, 6-9, 11, 13, and 15.

  1. Genomic, proteomic and bioinformatic analysis of two temperate phages in Roseobacter clade bacteria isolated from the deep-sea water.

    PubMed

    Tang, Kai; Lin, Dan; Zheng, Qiang; Liu, Keshao; Yang, Yujie; Han, Yu; Jiao, Nianzhi

    2017-06-27

    Marine phages are spectacularly diverse in nature. Dozens of roseophages infecting members of Roseobacter clade bacteria were isolated and characterized, exhibiting a very high degree of genetic diversity. In the present study, the induction of two temperate bacteriophages, namely, vB_ThpS-P1 and vB_PeaS-P1, was performed in Roseobacter clade bacteria isolated from the deep-sea water, Thiobacimonas profunda JLT2016 and Pelagibaca abyssi JLT2014, respectively. Two novel phages in morphological, genomic and proteomic features were presented, and their phylogeny and evolutionary relationships were explored by bioinformatic analysis. Electron microscopy showed that the morphology of the two phages were similar to that of siphoviruses. Genome sequencing indicated that the two phages were similar in size, organization, and content, thereby suggesting that these shared a common ancestor. Despite the presence of Mu-like phage head genes, the phages are more closely related to Rhodobacter phage RC1 than Mu phages in terms of gene content and sequence similarity. Based on comparative genomic and phylogenetic analysis, we propose a Mu-like head phage group to allow for the inclusion of Mu-like phages and two newly phages. The sequences of the Mu-like head phage group were widespread, occurring in each investigated metagenomes. Furthermore, the horizontal exchange of genetic material within the Mu-like head phage group might have involved a gene that was associated with phage phenotypic characteristics. This study is the first report on the complete genome sequences of temperate phages that infect deep-sea roseobacters, belonging to the Mu-like head phage group. The Mu-like head phage group might represent a small but ubiquitous fraction of marine viral diversity.

  2. Photo-biohydrogen production potential of Rhodobacter capsulatus-PK from wheat straw

    PubMed Central

    2013-01-01

    Background Biotechnological exploitation of lignocellulosic biomass is promising for sustainable and environmentally sound energy provision strategy because of the abundant availability of the renewable resources. Wheat straw (WS) comprising of 75-80% cellulose and hemicellulose is one of widely available, inexpensive and renewable lignocellulosic biomass types. The cellulosic and hemicellulose substrate can be hydrolyzed into monomeric sugars by chemical and/or biological methods. Results This study examined comparative potential of dilute acid and pre-ammonia pretreated and enzymatically hydrolyzed wheat straw (WS) for hydrogen production by purple non sulfur bacterium Rhodobacter capsulatus-PK. Gas production became noticeable after 14 h of inoculation in WS pretreated with 4% H2SO4. The detoxified liquid hydrolyzate (DLH) after overliming attained a production level of 372 mL-H2/L after 16 h under illumination of 120-150 W/m2 at 30 ± 2.0°C. Whereas the non-detoxified acid pretreated hydrolyzate (NDLH) of WS could produce only upto 254 mL-H2/L after 21 h post inoculation. Evolution of H2 became observable just after 10 ± 2.0 h of inoculation by employing 48 h age inoculum on the WS pretreated with 30% ammonia, hydrolyzed with cellulase 80 FPU/g and β-glucosidase 220 CbU/ml at 50°C. Upto 712 ml/L of culture was measured with continuous shaking for 24 h. The 47.5% and 64.2% higher hydrogen volume than the DLH and NDLH substrates, respectively appeared as a function of significantly higher monomeric sugar contents of the enzymatically hydrolyzed substrate and lesser/zero amounts of toxic derivatives including pH reducing agents. Conclusion Photofermentative hydrogen production from lignocellulosic waste is a feasible approach for eco-friendly sustainable supply of bioenergy in a cost-effective way. Results of this study provide new insight for addressing biotechnological exploitation of abundantly available and low-cost cellulosic substrates

  3. Rhodobacter capsulatus gains a competitive advantage from respiratory nitrate reduction during light-dark transitions.

    PubMed

    Ellington, M J K; Richardson, D J; Ferguson, S J

    2003-04-01

    Rhodobacter capsulatus N22DNAR(+) possesses a periplasmic nitrate reductase and is capable of reducing nitrate to nitrite under anaerobic conditions. In the absence of light this ability cannot support chemoheterotrophic growth in batch cultures. This study investigated the effect of nitrate reduction on the growth of R. capsulatus N22DNAR(+) during multiple light-dark cycles of anaerobic photoheterotrophic/dark chemoheterotrophic growth conditions in carbon-limited continuous cultures. The reduction of nitrate did not affect the photoheterotrophic growth yield of R. capsulatus N22DNAR(+). After a transition from photoheterotrophic to dark chemoheterotrophic growth conditions, the reduction of nitrate slowed the initial washout of a R. capsulatus N22DNAR(+) culture. Towards the end of a period of darkness nitrate-reducing cultures maintained higher viable cell counts than non-nitrate-reducing cultures. During light-dark cycling of a mixed culture, the strain able to reduce nitrate (N22DNAR(+)) outcompeted the strain which was unable to reduce nitrate (N22). The evidence indicates that the periplasmic nitrate reductase activity supports slow growth that retards the washout of a culture during anaerobic chemoheterotrophic conditions, and provides a protonmotive force for cell maintenance during the dark period before reillumination. This translates into a selective advantage during repeated light-dark cycles, such that in mixed culture N22DNAR(+) outcompetes N22. Exposure to light-dark cycles will be a common feature for R. capsulatus in its natural habitats, and this study shows that nitrate respiration may provide a selective advantage under such conditions.

  4. Anaerobic bacteria

    MedlinePlus

    Anaerobic bacteria are bacteria that do not live or grow when oxygen is present. In humans, these bacteria ... Brook I. Diseases caused by non-spore-forming anaerobic bacteria. In: Goldman L, Schafer AI, eds. Goldman-Cecil ...

  5. Optimizing multi-step B-side charge separation in photosynthetic reaction centers from Rhodobacter capsulatus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Faries, Kaitlyn M.; Kressel, Lucas L.; Dylla, Nicholas P.

    Using high-throughput methods for mutagenesis, protein isolation and charge-separation functionality, we have assayed 40 Rhodobacter capsulatus reaction center (RC) mutants for their P+ QB- yield (P is a dimer of bacteriochlorophylls and Q is a ubiquinone) as produced using the normally inactive B-side cofactors BB and HB (where B is a bacteriochlorophyll and H is a bacteriopheophytin). Two sets of mutants explore all possible residues at M131 (M polypeptide, native residue Val near HB) in tandem with either a fixed His or a fixed Asn at L181 (L polypeptide, native residue Phe near BB). A third set of mutants exploresmore » all possible residues at L181 with a fixed Glu at M131 that can form a hydrogen bond to HB. For each set of mutants, the results of a rapid millisecond screening assay that probes the yield of P+ QB- are compared among that set and to the other mutants reported here or previously. For a subset of eight mutants, the rate constants and yields of the individual B-side electron transfer processes are determined via transient absorption measurements spanning 100 fs to 50 μs. The resulting ranking of mutants for their yield of P+ QB- from ultrafast experiments is in good agreement with that obtained from the millisecond screening assay, further validating the efficient, high-throughput screen for B-side transmembrane charge separation. Results from mutants that individually show progress toward optimization of P+ HB- → P+ QB- electron transfer or initial P* → P+ HB- conversion highlight unmet challenges of optimizing both processes simultaneously.« less

  6. Characterization of LHI- and LHI+ Rhodobacter capsulatus pufA mutants.

    PubMed Central

    Richter, P; Brand, M; Drews, G

    1992-01-01

    The NH2 termini of light-harvesting complex I (LHI) polypeptides alpha and beta of Rhodobacter capsulatus are thought to be involved in the assembly of the LHI complex. For a more detailed study of the role of the NH2-terminal segment of the LHI alpha protein in insertion into the intracytoplasmic membrane (ICM) of R. capsulatus, amino acids 6 to 8, 9 to 11, 12 and 13, or 14 and 15 of the LHI alpha protein were deleted. Additionally, the hydrophobic stretch of the amino acids 7 to 11 was lengthened by insertion of hydrophobic or hydrophilic amino acids. All mutations abolished the ability of the mutant strains to form a functional LHI antenna complex. All changes introduced into the LHI alpha protein strongly reduced the stability of its LHI beta partner protein in the ICM. The effects on the mutated protein itself, however, were different. Deletion of amino acids 6 to 8, 9 to 11, or 14 and 15 drastically reduced the amount of the LHI alpha protein inserted into the membrane or prevented its insertion. Deletion of amino acids 12 and 13 and lengthening of the stretch of amino acids 7 to 11 reduced the half-life of the mutated LHI alpha protein in the ICM in comparison with the wild-type LHI alpha protein. Under the selective pressure of low light, revertants which regained a functional LHI antenna complex were identified only for the mutant strain deleted of amino acids 9 to 11 of the LHI alpha polypeptide [U43 (pTPR15)]. The restoration of the LHI+ phenotype was due to an in-frame duplication of 9 bp in the pufA gene directly upstream of the site of deletion present in strain U43(pTPR15). The duplicated nucleotides code for the amino acids Lys, Ile, and Trp. Membranes purified from the revertants were different from that of the reaction center-positive LHI+ LHII- control strain U43(pTX35) in doubling of the carotenoid content and increase of the size of the photosynthetic unit. By separating the reaction center and LHI complexes of the revertants by native

  7. Exciton exciton annihilation dynamics in chromophore complexes. II. Intensity dependent transient absorption of the LH2 antenna system.

    PubMed

    Bruggemann, B; May, V

    2004-02-01

    Using the multiexciton density matrix theory of excitation energy transfer in chromophore complexes developed in a foregoing paper [J. Chem. Phys. 118, 746 (2003)], the computation of ultrafast transient absorption spectra is presented. Beside static disorder and standard mechanisms of excitation energy dissipation the theory incorporates exciton exciton annihilation (EEA) processes. To elucidate signatures of EEA in intensity dependent transient absorption data the approach is applied to the B850 ring of the LH2 found in rhodobacter sphaeroides. As main indications for two-exciton population and resulting EEA we found (i) a weakening of the dominant single-exciton bleaching structure in the transient absorption, and (ii) an intermediate suppression of long-wavelength and short-wavelength shoulders around the bleaching structure. The suppression is caused by stimulated emission from the two-exciton to the one-exciton state and the return of the shoulders follows from a depletion of two-exciton population according to EEA. The EEA-signature survives as a short-wavelength shoulder in the transient absorption if orientational and energetic disorder are taken into account. Therefore, the observation of the EEA-signatures should be possible when doing frequency resolved transient absorption experiments with a sufficiently strongly varying pump-pulse intensity. Copyright 2004 American Institute of Physics

  8. Solvation effect of bacteriochlorophyll excitons in light-harvesting complex LH2.

    PubMed

    Urboniene, V; Vrublevskaja, O; Trinkunas, G; Gall, A; Robert, B; Valkunas, L

    2007-09-15

    We have characterized the influence of the protein environment on the spectral properties of the bacteriochlorophyll (Bchl) molecules of the peripheral light-harvesting (or LH2) complex from Rhodobacter sphaeroides. The spectral density functions of the pigments responsible for the 800 and 850 nm electronic transitions were determined from the temperature dependence of the Bchl absorption spectra in different environments (detergent micelles and native membranes). The spectral density function is virtually independent of the hydrophobic support that the protein experiences. The reorganization energy for the B850 Bchls is 220 cm(-1), which is almost twice that of the B800 Bchls, and its Huang-Rhys factor reaches 8.4. Around the transition point temperature, and at higher temperatures, both the static spectral inhomogeneity and the resonance interactions become temperature-dependent. The inhomogeneous distribution function of the transitions exhibits less temperature dependence when LH2 is embedded in membranes, suggesting that the lipid phase protects the protein. However, the temperature dependence of the fluorescence spectra of LH2 cannot be fitted using the same parameters determined from the analysis of the absorption spectra. Correct fitting requires the lowest exciton states to be additionally shifted to the red, suggesting the reorganization of the exciton spectrum.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Utschig, L. M.; Dalosto, S. D.; Thurnauer, M. C.

    Metal ion binding to a surface site on photosynthetic reaction centers (RCs) modulates light-induced electron and proton transfer events in the RC. Whereas many studies have elucidated aspects of metal ion modulation events in Rhodobacter sphaeroides RCs, much less is understood about the surface site in Blastochloris viridis (Blc. viridis) RCs. Interestingly, electron paramagnetic resonance studies revealed two spectroscopically distinct Cu{sup 2+} surface site environments in Blc. viridis RCs. Herein, Cu{sup 2+} has been used to spectroscopically probe the structure of these Cu{sup 2+} site(s) in response to freezing conditions, temperature, and charge separation. One Cu{sup 2+} environment in Blc.more » viridis RCs, termed CuA, exhibits temperature-dependent conformational flexibility. Different conformation states of the CuA{sup 2+} site are trapped when the RC is frozen in the dark either by fast-freeze or slow-freeze procedure. The second Cu{sup 2+} environment, termed CuB, is structurally invariant to different freezing conditions and shows resolved hyperfine coupling to three nitrogen atoms. Cu{sup 2+} is most likely binding at the same location on the RC, but in different coordination environments which may reflect two distinct conformational states of the isolated Blc. viridis RC protein.« less

  10. Structural characterization of the thermostable Bradyrhizobium japonicumD-sorbitol dehydrogenase.

    PubMed

    Fredslund, Folmer; Otten, Harm; Gemperlein, Sabrina; Poulsen, Jens Christian N; Carius, Yvonne; Kohring, Gert Wieland; Lo Leggio, Leila

    2016-11-01

    Bradyrhizobium japonicum sorbitol dehydrogenase is NADH-dependent and is active at elevated temperatures. The best substrate is D-glucitol (a synonym for D-sorbitol), although L-glucitol is also accepted, giving it particular potential in industrial applications. Crystallization led to a hexagonal crystal form, with crystals diffracting to 2.9 Å resolution. In attempts to phase the data, a molecular-replacement solution based upon PDB entry 4nbu (33% identical in sequence to the target) was found. The solution contained one molecule in the asymmetric unit, but a tetramer similar to that found in other short-chain dehydrogenases, including the search model, could be reconstructed by applying crystallographic symmetry operations. The active site contains electron density consistent with D-glucitol and phosphate, but there was not clear evidence for the binding of NADH. In a search for the features that determine the thermostability of the enzyme, the T m for the orthologue from Rhodobacter sphaeroides, for which the structure was already known, was also determined, and this enzyme proved to be considerably less thermostable. A continuous β-sheet is formed between two monomers in the tetramer of the B. japonicum enzyme, a feature not generally shared by short-chain dehydrogenases, and which may contribute to thermostability, as may an increased Pro/Gly ratio.

  11. The three-dimensional structures of bacterial reaction centers.

    PubMed

    Olson, T L; Williams, J C; Allen, J P

    2014-05-01

    This review presents a broad overview of the research that enabled the structure determination of the bacterial reaction centers from Blastochloris viridis and Rhodobacter sphaeroides, with a focus on the contributions from Duysens, Clayton, and Feher. Early experiments performed in the laboratory of Duysens and others demonstrated the utility of spectroscopic techniques and the presence of photosynthetic complexes in both oxygenic and anoxygenic photosynthesis. The laboratories of Clayton and Feher led efforts to isolate and characterize the bacterial reaction centers. The availability of well-characterized preparations of pure and stable reaction centers allowed the crystallization and subsequent determination of the structures using X-ray diffraction. The three-dimensional structures of reaction centers revealed an overall arrangement of two symmetrical branches of cofactors surrounded by transmembrane helices from the L and M subunits, which also are related by the same twofold symmetry axis. The structure has served as a framework to address several issues concerning bacterial photosynthesis, including the directionality of electron transfer, the properties of the reaction center-cytochrome c 2 complex, and the coupling of proton and electron transfer. Together, these research efforts laid the foundation for ongoing efforts to address an outstanding question in oxygenic photosynthesis, namely the molecular mechanism of water oxidation.

  12. Analysis of the Electronic Structure of the Special Pair of a Bacterial Photosynthetic Reaction Center by 13 C Photochemically Induced Dynamic Nuclear Polarization Magic-Angle Spinning NMR Using a Double-Quantum Axis.

    PubMed

    Najdanova, Marija; Gräsing, Daniel; Alia, A; Matysik, Jörg

    2018-01-01

    The origin of the functional symmetry break in bacterial photosynthesis challenges since several decades. Although structurally very similar, the two branches of cofactors in the reaction center (RC) protein complex act very differently. Upon photochemical excitation, an electron is transported along one branch, while the other remains inactive. Photochemically induced dynamic nuclear polarization (photo-CIDNP) magic-angle spinning (MAS) 13 C NMR revealed that the two bacteriochlorophyll cofactors forming the "Special Pair" donor dimer are already well distinguished in the electronic ground state. These previous studies are relying solely on 13 C- 13 C correlation experiments as radio-frequency-driven recoupling (RFDR) and dipolar-assisted rotational resonance (DARR). Obviously, the chemical-shift assignment is difficult in a dimer of tetrapyrrole macrocycles, having eight pyrrole rings of similar chemical shifts. To overcome this problem, an INADEQUATE type of experiment using a POST C7 symmetry-based approach is applied to selectively isotope-labeled bacterial RC of Rhodobacter (R.) sphaeroides wild type (WT). We, therefore, were able to distinguish unresolved sites of the macromolecular dimer. The obtained chemical-shift pattern is in-line with a concentric assembly of negative charge within the common center of the Special Pair supermolecule in the electronic ground state. © 2017 The American Society of Photobiology.

  13. The Iron-Sulfur Cluster of Electron Transfer Flavoprotein-ubiquinone Oxidoreductase (ETF-QO) is the Electron Acceptor for Electron Transfer Flavoprotein†

    PubMed Central

    Swanson, Michael A.; Usselman, Robert J.; Frerman, Frank E.; Eaton, Gareth R.; Eaton, Sandra S.

    2011-01-01

    Electron-transfer flavoprotein-ubiquinone oxidoreductase (ETF-QO) accepts electrons from electron-transfer flavoprotein (ETF) and reduces ubiquinone from the ubiquinone-pool. It contains one [4Fe-4S]2+,1+ and one FAD, which are diamagnetic in the isolated oxidized enzyme and can be reduced to paramagnetic forms by enzymatic donors or dithionite. In the porcine protein, threonine 367 is hydrogen bonded to N1 and O2 of the flavin ring of the FAD. The analogous site in Rhodobacter sphaeroides ETF-QO is asparagine 338. Mutations N338T and N338A were introduced into the R. sphaeroides protein by site-directed mutagenesis to determine the impact of hydrogen bonding at this site on redox potentials and activity. The mutations did not alter the optical spectra, EPR g-values, spin-lattice relaxation rates, or the [4Fe-4S]2+,1+ to FAD point-dipole interspin distances. The mutations had no impact on the reduction potential for the iron-sulfur cluster, which was monitored by changes in the continuous wave EPR signals of the [4Fe-4S]+ at 15 K. For the FAD semiquinone, significantly different potentials were obtained by monitoring the titration at 100 or 293 K. Based on spectra at 293 K the N338T mutation shifted the first and second midpoint potentials for the FAD from +47 mV and −30 mV for wild type to −11 mV and −19 mV, respectively. The N338A mutation decreased the potentials to −37 mV and −49 mV. Lowering the midpoint potentials resulted in a decrease in the quinone reductase activity and negligible impact on disproportionation of ETF1e− catalyzed by ETF-QO. These observations indicate that the FAD is involved in electron transfer to ubiquinone, but not in electron transfer from ETF to ETF-QO. Therefore the iron-sulfur cluster is the immediate acceptor from ETF. PMID:18672901

  14. The iron-sulfur cluster of electron transfer flavoprotein-ubiquinone oxidoreductase is the electron acceptor for electron transfer flavoprotein.

    PubMed

    Swanson, Michael A; Usselman, Robert J; Frerman, Frank E; Eaton, Gareth R; Eaton, Sandra S

    2008-08-26

    Electron transfer flavoprotein-ubiquinone oxidoreductase (ETF-QO) accepts electrons from electron transfer flavoprotein (ETF) and reduces ubiquinone from the ubiquinone pool. It contains one [4Fe-4S] (2+,1+) and one FAD, which are diamagnetic in the isolated oxidized enzyme and can be reduced to paramagnetic forms by enzymatic donors or dithionite. In the porcine protein, threonine 367 is hydrogen bonded to N1 and O2 of the flavin ring of the FAD. The analogous site in Rhodobacter sphaeroides ETF-QO is asparagine 338. Mutations N338T and N338A were introduced into the R. sphaeroides protein by site-directed mutagenesis to determine the impact of hydrogen bonding at this site on redox potentials and activity. The mutations did not alter the optical spectra, EPR g-values, spin-lattice relaxation rates, or the [4Fe-4S] (2+,1+) to FAD point-dipole interspin distances. The mutations had no impact on the reduction potential for the iron-sulfur cluster, which was monitored by changes in the continuous wave EPR signals of the [4Fe-4S] (+) at 15 K. For the FAD semiquinone, significantly different potentials were obtained by monitoring the titration at 100 or 293 K. Based on spectra at 293 K the N338T mutation shifted the first and second midpoint potentials for the FAD from +47 and -30 mV for wild type to -11 and -19 mV, respectively. The N338A mutation decreased the potentials to -37 and -49 mV. Lowering the midpoint potentials resulted in a decrease in the quinone reductase activity and negligible impact on disproportionation of ETF 1e (-) catalyzed by ETF-QO. These observations indicate that the FAD is involved in electron transfer to ubiquinone but not in electron transfer from ETF to ETF-QO. Therefore, the iron-sulfur cluster is the immediate acceptor from ETF.

  15. The Iron-Sulfur Cluster of Electron Transfer Flavoprotein-Ubiquinone Oxidoreductase Is the Electron Acceptor for Electron Transfer Flavoprotein†

    PubMed Central

    Swanson, Michael A.; Usselman, Robert J.; Frerman, Frank E.; Eaton, Gareth R.; Eaton, Sandra S.

    2009-01-01

    Electron transfer flavoprotein-ubiquinone oxidoreductase (ETF-QO) accepts electrons from electron transfer flavoprotein (ETF) and reduces ubiquinone from the ubiquinone pool. It contains one [4Fe-4S]2+,1+ and one FAD, which are diamagnetic in the isolated oxidized enzyme and can be reduced to paramagnetic forms by enzymatic donors or dithionite. In the porcine protein, threonine 367 is hydrogen bonded to N1 and O2 of the flavin ring of the FAD. The analogous site in Rhodobacter sphaeroides ETF-QO is asparagine 338. Mutations N338T and N338A were introduced into the R. sphaeroides protein by site-directed mutagenesis to determine the impact of hydrogen bonding at this site on redox potentials and activity. The mutations did not alter the optical spectra, EPR g-values, spin-lattice relaxation rates, or the [4Fe-4S]2+,1+ to FAD point-dipole interspin distances. The mutations had no impact on the reduction potential for the iron-sulfur cluster, which was monitored by changes in the continuous wave EPR signals of the [4Fe-4S]+ at 15 K. For the FAD semiquinone, significantly different potentials were obtained by monitoring the titration at 100 or 293 K. Based on spectra at 293 K the N338T mutation shifted the first and second midpoint potentials for the FAD from +47 and -30 mV for wild type to -11 and -19 mV, respectively. The N338A mutation decreased the potentials to -37 and -49 mV. Lowering the midpoint potentials resulted in a decrease in the quinone reductase activity and negligible impact on disproportionation of ETF1e- catalyzed by ETF-QO. These observations indicate that the FAD is involved in electron transfer to ubiquinone but not in electron transfer from ETF to ETF-QO. Therefore, the iron-sulfur cluster is the immediate acceptor from ETF. PMID:9585549

  16. Evaluating the Nature of So-Called S*-State Feature in Transient Absorption of Carotenoids in Light-Harvesting Complex 2 (LH2) from Purple Photosynthetic Bacteria.

    PubMed

    Niedzwiedzki, Dariusz M; Hunter, C Neil; Blankenship, Robert E

    2016-11-03

    Carotenoids are a class of natural pigments present in all phototrophic organisms, mainly in their light-harvesting proteins in which they play roles of accessory light absorbers and photoprotectors. Extensive time-resolved spectroscopic studies of these pigments have revealed unexpectedly complex photophysical properties, particularly for carotenoids in light-harvesting LH2 complexes from purple bacteria. An ambiguous, optically forbidden electronic excited state designated as S* has been postulated to be involved in carotenoid excitation relaxation and in an alternative carotenoid-to-bacteriochlorophyll energy transfer pathway, as well as being a precursor of the carotenoid triplet state. However, no definitive and satisfactory origin of the carotenoid S* state in these complexes has been established, despite a wide-ranging series of studies. Here, we resolve the ambiguous origin of the carotenoid S* state in LH2 complex from Rba. sphaeroides by showing that the S* feature can be seen as a combination of ground state absorption bleaching of the carotenoid pool converted to cations and the Stark spectrum of neighbor neutral carotenoids, induced by temporal electric field brought by the carotenoid cation-bacteriochlorophyll anion pair. These findings remove the need to assign an S* state, and thereby significantly simplify the photochemistry of carotenoids in these photosynthetic antenna complexes.

  17. Evaluating the Nature of So-Called S*-State Feature in Transient Absorption of Carotenoids in Light-Harvesting Complex 2 (LH2) from Purple Photosynthetic Bacteria

    PubMed Central

    2016-01-01

    Carotenoids are a class of natural pigments present in all phototrophic organisms, mainly in their light-harvesting proteins in which they play roles of accessory light absorbers and photoprotectors. Extensive time-resolved spectroscopic studies of these pigments have revealed unexpectedly complex photophysical properties, particularly for carotenoids in light-harvesting LH2 complexes from purple bacteria. An ambiguous, optically forbidden electronic excited state designated as S* has been postulated to be involved in carotenoid excitation relaxation and in an alternative carotenoid-to-bacteriochlorophyll energy transfer pathway, as well as being a precursor of the carotenoid triplet state. However, no definitive and satisfactory origin of the carotenoid S* state in these complexes has been established, despite a wide-ranging series of studies. Here, we resolve the ambiguous origin of the carotenoid S* state in LH2 complex from Rba. sphaeroides by showing that the S* feature can be seen as a combination of ground state absorption bleaching of the carotenoid pool converted to cations and the Stark spectrum of neighbor neutral carotenoids, induced by temporal electric field brought by the carotenoid cation–bacteriochlorophyll anion pair. These findings remove the need to assign an S* state, and thereby significantly simplify the photochemistry of carotenoids in these photosynthetic antenna complexes. PMID:27726397

  18. Evaluating the nature of so-called S*-State feature in transient absorption of carotenoids in light-harvesting complex 2 (LH2) from purple photosynthetic bacteria

    DOE PAGES

    Niedzwiedzki, Dariusz M.; Hunter, C. Neil; Blankenship, Robert E.

    2016-10-11

    Carotenoids are a class of natural pigments present in all phototrophic organisms, mainly in their light-harvesting proteins in which they play roles of accessory light absorbers and photoprotectors. Extensive time-resolved spectroscopic studies of these pigments have revealed unexpectedly complex photophysical properties, particularly for carotenoids in light-harvesting LH2 complexes from purple bacteria. An ambiguous, optically forbidden electronic excited state designated as S* has been postulated to be involved in carotenoid excitation relaxation and in an alternative carotenoid-to-bacteriochlorophyll energy transfer pathway, as well as being a precursor of the carotenoid triplet state. However, no definitive and satisfactory origin of the carotenoid S*more » state in these complexes has been established, despite a wide-ranging series of studies. Here, we resolve the ambiguous origin of the carotenoid S* state in LH2 complex from Rba. sphaeroides by showing that the S* feature can be seen as a combination of ground state absorption bleaching of the carotenoid pool converted to cations and the Stark spectrum of neighbor neutral carotenoids, induced by temporal electric field brought by the carotenoid cation- bacteriochlorophyll anion pair. Lastly, these findings remove the need to assign an S* state, and thereby significantly simplify the photochemistry of carotenoids in these photosynthetic antenna complexes.« less

  19. Evaluating the nature of so-called S*-State feature in transient absorption of carotenoids in light-harvesting complex 2 (LH2) from purple photosynthetic bacteria

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Niedzwiedzki, Dariusz M.; Hunter, C. Neil; Blankenship, Robert E.

    Carotenoids are a class of natural pigments present in all phototrophic organisms, mainly in their light-harvesting proteins in which they play roles of accessory light absorbers and photoprotectors. Extensive time-resolved spectroscopic studies of these pigments have revealed unexpectedly complex photophysical properties, particularly for carotenoids in light-harvesting LH2 complexes from purple bacteria. An ambiguous, optically forbidden electronic excited state designated as S* has been postulated to be involved in carotenoid excitation relaxation and in an alternative carotenoid-to-bacteriochlorophyll energy transfer pathway, as well as being a precursor of the carotenoid triplet state. However, no definitive and satisfactory origin of the carotenoid S*more » state in these complexes has been established, despite a wide-ranging series of studies. Here, we resolve the ambiguous origin of the carotenoid S* state in LH2 complex from Rba. sphaeroides by showing that the S* feature can be seen as a combination of ground state absorption bleaching of the carotenoid pool converted to cations and the Stark spectrum of neighbor neutral carotenoids, induced by temporal electric field brought by the carotenoid cation- bacteriochlorophyll anion pair. Lastly, these findings remove the need to assign an S* state, and thereby significantly simplify the photochemistry of carotenoids in these photosynthetic antenna complexes.« less

  20. Impact of the lipid bilayer on energy transfer kinetics in the photosynthetic protein LH2.

    PubMed

    Ogren, John I; Tong, Ashley L; Gordon, Samuel C; Chenu, Aurélia; Lu, Yue; Blankenship, Robert E; Cao, Jianshu; Schlau-Cohen, Gabriela S

    2018-03-28

    Photosynthetic purple bacteria convert solar energy to chemical energy with near unity quantum efficiency. The light-harvesting process begins with absorption of solar energy by an antenna protein called Light-Harvesting Complex 2 (LH2). Energy is subsequently transferred within LH2 and then through a network of additional light-harvesting proteins to a central location, termed the reaction center, where charge separation occurs. The energy transfer dynamics of LH2 are highly sensitive to intermolecular distances and relative organizations. As a result, minor structural perturbations can cause significant changes in these dynamics. Previous experiments have primarily been performed in two ways. One uses non-native samples where LH2 is solubilized in detergent, which can alter protein structure. The other uses complex membranes that contain multiple proteins within a large lipid area, which make it difficult to identify and distinguish perturbations caused by protein-protein interactions and lipid-protein interactions. Here, we introduce the use of the biochemical platform of model membrane discs to study the energy transfer dynamics of photosynthetic light-harvesting complexes in a near-native environment. We incorporate a single LH2 from Rhodobacter sphaeroides into membrane discs that provide a spectroscopically amenable sample in an environment more physiological than detergent but less complex than traditional membranes. This provides a simplified system to understand an individual protein and how the lipid-protein interaction affects energy transfer dynamics. We compare the energy transfer rates of detergent-solubilized LH2 with those of LH2 in membrane discs using transient absorption spectroscopy and transient absorption anisotropy. For one key energy transfer step in LH2, we observe a 30% enhancement of the rate for LH2 in membrane discs compared to that in detergent. Based on experimental results and theoretical modeling, we attribute this difference to

  1. Impact of the lipid bilayer on energy transfer kinetics in the photosynthetic protein LH2† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c7sc04814a

    PubMed Central

    Ogren, John I.; Tong, Ashley L.; Gordon, Samuel C.; Chenu, Aurélia; Lu, Yue; Blankenship, Robert E.; Cao, Jianshu

    2018-01-01

    Photosynthetic purple bacteria convert solar energy to chemical energy with near unity quantum efficiency. The light-harvesting process begins with absorption of solar energy by an antenna protein called Light-Harvesting Complex 2 (LH2). Energy is subsequently transferred within LH2 and then through a network of additional light-harvesting proteins to a central location, termed the reaction center, where charge separation occurs. The energy transfer dynamics of LH2 are highly sensitive to intermolecular distances and relative organizations. As a result, minor structural perturbations can cause significant changes in these dynamics. Previous experiments have primarily been performed in two ways. One uses non-native samples where LH2 is solubilized in detergent, which can alter protein structure. The other uses complex membranes that contain multiple proteins within a large lipid area, which make it difficult to identify and distinguish perturbations caused by protein–protein interactions and lipid–protein interactions. Here, we introduce the use of the biochemical platform of model membrane discs to study the energy transfer dynamics of photosynthetic light-harvesting complexes in a near-native environment. We incorporate a single LH2 from Rhodobacter sphaeroides into membrane discs that provide a spectroscopically amenable sample in an environment more physiological than detergent but less complex than traditional membranes. This provides a simplified system to understand an individual protein and how the lipid–protein interaction affects energy transfer dynamics. We compare the energy transfer rates of detergent-solubilized LH2 with those of LH2 in membrane discs using transient absorption spectroscopy and transient absorption anisotropy. For one key energy transfer step in LH2, we observe a 30% enhancement of the rate for LH2 in membrane discs compared to that in detergent. Based on experimental results and theoretical modeling, we attribute this difference

  2. Exploring O2 Diffusion in A-Type Cytochrome c Oxidases: Molecular Dynamics Simulations Uncover Two Alternative Channels towards the Binuclear Site

    PubMed Central

    Oliveira, A. Sofia F.; Damas, João M.; Baptista, António M.; Soares, Cláudio M.

    2014-01-01

    Cytochrome c oxidases (Ccoxs) are the terminal enzymes of the respiratory chain in mitochondria and most bacteria. These enzymes couple dioxygen (O2) reduction to the generation of a transmembrane electrochemical proton gradient. Despite decades of research and the availability of a large amount of structural and biochemical data available for the A-type Ccox family, little is known about the channel(s) used by O2 to travel from the solvent/membrane to the heme a3-CuB binuclear center (BNC). Moreover, the identification of all possible O2 channels as well as the atomic details of O2 diffusion is essential for the understanding of the working mechanisms of the A-type Ccox. In this work, we determined the O2 distribution within Ccox from Rhodobacter sphaeroides, in the fully reduced state, in order to identify and characterize all the putative O2 channels leading towards the BNC. For that, we use an integrated strategy combining atomistic molecular dynamics (MD) simulations (with and without explicit O2 molecules) and implicit ligand sampling (ILS) calculations. Based on the 3D free energy map for O2 inside Ccox, three channels were identified, all starting in the membrane hydrophobic region and connecting the surface of the protein to the BNC. One of these channels corresponds to the pathway inferred from the X-ray data available, whereas the other two are alternative routes for O2 to reach the BNC. Both alternative O2 channels start in the membrane spanning region and terminate close to Y288I. These channels are a combination of multiple transiently interconnected hydrophobic cavities, whose opening and closure is regulated by the thermal fluctuations of the lining residues. Furthermore, our results show that, in this Ccox, the most likely (energetically preferred) routes for O2 to reach the BNC are the alternative channels, rather than the X-ray inferred pathway. PMID:25474152

  3. Location and magnetic relaxation properties of the stable tyrosine radical in photosystem II.

    PubMed

    Innes, J B; Brudvig, G W

    1989-02-07

    Dipolar interactions with neighboring metal ions can cause enhanced spin-lattice relaxation of free radicals. We have applied the theory of dipolar relaxation enhancement and shown that the dependence of the enhanced relaxation on the protein structure surrounding the free radical can be used to obtain distances from the free radical to the protein surface. To test the theoretical predictions, we have examined the effect of added Dy3+ complexes on the microwave power saturation of free radicals in two protein complexes of known structure: myoglobin nitroxide and the reaction center from Rhodobacter sphaeroides. Three cases have been considered: (1) metal ions bound to a specific site, (2) metal ions bound randomly over the protein surface, and (3) metal ions distributed randomly in solution. Only case 3, which assumes no specific binding, gave good agreement between the distances obtained by using the two model systems. The effect of added Dy3+ complexes on the microwave power saturation of signal IIslow from photosystem II (PSII) was used to determine the location of the stable tyrosine radical giving rise to signal IIslow. Assuming that the surface of a membrane-bound protein can be approximated as planar, we have obtained distances from the tyrosine radical to the membrane surface in thylakoids, in PSII membranes, and in Tris-washed PSII membranes. The distances we have determined are in good agreement with those predicted on the basis of a structural homology between the D1 and D2 subunits of PSII and the structurally characterized L and M subunits of the reaction center from purple non-sulfur bacteria. We have also examined the temperature dependence of the microwave power at half-saturation (P1/2) of signal IIslow from 4 to 200 K in dark-adapted PSII membranes. Above 70 K, the P1/2 increases as T2.5, which is consistent with a Raman relaxation mechanism.(ABSTRACT TRUNCATED AT 250 WORDS)

  4. The Presence of ADP-Ribosylated Fe Protein of Nitrogenase in Rhodobacter capsulatus Is Correlated with Cellular Nitrogen Status

    PubMed Central

    Yakunin, Alexander F.; Laurinavichene, Tatyana V.; Tsygankov, Anatoly A.; Hallenbeck, Patrick C.

    1999-01-01

    The photosynthetic bacterium Rhodobacter capsulatus has been shown to regulate its nitrogenase by covalent modification via the reversible ADP-ribosylation of Fe protein in response to darkness or the addition of external NH4+. Here we demonstrate the presence of ADP-ribosylated Fe protein under a variety of steady-state growth conditions. We examined the modification of Fe protein and nitrogenase activity under three different growth conditions that establish different levels of cellular nitrogen: batch growth with limiting NH4+, where the nitrogen status is externally controlled; batch growth on relatively poor nitrogen sources, where the nitrogen status is internally controlled by assimilatory processes; and continuous culture. When cultures were grown to stationary phase with different limiting concentrations of NH4+, the ADP-ribosylation state of Fe protein was found to correlate with cellular nitrogen status. Additionally, actively growing cultures (grown with N2 or glutamate), which had an intermediate cellular nitrogen status, contained a portion of their Fe protein in the modified state. The correlation between cellular nitrogen status and ADP-ribosylation state was corroborated with continuous cultures grown under various degrees of nitrogen limitation. These results show that in R. capsulatus the modification system that ADP-ribosylates nitrogenase in the short term in response to abrupt changes in the environment is also capable of modifying nitrogenase in accordance with long-term cellular conditions. PMID:10094674

  5. Effect of dietary Rhodobacter capsulatus on cholesterol concentration and fatty acid composition in broiler meat.

    PubMed

    Salma, U; Miah, A G; Maki, T; Nishimura, M; Tsujii, H

    2007-09-01

    The study was designed to investigate the effects of dietary Rhodobacter capsulatus on cholesterol concentration and fatty acid composition in broiler meat. A total of 45 two-week-old male broiler chicks were randomly assigned into 3 treatment groups and fed ad libitum diets supplemented with 0 (control), 0.02, and 0.04% R. capsulatus for a 6-wk feeding period. The results of this study revealed that the supplementation of 0.04% R. capsulatus in diet reduced (P < 0.05) cholesterol and triglyceride concentrations in broiler meat. The concentrations (expressed as a percentage of total fatty acids) of oleic acid (18:1), linoleic acid (18:2), and linolenic (18:3) acid in thigh muscle and breast muscle were higher (P < 0.05) in the broilers fed the 0.04% R. capsulatus supplemented diet than in the broilers fed the control diet. The ratio of unsaturated fatty acids to saturated fatty acids was greater (P < 0.05) in both muscles of broilers fed the 0.04% R. capsulatus supplemented diet than the control diet. In addition, the concentrations of serum cholesterol and triglyceride, and hepatic cholesterol and triglyceride were also reduced (P < 0.05) by dietary R. capsulatus. Compared with the control diet, the 0.04% R. capsulatus supplemented diet reduced (P < 0.05) the ratio of low-density lipoprotein-cholesterol to high-density lipoprotein-cholesterol. Moreover, the supplementation of R. capsulatus in broiler diets did not show any adverse effect on production performance. Therefore, these results conclude that the application of R. capsulatus into diet may be feasible to reduce cholesterol concentration and improve the ratio of unsaturated fatty acids to saturated fatty acids in broiler meat.

  6. Manipulating the Energetics and Rates of Electron Transfer in Rhodobacter capsulatus Reaction Centers with Asymmetric Pigment Content

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Faries, Kaitlyn M.; Dylla, Nicholas P.; Hanson, Deborah K.

    2017-07-17

    Seemingly redundant parallel pathways for electron transfer (ET), composed of identical sets of cofactors, are a cornerstone feature of photosynthetic reaction centers (RCs) involved in light-energy conversion. In native bacterial RCs, both A and B branches house one bacteriochlorophyll (BChl) and one bacteriopheophytin (BPh), but the A branch is used exclusively. Described herein are the results-obtained for two Rhodobacter capsulatus RCs with an unnaturally high degree of cofactor asymmetry, two BPh on the RC's B side and two BChl on the A side. These pigment changes derive, respectively, from the His(M180)Leu mutation [a BPh ((Phi(B)) replaces the B-side BChl (BB)],more » and the Leu(M212)His mutation [a BChl (beta(A))) replaces the A-side BPh (H-A)]. Additionally, Tyr(M208)Phe was employed to disfavor ET to the A branch; in one mutant, Val(M131)Glu creates a hydrogen bond to H-B to enhance ET to H-B. In both Phi(B) mutants, the decay kinetics of the excited primary ET donor (P*) resolve three populations with lifetimes of similar to 9 ps (50-60%), similar to 40 ps (10-20%), and similar to 200 ps (20-30%), with P+Phi(-)(B) formed predominantly from the 9 ps fraction. The 50-60% yield of P+Phi(B)- is the highest yet observed for a Phi(B)-containing RC. The results provide insight into factors needed for efficient multistep ET.« less

  7. The response of antioxidant systems in Nostoc sphaeroides against UV-B radiation and the protective effects of exogenous antioxidants

    NASA Astrophysics Data System (ADS)

    Wang, Gaohong; Hu, Chunxiang; Li, Dunhai; Zhang, Delu; Li, Xiaoyan; Chen, Kun; Liu, Yongding

    UV radiation is one of many harmful factors found in space that are detrimental to organisms on earth in space exploration. In the present work, we examined the role of antioxidant system in Nostoc sphaeroides Kütz (Cyanobacterium) and the effects of exogenously applied antioxidant molecules on its photosynthetic rate under UV-B radiation. It was found that UV-B radiation promoted the activity of antioxidant system to protect photosystem II (PSII) and exogenously applied antioxidant: sodium nitroprusside (SNP) and N-acetylcysteine (NAC) had an obvious protection on PSII activity under UV-B radiation. The activity of superoxide dismutase (SOD, EC 1.15.1.1), catalase (CAT, EC 1.11.1.6), peroxidase (POD, EC 1.11.1.7) and content of MDA (malondialdehyde) and ASC (ascorbate) were improved by 0.5 mM and 1 mM SNP, but 0.1 mM SNP decreased the activity of antioxidant system. Addition of exogenous NAC decreased the activity of SOD, POD, CAT and the content MDA and ASC. In contrast, exogenously applied NAC increased GSH content. The results suggest that exogenous SNP and NAC may protect algae by different mechanisms: SNP may play double roles as both sources of reactive free radicals as well as ROS scavengers in mediating the protective role of PSII on algae under UV-B radiation. On the other hand, NAC functions as an antioxidant or precursor of glutathione, which could protect PSII directly from UV-B radiation.

  8. Characterization of a tungsten-substituted nitrogenase isolated from Rhodobacter capsulatus.

    PubMed

    Siemann, Stefan; Schneider, Klaus; Oley, Mareke; Müller, Achim

    2003-04-08

    In the phototrophic non-sulfur bacterium Rhodobacter capsulatus, the biosynthesis of the conventional Mo-nitrogenase is strictly Mo-regulated. Significant amounts of both dinitrogenase and dinitrogenase reductase were only formed when the growth medium was supplemented with molybdate (1 microM). During cell growth under Mo-deficient conditions, tungstate, at high concentrations (1 mM), was capable of partially (approximately 25%) substituting for molybdate in the induction of nitrogenase synthesis. On the basis of such conditions, a tungsten-substituted nitrogenase was isolated from R. capsulatus with the aid of anfA (Fe-only nitrogenase defective) mutant cells and partially purified by Q-sepharose chromatography. Metal analyses revealed the protein to contain an average of 1 W-, 16 Fe-, and less than 0.01 Mo atoms per alpha(2)beta(2)-tetramer. The tungsten-substituted (WFe) protein was inactive in reducing N(2) and marginally active in acetylene reduction, but it was found to show considerable activity with respect to the generation of H(2) from protons. The EPR spectrum of the WFe protein, recorded at 4 K, exhibited three distinct signals: (i) an S = 3/2 signal, which dominates the low-field region of the spectrum (g = 4.19, 3.93) and is indicative of a tungsten-substituted cofactor (termed FeWco), (ii) a marginal S = 3/2 signal (g = 4.29, 3.67) that can be attributed to residual amounts of FeMoco present in the protein, and (iii) a broad S = 1/2 signal (g = 2.09, 1.95, 1.86) arising from at least two paramagnetic species. Redox titrational analysis of the WFe protein revealed the midpoint potential of the FeWco (E(m) < -200 mV) to be shifted to distinctly lower potentials as compared to that of the FeMoco (E(m) approximately -50 mV) present in the native enzyme. The P clusters of both the WFe and the MoFe protein appear indistinguishable with respect to their midpoint potentials. EPR spectra recorded with the WFe protein under turnover conditions exhibited a 20

  9. Bacteria isolated from amoebae/bacteria consortium

    DOEpatents

    Tyndall, R.L.

    1995-05-30

    New protozoan derived microbial consortia and method for their isolation are provided. Consortia and bacteria isolated therefrom are useful for treating wastes such as trichloroethylene and trinitrotoluene. Consortia, bacteria isolated therefrom, and dispersants isolated therefrom are useful for dispersing hydrocarbons such as oil, creosote, wax, and grease.

  10. Bacteria isolated from amoebae/bacteria consortium

    DOEpatents

    Tyndall, Richard L.

    1995-01-01

    New protozoan derived microbial consortia and method for their isolation are provided. Consortia and bacteria isolated therefrom are useful for treating wastes such as trichloroethylene and trinitrotoluene. Consortia, bacteria isolated therefrom, and dispersants isolated therefrom are useful for dispersing hydrocarbons such as oil, creosote, wax, and grease.

  11. Determination of the topological shape of integral membrane protein light-harvesting complex LH2 from photosynthetic bacteria in the detergent solution by small-angle X-ray scattering.

    PubMed

    Hong, Xinguo; Weng, Yu-Xiang; Li, Ming

    2004-02-01

    The topological shape of the integral membrane protein light-harvesting complex LH2 from photosynthetic bacteria Rhodobacter spheroides 2.4.1 in detergent solution has been determined from synchrotron small-angle X-ray scattering data using direct curve-fitting by the ellipsoid, ab initio shape determination methods of simulated annealing algorithm and multipole expansion, respectively. The results indicate that the LH2 protein in aqueous solution is encapsulated by a monolayered detergent shell. The detergent-stabilized structure has the shape of an oblate plate, with a thickness of 40 A, a long axis of 110 A, and a short axis of 85 A. After correction for the detergent shell, the shape of the LH2 core is also an oblate plate with a height of 40 A, a long axis of 80 A, and a short axis of 55 A. In contrast to the cylindrical crystal structure with a height of 40 A and a diameter of 68 A, the molecular shape of the LH2 complex in detergent solution clearly deviates from the ringlike crystal structure, with an eccentricity found to be 0.59-consistent with the result of single molecular spectroscopy study of the isolated single LH2 molecules.

  12. Determination of the Topological Shape of Integral Membrane Protein Light-Harvesting Complex LH2 from Photosynthetic Bacteria in the Detergent Solution by Small-Angle X-Ray Scattering

    PubMed Central

    Hong, Xinguo; Weng, Yu-Xiang; Li, Ming

    2004-01-01

    The topological shape of the integral membrane protein light-harvesting complex LH2 from photosynthetic bacteria Rhodobacter spheroides 2.4.1 in detergent solution has been determined from synchrotron small-angle X-ray scattering data using direct curve-fitting by the ellipsoid, ab initio shape determination methods of simulated annealing algorithm and multipole expansion, respectively. The results indicate that the LH2 protein in aqueous solution is encapsulated by a monolayered detergent shell. The detergent-stabilized structure has the shape of an oblate plate, with a thickness of 40 Å, a long axis of 110 Å, and a short axis of 85 Å . After correction for the detergent shell, the shape of the LH2 core is also an oblate plate with a height of 40 Å, a long axis of 80 Å, and a short axis of 55 Å. In contrast to the cylindrical crystal structure with a height of 40 Å and a diameter of 68 Å, the molecular shape of the LH2 complex in detergent solution clearly deviates from the ringlike crystal structure, with an eccentricity found to be 0.59—consistent with the result of single molecular spectroscopy study of the isolated single LH2 molecules. PMID:14747343

  13. Rhodobacter capsulatus contains a novel cb-type cytochrome c oxidase without a CuA center.

    PubMed

    Gray, K A; Grooms, M; Myllykallio, H; Moomaw, C; Slaughter, C; Daldal, F

    1994-03-15

    The facultative phototrophic bacterium Rhodobacter capsulatus is capable of growth in a wide range of environmental conditions using a highly branched electron-transfer chain. During respiratory growth of this organism reducing equivalents are conveyed to oxygen via two terminal oxidases, previously called "cyt b410" (cytochrome c oxidase) and "cyt b260" (quinol oxidase). The cytochrome c oxidase was purified to homogeneity from a semiaerobically grown R. capsulatus strain. The purified enzyme consumes oxygen at a rate of 600 s-1, oxidizes reduced equine cyt c and R. capsulatus cyt c2, and has high sensitivity to cyanide. The complex is composed of three major polypeptides of apparent molecular masses 45, 32, and 28 kDa on SDS-PAGE. The 32- and 28-kDa proteins also stain with tetramethylbenzidine, indicating that they are c-type cytochromes. Partial amino acid sequences obtained from each of the subunits reveal significant homology to the fixN, fixO, and fixP gene products of Bradyrhizobium japonicum and Rhizobium meliloti. The reduced enzyme has an optical absorption spectrum with distinct features near 550 and 560 nm and an asymmetric Soret band centered at 418 nm, indicating the presence of both c- and b-type cytochromes. Two electrochemically distinct cyt c are apparent, with redox midpoint potentials (Em7) of 265 and 320 mV, while the low-spin cyt b has an Em7 value of 385 mV. The enzyme binds carbon monoxide, and the CO difference spectrum indicates that CO binds to a high-spin cyt b. Pyridine hemochrome and HPLC analyses suggest that the complex contains 1 mol of heme C to 1 mol of protoheme and that neither heme O nor heme A is present.(ABSTRACT TRUNCATED AT 250 WORDS)

  14. Synchronous Measurement of Ultrafast Anisotropy Decay of the B850 in Bacterial LH2 Complex

    NASA Astrophysics Data System (ADS)

    Wang, Yun-Peng; Du, Lu-Chao; Zhu, Gang-Bei; Wang, Zhuan; Weng, Yu-Xiang

    2015-02-01

    Ultrafast anisotropic decay is a prominent parameter revealing ultrafast energy and electron transfer; however, it is difficult to be determined reliably owing to the requirement of a simultaneous availability of the parallel and perpendicular polarized decay kinetics. Nowadays, any measurement of anisotropic decay is a kind of approach to the exact simultaneity. Here we report a novel method for a synchronous ultrafast anisotropy decay measurement, which can well determine the anisotropy, even at a very early time, as the rising phase of the excitation laser pulse. The anisotropic decay of the B850 in bacterial light harvesting antenna complex LH2 of Rhodobacter sphaeroides in solution at room temperature with coherent excitation is detected by this method, which shows a polarization response time of 30 fs, and the energy transfer from the initial excitation to the bacteriochlorophylls in B850 ring takes about 70 fs. The anisotropic decay that is probed at the red side of the absorption spectrum, such as 880 nm, has an initial value of 0.4, corresponding to simulated emission, while the blue side with an anisotropy of 0.1 contributes to the ground-state bleaching. Our results show that the coherent excitation covering the whole ring might not be realized owing to the symmetry breaking of LH2: from C9 symmetry in membrane to C2 symmetry in solution.

  15. Identification of conserved lipid/detergent-binding sites in a high-resolution structure of the membrane protein cytochrome c oxidase

    PubMed Central

    Qin, Ling; Hiser, Carrie; Mulichak, Anne; Garavito, R. Michael; Ferguson-Miller, Shelagh

    2006-01-01

    Well ordered reproducible crystals of cytochrome c oxidase (CcO) from Rhodobacter sphaeroides yield a previously unreported structure at 2.0 Å resolution that contains the two catalytic subunits and a number of alkyl chains of lipids and detergents. Comparison with crystal structures of other bacterial and mammalian CcOs reveals that the positions occupied by native membrane lipids and detergent substitutes are highly conserved, along with amino acid residues in their vicinity, suggesting a more prevalent and specific role of lipid in membrane protein structure than often envisioned. Well defined detergent head groups (maltose) are found associated with aromatic residues in a manner similar to phospholipid head groups, likely contributing to the success of alkyl glycoside detergents in supporting membrane protein activity and crystallizability. Other significant features of this structure include the following: finding of a previously unreported crystal contact mediated by cadmium and an engineered histidine tag; documentation of the unique His–Tyr covalent linkage close to the active site; remarkable conservation of a chain of waters in one proton pathway (D-path); and discovery of an inhibitory cadmium-binding site at the entrance to another proton path (K-path). These observations provide important insight into CcO structure and mechanism, as well as the significance of bound lipid in membrane proteins. PMID:17050688

  16. The Structure of L-Tyrosine 2,3-Aminomutase frmo the C-1027 Enediyne Antitumor Antibiotic Biosynthetic Pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Christianson,C.; Montavon, T.; Van Lanen, S.

    2007-01-01

    The SgcC4 L-tyrosine 2,3-aminomutase (SgTAM) catalyzes the formation of (S)-{beta}-tyrosine in the biosynthetic pathway of the enediyne antitumor antibiotic C-1027. SgTAM is homologous to the histidine ammonia lyase family of enzymes whose activity is dependent on the methylideneimidazole-5-one (MIO) cofactor. Unlike the lyase enzymes, SgTAM catalyzes additional chemical transformations resulting in an overall stereospecific 1,2-amino shift in the substrate L-tyrosine to generate (S)-{beta}-tyrosine. Previously, we provided kinetic, spectroscopic, and mutagenesis data supporting the presence of MIO in the active site of SgTAM [Christenson, S. D.; Wu, W.; Spies, A.; Shen, B.; and Toney, M. D. (2003) Biochemistry 42, 12708-12718]. Heremore » we report the first X-ray crystal structure of an MIO-containing aminomutase, SgTAM, and confirm the structural homology of SgTAM to ammonia lyases. Comparison of the structure of SgTAM to the L-tyrosine ammonia lyase from Rhodobacter sphaeroides provides insight into the structural basis for aminomutase activity. The results show that SgTAM has a closed active site well suited to retain ammonia and minimize the formation of lyase elimination products. The amino acid determinants for substrate recognition and catalysis can be predicted from the structure, setting the framework for detailed mechanistic investigations.« less

  17. Plants as sources of airborne bacteria, including ice nucleation-active bacteria.

    PubMed

    Lindemann, J; Constantinidou, H A; Barchet, W R; Upper, C D

    1982-11-01

    Vertical wind shear and concentration gradients of viable, airborne bacteria were used to calculate the upward flux of viable cells above bare soil and canopies of several crops. Concentrations at soil or canopy height varied from 46 colony-forming units per m over young corn and wet soil to 663 colony-forming units per m over dry soil and 6,500 colony-forming units per m over a closed wheat canopy. In simultaneous samples, concentrations of viable bacteria in the air 10 m inside an alfalfa field were fourfold higher than those over a field with dry, bare soil immediately upwind. The upward flux of viable bacteria over alfalfa was three- to fourfold greater than over dry soil. Concentrations of ice nucleation-active bacteria were higher over plants than over soil. Thus, plant canopies may constitute a major source of bacteria, including ice nucleation-active bacteria, in the air.

  18. Mutations That Alter the Bacterial Cell Envelope Increase Lipid Production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lemmer, Kimberly C.; Zhang, Weiping; Langer, Samantha J.

    ABSTRACT Lipids from microbes offer a promising source of renewable alternatives to petroleum-derived compounds. In particular, oleaginous microbes are of interest because they accumulate a large fraction of their biomass as lipids. In this study, we analyzed genetic changes that alter lipid accumulation inRhodobacter sphaeroides. By screening anR. sphaeroidesTn5mutant library for insertions that increased fatty acid content, we identified 10 high-lipid (HL) mutants for further characterization. These HL mutants exhibited increased sensitivity to drugs that target the bacterial cell envelope and changes in shape, and some had the ability to secrete lipids, with two HL mutants accumulating ~60% of their totalmore » lipids extracellularly. When one of the highest-lipid-secreting strains was grown in a fed-batch bioreactor, its lipid content was comparable to that of oleaginous microbes, with the majority of the lipids secreted into the medium. Based on the properties of these HL mutants, we conclude that alterations of the cell envelope are a previously unreported approach to increase microbial lipid production. We also propose that this approach may be combined with knowledge about biosynthetic pathways, in this or other microbes, to increase production of lipids and other chemicals. IMPORTANCEThis paper reports on experiments to understand how to increase microbial lipid production. Microbial lipids are often cited as one renewable replacement for petroleum-based fuels and chemicals, but strategies to increase the yield of these compounds are needed to achieve this goal. While lipid biosynthesis is often well understood, increasing yields of these compounds to industrially relevant levels is a challenge, especially since genetic, synthetic biology, or engineering approaches are not feasible in many microbes. We show that altering the bacterial cell envelope can be used to increase microbial lipid production. We also find that the utility of some of these

  19. Mutations That Alter the Bacterial Cell Envelope Increase Lipid Production.

    PubMed

    Lemmer, Kimberly C; Zhang, Weiping; Langer, Samantha J; Dohnalkova, Alice C; Hu, Dehong; Lemke, Rachelle A; Piotrowski, Jeff S; Orr, Galya; Noguera, Daniel R; Donohue, Timothy J

    2017-05-23

    Lipids from microbes offer a promising source of renewable alternatives to petroleum-derived compounds. In particular, oleaginous microbes are of interest because they accumulate a large fraction of their biomass as lipids. In this study, we analyzed genetic changes that alter lipid accumulation in Rhodobacter sphaeroides By screening an R. sphaeroides Tn 5 mutant library for insertions that increased fatty acid content, we identified 10 high-lipid (HL) mutants for further characterization. These HL mutants exhibited increased sensitivity to drugs that target the bacterial cell envelope and changes in shape, and some had the ability to secrete lipids, with two HL mutants accumulating ~60% of their total lipids extracellularly. When one of the highest-lipid-secreting strains was grown in a fed-batch bioreactor, its lipid content was comparable to that of oleaginous microbes, with the majority of the lipids secreted into the medium. Based on the properties of these HL mutants, we conclude that alterations of the cell envelope are a previously unreported approach to increase microbial lipid production. We also propose that this approach may be combined with knowledge about biosynthetic pathways, in this or other microbes, to increase production of lipids and other chemicals. IMPORTANCE This paper reports on experiments to understand how to increase microbial lipid production. Microbial lipids are often cited as one renewable replacement for petroleum-based fuels and chemicals, but strategies to increase the yield of these compounds are needed to achieve this goal. While lipid biosynthesis is often well understood, increasing yields of these compounds to industrially relevant levels is a challenge, especially since genetic, synthetic biology, or engineering approaches are not feasible in many microbes. We show that altering the bacterial cell envelope can be used to increase microbial lipid production. We also find that the utility of some of these alterations can be

  20. Mutations That Alter the Bacterial Cell Envelope Increase Lipid Production

    DOE PAGES

    Lemmer, Kimberly C.; Zhang, Weiping; Langer, Samantha J.; ...

    2017-05-23

    ABSTRACT Lipids from microbes offer a promising source of renewable alternatives to petroleum-derived compounds. In particular, oleaginous microbes are of interest because they accumulate a large fraction of their biomass as lipids. In this study, we analyzed genetic changes that alter lipid accumulation inRhodobacter sphaeroides. By screening anR. sphaeroidesTn5mutant library for insertions that increased fatty acid content, we identified 10 high-lipid (HL) mutants for further characterization. These HL mutants exhibited increased sensitivity to drugs that target the bacterial cell envelope and changes in shape, and some had the ability to secrete lipids, with two HL mutants accumulating ~60% of their totalmore » lipids extracellularly. When one of the highest-lipid-secreting strains was grown in a fed-batch bioreactor, its lipid content was comparable to that of oleaginous microbes, with the majority of the lipids secreted into the medium. Based on the properties of these HL mutants, we conclude that alterations of the cell envelope are a previously unreported approach to increase microbial lipid production. We also propose that this approach may be combined with knowledge about biosynthetic pathways, in this or other microbes, to increase production of lipids and other chemicals. IMPORTANCEThis paper reports on experiments to understand how to increase microbial lipid production. Microbial lipids are often cited as one renewable replacement for petroleum-based fuels and chemicals, but strategies to increase the yield of these compounds are needed to achieve this goal. While lipid biosynthesis is often well understood, increasing yields of these compounds to industrially relevant levels is a challenge, especially since genetic, synthetic biology, or engineering approaches are not feasible in many microbes. We show that altering the bacterial cell envelope can be used to increase microbial lipid production. We also find that the utility of some of these

  1. Effect of light-dark cycles on hydrogen and poly-β-hydroxybutyrate production by a photoheterotrophic culture and Rhodobacter capsulatus using a dark fermentation effluent as substrate.

    PubMed

    Montiel Corona, Virginia; Le Borgne, Sylvie; Revah, Sergio; Morales, Marcia

    2017-02-01

    A Rhodobacter capsulatus strain and a photoheterotrophic culture (IZT) were cultivated to produce hydrogen under different light-dark cycles. A dark fermentation effluent (DFE) was used as substrate. It was found that IZT culture had an average cumulative hydrogen production (Paccum H 2 ) of 1300±43mLH 2 L -1 under continuous illumination and light-dark cycles of 30 or 60min. In contrast, R. capsulatus reduced its Paccum H 2 by 20% under 30:30min light-dark cycles, but tripled its poly-β-hydroxybutyrate (PHB) content (308±2mgPHB gdw -1 ) compared to continuous illumination. The highest PHB content by IZT culture was 178±10mgPHB gdw -1 under 15:15min light-dark cycles. PCR-DGGE analysis revealed that the IZT culture was mainly composed of Rhodopseudomonas palustris identified with high nucleotide similarity (99%). The evaluated cultures might be used for hydrogen and PHB production. They might provide energy savings by using light-dark cycles and DFE valorization. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Nicotinamide nucleotide transhydrogenase from Rhodobacter capsulatus; the H+/H- ratio and the activation state of the enzyme during reduction of acetyl pyridine adenine dinucleotide.

    PubMed

    Palmer, T; Jackson, J B

    1992-02-21

    Chromatophores from Rhodobacter capsulatus were incubated in the dark with NADPH and acetylpyridineadenine dinucleotide (AcPdAD+) in the presence of different concentrations of myxothiazol. The transhydrogenase activity was monitored until an appropriate mass action ratio, [AcPdAD+][NADPH]/[AcPdADH][NADP+], was reached. The sample was then illuminated and the initial rate of either AcPdAD+ reduction by NADPH or AcPdADH oxidation by NADP+ was recorded. The ratio of H+ translocated per H- equivalent transferred by transhydrogenase was calculated from the value of the membrane potential (delta pH = 0) at which illumination caused no net reaction in either direction. The mean value for the H+/H- ratio was 0.55. At greater values of [AcPdAD+][NADPH]/[AcPdADH][NADP+] than were employed in the above experiments and over a wider range of concentrations of myxothiazol, it was found that incremental increases in the membrane potential always gave rise to a decrease, never an increase in the rate of AcPdAD+ reduction. In contrast to the H(+)-ATP synthase, there is no evidence of any activation/deactivation of H(+)-transhydrogenase by the protonmotive force.

  3. Dietary Karaya Saponin and Rhodobacter capsulatus Exert Hypocholesterolemic Effects by Suppression of Hepatic Cholesterol Synthesis and Promotion of Bile Acid Synthesis in Laying Hens.

    PubMed

    Afrose, Sadia; Hossain, Md Sharoare; Salma, Ummay; Miah, Abdul Gaffar; Tsujii, Hirotada

    2010-01-01

    This study was conducted to elucidate the mechanism underlying the hypolipidemic action of karaya saponin or Rhodobacter (R.) capsulatus. A total of 40 laying hens (20-week-old) were assigned into four dietary treatment groups and fed a basal diet (as a control) or basal diets supplemented with either karaya saponin, R. capsulatus, or both for 60 days. The level of serum low-density-lipoprotein cholesterol and the levels of cholesterol and triglycerides in the serum, liver, and egg yolk were reduced by all the supplementations (P < .05). Liver bile acid concentration and fecal concentrations of cholesterol, triacylglycerol, and bile acid were simultaneously increased by the supplementation of karaya saponin, R. capsulatus, and the combination of karaya saponin and R. capsulatus (P < .05). The supplementation of karaya saponin, R. capsulatus, and the combination of karaya saponin and R. capsulatus suppressed the incorporation of (14)C from 1-(14)C-palmitic acid into the fractions of total lipids, phospholipids, triacylglycerol, and cholesterol in the liver in vitro (P < .05). These findings suggest that the hypocholesterolemic effects of karaya saponin and R. capsulatus are caused by the suppression of the cholesterol synthesis and the promotion of cholesterol catabolism in the liver.

  4. Methanotrophic bacteria.

    PubMed Central

    Hanson, R S; Hanson, T E

    1996-01-01

    Methane-utilizing bacteria (methanotrophs) are a diverse group of gram-negative bacteria that are related to other members of the Proteobacteria. These bacteria are classified into three groups based on the pathways used for assimilation of formaldehyde, the major source of cell carbon, and other physiological and morphological features. The type I and type X methanotrophs are found within the gamma subdivision of the Proteobacteria and employ the ribulose monophosphate pathway for formaldehyde assimilation, whereas type II methanotrophs, which employ the serine pathway for formaldehyde assimilation, form a coherent cluster within the beta subdivision of the Proteobacteria. Methanotrophic bacteria are ubiquitous. The growth of type II bacteria appears to be favored in environments that contain relatively high levels of methane, low levels of dissolved oxygen, and limiting concentrations of combined nitrogen and/or copper. Type I methanotrophs appear to be dominant in environments in which methane is limiting and combined nitrogen and copper levels are relatively high. These bacteria serve as biofilters for the oxidation of methane produced in anaerobic environments, and when oxygen is present in soils, atmospheric methane is oxidized. Their activities in nature are greatly influenced by agricultural practices and other human activities. Recent evidence indicates that naturally occurring, uncultured methanotrophs represent new genera. Methanotrophs that are capable of oxidizing methane at atmospheric levels exhibit methane oxidation kinetics different from those of methanotrophs available in pure cultures. A limited number of methanotrophs have the genetic capacity to synthesize a soluble methane monooxygenase which catalyzes the rapid oxidation of environmental pollutants including trichloroethylene. PMID:8801441

  5. [Construction and Characterization of B850-Only LH2 Energy Transfer System in Purple Bacteria].

    PubMed

    Li, Kai; Zhao, Chun-gui; Yue, Hui-ying; Yang, Su-ping; Qu, Yin-bo; Jiao, Nian-zhi

    2015-04-01

    To seek microscopic molecular mechanism of energy transfer and complex reconstitution in the photosynthesis, the conditions for construction of B850-only peripheral light-harvesting complex (LH2) and their properties were investigated using absorption, fluorescence spectroscopy, molecular sieve chromatography, ultrafiltration and sodium dodecylsulfate polyacrylamide gel electrophoresis (SDS-PAGE) from the purple bacteria. The results indicated that bacteriochlorophylls (BChl) of B800 incubated in 10 mmo · L(-1) Tris-HCl (pH 8.0) buffer are selectively released from their binding sites of LH2 of Rhodobacter azotoformans (A-LH2) by 0.08% (W/V) SDS. B850-only A-LH2 was constructed after removing free BChl mixing with 10% methyl alcohol by ultrafiltration. B850 BChl was released after A-LH2 was incubated for 240 min in dark at room temperature (RT). While BChl of B800 incubated in pH 1.9 buffer were selectively released from their binding sites of LH2 of Rhodopseudomonas palustris (P-LH2). The authors acquired two components using molecular sieve chromatography. Free BChl of one component was not removed and self-assembled to P-LH2. The other removed free BChl and B850-only P-LH2 was constructed. B850 unchanged after P-LH2 was incubated. P-LH2 α and β subunits have different molecular weights, but those of A-LH2 are in the contrary. It is concluded that B850-only P-LH2 is more stable than A-LH2. The enigmatic split of the B800 absorption band was not observed in these LH2, but we acquired two kinds of B800-released LH2 from Rhodopseudomonas palustris. The authors' results may provide a new light to separate homogeneous Apoprotein LH2.

  6. Widespread Distribution and Functional Specificity of the Copper Importer CcoA: Distinct Cu Uptake Routes for Bacterial Cytochrome c Oxidases

    DOE PAGES

    Khalfaoui-Hassani, Bahia; Wu, Hongjiang; Blaby-Haas, Crysten E.; ...

    2018-02-27

    ABSTRACT Cytochromecoxidases are members of the heme-copper oxidase superfamily. These enzymes have different subunits, cofactors, and primary electron acceptors, yet they all contain identical heme-copper (Cu B) binuclear centers within their catalytic subunits. The uptake and delivery pathways of the Cu Batom incorporated into this active site, where oxygen is reduced to water, are not well understood. Our previous work with the facultative phototrophic bacteriumRhodobacter capsulatusindicated that the copper atom needed for the Cu Bsite ofcbb 3-type cytochromecoxidase (cbb 3-Cox) is imported to the cytoplasm by a major facilitator superfamily-type transporter, CcoA. In this study, a comparative genomic analysis ofmore » CcoA orthologs in alphaproteobacterial genomes showed that CcoA is widespread among organisms and frequently co-occurs with cytochromecoxidases. To define the specificity of CcoA activity, we investigated its function inRhodobacter sphaeroides, a close relative ofR. capsulatusthat contains bothcbb 3- andaa 3-Cox. Phenotypic, genetic, and biochemical characterization of mutants lacking CcoA showed that in its absence, or even in the presence of its bypass suppressors, only the production ofcbb 3-Cox and not that ofaa 3-Cox was affected. We therefore concluded that CcoA is dedicated solely tocbb 3-Cox biogenesis, establishing that distinct copper uptake systems provide the Cu Batoms to the catalytic sites of these two similar cytochromecoxidases. These findings illustrate the large variety of strategies that organisms employ to ensure homeostasis and fine control of copper trafficking and delivery to the target cuproproteins under different physiological conditions. IMPORTANCEThecbb 3- andaa 3-type cytochromecoxidases belong to the widespread heme-copper oxidase superfamily. They are membrane-integral cuproproteins that catalyze oxygen reduction to water under hypoxic and normoxic growth conditions. These enzymes diverge in terms of subunit and

  7. Widespread Distribution and Functional Specificity of the Copper Importer CcoA: Distinct Cu Uptake Routes for Bacterial Cytochrome c Oxidases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khalfaoui-Hassani, Bahia; Wu, Hongjiang; Blaby-Haas, Crysten E.

    ABSTRACT Cytochromecoxidases are members of the heme-copper oxidase superfamily. These enzymes have different subunits, cofactors, and primary electron acceptors, yet they all contain identical heme-copper (Cu B) binuclear centers within their catalytic subunits. The uptake and delivery pathways of the Cu Batom incorporated into this active site, where oxygen is reduced to water, are not well understood. Our previous work with the facultative phototrophic bacteriumRhodobacter capsulatusindicated that the copper atom needed for the Cu Bsite ofcbb 3-type cytochromecoxidase (cbb 3-Cox) is imported to the cytoplasm by a major facilitator superfamily-type transporter, CcoA. In this study, a comparative genomic analysis ofmore » CcoA orthologs in alphaproteobacterial genomes showed that CcoA is widespread among organisms and frequently co-occurs with cytochromecoxidases. To define the specificity of CcoA activity, we investigated its function inRhodobacter sphaeroides, a close relative ofR. capsulatusthat contains bothcbb 3- andaa 3-Cox. Phenotypic, genetic, and biochemical characterization of mutants lacking CcoA showed that in its absence, or even in the presence of its bypass suppressors, only the production ofcbb 3-Cox and not that ofaa 3-Cox was affected. We therefore concluded that CcoA is dedicated solely tocbb 3-Cox biogenesis, establishing that distinct copper uptake systems provide the Cu Batoms to the catalytic sites of these two similar cytochromecoxidases. These findings illustrate the large variety of strategies that organisms employ to ensure homeostasis and fine control of copper trafficking and delivery to the target cuproproteins under different physiological conditions. IMPORTANCEThecbb 3- andaa 3-type cytochromecoxidases belong to the widespread heme-copper oxidase superfamily. They are membrane-integral cuproproteins that catalyze oxygen reduction to water under hypoxic and normoxic growth conditions. These enzymes diverge in terms of subunit and

  8. Assignment of the sup 1 H and sup 15 N NMR spectra of Rhodobacter capsulatus ferrocytochrome c sub 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gooley, P.R.; Caffrey, M.S.; Cusanovich, M.A.

    1990-03-06

    The peptide resonances of the {sup 1}H and {sup 15}N nuclear magnetic resonance spectra of ferrocytochrome c{sub 2} from Rhodobacter capsulatus are sequentially assigned by a combination of 2D {sup 1}H-{sup 1}H and {sup 1}H-{sup 15}N spectroscopy, the latter performed on {sup 15}N-enriched protein. Short-range nuclear Overhauser effect (NOE) data show {alpha}-helices from residues 3-17, 55-65, 69-88, and 103-115. Within the latter two {alpha}-helices, there are three single 3{sub 10} turns, 70-72, 76-78, and 107-109. In addition {alpha}H-NH{sub i+1} and {alpha}H-NH{sub i+2} NOEs indicate that the N-terminal helix (3-17) is distorted. Compared to horse or tuna cytochrome c and cytochromemore » c{sub 2} of Rhodospirillium rubrum, there is a 6-residue insertion at residues 23-29 in R. capsulatus cytochrome c{sub 2}. The NOE data show that this insertion forms a loop, probably an {Omega} loop. {sup 1}H-{sup 15}N heteronuclear multiple quantum correlation experiments are used to follow NH exchange over a period of 40 h. As the 2D spectra are acquired in short time periods (30 min), rates for intermediate exchanging protons can be measured. Comparison of the NH exchange data for the N-terminal helix of cytochrome c{sub 2} of R. capsulatus with the highly homologous horse heart cytochrome c shows that this helix is less stable in cytochrome c{sub 2}.« less

  9. The reductive half-reaction of xanthine dehydrogenase from Rhodobacter capsulatus: the role of Glu232 in catalysis.

    PubMed

    Hall, James; Reschke, Stefan; Cao, Hongnan; Leimkühler, Silke; Hille, Russ

    2014-11-14

    The kinetic properties of an E232Q variant of the xanthine dehydrogenase from Rhodobacter capsulatus have been examined to ascertain whether Glu(232) in wild-type enzyme is protonated or unprotonated in the course of catalysis at neutral pH. We find that kred, the limiting rate constant for reduction at high [xanthine], is significantly compromised in the variant, a result that is inconsistent with Glu(232) being neutral in the active site of the wild-type enzyme. A comparison of the pH dependence of both kred and kred/Kd from reductive half-reaction experiments between wild-type and enzyme and the E232Q variant suggests that the ionized Glu(232) of wild-type enzyme plays an important role in catalysis by discriminating against the monoanionic form of substrate, effectively increasing the pKa of substrate by two pH units and ensuring that at physiological pH the neutral form of substrate predominates in the Michaelis complex. A kinetic isotope study of the wild-type R. capsulatus enzyme indicates that, as previously determined for the bovine and chicken enzymes, product release is principally rate-limiting in catalysis. The disparity in rate constants for the chemical step of the reaction and product release, however, is not as great in the bacterial enzyme as compared with the vertebrate forms. The results indicate that the bacterial and bovine enzymes catalyze the chemical step of the reaction to the same degree and that the faster turnover observed with the bacterial enzyme is due to a faster rate constant for product release than is seen with the vertebrate enzyme. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  10. Back To Bacteria.

    ERIC Educational Resources Information Center

    Flannery, Maura C.

    1997-01-01

    Explores new research about bacteria. Discusses bacterial genomes, archaea, unusual environments, evolution, pathogens, bacterial movement, biofilms, bacteria in the body, and a bacterial obsession. Contains 29 references. (JRH)

  11. Inactivation of biofilm bacteria.

    PubMed Central

    LeChevallier, M W; Cawthon, C D; Lee, R G

    1988-01-01

    The current project was developed to examine inactivation of biofilm bacteria and to characterize the interaction of biocides with pipe surfaces. Unattached bacteria were quite susceptible to the variety of disinfectants tested. Viable bacterial counts were reduced 99% by exposure to 0.08 mg of hypochlorous acid (pH 7.0) per liter (1 to 2 degrees C) for 1 min. For monochloramine, 94 mg/liter was required to kill 99% of the bacteria within 1 min. These results were consistent with those found by other investigators. Biofilm bacteria grown on the surfaces of granular activated carbon particles, metal coupons, or glass microscope slides were 150 to more than 3,000 times more resistant to hypochlorous acid (free chlorine, pH 7.0) than were unattached cells. In contrast, resistance of biofilm bacteria to monochloramine disinfection ranged from 2- to 100-fold more than that of unattached cells. The results suggested that, relative to inactivation of unattached bacteria, monochloramine was better able to penetrate and kill biofilm bacteria than free chlorine. For free chlorine, the data indicated that transport of the disinfectant into the biofilm was a major rate-limiting factor. Because of this phenomenon, increasing the level of free chlorine did not increase disinfection efficiency. Experiments where equal weights of disinfectants were used suggested that the greater penetrating power of monochloramine compensated for its limited disinfection activity. These studies showed that monochloramine was as effective as free chlorine for inactivation of biofilm bacteria. The research provides important insights into strategies for control of biofilm bacteria. Images PMID:2849380

  12. [Immobilization of introduced bacteria and degradation of pyrene and benzo(alpha) pyrene in soil by immobilized bacteria].

    PubMed

    Wang, Xin; Li, Peijun; Song, Shouzhi; Zhong, Yong; Zhang, Hui; Verkhozina, E V

    2006-11-01

    In this study, introduced bacteria were applied in the bioremediation of pyrene and benzo (alpha) pyrene in organic pollutants-contaminated soils, aimed to test whether it was feasible to introduce bacteria to environmental engineering. Three introduced bacteria were immobilized separately or together to degrade the pyrene and benzo (alpha) pyrene in soil, taking dissociated bacteria as the control, and comparing with three indigenous bacteria. The results showed that immobilized introduced bacteria, either single or mixed, had higher degradation efficiency than dissociated bacteria. Compared with indigenous bacteria, some introduced bacteria had predominance to some degree. The introduced bacteria-mixture had better degradation efficiency after being immobilized. The degradation rate of pyrene and benzo(alpha) pyrene after treated with immobilized bacteria-( B61-B67)-mixture for 96 hours was 43.49% and 38.55%, respectively.

  13. The fecal bacteria

    USGS Publications Warehouse

    Sadowsky, Michael J.; Whitman, Richard L.

    2011-01-01

    The Fecal Bacteria offers a balanced, integrated discussion of fecal bacteria and their presence and ecology in the intestinal tract of mammals, in the environment, and in the food supply. This volume covers their use in examining and assessing water quality in order to offer protection from illnesses related to swimming in or ingesting contaminated water, in addition to discussing their use in engineering considerations of water quality, modeling, monitoring, and regulations. Fecal bacteria are additionally used as indicators of contamination of ready-to-eat foods and fresh produce. The intestinal environment, the microbial community structure of the gut microbiota, and the physiology and genomics of this broad group of microorganisms are explored in the book. With contributions from an internationally recognized group of experts, the book integrates medicine, public health, environmental, and microbiological topics in order to provide a unique, holistic understanding of fecal bacteria. Moreover, it shows how the latest basic science and applied research findings are helping to solve problems and develop effective management strategies. For example, readers will discover how the latest tools and molecular approaches have led to our current understanding of fecal bacteria and enabled us to improve human health and water quality. The Fecal Bacteria is recommended for microbiologists, clinicians, animal scientists, engineers, environmental scientists, food safety experts, water quality managers, and students. It will help them better understand fecal bacteria and use their knowledge to protect human and environmental health. They can also apply many of the techniques and molecular tools discussed in this book to the study of a broad range of microorganisms in a variety of habitats.

  14. Photobiological hydrogen production and carbon dioxide sequestration

    NASA Astrophysics Data System (ADS)

    Berberoglu, Halil

    Photobiological hydrogen production is an alternative to thermochemical and electrolytic technologies with the advantage of carbon dioxide sequestration. However, it suffers from low solar to hydrogen energy conversion efficiency due to limited light transfer, mass transfer, and nutrient medium composition. The present study aims at addressing these limitations and can be divided in three parts: (1) experimental measurements of the radiation characteristics of hydrogen producing and carbon dioxide consuming microorganisms, (2) solar radiation transfer modeling and simulation in photobioreactors, and (3) parametric experiments of photobiological hydrogen production and carbon dioxide sequestration. First, solar radiation transfer in photobioreactors containing microorganisms and bubbles was modeled using the radiative transport equation (RTE) and solved using the modified method of characteristics. The study concluded that Beer-Lambert's law gives inaccurate results and anisotropic scattering must be accounted for to predict the local irradiance inside a photobioreactor. The need for accurate measurement of the complete set of radiation characteristics of microorganisms was established. Then, experimental setup and analysis methods for measuring the complete set of radiation characteristics of microorganisms have been developed and successfully validated experimentally. A database of the radiation characteristics of representative microorganisms have been created including the cyanobacteria Anabaena variabilis, the purple non-sulfur bacteria Rhodobacter sphaeroides and the green algae Chlamydomonas reinhardtii along with its three genetically engineered strains. This enabled, for the first time, quantitative assessment of the effect of genetic engineering on the radiation characteristics of microorganisms. In addition, a parametric experimental study has been performed to model the growth, CO2 consumption, and H 2 production of Anabaena variabilis as functions of

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Breton, J.; Berger, G.; Nabedryk, E.

    The photoreduction of the secondary quinone acceptor Q{sub B} in reaction centers (RCs) of the photosynthetic bacteria Rhodobacter sphaeroides and Rhodopseudomonas viridis has been investigated by light-induced FTIR difference spectroscopy of RCs reconstituted with several isotopically labeled ubiquinones. The labels used were {sup 18}O on both carbonyls and {sup 13}C either uniformly or selectively at the 1- or the 4-position, i.e., on either one of the two carbonyls. The Q{sub B}{sup {minus}}/Q{sub B} spectra of RCs reconstituted with the isotopically labeled and unlabeled quinones as well as the double differences calculated form these spectra exhibit distinct isotopic shifts for amore » numer of bands attributed to vibrations of Q{sub B} and Q{sub B}{sup {minus}}. The vibrational modes of the quinone in the Q{sub B} site are compared to those of ubiquinone in vitro, leading to band assignments for the C{double_bond}O and C{double_bond}C vibrations of the neutral Q{sub B} and for the C---O and C---C of the semiquinone. The C{double_bond}O frequency of each of the carbonyls of the unlabeled quinone is revealed at 1641 cm{sup {minus}1} for both species. This demonstrates symmetrical and weak hydrogen bonding of the two C{double_bond}O groups to the protein at the Q{sub B} site. In contrast, the C{double_bond}C vibrations are not equivalent for selective labeling at C{sub 1} or at C{sub 4}, although they both contribute to the {approximately}1611-cm{sup {minus}1} band in the Q{sub B}{sup {minus}}/Q{sub B} spectra of the two species. Compared to the vibrations of isolated ubiquinone, the C{double_bond}C mode of Q{sub B} does not involve displacement of the C{sub 4} carbon atom, while the motion of C{sub 1} is not hindered. Further analysis of the spectra suggests that the protein at the binding site imposes a specific constraint on the methoxy and/or the methyl group proximal to the C{sub 4} carbonyl. 49 refs., 5 figs.« less

  16. Dietary Karaya Saponin and Rhodobacter capsulatus Exert Hypocholesterolemic Effects by Suppression of Hepatic Cholesterol Synthesis and Promotion of Bile Acid Synthesis in Laying Hens

    PubMed Central

    Afrose, Sadia; Hossain, Md. Sharoare; Salma, Ummay; Miah, Abdul Gaffar; Tsujii, Hirotada

    2010-01-01

    This study was conducted to elucidate the mechanism underlying the hypolipidemic action of karaya saponin or Rhodobacter (R.) capsulatus. A total of 40 laying hens (20-week-old) were assigned into four dietary treatment groups and fed a basal diet (as a control) or basal diets supplemented with either karaya saponin, R. capsulatus, or both for 60 days. The level of serum low-density-lipoprotein cholesterol and the levels of cholesterol and triglycerides in the serum, liver, and egg yolk were reduced by all the supplementations (P < .05). Liver bile acid concentration and fecal concentrations of cholesterol, triacylglycerol, and bile acid were simultaneously increased by the supplementation of karaya saponin, R. capsulatus, and the combination of karaya saponin and R. capsulatus (P < .05). The supplementation of karaya saponin, R. capsulatus, and the combination of karaya saponin and R. capsulatus suppressed the incorporation of 14C from 1-14C-palmitic acid into the fractions of total lipids, phospholipids, triacylglycerol, and cholesterol in the liver in vitro (P < .05). These findings suggest that the hypocholesterolemic effects of karaya saponin and R. capsulatus are caused by the suppression of the cholesterol synthesis and the promotion of cholesterol catabolism in the liver. PMID:21490913

  17. Photocurrent generation by direct electron transfer using photosynthetic reaction centres

    NASA Astrophysics Data System (ADS)

    Mahmoudzadeh, A.; Saer, R.; Jun, D.; Mirvakili, S. M.; Takshi, A.; Iranpour, B.; Ouellet, E.; Lagally, E. T.; Madden, J. D. W.; Beatty, J. T.

    2011-09-01

    Photosynthetic reaction centres (RCs) convert light into separated charges with nearly perfect quantum efficiency, and have been used to generate photocurrent. Previous work has shown that electron tunnelling rates between redox centres in proteins depend exponentially on the tunnelling distance. In this work the RC from Rhodobacter sphaeroides was genetically modified with the aim of achieving the shortest tunnelling distances yet demonstrated between the RC's electron-accepting P site and underlying graphite and gold electrodes, and between the electron donor Q site and graphite electrodes. Opposite charges are carried to counter electrodes using mobile mediators, as in dye-sensitised solar cells. Native RCs are bound to graphite surfaces through N-(1-pyrene)iodoacetamide. Although the linker's length is only 4 Å, the electron transfer pathway between the Q electron donor site on the RC and the electrode surface is still too large for current to be significant. A mutant version with the electron acceptor P side close to the graphite surface produced currents of 15 nA cm-2 upon illumination. Direct binding of RCs to a gold surface is shown, resulting in currents of 5 nA cm-2. In both cases the current was unaffected by mediator concentration but increased with illumination, suggesting that direct electron transfer was achieved. The engineering of an RC to achieve direct electron transfer will help with long term efforts to demonstrate RC-based photovoltaic devices.

  18. Global Analysis of Photosynthesis Transcriptional Regulatory Networks

    PubMed Central

    Imam, Saheed; Noguera, Daniel R.; Donohue, Timothy J.

    2014-01-01

    Photosynthesis is a crucial biological process that depends on the interplay of many components. This work analyzed the gene targets for 4 transcription factors: FnrL, PrrA, CrpK and MppG (RSP_2888), which are known or predicted to control photosynthesis in Rhodobacter sphaeroides. Chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-seq) identified 52 operons under direct control of FnrL, illustrating its regulatory role in photosynthesis, iron homeostasis, nitrogen metabolism and regulation of sRNA synthesis. Using global gene expression analysis combined with ChIP-seq, we mapped the regulons of PrrA, CrpK and MppG. PrrA regulates ∼34 operons encoding mainly photosynthesis and electron transport functions, while CrpK, a previously uncharacterized Crp-family protein, regulates genes involved in photosynthesis and maintenance of iron homeostasis. Furthermore, CrpK and FnrL share similar DNA binding determinants, possibly explaining our observation of the ability of CrpK to partially compensate for the growth defects of a ΔFnrL mutant. We show that the Rrf2 family protein, MppG, plays an important role in photopigment biosynthesis, as part of an incoherent feed-forward loop with PrrA. Our results reveal a previously unrealized, high degree of combinatorial regulation of photosynthetic genes and significant cross-talk between their transcriptional regulators, while illustrating previously unidentified links between photosynthesis and the maintenance of iron homeostasis. PMID:25503406

  19. Fine tuning of the spectral properties of LH2 by single amino acid residues.

    PubMed

    Silber, Martina V; Gabriel, Günther; Strohmann, Brigitte; Garcia-Martin, Adela; Robert, Bruno; Braun, Paula

    2008-05-01

    The peripheral light-harvesting complex, LH2, of Rhodobacter sphaeroides consists of an assembly of membrane-spanning alpha and beta polypeptides which assemble the photoactive bacteriochlorophyll and carotenoid molecules. In this study we systematically investigated bacteriochlorophyll-protein interactions and their effect on functional bacteriochlorophyll assembly by site-directed mutations of the LH2 alpha-subunit. The amino acid residues, isoleucine at position -1 and serine at position -4 were replaced by 12 and 13 other residues, respectively. All residues replacing isoleucine at position -1 supported the functional assembly of LH2. The replacement of isoleucine by glycine, glutamine or asparagine, however, produced LH2 complex with significantly altered spectral properties in comparison to LH2 WT. As indicated by resonance Raman spectroscopy extensive rearrangement of the bacteriochlorophyll-B850 macrocycle(s) took place in LH2 in which isoleucine -1 was replaced by glycine. The replacement results in disruption of the H-bond between the C3 acetyl groups and the aromatic residues +13/+14 without affecting the H-bond involving the C13(1) keto group. In contrast, nearly all amino acid replacements of serine at position -4 resulted in shifting of the bacteriochlorophyll-B850 red most absorption maximum. Interestingly, the extent of shifting closely correlated with the volume of the residue at position -4. These results illustrate that fine tuning of the spectral properties of the bacteriochlorophyll-B850 molecules depend on their packing with single amino acid residues at distinct positions.

  20. Communication: Broad manifold of excitonic states in light-harvesting complex 1 promotes efficient unidirectional energy transfer in vivo

    NASA Astrophysics Data System (ADS)

    Sohail, Sara H.; Dahlberg, Peter D.; Allodi, Marco A.; Massey, Sara C.; Ting, Po-Chieh; Martin, Elizabeth C.; Hunter, C. Neil; Engel, Gregory S.

    2017-10-01

    In photosynthetic organisms, the pigment-protein complexes that comprise the light-harvesting antenna exhibit complex electronic structures and ultrafast dynamics due to the coupling among the chromophores. Here, we present absorptive two-dimensional (2D) electronic spectra from living cultures of the purple bacterium, Rhodobacter sphaeroides, acquired using gradient assisted photon echo spectroscopy. Diagonal slices through the 2D lineshape of the LH1 stimulated emission/ground state bleach feature reveal a resolvable higher energy population within the B875 manifold. The waiting time evolution of diagonal, horizontal, and vertical slices through the 2D lineshape shows a sub-100 fs intra-complex relaxation as this higher energy population red shifts. The absorption (855 nm) of this higher lying sub-population of B875 before it has red shifted optimizes spectral overlap between the LH1 B875 band and the B850 band of LH2. Access to an energetically broad distribution of excitonic states within B875 offers a mechanism for efficient energy transfer from LH2 to LH1 during photosynthesis while limiting back transfer. Two-dimensional lineshapes reveal a rapid decay in the ground-state bleach/stimulated emission of B875. This signal, identified as a decrease in the dipole strength of a strong transition in LH1 on the red side of the B875 band, is assigned to the rapid localization of an initially delocalized exciton state, a dephasing process that frustrates back transfer from LH1 to LH2.

  1. Identification of protein W, the elusive sixth subunit of the Rhodopseudomonas palustris reaction center-light harvesting 1 core complex.

    PubMed

    Jackson, Philip J; Hitchcock, Andrew; Swainsbury, David J K; Qian, Pu; Martin, Elizabeth C; Farmer, David A; Dickman, Mark J; Canniffe, Daniel P; Hunter, C Neil

    2018-02-01

    The X-ray crystal structure of the Rhodopseudomonas (Rps.) palustris reaction center-light harvesting 1 (RC-LH1) core complex revealed the presence of a sixth protein component, variably referred to in the literature as helix W, subunit W or protein W. The position of this protein prevents closure of the LH1 ring, possibly to allow diffusion of ubiquinone/ubiquinol between the RC and the cytochrome bc 1 complex in analogous fashion to the well-studied PufX protein from Rhodobacter sphaeroides. The identity and function of helix W have remained unknown for over 13years; here we use a combination of biochemistry, mass spectrometry, molecular genetics and electron microscopy to identify this protein as RPA4402 in Rps. palustris CGA009. Protein W shares key conserved sequence features with PufX homologs, and although a deletion mutant was able to grow under photosynthetic conditions with no discernible phenotype, we show that a tagged version of protein W pulls down the RC-LH1 complex. Protein W is not encoded in the photosynthesis gene cluster and our data indicate that only approximately 10% of wild-type Rps. palustris core complexes contain this non-essential subunit; functional and evolutionary consequences of this observation are discussed. The ability to purify uniform RC-LH1 and RC-LH1-protein W preparations will also be beneficial for future structural studies of these bacterial core complexes. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  2. Sequence Analysis of the Cryptic Plasmid pMG101 from Rhodopseudomonas palustris and Construction of Stable Cloning Vectors

    PubMed Central

    Inui, Masayuki; Roh, Jung Hyeob; Zahn, Kenneth; Yukawa, Hideaki

    2000-01-01

    A 15-kb cryptic plasmid was obtained from a natural isolate of Rhodopseudomonas palustris. The plasmid, designated pMG101, was able to replicate in R. palustris and in closely related strains of Bradyrhizobium japonicum and phototrophic Bradyrhizobium species. However, it was unable to replicate in the purple nonsulfur bacterium Rhodobacter sphaeroides and in Rhizobium species. The replication region of pMG101 was localized to a 3.0-kb SalI-XhoI fragment, and this fragment was stably maintained in R. palustris for over 100 generations in the absence of selection. The complete nucleotide sequence of this fragment revealed two open reading frames (ORFs), ORF1 and ORF2. The deduced amino acid sequence of ORF1 is similar to sequences of Par proteins, which mediate plasmid stability from certain plasmids, while ORF2 was identified as a putative rep gene, coding for an initiator of plasmid replication, based on homology with the Rep proteins of several other plasmids. The function of these sequences was studied by deletion mapping and gene disruptions of ORF1 and ORF2. pMG101-based Escherichia coli-R. palustris shuttle cloning vectors pMG103 and pMG105 were constructed and were stably maintained in R. palustris growing under nonselective conditions. The ability of plasmid pMG101 to replicate in R. palustris and its close phylogenetic relatives should enable broad application of these vectors within this group of α-proteobacteria. PMID:10618203

  3. Metabolic engineering of the Stevia rebaudiana ent-kaurene biosynthetic pathway in recombinant Escherichia coli.

    PubMed

    Kong, Min Kyung; Kang, Hyun-Jun; Kim, Jin Ho; Oh, Soon Hwan; Lee, Pyung Cheon

    2015-11-20

    The ent-kaurene is a dedicated precursor pool and is responsible for synthesizing natural sweeteners such as steviol glycosides. In this study, to produce ent-kaurene in Escherichia coli, we modularly constructed and expressed two ent-kaurene genes encoding ent-copalyl diphosphate synthase (CPPS) and ent-kaurene synthase (KS) from Stevia rebaudiana known as a typical plant producing steviol glycoside. The CPPS and KS from S. rebaudiana were functionally expressed in a heterologous host E. coli. Furthermore, in order to enhance ent-kaurene production in E. coli, six geranylgeranyl diphosphate synthases (GGPPS) from various microorganisms and eight strains of E. coli as host were compared by measuring ent-kaurene production. The highest ent-kaurene production of approximately 41.1mg/L was demonstrated in E. coli strain MG1655 co-expressing synthetic CPPS-KS module and GGPPS from Rhodobacter sphaeroides. The ent-kaurene production was further increased up to 179.6 mg/L by overexpression of the three key enzymes for isoprenoid precursor, 1-deoxyxylulose-5-phosphate synthase (DXS), farnesyl diphosphate synthase (IspA) and isopentenyl diphosphate isomerase (IDI) from E. coli. Finally, the highest titer of ent-kaurene (578 mg/L) with a specific yield of ent-kaurene of 143.5mg/g dry cell weight was obtained by culturing E. coli strain MG1655 co-expressing the ent-kaurene module, DXS, IDI and IspA in 1L bioreactor containing 20 g/L glycerol. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. A new inhibitor of the CoQ-dependent redox reactions in mitochondria and chromatophores.

    PubMed

    Kolesova, G M; Belyakova, M M; Mamedov, M D; Yaguzhinsky, L S

    2000-05-01

    The effects of 3,4-dimethoxyphenyl-1-amylketone (DPK) on the CoQ-dependent stages of the electron transport systems in mitochondria and Rhodobacter sphaeroides chromatophores were studied. The two systems contain the complete Q-cycle. The sensitivities of the Q-cycles of two electron transport systems to antimycin, myxothiazole, and other inhibitors are virtually indistinguishable from one another, but these systems have different CoQ reduction processes. The dependence of the inhibition extent of the mitochondrial succinate oxidase on the DPK concentration was studied. The effective concentration of DPK is 0.5-2.5 mM. The presence of the point of inflection in the titration curve indicates that there are two mechanisms of inhibition. The effects of DPK on the extent of reduction of cytochromes b and c1 + c in mitochondria as well as on the electrogenic stages of the Q-cycle in chromatophores were examined. The experiments showed that DPK prevents three CoQ-dependent reactions related to the Q-cycle: electron transport between succinate dehydrogenase and the Q-cycle in mitochondria and functioning of the Z (o) and C (i) sites of the Q-cycle in chromatophores. DPK does not affect the electrogenic reaction associated with protonation of the secondary quinone acceptor QB in the reaction center of chromatophores. The mitochondrial NADH-dehydrogenase is inhibited by DPK at lower but comparable concentrations (C50 = 0.2 mM).

  5. Global analysis of photosynthesis transcriptional regulatory networks.

    PubMed

    Imam, Saheed; Noguera, Daniel R; Donohue, Timothy J

    2014-12-01

    Photosynthesis is a crucial biological process that depends on the interplay of many components. This work analyzed the gene targets for 4 transcription factors: FnrL, PrrA, CrpK and MppG (RSP_2888), which are known or predicted to control photosynthesis in Rhodobacter sphaeroides. Chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-seq) identified 52 operons under direct control of FnrL, illustrating its regulatory role in photosynthesis, iron homeostasis, nitrogen metabolism and regulation of sRNA synthesis. Using global gene expression analysis combined with ChIP-seq, we mapped the regulons of PrrA, CrpK and MppG. PrrA regulates ∼34 operons encoding mainly photosynthesis and electron transport functions, while CrpK, a previously uncharacterized Crp-family protein, regulates genes involved in photosynthesis and maintenance of iron homeostasis. Furthermore, CrpK and FnrL share similar DNA binding determinants, possibly explaining our observation of the ability of CrpK to partially compensate for the growth defects of a ΔFnrL mutant. We show that the Rrf2 family protein, MppG, plays an important role in photopigment biosynthesis, as part of an incoherent feed-forward loop with PrrA. Our results reveal a previously unrealized, high degree of combinatorial regulation of photosynthetic genes and significant cross-talk between their transcriptional regulators, while illustrating previously unidentified links between photosynthesis and the maintenance of iron homeostasis.

  6. Characterizing the proton loading site in cytochrome c oxidase.

    PubMed

    Lu, Jianxun; Gunner, M R

    2014-08-26

    Cytochrome c oxidase (CcO) uses the energy released by reduction of O2 to H2O to drive eight charges from the high pH to low pH side of the membrane, increasing the electrochemical gradient. Four electrons and protons are used for chemistry, while four more protons are pumped. Proton pumping requires that residues on a pathway change proton affinity through the reaction cycle to load and then release protons. The protonation states of all residues in CcO are determined in MultiConformational Continuum Electrostatics simulations with the protonation and redox states of heme a, a3, Cu(B), Y288, and E286 used to define the catalytic cycle. One proton is found to be loaded and released from residues identified as the proton loading site (PLS) on the P-side of the protein in each of the four CcO redox states. Thus, the same proton pumping mechanism can be used each time CcO is reduced. Calculations with structures of Rhodobacter sphaeroides, Paracoccus denitrificans, and bovine CcO derived by crystallography and molecular dynamics show the PLS functions similarly in different CcO species. The PLS is a cluster rather than a single residue, as different structures show 1-4 residues load and release protons. However, the proton affinity of the heme a3 propionic acids primarily determines the number of protons loaded into the PLS; if their proton affinity is too low, less than one proton is loaded.

  7. [Darwin and bacteria].

    PubMed

    Ledermann D, Walter

    2009-02-01

    As in 2009 the scientific world celebrates two hundreds years from the birthday of Charles Darwin and one hundred and fifty from the publication of The Origin of Species, an analysis of his complete work is performed, looking for any mention of bacteria. But it seems that the great naturahst never took knowledge about its existence, something rather improbable in a time when the discovery of bacteria shook the medical world, or he deliberately ignored them, not finding a place for such microscopic beings into his theory of evolution. But the bacteria badly affected his familiar life, killing scarlet fever one of his children and worsening to death the evolution of tuberculosis of his favourite Annie. Darwin himself could suffer the sickness of Chagas, whose etiological agent has a similar level to bacteria in the scale of evolution.

  8. Bleach vs. Bacteria

    MedlinePlus

    ... Inside Life Science > Bleach vs. Bacteria Inside Life Science View All Articles | Inside Life Science Home Page Bleach vs. Bacteria By Sharon Reynolds ... For Proteins, Form Shapes Function This Inside Life Science article also appears on LiveScience . Learn about related ...

  9. Living bacteria in silica gels

    NASA Astrophysics Data System (ADS)

    Nassif, Nadine; Bouvet, Odile; Noelle Rager, Marie; Roux, Cécile; Coradin, Thibaud; Livage, Jacques

    2002-09-01

    The encapsulation of enzymes within silica gels has been extensively studied during the past decade for the design of biosensors and bioreactors. Yeast spores and bacteria have also been recently immobilized within silica gels where they retain their enzymatic activity, but the problem of the long-term viability of whole cells in an inorganic matrix has never been fully addressed. It is a real challenge for the development of sol-gel processes. Generic tests have been performed to check the viability of Escherichia coli bacteria in silica gels. Surprisingly, more bacteria remain culturable in the gel than in an aqueous suspension. The metabolic activity of the bacteria towards glycolysis decreases slowly, but half of the bacteria are still viable after one month. When confined within a mineral environment, bacteria do not form colonies. The exchange of chemical signals between isolated bacteria rather than aggregates can then be studied, a point that could be very important for 'quorum sensing'.

  10. Lipopolysaccharides in diazotrophic bacteria.

    PubMed

    Serrato, Rodrigo V

    2014-01-01

    Biological nitrogen fixation (BNF) is a process in which the atmospheric nitrogen (N2) is transformed into ammonia (NH3) by a select group of nitrogen-fixing organisms, or diazotrophic bacteria. In order to furnish the biologically useful nitrogen to plants, these bacteria must be in constant molecular communication with their host plants. Some of these molecular plant-microbe interactions are very specific, resulting in a symbiotic relationship between the diazotroph and the host. Others are found between associative diazotrophs and plants, resulting in plant infection and colonization of internal tissues. Independent of the type of ecological interaction, glycans, and glycoconjugates produced by these bacteria play an important role in the molecular communication prior and during colonization. Even though exopolysaccharides (EPS) and lipochitooligosaccharides (LCO) produced by diazotrophic bacteria and released onto the environment have their importance in the microbe-plant interaction, it is the lipopolysaccharides (LPS), anchored on the external membrane of these bacteria, that mediates the direct contact of the diazotroph with the host cells. These molecules are extremely variable among the several species of nitrogen fixing-bacteria, and there are evidences of the mechanisms of infection being closely related to their structure.

  11. Lipopolysaccharides in diazotrophic bacteria

    PubMed Central

    Serrato, Rodrigo V.

    2014-01-01

    Biological nitrogen fixation (BNF) is a process in which the atmospheric nitrogen (N2) is transformed into ammonia (NH3) by a select group of nitrogen-fixing organisms, or diazotrophic bacteria. In order to furnish the biologically useful nitrogen to plants, these bacteria must be in constant molecular communication with their host plants. Some of these molecular plant-microbe interactions are very specific, resulting in a symbiotic relationship between the diazotroph and the host. Others are found between associative diazotrophs and plants, resulting in plant infection and colonization of internal tissues. Independent of the type of ecological interaction, glycans, and glycoconjugates produced by these bacteria play an important role in the molecular communication prior and during colonization. Even though exopolysaccharides (EPS) and lipochitooligosaccharides (LCO) produced by diazotrophic bacteria and released onto the environment have their importance in the microbe-plant interaction, it is the lipopolysaccharides (LPS), anchored on the external membrane of these bacteria, that mediates the direct contact of the diazotroph with the host cells. These molecules are extremely variable among the several species of nitrogen fixing-bacteria, and there are evidences of the mechanisms of infection being closely related to their structure. PMID:25232535

  12. Identification of Bacteria Potentially Responsible for Oxic and Anoxic Sulfide Oxidation in Biofilters of a Recirculating Mariculture System

    PubMed Central

    Cytryn, Eddie; van Rijn, Jaap; Schramm, Andreas; Gieseke, Armin; de Beer, Dirk; Minz, Dror

    2005-01-01

    Bacteria presumably involved in oxygen- or nitrate-dependent sulfide oxidation in the biofilters of a recirculating marine aquaculture system were identified using a new application of reverse transcription-PCR denaturing gradient gel electrophoresis (DGGE) analysis termed differential-transcription (DT)-DGGE. Biofilter samples were incubated in various concentrations of sulfide or thiosulfate (0 to 5 mM) with either oxygen or nitrate as the sole electron acceptor. Before and after short-term incubations (10 to 20 h), total DNA and RNA were extracted, and a 550-bp fragment of the 16S rRNA genes was PCR amplified either directly or after reverse transcription. DGGE analysis of DNA showed no significant change of the original microbial consortia upon incubation. In contrast, DGGE of cDNA revealed several phylotypes whose relative band intensities markedly increased or decreased in response to certain incubation conditions, indicating enhanced or suppressed rRNA transcription and thus implying metabolic activity under these conditions. Specifically, species of the gammaproteobacterial genus Thiomicrospira and phylotypes related to symbiotic sulfide oxidizers could be linked to oxygen-dependent sulfide oxidation, while members of the Rhodobacteraceae (genera Roseobacter, Rhodobacter, and Rhodobium) were putatively active in anoxic, nitrate-dependent sulfide oxidation. For all these organisms, the physiology of their closest cultured relatives matches their DT-DGGE-inferred function. In addition, higher band intensities following exposure to 5 mM sulfide and nitrate were observed for Thauera-, Hydrogenophaga-, and Dethiosulfovibrio-like phylotypes. For these genera, nitrate-dependent sulfide oxidation has not been documented previously and therefore DT-DGGE might indicate a higher relative tolerance to high sulfide concentrations than that of other community members. We anticipate that DT-DGGE will be of general use in tracing functionally equivalent yet

  13. Synergistic dark and photo-fermentation continuous system for hydrogen production from molasses by Clostridium acetobutylicum ATCC 824 and Rhodobacter capsulatus DSM 1710.

    PubMed

    Morsy, Fatthy Mohamed

    2017-04-01

    This study investigated synergistic dark and photo-fermentation using continuous fermentation system (CFS). The system relies on connecting several fermenters from bottom of one to top culture level of the next in a manner that allows for delaying movement of the substrate and thus for its full consumption. While H 2 was collected, CFS allowed for moving liquid byproducts toward the outlet and hence continuous productivity. CFS could be efficiently used for: (1) Continuous dark and photo-fermentation H 2 production by Clostridium acetobutylicum and Rhodobacter capsulatus producing 5.65moleH 2 mole -1 hexose; (2) Continuous dark-fermentation synergistic H 2 , acetone, butanol and ethanol (ABE) production by C. acetobutylicum which produced per mole hexose, 2.43mol H 2 along with 73.08g ABE (3) Continuous H 2 and methane production by C. acetobutylicum and bacterial sludge producing, per mole hexose, 1.64mol pure H 2 and 2.56mol CH 4 mixed with 0.37mol H 2 ·The hydraulic retention time (HRT) for whole system was short where organic acids produced in dark-fermentation in first fermenter were synergistically utilized for H 2 production by R. capsulatus in subsequent fermenters. CFS is suitable for fast-digestible sugars but not lignocelluloses or other hard-digestible organics, requiring prolonged HRT, unless such polymeric organics were hydrolyzed prior to fermentation. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Microbial diversity in Los Azufres geothermal field (Michoacán, Mexico) and isolation of representative sulfate and sulfur reducers.

    PubMed

    Brito, Elcia M S; Villegas-Negrete, Norberto; Sotelo-González, Irene A; Caretta, César A; Goñi-Urriza, Marisol; Gassie, Claire; Hakil, Florence; Colin, Yannick; Duran, Robert; Gutiérrez-Corona, Felix; Piñón-Castillo, Hilda A; Cuevas-Rodríguez, Germán; Malm, Olaf; Torres, João P M; Fahy, Anne; Reyna-López, Georgina E; Guyoneaud, Rémy

    2014-03-01

    Los Azufres spa consists of a hydrothermal spring system in the Mexican Volcanic Axis. Five samples (two microbial mats, two mud pools and one cenote water), characterized by high acidity (pH between 1 and 3) and temperatures varying from 27 to 87 °C, were investigated for their microbial diversity by Terminal-Restriction Fragment Length Polymorphism (T-RFLP) and 16S rRNA gene library analyses. These data are the first to describe microbial diversity from Los Azufres geothermal belt. The data obtained from both approaches suggested a low bacterial diversity in all five samples. Despite their proximity, the sampling points differed by their physico-chemical conditions (mainly temperature and matrix type) and thus exhibited different dominant bacterial populations: anoxygenic phototrophs related to the genus Rhodobacter in the biomats, colorless sulfur oxidizers Acidithiobacillus sp. in the warm mud and water samples, and Lyzobacter sp.-related populations in the hot mud sample (87 °C). Molecular data also allowed the detection of sulfate and sulfur reducers related to Thermodesulfobium and Desulfurella genera. Several strains affiliated to both genera were enriched or isolated from the mesophilic mud sample. A feature common to all samples was the dominance of bacteria involved in sulfur and iron biogeochemical cycles (Rhodobacter, Acidithiobacillus, Thiomonas, Desulfurella and Thermodesulfobium genera).

  15. The Interaction between Heterotrophic Bacteria and Coliform, Fecal Coliform, Fecal Streptococci Bacteria in the Water Supply Networks.

    PubMed

    Amanidaz, Nazak; Zafarzadeh, Ali; Mahvi, Amir Hossein

    2015-12-01

    This study investigated the interaction between heterotrophic bacteria and coliform, fecal coliforms, fecal streptococci bacteria in water supply networks. This study was conducted during 2013 on water supply distribution network in Aq Qala City, Golestan Province, Northern Iran and standard methods were applied for microbiological analysis. The surface method was applied to test the heterotrophic bacteria and MPN method was used for coliform, fecal coliform and fecal streptococci bacteria measurements. In 114 samples, heterotrophic bacteria count were over 500 CFU/ml, which the amount of fecal coliform, coliform, and fecal streptococci were 8, 32, and 20 CFU/100 ml, respectively. However, in the other 242 samples, with heterotrophic bacteria count being less than 500 CFU/ml, the amount of fecal coliform, coliform, and fecal streptococci was 7, 23, and 11 CFU/100ml, respectively. The relationship between heterotrophic bacteria, coliforms and fecal streptococci was highly significant (P<0.05). We observed the concentration of coliforms, fecal streptococci bacteria being high, whenever the concentration of heterotrophic bacteria in the water network systems was high. Interaction between heterotrophic bacteria and coliform, fecal coliforms, fecal streptococci bacteria in the Aq Qala City water supply networks was not notable. It can be due to high concentrations of organic carbon, bio-films and nutrients, which are necessary for growth, and survival of all microorganisms.

  16. The Interaction between Heterotrophic Bacteria and Coliform, Fecal Coliform, Fecal Streptococci Bacteria in the Water Supply Networks

    PubMed Central

    AMANIDAZ, Nazak; ZAFARZADEH, Ali; MAHVI, Amir Hossein

    2015-01-01

    Background: This study investigated the interaction between heterotrophic bacteria and coliform, fecal coliforms, fecal streptococci bacteria in water supply networks. Methods: This study was conducted during 2013 on water supply distribution network in Aq Qala City, Golestan Province, Northern Iran and standard methods were applied for microbiological analysis. The surface method was applied to test the heterotrophic bacteria and MPN method was used for coliform, fecal coliform and fecal streptococci bacteria measurements. Results: In 114 samples, heterotrophic bacteria count were over 500 CFU/ml, which the amount of fecal coliform, coliform, and fecal streptococci were 8, 32, and 20 CFU/100 ml, respectively. However, in the other 242 samples, with heterotrophic bacteria count being less than 500 CFU/ml, the amount of fecal coliform, coliform, and fecal streptococci was 7, 23, and 11 CFU/100ml, respectively. The relationship between heterotrophic bacteria, coliforms and fecal streptococci was highly significant (P<0.05). We observed the concentration of coliforms, fecal streptococci bacteria being high, whenever the concentration of heterotrophic bacteria in the water network systems was high. Conclusion: Interaction between heterotrophic bacteria and coliform, fecal coliforms, fecal streptococci bacteria in the Aq Qala City water supply networks was not notable. It can be due to high concentrations of organic carbon, bio-films and nutrients, which are necessary for growth, and survival of all microorganisms. PMID:26811820

  17. Bacteria-surface interactions.

    PubMed

    Tuson, Hannah H; Weibel, Douglas B

    2013-05-14

    The interaction of bacteria with surfaces has important implications in a range of areas, including bioenergy, biofouling, biofilm formation, and the infection of plants and animals. Many of the interactions of bacteria with surfaces produce changes in the expression of genes that influence cell morphology and behavior, including genes essential for motility and surface attachment. Despite the attention that these phenotypes have garnered, the bacterial systems used for sensing and responding to surfaces are still not well understood. An understanding of these mechanisms will guide the development of new classes of materials that inhibit and promote cell growth, and complement studies of the physiology of bacteria in contact with surfaces. Recent studies from a range of fields in science and engineering are poised to guide future investigations in this area. This review summarizes recent studies on bacteria-surface interactions, discusses mechanisms of surface sensing and consequences of cell attachment, provides an overview of surfaces that have been used in bacterial studies, and highlights unanswered questions in this field.

  18. Genomics of Probiotic Bacteria

    NASA Astrophysics Data System (ADS)

    O'Flaherty, Sarah; Goh, Yong Jun; Klaenhammer, Todd R.

    Probiotic bacteria from the Lactobacillus and Bifidobacterium species belong to the Firmicutes and the Actinobacteria phylum, respectively. Lactobacilli are members of the lactic acid bacteria (LAB) group, a broadly defined family of microorganisms that ferment various hexoses into primarily lactic acid. Lactobacilli are typically low G + C gram-positive species which are phylogenetically diverse, with over 100 species documented to date. Bifidobacteria are heterofermentative, high G + C content bacteria with about 30 species of bifidobacteria described to date.

  19. Biotechnology of Anoxygenic Phototrophic Bacteria.

    PubMed

    Frigaard, Niels-Ulrik

    Anoxygenic phototrophic bacteria are a diverse collection of organisms that are defined by their ability to grow using energy from light without evolving oxygen. The dominant groups are purple sulfur bacteria, purple nonsulfur bacteria, green sulfur bacteria, and green and red filamentous anoxygenic phototrophic bacteria. They represent several bacterial phyla but they all have bacteriochlorophylls and carotenoids and photochemical reaction centers which generate ATP and cellular reductants used for CO 2 fixation. They typically have an anaerobic lifestyle in the light, although some grow aerobically in the dark. Some of them oxidize inorganic sulfur compounds for light-dependent CO 2 fixation; this ability can be exploited for photobiological removal of hydrogen sulfide from wastewater and biogas. The anoxygenic phototrophic bacteria also perform bioremediation of recalcitrant dyes, pesticides, and heavy metals under anaerobic conditions. Finally, these organisms may be useful for overexpression of membrane proteins and photobiological production of H 2 and other valuable compounds.

  20. Membrane-active macromolecules kill antibiotic-tolerant bacteria and potentiate antibiotics towards Gram-negative bacteria

    PubMed Central

    Uppu, Divakara S. S. M.; Konai, Mohini M.; Sarkar, Paramita; Samaddar, Sandip; Fensterseifer, Isabel C. M.; Farias-Junior, Celio; Krishnamoorthy, Paramanandam; Shome, Bibek R.; Franco, Octávio L.

    2017-01-01

    Chronic bacterial biofilms place a massive burden on healthcare due to the presence of antibiotic-tolerant dormant bacteria. Some of the conventional antibiotics such as erythromycin, vancomycin, linezolid, rifampicin etc. are inherently ineffective against Gram-negative bacteria, particularly in their biofilms. Here, we report membrane-active macromolecules that kill slow dividing stationary-phase and antibiotic tolerant cells of Gram-negative bacteria. More importantly, these molecules potentiate antibiotics (erythromycin and rifampicin) to biofilms of Gram-negative bacteria. These molecules eliminate planktonic bacteria that are liberated after dispersion of biofilms (dispersed cells). The membrane-active mechanism of these molecules forms the key for potentiating the established antibiotics. Further, we demonstrate that the combination of macromolecules and antibiotics significantly reduces bacterial burden in mouse burn and surgical wound infection models caused by Acinetobacter baumannii and Carbapenemase producing Klebsiella pneumoniae (KPC) clinical isolate respectively. Colistin, a well-known antibiotic targeting the lipopolysaccharide (LPS) of Gram-negative bacteria fails to kill antibiotic tolerant cells and dispersed cells (from biofilms) and bacteria develop resistance to it. On the contrary, these macromolecules prevent or delay the development of bacterial resistance to known antibiotics. Our findings emphasize the potential of targeting the bacterial membrane in antibiotic potentiation for disruption of biofilms and suggest a promising strategy towards developing therapies for topical treatment of Gram-negative infections. PMID:28837596

  1. Interactions between Diatoms and Bacteria

    PubMed Central

    Amin, Shady A.; Parker, Micaela S.

    2012-01-01

    Summary: Diatoms and bacteria have cooccurred in common habitats for hundreds of millions of years, thus fostering specific associations and interactions with global biogeochemical consequences. Diatoms are responsible for one-fifth of the photosynthesis on Earth, while bacteria remineralize a large portion of this fixed carbon in the oceans. Through their coexistence, diatoms and bacteria cycle nutrients between oxidized and reduced states, impacting bioavailability and ultimately feeding higher trophic levels. Here we present an overview of how diatoms and bacteria interact and the implications of these interactions. We emphasize that heterotrophic bacteria in the oceans that are consistently associated with diatoms are confined to two phyla. These consistent bacterial associations result from encounter mechanisms that occur within a microscale environment surrounding a diatom cell. We review signaling mechanisms that occur in this microenvironment to pave the way for specific interactions. Finally, we discuss known interactions between diatoms and bacteria and exciting new directions and research opportunities in this field. Throughout the review, we emphasize new technological advances that will help in the discovery of new interactions. Deciphering the languages of diatoms and bacteria and how they interact will inform our understanding of the role these organisms have in shaping the ocean and how these interactions may change in future oceans. PMID:22933565

  2. Method of Detecting Coliform Bacteria and Escherichia Coli Bacteria from Reflected Light

    NASA Technical Reports Server (NTRS)

    Vincent, Robert (Inventor)

    2013-01-01

    The present invention relates to a method of detecting coliform bacteria in water from reflected light and a method of detecting Eschericha Coli bacteria in water from reflected light, and also includes devices for the measurement, calculation and transmission of data relating to that method.

  3. Ice-Nucleating Bacteria

    NASA Astrophysics Data System (ADS)

    Obata, Hitoshi

    Since the discovery of ice-nucleating bacteria in 1974 by Maki et al., a large number of studies on the biological characteristics, ice-nucleating substance, ice nucleation gene and frost damage etc. of the bacteria have been carried out. Ice-nucleating bacteria can cause the freezing of water at relatively warm temperature (-2.3°C). Tween 20 was good substrates for ice-nucleating activity of Pseudomonas fluorescens KUIN-1. Major fatty acids of Isolate (Pseudomonas fluorescens) W-11 grown at 30°C were palmitic, cis-9-hexadecenoic and cis-11-octadecenoic which amounted to 90% of the total fatty acids. Sequence analysis shows that an ice nucleation gene from Pseudomonas fluorescens is related to the gene of Pseudomonas syringae.

  4. Re-engineering bacteria for ethanol production

    DOEpatents

    Yomano, Lorraine P; York, Sean W; Zhou, Shengde; Shanmugam, Keelnatham; Ingram, Lonnie O

    2014-05-06

    The invention provides recombinant bacteria, which comprise a full complement of heterologous ethanol production genes. Expression of the full complement of heterologous ethanol production genes causes the recombinant bacteria to produce ethanol as the primary fermentation product when grown in mineral salts medium, without the addition of complex nutrients. Methods for producing the recombinant bacteria and methods for producing ethanol using the recombinant bacteria are also disclosed.

  5. Denitrification by extremely halophilic bacteria

    NASA Technical Reports Server (NTRS)

    Hochstein, L. I.; Tomlinson, G. A.

    1985-01-01

    Extremely halophilic bacteria were isolated from widely separated sites by anaerobic enrichment in the presence of nitrate. The anaerobic growth of several of these isolates was accompanied by the production of nitrite, nitrous oxide, and dinitrogen. These results are a direct confirmation of the existence of extremely halophilic denitrifying bacteria, and suggest that such bacteria may be common inhabitants of hypersaline environments.

  6. Cooperation between two periplasmic copper chaperones is required for full activity of the cbb 3-type cytochrome c oxidase and copper homeostasis in Rhodobacter capsulatus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trasnea, Petru -Iulian; Utz, Marcel; Khalfaoui-Hassani, Bahia

    Copper (Cu) is an essential micronutrient that functions as a cofactor in several important enzymes, like respiratory heme-copper oxygen reductases. Yet, Cu is also toxic and therefore cells engage a highly coordinated Cu uptake and delivery system to prevent the accumulation of toxic Cu concentrations. In the current work we analyzed Cu delivery to the cbb 3-type cytochrome c oxidase ( cbb 3-Cox) of Rhodobacter capsulatus. We identified the PCu AC-like periplasmic chaperone PccA and analyzed its contribution to cbb 3-Cox assembly. Our data demonstrate that PccA is a Cu-binding protein with a preference for Cu(I), which is required formore » efficient cbb 3-Cox assembly, in particular at low Cu concentrations. By using in vivo and in vitro crosslinking we show that PccA forms a complex with the Sco1-homologue SenC. This complex is stabilized in the absence of the cbb 3-Cox specific assembly factors CcoGHIS. In cells lacking SenC, the cytoplasmic Cu content is significantly increased, but the simultaneous absence of PccA prevents this Cu accumulation. Lastly, these data demonstrate that the interplay between PccA and SenC is not only required for Cu delivery during cbb 3-Cox assembly, but that it also regulates Cu homeostasis in R. capsulatus.« less

  7. Cooperation between two periplasmic copper chaperones is required for full activity of the cbb 3-type cytochrome c oxidase and copper homeostasis in Rhodobacter capsulatus

    DOE PAGES

    Trasnea, Petru -Iulian; Utz, Marcel; Khalfaoui-Hassani, Bahia; ...

    2016-02-28

    Copper (Cu) is an essential micronutrient that functions as a cofactor in several important enzymes, like respiratory heme-copper oxygen reductases. Yet, Cu is also toxic and therefore cells engage a highly coordinated Cu uptake and delivery system to prevent the accumulation of toxic Cu concentrations. In the current work we analyzed Cu delivery to the cbb 3-type cytochrome c oxidase ( cbb 3-Cox) of Rhodobacter capsulatus. We identified the PCu AC-like periplasmic chaperone PccA and analyzed its contribution to cbb 3-Cox assembly. Our data demonstrate that PccA is a Cu-binding protein with a preference for Cu(I), which is required formore » efficient cbb 3-Cox assembly, in particular at low Cu concentrations. By using in vivo and in vitro crosslinking we show that PccA forms a complex with the Sco1-homologue SenC. This complex is stabilized in the absence of the cbb 3-Cox specific assembly factors CcoGHIS. In cells lacking SenC, the cytoplasmic Cu content is significantly increased, but the simultaneous absence of PccA prevents this Cu accumulation. Lastly, these data demonstrate that the interplay between PccA and SenC is not only required for Cu delivery during cbb 3-Cox assembly, but that it also regulates Cu homeostasis in R. capsulatus.« less

  8. Effect of air pollution on the total bacteria and pathogenic bacteria in different sizes of particulate matter.

    PubMed

    Liu, Huan; Zhang, Xu; Zhang, Hao; Yao, Xiangwu; Zhou, Meng; Wang, Jiaqi; He, Zhanfei; Zhang, Huihui; Lou, Liping; Mao, Weihua; Zheng, Ping; Hu, Baolan

    2018-02-01

    In recent years, air pollution events have occurred frequently in China during the winter. Most studies have focused on the physical and chemical composition of polluted air. Some studies have examined the bacterial bioaerosols both indoors and outdoors. But few studies have focused on the relationship between air pollution and bacteria, especially pathogenic bacteria. Airborne PM samples with different diameters and different air quality index values were collected in Hangzhou, China from December 2014 to January 2015. High-throughput sequencing of 16S rRNA was used to categorize the airborne bacteria. Based on the NCBI database, the "Human Pathogen Database" was established, which is related to human health. Among all the PM samples, the diversity and concentration of total bacteria were lowest in the moderately or heavily polluted air. However, in the PM2.5 and PM10 samples, the relative abundances of pathogenic bacteria were highest in the heavily and moderately polluted air respectively. Considering the PM samples with different particle sizes, the diversities of total bacteria and the proportion of pathogenic bacteria in the PM10 samples were different from those in the PM2.5 and TSP samples. The composition of PM samples with different sizes range may be responsible for the variances. The relative humidity, carbon monoxide and ozone concentrations were the main factors, which affected the diversity of total bacteria and the proportion of pathogenic bacteria. Among the different environmental samples, the compositions of the total bacteria were very similar in all the airborne PM samples, but different from those in the water, surface soil, and ground dust samples. Which may be attributed to that the long-distance transport of the airflow may influence the composition of the airborne bacteria. This study of the pathogenic bacteria in airborne PM samples can provide a reference for environmental and public health researchers. Copyright © 2017 Elsevier Ltd

  9. Bacteria entombed in the center of cholesterol gallstones induce fewer infectious manifestations than bacteria in the matrix of pigment stones.

    PubMed

    Stewart, Lygia; Griffiss, J McLeod; Jarvis, Gary A; Way, Lawrence W

    2007-10-01

    The clinical significance of bacteria in the pigment centers of cholesterol stones is unknown. We compared the infectious manifestations and characteristics of bacteria from pigment stones and predominantly cholesterol stones. Three hundred forty patients were studied. Bile was cultured. Gallstones were cultured and examined with scanning electron microscopy. Level of bacterial immunoglobulin G (bile, serum), complement killing, and tumor necrosis factor-alpha production were determined. Twenty-three percent of cholesterol stones and 68% of pigment stones contained bacteria (P < 0.0001). Stone culture correlated with scanning electron microscopy results. Pigment stone bacteria were more often present in bile and blood. Cholesterol stone bacteria caused more severe infections (19%) than sterile stones (0%), but less than pigment stone bacteria (57%) (P < 0.0001). Serum and bile from patients with cholesterol stone bacteria had less bacterial-specific immunoglobulin G. Cholesterol stone bacteria produced more slime. Pigment stone bacteria were more often killed by a patient's serum. Tumor necrosis factor-alpha production of the groups was similar. Bacteria are readily cultured from cholesterol stones with pigment centers, allowing for analysis of their virulence factors. Bacteria sequestered in cholesterol stones cause infectious manifestations, but less than bacteria in pigment stones. Possibly because of their isolation, cholesterol stone bacteria were less often present in bile and blood, induced less immunoglobulin G, were less often killed by a patient's serum, and demonstrated fewer infectious manifestations than pigment stone bacteria. This is the first study to analyze the clinical relevance of bacteria within cholesterol gallstones.

  10. Human body may produce bacteria.

    PubMed

    Salerian, Alen J

    2017-06-01

    "Human body may produce bacteria" proposes that human body may produce bacteria and represent an independent source of infections contrary to the current paradigm of infectious disorders proposed by Louis Pasteur in 1880. The following observations are consistent with this hypothesis: A. Bidirectional transformations of both living and nonliving things have been commonly observed in nature. B. Complex multicellular organisms harbor the necessary properties to produce bacteria (water, nitrogen and oxygen). C. Physical laws suggest any previously observed phenomenon or action will occur again (life began on earth; a non living thing). D. Animal muscle cells may generate energy (fermentation). E. Sterilized food products (i.e. boiled eggs), may produce bacteria and fungus under special conditions and without any exposure to foreign living cells. "Human body may produce bacteria" may challenge the current medical paradigm that views human infectious disorders as the exclusive causative byproducts of invading foreign cells. It may also introduce new avenues to treat infectious disorders. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. A comprehensive evaluation of assembly scaffolding tools

    PubMed Central

    2014-01-01

    Background Genome assembly is typically a two-stage process: contig assembly followed by the use of paired sequencing reads to join contigs into scaffolds. Scaffolds are usually the focus of reported assembly statistics; longer scaffolds greatly facilitate the use of genome sequences in downstream analyses, and it is appealing to present larger numbers as metrics of assembly performance. However, scaffolds are highly prone to errors, especially when generated using short reads, which can directly result in inflated assembly statistics. Results Here we provide the first independent evaluation of scaffolding tools for second-generation sequencing data. We find large variations in the quality of results depending on the tool and dataset used. Even extremely simple test cases of perfect input, constructed to elucidate the behaviour of each algorithm, produced some surprising results. We further dissect the performance of the scaffolders using real and simulated sequencing data derived from the genomes of Staphylococcus aureus, Rhodobacter sphaeroides, Plasmodium falciparum and Homo sapiens. The results from simulated data are of high quality, with several of the tools producing perfect output. However, at least 10% of joins remains unidentified when using real data. Conclusions The scaffolders vary in their usability, speed and number of correct and missed joins made between contigs. Results from real data highlight opportunities for further improvements of the tools. Overall, SGA, SOPRA and SSPACE generally outperform the other tools on our datasets. However, the quality of the results is highly dependent on the read mapper and genome complexity. PMID:24581555

  12. Role of Small Subunit in Mediating Assembly of Red-type Form I Rubisco

    PubMed Central

    Joshi, Jidnyasa; Mueller-Cajar, Oliver; Tsai, Yi-Chin C.; Hartl, F. Ulrich; Hayer-Hartl, Manajit

    2015-01-01

    Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) is the key enzyme involved in photosynthetic carbon fixation, converting atmospheric CO2 to organic compounds. Form I Rubisco is a cylindrical complex composed of eight large (RbcL) subunits that are capped by four small subunits (RbcS) at the top and four at the bottom. Form I Rubiscos are phylogenetically divided into green- and red-type. Some red-type enzymes have catalytically superior properties. Thus, understanding their folding and assembly is of considerable biotechnological interest. Folding of the green-type RbcL subunits in cyanobacteria is mediated by the GroEL/ES chaperonin system, and assembly to holoenzyme requires specialized chaperones such as RbcX and RAF1. Here, we show that the red-type RbcL subunits in the proteobacterium Rhodobacter sphaeroides also fold with GroEL/ES. However, assembly proceeds in a chaperone-independent manner. We find that the C-terminal β-hairpin extension of red-type RbcS, which is absent in green-type RbcS, is critical for efficient assembly. The β-hairpins of four RbcS subunits form an eight-stranded β-barrel that protrudes into the central solvent channel of the RbcL core complex. The two β-barrels stabilize the complex through multiple interactions with the RbcL subunits. A chimeric green-type RbcS carrying the C-terminal β-hairpin renders the assembly of a cyanobacterial Rubisco independent of RbcX. Our results may facilitate the engineering of crop plants with improved growth properties expressing red-type Rubisco. PMID:25371207

  13. The measured and calculated affinity of methyl and methoxy substituted benzoquinones for the QA site of bacterial reaction centers

    PubMed Central

    Zheng, Zhong; Dutton, P. Leslie; Gunner, M. R.

    2010-01-01

    Quinones play important roles in mitochondrial and photosynthetic energy conversion acting as intramembrane, mobile electron and proton carriers between catalytic sites in various electron transfer proteins. They display different affinity, selectivity, functionality and exchange dynamics in different binding sites. The computational analysis of quinone binding sheds light on the requirements for quinone affinity and specificity. The affinities of ten oxidized, neutral benzoquinones (BQs) were measured for the high affinity QA site in the detergent solubilized Rhodobacter sphaeroides bacterial photosynthetic reaction center. Multi-Conformation Continuum Electrostatics (MCCE) was then used to calculate their relative binding free energies by Grand Canonical Monte Carlo sampling with a rigid protein backbone, flexible ligand and side chain positions and protonation states. Van der Waals and torsion energies, Poisson-Boltzmann continuum electrostatics and accessible surface area dependent ligand-solvent interactions are considered. An initial, single cycle of GROMACS backbone optimization improves the match with experiment as do coupled ligand and side chain motions. The calculations match experiment with an RMSD of 2.29 and a slope of 1.28. The affinities are dominated by favorable protein-ligand van der Waals rather than electrostatic interactions. Each quinone appears in a closely clustered set of positions. Methyl and methoxy groups move into the same positions as found for the native quinone. Difficulties putting methyls into methoxy sites are observed. Calculations using an SAS dependent implicit van der Waals interaction smoothed out small clashes, providing a better match to experiment with a RMSD of 0.77 and a slope of 0.97. PMID:20607696

  14. Electrostatics of the photosynthetic bacterial reaction center. Protonation of Glu L 212 and Asp L 213 - A new method of calculation.

    PubMed

    Ptushenko, Vasily V; Cherepanov, Dmitry A; Krishtalik, Lev I

    2015-12-01

    Continuum electrostatic calculation of the transfer energies of anions from water into aprotic solvents gives the figures erroneous by order of magnitude. This is due to the hydrogen bond disruption that suggests the necessity to reconsider the traditional approach of the purely electrostatic calculation of the transfer energy from water into protein. In this paper, the method combining the experimental estimates of the transfer energies from water into aprotic solvent and the electrostatic calculation of the transfer energies from aprotic solvent into protein is proposed. Hydrogen bonds between aprotic solvent and solute are taken into account by introducing an imaginary aprotic medium incapable to form hydrogen bonds with the solute. Besides, a new treatment of the heterogeneous intraprotein dielectric permittivity based on the microscopic protein structure and electrometric measurements is elaborated. The method accounts semi-quantitatively for the electrostatic effect of diverse charged amino acid substitutions in the donor and acceptor parts of the photosynthetic bacterial reaction center from Rhodobacter sphaeroides. Analysis of the volatile secondary acceptor site QB revealed that in the conformation with a minimal distance between quinone QB and Glu L 212 the proton uptake upon the reduction of QB is prompted by Glu L 212 in alkaline and by Asp L 213 in slightly acidic regions. This agrees with the pH dependences of protonation degrees and the proton uptake. The method of pK calculation was applied successfully also for dissociation of Asp 26 in bacterial thioredoxin. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. The binding of quinone to the photosynthetic reaction centers: kinetics and thermodynamics of reactions occurring at the QB-site in zwitterionic and anionic liposomes.

    PubMed

    Mavelli, Fabio; Trotta, Massimo; Ciriaco, Fulvio; Agostiano, Angela; Giotta, Livia; Italiano, Francesca; Milano, Francesco

    2014-07-01

    Liposomes represent a versatile biomimetic environment for studying the interaction between integral membrane proteins and hydrophobic ligands. In this paper, the quinone binding to the QB-site of the photosynthetic reaction centers (RC) from Rhodobacter sphaeroides has been investigated in liposomes prepared with either the zwitterionic phosphatidylcholine (PC) or the negatively charged phosphatidylglycerol (PG) to highlight the role of the different phospholipid polar heads. Quinone binding (K Q) and interquinone electron transfer (L AB) equilibrium constants in the two type of liposomes were obtained by charge recombination reaction of QB-depleted RC in the presence of increasing amounts of ubiquinone-10 over the temperature interval 6-35 °C. The kinetic of the charge recombination reactions has been fitted by numerically solving the ordinary differential equations set associated with a detailed kinetic scheme involving electron transfer reactions coupled with quinone release and uptake. The entire set of traces at each temperature was accurately fitted using the sole quinone release constants (both in a neutral and a charge separated state) as adjustable parameters. The temperature dependence of the quinone exchange rate at the QB-site was, hence, obtained. It was found that the quinone exchange regime was always fast for PC while it switched from slow to fast in PG as the temperature rose above 20 °C. A new method was introduced in this paper for the evaluation of constant K Q using the area underneath the charge recombination traces as the indicator of the amount of quinone bound to the QB-site.

  16. Energetics of bacterial photosynthesis.

    PubMed

    Lebard, David N; Matyushov, Dmitry V

    2009-09-10

    We report the results of extensive numerical simulations and theoretical calculations of electronic transitions in the reaction center of Rhodobacter sphaeroides photosynthetic bacterium. The energetics and kinetics of five electronic transitions related to the kinetic scheme of primary charge separation have been analyzed and compared to experimental observations. Nonergodic formulation of the reaction kinetics is required for the calculation of the rates due to a severe breakdown of the system ergodicity on the time scale of primary charge separation, with the consequent inapplicability of the standard canonical prescription to calculate the activation barrier. Common to all reactions studied is a significant excess of the charge-transfer reorganization energy from the width of the energy gap fluctuations over that from the Stokes shift of the transition. This property of the hydrated proteins, breaking the linear response of the thermal bath, allows the reaction center to significantly reduce the reaction free energy of near-activationless electron hops and thus raise the overall energetic efficiency of the biological charge-transfer chain. The increase of the rate of primary charge separation with cooling is explained in terms of the temperature variation of induction solvation, which dominates the average donor-acceptor energy gap for all electronic transitions in the reaction center. It is also suggested that the experimentally observed break in the Arrhenius slope of the primary recombination rate, occurring near the temperature of the dynamical transition in proteins, can be traced back to a significant drop of the solvent reorganization energy close to that temperature.

  17. Energetics and kinetics of primary charge separation in bacterial photosynthesis.

    PubMed

    LeBard, David N; Kapko, Vitaliy; Matyushov, Dmitry V

    2008-08-21

    We report the results of molecular dynamics (MD) simulations and formal modeling of the free-energy surfaces and reaction rates of primary charge separation in the reaction center of Rhodobacter sphaeroides. Two simulation protocols were used to produce MD trajectories. Standard force-field potentials were employed in the first protocol. In the second protocol, the special pair was made polarizable to reproduce a high polarizability of its photoexcited state observed by Stark spectroscopy. The charge distribution between covalent and charge-transfer states of the special pair was dynamically adjusted during the simulation run. We found from both protocols that the breadth of electrostatic fluctuations of the protein/water environment far exceeds previous estimates, resulting in about 1.6 eV reorganization energy of electron transfer in the first protocol and 2.5 eV in the second protocol. Most of these electrostatic fluctuations become dynamically frozen on the time scale of primary charge separation, resulting in much smaller solvation contributions to the activation barrier. While water dominates solvation thermodynamics on long observation times, protein emerges as the major thermal bath coupled to electron transfer on the picosecond time of the reaction. Marcus parabolas were obtained for the free-energy surfaces of electron transfer by using the first protocol, while a highly asymmetric surface was obtained in the second protocol. A nonergodic formulation of the diffusion-reaction electron-transfer kinetics has allowed us to reproduce the experimental results for both the temperature dependence of the rate and the nonexponential decay of the population of the photoexcited special pair.

  18. Characterizing the proton loading site in cytochrome c oxidase

    PubMed Central

    Lu, Jianxun; Gunner, M. R.

    2014-01-01

    Cytochrome c oxidase (CcO) uses the energy released by reduction of O2 to H2O to drive eight charges from the high pH to low pH side of the membrane, increasing the electrochemical gradient. Four electrons and protons are used for chemistry, while four more protons are pumped. Proton pumping requires that residues on a pathway change proton affinity through the reaction cycle to load and then release protons. The protonation states of all residues in CcO are determined in MultiConformational Continuum Electrostatics simulations with the protonation and redox states of heme a, a3, CuB, Y288, and E286 used to define the catalytic cycle. One proton is found to be loaded and released from residues identified as the proton loading site (PLS) on the P-side of the protein in each of the four CcO redox states. Thus, the same proton pumping mechanism can be used each time CcO is reduced. Calculations with structures of Rhodobacter sphaeroides, Paracoccus denitrificans, and bovine CcO derived by crystallography and molecular dynamics show the PLS functions similarly in different CcO species. The PLS is a cluster rather than a single residue, as different structures show 1–4 residues load and release protons. However, the proton affinity of the heme a3 propionic acids primarily determines the number of protons loaded into the PLS; if their proton affinity is too low, less than one proton is loaded. PMID:25114210

  19. Some bacteria are beneficial!

    USGS Publications Warehouse

    McMahon, Peter B.

    1995-01-01

    Most people would agree that bacteria usually spell trouble where the quality of drinking water is con cerned. However, recent studies conducted by the U.S. Geological Survey (USGS) under the National Water-Quality Assessment (NAWQA) program have shown that some bacteria can improve the quality of water.

  20. Enteric bacteria in aerobically digested sludge.

    PubMed Central

    Farrah, S R; Bitton, G

    1984-01-01

    Indicator bacteria, Salmonella spp., and total aerobic bacteria were determined in samples of undigested sludge and sludge that had been treated by one or two stages of aerobic digestion. Aerobic sludge digestion reduced the level of indicator bacteria by 1 to 2 log10 per g. The level of Salmonella spp. was also reduced during aerobic treatment of sludge. In general, aerobic treatment of sludge reduced, but did not eliminate, indicator bacteria and Salmonella spp. PMID:6721492

  1. Antibiotic Production by Anaerobic Bacteria1

    PubMed Central

    Sturgen, Nancy O.; Casida, L. E.

    1962-01-01

    Soils from aerobic and anaerobic sources were investigated for the possible presence of bacteria which produce antibiotics under anaerobic conditions of growth. The screening techniques devised for this study yielded 157 soil bacteria which, during anaerobic growth, produced antibiotic activity against aerobic test bacteria. Studies on choice of media, presence of oxygen, and changes in antibiotic activity during growth indicated that representative strains of these bacteria produced mixtures of antibiotics. The activity was heat labile. PMID:13918037

  2. PCR detection of uncultured rumen bacteria.

    PubMed

    Rosero, Jaime A; Strosová, Lenka; Mrázek, Jakub; Fliegerová, Kateřina; Kopečný, Jan

    2012-07-01

    16S rRNA sequences of ruminal uncultured bacterial clones from public databases were phylogenetically examined. The sequences were found to form two unique clusters not affiliated with any known bacterial species: cluster of unidentified sequences of free floating rumen fluid uncultured bacteria (FUB) and cluster of unidentified sequences of bacteria associated with rumen epithelium (AUB). A set of PCR primers targeting 16S rRNA of ruminal free uncultured bacteria and rumen epithelium adhering uncultured bacteria was designed based on these sequences. FUB primers were used for relative quantification of uncultured bacteria in ovine rumen samples. The effort to increase the population size of FUB group has been successful in sulfate reducing broth and culture media supplied with cellulose.

  3. Second-generation photosensitizers based on natural chlorines and bacteriochlorines

    NASA Astrophysics Data System (ADS)

    Mironov, Andrei F.

    1996-01-01

    New sensitizers for photodynamic therapy were synthesized on the base of biologically generated chlorins and bacteriochlorins. Derivatives of chlorophyll a and bacteriochlorophyll were prepared from the biomass of blue-green algae Spirulina Platensis and purple bacteria Rhodobacter Capsulatus, generated using specially designed photobioreactor. The strategy for chemical transformation of natural chlorophylls and bacteriochlorophyll has been discussed. Purpurin 18 and its dihydroanalogue bacteriopurpurin were chosen as the key intermediates. Modifications of peripheral substituents, such as introducing the new functional groups, hydrogenation of the B-pyrrolic ring, and insertion of amino acid residues gave the series of novel sensitizers, including water soluble chlorin p6 analogues, and derivatives with graded amphiphility for the studies of tumor accumulation in the malignant tissues.

  4. Synthesis and properties of new chlorin and bacteriochlorin photosensitizers

    NASA Astrophysics Data System (ADS)

    Mironov, Andrei F.

    1996-01-01

    A series of novel sensitizers, which absorb in the range of 660 - 820 nm, derived from natural occurring chlorophyll and bacteriochlorophyll was synthesized. Biomass of blue-green algae Spirulina platensis was used to prepare chlorophyll a derivatives, and biomass of purple bacteria Rhodobacter capsulatus was applied for preparation of bacteriochlorophyll a. The influence of different substituents on spectral characteristics and the amphipility of the sensitizer was investigated. The route for the synthesis of porphyrin macrocycle with the spacer that bears the isothiocyanate group capable for binding with proteins was proposed. Photophysical properties of chlorin p6, purpurin 18 and their esters in different solvents are investigated. Accumulation of two chlorins in the model Erlich tumor was studied.

  5. Horizontal gene transfer between bacteria.

    PubMed

    Heuer, Holger; Smalla, Kornelia

    2007-01-01

    Horizontal gene transfer (HGT) refers to the acquisition of foreign genes by organisms. The occurrence of HGT among bacteria in the environment is assumed to have implications in the risk assessment of genetically modified bacteria which are released into the environment. First, introduced genetic sequences from a genetically modified bacterium could be transferred to indigenous micro-organisms and alter their genome and subsequently their ecological niche. Second, the genetically modified bacterium released into the environment might capture mobile genetic elements (MGE) from indigenous micro-organisms which could extend its ecological potential. Thus, for a risk assessment it is important to understand the extent of HGT and genome plasticity of bacteria in the environment. This review summarizes the present state of knowledge on HGT between bacteria as a crucial mechanism contributing to bacterial adaptability and diversity. In view of the use of GM crops and microbes in agricultural settings, in this mini-review we focus particularly on the presence and role of MGE in soil and plant-associated bacteria and the factors affecting gene transfer.

  6. Screening and characterization of phosphate solubilizing bacteria from isolate of thermophilic bacteria

    NASA Astrophysics Data System (ADS)

    Yulianti, Evy; Rakhmawati, Anna

    2017-08-01

    The aims of this study were to select bacteria that has the ability to dissolve phosphate from thermophilic bacteria isolates after the Merapi eruption. Five isolates of selected bacteria was characterized and continued with identification. Selection was done by using a pikovskaya selective medium. Bacterial isolates were grown in selective medium and incubated for 48 hours at temperature of 55 ° C. Characterization was done by looking at the cell and colony morphology, physiological and biochemical properties. Identification was done with the Profile Matching method based on the reference genus Oscillospira traced through Bergey's Manual of Determinative Bacteriology. Dendogram was created based on similarity index SSM. The results showed there were 14 isolates of bacteria that were able to dissolve phosphate indicated by a clear zone surrounding the bacterial colony on selective media. Five isolates were selected with the largest clear zone. Isolates D79, D92, D110a, D135 and D75 have different characters. The result of phenotypic characters identification with Genus Oscillospira profile has a percentage of 100% similarity to isolate D92 and D110a; 92.31% for isolates D79, and 84.6% for isolates D75 and D135. Dendogram generated from average linkage algorithm / UPGMA using the Simple Matching Coefficient (SSM) algorithms showed, isolate thermophilic bacteria D75 and D135 are combined together to form cluster 1. D110a and D92 form a sub cluster A. Sub cluster A and D79 form cluster 2

  7. Deployable micro-traps to sequester motile bacteria

    NASA Astrophysics Data System (ADS)

    di Giacomo, Raffaele; Krödel, Sebastian; Maresca, Bruno; Benzoni, Patrizia; Rusconi, Roberto; Stocker, Roman; Daraio, Chiara

    2017-04-01

    The development of strategies to reduce the load of unwanted bacteria is a fundamental challenge in industrial processing, environmental sciences and medical applications. Here, we report a new method to sequester motile bacteria from a liquid, based on passive, deployable micro-traps that confine bacteria using micro-funnels that open into trapping chambers. Even in low concentrations, micro-traps afford a 70% reduction in the amount of bacteria in a liquid sample, with a potential to reach >90% as shown by modelling improved geometries. This work introduces a new approach to contain the growth of bacteria without chemical means, an advantage of particular importance given the alarming growth of pan-drug-resistant bacteria.

  8. Deployable micro-traps to sequester motile bacteria

    PubMed Central

    Di Giacomo, Raffaele; Krödel, Sebastian; Maresca, Bruno; Benzoni, Patrizia; Rusconi, Roberto; Stocker, Roman; Daraio, Chiara

    2017-01-01

    The development of strategies to reduce the load of unwanted bacteria is a fundamental challenge in industrial processing, environmental sciences and medical applications. Here, we report a new method to sequester motile bacteria from a liquid, based on passive, deployable micro-traps that confine bacteria using micro-funnels that open into trapping chambers. Even in low concentrations, micro-traps afford a 70% reduction in the amount of bacteria in a liquid sample, with a potential to reach >90% as shown by modelling improved geometries. This work introduces a new approach to contain the growth of bacteria without chemical means, an advantage of particular importance given the alarming growth of pan-drug-resistant bacteria. PMID:28378786

  9. Deployable micro-traps to sequester motile bacteria.

    PubMed

    Di Giacomo, Raffaele; Krödel, Sebastian; Maresca, Bruno; Benzoni, Patrizia; Rusconi, Roberto; Stocker, Roman; Daraio, Chiara

    2017-04-05

    The development of strategies to reduce the load of unwanted bacteria is a fundamental challenge in industrial processing, environmental sciences and medical applications. Here, we report a new method to sequester motile bacteria from a liquid, based on passive, deployable micro-traps that confine bacteria using micro-funnels that open into trapping chambers. Even in low concentrations, micro-traps afford a 70% reduction in the amount of bacteria in a liquid sample, with a potential to reach >90% as shown by modelling improved geometries. This work introduces a new approach to contain the growth of bacteria without chemical means, an advantage of particular importance given the alarming growth of pan-drug-resistant bacteria.

  10. Mycorrhiza helper bacteria

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deveau, Aurelie; Labbe, Jessy

    This chapter focuses on the Mycorrhiza Helper Bacteria (MHB), a generic name given to bacteria which stimulate the formation of mycorrhizal symbiosis. By extension, some bacterial strains that positively impact the functioning of mycorrhizal symbiosis are also called MHB. These bacteria have applicative interests, as they indirectly improve the health and growth of tree seedlings. MHB are not restricted to a specific type of ecosystem, but are rather generalist in the way that they associate with both herbaceous and woody mycorrhizal plants from boreal, temperate, arid and tropical ecosystems. However, understanding the molecular mechanisms and their specificities will help usmore » to know more about the ecology of the MHB. The process of acquisition varies between fungal species; while ectomycorrhizal fungi most probably recurrently acquire them from the environment, the association between bacterial endosymbionts and Glomeromycota probably dates back to very ancient times, and has since been vertically transmitted.« less

  11. Clinical microbiology of coryneform bacteria.

    PubMed Central

    Funke, G; von Graevenitz, A; Clarridge, J E; Bernard, K A

    1997-01-01

    Coryneform bacteria are aerobically growing, asporogenous, non-partially-acid-fast, gram-positive rods of irregular morphology. Within the last few years, there has been a massive increase in the number of publications related to all aspects of their clinical microbiology. Clinical microbiologists are often confronted with making identifications within this heterogeneous group as well as with considerations of the clinical significance of such isolates. This review provides comprehensive information on the identification of coryneform bacteria and outlines recent changes in taxonomy. The following genera are covered: Corynebacterium, Turicella, Arthrobacter, Brevibacterium, Dermabacter. Propionibacterium, Rothia, Exiguobacterium, Oerskovia, Cellulomonas, Sanguibacter, Microbacterium, Aureobacterium, "Corynebacterium aquaticum," Arcanobacterium, and Actinomyces. Case reports claiming disease associations of coryneform bacteria are critically reviewed. Minimal microbiological requirements for publications on disease associations of coryneform bacteria are proposed. PMID:8993861

  12. Bacteria and wound healing.

    PubMed

    Edwards, Ruth; Harding, Keith G

    2004-04-01

    Wound healing is a complex process with many potential factors that can delay healing. There is increasing interest in the effects of bacteria on the processes of wound healing. All chronic wounds are colonized by bacteria, with low levels of bacteria being beneficial to the wound healing process. Wound infection is detrimental to wound healing, but the diagnosis and management of wound infection is controversial, and varies between clinicians. There is increasing recognition of the concept of critical colonization or local infection, when wound healing may be delayed in the absence of the typical clinical features of infection. The progression from wound colonization to infection depends not only on the bacterial count or the species present, but also on the host immune response, the number of different species present, the virulence of the organisms and synergistic interactions between the different species. There is increasing evidence that bacteria within chronic wounds live within biofilm communities, in which the bacteria are protected from host defences and develop resistance to antibiotic treatment. An appreciation of the factors affecting the progression from colonization to infection can help clinicians with the interpretation of clinical findings and microbiological investigations in patients with chronic wounds. An understanding of the physiology and interactions within multi-species biofilms may aid the development of more effective methods of treating infected and poorly healing wounds. The emergence of consensus guidelines has helped to optimize clinical management.

  13. Laser-Based Identification of Pathogenic Bacteria

    ERIC Educational Resources Information Center

    Rehse, Steven J.

    2009-01-01

    Bacteria are ubiquitous in our world. From our homes, to our work environment, to our own bodies, bacteria are the omnipresent although often unobserved companions to human life. Physicists are typically untroubled professionally by the presence of these bacteria, as their study usually falls safely outside the realm of our typical domain. In the…

  14. Extracellular deoxyribonuclease production by periodontal bacteria.

    PubMed

    Palmer, L J; Chapple, I L C; Wright, H J; Roberts, A; Cooper, P R

    2012-08-01

    Whilst certain bacteria have long been known to secrete extracellular deoxyribonuclease (DNase), the purpose in microbial physiology was unclear. Recently, however, this enzyme has been demonstrated to confer enhanced virulence, enabling bacteria to evade the host's immune defence of extruded DNA/chromatin filaments, termed neutrophil extracellular traps (NETs). As NETs have recently been identified in infected periodontal tissue, the aim of this study was to screen periodontal bacteria for extracellular DNase activity. To determine whether DNase activity was membrane bound or secreted, 34 periodontal bacteria were cultured in broth and on agar plates. Pelleted bacteria and supernatants from broth cultures were analysed for their ability to degrade DNA, with relative activity levels determined using an agarose gel electrophoresis assay. Following culture on DNA-supplemented agar, expression was determined by the presence of a zone of hydrolysis and DNase activity related to colony size. Twenty-seven bacteria, including red and orange complex members Porphyromonas gingivalis, Tannerella forsythia, Fusobacterium nucleatum, Parvimonas micra, Prevotella intermedia, Streptococcus constellatus, Campylobacter rectus and Prevotella nigrescens, were observed to express extracellular DNase activity. Differences in DNase activity were noted, however, when bacteria were assayed in different culture states. Analysis of the activity of secreted DNase from bacterial broth cultures confirmed their ability to degrade NETs. The present study demonstrates, for the first time, that DNase activity is a relatively common property of bacteria associated with advanced periodontal disease. Further work is required to determine the importance of this bacterial DNase activity in the pathogenesis of periodontitis. © 2011 John Wiley & Sons A/S.

  15. Mineral deposition in bacteria-filled and bacteria-free calcium bodies in the crustacean Hyloniscus riparius (Isopoda: Oniscidea).

    PubMed

    Vittori, Miloš; Rozman, Alenka; Grdadolnik, Jože; Novak, Urban; Štrus, Jasna

    2013-01-01

    Crustacean calcium bodies are epithelial sacs which contain a mineralized matrix. The objectives of this study were to describe the microscopic anatomy of calcium bodies in the terrestrial isopod Hyloniscus riparius and to establish whether they undergo molt-related structural changes. We performed 3D reconstruction of the calcium bodies from paraffin sections and analyzed their structure with light and electron microscopy. In addition, we analyzed the chemical composition of their mineralized matrices with micro-Raman spectroscopy. Two pairs of these organs are present in H. riparius. One pair is filled with bacteria while the other pair is not. In non-molting animals, the bacteria-filled calcium bodies contain apatite crystals and the bacteria-free calcium bodies enclose CaCO3-containing concretions with little organic matrix. During preparation for molt, an additional matrix layer is deposited in both pairs of calcium bodies. In the bacteria-filled calcium bodies it contains a mixture of calcium carbonate and calcium phosphate, whereas only calcium carbonate is present in bacteria-free calcium bodies. After ecdysis, all mineral components in bacteria-free calcium bodies and the additional matrix layer in bacteria-filled calcium bodies are completely resorbed. During calcium resorption, the apical surface of the calcium body epithelium is deeply folded and electron dense granules are present in spaces between epithelial cells. Our results indicate that the presence of bacteria might be linked to calcium phosphate mineralization. Calcium bodies likely provide a source of calcium and potentially phosphate for the mineralization of the new cuticle after molt. Unlike other terrestrial isopods, H. riparius does not form sternal CaCO3 deposits and the bacteria-free calcium bodies might functionally replace them in this species.

  16. Mineral Deposition in Bacteria-Filled and Bacteria-Free Calcium Bodies in the Crustacean Hyloniscus riparius (Isopoda: Oniscidea)

    PubMed Central

    Vittori, Miloš; Rozman, Alenka; Grdadolnik, Jože; Novak, Urban; Štrus, Jasna

    2013-01-01

    Crustacean calcium bodies are epithelial sacs which contain a mineralized matrix. The objectives of this study were to describe the microscopic anatomy of calcium bodies in the terrestrial isopod Hyloniscus riparius and to establish whether they undergo molt-related structural changes. We performed 3D reconstruction of the calcium bodies from paraffin sections and analyzed their structure with light and electron microscopy. In addition, we analyzed the chemical composition of their mineralized matrices with micro-Raman spectroscopy. Two pairs of these organs are present in H. riparius. One pair is filled with bacteria while the other pair is not. In non-molting animals, the bacteria-filled calcium bodies contain apatite crystals and the bacteria-free calcium bodies enclose CaCO3-containing concretions with little organic matrix. During preparation for molt, an additional matrix layer is deposited in both pairs of calcium bodies. In the bacteria-filled calcium bodies it contains a mixture of calcium carbonate and calcium phosphate, whereas only calcium carbonate is present in bacteria-free calcium bodies. After ecdysis, all mineral components in bacteria-free calcium bodies and the additional matrix layer in bacteria-filled calcium bodies are completely resorbed. During calcium resorption, the apical surface of the calcium body epithelium is deeply folded and electron dense granules are present in spaces between epithelial cells. Our results indicate that the presence of bacteria might be linked to calcium phosphate mineralization. Calcium bodies likely provide a source of calcium and potentially phosphate for the mineralization of the new cuticle after molt. Unlike other terrestrial isopods, H. riparius does not form sternal CaCO3 deposits and the bacteria-free calcium bodies might functionally replace them in this species. PMID:23554963

  17. Cable Bacteria in Freshwater Sediments

    PubMed Central

    Kristiansen, Michael; Frederiksen, Rasmus B.; Dittmer, Anders Lindequist; Bjerg, Jesper Tataru; Trojan, Daniela; Schreiber, Lars; Damgaard, Lars Riis; Schramm, Andreas; Nielsen, Lars Peter

    2015-01-01

    In marine sediments cathodic oxygen reduction at the sediment surface can be coupled to anodic sulfide oxidation in deeper anoxic layers through electrical currents mediated by filamentous, multicellular bacteria of the Desulfobulbaceae family, the so-called cable bacteria. Until now, cable bacteria have only been reported from marine environments. In this study, we demonstrate that cable bacteria also occur in freshwater sediments. In a first step, homogenized sediment collected from the freshwater stream Giber Å, Denmark, was incubated in the laboratory. After 2 weeks, pH signatures and electric fields indicated electron transfer between vertically separated anodic and cathodic half-reactions. Fluorescence in situ hybridization revealed the presence of Desulfobulbaceae filaments. In addition, in situ measurements of oxygen, pH, and electric potential distributions in the waterlogged banks of Giber Å demonstrated the presence of distant electric redox coupling in naturally occurring freshwater sediment. At the same site, filamentous Desulfobulbaceae with cable bacterium morphology were found to be present. Their 16S rRNA gene sequence placed them as a distinct sister group to the known marine cable bacteria, with the genus Desulfobulbus as the closest cultured lineage. The results of the present study indicate that electric currents mediated by cable bacteria could be important for the biogeochemistry in many more environments than anticipated thus far and suggest a common evolutionary origin of the cable phenotype within Desulfobulbaceae with subsequent diversification into a freshwater and a marine lineage. PMID:26116678

  18. BioNLP Shared Task--The Bacteria Track.

    PubMed

    Bossy, Robert; Jourde, Julien; Manine, Alain-Pierre; Veber, Philippe; Alphonse, Erick; van de Guchte, Maarten; Bessières, Philippe; Nédellec, Claire

    2012-06-26

    We present the BioNLP 2011 Shared Task Bacteria Track, the first Information Extraction challenge entirely dedicated to bacteria. It includes three tasks that cover different levels of biological knowledge. The Bacteria Gene Renaming supporting task is aimed at extracting gene renaming and gene name synonymy in PubMed abstracts. The Bacteria Gene Interaction is a gene/protein interaction extraction task from individual sentences. The interactions have been categorized into ten different sub-types, thus giving a detailed account of genetic regulations at the molecular level. Finally, the Bacteria Biotopes task focuses on the localization and environment of bacteria mentioned in textbook articles. We describe the process of creation for the three corpora, including document acquisition and manual annotation, as well as the metrics used to evaluate the participants' submissions. Three teams submitted to the Bacteria Gene Renaming task; the best team achieved an F-score of 87%. For the Bacteria Gene Interaction task, the only participant's score had reached a global F-score of 77%, although the system efficiency varies significantly from one sub-type to another. Three teams submitted to the Bacteria Biotopes task with very different approaches; the best team achieved an F-score of 45%. However, the detailed study of the participating systems efficiency reveals the strengths and weaknesses of each participating system. The three tasks of the Bacteria Track offer participants a chance to address a wide range of issues in Information Extraction, including entity recognition, semantic typing and coreference resolution. We found common trends in the most efficient systems: the systematic use of syntactic dependencies and machine learning. Nevertheless, the originality of the Bacteria Biotopes task encouraged the use of interesting novel methods and techniques, such as term compositionality, scopes wider than the sentence.

  19. Bacteria Counter

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Science Applications, Inc.'s ATP Photometer makes a rapid and accurate count of the bacteria in a body fluid sample. Instrument provides information on the presence and quantity of bacteria by measuring the amount of light emitted by the reaction between two substances. Substances are ATP adenosine triphosphate and luciferase. The reactants are applied to a human body sample and the ATP Photometer observes the intensity of the light emitted displaying its findings in a numerical output. Total time lapse is usually less than 10 minutes, which represents a significant time savings in comparison of other techniques. Other applications are measuring organisms in fresh and ocean waters, determining bacterial contamination of foodstuffs, biological process control in the beverage industry, and in assay of activated sewage sludge.

  20. Review on SERS of Bacteria

    PubMed Central

    Mosier-Boss, Pamela A.

    2017-01-01

    Surface enhanced Raman spectroscopy (SERS) has been widely used for chemical detection. Moreover, the inherent richness of the spectral data has made SERS attractive for use in detecting biological materials, including bacteria. This review discusses methods that have been used to obtain SERS spectra of bacteria. The kinds of SERS substrates employed to obtain SERS spectra are discussed as well as how bacteria interact with silver and gold nanoparticles. The roll of capping agents on Ag/Au NPs in obtaining SERS spectra is examined as well as the interpretation of the spectral data. PMID:29137201

  1. Bioenergetics of photoheterotrophic bacteria in the oceans.

    PubMed

    Kirchman, David L; Hanson, Thomas E

    2013-04-01

    Photoheterotrophic microbes, such as proteorhodopsin (PR)-based phototrophic (PRP) and aerobic anoxygenic phototrophic (AAP) bacteria, are well known to be abundant in the oceans, potentially playing unique roles in biogeochemical cycles. However, the contribution of phototrophy to the energy requirements of these bacteria has not been quantitatively examined to date. To better understand the implications of photoheterophy in the oceans, we calculated energy benefits and costs of phototrophy and compared net benefits with maintenance costs. Benefits depend on the number of photosynthetic units (PSUs), absorption cross-section area of each PSU as function of wavelength, the in situ light quality, and the energy yield per absorbed photon. For costs we considered the energy required for the synthesis of pigments, amino acids and proteins in each PSU. Our calculations indicate that AAP bacteria harvest more light energy than do PRP bacteria, but the costs of phototrophy are much higher for AAP bacteria. Still, the net energy gained by AAP bacteria is often sufficient to meet maintenance costs, while that is not the case for PRP bacteria except with high light intensities and large numbers of proteorhodopsin molecules per cell. The low costs and simplicity of PR-based phototrophy explain the high abundance of proteorhodopsin genes in the oceans. However, even for AAP bacteria, the net energy yield of phototrophy is apparently too low to influence the distribution of photoheterotrophic bacteria among various marine systems. © 2012 Society for Applied Microbiology and Blackwell Publishing Ltd.

  2. Amoeba-Resisting Bacteria and Ventilator-Associated Pneumonia

    PubMed Central

    La Scola, Bernard; Boyadjiev, Ioanna; Greub, Gilbert; Khamis, Atieh; Martin, Claude

    2003-01-01

    To evaluate the role of amoeba-associated bacteria as agents of ventilator-associated pneumonia (VAP), we tested the water from an intensive care unit (ICU) every week for 6 months for such bacteria isolates; serum samples and bronchoalveolar lavage samples (BAL) were also obtained from 30 ICU patients. BAL samples were examined for amoeba-associated bacteria DNA by suicide-polymerase chain reaction, and serum samples were tested against ICU amoeba-associated bacteria. A total of 310 amoeba-associated bacteria from10 species were isolated. Twelve of 30 serum samples seroconverted to one amoeba-associated bacterium isolated in the ICU, mainly Legionella anisa and Bosea massiliensis, the most common isolates from water (p=0.021). Amoeba-associated bacteria DNA was detected in BAL samples from two patients whose samples later seroconverted. Seroconversion was significantly associated with VAP and systemic inflammatory response syndrome, especially in patients for whom no etiologic agent was found by usual microbiologic investigations. Amoeba-associated bacteria might be a cause of VAP in ICUs, especially when microbiologic investigations are negative. PMID:12890321

  3. Unravelling the contribution of lactic acid bacteria and acetic acid bacteria to cocoa fermentation using inoculated organisms.

    PubMed

    Ho, Van Thi Thuy; Fleet, Graham H; Zhao, Jian

    2018-08-20

    Cocoa beans (Theobroma cacao L.) are the raw material for chocolate production. Fermentation of the bean pulp by microorganisms is essential for developing the precursors of chocolate flavour. Currently, the cocoa fermentation is still conducted by an uncontrolled traditional process via a consortium of indigenous species of yeasts, lactic acid bacteria and acetic acid bacteria. Although the essential contribution of yeasts to the production of good quality beans and, typical chocolate character is generally agreed, the roles of lactic acid bacteria and acetic acid bacteria are less certain. The objective of this study was to investigate the contribution of LAB and AAB in cocoa bean fermentation by conducting small scale laboratory fermentations under aseptic conditions, inoculated with different groups of microorganisms previously isolated from spontaneous cocoa fermentations. The inoculation protocols were: (1) four yeasts Hanseniaspora guilliermondii, Pichia kudriavzevii, Kluyveromyces marxianus and Saccharomyces cerevisiae; (2) four yeasts plus the lactic acid bacteria Lactobacillus plantarum and Lactobacillus fermentum; (3) four yeasts plus the acetic acid bacteria Acetobacter pasteurianus and Gluconobacter frateuri and (4) four yeasts plus two lactic acid bacteria and two acetic acid bacteria. Only the inoculated species were detected in the microbiota of their respective fermentations. Beans from the inoculated fermentations showed no significant differences in colour, shell weights and concentrations of residual sugars, alcohols and esters (p>0.05), but they were slightly different in contents of lactic acid and acetic acid (p<0.05). All beans were fully brown and free of mould. Residual sugar levels were less than 2.6 mg/g while the shell contents and ethanol were in the range of 11-13.4% and 4.8-7 mg/g, respectively. Beans fermented in the presence of LAB contained higher levels of lactic acid (0.6-1.2 mg/g) whereas higher concentrations of acetic acid

  4. Antibacterial Activities of Endophytic Bacteria Isolated from Taxus brevifolia Against Foodborne Pathogenic Bacteria.

    PubMed

    Islam, Nurul; Choi, Jaehyuk; Baek, Kwang-Hyun

    2018-05-01

    Endophytes are a potential source of novel bioactive compounds with medicinal properties. In this study, 41 endophytic bacteria (EB) were isolated from tissues of a medicinally important plant Taxus brevifolia (Pacific yew). The objective was to screen all the EB isolates for their antibacterial effects against five foodborne pathogenic bacteria: Bacillus cereus ATCC10876, Staphylococcus aureus ATCC12600, Listeria monocytogenes ATCC19115, Escherichia coli ATCC43890, and Salmonella Typhimurium ATCC19585. Among the EB isolates, T. brevifolia seed (TbS)-8, T. brevifolia fleshy part of fruit (TbFl)-10, T. brevifolia leaf (TbL)-22, TbS-29, and TbL-34 exerted significant antibacterial activity against the tested foodborne pathogens. Especially TbFl-10 showed the highest antibacterial activity against all the tested bacteria and was identified as Paenibacillus kribbensis (Pk). Furthermore, an ethyl acetate extract of Pk-TbFl-10 possessed antibacterial activities against the tested five foodborne pathogenic bacteria, with zones of inhibition from 15.71 ± 2.85 to 13.01 ± 2.12 mm. Scanning electron microscopy analysis revealed ruptured, lysed, shrunk, and swollen cells of all the tested foodborne pathogens treated with the ethyl acetate extract of Pk-TbFl-10, suggesting that a metabolite(s) of Pk-TbFl-10 penetrates the cell membrane and causes cell lysis leading to cell death. Our results indicate that Pk-TbFl-10 isolated from T. brevifolia can serve as a novel source of natural antibacterial agents against foodborne pathogenic bacteria, with potential applications in the pharmaceutical industry.

  5. Using Fluorescent Viruses for Detecting Bacteria in Water

    NASA Technical Reports Server (NTRS)

    Tabacco, Mary Beth; Qian, Xiaohua; Russo, Jaimie A.

    2009-01-01

    A method of detecting water-borne pathogenic bacteria is based partly on established molecular-recognition and fluorescent-labeling concepts, according to which bacteria of a species of interest are labeled with fluorescent reporter molecules and the bacteria can then be detected by fluorescence spectroscopy. The novelty of the present method lies in the use of bacteriophages (viruses that infect bacteria) to deliver the fluorescent reporter molecules to the bacteria of the species of interest.

  6. Bacteria foraging in turbulent waters

    NASA Astrophysics Data System (ADS)

    Taylor, John; Tang, Wenbo; Stocker, Roman

    2009-11-01

    Marine bacteria are the Ocean's recyclers, contributing to as much as 50% of the productivity of the marine food web. Bacteria forage on patches of dissolved nutrients using chemotaxis, the ability to swim up chemical gradients. As turbulence is ubiquitous in the Ocean, it is important to understand how turbulent flow conditions affect bacterial foraging. We used three-dimensional, isotropic direct numerical simulations coupled with a bacterial transport equation to address this problem. After the flow is continuously forced until it reaches a steady state, microscale nutrient patches are injected into the turbulent flow, and stirring produces thin nutrient filaments. Two populations of bacteria compete against each other: one population is motile and chemotactic (`active'), the other is non-motile (`passive'). The distribution of both populations is initially uniform. Chemotaxis allows active bacteria to cluster near the center of the nutrient filaments, increasing their nutrient uptake relative to passive bacteria. Increasing the turbulence intensity increases the short-term chemotactic advantage by quickly producing large gradients in the nutrient concentration, but also leads to rapid mixing of the nutrient field, which makes the chemotactic advantage short-lived. The results suggest that the evolutionary advantage of chemotaxis, based on the increase in nutrient uptake relative to the energetic cost of swimming, strongly depends on the turbulence level.

  7. Screening and biological characteristics of fufenozide degrading bacteria

    NASA Astrophysics Data System (ADS)

    Xu, Chenhao; Gong, Mingfu; Guan, Qinlan; Deng, Xia; Deng, Hongyan; Huang, Jiao

    2018-04-01

    Fufenozide was a novel pesticide for the control of Lepidoptera pests, which was highly toxic to silkworm. Fufenozide-contaminated soil samples were collected and the bacteria that degrade fufenozide were isolated and screened by selective medium. The colony characteristics, cell characteristics and degradation characteristics in different concentrations fufenozide of the fufenozide degrading bacteria were studied. The results indicated that seven strains of fufenozide degradeing bacteria, named as DDH01, DDH03, DDH04, DDH04, DDH05, DDH07 and DDH07 respectively, were isolated from soil contaminated with fufenozide. DDH01, DDH02, DDH04 and DDH05 of seven fufenozide degrading bacteria, was gram-positive bacteria, and DDH03, DDH06 and DDH07 was gram-negative bacteria. All of seven strains of fufenozide degrading bacteria were not spores, weeks flagella, rod-shaped bacteria. DDH06 and DDH07 had capsules, and the remaining five strains had not capsule. The colonies formed by seven strains of fufenozide degradation bacteria on beef extract peptone medium plate were milky white colonies with irregular edges, thinner lawn, smaller colony with smooth surface. The growth of 7 strains of fufenozide degradation bacteria was significantly affected by the concentration of fufenozide, All of 7 strains grown in the range from 0.00025 g/mL to 1 g/mL of 10% fufenozide suspension. DDH2 was the best among the 7 strains of fufenozide degrading bacteria grown in 10% fufenozide suspension medium.

  8. Strategies and ecological roles of algicidal bacteria.

    PubMed

    Meyer, Nils; Bigalke, Arite; Kaulfuß, Anett; Pohnert, Georg

    2017-11-01

    In both freshwater and marine ecosystems, phytoplankton are the most dominant primary producers, contributing substantially to aquatic food webs. Algicidal bacteria that can associate to microalgae from the phytoplankton have the capability to control the proliferation and even to lyse them. These bacteria thus play an important role in shaping species composition in pelagic environments. In this review, we discuss and categorise strategies used by algicidal bacteria for the attack on microalgae. We highlight the complex regulation of algicidal activity and defence responses that govern alga-bacteria interactions. We also discuss how algicidal bacteria impact algal physiology and metabolism and survey the existing algicidal metabolites and enzymes. The review illustrates that the ecological role of algicidal bacteria is not yet fully understood and critically discusses the challenges in obtaining ecologically relevant data. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  9. Acetic acid bacteria: A group of bacteria with versatile biotechnological applications.

    PubMed

    Saichana, Natsaran; Matsushita, Kazunobu; Adachi, Osao; Frébort, Ivo; Frebortova, Jitka

    2015-11-01

    Acetic acid bacteria are gram-negative obligate aerobic bacteria assigned to the family Acetobacteraceae of Alphaproteobacteria. They are members of the genera Acetobacter, Gluconobacter, Gluconacetobacter, Acidomonas, Asaia, Kozakia, Swaminathania, Saccharibacter, Neoasaia, Granulibacter, Tanticharoenia, Ameyamaea, Neokomagataea, and Komagataeibacter. Many strains of Acetobacter and Komagataeibacter have been known to possess high acetic acid fermentation ability as well as the acetic acid and ethanol resistance, which are considered to be useful features for industrial production of acetic acid and vinegar, the commercial product. On the other hand, Gluconobacter strains have the ability to perform oxidative fermentation of various sugars, sugar alcohols, and sugar acids leading to the formation of several valuable products. Thermotolerant strains of acetic acid bacteria were isolated in order to serve as the new strains of choice for industrial fermentations, in which the cooling costs for maintaining optimum growth and production temperature in the fermentation vessels could be significantly reduced. Genetic modifications by adaptation and genetic engineering were also applied to improve their properties, such as productivity and heat resistance. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Bacteria-mediated bisphenol A degradation.

    PubMed

    Zhang, Weiwei; Yin, Kun; Chen, Lingxin

    2013-07-01

    Bisphenol A (BPA) is an important monomer in the manufacture of polycarbonate plastics, food cans, and other daily used chemicals. Daily and worldwide usage of BPA and BPA-contained products led to its ubiquitous distribution in water, sediment/soil, and atmosphere. Moreover, BPA has been identified as an environmental endocrine disruptor for its estrogenic and genotoxic activity. Thus, BPA contamination in the environment is an increasingly worldwide concern, and methods to efficiently remove BPA from the environment are urgently recommended. Although many factors affect the fate of BPA in the environment, BPA degradation is mainly depended on the metabolism of bacteria. Many BPA-degrading bacteria have been identified from water, sediment/soil, and wastewater treatment plants. Metabolic pathways of BPA degradation in specific bacterial strains were proposed, based on the metabolic intermediates detected during the degradation process. In this review, the BPA-degrading bacteria were summarized, and the (proposed) BPA degradation pathway mediated by bacteria were referred.

  11. Heterotrophic bacteria in drinking water distribution system: a review.

    PubMed

    Chowdhury, Shakhawat

    2012-10-01

    The microbiological quality of drinking water in municipal water distribution systems (WDS) depends on several factors. Free residual chlorine and/or chloramines are typically used to minimize bacterial recontamination and/or regrowth in WDS. Despite such preventive measures, regrowth of heterotrophic (HPC) and opportunistic bacteria in bulk water and biofilms has yet to be controlled completely. No approach has shown complete success in eliminating biofilms or HPC bacteria from bulk water and pipe surfaces. Biofilms can provide shelter for pathogenic bacteria and protect these bacteria from disinfectants. Some HPC bacteria may be associated with aesthetic and non-life threatening diseases. Research to date has achieved important success in understanding occurrence and regrowth of bacteria in bulk water and biofilms in WDS. To achieve comprehensive understanding and to provide efficient control against bacteria regrowth, future research on bacteria regrowth dynamics and their implications is warranted. In this study, a review was performed on the literature published in this area. The findings and limitations of these papers are summarized. Occurrences of bacteria in WDS, factors affecting bacteria regrowth in bulk water and biofilms, bacteria control strategies, sources of nutrients, human health risks from bacterial exposure, modelling of bacteria regrowth and methods of bacteria sampling and detection and quantification are investigated. Advances to date are noted, and future research needs are identified. Finally, research directions are proposed to effectively control HPC and opportunistic bacteria in bulk water and biofilms in WDS.

  12. Spoilage bacteria of fresh broiler chicken carcasses.

    PubMed

    Russell, S M; Fletcher, D L; Cox, N A

    1995-12-01

    Studies were conducted to identify the bacteria responsible for spoilage of fresh broiler chicken carcasses and to characterize the off-odors these bacteria produce. Broiler carcasses were collected from processing plants in the northeast Georgia area, the southeastern U.S., Arkansas, California, and North Carolina. The carcasses were allowed to spoil under controlled conditions at 3 C and spoilage bacteria were isolated. Each spoilage bacterium was separately inoculated into a sterile chicken skin medium, incubated at 25 C for 48 h, and subjectively evaluated for odor. The bacteria isolated from spoiled carcasses that consistently produced off-odors in the chicken skin medium, regardless of the geographical location from which the chickens were obtained, were Shewanella putrefaciens A, B, and D, Pseudomonas fluorescens A, B, and D, and Pseudomonas fragi. These bacteria produced off-odors that resembled "sulfur", "dishrag", "ammonia", "wet dog", "skunk", "dirty socks", "rancid fish", "unspecified bad odor", or a sweet smell resembling "canned corn". Odors produced by the spoilage bacteria were varied; however, odors most associated with spoiled poultry, such as "dishraggy" odors, were produced by the bacteria that were most consistently isolated, such as S. putrefaciens and the pseudomonads.

  13. Bacteria in atmospheric waters: Detection, characteristics and implications

    NASA Astrophysics Data System (ADS)

    Hu, Wei; Niu, Hongya; Murata, Kotaro; Wu, Zhijun; Hu, Min; Kojima, Tomoko; Zhang, Daizhou

    2018-04-01

    In this review paper, we synthesize the current knowledges about bacteria in atmospheric waters, e.g., cloud, fog, rain, and snow, most of which were obtained very recently. First, we briefly describe the importance of bacteria in atmospheric waters, i.e., the essentiality of studying bacteria in atmospheric waters in understanding aerosol-cloud-precipitation-climate interactions in the Earth system. Next, approaches to collect atmospheric water samples for the detection of bacteria and methods to identify the bacteria are summarized and compared. Then the available data on the abundance, viability and community composition of bacteria in atmospheric waters are summarized. The average bacterial concentration in cloud water was usually on the order 104-105 cells mL-1, while that in precipitation on the order 103-104 cells mL-1. Most of the bacteria were viable or metabolically active. Their community composition was highly diverse and differed at various sites. Factors potentially influencing the bacteria, e.g., air pollution levels and sources, meteorological conditions, seasonal effect, and physicochemical properties of atmospheric waters, are described. After that, the implications of bacteria present in atmospheric waters, including their effect on nucleation in clouds, atmospheric chemistry, ecosystems and public health, are briefly discussed. Finally, based on the current knowledges on bacteria in atmospheric waters, which in fact remains largely unknown, we give perspectives that should be paid attention to in future studies.

  14. Magnetic Bacteria.

    ERIC Educational Resources Information Center

    Nelson, Jane Bray; Nelson, Jim

    1992-01-01

    Describes the history of Richard Blakemore's discovery of magnetotaxic organisms. Discusses possible reasons why the magnetic response in bacteria developed. Proposes research experiments integrating biology and physics in which students investigate problems using cultures of magnetotaxic organisms. (MDH)

  15. Protist-Bacteria Associations: Gammaproteobacteria and Alphaproteobacteria Are Prevalent as Digestion-Resistant Bacteria in Ciliated Protozoa

    PubMed Central

    Gong, Jun; Qing, Yao; Zou, Songbao; Fu, Rao; Su, Lei; Zhang, Xiaoli; Zhang, Qianqian

    2016-01-01

    Protistan bacterivory, a microbial process involving ingestion and digestion, is ecologically important in the microbial loop in aquatic and terrestrial ecosystems. While bacterial resistance to protistan ingestion has been relatively well understood, little is known about protistan digestion in which some ingested bacteria could not be digested in cells of major protistan grazers in the natural environment. Here we report the phylogenetic identities of digestion-resistant bacteria (DRB) that could survive starvation and form relatively stable associations with 11 marine and one freshwater ciliate species. Using clone library and sequencing of 16S rRNA genes, we found that the protistan predators could host a high diversity of DRB, most of which represented novel bacterial taxa that have not been cultivated. The localization inside host cells, quantity, and viability of these bacteria were checked using fluorescence in situ hybridization. The DRB were affiliated with Actinobacteria, Bacteroidetes, Firmicutes, Parcubacteria (OD1), Planctomycetes, and Proteobacteria, with Gammaproteobacteria and Alphaproteobacteria being the most frequently occurring classes. The dominance of Gamma- and Alphaproteobacteria corresponds well to a previous study of Global Ocean Sampling metagenomic data showing the widespread types of bacterial type VI and IV secretion systems (T6SS and T4SS) in these two taxa, suggesting a putatively significant role of secretion systems in promoting marine protist-bacteria associations. In the DRB assemblages, opportunistic bacteria such as Alteromonadaceae, Pseudoalteromonadaceae, and Vibrionaceae often presented with high proportions, indicating these bacteria could evade protistan grazing thus persist and accumulate in the community, which, however, contrasts with their well-known rarity in nature. This begs the question whether viral lysis is significant in killing these indigestible bacteria in microbial communities. Taken together, our study on

  16. Fourier transform-infrared spectroscopic methods for microbial ecology: analysis of bacteria, bacteria-polymer mixtures and biofilms

    NASA Technical Reports Server (NTRS)

    Nichols, P. D.; Henson, J. M.; Guckert, J. B.; Nivens, D. E.; White, D. C.

    1985-01-01

    Fourier transform-infrared (FT-IR) spectroscopy has been used to rapidly and nondestructively analyze bacteria, bacteria-polymer mixtures, digester samples and microbial biofilms. Diffuse reflectance FT-IR (DRIFT) analysis of freeze-dried, powdered samples offered a means of obtaining structural information. The bacteria examined were divided into two groups. The first group was characterized by a dominant amide I band and the second group of organisms displayed an additional strong carbonyl stretch at approximately 1740 cm-1. The differences illustrated by the subtraction spectra obtained for microbes of the two groups suggest that FT-IR spectroscopy can be utilized to recognize differences in microbial community structure. Calculation of specific band ratios has enabled the composition of bacteria and extracellular or intracellular storage product polymer mixtures to be determined for bacteria-gum arabic (amide I/carbohydrate C-O approximately 1150 cm-1) and bacteria-poly-beta-hydroxybutyrate (amide I/carbonyl approximately 1740 cm-1). The key band ratios correlate with the compositions of the material and provide useful information for the application of FT-IR spectroscopy to environmental biofilm samples and for distinguishing bacteria grown under differing nutrient conditions. DRIFT spectra have been obtained for biofilms produced by Vibrio natriegens on stainless steel disks. Between 48 and 144 h, an increase in bands at approximately 1440 and 1090 cm-1 was seen in FT-IR spectra of the V. natriegens biofilm. DRIFT spectra of mixed culture effluents of anaerobic digesters show differences induced by shifts in input feedstocks. The use of flow-through attenuated total reflectance has permitted in situ real-time changes in biofilm formation to be monitored and provides a powerful tool for understanding the interactions within adherent microbial consortia.

  17. Laser-Based Identification of Pathogenic Bacteria

    NASA Astrophysics Data System (ADS)

    Rehse, Steven J.

    2009-03-01

    Bacteria are ubiquitous in our world. From our homes, to our work environment, to our own bodies, bacteria are the omnipresent although often unobserved companions to human life. Physicists are typically untroubled professionally by the presence of these bacteria, as their study usually falls safely outside the realm of our typical domain. In the last 10 years, however, several events have occurred that demand the attention of the general populace — including the ranks of physicists among them.

  18. Emerging role of bacteria in oral carcinogenesis: a review with special reference to perio-pathogenic bacteria.

    PubMed

    Perera, Manosha; Al-Hebshi, Nezar Noor; Speicher, David J; Perera, Irosha; Johnson, Newell W

    2016-01-01

    Oral cancer, primarily oral squamous cell carcinoma (OSCC), continues to be a major global health problem with high incidence and low survival rates. While the major risk factors for this malignancy, mostly lifestyle related, have been identified, around 15% of oral cancer cases remain unexplained. In light of evidence implicating bacteria in the aetiology of some cancer types, several epidemiological studies have been conducted in the last decade, employing methodologies ranging from traditional culture techniques to 16S rRNA metagenomics, to assess the possible role of bacteria in OSCC. While these studies have demonstrated differences in microbial composition between cancerous and healthy tissues, they have failed to agree on specific bacteria or patterns of oral microbial dysbiosis to implicate in OSCC. On the contrary, some oral taxa, particularly Porphyromonas gingivalis and Fusobacterium nucleatum, show strong oral carcinogenic potential in vitro and in animal studies. Bacteria are thought to contribute to oral carcinogenesis via inhibition of apoptosis, activation of cell proliferation, promotion of cellular invasion, induction of chronic inflammation, and production of carcinogens. This narrative review provides a critical analysis of and an update on the association between bacteria and oral carcinogenesis and the possible mechanisms underlying it.

  19. Open reading frame 5 (ORF5), encoding a ferredoxinlike protein, and nifQ are cotranscribed with nifE, nifN, nifX, and ORF4 in Rhodobacter capsulatus.

    PubMed Central

    Moreno-Vivian, C; Hennecke, S; Pühler, A; Klipp, W

    1989-01-01

    DNA sequence analysis of a 1,600-base-pair fragment located downstream of nifENX in nif region A of Rhodobacter capsulatus revealed two additional open reading frames (ORFs): ORF5, encoding a ferredoxinlike protein, and nifQ. The ferredoxinlike gene product contained two cysteine motifs, typical of ferredoxins coordinating two 4Fe-4S clusters, but the distance between these two motifs was unusual for low-molecular-weight ferredoxins. The R. capsulatus nifQ gene product shared a high degree of homology with Klebsiella pneumoniae and Azotobacter vinelandii NifQ, including a typical cysteine motif located in the C-terminal part. nifQ insertion mutants and also an ORF5-nifQ double deletion mutant showed normal diazotrophic growth only in the presence of high concentrations of molybdate. This demonstrated that the gene encoding the ferredoxinlike protein is not essential for nitrogen fixation. No NifA-activated consensus promoter could be found in the intergenic region between nifENX-ORF4 and ORF5-nifQ. Analyses of a nifQ-lacZYA fusion revealed that transcription of nifQ was initiated at a promoter in front of nifE. In contrast to other nitrogen-fixing organisms, R. capsulatus nifE, nifN, nifX, ORF4, ORF5, and nifQ were organized in one transcriptional unit. PMID:2708314

  20. Quantification and Qualification of Bacteria Trapped in Chewed Gum

    PubMed Central

    Wessel, Stefan W.; van der Mei, Henny C.; Morando, David; Slomp, Anje M.; van de Belt-Gritter, Betsy; Maitra, Amarnath; Busscher, Henk J.

    2015-01-01

    Chewing of gum contributes to the maintenance of oral health. Many oral diseases, including caries and periodontal disease, are caused by bacteria. However, it is unknown whether chewing of gum can remove bacteria from the oral cavity. Here, we hypothesize that chewing of gum can trap bacteria and remove them from the oral cavity. To test this hypothesis, we developed two methods to quantify numbers of bacteria trapped in chewed gum. In the first method, known numbers of bacteria were finger-chewed into gum and chewed gums were molded to standard dimensions, sonicated and plated to determine numbers of colony-forming-units incorporated, yielding calibration curves of colony-forming-units retrieved versus finger-chewed in. In a second method, calibration curves were created by finger-chewing known numbers of bacteria into gum and subsequently dissolving the gum in a mixture of chloroform and tris-ethylenediaminetetraacetic-acid (TE)-buffer. The TE-buffer was analyzed using quantitative Polymerase-Chain-Reaction (qPCR), yielding calibration curves of total numbers of bacteria versus finger-chewed in. Next, five volunteers were requested to chew gum up to 10 min after which numbers of colony-forming-units and total numbers of bacteria trapped in chewed gum were determined using the above methods. The qPCR method, involving both dead and live bacteria yielded higher numbers of retrieved bacteria than plating, involving only viable bacteria. Numbers of trapped bacteria were maximal during initial chewing after which a slow decrease over time up to 10 min was observed. Around 108 bacteria were detected per gum piece depending on the method and gum considered. The number of species trapped in chewed gum increased with chewing time. Trapped bacteria were clearly visualized in chewed gum using scanning-electron-microscopy. Summarizing, using novel methods to quantify and qualify oral bacteria trapped in chewed gum, the hypothesis is confirmed that chewing of gum can trap

  1. Communication among Oral Bacteria

    PubMed Central

    Kolenbrander, Paul E.; Andersen, Roxanna N.; Blehert, David S.; Egland, Paul G.; Foster, Jamie S.; Palmer, Robert J.

    2002-01-01

    Human oral bacteria interact with their environment by attaching to surfaces and establishing mixed-species communities. As each bacterial cell attaches, it forms a new surface to which other cells can adhere. Adherence and community development are spatiotemporal; such order requires communication. The discovery of soluble signals, such as autoinducer-2, that may be exchanged within multispecies communities to convey information between organisms has emerged as a new research direction. Direct-contact signals, such as adhesins and receptors, that elicit changes in gene expression after cell-cell contact and biofilm growth are also an active research area. Considering that the majority of oral bacteria are organized in dense three-dimensional biofilms on teeth, confocal microscopy and fluorescently labeled probes provide valuable approaches for investigating the architecture of these organized communities in situ. Oral biofilms are readily accessible to microbiologists and are excellent model systems for studies of microbial communication. One attractive model system is a saliva-coated flowcell with oral bacterial biofilms growing on saliva as the sole nutrient source; an intergeneric mutualism is discussed. Several oral bacterial species are amenable to genetic manipulation for molecular characterization of communication both among bacteria and between bacteria and the host. A successful search for genes critical for mixed-species community organization will be accomplished only when it is conducted with mixed-species communities. PMID:12209001

  2. Interactions among sulfide-oxidizing bacteria

    NASA Technical Reports Server (NTRS)

    Poplawski, R.

    1985-01-01

    The responses of different phototrophic bacteria in a competitive experimental system are studied, one in which primary factors such as H2S or light limited photometabolism. Two different types of bacteria shared one limited source of sulfide under specific conditions of light. The selection of a purple and a green sulfur bacteria and the cyanobacterium was based on their physiological similarity and also on the fact that they occur together in microbial mats. They all share anoxygenic photosynthesis, and are thus probably part of an evolutionary continuum of phototrophic organisms that runs from, strictly anaerobic physiology to the ability of some cyanobacteria to shift between anoxygenic bacterial style photosynthesis and the oxygenic kind typical of eukaryotes.

  3. Spectroscopic diagnostics for bacteria in biologic sample

    DOEpatents

    El-Sayed, Mostafa A.; El-Sayed, Ivan H.

    2002-01-01

    A method to analyze and diagnose specific bacteria in a biologic sample using spectroscopy is disclosed. The method includes obtaining the spectra of a biologic sample of a non-infected patient for use as a reference, subtracting the reference from the spectra of an infected sample, and comparing the fingerprint regions of the resulting differential spectrum with reference spectra of bacteria in saline. Using this diagnostic technique, specific bacteria can be identified sooner and without culturing, bacteria-specific antibiotics can be prescribed sooner, resulting in decreased likelihood of antibiotic resistance and an overall reduction of medical costs.

  4. Emerging role of bacteria in oral carcinogenesis: a review with special reference to perio-pathogenic bacteria

    PubMed Central

    Perera, Manosha; Al-hebshi, Nezar Noor; Speicher, David J.; Perera, Irosha; Johnson, Newell W.

    2016-01-01

    Oral cancer, primarily oral squamous cell carcinoma (OSCC), continues to be a major global health problem with high incidence and low survival rates. While the major risk factors for this malignancy, mostly lifestyle related, have been identified, around 15% of oral cancer cases remain unexplained. In light of evidence implicating bacteria in the aetiology of some cancer types, several epidemiological studies have been conducted in the last decade, employing methodologies ranging from traditional culture techniques to 16S rRNA metagenomics, to assess the possible role of bacteria in OSCC. While these studies have demonstrated differences in microbial composition between cancerous and healthy tissues, they have failed to agree on specific bacteria or patterns of oral microbial dysbiosis to implicate in OSCC. On the contrary, some oral taxa, particularly Porphyromonas gingivalis and Fusobacterium nucleatum, show strong oral carcinogenic potential in vitro and in animal studies. Bacteria are thought to contribute to oral carcinogenesis via inhibition of apoptosis, activation of cell proliferation, promotion of cellular invasion, induction of chronic inflammation, and production of carcinogens. This narrative review provides a critical analysis of and an update on the association between bacteria and oral carcinogenesis and the possible mechanisms underlying it. PMID:27677454

  5. [Improving Agricultural Safety of Soils Contaminated with Polycyclic Aromatic Hydrocarbons by In Situ Bioremediation].

    PubMed

    Jiao, Hai-huan; Pan, Jian-gang; Xu, Shena-jun; Bai, Zhi-hui; Wang, Dong; Huang, Zhan-bin

    2015-08-01

    In order to reduce the risk of enrichment of polycyclic aromatic hydrocarbons (PAHs) in crops, reduce the potential hazards of food-sourced PAHs to human and increase the agricultural safety of PAHs contaminated soils, the bio-augmented removal of polycyclic aromatic hydrocarbons (PAHs) was investigated through in situ remediation by introducing Rhodobacter sphaeroides (RS) into the agricultural soil contaminated by PAHs. The 50-times diluted RS was sprayed on leaf surface (in area B) or irrigated to roots (in area D). The treatment of spraying water of the equal amount was taken as the control (A) and the wheat field without any treatment as the blank (CK). Treatments were conducted since wheat seeding. Soil and wheat samples were collected in the mature period to analyze the changes of community structure of the soil microorganisms and the concentration of PAHs in soils and investigate the strengthening and restoration effects of RS on PAHs contaminated soils. Compared to the CK Area, the areas B and D revealed that the variation ratio of phospholipid fatty acids (PLFAs) that were the biomarker of soil microorganisms was 29.6%, and the ratio of total PAHs removed was increased 1.59 times and 1.68 times, respectively. The dry weight of wheat grain of 50 spikes was increased by 8.95% and 12.5%, respectively, and the enrichment factor of total PAHs was decreased by 58.9% and 62.2% respectively in the wheat grains. All the results suggested that RS reduced enrichment of PAHs in wheat grains and increased wheat yield, which had great exploitation and utilization potentiality in repairing and improving the agricultural safety of the soils contaminated with PHAs.

  6. Role of small subunit in mediating assembly of red-type form I Rubisco.

    PubMed

    Joshi, Jidnyasa; Mueller-Cajar, Oliver; Tsai, Yi-Chin C; Hartl, F Ulrich; Hayer-Hartl, Manajit

    2015-01-09

    Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) is the key enzyme involved in photosynthetic carbon fixation, converting atmospheric CO2 to organic compounds. Form I Rubisco is a cylindrical complex composed of eight large (RbcL) subunits that are capped by four small subunits (RbcS) at the top and four at the bottom. Form I Rubiscos are phylogenetically divided into green- and red-type. Some red-type enzymes have catalytically superior properties. Thus, understanding their folding and assembly is of considerable biotechnological interest. Folding of the green-type RbcL subunits in cyanobacteria is mediated by the GroEL/ES chaperonin system, and assembly to holoenzyme requires specialized chaperones such as RbcX and RAF1. Here, we show that the red-type RbcL subunits in the proteobacterium Rhodobacter sphaeroides also fold with GroEL/ES. However, assembly proceeds in a chaperone-independent manner. We find that the C-terminal β-hairpin extension of red-type RbcS, which is absent in green-type RbcS, is critical for efficient assembly. The β-hairpins of four RbcS subunits form an eight-stranded β-barrel that protrudes into the central solvent channel of the RbcL core complex. The two β-barrels stabilize the complex through multiple interactions with the RbcL subunits. A chimeric green-type RbcS carrying the C-terminal β-hairpin renders the assembly of a cyanobacterial Rubisco independent of RbcX. Our results may facilitate the engineering of crop plants with improved growth properties expressing red-type Rubisco. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  7. Hydrogen bond network around the semiquinone of the secondary quinone acceptor Q(B) in bacterial photosynthetic reaction centers.

    PubMed

    Taguchi, Alexander T; O'Malley, Patrick J; Wraight, Colin A; Dikanov, Sergei A

    2015-05-07

    By utilizing a combined pulsed EPR and DFT approach, the high-resolution structure of the QB site semiquinone (SQB) was determined. The development of such a technique is crucial toward an understanding of protein-bound semiquinones on the structural level, as (i) membrane protein crystallography typically results in low resolution structures, and (ii) obtaining protein crystals in the semiquinone form is rarely feasible. The SQB hydrogen bond network was investigated with Q- (∼34 GHz) and X-band (∼9.7 GHz) pulsed EPR spectroscopy on fully deuterated reactions centers from Rhodobacter sphaeroides. Simulations in the SQB g-tensor reference frame provided the principal values and directions of the H-bond proton hyperfine tensors. Three protons were detected, one with an anisotropic tensor component, T = 4.6 MHz, assigned to the histidine NδH of His-L190, and two others with similar anisotropic constants T = 3.2 and 3.0 MHz assigned to the peptide NpH of Gly-L225 and Ile-L224, respectively. Despite the strong similarity in the peptide couplings, all hyperfine tensors were resolved in the Q-band ENDOR spectra. The Euler angles describing the series of rotations that bring the hyperfine tensors into the SQB g-tensor reference frame were obtained by least-squares fitting of the spectral simulations to the ENDOR data. These Euler angles show the locations of the hydrogen bonded protons with respect to the semiquinone. Our geometry optimized model of SQB used in previous DFT work is in strong agreement with the angular constraints from the spectral simulations, providing the foundation for future joint pulsed EPR and DFT semiquinone structural determinations in other proteins.

  8. High-pressure modulation of the structure of the bacterial photochemical reaction center at physiological and cryogenic temperatures

    NASA Astrophysics Data System (ADS)

    Timpmann, Kõu; Kangur, Liina; Lõhmus, Ants; Freiberg, Arvi

    2017-07-01

    The optical absorption and fluorescence response to external high pressure of the reaction center membrane chromoprotein complex from the wild-type non-sulfur photosynthetic bacterium Rhodobacter sphaeroides was investigated using the native pigment cofactors as local molecular probes of the reaction center structure at physiological (ambient) and cryogenic (79 K) temperatures. In detergent-purified complexes at ambient temperature, abrupt blue shift and accompanied broadening of the special pair band was observed at about 265 MPa. These reversible in pressure features were assigned to a pressure-induced rupture of a lone hydrogen bond that binds the photo-chemically active L-branch primary electron donor bacteriochlorophyll cofactor to the surrounding protein scaffold. In native membrane-protected complexes the hydrogen bond rupture appeared significantly restricted and occurred close to about 500 MPa. The free energy change associated with the rupture of the special pair hydrogen bond in isolate complexes was estimated to be equal to about 12 kJ mol-1. In frozen samples at cryogenic temperatures the hydrogen bond remained apparently intact up to the maximum utilized pressure of 600 MPa. In this case, however, heterogeneous spectral response of the cofactors from the L-and M-branches was observed due to anisotropic build-up of the protein structure. While in solid phase, the special pair fluorescence as a function of pressure exactly followed the respective absorption spectrum at a constant Stokes shift, at ambient temperature, the two paths began to deviate strongly from one other at the hydrogen bond rupture pressure. This effect was tentatively interpreted by different emission properties of hydrogen-bound and hydrogen-unbound special pair exciton states.

  9. The effectiveness of styrene-maleic acid (SMA) copolymers for solubilisation of integral membrane proteins from SMA-accessible and SMA-resistant membranes.

    PubMed

    Swainsbury, David J K; Scheidelaar, Stefan; Foster, Nicholas; van Grondelle, Rienk; Killian, J Antoinette; Jones, Michael R

    2017-10-01

    Solubilisation of biological lipid bilayer membranes for analysis of their protein complement has traditionally been carried out using detergents, but there is increasing interest in the use of amphiphilic copolymers such as styrene maleic acid (SMA) for the solubilisation, purification and characterisation of integral membrane proteins in the form of protein/lipid nanodiscs. Here we survey the effectiveness of various commercially-available formulations of the SMA copolymer in solubilising Rhodobacter sphaeroides reaction centres (RCs) from photosynthetic membranes. We find that formulations of SMA with a 2:1 or 3:1 ratio of styrene to maleic acid are almost as effective as detergent in solubilising RCs, with the best solubilisation by short chain variants (<30kDa weight average molecular weight). The effectiveness of 10kDa 2:1 and 3:1 formulations of SMA to solubilise RCs gradually declined when genetically-encoded coiled-coil bundles were used to artificially tether normally monomeric RCs into dimeric, trimeric and tetrameric multimers. The ability of SMA to solubilise reaction centre-light harvesting 1 (RC-LH1) complexes from densely packed and highly ordered photosynthetic membranes was uniformly low, but could be increased through a variety of treatments to increase the lipid:protein ratio. However, proteins isolated from such membranes comprised clusters of complexes in small membrane patches rather than individual proteins. We conclude that short-chain 2:1 and 3:1 formulations of SMA are the most effective in solubilising integral membrane proteins, but that solubilisation efficiencies are strongly influenced by the size of the target protein and the density of packing of proteins in the membrane. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  10. Secondary coenzyme Q10 deficiency and oxidative stress in cultured fibroblasts from patients with riboflavin responsive multiple Acyl-CoA dehydrogenation deficiency.

    PubMed

    Cornelius, Nanna; Byron, Colleen; Hargreaves, Iain; Guerra, Paula Fernandez; Furdek, Andrea K; Land, John; Radford, Weston W; Frerman, Frank; Corydon, Thomas J; Gregersen, Niels; Olsen, Rikke K J

    2013-10-01

    Coenzyme Q10 (CoQ10) is essential for the energy production of the cells and as an electron transporter in the mitochondrial respiratory chain. CoQ10 links the mitochondrial fatty acid β-oxidation to the respiratory chain by accepting electrons from electron transfer flavoprotein-ubiquinone oxidoreductase (ETF-QO). Recently, it was shown that a group of patients with the riboflavin responsive form of multiple acyl-CoA dehydrogenation deficiency (RR-MADD) carrying inherited amino acid variations in ETF-QO also had secondary CoQ10 deficiency with beneficial effects of CoQ10 treatment, thus adding RR-MADD to an increasing number of diseases involving secondary CoQ10 deficiency. In this study, we show that moderately decreased CoQ10 levels in fibroblasts from six unrelated RR-MADD patients were associated with increased levels of mitochondrial reactive oxygen species (ROS). Treatment with CoQ10, but not with riboflavin, could normalize the CoQ10 level and decrease the level of ROS in the patient cells. Additionally, riboflavin-depleted control fibroblasts showed moderate CoQ10 deficiency, but not increased mitochondrial ROS, indicating that variant ETF-QO proteins and not CoQ10 deficiency are the causes of mitochondrial ROS production in the patient cells. Accordingly, the corresponding variant Rhodobacter sphaeroides ETF-QO proteins, when overexpressed in vitro, bind a CoQ10 pseudosubstrate, Q10Br, less tightly than the wild-type ETF-QO protein, suggesting that molecular oxygen can get access to the electrons in the misfolded ETF-QO protein, thereby generating superoxide and oxidative stress, which can be reversed by CoQ10 treatment.

  11. Transient binding of CO to Cu(B) in cytochrome c oxidase is dynamically linked to structural changes around a carboxyl group: a time-resolved step-scan Fourier transform infrared investigation.

    PubMed Central

    Heitbrink, Dirk; Sigurdson, Håkan; Bolwien, Carsten; Brzezinski, Peter; Heberle, Joachim

    2002-01-01

    The redox-driven proton pump cytochrome c oxidase is that enzymatic machinery of the respiratory chain that transfers electrons from cytochrome c to molecular oxygen and thereby splits molecular oxygen to form water. To investigate the reaction mechanism of cytochrome c oxidase on the single vibrational level, we used time-resolved step-scan Fourier transform infrared spectroscopy and studied the dynamics of the reduced enzyme after photodissociation of bound carbon monoxide across the mid-infrared range (2300-950 cm(-1)). Difference spectra of the bovine complex were obtained at -20 degrees C with 5 micros time resolution. The data demonstrate a dynamic link between the transient binding of CO to Cu(B) and changes in hydrogen bonding at the functionally important residue E(I-286). Variation of the pH revealed that the pK(a) of E(I-286) is >9.3 in the fully reduced CO-bound oxidase. Difference spectra of cytochrome c oxidase from beef heart are compared with those of the oxidase isolated from Rhodobacter sphaeroides. The bacterial enzyme does not show the environmental change in the vicinity of E(I-286) upon CO dissociation. The characteristic band shape appears, however, in redox-induced difference spectra of the bacterial enzyme but is absent in redox-induced difference spectra of mammalian enzyme. In conclusion, it is demonstrated that the dynamics of a large protein complex such as cytochrome c oxidase can be resolved on the single vibrational level with microsecond Fourier transform infrared spectroscopy. The applied methodology provides the basis for future investigations of the physiological reaction steps of this important enzyme. PMID:11751290

  12. Bacteria abundance and diversity of different life stages of Plutella xylostella (Lepidoptera: Plutellidae), revealed by bacteria culture-dependent and PCR-DGGE methods.

    PubMed

    Lin, Xiao-Li; Pan, Qin-Jian; Tian, Hong-Gang; Douglas, Angela E; Liu, Tong-Xian

    2015-03-01

    Microbial abundance and diversity of different life stages (fourth instar larvae, pupae and adults) of the diamondback moth, Plutella xylostella L., collected from field and reared in laboratory, were investigated using bacteria culture-dependent method and PCR-DGGE analysis based on the sequence of bacteria 16S rRNA V3 region gene. A large quantity of bacteria was found in all life stages of P. xylostella. Field population had higher quantity of bacteria than laboratory population, and larval gut had higher quantity than pupae and adults. Culturable bacteria differed in different life stages of P. xylostella. Twenty-five different bacterial strains were identified in total, among them 20 strains were presented in larval gut, only 8 strains in pupae and 14 strains in adults were detected. Firmicutes bacteria, Bacillus sp., were the most dominant species in every life stage. 15 distinct bands were obtained from DGGE electrophoresis gel. The sequences blasted in GenBank database showed these bacteria belonged to six different genera. Phylogenetic analysis showed the sequences of the bacteria belonged to the Actinobacteri, Proteobacteria and Firmicutes. Serratia sp. in Proteobacteria was the most abundant species in larval gut. In pupae, unculturable bacteria were the most dominant species, and unculturable bacteria and Serratia sp. were the most dominant species in adults. Our study suggested that a combination of molecular and traditional culturing methods can be effectively used to analyze and to determine the diversity of gut microflora. These known bacteria may play important roles in development of P. xylostella. © 2013 Institute of Zoology, Chinese Academy of Sciences.

  13. Lactic acid bacteria of meat and meat products.

    PubMed

    Egan, A F

    1983-09-01

    When the growth of aerobic spoilage bacteria is inhibited, lactic acid bacteria may become the dominant component of the microbial flora of meats. This occurs with cured meats and with meats packaged in films of low gas permeability. The presence of a flora of psychrotrophic lactic acid bacteria on vacuum-packaged fresh chilled meats usually ensures that shelf-life is maximal. When these organisms spoil meats it is generally by causing souring, however other specific types of spoilage do occur. Some strains cause slime formation and greening of cured meats, and others may produce hydrogen sulphide during growth on vacuum-packaged beef. The safety and stability of fermented sausages depends upon fermentation caused by lactic acid bacteria. Overall the presence on meats of lactic acid bacteria is more desirable than that of the types of bacteria they have replaced.

  14. Laminar flow assisted anisotropic bacteria absorption for chemotaxis delivery of bacteria-attached microparticle

    NASA Astrophysics Data System (ADS)

    Huh, Keon; Oh, Darong; Son, Seok Young; Yoo, Hyung Jung; Song, Byeonghwa; Cho, Dong-il Dan; Seo, Jong-Mo; Kim, Sung Jae

    2016-12-01

    The concepts of microrobots has been drawn significant attentions recently since its unprecedented applicability in nanotechnology and biomedical field. Bacteria attached microparticles presented in this work are one of pioneering microrobot technology for self-propulsion or producing kinetic energy from ambient for their motions. Microfluidic device, especially utilizing laminar flow characteristics, were employed for anisotropic attachment of Salmonella typhimurium flagellated chemotactic bacteria to 30 um × 30 um and 50 um × 50 um microparticles that made of biodegradable polymer. Any toxic chemicals or harmful treatments were excluded during the attachment process and it finished within 100 s for the anisotropic attachment. The attachments were directly confirmed by fluorescent intensity changes and SEM visualization. Chemotaxis motions were tracked using aspartate and the maximum velocity of the bacteria-attached microrobot was measured to be 5 um/s which is comparable to prior state of art technologies. This reusable and scalable method could play a key role in chemotaxis delivery of functional microparticles such as drug delivery system.

  15. Tyramine and phenylethylamine biosynthesis by food bacteria.

    PubMed

    Marcobal, Angela; De las Rivas, Blanca; Landete, José María; Tabera, Laura; Muñoz, Rosario

    2012-01-01

    Tyramine poisoning is caused by the ingestion of food containing high levels of tyramine, a biogenic amine. Any foods containing free tyrosine are subject to tyramine formation if poor sanitation and low quality foods are used or if the food is subject to temperature abuse or extended storage time. Tyramine is generated by decarboxylation of the tyrosine through tyrosine decarboxylase (TDC) enzymes derived from the bacteria present in the food. Bacterial TDC have been only unequivocally identified and characterized in Gram-positive bacteria, especially in lactic acid bacteria. Pyridoxal phosphate (PLP)-dependent TDC encoding genes (tyrDC) appeared flanked by a similar genetic organization in several species of lactic acid bacteria, suggesting a common origin by a single mobile genetic element. Bacterial TDC are also able to decarboxylate phenylalanine to produce phenylethylamine (PEA), another biogenic amine. The molecular knowledge of the genes involved in tyramine production has led to the development of molecular methods for the detection of bacteria able to produce tyramine and PEA. These rapid and simple methods could be used for the analysis of the ability to form tyramine by bacteria in order to evaluate the potential risk of tyramine biosynthesis in food products.

  16. Filamentous bacteria existence in aerobic granular reactors.

    PubMed

    Figueroa, M; Val del Río, A; Campos, J L; Méndez, R; Mosquera-Corral, A

    2015-05-01

    Filamentous bacteria are associated to biomass settling problems in wastewater treatment plants. In systems based on aerobic granular biomass they have been proposed to contribute to the initial biomass aggregation process. However, their development on mature aerobic granular systems has not been sufficiently studied. In the present research work, filamentous bacteria were studied for the first time after long-term operation (up to 300 days) of aerobic granular systems. Chloroflexi and Sphaerotilus natans have been observed in a reactor fed with synthetic wastewater. These filamentous bacteria could only come from the inoculated sludge. Thiothrix and Chloroflexi bacteria were observed in aerobic granular biomass treating wastewater from a fish canning industry. Meganema perideroedes was detected in a reactor treating wastewater from a plant processing marine products. As a conclusion, the source of filamentous bacteria in these mature aerobic granular systems fed with industrial effluents was the incoming wastewater.

  17. [Application of anaerobic bacteria detection in oral and maxillofacial infection].

    PubMed

    Bao, Zhen-ying; Lin, Qin; Meng, Yan-hong; He, Chun; Su, Jia-zeng; Peng, Xin

    2016-02-18

    To investigate the distribution and drug resistance of anaerobic bacteria in the patients with oral and maxillofacial infection. Aerobic and anaerobic bacteria cultures from 61 specimens of pus from the patients with oral and maxillofacial infection in the Department of Oral and Maxillofacial Surgery, Peking University School of Stomatology were identified. The culture type was evaluated by API 20A kit and drug resistance test was performed by Etest method. The clinical data and antibacterial agents for the treatment of the 61 cases were collected, and the final outcomes were recorded. The bacteria cultures were isolated from all the specimens, with aerobic bacteria only in 6 cases (9.8%), anaerobic bacteria only in 7 cases (11.5%), and both aerobic and anaerobic bacteria in 48 cases (78.7%). There were 55 infected cases (90.2%) with anaerobic bacteria, and 81 anaerobic bacteria stains were isolated. The highest bacteria isolation rate of Gram positive anaerobic bacteria could be found in Peptostreptococcus, Bifidobacterium and Pemphigus propionibacterium. No cefoxitin, amoxicillin/carat acid resistant strain was detected in the above three Gram positive anaerobic bacteria. The highest bacteria isolation rate of Gram negative anaerobic bacteria could be detected in Porphyromonas and Prevotella. No metronidazole, cefoxitin, amoxicillin/carat acid resistant strain was found in the two Gram negative anaerobic bacteria. In the study, 48 patients with oral and maxillofacial infection were treated according to the results of drug resistance testing, and the clinical cure rate was 81.3%. Mixed aerobic and anaerobic bacteria cultures are very common in most oral and maxillofacial infection patients. Anaerobic bacteria culture and drug resistance testing play an important role in clinical treatment.

  18. Small Universal Bacteria and Plasmid Computing Systems.

    PubMed

    Wang, Xun; Zheng, Pan; Ma, Tongmao; Song, Tao

    2018-05-29

    Bacterial computing is a known candidate in natural computing, the aim being to construct "bacterial computers" for solving complex problems. In this paper, a new kind of bacterial computing system, named the bacteria and plasmid computing system (BP system), is proposed. We investigate the computational power of BP systems with finite numbers of bacteria and plasmids. Specifically, it is obtained in a constructive way that a BP system with 2 bacteria and 34 plasmids is Turing universal. The results provide a theoretical cornerstone to construct powerful bacterial computers and demonstrate a concept of paradigms using a "reasonable" number of bacteria and plasmids for such devices.

  19. Survival of soil bacteria during prolonged desiccation.

    NASA Technical Reports Server (NTRS)

    Chen, M.; Alexander, M.

    1973-01-01

    A determination was made of the kinds and numbers of bacteria surviving when two soils were maintained in the laboratory under dry conditions for more than half a year. Certain non-spore-forming bacteria were found to survive in the dry condition for long periods. A higher percentage of drought-tolerant than drought-sensitive bacteria was able to grow at low water activities. When they were grown in media with high salt concentrations, bacteria generally became more tolerant of prolonged drought and they persisted longer. The percent of cells in a bacterial population that remained viable when exposed to drought stress varied with the stage of growth.

  20. Differential staining of bacteria: acid fast stain.

    PubMed

    Reynolds, Jackie; Moyes, Rita B; Breakwell, Donald P

    2009-11-01

    Acid-fastness is an uncommon characteristic shared by the genera Mycobacterium (Section 10A) and Nocardia. Because of this feature, this stain is extremely helpful in identification of these bacteria. Although Gram positive, acid-fast bacteria do not take the crystal violet into the wall well, appearing very light purple rather than the deep purple of normal Gram-positive bacteria. (c) 2009 by John Wiley & Sons, Inc.

  1. Transformation of gram positive bacteria by sonoporation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Yunfeng; Li, Yongchao

    The present invention provides a sonoporation-based method that can be universally applied for delivery of compounds into Gram positive bacteria. Gram positive bacteria which can be transformed by sonoporation include, for example, Bacillus, Streptococcus, Acetobacterium, and Clostridium. Compounds which can be delivered into Gram positive bacteria via sonoporation include nucleic acids (DNA or RNA), proteins, lipids, carbohydrates, viruses, small organic and inorganic molecules, and nano-particles.

  2. The role of adhesins in bacteria motility modification

    NASA Astrophysics Data System (ADS)

    Conrad, Jacinta; Gibiansky, Maxsim; Jin, Fan; Gordon, Vernita; Motto, Dominick; Shrout, Joshua; Parsek, Matthew; Wong, Gerard

    2010-03-01

    Bacterial biofilms are multicellular communities responsible for a broad range of infections. To investigate the early-stage formation of biofilms, we have developed high-throughput techniques to quantify the motility of surface-associated bacteria. We translate microscopy movies of bacteria into a searchable database of trajectories using tracking algorithms adapted from colloidal physics. By analyzing the motion of both wild-type (WT) and isogenic knockout mutants, we have previously characterized fundamental motility mechanisms in P. aeruginosa. Here, we develop biometric routines to recognize signatures of adhesion and trapping. We find that newly attached bacteria move faster than previously adherent bacteria, and are more likely to be oriented out-of-plane. Motility appendages influence the bacterium's ability to become trapped: WT bacteria exhibit two types of trapped trajectories, whereas flagella-deficient bacteria rarely become trapped. These results suggest that flagella play a key role in adhesion.

  3. Cd(II) Sorption on Montmorillonite-Humic acid-Bacteria Composites

    PubMed Central

    Du, Huihui; Chen, Wenli; Cai, Peng; Rong, Xingmin; Dai, Ke; Peacock, Caroline L.; Huang, Qiaoyun

    2016-01-01

    Soil components (e.g., clays, bacteria and humic substances) are known to produce mineral-organic composites in natural systems. Herein, batch sorption isotherms, isothermal titration calorimetry (ITC), and Cd K-edge EXAFS spectroscopy were applied to investigate the binding characteristics of Cd on montmorillonite(Mont)-humic acid(HA)-bacteria composites. Additive sorption and non-additive Cd(II) sorption behaviour is observed for the binary Mont-bacteria and ternary Mont-HA-bacteria composite, respectively. Specifically, in the ternary composite, the coexistence of HA and bacteria inhibits Cd adsorption, suggesting a “blocking effect” between humic acid and bacterial cells. Large positive entropies (68.1 ~ 114.4 J/mol/K), and linear combination fitting of the EXAFS spectra for Cd adsorbed onto Mont-bacteria and Mont-HA-bacteria composites, demonstrate that Cd is mostly bound to bacterial surface functional groups by forming inner-sphere complexes. All our results together support the assertion that there is a degree of site masking in the ternary clay mineral-humic acid-bacteria composite. Because of this, in the ternary composite, Cd preferentially binds to the higher affinity components-i.e., the bacteria. PMID:26792640

  4. Antibacterial activity of silver-killed bacteria: the "zombies" effect

    NASA Astrophysics Data System (ADS)

    Wakshlak, Racheli Ben-Knaz; Pedahzur, Rami; Avnir, David

    2015-04-01

    We report a previously unrecognized mechanism for the prolonged action of biocidal agents, which we denote as the zombies effect: biocidally-killed bacteria are capable of killing living bacteria. The concept is demonstrated by first killing Pseudomonas aeruginosa PAO1 with silver nitrate and then challenging, with the dead bacteria, a viable culture of the same bacterium: Efficient antibacterial activity of the killed bacteria is observed. A mechanism is suggested in terms of the action of the dead bacteria as a reservoir of silver, which, due to Le-Chatelier's principle, is re-targeted to the living bacteria. Langmuirian behavior, as well as deviations from it, support the proposed mechanism.

  5. Gastric spiral bacteria in small felids.

    PubMed

    Kinsel, M J; Kovarik, P; Murnane, R D

    1998-06-01

    Nine small cats, including one bobcat (Felis rufus), one Pallas cat (F. manul), one Canada lynx (F. lynx canadensis), two fishing cats (F. viverrina), two margays (F. wiedii), and two sand cats (F. margarita), necropsied between June 1995 and March 1997 had large numbers of gastric spiral bacteria, whereas five large cats, including one African lion (Panthera leo), two snow leopards (P. uncia), one Siberian tiger (P. tigris altaica), and one jaguar (P. onca), necropsied during the same period had none. All of the spiral organisms from the nine small cats were histologically and ultrastructurally similar. Histologically, the spiral bacteria were 5-14 microm long with five to nine coils per organism and were located both extracellularly within gastric glands and surface mucus, and intracellularly in parietal cells. Spiral bacteria in gastric mucosal scrapings from the Canada lynx, one fishing cat, and the two sand cats were gram negative and had corkscrewlike to tumbling motility when viewed with phase contrast microscopy. The bacteria were 0.5-0.7 microm wide, with a periodicity of 0.65-1.1 microm in all cats. Bipolar sheathed flagella were occasionally observed, and no periplasmic fibrils were seen. The bacteria were extracellular in parietal cell canaliculi and intracellular within parietal cells. Culture of mucosal scrapings from the Canada lynx and sand cats was unsuccessful. Based on morphology, motility, and cellular tropism, the bacteria were probably Helicobacter-like organisms. Although the two margays had moderate lymphoplasmacytic gastritis, the other cats lacked or had only mild gastric lymphoid infiltrates, suggesting that these organisms are either commensals or opportunistic pathogens.

  6. Chemotactic selection of pollutant degrading soil bacteria

    DOEpatents

    Hazen, Terry C.

    1994-01-01

    A method for identifying soil microbial strains which may be bacterial degraders of pollutants comprising the steps of placing a concentration of a pollutant in a substantially closed container, placing the container in a sample of soil for a period of time ranging from one minute to several hours, retrieving the container, collecting the contents of the container, and microscopically determining the identity of the bacteria present. Different concentrations of the pollutant can be used to determine which bacteria respond to each concentration. The method can be used for characterizing a polluted site or for looking for naturally occurring biological degraders of the pollutant. Then bacteria identified as degraders of the pollutant and as chemotactically attracted to the pollutant are used to inoculate contaminated soil. To enhance the effect of the bacteria on the pollutant, nutrients are cyclicly provided to the bacteria then withheld to alternately build up the size of the bacterial colony or community and then allow it to degrade the pollutant.

  7. Chemotactic selection of pollutant degrading soil bacteria

    DOEpatents

    Hazen, T.C.

    1991-03-04

    A method is described for identifying soil microbial strains which may be bacterial degraders of pollutants. This method includes: Placing a concentration of a pollutant in a substantially closed container; placing the container in a sample of soil for a period of time ranging from one minute to several hours; retrieving the container and collecting its contents; microscopically determining the identity of the bacteria present. Different concentrations of the pollutant can be used to determine which bacteria respond to each concentration. The method can be used for characterizing a polluted site or for looking for naturally occurring biological degraders of the pollutant. Then bacteria identified as degraders of the pollutant and as chemotactically attracted to the pollutant are used to innoculate contaminated soil. To enhance the effect of the bacteria on the pollutant, nutrients are cyclicly provided to the bacteria then withheld to alternately build up the size of the bacterial colony or community and then allow it to degrade the pollutant.

  8. Phage-bacteria infection networks: From nestedness to modularity

    NASA Astrophysics Data System (ADS)

    Flores, Cesar O.; Valverde, Sergi; Weitz, Joshua S.

    2013-03-01

    Bacteriophages (viruses that infect bacteria) are the most abundant biological life-forms on Earth. However, very little is known regarding the structure of phage-bacteria infections. In a recent study we re-evaluated 38 prior studies and demonstrated that phage-bacteria infection networks tend to be statistically nested in small scale communities (Flores et al 2011). Nestedness is consistent with a hierarchy of infection and resistance within phages and bacteria, respectively. However, we predicted that at large scales, phage-bacteria infection networks should be typified by a modular structure. We evaluate and confirm this hypothesis using the most extensive study of phage-bacteria infections (Moebus and Nattkemper 1981). In this study, cross-infections were evaluated between 215 marine phages and 286 marine bacteria. We develop a novel multi-scale network analysis and find that the Moebus and Nattkemper (1981) study, is highly modular (at the whole network scale), yet also exhibits nestedness and modularity at the within-module scale. We examine the role of geography in driving these modular patterns and find evidence that phage-bacteria interactions can exhibit strong similarity despite large distances between sites. CFG acknowledges the support of CONACyT Foundation. JSW holds a Career Award at the Scientific Interface from the Burroughs Wellcome Fund and acknowledges the support of the James S. McDonnell Foundation

  9. Seed-vectored endophytic bacteria modulate development of rice seedlings.

    PubMed

    Verma, S K; Kingsley, K; Irizarry, I; Bergen, M; Kharwar, R N; White, J F

    2017-06-01

    The aim of the present study was to evaluate the effects of the removal of indigenous bacteria from rice seeds on seedling growth and development. Here we report the presence of three indigenous endophytic bacteria in rice seeds that play important roles in modulating seedling development (shoot and root lengths, and formation of root hairs and secondary roots) and defence against pathogens. Seed-associated bacteria were removed using surface sterilization with NaOCl (bleach) followed by antibiotic treatment. When bacteria were absent, growth of seedlings in terms of root hair development and overall seedling size was less than that of seedlings that contained bacteria. Reactive oxygen staining of seedlings showed that endophytic bacteria became intracellular in root parenchyma cells and root hairs. Roots containing endophytic bacteria were seen to stain densely for reactive oxygen, while roots free of bacteria stained lightly for reactive oxygen. Bacteria were isolated and identified as Enterobacter asburiae (VWB1), Pantoea dispersa (VWB2) and Pseudomonas putida (VWB3) by 16S rDNA sequencing. Bacteria were found to produce indole acetic acid (auxins), inhibited the pathogen Fusarium oxysporum and solubilized phosphate. Reinoculation of bacteria onto seedlings derived from surface-disinfected rice and Bermuda grass seeds significantly restored seedling growth and development. Rice seeds harbour indigenous bacterial endophytes that greatly influence seedling growth and development, including root and shoot lengths, root hair formation and disease susceptibility of rice seedlings. This study shows that seeds of rice naturally harbour bacterial endophytes that play key roles in modulation of seedling development. © 2017 The Society for Applied Microbiology.

  10. Airborne Bacteria in an Urban Environment

    PubMed Central

    Mancinelli, Rocco L.; Shulls, Wells A.

    1978-01-01

    Samples were taken at random intervals over a 2-year period from urban air and tested for viable bacteria. The number of bacteria in each sample was determined, and each organism isolated was identified by its morphological and biochemical characteristics. The number of bacteria found ranged from 0.013 to 1.88 organisms per liter of air sampled. Representatives of 19 different genera were found in 21 samples. The most frequently isolated organisms and their percent of occurence were Micrococcus (41%), Staphylococcus (11%), and Aerococcus (8%). The bacteria isolated were correlated with various weather and air pollution parameters using the Pearson product-moment correlation coefficient method. Statistically significant correlations were found between the number of viable bacteria isolated and the concentrations of nitric oxide (−0.45), nitrogen dioxide (+0.43), and suspended particulate pollutants (+0.56). Calculated individually, the total number of Micrococcus, Aerococcus, and Staphylococcus, number of rods, and number of cocci isolated showed negative correlations with nitric oxide and positive correlations with nitrogen dioxide and particulates. Statistically significant positive correlations were found between the total number of rods isolated and the concentration of nitrogen dioxide (+0.54) and the percent relative humidity (+0.43). The other parameters tested, sulfur dioxide, hydrocarbons, and temperature, showed no significant correlations. Images PMID:677875

  11. Functional assignment of gene AAC16202.1 from Rhodobacter capsulatus SB1003: new insights into the bacterial SDR sorbitol dehydrogenases family.

    PubMed

    Sola-Carvajal, Agustín; García-García, María Inmaculada; Sánchez-Carrón, Guiomar; García-Carmona, Francisco; Sánchez-Ferrer, Alvaro

    2012-11-01

    Short-chain dehydrogenases/reductases (SDR) constitute one of the largest enzyme superfamilies with over 60,000 non-redundant sequences in the database, many of which need a correct functional assignment. Among them, the gene AAC16202.1 (NCBI) from Rhodobacter capsulatus SB1003 has been assigned in Uniprot both as a sorbitol dehydrogenase (#D5AUY1) and, as an N-acetyl-d-mannosamine dehydrogenase (#O66112), both enzymes being of biotechnological interest. When the gene was overexpressed in Escherichia coli Rosetta (DE3)pLys, the purified enzyme was not active toward N-acetyl-d-mannosamine, whereas it was active toward d-sorbitol and d-fructose. However, the relative activities toward xylitol and l-iditol (0.45 and 6.9%, respectively) were low compared with that toward d-sorbitol. Thus, the enzyme could be considered sorbitol dehydrogenase (SDH) with very low activity toward xylitol, which could increase its biotechnological interest for determining sorbitol without the unspecific cross-determination of added xylitol in food and pharma compositions. The tetrameric enzyme (120 kDa) showed similar catalytic efficiency (2.2 × 10(3) M(-1) s(-1)) to other sorbitol dehydrogenases for d-sorbitol, with an optimum pH of 9.0 and an optimum temperature of 37 °C. The enzyme was also more thermostable than other reported SDH, ammonium sulfate being the best stabilizer in this respect, increasing the melting temperature (T(m)) up to 52.9 °C. The enzyme can also be considered as a new member of the Zn(2+) independent SDH family since no effect on activity was detected in the presence of divalent cations or chelating agents. Finally, its in silico analysis enabled the specific conserved sequence blocks that are the fingerprints of bacterial sorbitol dehydrogenases and mainly located at C-terminal of the protein, to be determined for the first time. This knowledge will facilitate future data curation of present databases and a better functional assignment of newly described

  12. Bacteria-based concrete: from concept to market

    NASA Astrophysics Data System (ADS)

    Wiktor, V.; Jonkers, H. M.

    2016-08-01

    The concept of self-healing concrete—a concrete which can autonomously repair itself after crack formation, with no or limited human intervention—has received a lot of attention over the past 10 years as it could help structures to last longer and at a lower maintenance cost. This paper gives an overview on the key aspects and recent advances in the development of the bacteria-based self-healing concrete developed at the University of Technology of Delft (The Netherlands). Research started with the screening and selection of concrete compatible bacteria and nutrients. Several types of encapsulated bacteria and nutrients have been developed and tested. The functionality of these healing agents was demonstrated by showing metabolic activity of activated bacterial spores by oxygen consumption measurements and by regain of material functionality in form of regain of water tightness. Besides development of bacteria-based self-healing concrete, a bacteria-based repair mortar and liquid system were developed for the treatment of aged concrete structures. Field trials have been carried out with either type of bacteria-based systems and the promising results have led to a spinoff company Basilisk Self-Healing Concrete with the aim to further develop these systems and bring them to the market.

  13. Anti-bacteria effect of active ingredients of siraitia grosvenorii on the spoilage bacteria isolated from sauced pork head meat

    NASA Astrophysics Data System (ADS)

    Li, X.; Xu, L. Y.; Cui, Y. Q.; Pang, M. X.; Wang, F.; Qi, J. H.

    2018-01-01

    Extraction and anti-bacteria effect of active ingredients of Siraitia grosvenorii were studied in this paper. Extraction combined with ultrasonic was adopted. The optimum extraction condition was determined by single factor test; the anti-bacteria effect of active ingredients and minimum inhibitory concentration (MIC) were valued by Oxford-cup method. The results indicated that optimum extraction condition of active ingredients extracted from Siraitia grosvenorii were described as follows: ethanol concentrations of sixty-five percent and twenty minutes with ultrasonic assisted extraction; the active ingredients of Siraitia grosvenorii had anti-bacteria effect on Staphylococcus epidermidis, Proteus vulgaris, Bacillus sp, Serratia sp and MIC was 0.125g/mL, 0.0625g/mL, 0.125g/mL and 0.125g/mL. The active constituent of Siraitia grosvenorii has obvious anti-bacteria effect on the spoilage bacteria isolated from Sauced pork head meat and can be used as a new natural food preservation to prolong the shelf-life of Low-temperature meat products.

  14. Killer Pigments in Bacteria: An Ecological Nightmare.

    ERIC Educational Resources Information Center

    Benathen, Isaiah A.; Saccardi, Marion

    2000-01-01

    Describes an alternative to teaching ecology by using bacteria to test competitor survival. Students observe a time-dependent selective killing of other unrelated bacteria by Pseudomonas aeruginosa. (SAH)

  15. Freeze-drying of lactic acid bacteria.

    PubMed

    Fonseca, Fernanda; Cenard, Stéphanie; Passot, Stéphanie

    2015-01-01

    Lactic acid bacteria are of great importance for the food and biotechnology industry. They are widely used as starters for manufacturing food (e.g., yogurt, cheese, fermented meats, and vegetables) and probiotic products, as well as for green chemistry applications. Freeze-drying or lyophilization is a convenient method for preservation of bacteria. By reducing water activity to values below 0.2, it allows long-term storage and low-cost distribution at suprazero temperatures, while minimizing losses in viability and functionality. Stabilization of bacteria via freeze-drying starts with the addition of a protectant solution to the bacterial suspension. Freeze-drying includes three steps, namely, (1) freezing of the concentrated and protected cell suspension, (2) primary drying to remove ice by sublimation, and (3) secondary drying to remove unfrozen water by desorption. In this chapter we describe a method for freeze-drying of lactic acid bacteria at a pilot scale, thus allowing control of the process parameters for maximal survival and functionality recovery.

  16. NREL Scientists Model Methane-Eating Bacteria | News | NREL

    Science.gov Websites

    Scientists Model Methane-Eating Bacteria News Release: NREL Scientists Model Methane-Eating Bacteria February 13, 2018 Nature is full of surprises - not to mention solutions. A research team ) recently explored the possibilities provided by the natural world by researching how the bacteria

  17. Characterization of Bacteria Associated with Pinewood Nematode Bursaphelenchus xylophilus

    PubMed Central

    Vicente, Claudia S. L.; Nascimento, Francisco; Espada, Margarida; Barbosa, Pedro; Mota, Manuel; Glick, Bernard R.; Oliveira, Solange

    2012-01-01

    Pine wilt disease (PWD) is a complex disease integrating three major agents: the pathogenic agent, the pinewood nematode Bursaphelenchus xylophilus; the insect-vector Monochamus spp.; and the host pine tree, Pinus sp. Since the early 80's, the notion that another pathogenic agent, namely bacteria, may play a role in PWD has been gaining traction, however the role of bacteria in PWD is still unknown. The present work supports the possibility that some B. xylophilus-associated bacteria may play a significant role in the development of this disease. This is inferred as a consequence of: (i) the phenotypic characterization of a collection of 35 isolates of B. xylophilus-associated bacteria, in different tests broadly used to test plant pathogenic and plant growth promoting bacteria, and (ii) greenhouse experiments that infer the pathogenicity of these bacteria in maritime pine, Pinus pinaster. The results illustrate the presence of a heterogeneous microbial community associated with B. xylophilus and the traits exhibited by at least, some of these bacteria, appear to be related to PWD symptoms. The inoculation of four specific B. xylophilus-associated bacteria isolates in P. pinaster seedlings resulted in the development of some PWD symptoms suggesting that these bacteria likely play an active role with B. xylophilus in PWD. PMID:23091599

  18. Probing minority population of antibiotic-resistant bacteria.

    PubMed

    Huang, Tianxun; Zheng, Yan; Yan, Ya; Yang, Lingling; Yao, Yihui; Zheng, Jiaxin; Wu, Lina; Wang, Xu; Chen, Yuqing; Xing, Jinchun; Yan, Xiaomei

    2016-06-15

    The evolution and spread of antibiotic-resistant pathogens has become a major threat to public health. Advanced tools are urgently needed to quickly diagnose antibiotic-resistant infections to initiate appropriate treatment. Here we report the development of a highly sensitive flow cytometric method to probe minority population of antibiotic-resistant bacteria via single cell detection. Monoclonal antibody against TEM-1 β-lactamase and Alexa Fluor 488-conjugated secondary antibody were used to selectively label resistant bacteria green, and nucleic acid dye SYTO 62 was used to stain all the bacteria red. A laboratory-built high sensitivity flow cytometer (HSFCM) was applied to simultaneously detect the side scatter and dual-color fluorescence signals of single bacteria. By using E. coli JM109/pUC19 and E. coli JM109 as the model systems for antibiotic-resistant and antibiotic-susceptible bacteria, respectively, as low as 0.1% of antibiotic-resistant bacteria were accurately quantified. By monitoring the dynamic population change of a bacterial culture with the administration of antibiotics, we confirmed that under the antimicrobial pressure, the original low population of antibiotic-resistant bacteria outcompeted susceptible strains and became the dominant population after 5hours of growth. Detection of antibiotic-resistant infection in clinical urine samples was achieved without cultivation, and the bacterial load of susceptible and resistant strains can be faithfully quantified. Overall, the HSFCM-based quantitative method provides a powerful tool for the fundamental studies of antibiotic resistance and holds the potential to provide rapid and precise guidance in clinical therapies. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Transformable Rhodobacter strains, method for producing transformable Rhodobacter strains

    DOEpatents

    Laible, Philip D.; Hanson, Deborah K.

    2018-05-08

    The invention provides an organism for expressing foreign DNA, the organism engineered to accept standard DNA carriers. The genome of the organism codes for intracytoplasmic membranes and features an interruption in at least one of the genes coding for restriction enzymes. Further provided is a system for producing biological materials comprising: selecting a vehicle to carry DNA which codes for the biological materials; determining sites on the vehicle's DNA sequence susceptible to restriction enzyme cleavage; choosing an organism to accept the vehicle based on that organism not acting upon at least one of said vehicle's sites; engineering said vehicle to contain said DNA; thereby creating a synthetic vector; and causing the synthetic vector to enter the organism so as cause expression of said DNA.

  20. Bacteria, biofilm and honey: a study of the effects of honey on 'planktonic' and biofilm-embedded chronic wound bacteria.

    PubMed

    Merckoll, Patricia; Jonassen, Tom Øystein; Vad, Marie Elisabeth; Jeansson, Stig L; Melby, Kjetil K

    2009-01-01

    Chronically infected wounds are a costly source of suffering. An important factor in the failure of a sore to heal is the presence of multiple species of bacteria, living cooperatively in highly organized biofilms. The biofilm protects the bacteria from antibiotic therapy and the patient's immune response. Honey has been used as a wound treatment for millennia. The components responsible for its antibacterial properties are now being elucidated. The study aimed to determine the effects of different concentrations of 'Medihoney' therapeutic honey and Norwegian Forest Honey 1) on the real-time growth of typical chronic wound bacteria; 2) on biofilm formation; and 3) on the same bacteria already embedded in biofilm. Reference strains of MRSE, MRSA, ESBL Klebsiella pneumoniae and Pseudomonas aeruginosa were incubated with dilution series of the honeys in microtitre plates for 20 h. Growth of the bacteria was assessed by measuring optical density every 10 min. Growth curves, biofilm formation and minimum bactericidal concentrations are presented. Both honeys were bactericidal against all the strains of bacteria. Biofilm was penetrated by biocidal substances in honey. Reintroduction of honey as a conventional wound treatment may help improve individual wound care, prevent invasive infections, eliminate colonization, interrupt outbreaks and thereby preserve current antibiotic stocks.

  1. Rock-degrading endophytic bacteria in cacti

    Treesearch

    M. Esther Puente; Ching Y. Li; Yoav Bashan

    2009-01-01

    A plant-bacterium association of the cardon cactus (Pachycereus pringlei) and endophytic bacteria promotes establishment of seedlings and growth on igneous rocks without soil. These bacteria weather several rock types and minerals, unbind significant amounts of useful minerals for plants from the rocks, fix in vitro N2. produce...

  2. Effects of symbiotic bacteria on chemical sensitivity of Daphnia magna.

    PubMed

    Manakul, Patcharaporn; Peerakietkhajorn, Saranya; Matsuura, Tomoaki; Kato, Yasuhiko; Watanabe, Hajime

    2017-07-01

    The crustacean zooplankton Daphnia magna has been widely used for chemical toxicity tests. Although abiotic factors have been well documented in ecotoxicological test protocols, biotic factors that may affect the sensitivity to chemical compounds remain limited. Recently, we identified symbiotic bacteria that are critical for the growth and reproduction of D. magna. The presence of symbiotic bacteria on Daphnia raised the question as to whether these bacteria have a positive or negative effect on toxicity tests. In order to evaluate the effects of symbiotic bacteria on toxicity tests, bacteria-free Daphnia were prepared, and their chemical sensitivities were compared with that of Daphnia with symbiotic bacteria based on an acute immobilization test. The Daphnia with symbiotic bacteria showed higher chemical resistance to nonylphenol, fenoxycarb, and pentachlorophenol than bacteria-free Daphnia. These results suggested potential roles of symbiotic bacteria in the chemical resistance of its host Daphnia. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Swarming bacteria migrate by Lévy Walk

    NASA Astrophysics Data System (ADS)

    Ariel, Gil; Rabani, Amit; Benisty, Sivan; Partridge, Jonathan D.; Harshey, Rasika M.; Be'Er, Avraham

    2015-09-01

    Individual swimming bacteria are known to bias their random trajectories in search of food and to optimize survival. The motion of bacteria within a swarm, wherein they migrate as a collective group over a solid surface, is fundamentally different as typical bacterial swarms show large-scale swirling and streaming motions involving millions to billions of cells. Here by tracking trajectories of fluorescently labelled individuals within such dense swarms, we find that the bacteria are performing super-diffusion, consistent with Lévy walks. Lévy walks are characterized by trajectories that have straight stretches for extended lengths whose variance is infinite. The evidence of super-diffusion consistent with Lévy walks in bacteria suggests that this strategy may have evolved considerably earlier than previously thought.

  4. Comparative genomics of the lactic acid bacteria

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Makarova, K.; Slesarev, A.; Wolf, Y.

    Lactic acid-producing bacteria are associated with various plant and animal niches and play a key role in the production of fermented foods and beverages. We report nine genome sequences representing the phylogenetic and functional diversity of these bacteria. The small genomes of lactic acid bacteria encode a broad repertoire of transporters for efficient carbon and nitrogen acquisition from the nutritionally rich environments they inhabit and reflect a limited range of biosynthetic capabilities that indicate both prototrophic and auxotrophic strains. Phylogenetic analyses, comparison of gene content across the group, and reconstruction of ancestral gene sets indicate a combination of extensive genemore » loss and key gene acquisitions via horizontal gene transfer during the coevolution of lactic acid bacteria with their habitats.« less

  5. Methods for dispersing hydrocarbons using autoclaved bacteria

    DOEpatents

    Tyndall, Richard L.

    1996-01-01

    A method of dispersing a hydrocarbon includes the steps: providing a bacterium selected from the following group: ATCC 85527, ATCC 75529, and ATCC 55638, a mutant of any one of these bacteria possessing all the identifying characteristics of any one of these bacteria, and mixtures thereof; autoclaving the bacterium to derive a dispersant solution therefrom; and contacting the dispersant solution with a hydrocarbon to disperse the hydrocarbon. Moreover, a method for preparing a dispersant solution includes the following steps: providing a bacterium selected from the following group: ATCC 75527, ATCC 75529, and ATCC 55638, a mutant of any one of these bacteria possessing all the identifying characteristics of any one of these bacteria, and mixtures thereof; and autoclaving the bacterium to derive a dispersant solution therefrom.

  6. Methods for dispersing hydrocarbons using autoclaved bacteria

    DOEpatents

    Tyndall, R.L.

    1996-11-26

    A method of dispersing a hydrocarbon includes the following steps: providing a bacterium selected from the following group: ATCC 85527, ATCC 75529, and ATCC 55638, a mutant of any one of these bacteria possessing all the identifying characteristics of any one of these bacteria, and mixtures; autoclaving the bacterium to derive a dispersant solution; and contacting the dispersant solution with a hydrocarbon to disperse the hydrocarbon. Moreover, a method for preparing a dispersant solution includes the following steps: providing a bacterium selected from the following group: ATCC 75527, ATCC 75529, and ATCC 55638, a mutant of any one of these bacteria possessing all the identifying characteristics of any one of these bacteria, and mixtures; and autoclaving the bacterium to derive a dispersant solution.

  7. Genetically engineered acidophilic heterotrophic bacteria by bacteriophage transduction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ward, T.E.; Bruhn, D.F.; Bulmer, D.F.

    1989-05-10

    A bacteriophage capable of infecting acidophilic heterotrophic bacteria and processes for genetically engineering acidophilic bacteria for biomining or sulfur removal from coal are disclosed. The bacteriophage is capable of growth in cells existing at pH at or below 3.0. Lytic forms of the phage introduced into areas experiencing acid drainage kill the bacteria causing such drainage. Lysogenic forms of the phage having genes for selective removal of metallic or nonmetallic elements can be introduced into acidophilic bacteria to effect removal of the desired element from ore or coal. 1 fig., 1 tab.

  8. Rapid, quantitative determination of bacteria in water. [adenosine triphosphate

    NASA Technical Reports Server (NTRS)

    Chappelle, E. W.; Picciolo, G. L.; Thomas, R. R.; Jeffers, E. L.; Deming, J. W. (Inventor)

    1978-01-01

    A bioluminescent assay for ATP in water borne bacteria is made by adding nitric acid to a water sample with concentrated bacteria to rupture the bacterial cells. The sample is diluted with sterile, deionized water, then mixed with a luciferase-luciferin mixture and the resulting light output of the bioluminescent reaction is measured and correlated with bacteria present. A standard and a blank also are presented so that the light output can be correlated to bacteria in the sample and system noise can be substracted from the readings. A chemiluminescent assay for iron porphyrins in water borne bacteria is made by adding luminol reagent to a water sample with concentrated bacteria and measuring the resulting light output of the chemiluminescent reaction.

  9. Multiresistant Bacteria Isolated from Chicken Meat in Austria

    PubMed Central

    Zarfel, Gernot; Galler, Herbert; Luxner, Josefa; Petternel, Christian; Reinthaler, Franz F.; Haas, Doris; Kittinger, Clemens; Grisold, Andrea J.; Pless, Peter; Feierl, Gebhard

    2014-01-01

    Multidrug resistant bacteria (MDR bacteria), such as extended spectrum beta-lactamase (ESBL) Enterobacteriaceae, methicillin resistant Staphylococcus aureus (MRSA), and vancomycin-resistant Enterococci (VRE), pose a challenge to the human health care system. In recent years, these MDR bacteria have been detected increasingly outside the hospital environment. Also the contamination of food with MDR bacteria, particularly of meat and meat products, is a concern. The aim of the study was to evaluate the occurrence of MDR bacteria in chicken meat on the Austrian market. For this study, 50 chicken meat samples were analysed. All samples originated from chickens slaughtered in Austrian slaughterhouses and were marked as produced in Austria. Samples were analysed for the presence of ESBL Enterobacteriaceae, methicillin resistant Staphylococci and VRE. Resistance genes of the isolated bacteria were characterised by PCR and sequencing. In the present study 26 ESBL producing E. coli, five mecA gene harbouring Staphylococci (but no MRSA), and four VRE were detected in chicken meat samples of Austrian origin. In 24 (48%) of the samples no ESBL Enterobacteriaceae, MRSA, methicillin resistant coagulase negative Staphylococcus (MRCNS) or VRE could be detected. None of the samples contained all three types of investigated multiresistant bacteria. In concordance to previous studies, CTX-M-1 and SHV-12 were the dominant ESBL genes. PMID:25485979

  10. Beer spoilage bacteria and hop resistance.

    PubMed

    Sakamoto, Kanta; Konings, Wil N

    2003-12-31

    For brewing industry, beer spoilage bacteria have been problematic for centuries. They include some lactic acid bacteria such as Lactobacillus brevis, Lactobacillus lindneri and Pediococcus damnosus, and some Gram-negative bacteria such as Pectinatus cerevisiiphilus, Pectinatus frisingensis and Megasphaera cerevisiae. They can spoil beer by turbidity, acidity and the production of unfavorable smell such as diacetyl or hydrogen sulfide. For the microbiological control, many advanced biotechnological techniques such as immunoassay and polymerase chain reaction (PCR) have been applied in place of the conventional and time-consuming method of incubation on culture media. Subsequently, a method is needed to determine whether the detected bacterium is capable of growing in beer or not. In lactic acid bacteria, hop resistance is crucial for their ability to grow in beer. Hop compounds, mainly iso-alpha-acids in beer, have antibacterial activity against Gram-positive bacteria. They act as ionophores which dissipate the pH gradient across the cytoplasmic membrane and reduce the proton motive force (pmf). Consequently, the pmf-dependent nutrient uptake is hampered, resulting in cell death. The hop-resistance mechanisms in lactic acid bacteria have been investigated. HorA was found to excrete hop compounds in an ATP-dependent manner from the cell membrane to outer medium. Additionally, increased proton pumping by the membrane bound H(+)-ATPase contributes to hop resistance. To energize such ATP-dependent transporters hop-resistant cells contain larger ATP pools than hop-sensitive cells. Furthermore, a pmf-dependent hop transporter was recently presented. Understanding the hop-resistance mechanisms has enabled the development of rapid methods to discriminate beer spoilage strains from nonspoilers. The horA-PCR method has been applied for bacterial control in breweries. Also, a discrimination method was developed based on ATP pool measurement in lactobacillus cells. However

  11. Anaerobic bacteria that dechlorinate perchloroethene.

    PubMed Central

    Fathepure, B Z; Nengu, J P; Boyd, S A

    1987-01-01

    In this study, we identified specific cultures of anaerobic bacteria that dechlorinate perchlorethene (PCE). The bacteria that significantly dechlorinated PCE were strain DCB-1, an obligate anaerobe previously shown to dechlorinate chlorobenzoate, and two strains of Methanosarcina. The rate of PCE dechlorination by DCB-1 compared favorably with reported rates of trichloroethene bio-oxidation by methanotrophs. Even higher PCE dechlorination rates were achieved when DCB-1 was grown in a methanogenic consortium. PMID:3426224

  12. Bacteria on external fixators: which prep is best?

    PubMed

    Stinner, Daniel J; Beltran, Michael J; Masini, Brendan D; Wenke, Joseph C; Hsu, Joseph R

    2012-03-01

    There are no established guidelines for the surgical prep of an external fixator in the operative field. This study investigates the effectiveness of different prep solutions and methods of application. Forty external fixator constructs, consisting of a rod, pin, and pin to rod coupling device, were immersed in a broth of Staphylococcus aureus (lux) for 12 hours. Constructs were then randomized into four treatment groups: chlorhexidine-gluconate (CHG) (4%) scrub, CHG (4%) spray, povidone-iodine (PI) (10%) scrub, and PI (10%) spray. Each construct was imaged with a specialized photon capturing camera system yielding the quantitative and spatial distribution of bacteria both before and after the prep. Each pin to bar clamp was loosened and moved 2 cm down the construct, simulating an external fixator adjustment, and reimaged. Spatial distribution of bacteria and total bacteria counts were compared. There was a similar reduction in bacteria after surgical prep when comparing all four groups independently (p = 0.19), method of application (spray vs. scrub, p = 0.27), and different solutions (CHG vs. PI, p = 0.41). Although bacteria were evident in newly exposed areas after external fixator adjustment, most notably within the loosened pin to bar clamp, it did not result in an increase in bacteria counts (all four groups, p = 0.11; spray vs. scrub, p = 0.18; CHG vs. PI, p = 0.99). Although there was no increase in bacteria counts after the simulated external fixator adjustment, it did expose additional bacteria previously unseen. Although there was no difference in surgical prep solution or method of application, consideration must be given to performing an additional surgical prep of the newly exposed surface after loosening of each individual external fixator component as this may further minimize potential bacteria exposure.

  13. Microfluidic Transducer for Detecting Nanomechanical Movements of Bacteria

    NASA Astrophysics Data System (ADS)

    Kara, Vural; Ekinci, Kamil

    2017-11-01

    Various nanomechanical movements of bacteria are currently being explored as an indication of bacterial viability. Most notably, these movements have been observed to subside rapidly and dramatically when the bacteria are exposed to an effective antibiotic. This suggests that monitoring bacterial movements, if performed with high fidelity, can offer a path to various clinical microbiological applications, including antibiotic susceptibility tests. Here, we introduce a robust and sensitive microfluidic transduction technique for detecting the nanomechanical movements of bacteria. The technique is based on measuring the electrical fluctuations in a microchannel which the bacteria populate. These electrical fluctuations are caused by the swimming of motile, planktonic bacteria and random oscillations of surface-immobilized bacteria. The technique provides enough sensitivity to detect even the slightest movements of a single cell and lends itself to smooth integration with other microfluidic methods and devices; it may eventually be used for rapid antibiotic susceptibility testing. We acknowledge support from Boston University Office of Technology Development, Boston University College of Engineering, NIH (1R03AI126168-01) and The Wallace H. Coulter Foundation.

  14. Bad bacteria in acute appendicitis: rare but relevant.

    PubMed

    Reinisch, Alexander; Malkomes, Patrizia; Habbe, Nils; Bechstein, Wolf Otto; Liese, Juliane

    2017-09-01

    Bacterial infections are a factor for morbidity in patients with acute appendicitis (AA). The spreading of multidrug-resistant (MDR) bacteria is a significant problem in surgery, and the most relevant MDR pathogens are summarized as Enterobacteriaceae, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterococci (ESKAPE) bacteria. Data regarding the species and distribution of bacteria in AA are available, but information about the resistances and their relevance is deficient. In this retrospective study, we analyzed microbiological swabs of patients with AA. The outcome parameters of patients after laparoscopic appendectomy were analyzed against microbiological results, including antibiotic resistance testing. Positive swabs were compared with bacteria cultivated after alternative abdominal emergency surgery (AES). In total, 584 patients with AA were included and had a mean age of 35.5 years. In 216 patients (36.9%), a swab was taken, and in 128 (59.3%) swabs, bacteria could be cultivated. The most frequent organisms were Escherichia coli, Bacteroides species, and Pseudomonas. In 9.4% of the positive AA swabs, MDR germs were cultivated, and all of them were ESKAPE pathogens. Patients with MDR bacteria in AA suffered more infectious complications (p = 0.006) and needed longer hospitalizations (p < 0.009). In AES, aside from appendicitis, a different spectrum containing more MDR bacteria was cultivated (5.9 vs. 20.9%; p < 0.0001). Although they occur less frequently in appendectomy compared to emergency surgeries for other abdominal diseases, MDR bacteria are traceable in this common disease and contribute to additional morbidity.

  15. Exogenous fatty acid metabolism in bacteria.

    PubMed

    Yao, Jiangwei; Rock, Charles O

    2017-10-01

    Bacterial type II fatty acid synthesis (FASII) is a target for novel antibiotic development. All bacteria encode for mechanisms to incorporate exogenous fatty acids, and some bacteria can use exogenous fatty acids to bypass FASII inhibition. Bacteria encode three different mechanisms for activating exogenous fatty acids for incorporation into phospholipid synthesis. Exogenous fatty acids are converted into acyl-CoA in Gammaproteobacteria such as E. coli. Acyl-CoA molecules constitute a separate pool from endogenously synthesized acyl-ACP. Acyl-CoA can be used for phospholipid synthesis or broken down by β-oxidation, but cannot be used for lipopolysaccharide synthesis. Exogenous fatty acids are converted into acyl-ACP in some Gram-negative bacteria. The resulting acyl-ACP undergoes the same fates as endogenously synthesized acyl-ACP. Exogenous fatty acids are converted into acyl-phosphates in Gram-positive bacteria, and can be used for phospholipid synthesis or become acyl-ACP. Only the order Lactobacillales can use exogenous fatty acids to bypass FASII inhibition. FASII shuts down completely in presence of exogenous fatty acids in Lactobacillales, allowing Lactobacillales to synthesize phospholipids entirely from exogenous fatty acids. Inhibition of FASII cannot be bypassed in other bacteria because FASII is only partially down-regulated in presence of exogenous fatty acid or FASII is required to synthesize essential metabolites such as β-hydroxyacyl-ACP. Certain selective pressures such as FASII inhibition or growth in biofilms can select for naturally occurring one step mutations that attenuate endogenous fatty acid synthesis. Although attempts have been made to estimate the natural prevalence of these mutants, culture-independent metagenomic methods would provide a better estimate. Copyright © 2017 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  16. Anti-bacteria Effect of Active Ingredients of Cacumen Platycladi on the Spoilage Bacteria of Sauced Pork Head Meat

    NASA Astrophysics Data System (ADS)

    Li, Xiao; Xu, Lingyi; Cui, Yuqian; Pang, Meixia; Wang, Fang; Qi, Jinghua

    2017-12-01

    Extraction and anti-bacteria effect of active ingredients of Cacumen Platycladi were studied in this paper. Extraction combined with ultrasonic was adopted. The optimum extraction condition was determined by single factor test; the anti-bacteria effect of active ingredients and minimum inhibitory concentration(MIC) were valued by Oxford-cup method. The results indicated that kaempferol was the active ingredients of Cacumen Platycladi whose optimum extraction condition for ethanol concentrations were sixty-five percent and twenty minutes with ultrasonic assisted extraction.; the active ingredients of Cacumen Platycladi had anti-bacteria effect on Staphylococcus, Proteus, Bacillus, Serratia and MIC was 0.5 g/mL,0.5 g/mL,0.0313 g/mL and 0.0625 g/mL. The active constituent of Cacumen Platycladi is kaempferol which has obvious anti-bacteria effect and can be used to prolong the shelf-life of Low-temperature meat products.

  17. A novel directly coupled gradostat

    NASA Technical Reports Server (NTRS)

    Wimpenny, J. W.; Earnshaw, R. G.; Gest, H.; Hayes, J. M.; Favinger, J. L.

    1992-01-01

    The original bidirectional compound chemostat (gradostat) described by Lovitt and Wimpenny has been simplified by making a more compact apparatus in which chemical gradients are established by diffusion between adjacent culture chambers. The experimental model (diffusion coupled (DC) gradostat) consisted of five chambers whose contents could be agitated by turbines rotating in the horizontal plane on a common shaft. Two biological experiments were designed to reveal the value of the DC gradostat. A methylotroph (Methylophilus methylotrophus) grown in a methanol gradient showed expected changes in cell viability as a function of position in the five vessel array. Cells of two species of photosynthetic bacteria (Rhodobacter capsulata and Rhodopseudomonas marina/agilis) with different salt sensitivities could be mixed and subsequently separated by the DC gradostat operating with a NaCl gradient of 0-3% w/v.

  18. The effect of lactic acid bacteria on cocoa bean fermentation.

    PubMed

    Ho, Van Thi Thuy; Zhao, Jian; Fleet, Graham

    2015-07-16

    Cocoa beans (Theobroma cacao L.) are the raw material for chocolate production. Fermentation of cocoa pulp by microorganisms is crucial for developing chocolate flavor precursors. Yeasts conduct an alcoholic fermentation within the bean pulp that is essential for the production of good quality beans, giving typical chocolate characters. However, the roles of bacteria such as lactic acid bacteria and acetic acid bacteria in contributing to the quality of cocoa bean and chocolate are not fully understood. Using controlled laboratory fermentations, this study investigated the contribution of lactic acid bacteria to cocoa bean fermentation. Cocoa beans were fermented under conditions where the growth of lactic acid bacteria was restricted by the use of nisin and lysozyme. The resultant microbial ecology, chemistry and chocolate quality of beans from these fermentations were compared with those of indigenous (control) fermentations. The yeasts Hanseniaspora guilliermondii, Pichia kudriavzevii, Kluyveromyces marxianus and Saccharomyces cerevisiae, the lactic acid bacteria Lactobacillus plantarum, Lactobacillus pentosus and Lactobacillus fermentum and the acetic acid bacteria Acetobacter pasteurianus and Gluconobacter frateurii were the major species found in control fermentations. In fermentations with the presence of nisin and lysozyme, the same species of yeasts and acetic acid bacteria grew but the growth of lactic acid bacteria was prevented or restricted. These beans underwent characteristic alcoholic fermentation where the utilization of sugars and the production of ethanol, organic acids and volatile compounds in the bean pulp and nibs were similar for beans fermented in the presence of lactic acid bacteria. Lactic acid was produced during both fermentations but more so when lactic acid bacteria grew. Beans fermented in the presence or absence of lactic acid bacteria were fully fermented, had similar shell weights and gave acceptable chocolates with no differences

  19. [The value of glucose-positive coliform bacteria and potentially pathogenic bacteria as indicators of epidemiological safety of tap water].

    PubMed

    Zhuravlev, P V; Aleshnia, V V; Panasovets, O P; Morozova, A A; Artemova, T Z; Talaeva, Iu G; Zagaĭnova, A V; Gipp, E K

    2012-01-01

    Due to intensive anthropogenic pollution of water environment generally accepted indicators of epidemic security of water bodies - common bacteria and thermotolerant coliform bacteria do not always permit to obtain an objective characterization of bacterial contamination of tap water. From the point of view of authors the integral index - glucose positive coliform bacteria most adequately reflect the sanitary-hygienic and epidemiological situation of water bodies. In monitoring for bacterial quality of tap water it is advisable to determine glucose positive coliform bacteria, that will provide the relevance of estimation of the epidemiological safety of water use. According to the method developed by the authors the calculation of the index of population risk of acute intestinal infections occurrence in dependence on the quality of tap water in Azov and Tsimlyansk towns.

  20. Population of Nitrifying Bacteria and Nitrification in Ammonium Saturated Clinoptilolite

    NASA Technical Reports Server (NTRS)

    McGilloway, R. L.; Weaver, R. W.; Ming, Douglas W.; Gruener, J.

    1999-01-01

    As humans begin to spend longer periods of time in space, plants will be incorporated into life support systems. Ammonium saturated clinoptilolite is one plant growth substrate but a balance between ammonium and nitrate is needed. A laboratory study was conducted to determine effects of nitrifying bacteria on ammonium concentrations and kinetics of nitrification. Columns containing clinoptilolite substrate amended with nitrifying bacteria obtained from soil enrichment were analyzed weekly for a 90 day period. The enrichment culture initially contained 1 x 10(exp 5) ammonium oxidizing bacteria and 1 x 10(exp 2) nitrite oxidizing bacteria per gram of substrate. Populations of ammonium oxidizing bacteria increased to 1 x 10(exp 6) and nitrite oxidizing bacteria increased to 1 x 10(exp 3) per gram of substrate. The nitrification rate was approximately 0.25mg NO3(-)-N/kg.hr. Experiments were also conducted to enumerate nitrifying bacteria in a clinoptilolite substrate used to grow wheat (Triticum aestivum L.). Seventy days following the initial inoculation with an unknown number of commercial nitrifying bacteria, 1 x 10(exp 5) ammonium oxidizing bacteria per gram of substrate were present. The number of nitrite oxidizing bacteria was between 1 x 10(exp 3) to 10(exp 4) per gram of substrate as measured by the most probable number method. Nitrification rates were approximately 0.20mg NO3(-)-N/kg.hr. Clinoptilolite readily exchanged sufficient concentrations of ammonium to support nitrifying bacteria and they survived well in this medium.

  1. [Spectrum and susceptibility of preoperative conjunctival bacteria].

    PubMed

    Fernández-Rubio, M E; Cuesta-Rodríguez, T; Urcelay-Segura, J L; Cortés-Valdés, C

    2013-12-01

    To describe the conjunctival bacterial spectrum of our patients undergoing intraocular surgery and their antibiotic sensitivity during the study period. A retrospective study of preoperative conjunctival culture of patients consecutively scheduled for intraocular surgery from 21 February 2011 to 1 April 2013. Specimens were directly seeded onto blood-agar and MacConkey-agar (aerobiosis incubation, 2 days), and on chocolate-agar (6% CO2 incubation, 7 days). The identified bacteria were divided into 3 groups according to their origin; the bacteria susceptibility tests were performed on those more pathogenic and on some of the less pathogenic when more than 5 colonies were isolated. The sensitivity of the exigent growing bacteria was obtained with disk diffusion technique, and for of the non-exigent bacteria by determining their minimum inhibitory concentration. The Epidat 3.1 program was used for statistical calculations. A total of 13,203 bacteria were identified in 6,051 cultures, with 88.7% being typical colonizers of conjunctiva (group 1), 8.8% typical of airways (group 2), and the remaining 2.5% of undetermined origin (group 3). 530 cultures (8.8%) were sterile. The sensitivity of group 1 was: 99% vancomycin, 95% rifampicin, 87% chloramphenicol, 76% tetracycline. Levels of co-trimoxazole, aminoglycosides, quinolones, β-lactams and macrolides decreased since 2007. The group 2 was very sensitive to chloramphenicol, cefuroxime, rifampicin, ciprofloxacin and amoxicillin/clavulanate. In group 3, to levofloxacin 93%, ciprofloxacin 89%, tobramycin 76%, but ceftazidime 53% and cefuroxime 29% decreased. None of the tested antibiotics could eradicate all possible conjunctival bacteria. Bacteria living permanently on the conjunctiva (group 1) have achieved higher resistance than the eventual colonizers. Copyright © 2013 Sociedad Española de Oftalmología. Published by Elsevier Espana. All rights reserved.

  2. Bacteria-bacteria interactions within the microbiota of the ancestral metazoan Hydra contribute to fungal resistance.

    PubMed

    Fraune, Sebastian; Anton-Erxleben, Friederike; Augustin, René; Franzenburg, Sören; Knop, Mirjam; Schröder, Katja; Willoweit-Ohl, Doris; Bosch, Thomas C G

    2015-07-01

    Epithelial surfaces of most animals are colonized by diverse microbial communities. Although it is generally agreed that commensal bacteria can serve beneficial functions, the processes involved are poorly understood. Here we report that in the basal metazoan Hydra, ectodermal epithelial cells are covered with a multilayered glycocalyx that provides a habitat for a distinctive microbial community. Removing this epithelial microbiota results in lethal infection by the filamentous fungus Fusarium sp. Restoring the complex microbiota in gnotobiotic polyps prevents pathogen infection. Although mono-associations with distinct members of the microbiota fail to provide full protection, additive and synergistic interactions of commensal bacteria are contributing to full fungal resistance. Our results highlight the importance of resident microbiota diversity as a protective factor against pathogen infections. Besides revealing insights into the in vivo function of commensal microbes in Hydra, our findings indicate that interactions among commensal bacteria are essential to inhibit pathogen infection.

  3. Coexistence of antibiotic-producing and antibiotic-sensitive bacteria in biofilms is mediated by resistant bacteria.

    PubMed

    Narisawa, Naoki; Haruta, Shin; Arai, Hiroyuki; Ishii, Masaharu; Igarashi, Yasuo

    2008-06-01

    Antibiotic-sensitive bacteria have been found to coexist with antibiotic-producing bacteria in biofilms, but little is known about how the former develop in such an environment. Here we isolated pyocyanin-sensitive bacteria belonging to the genus Brevibacillus from a biofilm derived from soil extract and based on the preestablished biofilm of a pyocyanin producer, Pseudomonas aeruginosa strain P1. In addition, pyocyanin-resistant strains belonging to the genus Raoultella were isolated from the same biofilm. Microbial relationships within biofilms were examined by using three strains, strain P1, Brevibacillus strain S1, and Raoultella strain R1, each of which individually formed a biofilm within 2 days in a flow cell. Strain S1 did not fully develop on the preestablished biofilm of strain P1 during 4 days of cultivation, whereas a mutant of strain P1 which was deficient in pyocyanin production allowed strain S1 to cocolonize within a biofilm. On the other hand, strain R1 developed on the biofilm of strain P1 regardless of pyocyanin production. When mixed 1:1 inocula of strains S1 and R1 were introduced into the strain P1 biofilm, all three species were found in the 4-day biofilm. In the mixed biofilm, strain S1 was surrounded by the layer of strain R1 and seemed to be separated from strain P1 and the outflow solution. However, strain S1 did not survive in a three-species mixed culture under planktonic conditions. These results indicate that the survival of sensitive bacteria in biofilm with a pyocyanin producer is achieved by covering them with a layer of resistant bacteria. We also evaluated the influence of antibiotic production on the producer.

  4. Cyclic diguanylate signaling in Gram-positive bacteria

    PubMed Central

    Purcell, Erin B.; Tamayo, Rita

    2016-01-01

    The nucleotide second messenger 3′-5′ cyclic diguanylate monophosphate (c-di-GMP) is a central regulator of the transition between motile and non-motile lifestyles in bacteria, favoring sessility. Most research investigating the functions of c-di-GMP has focused on Gram-negative species, especially pathogens. Recent work in Gram-positive species has revealed that c-di-GMP plays similar roles in Gram-positives, though the precise targets and mechanisms of regulation may differ. The majority of bacterial life exists in a surface-associated state, with motility allowing bacteria to disseminate and colonize new environments. c-di-GMP signaling regulates flagellum biosynthesis and production of adherence factors and appears to be a primary mechanism by which bacteria sense and respond to surfaces. Ultimately, c-di-GMP influences the ability of a bacterium to alter its transcriptional program, physiology and behavior upon surface contact. This review discusses how bacteria are able to sense a surface via flagella and type IV pili, and the role of c-di-GMP in regulating the response to surfaces, with emphasis on studies of Gram-positive bacteria. PMID:27354347

  5. RNases and Helicases in Gram-Positive Bacteria.

    PubMed

    Durand, Sylvain; Condon, Ciaran

    2018-04-01

    RNases are key enzymes involved in RNA maturation and degradation. Although they play a crucial role in all domains of life, bacteria, archaea, and eukaryotes have evolved with their own sets of RNases and proteins modulating their activities. In bacteria, these enzymes allow modulation of gene expression to adapt to rapidly changing environments. Today, >20 RNases have been identified in both Escherichia coli and Bacillus subtilis , the paradigms of the Gram-negative and Gram-positive bacteria, respectively. However, only a handful of these enzymes are common to these two organisms and some of them are essential to only one. Moreover, although sets of RNases can be very similar in closely related bacteria such as the Firmicutes Staphylococcus aureus and B. subtilis , the relative importance of individual enzymes in posttranscriptional regulation in these organisms varies. In this review, we detail the role of the main RNases involved in RNA maturation and degradation in Gram-positive bacteria, with an emphasis on the roles of RNase J1, RNase III, and RNase Y. We also discuss how other proteins such as helicases can modulate the RNA-degradation activities of these enzymes.

  6. Electron microscopic examination of uncultured soil-dwelling bacteria.

    PubMed

    Amako, Kazunobu; Takade, Akemi; Taniai, Hiroaki; Yoshida, Shin-ichi

    2008-05-01

    Bacteria living in soil collected from a rice paddy in Fukuoka, Japan, were examined by electron microscopy using a freeze-substitution fixation method. Most of the observed bacteria could be categorized, based on the structure of the cell envelope and overall morphology, into one of five groups: (i) bacterial spore; (ii) Gram-positive type; (iii) Gram-negative type; (iv) Mycobacterium like; and (v) Archaea like. However, a few of the bacteria could not be readily categorized into one of these groups because they had unique cell wall structures, basically resembling those of Gram-negative bacteria, but with the layer corresponding to the peptidoglycan layer in Gram-negative bacteria being extremely thick, like that of the cortex of a bacterial spore. The characteristic morphological features found in many of these uncultured, soil-dwelling cells were the nucleoid being in a condensed state and the cytoplasm being shrunken. We were able to produce similar morphologies in vitro using a Salmonella sp. by culturing under low-temperature, low-nutrient conditions, similar to those found in some natural environments. These unusual morphologies are therefore hypothesized to be characteristic of bacteria in resting or dormant stages.

  7. Antagonistic activity of isolated lactic acid bacteria from Pliek U against gram-negative bacteria Escherichia coli ATCC 25922

    NASA Astrophysics Data System (ADS)

    Kiti, A. A.; Jamilah, I.; Rusmarilin, H.

    2017-09-01

    Lactic acid bacteria (LAB) is one group of microbes that has many benefits, notably in food and health industries sector. LAB plays an important role in food fermentation and it has bacteriostatic effect against the growth of pathogenic microorganisms. The research related LAB continued to be done to increase the diversity of potential isolates derived from nature which is indigenous bacteria for biotechnological purposes. This study was aimed to isolate and characterize LAB derived from pliek u sample and to examine the potency to inhibits Escherichia coli ATCC 25922 bacteria growth. A total of 5 isolates were isolated and based on morphological and physiological characteristics of the fifth bacteria, they are allegedly belonging to the genus Bacillus. Result of antagonistic test showed that the five isolates could inhibits the growth of E. coli ATCC 25922. The highest inhibition zone is 8.5 mm was shown by isolates NQ2, while the lowest inhibition is 1.5 mm was shown by isolates NQ3.

  8. Methylotrophic bacteria in sustainable agriculture.

    PubMed

    Kumar, Manish; Tomar, Rajesh Singh; Lade, Harshad; Paul, Diby

    2016-07-01

    Excessive use of chemical fertilizers to increase production from available land has resulted in deterioration of soil quality. To prevent further soil deterioration, the use of methylotrophic bacteria that have the ability to colonize different habitats, including soil, sediment, water, and both epiphytes and endophytes as host plants, has been suggested for sustainable agriculture. Methylotrophic bacteria are known to play a significant role in the biogeochemical cycle in soil ecosystems, ultimately fortifying plants and sustaining agriculture. Methylotrophs also improve air quality by using volatile organic compounds such as dichloromethane, formaldehyde, methanol, and formic acid. Additionally, methylotrophs are involved in phosphorous, nitrogen, and carbon cycling and can help reduce global warming. In this review, different aspects of the interaction between methylotrophs and host plants are discussed, including the role of methylotrophs in phosphorus acquisition, nitrogen fixation, phytohormone production, iron chelation, and plant growth promotion, and co-inoculation of these bacteria as biofertilizers for viable agriculture practices.

  9. Monitoring of airborne bacteria and aerosols in different wards of hospitals - Particle counting usefulness in investigation of airborne bacteria.

    PubMed

    Mirhoseini, Seyed Hamed; Nikaeen, Mahnaz; Khanahmd, Hossein; Hatamzadeh, Maryam; Hassanzadeh, Akbar

    2015-01-01

    The presence of airborne bacteria in hospital environments is of great concern because of their potential role as a source of hospital-acquired infections (HAI). The aim of this study was the determination and comparison of the concentration of airborne bacteria in different wards of four educational hospitals, and evaluation of whether particle counting could be predictive of airborne bacterial concentration in different wards of a hospital. The study was performed in an operating theatre (OT), intensive care unit (ICU), surgery ward (SW) and internal medicine (IM) ward of four educational hospitals in Isfahan, Iran. A total of 80 samples were analyzed for the presence of airborne bacteria and particle levels. The average level of bacteria ranged from 75-1194 CFU/m (3) . Mean particle levels were higher than class 100,000 cleanrooms in all wards. A significant correlation was observed between the numbers of 1-5 µm particles and levels of airborne bacteria in operating theatres and ICUs. The results showed that factors which may influence the airborne bacterial level in hospital environments should be properly managed to minimize the risk of HAIs especially in operating theaters. Microbial air contamination of hospital settings should be performed by the monitoring of airborne bacteria, but particle counting could be considered as a good operative method for the continuous monitoring of air quality in operating theaters and ICUs where higher risks of infection are suspected.

  10. Interaction between endophytic bacteria from citrus plants and the phytopathogenic bacteria Xylella fastidiosa, causal agent of citrus-variegated chlorosis.

    PubMed

    Lacava, P T; Araújo, W L; Marcon, J; Maccheroni, W; Azevedo, J L

    2004-01-01

    To isolate endophytic bacteria and Xylella fastidiosa and also to evaluate whether the bacterial endophyte community contributes to citrus-variegated chlorosis (CVC) status in sweet orange (Citrus sinensis [L.] Osbeck cv. Pera). The presence of Xylella fastidiosa and the population diversity of culturable endophytic bacteria in the leaves and branches of healthy, CVC-asymptomatic and CVC-symptomatic sweet orange plants and in tangerine (Citrus reticulata cv. Blanco) plants were assessed, and the in vitro interaction between endophytic bacteria and X. fastidiosa was investigated. There were significant differences in endophyte incidence between leaves and branches, and among healthy, CVC-asymptomatic and CVC-symptomatic plants. Bacteria identified as belonging to the genus Methylobacterium were isolated only from branches, mainly from those sampled from healthy and diseased plants, from which were also isolated X. fastidiosa. The in vitro interaction experiments indicated that the growth of X. fastidiosa was stimulated by endophytic Methylobacterium extorquens and inhibited by endophytic Curtobacterium flaccumfaciens. This work provides the first evidence of an interaction between citrus endophytic bacteria and X. fastidiosa and suggests a promising approach that can be used to better understand CVC disease.

  11. Optical microcavities for real-time detection of bacteria

    NASA Astrophysics Data System (ADS)

    Ghali, Hala

    Researchers showed a lot of interest in studying whispering gallery microcavities as a tool for biosensing in the last decade. Optical microcavities are structures that confine light at the microscale due to total internal reflection of light at the interface between the cavity and its surrounding medium. If a molecule binds to the surface of the microcavity, light can interact with it several times, making optical microcavities very sensitive tools for label-free sensing. During this Ph.D. project, optical microdisks are used to detect the presence of Staphylococcus aureus (S. aureus) bacteria. To our knowledge, this is the first time optical microdisks are used to specifically detect bacteria. In order to have a reliable and efficient biosensor, it needs to be highly specific. Specificity is achieved by choosing an appropriate functionalization process. The functionalization process uses the antibody that is specific to the antigen of interest. In this case, the choice of a specific bacteriophage to bind S. aureus bacteria is crucial to obtain a specific sensor, and many experiences were done in order to identify the most appropriate. However, the purification of bacteriophages can be long and complex. An alternative to working with whole bacteriophages is the use of purified protein phages that can be easier to prepare. The functionalization process used in this thesis was developed in collaboration with professor Jay L. Nadeau's group from the biomedical engineering department at McGill university. LysK protein phage is added to the microdisk and will attach S. aureus bacteria during the real-time detection experiments. In order to demonstrate the specificity of the functionalization process, LysK was used with E. coli bacteria. As predicted, since LysK is only specific to S. aureus strains, it did not attach any E. coli. The binding of bacteria to the microdisk surface is observed through the reactive sensing mechanism. When bacteria bind to the surface of the

  12. THE FINE STRUCTURE OF GREEN BACTERIA

    PubMed Central

    Cohen-Bazire, Germaine; Pfennig, Norbert; Kunisawa, Riyo

    1964-01-01

    The fine structure of several strains of green bacteria belonging to the genus Chlorobium has been studied in thin sections with the electron microscope. In addition to having general cytological features typical of Gram-negative bacteria, the cells of these organisms always contain membranous mesosomal elements, connected with the cytoplasmic membrane, and an elaborate system of isolated cortical vesicles, some 300 to 400 A wide and 1000 to 1500 A long. The latter structures, chlorobium vesicles, have been isolated in a partly purified state by differential centrifugation of cell-free extracts. They are associated with a centrifugal fraction that has a very high specific chlorophyll content. In all probability, therefore, the chlorobium vesicles are the site of the photosynthetic apparatus of green bacteria. PMID:14195611

  13. Rapid separation of bacteria from blood — Chemical aspects

    PubMed Central

    Alizadeh, Mahsa; Wood, Ryan L.; Buchanan, Clara M.; Bledsoe, Colin G.; Wood, Madison E.; McClellan, Daniel S.; Blanco, Rae; Ravsten, Tanner V.; Husseini, Ghaleb A.; Hickey, Caroline L.; Robison, Richard A.; Pitt, William G.

    2017-01-01

    To rapidly diagnose infectious organisms causing blood sepsis, bacteria must be rapidly separated from blood, a very difficult process considering that concentrations of bacteria are many orders of magnitude lower than concentrations of blood cells. We have successfully separated bacteria from red and white blood cells using a sedimentation process in which the separation is driven by differences in density and size. Seven mL of whole human blood spiked with bacteria is placed in a 12-cm hollow disk and spun at 3000 rpm for 1 min. The red and white cells sediment more than 30-fold faster than bacteria, leaving much of the bacteria in the plasma. When the disk is slowly decelerated, the plasma flows to a collection site and the red and white cells are trapped in the disk. Analysis of the recovered plasma shows that about 36% of the bacteria is recovered in the plasma. The plasma is not perfectly clear of red blood cells, but about 94% have been removed. This paper describes the effects of various chemical aspects of this process, including the influence of anticoagulant chemistry on the separation efficiency and the use of wetting agents and platelet aggregators that may influence the bacterial recovery. In a clinical scenario, the recovered bacteria can be subsequently analyzed to determine their species and resistance to various antibiotics. PMID:28365426

  14. Antibiotic-Resistant Bacteria.

    ERIC Educational Resources Information Center

    Longenecker, Nevin E.; Oppenheimer, Dan

    1982-01-01

    A study conducted by high school advanced bacteriology students appears to confirm the hypothesis that the incremental administration of antibiotics on several species of bacteria (Escherichia coli, Staphylococcus epidermis, Bacillus sublitus, Bacillus megaterium) will allow for the development of antibiotic-resistant strains. (PEB)

  15. Competitive interactions between sponge-associated bacteria.

    PubMed

    Esteves, Ana I S; Cullen, Alescia; Thomas, Torsten

    2017-03-01

    The diversity of the microbial communities associated with marine sponges has been extensively studied, but their functioning and interactions within the sponge holobiont are only recently being appreciated. Sponge-associated microorganisms are known for the production of a range of inhibitory metabolites with biotechnological application, but the ecological role that these compounds remains elusive. In this work, we explore the competitive interactions between cultivated sponge-associated bacteria to inspect whether bacteria that produce antimicrobial activities are able to inhibit potentially pathogenic bacteria. We isolated a Bacillus sp. bacterium with sponge-degrading activity, which likely has a negative impact on the host. This bacterium, along with other sponge isolates from the same genus, was found to be inhibited by a subpopulation of closely related sponge-derived Pseudovibrio spp. In some Pseudovibrio strains, these inhibitory activities were correlated with the genetic capacity to produce polyketides, such as erythronolide. Our observations suggest that antagonistic activities likely influence the composition of the sponge microbiome, including the abundance of bacteria that can be harmful to the host. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  16. Biodegradation of chlorobenzene by indigenous bacteria

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nishino, S.F.; Spain, J.C.; Pettigrew, C.A.

    Soil and ground water from four sites chronically contaminated with chlorobenzenes were examined to determine whether indigenous bacteria could degrade the contaminants and whether the addition of specific chlorobenzene-degrading bacteria enhanced the degradation rate. At each site, chlorobenzene-degrading bacteria were readily isolated from chlorobenzene-contaminated wells, whereas similar samples from noncontaminated wells yielded no chlorobenzene-degrading bacteria. Isolates were tested for growth on a variety of substrates. At a site contaminated with several solvents, a bioreactor was inoculated with the chlorobenzene-degrading Pseudomonas sp. strain JS150. Contaminated water was pumped through this bioreactor and a control bioreactor that had been colonized by inmore » indigenous microorganisms. The contaminants were removed from both bioreactors; however, JS150 could not be recovered from the inoculated bioreactor after three weeks of operation. A follow-up lab study using ground water from the contaminated site confirmed the field results. The authors conclude that chlorobenzene contamination of soil causes the development of indigenous degradative populations that have a competitive advantage over inoculated strains. The mechanism and time course of this acclimation are poorly understood and require additional study.« less

  17. Antagonism of Lactic Acid Bacteria against Phytopathogenic Bacteria

    PubMed Central

    Visser, Ronèl; Holzapfel, Wilhelm H.; Bezuidenhout, Johannes J.; Kotzé, Johannes M.

    1986-01-01

    A variety of lactic acid bacteria, isolated from plant surfaces and plant-associated products, were found to be antagonistic to test strains of the phytopathogens Xanthomonas campestris, Erwinia carotovora, and Pseudomonas syringae. Effective “in vitro” inhibition was found both on agar plates and in broth cultures. In pot trials, treatment of bean plants with a Lactobacillus plantarum strain before inoculation with P. syringae caused a significant reduction of the disease incidence. Images PMID:16347150

  18. 3D printing of bacteria into functional complex materials.

    PubMed

    Schaffner, Manuel; Rühs, Patrick A; Coulter, Fergal; Kilcher, Samuel; Studart, André R

    2017-12-01

    Despite recent advances to control the spatial composition and dynamic functionalities of bacteria embedded in materials, bacterial localization into complex three-dimensional (3D) geometries remains a major challenge. We demonstrate a 3D printing approach to create bacteria-derived functional materials by combining the natural diverse metabolism of bacteria with the shape design freedom of additive manufacturing. To achieve this, we embedded bacteria in a biocompatible and functionalized 3D printing ink and printed two types of "living materials" capable of degrading pollutants and of producing medically relevant bacterial cellulose. With this versatile bacteria-printing platform, complex materials displaying spatially specific compositions, geometry, and properties not accessed by standard technologies can be assembled from bottom up for new biotechnological and biomedical applications.

  19. 3D printing of bacteria into functional complex materials

    PubMed Central

    Schaffner, Manuel; Rühs, Patrick A.; Coulter, Fergal; Kilcher, Samuel; Studart, André R.

    2017-01-01

    Despite recent advances to control the spatial composition and dynamic functionalities of bacteria embedded in materials, bacterial localization into complex three-dimensional (3D) geometries remains a major challenge. We demonstrate a 3D printing approach to create bacteria-derived functional materials by combining the natural diverse metabolism of bacteria with the shape design freedom of additive manufacturing. To achieve this, we embedded bacteria in a biocompatible and functionalized 3D printing ink and printed two types of “living materials” capable of degrading pollutants and of producing medically relevant bacterial cellulose. With this versatile bacteria-printing platform, complex materials displaying spatially specific compositions, geometry, and properties not accessed by standard technologies can be assembled from bottom up for new biotechnological and biomedical applications. PMID:29214219

  20. Biogeography of anaerobic ammonia-oxidizing (anammox) bacteria.

    PubMed

    Sonthiphand, Puntipar; Hall, Michael W; Neufeld, Josh D

    2014-01-01

    Anaerobic ammonia-oxidizing (anammox) bacteria are able to oxidize ammonia and reduce nitrite to produce N2 gas. After being discovered in a wastewater treatment plant (WWTP), anammox bacteria were subsequently characterized in natural environments, including marine, estuary, freshwater, and terrestrial habitats. Although anammox bacteria play an important role in removing fixed N from both engineered and natural ecosystems, broad scale anammox bacterial distributions have not yet been summarized. The objectives of this study were to explore global distributions and diversity of anammox bacteria and to identify factors that influence their biogeography. Over 6000 anammox 16S rRNA gene sequences from the public database were analyzed in this current study. Data ordinations indicated that salinity was an important factor governing anammox bacterial distributions, with distinct populations inhabiting natural and engineered ecosystems. Gene phylogenies and rarefaction analysis demonstrated that freshwater environments and the marine water column harbored the highest and the lowest diversity of anammox bacteria, respectively. Co-occurrence network analysis indicated that Ca. Scalindua strongly connected with other Ca. Scalindua taxa, whereas Ca. Brocadia co-occurred with taxa from both known and unknown anammox genera. Our survey provides a better understanding of ecological factors affecting anammox bacterial distributions and provides a comprehensive baseline for understanding the relationships among anammox communities in global environments.