Science.gov

Sample records for bacteria serratia marcescens

  1. [Efflux systems in Serratia marcescens].

    PubMed

    Mardanova, A M; Bogomol'naia, L M; Romanova, Iu D; Sharipova, M R

    2014-01-01

    A widespread bacterium Serratia marcescens (family Enterobacteriaceae) is an opportunistic and exhibits multiple drug resistance. Active removal of antibiotics and other antimicrobials from pathogen and exhibits multiple drug resistance. Active removal of antibiotics and other antimicrobials from the cells by efflux systems is one of the mechanisms responsible for microbial resistance to these compounds. Among enterobacteria, efflux systems of Escherichia coli and Salmonella enterica var. Typhimurium have been studied most extensively. Few efflux systems that belong to different families have been reported for S. marcescens. In this review, we analyzed available literature about S. marcescens efflux systems and carried out the comparative analysis of the genes encoding the RND type systems in different Serratia species and in other enterobacteria. Bioinformatical analysis of the S. marcescens genome allowed us to identify the previously unknown efflux systems based on their homology with the relevant E. coli genes. Identification of additional efflux systems in S. marcescens genome will promote our understanding of physiology of these bacteria, will detect new molecular mechanisms of resistance and will reveal their resistance potential.

  2. Cysteine Biosynthesis Controls Serratia marcescens Phospholipase Activity

    PubMed Central

    Anderson, Mark T.; Mitchell, Lindsay A.

    2017-01-01

    ABSTRACT Serratia marcescens causes health care-associated opportunistic infections that can be difficult to treat due to a high incidence of antibiotic resistance. One of the many secreted proteins of S. marcescens is the PhlA phospholipase enzyme. Genes involved in the production and secretion of PhlA were identified by screening a transposon insertion library for phospholipase-deficient mutants on phosphatidylcholine-containing medium. Mutations were identified in four genes (cyaA, crp, fliJ, and fliP) that are involved in the flagellum-dependent PhlA secretion pathway. An additional phospholipase-deficient isolate harbored a transposon insertion in the cysE gene encoding a predicted serine O-acetyltransferase required for cysteine biosynthesis. The cysE requirement for extracellular phospholipase activity was confirmed using a fluorogenic phospholipase substrate. Phospholipase activity was restored to the cysE mutant by the addition of exogenous l-cysteine or O-acetylserine to the culture medium and by genetic complementation. Additionally, phlA transcript levels were decreased 6-fold in bacteria lacking cysE and were restored with added cysteine, indicating a role for cysteine-dependent transcriptional regulation of S. marcescens phospholipase activity. S. marcescens cysE mutants also exhibited a defect in swarming motility that was correlated with reduced levels of flhD and fliA flagellar regulator gene transcription. Together, these findings suggest a model in which cysteine is required for the regulation of both extracellular phospholipase activity and surface motility in S. marcescens. IMPORTANCE Serratia marcescens is known to secrete multiple extracellular enzymes, but PhlA is unusual in that this protein is thought to be exported by the flagellar transport apparatus. In this study, we demonstrate that both extracellular phospholipase activity and flagellar function are dependent on the cysteine biosynthesis pathway. Furthermore, a disruption of cysteine

  3. Preparation and characterization of vanadia-titania mixed oxide for immobilization of Serratia rubidaea CCT 5732 and Klebsiella marcescens bacteria

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saragiotto Colpini, Leda Maria; Correia Goncalves, Regina A.; Goncalves, Jose Eduardo

    2008-08-04

    Vanadia-titania mixed oxide was synthesized by sol-gel method and characterized by several techniques. Texturally, it is formed by mesopores and presents high-specific surface area and controlled porosity. Scanning electron microscopy revealed that vanadium is homogeneously distributed in the material. Structurally, it was possible to identify characteristic V=O stretching bands by IR. The analysis of X-ray diffraction showed that the material, particularly vanadium, is highly dispersed. Application experiments were carried out through the immobilization of Serratia rubidae CCT 5732 and Klebsiella marcescens bacteria by adsorption on the surface of mixed oxide. The micrographies revealed that the bacteria were adsorbed on themore » entire support, with average surface densities of 8.55 x 10{sup 11} cells/m{sup 2} (Serratia rubidae CCT 5732) and 3.40 x 10{sup 11} cells/m{sup 2} (K. marcescens)« less

  4. Serratia marcescens internalization and replication in human bladder epithelial cells

    PubMed Central

    Hertle, Ralf; Schwarz, Heinz

    2004-01-01

    Background Serratia marcescens, a frequent agent of catheterization-associated bacteriuria, strongly adheres to human bladder epithelial cells in culture. The epithelium normally provides a barrier between lumal organisms and the interstitium; the tight adhesion of bacteria to the epithelial cells can lead to internalization and subsequent lysis. However, internalisation was not shown yet for S. marcescens strains. Methods Elektronmicroscopy and the common gentamycin protection assay was used to assess intracellular bacteria. Via site directed mutagenesis, an hemolytic negative isogenic Serratia strain was generated to point out the importance of hemolysin production. Results We identified an important bacterial factor mediating the internalization of S. marcescens, and lysis of epithelial cells, as the secreted cytolysin ShlA. Microtubule filaments and actin filaments were shown to be involved in internalization. However, cytolysis of eukaryotic cells by ShlA was an interfering factor, and therefore hemolytic-negative mutants were used in subsequent experiments. Isogenic hemolysin-negative mutant strains were still adhesive, but were no longer cytotoxic, did not disrupt the cell culture monolayer, and were no longer internalized by HEp-2 and RT112 bladder epithelial cells under the conditions used for the wild-type strain. After wild-type S. marcescens became intracellular, the infected epithelial cells were lysed by extended vacuolation induced by ShlA. In late stages of vacuolation, highly motile S. marcescens cells were observed in the vacuoles. S. marcescens was also able to replicate in cultured HEp-2 cells, and replication was not dependent on hemolysin production. Conclusion The results reported here showed that the pore-forming toxin ShlA triggers microtubule-dependent invasion and is the main factor inducing lysis of the epithelial cells to release the bacteria, and therefore plays a major role in the development of S. marcescens infections. PMID:15189566

  5. Cysteine Biosynthesis Controls Serratia marcescens Phospholipase Activity.

    PubMed

    Anderson, Mark T; Mitchell, Lindsay A; Mobley, Harry L T

    2017-08-15

    Serratia marcescens causes health care-associated opportunistic infections that can be difficult to treat due to a high incidence of antibiotic resistance. One of the many secreted proteins of S. marcescens is the PhlA phospholipase enzyme. Genes involved in the production and secretion of PhlA were identified by screening a transposon insertion library for phospholipase-deficient mutants on phosphatidylcholine-containing medium. Mutations were identified in four genes ( cyaA , crp , fliJ , and fliP ) that are involved in the flagellum-dependent PhlA secretion pathway. An additional phospholipase-deficient isolate harbored a transposon insertion in the cysE gene encoding a predicted serine O -acetyltransferase required for cysteine biosynthesis. The cysE requirement for extracellular phospholipase activity was confirmed using a fluorogenic phospholipase substrate. Phospholipase activity was restored to the cysE mutant by the addition of exogenous l-cysteine or O -acetylserine to the culture medium and by genetic complementation. Additionally, phlA transcript levels were decreased 6-fold in bacteria lacking cysE and were restored with added cysteine, indicating a role for cysteine-dependent transcriptional regulation of S. marcescens phospholipase activity. S. marcescens cysE mutants also exhibited a defect in swarming motility that was correlated with reduced levels of flhD and fliA flagellar regulator gene transcription. Together, these findings suggest a model in which cysteine is required for the regulation of both extracellular phospholipase activity and surface motility in S. marcescens IMPORTANCE Serratia marcescens is known to secrete multiple extracellular enzymes, but PhlA is unusual in that this protein is thought to be exported by the flagellar transport apparatus. In this study, we demonstrate that both extracellular phospholipase activity and flagellar function are dependent on the cysteine biosynthesis pathway. Furthermore, a disruption of cysteine

  6. [Hospital infection due to Serratia marcescens and its sensitivity to antibiotics].

    PubMed

    Filloy, L; Serrano, D; Borjas, E

    1980-01-01

    A total of 164 isolations of Serratia marcescens achieved during 1978-1979 at the Hospital Infantil de México in children with various pathology due to this bacteria were studied. Most of the cases were debilitated patients from the newborns and prematures wards and contagious and surgery departments. The most frequent isolations were from wounds and abscesses (76 cases), the same as from meningitis (22 cases) and sepsis (12 patients). Serratia marcescens showed a high degree of resistance (87-100%) to the following antibiotics: carbenicillin, colimycin, chloramphenicol, phosphomicin, ampicillin and cephalothin. To gestamicin and kanamycin, 42% of strains were sensitive. Amikacin was the most effective drug with 92% of strains susceptible to it. The history of this bacteria, its mode of transmission, frequency of infections and resistance to antibiotics found in foreign institutions are commented. Likewise, the difficulty for the precision bacteriologic diagnosis is emphasized as the possible main cause for the ignorance in Mexico of infections due to this bacteria.

  7. Culture conditions affect cytotoxin production by Serratia marcescens.

    PubMed

    Carbonell, G V; Fonseca, B A; Figueiredo, L T; Darini, A L; Yanaguita, R M

    1996-12-31

    Cytotoxins have been implicated in the pathogenesis of bacterial infections. In this study, the influence of different culture conditions was evaluated on cytotoxin production of Serratia marcescens. Parameters such as culture media, incubation temperature, starting pH of culture medium, aeration, anaerobiosis, carbon sources, iron concentration in he culture media, and release of cell-bond toxin by polymyxin B were investigated. The data suggest that this cytotoxin is predominantly extracellular and is not induced by iron limitation. Aerobic culture with shaking resulted in higher cytotoxicity than static aerobic or anaerobic culture. Bacteria grown in glucose, sucrose or galactose were more cytotoxic than those grown in inositol or maltose. The culture conditions that were identified as optimal for cytotoxin production by Serratia marcescens were incubation temperature ranging from 30 to 37 degrees C, in medium adjusted pH 8.5, with shaking. This work will contribute to further studies on the identification of this cytotoxic activity.

  8. Endogenous Serratia marcescens endophthalmitis.

    PubMed

    Shah, Sonya B; Bansal, Alok S; Rabinowitz, Michael P; Park, Carl; Bedrossian, Edward H; Eagle, Ralph C

    2014-01-01

    The purpose of this study was to describe a rare case of endogenous endophthalmitis associated with dental disease secondary to Serratia marcescens in an HIV-negative individual. Retrospective case report. A 50-year-old white man with a history of intravenous drug use presented with pain and decreased vision in his right eye. Slit-lamp examination showed a hazy cornea, hypopyon with fibrin in the anterior chamber, and elevated intraocular pressure. B-scan ultrasound showed vitritis and choroidal thickening. Computed tomography showed gingival inflammation and lucencies of several teeth. Blood and urine cultures were negative, and HIV testing was negative. Echocardiography was negative for vegetations. Intravitreal culture revealed S. marcescens. Despite intravitreal and systemic antibiotics, the patient's clinical situation rapidly deteriorated, and the eye was eviscerated. The patient underwent dental extraction and was subsequently discharged in stable condition. The first case of endogenous endophthalmitis secondary to S. marcescens in an otherwise healthy, HIV-negative, intravenous drug user in association with severe dental disease is reported. Serratia may be found in oral biofilm, and this mechanism should be considered in cases where other etiologies have been ruled out.

  9. Antagonistic activities of some probiotic lactobacilli culture supernatant on Serratia marcescens swarming motility and antibiotic resistance.

    PubMed

    Vahedi-Shahandashti, Roya; Kasra-Kermanshahi, Rouha; Shokouhfard, Maliheh; Ghadam, Parinaz; Feizabadi, Mohammad Mehdi; Teimourian, Shahram

    2017-12-01

    Serratia marcescens , a potentially pathogenic bacterium, benefits from its swarming motility and resistance to antibiotic as two important virulence factors. Inappropriate use of antibiotics often results in drug resistance phenomenon in bacterial population. Use of probiotic bacteria has been recommended as partial replacement. In this study, we investigated the effects of some lactobacilli culture supernatant on swarming, motility and antibiotic resistance of S. marcescens . Antimicrobial activity of lactobacilli supernatant and susceptibility testing carried out on S. marcescens isolates. Pretreatment effect of lactobacilli culture supernatant on antibiotic - resistance pattern in S. marcescens was determined by comparison of the MIC of bacteria before and after the treatment. Our results showed that pretreatment with L. acidophilus ATCC 4356 supernatant can affect the resistance of Serratia strains against ceftriaxone, but it had no effect on the resistance to other antibiotics. Furthermore, culture supernatant of lactobacilli with concentrations greater than 2%, had an effect on the swarming ability of S. marcescens ATCC 13880 and inhibited it. Probiotic bacteria and their metabolites have the ability to inhibit virulence factors such as antibiotic resistance and swarming motility and can be used as alternatives to antibiotics.

  10. Power generation by flagella-propelled Serratia Marcescens

    NASA Astrophysics Data System (ADS)

    Tran, Trung-Hieu; Kim, Min Jun; Byun, Doyoung

    2010-11-01

    In this study, we present electrical power generation by using swimming Serratia marcescens which is a rod shaped bacterium species and has about 10 um long and about 20 nm thin helical filaments. Flow in micro channel is driven by bacteria attached on the wall, which is around 25 to 50 μm/sec. The driven electrolyte solution flow (buffer solution containing high concentration of S. marcescens) may be considered as movement of conductor. If we place permanent magnets on the top and bottom of the micro channel and electrodes on side walls in the micro channel, electrical current could be generated by the principle of Lorentz force acting on the moving charges. The potential between the two electrodes was measured to be up to 10mV and the electrical current was about 10pA with external load 50 Ohm. Even if the energy generated by bacteria swimming is small, it demonstrated the possible generation of power, which requires in-depth further research.

  11. Serratia marcescens endogenous endophthalmitis in an immunocompetent host

    PubMed Central

    Memon, Muhammad; Raman, Vasant

    2016-01-01

    A systemically well 66-year-old white Caucasian man presented to the urgent care department with a short history of progressive pain and blurring of vision in his left eye. He denied a history of trauma, intraocular surgery or use of illicit drugs. He was diagnosed with endogenous endophthalmitis. Vitreous biopsy grew Serratia marcescens, a Gram negative bacteria. In spite of extensive investigation, there was no obvious source of infection. He had an indwelling urine catheter for prostate hypertrophy, but urine culture was negative. There was no evidence of immunocompromise. He was treated with systemic as well as intravitreal antibiotics. In spite of appropriate treatment, the patient lost vision. S. marcescens endophthalmitis, seen even in immunocompetent people, carries a poor visual prognosis. PMID:26791115

  12. Serratia marcescens endogenous endophthalmitis in an immunocompetent host.

    PubMed

    Memon, Muhammad; Raman, Vasant

    2016-01-20

    A systemically well 66-year-old white Caucasian man presented to the urgent care department with a short history of progressive pain and blurring of vision in his left eye. He denied a history of trauma, intraocular surgery or use of illicit drugs. He was diagnosed with endogenous endophthalmitis. Vitreous biopsy grew Serratia marcescens, a Gram negative bacteria. In spite of extensive investigation, there was no obvious source of infection. He had an indwelling urine catheter for prostate hypertrophy, but urine culture was negative. There was no evidence of immunocompromise. He was treated with systemic as well as intravitreal antibiotics. In spite of appropriate treatment, the patient lost vision. S. marcescens endophthalmitis, seen even in immunocompetent people, carries a poor visual prognosis. 2016 BMJ Publishing Group Ltd.

  13. Serratia marcescens osteomyelitis in Cushing's disease

    PubMed Central

    Martins, Hugo F G; Raposo, Alexandra; Baptista, Isabel; Almeida, Julio

    2015-01-01

    We report a case of a 46-year-old man with fever, hypotension and arthralgias of the ankles and knees after brain surgery for a pituitary tumour causing Cushing's disease. Blood and urine cultures isolated Serratia marcescens; antibiotic susceptibility testing showed sensitivity to piperacillin-tazobactan and ciprofloxacin. Articular MRI showed inflammation and necrosis of both knees and ankles, and left hip and right elbow (compatible with osteomyelitis). Culture of an ankle abscess on the ankle joint was positive for Serratia marcescens. Bone scintigraphy confirmed osteomyelitic lesions. Medical treatment included antibiotics and strong opioid therapy for 14 weeks. The patient was discharged clinically improved maintaining ciprofloxacin for 24 additional weeks based on clinical and analytic recovery. PMID:26621903

  14. Analytical modeling and experimental characterization of chemotaxis in Serratia marcescens

    NASA Astrophysics Data System (ADS)

    Zhuang, Jiang; Wei, Guopeng; Wright Carlsen, Rika; Edwards, Matthew R.; Marculescu, Radu; Bogdan, Paul; Sitti, Metin

    2014-05-01

    This paper presents a modeling and experimental framework to characterize the chemotaxis of Serratia marcescens (S. marcescens) relying on two-dimensional and three-dimensional tracking of individual bacteria. Previous studies mainly characterized bacterial chemotaxis based on population density analysis. Instead, this study focuses on single-cell tracking and measuring the chemotactic drift velocity VC from the biased tumble rate of individual bacteria on exposure to a concentration gradient of l-aspartate. The chemotactic response of S. marcescens is quantified over a range of concentration gradients (10-3 to 5 mM/mm) and average concentrations (0.5×10-3 to 2.5 mM). Through the analysis of a large number of bacterial swimming trajectories, the tumble rate is found to have a significant bias with respect to the swimming direction. We also verify the relative gradient sensing mechanism in the chemotaxis of S. marcescens by measuring the change of VC with the average concentration and the gradient. The applied full pathway model with fitted parameters matches the experimental data. Finally, we show that our measurements based on individual bacteria lead to the determination of the motility coefficient μ (7.25×10-6 cm2/s) of a population. The experimental characterization and simulation results for the chemotaxis of this bacterial species contribute towards using S. marcescens in chemically controlled biohybrid systems.

  15. Capsule Production and Glucose Metabolism Dictate Fitness during Serratia marcescens Bacteremia

    PubMed Central

    Anderson, Mark T.; Mitchell, Lindsay A.; Zhao, Lili

    2017-01-01

    ABSTRACT Serratia marcescens is an opportunistic pathogen that causes a range of human infections, including bacteremia, keratitis, wound infections, and urinary tract infections. Compared to other members of the Enterobacteriaceae family, the genetic factors that facilitate Serratia proliferation within the mammalian host are less well defined. An in vivo screen of transposon insertion mutants identified 212 S. marcescens fitness genes that contribute to bacterial survival in a murine model of bloodstream infection. Among those identified, 11 genes were located within an 18-gene cluster encoding predicted extracellular polysaccharide biosynthesis proteins. A mutation in the wzx gene contained within this locus conferred a loss of fitness in competition infections with the wild-type strain and a reduction in extracellular uronic acids correlating with capsule loss. A second gene, pgm, encoding a phosphoglucomutase exhibited similar capsule-deficient phenotypes, linking central glucose metabolism with capsule production and fitness of Serratia during mammalian infection. Further evidence of the importance of central metabolism was obtained with a pfkA glycolytic mutant that demonstrated reduced replication in human serum and during murine infection. An MgtB magnesium transporter homolog was also among the fitness factors identified, and an S. marcescens mgtB mutant exhibited decreased growth in defined medium containing low concentrations of magnesium and was outcompeted ~10-fold by wild-type bacteria in mice. Together, these newly identified genes provide a more complete understanding of the specific requirements for S. marcescens survival in the mammalian host and provide a framework for further investigation of the means by which S. marcescens causes opportunistic infections. PMID:28536292

  16. Capsule Production and Glucose Metabolism Dictate Fitness during Serratia marcescens Bacteremia.

    PubMed

    Anderson, Mark T; Mitchell, Lindsay A; Zhao, Lili; Mobley, Harry L T

    2017-05-23

    Serratia marcescens is an opportunistic pathogen that causes a range of human infections, including bacteremia, keratitis, wound infections, and urinary tract infections. Compared to other members of the Enterobacteriaceae family, the genetic factors that facilitate Serratia proliferation within the mammalian host are less well defined. An in vivo screen of transposon insertion mutants identified 212 S. marcescens fitness genes that contribute to bacterial survival in a murine model of bloodstream infection. Among those identified, 11 genes were located within an 18-gene cluster encoding predicted extracellular polysaccharide biosynthesis proteins. A mutation in the wzx gene contained within this locus conferred a loss of fitness in competition infections with the wild-type strain and a reduction in extracellular uronic acids correlating with capsule loss. A second gene, pgm , encoding a phosphoglucomutase exhibited similar capsule-deficient phenotypes, linking central glucose metabolism with capsule production and fitness of Serratia during mammalian infection. Further evidence of the importance of central metabolism was obtained with a pfkA glycolytic mutant that demonstrated reduced replication in human serum and during murine infection. An MgtB magnesium transporter homolog was also among the fitness factors identified, and an S. marcescens mgtB mutant exhibited decreased growth in defined medium containing low concentrations of magnesium and was outcompeted ~10-fold by wild-type bacteria in mice. Together, these newly identified genes provide a more complete understanding of the specific requirements for S. marcescens survival in the mammalian host and provide a framework for further investigation of the means by which S. marcescens causes opportunistic infections. IMPORTANCE Serratia marcescens is a remarkably prolific organism that replicates in diverse environments, including as an opportunistic pathogen in human bacteremia. The genetic requirements for

  17. Serratia marcescens Is Able to Survive and Proliferate in Autophagic-Like Vacuoles inside Non-Phagocytic Cells

    PubMed Central

    Colombo, María Isabel; García Véscovi, Eleonora

    2011-01-01

    Serratia marcescens is an opportunistic human pathogen that represents a growing problem for public health, particularly in hospitalized or immunocompromised patients. However, little is known about factors and mechanisms that contribute to S. marcescens pathogenesis within its host. In this work, we explore the invasion process of this opportunistic pathogen to epithelial cells. We demonstrate that once internalized, Serratia is able not only to persist but also to multiply inside a large membrane-bound compartment. This structure displays autophagic-like features, acquiring LC3 and Rab7, markers described to be recruited throughout the progression of antibacterial autophagy. The majority of the autophagic-like vacuoles in which Serratia resides and proliferates are non-acidic and have no degradative properties, indicating that the bacteria are capable to either delay or prevent fusion with lysosomal compartments, altering the expected progression of autophagosome maturation. In addition, our results demonstrate that Serratia triggers a non-canonical autophagic process before internalization. These findings reveal that S. marcescens is able to manipulate the autophagic traffic, generating a suitable niche for survival and proliferation inside the host cell. PMID:21901159

  18. Prolonged outbreak of Serratia marcescens in Tartu University Hospital: a case–control study

    PubMed Central

    2012-01-01

    Background The aim of our study was to investigate and control an outbreak and identify risk factors for colonization and infection with Serratia marcescens in two departments in Tartu University Hospital. Methods The retrospective case–control study was conducted from July 2005 to December 2006. Molecular typing by pulsed field gel electrophoresis was used to confirm the relatedness of Serratia marcescens strains. Samples from the environment and from the hands of personnel were cultured. Results The outbreak involved 210 patients, 61 (29%) developed an infection, among them 16 were invasive infections. Multivariate analysis identified gestational age, arterial catheter use and antibiotic treatment as independent risk factors for colonization and infection with Serratia marcescens. Molecular typing was performed on 83 Serratia marcescens strains, 81 of them were identical and 2 strains were different. Conclusions Given the occasionally severe consequences of Serratia marcescens in infants, early implementation of aggressive infection control measures involving patients and mothers as well as the personnel is of utmost importance. PMID:23114062

  19. Serratia marcescens is injurious to intestinal epithelial cells.

    PubMed

    Ochieng, John B; Boisen, Nadia; Lindsay, Brianna; Santiago, Araceli; Ouma, Collins; Ombok, Maurice; Fields, Barry; Stine, O Colin; Nataro, James P

    2014-01-01

    Diarrhea causes substantial morbidity and mortality in children in low-income countries. Although numerous pathogens cause diarrhea, the etiology of many episodes remains unknown. Serratia marcescens is incriminated in hospital-associated infections, and HIV/AIDS associated diarrhea. We have recently found that Serratia spp. may be found more commonly in the stools of patients with diarrhea than in asymptomatic control children. We therefore investigated the possible enteric pathogenicity of S. marcescens in vitro employing a polarized human colonic epithelial cell (T84) monolayer. Infected monolayers were assayed for bacterial invasion, transepithelial electrical resistance (TEER), cytotoxicity, interleukin-8 (IL-8) release and morphological changes by scanning electron microscopy. We observed significantly greater epithelial cell invasion by S. marcescens compared to Escherichia coli strain HS (p = 0.0038 respectively). Cell invasion was accompanied by reduction in TEER and secretion of IL-8. Lactate dehydrogenase (LDH) extracellular concentration rapidly increased within a few hours of exposure of the monolayer to S. marcescens. Scanning electron microscopy of S. marcescens-infected monolayers demonstrated destruction of microvilli and vacuolization. Our results suggest that S. marcescens interacts with intestinal epithelial cells in culture and induces dramatic alterations similar to those produced by known enteric pathogens.

  20. Serratia marcescens in human affairs.

    PubMed

    Greenberg, L

    1978-11-01

    Serratia marcescens, a ubiquitous, essentially saprophytic bacterium with a predilection for starches, has played a significant role in human affairs. Its notoriety has been occasioned by a blood-red pigment liberated by the organism during its metabolic activities that has been mistaken for fresh blood. In early Greek and Roman history, such "bloody" episodes were viewed as manifestations of divine destiny; by the Middle Ages in Europe they coincided with the development of church doctrine regarding the holy sacraments and had a far more sinister effect. In numerous instances between 1300 and 1500 A.D. host wafers developed a "bloody" appearance and led to the mass slaughter of Jews, who were accused of destructive attempts against the Eucharist. In our time, Serratia marcescens has been shown to possess significant endotoxic activity and can no longer be regarded as a harmless nuisance. It has been implicated in a wide range of human infections, particularly hospital-associated infections, of varying degrees of severity and including fatal antibiotic-resistant septicemias.

  1. Serratia marcescens meningitis following spinal anaesthesia and arthroscopy.

    PubMed

    Hadzic, Amir; Koluder-Cimic, Nada; Hadzovic-Cengic, Meliha; Gojak, Refet; Gavrankapetanovic, Ismet; Becirbegovic, Semin

    2012-01-01

    We present case of nosocomial bacterial meningitis, caused by Serratia marcescens (ESBL), occurred following spinal anaesthesia. Although very rare bacterial meningitis is serious complication of spinal anaesthesia and early diagnosis as well as effective treatment is extremely important. Previously healthy individual, admitted to Orthopaedic Department for routine arthroscopy, approximately within 24 hours after operation was performed complained of headache and fever. Infectious Diseases physician was consulted, lumbar puncture was performed and purulent meningitis was confirmed. Cerebrospinal fluid and blood cultures of patient confirmed Serratia marcescens (ESBL), resistant pathogen and important nosocomial agent. Patient was successfully treated. Cases of spinal meningitis caused by Serratia marcescens are rare. Local resistance pattern is important and should be always considered when starting therapy. Infection control team was appointed because of similar case of meningitis one month before in the same Department, and after investigation discovered Serratia in anaesthetic vial used in procedures. New measures and recommendations regarding infection control were implemented at Orthopaedic Department. Meningitis as a complication should always be considered as a possible differential diagnosis with patients after spinal anaesthesia complaining on headache and fever. Early diagnosis and early treatment is extremely important. Knowledge and practice of infection control measures is mandatory and should be always emphasized to performing staff.

  2. Necrotizing Fasciitis of the Abdominal Wall Caused by Serratia Marcescens

    PubMed Central

    Lakhani, Naheed A.; Narsinghani, Umesh; Kumar, Ritu

    2015-01-01

    In this article, we present the first case of necrotizing fasciitis affecting the abdominal wall caused by Serratia marcescens and share results of a focused review of S. marcescens induced necrotizing fasciitis. Our patient underwent aorto-femoral bypass grafting for advanced peripheral vascular disease and presented 3 weeks postoperatively with pain, erythema and discharge from the incision site in the left lower abdominal wall and underwent multiple debridement of the affected area. Pathology of debrided tissue indicated extensive necrosis involving the adipose tissue, fascia and skeletal muscle. Wound cultures were positive for Serratia marcescens. She was successfully treated with antibiotics and multiple surgical debridements. Since necrotizing fasciitis is a medical and surgical emergency, it is critical to examine infectivity trends, clinical characteristics in its causative spectrum. Using PubMed we found 17 published cases of necrotizing fasciitis caused by Serratia marcescens, and then analyzed patterns among those cases. Serratia marcescens is prominent in the community and hospital settings, and information on infection presentations, risk factors, characteristics, treatment, course, and complications as provided through this study can help identify cases earlier and mitigate poor outcomes. Patients with positive blood cultures and those patients where surgical intervention was not provided or delayed had a higher mortality. Surgical intervention is a definite way to establish the diagnosis of necrotizing infection and differentiate it from other entities. PMID:26294949

  3. In vitro synergistic effects of fisetin and norfloxacin against aquatic isolates of Serratia marcescens.

    PubMed

    Dong, Jing; Ruan, Jing; Xu, Ning; Yang, Yibin; Ai, Xiaohui

    2016-01-01

    Serratia marcescens is a common pathogenic bacterium that can cause infections in both humans and animals. It can cause a range of diseases, from slight wound infections to life-threatening bacteraemia and pneumonia. The emergence of antimicrobial resistance has limited the treatment of the diseases caused by the bacterium to a great extent. Consequently, there is an urgent need to develop novel antimicrobial strategies against this pathogen. Synergistic strategy is a new approach to treat the infections caused by drug-resistant bacteria. In this paper, we isolated and identified the first multi-resistant pathogenic Serratia marcescens strain from diseased soft-shelled turtles (Pelodiscus sinensis) in China. We then performed a checkerboard assay; the results showed that out of 10 tested natural products fisetin had synergistic effects against S. marcescens when combined with norfloxacin. The time-kill curve assay further confirmed the results of the checkerboard assay. We found that this novel synergistic effect could significantly reduce the dosage of norfloxacin against S. marcescens. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  4. Adansonian Analysis and Deoxyribonucleic Acid Base Composition of Serratia marcescens

    PubMed Central

    Colwell, R. R.; Mandel, M.

    1965-01-01

    Colwell, R. R. (Georgetown University, Washington, D.C.), and M. Mandel. Adansonian analysis and deoxyribonucleic acid base composition of Serratia marcescens. J. Bacteriol. 89:454–461. 1965.—A total of 33 strains of Serratia marcescens were subjected to Adansonian analysis for which more than 200 coded features for each of the organisms were included. In addition, the base composition [expressed as moles per cent guanine + cytosine (G + C)] of the deoxyribonucleic acid (DNA) prepared from each of the strains was determined. Except for four strains which were intermediate between Serratia and the Hafnia and Aerobacter group C of Edwards and Ewing, the S. marcescens species group proved to be extremely homogeneous, and the different strains showed high affinities for each other (mean similarity, ¯S = 77%). The G + C ratio of the DNA from the Serratia strains ranged from 56.2 to 58.4% G + C. Many species names have been listed for the genus, but only a single clustering of the strains was obtained at the species level, for which the species name S. marcescens was retained. S. kiliensis, S. indica, S. plymuthica, and S. marinorubra could not be distinguished from S. marcescens; it was concluded, therefore, that there is only a single species in the genus. The variety designation kiliensis does not appear to be valid, since no subspecies clustering of strains with negative Voges-Proskauer reactions could be detected. The characteristics of the species are listed, and a description of S. marcescens is presented. PMID:14255714

  5. Serratia marcescens is injurious to intestinal epithelial cells

    PubMed Central

    Ochieng, John B; Boisen, Nadia; Lindsay, Brianna; Santiago, Araceli; Ouma, Collins; Ombok, Maurice; Fields, Barry; Stine, O Colin; Nataro, James P

    2014-01-01

    Diarrhea causes substantial morbidity and mortality in children in low-income countries. Although numerous pathogens cause diarrhea, the etiology of many episodes remains unknown. Serratia marcescens is incriminated in hospital-associated infections, and HIV/AIDS associated diarrhea. We have recently found that Serratia spp. may be found more commonly in the stools of patients with diarrhea than in asymptomatic control children. We therefore investigated the possible enteric pathogenicity of S. marcescens in vitro employing a polarized human colonic epithelial cell (T84) monolayer. Infected monolayers were assayed for bacterial invasion, transepithelial electrical resistance (TEER), cytotoxicity, interleukin-8 (IL-8) release and morphological changes by scanning electron microscopy. We observed significantly greater epithelial cell invasion by S. marcescens compared to Escherichia coli strain HS (p = 0.0038 respectively). Cell invasion was accompanied by reduction in TEER and secretion of IL-8. Lactate dehydrogenase (LDH) extracellular concentration rapidly increased within a few hours of exposure of the monolayer to S. marcescens. Scanning electron microscopy of S. marcescens-infected monolayers demonstrated destruction of microvilli and vacuolization. Our results suggest that S. marcescens interacts with intestinal epithelial cells in culture and induces dramatic alterations similar to those produced by known enteric pathogens. PMID:25426769

  6. Intra-specific diversity of Serratia marcescens in Anopheles mosquito midgut defines Plasmodium transmission capacity

    PubMed Central

    Bando, Hironori; Okado, Kiyoshi; Guelbeogo, Wamdaogo M.; Badolo, Athanase; Aonuma, Hiroka; Nelson, Bryce; Fukumoto, Shinya; Xuan, Xuenan; Sagnon, N'Fale; Kanuka, Hirotaka

    2013-01-01

    A critical stage in malaria transmission occurs in the Anopheles mosquito midgut, when the malaria parasite, Plasmodium, ingested with blood, first makes contact with the gut epithelial surface. To understand the response mechanisms within the midgut environment, including those influenced by resident microbiota against Plasmodium, we focus on a midgut bacteria species' intra-specific variation that confers diversity to the mosquito's competency for malaria transmission. Serratia marcescens isolated from either laboratory-reared mosquitoes or wild populations in Burkina Faso shows great phenotypic variation in its cellular and structural features. Importantly, this variation is directly correlated with its ability to inhibit Plasmodium development within the mosquito midgut. Furthermore, this anti-Plasmodium function conferred by Serratia marcescens requires increased expression of the flagellum biosynthetic pathway that is modulated by the motility master regulatory operon, flhDC. These findings point to new strategies for controlling malaria through genetic manipulation of midgut bacteria within the mosquito. PMID:23571408

  7. The role of outer membrane in Serratia marcescens intrinsic resistance to antibiotics.

    PubMed

    Sánchez, L; Ruiz, N; Leranoz, S; Viñas, M; Puig, M

    1997-09-01

    Three different porins from Serratia marcescens were described. They were named Omp1, Omp2 and Omp3 and their molecular weights were 42, 40 and 39 kDa respectively. Omp2 and Omp3 showed osmoregulation and thermoregulation in a similar way to OmpC and OmpF of Escherichia coli. Permeability coefficients of the outer membrane of this species were calculated following the Zimmermann and Rosselet method. P values were similar to those obtained in Escherichia coli, which suggests that the chromosomal beta-lactamase would play a major role in the resistance of Serratia marcescens to beta-lactam antibiotics. Both MIC values and permeabilities were modified by salycilates and acetylsalycilate. Synergism between the outer membrane and the beta-lactamase was also evaluated. When bacteria grew in the presence of a beta-lactam in the medium, the beta-lactamase accounted for most of the resistance.

  8. Serratia marcescens Necrotizing Fasciitis Presenting as Bilateral Breast Necrosis

    PubMed Central

    Rehman, Tayyab; Moore, Thomas A.

    2012-01-01

    Serratia marcescens is an extremely rare cause of necrotizing fasciitis. We report the first case of necrotizing fasciitis of the chest wall due to infection with S. marcescens that initially manifested as bilateral breast necrosis. The patient had a fulminant course leading to death within 72 h of presentation. Literature pertinent to S. marcescens-mediated necrotizing fasciitis is also reviewed. PMID:22837315

  9. Fatal Serratia marcescens meningitis and myocarditis in a patient with an indwelling urinary catheter.

    PubMed

    Johnson, J S; Croall, J; Power, J S; Armstrong, G R

    1998-10-01

    Serratia marcescens is commonly isolated from the urine of patients with an indwelling urinary catheter and in the absence of symptoms is often regarded as a contaminant. A case of fatal Serratia marcescens septicaemia with meningitis, brain abscesses, and myocarditis discovered at necropsy is described. The patient was an 83 year old man with an indwelling urinary catheter who suffered from several chronic medical conditions and from whose urine Serratia marcescens was isolated at the time of catheterisation. Serratia marcescens can be a virulent pathogen in particular groups of patients and when assessing its significance in catheter urine specimens, consideration should be given to recognised risk factors such as old age, previous antibiotic treatment, and underlying chronic or debilitating disease, even in the absence of clinical symptoms.

  10. Pathogenicity of Isolates of Serratia Marcescens towards Larvae of the Scarab Phyllophaga Blanchardi (Coleoptera).

    PubMed

    Pineda-Castellanos, Mónica L; Rodríguez-Segura, Zitlhally; Villalobos, Francisco J; Hernández, Luciano; Lina, Laura; Nuñez-Valdez, M Eugenia

    2015-05-13

    Serratia marcescens is a Gram negative bacterium (Enterobacteriaceae) often associated with infection of insects. In order to find pathogenic bacteria with the potential to control scarab larvae, several bacterial strains were isolated from the hemocoel of diseased Phyllophaga spp (Coleoptera:Scarabaeidae) larvae collected from cornfields in Mexico. Five isolates were identified as Serratia marcescens by 16S rRNA gene sequencing and biochemical tests. Oral and injection bioassays using healthy Phyllophaga blanchardi larvae fed with the S. marcescens isolates showed different degrees of antifeeding effect and mortality. No insecticidal activity was observed for Spodoptera frugiperda larvae (Lepidoptera: Noctuidae) by oral inoculation. S. marcescens (Sm81) cell-free culture supernatant caused significant antifeeding effect and mortality to P. blanchardi larvae by oral bioassay and also mortality by injection bioassay. Heat treated culture broths lost the ability to cause disease symptoms, suggesting the involvement of proteins in the toxic activity. A protein of 50.2 kDa was purified from the cell-free broth and showed insecticidal activity by injection bioassay towards P. blanchardi. Analysis of the insecticidal protein by tandem- mass spectrometry (LC-MS/MS) showed similarity to a Serralysin-like protein from S. marcescens spp. This insecticidal protein could have applications in agricultural biotechnology.

  11. Pathogenicity of Isolates of Serratia Marcescens towards Larvae of the Scarab Phyllophaga Blanchardi (Coleoptera)

    PubMed Central

    Pineda-Castellanos, Mónica L.; Rodríguez-Segura, Zitlhally; Villalobos, Francisco J.; Hernández, Luciano; Lina, Laura; Nuñez-Valdez, M. Eugenia

    2015-01-01

    Serratia marcescens is a Gram negative bacterium (Enterobacteriaceae) often associated with infection of insects. In order to find pathogenic bacteria with the potential to control scarab larvae, several bacterial strains were isolated from the hemocoel of diseased Phyllophaga spp (Coleoptera:Scarabaeidae) larvae collected from cornfields in Mexico. Five isolates were identified as Serratia marcescens by 16S rRNA gene sequencing and biochemical tests. Oral and injection bioassays using healthy Phyllophaga blanchardi larvae fed with the S. marcescens isolates showed different degrees of antifeeding effect and mortality. No insecticidal activity was observed for Spodoptera frugiperda larvae (Lepidoptera: Noctuidae) by oral inoculation. S. marcescens (Sm81) cell-free culture supernatant caused significant antifeeding effect and mortality to P. blanchardi larvae by oral bioassay and also mortality by injection bioassay. Heat treated culture broths lost the ability to cause disease symptoms, suggesting the involvement of proteins in the toxic activity. A protein of 50.2 kDa was purified from the cell-free broth and showed insecticidal activity by injection bioassay towards P. blanchardi. Analysis of the insecticidal protein by tandem- mass spectrometry (LC-MS/MS) showed similarity to a Serralysin-like protein from S. marcescens spp. This insecticidal protein could have applications in agricultural biotechnology. PMID:25984910

  12. Effect of the bacterium Serratia marcescens SCBI on the longevity and reproduction of the nematode Caenorhabditis briggsae KT0001.

    PubMed

    Lancaster, Jeremiah D; Mohammad, Budour; Abebe, Eyualem

    2012-12-20

    Extensive research effort has advanced our understanding of Caenorhabditis as a model system, but its natural association with bacteria remains to be explored in an ecological context. Explored associations vary vastly from mutualistic to parasitic. Serratia marcescens has been shown to be pathogenic to Caenorhabditis with a fitness cost. The recent isolation of an entomopathogenic Caenorhabditis briggsae KT0001/S. marcescens SCBI association from the wild has allowed us to examine under laboratory conditions whether such an association poses a serious cost to Caenorhabditis as previously surmised for other Serratia. A fecundity table of Caenorhabditis briggsae KT0001 fed on S. marcescens SCBI and the control fed on E. coli OP50 is presented. We found no significant difference in survivorship or total fecundity between the S. marcescens SCBI fed and E. coli OP50 fed Caenorhabditis briggsae KT0001. Only the mean onset of reproduction was significantly different between the two groups with E. coli fed C. briggsae maturing earlier (2.12 days) than those fed on Serratia (2.42 days). S. marcescens SCBI is not highly pathogenic to C. briggsae KT0001 indicating that the entomopathogenicity reported for this association may be beneficial for both the nematode and bacteria. In light of the fact that hitherto conducted experimental tests conform to widely held view that Serratia are highly pathogenic to Caenorhabditis, the absence of a high fitness cost for C. briggsae we report here may indicate that this entomopathogenic association is non-transient suggesting nematode/bacterial associations in the wild may vary greatly. Consequently, broad generalizations about nematode/bacterial associations should be interpreted with care.

  13. Effect of the bacterium Serratia marcescens SCBI on the longevity and reproduction of the nematode Caenorhabditis briggsae KT0001

    PubMed Central

    2012-01-01

    Background Extensive research effort has advanced our understanding of Caenorhabditis as a model system, but its natural association with bacteria remains to be explored in an ecological context. Explored associations vary vastly from mutualistic to parasitic. Serratia marcescens has been shown to be pathogenic to Caenorhabditis with a fitness cost. The recent isolation of an entomopathogenic Caenorhabditis briggsae KT0001/S. marcescens SCBI association from the wild has allowed us to examine under laboratory conditions whether such an association poses a serious cost to Caenorhabditis as previously surmised for other Serratia. Results A fecundity table of Caenorhabditis briggsae KT0001 fed on S. marcescens SCBI and the control fed on E. coli OP50 is presented. We found no significant difference in survivorship or total fecundity between the S. marcescens SCBI fed and E. coli OP50 fed Caenorhabditis briggsae KT0001. Only the mean onset of reproduction was significantly different between the two groups with E. coli fed C. briggsae maturing earlier (2.12 days) than those fed on Serratia (2.42 days). Conclusion S. marcescens SCBI is not highly pathogenic to C. briggsae KT0001 indicating that the entomopathogenicity reported for this association may be beneficial for both the nematode and bacteria. In light of the fact that hitherto conducted experimental tests conform to widely held view that Serratia are highly pathogenic to Caenorhabditis, the absence of a high fitness cost for C. briggsae we report here may indicate that this entomopathogenic association is non-transient suggesting nematode/bacterial associations in the wild may vary greatly. Consequently, broad generalizations about nematode/bacterial associations should be interpreted with care. PMID:23256850

  14. Antimicrobial effect and membrane-active mechanism of tea polyphenols against Serratia marcescens.

    PubMed

    Yi, Shumin; Wang, Wei; Bai, Fengling; Zhu, Junli; Li, Jianrong; Li, Xuepeng; Xu, Yongxia; Sun, Tong; He, Yutang

    2014-02-01

    In this study, we investigated the antimicrobial effect of tea polyphenols (TP) against Serratia marcescens and examined the related mechanism. Morphology changes of S. marcescens were first observed by transmission electron microscopy after treatment with TP, which indicated that the primary inhibition action of TP was to damage the bacterial cell membranes. The permeability of the outer and inner membrane of S. marcescens dramatically increased after TP treatment, which caused severe disruption of cell membrane, followed by the release of small cellular molecules. Furthermore, a proteomics approach based on two-dimensional gel electrophoresis and MALDI-TOF/TOF MS analysis was used to study the difference of membrane protein expression in the control and TP treatment S. marcescens. The results showed that the expression of some metabolism enzymes and chaperones in TP-treated S. marcescens significantly increased compared to the untreated group, which might result in the metabolic disorder of this bacteria. Taken together, our results first demonstrated that TP had a significant growth inhibition effect on S. marcescens through cell membrane damage.

  15. Endonuclease from Gram-Negative Bacteria Serratia marcescens Is as Effective as Pulmozyme in the Hydrolysis of DNA in Sputum

    PubMed Central

    Vafina, Gulnaz; Zainutdinova, Elmira; Bulatov, Emil; Filimonova, Maria N.

    2018-01-01

    One of the approaches to effective airway cleansing is the degradation of DNA into smaller fragments. For this purpose Pulmozyme® is used with high efficacy because it contains recombinant DNase I as its active component. The aim of the study was to comparatively analyze DNase activity of Pulmozyme® and the nuclease from gram-negative bacteria Serratia marcescens, because at optimal conditions the catalytic efficiency of the nuclease is much higher than the efficiency of DNase I. Highly polymerized DNA and purulent-mucous sputum were used as substrates. The examination showed that both S. marcescens nuclease and Pulmozyme® hydrolyzed DNA in sputum. Also S. marcescens nuclease was found capable of hydrolyzing DNA in conditions that are standard for Pulmozyme® and suitable for its therapeutic application. For manifesting the similar hydrolytic activity the nuclease amount in the assay mixture containing highly polymerized DNA or the sonicated sputum and NaCl together with calcium- or magnesium- cations can be about 10- time lower than that of the recombinant DNase I. In the presence of magnesium cations the DNase activity of both S. marcescens nuclease and Pulmozyme® was higher than in the presence of calcium cations. PMID:29503617

  16. Acute dermal abscesses caused by Serratia marcescens.

    PubMed

    Soria, Xavier; Bielsa, Isabel; Ribera, Miquel; Herrero, María José; Domingo, Helena; Carrascosa, José Manuel; Ferrándiz, Carlos

    2008-05-01

    Primary acute cutaneous infections caused by Serratia marcescens are extremely unusual. Nevertheless, Serratia infections are especially frequent in chronic granulomatous disease, which is a primary immunodeficiency that affects phagocytic cells of the innate immune system. We report a young man without history of infections, who developed multiple dermal abscesses on a leg with chronic lymphoedema attributed to S marcescens. Laboratory investigations showed a delayed partial neutrophilic oxidative function. It is remarkable that the patient did not have any other infections during childhood, when most of the innate immune deficiencies are diagnosed, and he had no history of granulomatous lesions. We hypothesize that the delayed neutrophilic oxidative function could be explained by a partial neutrophilic oxidative function, which could be enough to maintain the patient asymptomatic until this infection.

  17. Evidence for an Opportunistic and Endophytic Lifestyle of the Bursaphelenchus xylophilus-Associated Bacteria Serratia marcescens PWN146 Isolated from Wilting Pinus pinaster.

    PubMed

    Vicente, Cláudia S L; Nascimento, Francisco X; Barbosa, Pedro; Ke, Huei-Mien; Tsai, Isheng J; Hirao, Tomonori; Cock, Peter J A; Kikuchi, Taisei; Hasegawa, Koichi; Mota, Manuel

    2016-10-01

    Pine wilt disease (PWD) results from the interaction of three elements: the pathogenic nematode, Bursaphelenchus xylophilus; the insect-vector, Monochamus sp.; and the host tree, mostly Pinus species. Bacteria isolated from B. xylophilus may be a fourth element in this complex disease. However, the precise role of bacteria in this interaction is unclear as both plant-beneficial and as plant-pathogenic bacteria may be associated with PWD. Using whole genome sequencing and phenotypic characterization, we were able to investigate in more detail the genetic repertoire of Serratia marcescens PWN146, a bacterium associated with B. xylophilus. We show clear evidence that S. marcescens PWN146 is able to withstand and colonize the plant environment, without having any deleterious effects towards a susceptible host (Pinus thunbergii), B. xylophilus nor to the nematode model C. elegans. This bacterium is able to tolerate growth in presence of xenobiotic/organic compounds, and use phenylacetic acid as carbon source. Furthermore, we present a detailed list of S. marcescens PWN146 potentials to interfere with plant metabolism via hormonal pathways and/or nutritional acquisition, and to be competitive against other bacteria and/or fungi in terms of resource acquisition or production of antimicrobial compounds. Further investigation is required to understand the role of bacteria in PWD. We have now reinforced the theory that B. xylophilus-associated bacteria may have a plant origin.

  18. Killing of Serratia marcescens biofilms with chloramphenicol.

    PubMed

    Ray, Christopher; Shenoy, Anukul T; Orihuela, Carlos J; González-Juarbe, Norberto

    2017-03-29

    Serratia marcescens is a Gram-negative bacterium with proven resistance to multiple antibiotics and causative of catheter-associated infections. Bacterial colonization of catheters mainly involves the formation of biofilm. The objectives of this study were to explore the susceptibility of S. marcescens biofilms to high doses of common antibiotics and non-antimicrobial agents. Biofilms formed by a clinical isolate of S. marcescens were treated with ceftriaxone, kanamycin, gentamicin, and chloramphenicol at doses corresponding to 10, 100 and 1000 times their planktonic minimum inhibitory concentration. In addition, biofilms were also treated with chemical compounds such as polysorbate-80 and ursolic acid. S. marcescens demonstrated susceptibility to ceftriaxone, kanamycin, gentamicin, and chloramphenicol in its planktonic form, however, only chloramphenicol reduced both biofilm biomass and biofilm viability. Polysorbate-80 and ursolic acid had minimal to no effect on either planktonic and biofilm grown S. marcescens. Our results suggest that supratherapeutic doses of chloramphenicol can be used effectively against established S. marcescens biofilms.

  19. Intracranial complications of Serratia marcescens infection in neonates.

    PubMed

    Madide, Ayanda; Smith, Johan

    2016-03-15

    Even though Serratia marcescens is not one of the most common causes of infection in neonates, it is associated with grave morbidity and mortality. We describe the evolution of brain parenchymal affectation observed in association with S. marcescens infection in neonates. This retrospective case series details brain ultrasound findings of five neonates with hospital-acquired S. marcescens infection. Neonatal S. marcescens infection with or without associated meningitis can be complicated by brain parenchymal affectation, leading to cerebral abscess formation. It is recommended that all neonates with this infection should undergo neuro-imaging more than once before discharge from hospital; this can be achieved using bedside ultrasonography.

  20. Genomic, Physiologic, and Symbiotic Characterization of Serratia marcescens Strains Isolated from the Mosquito Anopheles stephensi.

    PubMed

    Chen, Shicheng; Blom, Jochen; Walker, Edward D

    2017-01-01

    Strains of Serratia marcescens , originally isolated from the gut lumen of adult female Anopheles stephensi mosquitoes, established persistent infection at high rates in adult A. stephensi whether fed to larvae or in the sugar meal to adults. By contrast, the congener S. fonticola originating from Aedes triseriatus had lower infection in A. stephensi , suggesting co-adaptation of Serratia strains in different species of host mosquitoes. Coinfection at high infection rate in adult A. stephensi resulted after feeding S. marcescens and Elizabethkingia anophelis in the sugar meal, but when fed together to larvae, infection rates with E. anophelis were much higher than were S. marcescens in adult A. stephensi , suggesting a suppression effect of coinfection across life stages. A primary isolate of S. marcescens was resistant to all tested antibiotics, showed high survival in the mosquito gut, and produced alpha-hemolysins which contributed to lysis of erythrocytes ingested with the blood meal. Genomes of two primary isolates from A. stephensi , designated S. marcescens ano1 and ano2, were sequenced and compared to other Serratia symbionts associated with insects, nematodes and plants. Serratia marcescens ano1 and ano2 had predicted virulence factors possibly involved in attacking parasites and/or causing opportunistic infection in mosquito hosts. S. marcescens ano1 and ano2 possessed multiple mechanisms for antagonism against other microorganisms, including production of bacteriocins and multi-antibiotic resistance determinants. These genes contributing to potential anti-malaria activity including serralysins, hemolysins and chitinases are only found in some Serratia species. It is interesting that genome sequences in S. marcescens ano1 and ano2 are distinctly different from those in Serratia sp. Ag1 and Ag2 which were isolated from Anopheles gambiae . Compared to Serratia sp. Ag1 and Ag2, S. marcescens ano1 and ano2 have more rRNAs and many important genes involved in

  1. Genomic, Physiologic, and Symbiotic Characterization of Serratia marcescens Strains Isolated from the Mosquito Anopheles stephensi

    PubMed Central

    Chen, Shicheng; Blom, Jochen; Walker, Edward D.

    2017-01-01

    Strains of Serratia marcescens, originally isolated from the gut lumen of adult female Anopheles stephensi mosquitoes, established persistent infection at high rates in adult A. stephensi whether fed to larvae or in the sugar meal to adults. By contrast, the congener S. fonticola originating from Aedes triseriatus had lower infection in A. stephensi, suggesting co-adaptation of Serratia strains in different species of host mosquitoes. Coinfection at high infection rate in adult A. stephensi resulted after feeding S. marcescens and Elizabethkingia anophelis in the sugar meal, but when fed together to larvae, infection rates with E. anophelis were much higher than were S. marcescens in adult A. stephensi, suggesting a suppression effect of coinfection across life stages. A primary isolate of S. marcescens was resistant to all tested antibiotics, showed high survival in the mosquito gut, and produced alpha-hemolysins which contributed to lysis of erythrocytes ingested with the blood meal. Genomes of two primary isolates from A. stephensi, designated S. marcescens ano1 and ano2, were sequenced and compared to other Serratia symbionts associated with insects, nematodes and plants. Serratia marcescens ano1 and ano2 had predicted virulence factors possibly involved in attacking parasites and/or causing opportunistic infection in mosquito hosts. S. marcescens ano1 and ano2 possessed multiple mechanisms for antagonism against other microorganisms, including production of bacteriocins and multi-antibiotic resistance determinants. These genes contributing to potential anti-malaria activity including serralysins, hemolysins and chitinases are only found in some Serratia species. It is interesting that genome sequences in S. marcescens ano1 and ano2 are distinctly different from those in Serratia sp. Ag1 and Ag2 which were isolated from Anopheles gambiae. Compared to Serratia sp. Ag1 and Ag2, S. marcescens ano1 and ano2 have more rRNAs and many important genes involved in

  2. Multiple skin ulcers due to Serratia marcescens in a immunocompetent patient.

    PubMed

    Carlesimo, M; Pennica, A; Muscianese, M; Bottoni, U; Abruzzese, C; Giubettini, M; Pranteda, G; Pranteda, G

    2014-06-01

    Serratia marcescens is a species of gram negative bacillus, classified as a member of the Enterobacteriaceae, mainly involved in opportunistic infections, particulary in the hospital environment. Cutaneous infections have rarely reported in literature and are predominantly observed in elderly or in immunocompromised patients. The clinical manifestations of skin infections include granulomatous lesions, necrotizing fasciitis, nodules, cellulitis, ulcers, dermal abscesses. Infections caused by S. marcescens may be difficult to treat because of resistance to a variety of antibiotics, including ampicillin and first and second generation cephalosporins. Aminoglycosides have good activity against S. marcescens, but resistant strains have also been described. We report a very intriguing case of S. marcescens infection, in an immunocompetent 18-year-old man, causing multiple rounded ulcers of varying sizes, along with few pustular lesions that both clinically and histopathologically mimic a pyoderma gangrenosum (PG). This is a non infectious neutrophilic skin disorder, characterized by painful and rapidly progressing skin ulceration. According to our experience, we would strongly recommend to perform cultures of multiple skin ulcers resembling PG, even in young healthy patients, to ensure correct diagnosis and treatment, since resistant to conventional antibiotics bacteria such as S. marcescens may be the cause of these lesions, like in the case here reported.

  3. [Corneal ulcer caused by Serratia marcescens: case report].

    PubMed

    Aprelev, A E; Iakovleva, N A; Valyshev, A V

    2013-01-01

    A case of corneal ulcer caused by Serratia marcescens is reported in a patient with history of corneal microtrauma. Biological features (pathogenicity factors, antibiotic resistance) of isolated culture were characterized. Keratitis cases caused by this agent were analyzed.

  4. The Story of Serratia Marcescens: Pathologic Risk Factors in Breast Implant Surgery

    PubMed Central

    Yao, Caroline A; Wang, Diana

    2014-01-01

    Serratia marcescens (S. marcescens) emerged as an opportunist in the setting of immunodeficiency in the 1970s, when serious infections occurred in San Francisco hospitals after USA. Navy experiments had aerosolized the bacteria to study biologic warfare. We investigate the risks of S. marcescens in San Franciscans who undergo mastectomy with implant reconstruction. From 2007 to 2011, the senior author took breast capsule cultures for all patients at the time of tissue expander exchange/explant. Of the 142 women who had reconstruction, 23 had positive cultures. Only the two patients who were positive for S. marcescens developed clinical infections that required explantation. Both had postoperative chemotherapy with transient neutropenia, and both had close ties to San Francisco. Clinical signs of infection emerged for both patients months after initial surgery, despite having previously well healed incisions. Other patients were culture positive for Pseudomonas, Proteus, Enterococcus and MRSA and did not develop require explant. While the link between San Francisco and S. marcescens is controversial, a patient's geography is a simple screening tool when considering postoperative risks, especially in the immunocompromised. Closer monitoring for neutropenia during chemotherapy, and a lower threshold to administer S. marcescens targeted antibiotics may be warranted in these patients. PMID:25075367

  5. Serratia marcescens harboring SME-4 in Brazil: A silent threat.

    PubMed

    Cayô, Rodrigo; Leme, Rodrigo Cuiabano Paes; Streling, Ana Paula; Matos, Adriana Pereira; Nodari, Carolina Silva; Chaves, Jessica Reis Esteves; Brandão, Jorge Luiz Ferreira; de Almeida, Maíra Fernandes; Carrareto, Valério; de Castro Pereira, Marco Aurélio; de Almeida, Jean Pierre Aquino; Ferreira, Demian Candido; Gales, Ana Cristina

    2017-04-01

    The intrinsic polymyxin resistance displayed by Serratia marcescens makes the acquisition of carbapenemase encoding genes a worrisome event. This study report a SME-4-producing S. marcescens isolate causing septic shock in Brazil. The insertion of novel resistance determinants and their consequent spread in our territory is noteworthy. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Phosphate limitation induces the intergeneric inhibition of Pseudomonas aeruginosa by Serratia marcescens isolated from paper machines

    PubMed Central

    Kuo, Pei-An; Kuo, Chih-Horng; Lai, Yiu-Kay; Graumann, Peter L; Tu, Jenn

    2013-01-01

    Phosphate is an essential nutrient for heterotrophic bacteria, affecting bacterioplankton in aquatic ecosystems and bacteria in biofilms. However, the influence of phosphate limitation on bacterial competition and biofilm development in multispecies populations has received limited attention in existing studies. To address this issue, we isolated 13 adhesive bacteria from paper machine aggregates. Intergeneric inhibition of Pseudomonas aeruginosa WW5 by Serratia marcescens WW4 was identified under phosphate-limited conditions, but not in Luria–Bertani medium or M9 minimal medium. The viable numbers of the pure S. marcescens WW4 culture decreased over 3 days in the phosphate-limited medium; however, the mortality of S. marcescens WW4 was significantly reduced when it was co-cultured with P. aeruginosa WW5, which appeared to sustain the S. marcescens WW4 biofilm. In contrast, viable P. aeruginosa WW5 cells immediately declined in the phosphate-limited co-culture. To identify the genetic/inhibitory element(s) involved in this process, we inserted a mini-Tn5 mutant of S. marcescens WW4 that lacked inhibitory effect. The results showed that an endonuclease bacteriocin was involved in this intergeneric inhibition by S. marcescens WW4 under phosphate limitation. In conclusion, this study highlights the importance of nutrient limitation in bacterial interactions and provides a strong candidate gene for future functional characterisation. PMID:23398522

  7. Identification of pigmented Serratia marcescens symbiotically associated with Rhynchophorus ferrugineus Olivier (Coleoptera: Curculionidae).

    PubMed

    Scrascia, Maria; Pazzani, Carlo; Valentini, Franco; Oliva, Marta; Russo, Valentina; D'Addabbo, Pietro; Porcelli, Francesco

    2016-10-01

    To characterize red pigment-producing bacteria (RPPB) regularly released during oviposition by red palm weevil (RPW), RPPB were recovered from eggs deposited in apples supplied as substrate for oviposition. The presence of RPPB was also detected from gut, the reproductive apparatus of dissected adult and virgin insects and from pupal cases collected within infested palms. RPPB were also identified all along the tissue of these palms. Analysis of the 16S rDNA, gyrB, rpoB, recA, and groEL sequences assigned RPPB to the species Serratia marcescens. RPPB exhibited an antimicrobial activity assessed by the agar well diffusion method against a number of gram-positive and gram-negative bacteria. In this study, we first report the identification of a red pigment-producing S. marcescens as extracellular symbiont of RPW. Route of transmission, detection within different organs, and a wide spread along the infested palm tissue, suggested S. marcescens is present as extracellular symbiont in different developmental stages of the RPW. Additionally, the antimicrobial activity exhibited versus Bacillus spp., Paenibacillus spp., and Lysinibacillus spp., reported as insect pathogens and potential candidates for biocontrol agents, could ascribe for S. marcescens a potential protective role. © 2016 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.

  8. Ozone Sensitivity and Catalase Activity in Pigmented and Non-Pigmented Strains of Serratia Marcescens

    PubMed Central

    de Ondarza, José

    2017-01-01

    Background: Ozone exposure rapidly leads to bacterial death, making ozone an effective disinfectant in food industry and health care arena. However, microbial defenses may moderate this effect and play a role in the effective use of oxidizing agents for disinfection. Serratia marcescens is an opportunistic pathogen, expressing genes differentially during infection of a human host. A better understanding of regulatory systems that control expression of Serratia’s virulence genes and defenses is therefore valuable. Objective: Here, we investigated the role of pigmentation and catalase in Serratia marcescens on survival to ozone exposure. Method: Pigmented and non-pigmented strains of Serratia marcescens were cultured to exponential or stationary phase and exposed to 5 ppm of gaseous ozone for 2.5 – 10 minutes. Survival was calculated via plate counts. Catalase activity was measured photometrically and tolerance to hydrogen peroxide was assayed by disk-diffusion. Results: Exposure of S. marcescens to 5 ppm gaseous ozone kills > 90% of cells within 10 minutes in a time and concentration-dependent manner. Although pigmented Serratia (grown at 28°C) survived ozonation better than unpigmented Serratia (grown at 35°C), non-pigmented mutant strains of Serratia had similar ozone survival rates, catalase activity and H2O2 tolerance as wild type strains. Rather, ozone survival and catalase activity were elevated in 6 hour cultures compared to 48 hour cultures. Conclusion: Our studies did not bear out a role for prodigiosin in ozone survival. Rather, induction of oxidative stress responses during exponential growth increased both catalase activity and ozone survival in both pigmented and unpigmented S. marcescens. PMID:28567147

  9. Subacute constrictive pericarditis from Serratia marcescens bacteremia.

    PubMed

    Khan, M Y

    1983-12-01

    A case report of subacute constrictive pericarditis associated with disseminated Serratia marcescens infection and bacteremia in a patient with chronic tubulointerstitial nephritis and uremia is described. Although not substantiated by clinical history, the renal pathologic features were similar to those of ethylene glycol-induced tubulointerstitial nephritis. The patient did not have a history of heroin addiction. The importance of predisposing factors such as uremia, invasive vascular procedures, tracheal intubation, peritoneal dialysis, and pericardiocentesis in Serratia infection in susceptible persons is discussed, as are possible roles of uremia, pericardiocentesis, and pericardiotomy in the pathogenesis of constrictive pericarditis in the present case.

  10. Non-contiguous multifocal vertebral osteomyelitis caused by Serratia marcescens.

    PubMed

    Lau, Jen Xin; Li, Jordan Yuanzhi; Yong, Tuck Yean

    2015-03-01

    Serratia marcescens is a common nosocomial infection but a rare cause of osteomyelitis and more so of vertebral osteomyelitis. Vertebral osteomyelitis caused by this organism has been reported in few studies. We report a case of S. marcescens vertebral discitis and osteomyelitis affecting multiple non-contiguous vertebras. Although Staphylococcus aureus is the most common cause of vertebral osteomyelitis, rare causes, such as S. marcescens, need to be considered, especially when risk factors such as intravenous heroin use, post-spinal surgery and immunosuppression are present. Therefore, blood culture and where necessary biopsy of the infected region should be undertaken to establish the causative organism and determine appropriate antibiotic susceptibility. Prompt diagnosis of S. marcescens vertebral osteomyelitis followed by the appropriate treatment can achieve successful outcomes.

  11. Necrotizing cellulitis with multiple abscesses on the leg caused by Serratia marcescens.

    PubMed

    Hau, Estelle; Bouaziz, Jean-David; Lafaurie, Matthieu; Saussine, Anne; Masson, Vincent; Rausky, Jonathan; Bagot, Martine; Guibal, Fabien

    2016-03-01

    Serratia marcescens is an unusual cause of severe skin infection initially described in immunocompromised patients. We report a case of necrotizing cellulitis of the leg caused by S marcescens in a 68-year-old woman with diabetes mellitus and a history of chronic lymphoedema of the leg. We reviewed the literature and found 49 cases of severe skin infections from S marcescens that included 20 cases of necrotizing fasciitis (NF) as well as 29 cases of severe skin infections without NF (non-NF cases). Patients were immunocompromised in 59% to 70% of cases. The mortality rate was high in NF cases (60%) versus non-NF cases (3%). Surgery was required in 95% of NF cases and in 24% of non-NF cases. The other clinical manifestations of S marcescens skin infection reported in the literature included disseminated papular eruptions in patients infected with human immunodeficiency virus with folliculitis on the trunk. Serratia marcescens is naturally resistant to amoxicillin alone and amoxicillin associated with clavulanic acid. Broad-spectrum antibiotics are indicated to treat S marcescens skin infections, and surgery should be promptly considered in cases of severe skin infections if appropriate antibiotic therapy does not lead to rapid improvement.

  12. Community-acquired Serratia marcescens meningitis.

    PubMed

    Peeters, A; Vandercam, B; Sindic, C J; Hantson, P; Mahieu, P

    1997-11-01

    Serratia marcescens is an unusual cause of community-acquired meningitis in adults. We report a case of S. marcescens meningitis occurring 29 years after a head injury and preceded by 3 years of intermittent nasal discharge of cerebrospinal fluid (CSF). One month before admission, the patient had received treatment with cefadroxil. This case illustrates the risk of Gram-negative bacillary meningitis in patients with a CSF leak when they are treated with antibiotics. When patients have a chronic clear nasal discharge, one should look for a past medical history of head injury before prescribing antibiotics. In the presence of a fistula, any antibiotherapy may lead to the selection of resistant organisms which may be difficult to treat. Due to the high risk of meningitis and the fact that spontaneous closure in delayed CSF rhinorrhoea is unlikely, surgical repair of any associated fistulae is mandatory.

  13. Phosphate limitation induces the intergeneric inhibition of Pseudomonas aeruginosa by Serratia marcescens isolated from paper machines.

    PubMed

    Kuo, Pei-An; Kuo, Chih-Horng; Lai, Yiu-Kay; Graumann, Peter L; Tu, Jenn

    2013-06-01

    Phosphate is an essential nutrient for heterotrophic bacteria, affecting bacterioplankton in aquatic ecosystems and bacteria in biofilms. However, the influence of phosphate limitation on bacterial competition and biofilm development in multispecies populations has received limited attention in existing studies. To address this issue, we isolated 13 adhesive bacteria from paper machine aggregates. Intergeneric inhibition of Pseudomonas aeruginosa WW5 by Serratia marcescens WW4 was identified under phosphate-limited conditions, but not in Luria-Bertani medium or M9 minimal medium. The viable numbers of the pure S. marcescens WW4 culture decreased over 3 days in the phosphate-limited medium; however, the mortality of S. marcescens WW4 was significantly reduced when it was co-cultured with P. aeruginosa WW5, which appeared to sustain the S. marcescens WW4 biofilm. In contrast, viable P. aeruginosa WW5 cells immediately declined in the phosphate-limited co-culture. To identify the genetic/inhibitory element(s) involved in this process, we inserted a mini-Tn5 mutant of S. marcescens WW4 that lacked inhibitory effect. The results showed that an endonuclease bacteriocin was involved in this intergeneric inhibition by S. marcescens WW4 under phosphate limitation. In conclusion, this study highlights the importance of nutrient limitation in bacterial interactions and provides a strong candidate gene for future functional characterisation. © 2013 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  14. Molecular detection and analysis of a novel metalloprotease gene of entomopathogenic Serratia marcescens strains in infected Galleria mellonella.

    PubMed

    Tambong, J T; Xu, R; Sadiku, A; Chen, Q; Badiss, A; Yu, Q

    2014-04-01

    Serratia marcescens strains isolated from entomopathogenic nematodes (Rhabditis sp.) were examined for their pathogenicity and establishment in wax moth (Galleria mellonella) larvae. All the Serratia strains were potently pathogenic to G. mellonella larvae, leading to death within 48 h. The strains were shown to possess a metalloprotease gene encoding for a novel serralysin-like protein. Rapid establishment of the bacteria in infected larvae was confirmed by specific polymerase chain reaction (PCR) detection of a DNA fragment encoding for this protein. Detection of the viable Serratia strains in infected larvae was validated using the SYBR Green reverse transcriptase real-time PCR assay targeting the metalloprotease gene. Nucleotide sequences of the metalloprotease gene obtained in our study showed 72 single nucleotide polymorphisms (SNP) and 3 insertions compared with the metalloprotease gene of S. marcescens E-15. The metalloprotease gene had 60 synonymous and 8 nonsynonymous substitutions relative to the closest GenBank entry, S. marcescens E-15. A comparison of the amino acid composition of the new serralysin-like protein with that of the serralysin protein of S. marcescens E-15 revealed differences at 11 positions and a new aspartic acid residue. Analysis of the effect of protein variation suggests that a new aspartic acid residue resulting from nonsynonymous nucleotide mutations in the protein structure could have the most significant effect on its biological function. The new metalloprotease gene and (or) its product could have applications in plant agricultural biotechnology.

  15. The Opportunistic Pathogen Serratia marcescens Utilizes Type VI Secretion To Target Bacterial Competitors ▿†

    PubMed Central

    Murdoch, Sarah L.; Trunk, Katharina; English, Grant; Fritsch, Maximilian J.; Pourkarimi, Ehsan; Coulthurst, Sarah J.

    2011-01-01

    The type VI secretion system (T6SS) is the most recently described and least understood of the protein secretion systems of Gram-negative bacteria. It is widely distributed and has been implicated in the virulence of various pathogens, but its mechanism and exact mode of action remain to be defined. Additionally there have been several very recent reports that some T6SSs can target bacteria rather than eukaryotic cells. Serratia marcescens is an opportunistic enteric pathogen, a class of bacteria responsible for a significant proportion of hospital-acquired infections. We describe the identification of a functional T6SS in S. marcescens strain Db10, the first report of type VI secretion by an opportunist enteric bacterium. The T6SS of S. marcescens Db10 is active, with secretion of Hcp to the culture medium readily detected, and is expressed constitutively under normal growth conditions from a large transcriptional unit. Expression of the T6SS genes did not appear to be dependent on the integrity of the T6SS. The S. marcescens Db10 T6SS is not required for virulence in three nonmammalian virulence models. It does, however, exhibit dramatic antibacterial killing activity against several other bacterial species and is required for S. marcescens to persist in a mixed culture with another opportunist pathogen, Enterobacter cloacae. Importantly, this antibacterial killing activity is highly strain specific, with the S. marcescens Db10 T6SS being highly effective against another strain of S. marcescens with a very similar and active T6SS. We conclude that type VI secretion plays a crucial role in the competitiveness, and thus indirectly the virulence, of S. marcescens and other opportunistic bacterial pathogens. PMID:21890705

  16. CdTe quantum dots as a novel biosensor for Serratia marcescens and Lipopolysaccharide.

    PubMed

    Ebrahim, Sh; Reda, M; Hussien, A; Zayed, D

    2015-01-01

    The main objective of this work is to synthesize CdTe quantum dots (QDs) conjugated with Concanavalin A (Con A) as a novel biosensor to be selective and specific for the detection of Lipopolysaccharide (LPS). In addition, the conjugated CdTe QDs-Con A was used as fluorescence labels to capture Serratia marcescens bacteria through the recognition between CdTe QDs-Con A and LPS of S. marcescens. The appearance of the lattice plans in the high resolution transmission electron photograph indicated a high crystalline with an average size of 4-5 nm for the CdTe QDs. The results showed that the relative fluorescence intensity of CdTe QDs-Con A decreased linearly with LPS concentration in the range from 10 to 90 fg/mL and with correlation coefficient (R(2)) equal to 0.9713. LPS surrounding the S. marcescens bacteria was bound to the CdTe QDs-Con A and leads to quenching of PL intensity. It was found that a good linear relationship between the relative PL intensity and the logarithmic of cell population of S. marcescens in range from 1×10 to 1×10(6) CFU/mL at pH 7 with R(2) of 0.952 was established. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. ManA is regulated by RssAB signaling and promotes motility in Serratia marcescens.

    PubMed

    Soo, Po-Chi; Horng, Yu-Tze; Chang, Yung-Lin; Tsai, Wei-Wen; Jeng, Wen-Yih; Lu, Chia-Chen; Lai, Hsin-Chih

    2014-01-01

    Serratia marcescens swarms on 0.8% LB agar at 30 °C but not at 37 °C. To understand the molecular mechanism regulating Serratia swarming, transposon mutagenesis was performed to screen for mutants that swarmed at 37 °C. In one mutant, S. marcescens WW100, the transposon was inserted in the upstream region of manA, which encodes mannose-6-phosphate isomerase, a type I phosphomannose isomerase. The transcriptional and translational levels of manA were higher in S. marcescens WW100 than in the wild-type strain. S. marcescens WW100 produced more serrawettin W1 (biosurfactant) than the wild-type, as detected by thin-layer chromatography, to promote surface motility by reducing surface tension. Serratia swarming was previously shown to be negatively regulated by the RssA-RssB two-component system. An electrophoretic mobility shift assay (EMSA) indicated that phosphorylated RssB (the response regulator) binds upstream of the transposon insertion site and manA in S. marcescens WW100. Analysis by real-time RT-PCR (qRT-PCR) revealed that, compared to the wild-type level, manA mRNA was increased in the rssA deletion mutant. The results indicated that RssA-RssB signaling directly represses the expression of manA and that overexpression of manA increases the production of serrawettin for Serratia swarming at 37 °C. Copyright © 2013 Institut Pasteur. All rights reserved.

  18. Serratia marcescens resistance profile and its susceptibility to photodynamic antimicrobial chemotherapy.

    PubMed

    Parente, Ticiana Mont Alverne Lopes; Rebouças, Emanuela de Lima; Santos, Vitor Coutinho Vieira Dos; Barbosa, Francisco Cesar Barroso; Zanin, Iriana Carla Junqueira

    2016-06-01

    Some authors have reported the antimicrobial action of photodynamic antimicrobial chemotherapy (PACT) on bacteria related to nosocomial infections but there are few studies evaluating PACT on Serratia marcescens grown as planktonic cultures or as biofilms. The purpose of this study was to analyze the S. marcescens resistance profile and its susceptibility to PACT. Initially, 55 S. marcescens strains isolated from environmental, oral and extra-oral infections were tested by antimicrobial resistance to cefotaxime (CTX), imipenem (IPM), ciprofloxacin (CIP), tobramycin (TOB) and doxycycline (DOX) using E-test(®). Following, isolates grown as planktonic cultures or biofilms were submitted to PACT using the association of a light-emitting diode and toluidine blue (TBO). The E-test(®) results demonstrated intermediated sensitive strains to CTX, IMP, TOB, and DOX; and resistant strains to CTX, TOB, DOX and CIP. Also, CTX and IMP demonstrated variation when CLSI 2007 and CLSI 2015 were compared. Planktonic cultures and biofilms submitted to PACT demonstrated counts varying from 10(11) to 10(7) for planktonic cultures and 10(10) to 10(7) for biofilms. There were no statistical differences in the results when planktonic cultures and biofilms were compared. Increase in the profile of S. marcescens resistance was observed when CLSI 2007 and CLSI 2015 were compared. Also, IMP remains as the drug with lower rate of resistance. Additionally, both S. marcescens planktonic cultures and early biofilms are susceptible to PACT under tested conditions. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. A case of pulmonary Serratia marcescens granuloma radiologically mimicking metastatic malignancy and tuberculosis infection.

    PubMed

    Das, Joyutpal; Layton, Benjamin; Lamb, Harriet; Sinnott, Nicola; Leahy, Bernard C

    2015-11-01

    Serratia marcescens is a saprophytic gram-negative bacillus capable of causing a wide range of infections. A 57-year-old female was admitted to our hospital for four weeks with community acquired pneumonia. A chest x-ray, six weeks after discharge, demonstrated multiple, bilateral 'cannon ball'-like opacities and mediastinal lymphadenopathy which were highly suspicious of disseminated malignancy or tuberculosis. The only symptom that this patient had was a productive cough. She had multiple commodities, but no specific immunodeficiency disorder. Interestingly, her sputum and bronchial washing samples grew S. marcescens. The computed tomography-guided lung biopsy demonstrated necrotic granulomatous changes. There was no pathological evidence of tuberculosis or fungal infection, malignancy or vasculitis. There are only a handful of reported cases of Serratia granulomas. Thus, we are reporting a rare instance of pulmonary Serratia marcescens granuloma radiologically mimicking metastatic malignancy and tuberculosis infection. © The Author(s) 2015.

  20. Serratia Marcescens- A Rare Opportunistic Nosocomial Pathogen and Measures to Limit its Spread in Hospitalized Patients

    PubMed Central

    Khanna, Ashish; Khanna, Menka; Aggarwal, Aruna

    2013-01-01

    Background: In November 2011, 6 patients who were in the ICU of the Sri Guru Ram Dass Institute of Medical Sciences and Research acquired an infection which was caused by Serratia marcescens. We investigated the cause of the increase in frequency of the isolation of Serratia marcesens from hospitalized patients. Methods: Various samples from patients and environmental sources, which were collected from the ICU of Sri Guru Ram Das Institute of Medical Sciences and Research during the 6 month period from November 2011 to April 2011, were included in the study. The isolates from the patients and the surrounding environmental sources were examined by using standard techniques. Further, the isolates of Serratia marcescens were identified, depending upon their biochemical and morphological characteristics. Results: Seven isolates of Serratia marcescens were identified (six from the patients in the ICU and one from the soap dispenser in the ICU) among a total of 327 isolates from the clinical samples and 84 isolates were identified from the environmental sources in the ICU. Discussion and Conclusion: An outbreak of the Serratia marcescens infection in the ICU was traced to the extrinsic contamination of the soap dispenser in the ICU, as after the removal of the dispenser, no further case occurred. PMID:23543704

  1. The survival of ingested Serratia marcescens in houseflies (Musca domestica L.) after electrocution with electric fly killers.

    PubMed

    Cooke, Edward A; O'Neill, Gael; Anderson, Moray

    2003-02-01

    Electric fly killers (EFKs) are commonly used to control flying insects that enter food establishments. For establishment of the incidence of pathogen-bearing insects in food establishments, insect samples obtained from EFK trays could be used. The principal difficulty with this approach is that the survival time of microorganisms on or within insect corpses after electrocution is unknown. This study determined the survival of Serratia marcescens (as a representative of the enteric bacteria) within houseflies following their electrocution by a commercial EFK. S. marcescens was successfully ingested by houseflies and survived on and within the corpses after electrocution for up to 5 weeks. Maximal levels of bacteria were recovered 24 h postelectrocution. The study also demonstrates the ability of ingested S. marcescens to out-compete resident microbial flora within houseflies. The findings are intended to pave the way for further research to determine the incidence of pathogen-laden flying insects in food establishments.

  2. Multigenic Natural Variation Underlies Caenorhabditis elegans Olfactory Preference for the Bacterial Pathogen Serratia marcescens

    PubMed Central

    Glater, Elizabeth E.; Rockman, Matthew V.; Bargmann, Cornelia I.

    2013-01-01

    The nematode Caenorhabditis elegans can use olfaction to discriminate among different kinds of bacteria, its major food source. We asked how natural genetic variation contributes to choice behavior, focusing on differences in olfactory preference behavior between two wild-type C. elegans strains. The laboratory strain N2 strongly prefers the odor of Serratia marcescens, a soil bacterium that is pathogenic to C. elegans, to the odor of Escherichia coli, a commonly used laboratory food source. The divergent Hawaiian strain CB4856 has a weaker attraction to Serratia than the N2 strain, and this behavioral difference has a complex genetic basis. At least three quantitative trait loci (QTLs) from the CB4856 Hawaii strain (HW) with large effect sizes lead to reduced Serratia preference when introgressed into an N2 genetic background. These loci interact and have epistatic interactions with at least two antagonistic QTLs from HW that increase Serratia preference. The complex genetic architecture of this C. elegans trait is reminiscent of the architecture of mammalian metabolic and behavioral traits. PMID:24347628

  3. Marvelous but Morbid: Infective endocarditis due to Serratia marcescens.

    PubMed

    Phadke, Varun K; Jacob, Jesse T

    2016-05-01

    A 46-year-old man with HIV infection and active intravenous drug use presented with approximately two weeks of fevers and body aches. On physical examination he was somnolent, had a new systolic murmur, bilateral conjunctival hemorrhages, diffuse petechiae, and left-sided arm weakness. Echocardiography revealed a large mitral valve vegetation and brain imaging demonstrated numerous embolic infarctions. Blood cultures grew Serratia marcescens . Despite aggressive treatment with meropenem the patient died due to intracranial hemorrhage complicated by herniation. Serratia marcescens is an uncommon cause of infective endocarditis. While this disease has historically been associated with intravenous drug use, more recent reports suggest that it is now largely a consequence of opportunistic infections of the chronically ill. Our case highlights several characteristic features of this infection, including isolation of a non-pigmented strain of the organism, an antibiotic susceptibility profile suggestive of AmpC β-lactamase production, and rapid clinical deterioration with multiple embolic complications resulting in death. In this review we discuss the history, epidemiology, and management of endovascular infections due to Serratia spp., emphasizing the continued importance of considering this organism in the differential diagnosis of endocarditis among intravenous drug users and as a potential indication for surgical therapy.

  4. Marvelous but Morbid: Infective endocarditis due to Serratia marcescens

    PubMed Central

    Phadke, Varun K.; Jacob, Jesse T.

    2016-01-01

    A 46-year-old man with HIV infection and active intravenous drug use presented with approximately two weeks of fevers and body aches. On physical examination he was somnolent, had a new systolic murmur, bilateral conjunctival hemorrhages, diffuse petechiae, and left-sided arm weakness. Echocardiography revealed a large mitral valve vegetation and brain imaging demonstrated numerous embolic infarctions. Blood cultures grew Serratia marcescens. Despite aggressive treatment with meropenem the patient died due to intracranial hemorrhage complicated by herniation. Serratia marcescens is an uncommon cause of infective endocarditis. While this disease has historically been associated with intravenous drug use, more recent reports suggest that it is now largely a consequence of opportunistic infections of the chronically ill. Our case highlights several characteristic features of this infection, including isolation of a non-pigmented strain of the organism, an antibiotic susceptibility profile suggestive of AmpC β-lactamase production, and rapid clinical deterioration with multiple embolic complications resulting in death. In this review we discuss the history, epidemiology, and management of endovascular infections due to Serratia spp., emphasizing the continued importance of considering this organism in the differential diagnosis of endocarditis among intravenous drug users and as a potential indication for surgical therapy. PMID:27346925

  5. Serratia marcescens endophthalmitis after pterygium surgery: a case report.

    PubMed

    Yi, Myeong Yeon; Chung, Jin Kwon; Choi, Kyung Seek

    2017-11-02

    To report a case of Serratia marcescens endophthalmitis after pterygium surgery using the bare sclera technique with mitomycin C (MMC). A 69-year-old male patient underwent pterygium excision surgery using the bare sclera technique and 0.02% MMC. The patient presented with decreased visual acuity and pain from the day after the operation. Trans pars plana vitrectomy was performed and intravitreal antibiotics were administered. Cultures from the aqueous humor and intraocular lens were all positive for S. marcescens, which was sensitive to an empiric antibiotic regimen. The best corrected distant visual acuity, 1 month after treatment, was a finger count/50 cm, but the retinal layer structure and the vasculature were relatively well preserved. This is the first reported case of S. marcescens endophthalmitis after pterygium surgery. Endophthalmitis caused by S. marcescens has a devastating visual prognosis and may show a high clinical risk-benefit ratio for the application of MMC in pterygium surgery.

  6. Mechanisms of Bacterial (Serratia marcescens) Attachment to, Migration along, and Killing of Fungal Hyphae

    PubMed Central

    Hover, Tal; Maya, Tal; Ron, Sapir; Sandovsky, Hani; Shadkchan, Yana; Kijner, Nitzan; Mitiagin, Yulia; Fichtman, Boris; Harel, Amnon; Shanks, Robert M. Q.; Bruna, Roberto E.; García-Véscovi, Eleonora

    2016-01-01

    We have found a remarkable capacity for the ubiquitous Gram-negative rod bacterium Serratia marcescens to migrate along and kill the mycelia of zygomycete molds. This migration was restricted to zygomycete molds and several basidiomycete species. No migration was seen on any molds of the phylum Ascomycota. S. marcescens migration did not require fungal viability or surrounding growth medium, as bacteria migrated along aerial hyphae as well. S. marcescens did not exhibit growth tropism toward zygomycete mycelium. Bacterial migration along hyphae proceeded only when the hyphae grew into the bacterial colony. S. marcescens cells initially migrated along the hyphae, forming attached microcolonies that grew and coalesced to generate a biofilm that covered and killed the mycelium. Flagellum-defective strains of S. marcescens were able to migrate along zygomycete hyphae, although they were significantly slower than the wild-type strain and were delayed in fungal killing. Bacterial attachment to the mycelium does not necessitate type 1 fimbrial adhesion, since mutants defective in this adhesin migrated equally well as or faster than the wild-type strain. Killing does not depend on the secretion of S. marcescens chitinases, as mutants in which all three chitinase genes were deleted retained wild-type killing abilities. A better understanding of the mechanisms by which S. marcescens binds to, spreads on, and kills fungal hyphae might serve as an excellent model system for such interactions in general; fungal killing could be employed in agricultural fungal biocontrol. PMID:26896140

  7. Serratia marcescens Bullous Cellulitis in a Splenectomized Patient: A Case Report and Review of the Literature.

    PubMed

    Fournier, John B; Dabiri, Ganary; Thomas, Vinod; Skowron, Gail; Carson, Polly; Falanga, Vincent

    2016-06-01

    Serratia marcescens is a Gram-negative bacillus belonging to the Enterobacteriaceae family. Cutaneous infection with Serratia is rare, and usually occurs in immunocompromised individuals. Primary cutaneous infections are uncommon, but they are typically severe and are associated with significant morbidity and mortality. The pathogenetic factors leading to S. marcescens infection are not fully understood, but contributing virulence factors include proteases, secreted exotoxins, and the formation of biofilm. We report a case of cellulitis occurring in a splenectomized patient, which led to multiple wound debridements and a transmetatarsal amputation. This dramatic case led us to review the published literature on soft tissue infections caused by S. marcescens. © The Author(s) 2016.

  8. Serratia marcescens Bacteremia: Nosocomial Cluster Following Narcotic Diversion.

    PubMed

    Schuppener, Leah M; Pop-Vicas, Aurora E; Brooks, Erin G; Duster, Megan N; Crnich, Christopher J; Sterkel, Alana K; Webb, Aaron P; Safdar, Nasia

    2017-09-01

    OBJECTIVE To describe the investigation and control of a cluster of Serratia marcescens bacteremia in a 505-bed tertiary-care center. METHODS Cluster cases were defined as all patients with S. marcescens bacteremia between March 2 and April 7, 2014, who were found to have identical or related blood isolates determined by molecular typing with pulsed-field gel electrophoresis. Cases were compared using bivariate analysis with controls admitted at the same time and to the same service as the cases, in a 4:1 ratio. RESULTS In total, 6 patients developed S. marcescens bacteremia within 48 hours after admission within the above period. Of these, 5 patients had identical Serratia isolates determined by molecular typing, and were included in a case-control study. Exposure to the post-anesthesia care unit was a risk factor identified in bivariate analysis. Evidence of tampered opioid-containing syringes on several hospital units was discovered soon after the initial cluster case presented, and a full narcotic diversion investigation was conducted. A nurse working in the post-anesthesia care unit was identified as the employee responsible for the drug diversion and was epidemiologically linked to all 5 patients in the cluster. No further cases were identified once the implicated employee's job was terminated. CONCLUSION Illicit drug use by healthcare workers remains an important mechanism for the development of bloodstream infections in hospitalized patients. Active mechanisms and systems should remain in place to prevent, detect, and control narcotic drug diversions and associated patient harm in the healthcare setting. Infect Control Hosp Epidemiol 2017;38:1027-1031.

  9. Infectious crystalline keratopathy caused by Serratia marcescens.

    PubMed

    Chen, Ching-Long; Tai, Ming-Cheng; Chen, Jiann-Torng; Chen, Chiao-Hong; Lu, Da-Wen

    2007-09-01

    To report the case of a 70-year-old woman with Serratia infectious crystalline keratopathy. Case report. This is a report of a 70-year-old woman with a history of chronic open-angle glaucoma and trachoma with lagophthalmos, entropion, and trichiasis in both eyes who developed crystalline keratopathy after penetrating keratoplasty and cataract extraction in the right eye followed up with treatment with long-term topical steroids. Ten months after the initial penetrating keratoplasty and cataract extraction, the patient had decreased visual acuity, intense pain, and tearing in the right eye. Corneal cultures showed Serratia marcescens. Topical steroids were discontinued, and treatment with tobramycin and vancomycin ophthalmic solution every hour was initiated. Despite 1 week of aggressive therapy, there was an increase in corneal infiltrate, epithelial defects, and melting, which eventually involved the peripheral recipient cornea. Therapeutic penetrating keratoplasty, debridement of the peripheral cornea, and amniotic membrane transplantation were performed. Antibiotic agents were used postoperatively. There has been no evidence of recurrent infection. The best-corrected visual acuity improved to 6/15 at the 6-month follow-up period after the second intervention. S. marcescens may cause infectious crystalline keratopathy after penetrating keratoplasty in patients treated with long-term topical steroids. Therapeutic penetrating keratoplasty, surgical debridement, and amniotic membrane transplantation may be necessary when the clinical response to intensive medical treatment is inadequate.

  10. Risk Assessment for the Spread of Serratia marcescens Within Dental-Unit Waterline Systems Using Vermamoeba vermiformis.

    PubMed

    Lal, Sham; Singhrao, Sim K; Achilles-Day, Undine E M; Morton, L H Glyn; Pearce, Mark; Crean, StJohn

    2015-10-01

    Vermamoeba vermiformis is associated with the biofilm ecology of dental-unit waterlines (DUWLs). This study investigated whether V. vermiformis is able to act as a vector for potentially pathogenic bacteria and so aid their dispersal within DUWL systems. Clinical dental water was initially examined for Legionella species by inoculating it onto Legionella selective-medium plates. The molecular identity/profile of the glassy colonies obtained indicated none of these isolates were Legionella species. During this work bacterial colonies were identified as a non-pigmented Serratia marcescens. As the water was from a clinical DUWL which had been treated with Alpron™, this prompted the question as to whether S. marcescens had developed resistance to the biocide. Exposure to Alpron™ indicated that this dental biocide was effective, under laboratory conditions, against S. marcescens at up to 1 × 10(8) colony forming units/millilitre (cfu/ml). V. vermiformis was cultured for 8 weeks on cells of S. marcescens and Escherichia coli. Subsequent electron microscopy showed that V. vermiformis grew equally well on S. marcescens and E. coli (P = 0.0001). Failure to detect the presence of S. marcescens within the encysted amoebae suggests that V. vermiformis is unlikely to act as a vector supporting the growth of this newly isolated, nosocomial bacterium.

  11. Serratia marcescens arn, a PhoP-Regulated Locus Necessary for Polymyxin B Resistance

    PubMed Central

    Lin, Quei Yen; Tsai, Yi-Lin; Liu, Ming-Che; Lin, Wei-Cheng; Hsueh, Po-Ren

    2014-01-01

    Polymyxins, which are increasingly being used to treat infections caused by multidrug-resistant bacteria, perform poorly against Serratia marcescens. To investigate the underlying mechanisms, Tn5 mutagenesis was performed and two mutants exhibiting increased polymyxin B (PB) susceptibility were isolated. The mutants were found to have Tn5 inserted into the arnB and arnC genes. In other bacteria, arnB and arnC belong to the seven-gene arn operon, which is involved in lipopolysaccharide (LPS) modification. LPSs of arn mutants had greater PB-binding abilities than that of wild-type LPS. Further, we identified PhoP, a bacterial two-component response regulator, as a regulator of PB susceptibility in S. marcescens. By the reporter assay, we found PB- and low-Mg2+-induced expression of phoP and arn in the wild-type strain but not in the phoP mutant. Complementation of the phoP mutant with the full-length phoP gene restored the PB MIC and induction by PB and low Mg2+ levels, as in the wild type. An electrophoretic mobility shift assay (EMSA) further demonstrated that PhoP bound directly to the arn promoter. The PB challenge test confirmed that pretreatment with PB and low Mg2+ levels protected S. marcescens from a PB challenge in the wild-type strain but not in the phoP mutant. Real-time reverse transcriptase-PCR also indicated that PB serves as a signal to regulate expression of ugd, a gene required for LPS modification, in S. marcescens through a PhoP-dependent pathway. Finally, we found that PB-resistant clinical isolates displayed greater expression of arnA upon exposure to PB than did susceptible isolates. This is the first report to describe the role of S. marcescens arn in PB resistance and its modulation by PB and Mg2+ through the PhoP protein. PMID:24957827

  12. Identification of a Csr system in Serratia marcescens 2170.

    PubMed

    Ito, Manabu; Nomura, Kazuki; Sugimoto, Hayuki; Watanabe, Takeshi; Suzuki, Kazushi

    2014-01-01

    The carbon storage regulator (Csr) global regulatory system is conserved in many eubacteria and coordinates the expression of various genes that facilitate adaptation during the major physiological growth phase. The Csr system in Escherichia coli comprises an RNA-binding protein, CsrA; small non-coding RNAs, CsrB and CsrC; and a decay factor for small RNAs, CsrD. In this study, we identified the Csr system in Serratia marcescens 2170. S. marcescens CsrA was 97% identical to E. coli CsrA. CsrB and CsrC RNAs had typical stem-loop structures, including a GGA motif that is the CsrA binding site. CsrD was composed of N-terminal two times transmembrane region and HAMP-like, GGDEF, and EAL domains. Overexpression of S. marcescens csr genes complemented the phenotype of E. coli csr mutants. S. marcescens CsrD affected the decay of CsrB and CsrC RNAs in E. coli. These results suggest that the Csr system in S. marcescens is composed of an RNA-binding protein, two Csr small RNAs, and a decay factor for Csr small RNAs.

  13. Mechanisms of Bacterial (Serratia marcescens) Attachment to, Migration along, and Killing of Fungal Hyphae.

    PubMed

    Hover, Tal; Maya, Tal; Ron, Sapir; Sandovsky, Hani; Shadkchan, Yana; Kijner, Nitzan; Mitiagin, Yulia; Fichtman, Boris; Harel, Amnon; Shanks, Robert M Q; Bruna, Roberto E; García-Véscovi, Eleonora; Osherov, Nir

    2016-05-01

    We have found a remarkable capacity for the ubiquitous Gram-negative rod bacterium Serratia marcescens to migrate along and kill the mycelia of zygomycete molds. This migration was restricted to zygomycete molds and several basidiomycete species. No migration was seen on any molds of the phylum Ascomycota. S. marcescens migration did not require fungal viability or surrounding growth medium, as bacteria migrated along aerial hyphae as well.S. marcescens did not exhibit growth tropism toward zygomycete mycelium. Bacterial migration along hyphae proceeded only when the hyphae grew into the bacterial colony. S. marcescens cells initially migrated along the hyphae, forming attached microcolonies that grew and coalesced to generate a biofilm that covered and killed the mycelium. Flagellum-defective strains of S. marcescens were able to migrate along zygomycete hyphae, although they were significantly slower than the wild-type strain and were delayed in fungal killing. Bacterial attachment to the mycelium does not necessitate type 1 fimbrial adhesion, since mutants defective in this adhesin migrated equally well as or faster than the wild-type strain. Killing does not depend on the secretion of S. marcescens chitinases, as mutants in which all three chitinase genes were deleted retained wild-type killing abilities. A better understanding of the mechanisms by which S. marcescens binds to, spreads on, and kills fungal hyphae might serve as an excellent model system for such interactions in general; fungal killing could be employed in agricultural fungal biocontrol. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  14. Necrotizing Fasciitis of the Lower Extremity Caused by Serratia marcescens A Case Report.

    PubMed

    Heigh, Evelyn G; Maletta-Bailey, April; Haight, John; Landis, Gregg S

    2016-03-01

    Necrotizing fasciitis is a rare and potentially fatal infection, with mortality of up to 30%. This case report describes a patient recovering from a laryngectomy for laryngeal squamous cell cancer who developed nosocomial necrotizing fasciitis of the lower extremity due to Serratia marcescens . Only eight cases of necrotizing fasciitis exclusive to the lower extremity due to S marcescens have been previously reported. Patients with S marcescens necrotizing fasciitis of the lower extremity often have multiple comorbidities, are frequently immunosuppressed, and have a strikingly high mortality rate.

  15. Genetic Dissection of Anopheles gambiae Gut Epithelial Responses to Serratia marcescens

    PubMed Central

    Stathopoulos, Stavros; Neafsey, Daniel E.; Lawniczak, Mara K. N.; Muskavitch, Marc A. T.; Christophides, George K.

    2014-01-01

    Genetic variation in the mosquito Anopheles gambiae profoundly influences its ability to transmit malaria. Mosquito gut bacteria are shown to influence the outcome of infections with Plasmodium parasites and are also thought to exert a strong drive on genetic variation through natural selection; however, a link between antibacterial effects and genetic variation is yet to emerge. Here, we combined SNP genotyping and expression profiling with phenotypic analyses of candidate genes by RNAi-mediated silencing and 454 pyrosequencing to investigate this intricate biological system. We identified 138 An. gambiae genes to be genetically associated with the outcome of Serratia marcescens infection, including the peptidoglycan recognition receptor PGRPLC that triggers activation of the antibacterial IMD/REL2 pathway and the epidermal growth factor receptor EGFR. Silencing of three genes encoding type III fibronectin domain proteins (FN3Ds) increased the Serratia load and altered the gut microbiota composition in favor of Enterobacteriaceae. These data suggest that natural genetic variation in immune-related genes can shape the bacterial population structure of the mosquito gut with high specificity. Importantly, FN3D2 encodes a homolog of the hypervariable pattern recognition receptor Dscam, suggesting that pathogen-specific recognition may involve a broader family of immune factors. Additionally, we showed that silencing the gene encoding the gustatory receptor Gr9 that is also associated with the Serratia infection phenotype drastically increased Serratia levels. The Gr9 antibacterial activity appears to be related to mosquito feeding behavior and to mostly rely on changes of neuropeptide F expression, together suggesting a behavioral immune response following Serratia infection. Our findings reveal that the mosquito response to oral Serratia infection comprises both an epithelial and a behavioral immune component. PMID:24603764

  16. A fatal case of necrotizing fasciitis caused by Serratia marcescens.

    PubMed

    Curtis, Christopher E; Chock, Stefan; Henderson, Terrance; Holman, Michael J

    2005-03-01

    A patient with a history of type II diabetes mellitus (DM), end stage renal disease (ESRD), and congestive heart failure (CHF) developed necrotizing fasciitis caused by Serratia marcescens after scraping his leg on rocks in a river while fishing. Aggressive management with surgical debridement, antibiotics, and pressure support was unsuccessful.

  17. Serratia marcescens Suppresses Host Cellular Immunity via the Production of an Adhesion-inhibitory Factor against Immunosurveillance Cells*

    PubMed Central

    Ishii, Kenichi; Adachi, Tatsuo; Hamamoto, Hiroshi; Sekimizu, Kazuhisa

    2014-01-01

    Injection of a culture supernatant of Serratia marcescens into the bloodstream of the silkworm Bombyx mori increased the number of freely circulating immunosurveillance cells (hemocytes). Using a bioassay with live silkworms, serralysin metalloprotease was purified from the culture supernatant and identified as the factor responsible for this activity. Serralysin inhibited the in vitro attachment of both silkworm hemocytes and murine peritoneal macrophages. Incubation of silkworm hemocytes or murine macrophages with serralysin resulted in degradation of the cellular immune factor BmSPH-1 or calreticulin, respectively. Furthermore, serralysin suppressed in vitro phagocytosis of bacteria by hemocytes and in vivo bacterial clearance in silkworms. Disruption of the ser gene in S. marcescens attenuated its host killing ability in silkworms and mice. These findings suggest that serralysin metalloprotease secreted by S. marcescens suppresses cellular immunity by decreasing the adhesive properties of immunosurveillance cells, thereby contributing to bacterial pathogenesis. PMID:24398686

  18. Serratia marcescens suppresses host cellular immunity via the production of an adhesion-inhibitory factor against immunosurveillance cells.

    PubMed

    Ishii, Kenichi; Adachi, Tatsuo; Hamamoto, Hiroshi; Sekimizu, Kazuhisa

    2014-02-28

    Injection of a culture supernatant of Serratia marcescens into the bloodstream of the silkworm Bombyx mori increased the number of freely circulating immunosurveillance cells (hemocytes). Using a bioassay with live silkworms, serralysin metalloprotease was purified from the culture supernatant and identified as the factor responsible for this activity. Serralysin inhibited the in vitro attachment of both silkworm hemocytes and murine peritoneal macrophages. Incubation of silkworm hemocytes or murine macrophages with serralysin resulted in degradation of the cellular immune factor BmSPH-1 or calreticulin, respectively. Furthermore, serralysin suppressed in vitro phagocytosis of bacteria by hemocytes and in vivo bacterial clearance in silkworms. Disruption of the ser gene in S. marcescens attenuated its host killing ability in silkworms and mice. These findings suggest that serralysin metalloprotease secreted by S. marcescens suppresses cellular immunity by decreasing the adhesive properties of immunosurveillance cells, thereby contributing to bacterial pathogenesis.

  19. Virulence factors of the human opportunistic pathogen Serratia marcescens identified by in vivo screening

    PubMed Central

    Kurz, C.Léopold; Chauvet, Sophie; Andrès, Emmanuel; Aurouze, Marianne; Vallet, Isabelle; Michel, Gérard P.F.; Uh, Mitch; Celli, Jean; Filloux, Alain; de Bentzmann, Sophie; Steinmetz, Ivo; Hoffmann, Jules A.; Finlay, B.Brett; Gorvel, Jean-Pierre; Ferrandon, Dominique; Ewbank, Jonathan J.

    2003-01-01

    The human opportunistic pathogen Serratia marcescens is a bacterium with a broad host range, and represents a growing problem for public health. Serratia marcescens kills Caenorhabditis elegans after colonizing the nematode’s intestine. We used C.elegans to screen a bank of transposon-induced S.marcescens mutants and isolated 23 clones with an attenuated virulence. Nine of the selected bacterial clones also showed a reduced virulence in an insect model of infection. Of these, three exhibited a reduced cytotoxicity in vitro, and among them one was also markedly attenuated in its virulence in a murine lung infection model. For 21 of the 23 mutants, the transposon insertion site was identified. This revealed that among the genes necessary for full in vivo virulence are those that function in lipopolysaccharide (LPS) biosynthesis, iron uptake and hemolysin produc tion. Using this system we also identified novel conserved virulence factors required for Pseudomonas aeruginosa pathogenicity. This study extends the utility of C.elegans as an in vivo model for the study of bacterial virulence and advances the molecular understanding of S.marcescens pathogenicity. PMID:12660152

  20. Effect of iron and salt on prodigiosin synthesis in Serratia marcescens.

    NASA Technical Reports Server (NTRS)

    Silverman, M. P.; Munoz, E. F.

    1973-01-01

    Iron requirements of Serratia marcescens for growth and prodigiosin synthesis are investigated. Sodium chloride of sea salt is shown to be responsible for inhibition of prodigiosin synthesis in the microorganism. The role of sodium chloride in the terminal biosynthetic pathway of the pigment is discussed.

  1. Virulence factors and resistance mechanisms of Serratia marcescens. A short review.

    PubMed

    Rodrigues, Ana P; Holanda, A R M; Lustosa, G P; Nóbrega, S M B; Santana, Willma J; Souza, Luciana B S; Coutinho, H D M

    2006-03-01

    Serratia marcescens, a Gram-negative bacillus that belongs to the family Enterobacteriaceae, is a human opportunistic pathogen bacterium that causes many diseases, such as urinary tract infections, respiratory tract infections, bacteremia, conjunctivitis, endocarditis, meningitis and wound infections. Many plasmides that confers multi-drug resistance were discovered, such as virulence factors, like cytotoxins that damage epithelial cells. The main topic of this paper presents a review about the molecular traits evolved in the pathogenic processes mediated by Serratia and its mechanism of resistance to drugs.

  2. Nosocomial Serratia marcescens infections associated with extrinsic contamination of a liquid nonmedicated soap.

    PubMed

    Sartor, C; Jacomo, V; Duvivier, C; Tissot-Dupont, H; Sambuc, R; Drancourt, M

    2000-03-01

    To determine the role of nonmedicated soap as a source of Serratia marcescens nosocomial infections (NIs) in hospital units with endemic S marcescens NI and to examine the mechanisms of soap colonization. University-affiliated tertiary-care hospitals. A prospective case-control study and an environmental investigation were performed to assess the relationship between S marcescens NIs in hospital units and S marcescens-contaminated soap. Soap-bottle use and handwashing practices were reviewed. Cultures of healthcare workers' (HCWs) hands were obtained before and after hand washing with soap. 5 of 7 hospital units with S marcescens NIs had soap bottles contaminated with S marcescens, compared to 1 of 14 other units (P=.006). After hand washing with an S marcescens-contaminated soap pump, HCWs' hands were 54 times more likely to be contaminated with S marcescens (P<.001). Extrinsic contamination of a non-medicated liquid soap by S marcescens resulted in handborne transmission of S marcescens NIs by HCWs in our setting. This finding led to the application of strict guidelines for nonmedicated soap use and to the reinforcement of alcoholic hand disinfection.

  3. Pink Breast Milk: Serratia marcescens Colonization

    PubMed Central

    Valle, Cipatli Ayuzo del; Salinas, Emilio Treviño

    2014-01-01

    Background Breast milk can turn pink with Serratia marcescens colonization, this bacterium has been associated with several diseases and even death. It is seen most commonly in the intensive care settings. Discoloration of the breast milk can lead to premature termination of nursing. We describe two cases of pink-colored breast milk in which S. marsescens was isolated from both the expressed breast milk. Antimicrobial treatment was administered to the mothers. Return to breastfeeding was successful in both the cases. Conclusions Pink breast milk is caused by S. marsescens colonization. In such cases,early recognition and treatment before the development of infection is recommended to return to breastfeeding. PMID:25452881

  4. Serratia marcescens outbreak due to contaminated 2% aqueous chlorhexidine.

    PubMed

    de Frutos, Mónica; López-Urrutia, Luis; Domínguez-Gil, Marta; Arias, Marta; Muñoz-Bellido, Juan Luis; Eiros, José María; Ramos, Carmen

    2017-12-01

    An outbreak of Serratia marcescens infections outbreak is described, as well as the epidemiological study that linked the outbreak to the use of 2% aqueous chlorhexidine antiseptic. In late November 2014 an increasing incidence of S. marcescens isolates was detected in patients treated in the emergency department. It was considered a possible outbreak, and an epidemiological investigation was started. S. marcescens was isolated in 23 samples from 16 patients and in all new bottles of two lots of 2% aqueous chlorhexidine. The contaminated disinfectant was withdrawn, and the Spanish Drugs Agency was alerted (COS 2/2014). The epidemiological study showed that strains isolated from clinical samples and from chlorhexidine belonged to the same clone. No further isolates were obtained once the disinfectant was withdrawn. The suspicion of an outbreak and the epidemiological study were essential to control the incidence. Copyright © 2016 Elsevier España, S.L.U. and Sociedad Española de Enfermedades Infecciosas y Microbiología Clínica. All rights reserved.

  5. CpxR-Dependent Thermoregulation of Serratia marcescens PrtA Metalloprotease Expression and Its Contribution to Bacterial Biofilm Formation.

    PubMed

    Bruna, Roberto E; Molino, María Victoria; Lazzaro, Martina; Mariscotti, Javier F; García Véscovi, Eleonora

    2018-04-15

    PrtA is the major secreted metalloprotease of Serratia marcescens Previous reports implicate PrtA in the pathogenic capacity of this bacterium. PrtA is also clinically used as a potent analgesic and anti-inflammatory drug, and its catalytic properties attract industrial interest. Comparatively, there is scarce knowledge about the mechanisms that physiologically govern PrtA expression in Serratia In this work, we demonstrate that PrtA production is derepressed when the bacterial growth temperature decreases from 37°C to 30°C. We show that this thermoregulation occurs at the transcriptional level. We determined that upstream of prtA , there is a conserved motif that is directly recognized by the CpxR transcriptional regulator. This feature is found along Serratia strains irrespective of their isolation source, suggesting an evolutionary conservation of CpxR-dependent regulation of PrtA expression. We found that in S. marcescen s, the CpxAR system is more active at 37°C than at 30°C. In good agreement with these results, in a cpxR mutant background, prtA is derepressed at 37°C, while overexpression of the NlpE lipoprotein, a well-known CpxAR-inducing condition, inhibits PrtA expression, suggesting that the levels of the activated form of CpxR are increased at 37°C over those at 30°C. In addition, we establish that PrtA is involved in the ability of S. marcescens to develop biofilm. In accordance, CpxR influences the biofilm phenotype only when bacteria are grown at 37°C. In sum, our findings shed light on regulatory mechanisms that fine-tune PrtA expression and reveal a novel role for PrtA in the lifestyle of S. marcescens IMPORTANCE We demonstrate that S. marcescens metalloprotease PrtA expression is transcriptionally thermoregulated. While strongly activated below 30°C, its expression is downregulated at 37°C. We found that in S. marcescens , the CpxAR signal transduction system, which responds to envelope stress and bacterial surface adhesion, is

  6. Characterization of putative virulence factors of Serratia marcescens strain SEN for pathogenesis in Spodoptera litura.

    PubMed

    Aggarwal, Chetana; Paul, Sangeeta; Tripathi, Vishwas; Paul, Bishwajeet; Khan, Md Aslam

    2017-02-01

    Two Serratia marcescens strains, SEN and ICC-4, isolated from diseased insect cadavers were observed to differ considerably in their virulence towards Spodoptera litura. The present study was aimed to characterize the possible virulence factors present in the virulent Serratia marcescens strain SEN. Both the S. marcescens strains were evaluated for the presence of various lytic enzymes such as chitinase, lipase, protease and phospholipase. The virulent S. marcescens strain SEN was observed to possess considerably higher activity of chitinase and protease enzymes; activity of phospholipase enzyme was also higher. Although, all the three toxin genes shlA, phlA and swr could be detected in both the S. marcescens strains, there was a higher expression of these genes in the virulent strain SEN. S. marcescens strain ICC-4 showed greater reduction in overall growth yield in the post-exponential phase in the presence of midgut juice and hemolymph of S. litura larvae, as compared to S. marcescens strain SEN. Proliferation of the S. marcescens strain SEN was also considerably higher in foregut, midgut and hemolymph of S. litura larvae, as compared to strain ICC-4. Peritrophic membrane treated with broth culture of the S. marcescens strain SEN showed higher damage as compared to strain ICC-4. The peritrophic membrane of larvae fed on diet treated with the virulent strain showed considerable damage while the peritrophic membrane of larvae fed on diet treated with the non-virulent strain showed no damage. This is the first report documenting the fate of ingested S. marcescens in S. litura gut and the relative expression of toxin genes from two S. marcescens strains differing in their virulence towards S. litura. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Serratia marcescens outbreak in a neonatal intensive care unit (NICU): new insights from next-generation sequencing applications.

    PubMed

    Martineau, Christine; Li, Xuejing; Lalancette, Cindy; Perreault, Thérèse; Fournier, Eric; Tremblay, Julien; Gonzales, Milagros; Yergeau, Étienne; Quach, Caroline

    2018-06-13

    Serratia marcescens is an environmental bacterium commonly associated with outbreaks in neonatal intensive care units (NICU). Investigation of S. marcescens outbreaks requires efficient recovery and typing of clinical and environmental isolates. In this study, we described how the use of next-generation sequencing applications, such as bacterial whole-genome sequencing (WGS) and bacterial community profiling, could improve S. marcescens outbreak investigation. Phylogenomic links and potential antibiotic resistance genes and plasmids in S. marcescens isolates were investigated using WGS, while bacterial communities and relative abundances of Serratia in environmental samples were assessed using sequencing of bacterial phylogenetic marker genes (16S rRNA and gyrB genes). Typing results obtained using WGS for the ten S. marcescens isolates recovered during a NICU outbreak investigation were highly consistent with those from pulse-field gel electrophoresis (PFGE), the current gold standard typing method for this bacterium. WGS also allowed for the identification of genes associated with antibiotic resistance in all isolates, while no plasmid was detected. Sequencing of the 16S rRNA and gyrB genes both showed higher relative abundances of Serratia in environmental sampling sites that were in close contact with infected babies. Much lower relative abundances of Serratia were observed following disinfection of a room, indicating that the protocol used was efficient. Variations in the bacterial community composition and structure following room disinfection and between sampling sites were also identified through 16S rRNA gene sequencing. Globally, results from this study highlight the potential for next-generation sequencing tools to improve and facilitate outbreak investigation. Copyright © 2018 American Society for Microbiology.

  8. Serratia marcescens arn, a PhoP-regulated locus necessary for polymyxin B resistance.

    PubMed

    Lin, Quei Yen; Tsai, Yi-Lin; Liu, Ming-Che; Lin, Wei-Cheng; Hsueh, Po-Ren; Liaw, Shwu-Jen

    2014-09-01

    Polymyxins, which are increasingly being used to treat infections caused by multidrug-resistant bacteria, perform poorly against Serratia marcescens. To investigate the underlying mechanisms, Tn5 mutagenesis was performed and two mutants exhibiting increased polymyxin B (PB) susceptibility were isolated. The mutants were found to have Tn5 inserted into the arnB and arnC genes. In other bacteria, arnB and arnC belong to the seven-gene arn operon, which is involved in lipopolysaccharide (LPS) modification. LPSs of arn mutants had greater PB-binding abilities than that of wild-type LPS. Further, we identified PhoP, a bacterial two-component response regulator, as a regulator of PB susceptibility in S. marcescens. By the reporter assay, we found PB- and low-Mg2+-induced expression of phoP and arn in the wild-type strain but not in the phoP mutant. Complementation of the phoP mutant with the full-length phoP gene restored the PB MIC and induction by PB and low Mg2+ levels, as in the wild type. An electrophoretic mobility shift assay (EMSA) further demonstrated that PhoP bound directly to the arn promoter. The PB challenge test confirmed that pretreatment with PB and low Mg2+ levels protected S. marcescens from a PB challenge in the wild-type strain but not in the phoP mutant. Real-time reverse transcriptase-PCR also indicated that PB serves as a signal to regulate expression of ugd, a gene required for LPS modification, in S. marcescens through a PhoP-dependent pathway. Finally, we found that PB-resistant clinical isolates displayed greater expression of arnA upon exposure to PB than did susceptible isolates. This is the first report to describe the role of S. marcescens arn in PB resistance and its modulation by PB and Mg2+ through the PhoP protein. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  9. Pink hypopyon in a patient with Serratia marcescens corneal ulceration.

    PubMed

    Stefater, James A; Borkar, Durga S; Chodosh, James

    2015-01-01

    A 65-year-old woman presented to the emergency ward at the Massachusetts Eye and Ear Infirmary with 2 days of redness, irritation, photophobia, and diminished vision in her left eye. She was found to have a large central corneal ulcer with a small hypopyon. On the following day, after initiation of broad-spectrum antibiotics, the patient had improved symptoms but now had a 2-mm hypopyon that was distinctly pink in color. Cultures were positive for Serratia marcescens. A pink hypopyon, a rare occurrence, alerted the authors to a causative agent of Enterobacteriacae, either Klebsiella or Serratia. Immediate and intensive treatment was subsequently initiated.

  10. Necrotizing fasciitis due to Serratia marcescens: case report and review of the literature.

    PubMed

    Majumdar, Rohit; Crum-Cianflone, Nancy F

    2016-06-01

    Necrotizing fasciitis is a severe, life-threatening infection.  Serratia marcescens, a Gram-negative bacterium, is an extremely rare cause of necrotizing fasciitis. A case of S. marcescens necrotizing fasciitis is described, and a comprehensive review of the literature (1966-2015) of monomicrobial cases due to this organism performed. We report the first case of S. marcescens necrotizing fasciitis in the setting of calciphylaxis associated with end-stage renal disease.  A comprehensive review of the literature of S. marcescens necrotizing fasciitis is provided to enhance the awareness of this increasingly recognized infection, and to provide a concise summary of risk factors, treatment, and outcome. Our case and review highlight the potential risk factors for S. marcescens necrotizing fasciitis, including underlying renal disease and open wounds, and demonstrate the emergence of this organism as a cause of severe, life-threatening soft tissue infections.

  11. Acute epiglottitis due to Serratia marcescens in an immunocompetent adult.

    PubMed

    Musham, Chaitanya K; Jarathi, Archana; Agarwal, Abhishek

    2012-08-01

    Acute epiglottitis (AE) is inflammation of the epiglottis and contiguous tissues, which carries a potential for complete airway obstruction. With routine pediatric immunization for Hemophilus influenzae serotype b, epiglottitis is now more prevalent in adults, with a shift in the causative organisms and a change in the natural history of this disease. Over the past 5 decades, Serratia marcescens has gone from being recognized as a harmless saprophyte to an important opportunistic human pathogen. It is known to be associated with outbreaks of nosocomial infections, but it is an uncommon cause of serious invasive infections in patients presenting from the community. The authors present a fatal case of AE caused by S marcescens in a previously immunocompetent 58-year-old woman, which was complicated by fasciitis, myositis and bacteremia. To the authors' knowledge, till date, only 3 cases of AE by S marcescens have been reported, all in immunocompromised patients.

  12. Serratia marcescens meningitis: epidemiology, prognostic factors and treatment outcomes.

    PubMed

    Wu, Yen-Mu; Hsu, Po-Chang; Yang, Chien-Chang; Chang, Hong-Jyun; Ye, Jung-Jr; Huang, Ching-Tai; Lee, Ming-Hsun

    2013-08-01

    Serratia marcescens is a rare pathogen of central nervous system infections. This study was to investigate the epidemiology, prognostic factors, and treatment outcomes of S. marcescens meningitis. This retrospective analysis included 33 patients with culture-proven S. marcescens meningitis hospitalized between January 2000 and June 2011. Of the 33 patients enrolled, only one did not receive neurosurgery before the onset of S. marcescens meningitis. Patients with S. marcescens meningitis had higher ratios of brain solid tumors (54.5%) and neurosurgery (97.0%) with a mortality rate of 15.2%. The mean interval between the first neurosurgical procedure and the diagnosis of meningitis was 17.1 days (range, 4-51 days). Only one third-generation cephalosporin-resistant S. marcescens isolate was recovered from the patients' cerebrospinal fluid (CSF) specimens. Compared with the favorable outcome group (n = 20), the unfavorable outcome group (n = 13) had a higher percentage of brain solid tumors, more intensive care unit stays, and higher Sequential Organ Failure Assessment score, CSF lactate and serum C-reactive protein concentrations at diagnosis of meningitis. Under the multiple regression analysis, CSF lactate concentration ≥2-fold the upper limit of normal (ULN) was independently associated with unfavorable outcomes (odds ratio, 7.20; 95% confidence interval, 1.08-47.96; p = 0.041). S. marcescens meningitis is highly associated with neurosurgical procedures for brain solid tumors. CSF lactate concentration ≥2x ULN may predict an unfavorable outcome. Its mortality is not high and empiric treatment with parenteral third-generation cephalosporins may have a satisfactory clinical response. Copyright © 2012. Published by Elsevier B.V.

  13. Inhibition of Serratia marcescens Smj-11 biofilm formation by Alcaligenes faecalis STN17 crude extract

    NASA Astrophysics Data System (ADS)

    Lutfi, Zainal; Usup, Gires; Ahmad, Asmat

    2014-09-01

    Serratia marcescens biofilms are formed when they are bound to surfaces in aqueous environments. S. marcescens utilizes N-acylhomoserine lactone (AHL) as its quorum sensing signal molecule. The accumulation of AHL indicates the bacteria to produce matrices to form biofilms. Prodigiosin (2-methyl-3-pentyl-6-methoxyprodigiosin), which causes red pigmentation in the colonies, are also produced when the AHL reaches a certain threshold. The Alcaligenes faecalis STN17 crude extract is believed to inhibit quorum sensing in the S. marcescens Smj-11 and, thus, impedes its biofilm formation ability. A. faecalis STN17 was grown in marine broth, and ethyl acetate extraction was carried out. The crude compound of A. faecalis STN17 was diluted at high concentration (0.2-6.4 mg/mL) and was taken to confirm anti-biofilm activity through the crystal violet method in 96-wells plate. Then, the crude extract underwent purification using simple solvents partitioning test to discern the respective compounds that had the anti-biofilm activity under the crystal violet method. The crystal violet test showed that the crude did have anti-biofilm activity on S. marcescens Smj-11, but did not kill the cells. This finding signifies that the suppression of biofilm formation in S. marcescens by A. faecalis STN17 has a strong correlation. The partitioning test showed that A. faecalis STN17 crude extract has several compounds and only the compound(s) in chloroform showed activities. In conclusion, the crude extract of A. faecalis STN17 has the ability to inhibit S. marcescens Smj-11 biofilm formation.

  14. Comparative analysis of prodigiosin isolated from endophyte Serratia marcescens.

    PubMed

    Khanam, B; Chandra, R

    2018-03-01

    Extraction of pigments from endophytes is an uphill task. Up till now, there are no efficient methods available to extract the maximum amount of prodigiosin from Serratia marcescens. This is one of the important endophytes of Beta vulgaris L. The present work was carried out for the comparative study of six different extraction methods such as homogenization, ultrasonication, freezing and thawing, heat treatment, organic solvents and inorganic acids to evaluate the efficiency of prodigiosin yield. Our results demonstrated that highest extraction was observed in ultrasonication (98·1 ± 1·7%) while the lowest extraction by freezing and thawing (31·8 ± 3·8%) methods. However, thin layer chromatography, high-performance liquid chromatography and Fourier transform infrared data suggest that bioactive pigment in the extract was prodigiosin. To the best of our knowledge, this is the first comprehensive study of extraction methods and identification and purification of prodigiosin from cell biomass of Ser. marcescens isolated from Beta vulgaris L. The prodigiosin family is a potent drug with anticancer, antimalarial, antibacterial, antifungal, antiproliferative and immunosuppressive activities. Moreover, it has immense potential in pharmaceutical, food and textile industries. For the industrial perspective, it is essential to achieve purified, high yield and cost-effective extraction of prodigiosin. To the best of our knowledge, this is the first comprehensive study on prodigiosin extraction and also the first report on endophyte Serratia marcescens isolated from Beta vulgaris L. The significance of our results is to extract high amount and good quality prodigiosin for commercial application. © 2017 The Society for Applied Microbiology.

  15. Oxidation of dibenzothiophene (DBT) by Serratia marcescens UCP 1549 formed biphenyl as final product

    PubMed Central

    2012-01-01

    Background The desulphurization of dibenzothiophene (DBT), a recalcitrant thiophenic fossil fuel component by Serratia marcescens (UCP 1549) in order for reducing the Sulphur content was investigated. The Study was carried out establishing the growth profile using Luria Bertani medium to different concentrations of DBT during 120 hours at 28°C, and orbital Shaker at 150 rpm. Results The results indicated that concentrations of DBT 0.5, 1.0 and 2.0 mM do not affected the growth of the bacterium. The DBT showed similar Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MCB) (3.68 mM). The desulphurization of DBT by S. marcescens was used with 96 hours of growth on 2 mM of DBT, and was determined by gas chromatography (GC) and GC-mass spectrometry. In order to study the desulphurization process by S. marcescens was observed the presence of a sulfur-free product at 16 hours of cultivation. Conclusions The data suggests the use of metabolic pathway “4S” by S. marcescens (UCP 1549) and formed biphenyl. The microbial desulphurization process by Serratia can be suggest significant reducing sulphur content in DBT, and showed promising potential for reduction of the sulfur content in diesel oil. PMID:22583489

  16. Response Mechanisms in Serratia marcescens IBBPo15 During Organic Solvents Exposure.

    PubMed

    Stancu, Mihaela Marilena

    2016-12-01

    Serratia marcescens strain IBB Po15 (KT315653) which possesses serratiopeptidase (ser) gene (KT894207) exhibited good solvent tolerance. During the exposure of S. marcescens IBB Po15 cells to 5 % organic solvents, n-decane was less toxic for this bacterium, compared with n-hexane, cyclohexane, ethylbenzene, toluene, and styrene. The exposure of the S. marcescens IBB Po15 cells to n-hexane, cyclohexane, ethylbenzene, toluene, and styrene induced the formation of large clusters, while in control and n-decane-exposed cells, only organization into small clusters was observed. The data obtained suggested that S. marcescens IBB Po15 cells produced some secondary metabolites (i.e., surfactant serrawettin, red pigment prodigiosin) which are well known as valuable molecules due to their large applications. The exposure of the bacterial cells to organic solvents induced secondary metabolites profile modifications. However, S. marcescens IBB Po15 possesses only alkB1, todM, rhlAB, pswP, mpr, and ser genes, the unspecific amplification of other fragments being acquired also when the primers for alkM1, xylM, ndoM, and C23DO genes were used. Modifications of DNA patterns were not depicted in S. marcescens IBB Po15 cells exposed to organic solvents.

  17. The PhoP/PhoQ System and Its Role in Serratia marcescens Pathogenesis

    PubMed Central

    Barchiesi, Julieta; Castelli, María Eugenia; Di Venanzio, Gisela; Colombo, María Isabel

    2012-01-01

    Serratia marcescens is able to invade, persist, and multiply inside nonphagocytic cells, residing in nonacidic, nondegradative, autophagosome-like vacuoles. In this work, we have examined the physiological role of the PhoP/PhoQ system and its function in the control of critical virulence phenotypes in S. marcescens. We have demonstrated the involvement of the PhoP/PhoQ system in the adaptation of this bacterium to growth on scarce environmental Mg2+, at acidic pH, and in the presence of polymyxin B. We have also shown that these environmental conditions constitute signals that activate the PhoP/PhoQ system. We have found that the two S. marcescens mgtE orthologs present a conserved PhoP-binding motif and demonstrated that mgtE1 expression is PhoP dependent, reinforcing the importance of PhoP control in magnesium homeostasis. Finally, we have demonstrated that phoP expression is activated intracellularly and that a phoP mutant strain is defective in survival inside epithelial cells. We have shown that the Serratia PhoP/PhoQ system is involved in prevention of the delivery to degradative/acidic compartments. PMID:22467788

  18. Chorioamnionitis caused by Serratia marcescens in a non-immunocompromised host

    PubMed Central

    Shimizu, S; Kojima, H; Yoshida, C; Suzukawa, K; Mukai, H Y; Hasegawa, Y; Hitomi, S; Nagasawa, T

    2003-01-01

    A 26 year old pregnant woman with antithrombin III deficiency developed recurrent septicaemia with Serratia marcescens. In spite of the administration of antibiotics, high grade fever persisted. She subsequently manifested lower abdominal pain, and spontaneous abortion occurred. After the abortion, she became completely afebrile. The amnion was turbid, and microscopic examination of the placenta showed haemorrhage and massive infiltration of neutrophils, suggestive of infectious chorioamnionitis. Pulsed field gel electrophoresis showed that isolates from the blood, urine, and vaginal discharge were genetically identical. Intravenous pyelography revealed that she had a bilateral completed double ureter. It was thought that a urinary tract anomaly caused infection with S marcescens, and the pathogen spread to the chorioamnion via the bloodstream. This is the first report of chorioamnionitis caused by S marcescens in a non-immunocompromised host. In addition, these findings indicate that the chorioamnion can serve as a site for persistent infection in normal pregnancies. PMID:14600137

  19. Lipid Content of Antibiotic-Resistant and -Sensitive Strains of Serratia marcescens

    PubMed Central

    Chang, Chuan-Yi; Molar, Roger E.; Tsang, Joseph C.

    1972-01-01

    The lipid content of antibiotic-resistant, nonpigmented strain (Bizio) and antibiotic-sensitive, pigmented strain (08) of Serratia marcescens was studied. The resistant strain contains at least three times more total extractable lipid and phospholipid than the sensitive strain. Lysophosphatidylethanolamine, phosphatidylserine, lecithin, phosphatidylglycerol, phosphatidylethanolamine, and polyglycerolphosphatide were identified in the phospholipid fractions of both strains. Images PMID:4568257

  20. Biotransformation of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) by a prospective consortium and its most effective isolate Serratia marcescens

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Young, D.M.; Ogden, K.L.; Unkefer, P.J.

    1997-03-05

    The biotransformation of hexahydro-1,3,5-trinitro-1,3,5 triazine (RDX) has been observed in liquid culture by a consortium of bacteria found in horse manure. Five types of bacteria were found to predominate in the consortium and were isolated. The most effective of these isolates at transforming RDX was Serratia marcescens. The biotransformation of RDX by all of these bacteria was found to occur only in the anoxic stationary phase. The process of bacterial growth and RDX biotransformation was quantified for the purpose of developing a predictive type model. Cell growth was assumed to follow Monod kinetics. All of the aerobic and anoxid growthmore » parameters were determined: {mu}{sub max}, K{sub s}, and Y{sub x/s}. RDX was found to competitively inhibit cell growth in both atmospheres. Degradation of RDX by Serratia marcescens was found to proceed through the stepwise reduction of the three nitro groups to nitroso groups. Each of these reductions was found to be first order in both component and cell concentrations. The degradation rate constant for the first step in this reduction process by the consortium was 0.022 L/g cells {center_dot} h compared to 0.033 L/g cells {center_dot} h for the most efficient isolate.« less

  1. SlpE is a calcium-dependent cytotoxic metalloprotease associated with clinical isolates of Serratia marcescens.

    PubMed

    Stella, Nicholas A; Callaghan, Jake D; Zhang, Liang; Brothers, Kimberly M; Kowalski, Regis P; Huang, Jean J; Thibodeau, Patrick H; Shanks, Robert M Q

    Serralysin-like proteases are found in a wide variety of bacteria. These metalloproteases are frequently implicated in virulence and are members of the widely conserved RTX-toxin family. We identified a serralysin-like protease in the genome of a clinical isolate of Serratia marcescens that is highly similar to the canonical serralysin protein, PrtS. This gene was named serralysin-like protease E, SlpE, and was found in the majority (67%) of tested clinical isolates, but was absent from most tested non-clinical isolates including the insect pathogen and reference S. marcescens strain Db11. Purified recombinant SlpE exhibited calcium-dependent protease activity similar to metalloproteases PrtS and SlpB. Induction of slpE in the low-protease-producing S. marcescens strain PIC3611 highly elevated extracellular protease activity, and extracellular secretion required the lipD type 1 secretion system gene. Transcription of slpE was highly reduced in an eepR transcription factor mutant. Mutation of the slpE gene in a highly proteolytic clinical isolate reduced its protease activity, and evidence suggests that SlpE confers cytotoxicity of S. marcescens to the A549 airway carcinoma cell line. Together, these data reveal SlpE to be an EepR-regulated cytotoxic metalloprotease associated with clinical isolates of an important opportunistic pathogen. Copyright © 2017 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  2. An antimicrobial protein of the Riptortus pedestris salivary gland was cleaved by a virulence factor of Serratia marcescens.

    PubMed

    Lee, Dong Jung; Lee, Jun Beom; Jang, Ho Am; Ferrandon, Dominique; Lee, Bok Luel

    2017-02-01

    Recently, our group demonstrated that the bean bug, Riptortus pedestris, is a good experimental symbiosis model to study the molecular cross-talk between the host insect and the gut symbiont. The Burkholderia symbiont is orally acquired by host nymphs from the environment in every generation. However, it is still unclear how Riptortus specifically interacts with entomopathogens that are abundant in the environmental soil. In preliminary experiments, we observed that a potent entomopathogen, Serratia marcescens, can colonize the midgut of Riptortus insects and was recovered from the midgut when Serratia cells were orally administered, suggesting that this pathogenic bacterium can escape host immune defenses in the salivary fluid. We examined how orally fed Serratia cells can survive in the presence of antimicrobial substances of the Riptortus salivary fluid. In this study, a 15 kDa trialysin-like protein from the salivary gland of R. pedestris and a potent virulence factor of Serratia cells, a serralysin metalloprotease, from the culture medium of S. marcescens were successfully purified to homogeneity. When the purified Riptortus trialysin (rip-trialysin) was incubated with purified serralysin, rip-trialysin was specifically hydrolyzed by serralysin, leading to the loss of antimicrobial activity. These results clearly demonstrated that a potent virulent metalloprotease of S. marcescens functions as a key player in the escape from the salivary fluid-mediated host immune response, resulting in successful colonization of S. marcescens in the host midgut. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Multi-fractal characterization of bacterial swimming dynamics: a case study on real and simulated Serratia marcescens

    PubMed Central

    Bogdan, Paul; Wei, Guopeng; Marculescu, Radu; Zhuang, Jiang; Carlsen, Rika Wright; Sitti, Metin

    2017-01-01

    To add to the current state of knowledge about bacterial swimming dynamics, in this paper, we study the fractal swimming dynamics of populations of Serratia marcescens bacteria both in vitro and in silico, while accounting for realistic conditions like volume exclusion, chemical interactions, obstacles and distribution of chemoattractant in the environment. While previous research has shown that bacterial motion is non-ergodic, we demonstrate that, besides the non-ergodicity, the bacterial swimming dynamics is multi-fractal in nature. Finally, we demonstrate that the multi-fractal characteristic of bacterial dynamics is strongly affected by bacterial density and chemoattractant concentration. PMID:28804259

  4. Inhibition of Serratia marcescens Smj-11 biofilm formation by Alcaligenes faecalis STN17 crude extract

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lutfi, Zainal; Ahmad, Asmat; Usup, Gires

    Serratia marcescens biofilms are formed when they are bound to surfaces in aqueous environments. S. marcescens utilizes N-acylhomoserine lactone (AHL) as its quorum sensing signal molecule. The accumulation of AHL indicates the bacteria to produce matrices to form biofilms. Prodigiosin (2-methyl-3-pentyl-6-methoxyprodigiosin), which causes red pigmentation in the colonies, are also produced when the AHL reaches a certain threshold. The Alcaligenes faecalis STN17 crude extract is believed to inhibit quorum sensing in the S. marcescens Smj-11 and, thus, impedes its biofilm formation ability. A. faecalis STN17 was grown in marine broth, and ethyl acetate extraction was carried out. The crude compoundmore » of A. faecalis STN17 was diluted at high concentration (0.2-6.4 mg/mL) and was taken to confirm anti-biofilm activity through the crystal violet method in 96-wells plate. Then, the crude extract underwent purification using simple solvents partitioning test to discern the respective compounds that had the anti-biofilm activity under the crystal violet method. The crystal violet test showed that the crude did have anti-biofilm activity on S. marcescens Smj-11, but did not kill the cells. This finding signifies that the suppression of biofilm formation in S. marcescens by A. faecalis STN17 has a strong correlation. The partitioning test showed that A. faecalis STN17 crude extract has several compounds and only the compound(s) in chloroform showed activities. In conclusion, the crude extract of A. faecalis STN17 has the ability to inhibit S. marcescens Smj-11 biofilm formation.« less

  5. A Serratia marcescens PigP Homolog Controls Prodigiosin Biosynthesis, Swarming Motility and Hemolysis and Is Regulated by cAMP-CRP and HexS

    PubMed Central

    Shanks, Robert M. Q.; Lahr, Roni M.; Stella, Nicholas A.; Arena, Kristin E.; Brothers, Kimberly M.; Kwak, Daniel H.; Liu, Xinyu; Kalivoda, Eric J.

    2013-01-01

    Swarming motility and hemolysis are virulence-associated determinants for a wide array of pathogenic bacteria. The broad host-range opportunistic pathogen Serratia marcescens produces serratamolide, a small cyclic amino-lipid, that promotes swarming motility and hemolysis. Serratamolide is negatively regulated by the transcription factors HexS and CRP. Positive regulators of serratamolide production are unknown. Similar to serratamolide, the antibiotic pigment, prodigiosin, is regulated by temperature, growth phase, HexS, and CRP. Because of this co-regulation, we tested the hypothesis that a homolog of the PigP transcription factor of the atypical Serratia species ATCC 39006, which positively regulates prodigiosin biosynthesis, is also a positive regulator of serratamolide production in S. marcescens. Mutation of pigP in clinical, environmental, and laboratory strains of S. marcescens conferred pleiotropic phenotypes including the loss of swarming motility, hemolysis, and severely reduced prodigiosin and serratamolide synthesis. Transcriptional analysis and electrophoretic mobility shift assays place PigP in a regulatory pathway with upstream regulators CRP and HexS. The data from this study identifies a positive regulator of serratamolide production, describes novel roles for the PigP transcription factor, shows for the first time that PigP directly regulates the pigment biosynthetic operon, and identifies upstream regulators of pigP. This study suggests that PigP is important for the ability of S. marcescens to compete in the environment. PMID:23469212

  6. Skin ulcers caused by Serratia marcescens: three cases and a review of the literature.

    PubMed

    Veraldi, Stefano; Nazzaro, Gianluca

    2016-08-01

    Serratia marcescens is a Gram-negative, encapsulated, motile, anaerobic, non-sporulating bacillus that belongs to the Enterobacteriaceae family. It is found in water, soil, plants, food, and garbage. S. marcescens is an opportunistic pathogen. It usually causes nosocomial infections, such as lung and genitourinary infections, sinusitis, otitis, endocarditis, and sepsis. Skin infections caused by S. marcescens are rare. To describe three new cases of skin ulcers of the leg caused by S. marcescens and review the relevant literature. We investigated three patients admitted for ulcers on the leg. In two patients, post-traumatic aetiology was concluded. The modality of infection was not identified for the other patient. One patient was diabetic. All patients recovered with specific antibiotic therapy (ciprofloxacin, ceftriaxone and levofloxacin, respectively). Skin ulcers due to S. marcescens are very rare. The three cases presented here add to the limited literature of skin infections caused by S. marcescens.

  7. The red pigment prodigiosin is not an essential virulence factor in entomopathogenic Serratia marcescens.

    PubMed

    Zhou, Wei; Li, JingHua; Chen, Jie; Liu, XiaoYuan; Xiang, TingTing; Zhang, Lin; Wan, YongJi

    2016-05-01

    Although pigments produced by pathogenic microbes are generally hypothesized as essential virulence factors, the role of red pigment prodigiosin in the pathogenesis of entomopathogenic Serratia marcescens is not clear. In this study, we analyzed the pathogenicity of different pigmented S. marcescens strains and their non-pigmented mutants in silkworms. Each pigmented strain and the corresponding non-pigmented mutants showed very similar LD50 value (statistically no difference), but caused very different symptom (color of the dead larva). Our results clearly indicated that the red pigment prodigiosin is not an essential virulence factor in entomopathogenic S. marcescens. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Serratia Infections: from Military Experiments to Current Practice

    PubMed Central

    Mahlen, Steven D.

    2011-01-01

    Summary: Serratia species, in particular Serratia marcescens, are significant human pathogens. S. marcescens has a long and interesting taxonomic, medical experimentation, military experimentation, and human clinical infection history. The organisms in this genus, particularly S. marcescens, were long thought to be nonpathogenic. Because S. marcescens was thought to be a nonpathogen and is usually red pigmented, the U.S. military conducted experiments that attempted to ascertain the spread of this organism released over large areas. In the process, members of both the public and the military were exposed to S. marcescens, and this was uncovered by the press in the 1970s, leading to U.S. congressional hearings. S. marcescens was found to be a certain human pathogen by the mid-1960s. S. marcescens and S. liquefaciens have been isolated as causative agents of numerous outbreaks and opportunistic infections, and the association of these organisms with point sources such as medical devices and various solutions given to hospitalized patients is striking. Serratia species appear to be common environmental organisms, and this helps to explain the large number of nosocomial infections due to these bacteria. Since many nosocomial infections are caused by multiply antibiotic-resistant strains of S. marcescens, this increases the danger to hospitalized patients, and hospital personnel should be vigilant in preventing nosocomial outbreaks due to this organism. S. marcescens, and probably other species in the genus, carries several antibiotic resistance determinants and is also capable of acquiring resistance genes. S. marcescens and S. liquefaciens are usually identified well in the clinical laboratory, but the other species are rare enough that laboratory technologists may not recognize them. 16S rRNA gene sequencing may enable better identification of some of the less common Serratia species. PMID:21976608

  9. Serratia infections: from military experiments to current practice.

    PubMed

    Mahlen, Steven D

    2011-10-01

    Serratia species, in particular Serratia marcescens, are significant human pathogens. S. marcescens has a long and interesting taxonomic, medical experimentation, military experimentation, and human clinical infection history. The organisms in this genus, particularly S. marcescens, were long thought to be nonpathogenic. Because S. marcescens was thought to be a nonpathogen and is usually red pigmented, the U.S. military conducted experiments that attempted to ascertain the spread of this organism released over large areas. In the process, members of both the public and the military were exposed to S. marcescens, and this was uncovered by the press in the 1970s, leading to U.S. congressional hearings. S. marcescens was found to be a certain human pathogen by the mid-1960s. S. marcescens and S. liquefaciens have been isolated as causative agents of numerous outbreaks and opportunistic infections, and the association of these organisms with point sources such as medical devices and various solutions given to hospitalized patients is striking. Serratia species appear to be common environmental organisms, and this helps to explain the large number of nosocomial infections due to these bacteria. Since many nosocomial infections are caused by multiply antibiotic-resistant strains of S. marcescens, this increases the danger to hospitalized patients, and hospital personnel should be vigilant in preventing nosocomial outbreaks due to this organism. S. marcescens, and probably other species in the genus, carries several antibiotic resistance determinants and is also capable of acquiring resistance genes. S. marcescens and S. liquefaciens are usually identified well in the clinical laboratory, but the other species are rare enough that laboratory technologists may not recognize them. 16S rRNA gene sequencing may enable better identification of some of the less common Serratia species.

  10. Serratia marcescens Cyclic AMP Receptor Protein Controls Transcription of EepR, a Novel Regulator of Antimicrobial Secondary Metabolites.

    PubMed

    Stella, Nicholas A; Lahr, Roni M; Brothers, Kimberly M; Kalivoda, Eric J; Hunt, Kristin M; Kwak, Daniel H; Liu, Xinyu; Shanks, Robert M Q

    2015-08-01

    Serratia marcescens generates secondary metabolites and secreted enzymes, and it causes hospital infections and community-acquired ocular infections. Previous studies identified cyclic AMP (cAMP) receptor protein (CRP) as an indirect inhibitor of antimicrobial secondary metabolites. Here, we identified a putative two-component regulator that suppressed crp mutant phenotypes. Evidence supports that the putative response regulator eepR was directly transcriptionally inhibited by cAMP-CRP. EepR and the putative sensor kinase EepS were necessary for the biosynthesis of secondary metabolites, including prodigiosin- and serratamolide-dependent phenotypes, swarming motility, and hemolysis. Recombinant EepR bound to the prodigiosin and serratamolide promoters in vitro. Together, these data introduce a novel regulator of secondary metabolites that directly connects the broadly conserved metabolism regulator CRP with biosynthetic genes that may contribute to competition with other microbes. This study identifies a new transcription factor that is directly controlled by a broadly conserved transcription factor, CRP. CRP is well studied in its role to help bacteria respond to the amount of nutrients in their environment. The new transcription factor EepR is essential for the bacterium Serratia marcescens to produce two biologically active compounds, prodigiosin and serratamolide. These two compounds are antimicrobial and may allow S. marcescens to compete for limited nutrients with other microorganisms. Results from this study tie together the CRP environmental nutrient sensor with a new regulator of antimicrobial compounds. Beyond microbial ecology, prodigiosin and serratamolide have therapeutic potential; therefore, understanding their regulation is important for both applied and basic science. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  11. Risk Factors for Mortality in Patients with Serratia marcescens Bacteremia

    PubMed Central

    Kim, Sun Bean; Jeon, Yong Duk; Kim, Jung Ho; Kim, Jae Kyoung; Ann, Hea Won; Choi, Heun; Kim, Min Hyung; Song, Je Eun; Ahn, Jin Young; Jeong, Su Jin; Han, Sang Hoon; Choi, Jun Yong; Song, Young Goo; Kim, June Myung

    2015-01-01

    Purpose Over the last 30 years, Serratia marcescens (S. marcescens) has emerged as an important pathogen, and a common cause of nosocomial infections. The aim of this study was to identify risk factors associated with mortality in patients with S. marcescens bacteremia. Materials and Methods We performed a retrospective cohort study of 98 patients who had one or more blood cultures positive for S. marcescens between January 2006 and December 2012 in a tertiary care hospital in Seoul, South Korea. Multiple risk factors were compared with association with 28-day all-cause mortality. Results The 28-day mortality was 22.4% (22/98 episodes). In a univariate analysis, the onset of bacteremia during the intensive care unit stay (p=0.020), serum albumin level (p=0.011), serum C-reactive protein level (p=0.041), presence of indwelling urinary catheter (p=0.023), and Sequential Oran Failure Assessment (SOFA) score at the onset of bacteremia (p<0.001) were significantly different between patients in the fatal and non-fatal groups. In a multivariate analysis, lower serum albumin level and an elevated SOFA score were independently associated with 28-day mortality [adjusted odds ratio (OR) 0.206, 95% confidential interval (CI) 0.044-0.960, p=0.040, and adjusted OR 1.474, 95% CI 1.200-1.810, p<0.001, respectively]. Conclusion Lower serum albumin level and an elevated SOFA score were significantly associated with adverse outcomes in patients with S. marcescens bacteremia. PMID:25683980

  12. Risk factors for mortality in patients with Serratia marcescens bacteremia.

    PubMed

    Kim, Sun Bean; Jeon, Yong Duk; Kim, Jung Ho; Kim, Jae Kyoung; Ann, Hea Won; Choi, Heun; Kim, Min Hyung; Song, Je Eun; Ahn, Jin Young; Jeong, Su Jin; Ku, Nam Su; Han, Sang Hoon; Choi, Jun Yong; Song, Young Goo; Kim, June Myung

    2015-03-01

    Over the last 30 years, Serratia marcescens (S. marcescens) has emerged as an important pathogen, and a common cause of nosocomial infections. The aim of this study was to identify risk factors associated with mortality in patients with S. marcescens bacteremia. We performed a retrospective cohort study of 98 patients who had one or more blood cultures positive for S. marcescens between January 2006 and December 2012 in a tertiary care hospital in Seoul, South Korea. Multiple risk factors were compared with association with 28-day all-cause mortality. The 28-day mortality was 22.4% (22/98 episodes). In a univariate analysis, the onset of bacteremia during the intensive care unit stay (p=0.020), serum albumin level (p=0.011), serum C-reactive protein level (p=0.041), presence of indwelling urinary catheter (p=0.023), and Sequential Oran Failure Assessment (SOFA) score at the onset of bacteremia (p<0.001) were significantly different between patients in the fatal and non-fatal groups. In a multivariate analysis, lower serum albumin level and an elevated SOFA score were independently associated with 28-day mortality [adjusted odds ratio (OR) 0.206, 95% confidential interval (CI) 0.044-0.960, p=0.040, and adjusted OR 1.474, 95% CI 1.200-1.810, p<0.001, respectively]. Lower serum albumin level and an elevated SOFA score were significantly associated with adverse outcomes in patients with S. marcescens bacteremia.

  13. Emergence of Serratia marcescens isolates possessing carbapenem-hydrolysing β-lactamase KPC-2 from China.

    PubMed

    Lin, X; Hu, Q; Zhang, R; Hu, Y; Xu, X; Lv, H

    2016-09-01

    Eighty-three carbapenem-resistant Serratia marcescens isolates were recovered from Zhejiang Provincial People's Hospital, China. The minimum inhibitory concentrations of imipenem, meropenem, and ertapenem for all isolates were 2 to >128 μg/mL. Polymerase chain reaction indicated that 63 S. marcescens isolates produced Klebsiella pneumoniae carbapenemase (KPC)-2. Clone A (15 isolates) and clone B (41 isolates) were the two dominant clones and clone A strains were gradually replaced by clone B strains between 2011 and 2014. The results indicate that blaKPC-2-positive S. marcescens emerged in our hospital as the major mechanism of carbapenem resistance. Copyright © 2016 The Healthcare Infection Society. Published by Elsevier Ltd. All rights reserved.

  14. Draft genome sequence of a GES-5-producing Serratia marcescens isolated in southern Brazil.

    PubMed

    Nodari, Carolina Silva; Siebert, Marina; Matte, Ursula da Silveira; Barth, Afonso Luís

    Serratia marcescens is a Gram-negative rod intrinsically resistant to polymyxins and usually associated with wound, respiratory and urinary tract infections. The whole genome of the first GES-5-producing S. marcescens isolated from a Brazilian patient was sequenced using Ion Torrent PGM System. Besides bla GES-5 , we were able to identify genes encoding for other β-lactamases, for aminoglycoside modifying enzymes and for an efflux pump to tetracyclines. Copyright © 2016 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.

  15. Genome Evolution and Plasticity of Serratia marcescens, an Important Multidrug-Resistant Nosocomial Pathogen

    PubMed Central

    Iguchi, Atsushi; Nagaya, Yutaka; Pradel, Elizabeth; Ooka, Tadasuke; Ogura, Yoshitoshi; Katsura, Keisuke; Kurokawa, Ken; Oshima, Kenshiro; Hattori, Masahira; Parkhill, Julian; Sebaihia, Mohamed; Coulthurst, Sarah J.; Gotoh, Naomasa; Thomson, Nicholas R.; Ewbank, Jonathan J.; Hayashi, Tetsuya

    2014-01-01

    Serratia marcescens is an important nosocomial pathogen that can cause an array of infections, most notably of the urinary tract and bloodstream. Naturally, it is found in many environmental niches, and is capable of infecting plants and animals. The emergence and spread of multidrug-resistant strains producing extended-spectrum or metallo beta-lactamases now pose a threat to public health worldwide. Here we report the complete genome sequences of two carefully selected S. marcescens strains, a multidrug-resistant clinical isolate (strain SM39) and an insect isolate (strain Db11). Our comparative analyses reveal the core genome of S. marcescens and define the potential metabolic capacity, virulence, and multidrug resistance of this species. We show a remarkable intraspecies genetic diversity, both at the sequence level and with regards genome flexibility, which may reflect the diversity of niches inhabited by members of this species. A broader analysis with other Serratia species identifies a set of approximately 3,000 genes that characterize the genus. Within this apparent genetic diversity, we identified many genes implicated in the high virulence potential and antibiotic resistance of SM39, including the metallo beta-lactamase and multiple other drug resistance determinants carried on plasmid pSMC1. We further show that pSMC1 is most closely related to plasmids circulating in Pseudomonas species. Our data will provide a valuable basis for future studies on S. marcescens and new insights into the genetic mechanisms that underlie the emergence of pathogens highly resistant to multiple antimicrobial agents. PMID:25070509

  16. Spontaneous dermal abscesses and ulcers as a result of Serratia marcescens.

    PubMed

    Friedman, N Deborah; Peterson, Neeraja B; Sumner, William T; Alexander, Barbara D

    2003-08-01

    Serratia sp have only rarely been reported as isolates from leg ulcers. We describe the case of a middle-aged man with a medical history significant for alcohol-induced cirrhosis who presented with rapidly progressive skin ulcers initially starting as purple nodules. These skin ulcers and underlying dermal abscesses were found to be a result of S marcescens, with the presumed portal of entry being a toe-web infection.

  17. Imipenem-resistance in Serratia marcescens is mediated by plasmid expression of KPC-2.

    PubMed

    Su, W-Q; Zhu, Y-Q; Deng, N-M; Li, L

    2017-04-01

    Imipenem is a broad-spectrum carbapenem antibiotic with applications against severe bacterial infections. Here, we describe the identification of imipenem-resistant Serratia marcescens in our hospital and the role of plasmid-mediated KPC-2 expression in imipenem resistance. We used the modified Hodge test to detect carbapenemase produced in imipenem-resistant strains. His resistance can be transferred to E. coli in co-culture tests, which implicates the plasmid in imipenem resistance. PCR amplification from the plasmid identified two products consistent with KPC-2 of 583 and 1050 bp that were also present in E. coli after co-culture. The restriction pattern for both plasmids was identical, supporting the transfer from the S. marcescens isolate to E. coli. Finally, gene sequencing confirmed KPC-2 in the plasmid. Due to the presence of KPC-2 in the imipenem-resistant S. marcescens, we propose that KPC-2 mediates antibiotic resistance in the S. marcescens isolate.

  18. Characterization of the Serratia marcescens SdeCDE multidrug efflux pump studied via gene knockout mutagenesis.

    PubMed

    Begic, Sanela; Worobec, Elizabeth A

    2008-05-01

    Serratia marcescens is an important nosocomial agent having high antibiotic resistance. A major mechanism for S. marcescens antibiotic resistance is active efflux. To ascertain the substrate specificity of the S. marcescens SdeCDE efflux pump, we constructed pump gene deletion mutants. sdeCDE knockout strains showed no change in antibiotic susceptibility in comparison with the parental strains for any of the substrates, with the exception of novobiocin. In addition, novobiocin was the only antibiotic to be accumulated by sdeCDE-deficient strains. Based on the substrates used in our study, we conclude that SdeCDE is a Resistance-Nodulation-Cell Division family pump with limited substrate specificity.

  19. A six-month Serratia marcescens outbreak in a Neonatal Intensive Care Unit.

    PubMed

    Morillo, Áurea; González, Verónica; Aguayo, Josefa; Carreño, Concepción; Torres, María José; Jarana, Daniel; Artacho, María José; Jiménez, Francisco; Conde, Manuel; Aznar, Javier

    2016-12-01

    To investigate a Serratia marcescens (S. marcescens) outbreak in a Neonatal Unit in a tertiary university hospital. Descriptive study of children admitted to the Unit with S. marcescens infection from November 2012 to March 2013. Conventional microbiological methods for clinical and environmental samples were used. The clonal relationship between all available isolates was established by molecular methods. A multidisciplinary team was formed, and preventive measures were taken. S. marcescens was isolated from 18 children. The overall attack rate was 12%, and the case fatality rate in the Intensive Care Unit was 23.5%. The most prevalent types of infections were pneumonia (6), conjunctivitis (6), and bloodstream infection (5). Clinical isolates and environmental isolates obtained from an incubator belonged to a unique clone. The clonal relationship between all S. marcescens strains helped us to identify the possible source of the outbreak. Isolation of S. marcescens from stored water in a container, and from the surface of an incubator after cleaning, suggests a possible environmental source as the outbreak origin, which has been perpetuated due to a failure of cleaning methods in the Unit. The strict hygiene and cleaning measures were the main factors that contributed to the end of the outbreak. Copyright © 2016 Elsevier España, S.L.U. and Sociedad Española de Enfermedades Infecciosas y Microbiología Clínica. All rights reserved.

  20. Comparative Genome Analyses of Serratia marcescens FS14 Reveals Its High Antagonistic Potential

    PubMed Central

    Li, Pengpeng; Kwok, Amy H. Y.; Jiang, Jingwei; Ran, Tingting; Xu, Dongqing; Wang, Weiwu; Leung, Frederick C.

    2015-01-01

    S. marcescens FS14 was isolated from an Atractylodes macrocephala Koidz plant that was infected by Fusarium oxysporum and showed symptoms of root rot. With the completion of the genome sequence of FS14, the first comprehensive comparative-genomic analysis of the Serratia genus was performed. Pan-genome and COG analyses showed that the majority of the conserved core genes are involved in basic cellular functions, while genomic factors such as prophages contribute considerably to genome diversity. Additionally, a Type I restriction-modification system, a Type III secretion system and tellurium resistance genes are found in only some Serratia species. Comparative analysis further identified that S. marcescens FS14 possesses multiple mechanisms for antagonism against other microorganisms, including the production of prodigiosin, bacteriocins, and multi-antibiotic resistant determinants as well as chitinases. The presence of two evolutionarily distinct Type VI secretion systems (T6SSs) in FS14 may provide further competitive advantages for FS14 against other microbes. To our knowledge, this is the first report of comparative analysis on T6SSs in the genus, which identifies four types of T6SSs in Serratia spp.. Competition bioassays of FS14 against the vital plant pathogenic bacterium Ralstonia solanacearum and fungi Fusarium oxysporum and Sclerotinia sclerotiorum were performed to support our genomic analyses, in which FS14 demonstrated high antagonistic activities against both bacterial and fungal phytopathogens. PMID:25856195

  1. Gene expression analysis of the SdeAB multidrug efflux pump in antibiotic-resistant clinical isolates of Serratia marcescens.

    PubMed

    Dalvi, S D; Worobec, E A

    2012-01-01

    Many isolates of Serratia marcescens, a well-known opportunistic pathogen, can be multidrug resistant. Fluoroquinolones are among the most important groups of antibiotics used for treatment of these organisms. However, fluoroquinolone resistance among S. marcescens isolates is fast increasing. Drug extrusion through efflux pumps like SdeAB/ HasF is one of the major mechanisms of resistance to fluoroquinolones. This study was carried out to analyze, through gene expression analysis of sdeB, the relative contribution of this mechanism toward fluoroquinolone resistance in clinical isolates of Serratia. Total RNA from 45 clinical isolates of S. marcescens was isolated. Quantitative real-time RT PCR was performed on the extracted RNA to study the gene expression of sdeB and was normalized to the sdeB expression in the standard strain of S. marcescens. Of the 45 isolates analyzed, sdeB expression was found to be elevated in 20 isolates (44%). Of these 20 isolates, eight (40%) were fully resistant to at least one of the fluoroquinolones studied. Conversely, of the 20 isolates that over-expressed sdeB, 12 (60%) were fully sensitive to all fluoroquinolones tested. Drug efflux pumps are an important means of fluoroquinolone resistance among clinically important species of Serratia. The expression of these pumps can be up-regulated in the presence of antibiotics and have the potential for changing the phenotype from sensitive to resistant, thus contributing to therapeutic failures.

  2. Laboratory replication of filtration procedures associated with Serratia marcescens bloodstream infections in patients receiving compounded amino acid solutions.

    PubMed

    Moulton-Meissner, Heather; Noble-Wang, Judith; Gupta, Neil; Hocevar, Susan; Kallen, Alex; Arduino, Matthew

    2015-08-01

    Specific deviations from United States Pharmacopeia standards were analyzed to investigate the factors allowing an outbreak of Serratia marcescens bloodstream infections in patients receiving compounded amino acid solutions. Filter challenge experiments using the outbreak strain of S. marcescens were compared with those that used the filter challenge organism recommended by ASTM International (Brevundimonas diminuta ATCC 19162) to determine the frequency and degree of organism breakthrough. Disk and capsule filters (0.22- and 0.2-μm nominal pore size, respectively) were challenged with either the outbreak strain of S. marcescens or B. diminuta ATCC 19162. The following variables were compared: culture conditions in which organisms were grown overnight or cultured in sterile water (starved), solution type (15% amino acid solution or sterile water), and filtration with or without a 0.5-μm prefilter. Small-scale, syringe-driven, disk-filtration experiments of starved bacterial cultures indicated that approximately 1 in every 1,000 starved S. marcescens cells (0.12%) was able to pass through a 0.22-μm nominal pore-size filter, and about 1 in every 1,000,000 cells was able to pass through a 0.1-μm nominal pore-size filter. No passage of the B. diminuta ATCC 19162 cells was observed with either filter. In full-scale experiments, breakthrough was observed only when 0.2-μm capsule filters were challenged with starved S. marcescens in 15% amino acid solution without a 0.5-μm prefiltration step. Laboratory simulation testing revealed that under certain conditions, bacteria can pass through 0.22- and 0.2-μm filters intended for sterilization of an amino acid solution. Bacteria did not pass through 0.2-μm filters when a 0.5-μm prefilter was used. Copyright © 2015 by the American Society of Health-System Pharmacists, Inc. All rights reserved.

  3. Genome evolution and plasticity of Serratia marcescens, an important multidrug-resistant nosocomial pathogen.

    PubMed

    Iguchi, Atsushi; Nagaya, Yutaka; Pradel, Elizabeth; Ooka, Tadasuke; Ogura, Yoshitoshi; Katsura, Keisuke; Kurokawa, Ken; Oshima, Kenshiro; Hattori, Masahira; Parkhill, Julian; Sebaihia, Mohamed; Coulthurst, Sarah J; Gotoh, Naomasa; Thomson, Nicholas R; Ewbank, Jonathan J; Hayashi, Tetsuya

    2014-08-01

    Serratia marcescens is an important nosocomial pathogen that can cause an array of infections, most notably of the urinary tract and bloodstream. Naturally, it is found in many environmental niches, and is capable of infecting plants and animals. The emergence and spread of multidrug-resistant strains producing extended-spectrum or metallo beta-lactamases now pose a threat to public health worldwide. Here we report the complete genome sequences of two carefully selected S. marcescens strains, a multidrug-resistant clinical isolate (strain SM39) and an insect isolate (strain Db11). Our comparative analyses reveal the core genome of S. marcescens and define the potential metabolic capacity, virulence, and multidrug resistance of this species. We show a remarkable intraspecies genetic diversity, both at the sequence level and with regards genome flexibility, which may reflect the diversity of niches inhabited by members of this species. A broader analysis with other Serratia species identifies a set of approximately 3,000 genes that characterize the genus. Within this apparent genetic diversity, we identified many genes implicated in the high virulence potential and antibiotic resistance of SM39, including the metallo beta-lactamase and multiple other drug resistance determinants carried on plasmid pSMC1. We further show that pSMC1 is most closely related to plasmids circulating in Pseudomonas species. Our data will provide a valuable basis for future studies on S. marcescens and new insights into the genetic mechanisms that underlie the emergence of pathogens highly resistant to multiple antimicrobial agents. © The Author(s) 2014. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  4. Multi-effect of the water-soluble Moringa oleifera lectin against Serratia marcescens and Bacillus sp.: antibacterial, antibiofilm and anti-adhesive properties.

    PubMed

    Moura, M C; Trentin, D S; Napoleão, T H; Primon-Barros, M; Xavier, A S; Carneiro, N P; Paiva, P M G; Macedo, A J; Coelho, L C B B

    2017-10-01

    To evaluate the antibiofilm potential of water-soluble Moringa oleifera seed lectin (WSMoL) on Serratia marcescens and Bacillus sp. WSMoL inhibited biofilm formation by S. marcescens at concentrations lower than 2·6 μg ml -1 and impaired bacterial growth at higher concentrations, avoiding biofilm formation. For Bacillus sp., the lectin inhibited bacterial growth at all concentrations. The antibiofilm action of WSMoL is associated with damage to bacterial cells. WSMoL did not disrupt preformed S. marcescens biofilms but was able to damage cells inside them. On the other hand, the lectin reduced the number of cells in Bacillus sp. biofilm treated with it. WSMoL was able to control biofilm formation when immobilized on glass surface (116 μg cm -2 ), damaging S. marcescens cells and avoiding adherence of Bacillus sp. cells on glass. The Bacillus sp. isolate is member of Bacillus subtilis species complex and closely related to species of the conspecific 'amyloliquefaciens' group. WSMoL prevented biofilm development by S. marcescens and Bacillus sp. and the antibiofilm effect is also observed when the lectin is immobilized on glass. Taking together, our results provide support to the potential use of WSMoL for controlling biofilm formation by bacteria. © 2017 The Society for Applied Microbiology.

  5. Sepsis and Hemocyte Loss in Honey Bees (Apis mellifera) Infected with Serratia marcescens Strain Sicaria.

    PubMed

    Burritt, Nancy L; Foss, Nicole J; Neeno-Eckwall, Eric C; Church, James O; Hilger, Anna M; Hildebrand, Jacob A; Warshauer, David M; Perna, Nicole T; Burritt, James B

    2016-01-01

    Global loss of honey bee colonies is threatening the human food supply. Diverse pathogens reduce honey bee hardiness needed to sustain colonies, especially in winter. We isolated a free-living Gram negative bacillus from hemolymph of worker honey bees (Apis mellifera) found separated from winter clusters. In some hives, greater than 90% of the dying bees detached from the winter cluster were found to contain this bacterium in their hemolymph. Throughout the year, the same organism was rarely found in bees engaged in normal hive activities, but was detected in about half of Varroa destructor mites obtained from colonies that housed the septic bees. Flow cytometry of hemolymph from septic bees showed a significant reduction of plasmatocytes and other types of hemocytes. Interpretation of the16S rRNA sequence of the bacterium indicated that it belongs to the Serratia genus of Gram-negative Gammaproteobacteria, which has not previously been implicated as a pathogen of adult honey bees. Complete genome sequence analysis of the bacterium supported its classification as a novel strain of Serratia marcescens, which was designated as S. marcescens strain sicaria (Ss1). When compared with other strains of S. marcescens, Ss1 demonstrated several phenotypic and genetic differences, including 65 genes not previously found in other Serratia genomes. Some of the unique genes we identified in Ss1 were related to those from bacterial insect pathogens and commensals. Recovery of this organism extends a complex pathosphere of agents which may contribute to failure of honey bee colonies.

  6. Sepsis and Hemocyte Loss in Honey Bees (Apis mellifera) Infected with Serratia marcescens Strain Sicaria

    PubMed Central

    Burritt, Nancy L.; Foss, Nicole J.; Neeno-Eckwall, Eric C.; Church, James O.; Hildebrand, Jacob A.; Warshauer, David M.; Perna, Nicole T.; Burritt, James B.

    2016-01-01

    Global loss of honey bee colonies is threatening the human food supply. Diverse pathogens reduce honey bee hardiness needed to sustain colonies, especially in winter. We isolated a free-living Gram negative bacillus from hemolymph of worker honey bees (Apis mellifera) found separated from winter clusters. In some hives, greater than 90% of the dying bees detached from the winter cluster were found to contain this bacterium in their hemolymph. Throughout the year, the same organism was rarely found in bees engaged in normal hive activities, but was detected in about half of Varroa destructor mites obtained from colonies that housed the septic bees. Flow cytometry of hemolymph from septic bees showed a significant reduction of plasmatocytes and other types of hemocytes. Interpretation of the16S rRNA sequence of the bacterium indicated that it belongs to the Serratia genus of Gram-negative Gammaproteobacteria, which has not previously been implicated as a pathogen of adult honey bees. Complete genome sequence analysis of the bacterium supported its classification as a novel strain of Serratia marcescens, which was designated as S. marcescens strain sicaria (Ss1). When compared with other strains of S. marcescens, Ss1 demonstrated several phenotypic and genetic differences, including 65 genes not previously found in other Serratia genomes. Some of the unique genes we identified in Ss1 were related to those from bacterial insect pathogens and commensals. Recovery of this organism extends a complex pathosphere of agents which may contribute to failure of honey bee colonies. PMID:28002470

  7. Necrotizing soft tissue infection caused by Serratia marcescens: A case report and literature review.

    PubMed

    Hagiya, Hideharu; Ojima, Masahiro; Yoshida, Takeshi; Matsui, Takahiro; Morii, Eiichi; Sato, Kazuaki; Tahara, Shinichiro; Yoshida, Hisao; Tomono, Kazunori

    2016-05-01

    A 64-year-old man with advanced liver cirrhosis was transferred to an emergency center due to septic shock and markedly inflamed left leg. Under a clinical diagnosis of necrotizing soft tissue infection (NSTI), the patient undertook intensive therapy but died 25 h after arrival. The pathogenic organism, Serratia marcescens, was later isolated from blood and soft tissue cultures. NSTI is very rarely associated with S. marcescens. A literature review showed that only 16 such cases, including our case, have been reported to date. Our case is the first evidence of an S. marcescens NSTI in a patient with liver cirrhosis. S. marcescens NSTI has an extremely high mortality rate; total mortality and mortality in cases involving the extremities were 75% (12 of 16 cases) and 83.3% (10 of 12 cases), respectively. Physicians need to be aware that S. marcescens can induce fatal infections in community patients. Copyright © 2015 Japanese Society of Chemotherapy and The Japanese Association for Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  8. Molecular characterization of the Serratia marcescens OmpF porin, and analysis of S. marcescens OmpF and OmpC osmoregulation.

    PubMed

    Hutsul, J A; Worobec, E

    1997-08-01

    Serratia marcescens is a nosocomial pathogen with a high incidence of beta-lactam resistance. Reduced amounts of outer-membrane porins have been correlated with increased resistance to beta-lactams but only one porin, OmpC, has been characterized at the molecular level. In this study we present the molecular characterization of a second porin, OmpF, and an analysis of the expression of S. marcescens porins in response to various environmental changes. Two porins were isolated from the outer membrane using urea-SDS-PAGE and the relative amounts were shown to be influenced by the osmolarity of the medium and the presence of salicylate. From a S. marcescens genomic DNA library an 8 kb EcoRI fragment was isolated that hybridized with an oligonucleotide encoding the published N-terminal amino acid sequence of the S. marcescens 41 kDa porin. A 41 kDa protein was detected in the outer membrane of Escherichia coli NM522 carrying the cloned S. marcescens DNA. The cloned gene was sequenced and shown to code for a protein that shared 60-70% identity with other known OmpF and OmpC sequences. The upstream DNA sequence of the S. marcescens gene was similar to the corresponding E. coli ompF sequence; however, a regulatory element important in repression of E. coli ompF at high osmolarity was absent. The cloned S. marcescens OmpF in E. coli increased in expression in conditions of high osmolarity. The potential involvement of micF in the observed osmoregulation of S. marcescens porins is discussed.

  9. Application of Serratia marcescens RZ-21 significantly enhances peanut yield and remediates continuously cropped peanut soil.

    PubMed

    Ma, Hai-Yan; Yang, Bo; Wang, Hong-Wei; Yang, Qi-Yin; Dai, Chuan-Chao

    2016-01-15

    Continuous cropping practices cause a severe decline in peanut yield. The aim of this study was to investigate the remediation effect of Serratia marcescens on continuously cropped peanut soil. A pot experiment was conducted under natural conditions to determine peanut agronomic indices, soil microorganism characteristics, soil enzyme activities and antagonism ability to typical pathogens at different growth stages. Four treatments were applied to red soil as follows: an active fermentation liquor of S. marcescens (RZ-21), an equivalent sterilized fermentation liquor (M), an equivalent fermentation medium (P) and distilled water (CK). S. marcescens significantly inhibited the two typical plant pathogens Fusarium oxysporum A1 and Ralstonia solanacearum B1 and reduced their populations in rhizosphere soil. The RZ-21 treatment significantly increased peanut yield, vine dry weight, root nodules and taproot length by 62.3, 33, 72 and 61.4% respectively, followed by the M treatment. The P treatment also increased root nodules and root length slightly. RZ-21 also enhanced the activities of soil urease, sucrase and hydrogen peroxidase at various stages. In addition, RZ-21 and M treatments increased the average population of soil bacteria and decreased the average population of fungi in the three critical peanut growth stages, except for M in the case of the fungal population at flowering, thus balancing the structure of the soil microorganism community. This is the first report of S. marcescens being applied to continuously cropped peanut soil. The results suggest that S. marcescens RZ-21 has the potential to improve the soil environment and agricultural products and thus allow the development of sustainable management practices. © 2015 Society of Chemical Industry.

  10. Pathogenicity of pan-drug-resistant Serratia marcescens harbouring blaNDM-1.

    PubMed

    Gruber, Teresa M; Göttig, Stephan; Mark, Laura; Christ, Sara; Kempf, Volkhard A J; Wichelhaus, Thomas A; Hamprecht, Axel

    2015-04-01

    To characterize a pan-drug-resistant Serratia marcescens clinical isolate carrying the New Delhi metallo-β-lactamase (NDM)-1. The presence of β-lactamase genes was examined by PCR and sequencing. Antibiotic susceptibility was determined by antibiotic gradient test. Transformation assays, transconjugation assays, PFGE and PCR-based replicon typing were used for plasmid analysis. Horizontal gene transfer was evaluated by liquid mating using Escherichia coli J53 as a recipient. Pathogenicity of NDM-1 expressing S. marcescens was analysed using the Galleria mellonella infection model. S. marcescens isolate SM1890 was non-susceptible to all tested antibiotics, with minocycline retaining intermediate activity. blaNDM-1 was located on a 140 kb IncA/C-type plasmid which was transferable to E. coli and Klebsiella pneumoniae by conjugation. The LD50 of the NDM-positive, SM1890 isolate was higher than that of other, NDM-1 negative, S. marcescens strains. The presence of a blaNDM-1-harbouring IncA/C plasmid resulted in marked resistance to β-lactam antibiotics, but had no significant effect on virulence of isogenic strains. Because of the intrinsic resistance of S. marcescens to colistin and reduced susceptibility to tigecycline, treatment options for infections by NDM-1-positive isolates are extremely limited in this species. © The Author 2014. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  11. Outbreak of Serratia marcescens postoperative infection traced to barbers and razors.

    PubMed

    Leng, P; Huang, W L; He, T; Wang, Y Z; Zhang, H N

    2015-01-01

    Fourteen postoperative infections caused by Serratia marcescens were detected in patients on the neurosurgical wards and spinal surgery ward of a 2640-bed hospital between 26th December 2012 and 5th June 2013. To investigate the source of the outbreak, identify risk factors and implement infection control measures. Cultures were collected from healthcare workers and potential environmental sources. S. marcescens isolates were characterized by antibiotic susceptibility testing and pulsed-field gel electrophoresis (PFGE). A retrospective case-control study was performed to identify the risk factors. The outbreak involved 14 patients, five of whom required more than one surgical procedure. S. marcescens was isolated from cerebrospinal fluid, brain tissue, sputum and other secretions. S. marcescens was also cultured from samples taken from the hands of two barbers and their razors. Exposure to the two barbers [odds ratio (OR) 78.0, P < 0.0001] and wound drainage (OR 4.889, P = 0.028) were risk factors. Pre-operative shaving by the barbers was the only independent risk factor (OR 78.0, P < 0.0001). Isolates of S. marcescens from patients, barbers and razors were indistinguishable by PFGE and antibiotic susceptibility pattern. The outbreak ended after removal of the implicated barbers, extensive re-inforcement of infection control procedures and re-education. These results underscore the risk of postoperative infection associated with pre-operative wet shaving. Copyright © 2014 The Healthcare Infection Society. Published by Elsevier Ltd. All rights reserved.

  12. Detection and avoidance of a natural product from the pathogenic bacterium Serratia marcescens by Caenorhabditis elegans

    PubMed Central

    Pradel, Elizabeth; Zhang, Yun; Pujol, Nathalie; Matsuyama, Tohey; Bargmann, Cornelia I.; Ewbank, Jonathan J.

    2007-01-01

    The nematode Caenorhabditis elegans is present in soils and composts, where it can encounter a variety of microorganisms. Some bacteria in these rich environments are innocuous food sources for C. elegans, whereas others are pathogens. Under laboratory conditions, C. elegans will avoid certain pathogens, such as Serratia marcescens, by exiting a bacterial lawn a few hours after entering it. By combining bacterial genetics and nematode genetics, we show that C. elegans specifically avoids certain strains of Serratia based on their production of the cyclic lipodepsipentapeptide serrawettin W2. Lawn-avoidance behavior is chiefly mediated by the two AWB chemosensory neurons, probably through G protein-coupled chemoreceptors, and also involves the nematode Toll-like receptor gene tol-1. Purified serrawettin W2, added to an Escherichia coli lawn, can directly elicit lawn avoidance in an AWB-dependent fashion, as can another chemical detected by AWB. These findings represent an insight into chemical recognition between these two soil organisms and reveal sensory mechanisms for pathogen recognition in C. elegans. PMID:17267603

  13. A multicenter surveillance of antimicrobial resistance in Serratia marcescens in Taiwan.

    PubMed

    Liou, Bo-Huang; Duh, Ruay-Wang; Lin, Yi-Tsung; Lauderdale, Tsai-Ling Yang; Fung, Chang-Phone

    2014-10-01

    Serratia marcescens is an important nosocomial pathogen and the characteristic property of resistance conferred by extended-spectrum beta-lactamase or a novel AmpC cephalosporinase was not unusual in Taiwan. This study investigated the trends in antimicrobial resistance in S. marcescens from a nationwide surveillance in Taiwan. S. marcescens isolates were collected biennially between 2002 and 2010 from medical centers and regional hospitals throughout Taiwan, as part of the Taiwan Surveillance of Antimicrobial Resistance program. Minimal inhibitory concentrations were determined by the Clinical and Laboratory Standards Institute reference broth microdilution method. A total of 403 nonduplicate S. marcescens isolates were collected, mostly from respiratory samples (157, 39.0%), followed by the urinary tract samples (90, 22.3%). Overall, 99.3% isolates were susceptible to imipenem, 93.8% to ceftazidime, 89.2% to minocycline, 87.8% to amikacin, 86.8% to cefepime, 82.9% to aztreonam, 73.2% to ceftriaxone, 72.7% to levofloxacin, 63.8% to ciprofloxacin, 60.8% to trimethoprim/sulfamethoxazole (TMP/SMX), and 59.6% to gentamicin. A significantly increased susceptibility rate after 2004 was observed for the following antibiotics: amikacin (73.8% vs. 97.1%), gentamicin (40.0% vs. 72.4%), ciprofloxacin (53.8% vs. 70.4%), ceftriaxone (53.8% vs. 86.0%), cefepime (74.4% vs. 95.1%), aztreonam (72.5% vs. 89.7%), and TMP/SMX (41.3% vs. 73.7%). In this 8-year study, the susceptibility of S. marcescens to ceftazidime and imipenem remained consistently high in Taiwan. S. marcescens isolates demonstrated relatively higher resistance to ciprofloxacin and levofloxacin, and therefore continued surveillance of antimicrobial resistance, especially for fluoroquinolone, is warranted. Copyright © 2013. Published by Elsevier B.V.

  14. Use of Quantitative Real-Time PCR for Direct Detection of Serratia marcescens in Marine and Other Aquatic Environments

    PubMed Central

    Joyner, Jessica; Wanless, David; Sinigalliano, Christopher D.

    2014-01-01

    Serratia marcescens is the etiological agent of acroporid serratiosis, a distinct form of white pox disease in the threatened coral Acropora palmata. The pathogen is commonly found in untreated human waste in the Florida Keys, which may contaminate both nearshore and offshore waters. Currently there is no direct method for detection of this bacterium in the aquatic or reef environment, and culture-based techniques may underestimate its abundance in marine waters. A quantitative real-time PCR assay was developed to detect S. marcescens directly from environmental samples, including marine water, coral mucus, sponge tissue, and wastewater. The assay targeted the luxS gene and was able to distinguish S. marcescens from other Serratia species with a reliable quantitative limit of detection of 10 cell equivalents (CE) per reaction. The method could routinely discern the presence of S. marcescens for as few as 3 CE per reaction, but it could not be reliably quantified at this level. The assay detected environmental S. marcescens in complex sewage influent samples at up to 761 CE ml−1 and in septic system-impacted residential canals in the Florida Keys at up to 4.1 CE ml−1. This detection assay provided rapid quantitative abilities and good sensitivity and specificity, which should offer an important tool for monitoring this ubiquitous pathogen that can potentially impact both human health and coral health. PMID:24375136

  15. Use of quantitative real-time PCR for direct detection of serratia marcescens in marine and other aquatic environments.

    PubMed

    Joyner, Jessica; Wanless, David; Sinigalliano, Christopher D; Lipp, Erin K

    2014-03-01

    Serratia marcescens is the etiological agent of acroporid serratiosis, a distinct form of white pox disease in the threatened coral Acropora palmata. The pathogen is commonly found in untreated human waste in the Florida Keys, which may contaminate both nearshore and offshore waters. Currently there is no direct method for detection of this bacterium in the aquatic or reef environment, and culture-based techniques may underestimate its abundance in marine waters. A quantitative real-time PCR assay was developed to detect S. marcescens directly from environmental samples, including marine water, coral mucus, sponge tissue, and wastewater. The assay targeted the luxS gene and was able to distinguish S. marcescens from other Serratia species with a reliable quantitative limit of detection of 10 cell equivalents (CE) per reaction. The method could routinely discern the presence of S. marcescens for as few as 3 CE per reaction, but it could not be reliably quantified at this level. The assay detected environmental S. marcescens in complex sewage influent samples at up to 761 CE ml(-1) and in septic system-impacted residential canals in the Florida Keys at up to 4.1 CE ml(-1). This detection assay provided rapid quantitative abilities and good sensitivity and specificity, which should offer an important tool for monitoring this ubiquitous pathogen that can potentially impact both human health and coral health.

  16. Spaceflight Causes Increased Virulence of Serratia Marcescens on a Drosophila Melanogaster Host

    NASA Technical Reports Server (NTRS)

    Bhattacharya, Sharmila; Wade, William; Clemens-Grisham, Rachel; Hosamani, Ravikumar; Bhardwaj, Shilpa R.; Lera, Matthew P.; Gresser, Amy L.

    2015-01-01

    Drosophila melanogaster, or the fruit fly, has long been an important organism for Earth-based research, and is now increasingly utilized as a model system to understand the biological effects of spaceflight. Studies in Drosophila melanogaster have shown altered immune responses in 3rd instar larvae and adult males following spaceflight, changes similar to those observed in astronauts. In addition, spaceflight has also been shown to affect bacterial physiology, as evidenced by studies describing altered virulence of Salmonella typhimurium following spaceflight and variation in biofilm growth patterns for the opportunistic pathogen Pseudomonas aeruginosa during flight. We recently sent Serratia marcescens Db11, a Drosophila pathogen and an opportunistic human pathogen, to the ISS on SpaceX-5 (Fruit Fly Lab-01). S. marcescens samples were stored at 4degC for 24 days on-orbit and then allowed to grow for 120 hours at ambient station temperature before being returned to Earth. Upon return, bacteria were isolated and preserved in 50% glycerol or RNAlater. Storage, growth, and isolation for ground control samples were performed using the same procedures. Spaceflight and ground samples stored in 50% glycerol were diluted and injected into 5-7-day-old ground-born adult D. melanogaster. Lethality was significantly greater in flies injected with the spaceflight samples compared to those injected with ground bacterial samples. These results indicate a shift in the virulence profile of the spaceflight S. marcescens Db11 and will be further assessed with molecular biological analyses. Our findings strengthen the conclusion that spaceflight impacts the virulence of bacterial pathogens on model host organisms such as the fruit fly. This research was supported by NASA's ISS Program Office (ISSPO) and Space Life and Physical Sciences Research and Applications (SLPSRA).

  17. Long-Chain 4-Aminoquinolines as Quorum Sensing Inhibitors in Serratia marcescens and Pseudomonas aeruginosa.

    PubMed

    Aleksić, Ivana; Šegan, Sandra; Andrić, Filip; Zlatović, Mario; Moric, Ivana; Opsenica, Dejan M; Senerovic, Lidija

    2017-05-19

    Antibiotic resistance has become a serious global threat to public health; therefore, improved strategies and structurally novel antimicrobials are urgently needed to combat infectious diseases. Here we report a new type of highly potent 4-aminoquinoline derivatives as quorum sensing inhibitors in Serratia marcescens and Pseudomonas aeruginosa, exhibiting weak bactericidal activities (minimum inhibitory concentration (MIC) > 400 μM). Through detailed structure-activity study, we have identified 7-Cl and 7-CF 3 substituted N-dodecylamino-4-aminoquinolines (5 and 10) as biofilm formation inhibitors with 50% biofilm inhibition at 69 μM and 63 μM in S. marcescens and P. aeruginosa, respectively. These two compounds, 5 and 10, are the first quinoline derivatives with anti-biofilm formation activity reported in S. marcescens. Quantitative structure-activity relationship (QSAR) analysis identified structural descriptors such as Wiener indices, hyper-distance-path index (HDPI), mean topological charge (MTC), topological charge index (TCI), and log D(o/w) exp as the most influential in biofilm inhibition in this bacterial species. Derivative 10 is one of the most potent quinoline type inhibitors of pyocyanin production described so far (IC 50 = 2.5 μM). While we have demonstrated that 5 and 10 act as Pseudomonas quinolone system (PQS) antagonists, the mechanism of inhibition of S. marcescens biofilm formation with these compounds remains open since signaling similar to P. aeruginosa PQS system has not yet been described in Serratia and activity of these compounds on acylhomoserine lactone (AHL) signaling has not been detected. Our data show that 7-Cl and 7-CF 3 substituted N-dodecylamino-4-aminoquinolines present the promising scaffolds for developing antivirulence and anti-biofilm formation agents against multidrug-resistant bacterial species.

  18. Anti-biofilm activity of Pseudoalteromonas flavipulchra SktPp1 against Serratia marcescens SMJ-11

    NASA Astrophysics Data System (ADS)

    Iqbal, Faiq; Usup, Gires; Ahmad, Asmat

    2015-09-01

    This study aimed to examine the anti-biofilm activity of Pseudoalteromonas flavipulchra SktPp1 crude extract against the biofilm producer, Serratia marcescens. The crude extract of P. flavipulchra SktPp1 was extracted with ethyl acetate. The sub-minimum inhibitory concentration (MIC), 0.1 mg/ml, has been used in this study. The anti-biofilm activity of P. flavipulchra SktPp1 crude extract was assessed against the biofilm of S. marcescens using the crystal violet assay. The growth curve has been used as the indicator of the effect of crude extracts to bacterial growth. The sub-MIC crude extract was tested against two of S. marcescens virulence factors, including the swarming ability and production of prodigiosin using the swarming assay and prodigiosin assay. The growth curves of S. marcescens indicated that the sub-MIC concentration of crude extract did not affect the growth of S. marcescens. The production of prodigiosin was reduced by 44%. The diameter of the swarming area was reduced from 8.7 cm to 0.8 cm. The sub-MIC crude extract inhibits 26.9% of the biofilm production in S. marcescens. This crude extract lost its activity at 50°C and above. In conclusion, crude extract of P. flavipulchra SktPp1 has the ability to inhibit S. marcescens SMJ-11 biofilm formation.

  19. Molecular characterization of a 40 kDa OmpC-like porin from Serratia marcescens.

    PubMed

    Hutsul, J A; Worobec, E

    1994-02-01

    An oligonucleotide that encodes the N-terminal portion of a 41 kDa porin of Serratia marcescens was used to probe S. marcescens UOC-51 genomic DNA. An 11 kb EcoRI fragment which hybridized with the oligonucleotide was subcloned into Escherichia coli, examined for expression, and sequenced. The product expressed by the cloned gene was 40 kDa. The nucleotide sequence has an ORF of 1.13 kb. When the deduced amino acid sequence was aligned and compared to other enterobacterial porins the cloned S. marcescens porin most closely resembled E. coli OmpC. Although we did not detect osmoregulation or thermoregulation of any porins in S. marcescens UOC-51, sequences analogous to the E. coli osmoregulator OmpR-binding regions are seen upstream to the cloned gene. We examined the regulation of the S. marcescens porin in E. coli and found that its expression increased in a high salt environment. A micF gene, whose transcriptional product functions to inhibit synthesis of OmpF by hybridizing with the ompF transcript, was also seen upstream of the S. marcescens ompC. An alignment with the E. coli micF gene revealed that the functional region of the S. marcescens micF gene is conserved. Based on the results obtained we have determined that S. marcescens UOC-51 produces a 40 kDa porin similar to the E. coli OmpC porin.

  20. Serratia marcescens infection in a swallow-tailed hummingbird.

    PubMed

    Saidenberg, André B S; Teixeira, Rodrigo H F; Astolfi-Ferreira, Claudete S; Knöbl, Terezinha; Ferreira, Antonio J Piantino

    2007-01-01

    A swallow-tailed hummingbird (Eupetomena macroura) was presented with a history of prostration and inability to fly. After a 2-day hospitalization, the bird died and necropsy findings included diffuse hyperemia of the small intestine serosal and mucosal surfaces and the presence of a small quantity of clear ascitic fluid in the coelomic cavity. Intestinal contents and cardiac blood were collected for microbiologic exams yielding pure cultures of a pigmented strain of Serratia marcescens. This strain was susceptible to gentamicin, enrofloxacin, streptomycin, trimethoprim, and sulfamethoxazole and had intermediate susceptibility to chloramphenicol and resistance to cephalotin. The source of the infection could not be ascertained, but possible contamination of hummingbird feeders could be involved, because the infection seemed to originate from the digestive tract.

  1. The inhibitory effect of a Lactobacillus acidophilus derived biosurfactant on biofilm producer Serratia marcescens

    PubMed Central

    Shokouhfard, Maliheh; Kermanshahi, Rouha Kasra; Shahandashti, Roya Vahedi; Feizabadi, Mohammad Mehdi; Teimourian, Shahram

    2015-01-01

    Objective(s): Serratia marcescens is one of the nosocomial pathogen with the ability to form biofilm which is an important feature in the pathogenesis of S. marcescens. The aim of this study was to determine the anti-adhesive properties of a biosurfactant isolated from Lactobacillus acidophilus ATCC 4356, on S. marcescens strains. Materials and Methods: Lactobacillus acidophilus ATCC 4356 was selected as a probiotic strain for biosurfactant production. Anti-adhesive activities was determined by pre-coating and co- incubating methods in 96-well culture plates. Results: The FTIR analysis of derived biosurfactant revealed the composition as protein component. Due to the release of such biosurfactants, L. acidophilus was able to interfere with the adhesion and biofilm formation of the S. marcescens strains. In co-incubation method, this biosurfactant in 2.5 mg/ml concentration showed anti-adhesive activity against all tested strains of S. marcescens (P<0.05). Conclusion: Our results show that the anti-adhesive properties of L. acidophilus biosurfactant has the potential to be used against microorganisms responsible for infections in the urinary, vaginal and gastrointestinal tracts, as well as skin, making it a suitable alternative to conventional antibiotics. PMID:26730335

  2. Corneal Ring Infiltrates Caused by Serratia marcescens in a Patient with Human Immunodeficiency Virus.

    PubMed

    Chaidaroon, Winai; Supalaset, Sumet

    2016-01-01

    To describe corneal ring infiltrates caused by Serratia marcescens in a patient with human immunodeficiency virus (HIV-1) who wore contact lenses. A case study of a patient with keratitis due to an infection caused by S. marcescens and exhibiting corneal ring infiltrates was reviewed for history, clinical manifestation, microscopic study, and management. A 29-year-old man who had a history of contact lens wear and HIV-1 infection was admitted to hospital because of blurred vision, redness, and corneal infiltrates in the shape of a ring in the left eye. The visual acuity (VA) in both eyes was hand movement (uncorrected). Corneal scrapings were performed. The culture results of the corneal specimens revealed S. marcescens . The culture results of the contact lens disclosed the same organism. The corneal ulcer responded well to treatment with topical gentamycin sulfate 14 mg/ml. The final VA remained hand movement. S. marcescens can cause ring infiltrates in a HIV-1 patient who wears contact lenses. The treatment result for S. marcescens keratitis in a HIV-1 patient who wore contact lenses was favorable after intensive use of fortified topical antibiotics.

  3. [Examination of metallo-beta-lactamase-producing different types of Serratia marcescens detected in the same patient].

    PubMed

    Takamitsu, Ito; Fukui, Yasuo; Ono, Noriaki; Ikeda, Fumiaki; Kanayama, Akiko; Kobayashi, Intetsu

    2013-03-01

    Metallo-beta-lactamase (MBL) producing Serratia marcescens isolate was recovered from a study patient in September, 2007 in whom MBL non-producing S. marcescens had been isolated 2 months previously. Two S. marcescens isolates recovered from the study patient showed the same pulsed-field gel electrophoresis (PFGE) pattern. Seven S. marcescens isolates were recovered from other patients in our hospital during August, 2007 and November, 2007. Five of the seven isolates produced MBL. All of the MBL-producing isolates showed the same PFGE pattern and harbored plasmids of the same size and bla(IMP) genes. The bla(IMP) genes were easily transferred to Escherichia coli DH5alpha by transformation of a plasmid purified from the MBL-producing isolate. Those transformation experiments suggested that bla(IMP) genes were encoded by the plasmid. From these observations, it was speculated that the MBL non-producing S. marcescens isolate recovered from the study patient had acquired the plasmid which encoded bla(IMP) genes and a monoclone of MBL-producing S. marcescens spread horizontally in our hospital.

  4. Severe necrotizing myocarditis caused by serratia marcescens infection in an axolotl (Ambystoma mexicanum).

    PubMed

    Del-Pozo, J; Girling, S; Pizzi, R; Mancinelli, E; Else, R W

    2011-05-01

    This report provides the first account of the pathological changes associated with infection by Serratia marcescens in an adult male axolotl. The infection resulted in septicaemia with severe multifocal necrotizing myocarditis. The latter lesion evolved to cardiac rupture, haemopericardium and death resulting from cardiac tamponade. This animal was exposed to higher than usual temperatures (24-25 °C) 2 weeks before the onset of disease and this may have resulted in immunocompromise and opportunistic bacterial infection. S. marcescens was isolated from the coelomic and pericardial cavity. Both isolates were identical and were resistant to β-lactam antibiotics, but not to aminoglycosides or fluoroquinolones. The production of red prodigiosin pigment by the bacterium suggested an environmental origin. Overall, the clinical and histopathological presentation suggests that S. marcescens should be included in the list of aetiological agents of the 'red-leg'/bacterial dermatosepticaemia syndrome of amphibians. Copyright © 2010 Elsevier Ltd. All rights reserved.

  5. Toxicity evaluation of prodigiosin from Serratia marcescens in a Caenorhabditis elegans model

    NASA Astrophysics Data System (ADS)

    Seah, Siew-Wei; Nathan, Sheila; Wan, Kiew-Lian

    2016-11-01

    Serratia marcescens produces several secondary metabolites, including a red antimicrobial pigment, prodigiosin. There is considerable interest in prodigiosin and its derivatives due to their anticancer and immunosuppressive properties. Prodigiosin has also become the main choice of red dye in textiles. As prodigiosin has potentially high commercial value, there is a demand to develop high-throughput and cost-effective bioprocesses for prodigiosin production. However little is still known about its toxicity. This study was carried out to investigate the toxicity effect of prodigiosin. To determine if prodigiosin was potentially toxic to eukaryotic systems, the S. marcescens ATCC 274 wild type (Sma 274) and the non-prodigiosin producer S. marcescens Bizio WF mutant ATCC 29635 (WF mutant) were grown under the optimised conditions for prodigiosin production and fed to the nematode Caenorhabditis elegans. The mean time to death (TDmean) for Sma 274-infected worms assayed on agar was 112.6 hours while the WF mutant culture had a TDmean of 104.4 hours. However, the nematode killing kinetics were not significantly different between the prodigiosin-producing and non-producing S. marcescens strains (p>0.05). In lieu of its non-toxic property, prodigiosin has the potential to be developed for safe therapeutic applications and as a safe environmental friendly bio-dye.

  6. l-Glutamine as a Substrate for l-Asparaginase from Serratia marcescens

    PubMed Central

    Novak, Edward K.; Phillips, Arthur W.

    1974-01-01

    l-Asparaginase from Serratia marcescens was found to hydrolyze l-glutamine at 5% of the rate of l-asparagine hydrolysis. The ratio of the two activities did not change through several stages of purification, anionic and cationic polyacrylamide disk gel electrophoresis, and partial thermal inactivation. The two activities had parallel blood clearance rates in mice. l-glutamine was found to be a competitive inhibitor of l-asparagine hydrolysis. A separate l-glutaminase enzyme free of l-asparaginase activity was separated by diethylaminoethyl-cellulose chromatography. PMID:4590479

  7. Enhanced production of prodigiosin by Serratia marcescens MO-1 using ram horn peptone

    PubMed Central

    Kurbanoglu, Esabi Basaran; Ozdal, Murat; Ozdal, Ozlem Gur; Algur, Omer Faruk

    2015-01-01

    This work addresses the production of prodigiosin from ram horn peptone (RHP) using MO-1, a local isolate in submerged culture. First, a novel gram-negative and rod-shaped bacterial strain, MO-1, was isolated from the body of the grasshopper (Poecilemon tauricola Ramme 1951), which was collected from pesticide-contaminated fields. Sequence analysis of 16S rDNA classified the microbe as Serratia marcescens. The substrate utilization potential (BIOLOG) and fatty acid methyl ester profile (FAME) of S. marcescens were also determined. The effect of RHP on the production of prodigiosin by S. marcescens MO-1 was investigated, and the results showed that RHP supplementation promoted the growth of MO-1 and increased the production of prodigiosin. A concentration of 0.4% (w/v) RHP resulted in the greatest yield of prodigiosin (277.74 mg/L) after 48 h when mannitol was used as the sole source of carbon. The pigment yield was also influenced by the types of carbon sources and peptones. As a result, RHP was demonstrated to be a suitable substrate for prodigiosin production. These results revealed that prodigiosin could be produced efficiently by S. marcescens using RHP. PMID:26273284

  8. Enhanced production of prodigiosin by Serratia marcescens MO-1 using ram horn peptone.

    PubMed

    Kurbanoglu, Esabi Basaran; Ozdal, Murat; Ozdal, Ozlem Gur; Algur, Omer Faruk

    2015-06-01

    This work addresses the production of prodigiosin from ram horn peptone (RHP) using MO-1, a local isolate in submerged culture. First, a novel gram-negative and rod-shaped bacterial strain, MO-1, was isolated from the body of the grasshopper (Poecilemon tauricola Ramme 1951), which was collected from pesticide-contaminated fields. Sequence analysis of 16S rDNA classified the microbe as Serratia marcescens. The substrate utilization potential (BIOLOG) and fatty acid methyl ester profile (FAME) of S. marcescens were also determined. The effect of RHP on the production of prodigiosin by S. marcescens MO-1 was investigated, and the results showed that RHP supplementation promoted the growth of MO-1 and increased the production of prodigiosin. A concentration of 0.4% (w/v) RHP resulted in the greatest yield of prodigiosin (277.74 mg/L) after 48 h when mannitol was used as the sole source of carbon. The pigment yield was also influenced by the types of carbon sources and peptones. As a result, RHP was demonstrated to be a suitable substrate for prodigiosin production. These results revealed that prodigiosin could be produced efficiently by S. marcescens using RHP.

  9. Inhibition of quorum sensing-mediated virulence in Serratia marcescens by Bacillus subtilis R-18.

    PubMed

    Devi, Kannan Rama; Srinivasan, Subramaniyan; Ravi, Arumugam Veera

    2018-04-13

    Serratia marcescens is an opportunistic human pathogen causing various nosocomial infections, most importantly urinary tract infections (UTIs). It exhibits increased resistance towards the conventional antibiotics. This study was aimed to evaluate the anti-virulence effect of a rhizosphere soil bacterium Bacillus subtilis strain R-18 against the uropathogen S. marcescens. First, the bacterial cell-free culture supernatant (CFCS) of B. subtilis strain R-18 was evaluated for its quorum sensing inhibitory (QSI) potential against biomarker strain Chromobacterium violaceum and the test pathogen S. marcescens. The B. subtilis R-18 CFCS effectively inhibited the quorum sensing (QS)-mediated violacein pigment production in C. violaceum and prodigiosin pigment production in S. marcescens. Furthermore, B. subtilis R-18 CFCS was successively extracted with different solvent systems. Of these solvents, B. subtilis R-18 petroleum ether (PE) extract showed inhibition in biofilm formation, protease, lipase, and hemolysin productions in S. marcescens. Fourier transform infrared spectroscopic (FT-IR) analysis revealed the alterations in the cellular components of bacterial cell pellets obtained from B. subtilis R-18 PE extract treated and untreated S. marcescens. The differential gene expression study further validated the downregulation of virulence-associated genes. Characterization of the active principle in B. subtilis R-18 PE extract by gas chromatography-mass spectrometry (GC-MS) analysis showed the presence of multiple compounds with therapeutic values, which could possibly reduce the QS-dependent phenotypes in S. marcescens. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Outbreak of Serratia marcescens postsurgical bloodstream infection due to contaminated intravenous pain control fluids.

    PubMed

    Chiang, Ping-Cherng; Wu, Tsu-Lan; Kuo, An-Jing; Huang, Yhu-Chering; Chung, Ting-Ying; Lin, Chun-Sui; Leu, Hsieh-Shong; Su, Lin-Hui

    2013-09-01

    Serratia marcescens is an important nosocomial pathogen causing significant outbreaks. Here we report an outbreak of bloodstream infection caused by S. marcescens at a 3500-bed hospital in Taiwan. The effective cooperative efforts of both laboratory personnel and infection control practitioners (ICPs) jointly contributed to the total control of the outbreak. A sudden increase in the isolation of S. marcescens from blood cultures was noted in the Clinical Microbiology Laboratory. The information was passed to the ICPs and an investigation was initiated. Pulsed-field gel electrophoresis was used to study the relationships among the isolates. Pulsotype A was identified in 43 (82.7%) of the 52 blood isolates studied. They were isolated from 52 patients distributed across 22 wards that were surveyed by seven ICPs. All patients had undergone surgery before the infection, and fentanyl-containing intravenous fluids were used for pain control in 43 of them. Isolates from 42 belonged to pulsotype A. Three S. marcescens isolates, all from fentanyl-containing fluids and demonstrating pulsotype A, were identified from 251 environmental cultures. All fentanyl-containing fluids that were in use were withdrawn and the outbreak was stopped. The outbreak of S. marcescens bloodstream infection apparently occurred through the use of fentanyl-containing fluids contaminated by a pulsotype A S. marcescens. Copyright © 2013 International Society for Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  11. Potential transmission of Pantoea spp. and Serratia marcescens (Enterobacteriales: Enterobacteriaceae) to plants by Lygus hesperus (Hemiptera: Miridae)

    USDA-ARS?s Scientific Manuscript database

    Lygus hesperus Knight (Hemiptera: Miridae) is a key agricultural pest in the western United States. In a recent study, proteins from Pantoea ananatis and Serratia marcescens (Enterobacteriales: Enterobacteriaceae) were identified in diet that was stylet-probed and fed upon by L. hesperus adults. P...

  12. Outbreak of Serratia marcescens Bloodstream Infections in Patients Receiving Parenteral Nutrition Prepared by a Compounding Pharmacy

    PubMed Central

    Gupta, Neil; Hocevar, Susan N.; Moulton-Meissner, Heather A.; Stevens, Kelly M.; McIntyre, Mary G.; Jensen, Bette; Kuhar, David T.; Noble-Wang, Judith A.; Schnatz, Rick G.; Becker, Shawn C.; Kastango, Eric S.; Shehab, Nadine; Kallen, Alexander J.

    2014-01-01

    Background. Compounding pharmacies often prepare parenteral nutrition (PN) and must adhere to rigorous standards to avoid contamination of the sterile preparation. In March 2011, Serratia marcescens bloodstream infections (BSIs) were identified in 5 patients receiving PN from a single compounding pharmacy. An investigation was conducted to identify potential sources of contamination and prevent further infections. Methods. Cases were defined as S. marcescens BSIs in patients receiving PN from the pharmacy between January and March 2011. We reviewed case patients’ clinical records, evaluated pharmacy compounding practices, and obtained epidemiologically directed environmental cultures. Molecular relatedness of available Serratia isolates was determined by pulsed-field gel electrophoresis (PFGE). Results. Nineteen case patients were identified; 9 died. The attack rate for patients receiving PN in March was 35%. No case patients were younger than 18 years. In October 2010, the pharmacy began compounding and filter-sterilizing amino acid solution for adult PN using nonsterile amino acids due to a national manufacturer shortage. Review of this process identified breaches in mixing, filtration, and sterility testing practices. S. marcescens was identified from a pharmacy water faucet, mixing container, and opened amino acid powder. These isolates were indistinguishable from the outbreak strain by PFGE. Conclusions. Compounding of nonsterile amino acid components of PN was initiated due to a manufacturer shortage. Failure to follow recommended compounding standards contributed to an outbreak of S. marcescens BSIs. Improved adherence to sterile compounding standards, critical examination of standards for sterile compounding from nonsterile ingredients, and more rigorous oversight of compounding pharmacies is needed to prevent future outbreaks. PMID:24729502

  13. Epidemiological markers of Serratia marcescens isolates causing nosocomial infections in Spain (1981-1991).

    PubMed

    Boquete, T; Vindel, A; Martin-Bourgon, C; Azañedo, L; Sáez-Nieto, J A

    1996-12-01

    The distribution of epidemiological markers (serotyping and phage-typing) of Serratia marcescens isolates from nosocomial episodes (63 nosocomial cutbreaks with 475 isolates, and 1208 sporadic cases) received in our laboratory during the period 1981-1991 was studied. The records for 1683 isolates from Spanish hospitals have been analyzed. In relation with the sporadic cases, the predominant types were serotype O6 (13.4%) and serotype O14 (11.4%); polyagglutinable strains accounted for 15.6%; in outbreaks, type O14 is clearly predominant (27.4%). Phage-typing was a good secondary marker, with a 87.9% of typability; the number of lytic patterns was very high, extended patterns (six or more phages) being the most frequent. We have studied the characteristics of S. marcescens isolates causing infections in the nosocomial environment in Spain.

  14. High Manganese Tolerance and Biooxidation Ability of Serratia marcescens Isolated from Manganese Mine Water in Minas Gerais, Brazil.

    PubMed

    Barboza, Natália R; Morais, Mônica M C A; Queiroz, Pollyana S; Amorim, Soraya S; Guerra-Sá, Renata; Leão, Versiane A

    2017-01-01

    Manganese is an important metal for the maintenance of several biological functions, but it can be toxic in high concentrations. One of the main forms of human exposure to metals, such as manganese (Mn), is the consumption of solar salt contaminated. Mn-tolerant bacteria could be used to decrease the concentration of this metal from contaminated sites through safer environmental-friendly alternative technology in the future. Therefore, this study was undertaken to isolate and identify Mn resistant bacteria from water samples collected from a Mn mine in the Iron Quadrangle region (Minas Gerais, Brazil). Two bacterial isolates were identified as Serratia marcescens based on morphological, biochemical, 16S rDNA gene sequencing and phylogeny analysis. Maximum resistance of the selected isolates against increasing concentrations of Mn(II), up to 1200 mg L -1 was determined in solid media. A batch assay was developed to analyze and quantify the Mn removal capacities of the isolates. Biological Mn removal capacities of over 55% were detected for both isolates. Whereas that mechanism like biosorption, precipitation and oxidation could be explaining the Mn removal, we seek to give an insight into some of the molecular mechanisms adopted by S. marcescens isolates. For this purpose, the following approaches were adopted: leucoberbelin blue I assay, Mn(II) oxidation by cell-free filtrate and electron microscopy and energy-dispersive X-ray spectroscopy analyses. Overall, these results indicate that S. marcescens promotes Mn removal in an indirect mechanism by the formation of Mn oxides precipitates around the cells, which should be further explored for potential biotechnological applications for water recycling both in hydrometallurgical and mineral processing operations.

  15. High Manganese Tolerance and Biooxidation Ability of Serratia marcescens Isolated from Manganese Mine Water in Minas Gerais, Brazil

    PubMed Central

    Barboza, Natália R.; Morais, Mônica M. C. A.; Queiroz, Pollyana S.; Amorim, Soraya S.; Guerra-Sá, Renata; Leão, Versiane A.

    2017-01-01

    Manganese is an important metal for the maintenance of several biological functions, but it can be toxic in high concentrations. One of the main forms of human exposure to metals, such as manganese (Mn), is the consumption of solar salt contaminated. Mn-tolerant bacteria could be used to decrease the concentration of this metal from contaminated sites through safer environmental-friendly alternative technology in the future. Therefore, this study was undertaken to isolate and identify Mn resistant bacteria from water samples collected from a Mn mine in the Iron Quadrangle region (Minas Gerais, Brazil). Two bacterial isolates were identified as Serratia marcescens based on morphological, biochemical, 16S rDNA gene sequencing and phylogeny analysis. Maximum resistance of the selected isolates against increasing concentrations of Mn(II), up to 1200 mg L-1 was determined in solid media. A batch assay was developed to analyze and quantify the Mn removal capacities of the isolates. Biological Mn removal capacities of over 55% were detected for both isolates. Whereas that mechanism like biosorption, precipitation and oxidation could be explaining the Mn removal, we seek to give an insight into some of the molecular mechanisms adopted by S. marcescens isolates. For this purpose, the following approaches were adopted: leucoberbelin blue I assay, Mn(II) oxidation by cell-free filtrate and electron microscopy and energy-dispersive X-ray spectroscopy analyses. Overall, these results indicate that S. marcescens promotes Mn removal in an indirect mechanism by the formation of Mn oxides precipitates around the cells, which should be further explored for potential biotechnological applications for water recycling both in hydrometallurgical and mineral processing operations. PMID:29062307

  16. Optimized production of Serratia marcescens B742 mutants for preparing chitin from shrimp shells powders.

    PubMed

    Zhang, Hongcai; Fang, Jiyang; Deng, Yun; Zhao, Yanyun

    2014-08-01

    To improve the deproteinization (DP) efficacy of shrimp shell powders (SSP) for preparing chitin, Serratia marcescens B742 mutants were prepared using 2% diethyl sulfate (DES), UV-irradiation, and/or microwave heating treatments. Both single-stage and multi-stage mutations were investigated for optimizing S. marcescens B742 mutation conditions. Under the optimized mutation conditions (2% DES treatment for 30min plus successive 20min UV-irradiation), the protease and chitosanase activity produced by mutant S. marcescens B742 was 240.15 and 170.6mU/mL, respectively, as compared with 212.58±1.51 and 83.75±6.51mU/mL, respectively, by wild S. marcescens B742. DP efficacy of SSP by mutant S. marcescens B742 reached 91.4±4.6% after 3d of submerged fermentation instead of 83.4±4.7% from the wild S. marcescens B742 after 4d of submerged fermentation. Molecular mass of chitosanase and protease was 41.20 and 47.10kDa, respectively, and both enzymes were verified by mass spectrometry analysis. The chitosanase from both wild and mutant S. marcescens B742 was activated by sodium dodecyl sulfate (SDS), Tween 20, Tween 40, and Triton-100, and the protease and chitosanase were strongly inhibited by ethylenediaminetetraacetic acid (EDTA). These results suggested that S. marcescens B742 mutants can be used in the biological production of chitin through deproteinization of SSP. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. A strain of Serratia marcescens pathogenic for larvae of Lymantria dispar: Infectivity and mechanisms of pathogenicity

    Treesearch

    J.D. Podgwaite; B.J. Cosenza

    1976-01-01

    The ED50 of a strain of Serratia marcescens for microinjected instar III and IV gypsy moth larvae was 7.5 and 14.5 viable cells, respectively. Percentage and rate of mortality were found to be highly variable among replicates of the same instar and between instars in free-feeding bioassays. Mortality in second instar larvae...

  18. A Novel 6'-N-Aminoglycoside Acetyltransferase, AAC(6')-Ial, from a Clinical Isolate of Serratia marcescens.

    PubMed

    Tada, Tatsuya; Miyoshi-Akiyama, Tohru; Shimada, Kayo; Dahal, Rajan K; Mishra, Shyam K; Ohara, Hiroshi; Kirikae, Teruo; Pokhrel, Bharat M

    2016-03-01

    Serratia marcescens IOMTU115 has a novel 6'-N-aminoglycoside acetyltransferase-encoding gene, aac(6')-Ial. The encoded protein AAC(6')-Ial has 146 amino acids, with 91.8% identity to the amino acid sequence of AAC(6')-Ic in S. marcescens SM16 and 97.3% identity to the amino acid sequence of AAC(6')-Iap in S. marcescens WW4. The minimum inhibitory concentrations of aminoglycosides for Escherichia coli expressing AAC(6')-Ial were similar to those for E. coli expressing AAC(6')-Ic or AAC(6')-Iap. Thin-layer chromatography showed that AAC(6')-Ial, AAC(6')-Ic, or AAC(6')-Iap acetylated all the aminoglycosides tested, except for apramycin, gentamicin, and lividomycin. Kinetics assays revealed that AAC(6')-Ial is a functional acetyltransferase against aminoglycosides. The aac(6')-Ial gene was located on chromosomal DNA.

  19. Interference of quorum sensing in urinary pathogen Serratia marcescens by Anethum graveolens.

    PubMed

    Salini, Ramesh; Pandian, Shunmugiah Karutha

    2015-08-01

    Serratia marcescens is an opportunistic turned obligate pathogen frequently associated with urinary tract infections (UTI) and are multidrug resistant at most instances. Quorum sensing (QS) system, a population-dependent global regulatory system, controls the pathogenesis machinery of S. marcescens as it does in other pathogens. In the present study, methanol extract of a common herb and spice, Anethum graveolens (AGME) was assessed for its anti-QS potential against the clinical isolate of S. marcescens. AGME notably reduced the biofilm formation and QS-dependent virulence factors production in a concentration-dependent manner (64-1024 μg mL(-1)). The light and confocal microscopic images clearly evidenced the antibiofilm activity of AGME (256 μg mL(-1)) at its minimal biofilm inhibitory concentration. Besides, in support of biochemical assays, the expression analysis of QS-regulated genes fimC, bsmA and flhD which are crucial for initial adhesion and motility confirmed their downregulation upon exposure to AGME. LC-MS analysis of AGME revealed 3-O-methyl ellagic acid (3-O-ME) as one of its active principles having nearly similar antibiofilm activity and a reduced inhibition of prodigiosin (27%) and protease (15%) compared to AGME [prodigiosin (47%) and protease (50%)]. UFLC analysis revealed that 0.355 mg g(-1) of 3-O-ME was present in the AGME. AGME and the 3-O-ME significantly interfered the QS system of a QS model strain S. marcescens MG1 and its mutant S. marcescens MG44 which in turn corroborates the anti-QS mechanism of AGME. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  20. Requirement for Serratia marcescens cytolysin in a murine model of hemorrhagic pneumonia.

    PubMed

    González-Juarbe, Norberto; Mares, Chris A; Hinojosa, Cecilia A; Medina, Jorge L; Cantwell, Angelene; Dube, Peter H; Orihuela, Carlos J; Bergman, Molly A

    2015-02-01

    Serratia marcescens, a member of the carbapenem-resistant Enterobacteriaceae, is an important emerging pathogen that causes a wide variety of nosocomial infections, spreads rapidly within hospitals, and has a systemic mortality rate of ≤41%. Despite multiple clinical descriptions of S. marcescens nosocomial pneumonia, little is known regarding the mechanisms of bacterial pathogenesis and the host immune response. To address this gap, we developed an oropharyngeal aspiration model of lethal and sublethal S. marcescens pneumonia in BALB/c mice and extensively characterized the latter. Lethal challenge (>4.0 × 10(6) CFU) was characterized by fulminate hemorrhagic pneumonia with rapid loss of lung function and death. Mice challenged with a sublethal dose (<2.0 × 10(6) CFU) rapidly lost weight, had diminished lung compliance, experienced lung hemorrhage, and responded to the infection with extensive neutrophil infiltration and histopathological changes in tissue architecture. Neutrophil extracellular trap formation and the expression of inflammatory cytokines occurred early after infection. Mice depleted of neutrophils were exquisitely susceptible to an otherwise nonlethal inoculum, thereby demonstrating the requirement for neutrophils in host protection. Mutation of the genes encoding the cytolysin ShlA and its transporter ShlB resulted in attenuated S. marcescens strains that failed to cause profound weight loss, extended illness, hemorrhage, and prolonged lung pathology in mice. This study describes a model of S. marcescens pneumonia that mimics known clinical features of human illness, identifies neutrophils and the toxin ShlA as a key factors important for defense and infection, respectively, and provides a solid foundation for future studies of novel therapeutics for this important opportunistic pathogen. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  1. Requirement for Serratia marcescens Cytolysin in a Murine Model of Hemorrhagic Pneumonia

    PubMed Central

    González-Juarbe, Norberto; Mares, Chris A.; Hinojosa, Cecilia A.; Medina, Jorge L.; Cantwell, Angelene; Dube, Peter H.; Bergman, Molly A.

    2014-01-01

    Serratia marcescens, a member of the carbapenem-resistant Enterobacteriaceae, is an important emerging pathogen that causes a wide variety of nosocomial infections, spreads rapidly within hospitals, and has a systemic mortality rate of ≤41%. Despite multiple clinical descriptions of S. marcescens nosocomial pneumonia, little is known regarding the mechanisms of bacterial pathogenesis and the host immune response. To address this gap, we developed an oropharyngeal aspiration model of lethal and sublethal S. marcescens pneumonia in BALB/c mice and extensively characterized the latter. Lethal challenge (>4.0 × 106 CFU) was characterized by fulminate hemorrhagic pneumonia with rapid loss of lung function and death. Mice challenged with a sublethal dose (<2.0 × 106 CFU) rapidly lost weight, had diminished lung compliance, experienced lung hemorrhage, and responded to the infection with extensive neutrophil infiltration and histopathological changes in tissue architecture. Neutrophil extracellular trap formation and the expression of inflammatory cytokines occurred early after infection. Mice depleted of neutrophils were exquisitely susceptible to an otherwise nonlethal inoculum, thereby demonstrating the requirement for neutrophils in host protection. Mutation of the genes encoding the cytolysin ShlA and its transporter ShlB resulted in attenuated S. marcescens strains that failed to cause profound weight loss, extended illness, hemorrhage, and prolonged lung pathology in mice. This study describes a model of S. marcescens pneumonia that mimics known clinical features of human illness, identifies neutrophils and the toxin ShlA as a key factors important for defense and infection, respectively, and provides a solid foundation for future studies of novel therapeutics for this important opportunistic pathogen. PMID:25422267

  2. Recent independent emergence of multiple multidrug-resistant Serratia marcescens clones within the United Kingdom and Ireland

    PubMed Central

    Moradigaravand, Danesh; Boinett, Christine J.; Martin, Veronique; Peacock, Sharon J.; Parkhill, Julian

    2016-01-01

    Serratia marcescens, a member of the Enterobacteriaceae family, is a Gram-negative bacterium responsible for a wide range of nosocomial infections. The emergence of multidrug-resistant strains is an increasing danger to public health. To design effective means to control the dissemination of S. marcescens, an in-depth analysis of the population structure and variation is required. Utilizing whole-genome sequencing, we characterized the population structure and variation, as well as the antimicrobial resistance determinants, of a systematic collection of antimicrobial-resistant S. marcescens associated with bloodstream infections in hospitals across the United Kingdom and Ireland between 2001 and 2011. Our results show that S. marcescens is a diverse species with a high level of genomic variation. However, the collection was largely composed of a limited number of clones that emerged from this diverse background within the past few decades. We identified potential recent transmissions of these clones, within and between hospitals, and showed that they have acquired antimicrobial resistance determinants for different beta-lactams, ciprofloxacin, and tetracyclines on multiple occasions. The expansion of these multidrug-resistant clones suggests that the treatment of S. marcescens infections will become increasingly difficult in the future. PMID:27432456

  3. Identification of a Serratia marcescens virulence factor that promotes hemolymph bleeding in the silkworm, Bombyx mori.

    PubMed

    Ishii, Kenichi; Adachi, Tatsuo; Hara, Takashi; Hamamoto, Hiroshi; Sekimizu, Kazuhisa

    2014-03-01

    Injection of culture supernatant of Serratia marcescens, a Gram-negative bacterium pathogenic to a wide range of host animals including insects and mammals, into the hemolymph of silkworm (Bombyx mori) larvae led to continuous flow of the hemolymph (blood of insects) from the injection site. The amount of hemolymph lost within 60 min reached 15-20% of the total larval weight. Using a bioassay with live silkworms, we purified Serralysin, a metalloprotease that requires divalent cations for its activity, as the factor responsible for the promotion of hemolymph bleeding from the culture supernatant of S. marcescens. Recombinant protein also induced hemolymph bleeding in silkworms. Moreover, the culture supernatant of an S. marcescens disruption mutant of the ser gene showed attenuated ability to promote hemolymph bleeding. In addition, this bleeding-promoting activity of the S. marcescens culture supernatant was attenuated by disruption of the wecA gene, which is involved in the biosynthesis of the lipopolysaccharide O-antigen. These findings suggest that Serralysin metalloprotease contributes to the pathogenesis of S. marcescens by inhibiting wound healing, which leads to a massive loss of hemolymph from silkworm larvae. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Serratia marcescens Induces Apoptotic Cell Death in Host Immune Cells via a Lipopolysaccharide- and Flagella-dependent Mechanism*

    PubMed Central

    Ishii, Kenichi; Adachi, Tatsuo; Imamura, Katsutoshi; Takano, Shinya; Usui, Kimihito; Suzuki, Kazushi; Hamamoto, Hiroshi; Watanabe, Takeshi; Sekimizu, Kazuhisa

    2012-01-01

    Injection of Serratia marcescens into the blood (hemolymph) of the silkworm, Bombyx mori, induced the activation of c-Jun NH2-terminal kinase (JNK), followed by caspase activation and apoptosis of blood cells (hemocytes). This process impaired the innate immune response in which pathogen cell wall components, such as glucan, stimulate hemocytes, leading to the activation of insect cytokine paralytic peptide. S. marcescens induced apoptotic cell death of silkworm hemocytes and mouse peritoneal macrophages in vitro. We searched for S. marcescens transposon mutants with attenuated ability to induce apoptosis of silkworm hemocytes. Among the genes identified, disruption mutants of wecA (a gene involved in lipopolysaccharide O-antigen synthesis), and flhD and fliR (essential genes in flagella synthesis) showed reduced motility and impaired induction of mouse macrophage cell death. These findings suggest that S. marcescens induces apoptosis of host immune cells via lipopolysaccharide- and flagella-dependent motility, leading to the suppression of host innate immunity. PMID:22859304

  5. Outbreak of Serratia marcescens in a neonatal intensive care unit: contaminated unmedicated liquid soap and risk factors.

    PubMed

    Buffet-Bataillon, S; Rabier, V; Bétrémieux, P; Beuchée, A; Bauer, M; Pladys, P; Le Gall, E; Cormier, M; Jolivet-Gougeon, A

    2009-05-01

    This study describes an outbreak of Serratia marcescens and its investigation and control in a neonatal intensive care unit (NICU). During a three-month period, five infants were colonised or infected by a single strain of S. marcescens. A case-control study, culture surveys and pulse-field gel electrophoresis analysis implicated a bottle soap dispenser as a reservoir of S. marcescens (P=0.032). Infants with S. marcescens colonisation or infection were also more likely to have been exposed to a central or percutaneous venous catheter (P=0.05) and had had longer exposure to endotracheal intubation (P=0.05). Soap dispensers are used in many hospitals and may be an unrecognised source of nosocomial infections. This potential source of infection could be reduced by using 'airless' dispensers which have no air intake for the distribution of soap. Prompt intervention and strict adherence to alcoholic hand disinfection were the key factors that led to the successful control of this outbreak.

  6. Fluoroquinolone resistance of Serratia marcescens: involvement of a proton gradient-dependent efflux pump.

    PubMed

    Kumar, Ayush; Worobec, Elizabeth A

    2002-10-01

    To determine the presence of a proton gradient-dependent efflux of fluoroquinolone drugs in Serratia marcescens. Thirteen clinical isolates of S. marcescens were screened for resistance to four fluoroquinolones: ofloxacin, ciprofloxacin, norfloxacin and nalidixic acid by determining MICs. The presence of a proton gradient-dependent efflux mechanism was assessed using ethidium bromide accumulation assays. Drug accumulation studies for norfloxacin, ciprofloxacin and ofloxacin were performed to determine the drug specificity of efflux. Western transfer of cellular proteins, followed by immunodetection using anti-AcrA (Escherichia coli) antibodies were used to demonstrate the presence of a resistance-nodulation-cell division (RND) pump protein. PCR was used to identify a RND pump-encoding gene using primers for two conserved motifs within inner membrane components of RND proteins. A mutant strain of S. marcescens, UOC-67WL, was isolated by culturing the wild-type strain in the presence of ciprofloxacin in T-soy media and was subjected to the same studies as described above for the clinical isolates. Ethidium bromide accumulation assays confirmed the presence of a proton gradient-dependent efflux mechanism in S. marcescens. One clinical isolate, T-861, and the mutant strain, UOC-67WL, were found to efflux ciprofloxacin and ofloxacin. Western immunoblot results confirmed overexpression of an AcrA-like protein in T-861 and UOC-67WL. Sequencing of the PCR product showed the presence of a mexF-like gene, which is overexpressed in nfxC mutants of Pseudomonas aeruginosa. This study reports the presence of a proton gradient-dependent efflux mechanism in S. marcescens.

  7. Nosocomial Serratia marcescens outbreak in Osaka, Japan, from 1999 to 2000.

    PubMed

    Takahashi, Hiroshi; Kramer, Michael H; Yasui, Yoshinori; Fujii, Hayato; Nakase, Katsumi; Ikeda, Kazunori; Imai, Tatsuya; Okazawa, Akiko; Tanaka, Tomoyuki; Ohyama, Takaaki; Okabe, Nobuhiko

    2004-02-01

    To investigate and control an outbreak of bloodstream infections (BSIs) caused by Serratia marcescens and to identify risk factors for respiratory colonization or infection with S. marcescens. Epidemiologic investigation, including review of medical and laboratory records, procedural investigations, pulsed-field gel electrophoresis (PFGE) typing of environmental and patient isolates, statistical study, and recommendation of control measures. All patients admitted to a 380-bed, secondary-care hospital in Osaka Prefecture, Japan, from July 1999 through June 2000 (study period). Seventy-one patients were colonized or infected with S. marcescens; 3 patients who developed primary BSIs on the same ward within 5 days in June 2000 had isolates with indistinguishable PFGE patterns and indwelling intravenous catheters for more than 5 days. On multivariate analysis, among 36 case-patients with positive sputum specimens and 95 control-patients, being bedridden (odds ratio [OR], 15.91; 95% confidence interval [CI95], 4.17-60.77), receiving mechanical ventilation (OR, 7.86; CI95, 2.27-27.16), being older than 80 years (OR, 3.12; CI95, 1.05-9.27), and receiving oral cleaning care (OR, 3.10; CI95, 1-9.58) were significant risk factors. S. marcescens was isolated from the fluid tanks of three nebulizers and a liquid soap dispenser. The hospital did not have written infection control standards, and many infection control practices were found to be inadequate (eg, respiratory equipment was used without disinfection between patients). Poor hospital hygiene and the lack of standard infection control measures contributed to infections hospital-wide. Recommendations to the hospital included adoption of written infection control policies.

  8. SME-3, a novel member of the Serratia marcescens SME family of carbapenem-hydrolyzing beta-lactamases.

    PubMed

    Queenan, Anne Marie; Shang, Wenchi; Schreckenberger, Paul; Lolans, Karen; Bush, Karen; Quinn, John

    2006-10-01

    Imipenem-resistant Serratia marcescens isolates were cultured from a lung transplant patient given multiple antibiotics over several months. The strains expressed SME-3, a beta-lactamase of the rare SME carbapenem-hydrolyzing family. SME-3 differed from SME-1 by a single amino acid substitution of tyrosine for histidine at position 105, but the two beta-lactamases displayed similar hydrolytic profiles.

  9. SME-3, a Novel Member of the Serratia marcescens SME Family of Carbapenem-Hydrolyzing β-Lactamases

    PubMed Central

    Queenan, Anne Marie; Shang, Wenchi; Schreckenberger, Paul; Lolans, Karen; Bush, Karen; Quinn, John

    2006-01-01

    Imipenem-resistant Serratia marcescens isolates were cultured from a lung transplant patient given multiple antibiotics over several months. The strains expressed SME-3, a β-lactamase of the rare SME carbapenem-hydrolyzing family. SME-3 differed from SME-1 by a single amino acid substitution of tyrosine for histidine at position 105, but the two β-lactamases displayed similar hydrolytic profiles. PMID:17005839

  10. Proteomic Identification of Novel Secreted Antibacterial Toxins of the Serratia marcescens Type VI Secretion System*

    PubMed Central

    Fritsch, Maximilian J.; Trunk, Katharina; Diniz, Juliana Alcoforado; Guo, Manman; Trost, Matthias; Coulthurst, Sarah J.

    2013-01-01

    It has recently become apparent that the Type VI secretion system (T6SS) is a complex macromolecular machine used by many bacterial species to inject effector proteins into eukaryotic or bacterial cells, with significant implications for virulence and interbacterial competition. “Antibacterial” T6SSs, such as the one elaborated by the opportunistic human pathogen, Serratia marcescens, confer on the secreting bacterium the ability to rapidly and efficiently kill rival bacteria. Identification of secreted substrates of the T6SS is critical to understanding its role and ability to kill other cells, but only a limited number of effectors have been reported so far. Here we report the successful use of label-free quantitative mass spectrometry to identify at least eleven substrates of the S. marcescens T6SS, including four novel effector proteins which are distinct from other T6SS-secreted proteins reported to date. These new effectors were confirmed as antibacterial toxins and self-protecting immunity proteins able to neutralize their cognate toxins were identified. The global secretomic study also unexpectedly revealed that protein phosphorylation-based post-translational regulation of the S. marcescens T6SS differs from that of the paradigm, H1-T6SS of Pseudomonas aeruginosa. Combined phosphoproteomic and genetic analyses demonstrated that conserved PpkA-dependent threonine phosphorylation of the T6SS structural component Fha is required for T6SS activation in S. marcescens and that the phosphatase PppA can reverse this modification. However, the signal and mechanism of PpkA activation is distinct from that observed previously and does not appear to require cell–cell contact. Hence this study has not only demonstrated that new and species-specific portfolios of antibacterial effectors are secreted by the T6SS, but also shown for the first time that PpkA-dependent post-translational regulation of the T6SS is tailored to fit the needs of different bacterial

  11. Outbreak of Serratia marcescens bloodstream infections in patients receiving parenteral nutrition prepared by a compounding pharmacy.

    PubMed

    Gupta, Neil; Hocevar, Susan N; Moulton-Meissner, Heather A; Stevens, Kelly M; McIntyre, Mary G; Jensen, Bette; Kuhar, David T; Noble-Wang, Judith A; Schnatz, Rick G; Becker, Shawn C; Kastango, Eric S; Shehab, Nadine; Kallen, Alexander J

    2014-07-01

    Compounding pharmacies often prepare parenteral nutrition (PN) and must adhere to rigorous standards to avoid contamination of the sterile preparation. In March 2011, Serratia marcescens bloodstream infections (BSIs) were identified in 5 patients receiving PN from a single compounding pharmacy. An investigation was conducted to identify potential sources of contamination and prevent further infections. Cases were defined as S. marcescens BSIs in patients receiving PN from the pharmacy between January and March 2011. We reviewed case patients' clinical records, evaluated pharmacy compounding practices, and obtained epidemiologically directed environmental cultures. Molecular relatedness of available Serratia isolates was determined by pulsed-field gel electrophoresis (PFGE). Nineteen case patients were identified; 9 died. The attack rate for patients receiving PN in March was 35%. No case patients were younger than 18 years. In October 2010, the pharmacy began compounding and filter-sterilizing amino acid solution for adult PN using nonsterile amino acids due to a national manufacturer shortage. Review of this process identified breaches in mixing, filtration, and sterility testing practices. S. marcescens was identified from a pharmacy water faucet, mixing container, and opened amino acid powder. These isolates were indistinguishable from the outbreak strain by PFGE. Compounding of nonsterile amino acid components of PN was initiated due to a manufacturer shortage. Failure to follow recommended compounding standards contributed to an outbreak of S. marcescens BSIs. Improved adherence to sterile compounding standards, critical examination of standards for sterile compounding from nonsterile ingredients, and more rigorous oversight of compounding pharmacies is needed to prevent future outbreaks. Published by Oxford University Press on behalf of the Infectious Diseases Society of America 2014. This work is written by (a) US Government employee(s) and is in the public

  12. Recent independent emergence of multiple multidrug-resistant Serratia marcescens clones within the United Kingdom and Ireland.

    PubMed

    Moradigaravand, Danesh; Boinett, Christine J; Martin, Veronique; Peacock, Sharon J; Parkhill, Julian

    2016-08-01

    Serratia marcescens, a member of the Enterobacteriaceae family, is a Gram-negative bacterium responsible for a wide range of nosocomial infections. The emergence of multidrug-resistant strains is an increasing danger to public health. To design effective means to control the dissemination of S. marcescens, an in-depth analysis of the population structure and variation is required. Utilizing whole-genome sequencing, we characterized the population structure and variation, as well as the antimicrobial resistance determinants, of a systematic collection of antimicrobial-resistant S. marcescens associated with bloodstream infections in hospitals across the United Kingdom and Ireland between 2001 and 2011. Our results show that S. marcescens is a diverse species with a high level of genomic variation. However, the collection was largely composed of a limited number of clones that emerged from this diverse background within the past few decades. We identified potential recent transmissions of these clones, within and between hospitals, and showed that they have acquired antimicrobial resistance determinants for different beta-lactams, ciprofloxacin, and tetracyclines on multiple occasions. The expansion of these multidrug-resistant clones suggests that the treatment of S. marcescens infections will become increasingly difficult in the future. © 2016 Moradigaravand et al.; Published by Cold Spring Harbor Laboratory Press.

  13. Fatal aortic endocarditis associated with community-acquired Serratia marcescens infection in a dog.

    PubMed

    Perez, Cristina; Fujii, Yoko; Fauls, Megan; Hummel, James; Breitschwerdt, Edward

    2011-01-01

    A 12 yr old Dalmatian was referred for evaluation of acute lethargy, fever, neurologic signs, and a recently ausculted heart murmur. Echocardiography in combination with blood cultures resulted in a diagnosis of nonhospital-acquired Serratia marcescens bacteremia and aortic valve endocarditis. Despite early diagnosis and aggressive therapy, the dog failed to respond to antimicrobials and died within 6 hr after admission. Necropsy findings included aortic valve endocarditis, septicemia, and diffuse thromboembolic disease. There was no history of pre-existing underlying disease or immunosuppressive therapy, and the dog had not been hospitalized before referral.

  14. Molecular insights into the activity and mechanism of cyanide hydratase enzyme associated with cyanide biodegradation by Serratia marcescens.

    PubMed

    Kushwaha, Madhulika; Kumar, Virender; Mahajan, Rishi; Bhalla, Tek Chand; Chatterjee, Subhankar; Akhter, Yusuf

    2018-05-09

    The present study provides molecular insights into the activity and mechanism of cyanide hydratase enzyme associated with degradation of cyanide compounds, using Serratia marcescens RL2b as a model organism. Resting cells harvested after 20 h achieved complete degradation of 12 mmol l - 1 cyanide in approximately 10 h. High-performance liquid chromatography analysis of reaction samples revealed formation of formamide as the only end product, which confirmed the presence of cyanide hydratase activity in S. marcescens RL2b. Comparative structural analysis with the other nitrilase family proteins, which was carried out using a sequence of cyanide hydratase from a phylogenetically related strain S. marcescens WW4, also revealed subtle but significant differences in amino acid residues of the substrate-binding pocket and catalytic triad (Cys-Lys-Glu).

  15. The response of Serratia marcescens JG to environmental changes by quorum sensing system.

    PubMed

    Sun, Shu-Jing; Liu, Hui-Jun; Weng, Cai-Hong; Lai, Chun-Fen; Ai, Liu-Ying; Liu, Yu-Chen; Zhu, Hu

    2016-08-01

    Many bacterial cells are known to regulate their cooperative behaviors and physiological processes through a molecular mechanism called quorum sensing. Quorum sensing in Serratia marcescens JG is mediated by the synthesis of autoinducer 2 (AI-2) which is a furanosyl borate diester. In this study, the response of quorum sensing in S. marcescens JG to environment changes such as the initial pH, carbon sources and boracic acid was investigated by a bioreporter and real-time PCR analysis. The results show that glucose can affect AI-2 synthesis to the greatest extent, and 2.0 % glucose can stimulate S. marcescens JG to produce more AI-2, with a 3.5-fold increase in activity compared with control culture. Furthermore, the response of quorum sensing to changes in glucose concentration was performed by changing the amount of luxS RNA transcripts. A maximum of luxS transcription appeared during the exponential growth phase when the glucose concentration was 20.0 g/L. AI-2 production was also slightly impacted by the low initial pH. It is significant for us that the addition of boracic acid at microdosage (0.1-0.2 g/L) can also induce AI-2 synthesis, which probably demonstrated the feasible fact that the 4,5-dihydroxy-2, 3-pentanedione cyclizes by the addition of borate and the loss of water, is hydrated and is converted to the final AI-2 in S. marcescens JG.

  16. Antimicrobial susceptibilities and bacteriological characteristics of bovine Pseudomonas aeruginosa and Serratia marcescens isolates from mastitis.

    PubMed

    Ohnishi, Mamoru; Sawada, Takuo; Hirose, Kazuhiko; Sato, Reiichiro; Hayashimoto, Mizuki; Hata, Eiji; Yonezawa, Chizuko; Kato, Hajime

    2011-12-29

    The presence of metallo-β-lactamase (MBL)-producing and multidrug-resistant Pseudomonas aeruginosa (MDRP) strains among bovine isolates of Gram-negative bacilli, and O-serotypes of bovine Serratia marcescens and P. aeruginosa isolates have been reported rarely. The aims of this study were to (1) elucidate antimicrobial susceptibilities and O-serotypes of P. aeruginosa and S. marcescens isolates from bovine mastitis and the presence of MBL-producers and MDRP strains among them and (2) evaluate their relationships to human isolates. We investigated the MICs of 24 antimicrobials and O-serotypes for 116 P. aeruginosa and 55 S. marcescens isolates in Japan, primarily in 2006. A total of 171 isolates exhibited high antimicrobial susceptibilities with the exception of a partial drug. P. aeruginosa isolates exhibited high susceptibilities of ≥ 95.7% to ciprofloxacin, imipenem, meropenem, piperacillin, ceftazidime, cefepime, cefoperazone/sulbactam, amikacin, tobramycin, and gentamicin; however, they exhibited a susceptibility of only 69.8% to aztreonam. They exhibited substantial resistances to ceftriaxone, enrofloxacin, cefotaxime, and moxalactam. S. marcescens isolates exhibited high susceptibilities of ≥ 90.9% to kanamycin, ceftiofur, sulfamethoxazole-trimethoprim, and the 15 aforementioned drugs, but exhibited resistance to minocycline. Neither MBL-producers nor MDRP strains were detected among the 171 strains. The dominant serotypes of P. aeruginosa isolates were OG, OA, OB, OI, OF, OE, and OK; those of S. marcescens isolates were O6 and O5. Every S. marcescens isolate was pigmented. These findings suggest that bovine P. aeruginosa and S. marcescens isolates differ from human isolates from both antibiogram and phenotypic perspectives, and could help to evaluate differences in bacteriological characteristics between bovine and human isolates. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. Biogenesis of outer membrane vesicles in Serratia marcescens is thermoregulated and can be induced by activation of the Rcs phosphorelay system.

    PubMed

    McMahon, Kenneth J; Castelli, Maria E; García Vescovi, Eleonora; Feldman, Mario F

    2012-06-01

    Outer membrane vesicles (OMVs) have been identified in a wide range of bacteria, yet little is known of their biogenesis. It has been proposed that OMVs can act as long-range toxin delivery vectors and as a novel stress response. We have found that the formation of OMVs in the gram-negative opportunistic pathogen Serratia marcescens is thermoregulated, with a significant amount of OMVs produced at 22 or 30°C and negligible quantities formed at 37°C under laboratory conditions. Inactivation of the synthesis of the enterobacterial common antigen (ECA) resulted in a hypervesiculation phenotype, supporting the hypothesis that OMVs are produced in response to stress. We demonstrate that the phenotype can be reversed to wild-type (WT) levels upon the loss of the Rcs phosphorelay response regulator RcsB, but not RcsA, suggesting a role for the Rcs phosphorelay in the production of OMVs. MS fingerprinting of the OMVs provided evidence of cargo selection within wild-type cells, suggesting a possible role for Serratia OMVs in toxin delivery. In addition, OMV-associated cargo proved toxic upon injection into the haemocoel of Galleria mellonella larvae. These experiments demonstrate that OMVs are the result of a regulated process in Serratia and suggest that OMVs could play a role in virulence.

  18. Identification of SlpB, a Cytotoxic Protease from Serratia marcescens

    PubMed Central

    Stella, Nicholas A.; Hunt, Kristin M.; Brothers, Kimberly M.; Zhang, Liang; Thibodeau, Patrick H.

    2015-01-01

    The Gram-negative bacterium and opportunistic pathogen Serratia marcescens causes ocular infections in healthy individuals. Secreted protease activity was characterized from 44 ocular clinical isolates, and a higher frequency of protease-positive strains was observed among keratitis isolates than among conjunctivitis isolates. A positive correlation between protease activity and cytotoxicity to human corneal epithelial cells in vitro was determined. Deletion of prtS in clinical keratitis isolate K904 reduced, but did not eliminate, cytotoxicity and secreted protease production. This indicated that PrtS is necessary for full cytotoxicity to ocular cells and implied the existence of another secreted protease(s) and cytotoxic factors. Bioinformatic analysis of the S. marcescens Db11 genome revealed three additional open reading frames predicted to code for serralysin-like proteases noted here as slpB, slpC, and slpD. Induced expression of prtS and slpB, but not slpC and slpD, in strain PIC3611 rendered the strain cytotoxic to a lung carcinoma cell line; however, only prtS induction was sufficient for cytotoxicity to a corneal cell line. Strain K904 with deletion of both prtS and slpB genes was defective in secreted protease activity and cytotoxicity to human cell lines. PAGE analysis suggests that SlpB is produced at lower levels than PrtS. Purified SlpB demonstrated calcium-dependent and AprI-inhibited protease activity and cytotoxicity to airway and ocular cell lines in vitro. Lastly, genetic analysis indicated that the type I secretion system gene, lipD, is required for SlpB secretion. These genetic data introduce SlpB as a new cytotoxic protease from S. marcescens. PMID:25939509

  19. Characterization of a dam Mutant of Serratia marcescens and Nucleotide Sequence of the dam Region

    PubMed Central

    Ostendorf, Tammo; Cherepanov, Peter; de Vries, Johann; Wackernagel, Wilfried

    1999-01-01

    The DNA of Serratia marcescens has N6-adenine methylation in GATC sequences. Among 2-aminopurine-sensitive mutants isolated from S. marcescens Sr41, one was identified which lacked GATC methylation. The mutant showed up to 30-fold increased spontaneous mutability and enhanced mutability after treatment with 2-aminopurine, ethyl methanesulfonate, or UV light. The gene (dam) coding for the adenine methyltransferase (Dam enzyme) of S. marcescens was identified on a gene bank plasmid which alleviated the 2-aminopurine sensitivity and the higher mutability of a dam-13::Tn9 mutant of Escherichia coli. Nucleotide sequencing revealed that the deduced amino acid sequence of Dam (270 amino acids; molecular mass, 31.3 kDa) has 72% identity to the Dam enzyme of E. coli. The dam gene is located between flanking genes which are similar to those found to the sides of the E. coli dam gene. The results of complementation studies indicated that like Dam of E. coli and unlike Dam of Vibrio cholerae, the Dam enzyme of S. marcescens plays an important role in mutation avoidance by allowing the mismatch repair enzymes to discriminate between the parental and newly synthesized strands during correction of replication errors. PMID:10383952

  20. Killing Effects of an Isolated Serratia marcescens KH-001 on Diaphorina citri via Lowering the Endosymbiont Numbers

    PubMed Central

    Hu, Wei; Kuang, Fan; Lu, Zhanjun; Zhang, Ning; Chen, Tingtao

    2018-01-01

    Huanglongbing (HLB) is the most devastating citrus disease worldwide, and suppression of the Asian citrus psyllid (Diaphorina citri) is regarded as an effective method to inhibit the spread of HLB. In this study, we isolated a strain named as Serratia marcescens KH-001 from D. citri nymphs suffering from disease, and evaluated its killing effect on D. citri via toxicity test and effect on microbial community in D. citri using high-throughput sequencing. Our results indicated that S. marcescens KH-001 could effectively kill 83% of D. citri nymphs, while the fermentation products of S. marcescens KH-001 only killed 40% of the D. citrinymphs. High-throughput sequencing results indicated that the S. marcescens KH-001 increased the OTU numbers from 62.5 (PBS buffer) to 81.5, while significantly lowered the Shannon index compared with Escherichia coli DH5α (group E) (p < 0.05). OTU analysis showed that the S. marcescens KH-001 had significantly reduced the relative abundance of endosymbionts Wolbachia, Profftella, and Carsonella in group S compared with that in other groups (p < 0.05). Therefore, the direct killing effect of the fermentation products of S. marcescens KH-001 and the indirect effect via reducing the numbers of endosymbionts (Wolbachia, Profftella, and Carsonella) of D. citri endow S. marcescens KH-001 a sound killing effect on D. citri. Further work need to do before this strain is used as a sound biological control agents. PMID:29765368

  1. Killing Effects of an Isolated Serratia marcescens KH-001 on Diaphorina citri via Lowering the Endosymbiont Numbers.

    PubMed

    Hu, Wei; Kuang, Fan; Lu, Zhanjun; Zhang, Ning; Chen, Tingtao

    2018-01-01

    Huanglongbing (HLB) is the most devastating citrus disease worldwide, and suppression of the Asian citrus psyllid ( Diaphorina citri ) is regarded as an effective method to inhibit the spread of HLB. In this study, we isolated a strain named as Serratia marcescens KH-001 from D. citri nymphs suffering from disease, and evaluated its killing effect on D. citri via toxicity test and effect on microbial community in D. citri using high-throughput sequencing. Our results indicated that S. marcescens KH-001 could effectively kill 83% of D. citri nymphs, while the fermentation products of S. marcescens KH-001 only killed 40% of the D. citri nymphs. High-throughput sequencing results indicated that the S. marcescens KH-001 increased the OTU numbers from 62.5 (PBS buffer) to 81.5, while significantly lowered the Shannon index compared with Escherichia coli DH5α (group E) ( p < 0.05). OTU analysis showed that the S. marcescens KH-001 had significantly reduced the relative abundance of endosymbionts Wolbachia , Profftella , and Carsonella in group S compared with that in other groups ( p < 0.05). Therefore, the direct killing effect of the fermentation products of S. marcescens KH-001 and the indirect effect via reducing the numbers of endosymbionts ( Wolbachia , Profftella , and Carsonella ) of D. citri endow S. marcescens KH-001 a sound killing effect on D. citri . Further work need to do before this strain is used as a sound biological control agents.

  2. Chorioamnionitis caused by Serratia marcescens in a healthy pregnant woman with preterm premature rupture of membranes: A rare case report and review of the literature.

    PubMed

    Erenberg, Miriam; Yagel, Yael; Press, Fernanda; Weintraub, Adi Y

    2017-04-01

    The incidence of chorioamnionitis varies widely. The highest incidence is reported in preterm deliveries. Among preterm deliveries, chorioamnionitis usually occurs after preterm premature rupture of membranes (PPROM). To date, only five cases of chorioamnionitis due to Serratia marcescens were reported. Here we present a case of a pregnant woman with chorioamnionitis due to Serratia marcescens who delivered a premature neonate at 28 weeks and four days of gestation. We also conducted a review of the literature in order to identify and characterize the clinical presentation and outcomes of this rare infection. A 36 year old female (gravida 9, para 6) was admitted with cervical effacement of 16mm and intact membranes at gestational age of 25 weeks and five days. One week following her admission PPROM was noticed. Treatment with the standard antibiotic regimen for PPROM was initiated. Thirteen days after the diagnosis of PPROM (28 weeks and four days) she developed chills, abdominal pain, sub febrile fever, tachycardia, leukocytosis and fetal tachycardia, and a clinical diagnosis of chorioamnionitis was made. An urgent CS was performed. In the first post-operative day the patient developed surgical sight infection. Cultures obtained from the purulent discharge of the wound, as well as cultures from the placenta and uterine cavity that were obtained during surgery grew Serratia marcescens. The patient was treated with Meropenem for six days, with a good clinical response. We present a rare case of nosocomialy acquired Serratia marcescens chorioamnionitis in a patient with PPROM. This case emphasizes the need for good infection control measures. Our favorable outcome together with the scares reports in the literature, add insight into this type of rare infection. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Cefepime shows good efficacy and no antibiotic resistance in pneumonia caused by Serratia marcescens and Proteus mirabilis - an observational study.

    PubMed

    Yayan, Josef; Ghebremedhin, Beniam; Rasche, Kurt

    2016-03-23

    Many antibiotics have no effect on Gram-positive and Gram-negative microbes, which necessitates the prescription of broad-spectrum antimicrobial agents that can lead to increased risk of antibiotic resistance. These pathogens constitute a further threat because they are also resistant to numerous beta-lactam antibiotics, as well as other antibiotic groups. This study retrospectively investigates antimicrobial resistance in hospitalized patients suffering from pneumonia triggered by Gram-negative Serratia marcescens or Proteus mirabilis. The demographic and clinical data analyzed in this study were obtained from the clinical databank of the HELIOS Clinic, Witten/Herdecke University, Wuppertal, Germany, for inpatients presenting with pneumonia triggered by S. marcescens or P. mirabilis from 2004 to 2014. An antibiogram was conducted for the antibiotics utilized as part of the management of patients with pneumonia triggered by these two pathogens. Pneumonia was caused by Gram-negative bacteria in 115 patients during the study period from January 1, 2004, to August 12, 2014. Of these, 43 (37.4 %) hospitalized patients [26 males (60.5 %, 95 % CI 45.9 %-75.1 %) and 17 females (39.5 %, 95 % CI 24.9 %-54.1 %)] with mean age of 66.2 ± 13.4 years had pneumonia triggered by S. marcescens, while 20 (17.4 %) patients [14 males (70 %, 95 % CI 49.9 %-90.1 %) and 6 females (30 %, 95 % CI 9.9 %-50.1 %)] with a mean age of 64.6 ± 12.8 years had pneumonia caused by P. mirabilis. S. marcescens showed an increased antibiotic resistance to ampicillin (100 %), ampicillin-sulbactam (100 %), and cefuroxime (100 %). P. mirabilis had a high resistance to tetracycline (100 %) and ampicillin (55 %). S. marcescens (P < 0.0001) and P. mirabilis (P = 0.0003) demonstrated no resistance to cefepime in these patients with pneumonia. S. marcescens and P. mirabilis were resistant to several commonly used antimicrobial agents, but showed no resistance to

  4. Genomic, proteomic and biochemical analysis of the chitinolytic machinery of Serratia marcescens BJL200.

    PubMed

    Tuveng, Tina R; Hagen, Live Heldal; Mekasha, Sophanit; Frank, Jeremy; Arntzen, Magnus Øverlie; Vaaje-Kolstad, Gustav; Eijsink, Vincent G H

    2017-04-01

    The chitinolytic machinery of Serratia marcescens BJL200 has been studied in detail over the last couple of decades, however, the proteome secreted by this Gram-negative bacterium during growth on chitin has not been studied in depth. In addition, the genome of this most studied chitinolytic Serratia strain has until now, not been sequenced. We report a draft genome sequence for S. marcescens BJL200. Using label-free quantification (LFQ) proteomics and a recently developed plate-method for assessing secretomes during growth on solid substrates, we find that, as expected, the chitin-active enzymes (ChiA, B, C, and CBP21) are produced in high amounts when the bacterium grows on chitin. Other proteins produced in high amounts after bacterial growth on chitin provide interesting targets for further exploration of the proteins involved in degradation of chitin-rich biomasses. The genome encodes a fourth chitinase (ChiD), which is produced in low amounts during growth on chitin. Studies of chitin degradation with mixtures of recombinantly produced chitin-degrading enzymes showed that ChiD does not contribute to the overall efficiency of the process. ChiD is capable of converting N,N'-diacetyl chitobiose to N-acetyl glucosamine, but is less efficient than another enzyme produced for this purpose, the Chitobiase. Thus, the role of ChiD in chitin degradation, if any, remains unclear. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Fluoroquinolone resistance of Serratia marcescens: sucrose, salicylate, temperature, and pH induction of phenotypic resistance.

    PubMed

    Begic, Sanela; Worobec, Elizabeth A

    2007-11-01

    Serratia marcescens is a nosocomial agent with a natural resistance to a broad spectrum of antibiotics, making the treatment of its infections very challenging. This study examines the influence of salicylate, sucrose, temperature, and pH variability on membrane permeability and susceptibility of S. marcescens to norfloxacin (hydrophilic fluoroquinolone) and nalidixic acid (hydrophobic quinolone). Resistance of wild-type S. marcescens UOC-67 (ATCC 13880) to norfloxacin and nalidixic acid was assessed by minimal inhibitory concentration (MIC) assays after growth in the presence of various concentrations of sucrose and salicylate and different temperatures and pH values. Norfloxacin and nalidixic acid accumulation was determined in the absence and presence of (i) carbonyl cyanide m-chlorophenylhydrazone (CCCP), a proton-motive-force collapser, and (ii) Phe-Arg beta-naphthylamide (PAbetaN), an efflux pump inhibitor. Accumulation of norfloxacin decreased when S. marcescens was grown in high concentrations of salicylate (8 mmol/L) and sucrose (10% m/v), at high temperature (42 degrees C), and at pH 6, and it was restored in the presence of CCCP because of the collapse of proton-gradient-dependent efflux in S. marcescens. Although nalidixic acid accumulation was observed, it was not affected by salicylate, sucrose, pH, or temperature changes. In the absence of PAbetaN, and either in the presence or absence of CCCP, a plateau was reached in the nalidixic acid accumulation for all environmental conditions. With the addition of 20 mg/L PAbetaN nalidixic acid accumulation is restored for all environmental conditions, suggesting that this quinolone is recognized by a yet to be identified S. marcescens pump that does not use proton motive force as its energy source.

  6. Identification of SlpB, a Cytotoxic Protease from Serratia marcescens.

    PubMed

    Shanks, Robert M Q; Stella, Nicholas A; Hunt, Kristin M; Brothers, Kimberly M; Zhang, Liang; Thibodeau, Patrick H

    2015-07-01

    The Gram-negative bacterium and opportunistic pathogen Serratia marcescens causes ocular infections in healthy individuals. Secreted protease activity was characterized from 44 ocular clinical isolates, and a higher frequency of protease-positive strains was observed among keratitis isolates than among conjunctivitis isolates. A positive correlation between protease activity and cytotoxicity to human corneal epithelial cells in vitro was determined. Deletion of prtS in clinical keratitis isolate K904 reduced, but did not eliminate, cytotoxicity and secreted protease production. This indicated that PrtS is necessary for full cytotoxicity to ocular cells and implied the existence of another secreted protease(s) and cytotoxic factors. Bioinformatic analysis of the S. marcescens Db11 genome revealed three additional open reading frames predicted to code for serralysin-like proteases noted here as slpB, slpC, and slpD. Induced expression of prtS and slpB, but not slpC and slpD, in strain PIC3611 rendered the strain cytotoxic to a lung carcinoma cell line; however, only prtS induction was sufficient for cytotoxicity to a corneal cell line. Strain K904 with deletion of both prtS and slpB genes was defective in secreted protease activity and cytotoxicity to human cell lines. PAGE analysis suggests that SlpB is produced at lower levels than PrtS. Purified SlpB demonstrated calcium-dependent and AprI-inhibited protease activity and cytotoxicity to airway and ocular cell lines in vitro. Lastly, genetic analysis indicated that the type I secretion system gene, lipD, is required for SlpB secretion. These genetic data introduce SlpB as a new cytotoxic protease from S. marcescens. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  7. Vanillic acid from Actinidia deliciosa impedes virulence in Serratia marcescens by affecting S-layer, flagellin and fatty acid biosynthesis proteins.

    PubMed

    Sethupathy, Sivasamy; Ananthi, Sivagnanam; Selvaraj, Anthonymuthu; Shanmuganathan, Balakrishnan; Vigneshwari, Loganathan; Balamurugan, Krishnaswamy; Mahalingam, Sundarasamy; Pandian, Shunmugiah Karutha

    2017-11-27

    Serratia marcescens is one of the important nosocomial pathogens which rely on quorum sensing (QS) to regulate the production of biofilm and several virulence factors. Hence, blocking of QS has become a promising approach to quench the virulence of S. marcescens. For the first time, QS inhibitory (QSI) and antibiofilm potential of Actinidia deliciosa have been explored against S. marcescens clinical isolate (CI). A. deliciosa pulp extract significantly inhibited the virulence and biofilm production without any deleterious effect on the growth. Vanillic acid was identified as an active lead responsible for the QSI activity. Addition of vanillic acid to the growth medium significantly affected the QS regulated production of biofilm and virulence factors in a concentration dependent mode in S. marcescens CI, ATCC 14756 and MG1. Furthermore vanillic acid increased the survival of Caenorhabditis elegans upon S. marcescens infection. Proteomic analysis and mass spectrometric identification of differentially expressed proteins revealed the ability of vanillic acid to modulate the expression of proteins involved in S-layers, histidine, flagellin and fatty acid production. QSI potential of the vanillic acid observed in the current study paves the way for exploring it as a potential therapeutic candidate to treat S. marcescens infections.

  8. Computational identification of potent inhibitors for Streptomycin 3″-adenylyltransferase of Serratia marcescens.

    PubMed

    Prabhu, Dhamodharan; Vidhyavathi, Ramasamy; Jeyakanthan, Jeyaraman

    2017-02-01

    Serratia marcescens is an opportunistic pathogen responsible for the respiratory and urinary tract infections in humans. The antibiotic resistance mechanism of S. marcescens is mediated through aminoglycoside modification enzyme that transfer adenyl group from substrate to antibiotic through regiospecific transfers for the inactivation of antibiotics. Streptomycin 3 ″ -adenylyltransferase acts on the 3' position of the antibiotic and considered as a novel drug target to overcome bacterial antibiotic resistance. Till now, there is no experimentally solved crystal structure of Streptomycin 3″-adenylyltransferase in S. marcescens. Hence, the present study was initiated to construct the three dimensional structure of Streptomycin 3″-adenylyltransferase in order to understand the binding mechanism. The modeled structure was subjected to structure-based virtual screening to identify potent compounds from the five chemical structure databases. Furthermore, different computational methods such as molecular docking, molecular dynamics simulations, ADME toxicity assessment, free energy and density functional theory calculations predicted the structural, binding and pharmacokinetic properties of the best five compounds. Overall, the results suggested that stable binding confirmation of the five potent compounds were mediated through hydrophobic, π-π stacking, salt bridges and hydrogen bond interactions. The identified compounds could pave way for the development of anti-pathogenic agents as potential drug entities. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Serratia marcescens in a neonatal intensive care unit: two long-term multiclone outbreaks in a 10-year observational study.

    PubMed

    Casolari, Chiara; Pecorari, Monica; Della Casa, Elisa; Cattani, Silvia; Venturelli, Claudia; Fabio, Giuliana; Tagliazucchi, Sara; Serpini, Giulia Fregni; Migaldi, Mario; Marchegiano, Patrizia; Rumpianesi, Fabio; Ferrari, Fabrizio

    2013-10-01

    We investigated two consecutive Serratia marcescens (S. marcescens) outbreaks which occurred in a neonatal intensive care unit (NICU) of a tertiary level hospital in North Italy in a period of 10 years (January 2003-December 2012). Risk factors associated with S. marcescens acquisition were evaluated by a retrospective case-control study. A total of 21,011 clinical samples was examined: S. marcescens occurred in 127 neonates: 43 developed infection and 3 died. Seven clusters were recorded due to 12 unrelated clones which persisted for years in the ward, although no environmental source was found. The main epidemic clone A sustaining the first cluster in 2003 reappeared in 2010 as an extended spectrum ?-lactamase (ESBL)-producing strain and supporting the second epidemic. Birth weight, gestational age, use of invasive devices and length of stay in the ward were significantly related to S. marcescens acquisition. The opening of a new ward for non-intensive care-requiring neonates, strict adherence to alcoholic hand disinfection, the timely identification and isolation of infected and colonized neonates assisted in containing the epidemics. Genotyping was effective in tracing the evolution and dynamics of the clones demonstrating their long-term persistence in the ward.

  10. Carbon-Starvation Induces Cross-Resistance to Thermal, Acid, and Oxidative Stress in Serratia marcescens

    PubMed Central

    Pittman, Joseph R.; Kline, La’Kesha C.; Kenyon, William J.

    2015-01-01

    The broad host-range pathogen Serratia marcescens survives in diverse host and non-host environments, often enduring conditions in which the concentration of essential nutrients is growth-limiting. In such environments, carbon and energy source starvation (carbon-starvation) is one of the most common forms of stress encountered by S. marcescens. Related members of the family Enterobacteriaceae are known to undergo substantial changes in gene expression and physiology in response to the specific stress of carbon-starvation, enabling non-spore-forming cells to survive periods of prolonged starvation and exposure to other forms of stress (i.e., starvation-induced cross-resistance). To determine if carbon-starvation also results in elevated levels of cross-resistance in S. marcescens, both log-phase and carbon-starved cultures, depleted of glucose before the onset of high cell-density stationary-phase, were grown in minimal media at either 30 °C or 37 °C and were then challenged for resistance to high temperature (50 °C), low pH (pH 2.8), and oxidative stress (15 mM H2O2). In general, carbon-starved cells exhibited a higher level of resistance to thermal stress, acid stress, and oxidative stress compared to log-phase cells. The extent of carbon-starvation-induced cross-resistance was dependent on incubation temperature and on the particular strain of S. marcescens. In addition, strain- and temperature-dependent variations in long-term starvation survival were also observed. The enhanced stress-resistance of starved S. marcescens cells could be an important factor in their survival and persistence in many non-host environments and within certain host microenvironments where the availability of carbon sources is suboptimal for growth. PMID:27682115

  11. Cloning, Sequencing, and Characterization of the SdeAB Multidrug Efflux Pump of Serratia marcescens

    PubMed Central

    Kumar, Ayush; Worobec, Elizabeth A.

    2005-01-01

    Serratia marcescens is an important nosocomial agent known for causing various infections in immunocompromised individuals. Resistance of this organism to a broad spectrum of antibiotics makes the treatment of infections very difficult. This study was undertaken to identify multidrug resistance efflux pumps in S. marcescens. Three mutant strains of S. marcescens were isolated in vitro by the serial passaging of a wild-type strain in culture medium supplemented with ciprofloxacin, norfloxacin, or ofloxacin. Fluoroquinolone accumulation assays were performed to detect the presence of a proton gradient-dependent efflux mechanism. Two of the mutant strains were found to be effluxing norfloxacin, ciprofloxacin, and ofloxacin, while the third was found to efflux only ofloxacin. A genomic library of S. marcescens wild-type strain UOC-67 was constructed and screened for RND pump-encoding genes by using DNA probes for two putative RND pump-encoding genes. Two different loci were identified: sdeAB, encoding an MFP and an RND pump, and sdeCDE, encoding an MFP and two different RND pumps. Northern blot analysis revealed overexpression of sdeB in two mutant strains effluxing fluoroquinolones. Analysis of the sdeAB and sdeCDE loci in Escherichia coli strain AG102MB, deficient in the RND pump (AcrB), revealed that gene products of sdeAB are responsible for the efflux of a diverse range of substrates that includes ciprofloxacin, norfloxacin, ofloxacin, chloramphenicol, sodium dodecyl sulfate, ethidium bromide, and n-hexane, while those of sdeCDE did not result in any change in susceptibilities to any of these agents. PMID:15793131

  12. Cloning, sequencing, and characterization of the SdeAB multidrug efflux pump of Serratia marcescens.

    PubMed

    Kumar, Ayush; Worobec, Elizabeth A

    2005-04-01

    Serratia marcescens is an important nosocomial agent known for causing various infections in immunocompromised individuals. Resistance of this organism to a broad spectrum of antibiotics makes the treatment of infections very difficult. This study was undertaken to identify multidrug resistance efflux pumps in S. marcescens. Three mutant strains of S. marcescens were isolated in vitro by the serial passaging of a wild-type strain in culture medium supplemented with ciprofloxacin, norfloxacin, or ofloxacin. Fluoroquinolone accumulation assays were performed to detect the presence of a proton gradient-dependent efflux mechanism. Two of the mutant strains were found to be effluxing norfloxacin, ciprofloxacin, and ofloxacin, while the third was found to efflux only ofloxacin. A genomic library of S. marcescens wild-type strain UOC-67 was constructed and screened for RND pump-encoding genes by using DNA probes for two putative RND pump-encoding genes. Two different loci were identified: sdeAB, encoding an MFP and an RND pump, and sdeCDE, encoding an MFP and two different RND pumps. Northern blot analysis revealed overexpression of sdeB in two mutant strains effluxing fluoroquinolones. Analysis of the sdeAB and sdeCDE loci in Escherichia coli strain AG102MB, deficient in the RND pump (AcrB), revealed that gene products of sdeAB are responsible for the efflux of a diverse range of substrates that includes ciprofloxacin, norfloxacin, ofloxacin, chloramphenicol, sodium dodecyl sulfate, ethidium bromide, and n-hexane, while those of sdeCDE did not result in any change in susceptibilities to any of these agents.

  13. Late-onset neonatal sepsis, risk factors and interventions: an analysis of recurrent outbreaks of Serratia marcescens, 2006-2011.

    PubMed

    Samuelsson, A; Isaksson, B; Hanberger, H; Olhager, E

    2014-01-01

    Between 2006 and 2011, 11 patients with Serratia marcescens sepsis and 47 patients colonized due to the spread of various clones were observed. These recurrent clusters brought about interventions to reduce spread between patients. To evaluate the effect of stepwise interventions to prevent S. marcescens colonization/sepsis and to analyse risk factors for late-onset sepsis (LOS). An open retrospective observational study was performed to evaluate the interventions. A retrospective case-control study was performed to analyse the risk factors for LOS. S. marcescens sepsis and colonization decreased after the stepwise adoption of hygiene interventions. Low gestational age, low birth weight, indwelling central venous or umbilical catheter, and ventilator treatment were identified as risk factors for LOS. Compliance with basic hygiene guidelines was the only intervention monitored continuously from late 2007. Compliance increased gradually to a steady high level in early 2009. There was a decrease in S. marcescens LOS, clustering after the second quarter of 2008. After the first quarter of 2009, S. marcescens colonization decreased. It was not possible to identify the specific effects of each intervention, but it is likely that an update of the hospital's antibiotic policy affected the occurrence of S. marcescens LOS. The delayed effect of interventions on S. marcescens colonization was probably due to the time it takes for new routines to have an effect, illustrated by the gradual increase in compliance with basic hygiene guidelines. Copyright © 2013 The Healthcare Infection Society. Published by Elsevier Ltd. All rights reserved.

  14. Identification by real-time PCR with SYBR Green of Leishmania spp. and Serratia marcescens in canine 'sterile' cutaneous nodular lesions.

    PubMed

    Cornegliani, Luisa; Corona, Antonio; Vercelli, Antonella; Roccabianca, Paola

    2015-06-01

    Noninfectious, non-neoplastic, nodular to diffuse, so-called 'sterile' granulomatous/pyogranulomatous skin lesions (SGPSLs) are infrequently identified in dogs and may represent a diagnostic challenge. Their correct identification is based on history, histopathology and absence of intralesional foreign bodies and micro-organisms. The aim of this study was to investigate the presence of Leishmania spp., Mycobacterium spp., Serratia marcescens and Nocardia spp. by real-time PCR in canine nodular skin lesions histologically diagnosed as putatively sterile. Formalin-fixed skin biopsies were collected from 40 dogs. All samples were associated with an SGPSL diagnosis characterized by multifocal, nodular to diffuse, periadnexal and perifollicular pyogranulomas/granulomas. Neither micro-organisms nor foreign bodies were detected with haematoxylin and eosin staining, under polarized light. Further analyses included periodic acid Schiff, Ziehl-Neelsen, Fite Faraco, Giemsa and Gram histochemical stains; anti-Bacillus Calmette-Guérin (BCG) and Leishmania spp. immunohistochemistry; and real-time PCR analysis for Leishmania spp., Mycobacterium spp., S. marcescens and Nocardia spp. Special stains and BCG/immunohistochemistry were negative in all samples. Real-time PCR was positive for Leishmania spp. in four of 40 biopsies and for S. marcescens in two of 40 samples. Real-time PCR for Mycobacterium spp. and Nocardia spp. was negative. No correlation between real-time PCR positivity and a specific histological pattern was identified. Leishmania spp. have been previously identified as possible agents of certain SGPSLs, while the involvement of S. marcescens has not been investigated previously. According to our findings, Serratia spp. should be included in the list of agents possibly associated with a subgroup of granulomatous/pyogranulomatous skin lesions in dogs. © 2015 ESVD and ACVD.

  15. Multifarious beneficial traits and plant growth promoting potential of Serratia marcescens KiSII and Enterobacter sp. RNF 267 isolated from the rhizosphere of coconut palms (Cocos nucifera L.).

    PubMed

    George, Priya; Gupta, Alka; Gopal, Murali; Thomas, Litty; Thomas, George V

    2013-01-01

    Two plant growth promoting bacteria designated as KiSII and RNF 267 isolated from the rhizosphere of coconut palms were identified as Serratia marcescens and Enterobacter sp. based on their phenotypic features, BIOLOG studies and 16S rRNA gene sequence analysis. Both bacteria exhibited phosphate solubilization, ammonification, and production of indole acetic acid, β-1, 3 glucanase activities and 1-aminocyclopropane-1-carboxylate-deaminase activity. They could also tolerate a range of pH conditions, low temperature and salinity (NaCl). In addition, S. marcescens KiSII exhibited N- fixation potential, chitinase activity, siderophore production and antibiotics production. Seed bacterization with these bacteria increased the growth parameters of test plants such as paddy and cowpea over uninoculated control in green house assay. In coconut seedlings, significant increase in growth and nutrient uptake accompanied with higher populations of plant beneficial microorganisms in their rhizospheres were recorded on inoculation with both the PGPRs. The present study clearly revealed that PGPRs can aid in production of healthy and vigorous seedlings of coconut palm which are hardy perennial crops. They offer a scope to be developed into novel PGPR based bioinoculants for production of elite seedlings that can benefit the coconut farming community and the coconut based ecology.

  16. Bacterial body plans: Colony ontogeny in Serratia marcescens.

    PubMed

    Rieger, Tomás; Neubauer, Zdenek; Blahůsková, Anna; Cvrcková, Fatima; Markos, Anton

    2008-01-01

    The bacterium Serratia marcescens produces a plethora of multicellular shapes of different colorations on solid substrates, allowing immediate visual detection of varieties. Such a plasticity allows studies on multicellular community scale spanning two extremes, from well-elaborated individual colonies to undifferentiated cell mass.For a single strain and medium, we obtained a range of different multicellular bodies, depending on the layout of initial plating. Four principal factors affecting the morphogenetic pathways of such bodies can be distinguished: (1) amount, density and distribution pattern of founder cells; (2) the configuration of surrounding free medium; (3) the presence and character of other bacterial bodies sharing the same niche; and (4) self-perception, resulting in delimitation towards other bodies. The last feature results in an ability of well-formed multicellular individuals to maintain their identity upon a close mutual contact, as well as in spontaneous separation of cell masses in experimental chimeras. We propose an "embryo-like" colony model where multicellular bacterial bodies develop along genuine ontogenetic pathways inherent to the given species (clone), while external shaping forces (like nutrient gradients, pH, etc.,) exert not formative, but only regulative roles in the process.

  17. Intraspecies Competition in Serratia marcescens Is Mediated by Type VI-Secreted Rhs Effectors and a Conserved Effector-Associated Accessory Protein

    PubMed Central

    Alcoforado Diniz, Juliana

    2015-01-01

    ABSTRACT The type VI secretion system (T6SS) is widespread in Gram-negative bacteria and can deliver toxic effector proteins into eukaryotic cells or competitor bacteria. Antibacterial T6SSs are increasingly recognized as key mediators of interbacterial competition and may contribute to the outcome of many polymicrobial infections. Multiple antibacterial effectors can be delivered by these systems, with diverse activities against target cells and distinct modes of secretion. Polymorphic toxins containing Rhs repeat domains represent a recently identified and as-yet poorly characterized class of T6SS-dependent effectors. Previous work had revealed that the potent antibacterial T6SS of the opportunistic pathogen Serratia marcescens promotes intraspecies as well as interspecies competition (S. L. Murdoch, K. Trunk, G. English, M. J. Fritsch, E. Pourkarimi, and S. J. Coulthurst, J Bacteriol 193:6057–6069, 2011, http://dx.doi.org/10.1128/JB.05671-11). In this study, two new Rhs family antibacterial effectors delivered by this T6SS have been identified. One of these was shown to act as a DNase toxin, while the other contains a novel, cytoplasmic-acting toxin domain. Importantly, using S. marcescens, it has been demonstrated for the first time that Rhs proteins, rather than other T6SS-secreted effectors, can be the primary determinant of intraspecies competition. Furthermore, a new family of accessory proteins associated with T6SS effectors has been identified, exemplified by S. marcescens EagR1, which is specifically required for deployment of its associated Rhs effector. Together, these findings provide new insight into how bacteria can use the T6SS to deploy Rhs-family effectors and mediate different types of interbacterial interactions. IMPORTANCE Infectious diseases caused by bacterial pathogens represent a continuing threat to health and economic prosperity. To counter this threat, we must understand how such organisms survive and prosper. The type VI secretion

  18. Outbreak of a Cluster with Epidemic Behavior Due to Serratia marcescens after Colistin Administration in a Hospital Setting

    PubMed Central

    Merkier, Andrea Karina; Rodríguez, María Cecilia; Togneri, Ana; Brengi, Silvina; Osuna, Carolina; Pichel, Mariana; Cassini, Marcelo H.

    2013-01-01

    Serratia marcescens causes health care-associated infections with important morbidity and mortality. Particularly, outbreaks produced by multidrug-resistant isolates of this species, which is already naturally resistant to several antibiotics, including colistin, are usually described with high rates of fatal outcomes throughout the world. Thus, it is important to survey factors associated with increasing frequency and/or emergence of multidrug-resistant S. marcescens nosocomial infections. We report the investigation and control of an outbreak with 40% mortality due to multidrug-resistant S. marcescens infections that happened from November 2007 to April 2008 after treatment with colistin for Acinetobacter baumannii meningitis was started at hospital H1 in 2005. Since that year, the epidemiological pattern of frequently recovered species has changed, with an increase of S. marcescens and Proteus mirabilis infections in 2006 in concordance with a significant decrease of the numbers of P. aeruginosa and A. baumannii isolates. A single pulsed-field gel electrophoresis (PFGE) cluster of S. marcescens isolates was identified during the outbreak. When this cluster was compared with S. marcescens strains (n = 21) from 10 other hospitals (1997 to 2010), it was also identified in both sporadic and outbreak isolates circulating in 4 hospitals in Argentina. In132::ISCR1::blaCTX-M-2 was associated with the multidrug-resistant cluster with epidemic behavior when isolated from outbreaks. Standard infection control interventions interrupted transmission of this cluster even when treatment with colistin continued in several wards of hospital H1 until now. Optimizing use of colistin should be achieved simultaneously with improved infection control to prevent the emergence of species naturally resistant to colistin, such as S. marcescens and P. mirabilis. PMID:23698525

  19. Outbreak of a cluster with epidemic behavior due to Serratia marcescens after colistin administration in a hospital setting.

    PubMed

    Merkier, Andrea Karina; Rodríguez, María Cecilia; Togneri, Ana; Brengi, Silvina; Osuna, Carolina; Pichel, Mariana; Cassini, Marcelo H; Centrón, Daniela

    2013-07-01

    Serratia marcescens causes health care-associated infections with important morbidity and mortality. Particularly, outbreaks produced by multidrug-resistant isolates of this species, which is already naturally resistant to several antibiotics, including colistin, are usually described with high rates of fatal outcomes throughout the world. Thus, it is important to survey factors associated with increasing frequency and/or emergence of multidrug-resistant S. marcescens nosocomial infections. We report the investigation and control of an outbreak with 40% mortality due to multidrug-resistant S. marcescens infections that happened from November 2007 to April 2008 after treatment with colistin for Acinetobacter baumannii meningitis was started at hospital H1 in 2005. Since that year, the epidemiological pattern of frequently recovered species has changed, with an increase of S. marcescens and Proteus mirabilis infections in 2006 in concordance with a significant decrease of the numbers of P. aeruginosa and A. baumannii isolates. A single pulsed-field gel electrophoresis (PFGE) cluster of S. marcescens isolates was identified during the outbreak. When this cluster was compared with S. marcescens strains (n = 21) from 10 other hospitals (1997 to 2010), it was also identified in both sporadic and outbreak isolates circulating in 4 hospitals in Argentina. In132::ISCR1::blaCTX-M-2 was associated with the multidrug-resistant cluster with epidemic behavior when isolated from outbreaks. Standard infection control interventions interrupted transmission of this cluster even when treatment with colistin continued in several wards of hospital H1 until now. Optimizing use of colistin should be achieved simultaneously with improved infection control to prevent the emergence of species naturally resistant to colistin, such as S. marcescens and P. mirabilis.

  20. Cutaneous Serratia marcescens infections in Korea: A retrospective analysis of 13 patients.

    PubMed

    Seo, Jimyung; Shin, Dongyun; Oh, Sang Ho; Lee, Ju Hee; Chung, Kee Yang; Lee, Min-Geol; Kim, Dae Suk

    2016-02-01

    Serratia marcescens is a Gram-negative bacillus belonging to the Enterobacteriaceae family. Because of increasing reports of antimicrobial resistance, this bacterium has received considerable attention and has emerged as an important pathogen. In order to reveal clinical and microbiological characteristics of S. marcescens cutaneous infection and to suggest appropriate antibiotic treatment, we retrospectively analyzed 17 strains isolated from wound swabs of Korean patients between November 2005 and March 2014. A total of 13 patients (five men and eight women) were included in our study, with a mean age of 46.3 years (range, 21-82). Based on medical history, seven patients were classified as immunocompromised. Prior predisposing factors for infections were noted in 12 patients, including pre-existing leg ulcers or dermatitis (5/13), preceding cancer surgeries (2/13), plastic surgeries and filler injection (2/13), traumas (2/13) and medical procedures following cutaneous abscess (1/13). Cutaneous infections showed various clinical presentations, including spontaneous dermal abscess, fingernail change, painful nodules and papular erosions. We found that third- and fourth-generation cephalosporins, gentamicin, levofloxacin and meropenem appeared active against all 17 strains in vitro. Clinically, all patients treated with empirical first-generation cephalosporin showed treatment resistance, and oral quinolone monotherapy was the most preferred antibiotic regimen without treatment failure, with an average treatment duration of 25 days (range, 14-42). This study demonstrates the various clinical presentations and treatment responses for cutaneous S. marcescens infection. Moreover, we suggest that initial antibiotic coverage should be broad enough to account for multidrug resistance in this rare pathogen. © 2015 Japanese Dermatological Association.

  1. Protracted Regional Dissemination of GIM-1-Producing Serratia marcescens in Western Germany.

    PubMed

    Wendel, Andreas F; Kaase, Martin; Autenrieth, Ingo B; Peter, Silke; Oberhettinger, Philipp; Rieber, Heime; Pfeffer, Klaus; MacKenzie, Colin R; Willmann, Matthias

    2017-03-01

    The metallo-beta-lactamase GIM-1 has been found in various bacterial host species nearly exclusively in western Germany. However, not much is known about the epidemiology of GIM-1-positive Serratia marcescens Here we report on a surprisingly protracted regional dissemination. In-hospital transmission was investigated by using conventional epidemiological tools to identify spatiotemporal links. Strain typing was performed using pulsed-field gel electrophoresis (PFGE) and whole-genome sequencing (WGS). Bayesian phylogeny was used to infer the time axis of the observed occurrence. Thirteen S. marcescens strains from 10 patients from 6 different German hospitals were investigated. Suspected in-hospital transmissions were confirmed by molecular typing at a higher resolution by WGS than by PFGE. A detailed sequence analysis demonstrated the spread of one predominant strain variant but also provided evidence for transfer of the bla GIM-1 gene cassette between different strains. A Bayesian phylogenetic analysis showed that the most recent common ancestor of the identified clonal cluster could be dated back to April 1993 (95% highest posterior density interval, January 1973 to March 2003) and that this strain might have already harbored the bla GIM-1 at that time and, therewith, years before the first detection of this resistance gene in clinical specimens. This study shows a long-standing clonal and plasmid-mediated expansion of GIM-1-producing S. marcescens that might have gone unnoticed in the absence of a standardized and effective molecular screening for carbapenemases. The systematic and early detection of resistance is thus highly advisable, especially for the prevention of potentially long-term dissemination that may progress beyond control. Copyright © 2017 American Society for Microbiology.

  2. Systematic Analysis of White Pox Disease in Acropora palmata of the Florida Keys and Role of Serratia marcescens

    PubMed Central

    Joyner, Jessica L.; Sutherland, Kathryn P.; Kemp, Dustin W.; Berry, Brett; Griffin, Ashton; Porter, James W.; Amador, Molly H. B.; Noren, Hunter K. G.

    2015-01-01

    White pox disease (WPD) affects the threatened elkhorn coral, Acropora palmata. Owing in part to the lack of a rapid and simple diagnostic test, there have been few systematic assessments of the prevalence of acroporid serratiosis (caused specifically by Serratia marcescens) versus general WPD signs. Six reefs in the Florida Keys were surveyed between 2011 and 2013 to determine the disease status of A. palmata and the prevalence of S. marcescens. WPD was noted at four of the six reefs, with WPD lesions found on 8 to 40% of the colonies surveyed. S. marcescens was detected in 26.9% (7/26) of the WPD lesions and in mucus from apparently healthy colonies both during and outside of disease events (9%; 18/201). S. marcescens was detected with greater frequency in A. palmata than in the overlying water column, regardless of disease status (P = 0.0177). S. marcescens could not be cultured from A. palmata but was isolated from healthy colonies of other coral species and was identified as pathogenic pulsed-field gel electrophoresis type PDR60. WPD lesions were frequently observed on the reef, but unlike in prior outbreaks, no whole-colony death was observed. Pathogenic S. marcescens was circulating on the reef but did not appear to be the primary pathogen in these recent WPD episodes, suggesting that other pathogens or stressors may contribute to signs of WPD. Results highlight the critical importance of diagnostics in coral disease investigations, especially given that field manifestation of disease may be similar, regardless of the etiological agent. PMID:25911491

  3. Phytosynthesized silver nanoparticles as antiquorum sensing and antibiofilm agent against the nosocomial pathogen Serratia marcescens: an in vitro study.

    PubMed

    Ravindran, D; Ramanathan, S; Arunachalam, K; Jeyaraj, G P; Shunmugiah, K P; Arumugam, V R

    2018-06-01

    Serratia marcescens is an important multidrug-resistant human pathogen. The pathogenicity of S. marcescens mainly depends on the quorum sensing (QS) mechanism, which regulates the virulence factors production and biofilm formation. Hence, targeting QS mechanism in S. marcescens will ultimately pave the way to combat its pathogenicity. Thus, the present study is intended to evaluate the efficacy of Vetiveria zizanioides root extract-mediated silver nanoparticles (AgNPs) as a potent anti-QS and antibiofilm agent against S. marcescens. The AgNPs were synthesized using V. zizanioides aqueous root extract and the physiochemical properties of V. zizanioides-based AgNPs (VzAgNPs) were evaluated using analytical techniques such as ultraviolet-visible absorption spectroscopy, X-ray diffraction, Fourier transform infrared spectroscopy, dynamic light scattering and scanning and transmission electron microscopic techniques. VzAgNPs were found to attenuate the QS-dependent virulence factors, namely prodigiosin, protease, lipase, exopolysaccharide productions and biofilm formation of S. marcescens, without inhibiting its growth. Further, the transcriptomic analysis confirmed the down-regulation of QS-dependent genes, which encode for the production of virulence factors and biofilm formation. The current study confirms VzAgNPs as an ideal anti-QS and antibiofilm agent against S. marcescens. This is the first approach that validates the anti-QS and antibiofilm potential of phytosynthesized VzAgNPs against the nosocomial pathogen, S. marcescens. As VzAgNPs exhibits potent antivirulent activities, it could be used to treat hospital-acquired S. marcescens infections. © 2018 The Society for Applied Microbiology.

  4. Serratia marcescens-contaminated baby shampoo causing an outbreak among newborns at King Abdulaziz University Hospital, Jeddah, Saudi Arabia.

    PubMed

    Madani, T A; Alsaedi, S; James, L; Eldeek, B S; Jiman-Fatani, A A; Alawi, M M; Marwan, D; Cudal, M; Macapagal, M; Bahlas, R; Farouq, M

    2011-05-01

    During November 2008 to January 2009, 11 babies in the neonatal intensive care (NICU) and three babies in the nursery were infected with Serratia marcescens at King Abdulaziz University Hospital in Saudi Arabia. Overall, fifteen infections were identified among 11 newborns in the NICU: septicaemia (five cases), purulent conjunctivitis (three), urinary tract infection (two), meningitis (two) and cellulitis (one). Three newborns in the nursery had three infections: purulent conjunctivitis (two cases) and omphalitis (one). Thirteen of 14 babies recovered fully but one died from S. marcescens meningitis and septicaemia. All infections were traced to intrinsically contaminated baby shampoo introduced to the units five days before the first reported case. The outbreak terminated following withdrawal of the shampoo product. Copyright © 2011 The Healthcare Infection Society. Published by Elsevier Ltd. All rights reserved.

  5. Sudden death of an Indian peafowl (Pavo cristatus) at a zoo due to non-pigmented Serratia marcescens infection

    PubMed Central

    LEE, Seung-Hun; PARK, Sang-Joon; KWAK, Dongmi; KIM, Kyoo-Tae

    2017-01-01

    A 16-year-old female Indian peafowl (Pavo cristatus) died two days after recognition of conjunctivitis in the right eye, anorexia and depression. Gross necropsy revealed a thick pseudomembrane under the eyelid and hydropericardium. Histopathological examination revealed hepatocellular necrosis, sinusoidal and vascular congestion and infiltrated inflammatory cells. Infiltration by inflammatory cells was noted in the epicardium. The lungs had mild interstitial pneumonia with the extensive congestion within the capillaries of the air sacs. Tubular interstitial congestion and necrosis was noted in the kidneys. Bacterial culture and nucleotide sequencing of the inflammatory specimens identified the causative agent as Serratia marcescens, an uncommon bacterium in birds. In summary, this study describes the sudden death of an Indian peafowl due to S. marcescens infection, which is rarely seen in animals. PMID:29081475

  6. Survival of Serratia marcescens in benzalkonium chloride and in multiple-dose medication vials: relationship to epidemic septic arthritis.

    PubMed Central

    Nakashima, A K; Highsmith, A K; Martone, W J

    1987-01-01

    In an epidemic of septic arthritis due to Serratia marcescens, the intra-articular injection of contaminated methylprednisolone may have played a key role. The epidemic strain was found in used multiple-dose vials of methylprednisolone and in a canister of cotton balls soaked in benzalkonium chloride. The cotton balls had been used for antisepsis and disinfection. Growth characteristics of the epidemic strain of S. marcescens were compared with those of control strains of S. marcescens which had been obtained from unrelated nosocomial outbreaks. The epidemic strain was able to survive in 1:100 dilutions of benzalkonium chloride and was able to grow to greater than 10(5) CFU/ml in multiple-dose vials of methylprednisoline; control strains could not be recovered after 24 h in the same solutions. The preservative in methylprednisolone is gamma-myristyl picolinium chloride, a compound chemically related to benzalkonium chloride. We speculate that the epidemic strain of S. marcescens, which was resistant to benzalkonium chloride, had cross-resistance to gamma-myristyl picolinium chloride. If the cotton balls were used to disinfect the tops of the multiple-dose vials of methylprednisolone, small numbers of organisms subsequently introduced into the solution could have grown to high concentrations. PMID:3298309

  7. Enantioselective synthesis of (R)-phenylephrine by Serratia marcescens BCRC10948 cells that homologously express SM_SDR.

    PubMed

    Kuan, Yi-Chia; Xu, Yue-Bin; Wang, Wen-Ching; Yang, Ming-Te

    2018-03-01

    A short-chain dehydrogenase/reductase from Serratia marcescens BCRC10948, SM_SDR, has been cloned and expressed in Escherichia coli for the bioconversion of 1-(3-hydroxyphenyl)-2-(methylamino) ethanone (HPMAE) to (R)-phenylephrine[(R)-PE]. However, only 5.11mM (R)-PE was obtained from 10mM HPMAE after a 9h conversion in the previous report. To improve the biocatalytic efficiency, the homologous expression of the SM_SDR in S. marcescens BCRC10948 was achieved using the T5 promoter for expression. By using 2% glycerol as carbon source, we found that 8.00±0.15mM of (R)-PE with more than 99% enantiomeric excess was produced from 10mM HPMAE after 12h conversion at 30°C and pH 7.0. More importantly, by using 50mM HPMAE as the substrate, 23.78±0.84mM of (R)-PE was produced after a 12h conversion with the productivity and the conversion yield of 1.98mmol (R)-PE/lh and 47.50%, respectively. The recombinant S. marcescens cells could be recycled 6 times for the production of (R)-PE, and the bioconversion efficiency remained at 85% when compared to that at the first cycle. Our data indicated that a high conversion efficiency of HPMAE to (R)-PE could be achieved using S. marcescens BCRC10948 cells that homologously express the SM_SDR. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Investigation of a nosocomial outbreak due to Serratia marcescens in a maternity hospital.

    PubMed

    Berthelot, P; Grattard, F; Amerger, C; Frery, M C; Lucht, F; Pozzetto, B; Fargier, P

    1999-04-01

    To investigate an outbreak of Serratia marcescens in a maternity hospital (November 1994 to May 1995). Retrospective analysis of epidemiological data and prospective study of systematic bacteriological samples from patients and environment, with genotyping of strains by arbitrarily primed polymerase chain reaction. A private maternity hospital, Saint-Etienne, France. In the neonatal unit, 1 newborn developed a bacteremia, and 36 were colonized in stools with S marcescens. As the colonization of some newborns was shown to occur only a few hours after delivery, the inquiry was extended to other maternity wards, where 8 babies and 4 mothers were found to be colonized. Environmental sampling led to the isolation of S marcescens from a bottle of enteral feed additive in the neonatal unit and from the transducers of two internal tocographs in the delivery rooms. The genotyping of 27 strains showed two different profiles: a major epidemic profile shared by 22 strains (18 from babies of the neonatal unit, 2 from babies of other units, and 2 from breast milk) and another profile shared by 5 strains (2 from transducers of internal tocographs, 2 from babies, and 1 from a mother). The strain isolated from lipid enteral feeding was not available for typing. Although this source of contamination was removed soon from the neonatal unit, the outbreak stopped only when infection control measures were reinforced in the delivery rooms, including the nonreuse of internal tocographs. In delivery rooms, the quality of hygiene needs to be as high as in surgery rooms to prevent nosocomial colonization or infection of neonates at birth.

  9. Seed treatment with ethanol extract of Serratia marcescens is compatible with Trichoderma isolates for control of damping-off of cucumber caused by Pythium ultimum

    USDA-ARS?s Scientific Manuscript database

    Environmentally friendly control measures for soil-borne plant pathogens are needed that are effective in different soils when applied alone or as components of an integrated disease control strategy. Ethanol extracts of Serratia marcescens N4-5 when applied as a cucumber seed treatment effectively ...

  10. Endophytic Colonization of Rice by a Diazotrophic Strain of Serratia marcescens

    PubMed Central

    Gyaneshwar, Prasad; James, Euan K.; Mathan, Natarajan; Reddy, Pallavolu M.; Reinhold-Hurek, Barbara; Ladha, Jagdish K.

    2001-01-01

    Six closely related N2-fixing bacterial strains were isolated from surface-sterilized roots and stems of four different rice varieties. The strains were identified as Serratia marcescens by 16S rRNA gene analysis. One strain, IRBG500, chosen for further analysis showed acetylene reduction activity (ARA) only when inoculated into media containing low levels of fixed nitrogen (yeast extract). Diazotrophy of IRBG500 was confirmed by measurement of 15N2 incorporation and by sequence analysis of the PCR-amplified fragment of nifH. To examine its interaction with rice, strain IRBG500 was marked with gusA fused to a constitutive promoter, and the marked strain was inoculated onto rice seedlings under axenic conditions. At 3 days after inoculation, the roots showed blue staining, which was most intense at the points of lateral root emergence and at the root tip. At 6 days, the blue precipitate also appeared in the leaves and stems. More detailed studies using light and transmission electron microscopy combined with immunogold labeling confirmed that IRBG500 was endophytically established within roots, stems, and leaves. Large numbers of bacteria were observed within intercellular spaces, senescing root cortical cells, aerenchyma, and xylem vessels. They were not observed within intact host cells. Inoculation of IRBG500 resulted in a significant increase in root length and root dry weight but not in total N content of rice variety IR72. The inoculated plants showed ARA, but only when external carbon (e.g., malate, succinate, or sucrose) was added to the rooting medium. PMID:11274124

  11. Failed Reverse Total Shoulder Arthroplasty Caused by Recurrent Candida glabrata Infection with Prior Serratia marcescens Coinfection

    PubMed Central

    Skedros, John G.; Keenan, Kendra E.; Updike, Wanda S.; Oliver, Marquam R.

    2014-01-01

    This report describes a 58-year-old insulin-dependent diabetic male patient who initially sustained a proximal humerus fracture from a fall. The fracture fixation failed and then was converted to a humeral hemiarthroplasty, which became infected with Candida glabrata and Serratia marcescens. After these infections were believed to be cured with antibacterial and antifungal treatments and two-stage irrigation and debridement, he underwent conversion to a reverse total shoulder arthroplasty. Unfortunately, the C. glabrata infection recurred and, nearly 1.5 years after implantation of the reverse total shoulder, he had a resection arthroplasty (removal of all implants and cement). His surgical and pharmacologic treatment concluded with (1) placement of a tobramycin-impregnated cement spacer also loaded with amphotericin B, with no plan for revision arthroplasty (i.e., the spacer was chronically retained), and (2) chronic use of daily oral fluconazole. We located only three reported cases of Candida species causing infection in shoulder arthroplasties (two C. albicans, one C. parapsilosis). To our knowledge, a total shoulder arthroplasty infected with C. glabrata has not been reported, nor has a case of a C. glabrata and S. marcescens periprosthetic coinfection in any joint. In addition, it is well known that S. marcescens infections are uncommon in periprosthetic joint infections. PMID:25431708

  12. Serratia nematodiphila sp. nov., associated symbiotically with the entomopathogenic nematode Heterorhabditidoides chongmingensis (Rhabditida: Rhabditidae).

    PubMed

    Zhang, Chong-Xing; Yang, Shou-Yun; Xu, Ming-Xu; Sun, Jie; Liu, Huan; Liu, Jing-Rui; Liu, Hui; Kan, Fei; Sun, Jing; Lai, Ren; Zhang, Ke-Yun

    2009-07-01

    A novel red-pigmented, Gram-negative, motile, fluorescent, rod-shaped strain, DZ0503SBS1(T), with a single lateral flagellum, was isolated from the intestine of the nematode Heterorhabditidoides chongmingensis. Comparative 16S rRNA gene sequence analysis indicated that the strain is a member of the genus Serratia, sharing highest sequence similarities with Serratia marcescens subsp. sakuensis JCM 11315(T) (99.8 %), S. marcescens subsp. marcescens DSM 30121(T) (99.5 %) and Serratia ureilytica LMG 22860(T) (98.3 %). Similarities between the rpoB gene sequence of strain DZ0503SBS1(T) and those of S. marcescens subsp. sakuensis JCM 11315(T), S. marcescens subsp. marcescens DSM 30121(T) and S. ureilytica LMG 22860(T) were 98.0, 97.4 and 98.3 %, respectively. DNA-DNA hybridization values of strain DZ0503SBS1(T) with S. marcescens subsp. sakuensis JCM 11315(T), S. marcescens subsp. marcescens DSM 30121(T) and S. ureilytica LMG 22860(T) were 68.2, 65.1 and 53.0 %, respectively. The major isoprenoid quinone of strain DZ0503SBS1(T) was Q-8 and the predominant fatty acids were C(16 : 0) (34.76 %), cyclo-C(17 : 0) (20.03 %) and cyclo-C(19 : 0)omega8c (17.24 %). The cyclo-C(19 : 0)omega8c content (17.24 %) was significantly different from those found in S. marcescens subsp. sakuensis JCM 11315(T) and S. marcescens subsp. marcescens DSM 30121(T). Some characteristics of strain DZ0503SBS1(T), i.e. fluorescence and its symbiotic association with nematodes, have not been reported previously in any species of the genus Serratia. Phenotypic and biochemical characteristics and molecular data show that strain DZ0503SBS1(T) represents a novel species, for which the name Serratia nematodiphila sp. nov. is proposed; the type strain is DZ0503SBS1(T) (=KCTC 22130(T) =CGMCC 1.6853(T)).

  13. Carbapenem-resistant Serratia marcescens isolates producing Bush group 2f beta-lactamase (SME-1) in the United States: results from the MYSTIC Programme.

    PubMed

    Gales, A C; Biedenbach, D J; Winokur, P; Hacek, D M; Pfaller, M A; Jones, R N

    2001-02-01

    Two carbapenem (imipenem, meropenem)-resistant Serratia marcescens strains were isolated in the United States (Chicago, IL) through the 1999 MYSTIC (Meropenem Yearly Susceptibility Test Information Collection) Programme. The S. marcescens antimicrobial susceptible patterns were: susceptible to ceftriaxone, ceftazidime, and cefepime (MICs, < or = 0.25 microg/ml), and resistance to the carbapenems (imipenem and meropenem; MIC, > 32 microg/ml) and aztreonam (MIC, > = 16 microg/ml). Each S. marcescens isolate shared an identical epidemiologic type (ribotype and PFGE) and the outer membrane protein profile was also identical to those of the wild type susceptible strains from the same medical center. The PCR utilizing bla(sme-1) primers amplified a gene product that was identified as consistent with SME-1 after DNA sequencing. Imipenem and meropenem resistance due to production of carbapenem-hydrolyzing enzymes among clinical isolates is still very rare, but microbiology laboratories should be aware of these chromosomally encoded enzymes among class C beta-lactamases producing enteric bacilli such as S. marcescens and Enterobacter cloacae.

  14. Systematic Analysis of White Pox Disease in Acropora palmata of the Florida Keys and Role of Serratia marcescens.

    PubMed

    Joyner, Jessica L; Sutherland, Kathryn P; Kemp, Dustin W; Berry, Brett; Griffin, Ashton; Porter, James W; Amador, Molly H B; Noren, Hunter K G; Lipp, Erin K

    2015-07-01

    White pox disease (WPD) affects the threatened elkhorn coral, Acropora palmata. Owing in part to the lack of a rapid and simple diagnostic test, there have been few systematic assessments of the prevalence of acroporid serratiosis (caused specifically by Serratia marcescens) versus general WPD signs. Six reefs in the Florida Keys were surveyed between 2011 and 2013 to determine the disease status of A. palmata and the prevalence of S. marcescens. WPD was noted at four of the six reefs, with WPD lesions found on 8 to 40% of the colonies surveyed. S. marcescens was detected in 26.9% (7/26) of the WPD lesions and in mucus from apparently healthy colonies both during and outside of disease events (9%; 18/201). S. marcescens was detected with greater frequency in A. palmata than in the overlying water column, regardless of disease status (P = 0.0177). S. marcescens could not be cultured from A. palmata but was isolated from healthy colonies of other coral species and was identified as pathogenic pulsed-field gel electrophoresis type PDR60. WPD lesions were frequently observed on the reef, but unlike in prior outbreaks, no whole-colony death was observed. Pathogenic S. marcescens was circulating on the reef but did not appear to be the primary pathogen in these recent WPD episodes, suggesting that other pathogens or stressors may contribute to signs of WPD. Results highlight the critical importance of diagnostics in coral disease investigations, especially given that field manifestation of disease may be similar, regardless of the etiological agent. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  15. Wound and soft tissue infections of Serratia marcescens in patients receiving wound care: A health care-associated outbreak.

    PubMed

    Us, Ebru; Kutlu, Huseyin H; Tekeli, Alper; Ocal, Duygu; Cirpan, Sevilay; Memikoglu, Kemal O

    2017-04-01

    We described a health care-associated Serratia marcescens outbreak of wound and soft tissue infection lasting approximately 11 months at Ankara University Ibni Sina Hospital. After identification of S marcescens strains from the clinical and environmental samples, and their susceptibility testing to antimicrobial agents, pulsed-field gel electrophoresis (PFGE) was performed to detect molecular epidemiologic relationships among these isolates. The strains which were isolated from the saline bottles used for wound cleansing in the wound care unit were found to be 100% interrelated by PFGE to the strains from the samples of the outbreak patients. Reuse of the emptied bottles has no longer been allowed since the outbreak occurred. Besides, more efficient and frequent infection control training for hospital staff has been conducted. Copyright © 2017 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserved.

  16. Serratia ureilytica sp. nov., a novel urea-utilizing species.

    PubMed

    Bhadra, Bhaskar; Roy, Pradosh; Chakraborty, Ranadhir

    2005-09-01

    A Gram-negative, rod-shaped, urea-dissolving and non-spore-forming bacterium, designated strain NiVa 51(T), was isolated from water of the River Torsa in Hasimara, Jalpaiguri district, West Bengal, India. On the basis of 16S rRNA gene sequence similarity, strain NiVa 51(T) was shown to belong to the gamma-Proteobacteria and to be related to Serratia marcescens subsp. sakuensis (98.35%) and S. marcescens subsp. marcescens (98.30%); however, strain NiVa 51(T) exhibited only 43.7% similarity to S. marcescens by DNA-DNA hybridization. The G+C content of the genomic DNA of the isolate was 60 mol%. Both biochemical characteristics and fatty acid analysis data supported the affiliation of strain NiVa 51(T) to the genus Serratia. Furthermore, strain NiVa 51(T) was found to utilize urea as nitrogen source. The results of DNA-DNA hybridization as well as physiological and biochemical tests allowed genotypic and phenotypic differentiation of strain NiVa 51(T) from recognized Serratia species. Strain NiVa 51(T) therefore represents a novel species, for which the name Serratia ureilytica sp. nov. is proposed, with type strain NiVa 51(T) (=LMG 22860(T)=CCUG 50595(T)).

  17. Synthesis and characterization of nanoparticles conjugated tannase and using it for enhancement of antibacterial activity of tannase produced by Serratia marcescens.

    PubMed

    Nsayef Muslim, D Sahira; Abbas Dham, Ziyad; J Mohammed, D Nadheer

    2017-09-01

    Fourteen isolates of Serratia marcescens were collected from patients suffering from septicemia. All theseisolates revealed different levels in tannase production. Tannase was partially purified from Serratia marcescens b9 by precipitation method at 70% saturation of ammonium sulfate. Au, Pt, SnO 2 and SiO 2 nanoparticles were prepared by laser ablation and examined by transmission electron microscopy (TEM), X-ray diffraction pattern and UV-Visible absorption spectroscopy. Conjugation of SiO 2 nanoparticles to tannase by feeding and pulses methods were prepared and characterized by TEM, X-ray diffraction pattern and UV-Visible spectrum. SiO 2 nanoparticles conjugated partially purified tannase by feeding showed the higher effectiveness and higher significant level against all tested UTI causing in comparison with ciprofloxacin antibiotic, SiO 2 nanoparticles alone, partially purified tannase alone and partially purified tannase by pulses. So that we can conclude that feeding method was the best method for enhancement partially purified tannase activity to maximum level thus SiO 2 nanoparticles conjugated partially purified tannase may be a useful antibacterial agent for the treatment of urinary tract infection. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Biodegradation of 1,1,1-trichloro-2,2-bis(4-chlorophenyl) ethane (DDT) by using Serratia marcescens NCIM 2919.

    PubMed

    Grewal, Jasneet; Bhattacharya, Amrik; Kumar, Sumit; Singh, Dileep K; Khare, Sunil K

    2016-12-01

    A solvent tolerant bacterium Serratia marcescens NCIM 2919 has been evaluated for degradation of DDT (1,1,1-trichloro-2,2-bis (4-chlorophenyl) ethane). The bacterium was able to degrade up to 42% of initial 50 mg L -1 of DDT within 10 days of incubation. The highlight of the work was the elucidation of DDT degradation pathway in S. marcescens. A total of four intermediates metabolites viz. 2,2-bis (chlorophenyl)-1,1-dichloroethane (DDD), 2,2-bis (chlorophenyl)-1,1-dichloroethylene (DDE), 2,2-bis (chlorophenyl)-1-chloroethylene (DDMU), and 4-chlorobenzoic acid (4-CBA) were identified by GC-Mass and FTIR. 4-CBA was found to be the stable product of DDT degradation. Metabolites preceding 4-CBA were not toxic to strain as reveled through luxuriant growth in presence of varying concentrations of exogenous DDD and DDE. However, 4-CBA was observed to inhibit the growth of bacterium. The DDT degrading efficiency of S. marcescens NCIM 2919 hence could be used in combination with 4-CBA utilizing strains either as binary culture or consortia for mineralization of DDT. Application of S. marcescens NCIM 2919 to DDT contaminated soil, showed 74.7% reduction of initial 12.0 mg kg -1 of DDT after 18-days of treatment.

  19. Isolation and analysis of lipase-overproducing mutants of Serratia marcescens.

    PubMed

    Kawai, E; Akatsuka, H; Sakurai, N; Idei, A; Matsumae, H; Shibatani, T; Komatsubara, S; Omori, K

    2001-01-01

    We have isolated a lipase-overproducing mutant, GE14, from Serratia marcescens 8000 after three rounds of N-methyl-N'-nitro-N-nitrosoguanidine mutagenesis. The mutant GE14 produced 95 kU/ml of extracellular lipase in the lipase medium, which was about threefold higher than that of produced by the original strain 8000. Enzymatic characteristics including specific activity of purified lipases from culture supernatants of GE14 and 8000 were almost same. The lipase gene (lipA) of GE14 contained two base substitutions; one in the promoter region and another in the N-terminal region of the lipA gene without an amino acid substitution. Promoter analysis using lipA-lacZ fusion plasmids revealed that these substitutions were responsible for the increase in the lipA expression level, independently. In contrast, no base substitution was found in the genes encoding the lipase secretion device, the Lip system. In addition, the genes coding for metalloprotease and the cell surface layer protein which are both secreted through the Lip system and associated with extracellular lipase production, also contained no base substitution. The strain GE14 carrying a high-copy-number lipA plasmid produced a larger amount of the extracellular lipase than the recombinant strains of 8000 and other mutants also did, indicating that GE14 was not only a lipase-overproducing strain, but also an advantageous host strain for overproducing the lipase by a recombinant DNA technique. These results suggest that the lipase-overproducing mutant GE14 and its recombinant strains are promising candidates for the industrial production of the S. marcescens lipase.

  20. Dynamic Course of Serratia marcescens Pulmonic Valve Endocarditis Resulting in Submassive PE and Valve Replacement.

    PubMed

    Meyer, Chloe Grace; Vacek, Thomas Paul; Bansal, Amit; Gurujal, Ravi; Parikh, Analkumar

    2018-01-01

    This report illustrates a case of a 42-year-old male with a history of intravenous drug abuse who presented with septic shock. Diagnostic studies, including a transthoracic echocardiogram, chest computed tomography angiography, transesophageal echocardiogram, and blood cultures ultimately revealed Serratia marcescens pulmonic valve infective endocarditis that was treated with intravenous antibiotics. In addition to the rare form of endocarditis and bacterium involved, this case brings into awareness the dynamic nature of the hospital course that requires vigilance in responding to hypotensive episodes for consideration of pulmonary embolism. Surgical valve replacement was opted for due to such a complication in addition to the large size of the vegetation, 2.5 cm.

  1. Efficacy of BRL 25000 against Serratia marcescens, Enterobacter cloacae, and Citrobacter freundii in urinary tract infections.

    PubMed Central

    Nakazawa, H; Hashimoto, T; Nishiura, T; Mitsuhashi, S

    1983-01-01

    Synergism between amoxicillin and clavulanic acid was not expected against cephalosporinase-producing bacterial strains because clavulanic acid has little inhibitory action on cephalosporinases. However, in a clinical trial of BRL 25000 (amoxicillin-clavulanic acid), excellent results were obtained in complicated urinary tract infections caused by Serratia marcescens, Enterobacter cloacae, and Citrobacter freundii strains which produced cephalosporinase and were highly resistant to amoxicillin alone. The good clinical efficacy of BRL 25000 in such urinary tract infections was probably due to the fact that the urinary concentration of clavulanic acid was higher than its minimal inhibitory concentrations for these strains. PMID:6357078

  2. Serratia marcescens osteomyelitis in an infant.

    PubMed

    Mayer, Chad W; Bangash, Shahid; Bocchini, Joseph A; Lowery-Nordberg, Mary; Bahna, Sami L

    2006-01-01

    Neutrophil dysfunction can result from oxidative burst defect or from glucose-6-phosphate dehydrogenase (G6PD) deficiency; we noted both in the same patient. A 4-month-old male infant with G6PD deficiency presented with swelling of the left middle finger, left leg, and right big toe. At 5 weeks of age he was hospitalized for fever for 2 days. A maternal uncle died at 5 years of age and a male maternal cousin died at the age of 21 months, both reportedly diagnosed with chronic granulomatous disease (CGD). On physical examination, he had a swollen erythematous left third finger, left distal leg swelling, and right big toe abscess. None of these areas was significantly tender. WBC was 18.7 x 10(3)/mm(3) with 37% PMN and 5% bands. The x-ray films showed osteomyelitis in the left third proximal phalanx and the distal right first metatarsal. Culture from the toe abscess grew Serratia marcescens. His neutrophil oxidative burst was tested by the dihydrorhodamine-123 assay and was markedly suppressed, typical of CGD. The mother and maternal grandmother were found to be CGD carriers. He was treated with i.v. antibiotics for 4 weeks and was discharged on prophylactic trimethoprim, itraconazole and interferon gamma, with substantial reduction in infections. Infection in this infant was unusual in its nature, in affecting multiple sites, and in its causative organism. Immune deficiency was suspected, particularly of the phagocytic component, but could not be attributed to his moderate degree of primary G6PD deficiency. Additional immunologic evaluation and the family history led to the diagnosis of X-linked CGD.

  3. [An epidemic of primary bacteremia due to an endemic strain of Serratia marcescens in an intensive care unit].

    PubMed

    Volkow-Fernández, P; Ponce de León-Rosales, S; Sifuentes-Osornio, J; Calva-Mercado, J J; Ruiz-Palacios, G M; Cerbón, M A

    1993-01-01

    An outbreak of Serratia marcescens bacteremia detected in the intensive care unit (ICU) of a tertiary care center on the last days of October, 1985, is described. The rate of primary S. marcescens nosocomial bacteremia during the pre-epidemic period (January-September 1985) was 6.25 per cent; and for the post-epidemic period compared with the epidemic were significantly different (p < 0.0001). The outbreak strains belonged to the biotype A8b, which has been endemic in our hospital. The responsible organism exhibited an unusual antimicrobial resistance pattern associated to the presence of a specific plasmid (greater than 50 kilobases), which showed similar fragments after restriction endonuclease digestion. No specific risk factors were identified in the case-control study. The outbreak was probably related to a greater influx of infected patients, resulting in less careful infection control measures, due to the emergency situation which suffered the hospital after the earthquakes in 1985. The unusual high rate of blood isolation of S. marcescens at the ICU was the first sign of the outbreak. The prompt reinforcement of infection control policies facilitated its resolution.

  4. SME-type carbapenem-hydrolyzing class A beta-lactamases from geographically diverse Serratia marcescens strains.

    PubMed

    Queenan, A M; Torres-Viera, C; Gold, H S; Carmeli, Y; Eliopoulos, G M; Moellering, R C; Quinn, J P; Hindler, J; Medeiros, A A; Bush, K

    2000-11-01

    Three sets of carbapenem-resistant Serratia marcescens isolates have been identified in the United States: 1 isolate in Minnesota in 1985 (before approval of carbapenems for clinical use), 5 isolates in Los Angeles (University of California at Los Angeles [UCLA]) in 1992, and 19 isolates in Boston from 1994 to 1999. All isolates tested produced two beta-lactamases, an AmpC-type enzyme with pI values of 8.6 to 9.0 and one with a pI value of approximately 9.5. The enzyme with the higher pI in each strain hydrolyzed carbapenems and was not inhibited by EDTA, similar to the chromosomal class A SME-1 beta-lactamase isolated from the 1982 London strain S. marcescens S6. The genes encoding the carbapenem-hydrolyzing enzymes were cloned in Escherichia coli and sequenced. The enzyme from the Minnesota isolate had an amino acid sequence identical to that of SME-1. The isolates from Boston and UCLA produced SME-2, an enzyme with a single amino acid change relative to SME-1, a substitution from valine to glutamine at position 207. Purified SME enzymes from the U. S. isolates had beta-lactam hydrolysis profiles similar to that of the London SME-1 enzyme. Pulsed-field gel electrophoresis analysis revealed that the isolates showed some similarity but differed by at least three genetic events. In conclusion, a family of rare class A carbapenem-hydrolyzing beta-lactamases first described in London has now been identified in S. marcescens isolates across the United States.

  5. SME-Type Carbapenem-Hydrolyzing Class A β-Lactamases from Geographically Diverse Serratia marcescens Strains

    PubMed Central

    Queenan, Anne Marie; Torres-Viera, Carlos; Gold, Howard S.; Carmeli, Yehuda; Eliopoulos, George M.; Moellering, Robert C.; Quinn, John P.; Hindler, Janet; Medeiros, Antone A.; Bush, Karen

    2000-01-01

    Three sets of carbapenem-resistant Serratia marcescens isolates have been identified in the United States: 1 isolate in Minnesota in 1985 (before approval of carbapenems for clinical use), 5 isolates in Los Angeles (University of California at Los Angeles [UCLA]) in 1992, and 19 isolates in Boston from 1994 to 1999. All isolates tested produced two β-lactamases, an AmpC-type enzyme with pI values of 8.6 to 9.0 and one with a pI value of approximately 9.5. The enzyme with the higher pI in each strain hydrolyzed carbapenems and was not inhibited by EDTA, similar to the chromosomal class A SME-1 β-lactamase isolated from the 1982 London strain S. marcescens S6. The genes encoding the carbapenem-hydrolyzing enzymes were cloned in Escherichia coli and sequenced. The enzyme from the Minnesota isolate had an amino acid sequence identical to that of SME-1. The isolates from Boston and UCLA produced SME-2, an enzyme with a single amino acid change relative to SME-1, a substitution from valine to glutamine at position 207. Purified SME enzymes from the U.S. isolates had β-lactam hydrolysis profiles similar to that of the London SME-1 enzyme. Pulsed-field gel electrophoresis analysis revealed that the isolates showed some similarity but differed by at least three genetic events. In conclusion, a family of rare class A carbapenem-hydrolyzing β-lactamases first described in London has now been identified in S. marcescens isolates across the United States. PMID:11036019

  6. Batch growth kinetic studies of locally isolated cyanide-degrading Serratia marcescens strain AQ07.

    PubMed

    Karamba, Kabiru Ibrahim; Ahmad, Siti Aqlima; Zulkharnain, Azham; Yasid, Nur Adeela; Ibrahim, Salihu; Shukor, Mohd Yunus

    2018-01-01

    The evaluation of degradation and growth kinetics of Serratia marcescens strain AQ07 was carried out using three half-order models at all the initial concentrations of cyanide with the values of regression exceeding 0.97. The presence of varying cyanide concentrations reveals that the growth and degradation of bacteria were affected by the increase in cyanide concentration with a total halt at 700 ppm KCN after 72 h incubation. In this study, specific growth and degradation rates were found to trail the substrate inhibition kinetics. These two rates fitted well to the kinetic models of Teissier, Luong, Aiba and Heldane, while the performance of Monod model was found to be unsatisfactory. These models were used to clarify the substrate inhibition on the bacteria growth. The analyses of these models have shown that Luong model has fitted the experimental data with the highest coefficient of determination ( R 2 ) value of 0.9794 and 0.9582 with the lowest root mean square error (RMSE) value of 0.000204 and 0.001, respectively, for the specific rate of degradation and growth. It is the only model that illustrates the maximum substrate concentration ( S m ) of 713.4 and empirical constant ( n ) of 1.516. Tessier and Aiba fitted the experimental data with a R 2 value of 0.8002 and 0.7661 with low RMSE of 0.0006, respectively, for specific biodegradation rate, while having a R 2 value of 0.9 and RMSE of 0.001, respectively, for specific growth rate. Haldane has the lowest R 2 value of 0.67 and 0.78 for specific biodegradation and growth rate with RMSE of 0.0006 and 0.002, respectively. This indicates the level of the bacteria stability in varying concentrations of cyanide and the maximum cyanide concentration it can tolerate within a specific time period. The biokinetic constant predicted from this model demonstrates a good ability of the locally isolated bacteria in cyanide remediation in industrial effluents.

  7. The structure of Serratia marcescens Lip, a membrane-bound component of the type VI secretion system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rao, Vincenzo A.; Shepherd, Sharon M.; English, Grant

    2011-12-01

    The high-resolution crystal structure of S. marcescens Lip reveals a new member of the transthyretin family of proteins. Lip, a core component of the type VI secretion apparatus, is localized to the outer membrane and is positioned to interact with other proteins forming this complex system. Lip is a membrane-bound lipoprotein and a core component of the type VI secretion system found in Gram-negative bacteria. The structure of a Lip construct (residues 29–176) from Serratia marcescens (SmLip) has been determined at 1.92 Å resolution. Experimental phases were derived using a single-wavelength anomalous dispersion approach on a sample cocrystallized with iodide.more » The membrane localization of the native protein was confirmed. The structure is that of the globular domain lacking only the lipoprotein signal peptide and the lipidated N-terminus of the mature protein. The protein fold is dominated by an eight-stranded β-sandwich and identifies SmLip as a new member of the transthyretin family of proteins. Transthyretin and the only other member of the family fold, 5-hydroxyisourate hydrolase, form homotetramers important for their function. The asymmetric unit of SmLip is a tetramer with 222 symmetry, but the assembly is distinct from that previously noted for the transthyretin protein family. However, structural comparisons and bacterial two-hybrid data suggest that the SmLip tetramer is not relevant to its role as a core component of the type VI secretion system, but rather reflects a propensity for SmLip to participate in protein–protein interactions. A relatively low level of sequence conservation amongst Lip homologues is noted and is restricted to parts of the structure that might be involved in interactions with physiological partners.« less

  8. Particle Size Distribution of Serratia marcescens Aerosols Created During Common Laboratory Procedures and Simulated Laboratory Accidents

    PubMed Central

    Kenny, Michael T.; Sabel, Fred L.

    1968-01-01

    Andersen air samplers were used to determine the particle size distribution of Serratia marcescens aerosols created during several common laboratory procedures and simulated laboratory accidents. Over 1,600 viable particles per cubic foot of air sampled were aerosolized during blending operations. More than 98% of these particles were less than 5 μ in size. In contrast, 80% of the viable particles aerosolized by handling lyophilized cultures were larger than 5 μ. Harvesting infected eggs, sonic treatment, centrifugation, mixing cultures, and dropping infectious material produced aerosols composed primarily of particles in the 1.0- to 7.5-μ size range. Images Fig. 1 PMID:4877498

  9. A case of Serratia granuloma in the soft tissue around the left kidney: a role of PTHrP in the formation of Serratia granuloma.

    PubMed

    Yoshihiro, Yuko; Soejima, Yoshifumi; Taniguchi, Keisuke; Makino, Kenji; Naito, Shinji

    2010-04-01

    Serratia marcescens is an ubiquitous, saprophytic gram-negative bacillus that is associated with infections such as bacteremia, pneumonia and osteomyelitis. However, it has not been known to form granulomas. A 72-year-old man with a history of tricuspidal insufficiency, mitral insufficiency and ureterolithiasis presented with lumbago on the left side. He was admitted to our hospital, where abscess formation in the subcapsular space and perirenal fat space of the left kidney, and left renal calculi were identified by computed tomography of the abdomen. As infection and/or a tumor were suspected, nephrectomy was performed. The histopathological findings in the resected kidney indicated severe infiltration by inflammatory cells with lymphoid follicles in the interstitium, and the proliferation of mesangial cells and matrix in glomerulus. Furthermore, giant cell granulomas were observed in the soft tissue around the kidney. As an aerobic culture of the abscess from the granulomas only produced Serratia marcescens, these granulomas were diagnosed as Serratia marcescens granulomas. In addition, expressions of PTHrP and PTH/PTHrP-receptor were observed in the giant cells in Serratia granuloma, which suggested that PTHrP might be involved in giant cell formation in Serratia granuloma by autocrine and/or paracrine mechanisms.

  10. Outbreaks of Serratia marcescens bacteriuria in a neurosurgical intensive care unit of a tertiary care teaching hospital: a clinical, epidemiologic, and laboratory perspective.

    PubMed

    Yoon, Hee Jung; Choi, Jun Yong; Park, Yoon Soo; Kim, Chang Oh; Kim, June Myung; Yong, Dong Eun; Lee, Kyung Won; Song, Young Goo

    2005-12-01

    Serratia marcescens is an aerobic gram-negative bacillus belonging to the family Enterobacteriacea. Infections caused by S marcescens may be difficult to treat because of their resistance to a variety of antibiotics, including beta-lactams and aminoglycosides. This study aimed to (1) identify the risk factors associated with the development of Serratia marcescens bacteriuria in neurosurgical intensive care units (NSICU); (2) genotype the pathogens to determine the source of infection; (3) compare these results with antibiograms; and (4) determine and implement appropriate control measures. A retrospective case-control study of the epidemiologic data, the surveillance of environmental cultures, and the genotyping of strains using arbitrarily primed polymerase chain reaction (AP-PCR) were performed at a 750-bed, tertiary care teaching hospital. Seventy-four bacteriuria patients were compared with 74 age/sex-matched control patients in the NSICU between March 2002 and March 2004. The factors assessed were patient demographics; duration of hospital stay; duration of indwelling catheter use before and during stay in the NSICU; chronic underlying illnesses (diabetes mellitus, cardiovascular disease, malignancy); other sites of infection; history of trauma; exposure to a nasogastric tube; mechanical ventilation; urinary catheterization; central venous catheterization; surgical drainage; tracheostomy; brain or spine surgery; and receipt of total parenteral nutrition (TPN), antimicrobials (beta-lactams, aminoglycosides, quinolones, carbapenems, vancomycins), or steroids. Patients with S marcescens bacteriuria were more likely to have a longer NSICU stay and other sites of infection. Environmental surveillance showed the handling of urine jugs to be the point source of contamination. Genotyping and antibiograms of 14 patients were the same except for those of 2 patients. The patient-related risk factors were identified, and a rapid identification of the organism was made

  11. Study of ChiR function in Serratia marcescens and its application for improving 2,3-butanediol from crystal chitin.

    PubMed

    Yan, Qiang; Hong, Eunsoo; Fong, Stephen S

    2017-10-01

    Microbial utilization of chitin, a potential renewable biomass feedstock, is being pursued as a means of developing novel consolidated bioprocessing for the production of chemicals. Serratia marcescens is a gram-negative bacterium that is known for its chitinolytic capability and as a native 2,3-butanediol producer. In S. marcescens, ChiR has been suggested to be a positive regulator of chitinase production. In this study, we aim to understand the effect of ChiR in regulating nine chitinase-related genes in S. marcescens Db11 and demonstrate manipulation of chiR as a useful and efficient genetic target to enhance chitin utilization. First, a chiR overexpression (chiROE) strain and a chiR deletion (ΔchiR) strain were generated and characterized in terms of cellular growth, chitinase activity, and total secreted protein. Compared to the wild-type Db11 strain, the S. marcescens chiROE strain showed an increase in chitinase activity (2.14- to 6.31-fold increase). Increased transcriptional expression of chitinase-related genes was measured using real-time PCR, showing 2.12- to 10.93-fold increases. The S. marcescens ΔchiR strain showed decreases in chitinase activity (4.5- to 25-fold decrease), confirming ChiR's role as a positive regulator of chitinase expression. Finally, chiR overexpression was investigated as a means of increasing biochemical production (2,3-butanediol) from crystal chitin. The chiROE strain produced 1.13 ± 0.08 g/L 2,3-butanediol from 2% crystal chitin, a 2.83-fold improvement from the wild-type strain, indicating ChiR is an important and useful genetic engineering target for enhancing chitin utilization in S. marcescens.

  12. Effects of Dimerization of Serratia marcescens Endonuclease on Water Dynamics.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Chuanying; Beck, Brian W.; Krause, Kurt

    2007-02-15

    The research described in this product was performed in part in the Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory. The dynamics and structure of Serratia marcescens endonuclease and its neighboring solvent are investigated by molecular dynamics (MD). Comparisons are made with structural and biochemical experiments. The dimer form is physiologic and functions more processively than the monomer. We previously found a channel formed by connected clusters of waters from the active site to the dimer interface. Here, we showmore » that dimerization clearly changes correlations in the water structure and dynamics in the active site not seen in the monomer. Our results indicate that water at the active sites of the dimer is less affected compared with bulk solvent than in the monomer where it has much slower characteristic relaxation times. Given that water is a required participant in the reaction, this gives a clear advantage to dimerization in the absence of an apparent ability to use both active sites simultaneously.« less

  13. Genome analysis of urease positive Serratia marcescens, co-producing SRT-2 and AAC(6')-Ic with multidrug efflux pumps for antimicrobial resistance.

    PubMed

    Srinivasan, Vijaya Bharathi; Rajamohan, Govindan

    2018-04-05

    In this study, we present the genome sequence of Serratia marcescens SM03, recovered from a human gut in India. The final assembly consists of 26 scaffolds (4620 coding DNA sequences, 5.08 Mb, 59.6% G + C ratio) and 79 tRNA genes. Analysis identified novel genes associated with lactose utilization, virulence, P-loop GTPases involved in urease production, CFA/I fimbriae apparatus and Yersinia - type CRISPR proteins. Antibiotic susceptibility testing indicated drug tolerant phenotype and inhibition assays demonstrated involvement of extrusion in resistance. Presence of enzymes SRT-2, AAC(6')-Ic, with additional Ybh transporter and EamA-like efflux pumps signifies the genetic plasticity observed in S. marcescens SM03. Copyright © 2018 Elsevier Inc. All rights reserved.

  14. An IgaA/UmoB Family Protein from Serratia marcescens Regulates Motility, Capsular Polysaccharide Biosynthesis, and Secondary Metabolite Production.

    PubMed

    Stella, Nicholas A; Brothers, Kimberly M; Callaghan, Jake D; Passerini, Angelina M; Sigindere, Cihad; Hill, Preston J; Liu, Xinyu; Wozniak, Daniel J; Shanks, Robert M Q

    2018-03-15

    Secondary metabolites are an important source of pharmaceuticals and key modulators of microbe-microbe interactions. The bacterium Serratia marcescens is part of the Enterobacteriaceae family of eubacteria and produces a number of biologically active secondary metabolites. In this study, we screened for novel regulators of secondary metabolites synthesized by a clinical isolate of S. marcescens and found mutations in a gene for an uncharacterized UmoB/IgaA family member here named gumB Mutation of gumB conferred a severe loss of the secondary metabolites prodigiosin and serratamolide. The gumB mutation conferred pleiotropic phenotypes, including altered biofilm formation, highly increased capsular polysaccharide production, and loss of swimming and swarming motility. These phenotypes corresponded to transcriptional changes in fimA , wecA , and flhD Unlike other UmoB/IgaA family members, gumB was found to be not essential for growth in S. marcescens , yet igaA from Salmonella enterica , yrfF from Escherichia coli , and an uncharacterized predicted ortholog from Klebsiella pneumoniae complemented the gumB mutant secondary metabolite defects, suggesting highly conserved function. These data support the idea that UmoB/IgaA family proteins are functionally conserved and extend the known regulatory influence of UmoB/IgaA family proteins to the control of competition-associated secondary metabolites and biofilm formation. IMPORTANCE IgaA/UmoB family proteins are found in members of the Enterobacteriaceae family of bacteria, which are of environmental and public health importance. IgaA/UmoB family proteins are thought to be inner membrane proteins that report extracellular stresses to intracellular signaling pathways that respond to environmental challenge. This study introduces a new member of the IgaA/UmoB family and demonstrates a high degree of functional similarity between IgaA/UmoB family proteins. Moreover, this study extends the phenomena controlled by Iga

  15. Biodegradation and bioremediation potential of diazinon-degrading Serratia marcescens to remove other organophosphorus pesticides from soils.

    PubMed

    Cycoń, Mariusz; Żmijowska, Agnieszka; Wójcik, Marcin; Piotrowska-Seget, Zofia

    2013-03-15

    The ability of diazinon-degrading Serratia marcescens to remove organophosphorus pesticides (OPPs), i.e. chlorpyrifos (CP), fenitrothion (FT), and parathion (PT) was studied in a mineral salt medium (MSM) and in three soils of different characteristics. This strain was capable of using all insecticides at concentration of 50 mg/l as the only carbon source when grown in MSM, and 58.9%, 70.5%, and 82.5% of the initial dosage of CP, FT, and PT, respectively was degraded within 14 days. The biodegradation experiment showed that autochthonous microflora in all soils was characterized by a degradation potential of all tested OPPs; however, the initial lag phases for degradation of CP and FT, especially in sandy soil, were observed. During the 42-day experiment, 45.3%, 61.4% and 72.5% of the initial dose of CP, FT, and PT, respectively, was removed in sandy soil whereas the degradation of CP, FT, and PT in the same period, in sandy loam and silty soils reached 61.4%, 79.7% and 64.2%, and 68.9%, 81.0% and 63.6%, respectively. S. marcescens introduced into sterile soils showed a higher degradation potential (5-13%) for OPPs removal than those observed in non-sterile soil with naturally occurring attenuation. Inoculation of non-sterile soils with S. marcescens enhanced the disappearance rates of all insecticides, and DT50 for CP, FT, and PT was reduced by 20.7, 11.3 and 13.0 days, and 11.9, 7.0 and 8.1 days, and 9.7, 14.5 and 12.6 days in sandy, sandy loam, and silty soils, respectively, in comparison with non-sterile soils with only indigenous microflora. This ability of S. marcescens makes it a suitable strain for bioremediation of soils contaminated with OPPs. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Optimization of Cellulase Production from Bacteria Isolated from Soil

    PubMed Central

    Sethi, Sonia; Datta, Aparna; Gupta, B. Lal; Gupta, Saksham

    2013-01-01

    Cellulase-producing bacteria were isolated from soil and identified as Pseudomonas fluorescens, Bacillus subtilIs, E. coli, and Serratia marcescens. Optimization of the fermentation medium for maximum cellulase production was carried out. The culture conditions like pH, temperature, carbon sources, and nitrogen sources were optimized. The optimum conditions found for cellulase production were 40°C at pH 10 with glucose as carbon source and ammonium sulphate as nitrogen source, and coconut cake stimulates the production of cellulase. Among bacteria, Pseudomonas fluorescens is the best cellulase producer among the four followed by Bacillus subtilis, E. coli, and Serratia marscens. PMID:25937986

  17. Effect of Sodium Fluorescein and Plating Medium on Recovery of Irradiated Escherichia coli and Serratia marcescens from Aerosols

    PubMed Central

    Dorsey, Emerson L.; Berendt, Richard F.; Neff, Everett L.

    1970-01-01

    Irradiation of aerosols of either Escherichia coli or Serratia marcescens with simulated solar (xenon) radiation caused a significant decrease in viability. When sodium fluorescein was employed to determine the physical loss of organisms from the aerosol, an additional adverse effect upon survival was noted. The decay curves indicated that at least two mechanisms of inactivation were operative, one due to aerosolization, the other to irradiation. After collection from aerosols, both species of microorganisms grew better on blood agar base than on Casitone agar, but this finding did not appear to be related to the effect of irradiation. PMID:4922085

  18. Genome sequence and comparative analysis of a putative entomopathogenic Serratia isolated from Caenorhabditis briggsae.

    PubMed

    Abebe-Akele, Feseha; Tisa, Louis S; Cooper, Vaughn S; Hatcher, Philip J; Abebe, Eyualem; Thomas, W Kelley

    2015-07-18

    Entomopathogenic associations between nematodes in the genera Steinernema and Heterorhabdus with their cognate bacteria from the bacterial genera Xenorhabdus and Photorhabdus, respectively, are extensively studied for their potential as biological control agents against invasive insect species. These two highly coevolved associations were results of convergent evolution. Given the natural abundance of bacteria, nematodes and insects, it is surprising that only these two associations with no intermediate forms are widely studied in the entomopathogenic context. Discovering analogous systems involving novel bacterial and nematode species would shed light on the evolutionary processes involved in the transition from free living organisms to obligatory partners in entomopathogenicity. We report the complete genome sequence of a new member of the enterobacterial genus Serratia that forms a putative entomopathogenic complex with Caenorhabditis briggsae. Analysis of the 5.04 MB chromosomal genome predicts 4599 protein coding genes, seven sets of ribosomal RNA genes, 84 tRNA genes and a 64.8 KB plasmid encoding 74 genes. Comparative genomic analysis with three of the previously sequenced Serratia species, S. marcescens DB11 and S. proteamaculans 568, and Serratia sp. AS12, revealed that these four representatives of the genus share a core set of ~3100 genes and extensive structural conservation. The newly identified species shares a more recent common ancestor with S. marcescens with 99% sequence identity in rDNA sequence and orthology across 85.6% of predicted genes. Of the 39 genes/operons implicated in the virulence, symbiosis, recolonization, immune evasion and bioconversion, 21 (53.8%) were present in Serratia while 33 (84.6%) and 35 (89%) were present in Xenorhabdus and Photorhabdus EPN bacteria respectively. The majority of unique sequences in Serratia sp. SCBI (South African Caenorhabditis briggsae Isolate) are found in ~29 genomic islands of 5 to 65 genes and are

  19. Diversity and specificity in the interaction between Caenorhabditis elegans and the pathogen Serratia marcescens.

    PubMed

    Schulenburg, Hinrich; Ewbank, Jonathan J

    2004-11-22

    Co-evolutionary arms races between parasites and hosts are considered to be of immense importance in the evolution of living organisms, potentially leading to highly dynamic life-history changes. The outcome of such arms races is in many cases thought to be determined by frequency dependent selection, which relies on genetic variation in host susceptibility and parasite virulence, and also genotype-specific interactions between host and parasite. Empirical evidence for these two prerequisites is scarce, however, especially for invertebrate hosts. We addressed this topic by analysing the interaction between natural isolates of the soil nematode Caenorhabditis elegans and the pathogenic soil bacterium Serratia marcescens. Our analysis reveals the presence of i) significant variation in host susceptibility, ii) significant variation in pathogen virulence, and iii) significant strain- and genotype-specific interactions between the two species. The results obtained support the previous notion that highly specific interactions between parasites and animal hosts are generally widespread. At least for C. elegans, the high specificity is observed among isolates from the same population, such that it may provide a basis for and/or represent the outcome of co-evolutionary adaptations under natural conditions. Since both C. elegans and S. marcescens permit comprehensive molecular analyses, these two species provide a promising model system for inference of the molecular basis of such highly specific interactions, which are as yet unexplored in invertebrate hosts.

  20. Purification, crystallization and preliminary X-ray analysis of the outer membrane complex HasA–HasR from Serratia marcescens

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huché, Frédéric, E-mail: huche@pasteur.fr; Unité des Membranes Bactériennes, CNRS URA 2172, Département de Microbiologie Fondamentale et Médicale, Institut Pasteur, 25-28 Rue du Dr Roux, 75724 Paris CEDEX 15; Delepelaire, Philippe

    2006-01-01

    The expression, purification, and crystallization in space group P2{sub 1}2{sub 1}2{sub 1} of the complex HasA-HasR from S. marcescens are reported. Diffraction data have been collected and processed to 6.8 Å. Serratia marcescens is able to acquire iron using its haem-acquisition system (‘has’), which contains an outer membrane receptor HasR and a soluble haemophore HasA. After secretion, HasA binds free haem in the extracellular medium or extracts it from haemoproteins and delivers it to the receptor. Here, the crystallization of a HasA–HasR complex is reported. HasA and HasR have been overexpressed in Escherichia coli and the complex formed and crystallized.more » Small platelets and bunches of needles of dimensions 0.01 × 0.1 × 1 mm were obtained. A native data set has been collected to 6.8 Å.« less

  1. Oocydin A, a chlorinated macrocyclic lactone with potent anti-oomycete activity from Serratia marcescens.

    PubMed

    Srobel, G; Li, J Y; Sugawara, F; Koshino, H; Harper, J; Hess, W M

    1999-12-01

    A unique chlorinated macrocyclic lactone, termed oocydin A, was isolated from a strain of Serratia marcescens growing as an epiphyte on Rhyncholacis pedicillata, an aquatic plant native to the Carrao river of the Venezuelan-Guyanan region of South America. The lactone has a molecular mass of 470 Da, and contains one atom of chlorine, a carboxyl group and a tetrahydrofuran ring internal to a larger macrocyclic ring. MICs of approximately 0.03 microg ml(-1) were noted for oocydin A against such phytopathogenic oomycetes as Pythium ultimum, Phytophthora parasitica, Phytophthora cinnamomi and Phytophthora citrophora. With regard to the true fungi, oocydin A had either minimal or no effect against certain Fungi Imperfecti (including several pathogens of humans), two ascomycetes and a basidiomycete. Oocydin A may have potential as an antimycotic in agricultural applications and especially for crop protection.

  2. Epidemiology and molecular characterization of extended-spectrum beta-lactamase-producing Enterobacter spp., Pantoea agglomerans, and Serratia marcescens isolates from a Bulgarian hospital.

    PubMed

    Markovska, Rumyana Donkova; Stoeva, Temenuga Jekova; Bojkova, Kalina Dineva; Mitov, Ivan Gergov

    2014-04-01

    Forty-two extended-spectrum beta-lactamase (ESBL)-producing isolates of Enterobacter aerogenes, Enterobacter cloacae, Pantoea agglomerans, and Serratia marcescens, collected consecutively during the period January-November 2011 from the University Hospital in Varna, Bulgaria, were studied to characterize their ESBLs by isoelectric focusing, group-specific PCR, and sequencing. The epidemiological relationship was evaluated by random amplified polymorphic DNA analysis (RAPD). Transferability of ESBL genes was determined by conjugation experiments. Plasmid analysis was done by replicon typing and PstI fingerprinting. The overall rate of ESBL production was 20%. The most widespread enzyme was CTX-M-3, found in 64%. It was dominant in E. aerogenes (100%) and S. marcescens (83%). SHV-12, CTX-M-3, and CTX-M-15 were found among E. cloacae isolates in 50%, 35%, and 45%, respectively. Three main CTX-M-3-producing epidemic clones of E. aerogenes and S. marcescens have been detected. Among E. cloacae isolates, six different RAPD profiles were discerned. The plasmids harboring blaCTX-M-3 belonged to IncL/M type and demonstrated similar PstI fingerprinting profiles. IncFII plasmids were detected in two CTX-M-15-producing E. cloacae isolates. Our results demonstrate wide intrahospital dissemination of clonal E. aerogenes and S. marcescens isolates, carrying IncL/M conjugative plasmids.

  3. Serratia marcescens folliculitis and concomitant acne vulgaris.

    PubMed

    Lehrhoff, Stephanie; Yost, John; Robinson, Maria; Patel, Rishi; Sanchez, Miguel

    2012-12-15

    We present a unique case of S. marcescens folliculitis of the trunk in a 46-year-old woman with a history of facial acne vulgaris during her teen years. Her eruption occurred at the time of elective ambulatory surgery when she was treated with pre and post-operative antibiotics. The diagnosis of S. marcescens folliculitis was made on the basis of histopathologic features and tissue culture of a skin biopsy specimen of a pustule after her eruption was unresponsive to conventional treatment for inflammatory acne vulgaris. The history and pathophysiology of gram-negative folliculitis in the setting of acne vulgaris is reviewed.

  4. Illumina short-read and MinION long-read WGS to characterize the molecular epidemiology of an NDM-1 Serratia marcescens outbreak in Romania

    PubMed Central

    Phan, H T T; Stoesser, N; Maciuca, I E; Toma, F; Szekely, E; Flonta, M; Pankhurst, L; Do, T; Peto, T E A; Walker, A S; Crook, D W; Timofte, D

    2018-01-01

    Abstract Background and Objectives Serratia marcescens is an emerging nosocomial pathogen, and the carbapenemase blaNDM has been reported in several surveys in Romania. We aimed to investigate the molecular epidemiology of S. marcescens in two Romanian hospitals over 2010–15, including a neonatal NDM-1 S. marcescens outbreak. Methods Isolates were sequenced using Illumina technology together with carbapenem-non-susceptible NDM-1-positive and NDM-1-negative Klebsiella pneumoniae and Enterobacter cloacae to provide genomic context. A subset was sequenced with MinION to fully resolve NDM-1 plasmid structures. Resistance genes, plasmid replicons and ISs were identified in silico for all isolates; an annotated phylogeny was reconstructed for S. marcescens. Fully resolved study NDM-1 plasmid sequences were compared with the most closely related publicly available NDM-1 plasmid reference. Results 44/45 isolates were successfully sequenced (S. marcescens, n = 33; K. pneumoniae, n = 7; E. cloacae, n = 4); 10 with MinION. The S. marcescens phylogeny demonstrated several discrete clusters of NDM-1-positive and -negative isolates. All NDM-1-positive isolates across species harboured a pKOX_NDM1-like plasmid; more detailed comparisons of the plasmid structures demonstrated a number of differences, but highlighted the largely conserved plasmid backbones across species and hospital sites. Conclusions The molecular epidemiology is most consistent with the importation of a pKOX_NDM1-like plasmid into Romania and its dissemination amongst K. pneumoniae/E. cloacae and subsequently S. marcescens across hospitals. The data suggested multiple acquisitions of this plasmid by S. marcescens in the two hospitals studied; transmission events within centres, including a large outbreak on the Targu Mures neonatal unit; and sharing of the pKOX_NDM1-like plasmid between species within outbreaks. PMID:29237003

  5. Molecular Epidemiology of Serratia marcescens in Two Hospitals in Danzig, Poland, over a 5-Year Period

    PubMed Central

    Naumiuk, Łukasz; Baraniak, Anna; Gniadkowski, Marek; Krawczyk, Beata; Rybak, Bartosz; Sadowy, Ewa; Samet, Alfred; Kur, Józef

    2004-01-01

    The history of the Serratia marcescens population in two hospitals in Danzig, Poland, over a 5-year period was analyzed in a study that combined MIC evaluation, typing by randomly amplified polymorphic DNA (RAPD) analysis and pulsed-field gel electrophoresis, and analysis of extended-spectrum β-lactamases (ESBLs). We analyzed 354 isolates collected from 341 patients in two teaching hospitals in Danzig, Poland, from 1996 to 2000. The antimicrobial susceptibility profiles varied greatly, and for resistance to newer β-lactams, probable AmpC cephalosporinase derepression and ESBL production occurred in about 23 and 19% of the isolates, respectively. RAPD typing, by which 69 types were discerned altogether, revealed a high degree of clonal diversity among the populations. However, the four most prevalent types were highly predominant, grouping approximately 71% of the isolates studied. These clones were observed in the two hospitals and were strong contributors to both outbreaks and the background of endemicity of the S. marcescens infections. Some of the strains that were not so widely spread (12 RAPD types; ∼14% of the isolates) were responsible for several smaller outbreaks, and the remaining isolates represented unique RAPD types (53 types; ∼15% of the isolates) and were probably sporadic introductions from other environments. ESBLs were identified in several different clones, and some of these had most likely already been introduced into the hospitals as ESBL producers, whereas the others acquired the ESBL-encoding genes from other enterobacterial strains in these environments. The CTX-M-3 enzyme, which is widely observed in Poland, was the most common ESBL type among the S. marcescens isolates, followed by TEM-47 and SHV-5. The complex epidemiology of ESBLs, especially in 1999 and 2000, must have arisen from the introduction of ESBL producers from other centers, their clonal dissemination, and the constant penetration of the S. marcescens populations with

  6. Spectroscopic Characterization of Extracellular Polymeric Substances from Escherichia coli and Serratia marcescens: Suppression using Sub-Inhibitory Concentrations of Bismuth Thiols

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Badireddy, Appala R.; Korpol, Bhoom Reddy; Chellam, Shankararaman

    2008-10-21

    Free and capsular EPS produced by Escherichia coli and Serratia marcescens were characterized in detail using Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), and Auger electron spectroscopy (AES). Total EPS production decreased upon treatment with sub-inhibitory concentrations of lipophilic bismuth thiols (bismuth dimercaptopropanol, BisBAL; bismuth ethanedithiol, BisEDT; and bismuth pyrithione, BisPYR), BisBAL being most effective. Bismuth thiols also influenced acetylation and carboxylation of polysaccharides in EPS from S. marcescens. Extensive homology between EPS samples in the presence and absence of bismuth was observed with proteins, polysaccharides, and nucleic acids varying predominantly only in the total amount expressed. Secondmore » derivative analysis of the amide I region of FTIR spectra revealed decreases in protein secondary structures in the presence of bismuth thiols. Hence, anti-fouling properties of bismuth thiols appear to originate in their ability to suppress O-acetylation and protein secondary structures in addition to total EPS secretion.« less

  7. Isolation and characterization of novel strains of Pseudomonas aeruginosa and Serratia marcescens possessing high efficiency to degrade gasoline, kerosene, diesel oil, and lubricating oil.

    PubMed

    Wongsa, Patcharaporn; Tanaka, Makiko; Ueno, Akio; Hasanuzzaman, Mohammad; Yumoto, Isao; Okuyama, Hidetoshi

    2004-12-01

    Bacteria possessing high capacity to degrade gasoline, kerosene, diesel oil, and lubricating oil were screened from several areas of Hokkaido, Japan. Among isolates, two strains, WatG and HokM, which were identified as new strains of Pseudomonas aeruginosa and Serratia marcescens species, respectively, showed relatively high capacity and wide spectrum to degrade the hydrocarbons in gasoline, kerosene, diesel, and lubricating oil. About 90-95% of excess amount of total diesel oil and kerosene added to mineral salts media as a sole carbon source could be degraded by WatG within 2 and 3 weeks, respectively. The same amount of lubricating oil was 60% degraded within 2 weeks. Strain HokM was more capable than WatG in degrading aromatic compounds in gasoline. This strain could also degrade kerosene, diesel, and lubricating oil with a capacity of 50-60%. Thus, these two isolates have potential to be useful for bioremediation of sites highly contaminated with petroleum hydrocarbons.

  8. Site-directed mutagenesis studies to probe the role of specific residues in the external loop (L3) of OmpF and OmpC porins in susceptibility of Serratia marcescens to antibiotics.

    PubMed

    Begic, Sanela; Worobec, Elizabeth A

    2007-06-01

    Serratia marcescens is a nosocomial bacterium with natural resistance to a broad spectrum of antibiotics, making treatment challenging. One factor contributing to this natural antibiotic resistance is reduced outer membrane permeability, controlled in part by OmpF and OmpC porin proteins. To investigate the direct role of these porins in the diffusion of antibiotics across the outer membrane, we have created an ompF-ompC porin-deficient strain of S. marcescens. A considerable similarity between the S. marcescens porins and those from other members of Enterobacteriaceae was detected by sequence alignment, with the exception of a change in a conserved region of the third external loop (L3) of the S. marcescens OmpC protein. Serratia marcescens OmpC has aspartic acid instead of glycine in position 112, methionine instead of aspartic acid in position 114, and glutamine in position 124, while in S. marcescens OmpF this is a glycine at position 124. To investigate the role of amino acid positions 112, 114, and 124 and how the observed changes within OmpC porin may play a part in pore permeability, 2 OmpC sites were altered in the Enterobacteriaceae consensus (D112G and M114D) through site-directed mutagenesis. Also, Q124G in OmpC, G124Q in OmpF, and double mutants of these amino acid residues were constructed. Antibiotic accumulation assays and minimal inhibitory concentrations of the strains harboring the mutated porins were performed, while liposome swelling experiments were performed on purified porins. Our results demonstrate that the amino acid at position 114 is not responsible for either antibiotic size or ionic selection, the amino acid at position 112 is responsible for size selection only, and position 124 is involved in both size and ionic selection.

  9. Diversity and specificity in the interaction between Caenorhabditis elegans and the pathogen Serratia marcescens

    PubMed Central

    Schulenburg, Hinrich; Ewbank, Jonathan J

    2004-01-01

    Background Co-evolutionary arms races between parasites and hosts are considered to be of immense importance in the evolution of living organisms, potentially leading to highly dynamic life-history changes. The outcome of such arms races is in many cases thought to be determined by frequency dependent selection, which relies on genetic variation in host susceptibility and parasite virulence, and also genotype-specific interactions between host and parasite. Empirical evidence for these two prerequisites is scarce, however, especially for invertebrate hosts. We addressed this topic by analysing the interaction between natural isolates of the soil nematode Caenorhabditis elegans and the pathogenic soil bacterium Serratia marcescens. Results Our analysis reveals the presence of i) significant variation in host susceptibility, ii) significant variation in pathogen virulence, and iii) significant strain- and genotype-specific interactions between the two species. Conclusions The results obtained support the previous notion that highly specific interactions between parasites and animal hosts are generally widespread. At least for C. elegans, the high specificity is observed among isolates from the same population, such that it may provide a basis for and/or represent the outcome of co-evolutionary adaptations under natural conditions. Since both C. elegans and S. marcescens permit comprehensive molecular analyses, these two species provide a promising model system for inference of the molecular basis of such highly specific interactions, which are as yet unexplored in invertebrate hosts. PMID:15555070

  10. Selection of hyperproduction of AmpC and SME-1 in a carbapenem-resistant Serratia marcescens isolate during antibiotic therapy.

    PubMed

    Hemarajata, Peera; Amick, Thomas; Yang, Shangxin; Gregson, Aric; Holzmeyer, Cameron; Bush, Karen; Humphries, Romney M

    2018-02-19

    Antibiotic selective pressure may result in changes to antimicrobial susceptibility throughout the course of infection, especially for organisms that harbour chromosomally encoded AmpC β-lactamases, notably Enterobacter spp., in which hyperexpression of ampC may be induced following treatment with cephalosporins. In this study, we document a case of bacteraemia caused by a blaSME-1-harbouring Serratia marcescens that subsequently developed resistance to expanded-spectrum cephalosporins, piperacillin/tazobactam and fluoroquinolones, over the course of several months of treatment with piperacillin/tazobactam and ciprofloxacin. Susceptibility testing and WGS were performed on three S. marcescens isolates from the patient. β-Lactamase activity in the presence or absence of induction by imipenem was measured by nitrocefin hydrolysis assays. Expression of ampC and blaSME-1 under the same conditions was determined by real-time PCR. WGS demonstrated accumulation of missense and nonsense mutations in ampD associated with stable derepression of AmpC. Gene expression and β-lactamase activity of both AmpC and SME-1 were inducible in the initial susceptible isolate, but were constitutively high in the resistant isolate, in which total β-lactamase activity was increased by 128-fold. Although development of such in vitro resistance due to selective pressure imposed by antibiotics is reportedly low in S. marcescens, our findings highlight the need to evaluate isolates on a regular basis during long-term antibiotic therapy.

  11. Molecular epidemiology of Serratia marcescens in two hospitals in Gdańsk, Poland, over a 5-year period.

    PubMed

    Naumiuk, Lukasz; Baraniak, Anna; Gniadkowski, Marek; Krawczyk, Beata; Rybak, Bartosz; Sadowy, Ewa; Samet, Alfred; Kur, Józef

    2004-07-01

    The history of the Serratia marcescens population in two hospitals in Danzig, Poland, over a 5-year period was analyzed in a study that combined MIC evaluation, typing by randomly amplified polymorphic DNA (RAPD) analysis and pulsed-field gel electrophoresis, and analysis of extended-spectrum beta-lactamases (ESBLs). We analyzed 354 isolates collected from 341 patients in two teaching hospitals in Danzig, Poland, from 1996 to 2000. The antimicrobial susceptibility profiles varied greatly, and for resistance to newer beta-lactams, probable AmpC cephalosporinase derepression and ESBL production occurred in about 23 and 19% of the isolates, respectively. RAPD typing, by which 69 types were discerned altogether, revealed a high degree of clonal diversity among the populations. However, the four most prevalent types were highly predominant, grouping approximately 71% of the isolates studied. These clones were observed in the two hospitals and were strong contributors to both outbreaks and the background of endemicity of the S. marcescens infections. Some of the strains that were not so widely spread (12 RAPD types; approximately 14% of the isolates) were responsible for several smaller outbreaks, and the remaining isolates represented unique RAPD types (53 types; approximately 15% of the isolates) and were probably sporadic introductions from other environments. ESBLs were identified in several different clones, and some of these had most likely already been introduced into the hospitals as ESBL producers, whereas the others acquired the ESBL-encoding genes from other enterobacterial strains in these environments. The CTX-M-3 enzyme, which is widely observed in Poland, was the most common ESBL type among the S. marcescens isolates, followed by TEM-47 and SHV-5. The complex epidemiology of ESBLs, especially in 1999 and 2000, must have arisen from the introduction of ESBL producers from other centers, their clonal dissemination, and the constant penetration of the S

  12. Protein Engineering and Homologous Expression of Serratia marcescens Lipase for Efficient Synthesis of a Pharmaceutically Relevant Chiral Epoxyester.

    PubMed

    Chen, Ke-Cai; Zheng, Ming-Min; Pan, Jiang; Li, Chun-Xiu; Xu, Jian-He

    2017-10-01

    The lipase isolated from Serratia marcescens (LipA) is a useful biocatalyst for kinetic resolution of a pharmaceutically relevant epoxyester, (±)-3-(4'-methoxyphenyl) glycidic acid methyl ester [(±)-MPGM], to afford optically pure (-)-MPGM, a key intermediate for the synthesis of diltiazem hydrochloride. Two mutants, LipA L315S and LipA S271F , were identified from the combinatorial saturation mutation library of 14 amino acid residues lining the substrate-binding pocket. LipA L315S , LipA S271F , and their combination LipA L315S/S271F showed 2.6-, 2.2-, and 4.6-fold improvements in their specific activities towards para-nitrophenyl butyrate (pNPB), respectively. Among these positive mutants, LipA S271F displayed a 3.5-fold higher specific activity towards the pharmaco substrate (±)-MPGM. Kinetic study showed that the improvement in catalytic efficiency of LipA S271F against (±)-MPGM was mainly resulted from the enhanced affinity between substrate and enzyme, as indicated by the decrease of K m . Furthermore, to address the insoluble expression issue in Escherichia coli, the homologous expression of LipA gene in S. marcescens was achieved by introducing it into an expression vector pUC18, resulting in ca. 20-fold higher lipase production. The significantly improved volumeric production and specific activity of S. marcescens lipase make it very attractive as a new-generation biocatalyst for more efficient and economical manufacturing of (-)-MPGM.

  13. Inactivation of the Major Hemolysin Gene Influences Expression of the Nonribosomal Peptide Synthetase Gene swrA in the Insect Pathogen Serratia sp. Strain SCBI

    PubMed Central

    Petersen, Lauren M.; LaCourse, Kaitlyn; Schöner, Tim A.; Bode, Helge

    2017-01-01

    ABSTRACT Hemolysins are important virulence factors for many bacterial pathogens, including Serratia marcescens. The role of the major hemolysin gene in the insect pathogen Serratia sp. strain SCBI was investigated using both forward and reverse-genetics approaches. Introduction of the major hemolysin gene into Escherichia coli resulted in a gain of both virulence and hemolytic activity. Inactivation of this hemolysin in Serratia sp. SCBI resulted in a loss of hemolysis but did not attenuate insecticidal activity. Unexpectedly, inactivation of the hemolysin gene in Serratia sp. SCBI resulted in significantly increased motility and increased antimicrobial activity. Reverse transcription-quantitative PCR (qRT-PCR) analysis of mutants with a disrupted hemolysin gene showed a dramatic increase in mRNA levels of a nonribosomal peptide synthetase gene, swrA, which produces the surfactant serrawettin W2. Mutation of the swrA gene in Serratia sp. SCBI resulted in highly varied antibiotic activity, motility, virulence, and hemolysis phenotypes that were dependent on the site of disruption within this 17.75-kb gene. When introduced into E. coli, swrA increases rates of motility and confers antimicrobial activity. While it is unclear how inactivation of the major hemolysin gene influences the expression of swrA, these results suggest that swrA plays an important role in motility and antimicrobial activity in Serratia sp. SCBI. IMPORTANCE The opportunistic Gram-negative bacteria of the genus Serratia are widespread in the environment and can cause human illness. A comparative genomics analysis between Serratia marcescens and a new Serratia species from South Africa, termed Serratia sp. strain SCBI, shows that these two organisms are closely related but differ in pathogenesis. S. marcescens kills Caenorhabditis nematodes, while Serratia sp. SCBI is not harmful and forms a beneficial association with them. This distinction presented the opportunity to investigate potential

  14. Inactivation of the Major Hemolysin Gene Influences Expression of the Nonribosomal Peptide Synthetase Gene swrA in the Insect Pathogen Serratia sp. Strain SCBI.

    PubMed

    Petersen, Lauren M; LaCourse, Kaitlyn; Schöner, Tim A; Bode, Helge; Tisa, Louis S

    2017-11-01

    Hemolysins are important virulence factors for many bacterial pathogens, including Serratia marcescens The role of the major hemolysin gene in the insect pathogen Serratia sp. strain SCBI was investigated using both forward and reverse-genetics approaches. Introduction of the major hemolysin gene into Escherichia coli resulted in a gain of both virulence and hemolytic activity. Inactivation of this hemolysin in Serratia sp. SCBI resulted in a loss of hemolysis but did not attenuate insecticidal activity. Unexpectedly, inactivation of the hemolysin gene in Serratia sp. SCBI resulted in significantly increased motility and increased antimicrobial activity. Reverse transcription-quantitative PCR (qRT-PCR) analysis of mutants with a disrupted hemolysin gene showed a dramatic increase in mRNA levels of a nonribosomal peptide synthetase gene, swrA , which produces the surfactant serrawettin W2. Mutation of the swrA gene in Serratia sp. SCBI resulted in highly varied antibiotic activity, motility, virulence, and hemolysis phenotypes that were dependent on the site of disruption within this 17.75-kb gene. When introduced into E. coli , swrA increases rates of motility and confers antimicrobial activity. While it is unclear how inactivation of the major hemolysin gene influences the expression of swrA , these results suggest that swrA plays an important role in motility and antimicrobial activity in Serratia sp. SCBI. IMPORTANCE The opportunistic Gram-negative bacteria of the genus Serratia are widespread in the environment and can cause human illness. A comparative genomics analysis between Serratia marcescens and a new Serratia species from South Africa, termed Serratia sp. strain SCBI, shows that these two organisms are closely related but differ in pathogenesis. S. marcescens kills Caenorhabditis nematodes, while Serratia sp. SCBI is not harmful and forms a beneficial association with them. This distinction presented the opportunity to investigate potential differences

  15. Evaluation of the biocontrol efficacy of a Serratia marcescens strain indigenous to tea rhizosphere for the management of root rot disease in tea

    PubMed Central

    Mangar, Preeti; Saha, Aniruddha

    2018-01-01

    The aim of the present study is to evaluate plant growth promoting and biocontrol efficacy of a Serratia marcescens strain ETR17 isolated from tea rhizosphere for the effective management of root rot disease in tea. Isolated bacterial culture ETR17 showed significant level of in vitro antagonism against nine different foliar and root pathogens of tea. The phenotypic and molecular characterization of ETR17 revealed the identity of the bacterium as Serratia marcescens. The bacterium was found to produce several hydrolytic enzymes like chitinase, protease, lipase, cellulase and plant growth promoting metabolites like IAA and siderophore. Scanning electron microscopic studies on the interaction zone between pathogen and antagonistic bacterial isolate revealed severe deformities in the fungal mycelia. Spectral analyses (LC-ESI-MS, UV-VIS spectrophotometry and HPLC) and TLC indicated the presence of the antibiotics pyrrolnitrin and prodigiosin in the extracellular bacterial culture extracts. Biofilm formation by ETR17 on polystyrene surface was also observed. In vivo application of talc-based formulations prepared with the isolate ETR17 in tea plantlets under green house conditions revealed effective reduction of root-rot disease as well as plant growth promotion to a considerable extent. Viability studies with the ETR17 talc formulation showed the survivability of the isolate up to six months at room temperature. The sustenance of ETR17 (concentration of 8-9x108 cfu g-1) in the soil after the application of talc formulation was recorded by ELISA. Safety studies revealed that ETR17 did not produce hemolysin as observed in pathogenic Serratia strains. The biocontrol strain reported in this study can be used for field application in order to minimize the use of chemical fungicides for disease control in tea gardens. PMID:29466418

  16. Evaluation of the biocontrol efficacy of a Serratia marcescens strain indigenous to tea rhizosphere for the management of root rot disease in tea.

    PubMed

    Dhar Purkayastha, Gargee; Mangar, Preeti; Saha, Aniruddha; Saha, Dipanwita

    2018-01-01

    The aim of the present study is to evaluate plant growth promoting and biocontrol efficacy of a Serratia marcescens strain ETR17 isolated from tea rhizosphere for the effective management of root rot disease in tea. Isolated bacterial culture ETR17 showed significant level of in vitro antagonism against nine different foliar and root pathogens of tea. The phenotypic and molecular characterization of ETR17 revealed the identity of the bacterium as Serratia marcescens. The bacterium was found to produce several hydrolytic enzymes like chitinase, protease, lipase, cellulase and plant growth promoting metabolites like IAA and siderophore. Scanning electron microscopic studies on the interaction zone between pathogen and antagonistic bacterial isolate revealed severe deformities in the fungal mycelia. Spectral analyses (LC-ESI-MS, UV-VIS spectrophotometry and HPLC) and TLC indicated the presence of the antibiotics pyrrolnitrin and prodigiosin in the extracellular bacterial culture extracts. Biofilm formation by ETR17 on polystyrene surface was also observed. In vivo application of talc-based formulations prepared with the isolate ETR17 in tea plantlets under green house conditions revealed effective reduction of root-rot disease as well as plant growth promotion to a considerable extent. Viability studies with the ETR17 talc formulation showed the survivability of the isolate up to six months at room temperature. The sustenance of ETR17 (concentration of 8-9x108 cfu g-1) in the soil after the application of talc formulation was recorded by ELISA. Safety studies revealed that ETR17 did not produce hemolysin as observed in pathogenic Serratia strains. The biocontrol strain reported in this study can be used for field application in order to minimize the use of chemical fungicides for disease control in tea gardens.

  17. Complete genome analysis of Serratia marcescens RSC-14: A plant growth-promoting bacterium that alleviates cadmium stress in host plants

    PubMed Central

    Khan, Abdur Rahim; Park, Gun-Seok; Asaf, Sajjad; Hong, Sung-Jun; Jung, Byung Kwon

    2017-01-01

    Serratia marcescens RSC-14 is a Gram-negative bacterium that was previously isolated from the surface-sterilized roots of the Cd-hyperaccumulator Solanum nigrum. The strain stimulates plant growth and alleviates Cd stress in host plants. To investigate the genetic basis for these traits, the complete genome of RSC-14 was obtained by single-molecule real-time sequencing. The genome of S. marcescens RSC-14 comprised a 5.12-Mbp-long circular chromosome containing 4,593 predicted protein-coding genes, 22 rRNA genes, 88 tRNA genes, and 41 pseudogenes. It contained genes with potential functions in plant growth promotion, including genes involved in indole-3-acetic acid (IAA) biosynthesis, acetoin synthesis, and phosphate solubilization. Moreover, annotation using NCBI and Rapid Annotation using Subsystem Technology identified several genes that encode antioxidant enzymes as well as genes involved in antioxidant production, supporting the observed resistance towards heavy metals, such as Cd. The presence of IAA pathway-related genes and oxidative stress-responsive enzyme genes may explain the plant growth-promoting potential and Cd tolerance, respectively. This is the first report of a complete genome sequence of Cd-tolerant S. marcescens and its plant growth promotion pathway. The whole-genome analysis of this strain clarified the genetic basis underlying its phenotypic and biochemical characteristics, underpinning the beneficial interactions between RSC-14 and plants. PMID:28187139

  18. Detection of the IncX3 plasmid carrying blaKPC-3 in a Serratia marcescens strain isolated from a kidney-liver transplanted patient.

    PubMed

    Gona, Floriana; Caio, Carla; Iannolo, Gioacchin; Monaco, Francesco; Di Mento, Giuseppina; Cuscino, Nicola; Fontana, Ignazio; Panarello, Giovanna; Maugeri, Gaetano; Mezzatesta, Maria Lina; Stefani, Stefania; Conaldi, Pier Giulio

    2017-10-01

    Dissemination of resistance to carbapenems among Enterobacteriaceae through plasmids is an increasingly important concern in health care worldwide. Here we report the first description of an IncX3 plasmid carrying the blaKPC-3 gene in a strain of Serratia marcescens isolated from a kidney-liver transplanted patient at the transplantation centre ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione, Palermo, Italy). To localize the transposable element containing the resistance-associated gene Next-Generation Sequencing of the bacterial DNA was performed. S. marcescens was positive for blaKPC-3 and blaSHV-11 genes. The molecular analysis demonstrated that the blaKPC-3 gene of this bacterial strain was located in one copy of the Tn-3-like element Tn4401-a carried in a plasmid that is 53 392 bp in size and showed the typical IncX3 scaffold. Our data demonstrated the presence of a new blaKPC-3 harbouring the IncX3 plasmid in S. marcescens. The possible dissemination among Enterobacteriaceae of this type of plasmid should be monitored and evaluated in terms of clinical risk.

  19. Serratia marcescens ShlA Pore-Forming Toxin Is Responsible for Early Induction of Autophagy in Host Cells and Is Transcriptionally Regulated by RcsB

    PubMed Central

    Di Venanzio, Gisela; Stepanenko, Tatiana M.

    2014-01-01

    Serratia marcescens is a Gram-negative bacterium that thrives in a wide variety of ambient niches and interacts with an ample range of hosts. As an opportunistic human pathogen, it has increased its clinical incidence in recent years, being responsible for life-threatening nosocomial infections. S. marcescens produces numerous exoproteins with toxic effects, including the ShlA pore-forming toxin, which has been catalogued as its most potent cytotoxin. However, the regulatory mechanisms that govern ShlA expression, as well as its action toward the host, have remained unclear. We have shown that S. marcescens elicits an autophagic response in host nonphagocytic cells. In this work, we determine that the expression of ShlA is responsible for the autophagic response that is promoted prior to bacterial internalization in epithelial cells. We show that a strain unable to express ShlA is no longer able to induce this autophagic mechanism, while heterologous expression of ShlA/ShlB suffices to confer on noninvasive Escherichia coli the capacity to trigger autophagy. We also demonstrate that shlBA harbors a binding motif for the RcsB regulator in its promoter region. RcsB-dependent control of shlBA constitutes a feed-forward regulatory mechanism that allows interplay with flagellar-biogenesis regulation. At the top of the circuit, activated RcsB downregulates expression of flagella by binding to the flhDC promoter region, preventing FliA-activated transcription of shlBA. Simultaneously, RcsB interaction within the shlBA promoter represses ShlA expression. This circuit offers multiple access points to fine-tune ShlA production. These findings also strengthen the case for an RcsB role in orchestrating the expression of Serratia virulence factors. PMID:24914224

  20. Evidence for metabolic activity of airborne bacteria

    NASA Technical Reports Server (NTRS)

    Chatigny, M. A.; Wolochow, H.

    1974-01-01

    Aerosols of the bacterium Serratia marcescens, and of uniformly labeled C-14 glucose were produced simultaneously and mixed in tubing leading to an aerosol chamber. During a subsequent period of about 5 hrs, carbon dioxide was produced metabolically within the chamber, and labeled material incorporated within the suspended particles first increased then decreased. This constitutes the first direct evidence of microbial metabolism of bacteria suspended in the air.

  1. [Community acquired sepsis by Serratia rubidaea].

    PubMed

    Okada, Takanori; Yokota, Eisuke; Matsumoto, Isao

    2002-02-01

    A 48-year-old male who had a past history of alcoholic pancreatitis and diabetes mellitus was admitted to our hospital due to chills and vomiting, on August 13, 1998. His body temperature was 38.0 degrees C, and he had the disturbance of consciousness, tachypnea, tachycardia and hepatomegaly with tenderness. Laboratory findings showed highly inflammatory reactions, DIC and hepatorenal dysfunction. Abdominal CT and US revealed multiple liver abscess with portal vein thrombus. Serratia rubidaea was detected in the blood culture. SBT/CPZ and TOB were administered and he recovered. This is a rare case of Serratia rubidaea sepsis. It is also necessary to pay attention to Serratia infections as well as S. marcescens.

  2. Harnessing the bio-mineralization ability of urease producing Serratia marcescens and Enterobacter cloacae EMB19 for remediation of heavy metal cadmium (II).

    PubMed

    Bhattacharya, Amrik; Naik, S N; Khare, S K

    2018-06-01

    In the present study, urease positive Serratia marcescens (NCIM2919) and Enterobacter cloacae EMB19 (MTCC10649) were individually evaluated for remediation of cadmium (II) using ureolysis-induced calcium carbonate precipitation. Both the cultures were observed to efficiently remove cadmium from the media through co-precipitation of Cd (II) and Ca (II). S. marcescens and E. cloacae EMB19, respectively showed 96 and 98% removal of initial 5.0 mg L -1 soluble Cd (II) from the urea and CaCl 2 laden media at 96 h of incubation period. At higher Cd (II) concentrations of 10 and 15 mg L -1 , cadmium removal efficiency was much higher in case of E. cloacae EMB19 compared to S. marcescens. In-vitro cadmium (II) remediation study using urease containing cell-free culture supernatant of S. marcescens and E. cloacae EMB19 showed respective 98 and 53% removal of initial 50 mg L -1  Cd (II) from the reaction mixtures in co-presence of Ca (II). While in sole presence of Cd (II), only 16 and 8% removal of Cd (II) were detected for S. marcescens and E. cloacae EMB19, respectively. The elemental analysis of the co-precipitated mineral products using Energy Dispersive X-ray spectroscopy (EDX) clearly showed the prevalence of Ca and Cd ions. The morphology Cd-Ca composites formed with respect to both the cultures were observed to be of different shape and size as revealed through Scanning Electron Microscopy (SEM). Entire study hence comes out with a sustainable bioremediation option which could be effectively used to tackle Cd (II) or other heavy metal pollution. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. The Insect Pathogen Serratia marcescens Db10 Uses a Hybrid Non-Ribosomal Peptide Synthetase-Polyketide Synthase to Produce the Antibiotic Althiomycin

    PubMed Central

    Challis, Gregory L.; Stanley-Wall, Nicola R.; Coulthurst, Sarah J.

    2012-01-01

    There is a continuing need to discover new bioactive natural products, such as antibiotics, in genetically-amenable micro-organisms. We observed that the enteric insect pathogen, Serratia marcescens Db10, produced a diffusible compound that inhibited the growth of Bacillis subtilis and Staphyloccocus aureus. Mapping the genetic locus required for this activity revealed a putative natural product biosynthetic gene cluster, further defined to a six-gene operon named alb1–alb6. Bioinformatic analysis of the proteins encoded by alb1–6 predicted a hybrid non-ribosomal peptide synthetase-polyketide synthase (NRPS-PKS) assembly line (Alb4/5/6), tailoring enzymes (Alb2/3) and an export/resistance protein (Alb1), and suggested that the machinery assembled althiomycin or a related molecule. Althiomycin is a ribosome-inhibiting antibiotic whose biosynthetic machinery had been elusive for decades. Chromatographic and spectroscopic analyses confirmed that wild type S. marcescens produced althiomycin and that production was eliminated on disruption of the alb gene cluster. Construction of mutants with in-frame deletions of specific alb genes demonstrated that Alb2–Alb5 were essential for althiomycin production, whereas Alb6 was required for maximal production of the antibiotic. A phosphopantetheinyl transferase enzyme required for althiomycin biosynthesis was also identified. Expression of Alb1, a predicted major facilitator superfamily efflux pump, conferred althiomycin resistance on another, sensitive, strain of S. marcescens. This is the first report of althiomycin production outside of the Myxobacteria or Streptomyces and paves the way for future exploitation of the biosynthetic machinery, since S. marcescens represents a convenient and tractable producing organism. PMID:23028578

  4. Innate Immune Regulation of Serratia marcescens–Induced Corneal Inflammation and Infection

    PubMed Central

    Zhou, Rong; Zhang, Rui; Sun, Yan; Platt, Sean; Szczotka-Flynn, Loretta; Pearlman, Eric

    2012-01-01

    Purpose. Serratia marcescens is frequently isolated from lenses of patients with contact lens-associated corneal infiltrates. In the current study, we examined the role of toll-like receptors (TLRs) and interleukin-1 receptor type 1 (IL-1R1) in S. marcescens–induced corneal inflammation and infection. Methods. The central corneal epithelium of C57BL/6 and gene knockout mice was abraded, and 1 × 107 S. marcescens were added in the presence of a silicone hydrogel contact lens, and we examined corneal inflammation by confocal microscopy and neutrophil enumeration. Viable bacteria were quantified by colony-forming units (CFU). Results. S. marcescens induced neutrophil recruitment to the corneal stroma, and increased corneal thickness and haze in C57BL/6 mice. Conversely, CFU was significantly lower by 48 hours post infection. In contrast, MyD88−/−, IL-1R−/−, TLR4−/−, and TLR4/5−/− corneas infected with S. marcescens had significantly increased CFU, indicating impaired clearance. However, there was no significant difference in CFU among C57BL/6, TIRAP−/−, and TRIF−/− mice. Tobramycin-killed S. marcescens induced corneal inflammation in C57BL/6 mice, which was impaired significantly in MD-2−/− mice and in C57BL/6 mice pretreated topically with the MD-2 antagonist eritoran tetrasodium. Conclusions. S. marcescens induces corneal inflammation by activation of TLR4/MD-2/MyD88 and the IL-1R1/MyD88 pathways, which are potential therapeutic targets for inhibition of S. marcescens-induced corneal inflammation. PMID:23033384

  5. Culture-dependent and culture-independent analyses reveal no prokaryotic community shifts or recovery of Serratia marcescens in Acropora palmata with white pox disease.

    PubMed

    Lesser, Michael P; Jarett, Jessica K

    2014-06-01

    Recently, the etiological agent of white pox (WP) disease, also known as acroporid serratiosis, in the endangered coral Acropora palmata is the enteric bacterium Serratia marcescens with the source being localized sewage release onto coastal coral reef communities. Here, we show that both culture-dependent and culture-independent approaches could not recover this bacterium from samples of tissue and mucus from A. palmata colonies affected by WP disease in the Bahamas, or seawater collected adjacent to A. palmata colonies. Additionally, a metagenetic 16S rRNA pyrosequencing study shows no significant difference in the bacterial communities of coral tissues with and without WP lesions. As recent studies have shown for other coral diseases, S. marcescens cannot be identified in all cases of WP disease in several geographically separated populations of A. palmata with the same set of signs. As a result, its identification as the etiological agent of WP disease, and cause of a reverse zoonosis, cannot be broadly supported. However, the prevalence of WP disease associated with S. marcescens does appear to be associated with proximity to population centers, and research efforts should be broadened to examine this association, and to identify other causes of this syndrome. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  6. Apoptosis of human lung adenocarcinoma A549 cells induced by prodigiosin analogue obtained from an entomopathogenic bacterium Serratia marcescens.

    PubMed

    Zhou, Wei; Jin, Zhi-Xiong; Wan, Yong-Ji

    2010-12-01

    An entomopathogenic bacterial strain SCQ1 was isolated from silkworm (Bombyx mori) and identified as Serratia marcescens via 16S rRNA gene analysis. This strain produces a red pigment that causes acute septicemia of silkworm. The red pigment of strain SCQ1 was identified as prodigiosin analogue (PGA) with various reported biological activities. In this study, we found that low concentration of PGA showed significant anticancer activity in human lung adenocarcinoma A549 cells, but has little effect in human bone marrow stem cells, in vitro. By exposure to different concentrations of PGA for 24 h, morphological changes and the MTT assay showed that A549 cell line was very sensitive to PGA, with IC(50) value about 2.2 mg/L. Early stage of apoptosis was detected by flow cytometry while A549 cells were treated with PGA for 4 and 12 h, respectively. The proportion of dead cells was increased with treatment time or the concentrations of PGA, but it was inversely proportional to that of apoptotic cells. These results indicate that PGA obtained from strain SCQ1 induces apoptosis in A549 cells, but the molecular mechanisms of cell death are complicated, and the S. marcescens strain SCQ1 may serve as a source of the anticancer compound, PGA.

  7. Detection and culture of Bartonella quintana, Serratia marcescens, and Acinetobacter spp. from decontaminated human body lice.

    PubMed

    La Scola, B; Fournier, P E; Brouqui, P; Raoult, D

    2001-05-01

    As part of a survey for trench fever among homeless people in Marseilles, France, we attempted isolation of Bartonella quintana from body lice. A decontamination protocol of immersion in 70% ethanol with 0.2% iodine was devised and was tested with a laboratory colony of body lice. Lice which had been experimentally contaminated with either Escherichia coli, Staphylococcus epidermidis, or Acinetobacter spp. were successfully decontaminated, and this process did not prevent the culture of B. quintana from these lice. One hundred sixty-one lice obtained from homeless patients were studied by the protocol. B. quintana was isolated on axenic medium from 15 of 161 body lice and was detected in 41 of 161 lice by PCR. Acinetobacter spp. and Serratia marcescens were also isolated from body lice. The sensitivities of PCR and culture of B. quintana were 98 and 36%, respectively. These procedures may be useful for epidemiologic studies of trench fever and for the recovery of strains for characterization and comparison.

  8. Effects of temperature, pH and NaCl content on in vitro putrescine and cadaverine production through the growth of Serratia marcescens CCM 303.

    PubMed

    Bubelová, Zuzana; Buňka, František; Taťáková, Monika; Štajnochová, Kateřina; Purevdorj, Khatantuul; Buňková, Leona

    2015-01-01

    The aim of this study was to evaluate the combined effect of temperature (10, 20 and 37°C), pH (4, 5, 6, 7 and 8), and NaCl content (0, 1, 3, 4, 5 and 6% w/v) on the growth and putrescine and cadaverine production of Serratia marcescens CCM 303 under model conditions. The decarboxylase activity of S. marcescens was monitored in broth after cultivation. The cultivation medium was enriched with selected amino acids (ornithine, arginine and lysine; 0.2% w/v each) serving as precursors of biogenic amines. Levels of putrescine and cadaverine in broth were analysed by high-performance liquid chromatography after pre-column derivatisation with o-phthalaldehyde reagent. S. marcescens produced higher amounts of putrescine (up to 2096.8 mg L(-1)) compared to cadaverine content (up to 343.3 mg L(-1)) in all cultivation media. The highest putrescine and cadaverine concentrations were reached during cultivation at 10-20°C, pH 5-7 and NaCl content 1-3% w/v. On the other hand, the highest BAs production of individual cell (recalculated based on a cell; so called "yield factor") was observed at 10°C, pH 4 and salt concentration 3-5% w/v as a response to environmental stress.

  9. Serratia marcescens bacteraemia outbreak in haemodialysis patients with tunnelled catheters due to colonisation of antiseptic solution. Experience at 4 hospitals.

    PubMed

    Merino, José L; Bouarich, Hanane; Pita, Mª José; Martínez, Patricia; Bueno, Blanca; Caldés, Silvia; Corchete, Elena; Jaldo, Mª Teresa; Espejo, Beatriz; Paraíso, Vicente

    The application of antiseptic solution for handling tunnelled catheters is recommended in patients undergoing haemodialysis. These routine antiseptic procedures in handling catheters are crucial to avoid complications. We report an outbreak of Serratia marcescens (S. marcescens) bacteraemia in numerous haemodialysis units of the Community of Madrid. The first cases of bacteraemia due to S. marcescens were isolated in December 2014. The Preventive Medicine Services were informed of the detection of an atypical pathogen in several patients, suspecting a probable nosocomial outbreak. Information from 4 centres with similar S. marcescens bacteraemia was analysed. Twenty-one cases of bacteraemia related to S. marcescens were identified. The mean age of affected patients was 72±10 years. The mean time on haemodialysis of affected patients was 33±13 months (range: 3-83 months), the median time of tunnelled catheter was 22±13 months. In 11 cases the clinical picture was similar, with hypotension and general malaise during the haemodialysis session. Fever was present in a further 7 cases. In 3 cases the presentation was asymptomatic and was detected by blood cultures. All patients had tunnelled catheters (12 patients with catheter in the right jugular vein, 5 in the left jugular, 2 in the right femoral artery and 2 in the left subclavian artery). Gentamicin intravenous doses (1mg/kg) with catheter lock solution with ciprofloxacin post-dialysis were administered for 3 weeks in 6 patients. In 12 patients the treatment was ceftazidime (2g IV) plus catheter lock solution with the same antibiotic, for 2 weeks. Four patients received oral ciprofloxacin for 2 weeks, in one case together with IV vancomycin. The patients were asymptomatic and without new episodes 48hours after the treatment. No major complications were observed. The teams informed the health authorities of the situation, which then reported the presence of batches of antiseptic (chlorhexidine 0.05 and 2

  10. Piper betle and its bioactive metabolite phytol mitigates quorum sensing mediated virulence factors and biofilm of nosocomial pathogen Serratia marcescens in vitro.

    PubMed

    Srinivasan, Ramanathan; Devi, Kannan Rama; Kannappan, Arunachalam; Pandian, Shunmugiah Karutha; Ravi, Arumugam Veera

    2016-12-04

    Piper betle, a tropical creeper plant belongs to the family Piperaceae. The leaves of this plant have been well known for their therapeutic, religious and ceremonial value in South and Southeast Asia. It has also been reported to possess several biological activities including antimicrobial, antioxidant, antinociceptive, antidiabetic, insecticidal and gastroprotective activities and used as a common ingredient in indigenous medicines. In Indian system of ayurvedic medicine, P. betle has been well recognized for its antiseptic properties and is commonly applied on wounds and lesions for its healing effects. To evaluate the anti-quorum sensing (anti-QS) and antibiofilm efficacy of P. betle and its bioactive metabolite phytol against Serratia marcescens. The P. betle ethyl acetate extract (PBE) was evaluated for its anti-QS efficacy against S. marcescens by assessing the prodigiosin and lipase production at 400 and 500µgml -1 concentrations. In addition, the biofilm biomass quantification assay was performed to evaluate the antibiofilm activity of PBE against S. marcescens. Besides, the influence of PBE on bacterial biofilm formation was assessed through microscopic techniques. The biofilm related phenomenons like exopolysaccharides (EPS) production, hydrophobicity and swarming motility were also examined to support the antibiofilm activity of PBE. Transcriptional analysis of QS regulated genes in S. marcescens was also done. Characterization of PBE was done by separation through column chromatography and identification of active metabolites by gas chromatography -mass spectrometry. The major compounds of active fractions such as hexadecanoic acid, eugenol and phytol were assessed for their anti-QS activity against S. marcescens. Further, the in vitro bioassays such as protease, biofilm and HI quantification were also carried out to confirm the anti-QS and antibiofilm potential of phytol in PBE. PBE inhibits QS mediated prodigiosin pigment production in S. marcescens

  11. Genetic Engineering of Single-Domain Magnetic Bacteria.

    DTIC Science & Technology

    1992-09-25

    siderophore produc- cient but modification-proficient for all the three modifi- tion have been demonstrated in Serratia marcescens cation systems of S...characterization of 3-dehydroquinase cally novel iron(llll) transport system in Serratia marcescens . J from Eschenchia co/i. Biochem J 239: 699-704...should provide valuable infor- lion of rec.c4 mutants. rec.4-independen’t instabilit\\ of alciinatc mnation about the history of the evolution of this

  12. Scleral buckle infection by Serratia species.

    PubMed

    Venkatesh, Ramesh; Agarwal, Manisha; Singh, Shalini; Mayor, Rahul; Bansal, Aditya

    2017-01-01

    We describe a rare case of scleral buckle (SB) infection with Serratia species. A 48-year-old male with a history of retinal detachment repair with scleral buckling presented with redness, pain, and purulent discharge in the left eye for 4 days. Conjunctival erosion with exposure of the SB and scleral thinning was noted. The SB was removed and sent for culture. Blood and chocolate agar grew Gram-negative rod-shaped bacillus identified as Serratia marcescens . On the basis of the susceptibility test results, the patient was treated with oral and topical antibiotics. After 6 weeks of the treatment, his infection resolved.

  13. Serratia marcescens harbouring SME-type class A carbapenemases in Canada and the presence of blaSME on a novel genomic island, SmarGI1-1.

    PubMed

    Mataseje, L F; Boyd, D A; Delport, J; Hoang, L; Imperial, M; Lefebvre, B; Kuhn, M; Van Caeseele, P; Willey, B M; Mulvey, M R

    2014-07-01

    An increasing prevalence since 2010 of Serratia marcescens harbouring the Ambler class A carbapenemase SME prompted us to further characterize these isolates. Isolates harbouring bla(SME) were identified by PCR and sequencing. Phenotypic analysis for carbapenemase activity was carried out by a modified Hodge test and a modified Carba NP test. Antimicrobial susceptibilities were determined by Etest and Vitek 2. Typing was by PFGE of macrorestriction digests. Whole-genome sequencing of three isolates was carried out to characterize the genomic region harbouring the bla(SME)-type genes. All S. marcescens harbouring SME-type enzymes could be detected using a modified Carba NP test. Isolates harbouring bla(SME) were resistant to penicillins and carbapenems, but remained susceptible to third-generation cephalosporins, as well as fluoroquinolones and trimethoprim/sulfamethoxazole. Isolates exhibited diverse genetic backgrounds, though 57% of isolates were found in three clusters. Analysis of whole-genome sequence data from three isolates revealed that the bla(SME) gene occurred in a novel cryptic prophage genomic island, SmarGI1-1. There has been an increasing occurrence of S. marcescens harbouring bla(SME) in Canada since 2010. The bla(SME) gene was found on a genomic island, SmarGI1-1, that can be excised and circularized, which probably contributes to its dissemination amongst S. marcescens. © The Author 2014. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  14. Control of microfabricated structures powered by flagellated bacteria using phototaxis

    NASA Astrophysics Data System (ADS)

    Steager, Edward; Kim, Chang-Beom; Patel, Jigarkumar; Bith, Socheth; Naik, Chandan; Reber, Lindsay; Kim, Min Jun

    2007-06-01

    Flagellated bacteria have been employed as microactuators in low Reynolds number fluidic environments. SU-8 microstructures have been fabricated and released on the surface of swarming Serratia marcescens, and the flagella propel the structures along the swarm surface. Phototactic control of these structures is demonstrated by exposing the localized regions of the swarm to ultraviolet light. The authors additionally discuss the control of microstructures in an open channel powered by bacteria which have been docked through a blotting technique. A tracking algorithm has been developed to analyze swarming patterns of the bacteria as well as the kinematics of the microstructures.

  15. Synergistic reaction of silver nitrate, silver nanoparticles, and methylene blue against bacteria

    PubMed Central

    Li, Runze; Chen, Jie; Cesario, Thomas C.; Wang, Xin; Yuan, Joshua S.; Rentzepis, Peter M.

    2016-01-01

    In this paper we describe the antibacterial effect of methylene blue, MB, and silver nitrate reacting alone and in combination against five bacterial strains including Serratia marcescens and Escherichia coli bacteria. The data presented suggest that when the two components are combined and react together against bacteria, the effects can be up to three orders of magnitude greater than that of the sum of the two components reacting alone against bacteria. Analysis of the experimental data provides proof that a synergistic mechanism is operative within a dose range when the two components react together, and additive when reacting alone against bacteria. PMID:27849602

  16. Influence of temperature on the physiology and virulence of the insect pathogen Serratia sp. Strain SCBI.

    PubMed

    Petersen, Lauren M; Tisa, Louis S

    2012-12-01

    The physiology of a newly recognized Serratia species, termed South African Caenorhabditis briggsae Isolate (SCBI), which is both a nematode mutualist and an insect pathogen, was investigated and compared to that of Serratia marcescens Db11, a broad-host-range pathogen. The two Serratia strains had comparable levels of virulence for Manduca sexta and similar cytotoxic activity patterns, but motility and lipase and hemolytic activities differed significantly between them.

  17. Influence of Temperature on the Physiology and Virulence of the Insect Pathogen Serratia sp. Strain SCBI

    PubMed Central

    Petersen, Lauren M.

    2012-01-01

    The physiology of a newly recognized Serratia species, termed South African Caenorhabditis briggsae Isolate (SCBI), which is both a nematode mutualist and an insect pathogen, was investigated and compared to that of Serratia marcescens Db11, a broad-host-range pathogen. The two Serratia strains had comparable levels of virulence for Manduca sexta and similar cytotoxic activity patterns, but motility and lipase and hemolytic activities differed significantly between them. PMID:23042169

  18. Intensified colonisation screening according to the recommendations of the German Commission for Hospital Hygiene and Infectious Diseases Prevention (KRINKO): identification and containment of a Serratia marcescens outbreak in the neonatal intensive care unit, Jena, Germany, 2013-2014.

    PubMed

    Dawczynski, Kristin; Proquitté, Hans; Roedel, Jürgen; Edel, Brigit; Pfeifer, Yvonne; Hoyer, Heike; Dobermann, Helke; Hagel, Stefan; Pletz, Mathias W

    2016-12-01

    In 2013, the German Commission for Hospital Hygiene and Infectious Disease Prevention (KRINKO) stated that extending weekly colonisation screening from very low birth weight (VLBW) infants (<1500 g) to all patients in the Neonatal Intensive Care Unit (NICU) might be useful. After implementing this recommendation, we detected a previously unnoticed cluster of Serratia marcescens. Strains were typed by Pulsed Field Gel Electrophoresis (PFGE). Over 6 months, 19 out of 159 infants acquired S. marcescens. Twelve of the nineteen patients with S. marcescens were non-VLBW infants, and they were colonised significantly earlier than were VLBW infants (median 17 vs. 28 days; p < 0.01). Molecular typing revealed a polyclonal outbreak with multiple strain types leading to one or two transmissions each and a dominating outbreak strains being involved in an explosive outbreak involving eight neonates. The revised KRINKO recommendation may help identify unnoticed outbreaks. Colonised non-VLBW patients may be an underestimated source of S. marcescens.

  19. Effects of Psychrotrophic Bacteria, Serratia liquefaciens and Acinetobacter genomospecies 10 on Yogurt Quality

    PubMed Central

    Shin, Yong Kook; Oh, Nam Su; Lee, Hyun Ah; Choi, Jong-Woo

    2014-01-01

    The aim of this study was to evaluate the effect of proteolytic (Serratia liquefaciens, match %: 99.39) or lipolytic (Acinetobacter genomospecies 10, match %: 99.90) psychrotrophic bacteria (bacterial counts, analysis of free fatty acids (FFA) and analysis of free amino acids) on the microbial and chemical properties (yogurt composition), and sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) of yogurt during storage. Yogurts were prepared with raw milk preinoculated with each psychrotrophic bacteria. The total solid, fat, and protein content were not affected by preinoculation, but the pH of yogurt preinoculated with psychrotrophic bacteria was higher than in control. There was a dramatic increase in short chain free fatty acids among FFA in yogurt with Acinetobacter genomospecies 10. For 14 d of cold storage condition, SCFFA was 25.3 mg/kg to 34.4 mg/kg (1.36 times increased), MCFFA was 20.4 mg/kg to 25.7 mg/kg (1.26 times increased), and LCFFA was 240.2 mg/kg to 322.8 mg/kg (1.34 times increased). Serratia liquefaciens (match %: 99.39) in yogurt caused a greater accumulation of free amino acids (FAA), especially bitter peptides such as leucine, valine, arginine, and tyrosine, but SDS-PAGE showed that the inoculation of Serratia liquefaciens did not affect the degree of casein degradation during storage. Taken together, the excessive peptides and FFA in yogurt generated from psychrotrophic bacteria could develop off-flavors that degrade the quality of commercial yogurt products. PMID:26761293

  20. Serratia endocarditis. A follow-up report.

    PubMed

    Cooper, R; Mills, J

    1980-02-01

    Seventeen new cases of Serratia marcescens endocarditis observed in the San Francisco Bay Area since June 1974 are presented. Fifteen patients had a history of illicit intravenous drug use and four patients had prosthetic heart valves. Seven patients with infection of right-sided heart valves did well, although surgery was required in two for persistent fever or recurrent pulmonary emboli. Only three of ten patients with left-sided infection survived despite synergistic antibiotic combinations and high serum bactericidal titers. Fifteen isolates of Serratia from patients with endocarditis were serotyped, and none of these serotypes corresponded to the pigmented strain aerosolized by the US Army in the Bay Area in 1951. The isolation of the same Serratia strain from two patients and their shared injection paraphernalia provided insight into the pathogenesis of endocarditis in the intravenous drug user. A revised therapeutic approach to this difficult infection is presented.

  1. Exploring the Anti-quorum Sensing and Antibiofilm Efficacy of Phytol against Serratia marcescens Associated Acute Pyelonephritis Infection in Wistar Rats

    PubMed Central

    Srinivasan, Ramanathan; Mohankumar, Ramar; Kannappan, Arunachalam; Karthick Raja, Veeramani; Archunan, Govindaraju; Karutha Pandian, Shunmugiah; Ruckmani, Kandasamy; Veera Ravi, Arumugam

    2017-01-01

    Quorum Sensing (QS) mechanism, a bacterial density-dependent gene expression system, governs the Serratia marcescens pathogenesis through the production of virulence factors and biofilm formation. The present study demonstrates the anti-quorum sensing (anti-QS), antibiofilm potential and in vivo protective effect of phytol, a diterpene alcohol broadly utilized as food additive and in therapeutics fields. In vitro treatment of phytol (5 and 10 μg/ml) showed decreasing level of biofilm formation, lipase and hemolysin production in S. marcescens compared to their respective controls. More, microscopic analyses confirmed the antibiofilm potential of phytol. The biofilm related phenomenons such as swarming motility and exopolysccharide productions were also inhibited by phytol. Furthermore, the real-time analysis elucidated the molecular mechanism of phytol which showed downregulation of fimA, fimC, flhC, flhD, bsmB, pigP, and shlA gene expressions. On the other hand, the in vivo rescue effect of phytol was assessed against S. marcescens associated acute pyelonephritis in Wistar rat. Compared to the infected and vehicle controls, the phytol treated groups (100 and 200 mg/kg) showed decreased level of bacterial counts in kidney, bladder tissues and urine samples on the 5th post infection day. As well, the phytol treatment showed reduced level of virulence enzymes such as lipase and protease productions compared to the infected and vehicle controls. Further, the infected and vehicle controls showed increasing level of inflammatory markers such as malondialdehyde (MDA), nitric oxide (NO) and myeloperoxidase (MPO) productions. In contrast, the phytol treatment showed decreasing level of inflammatory markers. In histopathology, the uninfected animal showed normal kidney and bladder structure, wherein, the infected animals showed extensive infiltration of neutrophils in kidney and bladder tissues. In contrast, the phytol treatment showed normal kidney and bladder tissues

  2. An outbreak of Serratia marcescens infection in a special-care baby unit of a community hospital in United Arab Emirates: the importance of the air conditioner duct as a nosocomial reservoir.

    PubMed

    Uduman, S A; Farrukh, A S; Nath, K N R; Zuhair, M Y H; Ifrah, A; Khawla, A D; Sunita, P

    2002-11-01

    We report an outbreak of Serratia marcescens infection in a special-care baby unit (SCBU) of a university-affiliated community hospital in the United Arab Emirates. The outbreak involved 36 infants and lasted for 20 weeks. Seven of the colonized infants developed invasive illnesses in the form of bacteraemia (four cases), bacteraemic meningitis (two) and clinical sepsis (one). Three other term infants had purulent conjunctivitis. There were five deaths with an overall mortality of 14%. S. marcescens was cultured from airflow samples from the air conditioning (AC) which was the reservoir of infection in this outbreak. Elimination of the nosocomial source and outbreak containment were eventually achieved by specialized robotic cleaning of the entire AC duct system of the SCBU. Strict adherence to the infection control policies was reinforced to prevent transmission of cross-infection. Copyright 2002 The Hospital Infection Society

  3. Diverse Responses to UV-B Radiation and Repair Mechanisms of Bacteria Isolated from High-Altitude Aquatic Environments▿

    PubMed Central

    Fernández Zenoff, V.; Siñeriz, F.; Farías, M. E.

    2006-01-01

    Acinetobacter johnsonii A2 isolated from the natural community of Laguna Azul (Andean Mountains at 4,560 m above sea level), Serratia marcescens MF42, Pseudomonas sp. strain MF8 isolated from the planktonic community, and Cytophaga sp. strain MF7 isolated from the benthic community from Laguna Pozuelos (Andean Puna at 3,600 m above sea level) were subjected to UV-B (3,931 J m−2) irradiation. In addition, a marine Pseudomonas putida strain, 2IDINH, and a second Acinetobacter johnsonii strain, ATCC 17909, were used as external controls. Resistance to UV-B and kinetic rates of light-dependent (UV-A [315 to 400 nm] and cool white light [400 to 700 nm]) and -independent reactivation following exposure were determined by measuring the survival (expressed as CFU) and accumulation of cyclobutane pyrimidine dimers (CPD). Significant differences in survival after UV-B irradiation were observed: Acinetobacter johnsonii A2, 48%; Acinetobacter johnsonii ATCC 17909, 20%; Pseudomonas sp. strain MF8, 40%; marine Pseudomonas putida strain 2IDINH, 12%; Cytophaga sp. strain MF7, 20%; and Serratia marcescens, 21%. Most bacteria exhibited little DNA damage (between 40 and 80 CPD/Mb), except for the benthic isolate Cytophaga sp. strain MF7 (400 CPD/Mb) and Acinetobacter johnsonii ATCC 17909 (160 CPD/Mb). The recovery strategies through dark and light repair were different in all strains. The most efficient in recovering were both Acinetobacter johnsonii A2 and Cytophaga sp. strain MF7; Serratia marcescens MF42 showed intermediate recovery, and in both Pseudomonas strains, recovery was essentially zero. The UV-B responses and recovery abilities of the different bacteria were consistent with the irradiation levels in their native environment. PMID:17056692

  4. The role of the Serratia marcescens SdeAB multidrug efflux pump and TolC homologue in fluoroquinolone resistance studied via gene-knockout mutagenesis.

    PubMed

    Begic, Sanela; Worobec, Elizabeth A

    2008-02-01

    Serratia marcescens is a prominent opportunistic nosocomial pathogen resistant to several classes of antibiotics. The major mechanism for fluoroquinolone resistance in various Gram-negative pathogens is active efflux. Our group previously identified SdeAB, a resistance-nodulation-cell division (RND) efflux pump complex, and a TolC-like outer-membrane protein (HasF), which together mediate energy-dependent fluoroquinolone efflux. In addition, a regulatory protein-encoding gene in the upstream region of sdeAB was identified (sdeR) and found to be 40 % homologous to MarA, an Escherichia coli transcriptional regulator. To provide conclusive evidence as to the role of these components in S. marcescens, sdeB, hasF and sdeR deletion mutants were constructed. Suicide vectors were created and introduced via triparental mating into S. marcescens UOC-67 (wild-type) and, for sdeB and hasF, T-861 (clinical isolate). We have analysed these genetically altered strains using minimal inhibitory concentration (MIC) assays for a wide range of compounds (fluoroquinolones, SDS, novobiocin, ethidium bromide and chloramphenicol). Intracellular accumulation of a variety of fluoroquinolones was measured fluorospectroscopically. The sdeB, hasF and sdeR knockout strains were consistently more susceptible to antibiotics than the parent strains, with the sdeB/hasF double knockout strain showing the highest susceptibility. A marked increase in fluoroquinolone (ciprofloxacin) accumulation was observed for strains deficient in either the sdeB or hasF genes when compared to the parental strains, with the highest ciprofloxacin accumulation observed for the sdeB/hasF double knockout. Antibiotic accumulation assays for the sdeB knockout mutant strains performed in the presence of carbonyl cyanide m-chlorophenylhydrazone (CCCP), a proton-motive-force inhibitor, demonstrated that SdeAB-mediated efflux is proton-motive-force dependent. Due to the comparable susceptibility of the sdeB and the has

  5. Diversity and antimicrobial susceptibility of oxytetracycline-resistant isolates of Stenotrophomonas sp. and Serratia sp. associated with Costa Rican crops.

    PubMed

    Rodríguez, C; Wachlin, A; Altendorf, K; García, F; Lipski, A

    2007-12-01

    To ameliorate the identification, evaluate the diversity, and determine the antimicrobial sensitivity of 19 oxytetracycline-resistant isolates of Stenotrophomonas sp. and Serratia sp. associated with Costa Rican crops. Phenotypical, chemotaxonomical, and molecular data allocated most isolates to the species Sten. maltophilia and Ser. marcescens. The API profiles, antimicrobial resistance patterns (ATB system), and BOX-polymerase chain reaction (PCR) genomic fingerprints of isolates of Stenotrophomonas sp. exhibited a higher degree of heterogeneity than those obtained for the isolates of Serratia sp. The former group of bacteria exhibited multiresistance to antimicrobials. In contrast, isolates of Serratia sp. were sensitive to the majority of the drugs tested. Changes in the results of the antibiograms throughout incubation, which indicate an induction of tolerance, were observed for isolates of both the species. Minimum inhibitory concentration of oxytetracycline, determined using E-test stripes, were rather elevated. The occurrence of two species of opportunistic pathogens in crop-associated materials poses a risk to consumers in the community. The phenotypic and genotypic data presented could support epidemiologist and physicians dealing with infections caused by environmental strains of these taxa.

  6. KPC-4 Is Encoded within a Truncated Tn4401 in an IncL/M Plasmid, pNE1280, Isolated from Enterobacter cloacae and Serratia marcescens

    PubMed Central

    Bryant, Kendall A.; Van Schooneveld, Trevor C.; Thapa, Ishwor; Bastola, Dhundy; Williams, Laurina O.; Safranek, Thomas J.; Hinrichs, Steven H.; Rupp, Mark E.

    2013-01-01

    We describe the transfer of blaKPC-4 from Enterobacter cloacae to Serratia marcescens in a single patient. DNA sequencing revealed that KPC-4 was encoded on an IncL/M plasmid, pNE1280, closely related to pCTX-M360. Further analysis found that KPC-4 was encoded within a novel Tn4401 element (Tn4401f) containing a truncated tnpA and lacking tnpR, ISKpn7 left, and Tn4401 IRL-1, which are conserved in other Tn4401 transposons. This study highlights the continued evolution of Tn4401 transposons and movement to multiple plasmid backbones that results in acquisition by multiple species of Gram-negative bacilli. PMID:23070154

  7. Water-soluble Moringa oleifera lectin interferes with growth, survival and cell permeability of corrosive and pathogenic bacteria.

    PubMed

    Moura, M C; Napoleão, T H; Coriolano, M C; Paiva, P M G; Figueiredo, R C B Q; Coelho, L C B B

    2015-09-01

    This work evaluated the antibacterial activity of a water-soluble Moringa oleifera seed lectin (WSMoL) by evaluating its effect on growth, survival and cell permeability of Bacillus sp., Bacillus cereus, Bacillus pumillus, Bacillus megaterium, Micrococcus sp., Pseudomonas sp., Pseudomonas fluorescens, Pseudomonas stutzeri and Serratia marcescens. In addition, the effect of lectin on membrane integrity of most sensitive species was also evaluated. All the tested bacteria are able to cause biocorrosion and some are also responsible for human infections. WSMoL inhibited the bacterial growth, induced agglutination and promoted the leakage of proteins from cells of all strains. Bactericidal effect was detected against Bacillus sp., B. pumillus, B. megaterium, Ps. fluorescens and Ser. marcescens. The bacteriostatic effect of lectin was evident with only 6 h of incubation. Fluorescence microscopy of Ser. marcescens showed that WSMoL caused loss of cell integrity and indicated an anti-biofilm activity of the lectin. WSMoL was active against the bacteria by inhibiting growth and affecting cell permeability. The lectin also interfered with membrane integrity of Ser. marcescens, the most sensitive species. The study indicates that WSMoL was active against bacteria that cause serious problems in both industrial and health sectors. Also, the study contributes for the 'state-of-art' on antibacterial mechanisms of lectins. © 2015 The Society for Applied Microbiology.

  8. Degradation of phenolic compounds with hydrogen peroxide catalyzed by enzyme from Serratia marcescens AB 90027.

    PubMed

    Yao, Ri-Sheng; Sun, Min; Wang, Chun-Ling; Deng, Sheng-Song

    2006-09-01

    In this paper, the degradation of phenolic compounds using hydrogen peroxide as oxidizer and the enzyme extract from Serratia marcescens AB 90027 as catalyst was reported. With such an enzyme/H2O2 combination treatment, a high chemical oxygen demand (COD) removal efficiency was achieved, e.g., degradation of hydroquinone exceeded 96%. From UV-visible and IR spectra, the degradation mechanisms were judged as a process of phenyl ring cleavage. HPLC analysis shows that in the degradation p-benzoquinone, maleic acid and oxalic acid were formed as intermediates and that they were ultimately converted to CO2 and H2O. With the enzyme/H2O2 treatment, vanillin, hydroquinone, catechol, o-aminophenol, p-aminophenol, phloroglucinol and p-hydroxybenzaldehyde were readily degraded, whereas the degradation of phenol, salicylic acid, resorcinol, p-cholorophenol and p-nitrophenol were limited. Their degradability was closely related to the properties and positions of their side chain groups. Electron-donating groups, such as -OH, -NH2 and -OCH3 enhanced the degradation, whereas electron-withdrawing groups, such as -NO2, -Cl and -COOH, had a negative effect on the degradation of these compounds in the presence of enzyme/H2O2. Compounds with -OH at ortho and para positions were more readily degraded than those with -OH at meta positions.

  9. Bacteria associated with Amblyomma cajennense tick eggs

    PubMed Central

    Machado-Ferreira, Erik; Vizzoni, Vinicius Figueiredo; Piesman, Joseph; Gazeta, Gilberto Salles; Soares, Carlos Augusto Gomes

    2015-01-01

    Abstract Ticks represent a large group of pathogen vectors that blood feed on a diversity of hosts. In the Americas, the Ixodidae ticks Amblyomma cajennense are responsible for severe impact on livestock and public health. In the present work, we present the isolation and molecular identification of a group of culturable bacteria associated with A. cajennense eggs from females sampled in distinct geographical sites in southeastern Brazil. Additional comparative analysis of the culturable bacteria from Anocentor nitens, Rhipicephalus sanguineus and Ixodes scapularis tick eggs were also performed. 16S rRNA gene sequence analyses identified 17 different bacterial types identified as Serratia marcescens, Stenotrophomonas maltophilia, Pseudomonas fluorescens, Enterobacter spp., Micrococcus luteus, Ochrobactrum anthropi, Bacillus cereus and Staphylococcus spp., distributed in 12 phylogroups. Staphylococcus spp., especially S. sciuri, was the most prevalent bacteria associated with A. cajennense eggs, occurring in 65% of the samples and also frequently observed infecting A. nitens eggs. S. maltophilia, S. marcescens and B. cereus occurred infecting eggs derived from specific sampling sites, but in all cases rising almost as pure cultures from infected A. cajennense eggs. The potential role of these bacterial associations is discussed and they possibly represent new targets for biological control strategies of ticks and tick borne diseases. PMID:26537602

  10. Comparative evaluation of an automated repetitive-sequence-based PCR instrument versus pulsed-field gel electrophoresis in the setting of a Serratia marcescens nosocomial infection outbreak.

    PubMed

    Ligozzi, Marco; Fontana, Roberta; Aldegheri, Marco; Scalet, Giovanna; Lo Cascio, Giuliana

    2010-05-01

    A semiautomated, repetitive-sequence-based PCR (rep-PCR) instrument (DiversiLab system) was evaluated in comparison with pulsed-field gel electrophoresis (PFGE) to investigate an outbreak of Serratia marcescens infections in a neonatal intensive care unit (NICU). A selection of 36 epidemiologically related and 8 epidemiologically unrelated isolates was analyzed. Among the epidemiologically related isolates, PFGE identified five genetically unrelated patterns. Thirty-two isolates from patients and wet nurses showed the same PFGE profile (pattern A). Genetically unrelated PFGE patterns were found in one patient (pattern B), in two wet nurses (patterns C and D), and in an environmental isolate from the NICU (pattern G). Rep-PCR identified seven different patterns, three of which included the 32 isolates of PFGE type A. One or two band differences in isolates of these three types allowed isolates to be categorized as similar and included in a unique cluster. Isolates of different PFGE types were also of unrelated rep-PCR types. All of the epidemiologically unrelated isolates were of different PFGE and rep-PCR types. The level of discrimination exhibited by rep-PCR with the DiversiLab system allowed us to conclude that this method was able to identify genetic similarity in a spatio-temporal cluster of S. marcescens isolates.

  11. Infection dynamic of symbiotic bacteria in the pea aphid Acyrthosiphon pisum gut and host immune response at the early steps in the infection process.

    PubMed

    Renoz, François; Noël, Christine; Errachid, Abdelmounaim; Foray, Vincent; Hance, Thierry

    2015-01-01

    In addition to its obligatory symbiont Buchnera aphidicola, the pea aphid Acyrthosiphon pisum can harbor several facultative bacterial symbionts which can be mutualistic in the context of various ecological interactions. Belonging to a genus where many members have been described as pathogen in invertebrates, Serratia symbiotica is one of the most common facultative partners found in aphids. The recent discovery of strains able to grow outside their host allowed us to simulate environmental acquisition of symbiotic bacteria by aphids. Here, we performed an experiment to characterize the A. pisum response to the ingestion of the free-living S. symbiotica CWBI-2.3T in comparison to the ingestion of the pathogenic Serratia marcescens Db11 at the early steps in the infection process. We found that, while S. marcescens Db11 killed the aphids within a few days, S. symbiotica CWBI-2.3T did not affect host survival and colonized the whole digestive tract within a few days. Gene expression analysis of immune genes suggests that S. symbiotica CWBI-2.3T did not trigger an immune reaction, while S. marcescens Db11 did, and supports the hypothesis of a fine-tuning of the host immune response set-up for fighting pathogens while maintaining mutualistic partners. Our results also suggest that the lysosomal system and the JNK pathway are possibly involved in the regulation of invasive bacteria in aphids and that the activation of the JNK pathway is IMD-independent in the pea aphid.

  12. Infection Dynamic of Symbiotic Bacteria in the Pea Aphid Acyrthosiphon pisum Gut and Host Immune Response at the Early Steps in the Infection Process

    PubMed Central

    Renoz, François; Noël, Christine; Errachid, Abdelmounaim; Foray, Vincent; Hance, Thierry

    2015-01-01

    In addition to its obligatory symbiont Buchnera aphidicola, the pea aphid Acyrthosiphon pisum can harbor several facultative bacterial symbionts which can be mutualistic in the context of various ecological interactions. Belonging to a genus where many members have been described as pathogen in invertebrates, Serratia symbiotica is one of the most common facultative partners found in aphids. The recent discovery of strains able to grow outside their host allowed us to simulate environmental acquisition of symbiotic bacteria by aphids. Here, we performed an experiment to characterize the A. pisum response to the ingestion of the free-living S. symbiotica CWBI-2.3T in comparison to the ingestion of the pathogenic Serratia marcescens Db11 at the early steps in the infection process. We found that, while S. marcescens Db11 killed the aphids within a few days, S. symbiotica CWBI-2.3T did not affect host survival and colonized the whole digestive tract within a few days. Gene expression analysis of immune genes suggests that S. symbiotica CWBI-2.3T did not trigger an immune reaction, while S. marcescens Db11 did, and supports the hypothesis of a fine-tuning of the host immune response set-up for fighting pathogens while maintaining mutualistic partners. Our results also suggest that the lysosomal system and the JNK pathway are possibly involved in the regulation of invasive bacteria in aphids and that the activation of the JNK pathway is IMD-independent in the pea aphid. PMID:25811863

  13. Mitochondrial dysfunction in Trypanosoma cruzi: the role of Serratia marcescens prodigiosin in the alternative treatment of Chagas disease

    PubMed Central

    2011-01-01

    Background Chagas disease is a health threat for many people, mostly those living in Latin America. One of the most important problems in treatment is the limitation of existing drugs. Prodigiosin, produced by Serratia marcescens (Rhodnius prolixus endosymbiont), belongs to the red-pigmented bacterial prodiginine family, which displays numerous biological activities, including antibacterial, antifungal, antiprotozoal, antimalarial, immunosuppressive, and anticancer properties. Here we describe its effects on Trypanosoma cruzi mitochondria belonging to Tc I and Tc II. Results Parasites exposed to prodigiosin altered the mitochondrial function and oxidative phosphorylation could not have a normal course, probably by inhibition of complex III. Prodigiosin did not produce cytotoxic effects in lymphocytes and Vero cells and has better effects than benznidazole. Our data suggest that the action of prodigiosin on the parasites is mediated by mitochondrial structural and functional disruptions that could lead the parasites to an apoptotic-like cell death process. Conclusions Here, we propose a potentially useful trypanocidal agent derived from knowledge of an important aspect of the natural life cycle of the parasite: the vector-parasite interaction. Our results indicate that prodigiosin could be a good candidate for the treatment of Chagas disease. PMID:21548954

  14. Regulation of Serratia marcescens ompF and ompC porin genes in response to osmotic stress, salicylate, temperature and pH.

    PubMed

    Begic, Sanela; Worobec, Elizabeth A

    2006-02-01

    Serratia marcescens is a Gram-negative enterobacterium that has become an important opportunistic pathogen, largely due to its high degree of natural antibiotic resistance. One factor contributing to this natural antibiotic resistance is reduced outer membrane permeability, which is controlled in part by OmpC and OmpF porin proteins. OmpF expression is regulated by micF, an RNA transcript encoded upstream of the ompC gene, which hybridizes with the ompF transcript to inhibit its translation. Regulation of S. marcescens porin gene expression, as well as that of micF, was investigated using beta-galactosidase reporter gene fusions in response to 5, 8 and 10 % sucrose, 1, 5 and 8 mM salicylate, and different pH and temperature values. beta-Galactosidase activity assays revealed that a lower growth temperature (28 degrees C), a more basic pH (pH 8), and an absence of sucrose and salicylate induce the transcription of the ompF gene, whereas the induction of ompC is stimulated at a higher growth temperature (42 degrees C), acidic pH (pH 6), and maximum concentrations of sucrose (10 %) and salicylate (8 mM). In addition, when multiple conditions were tested, temperature had the predominant effect, followed by pH. In this study, it was found that the MicF regulatory mechanism does not play a role in the osmoregulation of the ompF and ompC genes, whereas MicF does repress OmpF expression in the presence of salicylate and high growth temperature, and under low pH conditions.

  15. Identification of chitinolytic bacteria isolated from shrimp pond sediment and characterization of their chitinase encoding gene

    NASA Astrophysics Data System (ADS)

    Triwijayani, A. U.; Puspita, I. D.; Murwantoko; Ustadi

    2018-03-01

    Chitinolytic bacteria are a group of bacteria owning enzymes that able to hydrolyze chitin. Previously, we isolated chitinolytic bacteria from shrimp pond sediment in Bantul, Yogyakarta, and obtained five isolates showing high chitinolytic index named as isolate PT1, PT2, PT5, PT6 and PB2. The aims of this study were to identify chitinolytic bacteria isolated from shrimp pond sediment and to characterize the chitinase encoding gene from each isolate. The molecular technique was performed by amplification of 16S rDNA, amplification of chitinase encoding gene and sequence analysis. Two chitinolytic bacteria of PT1 and PT2 were similar to Aeromonas bivalvium strain D15, PT5 to Pseudomonas stutzeri strain BD-2.2.1, PT6 to Serratia marcescens strain FZSF02 and PB2 to Streptomyces misionensis strain OsiRt-1. The comparison of chitinase encoding gene between three isolates with those in Gen Bank shows that PT1 had similar sequences with the chi1 gene in Aeromonas sp. 17m, PT2 with chi1 gene in A. caviae (CB101) and PT6 with chiB gene in S. Marcescens (BJL200).

  16. Nosocomial Infection of Serratia marcescens May Induce a Protective Effect of Monkeys Exposed to Bacillus anthracis

    DTIC Science & Technology

    2008-01-01

    B. anthracis or a detectable level of protective antigen in the bloodstream. It appears that the presence of S . marcescens may have induced a "Coley’s...Available online 6 June 2008KEYWORDS Inhalation anthrax; Innate immunity; B. anthracis; S . marcescens ; African green monkey* Corresponding author. Tel.: þ1 30...had S . marcescens contam- ination in the catheter; indicated by pure colonies grown from the blood. None of these AGMs showed clinical signs of illness

  17. Outbreak of Serratia marcescens Coproducing ArmA and CTX-M-15 Mediated High Levels of Resistance to Aminoglycoside and Extended-Spectrum Beta-Lactamases, Algeria.

    PubMed

    Batah, Rima; Loucif, Lotfi; Olaitan, Abiola Olumuyiwa; Boutefnouchet, Nafissa; Allag, Hamoudi; Rolain, Jean-Marc

    2015-08-01

    Serratia marcescens is one of the most important pathogens responsible for nosocomial infections worldwide. Here, we have investigated the molecular support of antibiotic resistance and genetic relationships in a series of 54 S. marcescens clinical isolates collected from Eastern Algeria between December 2011 and July 2013. The 54 isolates were identified by matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry (MS). Antibiotic susceptibility testing was performed by disc diffusion and E-test methods. Antibiotic resistance genes were detected by polymerase chain reaction (PCR). The genetic transfer of antibiotic resistance was performed by conjugation using azide-resistant Escherichia coli J53 as the recipient strain, and plasmid analysis was done by PCR-based replicon typing. The relatedness of our isolates was determined by phylogenetic analysis based on partial sequences of four protein-encoding genes (gyrB, rpoB, infB, and atpD) and then compared to MALDI-TOF MS clustering. Thirty-five out of 54 isolates yielded an extended-spectrum β-lactamase (ESBL) phenotype and carried bla(CTX-M-15) (n=32), bla(TEM-1) (n=26), bla(TEM-71) (n=1), bla(SHV-1a) (n=1), and bla(PER-2) (n=12). Among these isolates, we identified a cluster of 15 isolates from a urology unit that coharbored ESBL and the 16S rRNA methyltransferase armA. Conjugation was successful for five selected strains, demonstrating the transferability of a conjugative plasmid of incompatibility group incL/M type. Phylogenetic analysis along with MALDI-TOF clustering likely suggested an outbreak of such isolates in the urology unit. In this study, we report for the first time the co-occurrence of armA methyltransferase with ESBL in S. marcescens clinical isolates in Eastern Algeria.

  18. Transcriptomic and proteomic responses of Serratia marcescens to spaceflight conditions involve large-scale changes in metabolic pathways

    NASA Astrophysics Data System (ADS)

    Wang, Yajuan; Yuan, Yanting; Liu, Jinwen; Su, Longxiang; Chang, De; Guo, Yinghua; Chen, Zhenhong; Fang, Xiangqun; Wang, Junfeng; Li, Tianzhi; Zhou, Lisha; Fang, Chengxiang; Yang, Ruifu; Liu, Changting

    2014-04-01

    The microgravity environment of spaceflight expeditions has been associated with altered microbial responses. This study explores the characterization of Serratia marcescensis grown in a spaceflight environment at the phenotypic, transcriptomic and proteomic levels. From November 1, 2011 to November 17, 2011, a strain of S. marcescensis was sent into space for 398 h on the Shenzhou VIII spacecraft, and ground simulation was performed as a control (LCT-SM213). After the flight, two mutant strains (LCT-SM166 and LCT-SM262) were selected for further analysis. Although no changes in the morphology, post-culture growth kinetics, hemolysis or antibiotic sensitivity were observed, the two mutant strains exhibited significant changes in their metabolic profiles after exposure to spaceflight. Enrichment analysis of the transcriptome showed that the differentially expressed genes of the two spaceflight strains and the ground control strain mainly included those involved in metabolism and degradation. The proteome revealed that changes at the protein level were also associated with metabolic functions, such as glycolysis/gluconeogenesis, pyruvate metabolism, arginine and proline metabolism and the degradation of valine, leucine and isoleucine. In summary S. marcescens showed alterations primarily in genes and proteins that were associated with metabolism under spaceflight conditions, which gave us valuable clues for future research.

  19. Structure of the imipenem-hydrolyzing class A beta-lactamase SME-1 from Serratia marcescens.

    PubMed

    Sougakoff, Wladimir; L'Hermite, Guillaume; Pernot, Lucile; Naas, Thierry; Guillet, Valérie; Nordmann, Patrice; Jarlier, Vincent; Delettré, Jean

    2002-02-01

    The structure of the beta-lactamase SME-1 from Serratia marcescens, a class A enzyme characterized by its significant activity against imipenem, has been determined to 2.13 A resolution. The overall structure of SME-1 is similar to that of other class A beta-lactamases. In the active-site cavity, most of the residues found in SME-1 are conserved among class A beta-lactamases, except at positions 104, 105 and 237, where a tyrosine, a histidine and a serine are found, respectively, and at position 238, which is occupied by a cysteine forming a disulfide bridge with the other cysteine residue located at position 69. The crucial role played by this disulfide bridge in SME-1 was confirmed by site-directed mutagenesis of Cys69 to Ala, which resulted in a mutant unable to confer resistance to imipenem and all other beta-lactam antibiotics tested. Another striking structural feature found in SME-1 was the short distance separating the side chains of the active serine residue at position 70 and the strictly conserved glutamate at position 166, which is up to 1.4 A shorter in SME-1 compared with other class A beta-lactamases. Consequently, the SME-1 structure cannot accommodate the essential catalytic water molecule found between Ser70 and Glu166 in the other class A beta-lactamases described so far, suggesting that a significant conformational change may be necessary in SME-1 to properly position the hydrolytic water molecule involved in the hydrolysis of the acyl-enzyme intermediate.

  20. Production and application of a thermostable lipase from Serratia marcescens in detergent formulation and biodiesel production.

    PubMed

    García-Silvera, Edgar Edurman; Martínez-Morales, Fernando; Bertrand, Brandt; Morales-Guzmán, Daniel; Rosas-Galván, Nashbly Sarela; León-Rodríguez, Renato; Trejo-Hernández, María R

    2018-03-01

    In this study, extracellular lipase was produced by Serratia marcescens wild type and three mutant strains. The maximum lipase activity (80 U/mL) was obtained with the SMRG4 mutant strain using soybean oil. Using a 2 2 factorial design, the lipase production increased 1.55-fold (124 U/mL) with 4% and 0.05% of soybean oil and Triton X-100, respectively. The optimum conditions for maximum lipase activity were 50 °C and pH 8. However, the enzyme was active in a broad range of pH (6-10) and temperatures (5-55 °C). This lipase was stable in organic solvents and in the presence of oxidizing agents. The enzyme also proved to be efficient for the removal of triacylglycerol from olive oil in cotton cloth. A Box-Behnken experimental design was used to evaluate the effects of the interactions between total lipase activity, buffer pH, and wash temperatures on oil removal. The model obtained suggested that all selected factors had a significant impact on oil removal, with optimum conditions of 550 U lipase, 45 °C, pH 9.5, with 79.45% removal. Biotransformation of waste frying oil using the enzyme and in presence of methanol resulted in the synthesis of methyl esters such as methyl oleate, methyl palmitate, and methyl stearate. © 2017 International Union of Biochemistry and Molecular Biology, Inc.

  1. Influence of incubation temperature on biofilm formation and corrosion of carbon steel by Serratia marcescens

    NASA Astrophysics Data System (ADS)

    Harimawan, Ardiyan; Devianto, Hary; Kurniawan, Ignatius Chandra; Utomo, Josephine Christine

    2017-01-01

    Microbial induced corrosion (MIC) or biocorrosion is one type of corrosion, directly or indirectly influenced by microbial activities, by forming biofilm and adhering on the metal surface. When forming biofilm, the microorganisms can produce extracellular products which influence the cathodic and anodic reactions on metal surfaces. This will result in electrochemical changes in the interface between the biofilm and the metal surface, leading to corrosion and deterioration of the metal. MIC might be caused by various types of microorganism which leads to different corrosion mechanism and reaction kinetics. Furthermore, this process will also be influenced by various environmental conditions, such as pH and temperature. This research is aimed to determine the effect of incubation temperature on corrosion of carbon steel caused by Serratia marcescens in a mixture solution of synthetic seawater with Luria Bertani medium with a ratio of 4:1. The incubation was performed for 19 days with incubation temperature of 30, 37, and 50°C. The analyses of biofilm were conducted by total plate count (TPC), scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR). Biofilm was found to be evenly growth on the surface and increasing with increasing incubation temperature. It consists of functional group of alcohol, alkane, amine, nitro, sulfate, carboxylic acid, and polysulfide. The analyses of the corrosion were conducted by gravimetric and X-ray diffraction (XRD). Higher incubation temperature was found to increase the corrosion rate. However, the corrosion products were not detected by XRD analysis.

  2. Serratia myotis sp. nov. and Serratia vespertilionis sp. nov., isolated from bats hibernating in caves.

    PubMed

    García-Fraile, P; Chudíčková, M; Benada, O; Pikula, J; Kolařík, M

    2015-01-01

    During the study of bacteria associated with bats affected by white-nose syndrome hibernating in caves in the Czech Republic, we isolated two facultatively anaerobic, Gram-stain-negative bacteria, designated strains 12(T) and 52(T). Strains 12(T) and 52(T) were motile, rod-like bacteria (0.5-0.6 µm in diameter; 1-1.3 µm long), with optimal growth at 20-35 °C and pH 6-8. On the basis of the almost complete sequence of their 16S rRNA genes they should be classified within the genus Serratia; the closest relatives to strains 12(T) and 52(T) were Serratia quinivorans DSM 4597(T) (99.5 % similarity in 16S rRNA gene sequences) and Serratia ficaria DSM 4569(T) (99.5% similarity in 16S rRNA gene sequences), respectively. DNA-DNA relatedness between strain 12(T) and S. quinivorans DSM 4597(T) was only 37.1% and between strain 52(T) and S. ficaria DSM 4569(T) was only 56.2%. Both values are far below the 70% threshold value for species delineation. In view of these data, we propose the inclusion of the two isolates in the genus Serratia as representatives of Serratia myotis sp. nov. (type strain 12(T) =CECT 8594(T) =DSM 28726(T)) and Serratia vespertilionis sp. nov. (type strain 52(T) =CECT 8595(T) =DSM 28727(T)). © 2015 IUMS.

  3. Antibacterial activity of sphingoid bases and fatty acids against Gram-positive and Gram-negative bacteria.

    PubMed

    Fischer, Carol L; Drake, David R; Dawson, Deborah V; Blanchette, Derek R; Brogden, Kim A; Wertz, Philip W

    2012-03-01

    There is growing evidence that the role of lipids in innate immunity is more important than previously realized. How lipids interact with bacteria to achieve a level of protection, however, is still poorly understood. To begin to address the mechanisms of antibacterial activity, we determined MICs and minimum bactericidal concentrations (MBCs) of lipids common to the skin and oral cavity--the sphingoid bases D-sphingosine, phytosphingosine, and dihydrosphingosine and the fatty acids sapienic acid and lauric acid--against four Gram-negative bacteria and seven Gram-positive bacteria. Exact Kruskal-Wallis tests of these values showed differences among lipid treatments (P < 0.0001) for each bacterial species except Serratia marcescens and Pseudomonas aeruginosa. D-sphingosine (MBC range, 0.3 to 19.6 μg/ml), dihydrosphingosine (MBC range, 0.6 to 39.1 μg/ml), and phytosphingosine (MBC range, 3.3 to 62.5 μg/ml) were active against all bacteria except S. marcescens and P. aeruginosa (MBC > 500 μg/ml). Sapienic acid (MBC range, 31.3 to 375.0 μg/ml) was active against Streptococcus sanguinis, Streptococcus mitis, and Fusobacterium nucleatum but not active against Escherichia coli, Staphylococcus aureus, S. marcescens, P. aeruginosa, Corynebacterium bovis, Corynebacterium striatum, and Corynebacterium jeikeium (MBC > 500 μg/ml). Lauric acid (MBC range, 6.8 to 375.0 μg/ml) was active against all bacteria except E. coli, S. marcescens, and P. aeruginosa (MBC > 500 μg/ml). Complete killing was achieved as early as 0.5 h for some lipids but took as long as 24 h for others. Hence, sphingoid bases and fatty acids have different antibacterial activities and may have potential for prophylactic or therapeutic intervention in infection.

  4. HasF, a TolC-homolog of Serratia marcescens, is involved in energy-dependent efflux.

    PubMed

    Kumar, Ayush; Worobec, Elizabeth A

    2005-06-01

    A tolC-like gene (hasF) was identified upon scanning the incomplete database of the S. marcescens genome. This gene was amplified using PCR and cloned in the pUC18 vector to yield pUCHF. Sequencing of the S. marcescens tolC-like hasF gene and subsequent amino acid sequence prediction revealed approximately 80% amino acid homology with the Escherichia coli TolC. A tolC-deficient strain of E. coli (BL923) containing pUCHF/hasF was analyzed for susceptibility to fluoroquinolones (ciprofloxacin, norfloxacin, and ofloxacin), chloramphenicol, sodium dodecyl sulfate (SDS), and ethidium bromide. Antibiotic susceptibility assays of the E. coli tolC-deficient mutant BL923 demonstrated a 64-fold increase in resistance to SDS and ethidium bromide upon introduction of the S. marcescens tolC-like hasF gene. No change was observed for susceptibility to fluoroquinolones and chloramphenicol. Ethidium bromide accumulation assays performed using E. coli BL923:pUCHF established the role of the S. marcescens hasF gene product in proton gradient-dependent efflux.

  5. The Multifarious PGPR Serratia marcescens CDP-13 Augments Induced Systemic Resistance and Enhanced Salinity Tolerance of Wheat (Triticum aestivum L.)

    PubMed Central

    Singh, Rajnish Prakash; Jha, Prabhat Nath

    2016-01-01

    The present study demonstrates the plant growth promoting (PGP) potential of a bacterial isolate CDP-13 isolated from ‘Capparis decidua’ plant, and its ability to protect plants from the deleterious effect of biotic and abiotic stressors. Based on 16S rRNA gene sequence analysis, the isolate was identified as Serratia marcescens. Among the PGP traits, the isolate was found to be positive for ACC deaminase activity, phosphate solubilization, production of siderophore, indole acetic acid production, nitrogen fixation, and ammonia production. CDP-13 showed growth at an increased salt (NaCl) concentration of up to 6%, indicating its potential to survive and associate with plants growing in saline soil. The inoculation of S. marcescens enhanced the growth of wheat plant under salinity stress (150–200 mM). It significantly reduced inhibition of plant growth (15 to 85%) caused by salt stressors. Application of CDP-13 also modulated concentration (20 to 75%) of different osmoprotectants (proline, malondialdehyde, total soluble sugar, total protein content, and indole acetic acid) in plants suggesting its role in enabling plants to tolerate salt stressors. In addition, bacterial inoculation also reduced the disease severity caused by fungal infection, which illustrated its ability to confer induced systemic resistance (ISR) in host plants. Treatment of wheat plants with the test organism caused alteration in anti-oxidative enzymes activities (Superoxide dismutase, Catalase, and Peroxidase) under various salinity levels, and therefore minimizes the salinity-induced oxidative damages to the plants. Colonization efficiency of strain CDP-13 was confirmed by CFU count, epi-fluorescence microscopy, and ERIC-PCR-based DNA fingerprinting approach. Hence, the study indicates that bacterium CDP-13 enhances plant growth, and has potential for the amelioration of salinity stress in wheat plants. Likewise, the results also provide insights into biotechnological approaches to using

  6. The Multifarious PGPR Serratia marcescens CDP-13 Augments Induced Systemic Resistance and Enhanced Salinity Tolerance of Wheat (Triticum aestivum L.).

    PubMed

    Singh, Rajnish Prakash; Jha, Prabhat Nath

    2016-01-01

    The present study demonstrates the plant growth promoting (PGP) potential of a bacterial isolate CDP-13 isolated from 'Capparis decidua' plant, and its ability to protect plants from the deleterious effect of biotic and abiotic stressors. Based on 16S rRNA gene sequence analysis, the isolate was identified as Serratia marcescens. Among the PGP traits, the isolate was found to be positive for ACC deaminase activity, phosphate solubilization, production of siderophore, indole acetic acid production, nitrogen fixation, and ammonia production. CDP-13 showed growth at an increased salt (NaCl) concentration of up to 6%, indicating its potential to survive and associate with plants growing in saline soil. The inoculation of S. marcescens enhanced the growth of wheat plant under salinity stress (150-200 mM). It significantly reduced inhibition of plant growth (15 to 85%) caused by salt stressors. Application of CDP-13 also modulated concentration (20 to 75%) of different osmoprotectants (proline, malondialdehyde, total soluble sugar, total protein content, and indole acetic acid) in plants suggesting its role in enabling plants to tolerate salt stressors. In addition, bacterial inoculation also reduced the disease severity caused by fungal infection, which illustrated its ability to confer induced systemic resistance (ISR) in host plants. Treatment of wheat plants with the test organism caused alteration in anti-oxidative enzymes activities (Superoxide dismutase, Catalase, and Peroxidase) under various salinity levels, and therefore minimizes the salinity-induced oxidative damages to the plants. Colonization efficiency of strain CDP-13 was confirmed by CFU count, epi-fluorescence microscopy, and ERIC-PCR-based DNA fingerprinting approach. Hence, the study indicates that bacterium CDP-13 enhances plant growth, and has potential for the amelioration of salinity stress in wheat plants. Likewise, the results also provide insights into biotechnological approaches to using PGPR

  7. New plasmid-mediated aminoglycoside 6'-N-acetyltransferase, AAC(6')-Ian, and ESBL, TLA-3, from a Serratia marcescens clinical isolate.

    PubMed

    Jin, Wanchun; Wachino, Jun-Ichi; Kimura, Kouji; Yamada, Keiko; Arakawa, Yoshichika

    2015-05-01

    Enterobacteriaceae clinical isolates showing amikacin resistance (MIC 64 to >256 mg/L) in the absence of 16S rRNA methyltransferase (MTase) genes were found. The aim of this study was to clarify the molecular mechanisms underlying amikacin resistance in Enterobacteriaceae clinical isolates that do not produce 16S rRNA MTases. PCR was performed to detect already-known amikacin resistance determinants. Cloning experiments and sequence analyses were performed to characterize unknown amikacin resistance determinants. Transfer of amikacin resistance determinants was performed by conjugation and transformation. The complete nucleotide sequence of the plasmids was determined by next-generation sequencing technology. Amikacin resistance enzymes were purified with a column chromatography system. The enzymatic function of the purified protein was investigated by thin-layer chromatography (TLC) and HPLC. Among the 14 isolates, 9 were found to carry already-known amikacin resistance determinants such as aac(6')-Ia and aac(6')-Ib. Genetic analyses revealed the presence of a new amikacin acetyltransferase gene, named aac(6')-Ian, located on a 169 829 bp transferable plasmid (p11663) of the Serratia marcescens strain NUBL-11663, one of the five strains negative for known aac(6') genes by PCR. Plasmid p11663 also carried a novel ESBL gene, named blaTLA-3. HPLC and TLC analyses demonstrated that AAC(6')-Ian catalysed the transfer of an acetyl group from acetyl coenzyme A onto an amine at the 6'-position of various aminoglycosides. We identified aac(6')-Ian as a novel amikacin resistance determinant together with a new ESBL gene, blaTLA-3, on a transferable plasmid of a S. marcescens clinical isolate. © The Author 2015. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  8. Complete genome sequence of Serratia sp. YD25 (KCTC 42987) presenting strong antagonistic activities to various pathogenic fungi and bacteria.

    PubMed

    Su, Chun; Liu, Yibo; Sun, Yan; Li, Zhi

    2017-03-10

    Serratia sp. YD25 (KCTC 42987) was originally isolated from rhizosphere soil in a continuous cropping tobacco-planting farm. Here, we show that its metabolites efficiently suppress the growth of various important pathogenic fungi and bacteria, causing infection in both plants and humans. In addition, Serratia sp. YD25 has a special trait of simultaneous production of both serrawettin W2 and prodigiosin, two important bioactive secondary metabolites produced by Serratia strains. Such co-production has not been reported in other Serratia strains. The complete genome sequence of Serratia sp. YD25 is presented, which is valuable for further exploration of its biotechnological applications in agriculture and medicine. The genome sequence reported here is also useful for understanding the unique regulatory mechanisms underlying biosynthesis of active compounds. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Production of prodigiosin and chitinases by tropical Serratia marcescens strains with potential to control plant pathogens.

    PubMed

    Gutiérrez-Román, Martha Ingrid; Holguín-Meléndez, Francisco; Bello-Mendoza, Ricardo; Guillén-Navarro, Karina; Dunn, Michael F; Huerta-Palacios, Graciela

    2012-01-01

    The potential of three Serratia marcescens strains (CFFSUR-B2, CFFSUR-B3 and CFFSUR-B4) isolated from tropical regions in Mexico to inhibit the mycelial growth and conidial germination of Colletotrichum gloeosporioides, causal agent of fruit anthracnose, was evaluated. The ability of these strains to produce prodigiosin and chitinases when cultivated in oil seed-based media (peanut, sesame, soybean and castor bean) and in Luria-Bertani medium was determined. All of the strains exhibited similar fungal antagonistic activities and inhibited myceliar growth by more than 40% while inhibiting conidial germination by 81-89% (P = 0.01). The highest level of prodigiosin (40 μg/ml) was produced in the peanut-based medium while growth in soybean-based medium allowed the highest production of chitinases (56 units/ml), independent of the strain used. Strain CFFSUR-B2 grown in peanut medium was used to evaluate the effect of inoculum density and initial pH on metabolite production. The amount of prodigiosin produced increased with greater inoculum densities, with an initial density of 1 × 10(12) resulting in the highest production (60 μg/ml). Prodigiosin production was not affected by pH. The strains studied have the advantage of being adapted to tropical climates and are able to produce chitinases in the absence of chitin induction in vitro. These characteristics suggest their potential as biocontrol agents for fungal pathogens in tropical regions of the world.

  10. Bacteria in midguts of field-collected Anopheles albimanus block Plasmodium vivax sporogonic development.

    PubMed

    Gonzalez-Ceron, Lilia; Santillan, Frida; Rodriguez, Mario H; Mendez, Domingo; Hernandez-Avila, Juan E

    2003-05-01

    Bacterial infections were investigated in midguts of insectary and field-collected Anopheles albimanus Weidemann from southern Mexico. Serratia marcescens, Enterobacter cloacae and Enterobacter amnigenus 2, Enterobacter sp., and Serratia sp. were isolated in field samples obtained in 1998, but only Enterobacter sp. was recovered in field samples of 1997 and no bacteria were isolated from insectary specimens. These bacteria were offered along with Plasmodium vivax infected blood to aseptic insectary An. albimanus, and the number of infected mosquitoes as well as the oocyst densities assessed after 7d. Plasmodium vivax infections in mosquitoes co-infected with En. amnigenus 2, En. cloacae, and S. marcensces were 53, 17, and 210 times, respectively, lower than in control mosquitoes, and the mean oocyst density in mosquitoes co-infected with En. cloacae was 2.5 times lower than in controls. Mortality was 13 times higher in S. marcensces-infected mosquitoes compared with controls. The overall midgut bacterial infection in mosquito field populations may influence P. vivax transmission, and could contribute to explain the annual variations in malaria incidence observed in the area.

  11. Is there a role for Serratia marcescens in male infertility: An experimental study?

    PubMed

    Rana, Kalpana; Thaper, Deepali; Prabha, Vijay

    2017-04-01

    Establishment of a male BALB/c mouse model to study the role of sperm impairing S. marcescens on mouse reproductive potential. The current study can add to use of reliable animal models to provide a noteworthy evidence for the microbial cause of infertility. The mice in the test groups II, III, IV were intraperitoneally administered with different doses (10 4 , 10 6 or 10 8  cfu) of S. marcescens whereas, group I serving as control, received PBS, for 10 consecutive days. The groups were evaluated for any change in body weight, tissue somatic index (%), seminal parameters and histology. Confirmation of S. marcescens from reproductive organs was done by reisolating the same by cultural characteristics and biochemical tests. The results showed that weight gain was evident only in mice receiving PBS (group I), whereas a decrease was recorded in the test groups (group II, III and IV). Only testes of test groups showed significant changes in TSI values whereas, no change in TSI was observed in any reproductive organ of any test group. Seminal parameters viz. sperm count, motility and viability were found to decrease in test groups II, III and IV as compared to control group I. Interestingly, the number of pus cells and percent decapitation was more prominent in test groups which received higher doses (i.e. group III and group IV). The histopathological examination revealed mild to dense inflammation in vas deferens and caudal epididymis in all test groups except hypospermatogenesis which was observed only in test group III and IV. However, in group I, neither adverse changes nor any sign of inflammation were observed. Intraperitoneal inoculation of S. marcescens could lead to alteration of semen parameters, induction of decapitation in spermatozoa and histopathological changes, thereby decreasing the reproductive potential of male mice. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Resistance phenotypes and susceptibility of contemporary Serratia isolates in the university hospital of Crete, Greece.

    PubMed

    Samonis, George; Vardakas, Konstantinos Z; Maraki, Sofia; Stamouli, Petroula; Mavromanolaki, Viktoria-Eirini; Kofteridis, Diamantis P; Falagas, Matthew E

    To study changes in the susceptibility of Serratia spp. in Crete, Greece (2010-2015). Non-duplicate isolates were examined using automated systems. Phenotypic confirmatory tests were applied. Three hundred and seventy-eight Serratia spp. were analyzed. Serratia marcescens (88.3%) was the predominant species. Fluoroquinolones (97.9%), carbapenems (97.4%) and fosfomycin (97.4%) were the most active followed by amikacin (95.5%), piperacillin/tazobactam (94.7%), and trimethoprim/sulfamethoxazole (94.4%). The activity of 3rd and 4th generation cephalosporins was 87-88.6%. The distribution of multi-drug resistant (MDR) strains varied, with a trend towards increasing frequency. ESBL (7.9%), carbapenemase (2.9%), AmpC (2.1%) and aminoglycoside modifying enzyme (10.6%) production were the commonest resistant phenotypes. The susceptibility of Serratia spp. varied during the study period a trend towards decreasing susceptibility, especially for non-carbapenem β-lactams and aminoglycosides.

  13. Using phenotype microarrays in the assessment of the antibiotic susceptibility profile of bacteria isolated from wastewater in on-site treatment facilities.

    PubMed

    Jałowiecki, Łukasz; Chojniak, Joanna; Dorgeloh, Elmar; Hegedusova, Berta; Ejhed, Helene; Magnér, Jörgen; Płaza, Grażyna

    2017-11-01

    The scope of the study was to apply Phenotype Biolog MicroArray (PM) technology to test the antibiotic sensitivity of the bacterial strains isolated from on-site wastewater treatment facilities. In the first step of the study, the percentage values of resistant bacteria from total heterotrophic bacteria growing on solid media supplemented with various antibiotics were determined. In the untreated wastewater, the average shares of kanamycin-, streptomycin-, and tetracycline-resistant bacteria were 53, 56, and 42%, respectively. Meanwhile, the shares of kanamycin-, streptomycin-, and tetracycline-resistant bacteria in the treated wastewater were 39, 33, and 29%, respectively. To evaluate the antibiotic susceptibility of the bacteria present in the wastewater, using the phenotype microarrays (PMs), the most common isolates from the treated wastewater were chosen: Serratia marcescens ss marcescens, Pseudomonas fluorescens, Stenotrophomonas maltophilia, Stenotrophomonas rhizophila, Microbacterium flavescens, Alcaligenes faecalis ss faecalis, Flavobacterium hydatis, Variovorax paradoxus, Acinetobacter johnsonii, and Aeromonas bestiarum. The strains were classified as multi-antibiotic-resistant bacteria. Most of them were resistant to more than 30 antibiotics from various chemical classes. Phenotype microarrays could be successfully used as an additional tool for evaluation of the multi-antibiotic resistance of environmental bacteria and in preliminary determination of the range of inhibition concentration.

  14. Effects of nisin on growth of bacteria attached to meat.

    PubMed Central

    Chung, K T; Dickson, J S; Crouse, J D

    1989-01-01

    Nisin had an inhibitory effect on gram-positive bacteria (Listeria monocytogenes, Staphylococcus aureus, and Streptococcus lactis) but did not have an inhibitory effect on gram-negative bacteria (Serratia marcescens, Salmonella typhimurium, and Pseudomonas aeruginosa) attached to meat. Nisin delayed bacterial growth on meats which were artificially inoculated with L. monocytogenes or Staphylococcus aureus for at least 1 day at room temperature. If the incubation temperature was 5 degrees C, growth of L. monocytogenes was delayed for more than 2 weeks, and growth of Staphylococcus aureus did not occur. We also found that the extractable activity of nisin decreased rapidly when the meats were incubated at ambient temperatures and that this decrease was inversely related to the observed inhibitory effect. These findings disclosed that nisin delays the growth of some gram-positive bacteria attached to meat. However, nisin alone may not be sufficient to prevent meat spoilage because of the presence of gram-negative and other nisin-resistant gram-positive bacteria. PMID:2764559

  15. Association of plant growth-promoting Serratia spp. with the root nodules of chickpea.

    PubMed

    Zaheer, Ahmad; Mirza, Babur S; Mclean, Joan E; Yasmin, Sumera; Shah, Tariq Mahmud; Malik, Kauser A; Mirza, M Sajjad

    2016-01-01

    Serratia species-affiliated DNA sequences have recently been discovered in the root nodules of two chickpea cultivars; however, little is known about their potential influence on chickpea plant growth. All Serratia-affiliated sequences (1136) could be grouped into two clusters at 98% DNA similarity. The major cluster, represented by 96% of sequences, was closely associated with Serratia marcescens sequences from GenBank. In the current study, we isolated two Serratia strains, 5D and RTL100, from root nodules of a field-grown Desi cultivar from Faisalabad and Thal areas, respectively. In vitro, strain 5D showed significantly higher phosphate (P) solubilization and lactic acid production than RTL100, whereas a comparable concentration of phytohormone was produced by both isolates. The application of Serratia strain 5D as an inoculum resulted in 25.55% and 30.85% increases in the grain yield of crops grown on fertile soil in irrigated areas and nutrient-deficient soil in rainfed areas, respectively, compared to the non-inoculated control. Results of plant inoculations indicated that Serratia sp. 5D and RTL100 can serve as effective microbial inoculants, particularly in nutrient-deficient soils in rainfed areas, where chickpea is the only major crop grown during the entire year. Copyright © 2016 Institut Pasteur. All rights reserved.

  16. Evaluation of the effect of nutrient ratios on biosurfactant production by Serratia marcescens using a Box-Behnken design.

    PubMed

    Roldán-Carrillo, T; Martínez-García, X; Zapata-Peñasco, I; Castorena-Cortés, G; Reyes-Avila, J; Mayol-Castillo, M; Olguín-Lora, P

    2011-09-01

    The strain SmSA, identified as Serratia marcescens and known as a biosurfactant producer, was isolated from hydrocarbon contaminated soil from Veracruz, México. The interactions among the C/N, C/Mg and C/Fe ratios have not been examined for this microorganism. In this work was evaluated the effect of these nutrients at three levels using a mineral medium with glucose as the carbon source. A Box-Behnken experimental design was utilised to maximise biosurfactant production, which was assessed by oil spreading and surface tension tests. The treatment with C/N=5, C/Fe=26,000 and C/Mg=30 showed the best result since the surface tension was reduced to 30 mN m(-1). The multiple regression and response surface analyses indicated that the interaction between C/N and C/Mg had the utmost effect on the reduction of surface tension and biosurfactant production. The conditions of the best treatment were used to scale up biosurfactant production in a 3L bioreactor giving a yield of 4.1 gL(-1) of pure biosurfactant. It was found that the biosurfactant was mainly produced in the exponential phase and decreased the surface tension to 31 mN m(-1). The contact between the biosurfactant with heavy oil (15° API) increased its displacement from 9.3 to 18 cm. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. Binary Interactions of Antagonistic Bacteria with Candida albicans Under Aerobic and Anaerobic Conditions.

    PubMed

    Benadé, Eliska; Stone, Wendy; Mouton, Marnel; Postma, Ferdinand; Wilsenach, Jac; Botha, Alfred

    2016-04-01

    We used both aerobic and anaerobic liquid co-cultures, prepared with Luria Bertani broth, to study the effect of bacteria on the survival of Candida albicans in the external environment, away from an animal host. The bacteria were represented by Aeromonas hydrophila, Bacillus cereus, Bacillus subtilis, Clostridium, Enterobacter, Klebsiella pneumoniae, Kluyvera ascorbata and Serratia marcescens. Under aerobic conditions, the yeast's growth was inhibited in the presence of bacterial growth; however, under anaerobic conditions, yeast and bacterial growth in co-cultures was similar to that observed for pure cultures. Subsequent assays revealed that the majority of bacterial strains aerobically produced extracellular hydrolytic enzymes capable of yeast cell wall hydrolysis, including chitinases and mannan-degrading enzymes. In contrast, except for the A. hydrophila strain, these enzymes were not detected in anaerobic bacterial cultures, nor was the antimicrobial compound prodigiosin found in anaerobic cultures of S. marcescens. When we suspended C. albicans cells in crude extracellular enzyme preparations from K. pneumoniae and S. marcescens, we detected no negative effect on yeast viability. However, we found that these preparations enhance the toxicity of prodigiosin towards the yeast, especially in combination with mannan-degrading enzymes. Analyses of the chitin and mannan content of yeast cell walls revealed that less chitin was produced under anaerobic than aerobic conditions; however, the levels of mannan, known for its low permeability, remained the same. The latter phenomenon, as well as reduced production of the bacterial enzymes and prodigiosin, may contribute to anaerobic growth and survival of C. albicans in the presence of bacteria.

  18. Molecular Identification of the Biowarfare Simulant Serratia Marcescens From a 50-Year-Old Munition Buried at Fort Detrick, Maryland

    DTIC Science & Technology

    2007-08-01

    osin. which produced easily recognized red colonies wben grown on artificial media. For these reasons. S . marcescens (along with Bacillus globigii^ was...8217 Since that time. S . marcescens has been identified as an important cause of nosocomial infections of the past 30 years, predominantly in...found to be 99% identical to S . marcescens . These results demonstrate the ability to identify the contents of a biological munition that had been buried

  19. Evolution of glutamine amidotransferase genes. Nucleotide sequences of the pabA genes from Salmonella typhimurium, Klebsiella aerogenes and Serratia marcescens.

    PubMed

    Kaplan, J B; Merkel, W K; Nichols, B P

    1985-06-05

    The amide group of glutamine is a source of nitrogen in the biosynthesis of a variety of compounds. These reactions are catalyzed by a group of enzymes known as glutamine amidotransferases; two of these, the glutamine amidotransferase subunits of p-aminobenzoate synthase and anthranilate synthase have been studied in detail and have been shown to be structurally and functionally related. In some micro-organisms, p-aminobenzoate synthase and anthranilate synthase share a common glutamine amidotransferase subunit. We report here the primary DNA and deduced amino acid sequences of the p-aminobenzoate synthase glutamine amidotransferase subunits from Salmonella typhimurium, Klebsiella aerogenes and Serratia marcescens. A comparison of these glutamine amidotransferase sequences to the sequences of ten others, including some that function specifically in either the p-aminobenzoate synthase or anthranilate synthase complexes and some that are shared by both synthase complexes, has revealed several interesting features of the structure and organization of these genes, and has allowed us to speculate as to the evolutionary history of this family of enzymes. We propose a model for the evolution of the p-aminobenzoate synthase and anthranilate synthase glutamine amidotransferase subunits in which the duplication and subsequent divergence of the genetic information encoding a shared glutamine amidotransferase subunit led to the evolution of two new pathway-specific enzymes.

  20. The Genomic Basis of Intrinsic and Acquired Antibiotic Resistance in the Genus Serratia

    PubMed Central

    Sandner-Miranda, Luisa; Vinuesa, Pablo; Cravioto, Alejandro; Morales-Espinosa, Rosario

    2018-01-01

    Serratia marcescens, a member of the Enterobacteriaceae family, was long thought to be a non-pathogenic bacterium prevalent in environmental habitats. Together with other members of this genus, it has emerged in recent years as an opportunistic nosocomial pathogen causing various types of infections. One important feature of pathogens belonging to this genus is their intrinsic and acquired resistance to a variety of antibiotic families, including β-lactam, aminoglycosides, quinolones and polypeptide antibiotics. The aim of this study was to elucidate which genes participate in the intrinsic and acquired antibiotic resistance of this genus in order to determine the Serratia genus resistome. We performed phylogenomic and comparative genomic analyses using 32 Serratia spp. genomes deposited in the NCBI GenBank from strains isolated from different ecological niches and different lifestyles. S. marcescens strain SmUNAM836, which was previously isolated from a Mexican adult with obstructive pulmonary disease, was included in this study. The results show that most of the antibiotic resistance genes (ARGs) were found on the chromosome, and to a lesser degree, on plasmids and transposons acquired through horizontal gene transfer. Four strains contained the gyrA point mutation in codon Ser83 that confers quinolone resistance. Pathogenic and environmental isolates presented a high number of ARGs, especially genes associated with efflux systems. Pathogenic strains, specifically nosocomial strains, presented more acquired resistance genes than environmental isolates. We may conclude that the environment provides a natural reservoir for antibiotic resistance, which has been underestimated in the medical field. PMID:29867787

  1. Wavelet-based tracking of bacteria in unreconstructed off-axis holograms.

    PubMed

    Marin, Zach; Wallace, J Kent; Nadeau, Jay; Khalil, Andre

    2018-03-01

    We propose an automated wavelet-based method of tracking particles in unreconstructed off-axis holograms to provide rough estimates of the presence of motion and particle trajectories in digital holographic microscopy (DHM) time series. The wavelet transform modulus maxima segmentation method is adapted and tailored to extract Airy-like diffraction disks, which represent bacteria, from DHM time series. In this exploratory analysis, the method shows potential for estimating bacterial tracks in low-particle-density time series, based on a preliminary analysis of both living and dead Serratia marcescens, and for rapidly providing a single-bit answer to whether a sample chamber contains living or dead microbes or is empty. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Lufenuron suppresses the resistance of Formosan subterranean termites (Isoptera: Rhinotermitidae) to entomopathogenic bacteria.

    PubMed

    Wang, Cai; Henderson, Gregg; Gautam, Bal K

    2013-08-01

    Pesticides can negatively affect insect immunity. Although studies show that Formosan subterranean termites, Coptotermes formosanus Shiraki, are resistant to microbial infections, the effects of pesticides on disease resistance is not well studied. In this study, C. formosanus previously fed lufenuron was exposed to each of the three entomopathogenic bacteria, Pseudomonas aeruginosa (Schroeter) Migula, Serratia marcescens Bizio, and Bacillus thuringiensis Berliner subsp. israelensis. We found that termite mortality was significantly higher and synergistic in the combination of lufenuron and P. aeruginosa compared with treatment of lufenuron or P. aeruginosa alone. Other bacteria and lufenuron combinations were not quite as effective. Interestingly, only in treatments without lufenuron did termites show carcass-burying behavior. The results indicate that lufenuron, a chitin synthesis inhibitor, can suppress Formosan subterranean termite resistance to P. aeruginosa. Possible suppression mechanisms are discussed.

  3. Extraction of chitin from red crab shell waste by cofermentation with Lactobacillus paracasei subsp. tolerans KCTC-3074 and Serratia marcescens FS-3.

    PubMed

    Jung, W J; Jo, G H; Kuk, J H; Kim, K Y; Park, R D

    2006-06-01

    For one-step extraction of chitin from red crab shell waste, cofermentation with Lactobacillus paracasei subsp. tolerans KCTC-3074, a lactic-acid-producing bacterium, and Serratia marcescens FS-3, a protease-producing bacterium, was conducted. Fermentation with single strain (L. 3074 or FS-3) was also conducted. At day 7, the pH in L. 3074, FS-3, and L. 3074+FS-3 (1:1) treatment decreased from 6.90 to 3.30, 5.88, and 3.48, respectively. Ash content in the residue after fermentation treatment of crab shells in L. 3074 and L. 3074+FS-3 (1:1) treatment drastically decreased from 41.2% to 3.19 and 1.15%, respectively. In L. 3074+FS-3 (1:1) cofermentation, the level of demineralization was the highest value of 97.2%, but the level of deproteinization in the cofermentation was 52.6% at day 7. Protein content in the treatment of FS-3 alone reduced from 22.4 to 3.62%. These results indicate that cofermentation of the shells using the two strains is efficient and applicable for the one-step extraction of crude chitin from red crab shell waste.

  4. Biocontrol of the Sugarcane Borer Eldana saccharina by Expression of the Bacillus thuringiensis cry1Ac7 and Serratia marcescens chiA Genes in Sugarcane-Associated Bacteria

    PubMed Central

    Downing, Katrina J.; Leslie, Graeme; Thomson, Jennifer A.

    2000-01-01

    The cry1Ac7 gene of Bacillus thuringiensis strain 234, showing activity against the sugarcane borer Eldana saccharina, was cloned under the control of the tac promoter. The fusion was introduced into the broad-host-range plasmid pKT240 and the integration vector pJFF350 and without the tac promoter into the broad-host-range plasmids pML122 and pKmM0. These plasmids were introduced into a Pseudomonas fluorescens strain isolated from the phylloplane of sugarcane and the endophytic bacterium Herbaspirillum seropedicae found in sugarcane. The ptac-cry1Ac7 construct was introduced into the chromosome of P. fluorescens using the integration vector pJFF350 carrying the artificial interposon Omegon-Km. Western blot analysis showed that the expression levels of the integrated cry1Ac7 gene were much higher under the control of the tac promoter than under the control of its endogenous promoter. It was also determined that multicopy expression in P. fluorescens and H. seropedicae of ptac-cry1Ac7 carried on pKT240 caused plasmid instability with no detectable protein expression. In H. seropedicae, more Cry1Ac7 toxin was produced when the gene was cloned under the control of the Nmr promoter on pML122 than in the opposite orientation and bioassays showed that the former resulted in higher mortality of E. saccharina larvae than the latter. P. fluorescens 14::ptac-tox resulted in higher mortality of larvae than did P. fluorescens 14::tox. An increased toxic effect was observed when P. fluorescens 14::ptac-tox was combined with P. fluorescens carrying the Serratia marcescens chitinase gene chiA, under the control of the tac promoter, integrated into the chromosome. PMID:10877771

  5. Detection of multiple potentially pathogenic bacteria in Matang mangrove estuaries, Malaysia.

    PubMed

    Ghaderpour, Aziz; Mohd Nasori, Khairul Nazrin; Chew, Li Lee; Chong, Ving Ching; Thong, Kwai Lin; Chai, Lay Ching

    2014-06-15

    The deltaic estuarine system of the Matang Mangrove Forest Reserve of Malaysia is a site where several human settlements and brackish water aquaculture have been established. Here, we evaluated the level of fecal indicator bacteria (FIB) and the presence of potentially pathogenic bacteria in the surface water and sediments. Higher levels of FIB were detected at downstream sampling sites from the fishing village, indicating it as a possible source of anthropogenic pollution to the estuary. Enterococci levels in the estuarine sediments were higher than in the surface water, while total coliforms and E. coli in the estuarine sediments were not detected in all samples. Also, various types of potentially pathogenic bacteria, including Klebsiella pneumoniae, Serratia marcescens and Enterobacter cloacae were isolated. The results indicate that the Matang estuarine system is contaminated with various types of potential human bacterial pathogens which might pose a health risk to the public. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Visualization of the Serratia Type VI Secretion System Reveals Unprovoked Attacks and Dynamic Assembly

    PubMed Central

    Gerc, Amy J.; Diepold, Andreas; Trunk, Katharina; Porter, Michael; Rickman, Colin; Armitage, Judith P.; Stanley-Wall, Nicola R.; Coulthurst, Sarah J.

    2015-01-01

    Summary The Type VI secretion system (T6SS) is a bacterial nanomachine that fires toxic proteins into target cells. Deployment of the T6SS represents an efficient and widespread means by which bacteria attack competitors or interact with host organisms and may be triggered by contact from an attacking neighbor cell as a defensive strategy. Here, we use the opportunist pathogen Serratia marcescens and functional fluorescent fusions of key components of the T6SS to observe different subassemblies of the machinery simultaneously and on multiple timescales in vivo. We report that the localization and dynamic behavior of each of the components examined is distinct, revealing a multi-stage and dynamic assembly process for the T6SS machinery. We also show that the T6SS can assemble and fire without needing a cell contact trigger, defining an aggressive strategy that broadens target range and suggesting that activation of the T6SS is tailored to survival in specific niches. PMID:26387948

  7. A strain of Serratia marcescens pathogenic for larvae of Lymantria dispar: Characterization

    Treesearch

    J.D. Podgwaite; B.J. Cosenza

    1976-01-01

    A gram-negative bacillus, pathogenic for gypsy moth larvae, was characterized culturally, morphologically, and physiologically as a member of the Serratia group of the family Enterobacteriaceae. The microorganism lacked the pigmentation characteristic of the group but was generally distinguished from closely related members of the family by its...

  8. Widespread Fosfomycin Resistance in Gram-Negative Bacteria Attributable to the Chromosomal fosA Gene

    PubMed Central

    Ito, Ryota; Tomich, Adam D.; Callaghan, Jake D.; McElheny, Christi L.; Mettus, Roberta T.; Sluis-Cremer, Nicolas

    2017-01-01

    ABSTRACT Fosfomycin is a decades-old antibiotic which is being revisited because of its perceived activity against many extensively drug-resistant Gram-negative pathogens. FosA proteins are Mn2+ and K+-dependent glutathione S-transferases which confer fosfomycin resistance in Gram-negative bacteria by conjugation of glutathione to the antibiotic. Plasmid-borne fosA variants have been reported in fosfomycin-resistant Escherichia coli strains. However, the prevalence and distribution of fosA in other Gram-negative bacteria are not known. We systematically surveyed the presence of fosA in Gram-negative bacteria in over 18,000 published genomes from 18 Gram-negative species and investigated their contribution to fosfomycin resistance. We show that FosA homologues are present in the majority of genomes in some species (e.g., Klebsiella spp., Enterobacter spp., Serratia marcescens, and Pseudomonas aeruginosa), whereas they are largely absent in others (e.g., E. coli, Acinetobacter baumannii, and Burkholderia cepacia). FosA proteins in different bacterial pathogens are highly divergent, but key amino acid residues in the active site are conserved. Chromosomal fosA genes conferred high-level fosfomycin resistance when expressed in E. coli, and deletion of chromosomal fosA in S. marcescens eliminated fosfomycin resistance. Our results indicate that FosA is encoded by clinically relevant Gram-negative species and contributes to intrinsic fosfomycin resistance. PMID:28851843

  9. Virulence of entomopathogenic bacteria in the bed bug, Cimex lectularius.

    PubMed

    Pietri, Jose E; Liang, Dangsheng

    2018-01-01

    Due in part to the development of insecticide resistance, the common bed bug, Cimex lectularius, has overcome human intervention efforts to make a global resurgence. The failure of chemical pesticides has created a need for novel strategies to combat bed bugs. While a number of insect pests are susceptible to the use of entomopathogenic microbes or microbial-derived toxins, biological control methods have not been thoroughly explored in bed bugs. Here, we tested the virulence of three entomopathogenic bacterial species in C. lectularius to determine their potential for bed bug control. We examined bed bug survival after inoculation with live or heat-killed Serratia marcescens, Pseudomonas fluorescens, and Bacillus thuringiensis israelensis at varying temperatures. We also analyzed the viability and growth of the same bacteria in infected bed bugs. All three bacterial species were pathogenic to bed bugs. However, the effects of S. marcescens and P. fluorescens were temperature-dependent while the lethality of B. thuringiensis israelensis was not. In addition, bacterial virulence was partly dependent on the route of infection but was not strongly associated with proliferation. Thus, our results suggest multiple possible mechanisms of microbial pathogenicity in the bed bug and indicate that entomopathogenic bacteria, or products derived from them, may have useful applications for bed bug control. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Protist predation can select for bacteria with lowered susceptibility to infection by lytic phages.

    PubMed

    Örmälä-Odegrip, Anni-Maria; Ojala, Ville; Hiltunen, Teppo; Zhang, Ji; Bamford, Jaana K H; Laakso, Jouni

    2015-05-07

    Consumer-resource interactions constitute one of the most common types of interspecific antagonistic interaction. In natural communities, complex species interactions are likely to affect the outcomes of reciprocal co-evolution between consumers and their resource species. Individuals face multiple enemies simultaneously, and consequently they need to adapt to several different types of enemy pressures. In this study, we assessed how protist predation affects the susceptibility of bacterial populations to infection by viral parasites, and whether there is an associated cost of defence on the competitive ability of the bacteria. As a study system we used Serratia marcescens and its lytic bacteriophage, along with two bacteriovorous protists with distinct feeding modes: Tetrahymena thermophila (particle feeder) and Acanthamoeba castellanii (surface feeder). The results were further confirmed with another study system with Pseudomonas and Tetrahymena thermophila. We found that selection by protist predators lowered the susceptibility to infections by lytic phages in Serratia and Pseudomonas. In Serratia, concurrent selection by phages and protists led to lowered susceptibility to phage infections and this effect was independent from whether the bacteria shared a co-evolutionary history with the phage population or not. Bacteria that had evolved with phages were overall more susceptible to phage infection (compared to bacteria with history with multiple enemies) but they were less vulnerable to the phages they had co-evolved with than ancestral phages. Selection by bacterial enemies was costly in general and was seen as a lowered fitness in absence of phages, measured as a biomass yield. Our results show the significance of multiple species interactions on pairwise consumer-resource interaction, and suggest potential overlap in defending against predatory and parasitic enemies in microbial consumer-resource communities. Ultimately, our results could have larger scale

  11. Evidence for metabolic activity of airborne bacteria

    NASA Technical Reports Server (NTRS)

    Dimmick, R. L.; Wolochow, H.; Chatigny, M. A.; Straat, P. A.; Schrot, J. R.; Levin, G. V.

    1974-01-01

    Aerosols of the bacterium Serratia marcescens, and of uniformly labelled C-14 glucose, were created simultaneously and mixed in tubing leading to an aerosol chamber. During a subsequent period of about 5 hrs, C-14O2 was produced unequivocally within the chamber, and insoluble, labelled material within the suspended particles first increased, then decreased.

  12. Survival of antibiotic resistant bacteria following artificial solar radiation of secondary wastewater effluent.

    PubMed

    Glady-Croue, Julie; Niu, Xi-Zhi; Ramsay, Joshua P; Watkin, Elizabeth; Murphy, Riley J T; Croue, Jean-Philippe

    2018-06-01

    Urban wastewater treatment plant effluents represent one of the major emission sources of antibiotic-resistant bacteria (ARB) in natural aquatic environments. In this study, the effect of artificial solar radiation on total culturable heterotrophic bacteria and ARB (including amoxicillin-resistant, ciprofloxacin-resistant, rifampicin-resistant, sulfamethoxazole-resistant, and tetracycline-resistant bacteria) present in secondary effluent was investigated. Artificial solar radiation was effective in inactivating the majority of environmental bacteria, however, the proportion of strains with ciprofloxacin-resistance and rifampicin-resistance increased in the surviving populations. Isolates of Pseudomonas putida, Serratia marcescens, and Stenotrophomonas maltophilia nosocomial pathogens were identified as resistant to solar radiation and to at least three antibiotics. Draft genome sequencing and typing revealed isolates carrying multiple resistance genes; where S. maltophilia (resistant to all studied antibiotics) sequence type was similar to strains isolated in blood infections. Results from this study confirm that solar radiation reduces total bacterial load in secondary effluent, but may indirectly increase the relative abundance of ARB. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. An insect pathogenic symbiosis between a Caenorhabditis and Serratia

    PubMed Central

    Morrison, Julie; Cooper, Vaughn; Thomas, W. Kelley

    2011-01-01

    We described an association between a strain of the nematode Caenorhabditis briggsae, i.e. KT0001, and the bacteria Serratia sp. SCBI (South African Caenorhabditis briggsae isolate), which was able to kill the insect Galleria (G. mellonella). Here we show that the Serratia sp. SCBI lines the gut of the nematode, similar to the Heterorhabditis-Photorhabdus complex, indicating that the association is possibly internal. We also expand on the relevance of this tripartite, i.e. insect-nematode-bacteria, interaction in the broader evolutionary context and Caenorhabditis natural history. PMID:21389770

  14. Bacterial Coaggregation Among the Most Commonly Isolated Bacteria From Contact Lens Cases.

    PubMed

    Datta, Ananya; Stapleton, Fiona; Willcox, Mark D P

    2017-01-01

    To examine the coaggregation and cohesion between the commonly isolated bacteria from contact lens cases. Four or five strains each of commonly isolated bacteria from contact lens cases, Staphylococcus aureus, Staphylococcus epidermidis, Pseudomonas aeruginosa, and Serratia marcescens, were grown, washed, mixed in equal proportions, and allowed to coaggregate for 24 hours. Lactose (0.06 M), sucrose (0.06 M), and pronase (2 mg/mL; 2 hours, 37°C) were used to inhibit coaggregation. Oral bacterial isolates of Actinomyces naeslundii and Streptococcus sanguinis were used as a positive control for coaggregation. Cohesion was performed with the ocular bacteria that demonstrated the highest level of coaggregation. Production of growth-inhibitory substances was measured by growing strains together on agar plates. The oral bacterial pair showed >80% coaggregation. Coaggregation occurred between ocular strains of S. aureus (2/5) or S. epidermidis (2/5) with P. aeruginosa strains (3/5); 42% to 62%. There was only slight coaggregation between staphylococci and S. marcescens. Staphylococcus aureus coaggregated with S. epidermidis. Lactose or sucrose treatment of S. aureus but pronase treatment of P. aeruginosa reversed the coaggregation. There was no cohesion between the ocular isolates. P. aeruginosa was able to stop growth of S. aureus but not vice versa. This study demonstrated for the first time that ocular isolates of P. aeruginosa and S. aureus could coaggregate, probably through lectin-carbohydrate interactions. However, this may not be related to biofilm formation in contact lens cases, as there was no evidence that the coaggregation was associated with cohesion between the strains.

  15. Infectious Risk Assessment of Unsafe Handling Practices and Management of Clinical Solid Waste

    PubMed Central

    Hossain, Md. Sohrab; Rahman, Nik Norulaini Nik Ab; Balakrishnan, Venugopal; Puvanesuaran, Vignesh R.; Sarker, Md. Zaidul Islam; Kadir, Mohd Omar Ab

    2013-01-01

    The present study was undertaken to determine the bacterial agents present in various clinical solid wastes, general waste and clinical sharp waste. The waste was collected from different wards/units in a healthcare facility in Penang Island, Malaysia. The presence of bacterial agents in clinical and general waste was determined using the conventional bacteria identification methods. Several pathogenic bacteria including opportunistic bacterial agent such as Pseudomonas aeruginosa, Salmonella spp., Klebsiella pneumoniae, Serratia marcescens, Acinetobacter baumannii, Staphylococcus aureus, Staphylococcus epidermidis, Enterococcus faecalis, Streptococcus pyogenes were detected in clinical solid wastes. The presence of specific pathogenic bacterial strains in clinical sharp waste was determined using 16s rDNA analysis. In this study, several nosocomial pathogenic bacteria strains of Escherichia coli, Klebsiella pneumoniae, Proteus mirabilis, Lysinibacillus sphaericus, Serratia marcescens, and Staphylococcus aureus were detected in clinical sharp waste. The present study suggests that waste generated from healthcare facilities should be sterilized at the point of generation in order to eliminate nosocomial infections from the general waste or either of the clinical wastes. PMID:23435587

  16. Biodegradation of the organophosphorus insecticide diazinon by Serratia sp. and Pseudomonas sp. and their use in bioremediation of contaminated soil.

    PubMed

    Cycoń, Mariusz; Wójcik, Marcin; Piotrowska-Seget, Zofia

    2009-07-01

    An enrichment culture technique was used for the isolation of bacteria responsible for biodegradation of diazinon in soil. Three bacterial strains were screened and identified by MIDI-FAME profiling as Serratia liquefaciens, Serratia marcescens and Pseudomonas sp. All isolates were able to grow in mineral salt medium (MSM) supplemented with diazinon (50 mgL(-1)) as a sole carbon source, and within 14d 80-92% of the initial dose of insecticide was degraded by the isolates and their consortium. Degradation of diazinon was accelerated when MSM was supplemented with glucose. However, this process was linked with the decrease of pH values, after glucose utilization. Studies on biodegradation in sterilized soil showed that isolates and their consortium exhibited efficient degradation of insecticide (100mg kg(-1) soil) with a rate constant of 0.032-0.085d(-1), and DT(50) for diazinon was ranged from 11.5d to 24.5d. In contrast, degradation of insecticide in non-sterilized soil, non-supplemented earlier with diazinon, was characterized by a rate constant of 0.014d(-1) and the 7-d lag phase, during which only 2% of applied dose was degraded. The results suggested a strong correlation between microbial activity and chemical processes during diazinon degradation. Moreover, isolated bacterial strains may have potential for use in bioremediation of diazinon-contaminated soils.

  17. Prodigiosin, Violacein, and Volatile Organic Compounds Produced by Widespread Cutaneous Bacteria of Amphibians Can Inhibit Two Batrachochytrium Fungal Pathogens.

    PubMed

    Woodhams, Douglas C; LaBumbard, Brandon C; Barnhart, Kelly L; Becker, Matthew H; Bletz, Molly C; Escobar, Laura A; Flechas, Sandra V; Forman, Megan E; Iannetta, Anthony A; Joyce, Maureen D; Rabemananjara, Falitiana; Gratwicke, Brian; Vences, Miguel; Minbiole, Kevin P C

    2018-05-01

    Symbiotic bacteria can produce secondary metabolites and volatile compounds that contribute to amphibian skin defense. Some of these symbionts have been used as probiotics to treat or prevent the emerging disease chytridiomycosis. We examined 20 amphibian cutaneous bacteria for the production of prodigiosin or violacein, brightly colored defense compounds that pigment the bacteria and have characteristic spectroscopic properties making them readily detectable, and evaluated the antifungal activity of these compounds. We detected violacein from all six isolates of Janthinobacterium lividum on frogs from the USA, Switzerland, and on captive frogs originally from Panama. We detected prodigiosin from five isolates of Serratia plymuthica or S. marcescens, but not from four isolates of S. fonticola or S. liquefaciens. All J. lividum isolates produced violacein when visibly purple, while prodigiosin was only detected on visibly red Serratia isolates. When applied to cultures of chytrid fungi Batrachochytrium dendrobatidis (Bd) and B. salamandrivorans (Bsal), prodigiosin caused significant growth inhibition, with minimal inhibitory concentrations (MIC) of 10 and 50 μM, respectively. Violacein showed a MIC of 15 μM against both fungi and was slightly more active against Bsal than Bd at lower concentrations. Although neither violacein nor prodigiosin showed aerosol activity and is not considered a volatile organic compound (VOC), J. lividum and several Serratia isolates did produce antifungal VOCs. White Serratia isolates with undetectable prodigiosin levels could still inhibit Bd growth indicating additional antifungal compounds in their chemical arsenals. Similarly, J. lividum can produce antifungal compounds such as indole-3-carboxaldehyde in addition to violacein, and isolates are not always purple, or turn purple under certain growth conditions. When Serratia isolates were grown in the presence of cell-free supernatant (CFS) from the fungi, CFS from Bd inhibited

  18. Complete Sequence of Four Multidrug-Resistant MOBQ1 Plasmids Harboring blaGES-5 Isolated from Escherichia coli and Serratia marcescens Persisting in a Hospital in Canada.

    PubMed

    Boyd, David; Taylor, Geoffrey; Fuller, Jeff; Bryce, Elizabeth; Embree, Joanne; Gravel, Denise; Katz, Kevin; Kibsey, Pamela; Kuhn, Magdalena; Langley, Joanne; Mataseje, Laura; Mitchell, Robyn; Roscoe, Diane; Simor, Andrew; Thomas, Eva; Turgeon, Nathalie; Mulvey, Michael

    2015-06-01

    The usefulness of carbapenems for gram-negative infections is becoming compromised by organisms harboring carbapenemases, enzymes which can hydrolyze the drug. Currently KPC (class A), NDM (class B), and OXA-48 types (class D) are the most globally widespread carbapenemases. However, among the GES-type class A extended-spectrum β-lactamases (ESBLs) there are variants that hydrolyze carbapenems, with blaGES-5 being the most common. Two Escherichia coli and two Serratia marcescens harboring blaGES-5 on plasmids were isolated by the Canadian Nosocomial Infection Surveillance Program (CNISP) from four different patients in a single hospital over a 2-year period. Complete sequencing of the blaGES-5 plasmids indicated that all four had nearly identical backbones consisting of genes for replication, partitioning, and stability, but contained variant accessory regions consisting of mobile elements and antimicrobial resistance genes. The plasmids were of a novel replicon type, but belonged to the MOBQ1 group based on relaxase sequences, and appeared to be mobilizable, but not self-transmissible. Considering the time periods of bacterial isolation, it would appear the blaGES-5 plasmid has persisted in an environmental niche for at least 2 years in the hospital. This has implications for infection control and clinical care when it is transferred to clinically relevant gram-negative organisms.

  19. Culturable bacteria present in the fluid of the hooded-pitcher plant Sarracenia minor based on 16S rDNA gene sequence data.

    PubMed

    Siragusa, Alex J; Swenson, Janice E; Casamatta, Dale A

    2007-08-01

    The culturable microbial community within the pitcher fluid of 93 Sarracenia minor carnivorous plants was examined over a 2-year study. Many aspects of the plant/bacterial/insect interaction within the pitcher fluid are minimally understood because the bacterial taxa present in these pitchers have not been identified. Thirteen isolates were characterized by 16S rDNA sequencing and subsequent phylogenetic analysis. The Proteobacteria were the most abundant taxa and included representatives from Serratia, Achromobacter, and Pantoea. The Actinobacteria Micrococcus was also abundant while Bacillus, Lactococcus, Chryseobacterium, and Rhodococcus were infrequently encountered. Several isolates conformed to species identifiers (>98% rDNA gene sequence similarity) including Serratia marcescens (isolates found in 27.5% of pitchers), Achromobacter xylosoxidans (37.6%), Micrococcus luteus (40.9%), Bacillus cereus (isolates found in 10.2%), Bacillus thuringiensis (5.4%), Lactococcus lactis (17.2%), and Rhodococcus equi (2.2%). Species-area curves suggest that sampling efforts were sufficient to recover a representative culturable bacterial community. The bacteria present represent a diverse community probably as a result of introduction by insect vectors, but the ecological significance remains under explored.

  20. UV Radiation Damage and Bacterial DNA Repair Systems

    ERIC Educational Resources Information Center

    Zion, Michal; Guy, Daniel; Yarom, Ruth; Slesak, Michaela

    2006-01-01

    This paper reports on a simple hands-on laboratory procedure for high school students in studying both radiation damage and DNA repair systems in bacteria. The sensitivity to ultra-violet (UV) radiation of both "Escherichia coli" and "Serratia marcescens" is tested by radiating them for varying time periods. Two growth temperatures are used in…

  1. Nosocomial infection of Serratia marcescens may induce a protective effect in monkeys exposed to Bacillus anthracis.

    PubMed

    Leffel, Elizabeth K; Twenhafel, Nancy A; Whitehouse, Chris A

    2008-08-01

    This study was originally designed to collect data on the natural history of inhalational anthrax in a new nonhuman primate model. An uncontrollable event created a new experimental condition which allowed us to retrospectively evaluate the power of the innate immune system to protect from an aerosol exposure of B. anthracis. Five African green monkeys (AGMs) had intravenous catheters implanted. One catheter was accidentally pulled out, leaving four AGMs with catheters and one without. All were exposed, to multiple lethal doses of B. anthracis Ames strain. Blood was collected twice daily to evaluate bacteremia. The AGM with no catheter had blood drawn from a femoral vein and became bacteremic on Day 9; succumbed to inhalational anthrax on Day 10. The other four AGMs had S. marcescens contamination in the catheter; indicated by pure colonies grown from the blood. None of these AGMs showed clinical signs of illness, had B. anthracis or a detectable level of protective antigen in the bloodstream. It appears that the presence of S. marcescens may have induced a "Coley's toxin" effect in this experiment. The innate immune response may have protected the AGMs from a lethal inhalational dose of B. anthracis spores.

  2. Evolution of Caenorhabditis elegans host defense under selection by the bacterial parasite Serratia marcescens.

    PubMed

    Penley, McKenna J; Ha, Giang T; Morran, Levi T

    2017-01-01

    Parasites can impose strong selection on hosts. In response, some host populations have adapted via the evolution of defenses that prevent or impede infection by parasites. However, host populations have also evolved life history shifts that maximize host fitness despite infection. Outcrossing and self-fertilization can have contrasting effects on evolutionary trajectories of host populations. While selfing and outcrossing are known to affect the rate at which host populations adapt in response to parasites, these mating systems may also influence the specific traits that underlie adaptation to parasites. Here, we determined the role of evolved host defense versus altered life history,in mixed mating (selfing and outcrossing) and obligately outcrossing C. elegans host populations after experimental evolution with the bacterial parasite, S. marcescens. Similar to previous studies, we found that both mixed mating and obligately outcrossing host populations adapted to S. marcescens exposure, and that the obligately outcrossing populations exhibited the greatest rates of adaptation. Regardless of the host population mating system, exposure to parasites did not significantly alter reproductive timing or total fecundity over the course of experimental evolution. However, both mixed mating and obligately outcrossing host populations exhibited significantly reduced mortality rates in the presence of the parasite after experimental evolution. Therefore, adaptation in both the mixed mating and obligately outcrossing populations was driven, at least in part, by the evolution of increased host defense and not changes in host life history. Thus, the host mating system altered the rate of adaptation, but not the nature of adaptive change in the host populations.

  3. Evolution of Caenorhabditis elegans host defense under selection by the bacterial parasite Serratia marcescens

    PubMed Central

    Penley, McKenna J.; Ha, Giang T.; Morran, Levi T.

    2017-01-01

    Parasites can impose strong selection on hosts. In response, some host populations have adapted via the evolution of defenses that prevent or impede infection by parasites. However, host populations have also evolved life history shifts that maximize host fitness despite infection. Outcrossing and self-fertilization can have contrasting effects on evolutionary trajectories of host populations. While selfing and outcrossing are known to affect the rate at which host populations adapt in response to parasites, these mating systems may also influence the specific traits that underlie adaptation to parasites. Here, we determined the role of evolved host defense versus altered life history,in mixed mating (selfing and outcrossing) and obligately outcrossing C. elegans host populations after experimental evolution with the bacterial parasite, S. marcescens. Similar to previous studies, we found that both mixed mating and obligately outcrossing host populations adapted to S. marcescens exposure, and that the obligately outcrossing populations exhibited the greatest rates of adaptation. Regardless of the host population mating system, exposure to parasites did not significantly alter reproductive timing or total fecundity over the course of experimental evolution. However, both mixed mating and obligately outcrossing host populations exhibited significantly reduced mortality rates in the presence of the parasite after experimental evolution. Therefore, adaptation in both the mixed mating and obligately outcrossing populations was driven, at least in part, by the evolution of increased host defense and not changes in host life history. Thus, the host mating system altered the rate of adaptation, but not the nature of adaptive change in the host populations. PMID:28792961

  4. Targeting survivin with prodigiosin isolated from cell wall of Serratia marcescens induces apoptosis in hepatocellular carcinoma cells.

    PubMed

    Yenkejeh, R A; Sam, M R; Esmaeillou, M

    2017-04-01

    Abnormal activation of the Wnt/β-catenin signaling pathway increases survivin expression that is involved in hepatocarcinogenesis. Therefore, downregulation of survivin may provide an attractive strategy for treatment of hepatocellular carcinoma. In this regard, little is known about the anticancer effects of prodigiosin isolated from cell wall of Serratia marcescens on the survivin expression and induction of apoptosis in hepatocellular carcinoma cells. Human hepatocellular carcinoma (HepG2) cells were treated with 100-, 200-, 400-, and 600-nM prodigiosin after which morphology of cells, cell number, growth inhibition, survivin expression, caspase-3 activation, and apoptotic rate were evaluated by inverted microscope, hemocytometer, MTT assay, RT-PCR, fluorometric immunosorbent enzyme assay, and flow cytometric analysis, respectively. Prodigiosin changed morphology of cells to apoptotic forms and disrupted cell connections. This compound significantly increased growth inhibition rate and decreased metabolic activity of HepG2 cells in a dose- and time-dependent manner. After 24-, 48-, and 72-h treatments with prodigiosin at concentrations ranging from 100 nM to 600 nM, growth inhibition rates were measured to be 1.5-10%, 24-47.5%, and 55.5-72.5%, respectively, compared to untreated cells. At the same conditions, metabolic activities were measured to be 91-83%, 74-53%, and 47-31% for indicated concentrations of prodigiosin, respectively, compared to untreated cells. We also found that treatment of HepG2 cells for 48 h decreased significantly cell number and survivin expression and increased caspase-3 activation in a dose-dependent manner. Specifically, treatment with 600-nM prodigiosin resulted in 77% decrease in cell number, 88.5% decrease in survivin messenger RNA level, and 330% increase in caspase-3 activation level compared to untreated cells. An increase in the number of apoptotic cells (late apoptosis) ranging from 36.9% to 97.4% was observed with increasing

  5. A relatively small change in sodium chloride concentration has a strong effect on adhesion of ocular bacteria to contact lenses.

    PubMed

    Cowell, B A; Willcox, M D; Schneider, R P

    1998-06-01

    Adhesion of bacteria to hydrogel lenses is thought to be an initial step of ocular colonization allowing evasion of normal host defences. The salt concentration of media is an important parameter controlling microbial adhesion. Salinity varies from 0.97% NaCl equivalents in the open eye to 0.89% in the closed eye state. In this study, the effect of sodium chloride in the concentration range of 0.8-1.0% (w/v) NaCl on adhesion of ocular bacteria to soft contact lenses was investigated using a static adhesion assay. Pseudomonas aeruginosa was found to adhere to lenses in significantly greater amounts than Serratia marcescens, Flavobacterium meningosepticum, Stenotrophomonas maltophilia and Staphylococcus intermedius. Increasing NaCl from 0.8% to 1.0% (w/v) increased adhesion of all bacteria tested. This adhesion was strong since the organisms could not be removed by washing in low ionic buffer. Adhesion of these organisms did not correlate with their cell surface properties as determined by bacterial adhesion to hydrocarbons (BATH) and retention on sepharose columns.

  6. Ammonia produced by bacterial colonies promotes growth of ampicillin-sensitive Serratia sp. by means of antibiotic inactivation.

    PubMed

    Cepl, Jaroslav; Blahůšková, Anna; Cvrčková, Fatima; Markoš, Anton

    2014-05-01

    Volatiles produced by bacterial cultures are known to induce regulatory and metabolic alterations in nearby con-specific or heterospecific bacteria, resulting in phenotypic changes including acquisition of antibiotic resistance. We observed unhindered growth of ampicillin-sensitive Serratia rubidaea and S. marcescens on ampicillin-containing media, when exposed to volatiles produced by dense bacterial growth. However, this phenomenon appeared to result from pH increase in the medium caused by bacterial volatiles rather than alterations in the properties of the bacterial cultures, as alkalization of ampicillin-containing culture media to pH 8.5 by ammonia or Tris exhibited the same effects, while pretreatment of bacterial cultures under the same conditions prior to antibiotic exposure did not increase ampicillin resistance. Ampicillin was readily inactivated at pH 8.5, suggesting that observed bacterial growth results from metabolic alteration of the medium, rather than an active change in the target bacterial population (i.e. induction of resistance or tolerance). However, even such seemingly simple mechanism may provide a biologically meaningful basis for protection against antibiotics in microbial communities growing on semi-solid media. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  7. Bactericidal efficacy of elevated pH on fish pathogenic and environmental bacteria

    USGS Publications Warehouse

    Starliper, Clifford E.; Watten, Barnaby J.

    2013-01-01

    Ship ballast water is a recognized medium for transfer and introductions of nonindigenous species. There is a need for new ballast water treatment methods that effectively and safely eliminate or greatly minimize movements of these species. The present study employed laboratory methods to evaluate the bactericidal efficacy of increased pH (pH 10.0–12.0) for exposure durations of up to 72 h to kill a variety of Gram-negative and Gram-positive bacteria including fish pathogens (Aeromonas spp., Yersinia ruckeri, Edwardsiella ictaluri, Serratia liquefaciens, Carnobacterium sp.), other common aquatic-inhabitant bacteria (Serratia marcescens, Pseudomonas fluorescens, Staphylococcus sp., Bacillus sp.) and indicators listed in International Maritime Organization D2 Standards; namely, Vibrio cholera (an environmental isolate from fish), Escherichia coli and Enterococcus faecalis. Volumes of 5 N NaOH were added to tryptic soy broth to obtain desired pH adjustments. Viable cells were determined after 0, 4, 12, 24, 48, and 72 h. Initial (0 h) cell numbers ranged from 3.40 × 104 cfu/mL for Bacillus sp. to 2.44 × 107 cfu/mL for E. faecalis. The effective endpoints of pH and treatment duration necessary to realize 100% bactericidal effect varied; however, all bacteria tested were killed within 72 h at pH 12.0 or lower. The lowest parameters examined, 4 h at pH 10.0, were bactericidal to V. cholera, E. ictaluri, three of four isolates of E. coli, and (three of four) Aeromonas salmonicida subsp. salmonicida. Bactericidal effect was attained at pH 10.0 within 12 h for the other A. salmonicida subsp. salmonicida, and within 24 h for P. fluorescens, and the remaining E. coli.

  8. Putting on the brakes: Bacterial impediment of wound healing

    PubMed Central

    Brothers, Kimberly M.; Stella, Nicholas A.; Hunt, Kristin M.; Romanowski, Eric G.; Liu, Xinyu; Klarlund, Jes K.; Shanks, Robert M. Q.

    2015-01-01

    The epithelium provides a crucial barrier to infection, and its integrity requires efficient wound healing. Bacterial cells and secretomes from a subset of tested species of bacteria inhibited human and porcine corneal epithelial cell migration in vitro and ex vivo. Secretomes from 95% of Serratia marcescens, 71% of Pseudomonas aeruginosa, 29% of Staphylococcus aureus strains, and other bacterial species inhibited epithelial cell migration. Migration of human foreskin fibroblasts was also inhibited by S. marcescens secretomes indicating that the effect is not cornea specific. Transposon mutagenesis implicated lipopolysaccharide (LPS) core biosynthetic genes as being required to inhibit corneal epithelial cell migration. LPS depletion of S. marcescens secretomes with polymyxin B agarose rendered secretomes unable to inhibit epithelial cell migration. Purified LPS from S. marcescens, but not from Escherichia coli or S. marcescens strains with mutations in the waaG and waaC genes, inhibited epithelial cell migration in vitro and wound healing ex vivo. Together these data suggest that S. marcescens LPS is sufficient for inhibition of epithelial wound healing. This study presents a novel host-pathogen interaction with implications for infections where bacteria impact wound healing and provides evidence that secreted LPS is a key factor in the inhibitory mechanism. PMID:26365869

  9. Chemical compositions and antibacterial activities of the essential oils from aerial parts and corollas of Origanum acutidens (Hand.-Mazz.) Ietswaart, an endemic species to Turkey.

    PubMed

    Cosge, Belgin; Turker, Arzu; Ipek, Arif; Gurbuz, Bilal

    2009-04-30

    Essential oils extracted by hydrodistillation from the aerial parts and corollas of Origanum acutidens (Hand.-Mazz.) Ietswaart, an endemic Turkish flora species, were analyzed by GC-MS. The amounts of essential oil obtained from the aerial parts and the corollas were 0.73% and 0.93%, respectively. Twenty-five components in both the aerial parts oil and the corolla oil, representing 95.11% and 93.88%, respectively, were identified. The aerial parts and corolla oils were characterized by the predominance of two components: p-cymene (9.43% and 17.51%) and carvacrol (67.51% and 52.33%), respectively. The essential oils were also evaluated for their antimicrobial activity against ten bacteria by the disc diffusion assay. Our findings showed the following order in the sensitivity to the essential oils, as indicated by the corresponding inhibition zones: Proteus vulgaris > Salmonella typhimurium > Enterobacter cloacae > Klebsiella pneumonia > Escherichia coli > Serratia marcescens > Pseudomonas aeruginosa for the aerial parts essential oil, and Salmonella typhimurium > Proteus vulgaris > Enterobacter cloacae > Escherichia coli > Klebsiella pneumoniae > Serratia marcescens > Pseudomonas aeruginosa for the corolla essential oil. The studied essential oils thus exhibited a broad-spectrum of activity against both Gram-positive and Gram-negative bacteria, whereas the tested Gram-positive bacteria were more susceptible to the essential oil samples.

  10. Antibacterial activity of Zuccagnia punctata Cav. ethanolic extracts.

    PubMed

    Zampini, Iris C; Vattuone, Marta A; Isla, Maria I

    2005-12-01

    The present study was conducted to investigate antibacterial activity of Zuccagnia punctata ethanolic extract against 47 strains of antibiotic-resistant Gram-negative bacteria and to identify bioactive compounds. Inhibition of bacterial growth was investigated using agar diffusion, agar macrodilution, broth microdilution and bioautographic methods. Zuccagnia punctata extract was active against all assayed bacteria (Escherichia coli, Klebsiella pneumoniae, Proteus mirabilis, Enterobacter cloacae, Serratia marcescens, Morganella morganii, Acinetobacter baumannii, Pseudomonas aeruginosa, Stenotrophomonas maltophilia) with minimal inhibitory concentration (MIC) values ranging from 25 to 200 microg/mL. Minimal bactericidal concentration (MBC) values were identical or two-fold higher than the corresponding MIC values. Contact bioautography, indicated that Zuccagnia punctata extracts possess one major antibacterial component against Pseudomonas aeruginosa and at least three components against. Klebsiella pneumoniae and Escherichia coli. Activity-guided fractionation of 1he ethanol extract on a silica gel column yielded a compound (2',4'-dihydroxychalcone), which exhibited strong antibacterial activity with MIC values between 0.10 and 1.00 microg/mL for Proteus mirabilis, Enterobacter cloacae, Serratia marcescens, Morganella morganii, Acinetobacter baumannii, Pseudomonas aeruginosa, Stenotrophomonas maltophilia. These values are lower than imipenem (0.25-16 microg/mL). Zuccagnia punctata might provide promising therapeutic agents against infections with multi-resistant Gram-negative bacteria.

  11. Increased resistance of contact lens related bacterial biofilms to antimicrobial activity of soft contact lens care solutions

    PubMed Central

    Szczotka-Flynn, Loretta B.; Imamura, Yoshifumi; Chandra, Jyotsna; Yu, Changping; Mukherjee, Pranab K.; Pearlman, Eric; Ghannoum, Mahmoud A.

    2014-01-01

    PURPOSE To determine if clinical and reference strains of Pseudomonas aeruginosa, Serratia marcescens, and Staphylococcus aureus form biofilms on silicone hydrogel contact lenses, and ascertain antimicrobial activities of contact lens care solutions. METHODS Clinical and American Type Culture Collection (ATCC) reference strains of Pseudomonas aeruginosa, Serratia marcescens, and Staphylococcus aureus were incubated with lotrafilcon A lenses under conditions that facilitate biofilm formation. Biofilms were quantified by quantitative culturing (colony forming units, CFUs), and gross morphology and architecture were evaluated using scanning electron microscopy (SEM) and confocal microscopy. Susceptibilities of the planktonic and biofilm growth phases of the bacteria to five common multipurpose contact lens care solutions and one hydrogen peroxide care solution were assessed. RESULTS P. aeruginosa, S. marcescens, and S. aureus reference and clinical strains formed biofilms on lotrafilcon A silicone hydrogel contact lenses, as dense networks of cells arranged in multiple layers with visible extracellular matrix. The biofilms were resistant to commonly used biguanide preserved multipurpose care solutions. P. aeruginosa and S. aureus biofilms were susceptible to a hydrogen peroxide and a polyquaternium preserved care solution, whereas S. marcescens biofilm was resistant to a polyquaternium preserved care solution but susceptible to hydrogen peroxide disinfection. In contrast, the planktonic forms were always susceptible. CONCLUSIONS P. aeruginosa, S. marcescens, and S. aureus form biofilms on lotrafilcon A contact lenses, which in contrast to planktonic cells, are resistant to the antimicrobial activity of several soft contact lens care products. PMID:19654521

  12. Aerobic Mercury-resistant bacteria alter Mercury speciation and retention in the Tagus Estuary (Portugal).

    PubMed

    Figueiredo, Neusa L; Canário, João; O'Driscoll, Nelson J; Duarte, Aida; Carvalho, Cristina

    2016-02-01

    Aerobic mercury-resistant bacteria were isolated from the sediments of two highly mercury-polluted areas of the Tagus Estuary (Barreiro and Cala do Norte) and one natural reserve area (Alcochete) in order to test their capacity to transform mercury. Bacterial species were identified using 16S rRNA amplification and sequencing techniques and the results indicate the prevalence of Bacillus sp. Resistance patterns to mercurial compounds were established by the determination of minimal inhibitory concentrations. Representative Hg-resistant bacteria were further tested for transformation pathways (reduction, volatilization and methylation) in cultures containing mercury chloride. Bacterial Hg-methylation was carried out by Vibrio fluvialis, Bacillus megaterium and Serratia marcescens that transformed 2-8% of total mercury into methylmercury in 48h. In addition, most of the HgR bacterial isolates showed Hg(2+)-reduction andHg(0)-volatilization resulting 6-50% mercury loss from the culture media. In summary, the results obtained under controlled laboratory conditions indicate that aerobic Hg-resistant bacteria from the Tagus Estuary significantly affect both the methylation and reduction of mercury and may have a dual face by providing a pathway for pollution dispersion while forming methylmercury, which is highly toxic for living organisms. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Bacteriological Assessment of Pneumonia Caused by Gram-Negative Bacteria in Patients Hospitalized in Intensive Care Unit.

    PubMed

    Guzek, A; Korzeniewski, K; Tomaszewski, D; Rybicki, Z; Zwolińska, E

    2017-01-01

    The article presents the results of 11-year study (2005-2015) of Gram-negative bacteria responsible for pneumonia in 2033 mechanically ventilated patients hospitalized in Intensive Care Unit. Of 8796 biological samples, consisting mainly of bronchial aspirate (97.9 %), 2056 bacterial strains were isolated and subjected to identification. VITEK 2 was used to determine drug susceptibility (classified according to the EUCAST criteria). ESBL, MBL and KPC-producing strains were identified by means of phenotypic methods using appropriate discs. The findings were that the predominant bacteria responsible for infections consisted of Enterobacteriaceae (42.0 %), Acinetobacter baumannii (37.2 %), Pseudomonas aeruginosa (16.1 %), and Stenotrophomonas maltophila (4.7 %). We observed a rise in the number of bacteria causing pneumonia throughout the study period, especially in S. maltophila and Enterobacteriaceae ESBL (+). Gram-negative bacilli were 100 % susceptible to colistin, apart from naturally resistant strains such as Proteus mirabilis, Serratia marcescens, whereas Enterobacteriaceae ESBL (+) were susceptible to imipenem and meropenem. Acinetobacter baumannii strains exhibited the lowest drug susceptibility. In conclusion, we report an increase in the prevalence of pneumonia associated with Gram-negative bacteria in mechanically ventilated intensive care patients. Colistin remains the most effective drug against the majority of Gram-negative bacteria. Therapeutic problems are common in the course of treatment of Acinetobacter baumannii infections.

  14. A Transcriptional Regulatory Mechanism Finely Tunes the Firing of Type VI Secretion System in Response to Bacterial Enemies.

    PubMed

    Lazzaro, Martina; Feldman, Mario F; García Véscovi, Eleonora

    2017-08-22

    The ability to detect and measure danger from an environmental signal is paramount for bacteria to respond accordingly, deploying strategies that halt or counteract potential cellular injury and maximize survival chances. Type VI secretion systems (T6SSs) are complex bacterial contractile nanomachines able to target toxic effectors into neighboring bacteria competing for the same colonization niche. Previous studies support the concept that either T6SSs are constitutively active or they fire effectors in response to various stimuli, such as high bacterial density, cell-cell contact, nutrient depletion, or components from dead sibling cells. For Serratia marcescens , it has been proposed that its T6SS is stochastically expressed, with no distinction between harmless or aggressive competitors. In contrast, we demonstrate that the Rcs regulatory system is responsible for finely tuning Serratia T6SS expression levels, behaving as a transcriptional rheostat. When confronted with harmless bacteria, basal T6SS expression levels suffice for Serratia to eliminate the competitor. A moderate T6SS upregulation is triggered when, according to the aggressor-prey ratio, an unbalanced interplay between homologous and heterologous effectors and immunity proteins takes place. Higher T6SS expression levels are achieved when Serratia is challenged by a contender like Acinetobacter , which indiscriminately fires heterologous effectors able to exert lethal cellular harm, threatening the survival of the Serratia population. We also demonstrate that Serratia 's RcsB-dependent T6SS regulatory mechanism responds not to general stress signals but to the action of specific effectors from competitors, displaying an exquisite strategy to weigh risks and keep the balance between energy expenditure and fitness costs. IMPORTANCE Serratia marcescens is among the health-threatening pathogens categorized by the WHO as research priorities to develop alternative antimicrobial strategies, and it was

  15. Alimentary Tract Bacteria Isolated and Identified with API-20E and Molecular Cloning Techniques from Australian Tropical Fruit Flies, Bactrocera cacuminata and B. tryoni

    PubMed Central

    Thaochan, N.; Drew, R. A. I.; Hughes, J. M.; Vijaysegaran, S.; Chinajariyawong, A.

    2010-01-01

    Bacteria were isolated from the crop and midgut of field collected Bactrocera cacuminata (Hering) and Bactrocera tryoni (Froggatt) (Diptera: Tephritidae). Two methods were used, firstly isolation onto two types of bacteriological culture media (PYEA and TSA) and identification using the API-20E diagnostic kit, and secondly, analysis of samples using the 16S rRNA gene molecular diagnostic method. Using the API-20E method, 10 genera and 17 species of bacteria in the family Enterobacteriaceae were identified from cultures growing on the nutrient agar. The dominant species in both the crop and midgut were Citrobacter freundii, Enterobacter cloacae and Klebsiella oxytoca. Providencia rettgeri, Klebsiella pneumoniae ssp ozaenae and Serratia marcescens were isolated from B. tryoni only. Using the molecular cloning technique that is based on 16S rRNA gene sequences, five bacteria classes were dignosed — Alpha-, Beta-, Gamma- and Delta- Proteobacteria and Firmicutes — including five families, Leuconostocaceae, Enterococcaceae, Acetobacteriaceae, Comamonadaceae and Enterobacteriaceae. The bacteria affiliated with Firmicutes were found mainly in the crop while the Gammaproteobacteria, especially the family Enterobacteriaceae, was dominant in the midgut. This paper presents results from the first known application of molecular cloning techniques to study bacteria within tephritid species and the first record of Firmicutes bacteria in these flies. PMID:20883132

  16. Cloning, expression and characterization of glycerol dehydrogenase involved in 2,3-butanediol formation in Serratia marcescens H30.

    PubMed

    Zhang, Liaoyuan; Xu, Quanming; Peng, Xiaoqian; Xu, Boheng; Wu, Yuehao; Yang, Yulong; Sun, Shujing; Hu, Kaihui; Shen, Yaling

    2014-09-01

    The meso-2,3-butanediol dehydrogenase (meso-BDH) from S. marcescens H30 is responsible for converting acetoin into 2,3-butanediol during sugar fermentation. Inactivation of the meso-BDH encoded by budC gene does not completely abolish 2,3-butanediol production, which suggests that another similar enzyme involved in 2,3-butanediol formation exists in S. marcescens H30. In the present study, a glycerol dehydrogenase (GDH) encoded by gldA gene from S. marcescens H30 was expressed in Escherichia coli BL21(DE3), purified and characterized for its properties. In vitro conversion indicated that the purified GDH could catalyze the interconversion of (3S)-acetoin/meso-2,3-butanediol and (3R)-acetoin/(2R,3R)-2,3-butanediol. (2S,3S)-2,3-Butanediol was not a substrate for the GDH at all. Kinetic parameters of the GDH enzyme showed lower K m value and higher catalytic efficiency for (3S/3R)-acetoin in comparison to those for (2R,3R)-2,3-butanediol and meso-2,3-butanediol, implying its physiological role in favor of 2,3-butanediol formation. Maximum activity for reduction of (3S/3R)-acetoin and oxidations of meso-2,3-butanediol and glycerol was observed at pH 8.0, while it was pH 7.0 for diacetyl reduction. The enzyme exhibited relative high thermotolerance with optimum temperature of 60 °C in the oxidation-reduction reactions. Over 60 % of maximum activity was retained at 70 °C. Additionally, the GDH activity was significantly enhanced for meso-2,3-BD oxidation in the presence of Fe(2+) and for (3S/3R)-acetoin reduction in the presence of Mn(2+), while several cations inhibited its activity, particularly Fe(2+) and Fe(3+) for (3S/3R)-acetoin reduction. The properties provided potential application for single configuration production of acetoin and 2,3-butanediol .

  17. Exploring Anopheles gut bacteria for Plasmodium blocking activity

    PubMed Central

    Bahia, Ana C; Dong, Yuemei; Blumberg, Benjamin J; Mlambo, Godfree; Tripathi, Abhai; BenMarzouk-Hidalgo, Omar J; Chandra, Ramesh; Dimopoulos, George

    2014-01-01

    SUMMARY Malaria parasite transmission requires the successful development of Plasmodium gametocytes into flagellated microgametes upon mosquito blood ingestion, and the subsequent fertilization of microgametes and macrogametes for the development of motile zygotes, called ookinetes, which invade and transverse the Anopheles vector mosquito midgut at around 18-36 h after blood ingestion. Within the mosquito midgut, the malaria parasite has to withstand the mosquito's innate immune response and the detrimental effect of its commensal bacterial flora. We have assessed the midgut colonization capacity of 5 gut bacterial isolates from field-derived, and 2 from laboratory colony, mosquitoes and their effect on Plasmodium development in vivo and in vitro, along with their impact on mosquito survival. Some bacterial isolates activated the mosquito's immune system, affected the mosquito's life span, and were capable of blocking Plasmodium development. We have also shown that the ability of these bacteria to inhibit the parasites is likely to involve different mechanisms and factors. A Serratia marcescens isolate was particularly efficient in colonizing the mosquitoes’ gut, compromising mosquito survival, and inhibiting both sexual- and asexual-stage Plasmodium through secreted factors, thereby rendering it a potential candidate for the development of a malaria transmission intervention strategy. PMID:24428613

  18. Studies on Microbial Propagation in the Airborne State

    DTIC Science & Technology

    1976-11-29

    Bacterial growth, Jupiter, Serratia marcescens , Particulate ejection \\ýAirbForne particles, 2Ck\\l ABSTRACT (Continue an reverse side it necessary and Identit...the use of cells in the latter stages of logarithmic growth, the bacterial species Serratia marcescens can sustain more than two cellular...1133 DISTRIBUTION LIST: Dr. Richard S . Young (3 copies, with reprints) Chief, Planetary Biology NASA Headquarters, Code SL Washington, D.C. 20546

  19. [Post-marketing surveillance of antibacterial activities of cefozopran against various clinical isolates--II. Gram-negative bacteria].

    PubMed

    Igari, Jun; Oguri, Toyoko; Hiramatsu, Nobuyoshi; Akiyama, Kazumitsu; Koyama, Tsuneo

    2002-02-01

    As a post-marketing surveillance, the in vitro antibacterial activities of cefozopran (CZOP), an agent of cephems, against various clinical isolates were yearly evaluated and compared with those of other cephems, oxacephems, penicillins, monobactams, and carbapenems. Changes in CZOP susceptibility for the bacteria were also evaluated with the bacterial resistance ratio calculated with the breakpoint MIC. Twenty-five species (3,362 strains) of Gram-negative bacteria were isolated from the clinical materials annually collected from 1996 to 2000, and consisted of Moraxella (Branhamella) catarrhalis (n = 136), Haemophilus influenzae (n = 289), Escherichia coli (n = 276), Klebsiella pneumoniae (n = 192), Klebsiella oxytoca (n = 157), Enterobacter cloacae (n = 189), Enterobacter aerogenes (n = 93), Serratia marcescens (n = 172), Serratia liquefaciens (n = 24), Citrobacter freundii (n = 177), Citrobacter koseri (n = 70), Proteus mirabilis (n = 113), Proteus vulgaris (n = 89), Morganella morganii (n = 116), Providencia spp. (n = 41), Pseudomonas aeruginosa (n = 290), Pseudomonas fluorescens (n = 56), Pseudomonas putida (n = 63), Acinetobacter baumannii (n = 146), Acinetobacter lwoffii (n = 34), Burkholderia cepacia (n = 101), Stenotrophomonas maltophilia (n = 169), Bacteroides fragilis group (n = 196), and Prevotella/Porphyromonas (n = 173). An antibacterial activity of CZOP against E. coli, K. pneumoniae, K. oxytoca, and S. marcescens was potent and consistent with or more preferable than the study results obtained until the new drug application approval. MIC90 of CZOP against M.(B.) catarrhalis, C. koseri, and P. aeruginosa was not considerably changed and consistent with the study results obtained until the new drug application approval. MIC90 of CZOP against E. cloacae, E. aerogenes, and P. mirabilis increased year by year. The increase in MIC90 of CZOP against E. aerogenes and P. mirabilis, however, was not considered to be an obvious decline in susceptibility. In

  20. The First Report of Drug Resistant Bacteria Isolated from the Brown-Banded Cockroach, Supella longipalpa, in Ahvaz, South-western Iran

    PubMed Central

    Vazirianzadeh, Babak; Dehghani, Rouhullah; Mehdinejad, Manijeh; Sharififard, Mona; Nasirabadi, Nersi

    2014-01-01

    Background The brown-banded cockroach, Supella longipalpa is known as a carrier of pathogenic bacteria in urban environments, but its role is not well documented regarding the carriage of antibiotic-resistant pathogenic bacteria in Iran. The aim of this study was to determine the resistance bacteria isolated from the brown-banded cockroach in Ahvaz, south west of Iran. Methods: Totally 39 cockroaches were collected from kitchen area of houses and identified. All specimens were cultured to isolate the bacterial agents on blood agar and MacConky agar media. The microorganisms were identified using necessary differential and biochemical tests. Antimicrobial susceptibility tests were performed for isolated organisms by Kirby-Bauer’s disk diffusion according to NCLI guideline, using 18 antibiotics. Results: From the 39 collected S. langipalpa, 179 bacterial agents were isolated, 92 of alimentary ducts and 87 of external body surfaces. Isolated bacteria from cockroaches were identified as Enterobacter spp., Klebsiella spp., Citrobacter spp., Escherichia coli, Salmonella spp., Proteus spp., coagulase negative staphylococci, Serratia marcescens, Staphylococcus aureus, and Bacillus species. The pattern resistance rates were determined for gram negative bacilli and gram positive cocci regarding 18 antibiotics. Conclusion: The brown-banded cockroach can be involved in the spread of drug resistant bacteria and increases the possibility of contacting human environment to drug resistant bacteria. Therefore, the potential of removing this insect should be improved. This is the first original report of drug resistant bacteria isolated from the brown-banded cockroach of Iran. PMID:25629065

  1. Thermotemporal dynamics of contaminant bacteria and antimicrobials in extended porcine semen.

    PubMed

    Althouse, G C; Pierdon, M S; Lu, K G

    2008-11-01

    Bacterial contamination of extended porcine semen has been associated with deleterious effects on both semen quality and sow fertility. Retrospective, prospective and in vitro studies were performed to delineate the prevalence and behavior of certain bacterial contaminants in extended semen, and antimicrobial pharmacodynamics in various semen diluents. Retrospective review of extended semen samples submitted from North American boar studs for microbiological screening at the University of Pennsylvania Reference Andrology Laboratory in 2005 and 2006 yielded bacteriospermia prevalence rates of 17% (144/832) and 26% (256/984), respectively. In a prospective study of regional boar studs, of 91 extended semen samples tested over 1-y, 29% were positive for bacteriospermia. Retrospective and prospective studies both showed that the preponderance of contaminant positive samples occurred during the fall months (P<0.05). To better understand behavior of select contaminant bacteria, generation intervals were determined for Serratia marcescens (SM) and Achromobacter xylosoxidans (AX) at 16, 22 and 37 degrees C. Generation times were temperature-dependent, with intervals decreasing two- to four-fold as incubation temperature increased. Growth patterns for SM, AX and Burkholderia cepacia were evaluated in various semen diluents. The different diluents exhibited constant or episodic patterns of growth within and among bacteria throughout the 5-d test period. Kill-time kinetics at 37 degrees C of several genera of bacteria in four semen diluents containing amoxicillin, gentamicin, tylosin, and lincomycin/spectinomycin (single drug or combination) ranged from 75 to over 360min, and was highly dependent (P<0.05) upon both type of bacteria and semen diluent.

  2. Site Investigation Report for Fort McClellan, Alabama

    DTIC Science & Technology

    1993-08-31

    used 55 Assumed RD or VX used BG Bacillus Gobi SM Serratia Marcescens Reference: Solid Waste Study No. 99-056-73/76, Fort McClellan, AL, Jul 73-Aug...Bacillus Gobi SM Serratia Marcescens STB Supertropical Bleach Reference: Solid Waste Study No. 99-056-73/76, Fort McClellan, AL, Jul 73-Aug 75...REPORT ORGANIZATION ................................ 1-1 1.4 FACILITY BACKGROUND ............................... 1-3 1.4.1 Post Description and History

  3. Isolation of coagulase-negative staphylococci from extended-wear soft contact lenses in asymptomatic patients.

    PubMed

    Faghri, Jamshid

    2008-05-01

    Coagulase-negative staphylococci and diphtheroids are normal inhabitants of the outer surface of the human eye. These microorganisms serve as part of the defense mechanism of the ocular anatomy in preventing colonization and infection by pathogenic bacteria. Nevertheless, infections associated with contaminated solutions and cases became serious problems for people who wear soft contact lenses. The aim of this study is to isolate and identify aerobic bacteria, particularly, gram-negative species associated with the use of extended-wear soft contact lenses. Extended-wear contact lenses were collected, using aseptic technique, from the eyes of individuals after 30 days of extended wear (5-7 day intermittent periods) and were examined for adhered aerobic bacteria. Coagulase-negative staphylococci were isolated from 74% of the lenses. Serratia marcescens was found at an incidence of 10% and Pseudomonas aeruginosa at an incidence of 6%. The presence of species of bacteria, including P. aeruginosa and S. marcescens, which have been associated with daily wear soft contact lenses, solutions, and cases also seem to be associated with extended-wear lenses.

  4. Multiple chitinases of an endophytic Serratia proteamaculans 568 generate chitin oligomers.

    PubMed

    Purushotham, Pallinti; Sarma, P V S R N; Podile, Appa Rao

    2012-05-01

    Serratia proteamaculans 568 genome revealed the presence of four family 18 chitinases (Sp ChiA, Sp ChiB, Sp ChiC, and Sp ChiD). Heterologous expression and characterization of Sp ChiA, Sp ChiB, and Sp ChiC showed that these enzymes were optimally active at pH 6.0-7.0, and 40°C. The three Sp chitinases displayed highest activity/binding to β-chitin and showed broad range of substrate specificities, and released dimer as major end product from oligomeric and polymeric substrates. Longer incubation was required for hydrolysis of trimer for the three Sp chitinases. The three Sp chitinases released up to tetramers from colloidal chitin substrate. Sp ChiA and Sp ChiB were processive chitinases, while Sp ChiC was a non-processive chitinase. Based on the known structures of ChiA and ChiB from S. marcescens, 3D models of Sp ChiA and Sp ChiB were generated. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Evaluation of antibacterial properties of some medicinal plants used in Iran.

    PubMed

    Bonjar, Shahidi

    2004-10-01

    Forty-five species of 29 plant families used in the traditional medicine by Iranian people, showed antibacterial activities against one or more of the bacterial species: Bacillus cereus, Bacillus pumilus, Bordetella bronchiseptica, Escherichia coli, Klebsiella pneumoniae, Micrococcus luteus, Pseudomonas aeruginosa, Pseudomonas fluorescens, Serratia marcescens, Staphylococcus aureus and Staphylococcus epidermidis. No plant showed activity against Serratia marcescens; Bordetella bronchiseptica being the most susceptible species. All extracts showed the same activity 18 months later.

  6. The genome and genetics of a high oxidative stress tolerant Serratia sp. LCN16 isolated from the plant parasitic nematode Bursaphelenchus xylophilus.

    PubMed

    Vicente, Claudia S L; Nascimento, Francisco X; Ikuyo, Yoriko; Cock, Peter J A; Mota, Manuel; Hasegawa, Koichi

    2016-04-23

    Pine wilt disease (PWD) is a worldwide threat to pine forests, and is caused by the pine wood nematode (PWN) Bursaphelenchus xylophilus. Bacteria are known to be associated with PWN and may have an important role in PWD. Serratia sp. LCN16 is a PWN-associated bacterium, highly resistant to oxidative stress in vitro, and which beneficially contributes to the PWN survival under these conditions. Oxidative stress is generated as a part of the basal defense mechanism used by plants to combat pathogenic invasion. Here, we studied the biology of Serratia sp. LCN16 through genome analyses, and further investigated, using reverse genetics, the role of two genes directly involved in the neutralization of H2O2, namely the H2O2 transcriptional factor oxyR; and the H2O2-targeting enzyme, catalase katA. Serratia sp. LCN16 is phylogenetically most closely related to the phytosphere group of Serratia, which includes S. proteamaculans, S. grimessi and S. liquefaciens. Likewise, Serratia sp. LCN16 shares many features with endophytes (plant-associated bacteria), such as genes coding for plant polymer degrading enzymes, iron uptake/transport, siderophore and phytohormone synthesis, aromatic compound degradation and detoxification enzymes. OxyR and KatA are directly involved in the high tolerance to H2O2 of Serratia sp. LCN16. Under oxidative stress, Serratia sp. LCN16 expresses katA independently of OxyR in contrast with katG which is under positive regulation of OxyR. Serratia sp. LCN16 mutants for oxyR (oxyR::int(614)) and katA (katA::int(808)) were sensitive to H2O2 in relation with wild-type, and both failed to protect the PWN from H2O2-stress exposure. Moreover, both mutants showed different phenotypes in terms of biofilm production and swimming/swarming behaviors. This study provides new insights into the biology of PWN-associated bacteria Serratia sp. LCN16 and its extreme resistance to oxidative stress conditions, encouraging further research on the potential role of this

  7. Efficacy of surface disinfectant cleaners against emerging highly resistant gram-negative bacteria

    PubMed Central

    2014-01-01

    Background Worldwide, the emergence of multidrug-resistant gram-negative bacteria is a clinical problem. Surface disinfectant cleaners (SDCs) that are effective against these bacteria are needed for use in high risk areas around patients and on multi-touch surfaces. We determined the efficacy of several SDCs against clinically relevant bacterial species with and without common types of multidrug resistance. Methods Bacteria species used were ATCC strains; clinical isolates classified as antibiotic-susceptible; and multi-resistant clinical isolates from Klebsiella oxytoca, Klebsiella pneumoniae, and Serratia marcescens (all OXA-48 and KPC-2); Acinetobacter baumannii (OXA-23); Pseudomonas aeruginosa (VIM-1); and Achromobacter xylosoxidans (ATCC strain). Experiments were carried out according to EN 13727:2012 in quadruplicate under dirty conditions. The five evaluated SDCs were based on alcohol and an amphoteric substance (AAS), an oxygen-releaser (OR), surface-active substances (SAS), or surface-active-substances plus aldehydes (SASA; two formulations). Bactericidal concentrations of SDCs were determined at two different contact times. Efficacy was defined as a log10 ≥ 5 reduction in bacterial cell count. Results SDCs based on AAS, OR, and SAS were effective against all six species irrespective of the degree of multi-resistance. The SASA formulations were effective against the bacteria irrespective of degree of multi-resistance except for one of the four P. aeruginosa isolates (VIM-1). We found no general correlation between SDC efficacy and degree of antibiotic resistance. Conclusions SDCs were generally effective against gram-negative bacteria with and without multidrug resistance. SDCs are therefore suitable for surface disinfection in the immediate proximity of patients. Single bacterial isolates, however, might have reduced susceptibility to selected biocidal agents. PMID:24885029

  8. Pathogen Reduction of Fresh Whole Blood for Military and Civilian Use

    DTIC Science & Technology

    2010-04-01

    NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR( S ) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME( S ) AND...MONITORING AGENCY NAME( S ) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM( S ) 11. SPONSOR/MONITOR’S REPORT NUMBER( S ) 12. DISTRIBUTION/AVAILABILITY STATEMENT...treatment with 80 J/mLRBC in the Mirasol System. Strain of bacteria tested # of units positive/ # of units tested Serratia marcescens 0/3 Yersinia

  9. Gorilla gorilla gorilla gut: a potential reservoir of pathogenic bacteria as revealed using culturomics and molecular tools.

    PubMed

    Bittar, Fadi; Keita, Mamadou B; Lagier, Jean-Christophe; Peeters, Martine; Delaporte, Eric; Raoult, Didier

    2014-11-24

    Wild apes are considered to be the most serious reservoir and source of zoonoses. However, little data are available about the gut microbiota and pathogenic bacteria in gorillas. For this propose, a total of 48 fecal samples obtained from 21 Gorilla gorilla gorilla individuals (as revealed via microsatellite analysis) were screened for human bacterial pathogens using culturomics and molecular techniques. By applying culturomics to one index gorilla and using specific media supplemented by plants, we tested 12,800 colonies and identified 147 different bacterial species, including 5 new species. Many opportunistic pathogens were isolated, including 8 frequently associated with human diseases; Mycobacterium bolletii, Proteus mirabilis, Acinetobacter baumannii, Klebsiella pneumoniae, Serratia marcescens, Escherichia coli, Staphylococcus aureus and Clostridium botulinum. The genus Treponema accounted for 27.4% of the total reads identified at the genus level via 454 pyrosequencing. Using specific real-time PCR on 48 gorilla fecal samples, in addition to classical human pathogens, we also observed the fastidious bacteria Bartonella spp. Borrelia spp., Coxiella burnetii and Tropheryma whipplei in the gorilla population. We estimated that the prevalence of these pathogens vary between 4.76% and 85.7%. Therefore, gorillas share many bacterial pathogens with humans suggesting that they could be a reservoir for their emergence.

  10. Gorilla gorilla gorilla gut: a potential reservoir of pathogenic bacteria as revealed using culturomics and molecular tools

    PubMed Central

    Bittar, Fadi; Keita, Mamadou B.; Lagier, Jean-Christophe; Peeters, Martine; Delaporte, Eric; Raoult, Didier

    2014-01-01

    Wild apes are considered to be the most serious reservoir and source of zoonoses. However, little data are available about the gut microbiota and pathogenic bacteria in gorillas. For this propose, a total of 48 fecal samples obtained from 21 Gorilla gorilla gorilla individuals (as revealed via microsatellite analysis) were screened for human bacterial pathogens using culturomics and molecular techniques. By applying culturomics to one index gorilla and using specific media supplemented by plants, we tested 12,800 colonies and identified 147 different bacterial species, including 5 new species. Many opportunistic pathogens were isolated, including 8 frequently associated with human diseases; Mycobacterium bolletii, Proteus mirabilis, Acinetobacter baumannii, Klebsiella pneumoniae, Serratia marcescens, Escherichia coli, Staphylococcus aureus and Clostridium botulinum. The genus Treponema accounted for 27.4% of the total reads identified at the genus level via 454 pyrosequencing. Using specific real-time PCR on 48 gorilla fecal samples, in addition to classical human pathogens, we also observed the fastidious bacteria Bartonella spp. Borrelia spp., Coxiella burnetii and Tropheryma whipplei in the gorilla population. We estimated that the prevalence of these pathogens vary between 4.76% and 85.7%. Therefore, gorillas share many bacterial pathogens with humans suggesting that they could be a reservoir for their emergence. PMID:25417711

  11. Uranium Biominerals Precipitated by an Environmental Isolate of Serratia under Anaerobic Conditions.

    PubMed

    Newsome, Laura; Morris, Katherine; Lloyd, Jonathan R

    2015-01-01

    Stimulating the microbially-mediated precipitation of uranium biominerals may be used to treat groundwater contamination at nuclear sites. The majority of studies to date have focussed on the reductive precipitation of uranium as U(IV) by U(VI)- and Fe(III)-reducing bacteria such as Geobacter and Shewanella species, although other mechanisms of uranium removal from solution can occur, including the precipitation of uranyl phosphates via bacterial phosphatase activity. Here we present the results of uranium biomineralisation experiments using an isolate of Serratia obtained from a sediment sample representative of the Sellafield nuclear site, UK. When supplied with glycerol phosphate, this Serratia strain was able to precipitate 1 mM of soluble U(VI) as uranyl phosphate minerals from the autunite group, under anaerobic and fermentative conditions. Under phosphate-limited anaerobic conditions and with glycerol as the electron donor, non-growing Serratia cells could precipitate 0.5 mM of uranium supplied as soluble U(VI), via reduction to nano-crystalline U(IV) uraninite. Some evidence for the reduction of solid phase uranyl(VI) phosphate was also observed. This study highlights the potential for Serratia and related species to play a role in the bioremediation of uranium contamination, via a range of different metabolic pathways, dependent on culturing or in situ conditions.

  12. Uranium Biominerals Precipitated by an Environmental Isolate of Serratia under Anaerobic Conditions

    PubMed Central

    Newsome, Laura; Morris, Katherine; Lloyd, Jonathan. R.

    2015-01-01

    Stimulating the microbially-mediated precipitation of uranium biominerals may be used to treat groundwater contamination at nuclear sites. The majority of studies to date have focussed on the reductive precipitation of uranium as U(IV) by U(VI)- and Fe(III)-reducing bacteria such as Geobacter and Shewanella species, although other mechanisms of uranium removal from solution can occur, including the precipitation of uranyl phosphates via bacterial phosphatase activity. Here we present the results of uranium biomineralisation experiments using an isolate of Serratia obtained from a sediment sample representative of the Sellafield nuclear site, UK. When supplied with glycerol phosphate, this Serratia strain was able to precipitate 1 mM of soluble U(VI) as uranyl phosphate minerals from the autunite group, under anaerobic and fermentative conditions. Under phosphate-limited anaerobic conditions and with glycerol as the electron donor, non-growing Serratia cells could precipitate 0.5 mM of uranium supplied as soluble U(VI), via reduction to nano-crystalline U(IV) uraninite. Some evidence for the reduction of solid phase uranyl(VI) phosphate was also observed. This study highlights the potential for Serratia and related species to play a role in the bioremediation of uranium contamination, via a range of different metabolic pathways, dependent on culturing or in situ conditions. PMID:26132209

  13. Identification of an entomopathogenic bacterium, Serratia sp. ANU101, and its hemolytic activity.

    PubMed

    Kim, Yonggyun; Kim, Keunseob; Seo, Jiae; Shrestha, Sony; Kim, Hosanna H; Nalini, Madanagopal; Yi, Youngkeun

    2009-03-01

    Four different bacterial colonies were isolated from an old stock of an entomopathogenic nematode, Steinernema monticolum. They all showed entomopathogenicity to final instar larvae of beet armyworm, Spodoptera exigua, by hemocoelic injection. However, they varied in colony form, susceptibility to antibiotics, and postmortem change of the infected host insects. Biolog microbial identification and 16S rDNA sequence analyses indicate that these are four different species classified into different bacterial genera. owing to high entomopathogenicity and a cadaver color of infected insect host, Serratia sp. was selected as a main symbiotic bacterial species and analyzed for its pathogenicity. Although no virulence of Serratia sp. was detected at oral administration, the bacteria gave significant synergistic pathogenicity to fifth instar S. exigua when it was treated along with a spore-forming entomopathogenic bacterium, Bacillus thuringiensis. The synergistic effect was explained by an immunosuppressive effect of Serratia sp. by its high cytotoxic effect on hemocytes of S. exigua, because Serratia sp. caused septicemia of S. exigua when the bacterial cells were injected into S. exigua hemocoel. The cytotoxic factor(s) was present in the culture medium because the sterilized culture broth possessed high potency in the cytotoxicity, which was specific to granular cells and plasmatocytes, two main immune-associated hemocytes in insects.

  14. A Transcriptional Regulatory Mechanism Finely Tunes the Firing of Type VI Secretion System in Response to Bacterial Enemies

    PubMed Central

    Lazzaro, Martina; Feldman, Mario F.

    2017-01-01

    ABSTRACT The ability to detect and measure danger from an environmental signal is paramount for bacteria to respond accordingly, deploying strategies that halt or counteract potential cellular injury and maximize survival chances. Type VI secretion systems (T6SSs) are complex bacterial contractile nanomachines able to target toxic effectors into neighboring bacteria competing for the same colonization niche. Previous studies support the concept that either T6SSs are constitutively active or they fire effectors in response to various stimuli, such as high bacterial density, cell-cell contact, nutrient depletion, or components from dead sibling cells. For Serratia marcescens, it has been proposed that its T6SS is stochastically expressed, with no distinction between harmless or aggressive competitors. In contrast, we demonstrate that the Rcs regulatory system is responsible for finely tuning Serratia T6SS expression levels, behaving as a transcriptional rheostat. When confronted with harmless bacteria, basal T6SS expression levels suffice for Serratia to eliminate the competitor. A moderate T6SS upregulation is triggered when, according to the aggressor-prey ratio, an unbalanced interplay between homologous and heterologous effectors and immunity proteins takes place. Higher T6SS expression levels are achieved when Serratia is challenged by a contender like Acinetobacter, which indiscriminately fires heterologous effectors able to exert lethal cellular harm, threatening the survival of the Serratia population. We also demonstrate that Serratia’s RcsB-dependent T6SS regulatory mechanism responds not to general stress signals but to the action of specific effectors from competitors, displaying an exquisite strategy to weigh risks and keep the balance between energy expenditure and fitness costs. PMID:28830939

  15. Inhibition of quorum sensing in gram-negative bacteria by alkylamine-modified cyclodextrins.

    PubMed

    Morohoshi, Tomohiro; Tokita, Kazuho; Ito, Satoshi; Saito, Yuki; Maeda, Saki; Kato, Norihiro; Ikeda, Tsukasa

    2013-08-01

    N-Acylhomoserine lactones (AHLs) are used as quorum-sensing (QS) signals by gram-negative bacteria. We have reported that the cyclic oligosaccharides known as cyclodextrins (CDs) form inclusion complexes with AHLs and disrupt QS signaling. In this study, a series of CD derivatives were designed and synthesized to improve the QS inhibitory activity over that of native CDs. The production of the red pigment prodigiosin by Serratia marcescens AS-1, which is regulated by AHL-mediated QS, was drastically decreased by adding 10 mg/ml 6-alkylacylamino-β-CD with an alkyl chain ranging from C7 to C12. An improvement in the QS inhibitory activity was also observed for 6-alkylamino-α- or γ-CDs and 2-alkylamino-CDs. Furthermore, 6,6'-dioctylamino-β-CD, which contains two octylamino groups, exhibited greater inhibitory activity than 6-monooctylamino-β-CD. The synthesized CD derivatives also had strong inhibitory effects on QS by other gram-negative bacteria, including Chromobacterium violaceum and Pseudomonas aeruginosa. The synthetic alkylamine-modified CD derivatives had higher equilibrium binding constants for binding with AHL than the native CDs did, consistent with the improved QS inhibition. ¹H NMR measurements suggested that the alkyl side chains of 6-alkylacylamino-β-CDs with alkyl chains up to 6 carbon atoms long could form self-inclusion complexes with the CD unit. Copyright © 2013 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  16. Spaceflight and Simulated Microgravity Increases Virulence of the Known Bacterial Pathogen S. Marcescens

    NASA Technical Reports Server (NTRS)

    Clemens-Grisham, Rachel Andrea; Bhattacharya, Sharmila; Wade, William

    2016-01-01

    After spaceflight, the number of immune cells is reduced in humans. In other research models, including Drosophila, not only is there a reduction in the number of plasmatocytes, but expression of immune-related genes is also changed after spaceflight. These observations suggest that the immune system is compromised after exposure to microgravity. It has also been reported that there is a change in virulence of some bacterial pathogens after spaceflight. We recently observed that samples of gram-negative S. marcescens retrieved from spaceflight is more virulent than ground controls, as determined by reduced survival and increased bacterial growth in the host. We were able to repeat this finding of increased virulence after exposure to simulated microgravity using the rotating wall vessel, a ground based analog to microgravity. With the ground and spaceflight samples, we looked at involvement of the Toll and Imd pathways in the Drosophila host in fighting infection by ground and spaceflight samples. We observed that Imd-pathway mutants were more susceptible to infection by the ground bacterial samples, which aligns with the known role of this pathway in fighting infections by gram-negative bacteria. When the Imd-pathway mutants were infected with the spaceflight sample, however, they exhibited the same susceptibility as seen with the ground control bacteria. Interestingly, all mutant flies show the same susceptibility to the spaceflight bacterial sample as do wild type flies. This suggests that neither humoral immunity pathway is effectively able to counter the increased pathogenicity of the space-flown S. marcescens bacteria.

  17. An unusual case of acute parotitis in a young adult.

    PubMed

    Sehic, Azra; Haenig, Caitlin; Spear, Francis

    2017-08-01

    Acute bacterial parotitis is uncommon in young adults. Infection with Serratia marcescens is even rarer and usually found in hospitalized patients. This case report focuses on a young woman with acute bacterial parotitis caused by S. marcescens that required a longer-than-normal course of antibiotics.

  18. Mossambicus tilapia (Oreochromis mossambicus) collected from water bodies impacted by urban waste carries extended-spectrum beta-lactamases and integron-bearing gut bacteria.

    PubMed

    Marathe, Nachiket P; Gaikwad, Swapnil S; Vaishampayan, Ankita A; Rasane, Mandar H; Shouche, Yogesh S; Gade, Wasudev N

    2016-09-01

    Oreochromis mossambicus (Peters 1852) (Tilapia) is one of the most consumed fish globally. Tilapia thrives well in environments polluted by urban waste, which invariably contain antibiotic-resistant bacteria and antibiotic resistance genes (ARGs). Thus, Tilapia surviving in such polluted environments may serve as a potential source for dissemination of ARGs. To investigate this, we isolated bacterial strains from gut of Tilapia found in polluted rivers and lakes near Pune, India, and studied the prevalence of resistance genes by molecular methods. A total of 91 bacterial strains were obtained, which include fish pathogens and human pathogens such as Aeromonas hydrophila, Klebsiella pneumoniae, E. coli, Serratia marcescens, Enterobacter spp. and Shigella spp. Overall the prevalence of class 1 integrons, class 2 integrons, extended-spectrum betalactamases (ESBLs) blaCTX-M, blaSHV and aac(6')-Ib-cr gene was 38 percent, 24 percent, 38 percent, 31 percent and 31 percent respectively. Forty-two percent of the Enterobacteriaceae strains carried blaCTX-M gene, which is a common ESBL gene in clinics. The study demonstrates that tilapia found in the polluted waters can serve as reservoirs and an alternative route for human exposure to clinically important ARG-carrying bacteria. The consumption and handling of these fish may pose a potential health risk.

  19. QM/MM free-energy simulations of reaction in Serratia marcescens Chitinase B reveal the protonation state of Asp142 and the critical role of Tyr214.

    PubMed

    Jitonnom, Jitrayut; Limb, Michael A L; Mulholland, Adrian J

    2014-05-08

    Serratia marcescens Chitinase B (ChiB), belonging to the glycosidase family 18 (GH18), catalyzes the hydrolysis of β-1,4-glycosidic bond, with retention of configuration, via an unusual substrate-assisted mechanism, in which the substrate itself acts as an intramolecular nucleophile. Here, both elementary steps (glycosylation and deglycosylation) of the ChiB-catalyzed reaction are investigated by means of combined quantum mechanics/molecular mechanics (QM/MM) umbrella sampling molecular dynamics (MD) simulations at the SCC-DFTB/CHARMM22 level of theory. We examine the influence of the Asp142 protonation state on the reaction and the role that this residue performs in the reaction. Our simulations show that reaction with a neutral Asp142 is preferred and demonstrate that this residue provides electrostatic stabilization of the oxazolinium ion intermediate formed in the reaction. Insight into the conformational itinerary ((1,4)B↔(4)H5↔(4)C1) adopted by the substrate (bound in subsite -1) along the preferred reaction pathway is also provided by the simulations. The relative energies of the stationary points found along the reaction pathway calculated with SCC-DFTB and B3LYP were compared. The results suggest that SCC-DFTB is an accurate method for estimating the relative barriers for both steps of the reaction; however, it was found to overestimate the relative energy of an intermediate formed in the reaction when compared with the higher level of theory. Glycosylation is suggested to be a rate-determining step in the reaction with calculated overall reaction free-energy barrier of 20.5 kcal/mol, in a reasonable agreement with the 16.1 kcal/mol barrier derived from the experiment. The role of Tyr214 in catalysis was also investigated with the results, indicating that the residue plays a critical role in the deglycosylation step of the reaction. Simulations of the enzyme-product complex were also performed with an unbinding event suggested to have been observed

  20. Rapid Magnetic Nanobiosensor for the detection of Serratia marcescen

    NASA Astrophysics Data System (ADS)

    Aljabali, Alaa A. A.; Hussein, Emad; Aljumaili, Omar; Zoubi, Mazhar Al; Altrad, Bahaa; Albatayneh, Khaled; Al-razaq, Mutaz A. Abd

    2018-02-01

    The development of rapid, sensitive, accurate and reliable bacterial detection methods are of keen interest to ensure food safety and hospital security. Therefore, the development of a fast, specific, low-cost and trusted methods is in high demand. Magnetic nanoparticles with their unique material properties have been utilized as a tool for pathogen detection. Here, we present a novel iron oxide nanoparticles labeled with specific targeting antibodies to improve specificity and extend the use of nanoparticles as nanosensors. The results indicated that antibody labeled iron oxide platform that binds specifically to Serriata marcescenst in a straightforward method is very specific and sensitive. The system is capable of rapid and specific detection of various clinically relevant bacterial species, with sensitivity down to single bacteria. The generic platform could be used to identify pathogens for a variety of applications rapidly.

  1. Bactericidal activity of cerumen.

    PubMed Central

    Chai, T J; Chai, T C

    1980-01-01

    Freshly collected cerumen (dry form) suspended at a concentration of 3% in glycerol-sodium bicarbonate buffer showed bactericidal activity against some strains of bacteria tested. This suspension reduced the viability of Haemophilus influenzae, Escherichia coli K-12, and Serratia marcescens by more than 99%, whereas the viability of two Pseudomonas aeruginosa isolates, E. coli K-1, Streptococcus, and two Staphylococcus aureus isolates of human origin was reduced by 30 to 80%. The results support the hypothesis that cerumen functions to kill certain foreign organisms which enter the ear canal. Images PMID:7447422

  2. Antimicrobial Resistance and Resistance Genes in Aerobic Bacteria Isolated from Pork at Slaughter.

    PubMed

    Li, Lili; Heidemann Olsen, Rikke; Ye, Lei; Yan, He; Nie, Qing; Meng, Hecheng; Shi, Lei

    2016-04-01

    The aim of this study was to investigate the phenotypic and genotypic antimicrobial resistance, integrons, and transferability of resistance markers in 243 aerobic bacteria recovered from pork at slaughter in the People's Republic of China. The organisms belonged to 22 genera of gram-negative bacteria (92.2%) and gram-positive bacteria (7.8%). High levels of resistance were detected to tetracycline, trimethoprim-sulfamethoxazole, and ampicillin (36.2 to 54.3%), and lower levels were detected to nitrofurantoin, cefotaxime, gentamicin, ciprofloxacin, and chloramphenicol (7.8 to 29.2%). Across species, genes conferring antimicrobial resistance were observed with the following frequencies: blaTEM, 40.7%; blaCMY-2, 15.2%; blaCTX-M, 11.5%; sul2, 27.2%; sul1, 14.4%; tet(A), 5.4%; tet(L), 5.4%; tet(M), 5.0%; tet(E), 3.7%; tet(C), 3.3%; tet(S), 2.5%; and tet(K), 0.8%. Various antimicrobial resistance genes were found in new carriers: blaTEM in Lactococcus garvieae, Myroides odoratimimus, Aeromonas hydrophila, Staphylococcus sciuri, Raoultella terrigena, Macrococcus caseolyticus, Acinetobacter ursingii, Sphingobacterium sp., and Oceanobacillus sp.; blaCMY-2 in Lactococcus lactis, Klebsiella oxytoca, Serratia marcescens, Acinetobacter baumannii, and Myroides phaeus; tet(L) in M. caseolyticus; sul1 in Vibrio cincinnatiensis; sul2 in Acinetobacter bereziniae, Acinetobacter johnsonii, and V. cincinnatiensis; and the class 1 integron and gene cassette aadA2 in V. cincinnatiensis. Approximately 6.6% of isolates contained class 1 integrons, and one isolate harbored class 2 integrons. Plasmid associated intI1 and androgen receptor- encoding genes were transferred into Escherichia coli J53 and E. coli DH5α by conjugation and transformation experiments, respectively. Our study highlights the importance of aerobic bacteria from pork as reservoirs for antimicrobial resistance genes and mobile genetic elements that can readily be transferred intra- and interspecies.

  3. Top-down effects of a lytic bacteriophage and protozoa on bacteria in aqueous and biofilm phases.

    PubMed

    Zhang, Ji; Ormälä-Odegrip, Anni-Maria; Mappes, Johanna; Laakso, Jouni

    2014-12-01

    Lytic bacteriophages and protozoan predators are the major causes of bacterial mortality in natural microbial communities, which also makes them potential candidates for biological control of bacterial pathogens. However, little is known about the relative impact of bacteriophages and protozoa on the dynamics of bacterial biomass in aqueous and biofilm phases. Here, we studied the temporal and spatial dynamics of bacterial biomass in a microcosm experiment where opportunistic pathogenic bacteria Serratia marcescens was exposed to particle-feeding ciliates, surface-feeding amoebas, and lytic bacteriophages for 8 weeks, ca. 1300 generations. We found that ciliates were the most efficient enemy type in reducing bacterial biomass in the open water, but least efficient in reducing the biofilm biomass. Biofilm was rather resistant against bacterivores, but amoebae had a significant long-term negative effect on bacterial biomass both in the open-water phase and biofilm. Bacteriophages had only a minor long-term effect on bacterial biomass in open-water and biofilm phases. However, separate short-term experiments with the ancestral bacteriophages and bacteria revealed that bacteriophages crash the bacterial biomass dramatically in the open-water phase within the first 24 h. Thereafter, the bacteria evolve phage-resistance that largely prevents top-down effects. The combination of all three enemy types was most effective in reducing biofilm biomass, whereas in the open-water phase the ciliates dominated the trophic effects. Our results highlight the importance of enemy feeding mode on determining the spatial distribution and abundance of bacterial biomass. Moreover, the enemy type can be crucially important predictor of whether the rapid defense evolution can significantly affect top-down regulation of bacteria.

  4. Evolution of bacterial life-history traits is sensitive to community structure.

    PubMed

    Ketola, Tarmo; Mikonranta, Lauri; Mappes, Johanna

    2016-06-01

    Very few studies have experimentally assessed the evolutionary effects of species interactions within the same trophic level. Here we show that when Serratia marcescens evolve in multispecies communities, their growth rate exceeds the growth rate of the bacteria that evolved alone, whereas the biomass yield gets lower. In addition to the community effects per se, we found that few species in the communities caused strong effects on S. marcescens evolution. The results indicate that evolutionary responses (of a focal species) are different in communities, compared to species evolving alone. Moreover, selection can lead to very different outcomes depending on the community structure. Such context dependencies cast doubt on our ability to predict the course of evolution in the wild, where species often inhabit very different kinds of communities. © 2016 The Author(s). Evolution © 2016 The Society for the Study of Evolution.

  5. Influence of volatile organic compounds emitted by Pseudomonas and Serratia strains on Agrobacterium tumefaciens biofilms.

    PubMed

    Plyuta, Vladimir; Lipasova, Valentina; Popova, Alexandra; Koksharova, Olga; Kuznetsov, Alexander; Szegedi, Erno; Chernin, Leonid; Khmel, Inessa

    2016-07-01

    The ability to form biofilms plays an important role in bacteria-host interactions, including plant pathogenicity. In this work, we investigated the action of volatile organic compounds (VOCs) produced by rhizospheric strains of Pseudomonas chlororaphis 449, Pseudomonas fluorescens B-4117, Serratia plymuthica IC1270, as well as Serratia proteamaculans strain 94, isolated from spoiled meat, on biofilms formation by three strains of Agrobacterium tumefaciens which are causative agents of crown-gall disease in a wide range of plants. In dual culture assays, the pool of volatiles emitted by the tested Pseudomonas and Serratia strains suppressed the formation of biofilms of A. tumefaciens strains grown on polycarbonate membrane filters and killed Agrobacterium cells in mature biofilms. The individual VOCs produced by the tested Pseudomonas strains, that is, ketones (2-nonanone, 2-heptanone, 2-undecanone), and dimethyl disulfide (DMDS) produced by Serratia strains, were shown to kill A. tumefaciens cells in mature biofilms and suppress their formation. The data obtained in this study suggest an additional potential of some ketones and DMDS as protectors of plants against A. tumefaciens strains, whose virulence is associated with the formation of biofilms on the infected plants. © 2016 APMIS. Published by John Wiley & Sons Ltd.

  6. Microbial contamination of water-soaked cotton gauze and its cause.

    PubMed

    Oie, S; Yoshida, H; Kamiya, A

    2001-01-01

    Seven in-use cotton gauze samples and three cotton balls soaked in sterile distilled water in canisters were investigated 7 days after they were prepared in hospital. All samples were contaminated with bacteria including 10(6) to 10(7) colony forming units/ml of Pseudomonas aeruginosa. In vitro viability tests using cotton gauze and cotton balls soaked in sterile distilled water revealed rapid proliferation of P. aeruginosa, Serratia marcescens and Candida albicans. Since the cotton gauze and the cotton balls were soaked in water containing nutrients, such as protein and glucose, these materials may be readily contaminated with bacteria including P. aeruginosa. Thus, when using cotton gauze and cotton balls containing water, microbial contamination should be expected.

  7. RAPID IDENTIFICATION OF MICROORGANISMS BY CONTINUOUS PARTICLE ELECTROPHORESIS.

    DTIC Science & Technology

    MICROORGANISMS, IDENTIFICATION), (*ELECTROPHORESIS, MICROORGANISMS), MOBILITY, PH FACTOR, OPTICAL SCANNING, ESCHERICHIA COLI, SHIGELLA FLEXNERI, BACILLUS CEREUS, SERRATIA MARCESCENS , BACILLUS SUBTILIS

  8. Complete genome sequence of the rapeseed plant-growth promoting Serratia plymuthica strain AS9

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neupane, Saraswoti; Hogberg, Nils; Alstrom, Sadhna

    2012-01-01

    Serratia plymuthica are plant-associated, plant beneficial species belonging to the family Enterobacteriaceae. The members of the genus Serratia are ubiquitous in nature and their life style varies from endophytic to free-living. S. plymuthica AS9 is of special interest for its ability to inhibit fungal pathogens of rapeseed and to promote plant growth. The genome of S. plymuthica AS9 comprises a 5,442,880 bp long circular chromosome that consists of 4,952 protein-coding genes, 87 tRNA genes and 7 rRNA operons. This genome is part of the project entitled Genomics of four rapeseed plant growth promoting bacteria with antagonistic effect on plant pathogensmore » awarded through the 2010 DOE-JGI Community Sequencing Program (CSP2010).« less

  9. Resource Availability and Competition Shape the Evolution of Survival and Growth Ability in a Bacterial Community

    PubMed Central

    Pekkonen, Minna; Ketola, Tarmo; Laakso, Jouni T.

    2013-01-01

    Resource availability is one of the main factors determining the ecological dynamics of populations or species. Fluctuations in resource availability can increase or decrease the intensity of resource competition. Resource availability and competition can also cause evolutionary changes in life-history traits. We studied how community structure and resource fluctuations affect the evolution of fitness related traits using a two-species bacterial model system. Replicated populations of Serratia marcescens (copiotroph) and Novosophingobium capsulatum (oligotroph) were reared alone or together in environments with intergenerational, pulsed resource renewal. The comparison of ancestral and evolved bacterial clones with 1 or 13 weeks history in pulsed resource environment revealed species-specific changes in life-history traits. Co-evolution with S. marcescens caused N. capsulatum clones to grow faster. The evolved S. marcescens clones had higher survival and slower growth rate then their ancestor. The survival increased in all treatments after one week, and thereafter continued to increase only in the S. marcescens monocultures that experienced large resource pulses. Though adaptive radiation is often reported in evolution studies with bacteria, clonal variation increased only in N. capsulatum growth rate. Our results suggest that S. marcescens adapted to the resource renewal cycle whereas N. capsulatum was more affected by the interspecific competition. Our results exemplify species-specific evolutionary response to both competition and environmental variation. PMID:24098791

  10. Resource availability and competition shape the evolution of survival and growth ability in a bacterial community.

    PubMed

    Pekkonen, Minna; Ketola, Tarmo; Laakso, Jouni T

    2013-01-01

    Resource availability is one of the main factors determining the ecological dynamics of populations or species. Fluctuations in resource availability can increase or decrease the intensity of resource competition. Resource availability and competition can also cause evolutionary changes in life-history traits. We studied how community structure and resource fluctuations affect the evolution of fitness related traits using a two-species bacterial model system. Replicated populations of Serratia marcescens (copiotroph) and Novosphingobium capsulatum (oligotroph) were reared alone or together in environments with intergenerational, pulsed resource renewal. The comparison of ancestral and evolved bacterial clones with 1 or 13 weeks history in pulsed resource environment revealed species-specific changes in life-history traits. Co-evolution with S. marcescens caused N. capsulatum clones to grow faster. The evolved S. marcescens clones had higher survival and slower growth rate then their ancestor. The survival increased in all treatments after one week, and thereafter continued to increase only in the S. marcescens monocultures that experienced large resource pulses. Though adaptive radiation is often reported in evolution studies with bacteria, clonal variation increased only in N. capsulatum growth rate. Our results suggest that S. marcescens adapted to the resource renewal cycle whereas N. capsulatum was more affected by the interspecific competition. Our results exemplify species-specific evolutionary response to both competition and environmental variation.

  11. STRUCTURAL FEATURES OF LIPID A PREPARATIONS ISOLATED FROM ESCHERICHIA COLI AND SHIGELLA FLEXNERI,

    DTIC Science & Technology

    to 4 in contrast to those of S . marcescens ; the configurations are probably beta. Possible structures for both lipid A’s are proposed. (Author)...An earlier report stated that the D-glucosamine units in the lipid A of Serratia marcescens were linked I to 6 and were probably in the beta

  12. A fibrinolytic, alkaline and thermostable metalloprotease from the newly isolated Serratia sp RSPB11.

    PubMed

    Lakshmi Bhargavi, P; Prakasham, R S

    2013-10-01

    This study shows the purification and characterization of metalloprotease (serralysin) with fibrin and fibrinogenolytic property, from the newly isolated Serratia marcescens RSPB11. This protein macro molecule was more stable over a wide range of pH (6-10) and the temperatures up to 60 °C. It showed optimum enzyme activity at pH 9.0 and at a temperature of 37 °C. Inhibitory analysis revealed that this enzyme is metalloprotease and its enzyme activity could be regained by the addition of Co(2+), Cu(2+), Fe(2+), Mg(2+)and Zn(2+) ions after chelation of ions with EDTA. This enzyme showed the Michaelis-Menten's constant Km (1.261 mg/ml) for its substrate, casein and the observed maximum attainable velocity was Vmax (24,842 U/min). The purified enzyme showed an apparent molecular mass of approximately 50 kDa in SDS-PAGE. The results also suggested that this serralysin is having potential application thrombolytic therapy. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Characterization of Batrachochytrium dendrobatidis Inhibiting Bacteria from Amphibian Populations in Costa Rica

    PubMed Central

    Madison, Joseph D.; Berg, Elizabeth A.; Abarca, Juan G.; Whitfield, Steven M.; Gorbatenko, Oxana; Pinto, Adrian; Kerby, Jacob L.

    2017-01-01

    Global amphibian declines and extinction events are occurring at an unprecedented rate. While several factors are responsible for declines and extinction, the fungal pathogen Batrachochytrium dendrobatidis (Bd) has been cited as a major constituent in these events. While the effects of this chytrid fungus have been shown to cause broad scale population declines and extinctions, certain individuals and relict populations have shown resistance. This resistance has been attributed in part to the cutaneous bacterial microbiome. Here, we present the first study characterizing anti-Bd bacterial isolates from amphibian populations in Costa Rica, including the characterization of two strains of Serratia marcescens presenting strong anti-Bd activity. Transcriptome sequencing was utilized for delineation of shifts in gene expression of the two previously uncharacterized strains of S. marcescens grown in three different treatments comprising Bd, heat-killed Bd, and a no Bd control. These results revealed up- and down-regulation of key genes associated with different metabolic and regulatory pathways. This information will be valuable in continued efforts to develop a bacterial-based approach for amphibian protection as well as providing direction for continued mechanistic inquiries of the bacterial anti-Bd response. PMID:28293222

  14. Bacteriome and Mycobiome Interactions Underscore Microbial Dysbiosis in Familial Crohn's Disease.

    PubMed

    Hoarau, G; Mukherjee, P K; Gower-Rousseau, C; Hager, C; Chandra, J; Retuerto, M A; Neut, C; Vermeire, S; Clemente, J; Colombel, J F; Fujioka, H; Poulain, D; Sendid, B; Ghannoum, M A

    2016-09-20

    Crohn's disease (CD) results from a complex interplay between host genetic factors and endogenous microbial communities. In the current study, we used Ion Torrent sequencing to characterize the gut bacterial microbiota (bacteriome) and fungal community (mycobiome) in patients with CD and their nondiseased first-degree relatives (NCDR) in 9 familial clusters living in northern France-Belgium and in healthy individuals from 4 families living in the same area (non-CD unrelated [NCDU]). Principal component, diversity, and abundance analyses were conducted, and CD-associated inter- and intrakingdom microbial correlations were determined. Significant microbial interactions were identified and validated using single- and mixed-species biofilms. CD and NCDR groups clustered together in the mycobiome but not in the bacteriome. Microbiotas of familial (CD and NCDR) samples were distinct from those of nonfamilial (NCDU) samples. The abundance of Serratia marcescens and Escherichia coli was elevated in CD patients, while that of beneficial bacteria was decreased. The abundance of the fungus Candida tropicalis was significantly higher in CD than in NCDR (P = 0.003) samples and positively correlated with levels of anti-Saccharomyces cerevisiae antibodies (ASCA). The abundance of C. tropicalis was positively correlated with S. marcescens and E. coli, suggesting that these organisms interact in the gut. The mass and thickness of triple-species (C. tropicalis plus S. marcescens plus E. coli) biofilm were significantly greater than those of single- and double-species biofilms. C. tropicalis biofilms comprised blastospores, while double- and triple-species biofilms were enriched in hyphae. S. marcescens used fimbriae to coaggregate or attach with C. tropicalis/E. coli, while E. coli was closely apposed with C. tropicalis Specific interkingdom microbial interactions may be key determinants in CD. Here, we characterized the gut bacterial microbiota (bacteriome) and fungal community

  15. Extraction of extracellular lipids from chemoautotrophic bacteria Serratia sp. ISTD04 for production of biodiesel.

    PubMed

    Bharti, Randhir K; Srivastava, Shaili; Thakur, Indu Shekhar

    2014-08-01

    A CO2 sequestering bacterial strain, Serratia sp. ISTD04, that produces a significant amount of extracellular lipids was isolated from marble mine rocks. (14)C labeling analysis revealed that the rate of assimilation of CO2 by the strain is 0.756×10(-9)μmolCO2fixedcell(-1)h(-1). It was found to produce 466mg/l of extracellular lipid which was characterized using (1)H NMR. After transesterification of lipids, the total saturated and unsaturated FAME was found to be 51% and 49% respectively. The major FAME contained in the biodiesel were palmitic acid methyl ester (C16:0), oleic acid methyl ester (C18:1) and 10-nonadecenoic acid methyl ester (C19:1). Biodiesel produced by Serratia sp. ISTD04 is balanced in terms of FAME composition of good quality. It also contained higher proportion of oleic acid (35%) which makes it suitable for utilization in existing engines. Thus, the strain can be harnessed commercially to sequester CO2 into biodiesel. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Production of Cell-Cell Signaling Molecules by Bacteria Isolated From Human Chronic Wounds

    PubMed Central

    Rickard, Alexander H.; Colacino, Katelyn R.; Manton, Katelynn M.; Morton, Robert I.; Pulcini, Elinor; Pfeil, Joanne; Rhoads, Daniel; Wolcott, Randall D.; James, Garth

    2009-01-01

    AIM To (i) identify chronic wound bacteria and to test their ability to produce acyl-homoserine-lactones (AHLs) and autoinducer-2 (AI-2) cell-cell signaling molecules and (ii) determine if chronic wound debridement samples might contain these molecules. METHODS AND RESULTS Partial 16S rRNA gene sequencing revealed the identity of 46 chronic wound strains as belonging to nine genera. Using bio-reporter assays, 69.6% of the chronic wound strains were inferred to produce AI-2 while 19.6% were inferred to produced AHL molecules. At-least one strain from every genus, except those belonging to the genera Acinetobacter and Pseudomonas, were indicated to produce AI-2. Production of AI-2 in batch-cultures was growth-phase-dependent. Cross-feeding assays demonstrated that AHLs were produced by Acinetobacter spp., Pseudomonas aeruginosa and Serratia marcescens. Independent from studies of the bacterial species isolated from wounds, AHL and/or AI-2 signaling molecules were detected in 21 of 30 debridement samples of unknown microbial composition. CONCLUSION Chronic wound bacteria produce cell-cell signaling molecules. Resident species generally produce AI-2 molecules and aggressive transient species associated with chronic wounds typically produce AHLs. Both these classes of cell-cell signals are present in human chronic wounds. SIGNIFICANCE AND IMPACT OF STUDY Inter-bacterial cell-cell signaling may be an important factor influencing wound development and the presence of AHLs and AI-2 could be used as a predictor of wound severity. Manipulation of cell −cell signaling may provide a novel strategy for improving wound healing. PMID:19840177

  17. Culturable Aerobic and Facultative Anaerobic Intestinal Bacterial Flora of Black Cobra (Naja naja karachiensis) in Southern Pakistan

    PubMed Central

    Iqbal, Junaid; Sagheer, Mehwish; Tabassum, Nazneen; Siddiqui, Ruqaiyyah; Khan, Naveed Ahmed

    2014-01-01

    Using morphological analysis and biochemical testing, here for the first time, we determined the culturable gut bacterial flora (aerobes and facultative anaerobes) in the venomous Black Cobra (Naja naja karachiensis) from South Asia. The findings revealed that these snakes inhabit potentially pathogenic bacteria including Serratia marcescens, Pseudomonas aeruginosa, Shewanella putrefaciens, Aeromonas hydrophila, Salmonella sp., Moraxella sp., Bacillus sp., Ochrobactrum anthropi, and Providencia rettgeri. These findings are of concern, as injury from snake bite can result in wound infections and tissue necrosis leading to sepsis/necrotizing fasciitis and/or expose consumers of snake meat/medicine in the community to infections. PMID:25002979

  18. Complete genome sequence of Serratia plymuthica strain AS12

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neupane, Saraswoti; Finlay, Roger D.; Alstrom, Sadhna

    2012-01-01

    A plant associated member of the family Enterobacteriaceae, Serratia plymuthica strain AS12 was isolated from rapeseed roots. It is of scientific interest due to its plant growth promoting and plant pathogen inhibiting ability. The genome of S. plymuthica AS12 comprises a 5,443,009 bp long circular chromosome, which consists of 4,952 protein-coding genes, 87 tRNA genes and 7 rRNA operons. This genome was sequenced within the 2010 DOE-JGI Community Sequencing Program (CSP2010) as part of the project entitled 'Genomics of four rapeseed plant growth promoting bacteria with antagonistic effect on plant pathogens'.

  19. Proteomic analysis of carbon concentrating chemolithotrophic bacteria Serratia sp. for sequestration of carbon dioxide.

    PubMed

    Bharti, Randhir K; Srivastava, Shaili; Thakur, Indu Shekhar

    2014-01-01

    A chemolithotrophic bacterium enriched in the chemostat in presence of sodium bicarbonate as sole carbon source was identified as Serratia sp. by 16S rRNA sequencing. Carbon dioxide sequestering capacity of bacterium was detected by carbonic anhydrase enzyme and ribulose-1, 5- bisphosphate carboxylase/oxygenase (RuBisCO). The purified carbonic anhydrase showed molecular weight of 29 kDa. Molecular weight of RuBisCO was 550 kDa as determined by fast protein liquid chromatography (FPLC), however, sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) showed presence of two subunits whose molecular weights were 56 and 14 kDa. The Western blot analysis of the crude protein and purified sample cross reacted with RuBisCO large-subunit polypeptides antibodies showed strong band pattern at molecular weight around 56 kDa regions. Whole cell soluble proteins of Serratia sp. grown under autotrophic and heterotrophic conditions were resolved by two-dimensional gel electrophoresis and MALDI-TOF/MS for differential expression of proteins. In proteomic analysis of 63 protein spots, 48 spots were significantly up-regulated in the autotrophically grown cells; seven enzymes showed its utilization in autotrophic carbon fixation pathways and other metabolic activities of bacterium including lipid metabolisms indicated sequestration potency of carbon dioxide and production of biomaterials.

  20. Proteomic Analysis of Carbon Concentrating Chemolithotrophic Bacteria Serratia sp. for Sequestration of Carbon Dioxide

    PubMed Central

    Bharti, Randhir K.; Srivastava, Shaili; Thakur, Indu Shekhar

    2014-01-01

    A chemolithotrophic bacterium enriched in the chemostat in presence of sodium bicarbonate as sole carbon source was identified as Serratia sp. by 16S rRNA sequencing. Carbon dioxide sequestering capacity of bacterium was detected by carbonic anhydrase enzyme and ribulose-1, 5- bisphosphate carboxylase/oxygenase (RuBisCO). The purified carbonic anhydrase showed molecular weight of 29 kDa. Molecular weight of RuBisCO was 550 kDa as determined by fast protein liquid chromatography (FPLC), however, sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) showed presence of two subunits whose molecular weights were 56 and 14 kDa. The Western blot analysis of the crude protein and purified sample cross reacted with RuBisCO large-subunit polypeptides antibodies showed strong band pattern at molecular weight around 56 kDa regions. Whole cell soluble proteins of Serratia sp. grown under autotrophic and heterotrophic conditions were resolved by two-dimensional gel electrophoresis and MALDI-TOF/MS for differential expression of proteins. In proteomic analysis of 63 protein spots, 48 spots were significantly up-regulated in the autotrophically grown cells; seven enzymes showed its utilization in autotrophic carbon fixation pathways and other metabolic activities of bacterium including lipid metabolisms indicated sequestration potency of carbon dioxide and production of biomaterials. PMID:24619032

  1. Production of novel cell-associated tannase from newly isolated Serratia ficaria DTC.

    PubMed

    Belur, Prasanna D; Gopal, Mugeraya; Nirmala, K R; Basavaraj, N

    2010-04-01

    Five strains of tannic acid degrading bacteria were isolated and identified by phenotypic characterization. All the five isolates showed cell-associated activity, where as only three showed extracellular activity. Serratia ficaria DTC showing highest cell-associated activity (0.29 U/l) was selected for further shake flask studies. Tannase synthesis was growth associated and reached the peak in the late stationary phase of growth. Organic nitrogen sources enhanced the tannase production. Peak tannase production of 0.56 U/l was recorded in the medium having the initial pH of 6. The pH and temperature optima of the enzyme were found to be 8.9 and 35 degrees , respectively. This is the first report of cell-associated activity in case of bacterial tannase. Cell-associated tannase of Serratia ficaria DTC could be industrially important from the perspective of its activity at broad temperature and pH range, its unusually high activity at pH 8.9.

  2. [Post-marketing surveillance of antibacterial activities of cefozopran against various clinical isolates--II. Gram-negative bacteria].

    PubMed

    Igari, Jun; Oguri, Toyoko; Hiramatsu, Nobuyoshi; Akiyama, Kazumitsu; Koyama, Tsuneo

    2003-10-01

    As a post-marketing surveillance, the in vitro antibacterial activities of cefozopran (CZOP), an agent of cephems, against various clinical isolates were yearly evaluated and compared with those of other cephems, oxacephems, carbapenems, monobactams, and penicillins. Changes in CZOP susceptibility among bacteria were also evaluated with the bacterial resistance ratio calculated from the breakpoint MIC. Twenty-five species (4,154 strains) of Gram-negative bacteria were isolated from the clinical materials annually collected from 1996 to 2001, and consisted of Moraxella (Branhamella) catarrhalis, Haemophilus influenzae, Escherichia coli, Klebsiella pneumoniae, Klebsiella oxytoca, Enterobacter cloacae, Enterobacter aerogenes, Serratia marcescens, Serratia liquefaciens, Citrobacter freundii, Citrobacter koseri, Proteus mirabilis, Proteus vulgaris, Morganella morganii, Providencia spp., Pseudomonas aeruginosa, Pseudomonas fluorescens, Pseudomonas putida, Acinetobacter baumannii, Acinetobacter Iwoffii, Burkholderia cepacia, Stenotrophomonas maltophilia, Bacteroides fragilis group, and Prevotella/Porphyromonas. CZOP preserved its antibacterial activity against M. (B.) catarrhalis (MIC90: 4 micrograms/mL) and showed comparable activity to carbapenems against H. influenzae (MIC90: 1 microgram/mL). The antibacterial activity of CZOP against E. coli was preferable (MIC90: 0.125 microgram/mL) and comparable to those of cefpirome (CPR), cefepime (CFPM), and imipenem (IPM). The MIC90 of CZOP against K. pneumoniae and K. oxytoca was 1 and 0.25 microgram/mL, respectively. The MIC90 of CZOP against E. cloacae increased during 6 years (32 to 128 micrograms/mL). The antibacterial activity of CZOP against E. aerogenes was preferable (MIC90: 1 microgram/mL). The antibacterial activities of CZOP against S. marcescens and S. liquefaciens were relatively potent (MIC90: 0.5 and 0.25 microgram/mL) and comparable to those of CPR, CFPM, and carumonam. CZOP preserved comparable antibacterial

  3. Serratia aquatilis sp. nov., isolated from drinking water systems.

    PubMed

    Kämpfer, Peter; Glaeser, Stefanie P

    2016-01-01

    A cream-white-pigmented, oxidase-negative bacterium (strain 2015-2462-01T), isolated from a drinking water system, was investigated in detail to determine its taxonomic position. Cells of the isolate were rod-shaped and stained Gram-negative. A comparison of the 16S rRNA gene sequence of strain 2015-2462-01T with sequences of the type strains of closely related species of the genus Serratia revealed highest similarity to Serratia fonticola (98.4 %), Serratia proteamaculans (97.8 %), Serratia liquefaciens and Serratia grimesii (both 97.7 %). 16S rRNA gene sequence similarities to all other Serratia species were below 97.4 %. Multilocus sequence analysis (MLSA) on the basis of concatenated partial gyrB, rpoB, infB and atpD gene sequences showed a clear distinction of strain 2015-2462-01T from the type strains of the closest related Serratia species. The fatty acid profile of the strain consisted of C16 : 1 ω7c, C16 : 0; C14 : 0 and C14 : 0 3-OH/iso-C16 : 1 I as major components. DNA-DNA hybridizations between 2015-2462-01T and S. fonticola ATCC 29844T resulted in a relatedness value of 27 % (reciprocal 20 %). This DNA-DNA hybridization result in combination with the MLSA results and the differential biochemical properties indicated that strain 2015-2462-01T represents a novel species of the genus Serratia, for which the name Serratia aquatilis sp. nov. is proposed. The type strain is 2015-2462-01T ( = LMG 29119T = CCM 8626T).

  4. Analysis of the genomic sequences and metabolites of Serratia surfactantfaciens sp. nov. YD25T that simultaneously produces prodigiosin and serrawettin W2.

    PubMed

    Su, Chun; Xiang, Zhaoju; Liu, Yibo; Zhao, Xinqing; Sun, Yan; Li, Zhi; Li, Lijun; Chang, Fan; Chen, Tianjun; Wen, Xinrong; Zhou, Yidan; Zhao, Furong

    2016-11-03

    Gram-negative bacteria of the genus Serratia are potential producers of many useful secondary metabolites, such as prodigiosin and serrawettins, which have potential applications in environmental bioremediation or in the pharmaceutical industry. Several Serratia strains produce prodigiosin and serrawettin W1 as the main bioactive compounds, and the biosynthetic pathways are co-regulated by quorum sensing (QS). In contrast, the Serratia strain, which can simultaneously produce prodigiosin and serrawettin W2, has not been reported. This study focused on analyzing the genomic sequence of Serratia sp. strain YD25 T isolated from rhizosphere soil under continuously planted burley tobacco collected from Yongding, Fujian province, China, which is unique in producing both prodigiosin and serrawettin W2. A hybrid polyketide synthases (PKS)-non-ribosomal peptide synthetases (NRPS) gene cluster putatively involved in biosynthesis of antimicrobial serrawettin W2 was identified in the genome of YD25 T , and its biosynthesis pathway was proposed. We found potent antimicrobial activity of serrawettin W2 purified from YD25 T against various pathogenic bacteria and fungi as well as antitumor activity against Hela cells. Subsequently, comparative genomic analyses were performed among a total of 133 Serratia species. The prodigiosin biosynthesis gene cluster in YD25 T belongs to the type I pig cluster, which is the main form of pig-encoding genes existing in most of the pigmented Serratia species. In addition, a complete autoinducer-2 (AI-2) system (including luxS, lsrBACDEF, lsrGK, and lsrR) as a conserved bacterial operator is found in the genome of Serratia sp. strain YD25 T . Phylogenetic analysis based on concatenated Lsr and LuxS proteins revealed that YD25 T formed an independent branch and was clearly distant from the strains that solely produce either prodigiosin or serrawettin W2. The Fe (III) ion reduction assay confirmed that strain YD25 T could produce an AI-2 signal

  5. Molecular Characterization by Using Next-Generation Sequencing of Plasmids Containing blaNDM-7 in Enterobacteriaceae from Calgary, Canada.

    PubMed

    Chen, L; Peirano, G; Lynch, T; Chavda, K D; Gregson, D B; Church, D L; Conly, J; Kreiswirth, B N; Pitout, J D

    2015-12-07

    Enterobacteriaceae with blaNDM-7 are relatively uncommon and had previously been described in Europe, India, the United States, and Japan. This study describes the characteristics of Enterobacteriaceae (Klebsiella pneumoniae [n = 2], Escherichia coli [n = 2], Serratia marcescens [n = 1], and Enterobacter hormaechei [n = 1] isolates) with blaNDM-7 obtained from 4 patients from Calgary, Canada, from 2013 to 2014. The 46,161-bp IncX3 plasmids with blaNDM-7 are highly similar to other blaNDM-harboring IncX3 plasmids and, interestingly, showed identical structures within the different isolates. This finding may indicate horizontal transmission within our health region, or it may indicate contact with individuals from areas of endemicity within the hospital setting. Patients infected or colonized with bacteria containing blaNDM-7 IncX3 plasmids generate infection control challenges. Epidemiological and molecular studies are required to better understand the dynamics of transmission, the risk factors, and the reservoirs for bacteria harboring blaNDM-7. To the best of our knowledge, this is the first report of S. marcescens and E. hormaechei with blaNDM-7. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  6. Inhibitory and Toxic Effects of Volatiles Emitted by Strains of Pseudomonas and Serratia on Growth and Survival of Selected Microorganisms, Caenorhabditis elegans, and Drosophila melanogaster

    PubMed Central

    Popova, Alexandra A.; Koksharova, Olga A.; Lipasova, Valentina A.; Zaitseva, Julia V.; Katkova-Zhukotskaya, Olga A.; Eremina, Svetlana Iu.; Mironov, Alexander S.; Chernin, Leonid S.; Khmel, Inessa A.

    2014-01-01

    In previous research, volatile organic compounds (VOCs) emitted by various bacteria into the chemosphere were suggested to play a significant role in the antagonistic interactions between microorganisms occupying the same ecological niche and between bacteria and target eukaryotes. Moreover, a number of volatiles released by bacteria were reported to suppress quorum-sensing cell-to-cell communication in bacteria, and to stimulate plant growth. Here, volatiles produced by Pseudomonas and Serratia strains isolated mainly from the soil or rhizosphere exhibited bacteriostatic action on phytopathogenic Agrobacterium tumefaciens and fungi and demonstrated a killing effect on cyanobacteria, flies (Drosophila melanogaster), and nematodes (Caenorhabditis elegans). VOCs emitted by the rhizospheric Pseudomonas chlororaphis strain 449 and by Serratia proteamaculans strain 94 isolated from spoiled meat were identified using gas chromatography-mass spectrometry analysis, and the effects of the main headspace compounds—ketones (2-nonanone, 2-heptanone, 2-undecanone) and dimethyl disulfide—were inhibitory toward the tested microorganisms, nematodes, and flies. The data confirmed the role of bacterial volatiles as important compounds involved in interactions between organisms under natural ecological conditions. PMID:25006575

  7. Bacteria abundance and diversity of different life stages of Plutella xylostella (Lepidoptera: Plutellidae), revealed by bacteria culture-dependent and PCR-DGGE methods.

    PubMed

    Lin, Xiao-Li; Pan, Qin-Jian; Tian, Hong-Gang; Douglas, Angela E; Liu, Tong-Xian

    2015-03-01

    Microbial abundance and diversity of different life stages (fourth instar larvae, pupae and adults) of the diamondback moth, Plutella xylostella L., collected from field and reared in laboratory, were investigated using bacteria culture-dependent method and PCR-DGGE analysis based on the sequence of bacteria 16S rRNA V3 region gene. A large quantity of bacteria was found in all life stages of P. xylostella. Field population had higher quantity of bacteria than laboratory population, and larval gut had higher quantity than pupae and adults. Culturable bacteria differed in different life stages of P. xylostella. Twenty-five different bacterial strains were identified in total, among them 20 strains were presented in larval gut, only 8 strains in pupae and 14 strains in adults were detected. Firmicutes bacteria, Bacillus sp., were the most dominant species in every life stage. 15 distinct bands were obtained from DGGE electrophoresis gel. The sequences blasted in GenBank database showed these bacteria belonged to six different genera. Phylogenetic analysis showed the sequences of the bacteria belonged to the Actinobacteri, Proteobacteria and Firmicutes. Serratia sp. in Proteobacteria was the most abundant species in larval gut. In pupae, unculturable bacteria were the most dominant species, and unculturable bacteria and Serratia sp. were the most dominant species in adults. Our study suggested that a combination of molecular and traditional culturing methods can be effectively used to analyze and to determine the diversity of gut microflora. These known bacteria may play important roles in development of P. xylostella. © 2013 Institute of Zoology, Chinese Academy of Sciences.

  8. Efficient extracellular production of type I secretion pathway-dependent Pseudomonas fluorescens lipase in recombinant Escherichia coli by heterologous ABC protein exporters.

    PubMed

    Eom, Gyeong Tae; Lee, Seung Hwan; Oh, Young Hoon; Choi, Ji Eun; Park, Si Jae; Song, Jae Kwang

    2014-10-01

    Heterologous ABC protein exporters, the apparatus of type I secretion pathway in Gram-negative bacteria, were used for extracellular production of Pseudomonas fluorescens lipase (TliA) in recombinant Escherichia coli. The effect of the expression of different ABC protein exporter gene clusters (P. fluorescens tliDEF, Pseudomonas aeruginosa aprDEF, Erwinia chrysanthemi prtDEF, and Serratia marcescens lipBCD genes) was examined on the secretion of TliA at growth temperatures of 20, 25, 30 and 35 °C. TliA secretion in recombinant E. coli XL10-Gold varied depending upon type of ABC protein exporter and culture temperature. E. coli expressing S. marcescens lipBCD genes showed the highest secretion level of TliA (122.8 U ml(-1)) when cultured at 25 °C. Thus, optimized culture conditions for efficient extracellular production of lipase in recombinant E. coli can be designed by changing the type of ABC protein exporter and the growth temperature.

  9. Sanitary and bacteriological aspects of sewage treatment.

    PubMed

    Filipkowska, Zofia

    2003-01-01

    A study into the removal of contamination load and indicator bacteria was carried out in 1992-1996 in the mechanical, biological and chemical waste-water treatment plant WTP in Lezany, in the County of Reszel, in the Province of Warmia and Mazury in Poland. The results of chemical analyses found a high efficiency of removal of carbon compounds, COD (90%) and BOD (98%), in the process of purification of household sewage. In addition, a high effectiveness of total nitrogen, on average 71%, and unsatisfactory removal of ammonia nitrogen and phosphorus compounds were found. The results of microbiological analyses confirmed the high efficiency of removal of indicator bacteria in the process of sewage treatment from 94 to 97%. In the sewage after the final phase of purification in stabilization ponds, the following pathogenic bacteria were identified with the use of the EPL 21tests: Escherichia coli, Enterobacter agglomerans, Enterobacter aerogenes, Enterobacter cloacae, Enterobacter georgoriae, Citrobacter freundii, Klebsiella pnemoniae, Klebsiella oxytoca, Klebsiella ozaenae, Ervinia herbicola, Edwardsiella tarda, Serratia odoriefra, Serratia marcescens, Providencia alcalifaciens, Hafnia alvei, Yersina pestis, Yersina pseudotuberculosis, Yersinia fredericksenii, Salmonella spp., Shigella dysenteriae, Aeromons hydrophila, Pseudomonas aerulginosa. The obtained results show that although the sewage purification system is efficient and reduces the contamination load to the level required by the regulations (Ministry of Environmental Protection, Natural Resources and Forestry from 20 September 1991) and removes a great percentage of indicator bacteria, the purified sewage may be a source of pathogenic bacteria in inland waters.

  10. Ballast water as a vector of coral pathogens in the Gulf of Mexico: the case of the Cayo Arcas coral reef.

    PubMed

    Aguirre-Macedo, M Leopoldina; Vidal-Martinez, Victor M; Herrera-Silveira, Jorge A; Valdés-Lozano, David S; Herrera-Rodríguez, Miguel; Olvera-Novoa, Miguel A

    2008-09-01

    The discharge of nutrients, phytoplankton and pathogenic bacteria through ballast water may threaten the Cayo Arcas reef system. To assess this threat, the quality of ballast water and presence of coral reef pathogenic bacteria in 30 oil tankers loaded at the PEMEX Cayo Arcas crude oil terminal were determined. The water transported in the ships originated from coastal, oceanic or riverine regions. Statistical associations among quality parameters and bacteria were tested using redundancy analysis (RDA). In contrast with coastal or oceanic water, the riverine water had high concentrations of coliforms, including Vibrio cholerae 01 and, Serratia marcescens and Sphingomona spp., which are frequently associated with "white pox" and "white plague type II" coral diseases. There were also high nutrient concentrations and low water quality index values (WQI and TRIX). The presence of V. cholerae 01 highlights the need for testing ballast water coming from endemic regions into Mexican ports.

  11. Serratia oryzae sp. nov., isolated from rice stems.

    PubMed

    Zhang, Cai-Wen; Zhang, Jun; Zhao, Juan-Juan; Zhao, Xia; Zhao, Dong-Fang; Yin, Hua-Qun; Zhang, Xiao-Xia

    2017-08-01

    A novel endophytic bacterium, strain J11-6T, was isolated from rice stems. Its taxonomic position was investigated using a polyphasic approach. The novel strain was Gram-staining-negative, facultatively anaerobic, motile and rod-shaped. Although the results of phylogenetic analysis based on 16S rRNA gene sequences indicated that J11-6T represented a member of the genus Rahnella, multilocus sequence analysis (MLSA) on the basis of concatenated partial atpD, gyrB, rpoB and infB gene sequences showed a clear distinction of J11-6T from the type strains of species of the genus Rahnella but indicated that it lay within the clade of the genus Serratia. The phylogenetically closest species were Serratia fonticola and Serratia aquatilis on the basis of the results of the MLSA phylogenetic analysis. The predominant cellular fatty acids were C16 : 1ω7c (38.7 %) and C16 : 0 (25.0 %). The DNA G+C content was 53.2 mol%. The DNA-DNA relatedness was 17.4 % between J11-6T and Rahnella aquatilis CIP 78.65T, and 29.2 % between J11-6T and S. fonticola LMG 7882T which indicates that this strain represents a novel species of the genus Serratia. Characterization by genotypic and phenotypic analysis indicated that J11-6T (=ACCC 19934T=KCTC 52529T) represents a novel species of the genus Serratia, for which the name Serratia oryzae sp. nov. is proposed.

  12. The endophytic bacterium Serratia sp. PW7 degrades pyrene in wheat.

    PubMed

    Zhu, Xuezhu; Wang, Wanqing; Crowley, David E; Sun, Kai; Hao, Shupeng; Waigi, Michael Gatheru; Gao, Yanzheng

    2017-03-01

    This research was conducted to isolate polycyclic aromatic hydrocarbon-degrading (PAH-degrading) endophytic bacteria and investigate their potential in protecting plants against PAH contamination. Pyrene-degrading endophytic bacteria were isolated from plants grown in PAH-contaminated soil. Among these endophytic bacteria, strain PW7 (Serratia sp.) isolated from Plantago asiatica was selected to investigate the suppression of pyrene accumulation in Triticum aestivum L. In the in vitro tests, strain PW7 degraded 51.2% of the pyrene in the media within 14 days. The optimal biodegradation conditions were pH 7.0, 30 °C, and MS medium supplemented with additional glucose, maltose, sucrose, and peptones. In the in vivo tests, strain PW7 successfully colonized the roots and shoots of inoculated (E + ) wheat plants, and its colonization decreased pyrene accumulation and pyrene transportation from roots to shoots. Remarkably, the concentration of pyrene in shoots decreased much more than that in roots, suggesting that strain PW7 has the potential for protecting wheat against pyrene contamination and mitigating the threat of pyrene to human health via food consumption.

  13. The removal of bacteria by modified natural zeolites.

    PubMed

    Milán, Z; de Las Pozas, C; Cruz, M; Borja, R; Sánchez, E; Ilangovan, K; Espinosa, Y; Luna, B

    2001-01-01

    The removal effect of natural and modified zeolites containing different heavy metals (Ni2+, Zn2+, Fe3+ and Cu2+) on pure cultures of Escherichia coli and Staphylococcus aureus in a solid medium was evaluated in this work. These experiments were carried out in a continuous mode treating municipal wastewater. Faecal coliform species and Pseudomonas aeruginosa were identified. The rate constants of heavy metal lixiviation were determined using a first order kinetic model. The removal effect of modified natural zeolites in both a solid medium and in continuous mode showed an increased elimination of the bacterial population. The results established a decreasing order of the removal effect as follows: Cu2+ > Fe3+ > Zn2+ > Ni2+. The best performance of columns was obtained for inlet bacterial concentrations below 10(6) cells/100 ml. Most of the identified bacterial species were affected by copper modified zeolites, although Serratia marcescens presented the highest sensitivity and Klebsiella pneumoniae the greatest resistance.

  14. One step bioconversion of waste precious metals into Serratia biofilm-immobilized catalyst for Cr(VI) reduction.

    PubMed

    Yong, P; Liu, W; Zhang, Z; Beauregard, D; Johns, M L; Macaskie, L E

    2015-11-01

    For reduction of Cr(VI) the Pd-catalyst is excellent but costly. The objectives were to prove the robustness of a Serratia biofilm as a support for biogenic Pd-nanoparticles and to fabricate effective catalyst from precious metal waste. Nanoparticles (NPs) of palladium were immobilized on polyurethane reticulated foam and polypropylene supports via adhesive biofilm of a Serratia sp. The biofilm adhesion and cohesion strength were unaffected by palladization and catalytic biofilm integrity was also shown by magnetic resonance imaging. Biofilm-Pd and mixed precious metals on biofilm (biofilm-PM) reduced 5 mM Cr(VI) to Cr(III) when immobilized in a flow-through column reactor, at respective flow rates of 9 and 6 ml/h. The lower activity of the latter was attributed to fewer, larger, metal deposits on the bacteria. Activity was lost in each case at pH 7 but was restored by washing with 5 mM citrate solution or by exposure of columns to solution at pH 2, suggesting fouling by Cr(III) hydroxide product at neutral pH. A 'one pot' conversion of precious metal waste into new catalyst for waste decontamination was shown in a continuous flow system based on the use of Serratia biofilm to manufacture and support catalytic Pd-nanoparticles.

  15. 21 CFR 866.3630 - Serratia spp. serological reagents.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Serratia spp. serological reagents. 866.3630 Section 866.3630 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents § 866.3630 Serratia spp...

  16. 21 CFR 866.3630 - Serratia spp. serological reagents.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Serratia spp. serological reagents. 866.3630 Section 866.3630 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents § 866.3630 Serratia spp...

  17. 21 CFR 866.3630 - Serratia spp. serological reagents.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Serratia spp. serological reagents. 866.3630 Section 866.3630 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents § 866.3630 Serratia spp...

  18. 21 CFR 866.3630 - Serratia spp. serological reagents.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Serratia spp. serological reagents. 866.3630 Section 866.3630 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents § 866.3630 Serratia spp...

  19. 21 CFR 866.3630 - Serratia spp. serological reagents.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Serratia spp. serological reagents. 866.3630 Section 866.3630 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents § 866.3630 Serratia spp...

  20. Complete genome sequence of the plant-associated Serratia plymuthica strain AS13

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neupane, Saraswoti; Finlay, Roger D.; Kyrpides, Nikos C

    2012-01-01

    Serratia plymuthica AS13 is a plant-associated Gammaproteobacteria, isolated from rapeseed roots. It is of special interest because of its ability to inhibit fungal pathogens of rapeseed and to promote plant growth. The complete genome of S. plymuthica AS13 consists of a 5,442,549 bp circular chromosome. The chromosome contains 4,951 protein-coding genes, 87 tRNA genes and 7 rRNA operons. This genome was sequenced as part of the project enti- tled Genomics of four rapeseed plant growth promoting bacteria with antagonistic effect on plant pathogens within the 2010 DOE-JGI Community Sequencing Program (CSP2010).

  1. Effects of P limitation and molecules from peanut root exudates on pqqE gene expression and pqq promoter activity in the phosphate-solubilizing strain Serratia sp. S119.

    PubMed

    Ludueña, Liliana M; Anzuay, Maria S; Magallanes-Noguera, Cynthia; Tonelli, Maria L; Ibañez, Fernando J; Angelini, Jorge G; Fabra, Adriana; McIntosh, Matthew; Taurian, Tania

    2017-10-01

    The mineral phosphate-solubilizing phenotype in bacteria is attributed predominantly to secretion of gluconic acid produced by oxidation of glucose by the glucose dehydrogenase enzyme and its cofactor, pyrroloquinoline quinone. This study analyzes pqqE gene expression and pqq promoter activity in the native phosphate-solubilizing bacterium Serratia sp S119 growing under P-limitation, and in the presence of root exudates obtained from peanut plants, also growing under P-limitation. Results indicated that Serratia sp. S119 contains a pqq operon composed of six genes (pqqA,B,C,D,E,F) and two promoters, one upstream of pqqA and other between pqqA and pqqB. PqqE gene expression and pqq promoter activity increased under P-limiting growth conditions and not under N-deficient conditions. In the plant-bacteria interaction assay, the activity of the bacterial pqq promoter region varied depending on the concentration and type of root exudates and on the bacterial growth phase. Root exudates from peanut plants growing under P-available and P-limiting conditions showed differences in their composition. It is concluded from this study that the response of Serratia sp. S119 to phosphorus limitation involves an increase in expression of pqq genes, and that molecules exuded by peanut roots modify expression of these phosphate-solubilizing bacterial genes during plant-bacteria interactions. Copyright © 2017 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  2. Characterization of Flagella Produced by Clinical Strains of Stenotrophomonas maltophilia

    PubMed Central

    de Oliveira-Garcia, Doroti; Dall'Agnol, Monique; Rosales, Mónica; Azzuz, Ana C.G.S.; Martinez, Marina B.; Girón, Jorge A.

    2002-01-01

    Stenotrophomonas maltophilia is an emerging nosocomial pathogen associated with opportunistic infections in patients with cystic fibrosis, cancer, and HIV. Adherence of this organism to abiotic surfaces such as medical implants and catheters represents a major risk for hospitalized patients. The adhesive surface factors involved in adherence of these bacteria are largely unknown, and their flagella have not yet been characterized biochemically and antigenically. We purified and characterized the flagella produced by S. maltophilia clinical strains. The flagella filaments are composed of a 38-kDa subunit, SMFliC, and analysis of its N-terminal amino acid sequence showed considerable sequence identity to the flagellins of Serratia marcescens (78.6%), Escherichia coli, Proteus mirabilis, Shigella sonnei (71.4%), and Pseudomonas aeruginosa (57.2%). Ultrastructural analysis by scanning electron microscopy of bacteria adhering to plastic showed flagellalike structures within the bacterial clusters, suggesting that flagella are produced as the bacteria spread on the abiotic surface. PMID:12194767

  3. Chitin binding proteins act synergistically with chitinases in Serratia proteamaculans 568.

    PubMed

    Purushotham, Pallinti; Arun, P V Parvati Sai; Prakash, Jogadhenu S S; Podile, Appa Rao

    2012-01-01

    Genome sequence of Serratia proteamaculans 568 revealed the presence of three family 33 chitin binding proteins (CBPs). The three Sp CBPs (Sp CBP21, Sp CBP28 and Sp CBP50) were heterologously expressed and purified. Sp CBP21 and Sp CBP50 showed binding preference to β-chitin, while Sp CBP28 did not bind to chitin and cellulose substrates. Both Sp CBP21 and Sp CBP50 were synergistic with four chitinases from S. proteamaculans 568 (Sp ChiA, Sp ChiB, Sp ChiC and Sp ChiD) in degradation of α- and β-chitin, especially in the presence of external electron donor (reduced glutathione). Sp ChiD benefited most from Sp CBP21 or Sp CBP50 on α-chitin, while Sp ChiB and Sp ChiD had major advantage with these Sp CBPs on β-chitin. Dose responsive studies indicated that both the Sp CBPs exhibit synergism ≥ 0.2 µM. The addition of both Sp CBP21 and Sp CBP50 in different ratios to a synergistic mixture did not significantly increase the activity. Highly conserved polar residues, important in binding and activity of CBP21 from S. marcescens (Sm CBP21), were present in Sp CBP21 and Sp CBP50, while Sp CBP28 had only one such polar residue. The inability of Sp CBP28 to bind to the test substrates could be attributed to the absence of important polar residues.

  4. Chitin Binding Proteins Act Synergistically with Chitinases in Serratia proteamaculans 568

    PubMed Central

    Purushotham, Pallinti; Arun, P. V. Parvati Sai; Prakash, Jogadhenu S. S.; Podile, Appa Rao

    2012-01-01

    Genome sequence of Serratia proteamaculans 568 revealed the presence of three family 33 chitin binding proteins (CBPs). The three Sp CBPs (Sp CBP21, Sp CBP28 and Sp CBP50) were heterologously expressed and purified. Sp CBP21 and Sp CBP50 showed binding preference to β-chitin, while Sp CBP28 did not bind to chitin and cellulose substrates. Both Sp CBP21 and Sp CBP50 were synergistic with four chitinases from S. proteamaculans 568 (Sp ChiA, Sp ChiB, Sp ChiC and Sp ChiD) in degradation of α- and β-chitin, especially in the presence of external electron donor (reduced glutathione). Sp ChiD benefited most from Sp CBP21 or Sp CBP50 on α-chitin, while Sp ChiB and Sp ChiD had major advantage with these Sp CBPs on β-chitin. Dose responsive studies indicated that both the Sp CBPs exhibit synergism ≥0.2 µM. The addition of both Sp CBP21 and Sp CBP50 in different ratios to a synergistic mixture did not significantly increase the activity. Highly conserved polar residues, important in binding and activity of CBP21 from S. marcescens (Sm CBP21), were present in Sp CBP21 and Sp CBP50, while Sp CBP28 had only one such polar residue. The inability of Sp CBP28 to bind to the test substrates could be attributed to the absence of important polar residues. PMID:22590591

  5. Magnetic steering control of multi-cellular bio-hybrid microswimmers.

    PubMed

    Carlsen, Rika Wright; Edwards, Matthew R; Zhuang, Jiang; Pacoret, Cecile; Sitti, Metin

    2014-10-07

    Bio-hybrid devices, which integrate biological cells with synthetic components, have opened a new path in miniaturized systems with the potential to provide actuation and control for systems down to a few microns in size. Here, we address the challenge of remotely controlling bio-hybrid microswimmers propelled by multiple bacterial cells. These devices have been proposed as a viable method for targeted drug delivery but have also been shown to exhibit stochastic motion. We demonstrate a method of remote magnetic control that significantly reduces the stochasticity of the motion, enabling steering control. The demonstrated microswimmers consist of multiple Serratia marcescens (S. marcescens) bacteria attached to a 6 μm-diameter superparamagnetic bead. We characterize their motion and define the parameters governing their controllability. We show that the microswimmers can be controlled along two-dimensional (2-D) trajectories using weak magnetic fields (≤10 mT) and can achieve 2-D swimming speeds up to 7.3 μm s(-1). This magnetic steering approach can be integrated with sensory-based steering in future work, enabling new control strategies for bio-hybrid microsystems.

  6. Evaluation of coral pathogen growth rates after exposure to atmospheric African dust samples

    USGS Publications Warehouse

    Lisle, John T.; Garrison, Virginia H.; Gray, Michael A.

    2014-01-01

    Laboratory experiments were conducted to assess if exposure to atmospheric African dust stimulates or inhibits the growth of four putative bacterial coral pathogens. Atmospheric dust was collected from a dust-source region (Mali, West Africa) and from Saharan Air Layer masses over downwind sites in the Caribbean [Trinidad and Tobago and St. Croix, U.S. Virgin Islands (USVI)]. Extracts of dust samples were used to dose laboratory-grown cultures of four putative coral pathogens: Aurantimonas coralicida (white plague type II), Serratia marcescens (white pox), Vibrio coralliilyticus, and V. shiloi (bacteria-induced bleaching). Growth of A. coralicida and V. shiloi was slightly stimulated by dust extracts from Mali and USVI, respectively, but unaffected by extracts from the other dust sources. Lag time to the start of log-growth phase was significantly shortened for A. coralicida when dosed with dust extracts from Mali and USVI. Growth of S. marcescens and V. coralliilyticus was neither stimulated nor inhibited by any of the dust extracts. This study demonstrates that constituents from atmospheric dust can alter growth of recognized coral disease pathogens under laboratory conditions.

  7. Detection systems for carbapenemase gene identification should include the SME serine carbapenemase.

    PubMed

    Bush, Karen; Pannell, Megan; Lock, John L; Queenan, Anne Marie; Jorgensen, James H; Lee, Ryan M; Lewis, James S; Jarrett, Deidre

    2013-01-01

    Carbapenemase detection has become a major problem in hospitals that encounter outbreaks of infections caused by carbapenem-resistant Gram-negative bacteria. Rapid detection systems have been reported using multiplex PCR analyses and DNA microarray assays. Major carbapenemases that are detected by these systems include the KPC and OXA serine carbapenemases, and the IMP, VIM and NDM families of metallo-β-lactamases. However, increasing numbers of the SME serine carbapenemase are being reported from Serratia marcescens, especially from North and South America. These organisms differ from many of the other carbapenemase-producing pathogens in that they are generally susceptible to the expanded-spectrum cephalosporins ceftazidime and cefepime while retaining resistance to almost all other β-lactam antibiotics. Thus, multiplex PCR assays or DNA microarray testing of carbapenem-resistant S. marcescens isolates should include analyses for production of the SME carbapenemase. Confirmation of the presence of this enzyme may provide reassurance that oxyimino-cephalosporins can be considered for treatment of infections caused by these carbapenem-resistant pathogens. Copyright © 2012 Elsevier B.V. and the International Society of Chemotherapy. All rights reserved.

  8. Identification and antimicrobial resistance of microflora colonizing feral pig (Sus scrofa) of Brazilian Pantanal.

    PubMed Central

    Lessa, SS; Paes, RCS; Santoro, PN; Mauro, RA; Vieira-da-Motta, O

    2011-01-01

    Antimicrobial resistance of bacteria is a worldwide problem affecting wild life by living with resistant bacteria in the environment. This study presents a discussion of outside factors environment on microflora of feral pigs (Sus scrofa) from Brazilian Pantanal. Animals had samples collected from six different body sites coming from two separated geographic areas, Nhecolandia and Rio Negro regions. With routine biochemical tests and commercial kits 516 bacteria were identified, with 240 Gram-positive, predominantly staphylococci (36) and enterococci (186) strains. Among Gram-negative (GN) bacteria the predominant specimens of Enterobacteriaceae (247) mainly represented by Serratia spp. (105), Escherichia coli (50), and Enterobacter spp. (40) and specimens not identified (7). Antimicrobial susceptibility was tested against 17 drugs by agar diffusion method. Staphylococci were negative to production of enterotoxins and TSST-1, with all strains sensitive towards four drugs and highest resistance toward ampicillin (17%). Enterococci presented the highest sensitivity against vancomycin (98%), ampicillin (94%) and tetracycline (90%), and highest resistance pattern toward oxacillin (99%), clindamycin (83%), and cotrimoxazole (54%). In GN the highest resistance was observed with Serratia marcescens against CFL (98%), AMC (66%) and AMP (60%) and all drugs was most effective against E. coli SUT, TET (100%), AMP, TOB (98%), GEN, CLO (95%), CFO, CIP (93%). The results show a new profile of oxacillin-resistant enterococci from Brazilian feral pigs and suggest a limited residue and spreading of antimicrobials in the environment, possibly because of low anthropogenic impact reflected by the drug susceptibility profile of bacteria isolated. PMID:24031689

  9. Revisiting the hand wipe versus gel rub debate: is a higher-ethanol content hand wipe more effective than an ethanol gel rub?

    PubMed

    D'Antonio, Natalie N; Rihs, John D; Stout, Janet E; Yu, Victor L

    2010-11-01

    The Centers for Disease Control and Prevention's guidelines for hand hygiene state that the use of alcohol-based hand wipes is not an effective substitute for the use of an alcohol-based hand rub or handwashing with an antimicrobial soap and water. The objective of this study was to determine whether a hand wipe with higher ethanol content (65.9%) is as effective as an ethanol hand rub or antimicrobial soap in removing bacteria and spores from hands. In two separate experiments, the hands of 7 subjects were inoculated with a suspension of Serratia marcescens or Geobacillus stearothermophilus. Subjects washed with each of 3 different products: 65.9% ethanol hand wipes (Sani-Hands ALC), 62% ethanol gel rub (Purell), and antimicrobial soap containing 0.75% triclosan (Kindest Kare). A total of 56 observations were analyzed for S marcescens removal and 70 observations were analyzed for G stearothermophilus removal. The rank order of product efficacy for both bacteria and spore removal was antibacterial soap > 65.9% ethanol hand wipes >62% ethanol hand rub. Mean S marcescens log reductions (±SD) for the 65.9% ethanol alcohol wipe, 62% ethanol alcohol rub, and antimicrobial foam soap were 3.44 ± 0.847, 2.32 ± 1.065, and 4.44 ± 1.018, respectively (P < .001). Mean G stearothermophilus log reductions for the 65.9% ethanol wipe, 62% ethanol rub, and antimicrobial foam soap were 0.51 ± 0.26, -0.8 ± 0.32 increase over baseline, and 1.72 ± 0.62, respectively (P < .001). The alcohol-based hand wipe containing 65.9% ethanol was significantly more effective than the 62% ethanol rub in reducing the number of viable bacteria and spores on the hands. Copyright © 2010 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Mosby, Inc. All rights reserved.

  10. [Selective-differential nutrient medium "Shewanella IRHLS agar" for isolation of Shewanella genus bacteria].

    PubMed

    Sivolodsky, E P

    2015-01-01

    Development of a selective-differential nutrient medium for isolation of Shewanella genus bacteria. 73 strains of Shewanella bacteria (S. algae--3, S. baltica--26, S. putrefaciens--44) and 80 strains of 22 other bacteria genera were used. Shewanella species were identified by methods and criteria proposed by Nozue H. et al., 1992; Khashe S. et al., 1998. Nutrient media "Shewanella IRHLS Agar" for shewanella isolation was developed. Medium selective factors: irgazan DP-300 (I). 0.14-0.2 g/l and rifampicin (R) 0.0005-0.001 g/l. Shevanella colonies were detected by the production of hydrogen sulfide (H), lipase presence (L), lack of sorbitol fermentation (S). The medium suppressed the growth of hydrogen sulfide producers (Salmonella, Proteus) and blocked hydrogen sulfide production by Citrobacter. Growth of Escherichia, Enterobacter, Klebsiella, Shigella, Staphylococcus, Bacillus was also suppressed, Analytical sensitivity of the medium was 1-2 CFU/ml for Shewanella and Stenotrophomonas, Aerombnas, Serratia genera bacteria. 72 strains of Shewanella were isolated from water of Neva river in this medium, 91.7 ± 3.2% of those produced H2S. 1 strain of S. algae was isolated from clinical material. The developed media allows to use it in a complex for Stenotrophomo- nas sp., Aeromonas sp., Serratia sp., Citrobactersp. and Shewanella bacteria isolation.

  11. Quorum Sensing Activity of Serratia fonticola Strain RB-25 Isolated from an Ex-landfill Site

    PubMed Central

    Ee, Robson; Lim, Yan-Lue; Tee, Kok-Keng; Yin, Wai-Fong; Chan, Kok-Gan

    2014-01-01

    Quorum sensing is a unique bacterial communication system which permits bacteria to synchronize their behaviour in accordance with the population density. The operation of this communication network involves the use of diffusible autoinducer molecules, termed N-acylhomoserine lactones (AHLs). Serratia spp. are well known for their use of quorum sensing to regulate the expression of various genes. In this study, we aimed to characterized the AHL production of a bacterium designated as strain RB-25 isolated from a former domestic waste landfill site. It was identified as Serratia fonticola using matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry analysis and this was confirmed by 16S ribosomal DNA sequencing. High resolution triple quadrupole liquid chromatography-mass spectrometry analysis of S. fonticola strain RB-25 spent culture supernatant indicated the existence of three AHLs namely: N-butyryl-L-homoserine lactone (C4-HSL), N-hexanoyl-L-homoserine lactone (C6-HSL) and N-(3-oxohexanoyl) homoserine-lactone (3-oxo-C6 HSL). This is the first report of the production of these AHLs in S. fonticola. PMID:24625739

  12. Endophytic colonization and in planta nitrogen fixation by a diazotrophic Serratia sp. in rice.

    PubMed

    Sandhiya, G S; Sugitha, T C K; Balachandar, D; Kumar, K

    2005-09-01

    Nitrogen fixing endophytic Serratia sp. was isolated from rice and characterized. Re-colonization ability of Serratia sp. in the rice seedlings as endophyte was studied under laboratory condition. For detecting the re-colonization potential in the rice seedlings, Serratia sp. was marked with reporter genes (egfp and Kmr) using transposon mutagenesis. The conjugants were screened for re-colonization ability and presence of nif genes using PCR. Further, the influence of flavonoids and growth hormones on the endophytic colonization and in planta nitrogen fixation of Serratia was also investigated. The flavonoids, quercetin (3 microg/ml) and diadzein (2 microg/ml) significantly increased the re-colonization ability of the endophytic Serratia, whereas the growth hormones like IAA and NAA (5 microg/ml) reduced the endophytic colonization ability of Serratia sp. Similarly, the in planta nitrogen fixation by Serratia sp. in rice was significantly increased due to flavonoids. The inoculation of endophytic diazotrophs increased the plant biomass and biochemical constituents.

  13. Comparative bacterial degradation and detoxification of model and kraft lignin from pulp paper wastewater and its metabolites

    NASA Astrophysics Data System (ADS)

    Abhishek, Amar; Dwivedi, Ashish; Tandan, Neeraj; Kumar, Urwashi

    2017-05-01

    Continuous discharge of lignin containing colored wastewater from pulp paper mill into the environment has resulted in building up their high level in various aquatic systems. In this study, the chemical texture of kraft lignin in terms of pollution parameters (COD, TOC, BOD, etc.) was quite different and approximately twofold higher as compared to model lignin at same optical density (OD 3.7 at 465 nm) and lignin content (2000 mg/L). For comparative bacterial degradation and detoxification of model and kraft lignin two bacteria Citrobacter freundii and Serratia marcescens were isolated, screened and applied in axenic and mixed condition. Bacterial mixed culture was found to decolorize 87 and 70 % model and kraft lignin (2000 mg/L), respectively; whereas, axenic culture Citrobacter freundii and Serratia marcescens decolorized 64, 60 % model and 50, 55 % kraft lignin, respectively, at optimized condition (34 °C, pH 8.2, 140 rpm). In addition, the mixed bacterial culture also showed the removal of 76, 61 % TOC; 80, 67 % COD and 87, 65 % lignin from model and kraft lignin, respectively. High pollution parameters (like TOC, COD, BOD, sulphate) and toxic chemicals slow down the degradation of kraft lignin as compared to model lignin. The comparative GC-MS analysis has suggested that the interspecies collaboration, i.e., each bacterial strain in culture medium has cumulative enhancing effect on growth, and degradation of lignin rather than inhibition. Furthermore, toxicity evaluation on human keratinocyte cell line after bacterial treatment has supported the degradation and detoxification of model and kraft lignin.

  14. Microflora of the pouch of the koala (Phascolarctos cinereus).

    PubMed

    Osawa, R; Blanshard, W H; O'Callaghan, P G

    1992-04-01

    Microflora of the pouch epithelium of 17 female koalas (Phascolarctos cinereus) were examined in relation to their current reproductive status and recent reproductive history. No microbial growth was observed in pouch swabs from 13 of 17 (76%) koalas, including four females without young, seven with pouch young and two with back young (i.e. permanently emerged from the pouch). Growth of bacteria or yeasts was observed in pouch swabs from four koalas, each of which had experienced mortality of its pouch young during the current breeding season. Seven species of microorganisms were isolated, including Pseudomonas aeruginosa, Serratia marcescens and Enterococcus faecalis. Based on the absence of microflora in the majority of females examined, we propose that the pouch epithelium normally provides a hostile environment for microbial colonization.

  15. [Effect of Gram-negative bacteria on fatty acids].

    PubMed

    Vuillemin, N; Dupeyron, C; Leluan, G; Bory, J

    1981-01-01

    The gram-negative bacteria investigated exert various effects on fatty acids. P. aeruginosa and A. calcoaceticus catabolize any of the fatty acids tested. S. marcescens is effective upon all fatty acids excepting butyric acid. The long chain fatty acids only are degraded by E. coli, meanwhile the other fatty acids present a bacteriostatic or bactericidal activity on it. The authors propose a simple and original method for testing the capability of degradation of fatty acids by some bacterial species.

  16. Fungal volatile compounds induce production of the secondary metabolite Sodorifen in Serratia plymuthica PRI-2C.

    PubMed

    Schmidt, Ruth; Jager, Victor de; Zühlke, Daniela; Wolff, Christian; Bernhardt, Jörg; Cankar, Katarina; Beekwilder, Jules; Ijcken, Wilfred van; Sleutels, Frank; Boer, Wietse de; Riedel, Katharina; Garbeva, Paolina

    2017-04-13

    The ability of bacteria and fungi to communicate with each other is a remarkable aspect of the microbial world. It is recognized that volatile organic compounds (VOCs) act as communication signals, however the molecular responses by bacteria to fungal VOCs remain unknown. Here we perform transcriptomics and proteomics analyses of Serratia plymuthica PRI-2C exposed to VOCs emitted by the fungal pathogen Fusarium culmorum. We find that the bacterium responds to fungal VOCs with changes in gene and protein expression related to motility, signal transduction, energy metabolism, cell envelope biogenesis, and secondary metabolite production. Metabolomic analysis of the bacterium exposed to the fungal VOCs, gene cluster comparison, and heterologous co-expression of a terpene synthase and a methyltransferase revealed the production of the unusual terpene sodorifen in response to fungal VOCs. These results strongly suggest that VOCs are not only a metabolic waste but important compounds in the long-distance communication between fungi and bacteria.

  17. The PhoBR two-component system regulates antibiotic biosynthesis in Serratia in response to phosphate

    PubMed Central

    2009-01-01

    Background Secondary metabolism in Serratia sp. ATCC 39006 (Serratia 39006) is controlled via a complex network of regulators, including a LuxIR-type (SmaIR) quorum sensing (QS) system. Here we investigate the molecular mechanism by which phosphate limitation controls biosynthesis of two antibiotic secondary metabolites, prodigiosin and carbapenem, in Serratia 39006. Results We demonstrate that a mutation in the high affinity phosphate transporter pstSCAB-phoU, believed to mimic low phosphate conditions, causes upregulation of secondary metabolism and QS in Serratia 39006, via the PhoBR two-component system. Phosphate limitation also activated secondary metabolism and QS in Serratia 39006. In addition, a pstS mutation resulted in upregulation of rap. Rap, a putative SlyA/MarR-family transcriptional regulator, shares similarity with the global regulator RovA (regulator of virulence) from Yersina spp. and is an activator of secondary metabolism in Serratia 39006. We demonstrate that expression of rap, pigA-O (encoding the prodigiosin biosynthetic operon) and smaI are controlled via PhoBR in Serratia 39006. Conclusion Phosphate limitation regulates secondary metabolism in Serratia 39006 via multiple inter-linked pathways, incorporating transcriptional control mediated by three important global regulators, PhoB, SmaR and Rap. PMID:19476633

  18. Modeling of stochastic motion of bacteria propelled spherical microbeads

    NASA Astrophysics Data System (ADS)

    Arabagi, Veaceslav; Behkam, Bahareh; Cheung, Eugene; Sitti, Metin

    2011-06-01

    This work proposes a stochastic dynamic model of bacteria propelled spherical microbeads as potential swimming microrobotic bodies. Small numbers of S. marcescens bacteria are attached with their bodies to surfaces of spherical microbeads. Average-behavior stochastic models that are normally adopted when studying such biological systems are generally not effective for cases in which a small number of agents are interacting in a complex manner, hence a stochastic model is proposed to simulate the behavior of 8-41 bacteria assembled on a curved surface. Flexibility of the flagellar hook is studied via comparing simulated and experimental results for scenarios of increasing bead size and the number of attached bacteria on a bead. Although requiring more experimental data to yield an exact, certain flagellar hook stiffness value, the examined results favor a stiffer flagella. The stochastic model is intended to be used as a design and simulation tool for future potential targeted drug delivery and disease diagnosis applications of bacteria propelled microrobots.

  19. Anti-bacteria Effect of Active Ingredients of Cacumen Platycladi on the Spoilage Bacteria of Sauced Pork Head Meat

    NASA Astrophysics Data System (ADS)

    Li, Xiao; Xu, Lingyi; Cui, Yuqian; Pang, Meixia; Wang, Fang; Qi, Jinghua

    2017-12-01

    Extraction and anti-bacteria effect of active ingredients of Cacumen Platycladi were studied in this paper. Extraction combined with ultrasonic was adopted. The optimum extraction condition was determined by single factor test; the anti-bacteria effect of active ingredients and minimum inhibitory concentration(MIC) were valued by Oxford-cup method. The results indicated that kaempferol was the active ingredients of Cacumen Platycladi whose optimum extraction condition for ethanol concentrations were sixty-five percent and twenty minutes with ultrasonic assisted extraction.; the active ingredients of Cacumen Platycladi had anti-bacteria effect on Staphylococcus, Proteus, Bacillus, Serratia and MIC was 0.5 g/mL,0.5 g/mL,0.0313 g/mL and 0.0625 g/mL. The active constituent of Cacumen Platycladi is kaempferol which has obvious anti-bacteria effect and can be used to prolong the shelf-life of Low-temperature meat products.

  20. Alkaline Fe(III) reduction by a novel alkali-tolerant Serratia sp. isolated from surface sediments close to Sellafield nuclear facility, UK.

    PubMed

    Thorpe, Clare L; Morris, Katherine; Boothman, Christopher; Lloyd, Jonathan R

    2012-02-01

    Extensive denitrification resulted in a dramatic increase in pH (from 6.8 to 9.5) in nitrate-impacted, acetate-amended sediment microcosms containing sediment representative of the Sellafield nuclear facility, UK. Denitrification was followed by Fe(III) reduction, indicating the presence of alkali-tolerant, metal-reducing bacteria. A close relative (99% 16S rRNA gene sequence homology) to Serratia liquefaciens dominated progressive enrichment cultures containing Fe(III)-citrate as the sole electron acceptor at pH 9 and was isolated aerobically using solid media. The optimum growth conditions for this facultatively anaerobic Serratia species were investigated, and it was capable of metabolizing a wide range of electron acceptors including oxygen, nitrate, FeGel, Fe-NTA and Fe-citrate and electron donors including acetate, lactate, formate, ethanol, glucose, glycerol and yeast extract at an optimum pH of c. 6.5 at 20 °C. The alkali tolerance of this strain extends the pH range of highly adaptable Fe(III)-reducing Serratia species from mildly acidic pH values associated with acid mine drainage conditions to alkali conditions representative of subsurface sediments stimulated for extensive denitrification and metal reduction. © 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  1. Anti-bacteria effect of active ingredients of siraitia grosvenorii on the spoilage bacteria isolated from sauced pork head meat

    NASA Astrophysics Data System (ADS)

    Li, X.; Xu, L. Y.; Cui, Y. Q.; Pang, M. X.; Wang, F.; Qi, J. H.

    2018-01-01

    Extraction and anti-bacteria effect of active ingredients of Siraitia grosvenorii were studied in this paper. Extraction combined with ultrasonic was adopted. The optimum extraction condition was determined by single factor test; the anti-bacteria effect of active ingredients and minimum inhibitory concentration (MIC) were valued by Oxford-cup method. The results indicated that optimum extraction condition of active ingredients extracted from Siraitia grosvenorii were described as follows: ethanol concentrations of sixty-five percent and twenty minutes with ultrasonic assisted extraction; the active ingredients of Siraitia grosvenorii had anti-bacteria effect on Staphylococcus epidermidis, Proteus vulgaris, Bacillus sp, Serratia sp and MIC was 0.125g/mL, 0.0625g/mL, 0.125g/mL and 0.125g/mL. The active constituent of Siraitia grosvenorii has obvious anti-bacteria effect on the spoilage bacteria isolated from Sauced pork head meat and can be used as a new natural food preservation to prolong the shelf-life of Low-temperature meat products.

  2. The occurrence of immune priming can be species-specific in entomopathogens.

    PubMed

    Medina Gomez, Héctor; Adame Rivas, Galia; Hernández-Quintero, Angélica; González Hernández, Angélica; Torres Guzmán, Juan Carlos; Mendoza, Humberto Lanz; Contreras-Garduño, Jorge

    2018-05-01

    Immune priming in invertebrates refers to an improved immune response (and therefore a better chance of survival) upon a second encounter with a specific pathogen. Although the existence of immune priming has been evaluated in invertebrate hosts, the ability of a particular entomopathogen species or strain to influence the occurrence of immune priming has not been thoroughly evaluated. The aim of the current study was to compare the occurrence of immune priming in Tenebrio molitor larvae after homologous challenges (a dual exposure to similar entomopathogens) with Serratia marcescens, Bacillus thuringiensis and Metarhizium anisopliae. Larvae presented more effective immune priming (measured as survival rates) when exposed to M. anisopliae or B. thuringiensis than when exposed to S. marcescens. We hypothesize that the toll pathway may help T. molitor survive these enemies and that the IMD pathway may be expressed to a lesser degree in this species, which may explain why they succumb to Gram-negative bacteria. This and other recent evidence suggest that the occurrence of immune priming in these organisms must not be ruled out until this phenomenon is tested with different entomopathogens. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Frequent Replenishment Sustains the Beneficial Microbiome of Drosophila melanogaster

    PubMed Central

    Blum, Jessamina E.; Fischer, Caleb N.; Miles, Jessica; Handelsman, Jo

    2013-01-01

    ABSTRACT We report that establishment and maintenance of the Drosophila melanogaster microbiome depend on ingestion of bacteria. Frequent transfer of flies to sterile food prevented establishment of the microbiome in newly emerged flies and reduced the predominant members, Acetobacter and Lactobacillus spp., by 10- to 1,000-fold in older flies. Flies with a normal microbiome were less susceptible than germfree flies to infection by Serratia marcescens and Pseudomonas aeruginosa. Augmentation of the normal microbiome with higher populations of Lactobacillus plantarum, a Drosophila commensal and probiotic used in humans, further protected the fly from infection. Replenishment represents an unexplored strategy by which animals can sustain a gut microbial community. Moreover, the population behavior and health benefits of L. plantarum resemble features of certain probiotic bacteria administered to humans. As such, L. plantarum in the fly gut may serve as a simple model for dissecting the population dynamics and mode of action of probiotics in animal hosts. PMID:24194543

  4. Differences in bacterial diversity of host-associated populations of Phylloxera notabilis Pergande (Hemiptera: Phylloxeridae) in pecan and water hickory.

    PubMed

    Medina, R F; Nachappa, P; Tamborindeguy, C

    2011-04-01

    Host-associated differentiation (HAD) is the presence of genetically divergent, host-associated populations. It has been suggested that microbial symbionts of insect herbivores may play a role in HAD by allowing their insect hosts to use different plant species. The objective of this study was to document if host-associated populations of Phylloxera notabilis Pergande (Hemiptera: Phylloxeridae) in pecan and water hickory corresponded with differences in the composition of their associated bacteria. To test this hypothesis, we characterized the symbionts present in P. notabilis associated with these two tree species through metagenomic analyses using 454 sequencing. Differences in bacterial diversity were found between P. notabilis populations associated with pecan and water hickory. The bacteria, Pantoea agglomerans and Serratia marcescens, were absent in the P. notabilis water hickory population, whereas both species accounted for more than 69.72% of bacterial abundance in the pecan population. © 2011 The Authors. Journal of Evolutionary Biology © 2011 European Society For Evolutionary Biology.

  5. Differentiation of bacterial colonies and temporal growth patterns using hyperspectral imaging

    NASA Astrophysics Data System (ADS)

    Mehrübeoglu, Mehrube; Buck, Gregory W.; Livingston, Daniel W.

    2014-09-01

    Detection and identification of bacteria are important for health and safety. Hyperspectral imaging offers the potential to capture unique spectral patterns and spatial information from bacteria which can then be used to detect and differentiate bacterial species. Here, hyperspectral imaging has been used to characterize different bacterial colonies and investigate their growth over time. Six bacterial species (Pseudomonas fluorescens, Escherichia coli, Serratia marcescens, Salmonella enterica, Staphylococcus aureus, Enterobacter aerogenes) were grown on tryptic soy agar plates. Hyperspectral data were acquired immediately after, 24 hours after, and 96 hours after incubation. Spectral signatures from bacterial colonies demonstrated repeatable measurements for five out of six species. Spatial variations as well as changes in spectral signatures were observed across temporal measurements within and among species at multiple wavelengths due to strengthening or weakening reflectance signals from growing bacterial colonies based on their pigmentation. Between-class differences and within-class similarities were the most prominent in hyperspectral data collected 96 hours after incubation.

  6. [Isolation, identification and characterization of a diethylstilbestrol-degrading bacterial strain Serratia sp].

    PubMed

    Xu, Ran-Fang; Sun, Min-Xia; Liu, Juan; Wang, Hong; Li, Xin; Zhu, Xue-Zhu; Ling, Wan-Ting

    2014-08-01

    Utilizing the diethylstilbestrol (DES)-degrading bacteria to biodegrade DES is a most reliable technique for cleanup of DES pollutants from the environment. However, little information is available heretofore on the isolation of DES-degrading bacteria and their DES removal performance in the environment. A novel bacterium capable of degrading DES was isolated from the activated sludge of a wastewater treatment plant. According to its morphology, physiochemical characteristics, and 16S rDNA sequence analysis, this strain was identified as Serratia sp.. The strain was an aerobic bacterium, and it could degrade 68.3% of DES (50 mg x L(-1)) after culturing for 7 days at 30 degrees C, 150 r x min(-1) in shaking flasks. The optimal conditions for DES biodegradation by the obtained strain were 30 degrees C, 40-60 mg x L(-1) DES, pH 7.0, 5% of inoculation volume, 0 g x L(-1) of added NaCl, and 10 mL of liquid medium volume in 100 mL flask.

  7. Nontoxic concentration of ceftazidime and flomoxef sodium for intravitreal use--evaluated by in-vitro ERG.

    PubMed

    Tanabe, J; Kitano, K; Suzuki, T; Okayama, Y; Mochizuki, K; Kawasaki, K

    1990-01-01

    The effects of ceftazidime (CAZ) and flomoxef sodium (FMOX) on the in-vitro electroretinogram (ERG) of albino rabbits were studied. The a-wave, the b-wave and the oscillatory potential (OP) were unchanged by 0.3mM (0.19mg/ml) CAZ-containing solution. The OP was suppressed by 0.5mM (0.32mg/ml) CAZ. The a-wave, the b-wave and the OP were unchanged by 0.5mM (0.26mg/ml) FMOX. The OP was suppressed and its peak latency was delayed by 2mM (0.52mg/ml) FMOX. The concentration of 0.3mM (0.19mg/ml) CAZ was higher than its minimum inhibitory concentration (MIC) against Staphylococcus aureus, Staphylococcus epidermidis, Pseudomonas aeruginosa, Serratia marcescens and Propionibacterium acnes. The concentration of 0.5mM (0.26mg/ml) FMOX was higher than its MIC against Staphylococcus aureus, Staphylococcus epidermidis, Serratia marcescens and Propionibacterium acnes.

  8. Lipid composition in a strain of Bacillus subtilis, a producer of iturin A lipopeptides that are active against uropathogenic bacteria.

    PubMed

    Bernat, Przemysław; Paraszkiewicz, Katarzyna; Siewiera, Paulina; Moryl, Magdalena; Płaza, Grażyna; Chojniak, Joanna

    2016-10-01

    Urinary tract infections are a common disease in humans. Therefore, new methods are needed to destroy biofilms that are formed by uropathogens. Iturin A lipopeptides (LPs) C14 and C15 are potent biosurfactants synthetized by the Bacillus subtilis I'1a strain. The biological activity of extracted LPs was confirmed by examining extracts from I'1a cultures against uropathogenic bacteria that had been isolated from biofilms on urinary catheters. Compared with cultures of DSM 3257, which produce surfactin at a relatively low level, the extract obtained from strain I'1a exhibited a greater inhibitory effect against both planktonic and sessile forms of Escherichia coli, Serratia marcescens, Enterobacter cloacae, Proteus mirabilis, Citrobacter freundii and Enterococcus faecalis. Moreover, cyclic LP biosurfactants may disturb the integrity of cytoplasmic membranes; therefore, we investigated the effects of synthetized LPs on fatty acids and phospholipids of B. subtilis. LPs and lipids were analyzed using GC-MS, LC-MS/MS and MALDI-TOF/TOF techniques. Compared with B. subtilis DSM 3257, membranes of the I'1a strain were characterized by an increased amount of anteiso fatty acids and a ten-fold higher ratio of phosphatidylglycerol (PG)-to-phosphatidylethanolamine (PE). Interestingly, in cultures of B. subtilis DSM 3257 supplemented with LP extracts of the I'1a strain, the PG-to-PE ratio was fourfold higher, and the amount of anteiso fatty acids was also increased.

  9. The Physiological Bases for Microbial Barotolerance.

    DTIC Science & Technology

    1980-03-31

    cerevisiae, 4 - Lactobacillus plantarum , 5 - Bacillus licheniformis, 6 - Bacillus _ a- teriumKM, 7 - Streptococcus mutans LM-7, 8 - Streptococcus sannuis, 9...E. coli, 10- Serratia marcescens, 1 - S. faecalis lOCI, 12 - S. mutans C-5, 13 - Lactobacillus casei, 14 - Lyt coccus, 15 - S mutans SL-l, 16

  10. The O-antigen structure of bacterium Comamonas aquatica CJG.

    PubMed

    Wang, Xiqian; Kondakova, Anna N; Zhu, Yutong; Knirel, Yuriy A; Han, Aidong

    2017-11-01

    Genus Comamonas is a group of bacteria that are able to degrade a variety of environmental waste. Comamonas aquatica CJG (C. aquatica) in this genus is able to absorb low-density lipoprotein but not high-density lipoprotein of human serum. Using 1 H and 13 C NMR spectroscopy, we found that the O-polysaccharide (O-antigen) of this bacterium is comprised of a disaccharide repeat (O-unit) of d-glucose and 2-O-acetyl-l-rhamnose, which is shared by Serratia marcescens O6. The O-antigen gene cluster of C. aquatica, which is located between coaX and tnp4 genes, contains rhamnose synthesis genes, glycosyl and acetyl transferase genes, and ATP-binding cassette transporter genes, and therefore is consistent with the O-antigen structure determined here.

  11. Analysis of the Genome and Chromium Metabolism-Related Genes of Serratia sp. S2.

    PubMed

    Dong, Lanlan; Zhou, Simin; He, Yuan; Jia, Yan; Bai, Qunhua; Deng, Peng; Gao, Jieying; Li, Yingli; Xiao, Hong

    2018-05-01

    This study is to investigate the genome sequence of Serratia sp. S2. The genomic DNA of Serratia sp. S2 was extracted and the sequencing library was constructed. The sequencing was carried out by Illumina 2000 and complete genomic sequences were obtained. Gene function annotation and bioinformatics analysis were performed by comparing with the known databases. The genome size of Serratia sp. S2 was 5,604,115 bp and the G+C content was 57.61%. There were 5373 protein coding genes, and 3732, 3614, and 3942 genes were respectively annotated into the GO, KEGG, and COG databases. There were 12 genes related to chromium metabolism in the Serratia sp. S2 genome. The whole genome sequence of Serratia sp. S2 is submitted to the GenBank database with gene accession number of LNRP00000000. Our findings may provide theoretical basis for the subsequent development of new biotechnology to repair environmental chromium pollution.

  12. Antimicrobial-resistant bacteria in wild game in Slovenia

    NASA Astrophysics Data System (ADS)

    Križman, M.; Kirbiš, A.; Jamnikar-Ciglenečki, U.

    2017-09-01

    Wildlife is usually not exposed to clinically-used antimicrobial agents but can acquire antimicrobial resistance throughout contact with humans, domesticated animals and environments. Samples of faeces from intestines (80 in total) were collected from roe deer (52), wild boars (11), chamois (10) red deer (6) and moufflon (1). After culture on ChromID extended spectrum β-lactamase (ESBL) plates to select for growth of ESBL-producing bacteria, 25 samples produced bacterial colonies for further study. Six species of bacteria were identified from the 25 samples: Stenotrophomonas maltophilia, Serratia fonticola, Stenotrophomonas nitritireducens, Enterococcus faecium, Enterococcus faecalis and Escherichia coli. Two ESBL enzymes were amplified from group TEM and three from group CTX-M-1. Undercooked game meat and salami can be a source of resistant bacteria when animals are not eviscerated properly.

  13. Serratia bozhouensis sp. nov., Isolated from Sewage Samples of a Dairy Farm.

    PubMed

    Shang, Fei; Xue, Ting; Wang, Man; Chen, Xiaolin; Yu, Li; Zhang, Ming

    2017-07-01

    A Gram-negative, rod-shaped, salt-tolerant, non-pigmented, and non-spore-forming bacterium, designated strain W1 T (type strain CICC 23797 = CGMCC1.14949), was isolated from sewage samples of a dairy farm in Bozhou, Anhui, China. Strain W1 was resistant to lincomycin, troleandomycin, rifamycin, and vancomycin. Sequence analysis of the 16S rDNA gene revealed that the strain showed sequence similarity of 98.2% with the closest related species Serratia quinivorans CP6a T . The genomic DNA G+C content of the isolate was 52.8 mol%. The biochemical characteristics of strain W1 T assessed by the API 20E and Biolog GEN III analysis were different from those of the members of the genus Serratia. On the basis of the phenotypic and genotypic differences, strain W1 was proposed to be a novel Serratia species, Serratia bozhouensis sp. nov W1 T .

  14. Influence of culture conditions and medium composition on the production of antibacterial compounds by marine Serratia sp. WPRA3.

    PubMed

    Jafarzade, Mahtab; Yahya, Nur Ain; Shayesteh, Fatemeh; Usup, Gires; Ahmad, Asmat

    2013-06-01

    This study was undertaken to investigate the influence of culture conditions and medium components on production of antibacterial compounds by Serratia sp. WPRA3 (JX020764) which was isolated from marine water of Port Dickson, Malaysia. Biochemical, morphological, and molecular characteristics suggested that the isolate is a new candidate of the Serratia sp. The isolate showed strong antimicrobial activity against fungi, Gram-negative and Gram-positive bacteria. This bacterium exhibited optimum antibacterial compounds production at 28°C, pH 7 and 200 rev/min aeration during 72 h of incubation period. Highest antibacterial activity was obtained when sodium chloride (2%), yeast extract (0.5%), and glucose concentration (0.75%) were used as salt, nitrogen, and carbon sources respectively. Different active fractions were obtained by Thin-Layer Chromatography (TLC) and Flash Column Chromatography (FCC) from ethyl acetate crude extracts namely OCE and RCE in different culture conditions, OCE (pH 5, 200 rev/min) and RCE (pH 7/without aeration). In conclusion, the results suggested different culture conditions have a significant impact on the types of secondary metabolites produced by the bacterium.

  15. Control of damping-off of organic and conventional cucumber with extracts from a plant-associated bacterium rivals a seed treatment pesticide

    USDA-ARS?s Scientific Manuscript database

    Environmentally friendly control measures are needed for soilborne diseases of crops grown in organic and conventional production systems. We tested ethanol extracts from cultures of Serratia marcescens N4-5 and N2-4, Burkholderia cepacia BC-1 and BC-2, and B. ambifaria BC-F for control of damping-o...

  16. Biodegradation of methyl parathion and p-nitrophenol: evidence for the presence of a p-nitrophenol 2-hydroxylase in a Gram-negative Serratia sp. strain DS001.

    PubMed

    Pakala, Suresh B; Gorla, Purushotham; Pinjari, Aleem Basha; Krovidi, Ravi Kumar; Baru, Rajasekhar; Yanamandra, Mahesh; Merrick, Mike; Siddavattam, Dayananda

    2007-01-01

    A soil bacterium capable of utilizing methyl parathion as sole carbon and energy source was isolated by selective enrichment on minimal medium containing methyl parathion. The strain was identified as belonging to the genus Serratia based on a phylogram constructed using the complete sequence of the 16S rRNA. Serratia sp. strain DS001 utilized methyl parathion, p-nitrophenol, 4-nitrocatechol, and 1,2,4-benzenetriol as sole carbon and energy sources but could not grow using hydroquinone as a source of carbon. p-Nitrophenol and dimethylthiophosphoric acid were found to be the major degradation products of methyl parathion. Growth on p-nitrophenol led to release of stoichiometric amounts of nitrite and to the formation of 4-nitrocatechol and benzenetriol. When these catabolic intermediates of p-nitrophenol were added to resting cells of Serratia sp. strain DS001 oxygen consumption was detected whereas no oxygen consumption was apparent when hydroquinone was added to the resting cells suggesting that it is not part of the p-nitrophenol degradation pathway. Key enzymes involved in degradation of methyl parathion and in conversion of p-nitrophenol to 4-nitrocatechol, namely parathion hydrolase and p-nitrophenol hydroxylase component "A" were detected in the proteomes of the methyl parathion and p-nitrophenol grown cultures, respectively. These studies report for the first time the existence of a p-nitrophenol hydroxylase component "A", typically found in Gram-positive bacteria, in a Gram-negative strain of the genus Serratia.

  17. Development of Quantitative Real-Time PCR Assays for Detection and Quantification of Surrogate Biological Warfare Agents in Building Debris and Leachate▿

    PubMed Central

    Saikaly, Pascal E.; Barlaz, Morton A.; de los Reyes, Francis L.

    2007-01-01

    Evaluation of the fate and transport of biological warfare (BW) agents in landfills requires the development of specific and sensitive detection assays. The objective of the current study was to develop and validate SYBR green quantitative real-time PCR (Q-PCR) assays for the specific detection and quantification of surrogate BW agents in synthetic building debris (SBD) and leachate. Bacillus atrophaeus (vegetative cells and spores) and Serratia marcescens were used as surrogates for Bacillus anthracis (anthrax) and Yersinia pestis (plague), respectively. The targets for SYBR green Q-PCR assays were the 16S-23S rRNA intergenic transcribed spacer (ITS) region and recA gene for B. atrophaeus and the gyrB, wzm, and recA genes for S. marcescens. All assays showed high specificity when tested against 5 ng of closely related Bacillus and Serratia nontarget DNA from 21 organisms. Several spore lysis methods that include a combination of one or more of freeze-thaw cycles, chemical lysis, hot detergent treatment, bead beat homogenization, and sonication were evaluated. All methods tested showed similar threshold cycle values. The limit of detection of the developed Q-PCR assays was determined using DNA extracted from a pure bacterial culture and DNA extracted from sterile water, leachate, and SBD samples spiked with increasing quantities of surrogates. The limit of detection for B. atrophaeus genomic DNA using the ITS and B. atrophaeus recA Q-PCR assays was 7.5 fg per PCR. The limits of detection of S. marcescens genomic DNA using the gyrB, wzm, and S. marcescens recA Q-PCR assays were 7.5 fg, 75 fg, and 7.5 fg per PCR, respectively. Quantification of B. atrophaeus vegetative cells and spores was linear (R2 > 0.98) over a 7-log-unit dynamic range down to 101 B. atrophaeus cells or spores. Quantification of S. marcescens (R2 > 0.98) was linear over a 6-log-unit dynamic range down to 102 S. marcescens cells. The developed Q-PCR assays are highly specific and sensitive and can

  18. Serratia sp. bacteremia in Canberra, Australia: a population-based study over 10 years.

    PubMed

    Engel, H J; Collignon, P J; Whiting, P T; Kennedy, K J

    2009-07-01

    The purpose of this paper was to determine the population incidence and clinical features of Serratia sp. bacteremia in Canberra, Australia. Demographic and clinical data were collected prospectively for episodes of Serratia sp. bacteremia over a 10-year period, and was confined to Canberra residents using residential postal codes. Thirty-eight episodes of Serratia sp. bacteremia occurred, with a yearly incidence of 1.03 per 100,000 population. The majority of episodes occurred in males (68%). The respiratory tract was the most common focus of infection (21%). Twenty-nine percent of episodes were community-associated. A further 18% of episodes had their onset in the community but were healthcare-associated. The 7-day and 6-month mortality rates were 5 and 37%, respectively. Antibiotic resistance to gentamicin (3%) and ciprofloxacin (0%) was low. Serratia sp. bacteremia is more common than generally appreciated, with a large proportion (47%) of episodes having their onset in the community.

  19. Biosynthesis of the acetyl‐CoA carboxylase‐inhibiting antibiotic, andrimid in Serratia is regulated by Hfq and the LysR‐type transcriptional regulator, AdmX

    PubMed Central

    Nogellova, Veronika; Morel, Bertrand; Krell, Tino

    2016-01-01

    Summary Infections due to multidrug‐resistant bacteria represent a major global health challenge. To co