Sample records for bacterial strains streptococcus

  1. Role of Streptococcus sanguinis sortase A in bacterial colonization.

    PubMed

    Yamaguchi, Masaya; Terao, Yutaka; Ogawa, Taiji; Takahashi, Toshihito; Hamada, Shigeyuki; Kawabata, Shigetada

    2006-10-01

    Streptococcus sanguinis, a normal inhabitant of the human oral cavity, has low cariogenicity, though colonization on tooth surfaces by this bacterium initiates aggregation by other oral bacteria and maturation of dental plaque. Additionally, S. sanguinis is frequently isolated from infective endocarditis patients. We investigated the functions of sortase A (SrtA), which cleaves LPXTG-containing proteins and anchors them to the bacterial cell wall, as a possible virulence factor of S. sanguinis. We identified the srtA gene of S. sanguinis by searching a homologous gene of Streptococcus mutans in genome databases. Next, we constructed an srtA-deficient mutant strain of S. sanguinis by insertional inactivation and compared it to the wild type strain. In the case of the mutant strain, some surface proteins could not anchor to the cell wall and were partially released into the culture supernatant. Furthermore, adherence to saliva-coated hydroxyapatite beads and polystyrene plates, as well as adherence to and invasion of human epithelial cells were reduced significantly in the srtA-deficient strain when compared to the wild type. In addition, antiopsonization levels and bacterial survival of the srtA-deficient mutant were decreased in human whole blood. This is the first known study to report that SrtA contributes to antiopsonization in streptococci. Our results suggest that SrtA anchors surface adhesins as well as some proteins that function as antiopsonic molecules as a means of evading the human immune system. Furthermore, they demonstrate that SrtA of S. sanguinis plays important roles in bacterial colonization.

  2. Complete Genome Sequence of Streptococcus pneumoniae Strain A026, a Clinical Multidrug-Resistant Isolate Carrying Tn2010

    PubMed Central

    Sui, Zhihai; Zhou, Wenqing; Yao, Kaihu; Liu, Li; Zhang, Gang; Yang, Yonghong

    2013-01-01

    Streptococcus pneumoniae is a primary cause of bacterial infection in humans. Here, we present the complete genome sequence of S. pneumoniae strain A026, which is a multidrug-resistant strain isolated from cerebrospinal fluid. PMID:24336372

  3. Immunoelectrophoretic study of cell surface antigens from different Streptococcus mutans serotypes and Streptococcus sanguis.

    PubMed

    Ogier, J A; Klein, J P; Niddam, R; Frank, R M

    1985-06-01

    Antigens prepared from culture supernatants or whole cells of several cariogenic strains were examined by immunoelectrophoresis for their crossed antigenicity, with reference to Streptococcus mutans OMZ175, serotype f. Crossed immunoelectrophoresis revealed a crossreactivity between soluble extracellular and wall associated antigens of six strains of Streptococcus mutans and one strain of Streptococcus sanguis. Protease destroyed the immunoreactivity of crossreactive antigens. One of them was shown to be localized on the bacterial surface.

  4. Streptococcus tangierensis sp. nov. and Streptococcus cameli sp. nov., two novel Streptococcus species isolated from raw camel milk in Morocco.

    PubMed

    Kadri, Zaina; Vandamme, Peter; Ouadghiri, Mouna; Cnockaert, Margo; Aerts, Maarten; Elfahime, El Mostafa; Farricha, Omar El; Swings, Jean; Amar, Mohamed

    2015-02-01

    Biochemical and molecular genetic studies were performed on two unidentified Gram-stain positive, catalase and oxidase negative, non-hemolytic Streptococcus-like organisms recovered from raw camel milk in Morocco. Phenotypic characterization and comparative 16S rRNA gene sequencing demonstrated that the two strains were highly different from each other and that they did not correspond to any recognized species of the genus Streptococcus. Phylogenetic analysis based on 16S rRNA gene sequences showed the unidentified organisms each formed a hitherto unknown sub-line within the genus Streptococcus, displaying a close affinity with Streptococcus moroccensis, Streptococcus minor and Streptococcus ovis. DNA G+C content determination, MALDI-TOF mass spectrometry and biochemical tests demonstrated the bacterial isolates represent two novel species. Based on the phenotypic distinctiveness of the new bacteria and molecular genetic evidence, it is proposed to classify the two strains as Streptococcus tangierensis sp. nov., with CCMM B832(T) (=LMG 27683(T)) as the type strain, and Streptococcus cameli sp. nov., with CCMM B834(T) (=LMG 27685(T)) as the type strain.

  5. Streptococcus suis serotype 9 strain GZ0565 contains a type VII secretion system putative substrate EsxA that contributes to bacterial virulence and a vanZ-like gene that confers resistance to teicoplanin and dalbavancin in Streptococcus agalactiae.

    PubMed

    Lai, Liying; Dai, Jiao; Tang, Huanyu; Zhang, Shouming; Wu, Chunyan; Qiu, Wancen; Lu, Chengping; Yao, Huochun; Fan, Hongjie; Wu, Zongfu

    2017-06-01

    Streptococcus suis (SS), an important pathogen for pigs, is not only considered as a zoonotic agent for humans, but is also recognized as a major reservoir of antimicrobial resistance contributing to the spread of resistance genes to other pathogenic Streptococcus species. In addition to serotype 2 (SS2), serotype 9 (SS9) is another prevalent serotype isolated from diseased pigs. Although many SS strains have been sequenced, the complete genome of a non-SS2 virulent strain has been unavailable to date. Here, we report the complete genome of GZ0565, a virulent strain of SS9, isolated from a pig with meningitis. Comparative genomic analysis revealed five new putative virulence or antimicrobial resistance-associated genes in strain GZ0565 but not in SS2 virulent strains. These five genes encode a putative triacylglycerol lipase, a TipAS antibiotic-recognition domain protein, a putative TetR family transcriptional repressor, a protein containing a LPXTG domain and a G5 domain, and a type VII secretion system (T7SS) putative substrate (EsxA), respectively. Western blot analysis showed that strain GZ0565 can secrete EsxA. We generated an esxA deletion mutant and showed that EsxA contributes to SS virulence in a mouse infection model. Additionally, the antibiotic resistance gene vanZ SS was identified and expression of vanZ SS conferred resistance to teicoplanin and dalbavancin in Streptococcus agalactiae. We believe this is the first experimental demonstration of the existence of the T7SS putative substrate EsxA and its contribution to bacterial virulence in SS. Together, our results contribute to further understanding of the virulence and antimicrobial resistance characteristics of SS. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Phenotypic and genotypic discrepancy of Streptococcus pneumoniae strains isolated from Asian countries.

    PubMed

    Ko, Kwan Soo; Oh, Won Sup; Peck, Kyong Ran; Lee, Jang Ho; Lee, Nam Yong; Song, Jae-Hoon

    2005-07-01

    Non-typeable isolates of Streptococcus pneumoniae collected from Asian countries were characterized by optochin susceptibility test, bile solubility test, multilocus sequence typing of housekeeping genes, amplification of virulence-related genes, 16S rDNA-RsaI digestion, and 16S rDNA sequencing. Six of 54 non-typeable pneumococcal isolates showed divergence of gene sequences of recP and xpt from typical pneumococcal strains. Of these six atypical pneumococcal strains, two showed different results in optochin susceptibility or bile solubility test from typical pneumococcal strains. All six isolates showed high sequence dissimilarities of multilocus sequence typing, 16S rDNA sequences, and lytA sequences from typical S. pneumoniae strains. Data from this study suggest that classic tests such as optochin susceptibility and bile solubility tests may lead to incorrect identification of S. pneumoniae. These atypical strains may belong to different bacterial species from S. pneumoniae.

  7. Potential Factors Enabling Human Body Colonization by Animal Streptococcus dysgalactiae subsp. equisimilis Strains.

    PubMed

    Ciszewski, Marcin; Szewczyk, Eligia M

    2017-05-01

    Streptococcus dysgalactiae subsp. equisimilis (SDSE) is a pyogenic, Lancefield C or G streptococcal pathogen. Until recently, it has been considered as an exclusive animal pathogen. Nowadays, it is responsible for both animal infections in wild animals, pets, and livestock and human infections often clinically similar to the ones caused by group A streptococcus (Streptococcus pyogenes). The risk of zoonotic infection is the most significant in people having regular contact with animals, such as veterinarians, cattlemen, and farmers. SDSE is also prevalent on skin of healthy dogs, cats, and horses, which pose a risk also to people having contact with companion animals. The main aim of this study was to evaluate if there are features differentiating animal and human SDSE isolates, especially in virulence factors involved in the first stages of pathogenesis (adhesion and colonization). Equal groups of human and animal SDSE clinical strains were obtained from superficial infections (skin, wounds, abscesses). The presence of five virulence genes (prtF1, prtF2, lmb, cbp, emm type) was evaluated, as well as ability to form bacterial biofilm and produce BLIS (bacteriocin-like inhibitory substances) which are active against human skin microbiota. The study showed that the presence of genes coding for fibronectin-binding protein and M protein, as well as BLIS activity inhibiting the growth of Corynebacterium spp. strains might constitute the virulence factors which are necessary to colonize human organism, whereas they are not crucial in animal infections. Those virulence factors might be horizontally transferred from human streptococci to animal SDSE strains, enabling their ability to colonize human organism.

  8. Understanding the bacterial polysaccharide antigenicity of Streptococcus agalactiae versus Streptococcus pneumoniae.

    PubMed

    Kadirvelraj, Renuka; Gonzalez-Outeiriño, Jorge; Foley, B Lachele; Beckham, Meredith L; Jennings, Harold J; Foote, Simon; Ford, Michael G; Woods, Robert J

    2006-05-23

    Bacterial surface capsular polysaccharides (CPS) that are similar in carbohydrate sequence may differ markedly in immunogenicity and antigenicity. The structural origin of these phenomena is poorly understood. Such a case is presented by the Gram-positive bacteria Streptococcus agalactiae (Group B Streptococcus; GBS) type III (GBSIII) and Streptococcus pneumoniae (Pn) type 14 (Pn14), which share closely related CPS sequences. Nevertheless, antibodies (Abs) against GBSIII rarely cross-react with the CPS from Pn14. To establish the origin for the variation in CPS antigenicity, models for the immune complexes of CPS fragments from GBSIII and Pn14, with the variable fragment (Fv) of a GBS-specific mAb (mAb 1B1), are presented. The complexes are generated through a combination of comparative Ab modeling and automated ligand docking, followed by explicitly solvated 10-ns molecular dynamics simulations. The relationship between carbohydrate sequence and antigenicity is further quantified through the computation of interaction energies using the Molecular Mechanics-Generalized Born Surface Area (MM-GBSA) method, augmented by conformational entropy estimates. Despite the electrostatic differences between Pn14 and GBSIII CPS, analysis indicates that entropic penalties are primarily responsible for the loss of affinity of the highly flexible Pn14 CPS for mAb 1B1. The similarity of the solution conformation of the relatively rigid GBSIII CPS with that in the immune complex characterizes the previously undescribed 3D structure of the conformational epitope. The analysis provides a comprehensive interpretation for a large body of biochemical and immunological data related to Ab recognition of bacterial polysaccharides and should be applicable to other Ab-carbohydrate interactions.

  9. Attenuation of Streptococcus suis virulence by the alteration of bacterial surface architecture

    PubMed Central

    Feng, Youjun; Cao, Min; Shi, Jie; Zhang, Huimin; Hu, Dan; Zhu, Jing; Zhang, Xianyun; Geng, Meiling; Zheng, Feng; Pan, Xiuzhen; Li, Xianfu; Hu, Fuquan; Tang, Jiaqi; Wang, Changjun

    2012-01-01

    NeuB, a sialic acid synthase catalyzes the last committed step of the de novo biosynthetic pathway of sialic acid, a major element of bacterial surface structure. Here we report a functional NeuB homologue of Streptococcus suis, a zoonotic agent, and systematically address its molecular and immunological role in bacterial virulence. Disruption of neuB led to thinner capsules and more susceptibility to pH, and cps2B inactivation resulted in complete absence of capsular polysaccharides. These two mutants both exhibited increased adhesion and invasion to Hep-2 cells and improved sensibility to phagocytosis. Not only do they retain the capability of inducing the release of host pro-inflammatory cytokines, but also result in the faster secretion of IL-8. Easier cleaning up of the mutant strains in whole blood is consistent with virulence attenuation seen with experimental infections of both mice and SPF-piglets. Therefore we concluded that altered architecture of S. suis surface attenuates its virulence. PMID:23050094

  10. Diethylaminoethyl-cellulose-bacterial cell immunoadsorbent columns: preparation of serotype-specific globulin and immunofluorescent conjugates for Streptococcus mutans serotypes a and d.

    PubMed

    McKinney, R M; Thacker, L

    1976-04-01

    Diethylaminoethyl (DEAE)-cellulose was used as a support material for preparing bacterial cell columns. Pretreatment of the bacterial cells with formalin was essential in obtaining satisfactory adherence of the cells to DEAE-cellulose. Cross-reacting antibodies were removed from antibody preparations against strains of Streptococcus mutans serotypes a and d by adsorption on appropriate bacterial cell columns. S. mutans serotype d was further divided into two subtypes on the basis of immunofluorescent staining with conjugates of immunospecifically adsorbed immunoglobulin G. The DEAE-cellulose-bacterial cell columns were regenerated after use by desorbing the cross-reacting antibodies with low-pH buffer and were used repeatedly over and 18-month period with no detectable loss in effectiveness.

  11. Using PCR-based detection and genotyping to trace Streptococcus salivarius meningitis outbreak strain to oral flora of radiology physician assistant.

    PubMed

    Srinivasan, Velusamy; Gertz, Robert E; Shewmaker, Patricia L; Patrick, Sarah; Chitnis, Amit S; O'Connell, Heather; Benowitz, Isaac; Patel, Priti; Guh, Alice Y; Noble-Wang, Judith; Turabelidze, George; Beall, Bernard

    2012-01-01

    We recently investigated three cases of bacterial meningitis that were reported from a midwestern radiology clinic where facemasks were not worn during spinal injection of contrast agent during myelography procedures. Using pulsed field gel electrophoresis we linked a case strain of S. salivarius to an oral specimen of a radiology physician assistant (RPA). We also used a real-time PCR assay to detect S. salivarius DNA within a culture-negative cerebrospinal fluid (CSF) specimen. Here we extend this investigation through using a nested PCR/sequencing strategy to link the culture-negative CSF specimen to the case strain. We also provide validation of the real-time PCR assay used, demonstrating that it is not solely specific for Streptococcus salivarius, but is also highly sensitive for detection of the closely related oral species Streptococcus vestibularis. Through using multilocus sequence typing and 16S rDNA sequencing we further strengthen the link between the CSF case isolate and the RPA carriage isolate. We also demonstrate that the newly characterized strains from this study are distinct from previously characterized S. salivarius strains associated with carriage and meningitis.

  12. Genetic analysis of fructan-hyperproducing strains of Streptococcus mutans.

    PubMed Central

    Kiska, D L; Macrina, F L

    1994-01-01

    Fructan polymer, synthesized from sucrose by the extracellular fructosyltransferase of Streptococcus mutans, is thought to contribute to the progression of dental caries. It may serve as an extracellular storage polysaccharide facilitating survival and acid production. It may also have a role in adherence or accumulation of bacterial cells on the tooth surface. A number of clinical isolates of S. mutans which produce large, mucoid colonies on sucrose-containing agar as a result of increased production of fructan have been discovered. By using eight independent isolates, we sought to determine if such fructan-hyperproducing strains represented a genetically homogeneous group of organisms. Restriction fragment patterns of total cellular DNA were examined by using pulsed-field and conventional gel electrophoresis. Four genetic types which appeared to correlate with the serotype of the organism and the geographic site of isolation were evident. Southern blot analysis of several genetic loci for extracellular enzymes revealed some minor differences between the strains, but the basic genomic organizations of these loci were similar. To evaluate whether the excess fructan produced by these strains enhanced the virulence of these organisms in the oral cavity, it was of interest to create mutants deficient in fructosidase (FruA), the extracellular enzyme which degrades this polymer. The fruA gene was inactivated by allelic exchange in two fructan-hyperproducing strains as well as in S. mutans GS5, a strain which does not hyperproduce fructan. All of the fruA mutant strains were devoid of fructan hydrolase activity when levan was used as a substrate. However, the fructan-hyperproducing strains retained the ability to hydrolyze inulin, suggesting the presence of a second fructosidase with specificity for inulin in these strains. Images PMID:7911782

  13. Molecular genetic anatomy of inter- and intraserotype variation in the human bacterial pathogen group A Streptococcus.

    PubMed

    Beres, Stephen B; Richter, Ellen W; Nagiec, Michal J; Sumby, Paul; Porcella, Stephen F; DeLeo, Frank R; Musser, James M

    2006-05-02

    In recent years we have studied the relationship between strain genotypes and patient phenotypes in group A Streptococcus (GAS), a model human bacterial pathogen that causes extensive morbidity and mortality worldwide. We have concentrated our efforts on serotype M3 organisms because these strains are common causes of pharyngeal and invasive infections, produce unusually severe invasive infections, and can exhibit epidemic behavior. Our studies have been hindered by the lack of genome-scale phylogenies of multiple GAS strains and whole-genome sequences of multiple serotype M3 strains recovered from individuals with defined clinical phenotypes. To remove some of these impediments, we sequenced to closure the genome of four additional GAS strains and conducted comparative genomic resequencing of 12 contemporary serotype M3 strains representing distinct genotypes and phenotypes. Serotype M3 strains are a single phylogenetic lineage. Strains from asymptomatic throat carriers were significantly less virulent for mice than sterile-site isolates and evolved to a less virulent phenotype by multiple genetic pathways. Strain persistence or extinction between epidemics was strongly associated with presence or absence, respectively, of the prophage encoding streptococcal pyrogenic exotoxin A. A serotype M3 clone significantly underrepresented among necrotizing fasciitis cases has a unique frameshift mutation that truncates MtsR, a transcriptional regulator controlling expression of genes encoding iron-acquisition proteins. Expression microarray analysis of this clone confirmed significant alteration in expression of genes encoding iron metabolism proteins. Our analysis provided unprecedented detail about the molecular anatomy of bacterial strain genotype-patient phenotype relationships.

  14. Differences in Carbohydrates Utilization and Antibiotic Resistance Between Streptococcus macedonicus and Streptococcus thermophilus Strains Isolated from Dairy Products in Italy.

    PubMed

    Tarrah, Armin; Treu, Laura; Giaretta, Sabrina; Duarte, Vinicius; Corich, Viviana; Giacomini, Alessio

    2018-06-18

    Streptococcus thermophilus and S. macedonicus are the only two species of the genus related to food productions so far known. In the present study, eight S. thermophilus and seven S. macedonicus strains isolated from dairy environments in Italy were compared in order to evidence possible species-specific technological characteristics. Their capability to use lactose, galactose, fructose, and glucose, sugars commonly present in foods and two carbohydrates considered as prebiotics, xylose and inulin, along with the respective growth kinetics were studied. Results showed a luxuriant growth on lactose and different behaviors on galactose, glucose, and fructose. No growth on inulin and xylose was recorded, which is a positive feature for strains intended to be used as starter cultures. Growth parameters, namely, λ, µ max , and N max , were estimated by using the Gompertz model. Antibiotic resistance to 14 drugs revealed an overall similar behavior between the two species with only a marked difference regarding gentamycin. Antimicrobial activity was also tested against six deleterious bacterial strains, but none of the strains evidenced inhibitory capabilities. The results presented here could be helpful to compare technological potentialities of the two species and to choose strains of the most suitable species for selected microbiological food transformations.

  15. Antibiotic Susceptibilities of Genetically Characterized Streptococcus milleri Group Strains

    PubMed Central

    Tracy, Michael; Wanahita, Anna; Shuhatovich, Yevgeny; Goldsmith, Elizabeth A.; Clarridge, Jill E.; Musher, Daniel M.

    2001-01-01

    Previous studies of the antibiotic susceptibility of Streptococcus milleri group organisms have distinguished among species by using phenotypic techniques. Using 44 isolates that were speciated by 16S rRNA gene sequencing, we studied the MICs and minimum bactericidal concentrations of penicillin, ampicillin, ceftriaxone, and clindamycin for Streptococcus intermedius, Streptococcus constellatus, and Streptococcus anginosus. None of the organisms was resistant to beta-lactam antibiotics, although a few isolates were intermediately resistant; one strain of S. anginosus was tolerant to ampicillin, and another was tolerant to ceftriaxone. Six isolates were resistant to clindamycin, with representation from each of the three species. Relatively small differences in antibiotic susceptibilities among species of the S. milleri group show that speciation is unlikely to be important in selecting an antibiotic to treat infection caused by one of these isolates. PMID:11302819

  16. M-Ficolin Binds Selectively to the Capsular Polysaccharides of Streptococcus pneumoniae Serotypes 19B and 19C and of a Streptococcus mitis Strain

    PubMed Central

    Kjaer, Troels R.; Hansen, Annette G.; Sørensen, Uffe B. S.; Holm, Anne T.; Sørensen, Grith L.; Jensenius, Jens C.

    2013-01-01

    The three human ficolins (H-, L-, and M-ficolins) and mannan-binding lectin are pattern recognition molecules of the innate immune system mediating activation of the lectin pathway of the complement system. These four human proteins bind to some microorganisms and may be involved in the resolution of infections. We investigated binding selectivity by examining the binding of M-ficolin to a panel of more than 100 different streptococcal strains (Streptococcus pneumoniae and Streptococcus mitis), each expressing distinct polysaccharide structures. M-ficolin binding was observed for three strains only: strains of the pneumococcal serotypes 19B and 19C and a single S. mitis strain expressing a similar polysaccharide structure. The bound M-ficolin, in association with MASP-2, mediated the cleavage of complement factor C4. Binding to the bacteria was inhibitable by N-acetylglucosamine, indicating that the interaction with the bacterial surface takes place via the fibrinogen-like domain. The common N-acetylmannosamine residue present in the structures of the four capsular polysaccharides of group 19 is linked via a phosphodiester bond. This residue is apparently not a ligand for M-ficolin, since the lectin binds to two of the group 19 polysaccharides only. M-ficolin bound strongly to serotype 19B and 19C polysaccharides. In contrast to those of serotypes 19A and 19F, serotype 19B and 19C polysaccharides contain an extra N-acetylmannosamine residue linked via glycoside linkage only. Thus, this extra residue seems to be the M-ficolin ligand. In conclusion, we were able to demonstrate specific binding of M-ficolin to some capsular polysaccharides of the opportunistic pathogen S. pneumoniae and of the commensal bacterium S. mitis. PMID:23184524

  17. Streptococcus iniae and Streptococcus agalactiae

    USDA-ARS?s Scientific Manuscript database

    Streptococcus iniae and S. agalactiae are economically important Gram positive bacterial pathogens of cultured and wild fish with a worldwide distribution. Both bacteria are potential zoonotic pathogens and have been associated most often with infections in immunocompromised people. Streptococcus in...

  18. Draft genome sequences of Streptococcus bovis strains ATCC 33317 and JB1

    USDA-ARS?s Scientific Manuscript database

    We report the draft genome sequences of Streptococcus bovis type strain ATTC 33317 (CVM42251) isolated from cow dung and strain JB1 (CVM42252) isolated from a cow rumen in 1977. Strains were subjected to Next Generation sequencing and the genome sizes are approximately 2 MB and 2.2 MB, respectively....

  19. Characterization of salivary alpha-amylase binding to Streptococcus sanguis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scannapieco, F.A.; Bergey, E.J.; Reddy, M.S.

    1989-09-01

    The purpose of this study was to identify the major salivary components which interact with oral bacteria and to determine the mechanism(s) responsible for their binding to the bacterial surface. Strains of Streptococcus sanguis, Streptococcus mitis, Streptococcus mutans, and Actinomyces viscosus were incubated for 2 h in freshly collected human submandibular-sublingual saliva (HSMSL) or parotid saliva (HPS), and bound salivary components were eluted with 2% sodium dodecyl sulfate. By sodium dodecyl sulfate-polyacrylamide gel electrophoresis and Western transfer, alpha-amylase was the prominent salivary component eluted from S. sanguis. Studies with {sup 125}I-labeled HSMSL or {sup 125}I-labeled HPS also demonstrated a componentmore » with an electrophoretic mobility identical to that of alpha-amylase which bound to S. sanguis. Purified alpha-amylase from human parotid saliva was radiolabeled and found to bind to strains of S. sanguis genotypes 1 and 3 and S. mitis genotype 2, but not to strains of other species of oral bacteria. Binding of ({sup 125}I)alpha-amylase to streptococci was saturable, calcium independent, and inhibitable by excess unlabeled alpha-amylases from a variety of sources, but not by secretory immunoglobulin A and the proline-rich glycoprotein from HPS. Reduced and alkylated alpha-amylase lost enzymatic and bacterial binding activities. Binding was inhibited by incubation with maltotriose, maltooligosaccharides, limit dextrins, and starch.« less

  20. Type I Interferon Induced by Streptococcus suis Serotype 2 is Strain-Dependent and May Be Beneficial for Host Survival

    PubMed Central

    Auger, Jean-Philippe; Santinón, Agustina; Roy, David; Mossman, Karen; Xu, Jianguo; Segura, Mariela; Gottschalk, Marcelo

    2017-01-01

    Streptococcus suis serotype 2 is an important porcine bacterial pathogen and emerging zoonotic agent mainly responsible for sudden death, septic shock, and meningitis, with exacerbated inflammation being a hallmark of the infection. However, serotype 2 strains are genotypically and phenotypically heterogeneous, being composed of a multitude of sequence types (STs) whose virulence greatly varies: the virulent ST1 (Eurasia), highly virulent ST7 (responsible for the human outbreaks in China), and intermediate virulent ST25 (North America) are the most important worldwide. Even though type I interferons (IFNs) are traditionally associated with important antiviral functions, recent studies have demonstrated that they may also play an important role during infections with extracellular bacteria. Upregulation of IFN-β levels was previously observed in mice following infection with this pathogen. Consequently, the implication of IFN-β in the S. suis serotype 2 pathogenesis, which has always been considered a strict extracellular bacterium, was evaluated using strains of varying virulence. This study demonstrates that intermediate virulent strains are significantly more susceptible to phagocytosis than virulent strains. Hence, subsequent localization of these strains within the phagosome results in recognition of bacterial nucleic acids by Toll-like receptors 7 and 9, leading to activation of the interferon regulatory factors 1, 3, and 7 and production of IFN-β. Type I IFN, whose implication depends on the virulence level of the S. suis strain, is involved in host defense by participating in the modulation of systemic inflammation, which is responsible for the clearance of blood bacterial burden. As such, when induced by intermediate, and to a lesser extent, virulent S. suis strains, type I IFN plays a beneficial role in host survival. The highly virulent ST7 strain, however, hastily induces a septic shock that cannot be controlled by type I IFN, leading to rapid death

  1. Short communication: Conservation of Streptococcus uberis adhesion molecule and the sua gene in strains of Streptococcus uberis isolated from geographically diverse areas.

    PubMed

    Yuan, Ying; Dego, Oudessa Kerro; Chen, Xueyan; Abadin, Eurife; Chan, Shangfeng; Jory, Lauren; Kovacevic, Steven; Almeida, Raul A; Oliver, Stephen P

    2014-12-01

    The objective was to identify and sequence the sua gene (GenBank no. DQ232760; http://www.ncbi.nlm.nih.gov/genbank/) and detect Streptococcus uberis adhesion molecule (SUAM) expression by Western blot using serum from naturally S. uberis-infected cows in strains of S. uberis isolated in milk from cows with mastitis from geographically diverse areas of the world. All strains evaluated yielded a 4.4-kb sua-containing PCR fragment that was subsequently sequenced. Deduced SUAM AA sequences from those S. uberis strains evaluated shared >97% identity. The pepSUAM sequence located at the N terminus of SUAM was >99% identical among strains of S. uberis. Streptococcus uberis adhesion molecule expression was detected in all strains of S. uberis tested. These results suggest that sua is ubiquitous among strains of S. uberis isolated from diverse geographic locations and that SUAM is immunogenic. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  2. Streptococcus massiliensis in the human mouth: a phylogenetic approach for the inference of bacterial habitats.

    PubMed

    Póntigo, F; Silva, C; Moraga, M; Flores, S V

    2015-12-29

    Streptococcus is a diverse bacterial lineage. Species of this genus occupy a myriad of environments inside humans and other animals. Despite the elucidation of several of these habitats, many remain to be identified. Here, we explore a methodological approach to reveal unknown bacterial environments. Specifically, we inferred the phylogeny of the Mitis group by analyzing the sequences of eight genes. In addition, information regarding habitat use of species belonging to this group was obtained from the scientific literature. The oral cavity emerged as a potential, previously unknown, environment of Streptococcus massiliensis. This phylogeny-based prediction was confirmed by species-specific polymerase chain reaction (PCR) amplification. We propose employing a similar approach, i.e., use of bibliographic data and molecular phylogenetics as predictive methods, and species-specific PCR as confirmation, in order to reveal other unknown habitats in further bacterial taxa.

  3. Streptococcus caprae sp. nov., isolated from Iberian ibex (Capra pyrenaica hispanica).

    PubMed

    Vela, A I; Mentaberre, G; Lavín, S; Domínguez, L; Fernández-Garayzábal, J F

    2016-01-01

    Biochemical and molecular genetic studies were performed on a novel Gram-stain-positive, catalase-negative, coccus-shaped organism isolated from tonsil samples of two Iberian ibexes. The micro-organism was identified as a streptococcal species based on its cellular, morphological and biochemical characteristics. 16S rRNA gene sequence comparison studies confirmed its identification as a member of the genus Streptococcus, but the organism did not correspond to any species of this genus. The nearest phylogenetic relative of the unknown coccus from ibex was Streptococcus porci 2923-03T (96.6 % 16S rRNA gene sequence similarity). Analysis based on rpoB and sodA gene sequences revealed sequence similarity values lower than 86.0 and 83.8 %, respectively, from the type strains of recognized Streptococcus species. The novel bacterial isolate was distinguished from Streptococcus porci and other Streptococcus species using biochemical tests. Based on both phenotypic and phylogenetic findings, it is proposed that the unknown bacterium be classified as representing a novel species of the genus Streptococcus, for which the name Streptococcus caprae sp. nov. is proposed. The type strain is DICM07-02790-1CT ( = CECT 8872T = CCUG 67170T).

  4. Controlled Human Infection for Vaccination Against Streptococcus Pyogenes

    ClinicalTrials.gov

    2018-06-26

    Streptococcus Pyogenes Pharyngitis; Streptococcus Pharyngitis; Strep Throat; Streptococcus Pyogenes Infection; Group A Streptococcus: B Hemolytic Pharyngitis; Group A Streptococcal Infection; Gram-Positive Bacterial Infections; Bacterial Infections

  5. Chemical interference with iron transport systems to suppress bacterial growth of Streptococcus pneumoniae.

    PubMed

    Yang, Xiao-Yan; Sun, Bin; Zhang, Liang; Li, Nan; Han, Junlong; Zhang, Jing; Sun, Xuesong; He, Qing-Yu

    2014-01-01

    Iron is an essential nutrient for the growth of most bacteria. To obtain iron, bacteria have developed specific iron-transport systems located on the membrane surface to uptake iron and iron complexes such as ferrichrome. Interference with the iron-acquisition systems should be therefore an efficient strategy to suppress bacterial growth and infection. Based on the chemical similarity of iron and ruthenium, we used a Ru(II) complex R-825 to compete with ferrichrome for the ferrichrome-transport pathway in Streptococcus pneumoniae. R-825 inhibited the bacterial growth of S. pneumoniae and stimulated the expression of PiuA, the iron-binding protein in the ferrichrome-uptake system on the cell surface. R-825 treatment decreased the cellular content of iron, accompanying with the increase of Ru(II) level in the bacterium. When the piuA gene (SPD_0915) was deleted in the bacterium, the mutant strain became resistant to R-825 treatment, with decreased content of Ru(II). Addition of ferrichrome can rescue the bacterial growth that was suppressed by R-825. Fluorescence spectral quenching showed that R-825 can bind with PiuA in a similar pattern to the ferrichrome-PiuA interaction in vitro. These observations demonstrated that Ru(II) complex R-825 can compete with ferrichrome for the ferrichrome-transport system to enter S. pneumoniae, reduce the cellular iron supply, and thus suppress the bacterial growth. This finding suggests a novel antimicrobial approach by interfering with iron-uptake pathways, which is different from the mechanisms used by current antibiotics.

  6. Serological and genetic examination of some nontypical Streptococcus mutans strains.

    PubMed

    Coykendall, A L; Bratthall, D; O'Connor, K; Dvarskas, R A

    1976-09-01

    Thirty-four strains of Streptococcus mutans whose antigenic or genetic positions were unclear or unknown with respect to the serological scheme of Bratthall (1970) and Perch et al. (1974), or the genetic (deoxyribonucleic acid base sequence homology) scheme of Coykendall were analyzed to clarify their relationship to previously well-characterized strains. Strain OMZ175 of the "new" serotype f was genetically homologous with strains of S. mutans subsp. mutans. Strains of the "new" serotype g were homologous with serotype d strains (S. mutans subsp. sobrinus). Strains isolated from wild rats constituted a new genetic group but carried the c antigen. Thus, strains within a "genospecies" (subspecies) of S. mutans may not always carry a unique or characteristic antigen. We suggest that the existence of multiple serotypes within subspecies represents antigenic variation and adaptations to hosts.

  7. Complete genome sequence of Streptococcus mutans GS-5, a serotype c strain.

    PubMed

    Biswas, Saswati; Biswas, Indranil

    2012-09-01

    Streptococcus mutans, a principal causative agent of dental caries, is considered to be the most cariogenic among all oral streptococci. Of the four S. mutans serotypes (c, e, f, and k), serotype c strains predominate in the oral cavity. Here, we present the complete genome sequence of S. mutans GS-5, a serotype c strain originally isolated from human carious lesions, which is extensively used as a laboratory strain worldwide.

  8. Short communication: technological and genotypic comparison between Streptococcus macedonicus and Streptococcus thermophilus strains coming from the same dairy environment.

    PubMed

    Blaiotta, G; Sorrentino, A; Ottombrino, A; Aponte, M

    2011-12-01

    The species Streptococcus thermophilus is widely used for the preparation of several dairy products, and its technological contribution is clear. On the other hand, although Streptococcus macedonicus was first described more than 10 yr ago and, despite the scientific interest around this issue, the exact role of Strep. macedonicus in cheese making has yet to be clarified. In this study, 121 strains belonging to both species and isolated from the same dairy environment were genetically characterized by random amplification of polymorphic DNA (RAPD)-PCR and compared for the main biochemical features of technological interest, such as acid production, galactose utilization, citrate metabolism, exopolysaccharide production, and lipolytic, ureolytic, exocellular proteolytic, and decarboxylasic activities. Analysis by RAPD-PCR highlighted a remarkable genotypic heterogeneity among strains in both species, and, at a similarity level of 78%, all the isolates and reference strains of Strep. thermophilus grouped together and were well separated from the strains of Strep. macedonicus, confirming that these 2 species are different microbial entities. Comparison between genetic and phenotypic or biotechnological data did not reveal any relationships. Copyright © 2011 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  9. Contribution of Streptococcus mutans Strains with Collagen-Binding Proteins in the Presence of Serum to the Pathogenesis of Infective Endocarditis

    PubMed Central

    Otsugu, Masatoshi; Matayoshi, Saaya; Teramoto, Noboru; Nakano, Kazuhiko

    2017-01-01

    ABSTRACT Streptococcus mutans, a major pathogen of dental caries, is considered one of the causative agents of infective endocarditis (IE). Recently, bacterial DNA encoding 120-kDa cell surface collagen-binding proteins (CBPs) has frequently been detected from S. mutans-positive IE patients. In addition, some of the CBP-positive S. mutans strains lacked a 190-kDa protein antigen (PA), whose absence strengthened the adhesion to and invasion of endothelial cells. The interaction between pathogenic bacteria and serum or plasma is considered an important virulence factor in developing systemic diseases; thus, we decided to analyze the pathogenesis of IE induced by S. mutans strains with different patterns of CBP and PA expression by focusing on the interaction with serum or plasma. CBP-positive (CBP+)/PA-negative (PA−) strains showed prominent aggregation in the presence of human serum or plasma, which was significantly greater than that with CBP+/PA-positive (PA+) and CBP-negative (CBP−)/PA+ strains. Aggregation of CBP+/PA− strains was also observed in the presence of a high concentration of type IV collagen, a major extracellular matrix protein in serum. In addition, aggregation of CBP+/PA− strains was drastically reduced when serum complement was inactivated. Furthermore, an ex vivo adherence model and an in vivo rat model of IE showed that extirpated heart valves infected with CBP+/PA− strains displayed prominent bacterial mass formation, which was not observed following infection with CBP+/PA+ and CBP−/PA+ strains. These results suggest that CBP+/PA− S. mutans strains utilize serum to contribute to their pathogenicity in IE. PMID:28947650

  10. The molecular identification of Streptococcus equi subsp. equi strains isolated within New Zealand.

    PubMed

    Patty, O A; Cursons, R T M

    2014-03-01

    To identify Streptococcus equi subsp. equi (S. equi) by PCR analysis and obtain isolates by culture, in order to investigate the strains of S. equi infecting horses within New Zealand. A diagnostic PCR, based on the amplification of the seeI gene for S. equi, was used on 168 samples submitted from horses with and without clinical signs of strangles. Samples were also processed and cultured on selective media for the isolation of β-haemolytic colonies. In addition, the hypervariable region of the seM gene of S. equi was amplified and then sequenced for strain typing purposes. Of the 168 samples, 35 tested positive for S. equi using PCR. Thirty-two confirmed samples were from horses with a clinical diagnosis of strangles and three were from horses where clinical information was unavailable. Only 22/35 (63%) confirmed S. equi samples were successfully isolated following culture. Strain typing demonstrated that two novel seM alleles of S. equi were found in New Zealand with SeM-99 strains being restricted to the North Island while SeM-100 strains were found in both North and South Islands. The application of PCR for the laboratory confirmation of strangles allowed for a rapid and sensitive identification of S. equi. Moreover, seM typing revealed that within the samples examined two strains of S. equi co-circulated within the North Island of New Zealand but only one strain in the South Island. PCR reduces the time required to obtain laboratory confirmation of strangles compared with culture methods. It also has greater sensitivity in detecting S. equi infections, which is of particular importance in the detection of carrier animals which normally shed low numbers of bacteria. Additionally, seM molecular typing can differentiate between bacterial strains, assisting in the monitoring of local strains of S. equi subsp. equi causing disease.

  11. Streptococcus mutans autolysin AtlA is a fibronectin-binding protein and contributes to bacterial survival in the bloodstream and virulence for infective endocarditis.

    PubMed

    Jung, Chiau-Jing; Zheng, Quan-Hau; Shieh, Ya-Hsiung; Lin, Chi-Shuan; Chia, Jean-San

    2009-11-01

    Streptococcus mutans, a commensal of the human oral cavity, can survive in the bloodstream and cause infective endocarditis (IE). However, the virulence factors associated with this manifestation of disease are not known. Here, we demonstrate that AtlA, an autolysin of S. mutans is a newly identified fibronectin (Fn) binding protein and contributes to bacterial resistance to phagocytosis and survival in the bloodstream. Interestingly, prior exposure to plasma at low concentrations was sufficient to enhance bacterial survival in the circulation. Calcium ions at physiological plasma concentrations induced maturation of AtlA from the 104-90 kDa isoform resulting in increased Fn binding and resistance to phagocytosis. An isogenic mutant strain defective in AtlA expression exhibited reduced survival and virulence when tested in a rat model of IE compared with the wild-type and complemented strains. The data presented suggest that plasma components utilized by S. mutans enhanced survival in the circulation and AtlA is a virulence factor associated with infective endocarditis.

  12. Distinct Biological Potential of Streptococcus gordonii and Streptococcus sanguinis Revealed by Comparative Genome Analysis.

    PubMed

    Zheng, Wenning; Tan, Mui Fern; Old, Lesley A; Paterson, Ian C; Jakubovics, Nicholas S; Choo, Siew Woh

    2017-06-07

    Streptococcus gordonii and Streptococcus sanguinis are pioneer colonizers of dental plaque and important agents of bacterial infective endocarditis (IE). To gain a greater understanding of these two closely related species, we performed comparative analyses on 14 new S. gordonii and 5 S. sanguinis strains using various bioinformatics approaches. We revealed S. gordonii and S. sanguinis harbor open pan-genomes and share generally high sequence homology and number of core genes including virulence genes. However, we observed subtle differences in genomic islands and prophages between the species. Comparative pathogenomics analysis identified S. sanguinis strains have genes encoding IgA proteases, mitogenic factor deoxyribonucleases, nickel/cobalt uptake and cobalamin biosynthesis. On the contrary, genomic islands of S. gordonii strains contain additional copies of comCDE quorum-sensing system components involved in genetic competence. Two distinct polysaccharide locus architectures were identified, one of which was exclusively present in S. gordonii strains. The first evidence of genes encoding the CylA and CylB system by the α-haemolytic S. gordonii is presented. This study provides new insights into the genetic distinctions between S. gordonii and S. sanguinis, which yields understanding of tooth surfaces colonization and contributions to dental plaque formation, as well as their potential roles in the pathogenesis of IE.

  13. Complete genome sequence of an attenuated Sparfloxacin resistant Streptococcus agalactiae strain 138spar

    USDA-ARS?s Scientific Manuscript database

    Through selection of resistance to sparfloxacin, an attenuated Streptococcus agalactiae strain 138spar was obtained from its virulent parent strain S. agalactiae 138P. The full genome of S. agalactiae 138spar is 1,838,126 bp. The availability of this genome will allow comparative genomics to identi...

  14. Streptococcus sanguinis induces neutrophil cell death by production of hydrogen peroxide

    PubMed Central

    Sumioka, Ryuichi; Nakata, Masanobu; Okahashi, Nobuo; Li, Yixuan; Wada, Satoshi; Yamaguchi, Masaya; Sumitomo, Tomoko; Hayashi, Mikako; Kawabata, Shigetada

    2017-01-01

    Streptococcus is the dominant bacterial genus in the human oral cavity and a leading cause of infective endocarditis. Streptococcus sanguinis belongs to the mitis group of streptococci and produces hydrogen peroxide (H2O2) by the action of SpxB, a pyruvate oxidase. In this study, we investigated the involvement of SpxB in survival of S. sanguinis in human blood and whether bacterial H2O2 exhibits cytotoxicity against human neutrophils. Results of a bactericidal test with human whole blood revealed that the spxB mutation in S. sanguinis is detrimental to its survival in blood. When S. sanguinis strains were exposed to isolated neutrophils, the bacterial survival rate was significantly decreased by spxB deletion. Furthermore, human neutrophils exposed to the S. sanguinis wild-type strain, in contrast to those exposed to an spxB mutant strain, underwent cell death with chromatin de-condensation and release of web-like extracellular DNA, reflecting induction of neutrophil extracellular traps (NETs). Since reactive oxygen species-mediated NET induction requires citrullination of arginine residues in histone proteins and subsequent chromatin de-condensation, we examined citrullination levels of histone in infected neutrophils. It is important to note that the citrullinated histone H3 was readily detected in neutrophils infected with the wild-type strain, as compared to infection with the spxB mutant strain. Moreover, decomposition of streptococcal H2O2 with catalase reduced NET induction. These results suggest that H2O2 produced by S. sanguinis provokes cell death of neutrophils and NET formation, thus potentially affecting bacterial survival in the bloodstream. PMID:28222125

  15. Streptococcus sanguinis induces neutrophil cell death by production of hydrogen peroxide.

    PubMed

    Sumioka, Ryuichi; Nakata, Masanobu; Okahashi, Nobuo; Li, Yixuan; Wada, Satoshi; Yamaguchi, Masaya; Sumitomo, Tomoko; Hayashi, Mikako; Kawabata, Shigetada

    2017-01-01

    Streptococcus is the dominant bacterial genus in the human oral cavity and a leading cause of infective endocarditis. Streptococcus sanguinis belongs to the mitis group of streptococci and produces hydrogen peroxide (H2O2) by the action of SpxB, a pyruvate oxidase. In this study, we investigated the involvement of SpxB in survival of S. sanguinis in human blood and whether bacterial H2O2 exhibits cytotoxicity against human neutrophils. Results of a bactericidal test with human whole blood revealed that the spxB mutation in S. sanguinis is detrimental to its survival in blood. When S. sanguinis strains were exposed to isolated neutrophils, the bacterial survival rate was significantly decreased by spxB deletion. Furthermore, human neutrophils exposed to the S. sanguinis wild-type strain, in contrast to those exposed to an spxB mutant strain, underwent cell death with chromatin de-condensation and release of web-like extracellular DNA, reflecting induction of neutrophil extracellular traps (NETs). Since reactive oxygen species-mediated NET induction requires citrullination of arginine residues in histone proteins and subsequent chromatin de-condensation, we examined citrullination levels of histone in infected neutrophils. It is important to note that the citrullinated histone H3 was readily detected in neutrophils infected with the wild-type strain, as compared to infection with the spxB mutant strain. Moreover, decomposition of streptococcal H2O2 with catalase reduced NET induction. These results suggest that H2O2 produced by S. sanguinis provokes cell death of neutrophils and NET formation, thus potentially affecting bacterial survival in the bloodstream.

  16. Linkage Analyses of Extracellular Glucans from Streptococcus sanguis and Streptococcus mitior

    PubMed Central

    Freedman, M.; Birkhed, D.; Coykendall, A.; Rizzo, D.

    1979-01-01

    Similar α-(1→6) linkage-rich, soluble, extracellular glucans have been isolated from six strains of two genetically distinct groups of Streptococcus sanguis and three strains of Streptococcus mitior. PMID:457265

  17. Human Streptococcus agalactiae strains in aquatic mammals and fish

    PubMed Central

    2013-01-01

    Background In humans, Streptococcus agalactiae or group B streptococcus (GBS) is a frequent coloniser of the rectovaginal tract, a major cause of neonatal infectious disease and an emerging cause of disease in non-pregnant adults. In addition, Streptococcus agalactiae causes invasive disease in fish, compromising food security and posing a zoonotic hazard. We studied the molecular epidemiology of S. agalactiae in fish and other aquatic species to assess potential for pathogen transmission between aquatic species and humans. Methods Isolates from fish (n = 26), seals (n = 6), a dolphin and a frog were characterized by pulsed-field gel electrophoresis, multilocus sequence typing and standardized 3-set genotyping, i.e. molecular serotyping and profiling of surface protein genes and mobile genetic elements. Results Four subpopulations of S. agalactiae were identified among aquatic isolates. Sequence type (ST) 283 serotype III-4 and its novel single locus variant ST491 were detected in fish from Southeast Asia and shared a 3-set genotype identical to that of an emerging ST283 clone associated with invasive disease of adult humans in Asia. The human pathogenic strain ST7 serotype Ia was also detected in fish from Asia. ST23 serotype Ia, a subpopulation that is normally associated with human carriage, was found in all grey seals, suggesting that human effluent may contribute to microbial pollution of surface water and exposure of sea mammals to human pathogens. The final subpopulation consisted of non-haemolytic ST260 and ST261 serotype Ib isolates, which belong to a fish-associated clonal complex that has never been reported from humans. Conclusions The apparent association of the four subpopulations of S. agalactiae with specific groups of host species suggests that some strains of aquatic S. agalactiae may present a zoonotic or anthroponotic hazard. Furthermore, it provides a rational framework for exploration of pathogenesis and host-associated genome content of S

  18. Complete Genome Sequence of the Pigmented Streptococcus thermophilus Strain JIM8232

    PubMed Central

    Delorme, Christine; Bartholini, Claire; Luraschi, Mélanie; Pons, Nicolas; Loux, Valentin; Almeida, Mathieu; Guédon, Eric; Gibrat, Jean-François; Renault, Pierre

    2011-01-01

    Streptococcus thermophilus is a dairy species commonly used in the manufacture of cheese and yogurt. Here, we report the complete sequence of S. thermophilus strain JIM8232, isolated from milk and which produces a yellow pigment, an atypical trait for this bacterium. PMID:21914889

  19. Genome-wide molecular dissection of serotype M3 group A Streptococcus strains causing two epidemics of invasive infections.

    PubMed

    Beres, Stephen B; Sylva, Gail L; Sturdevant, Daniel E; Granville, Chanel N; Liu, Mengyao; Ricklefs, Stacy M; Whitney, Adeline R; Parkins, Larye D; Hoe, Nancy P; Adams, Gerald J; Low, Donald E; DeLeo, Frank R; McGeer, Allison; Musser, James M

    2004-08-10

    Molecular factors that contribute to the emergence of new virulent bacterial subclones and epidemics are poorly understood. We hypothesized that analysis of a population-based strain sample of serotype M3 group A Streptococcus (GAS) recovered from patients with invasive infection by using genome-wide investigative methods would provide new insight into this fundamental infectious disease problem. Serotype M3 GAS strains (n = 255) cultured from patients in Ontario, Canada, over 11 years and representing two distinct infection peaks were studied. Genetic diversity was indexed by pulsed-field gel electrophoresis, DNA-DNA microarray, whole-genome PCR scanning, prophage genotyping, targeted gene sequencing, and single-nucleotide polymorphism genotyping. All variation in gene content was attributable to acquisition or loss of prophages, a molecular process that generated unique combinations of proven or putative virulence genes. Distinct serotype M3 genotypes experienced rapid population expansion and caused infections that differed significantly in character and severity. Molecular genetic analysis, combined with immunologic studies, implicated a 4-aa duplication in the extreme N terminus of M protein as a factor contributing to an epidemic wave of serotype M3 invasive infections. This finding has implications for GAS vaccine research. Genome-wide analysis of population-based strain samples cultured from clinically well defined patients is crucial for understanding the molecular events underlying bacterial epidemics.

  20. Streptococcus moroccensis sp. nov. and Streptococcus rifensis sp. nov., isolated from raw camel milk.

    PubMed

    Kadri, Zaina; Amar, Mohamed; Ouadghiri, Mouna; Cnockaert, Margo; Aerts, Maarten; El Farricha, Omar; Vandamme, Peter

    2014-07-01

    Two catalase- and oxidase-negative Streptococcus-like strains, LMG 27682(T) and LMG 27684(T), were isolated from raw camel milk in Morocco. Comparative 16S rRNA gene sequencing assigned these bacteria to the genus Streptococcus with Streptococcus rupicaprae 2777-2-07(T) as their closest phylogenetic neighbour (95.9% and 95.7% similarity, respectively). 16S rRNA gene sequence similarity between the two strains was 96.7%. Although strains LMG 27682(T) and LMG 27684(T) shared a DNA-DNA hybridization value that corresponded to the threshold level for species delineation (68%), the two strains could be distinguished by multiple biochemical tests, sequence analysis of the phenylalanyl-tRNA synthase (pheS), RNA polymerase (rpoA) and ATP synthase (atpA) genes and by their MALDI-TOF MS profiles. On the basis of these considerable phenotypic and genotypic differences, we propose to classify both strains as novel species of the genus Streptococcus, for which the names Streptococcus moroccensis sp. nov. (type strain, LMG 27682(T)  = CCMM B831(T)) and Streptococcus rifensis sp. nov. (type strain, LMG 27684(T)  = CCMM B833(T)) are proposed. © 2014 IUMS.

  1. [A novel TaqMan® MGB probe for specifically detecting Streptococcus mutans].

    PubMed

    Zheng, Hui; Lin, Jiu-Xiang; DU, Ning; Chen, Feng

    2013-10-18

    To design a new TaqMan® MGB probe for improving the specificity of Streptococcus mutans's detection. We extracted six DNA samples from different streptococcal strains for PCR reaction. Conventional nested PCR and TaqMan® MGB real-time PCR were applied independently. The first round of nested PCR was carried out with the bacterial universal primers, while a second PCR was conducted by using primers specific for the 16S rRNA gene of Streptococcus mutans. The TaqMan® MGB probe for Streptococcus mutans was designed from sequence analyses, and the primers were the same as nested PCR. Streptococcus mutans DNA with 2.5 mg/L was sequentially diluted at 5-fold intervals to 0.16 μg/L. Standard DNA samples were used to generate standard curves by TaqMan® MGB real-time PCR. In the nested PCR, the primers specific for Streptococcus mutans also detected Streptococcus gordonii with visible band of 282 bp, giving false-positive results. In the TaqMan® MGB real-time PCR reaction, only Streptococcus mutans was detected. The detection limitation of TaqMan® MGB real-time PCR for Streptococcus mutans 16S rRNA gene was 20 μg/L. We designed a new TaqMan® MGB probe, and successfully set up a PCR based method for detecting oral Streptococcus mutans. TaqMan® MGB real-time PCR is a both specific and sensitive bacterial detection method.

  2. Contribution of Streptococcus mutans Strains with Collagen-Binding Proteins in the Presence of Serum to the Pathogenesis of Infective Endocarditis.

    PubMed

    Otsugu, Masatoshi; Nomura, Ryota; Matayoshi, Saaya; Teramoto, Noboru; Nakano, Kazuhiko

    2017-12-01

    Streptococcus mutans , a major pathogen of dental caries, is considered one of the causative agents of infective endocarditis (IE). Recently, bacterial DNA encoding 120-kDa cell surface collagen-binding proteins (CBPs) has frequently been detected from S. mutans -positive IE patients. In addition, some of the CBP-positive S. mutans strains lacked a 190-kDa protein antigen (PA), whose absence strengthened the adhesion to and invasion of endothelial cells. The interaction between pathogenic bacteria and serum or plasma is considered an important virulence factor in developing systemic diseases; thus, we decided to analyze the pathogenesis of IE induced by S. mutans strains with different patterns of CBP and PA expression by focusing on the interaction with serum or plasma. CBP-positive (CBP + )/PA-negative (PA - ) strains showed prominent aggregation in the presence of human serum or plasma, which was significantly greater than that with CBP + /PA-positive (PA + ) and CBP-negative (CBP - )/PA+ strains. Aggregation of CBP + /PA - strains was also observed in the presence of a high concentration of type IV collagen, a major extracellular matrix protein in serum. In addition, aggregation of CBP + /PA - strains was drastically reduced when serum complement was inactivated. Furthermore, an ex vivo adherence model and an in vivo rat model of IE showed that extirpated heart valves infected with CBP + /PA - strains displayed prominent bacterial mass formation, which was not observed following infection with CBP + /PA + and CBP - /PA + strains. These results suggest that CBP + /PA - S. mutans strains utilize serum to contribute to their pathogenicity in IE. Copyright © 2017 American Society for Microbiology.

  3. Strain-associated virulence factors of Streptococcus iniae in hybrid-striped bass.

    PubMed

    Buchanan, John T; Colvin, Kelly M; Vicknair, Mike R; Patel, Silpa K; Timmer, Anjuli M; Nizet, Victor

    2008-09-18

    Streptococcus iniae is a major fish pathogen producing invasive infections that result in economic losses in aquaculture. Development of in vitro models of S. iniae virulence may provide insight to the pathogenesis of infection in vivo. Three S. iniae strains (K288, 94-426, and 29178) were tested for virulence in a hybrid-striped bass (HSB) model using intraperitoneal injection. S. iniae strains K288 and 94-426 caused high levels of mortality in HSB (lethal dose 2x10(5)CFU) while strain 29178 was avirulent even upon IP challenge with 1000-fold higher inocula. In vitro assays were developed to test for the presence of characteristics previously associated with virulence in other species of pathogenic Streptococcus in animals and humans. In vitro differences relevant to virulence were not detected for beta-hemolysin activity, sensitivity to antimicrobial peptides, or adherence and invasion of epithelial cell layers. However, in whole-blood killing assays, the pathogenic strains were resistant to blood clearance, while 29178 was cleared (P<0.001) and more sensitive to complement (P<0.001). The avirulent strain 29178 was most efficiently phagocytosed and was most susceptible to intracellular killing (P<0.01) by the carp leukocyte cell line (CLC). When exposed to reactive oxygen species, strain 29178 was most susceptible. When the oxidative burst of CLC cells was inhibited, intracellular survival of 29178 was rescued fivefold, while no significant enhancement in survival of K288 or 94-426 was detected. Our results indicate that resistance to phagocytosis, oxidative killing, and associated phagocytic clearance is a significant factor in S. iniae virulence.

  4. Highly efficient production of hyaluronic acid by Streptococcus zooepidemicus R42 derived from heterologous expression of bacterial haemoglobin and mutant selection.

    PubMed

    Lu, J F; Zhu, Y; Sun, H L; Liang, S; Leng, F F; Li, H Y

    2016-04-01

    During Streptococcus zooepidemicus fermentation, most carbon sources are used to synthesize lactic acid, which can inhibit strain growth and hyaluronic acid production. Here, we expressed bacterial haemoglobin (Vhb) in Strep. zooepidemicus. Due to highly efficient oxygen use, only 15·26 g l(-1) lactic acid was produced, which is 0·73 times the quantity produced by the control strain. Compared with the control strain (1·61 g l(-1) ), hyaluronic acid (HA) production in this strain did not substantially increase, only to 2·16 g l(-1) . Next, we used a series of N-methyl-N'-nitro-N-nitroso-guanidine (NTG) treatments and selection programmes. Finally, we generated a hyaluronidase-negative and rifampin-resistant mutant strain that produces high levels of HA. The optimum carbon concentration for maximum hyaluronic acid production is only 30 g l(-1) of sucrose, which is lower than the control strain (60 g l(-1) ). The oxygen transfer rate coefficient KL a increased significantly to 372 ± 53 h(-1) from 18 ± 4 h(-1) of the control. The optimum carbon source for this strain is 21 g l(-1) of sucrose, 9 g l(-1) of maltose and 5 g l(-1) of glutamic acid. Hyaluronic acid accumulated at 6·7 g l(-1) in the culture broth. However, the molecular weight of HA decreased from 1835 KDa (Control) to 429 kDa. The prepared low-molecular weight HA could function as potential antiangiogenic substances, antiviral and antitumour agents to possibly be used as functional food ingredients. Hyaluronic acid (HA) has been used for a wide range of applications in health, cosmetic and clinical fields. During fermentation of Streptococcus to produce HA, 80-85% of the carbon source is used to produce lactic acid and acetic acid, and only approx. 5 and 10% of the carbon source is used to produce HA and biomass respectively. Here, we expressed bacteria haemoglobin (Vhb) in Streptococcus zooepidemicus, which can dramatically inhibit lactic acid production. After NTG

  5. Efficacy of High-Dose Amoxicillin-Clavulanate against Experimental Respiratory Tract Infections Caused by Strains of Streptococcus pneumoniae

    PubMed Central

    Woodnutt, Gary; Berry, Valerie

    1999-01-01

    The purpose of the present investigation was to determine if the efficacy of amoxicillin-clavulanate against penicillin-resistant Streptococcus pneumoniae could be improved by increasing the pediatric amoxicillin unit dose (90 versus 45 mg/kg of body weight/day) while maintaining the clavulanate unit dose at 6.4 mg/kg/day. A rat pneumonia model was used. In that model approximately 6 log10 CFU of one of four strains of S. pneumoniae (amoxicillin MICs, 2 μg/ml [one strain], 4 μg/ml [two strains], and 8 μg/ml [one strain]) were instilled into the bronchi of rats. Amoxicillin-clavulanate was given by computer-controlled intravenous infusion to approximate the concentrations achieved in the plasma of children following the administration of oral doses of 45/6.4 mg/kg/day or 90/6.4 mg/kg/g/day divided every 12 h or saline as a control for a total of 3 days. Infusions continued for 3 days, and 2 h after the cessation of infusion, bacterial numbers in the lungs were significantly reduced by the 90/6.4-mg/kg/day equivalent dosage for strains for which amoxicillin MICs were 2 or 4 μg/ml. The 45/6.4-mg/kg/day equivalent dosage was fully effective only against the strain for which the amoxicillin MIC was 2 μg/ml and had marginal efficacy against one of the two strains for which amoxicillin MICs were 4 μg/ml. The bacterial load for the strain for which the amoxicillin MIC was 8 μg/ml was not reduced with either dosage. These data demonstrate that regimens which achieved concentrations in plasma above the MIC for at least 34% of a 24-h dosing period resulted in significant reductions in the number of viable bacteria, indicating that the efficacy of amoxicillin-clavulanate can be extended to include efficacy against less susceptible strains of S. pneumoniae by increasing the amoxicillin dose. PMID:9869562

  6. Screening of binding activity of Streptococcus pneumoniae, Streptococcus agalactiae and Streptococcus suis to berries and juices.

    PubMed

    Toivanen, Marko; Huttunen, Sanna; Duricová, Jana; Soininen, Pasi; Laatikainen, Reino; Loimaranta, Vuokko; Haataja, Sauli; Finne, Jukka; Lapinjoki, Seppo; Tikkanen-Kaukanen, Carina

    2010-01-01

    Antiadhesion therapy is a promising approach to the fight against pathogens. Antibiotic resistance and the lack of effective vaccines have increased the search for new methods to prevent infectious diseases. Previous studies have shown the antiadhesion activity of juice from cultivated cranberries (Vaccinium macrocarpon Ait.) against bacteria, especially E. coli. In this study, the binding of two streptococcal strains, Streptococcus pneumoniae and Streptococcus agalactiae, to molecular size fractions (FI, FII and FIII, <10 kDa, 10-100 kDa, and >100 kDa, respectively) of berries and berry and fruit juices from 12 plant species were studied using a microtiter well assay. For Streptococcus suis a hemagglutination inhibition assay was used. In general, binding activity was detected especially to wild cranberry (Vaccinium oxycoccos L.) and to other Vaccinium species. S. pneumoniae cells bound most to cranberry juice fraction FI and S. agalactiae cells to cranberry fraction FIII. Hemagglutination induced by S. suis was most effectively inhibited by cranberry fraction FII. NMR spectra of some characteristic active and non-active fractions were also measured. They indicate that fractions FII and FIII contained proanthocyanidins and/or other phenolic compounds. The results suggest Vaccinium berries as possible sources of antiadhesives against bacterial infections.

  7. Identification of the psaA Gene, Coding for Pneumococcal Surface Adhesin A, in Viridans Group Streptococci other than Streptococcus pneumoniae

    PubMed Central

    Jado, Isabel; Fenoll, Asunción; Casal, Julio; Pérez, Amalia

    2001-01-01

    The gene encoding the pneumococcal surface adhesin A (PsaA) protein has been identified in three different viridans group streptococcal species. Comparative studies of the psaA gene identified in different pneumococcal isolates by sequencing PCR products showed a high degree of conservation among these strains. PsaA is encoded by an open reading frame of 930 bp. The analysis of this fragment in Streptococcus mitis, Streptococcus oralis, and Streptococcus anginosus strains revealed a sequence identity of 95, 94, and 90%, respectively, to the corresponding open reading frame of the previously reported Streptococcus pneumoniae serotype 6B strain. Our results confirm that psaA is present and detectable in heterologous bacterial species. The possible implications of these results for the suitability and potential use of PsaA in the identification and diagnosis of pneumococcal diseases are discussed. PMID:11527799

  8. Effectiveness of Polyvalent Bacterial Lysate and Autovaccines Against Upper Respiratory Tract Bacterial Colonization by Potential Pathogens: A Randomized Study

    PubMed Central

    Zagólski, Olaf; Stręk, Paweł; Kasprowicz, Andrzej; Białecka, Anna

    2015-01-01

    Background Polyvalent bacterial lysate (PBL) is an oral immunostimulating vaccine consisting of bacterial standardized lysates obtained by lysis of different strains of bacteria. Autovaccines are individually prepared based on the results of smears obtained from the patient. Both types of vaccine can be used to treat an ongoing chronic infection. This study sought to determine which method is more effective against nasal colonization by potential respiratory tract pathogens. Material/Methods We enrolled 150 patients with aerobic Gram stain culture and count results indicating bacterial colonization of the nose and/or throat by potential pathogens. The participants were randomly assigned to each of the following groups: 1. administration of PBL, 2. administration of autovaccine, and 3. no intervention (controls). Results Reduction of the bacterial count in Streptococcus pneumoniae-colonized participants was significant after the autovaccine (p<0.001) and PBL (p<0.01). Reduction of the bacterial count of other β-hemolytic streptococcal strains after treatment with the autovaccine was significant (p<0.01) and was non-significant after PBL. In Haemophilus influenzae colonization, significant reduction in the bacterial count was noted in the PBL group (p<0.01). Methicillin-resistant Staphylococcus aureus colonization did not respond to either treatment. Conclusions The autovaccine is more effective than PBL for reducing bacterial count of Streptococcus pneumoniae and β-hemolytic streptococci, while PBL was more effective against Haemophilus influenzae colonization. PMID:26434686

  9. Complete Genome Sequence and Immunoproteomic Analyses of the Bacterial Fish Pathogen Streptococcus parauberis▿†

    PubMed Central

    Nho, Seong Won; Hikima, Jun-ichi; Cha, In Seok; Park, Seong Bin; Jang, Ho Bin; del Castillo, Carmelo S.; Kondo, Hidehiro; Hirono, Ikuo; Aoki, Takashi; Jung, Tae Sung

    2011-01-01

    Although Streptococcus parauberis is known as a bacterial pathogen associated with bovine udder mastitis, it has recently become one of the major causative agents of olive flounder (Paralichthys olivaceus) streptococcosis in northeast Asia, causing massive mortality resulting in severe economic losses. S. parauberis contains two serotypes, and it is likely that capsular polysaccharide antigens serve to differentiate the serotypes. In the present study, the complete genome sequence of S. parauberis (serotype I) was determined using the GS-FLX system to investigate its phylogeny, virulence factors, and antigenic proteins. S. parauberis possesses a single chromosome of 2,143,887 bp containing 1,868 predicted coding sequences (CDSs), with an average GC content of 35.6%. Whole-genome dot plot analysis and phylogenetic analysis of a 60-kDa chaperonin-encoding gene and the glyceraldehyde-3-phosphate dehydrogenase (GAPDH)-encoding gene showed that the strain was evolutionarily closely related to Streptococcus uberis. S. parauberis antigenic proteins were analyzed using an immunoproteomic technique. Twenty-one antigenic protein spots were identified in S. parauberis, by reaction with an antiserum obtained from S. parauberis-challenged olive flounder. This work provides the foundation needed to understand more clearly the relationship between pathogen and host and develops new approaches toward prophylactic and therapeutic strategies to deal with streptococcosis in fish. The work also provides a better understanding of the physiology and evolution of a significant representative of the Streptococcaceae. PMID:21531805

  10. A hemolytic pigment of Group B Streptococcus allows bacterial penetration of human placenta

    PubMed Central

    Whidbey, Christopher; Harrell, Maria Isabel; Burnside, Kellie; Ngo, Lisa; Becraft, Alexis K.; Iyer, Lakshminarayan M.; Aravind, L.; Hitti, Jane

    2013-01-01

    Microbial infection of the amniotic fluid is a significant cause of fetal injury, preterm birth, and newborn infections. Group B Streptococcus (GBS) is an important human bacterial pathogen associated with preterm birth, fetal injury, and neonatal mortality. Although GBS has been isolated from amniotic fluid of women in preterm labor, mechanisms of in utero infection remain unknown. Previous studies indicated that GBS are unable to invade human amniotic epithelial cells (hAECs), which represent the last barrier to the amniotic cavity and fetus. We show that GBS invades hAECs and strains lacking the hemolysin repressor CovR/S accelerate amniotic barrier failure and penetrate chorioamniotic membranes in a hemolysin-dependent manner. Clinical GBS isolates obtained from women in preterm labor are hyperhemolytic and some are associated with covR/S mutations. We demonstrate for the first time that hemolytic and cytolytic activity of GBS is due to the ornithine rhamnolipid pigment and not due to a pore-forming protein toxin. Our studies emphasize the importance of the hemolytic GBS pigment in ascending infection and fetal injury. PMID:23712433

  11. Streptococcus mitis Strains Causing Severe Clinical Disease in Cancer Patients

    PubMed Central

    Sahasrabhojane, Pranoti; Saldana, Miguel; Yao, Hui; Su, Xiaoping; Horstmann, Nicola; Thompson, Erika; Flores, Anthony R.

    2014-01-01

    The genetically diverse viridans group streptococci (VGS) are increasingly recognized as the cause of a variety of human diseases. We used a recently developed multilocus sequence analysis scheme to define the species of 118 unique VGS strains causing bacteremia in patients with cancer; Streptococcus mitis (68 patients) and S. oralis (22 patients) were the most frequently identified strains. Compared with patients infected with non–S. mitis strains, patients infected with S. mitis strains were more likely to have moderate or severe clinical disease (e.g., VGS shock syndrome). Combined with the sequence data, whole-genome analyses showed that S. mitis strains may more precisely be considered as >2 species. Furthermore, we found that multiple S. mitis strains induced disease in neutropenic mice in a dose-dependent fashion. Our data define the prominent clinical effect of the group of organisms currently classified as S. mitis and lay the groundwork for increased understanding of this understudied pathogen. PMID:24750901

  12. Prophage Lysin Ply30 Protects Mice from Streptococcus suis and Streptococcus equi subsp. zooepidemicus Infections

    PubMed Central

    Tang, Fang; Li, Dezhi; Wang, Haojin; Ma, Zhe; Lu, Chengping

    2015-01-01

    Streptococcus suis and Streptococcus equi subsp. zooepidemicus are capable of infecting humans and various animals, causing significant problems for the worldwide swine industry. As antibiotic resistance has increased, lysosomal enzymes encoded by phages have shown potential for use against pathogenic bacteria. In this study, a novel bacteriophage lysin, Ply30, encoded by the S. suis prophage phi30c, was recombinantly expressed and purified. Ply30 showed high bacteriolysis activity on S. suis and S. equi subsp. zooepidemicus in vitro. The ratio of the optical density at 600 nm (OD600) with treatment versus the OD600 with no treatment for most tested S. suis and S. equi subsp. zooepidemicus strains decreased from 1 to <0.3 and <0.5, respectively, within 1 h. The results of plate viability assays showed that treated bacteria suffered a 1- to 2-log decrease in CFU within 1 h. The optimal concentration of Ply30 was 50 μg/ml, and the optimal pH was 7. Moreover, Ply30 maintained high activity over a wide pH range (pH 6 to 10). The MICs of Ply30 against Streptococcus strains ranged from 16 to 512 μg/ml. In vivo, a 2-mg dose of Ply30 protected 90% (9/10 mice) of mice from infection with S. equi subsp. zooepidemicus and 80% (8/10 mice) of mice from infection with S. suis. Seven days after lysin Ply30 treatment, bacterial loads were significantly decreased in all tested organs and blood compared with those at 1 h postinfection without Ply30 treatment. Ply30 showed in vitro and in vivo antimicrobial efficiency and protected mice against two kinds of bacterial infections, indicating that Ply30 may be an effective therapeutic against streptococci. PMID:26253669

  13. Prophage lysin Ply30 protects mice from Streptococcus suis and Streptococcus equi subsp. zooepidemicus infections.

    PubMed

    Tang, Fang; Li, Dezhi; Wang, Haojin; Ma, Zhe; Lu, Chengping; Dai, Jianjun

    2015-11-01

    Streptococcus suis and Streptococcus equi subsp. zooepidemicus are capable of infecting humans and various animals, causing significant problems for the worldwide swine industry. As antibiotic resistance has increased, lysosomal enzymes encoded by phages have shown potential for use against pathogenic bacteria. In this study, a novel bacteriophage lysin, Ply30, encoded by the S. suis prophage phi30c, was recombinantly expressed and purified. Ply30 showed high bacteriolysis activity on S. suis and S. equi subsp. zooepidemicus in vitro. The ratio of the optical density at 600 nm (OD600) with treatment versus the OD600 with no treatment for most tested S. suis and S. equi subsp. zooepidemicus strains decreased from 1 to <0.3 and <0.5, respectively, within 1 h. The results of plate viability assays showed that treated bacteria suffered a 1- to 2-log decrease in CFU within 1 h. The optimal concentration of Ply30 was 50 μg/ml, and the optimal pH was 7. Moreover, Ply30 maintained high activity over a wide pH range (pH 6 to 10). The MICs of Ply30 against Streptococcus strains ranged from 16 to 512 μg/ml. In vivo, a 2-mg dose of Ply30 protected 90% (9/10 mice) of mice from infection with S. equi subsp. zooepidemicus and 80% (8/10 mice) of mice from infection with S. suis. Seven days after lysin Ply30 treatment, bacterial loads were significantly decreased in all tested organs and blood compared with those at 1 h postinfection without Ply30 treatment. Ply30 showed in vitro and in vivo antimicrobial efficiency and protected mice against two kinds of bacterial infections, indicating that Ply30 may be an effective therapeutic against streptococci. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  14. Microcapsules on Streptococcus mutans serotypes by electron microscopy.

    PubMed

    Grenier, E M; Gray, R H; Loesche, W J; Eveland, W C

    1977-02-01

    Extracellular microcapsules have been demonstrated on cells of most serotypes of Streptococcus mutans by electron microscopy, using bacterial strains of the various serotypes and peroxidase labeled or unlabeled immune serum. A correlation was noted between the amount of capsular substance on the strains of S mutans examined and degree of antigenicity as expressed by the indirect fluorescent antibody (FA) title. A serotype d strain was shown to lose both antigenicity as determined by the FA reaction and capsular material as seen by electron microscopy with repeated in vitro passage. When 10% unheated rabbit serum was added to the medium, antigenicity and capsular material were restored.

  15. Streptococcus salivarius Meningitis Case Strain Traced to Oral Flora of Anesthesiologist▿

    PubMed Central

    Shewmaker, Patricia L.; Gertz, Robert E.; Kim, Clara Y.; de Fijter, Sietske; DiOrio, Mary; Moore, Matthew R.; Beall, Bernard W.

    2010-01-01

    Two women in labor received intrapartum spinal anesthesia from the same anesthesiologist approximately 1 h apart. Within 15 h, both patients developed Streptococcus salivarius meningitis and one patient died. Blood and cerebrospinal fluid (CSF) samples from both patients and tongue swab specimens from the anesthesiologist yielded isolates of an indistinguishable S. salivarius strain. PMID:20504987

  16. Multiplex PCR-based identification of Streptococcus canis, Streptococcus zooepidemicus and Streptococcus dysgalactiae subspecies from dogs.

    PubMed

    Moriconi, M; Acke, E; Petrelli, D; Preziuso, S

    2017-02-01

    Streptococcus canis (S. canis), Streptococcus equi subspecies zooepidemicus (S. zooepidemicus) and Streptococcus dysgalactiae subspecies (S. dysgalactiae subspecies) are β-haemolytic Gram positive bacteria infecting animals and humans. S. canis and S. zooepidemicus are considered as two of the major zoonotic species of Streptococcus, while more research is needed on S. dysgalactiae subspecies bacteria. In this work, a multiplex-PCR protocol was tested on strains and clinical samples to detect S. canis, S. dysgalactiae subspecies and S. equi subspecies bacteria in dogs. All strains were correctly identified as S. canis, S. equi subspecies or S. dysgalactiae subspecies by the multiplex-PCR. The main Streptococcus species isolated from symptomatic dogs were confirmed S. canis. The multiplex-PCR protocol described is a rapid, accurate and efficient method for identifying S. canis, S. equi subspecies and S. dysgalactiae subspecies in dogs and could be used for diagnostic purposes and for epidemiological studies. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Method for construction of bacterial strains with increased succinic acid production

    DOEpatents

    Donnelly, Mark I.; Sanville-Millard, Cynthia; Chatterjee, Ranjini

    2000-01-01

    A fermentation process for producing succinic acid is provided comprising selecting a bacterial strain that does not produce succinic acid in high yield, disrupting the normal regulation of sugar metabolism of said bacterial strain, and combining the mutant bacterial strain and selected sugar in anaerobic conditions to facilitate production of succinic acid. Also provided is a method for changing low yield succinic acid producing bacteria to high yield succinic acid producing bacteria comprising selecting a bacterial strain having a phosphotransferase system and altering the phosphotransferase system so as to allow the bacterial strain to simultaneously metabolize different sugars.

  18. Beta-hemolytic Streptococcus dysgalactiae strains isolated from horses are a genetically distinct population within the Streptococcus dysgalactiae taxon.

    PubMed

    Pinho, Marcos D; Erol, Erdal; Ribeiro-Gonçalves, Bruno; Mendes, Catarina I; Carriço, João A; Matos, Sandra C; Preziuso, Silvia; Luebke-Becker, Antina; Wieler, Lothar H; Melo-Cristino, Jose; Ramirez, Mario

    2016-08-17

    The pathogenic role of beta-hemolytic Streptococcus dysgalactiae in the equine host is increasingly recognized. A collection of 108 Lancefield group C (n = 96) or L (n = 12) horse isolates recovered in the United States and in three European countries presented multilocus sequence typing (MLST) alleles, sequence types and emm types (only 56% of the isolates could be emm typed) that were, with few exceptions, distinct from those previously found in human Streptococcus dysgalactiae subsp. equisimilis. Characterization of a subset of horse isolates by multilocus sequence analysis (MLSA) and 16S rRNA gene sequence showed that most equine isolates could also be differentiated from S. dysgalactiae strains from other animal species, supporting the existence of a horse specific genomovar. Draft genome information confirms the distinctiveness of the horse genomovar and indicates the presence of potentially horse-specific virulence factors. While this genomovar represents most of the isolates recovered from horses, a smaller MLST and MLSA defined sub-population seems to be able to cause infections in horses, other animals and humans, indicating that transmission between hosts of strains belonging to this group may occur.

  19. Genomic comparison between pathogenic Streptococcus agalactiae isolated from Nile tilapia in Thailand and fish-derived ST7 strains.

    PubMed

    Kayansamruaj, Pattanapon; Pirarat, Nopadon; Kondo, Hidehiro; Hirono, Ikuo; Rodkhum, Channarong

    2015-12-01

    Streptococcus agalactiae, or Group B streptococcus (GBS), is a highly virulent pathogen in aquatic animals, causing huge mortalities worldwide. In Thailand, the serotype Ia, β-hemolytic GBS, belonging to sequence type (ST) 7 of clonal complex (CC) 7, was found to be the major cause of streptococcosis outbreaks in fish farms. In this study, we performed an in silico genomic comparison, aiming to investigate the phylogenetic relationship between the pathogenic fish strains of Thai ST7 and other ST7 from different hosts and geographical origins. In general, the genomes of Thai ST7 strains are closely related to other fish ST7s, as the core genome is shared by 92-95% of any individual fish ST7 genome. Among the fish ST7 genomes, we observed only small dissimilarities, based on the analysis of clustered regularly interspaced short palindromic repeats (CRISPRs), surface protein markers, insertions sequence (IS) elements and putative virulence genes. The phylogenetic tree based on single nucleotide polymorphisms (SNPs) of the core genome sequences clearly categorized the ST7 strains according to their geographical and host origins, with the human ST7 being genetically distant from other fish ST7 strains. A pan-genome analysis of ST7 strains detected a 48-kb gene island specifically in the Thai ST7 isolates. The orientations and predicted amino acid sequences of the genes in the island closely matched those of Tn5252, a streptococcal conjugative transposon, in GBS 2603V/R serotype V, Streptococcus pneumoniae and Streptococcus suis. Thus, it was presumed that Thai ST7 acquired this Tn5252 homologue from related streptococci. The close phylogenetic relationship between the fish ST7 strains suggests that these strains were derived from a common ancestor and have diverged in different geographical regions and in different hosts. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Genetic Transformation of Streptococcus mutans

    PubMed Central

    Perry, Dennis; Kuramitsu, Howard K.

    1981-01-01

    Three strains of Streptococcus mutans belonging to serotypes a, c, and f were transformed to streptomycin resistance by deoxyribonucleic acids derived from homologous and heterologous streptomycin-resistant strains of S. mutans and Streptococcus sanguis strain Challis. Homologous transformation of S. mutans was less efficient than heterologous transformation by deoxyribonucleic acids from other strains of S. mutans. PMID:7251168

  1. Antibacterial activity and mechanism of action of Monarda punctata essential oil and its main components against common bacterial pathogens in respiratory tract.

    PubMed

    Li, Hong; Yang, Tian; Li, Fei-Yan; Yao, Yan; Sun, Zhong-Min

    2014-01-01

    The aim of the current research work was to study the chemical composition of the essential oil of Monarda punctata along with evaluating the essential oil and its major components for their antibacterial effects against some frequently encountered respiratory infection causing pathogens. Gas chromatographic mass spectrometric analysis revealed the presence of 13 chemical constituents with thymol (75.2%), p-cymene (6.7%), limonene (5.4), and carvacrol (3.5%) as the major constituents. The oil composition was dominated by the oxygenated monoterpenes. Antibacterial activity of the essential oil and its major constituents (thymol, p-cymene, limonene) was evaluated against Streptococcus pyogenes, methicillin-resistant Staphylococcus aureus (MRSA), Streptococcus pneumoniae, Haemophilus influenzae and Escherichia coli. The study revealed that the essential oil and its constituents exhibited a broad spectrum and variable degree of antibacterial activity against different strains. Among the tested strains, Streptococcus pyogenes, Escherichia coli and Streptococcus pneumoniae were the most susceptible bacterial strain showing lowest MIC and MBC values. Methicillin-resistant Staphylococcus aureus was the most resistant bacterial strain to the essential oil treatment showing relatively higher MIC and MBC values. Scanning electron microscopy revealed that the essential oil induced potent and dose-dependent membrane damage in S. pyogenes and MRSA bacterial strains. The reactive oxygen species generated by the Monarda punctata essential oil were identified using 2', 7'-dichlorofluorescein diacetate (DCFDA).This study indicated that the Monarda punctata essential oil to a great extent and thymol to a lower extent triggered a substantial increase in the ROS levels in S. pyogenes bacterial cultures which ultimately cause membrane damage as revealed by SEM results.

  2. Antibacterial activity and mechanism of action of Monarda punctata essential oil and its main components against common bacterial pathogens in respiratory tract

    PubMed Central

    Li, Hong; Yang, Tian; Li, Fei-Yan; Yao, Yan; Sun, Zhong-Min

    2014-01-01

    The aim of the current research work was to study the chemical composition of the essential oil of Monarda punctata along with evaluating the essential oil and its major components for their antibacterial effects against some frequently encountered respiratory infection causing pathogens. Gas chromatographic mass spectrometric analysis revealed the presence of 13 chemical constituents with thymol (75.2%), p-cymene (6.7%), limonene (5.4), and carvacrol (3.5%) as the major constituents. The oil composition was dominated by the oxygenated monoterpenes. Antibacterial activity of the essential oil and its major constituents (thymol, p-cymene, limonene) was evaluated against Streptococcus pyogenes, methicillin-resistant Staphylococcus aureus (MRSA), Streptococcus pneumoniae, Haemophilus influenzae and Escherichia coli. The study revealed that the essential oil and its constituents exhibited a broad spectrum and variable degree of antibacterial activity against different strains. Among the tested strains, Streptococcus pyogenes, Escherichia coli and Streptococcus pneumoniae were the most susceptible bacterial strain showing lowest MIC and MBC values. Methicillin-resistant Staphylococcus aureus was the most resistant bacterial strain to the essential oil treatment showing relatively higher MIC and MBC values. Scanning electron microscopy revealed that the essential oil induced potent and dose-dependent membrane damage in S. pyogenes and MRSA bacterial strains. The reactive oxygen species generated by the Monarda punctata essential oil were identified using 2’, 7’-dichlorofluorescein diacetate (DCFDA).This study indicated that the Monarda punctata essential oil to a great extent and thymol to a lower extent triggered a substantial increase in the ROS levels in S. pyogenes bacterial cultures which ultimately cause membrane damage as revealed by SEM results. PMID:25550774

  3. Streptococcus suis infection

    PubMed Central

    Feng, Youjun; Zhang, Huimin; Wu, Zuowei; Wang, Shihua; Cao, Min; Hu, Dan; Wang, Changjun

    2014-01-01

    Streptococcus suis (S. suis) is a family of pathogenic gram-positive bacterial strains that represents a primary health problem in the swine industry worldwide. S. suis is also an emerging zoonotic pathogen that causes severe human infections clinically featuring with varied diseases/syndromes (such as meningitis, septicemia, and arthritis). Over the past few decades, continued efforts have made significant progress toward better understanding this zoonotic infectious entity, contributing in part to the elucidation of the molecular mechanism underlying its high pathogenicity. This review is aimed at presenting an updated overview of this pathogen from the perspective of molecular epidemiology, clinical diagnosis and typing, virulence mechanism, and protective antigens contributing to its zoonosis. PMID:24667807

  4. Bacterial keratitis: a prospective clinical and microbiological study

    PubMed Central

    Schaefer, F.; Bruttin, O.; Zografos, L.; Guex-Crosier, Y.

    2001-01-01

    AIM—To define the clinical and microbiological profile of bacterial keratitis at the Jules Gonin Eye Hospital and to test the in vitro bacterial resistance.
METHODS—Patients presenting with bacterial keratitis were prospectively followed; clinical features (age, risk factors, visual acuity) and response to therapy were analysed. Bacteriological profile was determined and the sensitivity/resistance of isolated strains were tested towards 12 ocular antibiotics (NCCLS disc diffusion test).
RESULTS—85 consecutive patients (mean age 44.3 (SD 20.7) years) were prospectively enrolled from 1 March 1997 to 30 November 1998. The following risk factors were identified: contact lens wear, 36%; blepharitis, 21%; trauma, 20%; xerophthalmia, 15%; keratopathies, 8%; and eyelid abnormalities, 6%. The most commonly isolated bacteria were Staphylococcus epidermidis, 40%; Staphylococcus aureus, 22%; Streptococcus pneumoniae, 8%; others Streptococcus species, 5%; Pseudomonas, 9%; Moraxella and Serratia marcescens, 5% each; Bacillus, Corynebacterium, Alcaligenes xyloxidans, Morganella morganii, and Haemophilus influenza, 1% each. 1-15% of strains were resistant to fluoroquinolones, 13-22% to aminoglycosides, 37% to cefazolin, 18% to chloramphenicol, 54% to polymyxin B, 51% to fusidic acid, and 45% to bacitracin. Five of the 85 patients (5.8%) had a poor clinical outcome with a visual loss of one or more lines of visual acuity.
CONCLUSION—Fluoroquinolones appear to be the therapy of choice for bacterial keratitis, but, based upon these in vitro studies, some strains may be resistant.

 PMID:11423460

  5. Evaluation of Antibacterial Activity of Three Selected Fruit Juices on Clinical Endodontic Bacterial Strains

    PubMed Central

    Behera, Subasish; Khetrapal, Prashant; Punia, Sandhya Kapoor; Agrawal, Deepak; Khandelwal, Minal; Lohar, Jitendra

    2017-01-01

    Introduction: The increasing problem of antibiotic drug resistance by pathogenic microorganisms in the past few decades has recently led to the continuous exploration of natural plant products for new antibiotic agents. Many consumable food materials have good as well as their bad effects, good effect includes their antibacterial effects on different microorganisms present in the oral cavity. Recently, natural products have been evaluated as source of antimicrobial agent with efficacies against a variety of microorganisms. Methodology: The present study describes the antibacterial activity of three selected fruit juices (Apple, Pomegranate and Grape) on endodontic bacterial strains. Antimicrobial activity of fruit juices were tested by wel l diffusion assay by an inhibition zone surrounding the well. The aim of the study was to evaluate the antibacterial activity of three fruit juises on different endodontic strains. Result: Agar well diffusion method was adopted for determining antibacterial potency. Antibacterial activity present on the plates was indicated by an inhibition zone surrounding the well containing the fruit juice. The zone of inhibition was measured by measuring scale in millimeter. Comparision between antibacterial efficacy of all three fruit juices against Enterococcus feacalis and Streptococcus mutans was observed with significant value of P ≤ 0.05. Conclusion: The results obtained in this study clearly demonstrated a significant antimicrobial effect of apple fruit juice against Enterococcus fecalis and Streptococcus mutans. However, preclinical and clinical trials are needed to evaluate biocompatibility & safety before apple can conclusively be recommended in endodontic therapy, but in vitro observation of apple effectiveness appears promising. PMID:29284967

  6. Identification of non-streptococcal organisms from human dental plaque grown on the Streptococcus-selective medium mitis-salivarius agar.

    PubMed

    Kim, Yeon-Hee; Lee, Si Young

    2015-02-01

    Mitis-salivarius (MS) agar has been used widely in microbial epidemiological studies because oral viridans streptococci can be selectively grown on this medium. Even though the previous findings reported the limited selecting power of MS agar for streptococcus strains, the identities of non-streptococcal strains from human oral samples which can grow on this medium are not clear yet. In this study, we identified non-streptococcal organisms grown on MS agar plates by polymerase chain reaction (PCR) amplification and sequencing of the 16S ribosomal RNA (rRNA) gene. Eighty bacterial colonies on MS plates were isolated from plaque samples, and bacterial identification was achieved with the rapid ID 32 Strep system and mini API reader. The bacterial colonies identified as non-streptococci by the API system were selected for further identification. The 16S rRNA gene was amplified by PCR and verified using DNA sequencing analysis for identification. Sequences were compared with those of reference organisms in the genome database of the National Center for Biotechnology Information using the Basic Local Alignment Search Tool (BLAST). Among the 11 isolated non-streptococcal strains on MS plates, 3 strains were identified as Actinomyces naeslundii, 7 strains were identified as Actinomyces oris and 1 strain were identified as Actinomyces sp. using Blastn. In this study, we showed that some oral Actinomyces species can grow on Streptococcus-selective MS agar plates. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Two Pharmacodynamic Models for Assessing the Efficacy of Amoxicillin-Clavulanate against Experimental Respiratory Tract Infections Caused by Strains of Streptococcus pneumoniae

    PubMed Central

    Woodnutt, Gary; Berry, Valerie

    1999-01-01

    Two models of respiratory tract infection were used to investigate the pharmacodynamics of amoxicillin-clavulanate against Streptococcus pneumoniae. Eight strains of S. pneumoniae were used in a mouse model in which the animals were infected intranasally and were then treated with a range of doses and dose intervals. The time that the plasma amoxicillin concentration remained above the MIC (T>MIC) correlated well with bacterial killing, such that if T>MIC was below 20% there was no effect on bacterial numbers in the lungs. As T>MIC increased, the response, in terms of decreased bacterial load, improved and at T>MICs of greater than 35 to 40% of the dosing interval, bacteriological cure was maximal. On the basis of equivalent T>MICs, these data would suggest that in humans a dosage of 500 mg three times daily (t.i.d.) should have efficacy equal to that of a dosage of 875 mg twice daily (b.i.d.). This hypothesis was evaluated in a rat model in which amoxicillin-clavulanate was given by computer-controlled intravenous infusion to achieve concentrations that approximate the concentrations achieved in the plasma of humans following oral administration of 500/125 mg t.i.d. or 875/125 mg b.i.d. Infusions continued for 3 days and bacterial numbers in the lungs 2 h after the cessation of the infusion were significantly reduced (P < 0.01) by both treatments in strains of S. pneumoniae for which amoxicillin MICs were below 2 μg/ml. When tested against a strain of S. pneumoniae for which the amoxicillin MIC was 4 μg/ml, the simulated 500/125-mg dose was ineffective but the 875/125-mg dose demonstrated a small but significant (P < 0.01) reduction in bacterial numbers. These data confirm the findings in the mouse and indicate that amoxicillin-clavulanate administered at 875/125 mg b.i.d. would be as effective clinically as amoxicillin-clavulanate administered at 500/125 mg t.i.d. PMID:9869561

  8. Prophagic DNA Fragments in Streptococcus agalactiae Strains and Association with Neonatal Meningitis

    PubMed Central

    van der Mee-Marquet, Nathalie; Domelier, Anne-Sophie; Mereghetti, Laurent; Lanotte, Philippe; Rosenau, Agnès; van Leeuwen, Willem; Quentin, Roland

    2006-01-01

    We identified—by randomly amplified polymorphic DNA (RAPD) analysis at the population level followed by DNA differential display, cloning, and sequencing—three prophage DNA fragments (F5, F7, and F10) in Streptococcus agalactiae that displayed significant sequence similarity to the DNA of S. agalactiae and Streptococcus pyogenes. The F5 sequence aligned with a prophagic gene encoding the large subunit of a terminase, F7 aligned with a phage-associated cell wall hydrolase and a phage-associated lysin, and F10 aligned with a transcriptional regulator (ArpU family) and a phage-associated endonuclease. We first determined the prevalence of F5, F7, and F10 by PCR in a collection of 109 strains isolated in the 1980s and divided into two populations: one with a high risk of causing meningitis (HR group) and the other with a lower risk of causing meningitis (LR group). These fragments were significantly more prevalent in the HR group than in the LR group (P < 0.001). Our findings suggest that lysogeny has increased the ability of some S. agalactiae strains to invade the neonatal brain endothelium. We then determined the prevalence of F5, F7, and F10 by PCR in a collection of 40 strains recently isolated from neonatal meningitis cases for comparison with the cerebrospinal fluid (CSF) strains isolated in the 1980s. The prevalence of the three prophage DNA fragments was similar in these two populations isolated 15 years apart. We suggest that the prophage DNA fragments identified have remained stable in many CSF S. agalactiae strains, possibly due to their importance in virulence or fitness. PMID:16517893

  9. Strain Level Streptococcus Colonization Patterns during the First Year of Life

    PubMed Central

    Wright, Meredith S.; McCorrison, Jamison; Gomez, Andres M.; Beck, Erin; Harkins, Derek; Shankar, Jyoti; Mounaud, Stephanie; Segubre-Mercado, Edelwisa; Mojica, Aileen May R.; Bacay, Brian; Nzenze, Susan A.; Kimaro, Sheila Z. M.; Adrian, Peter; Klugman, Keith P.; Lucero, Marilla G.; Nelson, Karen E.; Madhi, Shabir; Sutton, Granger G.; Nierman, William C.; Losada, Liliana

    2017-01-01

    Pneumococcal pneumonia has decreased significantly since the implementation of the pneumococcal conjugate vaccine (PCV), nevertheless, in many developing countries pneumonia mortality in infants remains high. We have undertaken a study of the nasopharyngeal (NP) microbiome during the first year of life in infants from The Philippines and South Africa. The study entailed the determination of the Streptococcus sp. carriage using a lytA qPCR assay, whole metagenomic sequencing, and in silico serotyping of Streptococcus pneumoniae, as well as 16S rRNA amplicon based community profiling. The lytA carriage in both populations increased with infant age and lytA+ samples ranged from 24 to 85% of the samples at each sampling time point. We next developed informatic tools for determining Streptococcus community composition and pneumococcal serotype from metagenomic sequences derived from a subset of longitudinal lytA-positive Streptococcus enrichment cultures from The Philippines (n = 26 infants, 50% vaccinated) and South African (n = 7 infants, 100% vaccinated). NP samples from infants were passaged in enrichment media, and metagenomic DNA was purified and sequenced. In silico capsular serotyping of these 51 metagenomic assemblies assigned known serotypes in 28 samples, and the co-occurrence of serotypes in 5 samples. Eighteen samples were not typeable using known serotypes but did encode for capsule biosynthetic cluster genes similar to non-encapsulated reference sequences. In addition, we performed metagenomic assembly and 16S rRNA amplicon profiling to understand co-colonization dynamics of Streptococcus sp. and other NP genera, revealing the presence of multiple Streptococcus species as well as potential respiratory pathogens in healthy infants. A range of virulence and drug resistant elements were identified as circulating in the NP microbiomes of these infants. This study revealed the frequent co-occurrence of multiple S. pneumoniae strains along with Streptococcus sp

  10. Complete genome sequence of an attenuated Sparfloxacin-resistant Streptococcus agalactiae strain 138spar

    USDA-ARS?s Scientific Manuscript database

    The complete genome of a sparfloxacin-resistant Streptococcus agalactiae vaccine strain 138spar is 1,838,126 bp in size. The genome has 1892 coding sequences and 82 RNAs. The annotation of the genome is added by the NCBI Prokaryotic Genome Annotation Pipeline. The publishing of this genome will allo...

  11. Characterization of a Multipeptide Lantibiotic Locus in Streptococcus pneumoniae.

    PubMed

    Maricic, Natalie; Anderson, Erica S; Opipari, AnneMarie E; Yu, Emily A; Dawid, Suzanne

    2016-01-26

    Bacterial communities are established through a combination of cooperative and antagonistic interactions between the inhabitants. Competitive interactions often involve the production of antimicrobial substances, including bacteriocins, which are small antimicrobial peptides that target other community members. Despite the nearly ubiquitous presence of bacteriocin-encoding loci, inhibitory activity has been attributed to only a small fraction of gene clusters. In this study, we characterized a novel locus (the pld locus) in the pathogen Streptococcus pneumoniae that drives the production of a bacteriocin called pneumolancidin, which has broad antimicrobial activity. The locus encodes an unusual tandem array of four inhibitory peptides, three of which are absolutely required for antibacterial activity. The three peptide sequences are similar but appear to play distinct roles in regulation and inhibition. A modification enzyme typically found in loci encoding a class of highly modified bacteriocins called lantibiotics was required for inhibitory activity. The production of pneumolancidin is controlled by a two-component regulatory system that is activated by the accumulation of modified peptides. The locus is located on a mobile element that has been found in many pneumococcal lineages, although not all elements carry the pld genes. Intriguingly, a minimal region containing only the genes required for pneumolancidin immunity was found in several Streptococcus mitis strains. The pneumolancidin-producing strain can inhibit nearly all pneumococci tested to date and provided a competitive advantage in vivo. These peptides not only represent a unique strategy for bacterial competition but also are an important resource to guide the development of new antimicrobials. Successful colonization of a polymicrobial host surface is a prerequisite for the subsequent development of disease for many bacterial pathogens. Bacterial factors that directly inhibit the growth of neighbors

  12. Characterization of rumen bacterial strains isolated from enrichments of rumen content in the presence of propolis.

    PubMed

    de Aguiar, Sílvia Cristina; Zeoula, Lucia Maria; do Prado, Odimari Pricila Pires; Arcuri, Pedro Braga; Forano, Evelyne

    2014-11-01

    Propolis presents many biological properties, including antibacterial activities, and has been proposed as an additive in ruminant nutrition. Twenty bacterial strains, previously isolated from enrichments of Brazilian cow rumen contents in the presence of different propolis extracts (LLOS), were characterized using phenotyping and 16S rRNA identification. Seven strains were assigned to Streptococcus sp., most likely S. bovis, and were all degrading starch. One amylolytic lactate-utilizing strain of Selenomonas ruminantium was also found. Two strains of Clostridium bifermentans were identified and showed proteolytic activity. Two strains were assigned to Mitsuokella jalaludinii and were saccharolytic. One strain belonged to a Bacillus species and seven strains were affiliated with Escherichia coli. All of the 20 strains were able to use many sugars, but none of them were able to degrade the polysaccharides carboxymethylcellulose and xylans. The effect of three propolis extracts (LLOS B1, C1 and C3) was tested on the in vitro growth of four representative isolates of S. bovis, E. coli, M. jalaludinii and C. bifermentans. The growth of S. bovis, E. coli and M. jalaludinii was not affected by the three propolis extracts at 1 mg ml(-1). C. bifermentans growth was completely inhibited at this LLOS concentration, but this bacterium was partially resistant at lower concentrations. LLOS C3, with the lower concentration of phenolic compounds, was a little less inhibitory than B1 and C1 on this strain.

  13. Protective immunity induced by an intranasal multivalent vaccine comprising 10 Lactococcus lactis strains expressing highly prevalent M-protein antigens derived from Group A Streptococcus.

    PubMed

    Wozniak, Aniela; Scioscia, Natalia; García, Patricia C; Dale, James B; Paillavil, Braulio A; Legarraga, Paulette; Salazar-Echegarai, Francisco J; Bueno, Susan M; Kalergis, Alexis M

    2018-04-28

    Streptococcus pyogenes (group A Streptococcus) causes diseases ranging from mild pharyngitis to severe invasive infections. The N-terminal fragment of Streptococcal M protein elicits protective antibodies and is an attractive vaccine target. However, this N- terminal fragment is hypervariable and there are more than 200 different M types. We are developing an intranasal live bacterial vaccine comprised of 10 strains of Lactococcus lactis, each expressing one N-terminal fagment of M protein. Live bacterial-vectored vaccines have lower associated costs because of its less complex manufacturing processes compared to protein subunit vaccines. Moreover, intranasal administration does not require syringe or specilized personnel. The evaluation of individual vaccine types (M1, M2, M3, M4, M6, M9, M12, M22, M28 and M77) showed that most of them protected mice against challenge with virulent S. pyogenes. All of the 10 strains combined in a 10-valent vaccine (Mx10) induced serum and bronchoalveolar lavages IgG titers that ranged from 3 to 10-fold those of unimmunized mice. Survival of Mx10-immunized mice after intranasal challenge with M28 streptococci is significantly higher than unimmunized mice. In contrast, when mice were challenged with M75 streptococci, survival of Mx10-immunized mice was not significantly different from unimmunized mice. Mx-10 immunized mice were significantly less colonized with S. pyogenes in oropharyngeal washes and developed less severe disease symptoms after challenge compared to unimmunized mice. Our L. lactis-based vaccine may provide an alternative solution to the development of broadly protective group A streptococcal vaccines. © 2018 The Societies and John Wiley & Sons Australia, Ltd.

  14. Comparative antibacterial effects of moxifloxacin and levofloxacin on Streptococcus pneumoniae strains with defined mechanisms of resistance: impact of bacterial inoculum.

    PubMed

    Bowker, K E; Garvey, M I; Noel, A R; Tomaselli, S G; Macgowan, A P

    2013-05-01

    We aim to further define the impact of the mechanism of fluoroquinolone resistance and inoculum load on the pharmacodynamic effects of levofloxacin and moxifloxacin on Streptococcus pneumoniae. The antibacterial effects of and emergence of resistance (EoR) to moxifloxacin (400 mg once daily) or levofloxacin (750 mg once daily or 500 mg twice daily) were compared using five S. pneumoniae strains containing no known resistance mechanisms, efflux resistance mechanisms, a parC mutation or parC and gyrA mutations, at high (10(8) cfu/mL) and low (10(6) cfu/mL) inocula. An in vitro pharmacokinetic model was used and simulations were performed over 96 h. After drug exposure, isolates were tested for the presence of efflux pumps and mutations in the quinolone resistance-determining regions. A high inoculum diminished the antibacterial effect of moxifloxacin and levofloxacin. Levofloxacin at both dosages produced EoR with all strains. Levofloxacin regimens with AUC/MIC ratios <100 produced EoR. Moxifloxacin produced EoR with the parC strain only. Levofloxacin dosing regimens with low AUC/MIC ratios select for efflux pump overexpression, leading to fluoroquinolone resistance. Levofloxacin dosing may select for gyrA mutations, inducing moxifloxacin resistance. These data confirm that a fluoroquinolone AUC/MIC ratio of >100 is required for prevention of EoR.

  15. A molecular trigger for intercontinental epidemics of group A Streptococcus

    PubMed Central

    Zhu, Luchang; Olsen, Randall J.; Nasser, Waleed; Beres, Stephen B.; Vuopio, Jaana; Kristinsson, Karl G.; Gottfredsson, Magnus; Porter, Adeline R.; DeLeo, Frank R.; Musser, James M.

    2015-01-01

    The identification of the molecular events responsible for strain emergence, enhanced virulence, and epidemicity has been a long-pursued goal in infectious diseases research. A recent analysis of 3,615 genomes of serotype M1 group A Streptococcus strains (the so-called “flesh-eating” bacterium) identified a recombination event that coincides with the global M1 pandemic beginning in the early 1980s. Here, we have shown that the allelic variation that results from this recombination event, which replaces the chromosomal region encoding secreted NADase and streptolysin O, is the key driver of increased toxin production and enhanced infection severity of the M1 pandemic strains. Using isoallelic mutant strains, we found that 3 polymorphisms in this toxin gene region increase resistance to killing by human polymorphonuclear leukocytes, increase bacterial proliferation, and increase virulence in animal models of pharyngitis and necrotizing fasciitis. Genome sequencing of an additional 1,125 streptococcal strains and virulence studies revealed that a highly similar recombinational replacement event underlies an ongoing intercontinental epidemic of serotype M89 group A Streptococcus infections. By identifying the molecular changes that enhance upper respiratory tract fitness, increased resistance to innate immunity, and increased tissue destruction, we describe a mechanism that underpins epidemic streptococcal infections, which have affected many millions of people. PMID:26258415

  16. Genomics, evolution, and molecular epidemiology of the Streptococcus bovis/Streptococcus equinus complex (SBSEC).

    PubMed

    Jans, Christoph; Meile, Leo; Lacroix, Christophe; Stevens, Marc J A

    2015-07-01

    The Streptococcus bovis/Streptococcus equinus complex (SBSEC) is a group of human and animal derived streptococci that are commensals (rumen and gastrointestinal tract), opportunistic pathogens or food fermentation associates. The classification of SBSEC has undergone massive changes and currently comprises 7 (sub)species grouped into four branches based on sequences identities: the Streptococcus gallolyticus, the Streptococcus equinus, the Streptococcus infantarius and the Streptococcus alactolyticus branch. In animals, SBSEC are causative agents for ruminal acidosis, potentially laminitis and infective endocarditis (IE). In humans, a strong association was established between bacteraemia, IE and colorectal cancer. Especially the SBSEC-species S. gallolyticus subsp. gallolyticus is an emerging pathogen for IE and prosthetic joint infections. S. gallolyticus subsp. pasteurianus and the S. infantarius branch are further associated with biliary and urinary tract infections. Knowledge on pathogenic mechanisms is so far limited to colonization factors such as pili and biofilm formation. Certain strain variants of S. gallolyticus subsp. macedonicus and S. infantarius subsp. infantarius are associated with traditional dairy and plant-based food fermentations and display traits suggesting safety. However, due to their close relationship to virulent strains, their use in food fermentation has to be critically assessed. Additionally, implementing accurate and up-to-date taxonomy is critical to enable appropriate treatment of patients and risk assessment of species and strains via recently developed multilocus sequence typing schemes to enable comparative global epidemiology. Comparative genomics revealed that SBSEC strains harbour genomics islands (GI) that seem acquired from other streptococci by horizontal gene transfer. In case of virulent strains these GI frequently encode putative virulence factors, in strains from food fermentation the GI encode functions that are

  17. Influence of bacterial interactions on pneumococcal colonization of the nasopharynx

    PubMed Central

    Shak, Joshua R.; Vidal, Jorge E.; Klugman, Keith P.

    2013-01-01

    Streptococcus pneumoniae (the pneumococcus) is a common commensal inhabitant of the nasopharynx and a frequent etiologic agent in serious diseases such as pneumonia, otitis media, bacteremia, and meningitis. Multiple pneumococcal strains can colonize the nasopharynx, which is also home to many other bacterial species. Intraspecies and interspecies interactions influence pneumococcal carriage in important ways. Co-colonization by two or more pneumococcal strains has implications for vaccine serotype replacement, carriage detection, and pneumonia diagnostics. Interactions between the pneumococcus and other bacterial species alter carriage prevalence, modulate virulence, and affect biofilm formation. By examining these interactions, this review highlights how the bacterial ecosystem of the nasopharynx changes the nature and course of pneumococcal carriage. PMID:23273566

  18. Treatment of acute bacterial rhinosinusitis caused by antimicrobial-resistant Streptococcus pneumoniae.

    PubMed

    Anon, Jack B

    2004-08-02

    Acute bacterial rhinosinusitis (ABRS) is a secondary bacterial infection of the nose and paranasal sinuses, usually preceded by a viral upper respiratory infection or allergy, with symptoms that have not improved after 10 days or that have worsened after 5 to 7 days. Streptococcus pneumoniae and Haemophilus influenzae are the most common causes of ABRS in adults. Increasing rates of antimicrobial resistance among S. pneumoniae and beta-lactamase production among H. influenzae are formidable challenges to the successful treatment of infections caused by these organisms. To this end, various formulations of amoxicillin-clavulanate have been developed, the most recent of which is pharmacokinetically enhanced and provides a total daily dose of 4,000 mg of amoxicillin and 250 mg of clavulanate. This formulation has been shown to be safe and effective in the treatment of infections caused by penicillin-resistant S. pneumoniae (minimum inhibitory concentration 2 microg/mL); the clavulanate component provides adequate coverage of beta-lactamase-producing pathogens.

  19. What is the mechanism for persistent coexistence of drug-susceptible and drug-resistant strains of Streptococcus pneumoniae?

    PubMed Central

    Colijn, Caroline; Cohen, Ted; Fraser, Christophe; Hanage, William; Goldstein, Edward; Givon-Lavi, Noga; Dagan, Ron; Lipsitch, Marc

    2010-01-01

    The rise of antimicrobial resistance in many pathogens presents a major challenge to the treatment and control of infectious diseases. Furthermore, the observation that drug-resistant strains have risen to substantial prevalence but have not replaced drug-susceptible strains despite continuing (and even growing) selective pressure by antimicrobial use presents an important problem for those who study the dynamics of infectious diseases. While simple competition models predict the exclusion of one strain in favour of whichever is ‘fitter’, or has a higher reproduction number, we argue that in the case of Streptococcus pneumoniae there has been persistent coexistence of drug-sensitive and drug-resistant strains, with neither approaching 100 per cent prevalence. We have previously proposed that models seeking to understand the origins of coexistence should not incorporate implicit mechanisms that build in stable coexistence ‘for free’. Here, we construct a series of such ‘structurally neutral’ models that incorporate various features of bacterial spread and host heterogeneity that have been proposed as mechanisms that may promote coexistence. We ask to what extent coexistence is a typical outcome in each. We find that while coexistence is possible in each of the models we consider, it is relatively rare, with two exceptions: (i) allowing simultaneous dual transmission of sensitive and resistant strains lets coexistence become a typical outcome, as does (ii) modelling each strain as competing more strongly with itself than with the other strain, i.e. self-immunity greater than cross-immunity. We conclude that while treatment and contact heterogeneity can promote coexistence to some extent, the in-host interactions between strains, particularly the interplay between coinfection, multiple infection and immunity, play a crucial role in the long-term population dynamics of pathogens with drug resistance. PMID:19940002

  20. Five-year longitudinal study of dental caries risk associated with Streptococcus mutans and Streptococcus sobrinus in individuals with intellectual disabilities.

    PubMed

    Oda, Yuki; Hayashi, Fumiko; Wakita, Atsuko; Nagatani, Yukiko; Okada, Mitsugi

    2017-03-31

    Streptococcus mutans (S. mutans) and Streptococcus sobrinus (S. sobrinus) are important etiologic agents in human dental caries. Using quantitative real-time polymerase chain reaction assays for the presence of those strains, we examined 145 outpatients with intellectual disability (ID), calculated the proportion of each of these strains to total bacteria, and compared dental caries incidence over 5 years. Plaque samples were collected from all erupted tooth sites, and dental examinations were performed annually to determine numbers of decayed, missing, and filled teeth (DMFT score; World Health Organization caries diagnostic criteria). Elevated DMFT scores were calculated as ∆DMFT, and sites of newly affected caries (∆SNAC) were identified. Sixty-six patients had both strains. The proportion of S. mutans to total bacteria was moderately correlated with DMFT in year 2, ∆DMFT in years 2 and 5, and ∆SNAC in years 2 and 5 (correlation coefficient = 0.470, P < 0.001), while the proportion of S. sobrinus to total bacteria was moderately correlated with DMFT in years 2 and 5, ∆DMFT in years 1, 2, and 5, and ∆SNAC in years 2 and 5 (correlation coefficient = 0.695, P < 0.001). Individuals with ID who harbored both bacterial strains had a higher risk of dental caries and a significantly higher proportion of S. sobrinus to total bacteria.

  1. Peripheral ischaemic retinopathy and neovascularisation in a patient with subacute streptococcus mitis-induced bacterial endocarditis.

    PubMed

    Leysen, Laura S; Kreps, Elke O; De Schryver, Ilse; Hoornaert, Kristien P; Smith, Vanessa; De Zaeytijd, Julie

    2017-01-01

    Objective: To describe a patient with peripheral retinal ischaemia and neovascularisation who was diagnosed with streptococcus mitis-induced bacterial endocarditis. Methods: Retrospective analysis of case report. A 57-year-old man presented with a history of a rapidly progressive, bilateral, painless visual loss. He also suffered from pain in the neck and lower back and a weight loss of 10 kg. He underwent a full ophthalmologic work-up, laboratory investigations, and imaging of the spine. Results: BCVA was reduced to 20/40 in the right eye and 20/32 in the left eye. Fundoscopy showed rare intra-retinal haemorrhages including few Roth spots and cotton wool lesions. Fluorescein angiography demonstrated large areas of peripheral retinal ischaemia and neovascularisation. Imaging of the spine showed spondylodiscitis on several levels. Further imaging and blood cultures confirmed bacterial endocarditis of the mitral valve. Streptococcus mitis was subsequently identified as the causative organism. Conclusion: Peripheral retinal ischaemia and neovascularisation were previously unrecognised as a feature of infectious endocarditis. Therefore, their presence, apart from the classic Roth spots, should prompt the consideration of infectious endocarditis in the etiologic work-up.

  2. Peripheral ischaemic retinopathy and neovascularisation in a patient with subacute streptococcus mitis-induced bacterial endocarditis

    PubMed Central

    Leysen, Laura S.; Kreps, Elke O.; De Schryver, Ilse; Hoornaert, Kristien P.; Smith, Vanessa; De Zaeytijd, Julie

    2017-01-01

    Objective: To describe a patient with peripheral retinal ischaemia and neovascularisation who was diagnosed with streptococcus mitis-induced bacterial endocarditis. Methods: Retrospective analysis of case report. A 57-year-old man presented with a history of a rapidly progressive, bilateral, painless visual loss. He also suffered from pain in the neck and lower back and a weight loss of 10 kg. He underwent a full ophthalmologic work-up, laboratory investigations, and imaging of the spine. Results: BCVA was reduced to 20/40 in the right eye and 20/32 in the left eye. Fundoscopy showed rare intra-retinal haemorrhages including few Roth spots and cotton wool lesions. Fluorescein angiography demonstrated large areas of peripheral retinal ischaemia and neovascularisation. Imaging of the spine showed spondylodiscitis on several levels. Further imaging and blood cultures confirmed bacterial endocarditis of the mitral valve. Streptococcus mitis was subsequently identified as the causative organism. Conclusion: Peripheral retinal ischaemia and neovascularisation were previously unrecognised as a feature of infectious endocarditis. Therefore, their presence, apart from the classic Roth spots, should prompt the consideration of infectious endocarditis in the etiologic work-up. PMID:28944156

  3. Clonal structure of Streptococcus sanguinis strains isolated from endocarditis cases and the oral cavity.

    PubMed

    Do, T; Gilbert, S C; Klein, J; Warren, S; Wade, W G; Beighton, D

    2011-10-01

    A collection of Streptococcus sanguinis strains from patients with endocarditis (n = 21) and from the oral cavity (n = 34) was subjected to a multi-locus sequence typing analysis using seven housekeeping genes, carbamoyl-phosphate synthetase (carB), Co/Zn/Cd efflux system component (czcD), d-alanyl-d-alanine ligase (ddl), DNA polymerase III (dnaX), glucose-6-phosphate dehydrogenase (gdh), DNA-directed RNA polymerase, beta subunit (rpoB) and superoxide dismutase (sodA). The scheme was expanded by the inclusion of two the putative virulence genes, bacitracin-resistance protein (bacA) and saliva-binding protein (ssaB), to increase strain discrimination. Extensive intra-species recombination was apparent in all genes but inter-species recombination was also apparent with strains apparently harbouring gdh and ddl from unidentified sources and one isolate harboured a sodA allele apparently derived from Streptococcus oralis. The recombination/mutation ratio for the concatenated housekeeping gene sequences was 1.67 (95% confidence limits 1.25-2.72) and for the two virulence genes the r/m ratio was 3.99 (95% confidence limits 1.61-8.72); recombination was the major driver for genetic variation. All isolates were distinct and the endocarditis strains did not form distinct sub-clusters when the data were analysed using ClonalFrame. These data support the widely held opinion that infecting S. sanguinis strains are opportunistic human pathogens. © 2011 John Wiley & Sons A/S.

  4. Influence of sucrose and xylitol on an early Streptococcus mutans biofilm in a dental simulator.

    PubMed

    Salli, K M; Forssten, S D; Lahtinen, S J; Ouwehand, A C

    2016-10-01

    In vitro methods to study dental biofilms are useful in finding ways to support a healthy microbial balance in the oral cavity. The effects of sucrose, xylitol, and their combination on three strains of Streptococcus mutans and one strain of Streptococcus sobrinus were studied using a dental simulator. A simulator was used to mimic the oral cavity environment. It provided a continuous-flow system using artificial saliva (AS), constant temperature, mixing, and hydroxyapatite (HA) surface in which the influence of xylitol was studied. The quantities of planktonic and adhered bacteria were measured by real-time qPCR. Compared against the untreated AS, adding 1% sucrose increased the bacterial colonization of HA (p<0.0001) whereas 2% xylitol decreased it (p<0.05), with the exception of clinical S. mutans isolate 117. The combination of xylitol and sucrose decreased the bacterial quantities within the AS and the colonization on the HA by clinical S. mutans isolate 2366 was reduced (p<0.05). Increasing the concentration (2%-5%) of xylitol caused a reduction in bacterial counts even in the presence of sucrose. The continuous-culture biofilm model showed that within a young biofilm, sucrose significantly promotes whereas xylitol reduces bacterial colonization and proliferation. The results indicate that xylitol affects the ability of certain S. mutans strains to adhere to the HA. Clinical studies have also shown that xylitol consumption decreases caries incidence and reduces the amount of plaque. This study contributes to the understanding of the mechanism behind these clinical observations. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Protein antigen in serotype k Streptococcus mutans clinical isolates.

    PubMed

    Nakano, K; Nomura, R; Nemoto, H; Lapirattanakul, J; Taniguchi, N; Grönroos, L; Alaluusua, S; Ooshima, T

    2008-10-01

    Streptococcus mutans, a major pathogen of dental caries and infective endocarditis, is classified into serotypes c, e, f, and k, with serotype k strains recently reported to be frequently detected in persons with infective endocarditis. Thus, we hypothesized that common properties associated with infective endocarditis are present in those strains. Fifty-six oral S. mutans strains, including 11 serotype k strains, were analyzed. Western blotting analysis revealed expression of the 3 types of glucosyltransferases in all strains, while expression of the approximately 190-kDa cell-surface protein (PA) was absent in 12 strains, among which the prevalence of serotype k (7/12) was significantly high. Furthermore, cellular hydrophobicity and phagocytosis susceptibility were lower in the group of serotype k strains. These results indicate that the absence of PA expression, low cellular hydrophobicity, and phagocytosis susceptibility are common bacterial properties associated with serotype k strains, which may be associated with virulence for infective endocarditis.

  6. Influence of fluoride on the bacterial composition of a dual-species biofilm composed of Streptococcus mutans and Streptococcus oralis.

    PubMed

    Jung, Ji-Eun; Cai, Jian-Na; Cho, Sung-Dae; Song, Kwang-Yeob; Jeon, Jae-Gyu

    2016-10-01

    Despite the widespread use of fluoride for the prevention of dental caries, few studies have demonstrated the effects of fluoride on the bacterial composition of dental biofilms. This study investigated whether fluoride affects the proportion of Streptococcus mutans and S. oralis in mono- and dual-species biofilm models, via microbiological, biochemical, and confocal fluorescence microscope studies. Fluoride did not affect the bacterial count and bio-volume of S. mutans and S. oralis in mono-species biofilms, except for the 24-h-old S. mutans biofilms. However, fluoride reduced the proportion and bio-volume of S. mutans but did not decrease those of S. oralis during both S. oralis and S. mutans dual-species biofilm formation, which may be related to the decrease in extracellular polysaccharide formation by fluoride. These results suggest that fluoride may prevent the shift in the microbial proportion to cariogenic bacteria in dental biofilms, subsequently inhibiting the cariogenic bacteria dominant biofilm formation.

  7. Involvement of T6 pili in biofilm formation by serotype M6 Streptococcus pyogenes.

    PubMed

    Kimura, Keiji Richard; Nakata, Masanobu; Sumitomo, Tomoko; Kreikemeyer, Bernd; Podbielski, Andreas; Terao, Yutaka; Kawabata, Shigetada

    2012-02-01

    The group A streptococcus (GAS) Streptococcus pyogenes is known to cause self-limiting purulent infections in humans. The role of GAS pili in host cell adhesion and biofilm formation is likely fundamental in early colonization. Pilus genes are found in the FCT (fibronectin-binding protein, collagen-binding protein, and trypsin-resistant antigen) genomic region, which has been classified into nine subtypes based on the diversity of gene content and nucleotide sequence. Several epidemiological studies have indicated that FCT type 1 strains, including serotype M6, produce large amounts of monospecies biofilm in vitro. We examined the direct involvement of pili in biofilm formation by serotype M6 clinical isolates. In the majority of tested strains, deletion of the tee6 gene encoding pilus shaft protein T6 compromised the ability to form biofilm on an abiotic surface. Deletion of the fctX and srtB genes, which encode pilus ancillary protein and class C pilus-associated sortase, respectively, also decreased biofilm formation by a representative strain. Unexpectedly, these mutant strains showed increased bacterial aggregation compared with that of the wild-type strain. When the entire FCT type 1 pilus region was ectopically expressed in serotype M1 strain SF370, biofilm formation was promoted and autoaggregation was inhibited. These findings indicate that assembled FCT type 1 pili contribute to biofilm formation and also function as attenuators of bacterial aggregation. Taken together, our results show the potential role of FCT type 1 pili in the pathogenesis of GAS infections.

  8. Involvement of T6 Pili in Biofilm Formation by Serotype M6 Streptococcus pyogenes

    PubMed Central

    Kimura, Keiji Richard; Nakata, Masanobu; Sumitomo, Tomoko; Kreikemeyer, Bernd; Podbielski, Andreas; Terao, Yutaka

    2012-01-01

    The group A streptococcus (GAS) Streptococcus pyogenes is known to cause self-limiting purulent infections in humans. The role of GAS pili in host cell adhesion and biofilm formation is likely fundamental in early colonization. Pilus genes are found in the FCT (fibronectin-binding protein, collagen-binding protein, and trypsin-resistant antigen) genomic region, which has been classified into nine subtypes based on the diversity of gene content and nucleotide sequence. Several epidemiological studies have indicated that FCT type 1 strains, including serotype M6, produce large amounts of monospecies biofilm in vitro. We examined the direct involvement of pili in biofilm formation by serotype M6 clinical isolates. In the majority of tested strains, deletion of the tee6 gene encoding pilus shaft protein T6 compromised the ability to form biofilm on an abiotic surface. Deletion of the fctX and srtB genes, which encode pilus ancillary protein and class C pilus-associated sortase, respectively, also decreased biofilm formation by a representative strain. Unexpectedly, these mutant strains showed increased bacterial aggregation compared with that of the wild-type strain. When the entire FCT type 1 pilus region was ectopically expressed in serotype M1 strain SF370, biofilm formation was promoted and autoaggregation was inhibited. These findings indicate that assembled FCT type 1 pili contribute to biofilm formation and also function as attenuators of bacterial aggregation. Taken together, our results show the potential role of FCT type 1 pili in the pathogenesis of GAS infections. PMID:22155780

  9. Influence of bacterial interactions on pneumococcal colonization of the nasopharynx.

    PubMed

    Shak, Joshua R; Vidal, Jorge E; Klugman, Keith P

    2013-03-01

    Streptococcus pneumoniae (the pneumococcus) is a common commensal inhabitant of the nasopharynx and a frequent etiologic agent in serious diseases such as pneumonia, otitis media, bacteremia, and meningitis. Multiple pneumococcal strains can colonize the nasopharynx, which is also home to many other bacterial species. Intraspecies and interspecies interactions influence pneumococcal carriage in important ways. Co-colonization by two or more pneumococcal strains has implications for vaccine serotype replacement, carriage detection, and pneumonia diagnostics. Interactions between the pneumococcus and other bacterial species alter carriage prevalence, modulate virulence, and affect biofilm formation. By examining these interactions, this review highlights how the bacterial ecosystem of the nasopharynx changes the nature and course of pneumococcal carriage. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. [Isolation and identification of the temperate bacteriophage from isolated strains of Streptococcus suis serotype 2].

    PubMed

    Ma, Yuling; Lu, Chengping; Fan, Hongjie

    2008-04-01

    A PCR assay was developed to study the distributional characteristics of phage integrase gene in Streptococcus suis serotype 2 (SS2). A 323bp distinct DNA target can be amplified in 25 strains of virulent SS2, while can not be amplified in avirulent strain T15, 5 strains of other serotypes (SS1, SS7, SS9) and strains of group C Streptococcus strains from pigs, which suggested that the phage integrase gene may be related to the pathogenicity of SS2 and can be consider as a detection factor of the virulent gene of SS2. The sequencing and restriction endonuclease analysis of the PCR products were also done. Comparisons between the sequences of phage integrase gene with that of SS2 strain, showed a high homology with SS2 China strains 98HAH33, 05ZYH33 and North American strain 89-1591. Complete cell lysis was observed with SS2 virulent strains but not with avirulent strain T15 after the induction by mitomycin C. Electron microscopy analysis of the lysate from SS2 virulent strains HA9801 and ZY05719 revealed the presence of phage particles. The induced phage, named SS2-HA and SS2-ZY, both have a small isometric nucleocapsid approximately 50 nm in diameter and have no tail and is therefore a member of the Tectiviridae family. The phage integrase gene sequence of phage SS2-HA and SS2-ZY shared high homologue identities with virulent SS2 strains, which suggested that the phage integrase gene of SS2 has high specify. The temperate phage and phage integrase gene can only detected from SS2 virulent strains but not from avirulent strain, and the detection of phage integrase gene was related to the virulence-associate factors of SS2, such as the muramidase-released protein gene (mrp), which suggested that the temperate phage of SS2 may be related to the pathogenicity of SS2.

  11. Highly Variable Streptococcus oralis Strains Are Common among Viridans Streptococci Isolated from Primates.

    PubMed

    Denapaite, Dalia; Rieger, Martin; Köndgen, Sophie; Brückner, Reinhold; Ochigava, Irma; Kappeler, Peter; Mätz-Rensing, Kerstin; Leendertz, Fabian; Hakenbeck, Regine

    2016-01-01

    Viridans streptococci were obtained from primates (great apes, rhesus monkeys, and ring-tailed lemurs) held in captivity, as well as from free-living animals (chimpanzees and lemurs) for whom contact with humans is highly restricted. Isolates represented a variety of viridans streptococci, including unknown species. Streptococcus oralis was frequently isolated from samples from great apes. Genotypic methods revealed that most of the strains clustered on separate lineages outside the main cluster of human S. oralis strains. This suggests that S. oralis is part of the commensal flora in higher primates and evolved prior to humans. Many genes described as virulence factors in Streptococcus pneumoniae were present also in other viridans streptococcal genomes. Unlike in S. pneumoniae, clustered regularly interspaced short palindromic repeat (CRISPR)-CRISPR-associated protein (Cas) gene clusters were common among viridans streptococci, and many S. oralis strains were type PI-2 (pilus islet 2) variants. S. oralis displayed a remarkable diversity of genes involved in the biosynthesis of peptidoglycan (penicillin-binding proteins and MurMN) and choline-containing teichoic acid. The small noncoding cia-dependent small RNAs (csRNAs) controlled by the response regulator CiaR might contribute to the genomic diversity, since we observed novel genomic islands between duplicated csRNAs, variably present in some isolates. All S. oralis genomes contained a β-N-acetyl-hexosaminidase gene absent in S. pneumoniae, which in contrast frequently harbors the neuraminidases NanB/C, which are absent in S. oralis. The identification of S. oralis-specific genes will help us to understand their adaptation to diverse habitats. IMPORTANCE Streptococcus pneumoniae is a rare example of a human-pathogenic bacterium among viridans streptococci, which consist of commensal symbionts, such as the close relatives Streptococcus mitis and S. oralis. We have shown that S. oralis can frequently

  12. Highly Variable Streptococcus oralis Strains Are Common among Viridans Streptococci Isolated from Primates

    PubMed Central

    Denapaite, Dalia; Rieger, Martin; Köndgen, Sophie; Brückner, Reinhold; Ochigava, Irma; Kappeler, Peter; Mätz-Rensing, Kerstin; Leendertz, Fabian

    2016-01-01

    ABSTRACT Viridans streptococci were obtained from primates (great apes, rhesus monkeys, and ring-tailed lemurs) held in captivity, as well as from free-living animals (chimpanzees and lemurs) for whom contact with humans is highly restricted. Isolates represented a variety of viridans streptococci, including unknown species. Streptococcus oralis was frequently isolated from samples from great apes. Genotypic methods revealed that most of the strains clustered on separate lineages outside the main cluster of human S. oralis strains. This suggests that S. oralis is part of the commensal flora in higher primates and evolved prior to humans. Many genes described as virulence factors in Streptococcus pneumoniae were present also in other viridans streptococcal genomes. Unlike in S. pneumoniae, clustered regularly interspaced short palindromic repeat (CRISPR)–CRISPR-associated protein (Cas) gene clusters were common among viridans streptococci, and many S. oralis strains were type PI-2 (pilus islet 2) variants. S. oralis displayed a remarkable diversity of genes involved in the biosynthesis of peptidoglycan (penicillin-binding proteins and MurMN) and choline-containing teichoic acid. The small noncoding cia-dependent small RNAs (csRNAs) controlled by the response regulator CiaR might contribute to the genomic diversity, since we observed novel genomic islands between duplicated csRNAs, variably present in some isolates. All S. oralis genomes contained a β-N-acetyl-hexosaminidase gene absent in S. pneumoniae, which in contrast frequently harbors the neuraminidases NanB/C, which are absent in S. oralis. The identification of S. oralis-specific genes will help us to understand their adaptation to diverse habitats. IMPORTANCE Streptococcus pneumoniae is a rare example of a human-pathogenic bacterium among viridans streptococci, which consist of commensal symbionts, such as the close relatives Streptococcus mitis and S. oralis. We have shown that S. oralis can

  13. Molecular characterization of Streptococcus agalactiae strains isolated from fishes in Malaysia.

    PubMed

    Amal, M N A; Zamri-Saad, M; Siti-Zahrah, A; Zulkafli, A R; Nur-Nazifah, M

    2013-07-01

    The aim of this study was to characterize Streptococcus agalactiae strains that were isolated from fishes in Malaysia using random amplified polymorphic DNA (RAPD) and repetitive extragenic palindromic PCR (REP-PCR) techniques. A total of 181 strains of Strep. agalactiae isolated from red hybrid tilapia (Oreochromis sp.) and golden pompano (Trachinotus blochii) were characterized using RAPD and REP-PCR techniques. Both the fingerprinting techniques generated reproducible band patterns, differing in the number and molecular mass amplicons. The RAPD technique displayed greater discriminatory power by its production of more complex binding pattern and divided all the strains into 13 groups, compared to 9 by REP-PCR technique. Both techniques showed the availability to differentiate the genetic profiles of the strains according to their geographical location of origin. Three strains of Strep. agalactiae that were recovered from golden pompano showed a genetic dissimilarity from the strains isolated from red hybrid tilapia, while the strain of ATCC 27956 that recovered from bovine displayed a unique profile for both methods. Both techniques possess excellent discriminative capabilities and can be used as a rapid means of comparing Strep. agalactiae strains for future epidemiological investigation. Framework as the guideline in traceability of this disease and in the search for potential local vaccine candidates for streptococcosis in this country. Journal of Applied Microbiology © 2013 The Society for Applied Microbiology.

  14. Contribution of the Interaction of Streptococcus mutans Serotype k Strains with Fibrinogen to the Pathogenicity of Infective Endocarditis

    PubMed Central

    Nomura, Ryota; Otsugu, Masatoshi; Naka, Shuhei; Teramoto, Noboru; Kojima, Ayuchi; Muranaka, Yoshinori; Matsumoto-Nakano, Michiyo; Ooshima, Takashi

    2014-01-01

    Streptococcus mutans, a pathogen responsible for dental caries, is occasionally isolated from the blood of patients with bacteremia and infective endocarditis (IE). Our previous study demonstrated that serotype k-specific bacterial DNA is frequently detected in S. mutans-positive heart valve specimens extirpated from IE patients. However, the reason for this frequent detection remains unknown. In the present study, we analyzed the virulence of IE from S. mutans strains, focusing on the characterization of serotype k strains, most of which are positive for the 120-kDa cell surface collagen-binding protein Cbm and negative for the 190-kDa protein antigen (PA) known as SpaP, P1, antigen I/II, and other designations. Fibrinogen-binding assays were performed with 85 clinical strains classified by Cbm and PA expression levels. The Cbm+/PA− group strains had significantly higher fibrinogen-binding rates than the other groups. Analysis of platelet aggregation revealed that SA31, a Cbm+/PA− strain, induced an increased level of aggregation in the presence of fibrinogen, while negligible aggregation was induced by the Cbm-defective isogenic mutant SA31CBD. A rat IE model with an artificial impairment of the aortic valve created using a catheter showed that extirpated heart valves in the SA31 group displayed a prominent vegetation mass not seen in those in the SA31CBD group. These findings could explain why Cbm+/PA− strains are highly virulent and are related to the development of IE, and the findings could also explain the frequent detection of serotype k DNA in S. mutans-positive heart valve clinical specimens. PMID:25287921

  15. Contribution of the interaction of Streptococcus mutans serotype k strains with fibrinogen to the pathogenicity of infective endocarditis.

    PubMed

    Nomura, Ryota; Otsugu, Masatoshi; Naka, Shuhei; Teramoto, Noboru; Kojima, Ayuchi; Muranaka, Yoshinori; Matsumoto-Nakano, Michiyo; Ooshima, Takashi; Nakano, Kazuhiko

    2014-12-01

    Streptococcus mutans, a pathogen responsible for dental caries, is occasionally isolated from the blood of patients with bacteremia and infective endocarditis (IE). Our previous study demonstrated that serotype k-specific bacterial DNA is frequently detected in S. mutans-positive heart valve specimens extirpated from IE patients. However, the reason for this frequent detection remains unknown. In the present study, we analyzed the virulence of IE from S. mutans strains, focusing on the characterization of serotype k strains, most of which are positive for the 120-kDa cell surface collagen-binding protein Cbm and negative for the 190-kDa protein antigen (PA) known as SpaP, P1, antigen I/II, and other designations. Fibrinogen-binding assays were performed with 85 clinical strains classified by Cbm and PA expression levels. The Cbm(+)/PA(-) group strains had significantly higher fibrinogen-binding rates than the other groups. Analysis of platelet aggregation revealed that SA31, a Cbm(+)/PA(-) strain, induced an increased level of aggregation in the presence of fibrinogen, while negligible aggregation was induced by the Cbm-defective isogenic mutant SA31CBD. A rat IE model with an artificial impairment of the aortic valve created using a catheter showed that extirpated heart valves in the SA31 group displayed a prominent vegetation mass not seen in those in the SA31CBD group. These findings could explain why Cbm(+)/PA(-) strains are highly virulent and are related to the development of IE, and the findings could also explain the frequent detection of serotype k DNA in S. mutans-positive heart valve clinical specimens. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  16. A Highly Arginolytic Streptococcus Species That Potently Antagonizes Streptococcus mutans

    PubMed Central

    Huang, Xuelian; Palmer, Sara R.; Ahn, Sang-Joon; Richards, Vincent P.; Williams, Matthew L.; Nascimento, Marcelle M.

    2016-01-01

    The ability of certain oral biofilm bacteria to moderate pH through arginine metabolism by the arginine deiminase system (ADS) is a deterrent to the development of dental caries. Here, we characterize a novel Streptococcus strain, designated strain A12, isolated from supragingival dental plaque of a caries-free individual. A12 not only expressed the ADS pathway at high levels under a variety of conditions but also effectively inhibited growth and two intercellular signaling pathways of the dental caries pathogen Streptococcus mutans. A12 produced copious amounts of H2O2 via the pyruvate oxidase enzyme that were sufficient to arrest the growth of S. mutans. A12 also produced a protease similar to challisin (Sgc) of Streptococcus gordonii that was able to block the competence-stimulating peptide (CSP)–ComDE signaling system, which is essential for bacteriocin production by S. mutans. Wild-type A12, but not an sgc mutant derivative, could protect the sensitive indicator strain Streptococcus sanguinis SK150 from killing by the bacteriocins of S. mutans. A12, but not S. gordonii, could also block the XIP (comX-inducing peptide) signaling pathway, which is the proximal regulator of genetic competence in S. mutans, but Sgc was not required for this activity. The complete genome sequence of A12 was determined, and phylogenomic analyses compared A12 to streptococcal reference genomes. A12 was most similar to Streptococcus australis and Streptococcus parasanguinis but sufficiently different that it may represent a new species. A12-like organisms may play crucial roles in the promotion of stable, health-associated oral biofilm communities by moderating plaque pH and interfering with the growth and virulence of caries pathogens. PMID:26826230

  17. A Highly Arginolytic Streptococcus Species That Potently Antagonizes Streptococcus mutans.

    PubMed

    Huang, Xuelian; Palmer, Sara R; Ahn, Sang-Joon; Richards, Vincent P; Williams, Matthew L; Nascimento, Marcelle M; Burne, Robert A

    2016-01-29

    The ability of certain oral biofilm bacteria to moderate pH through arginine metabolism by the arginine deiminase system (ADS) is a deterrent to the development of dental caries. Here, we characterize a novel Streptococcus strain, designated strain A12, isolated from supragingival dental plaque of a caries-free individual. A12 not only expressed the ADS pathway at high levels under a variety of conditions but also effectively inhibited growth and two intercellular signaling pathways of the dental caries pathogen Streptococcus mutans. A12 produced copious amounts of H2O2 via the pyruvate oxidase enzyme that were sufficient to arrest the growth of S. mutans. A12 also produced a protease similar to challisin (Sgc) of Streptococcus gordonii that was able to block the competence-stimulating peptide (CSP)-ComDE signaling system, which is essential for bacteriocin production by S. mutans. Wild-type A12, but not an sgc mutant derivative, could protect the sensitive indicator strain Streptococcus sanguinis SK150 from killing by the bacteriocins of S. mutans. A12, but not S. gordonii, could also block the XIP (comX-inducing peptide) signaling pathway, which is the proximal regulator of genetic competence in S. mutans, but Sgc was not required for this activity. The complete genome sequence of A12 was determined, and phylogenomic analyses compared A12 to streptococcal reference genomes. A12 was most similar to Streptococcus australis and Streptococcus parasanguinis but sufficiently different that it may represent a new species. A12-like organisms may play crucial roles in the promotion of stable, health-associated oral biofilm communities by moderating plaque pH and interfering with the growth and virulence of caries pathogens. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  18. Production and Properties of Bacteriocin-Like Inhibitory Substances from the Swine Pathogen Streptococcus suis Serotype 2

    PubMed Central

    Mélançon, D.; Grenier, D.

    2003-01-01

    Streptococcus suis serotype 2 is a major pathogen found in the upper respiratory tract of swine. In this study, isolates of this bacterial species were tested for the production of bacteriocin-like inhibitory substances (BLIS). Of the 38 strains tested, four inhibited the growth of other S. suis isolates according to a deferred-antagonism plate assay. Interestingly, three of the strains were originally isolated from healthy carrier pigs and were considered nonvirulent. Three isolates (94-623, 90-1330, and AAH4) that produced BLIS in liquid broth were selected for further characterization. None of the inhibitory activities was related to the production of either organic acids or hydrogen peroxide. The BLIS produced by these strains were heat stable and proteinase K, pronase, and elastase sensitive but were trypsin and chymotrypsin resistant. They were stable at pH 2 and 12 and had molecular masses in the range of 14 to 30 kDa. Maximum production was observed during the mid-log phase. Following a curing procedure with novobiocin, only 90-1330 lost the ability to produce BLIS, suggesting that the BLIS might be plasmid encoded. Analysis of the inhibitory spectra revealed that the BLIS-producing strains also inhibited the growth of Actinobacillus minor, Actinobacillus porcinus, Enterococcus durans, Micrococcus luteus, Streptococcus agalactiae, Streptococcus dysgalactiae subsp. dysgalactiae, Streptococcus equi subsp. zooepidemicus, and S. dysgalactiae subsp. equisimilis. This study reports for the first time the ability of the swine pathogen S. suis serotype 2 to produce BLIS with the characteristics of classic bacteriocins. Further studies are required to investigate the possibility of using bacteriocin-producing strains to prevent swine infections caused by virulent strains of S. suis serotype 2. PMID:12902232

  19. Draft genome sequences of two Streptococcus pyogenes strains involved in abnormal sharp raised scarlet fever in China, 2011.

    PubMed

    You, Yuanhai; Yang, Xianwei; Song, Yanyan; Yan, Xiaomei; Yuan, Yanting; Li, Dongfang; Yan, Yanfeng; Wang, Haibin; Tao, Xiaoxia; Li, Leilei; Jiang, Xihong; Zhou, Hao; Xiao, Di; Jin, Lianmei; Feng, Zijian; Yang, Ruifu; Luo, Fengji; Cui, Yujun; Zhang, Jianzhong

    2012-11-01

    A scarlet fever outbreak caused by Streptococcus pyogenes occurred in China in 2011. To determine the genomic features of the outbreak strains, we deciphered genomes of two strains isolated from the regions with the highest incidence rates. The sequences will provide valuable information for comprehensive study of mechanisms related to this outbreak.

  20. New Insights into Various Production Characteristics of Streptococcus thermophilus Strains

    PubMed Central

    Cui, Yanhua; Xu, Tingting; Qu, Xiaojun; Hu, Tong; Jiang, Xu; Zhao, Chunyu

    2016-01-01

    Streptococcus thermophilus is one of the most valuable homo-fermentative lactic acid bacteria, which, for a long time, has been widely used as a starter for the production of fermented dairy products. The key production characteristics of S. thermophilus, for example the production of extracellular polysaccharide, proteolytic enzymes and flavor substances as well as acidifying capacity etc., have an important effect on the quality of dairy products. The acidification capacity of the strains determines the manufacturing time and quality of dairy products. It depends on the sugar utilization ability of strains. The production of extracellular polysaccharide is beneficial for improving the texture of dairy products. Flavor substances increase the acceptability of dairy products. The proteolytic activity of the strain influences not only the absorption of the nitrogen source, but also the formation of flavor substances. Different strains have obvious differences in production characteristics via long-time evolution and adaptation to environment. Gaining new strains with novel and desirable characteristics is an important long-term goal for researchers and the fermenting industry. The understanding of the potential molecular mechanisms behind important characteristics of different strains will promote the screening and breeding of excellent strains. In this paper, key technological and functional properties of different S. thermophilus strains are discussed, including sugar metabolism, proteolytic system and amino acid metabolism, and polysaccharide and flavor substance biosynthesis. At the same time, diversity of genomes and plasmids of S. thermophilus are presented. Advances in research on key production characteristics and molecular levels of S. thermophilus will increase understanding of molecular mechanisms of different strains with different important characteristics, and improve the industrialization control level for fermented foods. PMID:27754312

  1. In vitro combined effect of co-amoxiclav concentrations achievable in serum after a 2000/125 mg oral dose, and polymorphonuclear neutrophils against strains of Streptococcus pneumoniae exhibiting decreased susceptibility to amoxicillin.

    PubMed

    Amores, Raquel; Alou, Luis; Giménez, María José; Sevillano, David; Gómez-Lus, María Luisa; Aguilar, Lorenzo; Prieto, José

    2004-07-01

    The in vitro effect that the presence of components of non-specific immunity (serum plus polymorphonuclear neutrophils) has on the bactericidal activity of co-amoxiclav was explored against Streptococcus pneumoniae strains exhibiting an amoxicillin MIC > or =4 mg/L. Eight penicillin-resistant clinical isolates non-susceptible to co-amoxiclav with MICs of 4 (two strains), 8 (four strains) and 16 mg/L (two strains) were used. Values of MBC were identical to MIC values in all cases. Time-kill curves were performed with co-amoxiclav concentrations achievable in serum after a single oral dose administration of the new 2000/125 mg sustained-release formulation. Results were expressed as percentage of reduction of initial inocula after 3 h incubation. Control curves showed growth with no reduction of initial inocula. Against strains with MIC of 4 and 8 mg/L, the results obtained with the antibiotic alone or with the presence of factors of non-specific immunity were similar, with a weak combined effect due to the intrinsic activity of co-amoxiclav (reductions of initial inocula ranging from 70 to 99.16%). Against strains with MIC of 16 mg/L, the addition of PMN in the presence of serum increased the reduction of bacterial load provided by the aminopenicillin, even at sub-inhibitory concentrations (25.8% versus 51.1% at 0.5 x MIC concentration--8/0.5 mg/L). This combined activity against strains with an amoxicillin MIC of 16 mg/L which decreased the bacterial load may be important in preventing bacterial proliferation within the host and the transmission of resistant clones to others.

  2. Kinetics of Coinfection with Influenza A Virus and Streptococcus pneumoniae

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Amber M.; Adler, Frederick R.; Ribeiro, Ruy M.

    Secondary bacterial infections are a leading cause of illness and death during epidemic and pandemic influenza. Experimental studies suggest a lethal synergism between influenza and certain bacteria, particularly Streptococcus pneumoniae, but the precise processes involved are unclear. In this paper, to address the mechanisms and determine the influences of pathogen dose and strain on disease, we infected groups of mice with either the H1N1 subtype influenza A virus A/Puerto Rico/8/34 (PR8) or a version expressing the 1918 PB1-F2 protein (PR8-PB1-F2(1918)), followed seven days later with one of two S. pneumoniae strains, type 2 D39 or type 3 A66.1. We determinedmore » that, following bacterial infection, viral titers initially rebound and then decline slowly. Bacterial titers rapidly rise to high levels and remain elevated. We used a kinetic model to explore the coupled interactions and study the dominant controlling mechanisms. We hypothesize that viral titers rebound in the presence of bacteria due to enhanced viral release from infected cells, and that bacterial titers increase due to alveolar macrophage impairment. Dynamics are affected by initial bacterial dose but not by the expression of the influenza 1918 PB1-F2 protein. Finally, our model provides a framework to investigate pathogen interaction during coinfections and to uncover dynamical differences based on inoculum size and strain.« less

  3. Kinetics of Coinfection with Influenza A Virus and Streptococcus pneumoniae

    DOE PAGES

    Smith, Amber M.; Adler, Frederick R.; Ribeiro, Ruy M.; ...

    2013-03-21

    Secondary bacterial infections are a leading cause of illness and death during epidemic and pandemic influenza. Experimental studies suggest a lethal synergism between influenza and certain bacteria, particularly Streptococcus pneumoniae, but the precise processes involved are unclear. In this paper, to address the mechanisms and determine the influences of pathogen dose and strain on disease, we infected groups of mice with either the H1N1 subtype influenza A virus A/Puerto Rico/8/34 (PR8) or a version expressing the 1918 PB1-F2 protein (PR8-PB1-F2(1918)), followed seven days later with one of two S. pneumoniae strains, type 2 D39 or type 3 A66.1. We determinedmore » that, following bacterial infection, viral titers initially rebound and then decline slowly. Bacterial titers rapidly rise to high levels and remain elevated. We used a kinetic model to explore the coupled interactions and study the dominant controlling mechanisms. We hypothesize that viral titers rebound in the presence of bacteria due to enhanced viral release from infected cells, and that bacterial titers increase due to alveolar macrophage impairment. Dynamics are affected by initial bacterial dose but not by the expression of the influenza 1918 PB1-F2 protein. Finally, our model provides a framework to investigate pathogen interaction during coinfections and to uncover dynamical differences based on inoculum size and strain.« less

  4. Draft Genome Sequences of Two Streptococcus pyogenes Strains Involved in Abnormal Sharp Raised Scarlet Fever in China, 2011

    PubMed Central

    You, Yuanhai; Yang, Xianwei; Song, Yanyan; Yan, Xiaomei; Yuan, Yanting; Li, Dongfang; Yan, Yanfeng; Wang, Haibin; Tao, Xiaoxia; Li, Leilei; Jiang, Xihong; Zhou, Hao; Xiao, Di; Jin, Lianmei; Feng, Zijian; Yang, Ruifu; Luo, Fengji

    2012-01-01

    A scarlet fever outbreak caused by Streptococcus pyogenes occurred in China in 2011. To determine the genomic features of the outbreak strains, we deciphered genomes of two strains isolated from the regions with the highest incidence rates. The sequences will provide valuable information for comprehensive study of mechanisms related to this outbreak. PMID:23045496

  5. Isolation of Streptococcus tigurinus - a novel member of Streptococcus mitis group from a case of periodontitis.

    PubMed

    Dhotre, Shree V; Mehetre, Gajanan T; Dharne, Mahesh S; Suryawanshi, Namdev M; Nagoba, Basavraj S

    2014-08-01

    Streptococcus tigurinus is a new member of the Streptococcus viridians group and is closely related to Streptococcus mitis, Streptococcus pneumoniae, Streptococcus pseudopneumoniae, Streptococcus oralis, and Streptococcus infantis. The type strain AZ_3a(T) of S. tigurinus was originally isolated from a patient with infective endocarditis. Accurate identification of S. tigurinus is facilitated only by newer molecular methods like 16S rRNA gene analysis. During the course of study on bacteraemia and infective endocarditis with reference to periodontitis and viridians group of streptococci, a strain of S. tigurinus isolated from subgingival plaque of a patient with periodontitis identified by 16S rRNA gene analysis, which was originally identified as Streptococcus pluranimalium by Vitek 2. Confirmation by 16S rRNA gene analysis showed 99.39% similarity (1476/1485 bp) with S. tigurinus AZ_3a(T) (AORU01000002). To the best of our knowledge, this is the first report of isolation of S. tigurinus from the oral cavity of a periodontitis patient. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  6. Anti-adhesive and pro-apoptotic effects of 2-hydroxyethyl methacrylate on human gingival fibroblasts co-cultured with Streptococcus mitis strains

    PubMed Central

    Zara, S; Di Giulio, M; D’Ercole, S; Cellini, L; Cataldi, A

    2011-01-01

    Aim To evaluate and observe the cellular reactions that occur during the interaction/integration between 2-hydroxyethyl methacrylate/host tissue/microbial environment, in a co-culture of human gingival fibroblasts (HGF) and Streptococcus mitis strains. Methodology Streptococcus mitis were cultured with strains in the presence of 3 mmol L−1 HEMA for 48 h and 72 h. Cytotoxicity was evaluated by the trypan blue dye exclusion test. Apoptosis was evaluated by TUNEL analysis. Adhesion was evaluated by immunofluorescence and western blot analyses. Quantitative analyses of the results were acquired by Qwin Plus 3.5 and QuantityOne I-D analysis software, respectively. The statistical significance of the results was evaluated using t-tests and linear regression tests. Results The trypan blue dye test revealed 47.3% and 46.5% of dead fibroblasts after 48 and 72 h HEMA treatment, respectively, while bacterial viability was not influenced by the presence of HEMA and fibroblasts. The expression of pro-collagen I, involved in fibroblast adhesion, in untreated samples ranged from 12.49% to 6.91% of the positive area after 48 and 72 h, respectively, dropping to below 2% of the positive area in the other experimental conditions. Unlike the trypan blue test, co-cultured samples treated with HEMA showed 20% and 25% versus 17% and 21% (after 48 and 72 h, respectively) of apoptotic cells. Conclusions The evidence for HEMA toxicity and anti-adhesive effects against eukaryotic cells was reduced in the presence of bacteria, suggesting that dental resins should be well polymerized to avoid the spread of toxic monomers within the mouth. PMID:21902700

  7. Streptococcus ovuberis sp. nov., isolated from a subcutaneous abscess in the udder of a sheep.

    PubMed

    Zamora, Leydis; Pérez-Sancho, Marta; Fernández-Garayzábal, Jose Francisco; Orden, Jose Antonio; Domínguez-Bernal, Gustavo; de la Fuente, Ricardo; Domínguez, Lucas; Vela, Ana Isabel

    2017-11-01

    One unidentified, Gram-stain-positive, catalase-negative coccus-shaped organism was recovered from a subcutaneous abscess of the udder of a sheep and subjected to a polyphasic taxonomic analysis. Based on cellular morphology and biochemical criteria, the isolate was tentatively assigned to the genus Streptococcus, although the organism did not appear to match any recognized species. 16S rRNA gene sequence comparison studies confirmed its identification as a member of the genus Streptococcus and showed that the nearest phylogenetic relatives of the unknown coccus corresponded to Streptococcus moroccensis and Streptococcus cameli (95.9 % 16S rRNA gene sequence similarity). The sodA sequence analysis showed less than 89.3 % sequence similarity with the currently recognized species of the genus Streptococcus. The novel bacterial isolate was distinguished from close relatives of the genus Streptococcusby using biochemical tests. A mass spectrometry profile was also obtained for the novel isolate using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). Based on both phenotypic and phylogenetic findings, it is proposed that the unknown bacterium be classified as a representative of a novel species of the genus Streptococcus, Streptococcus ovuberis sp. nov. The type strain of Streptococcus ovuberissp. nov. is VB15-00779 T (=CECT 9179 T =CCUG 69612 T ).

  8. Protein F, a fibronectin-binding protein, is an adhesin of the group A streptococcus Streptococcus pyogenes.

    PubMed

    Hanski, E; Caparon, M

    1992-07-01

    Binding to fibronectin has been suggested to play an important role in adherence of the group A streptococcus Streptococcus pyrogenes to host epithelial cells; however, the identity of the streptococcal fibronectin receptor has been elusive. Here we demonstrate that the fibronectin-binding property of S. pyogenes is mediated by protein F, a bacterial surface protein that binds fibronectin at high affinity. The gene encoding protein F (prtF) produced a functional fibronectin-binding protein in Escherichia coli. Insertional mutagenesis of the cloned gene generated a mutation that resulted in the loss of fibronectin-binding activity. When this mutation was introduced into the S. pyrogenes chromosome by homologous recombination with the wild-type allele, the resulting strains no longer produced protein F and lost their ability to bind fibronectin. The mutation could be complemented by prtF introduced on a plasmid. Mutants lacking protein F had a much lower capacity to adhere to respiratory epithelial cells. These results demonstrate that protein F is an important adhesin of S. pyogenes.

  9. Comparative analysis of innate immune responses to Streptococcus phocae strains in Atlantic salmon (Salmo salar) and rainbow trout (Oncorhynchus mykiss).

    PubMed

    Salazar, Soraya; Oliver, Cristian; Yáñez, Alejandro J; Avendaño-Herrera, Ruben

    2016-04-01

    Streptococcus phocae subsp. salmonis is a Gram-positive bacterium that causes mortality only in Atlantic salmon (Salmo salar) farmed in Chile, even when this species is co-cultured with rainbow trout (Oncorhynchus mykiss). This susceptibility could be determined by innate immune response components and their responses to bacterial infection. This fish pathogen shares subspecies status with Streptococcus phocae subsp. phocae isolated from seals. The present study compared innate immune system mechanisms in Atlantic salmon and rainbow trout when challenged with different S. phocae, including two isolates from Atlantic salmon (LM-08-Sp and LM-13-Sp) and two from seal (ATCC 51973(T) and P23). Streptococcus phocae growth was evaluated in the mucus and serum of both species, with rainbow trout samples evidencing inhibitory effects. Lysozyme activity supported this observation, with significantly higher (p < 0.01) expression in rainbow trout serum and mucus as compared to Atlantic salmon. No differences were found in phagocytic capacity between fish species when stimulated with ATCC 51973(T) and P23. Against all S. phocae strains, rainbow trout and Atlantic salmon showed up to two-fold increased bactericidal activity, and rainbow trout demonstrated up to three-fold greater reactive oxygen species production in macrophages. In conclusion, the non-specific humoral and cellular barriers of Atlantic salmon were immunologically insufficient against S. phocae subsp. salmonis, thereby facilitating streptococcosis. Moreover, the more robust response of rainbow trout to S. phocae could not be attributed to any specific component of the innate immune system, but was rather the consequence of a combined response by the evaluated components. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Recurrent bacteremia with different strains of Streptococcus pyogenes in an immunocompromised child.

    PubMed

    Hattori, Takuya; Minami, Masaaki; Narita, Kotaro; Nakata, Tomohiko; Itomi, Seiko; Kubota, Kinya; Oya, Teruaki; Nishiyama, Hideki; Kato, Hideki; Yuasa, Norihiro

    2016-06-01

    We report an immunocompromised child who experienced two episodes of bacteremia due to Streptococcus pyogenes. Random amplification of polymorphic DNA profiles, emm genotypes, superantigen profiles, antimicrobial susceptibility, and resistance-related genes were investigated, and the results showed different profiles between the two isolates. This is the first report describing recurrent bacteremia caused by different strains of S. pyogenes. Copyright © 2016 Japanese Society of Chemotherapy and The Japanese Association for Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  11. Streptococcus pharyngis sp. nov., a novel streptococcal species isolated from the respiratory tract of wild rabbits.

    PubMed

    Vela, Ana I; Casas-Díaz, Encarna; Lavín, Santiago; Domínguez, Lucas; Fernández-Garayzábal, Jose F

    2015-09-01

    Four isolates of an unknown Gram-stain-positive, catalase-negative coccus-shaped organism, isolated from the pharynx of four wild rabbits, were characterized by phenotypic and molecular genetic methods. The micro-organisms were tentatively assigned to the genus Streptococcus based on cellular morphological and biochemical criteria, although the organisms did not appear to correspond to any species with a validly published name. Comparative 16S rRNA gene sequencing confirmed their identification as members of the genus Streptococcus, being most closely related phylogenetically to Streptococcus porcorum 682-03(T) (96.9% 16S rRNA gene sequence similarity). Analysis of rpoB and sodA gene sequences showed divergence values between the novel species and S. porcorum 682-03(T) (the closest phylogenetic relative determined from 16S rRNA gene sequences) of 18.1 and 23.9%, respectively. The novel bacterial isolate could be distinguished from the type strain of S. porcorum by several biochemical characteristics, such as the production of glycyl-tryptophan arylamidase and α-chymotrypsin, and the non-acidification of different sugars. Based on both phenotypic and phylogenetic findings, it is proposed that the unknown bacterium be assigned to a novel species of the genus Streptococcus, and named Streptococcus pharyngis sp. nov. The type strain is DICM10-00796B(T) ( = CECT 8754(T) = CCUG 66496(T)).

  12. Novel Genes Required for the Fitness of Streptococcus pyogenes in Human Saliva

    PubMed Central

    Zhu, Luchang; Charbonneau, Amelia R. L.; Waller, Andrew S.; Olsen, Randall J.; Beres, Stephen B.

    2017-01-01

    ABSTRACT Streptococcus pyogenes (group A streptococcus [GAS]) causes 600 million cases of pharyngitis each year. Despite this considerable disease burden, the molecular mechanisms used by GAS to infect, cause clinical pharyngitis, and persist in the human oropharynx are poorly understood. Saliva is ubiquitous in the human oropharynx and is the first material GAS encounters in the upper respiratory tract. Thus, a fuller understanding of how GAS survives and proliferates in saliva may provide valuable insights into the molecular mechanisms at work in the human oropharynx. We generated a highly saturated transposon insertion mutant library in serotype M1 strain MGAS2221, a strain genetically representative of a pandemic clone that arose in the 1980s and spread globally. The transposon mutant library was exposed to human saliva to screen for GAS genes required for wild-type fitness in this clinically relevant fluid. Using transposon-directed insertion site sequencing (TraDIS), we identified 92 genes required for GAS fitness in saliva. The more prevalent categories represented were genes involved in carbohydrate transport/metabolism, amino acid transport/metabolism, and inorganic ion transport/metabolism. Using six isogenic mutant strains, we confirmed that each of the mutants was significantly impaired for growth or persistence in human saliva ex vivo. Mutants with an inactivated Spy0644 (sptA) or Spy0646 (sptC) gene had especially severe persistence defects. This study is the first to use of TraDIS to study bacterial fitness in human saliva. The new information we obtained will be valuable for future translational maneuvers designed to prevent or treat human GAS infections. IMPORTANCE The human bacterial pathogen Streptococcus pyogenes (group A streptococcus [GAS]) causes more than 600 million cases of pharyngitis annually worldwide, 15 million of which occur in the United States. The human oropharynx is the primary anatomic site for GAS colonization and infection

  13. Characterisation of biofilm formation by a Streptococcus suis meningitis isolate.

    PubMed

    Grenier, Daniel; Grignon, Louis; Gottschalk, Marcelo

    2009-02-01

    Biofilm formation by a strain of Streptococcus suis serotype 2 isolated from a case of meningitis in pigs was characterised. Using a polystyrene microtitre plate assay, S. suis 95-8242 produced a dense biofilm when glucose, fructose or sucrose was used as the carbohydrate source, whereas no biofilm formed in the presence of lactose. Polysaccharide production by the biofilm-forming strain was demonstrated by the Congo red agar assay. Transmission electron microscopy revealed that bacterial cells were surrounded by a thick layer of polycationic ferritin-labelled material. S. suis 95-8242 was more resistant to both penicillin G and ampicillin in biofilms than in planktonic cultures on the basis of minimal inhibitory and minimal bactericidal concentrations.

  14. Draft Genome Sequences of Three Novel Low-Abundance Species Strains Isolated from Kefir Grain.

    PubMed

    Kim, Yongkyu; Blasche, Sonja; Patil, Kiran R

    2017-09-28

    We report here the genome sequences of three novel bacterial species strains- Bacillus kefirresidentii Opo, Rothia kefirresidentii KRP, and Streptococcus kefirresidentii YK-isolated from kefir grains collected in Germany. The draft genomes of these isolates were remarkably dissimilar (average nucleotide identities, 77.80%, 89.01%, and 92.10%, respectively) to those of the previously sequenced strains. Copyright © 2017 Kim et al.

  15. The Human Polymeric Immunoglobulin Receptor Facilitates Invasion of Epithelial Cells by Streptococcus pneumoniae in a Strain-Specific and Cell Type-Specific Manner

    PubMed Central

    Brock, Sean C.; McGraw, Patricia A.; Wright, Peter F.; Crowe Jr., James E.

    2002-01-01

    Streptococcus pneumoniae is a gram-positive bacterial pathogen that causes invasive life-threatening disease worldwide. This organism also commonly colonizes the upper respiratory epithelium in an asymptomatic fashion. To invade, this pathogen must traverse the respiratory epithelial barrier, allowing it to cause disease locally or disseminate hematogenously throughout the body. Previous work has demonstrated that S. pneumoniae choline-binding protein A, a pneumococcal surface protein, interacts specifically with the human polymeric immunoglobulin receptor, which is expressed by cells in the respiratory epithelium. Choline-binding protein A is required for efficient colonization of the nasopharynx in vivo. Additionally, a recent study showed that the R6x laboratory strain of S. pneumoniae invades a human pharyngeal cell line in a human polymeric immunoglobulin receptor-dependent manner. These findings raised the possibility that the interaction between choline-binding protein A and human polymeric immunoglobulin receptor may be a key determinant of S. pneumoniae pathogenesis. However, the strain used in prior invasion studies, R6x, is an unencapsulated, nonpathogenic strain. In the present study we determined the relative ability of strain R6x or pathogenic strains to invade a variety of human polymeric immunoglobulin receptor-expressing epithelial cell lines. The results of this work suggest that human polymeric immunoglobulin receptor-dependent enhanced invasion of epithelial cells by S. pneumoniae is a limited phenomenon that occurs in a strain-specific and cell type-specific manner. PMID:12183558

  16. Platelet-rich plasma affects bacterial growth in vitro.

    PubMed

    Mariani, Erminia; Filardo, Giuseppe; Canella, Valentina; Berlingeri, Andrea; Bielli, Alessandra; Cattini, Luca; Landini, Maria Paola; Kon, Elizaveta; Marcacci, Maurilio; Facchini, Andrea

    2014-09-01

    Platelet-rich plasma (PRP), a blood derivative rich in platelets, is a relatively new technique used in tissue regeneration and engineering. The increased quantity of platelets makes this formulation of considerable value for their role in tissue healing and microbicidal activity. This activity was investigated against five of the most important strains involved in nosocomial infections (Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, Klebsiella pneumoniae and Streptococcus faecalis) to understand the prophylactic role of pure (P)-PRP. Microbicidal proteins released from activated P-PRP platelets were also determined. The microbicidal activity of P-PRP and platelet-poor plasma (PPP) was evaluated on different concentrations of the five bacterial strains incubated for 1, 2, 4 and 18 h and plated on agar for 18-24 h. P-PRP and PPP-released microbicidal proteins were evaluated by means of multiplex bead-based immunoassays. P-PRP and PPP inhibited bacterial growth for up to 2 h of incubation. The effect of P-PRP was significantly higher than that of PPP, mainly at the low seeding concentrations and/or shorter incubation times, depending on the bacterial strain. Chemokine (C-C motif) ligand-3, chemokine (C-C motif) ligand-5 and chemokine (C-X-C motif) ligand-1 were the molecules mostly related to Pseudomonas aeruginosa, Staphylococcus aureus and Streptococcus faecalis inhibition. Escherichia coli and Klebsiella pneumoniae were less influenced. The present results show that P-PRP might supply an early protection against bacterial contaminations during surgical interventions because the inhibitory activity is already evident from the first hour of treatment, which suggests that physiological molecules supplied in loco might be important in the time frame needed for the activation of the innate immune response. Copyright © 2014 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  17. Bacterial strain changes during chronic otitis media surgery.

    PubMed

    Kim, G J; Yoo, S; Han, S; Bu, J; Hong, Y; Kim, D-K

    2017-09-01

    Cultures obtained from pre-operative middle-ear swabs from patients with chronic otitis media have traditionally been used to guide antibiotic selection. This study investigated changes in the bacterial strains of the middle ear during chronic otitis media surgery. Pre-operative bacterial cultures of otorrhoea, and peri-operative cultures of the granulation tissue in either the middle ear or mastoid cavity, were obtained. Post-operative cultures were selectively obtained when otorrhoea developed after surgery. Bacterial growth was observed in 45.5 per cent of pre-operative cultures, 13.5 per cent of peri-operative cultures and 4.5 per cent of post-operative cultures. Methicillin-resistant Staphylococcus aureus was identified as the most common bacteria in all pre-operative (32.4 per cent), peri-operative (52.4 per cent) and post-operative (71.4 per cent) tests, and the percentage of Methicillin-resistant S aureus increased from the pre- to the post-operative period. The bacterial culture results for post-operative otorrhoea showed low agreement with those for pre-operative or peri-operative culture, and strain re-identification was required.

  18. Physiological changes induced in four bacterial strains following oxidative stress.

    PubMed

    Baatout, S; De Boever, P; Mergeay, M

    2006-01-01

    In order to study the behaviour and resistance of bacteria under extreme conditions, physiological changes associated with oxidative stress were monitored using flow cytometry. The study was conducted to assess the maintenance of membrane integrity and potential as well as the esterase activity, the intracellular pH and the production of superoxide anions in four bacterial strains (Ralstonia metallidurans, Escherichia coli, Shewanella oneidensis and Deinococcus radiodurans). The strains were chosen for their potential usefulness in bioremediation. Suspensions of R. metallidurans, E. coli, S. oneidensis and D. radiodurans were submitted to 1 h oxidative stress (H2O2 at various concentrations from 0 to 880 mM). Cell membrane permeability (propidium iodide) and potential (rhodamine-123, 3,3'-dihexyloxacarbocyanine iodide), intracellular esterase activity (fluorescein diacetate), intracellular reactive oxygen species concentration (hydroethidine) and intracellular pH (carboxyflurorescein diacetate succinimidyl ester (5(6)) were monitored to evaluate the physiological state and the overall fitness of individual bacterial cells under oxidative stress. The four bacterial strains exhibited varying sensitivities towards H2O2. However, for all bacterial strains, some physiological damage could already be observed from 13.25 mM H2O2 onwards, in particular with regard to their membrane permeability. Depending on the bacterial strains, moderate to high physiological damage could be observed between 13.25 mM and 220 mM H2O2. Membrane potential, esterase activity, intracellular pH and production of superoxide anion production were considerably modified at high H2O2 concentrations in all four strains. In conclusion, we show that a range of significant physiological alterations occurs when bacteria are challenged with H2O2 and fluorescent staining methods coupled with flow cytometry are useful for monitoring the changes induced not only by oxidative stress but also by other

  19. Analysis of Two-Component Systems in Group B Streptococcus Shows That RgfAC and the Novel FspSR Modulate Virulence and Bacterial Fitness

    PubMed Central

    Faralla, Cristina; Metruccio, Matteo M.; De Chiara, Matteo; Mu, Rong; Patras, Kathryn A.; Muzzi, Alessandro; Grandi, Guido; Margarit, Immaculada; Doran, Kelly S.

    2014-01-01

    ABSTRACT Group B Streptococcus (GBS), in the transition from commensal organisms to pathogens, will encounter diverse host environments and, thus, require coordinated control of the transcriptional responses to these changes. This work was aimed at better understanding the role of two-component signal transduction systems (TCS) in GBS pathophysiology through a systematic screening procedure. We first performed a complete inventory and sensory mechanism classification of all putative GBS TCS by genomic analysis. Five TCS were further investigated by the generation of knockout strains, and in vitro transcriptome analysis identified genes regulated by these systems, ranging from 0.1% to 3% of the genome. Interestingly, two sugar phosphotransferase systems appeared to be differentially regulated in the TCS-16 knockout strain (TCS loci were numbered in order of their appearance on the chromosome), suggesting an involvement in monitoring carbon source availability. High-throughput analysis of bacterial growth on different carbon sources showed that TCS-16 was necessary for the growth of GBS on fructose-6-phosphate. Additional transcriptional analysis provided further evidence for a stimulus-response circuit where extracellular fructose-6-phosphate leads to autoinduction of TCS-16, with concomitant dramatic upregulation of the adjacent operon, which encodes a phosphotransferase system. The TCS-16-deficient strain exhibited decreased persistence in a model of vaginal colonization. All mutant strains were also characterized in a murine model of systemic infection, and inactivation of TCS-17 (also known as RgfAC) resulted in hypervirulence. Our data suggest a role for the previously unknown TCS-16, here named FspSR, in bacterial fitness and carbon metabolism during host colonization, and the data also provide experimental evidence for TCS-17/RgfAC involvement in virulence. PMID:24846378

  20. Analysis of invasive pneumonia-causing strains of Streptococcus pneumoniae: serotypes and antimicrobial susceptibility.

    PubMed

    Yoshioka, Cristina R M; Martinez, Marina B; Brandileone, Maria C C; Ragazzi, Selma B; Guerra, Maria L L S; Santos, Silvia R; Shieh, Huei H; Gilio, Alfredo E

    2011-01-01

    To identify the most common pneumococcal serotypes in children hospitalized with invasive pneumonia, correlate isolated serotypes with those included in conjugate vaccines, and ascertain the sensitivity of the isolated pneumococcal strains to penicillin and other antibiotics. From January 2003 to October 2008, a retrospective study of hospitalized children with a diagnosis of Streptococcus pneumoniae pneumonia was conducted at the university hospital of Universidade de São Paulo. Criteria for inclusion were: age greater than 29 days and less than 15 years, radiological and clinical diagnosis of pneumonia, and isolation of Streptococcus pneumoniae in blood cultures and/or pleural effusion. The study included 107 children. The most common serotypes were 14 (36.5%), 1 (16%), 5 (14.6%), 6B (6.3%) and 3 (4.2%). The proportion of identified serotypes contained in the heptavalent, 10-valent and 13-valent conjugate vaccines was 53.1, 86.5, and 96.9%, respectively. Pneumococcal strains were sensitive to penicillin (minimum inhibitory concentration, MIC ≤ 2 µg/mL) in 100 cases (93.5%) and displayed intermediate resistance (MIC = 4 µg/mL) in 7 cases (6.5%). No strains were penicillin-resistant (MIC ≥ 8 µg/mL) according to the Clinical and Laboratory Standards Institute 2008 standards. Tested isolates were highly sensitive to vancomycin, rifampicin, ceftriaxone, clindamycin, erythromycin, and chloramphenicol. Our results confirm a significant potential impact of conjugate vaccines, mainly 10-valent and 13-valent, on invasive pneumonia. Furthermore, susceptibility testing results show that penicillin is still the treatment of choice for invasive pneumonia in our setting.

  1. Suicin 3908, a new lantibiotic produced by a strain of Streptococcus suis serotype 2 isolated from a healthy carrier pig.

    PubMed

    Vaillancourt, Katy; LeBel, Geneviève; Frenette, Michel; Gottschalk, Marcelo; Grenier, Daniel

    2015-01-01

    While Streptococcus suis serotype 2 is known to cause severe infections in pigs, it can also be isolated from the tonsils of healthy animals that do not develop infections. We hypothesized that S. suis strains in healthy carrier pigs may have the ability to produce bacteriocins, which may contribute to preventing infections by pathogenic S. suis strains. Two of ten S. suis serotype 2 strains isolated from healthy carrier pigs exhibited antibacterial activity against pathogenic S. suis isolates. The bacteriocin produced by S. suis 3908 was purified to homogeneity using a three-step procedure: ammonium sulfate precipitation, cationic exchange HPLC, and reversed-phase HPLC. The bacteriocin, called suicin 3908, had a low molecular mass; was resistant to heat, pH, and protease treatments; and possessed membrane permeabilization activity. Additive effects were obtained when suicin 3908 was used in combination with penicillin G or amoxicillin. The amino acid sequence of suicin 3908 suggested that it is lantibiotic-related and made it possible to identify a bacteriocin locus in the genome of S. suis D12. The putative gene cluster involved in suicin production by S. suis 3908 was amplified by PCR, and the sequence analysis revealed the presence of nine open reading frames (ORFs), including the structural gene and those required for the modification of amino acids, export, regulation, and immunity. Suicin 3908, which is encoded by the suiA gene, exhibited approximately 50% identity with bovicin HJ50 (Streptococcus bovis), thermophilin 1277 (Streptococcus thermophilus), and macedovicin (Streptococcus macedonicus). Given that S. suis 3908 cannot cause infections in animal models, that it is susceptible to conventional antibiotics, and that it produces a bacteriocin with antibacterial activity against all pathogenic S. suis strains tested, it could potentially be used to prevent infections and to reduce antibiotic use by the swine industry.

  2. Evaluation of (GTG)5-PCR for rapid identification of Streptococcus mutans.

    PubMed

    Svec, Pavel; Nováková, Dana; Zácková, Lenka; Kukletová, Martina; Sedlácek, Ivo

    2008-11-01

    Repetitive sequence-based polymerase chain reaction (PCR) fingerprinting using the (GTG)(5) primer was applied for fast screening of bacterial strains isolated from dental plaque of early childhood caries (ECC)-affected children. A group of 29 Gram-positive bacteria was separated into a homogeneous cluster together with Streptococcus mutans reference strains and constituted an aberrant branch after the numerical analysis of (GTG)(5)-PCR fingerprints. Automated ribotyping with EcoRI restriction enzyme (RiboPrinter microbial characterization system) revealed high genetic heterogeneity among the tested group and proved to be a good tool for strain-typing purposes. Further characterization of the studied strains was achieved by extensive phenotyping and whole-cell protein fingerprinting and confirmed all the strains as S. mutans representatives. Obtained results showed rep-PCR fingerprinting with the (GTG)(5) primer to be a fast and reliable method for identification of S. mutans.

  3. Complete genome sequence of a virulent Streptococcus agalactiae strain 138P isolated from diseased Nile tilapia

    USDA-ARS?s Scientific Manuscript database

    Streptococcus agalactiae strain 138P was isolated from the kidney of diseased Nile tilapia in Idaho during a 2007 streptococcal disease outbreak. The full genome of S. agalactiae 138P is 1,838,716 bp. The availability of this genome will allow comparative genomics to identify genes for antigen disco...

  4. Characterization of a bacterial tannase from Streptococcus gallolyticus UCN34 suitable for tannin biodegradation.

    PubMed

    Jiménez, Natalia; Barcenilla, José María; de Felipe, Félix López; de Las Rivas, Blanca; Muñoz, Rosario

    2014-01-01

    The gene in the locus GALLO_1609 from Streptococcus gallolyticus UCN34 was cloned and expressed as an active protein in Escherichia coli BL21 (DE3). The protein was named TanSg1 since it shows similarity to bacterial tannases previously described. The recombinant strain produced His-tagged TanSg1 which was purified by affinity chromatography. Purified TanSg1 protein showed tannase activity, having a specific activity of 577 U/mg which is 41 % higher than the activity of Lactobacillus plantarum tannase. Remarkably, TanSg1 displayed optimum catalytic activity at pH 6-8 and 50-70 °C and showed high stability over a broad range of temperatures. It retained 25 % of its relative activity after prolonged incubation at 45 °C. The specific activity of TanSg1 is enhanced by the divalent cation Ca(2+) and is dramatically reduced by Zn(2+) and Hg(2+). The enzyme was highly specific for gallate and protocatechuate esters and showed no catalytic activity against other phenolic esters. The protein TanSg1 hydrolyzes efficiently tannic acid, a complex and polymeric gallotanin, allowing its complete conversion to gallic acid, a potent antioxidant. From its biochemical properties, TanSg1 is a tannase with potential industrial interest regarding the biodegradation of tannin waste or its bioconversion into biologically active products.

  5. The bias of experimental design, including strain background, in the determination of critical Streptococcus suis serotype 2 virulence factors

    PubMed Central

    Auger, Jean-Philippe; Chuzeville, Sarah; Roy, David; Mathieu-Denoncourt, Annabelle; Xu, Jianguo; Grenier, Daniel

    2017-01-01

    Streptococcus suis serotype 2 is an important porcine bacterial pathogen and emerging zoonotic agent mainly responsible for sudden death, septic shock, and meningitis. However, serotype 2 strains are genotypically and phenotypically heterogeneous. Though a multitude of virulence factors have been described for S. suis serotype 2, the lack of a clear definition regarding which ones are truly “critical” has created inconsistencies that have only recently been highlighted. Herein, the involvement of two factors previously described as being critical for S. suis serotype 2 virulence, whether the dipeptidyl peptidase IV and autolysin, were evaluated with regards to different ascribed functions using prototype strains belonging to important sequence types. Results demonstrate a lack of reproducibility with previously published data. In fact, the role of the dipeptidyl peptidase IV and autolysin as critical virulence factors could not be confirmed. Though certain in vitro functions may be ascribed to these factors, their roles are not unique for S. suis, probably due to compensation by other factors. As such, variations and discrepancies in experimental design, including in vitro assays, cell lines, and animal models, are an important source of differences between results. Moreover, the use of different sequence types in this study demonstrates that the role attributed to a virulence factor may vary according to the S. suis serotype 2 strain background. Consequently, it is necessary to establish standard experimental designs according to the experiment and purpose in order to facilitate comparison between laboratories. Alongside, studies should include strains of diverse origins in order to prevent erroneous and biased conclusions that could affect future studies. PMID:28753679

  6. A Zebrafish Larval Model to Assess Virulence of Porcine Streptococcus suis Strains.

    PubMed

    Zaccaria, Edoardo; Cao, Rui; Wells, Jerry M; van Baarlen, Peter

    2016-01-01

    Streptococcus suis is an encapsulated Gram-positive bacterium, and the leading cause of sepsis and meningitis in young pigs resulting in considerable economic losses in the porcine industry. It is also considered an emerging zoonotic agent. In the environment, both avirulent and virulent strains occur in pigs, and virulent strains appear to cause disease in both humans and pigs. There is a need for a convenient, reliable and standardized animal model to assess S. suis virulence. A zebrafish (Danio rerio) larvae infection model has several advantages, including transparency of larvae, low cost, ease of use and exemption from ethical legislation up to 6 days post fertilization, but has not been previously established as a model for S. suis. Microinjection of different porcine strains of S. suis in zebrafish larvae resulted in highly reproducible dose- and strain-dependent larval death, strongly correlating with presence of the S. suis capsule and to the original virulence of the strain in pigs. Additionally we compared the virulence of the two-component system mutant of ciaRH, which is attenuated for virulence in both mice and pigs in vivo. Infection of larvae with the ΔciaRH strain resulted in significantly higher survival rate compared to infection with the S10 wild-type strain. Our data demonstrate that zebrafish larvae are a rapid and reliable model to assess the virulence of clinical porcine S. suis isolates.

  7. StrainSeeker: fast identification of bacterial strains from raw sequencing reads using user-provided guide trees.

    PubMed

    Roosaare, Märt; Vaher, Mihkel; Kaplinski, Lauris; Möls, Märt; Andreson, Reidar; Lepamets, Maarja; Kõressaar, Triinu; Naaber, Paul; Kõljalg, Siiri; Remm, Maido

    2017-01-01

    Fast, accurate and high-throughput identification of bacterial isolates is in great demand. The present work was conducted to investigate the possibility of identifying isolates from unassembled next-generation sequencing reads using custom-made guide trees. A tool named StrainSeeker was developed that constructs a list of specific k -mers for each node of any given Newick-format tree and enables the identification of bacterial isolates in 1-2 min. It uses a novel algorithm, which analyses the observed and expected fractions of node-specific k -mers to test the presence of each node in the sample. This allows StrainSeeker to determine where the isolate branches off the guide tree and assign it to a clade whereas other tools assign each read to a reference genome. Using a dataset of 100 Escherichia coli isolates, we demonstrate that StrainSeeker can predict the clades of E. coli with 92% accuracy and correct tree branch assignment with 98% accuracy. Twenty-five thousand Illumina HiSeq reads are sufficient for identification of the strain. StrainSeeker is a software program that identifies bacterial isolates by assigning them to nodes or leaves of a custom-made guide tree. StrainSeeker's web interface and pre-computed guide trees are available at http://bioinfo.ut.ee/strainseeker. Source code is stored at GitHub: https://github.com/bioinfo-ut/StrainSeeker.

  8. Phenotypic and genetic characterizations of Streptococcus dysgalactiae strains isolated from fish collected in Japan and other Asian countries.

    PubMed

    Abdelsalam, Mohamed; Chen, Shih-Chu; Yoshida, Terutoyo

    2010-01-01

    Lancefield group C Streptococcus dysgalactiae is an emerging fish pathogen, which was first isolated in 2002 in Japan. Streptococcus dysgalactiae isolates collected from diseased fish in Japan (n=12), Taiwan (n=12), China (n=2), Malaysia (n=3), and Indonesia (n=1) were characterized using biased sinusoidal field gel electrophoresis (BSFGE), sodA gene sequence analysis, and antimicrobial susceptibility. These isolates exhibited high phenotypic homogeneity irrespective of the countries from where the strains were collected. Seventeen isolates were found to be resistant to oxytetracycline and carried the tet(M) gene, except for the strains collected in Taiwan and the PP1564 strain collected in China. The sodA gene sequence analysis revealed that 23 isolates were identical, except for one Japanese isolate (KNH07902), in which a single nucleotide differed from that of the other isolates. Based on BSFGE typing by ApaI macrorestriction, the isolates - including the Japanese, Taiwanese, and Chinese isolates - could be grouped into one main cluster at a 70% similarity level. However, the macrorestriction genotypes of some isolates were apparently distinct from those of the main cluster.

  9. Streptococcus agalactiae vaginitis: nonhemolytic variant on the Liofilchem® Chromatic StreptoB.

    PubMed

    Savini, Vincenzo; Marrollo, Roberta; D'Antonio, Marianna; D'Amario, Claudio; Fazii, Paolo; D'Antonio, Domenico

    2013-01-01

    Streptococcus agalactiae (group B Streptococcus, GBS) vaginal pathogenicity is not uniformly acknowledged throughout the literature; accordingly, in women, genital itching and burning, along with leukorrhea are commonly and almost exclusively referred to bacterial vaginosis, candidiasis and trichomoniasis. Conversely, GBS virulence for vagina was recognized in the past, as the organism has been observed to potentially cause local inflammation and discharge, as well as lactobacilli rarefaction. We depict here a case where a nonhemolytic (γ-hemolytic) GBS strain was found to be the etiologic agent of vaginal infection. Such uncommon S. agalactiae phenotypes are hard to be recognized and may be therefore responsible for misdiagnosing and underestimation of GBS vaginitis prevalence; here, we had the support of the Liofilchem(®) Chromatic StreptoB medium, that successfully detected such an atypical variant.

  10. Streptococcus agalactiae vaginitis: nonhemolytic variant on the Liofilchem® Chromatic StreptoB

    PubMed Central

    Savini, Vincenzo; Marrollo, Roberta; D’Antonio, Marianna; D’Amario, Claudio; Fazii, Paolo; D’Antonio, Domenico

    2013-01-01

    Streptococcus agalactiae (group B Streptococcus, GBS) vaginal pathogenicity is not uniformly acknowledged throughout the literature; accordingly, in women, genital itching and burning, along with leukorrhea are commonly and almost exclusively referred to bacterial vaginosis, candidiasis and trichomoniasis. Conversely, GBS virulence for vagina was recognized in the past, as the organism has been observed to potentially cause local inflammation and discharge, as well as lactobacilli rarefaction. We depict here a case where a nonhemolytic (γ-hemolytic) GBS strain was found to be the etiologic agent of vaginal infection. Such uncommon S. agalactiae phenotypes are hard to be recognized and may be therefore responsible for misdiagnosing and underestimation of GBS vaginitis prevalence; here, we had the support of the Liofilchem® Chromatic StreptoB medium, that successfully detected such an atypical variant. PMID:23923091

  11. The rgg0182 gene encodes a transcriptional regulator required for the full Streptococcus thermophilus LMG18311 thermal adaptation.

    PubMed

    Henry, Romain; Bruneau, Emmanuelle; Gardan, Rozenn; Bertin, Stéphane; Fleuchot, Betty; Decaris, Bernard; Leblond-Bourget, Nathalie

    2011-10-07

    Streptococcus thermophilus is an important starter strain for the production of yogurt and cheeses. The analysis of sequenced genomes of four strains of S. thermophilus indicates that they contain several genes of the rgg familly potentially encoding transcriptional regulators. Some of the Rgg proteins are known to be involved in bacterial stress adaptation. In this study, we demonstrated that Streptococcus thermophilus thermal stress adaptation required the rgg0182 gene which transcription depends on the culture medium and the growth temperature. This gene encoded a protein showing similarity with members of the Rgg family transcriptional regulator. Our data confirmed that Rgg0182 is a transcriptional regulator controlling the expression of its neighboring genes as well as chaperones and proteases encoding genes. Therefore, analysis of a Δrgg0182 mutant revealed that this protein played a role in the heat shock adaptation of Streptococcus thermophilus LMG18311. These data showed the importance of the Rgg0182 transcriptional regulator on the survival of S. thermophilus during dairy processes and more specifically during changes in temperature.

  12. Phenotypic, Genotypic, and Antimicrobial Characteristics of Streptococcus halichoeri Isolates from Humans, Proposal To Rename Streptococcus halichoeri as Streptococcus halichoeri subsp. halichoeri, and Description of Streptococcus halichoeri subsp. hominis subsp. nov., a Bacterium Associated with Human Clinical Infections.

    PubMed

    Shewmaker, P L; Whitney, A M; Humrighouse, B W

    2016-03-01

    Phenotypic, genotypic, and antimicrobial characteristics of six phenotypically distinct human clinical isolates that most closely resembled the type strain of Streptococcus halichoeri isolated from a seal are presented. Sequencing of the 16S rRNA, rpoB, sodA, and recN genes; comparative whole-genome analysis; conventional biochemical and Rapid ID 32 Strep identification methods; and antimicrobial susceptibility testing were performed on the human isolates, the type strain of S. halichoeri, and type strains of closely related species. The six human clinical isolates were biochemically indistinguishable from each other and showed 100% 16S rRNA, rpoB, sodA, and recN gene sequence similarity. Comparative 16S rRNA gene sequencing analysis revealed 98.6% similarity to S. halichoeri CCUG 48324(T), 97.9% similarity to S. canis ATCC 43496(T), and 97.8% similarity to S. ictaluri ATCC BAA-1300(T). A 3,530-bp fragment of the rpoB gene was 98.8% similar to the S. halichoeri type strain, 84.6% to the S. canis type strain, and 83.8% to the S. ictaluri type strain. The S. halichoeri type strain and the human clinical isolates were susceptible to the antimicrobials tested based on CLSI guidelines for Streptococcus species viridans group with the exception of tetracycline and erythromycin. The human isolates were phenotypically distinct from the type strain isolated from a seal; comparative whole-genome sequence analysis confirmed that the human isolates were S. halichoeri. On the basis of these results, a novel subspecies, Streptococcus halichoeri subsp. hominis, is proposed for the human isolates and Streptococcus halichoeri subsp. halichoeri is proposed for the gray seal isolates. The type strain of the novel subspecies is SS1844(T) = CCUG 67100(T) = LMG 28801(T). Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  13. Asymptomatic Carriage of Group A Streptococcus Is Associated with Elimination of Capsule Production

    PubMed Central

    Jewell, Brittany E.; Olsen, Randall J.; Shelburne, Samuel A.; Fittipaldi, Nahuel; Beres, Stephen B.; Musser, James M.

    2014-01-01

    Humans commonly carry pathogenic bacteria asymptomatically, but despite decades of study, the underlying molecular contributors remain poorly understood. Here, we show that a group A streptococcus carriage strain contains a frameshift mutation in the hasA gene resulting in loss of hyaluronic acid capsule biosynthesis. This mutation was repaired by allelic replacement, resulting in restoration of capsule production in the isogenic derivative strain. The “repaired” isogenic strain was significantly more virulent than the carriage strain in a mouse model of necrotizing fasciitis and had enhanced growth ex vivo in human blood. Importantly, the repaired isogenic strain colonized the mouse oropharynx with significantly greater bacterial burden and had significantly reduced ability to internalize into cultured epithelial cells than the acapsular carriage strain. We conducted full-genome sequencing of 81 strains cultured serially from 19 epidemiologically unrelated human subjects and discovered the common theme that mutations negatively affecting capsule biosynthesis arise in vivo in the has operon. The significantly decreased capsule production is a key factor contributing to the molecular détente between pathogen and host. Our discoveries suggest a general model for bacterial pathogens in which mutations that downregulate or ablate virulence factor production contribute to carriage. PMID:25024363

  14. Production of recombinant streptokinase from Streptococcus pyogenes isolate and its potential for thrombolytic therapy.

    PubMed

    Assiri, Abdullah S; El-Gamal, Basiouny A; Hafez, Elsayed E; Haidara, Mohamed A

    2014-12-01

    To produce an effective recombinant streptokinase (rSK) from pathogenic Streptococcus pyogenes isolate in yeast, and evaluate its potential for thrombolytic therapy. This study was conducted from November 2012 to December 2013 at King Khalid University, Abha, Kingdom of Saudi Arabia (KSA). Throat swabs collected from 45 pharyngitis patients in Asser Central Hospital, Abha, KSA were used to isolate Streptococcus pyogenes. The bacterial DNA was used for amplification of the streptokinase gene (1200 bp). The gene was cloned and in vitro transcribed in an eukaryotic expression vector that was transformed into yeast Pichia pastoris SMD1168, and the rSK protein was purified and tested for its thrombolytic activity. The Streptococcus pyogenes strain was isolated and its DNA nucleotide sequence revealed similarity to other Streptococcus pyogenes in the Gene bank. Sequencing of the amplified gene based on DNA nucleotide sequence revealed a SK gene closely related to other SK genes in the Gene bank. However, based on deduced amino acids sequence, the gene formed a separate cluster different from clusters formed by other examined genes, suggesting a new bacterial isolate and accordingly a new gene. The purified protein showed 82% clot lysis compared to a commercial SK (81%) at an enzyme concentration of 2000 U/ml. The present yeast rSK showed similar thrombolytic activity in vitro as that of a commercial SK, suggesting its potential for thrombolytic therapy and large scale production. 

  15. STUDIES ON THE BIOLOGY OF STREPTOCOCCUS

    PubMed Central

    Bliss, Walter Parks

    1922-01-01

    1. Hemolytic streptococcus has been found in 100 per cent of the throats of patients with scarlet fever during the 1st week of the disease. 2. The average length of time that these organisms are present in the throat varies from 10 to 20 days. 3. No morphological or cultural characteristics peculiar to the hemolytic streptococcus from scarlet fever can be demonstrated. 4. Ten immune sera have been prepared from different strains of scarlet fever streptococci and each of the sera agglutinated more than 80 per cent of the strains isolated from scarlatinal throats. On the other hand, scarlatinal streptococci are not agglutinated by immune sera prepared from hemolytic streptococci isolated from other pathological sources. 5. Serum from patients convalescent from scarlet fever agglutinates weakly or not at all the homologous strain of hemolytic streptococcus. 6. The specificity of the agglutination reaction of scarlatinal streptococci is confirmed by absorption experiments. 7. Scarlatinal antistreptococcic serum affords some degree of protection against virulent scarlet fever streptococci but has no protective power against hemolytic streptococci from other diseases. 8. In a small epidemic of scarlet fever a healthy carrier of hemolytic streptococcus was detected; the organism carried was identical in its serological reactions with strains of hemolytic streptococci isolated from active cases of scarlet fever. 9. In a study of a number of contacts with a case of scarlet fever, in only one instance was a scarlatinal type of hemolytic streptococcus recovered from the throat. PMID:19868695

  16. [Bacterial meningitis].

    PubMed

    Brouwer, M C; van de Beek, D

    2012-05-01

    Bacterial meningitis is a severe disease which affects 35.000 Europeans each year and has a mortality rate of about 20%. During the past 25 years the epidemiology of bacterial meningitis has changed significantly due to the implementation of vaccination against Haemophilus influenzae, Neisseria meningtidis group C and Streptococcus pneumoniae. Due to these vaccines, meningitis is now predominantly a disease occurring in adults, caused especially by Streptococcus pneumoniae, while it was formerly a child disease which was largely caused by Haemophilus influenzae. Bacterial meningitis is often difficult to recognize since the classical presentation with neck stiffness, reduced awareness and fever occurs in less than half of the patients. The only way to diagnose or exclude bacterial meningitis is by performing low-threshold cerebrospinal fluid examination with a suspicion of bacterial meningitis. The treatment consists of the prescription of antibiotics and dexamethasone.

  17. Zinc disrupts central carbon metabolism and capsule biosynthesis in Streptococcus pyogenes.

    PubMed

    Ong, Cheryl-lynn Y; Walker, Mark J; McEwan, Alastair G

    2015-06-01

    Neutrophils release free zinc to eliminate the phagocytosed bacterial pathogen Streptococcus pyogenes (Group A Streptococcus; GAS). In this study, we investigated the mechanisms underpinning zinc toxicity towards this human pathogen, responsible for diseases ranging from pharyngitis and impetigo, to severe invasive infections. Using the globally-disseminated M1T1 GAS strain, we demonstrate that zinc stress impairs glucose metabolism through the inhibition of the glycolytic enzymes phosphofructokinase and glyceraldehyde-3-phosphate dehydrogenase. In the presence of zinc, a metabolic shift to the tagatose-6-phosphate pathway allows conversion of D-galactose to dihydroxyacetone phosphate and glyceraldehyde phosphate, partially bypassing impaired glycolytic enzymes to generate pyruvate. Additionally, zinc inhibition of phosphoglucomutase results in decreased capsule biosynthesis. These data indicate that zinc exerts it toxicity via mechanisms that inhibit both GAS central carbon metabolism and virulence pathways.

  18. Zinc disrupts central carbon metabolism and capsule biosynthesis in Streptococcus pyogenes

    PubMed Central

    Ong, Cheryl-lynn Y.; Walker, Mark J.; McEwan, Alastair G.

    2015-01-01

    Neutrophils release free zinc to eliminate the phagocytosed bacterial pathogen Streptococcus pyogenes (Group A Streptococcus; GAS). In this study, we investigated the mechanisms underpinning zinc toxicity towards this human pathogen, responsible for diseases ranging from pharyngitis and impetigo, to severe invasive infections. Using the globally-disseminated M1T1 GAS strain, we demonstrate that zinc stress impairs glucose metabolism through the inhibition of the glycolytic enzymes phosphofructokinase and glyceraldehyde-3-phosphate dehydrogenase. In the presence of zinc, a metabolic shift to the tagatose-6-phosphate pathway allows conversion of D-galactose to dihydroxyacetone phosphate and glyceraldehyde phosphate, partially bypassing impaired glycolytic enzymes to generate pyruvate. Additionally, zinc inhibition of phosphoglucomutase results in decreased capsule biosynthesis. These data indicate that zinc exerts it toxicity via mechanisms that inhibit both GAS central carbon metabolism and virulence pathways. PMID:26028191

  19. Infection of specific strains of Streptococcus mutans, oral bacteria, confers a risk of ulcerative colitis

    PubMed Central

    Kojima, Ayuchi; Nakano, Kazuhiko; Wada, Koichiro; Takahashi, Hirokazu; Katayama, Kazufumi; Yoneda, Masato; Higurashi, Takuma; Nomura, Ryota; Hokamura, Kazuya; Muranaka, Yoshinori; Matsuhashi, Nobuyuki; Umemura, Kazuo; Kamisaki, Yoshinori; Nakajima, Atsushi; Ooshima, Takashi

    2012-01-01

    Although oral bacteria-associated systemic diseases have been reported, association between Streptococcus mutans, pathogen of dental caries, and ulcerative colitis (UC) has not been reported. We investigated the effect of various S. mutans strains on dextran sodium sulfate (DSS)-induced mouse colitis. Administration of TW295, the specific strain of S. mutans, caused aggravation of colitis; the standard strain, MT8148 did not. Localization of TW295 in hepatocytes in liver was observed. Increased expression of interferon-γ in liver was also noted, indicating that the liver is target organ for the specific strain of S. mutans-mediated aggravation of colitis. The detection frequency of the specific strains in UC patients was significantly higher than in healthy subjects. Administration of the specific strains of S. mutans isolated from patients caused aggravation of colitis. Infection with highly-virulent specific types of S. mutans might be a potential risk factor in the aggravation of UC. PMID:22451861

  20. StreptoBase: An Oral Streptococcus mitis Group Genomic Resource and Analysis Platform.

    PubMed

    Zheng, Wenning; Tan, Tze King; Paterson, Ian C; Mutha, Naresh V R; Siow, Cheuk Chuen; Tan, Shi Yang; Old, Lesley A; Jakubovics, Nicholas S; Choo, Siew Woh

    2016-01-01

    The oral streptococci are spherical Gram-positive bacteria categorized under the phylum Firmicutes which are among the most common causative agents of bacterial infective endocarditis (IE) and are also important agents in septicaemia in neutropenic patients. The Streptococcus mitis group is comprised of 13 species including some of the most common human oral colonizers such as S. mitis, S. oralis, S. sanguinis and S. gordonii as well as species such as S. tigurinus, S. oligofermentans and S. australis that have only recently been classified and are poorly understood at present. We present StreptoBase, which provides a specialized free resource focusing on the genomic analyses of oral species from the mitis group. It currently hosts 104 S. mitis group genomes including 27 novel mitis group strains that we sequenced using the high throughput Illumina HiSeq technology platform, and provides a comprehensive set of genome sequences for analyses, particularly comparative analyses and visualization of both cross-species and cross-strain characteristics of S. mitis group bacteria. StreptoBase incorporates sophisticated in-house designed bioinformatics web tools such as Pairwise Genome Comparison (PGC) tool and Pathogenomic Profiling Tool (PathoProT), which facilitate comparative pathogenomics analysis of Streptococcus strains. Examples are provided to demonstrate how StreptoBase can be employed to compare genome structure of different S. mitis group bacteria and putative virulence genes profile across multiple streptococcal strains. In conclusion, StreptoBase offers access to a range of streptococci genomic resources as well as analysis tools and will be an invaluable platform to accelerate research in streptococci. Database URL: http://streptococcus.um.edu.my.

  1. Biodiversity of Exopolysaccharides Produced by Streptococcus thermophilus Strains Is Reflected in Their Production and Their Molecular and Functional Characteristics

    PubMed Central

    Vaningelgem, Frederik; Zamfir, Medana; Mozzi, Fernanda; Adriany, Tom; Vancanneyt, Marc; Swings, Jean; De Vuyst, Luc

    2004-01-01

    Twenty-six lactic acid bacterium strains isolated from European dairy products were identified as Streptococcus thermophilus and characterized by bacterial growth and exopolysaccharide (EPS)-producing capacity in milk and enriched milk medium. In addition, the acidification rates of the different strains were compared with their milk clotting behaviors. The majority of the strains grew better when yeast extract and peptone were added to the milk medium, although the presence of interfering glucomannans was shown, making this medium unsuitable for EPS screening. EPS production was found to be strain dependent, with the majority of the strains producing between 20 and 100 mg of polymer dry mass per liter of fermented milk medium. Furthermore, no straightforward relationship between the apparent viscosity and EPS production could be detected in fermented milk medium. An analysis of the molecular masses of the isolated EPS by gel permeation chromatography revealed a large variety, ranging from 10 to >2,000 kDa. A distinction could be made between high-molecular-mass EPS (>1,000 kDa) and low-molecular-mass EPS (<1,000 kDa). Based on the molecular size of the EPS, three groups of EPS-producing strains were distinguished. Monomer analysis of the EPS by high-performance anion-exchange chromatography with amperometric detection was demonstrated to be a fast and simple method. All of the EPS from the S. thermophilus strains tested were classified into six groups according to their monomer compositions. Apart from galactose and glucose, other monomers, such as (N-acetyl)galactosamine, (N-acetyl)glucosamine, and rhamnose, were also found as repeating unit constituents. Three strains were found to produce EPS containing (N-acetyl)glucosamine, which to our knowledge was never found before in an EPS from S. thermophilus. Furthermore, within each group, differences in monomer ratios were observed, indicating possible novel EPS structures. Finally, large differences between the

  2. Phylogenetic, epidemiological and functional analyses of the Streptococcus bovis/Streptococcus equinus complex through an overarching MLST scheme.

    PubMed

    Jans, Christoph; de Wouters, Tomas; Bonfoh, Bassirou; Lacroix, Christophe; Kaindi, Dasel Wambua Mulwa; Anderegg, Janine; Böck, Désirée; Vitali, Sabrina; Schmid, Thomas; Isenring, Julia; Kurt, Fabienne; Kogi-Makau, Wambui; Meile, Leo

    2016-06-21

    The Streptococcus bovis/Streptococcus equinus complex (SBSEC) comprises seven (sub)species classified as human and animal commensals, emerging opportunistic pathogens and food fermentative organisms. Changing taxonomy, shared habitats, natural competence and evidence for horizontal gene transfer pose difficulties for determining their phylogeny, epidemiology and virulence mechanisms. Thus, novel phylogenetic and functional classifications are required. An SBSEC overarching multi locus sequence type (MLST) scheme targeting 10 housekeeping genes was developed, validated and combined with host-related properties of adhesion to extracellular matrix proteins (ECM), activation of the immune responses via NF-KB and survival in simulated gastric juice (SGJ). Commensal and pathogenic SBSEC strains (n = 74) of human, animal and food origin from Europe, Asia, America and Africa were used in the MLST scheme yielding 66 sequence types and 10 clonal complexes differentiated into distinct habitat-associated and mixed lineages. Adhesion to ECMs collagen I and mucin type II was a common characteristic (23 % of strains) followed by adhesion to fibronectin and fibrinogen (19.7 %). High adhesion abilities were found for East African dairy and human blood isolate branches whereas commensal fecal SBSEC displayed low adhesion. NF-KB activation was observed for a limited number of dairy and blood isolates suggesting the potential of some pathogenic strains for reduced immune activation. Strains from dairy MLST clades displayed the highest relative survival to SGJ independently of dairy adaptation markers lacS/lacZ. Combining phylogenetic and functional analyses via SBSEC MLST enabled the clear delineation of strain clades to unravel the complexity of this bacterial group. High adhesion values shared between certain dairy and blood strains as well as the behavior of NF-KB activation are concerning for specific lineages. They highlighted the health risk among shared lineages and

  3. CATALASE ACTIVITY OF TWO STREPTOCOCCUS FAECALIS STRAINS AND ITS ENHANCEMENT BY AEROBIOSIS AND ADDED CATIONS1

    PubMed Central

    Jones, Dorothy; Deibel, R. H.; Niven, C. F.

    1964-01-01

    Jones, Dorothy (American Meat Institute Foundation, Chicago, Ill.), R. H. Deibel, and C. F. Niven, Jr. Catalase activity of two Streptococcus faecalis strains and its enhancement by aerobiosis and added cations. J. Bacteriol. 88:602–610. 1964.—The nature of catalase activity noted in two unusual Streptococcus faecalis strains was determined. Enzyme activity was lost slowly when cultures were maintained by daily transfer in test tubes of broth media. Loss of activity could be prevented by aerobic culture. Supplementation of the growth medium with ferric, manganese, and zinc ions, as well as aerobiosis, enhanced catalase activity. However, addition of these cations to cell suspensions or to cell-free extracts did not increase catalase activity. Although oxygen was observed to be one of the reaction end products, the catalase activity was not inhibited by cyanide or azide, and the iron-porphyrin coenzyme of classical catalase was not detected. The enzyme was purified 185-fold by precipitation with ammonium sulfate, followed by chromotography on a diethylaminoethyl cellulose column. PMID:14208495

  4. Antimicrobial effect against different bacterial strains and bacterial adaptation to essential oils used as feed additives.

    PubMed

    Melo, Antonio Diego Brandão; Amaral, Amanda Figueiredo; Schaefer, Gustavo; Luciano, Fernando Bittencourt; de Andrade, Carla; Costa, Leandro Batista; Rostagno, Marcos Horácio

    2015-10-01

    The aim of this study was to evaluate the antimicrobial activity and determine the minimum bactericidal concentration (MBC) of the essential oils derived from Origanum vulgare (oregano), Melaleuca alternifolia (tea tree), Cinnamomum cassia (cassia), and Thymus vulgaris (white thyme) against Salmonella Typhimurium, Salmonella Enteritidis, Escherichia coli, Staphylococcus aureus and Enterococcus faecalis. The study also investigated the ability of these different bacterial strains to develop adaptation after repetitive exposure to sub-lethal concentrations of these essential oils. The MBC of the essential oils studied was determined by disc diffusion and broth dilution methods. All essential oils showed antimicrobial effect against all bacterial strains. In general, the development of adaptation varied according to the bacterial strain and the essential oil (tea tree > white thyme > oregano). Therefore, it is important to use essential oils at efficient bactericidal doses in animal feed, food, and sanitizers, since bacteria can rapidly develop adaptation when exposed to sub-lethal concentrations of these oils.

  5. Antimicrobial effect against different bacterial strains and bacterial adaptation to essential oils used as feed additives

    PubMed Central

    Melo, Antonio Diego Brandão; Amaral, Amanda Figueiredo; Schaefer, Gustavo; Luciano, Fernando Bittencourt; de Andrade, Carla; Costa, Leandro Batista; Rostagno, Marcos Horácio

    2015-01-01

    The aim of this study was to evaluate the antimicrobial activity and determine the minimum bactericidal concentration (MBC) of the essential oils derived from Origanum vulgare (oregano), Melaleuca alternifolia (tea tree), Cinnamomum cassia (cassia), and Thymus vulgaris (white thyme) against Salmonella Typhimurium, Salmonella Enteritidis, Escherichia coli, Staphylococcus aureus and Enterococcus faecalis. The study also investigated the ability of these different bacterial strains to develop adaptation after repetitive exposure to sub-lethal concentrations of these essential oils. The MBC of the essential oils studied was determined by disc diffusion and broth dilution methods. All essential oils showed antimicrobial effect against all bacterial strains. In general, the development of adaptation varied according to the bacterial strain and the essential oil (tea tree > white thyme > oregano). Therefore, it is important to use essential oils at efficient bactericidal doses in animal feed, food, and sanitizers, since bacteria can rapidly develop adaptation when exposed to sub-lethal concentrations of these oils. PMID:26424908

  6. Endocarditis in adults with bacterial meningitis.

    PubMed

    Lucas, Marjolein J; Brouwer, Matthijs C; van der Ende, Arie; van de Beek, Diederik

    2013-05-21

    Endocarditis may precede or complicate bacterial meningitis, but the incidence and impact of endocarditis in bacterial meningitis are unknown. We assessed the incidence and clinical characteristics of patients with meningitis and endocarditis from a nationwide cohort study of adults with community-acquired bacterial meningitis in the Netherlands from 2006 to 2012. Endocarditis was identified in 24 of 1025 episodes (2%) of bacterial meningitis. Cultures yielded Streptococcus pneumoniae in 13 patients, Staphylococcus aureus in 8 patients, and Streptococcus agalactiae, Streptococcus pyogenes, and Streptococcus salivarius in 1 patient each. Clues leading to the diagnosis of endocarditis were cardiac murmurs, persistent or recurrent fever, a history of heart valve disease, and S aureus as the causative pathogen of bacterial meningitis. Treatment consisted of prolonged antibiotic therapy in all patients and surgical valve replacement in 10 patients (42%). Two patients were treated with oral anticoagulants, and both developed life-threatening intracerebral hemorrhage. Systemic (70%) and neurological (54%) complications occurred frequently, leading to a high proportion of patients with unfavorable outcome (63%). Seven of 24 patients (29%) with meningitis and endocarditis died. Endocarditis is an uncommon coexisting condition in bacterial meningitis but is associated with a high rate of unfavorable outcome.

  7. Strain variation and geographic endemism in Streptococcus iniae.

    PubMed

    Kvitt, H; Colorni, A

    2004-10-21

    Twenty-six Israeli isolates of Streptococcus iniae from both marine and fresh/brackish water sources were compared with each other and with 9 foreign isolates. All the isolates were tentatively identified according to their biochemical profile. Direct sequencing of approximately 600 bp PCR products of the 16S rDNA confirmed their identification as S. iniae at the molecular level and revealed a new (one-nucleotide) variant among Israeli isolates, in addition to 2 variants that had been previously reported. Strain variation was further examined by subjecting the isolates to randomly amplified polymorphic DNA (RAPD) and amplified fragment length polymorphism (AFLP) analyses. The RAPD method allowed separation of the isolates into only 2 groups, one including 5 Israeli fresh/brackish water isolates and one including all the other isolates. The AFLP method grouped the Israeli marine isolates into one homogeneous cluster, although they had been obtained in different years (1995 to 2001) from different species of fish, and from wild (Red Sea) as well as cultured (both Mediterranean and Red Sea) sources. The Israeli fresh/brackish water isolates and foreign isolates separated into distinct entities that clustered at generally high degrees of similarity. The distance between the clusters of the Israeli marine and fresh/brackish water isolates indicates that the S. iniae streptococcosis that has been afflicting the aquaculture industries in the 2 environments in recent years was caused by distinct strains. AFLP showed superior discriminative properties over RAPD in detecting intraspecific variation and proved to be an important tool for the characterization of S. iniae. A correlation between strain variation and geographic endemism was established.

  8. Variable characteristics of bacteriocin-producing Streptococcus salivarius strains isolated from Malaysian subjects.

    PubMed

    Barbour, Abdelahhad; Philip, Koshy

    2014-01-01

    Salivaricins are bacteriocins produced by Streptococcus salivarius, some strains of which can have significant probiotic effects. S. salivarius strains were isolated from Malaysian subjects showing variable antimicrobial activity, metabolic profile, antibiotic susceptibility and lantibiotic production. In this study we report new S. salivarius strains isolated from Malaysian subjects with potential as probiotics. Safety assessment of these strains included their antibiotic susceptibility and metabolic profiles. Genome sequencing using Illumina's MiSeq system was performed for both strains NU10 and YU10 and demonstrating the absence of any known streptococcal virulence determinants indicating that these strains are safe for subsequent use as probiotics. Strain NU10 was found to harbour genes encoding salivaricins A and 9 while strain YU10 was shown to harbour genes encoding salivaricins A3, G32, streptin and slnA1 lantibiotic-like protein. Strain GT2 was shown to harbour genes encoding a large non-lantibiotic bacteriocin (salivaricin-MPS). A new medium for maximum biomass production buffered with 2-(N-morpholino)ethanesulfonic acid (MES) was developed and showed better biomass accumulation compared with other commercial media. Furthermore, we extracted and purified salivaricin 9 (by strain NU10) and salivaricin G32 (by strain YU10) from S. salivarius cells grown aerobically in this medium. In addition to bacteriocin production, S. salivarius strains produced levan-sucrase which was detected by a specific ESI-LC-MS/MS method which indicates additional health benefits from the developed strains. The current study established the bacteriocin, levan-sucrase production and basic safety features of S. salivarius strains isolated from healthy Malaysian subjects demonstrating their potential for use as probiotics. A new bacteriocin-production medium was developed with potential scale up application for pharmaceuticals and probiotics from S. salivarius generating different

  9. Complete genome sequencing and analysis of a Lancefield group G Streptococcus dysgalactiae subsp. equisimilis strain causing streptococcal toxic shock syndrome (STSS)

    PubMed Central

    2011-01-01

    Background Streptococcus dysgalactiae subsp. equisimilis (SDSE) causes invasive streptococcal infections, including streptococcal toxic shock syndrome (STSS), as does Lancefield group A Streptococcus pyogenes (GAS). We sequenced the entire genome of SDSE strain GGS_124 isolated from a patient with STSS. Results We found that GGS_124 consisted of a circular genome of 2,106,340 bp. Comparative analyses among bacterial genomes indicated that GGS_124 was most closely related to GAS. GGS_124 and GAS, but not other streptococci, shared a number of virulence factor genes, including genes encoding streptolysin O, NADase, and streptokinase A, distantly related to SIC (DRS), suggesting the importance of these factors in the development of invasive disease. GGS_124 contained 3 prophages, with one containing a virulence factor gene for streptodornase. All 3 prophages were significantly similar to GAS prophages that carry virulence factor genes, indicating that these prophages had transferred these genes between pathogens. SDSE was found to contain a gene encoding a superantigen, streptococcal exotoxin type G, but lacked several genes present in GAS that encode virulence factors, such as other superantigens, cysteine protease speB, and hyaluronan synthase operon hasABC. Similar to GGS_124, the SDSE strains contained larger numbers of clustered, regularly interspaced, short palindromic repeats (CRISPR) spacers than did GAS, suggesting that horizontal gene transfer via streptococcal phages between SDSE and GAS is somewhat restricted, although they share phage species. Conclusion Genome wide comparisons of SDSE with GAS indicate that SDSE is closely and quantitatively related to GAS. SDSE, however, lacks several virulence factors of GAS, including superantigens, SPE-B and the hasABC operon. CRISPR spacers may limit the horizontal transfer of phage encoded GAS virulence genes into SDSE. These findings may provide clues for dissecting the pathological roles of the virulence factors

  10. Complete genome sequencing and analysis of a Lancefield group G Streptococcus dysgalactiae subsp. equisimilis strain causing streptococcal toxic shock syndrome (STSS).

    PubMed

    Shimomura, Yumi; Okumura, Kayo; Murayama, Somay Yamagata; Yagi, Junji; Ubukata, Kimiko; Kirikae, Teruo; Miyoshi-Akiyama, Tohru

    2011-01-11

    Streptococcus dysgalactiae subsp. equisimilis (SDSE) causes invasive streptococcal infections, including streptococcal toxic shock syndrome (STSS), as does Lancefield group A Streptococcus pyogenes (GAS). We sequenced the entire genome of SDSE strain GGS_124 isolated from a patient with STSS. We found that GGS_124 consisted of a circular genome of 2,106,340 bp. Comparative analyses among bacterial genomes indicated that GGS_124 was most closely related to GAS. GGS_124 and GAS, but not other streptococci, shared a number of virulence factor genes, including genes encoding streptolysin O, NADase, and streptokinase A, distantly related to SIC (DRS), suggesting the importance of these factors in the development of invasive disease. GGS_124 contained 3 prophages, with one containing a virulence factor gene for streptodornase. All 3 prophages were significantly similar to GAS prophages that carry virulence factor genes, indicating that these prophages had transferred these genes between pathogens. SDSE was found to contain a gene encoding a superantigen, streptococcal exotoxin type G, but lacked several genes present in GAS that encode virulence factors, such as other superantigens, cysteine protease speB, and hyaluronan synthase operon hasABC. Similar to GGS_124, the SDSE strains contained larger numbers of clustered, regularly interspaced, short palindromic repeats (CRISPR) spacers than did GAS, suggesting that horizontal gene transfer via streptococcal phages between SDSE and GAS is somewhat restricted, although they share phage species. Genome wide comparisons of SDSE with GAS indicate that SDSE is closely and quantitatively related to GAS. SDSE, however, lacks several virulence factors of GAS, including superantigens, SPE-B and the hasABC operon. CRISPR spacers may limit the horizontal transfer of phage encoded GAS virulence genes into SDSE. These findings may provide clues for dissecting the pathological roles of the virulence factors in SDSE and GAS that cause

  11. Novel Variants of Streptococcus thermophilus Bacteriophages Are Indicative of Genetic Recombination among Phages from Different Bacterial Species

    PubMed Central

    Szymczak, Paula; Neves, Ana Rute; Kot, Witold; Hansen, Lars H.; Lametsch, René; Neve, Horst; Franz, Charles M. A. P.

    2016-01-01

    ABSTRACT Bacteriophages are the main cause of fermentation failures in dairy plants. The majority of Streptococcus thermophilus phages can be divided into either cos- or pac-type phages and are additionally characterized by examining the V2 region of their antireceptors. We screened a large number of S. thermophilus phages from the Chr. Hansen A/S collection, using PCR specific for the cos- or pac-type phages, as well as for the V2 antireceptor region. Three phages did not produce positive results with the assays. Analysis of phage morphologies indicated that two of these phages, CHPC577 and CHPC926, had shorter tails than the traditional S. thermophilus phages. The third phage, CHPC1151, had a tail size similar to those of the cos- or pac-type phages, but it displayed a different baseplate structure. Sequencing analysis revealed the genetic similarity of CHPC577 and CHPC926 with a subgroup of Lactococcus lactis P335 phages. Phage CHPC1151 was closely related to the atypical S. thermophilus phage 5093, homologous with a nondairy streptococcal prophage. By testing adsorption of the related streptococcal and lactococcal phages to the surface of S. thermophilus and L. lactis strains, we revealed the possibility of cross-interactions. Our data indicated that the use of S. thermophilus together with L. lactis, extensively applied for dairy fermentations, triggered the recombination between phages infecting different bacterial species. A notable diversity among S. thermophilus phage populations requires that a new classification of the group be proposed. IMPORTANCE Streptococcus thermophilus is a component of thermophilic starter cultures commonly used for cheese and yogurt production. Characterizing streptococcal phages, understanding their genetic relationships, and studying their interactions with various hosts are the necessary steps for preventing and controlling phage attacks that occur during dairy fermentations. PMID:28039135

  12. Novel Variants of Streptococcus thermophilus Bacteriophages Are Indicative of Genetic Recombination among Phages from Different Bacterial Species.

    PubMed

    Szymczak, Paula; Janzen, Thomas; Neves, Ana Rute; Kot, Witold; Hansen, Lars H; Lametsch, René; Neve, Horst; Franz, Charles M A P; Vogensen, Finn K

    2017-03-01

    Bacteriophages are the main cause of fermentation failures in dairy plants. The majority of Streptococcus thermophilus phages can be divided into either cos - or pac -type phages and are additionally characterized by examining the V2 region of their antireceptors. We screened a large number of S. thermophilus phages from the Chr. Hansen A/S collection, using PCR specific for the cos - or pac -type phages, as well as for the V2 antireceptor region. Three phages did not produce positive results with the assays. Analysis of phage morphologies indicated that two of these phages, CHPC577 and CHPC926, had shorter tails than the traditional S. thermophilus phages. The third phage, CHPC1151, had a tail size similar to those of the cos - or pac -type phages, but it displayed a different baseplate structure. Sequencing analysis revealed the genetic similarity of CHPC577 and CHPC926 with a subgroup of Lactococcus lactis P335 phages. Phage CHPC1151 was closely related to the atypical S. thermophilus phage 5093, homologous with a nondairy streptococcal prophage. By testing adsorption of the related streptococcal and lactococcal phages to the surface of S. thermophilus and L. lactis strains, we revealed the possibility of cross-interactions. Our data indicated that the use of S. thermophilus together with L. lactis , extensively applied for dairy fermentations, triggered the recombination between phages infecting different bacterial species. A notable diversity among S. thermophilus phage populations requires that a new classification of the group be proposed. IMPORTANCE Streptococcus thermophilus is a component of thermophilic starter cultures commonly used for cheese and yogurt production. Characterizing streptococcal phages, understanding their genetic relationships, and studying their interactions with various hosts are the necessary steps for preventing and controlling phage attacks that occur during dairy fermentations. Copyright © 2017 Szymczak et al.

  13. Whole-Genome Sequence Analysis of Streptococcus pneumoniae Strains That Cause Hospital-Acquired Pneumonia Infections.

    PubMed

    Chang, Bin; Morita, Masatomo; Lee, Ken-Ichi; Ohnishi, Makoto

    2018-05-01

    Streptococcus pneumoniae colonizes the nasopharyngeal mucus in healthy individuals and can cause otitis media, pneumonia, and invasive pneumococcal diseases. In this study, we analyzed S. pneumoniae strains that caused 19 pneumonia episodes in long-term inpatients with severe underlying disease in a hospital during a period of 14 months (from January 2014 to February 2015). Serotyping and whole-genome sequencing analyses revealed that 18 of the 19 pneumonia cases were caused by S. pneumoniae strains belonging to 3 genetically distinct groups: clonal complex 9999 (CC9999), sequence type 282 (ST282), and ST166. The CC9999 and ST282 strains appeared to have emerged separately by a capsule switch from the pandemic PMEN 1 strain (Spain 23F -ST81). After all the long-term inpatients were inoculated with the 23-valent pneumococcal polysaccharide vaccine, no other nosocomial pneumonia infections occurred until March 2016. Copyright © 2018 American Society for Microbiology.

  14. A Zebrafish Larval Model to Assess Virulence of Porcine Streptococcus suis Strains

    PubMed Central

    Zaccaria, Edoardo; Cao, Rui; Wells, Jerry M.; van Baarlen, Peter

    2016-01-01

    Streptococcus suis is an encapsulated Gram-positive bacterium, and the leading cause of sepsis and meningitis in young pigs resulting in considerable economic losses in the porcine industry. It is also considered an emerging zoonotic agent. In the environment, both avirulent and virulent strains occur in pigs, and virulent strains appear to cause disease in both humans and pigs. There is a need for a convenient, reliable and standardized animal model to assess S. suis virulence. A zebrafish (Danio rerio) larvae infection model has several advantages, including transparency of larvae, low cost, ease of use and exemption from ethical legislation up to 6 days post fertilization, but has not been previously established as a model for S. suis. Microinjection of different porcine strains of S. suis in zebrafish larvae resulted in highly reproducible dose- and strain-dependent larval death, strongly correlating with presence of the S. suis capsule and to the original virulence of the strain in pigs. Additionally we compared the virulence of the two-component system mutant of ciaRH, which is attenuated for virulence in both mice and pigs in vivo. Infection of larvae with the ΔciaRH strain resulted in significantly higher survival rate compared to infection with the S10 wild-type strain. Our data demonstrate that zebrafish larvae are a rapid and reliable model to assess the virulence of clinical porcine S. suis isolates. PMID:26999052

  15. Mixed Streptococcus pneumoniae and Streptococcus pyogenes meningitis in an immunocompromised adult patient: a case report.

    PubMed

    Demerle, Clémence; Ivanov, Vadim; Mercier, Cédric; Costello, Régis; Drancourt, Michel

    2015-11-29

    Community-acquired meningitis is a monomicrobial infection caused by either viruses or bacteria in the vast majority of patients. We report here one exceptional case of a patient with mixed bacterial meningitis due to Streptococcus pneumoniae and Streptococcus pyogenes. We report the case of a 68-year-old immunocompromised Caucasian man suffering from otitis and then meningitis caused by Streptococcus pneumoniae and Streptococcus pyogenes. Bacteria were undistinguishable by direct microscopic examination of the cerebrospinal fluid. He responded well to treatment with cefotaxime and dexamethasone, with no sequelae observed at the 4-month follow-up. This first reported case of mixed S. pneumoniae and S. pyogenes meningitis illustrates the life-threatening consequences of barotrauma in immunocompromised patients suffering from otorhinolaryngeal infections.

  16. Vizantin inhibits bacterial adhesion without affecting bacterial growth and causes Streptococcus mutans biofilm to detach by altering its internal architecture.

    PubMed

    Takenaka, Shoji; Oda, Masataka; Domon, Hisanori; Ohsumi, Tatsuya; Suzuki, Yuki; Ohshima, Hayato; Yamamoto, Hirofumi; Terao, Yutaka; Noiri, Yuichiro

    2016-11-11

    An ideal antibiofilm strategy is to control both in the quality and quantity of biofilm while maintaining the benefits derived from resident microflora. Vizantin, a recently developed immunostimulating compound, has also been found to have antibiofilm property. This study evaluated the influence on biofilm formation of Streptococcus mutans in the presence of sulfated vizantin and biofilm development following bacterial adhesion on a hydroxyapatite disc coated with sulfated vizantin. Supplementation with sulfated vizantin up to 50 μM did not affect either bacterial growth or biofilm formation, whereas 50 μM sulfated vizantin caused the biofilm to readily detach from the surface. Sulfated vizantin at the concentration of 50 μM upregulated the expression of the gtfB and gtfC genes, but downregulated the expression of the gtfD gene, suggesting altered architecture in the biofilm. Biofilm development on the surface coated with sulfated vizantin was inhibited depending on the concentration, suggesting prevention from bacterial adhesion. Among eight genes related to bacterial adherence in S. mutans, expression of gtfB and gtfC was significantly upregulated, whereas the expression of gtfD, GbpA and GbpC was downregulated according to the concentration of vizantin, especially with 50 μM vizantin by 0.8-, 0.4-, and 0.4-fold, respectively. These findings suggest that sulfated vizantin may cause structural degradation as a result of changing gene regulation related to bacterial adhesion and glucan production of S. mutans. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Isolation and identification of biocellulose-producing bacterial strains from Malaysian acidic fruits.

    PubMed

    Voon, W W Y; Rukayadi, Y; Meor Hussin, A S

    2016-05-01

    Biocellulose (BC) is pure extracellular cellulose produced by several species of micro-organisms that has numerous applications in the food, biomedical and paper industries. However, the existing biocellulose-producing bacterial strain with high yield was limited. The aim of this study was to isolate and identify the potential biocellulose-producing bacterial isolates from Malaysian acidic fruits. One hundred and ninety-three bacterial isolates were obtained from 19 local acidic fruits collected in Malaysia and screened for their ability to produce BC. A total of 15 potential bacterial isolates were then cultured in standard Hestrin-Schramm (HS) medium statically at 30°C for 2 weeks to determine the BC production. The most potent bacterial isolates were identified using 16S rRNA gene sequence analysis, morphological and biochemical characteristics. Three new and potent biocellulose-producing bacterial strains were isolated from soursop fruit and identified as Stenotrophomonas maltophilia WAUPM42, Pantoea vagans WAUPM45 and Beijerinckia fluminensis WAUPM53. Stenotrophomonas maltophilia WAUPM42 was the most potent biocellulose-producing bacterial strain that produced the highest amount of BC 0·58 g l(-1) in standard HS medium. Whereas, the isolates P. vagans WAUPM45 and B. fluminensis WAUPM53 showed 0·50 and 0·52 g l(-1) of BC production, respectively. Biocellulose (BC) is pure extracellular cellulose that is formed by many micro-organisms in the presence of carbon source and acidic condition. It can replace plant-based cellulose in multifarious applications due to its unique characteristics. In this study, three potential biocellulose-producing bacterial strains were obtained from Malaysian acidic fruits and identified as Stenotrophomonas maltophilia WAUPM42, Pantoea vagans WAUPM45 and Beijerinckia fluminensis WAUPM53. This study reports for the first time the new biocellulose-producing bacterial strains isolated from Malaysian acidic fruits. © 2016 The

  18. Screening of bacterial strains isolated from uranium mill tailings porewaters for bioremediation purposes.

    PubMed

    Sánchez-Castro, Iván; Amador-García, Ahinara; Moreno-Romero, Cristina; López-Fernández, Margarita; Phrommavanh, Vannapha; Nos, Jeremy; Descostes, Michael; Merroun, Mohamed L

    2017-01-01

    The present work characterizes at different levels a number of bacterial strains isolated from porewaters sampled in the vicinity of two French uranium tailing repositories. The 16S rRNA gene from 33 bacterial isolates, corresponding to the different morphotypes recovered, was almost fully sequenced. The resulting sequences belonged to 13 bacterial genera comprised in the phyla Firmicutes, Actinobacteria and Proteobacteria. Further characterization at physiological level and metals/metalloid tolerance provided evidences for an appropriate selection of bacterial strains potentially useful for immobilization of uranium and other common contaminants. By using High Resolution Transmission Electron Microscope (HRTEM), this potential ability to immobilize uranium as U phosphate mineral phases was confirmed for the bacterial strains Br3 and Br5 corresponding to Arthrobacter sp. and Microbacterium oxydans, respectively. Scanning Transmission Electron Microscope- High-Angle Annular Dark-Field (STEM-HAADF) analysis showed U accumulates on the surface and within bacterial cytoplasm, in addition to the extracellular space. Energy Dispersive X-ray (EDX) element-distribution maps demonstrated the presence of U and P within these accumulates. These results indicate the potential of certain bacterial strains isolated from porewaters of U mill tailings for immobilizing uranium, likely as uranium phosphates. Some of these bacterial isolates might be considered as promising candidates in the design of uranium bioremediation strategies. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Chlorhexidine digluconate effects on planktonic growth and biofilm formation in some field isolates of animal bacterial pathogens.

    PubMed

    Ebrahimi, Azizollah; Hemati, Majid; Habibian Dehkordi, Saeed; Bahadoran, Shahab; Khoshnood, Sheida; Khubani, Shahin; Dokht Faraj, Mahdi; Hakimi Alni, Reza

    2014-05-01

    To study chlorhexidine digluconate disinfectant effects on planktonic growth and biofilm formation in some bacterial field isolates from animals. The current study investigated chlorhexidine digluconate effects on planktonic growth and biofilm formation in some field isolates of veterinary bacterial pathogens. Forty clinical isolates of Escherichia coli, Salmonella serotypes, Staphylococcus. aureus and Streptococcus agalactiae (10 isolates for each) were examined for chlorhexidine digluconate effects on biofilm formation and planktonic growth using microtiter plates. In all of the examined strains in the presence of chlorhexidine digluconate, biofilm development and planktonic growth were affected at the same concentrations of the disinfectant. Chlorhexidine digluconate inhibited the planktonic growth of different bacterial species at sub-MICs. But they were able to induce biofilm development of the E. coli, Salmonella spp., S. aureus and Str. agalactiae strains. Bacterial resistance against chlorhexidine is increasing. Sub-MIC doses of chlorhexidine digluconate can stimulate the formation of biofilm strains.

  20. Bacterial Adherence and Dwelling Probability: Two Drivers of Early Alveolar Infection by Streptococcus pneumoniae Identified in Multi-Level Mathematical Modeling

    PubMed Central

    Santos, Guido; Lai, Xin; Eberhardt, Martin; Vera, Julio

    2018-01-01

    Pneumococcal infection is the most frequent cause of pneumonia, and one of the most prevalent diseases worldwide. The population groups at high risk of death from bacterial pneumonia are infants, elderly and immunosuppressed people. These groups are more vulnerable because they have immature or impaired immune systems, the efficacy of their response to vaccines is lower, and antibiotic treatment often does not take place until the inflammatory response triggered is already overwhelming. The immune response to bacterial lung infections involves dynamic interactions between several types of cells whose activation is driven by intracellular molecular networks. A feasible approach to the integration of knowledge and data linking tissue, cellular and intracellular events and the construction of hypotheses in this area is the use of mathematical modeling. For this paper, we used a multi-level computational model to analyse the role of cellular and molecular interactions during the first 10 h after alveolar invasion of Streptococcus pneumoniae bacteria. By “multi-level” we mean that we simulated the interplay between different temporal and spatial scales in a single computational model. In this instance, we included the intracellular scale of processes driving lung epithelial cell activation together with the scale of cell-to-cell interactions at the alveolar tissue. In our analysis, we combined systematic model simulations with logistic regression analysis and decision trees to find genotypic-phenotypic signatures that explain differences in bacteria strain infectivity. According to our simulations, pneumococci benefit from a high dwelling probability and a high proliferation rate during the first stages of infection. In addition to this, the model predicts that during the very early phases of infection the bacterial capsule could be an impediment to the establishment of the alveolar infection because it impairs bacterial colonization. PMID:29868515

  1. Bacterial Adherence and Dwelling Probability: Two Drivers of Early Alveolar Infection by Streptococcus pneumoniae Identified in Multi-Level Mathematical Modeling.

    PubMed

    Santos, Guido; Lai, Xin; Eberhardt, Martin; Vera, Julio

    2018-01-01

    Pneumococcal infection is the most frequent cause of pneumonia, and one of the most prevalent diseases worldwide. The population groups at high risk of death from bacterial pneumonia are infants, elderly and immunosuppressed people. These groups are more vulnerable because they have immature or impaired immune systems, the efficacy of their response to vaccines is lower, and antibiotic treatment often does not take place until the inflammatory response triggered is already overwhelming. The immune response to bacterial lung infections involves dynamic interactions between several types of cells whose activation is driven by intracellular molecular networks. A feasible approach to the integration of knowledge and data linking tissue, cellular and intracellular events and the construction of hypotheses in this area is the use of mathematical modeling. For this paper, we used a multi-level computational model to analyse the role of cellular and molecular interactions during the first 10 h after alveolar invasion of Streptococcus pneumoniae bacteria. By "multi-level" we mean that we simulated the interplay between different temporal and spatial scales in a single computational model. In this instance, we included the intracellular scale of processes driving lung epithelial cell activation together with the scale of cell-to-cell interactions at the alveolar tissue. In our analysis, we combined systematic model simulations with logistic regression analysis and decision trees to find genotypic-phenotypic signatures that explain differences in bacteria strain infectivity. According to our simulations, pneumococci benefit from a high dwelling probability and a high proliferation rate during the first stages of infection. In addition to this, the model predicts that during the very early phases of infection the bacterial capsule could be an impediment to the establishment of the alveolar infection because it impairs bacterial colonization.

  2. Genome sequence of a serotype M3 strain of group A Streptococcus: phage-encoded toxins, the high-virulence phenotype, and clone emergence.

    PubMed

    Beres, Stephen B; Sylva, Gail L; Barbian, Kent D; Lei, Benfang; Hoff, Jessica S; Mammarella, Nicole D; Liu, Meng-Yao; Smoot, James C; Porcella, Stephen F; Parkins, Larye D; Campbell, David S; Smith, Todd M; McCormick, John K; Leung, Donald Y M; Schlievert, Patrick M; Musser, James M

    2002-07-23

    Genome sequences are available for many bacterial strains, but there has been little progress in using these data to understand the molecular basis of pathogen emergence and differences in strain virulence. Serotype M3 strains of group A Streptococcus (GAS) are a common cause of severe invasive infections with unusually high rates of morbidity and mortality. To gain insight into the molecular basis of this high-virulence phenotype, we sequenced the genome of strain MGAS315, an organism isolated from a patient with streptococcal toxic shock syndrome. The genome is composed of 1,900,521 bp, and it shares approximately 1.7 Mb of related genetic material with genomes of serotype M1 and M18 strains. Phage-like elements account for the great majority of variation in gene content relative to the sequenced M1 and M18 strains. Recombination produces chimeric phages and strains with previously uncharacterized arrays of virulence factor genes. Strain MGAS315 has phage genes that encode proteins likely to contribute to pathogenesis, such as streptococcal pyrogenic exotoxin A (SpeA) and SpeK, streptococcal superantigen (SSA), and a previously uncharacterized phospholipase A(2) (designated Sla). Infected humans had anti-SpeK, -SSA, and -Sla antibodies, indicating that these GAS proteins are made in vivo. SpeK and SSA were pyrogenic and toxic for rabbits. Serotype M3 strains with the phage-encoded speK and sla genes increased dramatically in frequency late in the 20th century, commensurate with the rise in invasive disease caused by M3 organisms. Taken together, the results show that phage-mediated recombination has played a critical role in the emergence of a new, unusually virulent clone of serotype M3 GAS.

  3. Neisseria meningitidis and Streptococcus pneumoniae as leading causes of pediatric bacterial meningitis in nine Mexican hospitals following 3 years of active surveillance

    PubMed Central

    Chacon-Cruz, Enrique; Martinez-Longoria, Cesar Adrian; Llausas-Magana, Eduardo; Luevanos-Velazquez, Antonio; Vazquez-Narvaez, Jorge Alejandro; Beltran, Sandra; Limon-Rojas, Ana Elena; Urtiz-Jeronimo, Fernando; Castaneda-Narvaez, Jose Luis; Otero-Mendoza, Francisco; Aguilar-Del Real, Fernando; Rodriguez-Chagoyan, Jesus; Rivas-Landeros, Rosa Maria; Volker-Soberanes, Maria Luisa; Hinojosa-Robles, Rosa Maria; Arzate-Barbosa, Patricia; Aviles-Benitez, Laura Karina; Elenes-Zamora, Fernando Ivan; Becka, Chandra M.; Ruttimann, Ricardo

    2016-01-01

    Objectives: Meningococcal meningitis is reported as a rare condition in Mexico. There are no internationally published studies on bacterial causes of meningitis in the country based on active surveillance. This study focuses on finding the etiology of bacterial meningitis in children from nine Mexican Hospitals. Methods: From January 2010 to February 2013, we conducted a three years of active surveillance for meningitis in nine hospitals throughout Mexico. Active surveillance started at the emergency department for every suspected case, and microbiological studies confirmed/ruled out all potentially bacterial pathogens. We diagnosed based on routine cultures from blood and cerebrospinal fluid (not polymerase chain reaction or other molecular diagnostic tests), and both pneumococcal serotyping and meningococcal serogrouping by using standard methods. Results: Neisseria meningitidis was the leading cause, although 75% of cases occurred in the northwest of the country in Tijuana on the US border. Serogroup C was predominant. Streptococcus pneumoniae followed Neisseria meningitides, but was uniformly distributed throughout the country. Serotype 19A was the most incident but before universal implementation of the 13-valent pneumococcal conjugate vaccine. Other bacteria were much less common, including Enterobacteriaceae and Streptococcus agalactiae (these two affecting mostly young infants). Conclusions: Meningococcal meningitis is endemic in Tijuana, Mexico, and vaccination should be seriously considered in that region. Continuous universal vaccination with the 13-valent pneumococcal conjugate vaccine should be nationally performed, and polymerase chain reaction should be included for bacterial detection in all cultures – negative but presumably bacterial meningitis cases. PMID:27551428

  4. Neisseria meningitidis and Streptococcus pneumoniae as leading causes of pediatric bacterial meningitis in nine Mexican hospitals following 3 years of active surveillance.

    PubMed

    Chacon-Cruz, Enrique; Martinez-Longoria, Cesar Adrian; Llausas-Magana, Eduardo; Luevanos-Velazquez, Antonio; Vazquez-Narvaez, Jorge Alejandro; Beltran, Sandra; Limon-Rojas, Ana Elena; Urtiz-Jeronimo, Fernando; Castaneda-Narvaez, Jose Luis; Otero-Mendoza, Francisco; Aguilar-Del Real, Fernando; Rodriguez-Chagoyan, Jesus; Rivas-Landeros, Rosa Maria; Volker-Soberanes, Maria Luisa; Hinojosa-Robles, Rosa Maria; Arzate-Barbosa, Patricia; Aviles-Benitez, Laura Karina; Elenes-Zamora, Fernando Ivan; Becka, Chandra M; Ruttimann, Ricardo

    2016-01-01

    Meningococcal meningitis is reported as a rare condition in Mexico. There are no internationally published studies on bacterial causes of meningitis in the country based on active surveillance. This study focuses on finding the etiology of bacterial meningitis in children from nine Mexican Hospitals. From January 2010 to February 2013, we conducted a three years of active surveillance for meningitis in nine hospitals throughout Mexico. Active surveillance started at the emergency department for every suspected case, and microbiological studies confirmed/ruled out all potentially bacterial pathogens. We diagnosed based on routine cultures from blood and cerebrospinal fluid (not polymerase chain reaction or other molecular diagnostic tests), and both pneumococcal serotyping and meningococcal serogrouping by using standard methods. Neisseria meningitidis was the leading cause, although 75% of cases occurred in the northwest of the country in Tijuana on the US border. Serogroup C was predominant. Streptococcus pneumoniae followed Neisseria meningitides, but was uniformly distributed throughout the country. Serotype 19A was the most incident but before universal implementation of the 13-valent pneumococcal conjugate vaccine. Other bacteria were much less common, including Enterobacteriaceae and Streptococcus agalactiae (these two affecting mostly young infants). Meningococcal meningitis is endemic in Tijuana, Mexico, and vaccination should be seriously considered in that region. Continuous universal vaccination with the 13-valent pneumococcal conjugate vaccine should be nationally performed, and polymerase chain reaction should be included for bacterial detection in all cultures - negative but presumably bacterial meningitis cases.

  5. Antibodies Reactive to Commensal Streptococcus mitis Show Cross-Reactivity With Virulent Streptococcus pneumoniae Serotypes.

    PubMed

    Shekhar, Sudhanshu; Khan, Rabia; Ferreira, Daniela M; Mitsi, Elena; German, Esther; Rørvik, Gro Herredsvela; Berild, Dag; Schenck, Karl; Kwon, Keehwan; Petersen, Fernanda

    2018-01-01

    Current vaccines against Streptococcus pneumoniae , a bacterial species that afflicts people by causing a wide spectrum of diseases, do not protect against all pneumococcal serotypes. Thus, alternative vaccines to fight pneumococcal infections that target common proteins are under investigation. One promising strategy is to take advantage of immune cross-reactivity between commensal and pathogenic microbes for cross-protection. In this study, we examined the antibody-mediated cross-reactivity between S. pneumoniae and Streptococcus mitis , a commensal species closely related to S. pneumoniae . Western blot analysis showed that rabbit antisera raised against S. mitis reacted with multiple proteins of virulent S. pneumoniae strains (6B, TIGR4, and D39). Rabbit anti- S. pneumoniae IgG antibodies also showed binding to S. mitis antigens. Incubation of rabbit antisera raised against S. mitis with heterologous or homologous bacterial lysates resulted in marked inhibition of the developments of bands in the Western blots. Furthermore, plasma IgG antibodies from adult human volunteers intranasally inoculated with S. pneumoniae 6B revealed enhanced S. mitis -specific IgG titers compared with the pre-inoculation samples. Using an on-chip protein microarray representing a number of selected membrane and extracellular S. pneumoniae proteins, we identified choline-binding protein D (CbpD), cell division protein (FtsH), and manganese ABC transporter or manganese-binding adhesion lipoprotein (PsaA) as common targets of the rabbit IgG antibodies raised against S. mitis or S. pneumoniae . Cumulatively, these findings provide evidence on the antibody-mediated cross-reactivity of proteins from S. mitis and S. pneumoniae , which may have implications for development of effective and wide-range pneumococcal vaccines.

  6. Diversity of human small intestinal Streptococcus and Veillonella populations.

    PubMed

    van den Bogert, Bartholomeus; Erkus, Oylum; Boekhorst, Jos; de Goffau, Marcus; Smid, Eddy J; Zoetendal, Erwin G; Kleerebezem, Michiel

    2013-08-01

    Molecular and cultivation approaches were employed to study the phylogenetic richness and temporal dynamics of Streptococcus and Veillonella populations in the small intestine. Microbial profiling of human small intestinal samples collected from four ileostomy subjects at four time points displayed abundant populations of Streptococcus spp. most affiliated with S. salivarius, S. thermophilus, and S. parasanguinis, as well as Veillonella spp. affiliated with V. atypica, V. parvula, V. dispar, and V. rogosae. Relative abundances varied per subject and time of sampling. Streptococcus and Veillonella isolates were cultured using selective media from ileostoma effluent samples collected at two time points from a single subject. The richness of the Streptococcus and Veillonella isolates was assessed at species and strain level by 16S rRNA gene sequencing and genetic fingerprinting, respectively. A total of 160 Streptococcus and 37 Veillonella isolates were obtained. Genetic fingerprinting differentiated seven Streptococcus lineages from ileostoma effluent, illustrating the strain richness within this ecosystem. The Veillonella isolates were represented by a single phylotype. Our study demonstrated that the small intestinal Streptococcus populations displayed considerable changes over time at the genetic lineage level because only representative strains of a single Streptococcus lineage could be cultivated from ileostoma effluent at both time points. © 2013 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  7. Genome Sequence of Streptococcus phocae subsp. salmonis Strain C-4T, Isolated from Atlantic Salmon (Salmo salar)

    PubMed Central

    Suarez, Rudy; Lazo, Eduardo; Bravo, Diego; Llegues, Katerina O.; Romalde, Jesús L.; Godoy, Marcos G.

    2014-01-01

    Streptococcus phocae subsp. salmonis is a fish pathogen that has an important impact on the Chilean salmon industry. Here, we report the genome sequence of the type strain C-4T isolated from Atlantic salmon (Salmo salar), showing a number of interesting features and genes related to its possible virulence factors. PMID:25502668

  8. The Regulatory Small RNA MarS Supports Virulence of Streptococcus pyogenes.

    PubMed

    Pappesch, Roberto; Warnke, Philipp; Mikkat, Stefan; Normann, Jana; Wisniewska-Kucper, Aleksandra; Huschka, Franziska; Wittmann, Maja; Khani, Afsaneh; Schwengers, Oliver; Oehmcke-Hecht, Sonja; Hain, Torsten; Kreikemeyer, Bernd; Patenge, Nadja

    2017-09-25

    Small regulatory RNAs (sRNAs) play a role in the control of bacterial virulence gene expression. In this study, we investigated an sRNA that was identified in Streptococcus pyogenes (group A Streptococcus, GAS) but is conserved throughout various streptococci. In a deletion strain, expression of mga, the gene encoding the multiple virulence gene regulator, was reduced. Accordingly, transcript and proteome analyses revealed decreased expression of several Mga-activated genes. Therefore, and because the sRNA was shown to interact with the 5' UTR of the mga transcript in a gel-shift assay, we designated it MarS for m ga-activating regulatory sRNA. Down-regulation of important virulence factors, including the antiphagocytic M-protein, led to increased susceptibility of the deletion strain to phagocytosis and reduced adherence to human keratinocytes. In a mouse infection model, the marS deletion mutant showed reduced dissemination to the liver, kidney, and spleen. Additionally, deletion of marS led to increased tolerance towards oxidative stress. Our in vitro and in vivo results indicate a modulating effect of MarS on virulence gene expression and on the pathogenic potential of GAS.

  9. Streptococcal toxic shock syndrome caused by Streptococcus suis serotype 2.

    PubMed

    Tang, Jiaqi; Wang, Changjun; Feng, Youjun; Yang, Weizhong; Song, Huaidong; Chen, Zhihai; Yu, Hongjie; Pan, Xiuzhen; Zhou, Xiaojun; Wang, Huaru; Wu, Bo; Wang, Haili; Zhao, Huamei; Lin, Ying; Yue, Jianhua; Wu, Zhenqiang; He, Xiaowei; Gao, Feng; Khan, Abdul Hamid; Wang, Jian; Zhao, Guo-Ping; Wang, Yu; Wang, Xiaoning; Chen, Zhu; Gao, George F

    2006-05-01

    Streptococcus suis serotype 2 (S. suis 2, SS2) is a major zoonotic pathogen that causes only sporadic cases of meningitis and sepsis in humans. Most if not all cases of Streptococcal toxic shock syndrome (STSS) that have been well-documented to date were associated with the non-SS2 group A streptococcus (GAS). However, a recent large-scale outbreak of SS2 in Sichuan Province, China, appeared to be caused by more invasive deep-tissue infection with STSS, characterized by acute high fever, vascular collapse, hypotension, shock, and multiple organ failure. We investigated this outbreak of SS2 infections in both human and pigs, which took place from July to August, 2005, through clinical observation and laboratory experiments. Clinical and pathological characterization of the human patients revealed the hallmarks of typical STSS, which to date had only been associated with GAS infection. Retrospectively, we found that this outbreak was very similar to an earlier outbreak in Jiangsu Province, China, in 1998. We isolated and analyzed 37 bacterial strains from human specimens and eight from pig specimens of the recent outbreak, as well as three human isolates and two pig isolates from the 1998 outbreak we had kept in our laboratory. The bacterial isolates were examined using light microscopy observation, pig infection experiments, multiplex-PCR assay, as well as restriction fragment length polymorphisms (RFLP) and multiple sequence alignment analyses. Multiple lines of evidence confirmed that highly virulent strains of SS2 were the causative agents of both outbreaks. We report, to our knowledge for the first time, two outbreaks of STSS caused by SS2, a non-GAS streptococcus. The 2005 outbreak was associated with 38 deaths out of 204 documented human cases; the 1998 outbreak with 14 deaths out of 25 reported human cases. Most of the fatal cases were characterized by STSS; some of them by meningitis or severe septicemia. The molecular mechanisms underlying these human STSS

  10. Superoxide anions produced by Streptococcus pyogenes group A-stimulated keratinocytes are responsible for cellular necrosis and bacterial growth inhibition.

    PubMed

    Regnier, Elodie; Grange, Philippe A; Ollagnier, Guillaume; Crickx, Etienne; Elie, Laetitia; Chouzenoux, Sandrine; Weill, Bernard; Plainvert, Céline; Poyart, Claire; Batteux, Frédéric; Dupin, Nicolas

    2016-02-01

    Gram-positive Streptococcus pyogenes (group A Streptococcus or GAS) is a major skin pathogen and interacts with keratinocytes in cutaneous tissues. GAS can cause diverse suppurative and inflammatory infections, such as cellulitis, a common acute bacterial dermo-hypodermitis with a high morbidity. Bacterial isolation yields from the lesions are low despite the strong local inflammation observed, raising numerous questions about the pathogenesis of the infection. Using an in vitro model of GAS-infected keratinocytes, we show that the major ROS produced is the superoxide anion ([Formula: see text]), and that its production is time- and dose-dependent. Using specific modulators of ROS production, we show that [Formula: see text] is mainly synthesized by the cytoplasmic NADPH oxidase. Superoxide anion production leads to keratinocyte necrosis but incomplete inhibition of GAS growth, suggesting that GAS may be partially resistant to the oxidative burst. In conclusion, GAS-stimulated keratinocytes are able to develop an innate immune response based on the production of ROS. This local immune response limits GAS development and induces keratinocyte cell death, resulting in the skin lesions observed in patients with cellulitis. © The Author(s) 2015.

  11. Contribution of chloride channel permease to fluoride resistance in Streptococcus mutans.

    PubMed

    Murata, Takatoshi; Hanada, Nobuhiro

    2016-06-01

    Genes encoding fluoride transporters have been identified in bacterial and archaeal species. The genome sequence of the cariogenic Streptococcus mutans bacteria suggests the presence of a putative fluoride transporter, which is referred to as a chloride channel permease. Two homologues of this gene (GenBank locus tags SMU_1290c and SMU_1289c) reside in tandem in the genome of S. mutans The aim of this study was to determine whether the chloride channel permeases contribute to fluoride resistance. We constructed SMU_1290c- and SMU_1289c-knockout S. mutans UA159 strains. We also constructed a double-knockout strain lacking both genes. SMU_1290c or SMU_1289c was transformed into a fluoride transporter- disrupted Escherichia coli strain. All bacterial strains were cultured under appropriate conditions with or without sodium fluoride, and fluoride resistance was evaluated. All three gene-knockout S. mutans strains showed lower resistance to sodium fluoride than did the wild-type strain. No significant changes in resistance to other sodium halides were recognized between the wild-type and double-knockout strains. Both SMU_1290c and SMU_1289c transformation rescued fluoride transporter-disrupted E. coli cell from fluoride toxicity. We conclude that the chloride channel permeases contribute to fluoride resistance in S. mutans. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  12. Streptococcus loxodontisalivarius sp. nov. and Streptococcus saliviloxodontae sp. nov., isolated from oral cavities of elephants.

    PubMed

    Saito, Masanori; Shinozaki-Kuwahara, Noriko; Hirasawa, Masatomo; Takada, Kazuko

    2014-09-01

    Four Gram-stain-positive, catalase-negative, coccoid-shaped organisms were isolated from elephant oral cavities. The isolates were tentatively identified as streptococcal species based on the results of biochemical tests. Comparative 16S rRNA gene sequencing studies confirmed the organisms to be members of the genus Streptococcus. Two isolates (NUM 6304(T) and NUM 6312) were related most closely to Streptococcus salivarius with 96.8 % and 93.1 % similarity based on the 16S rRNA gene and the RNA polymerase β subunit encoding gene (rpoB), respectively, and to Streptococcus vestibularis with 83.7 % similarity based on the 60 kDa heat-shock protein gene (groEL). The other two isolates (NUM 6306(T) and NUM 6318) were related most closely to S. vestibularis with 97.0 % and 82.9 % similarity based on the 16S rRNA and groEL genes, respectively, and to S. salivarius with 93.5 % similarity based on the rpoB gene. Based on phylogenetic and phenotypic evidence, these isolates are suggested to represent novel species of the genus Streptococcus, for which the names Streptococcus loxodontisalivarius sp. nov. (type strain NUM 6304(T) = JCM 19287(T) = DSM 27382(T)) and Streptococcus saliviloxodontae sp. nov. (type strain NUM 6306(T) = JCM 19288(T) = DSM 27513(T)) are proposed. © 2014 IUMS.

  13. Reappraisal of the taxonomy of Streptococcus suis serotypes 20, 22 and 26: Streptococcus parasuis sp. nov.

    PubMed

    Nomoto, R; Maruyama, F; Ishida, S; Tohya, M; Sekizaki, T; Osawa, Ro

    2015-02-01

    In order to clarify the taxonomic position of serotypes 20, 22 and 26 of Streptococcus suis, biochemical and molecular genetic studies were performed on isolates (SUT-7, SUT-286(T), SUT-319, SUT-328 and SUT-380) reacted with specific antisera of serotypes 20, 22 or 26 from the saliva of healthy pigs as well as reference strains of serotypes 20, 22 and 26. Comparative recN gene sequencing showed high genetic relatedness among our isolates, but marked differences from the type strain S. suis NCTC 10234(T), i.e. 74.8-75.7 % sequence similarity. The genomic relatedness between the isolates and other strains of species of the genus Streptococcus, including S. suis, was calculated using the average nucleotide identity values of whole genome sequences, which indicated that serotypes 20, 22 and 26 should be removed taxonomically from S. suis and treated as a novel genomic species. Comparative sequence analysis revealed 99.0-100 % sequence similarities for the 16S rRNA genes between the reference strains of serotypes 20, 22 and 26, and our isolates. Isolate STU-286(T) had relatively high 16S rRNA gene sequence similarity with S. suis NCTC 10234(T) (98.8 %). SUT-286(T) could be distinguished from S. suis and other closely related species of the genus Streptococcus using biochemical tests. Due to its phylogenetic and phenotypic similarities to S. suis we propose naming the novel species Streptococcus parasuis sp. nov., with SUT-286(T) ( = JCM 30273(T) = DSM 29126(T)) as the type strain. © 2015 IUMS.

  14. Comparative genome analysis identifies two large deletions in the genome of highly-passaged attenuated Streptococcus agalactiae strain YM001 compared to the parental pathogenic strain HN016.

    PubMed

    Wang, Rui; Li, Liping; Huang, Yan; Luo, Fuguang; Liang, Wanwen; Gan, Xi; Huang, Ting; Lei, Aiying; Chen, Ming; Chen, Lianfu

    2015-11-04

    Streptococcus agalactiae (S. agalactiae), also known as group B Streptococcus (GBS), is an important pathogen for neonatal pneumonia, meningitis, bovine mastitis, and fish meningoencephalitis. The global outbreaks of Streptococcus disease in tilapia cause huge economic losses and threaten human food hygiene safety as well. To investigate the mechanism of S. agalactiae pathogenesis in tilapia and develop attenuated S. agalactiae vaccine, this study sequenced and comparatively analyzed the whole genomes of virulent wild-type S. agalactiae strain HN016 and its highly-passaged attenuated strain YM001 derived from tilapia. We performed Illumina sequencing of DNA prepared from strain HN016 and YM001. Sequencedreads were assembled and nucleotide comparisons, single nucleotide polymorphism (SNP) , indels were analyzed between the draft genomes of HN016 and YM001. Clustered regularly interspaced short palindromic repeats (CRISPRs) and prophage were detected and analyzed in different S. agalactiae strains. The genome of S. agalactiae YM001 was 2,047,957 bp with a GC content of 35.61 %; it contained 2044 genes and 88 RNAs. Meanwhile, the genome of S. agalactiae HN016 was 2,064,722 bp with a GC content of 35.66 %; it had 2063 genes and 101 RNAs. Comparative genome analysis indicated that compared with HN016, YM001 genome had two significant large deletions, at the sizes of 5832 and 11,116 bp respectively, resulting in the deletion of three rRNA and ten tRNA genes, as well as the deletion and functional damage of ten genes related to metabolism, transport, growth, anti-stress, etc. Besides these two large deletions, other ten deletions and 28 single nucleotide variations (SNVs) were also identified, mainly affecting the metabolism- and growth-related genes. The genome of attenuated S. agalactiae YM001 showed significant variations, resulting in the deletion of 10 functional genes, compared to the parental pathogenic strain HN016. The deleted and mutated functional genes all

  15. Quantitative analysis of the lactic acid and acetaldehyde produced by Streptococcus thermophilus and Lactobacillus bulgaricus strains isolated from traditional Turkish yogurts using HPLC.

    PubMed

    Gezginc, Y; Topcal, F; Comertpay, S; Akyol, I

    2015-03-01

    The present study was conducted to evaluate the lactic acid- and acetaldehyde-producing abilities of lactic acid bacterial species isolated from traditionally manufactured Turkish yogurts using HPLC. The lactic acid bacterial species purified from the yogurts were the 2 most widely used species in industrial yogurt production: Streptococcus thermophilus and Lactobacillus bulgaricus. These bacteria have the ability to ferment hexose sugars homofermentatively to generate lactic acid and some carbonyl compounds, such as acetaldehyde through pyruvate metabolism. The levels of the compounds produced during fermentation influence the texture and the flavor of the yogurt and are themselves influenced by the chemical composition of the milk, processing conditions, and the metabolic activity of the starter culture. In the study, morphological, biochemical, and molecular characteristics were employed to identify the bacteria obtained from homemade yogurts produced in different regions of Turkey. A collection of 91 Strep. thermophilus and 35 L. bulgaricus strains were investigated for their lactic acid- and acetaldehyde-formation capabilities in various media such as cow milk, LM17 agar, and aerobic-anaerobic SM17 agar or de Man, Rogosa, and Sharpe agar. The amounts of the metabolites generated by each strain in all conditions were quantified by HPLC. The levels were found to vary depending on the species, the strain, and the growth conditions used. Whereas lactic acid production ranged between 0 and 77.9 mg/kg for Strep. thermophilus strains, it ranged from 0 to 103.5 mg/kg for L. bulgaricus. Correspondingly, the ability to generate acetaldehyde ranged from 0 to 105.9 mg/kg in Strep. thermophilus and from 0 to 126.9 mg/kg in L. bulgaricus. Our study constitutes the first attempt to determine characteristics of the wild strains isolated from traditional Turkish yogurts, and the approach presented here, which reveals the differences in metabolite production abilities of the

  16. Identification and characterisation of potential biofertilizer bacterial strains

    NASA Astrophysics Data System (ADS)

    Karagöz, Kenan; Kotan, Recep; Dadaşoǧlu, Fatih; Dadaşoǧlu, Esin

    2016-04-01

    In this study we aimed that isolation, identification and characterizations of PGPR strains from rhizosphere of legume plants. 188 bacterial strains isolated from different legume plants like clover, sainfoin and vetch in Erzurum province of Turkey. These three plants are cultivated commonly in the Erzurum province. It was screen that 50 out of 188 strains can fix nitrogen and solubilize phosphate. These strains were identified via MIS (Microbial identification system). According to MIS identification results, 40 out of 50 strains were identified as Bacillus, 5 as Pseudomonas, 3 as Paenibacillus, 1 as Acinetobacter, 1 as Brevibacterium. According to classical test results, while the catalase test result of all isolates are positive, oxidase, KOH and starch hydrolysis rest results are variable.

  17. Genome engineering and gene expression control for bacterial strain development.

    PubMed

    Song, Chan Woo; Lee, Joungmin; Lee, Sang Yup

    2015-01-01

    In recent years, a number of techniques and tools have been developed for genome engineering and gene expression control to achieve desired phenotypes of various bacteria. Here we review and discuss the recent advances in bacterial genome manipulation and gene expression control techniques, and their actual uses with accompanying examples. Genome engineering has been commonly performed based on homologous recombination. During such genome manipulation, the counterselection systems employing SacB or nucleases have mainly been used for the efficient selection of desired engineered strains. The recombineering technology enables simple and more rapid manipulation of the bacterial genome. The group II intron-mediated genome engineering technology is another option for some bacteria that are difficult to be engineered by homologous recombination. Due to the increasing demands on high-throughput screening of bacterial strains having the desired phenotypes, several multiplex genome engineering techniques have recently been developed and validated in some bacteria. Another approach to achieve desired bacterial phenotypes is the repression of target gene expression without the modification of genome sequences. This can be performed by expressing antisense RNA, small regulatory RNA, or CRISPR RNA to repress target gene expression at the transcriptional or translational level. All of these techniques allow efficient and rapid development and screening of bacterial strains having desired phenotypes, and more advanced techniques are expected to be seen. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Live Streptococcus suis type 5 strain XS045 provides cross-protection against infection by strains of types 2 and 9.

    PubMed

    Jiang, Xiaowu; Yang, Yunkai; Zhu, Lexin; Gu, Yuanxing; Shen, Hongxia; Shan, Ying; Li, Xiaoliang; Wu, Jiusheng; Fang, Weihuan

    2016-12-12

    Streptococcus suis is one of the common pathogens causing diseases in pigs and covers 35 serotypes with the type 2 strains being more pathogenic and zoonotic. Existing inactivated or subunit vaccines, in clinical use or under trial, could not provide cross protection against other serotypes. We identified a natural low-virulence S. suis type 5 strain XS045 as a live vaccine candidate because it is highly adhesive to the cultured HEp-2 cells, but with no apparent pathogenicity in mice and piglets. We further demonstrate that subcutaneous administration of the live XS045 strain to mice induced high antibody responses and was able to provide cross protection against challenges by a type 2 strain HA9801 (100% protection) and a type 9 strain JX13 (85% protection). Induction of high-titer antibodies with opsonizing activity as well as their cross-reactivity to surface proteins of the types 2 and 9 strains and anti-adhesion effect could be the mechanisms of cross protection. This is the first report that a live vaccine candidate S. suis type 5 strain could induce cross-protection against strains of types 2 and 9. This candidate strain is to be further examined for safety in pigs of different ages and breeds as well as for its protection against other serotypes or other strains of the type 2, a serotype of particular importance from public health concern. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Streptococcal toxic shock syndrome caused by the dissemination of an invasive emm3/ST15 strain of Streptococcus pyogenes.

    PubMed

    Sekizuka, Tsuyoshi; Nai, Emina; Yoshida, Tomohiro; Endo, Shota; Hamajima, Emi; Akiyama, Satoka; Ikuta, Yoji; Obana, Natsuko; Kawaguchi, Takahiro; Hayashi, Kenta; Noda, Masahiro; Sumita, Tomoko; Kokaji, Masayuki; Katori, Tatsuo; Hashino, Masanori; Oba, Kunihiro; Kuroda, Makoto

    2017-12-18

    Streptococcus pyogenes (group A Streptococcus [GAS]) is a major human pathogen that causes a wide spectrum of clinical manifestations. Although invasive GAS (iGAS) infections are relatively uncommon, emm3/ST15 GAS is a highly virulent, invasive, and pathogenic strain. Global molecular epidemiology analysis has suggested that the frequency of emm3 GAS has been recently increasing. A 14-year-old patient was diagnosed with streptococcal toxic shock syndrome and severe pneumonia, impaired renal function, and rhabdomyolysis. GAS was isolated from a culture of endotracheal aspirates and designated as KS030. Comparative genome analysis suggested that KS030 is classified as emm3 (emm-type) and ST15 (multilocus sequencing typing [MLST]), which is similar to iGAS isolates identified in the UK (2013) and Switzerland (2015). We conclude that the global dissemination of emm3/ST15 GAS strain has the potential to cause invasive disease.

  20. Etiology of acute otitis media and serotype distribution of Streptococcus pneumoniae and Haemophilus influenzae in Chilean children <5 years of age

    PubMed Central

    Rosenblut, Andres; Napolitano, Carla; Pereira, Angelica; Moreno, Camilo; Kolhe, Devayani; Lepetic, Alejandro; Ortega-Barria, Eduardo

    2017-01-01

    Abstract The impact of bacterial conjugate vaccines on acute otitis media (AOM) is affected by several factors including population characteristics, bacterial etiology and vaccine conjugation method, carrier, and coverage. This study estimated the baseline etiology, distribution, and antibiotic susceptibility of bacterial serotypes that causes AOM in children aged <5 years in a public setting in Santiago, Chile. Children aged ≥3 months and <5 years referred to the physician for treatment of AOM episodes (with an onset of symptoms <72 h) were enrolled between September 2009 and September 2010. Middle ear fluid (MEF) was collected by tympanocentesis or by otorrhea for identification and serotyping of bacteria. Antibacterial susceptibility was tested using E-test (etrack: 112671). Of 160 children (mean age 27.10 ± 15.83 months) with AOM episodes, 164 MEF samples (1 episode each from 156 children; 2 episodes each from 4 children) were collected. Nearly 30% of AOM episodes occurred in children aged 12 to 23 months. Streptococcus pneumoniae (41.7% [58/139]) and Haemophilus influenzae (40.3% [56/139]) were predominant among the cultures that showed bacterial growth (85% [139/164]). All Streptococcus pneumoniae positive episodes were serotyped, 19F (21%) and 14 (17%) were the predominant serotypes; all Haemophilus influenzae strains were nontypeable. Streptococcus pneumoniae were resistant to penicillin (5%) and erythromycin (33%); Haemophilus influenzae were resistant to ampicillin (14%) and cefuroxime and cefotaxime (2% each). AOM in Chilean children is predominantly caused by Streptococcus pneumoniae and nontypeable Haemophilus influenzae. Use of a broad spectrum vaccine against these pathogens might aid the reduction of AOM in Chile. PMID:28178138

  1. Silver deposition on titanium surface by electrochemical anodizing process reduces bacterial adhesion of Streptococcus sanguinis and Lactobacillus salivarius.

    PubMed

    Godoy-Gallardo, Maria; Rodríguez-Hernández, Ana G; Delgado, Luis M; Manero, José M; Javier Gil, F; Rodríguez, Daniel

    2015-10-01

    The aim of this study was to determine the antibacterial properties of silver-doped titanium surfaces prepared with a novel electrochemical anodizing process. Titanium samples were anodized with a pulsed process in a solution of silver nitrate and sodium thiosulphate at room temperature with stirring. Samples were processed with different electrolyte concentrations and treatment cycles to improve silver deposition. Physicochemical properties were determined by X-ray photoelectron spectroscopy, contact angle measurements, white-light interferometry, and scanning electron microscopy. Cellular cytotoxicity in human fibroblasts was studied with lactate dehydrogenase assays. The in vitro effect of treated surfaces on two oral bacteria strains (Streptococcus sanguinis and Lactobacillus salivarius) was studied with viable bacterial adhesion measurements and growth curve assays. Nonparametric statistical Kruskal-Wallis and Mann-Whitney U-tests were used for multiple and paired comparisons, respectively. Post hoc Spearman's correlation tests were calculated to check the dependence between bacteria adhesion and surface properties. X-ray photoelectron spectroscopy results confirmed the presence of silver on treated samples and showed that treatments with higher silver nitrate concentration and more cycles increased the silver deposition on titanium surface. No negative effects in fibroblast cell viability were detected and a significant reduction on bacterial adhesion in vitro was achieved in silver-treated samples compared with control titanium. Silver deposition on titanium with a novel electrochemical anodizing process produced surfaces with significant antibacterial properties in vitro without negative effects on cell viability. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  2. Some Factors Influencing Acid Production by an Oxytetracycline-Resistant Strain of Streptococcus lactis1

    PubMed Central

    Mikolajcik, E. M.; Harper, W. J.; Gould, I. A.

    1963-01-01

    Induction of oxytetracycline resistance in a strain of Streptococcus lactis caused this organism to display reduced acid production, salt tolerance, pyruvate synthesis, growth at alkaline pH, and a loss in ability to produce ammonia from arginine. α-Ketoglutaric and oxaloacetic acids were found to accumulate in the growth medium of resistant cells, in contrast to none in the medium of susceptible cells. No free arginine could be detected in the intracellular fraction of resistant cells, but arginine was present in the intracellular fraction of susceptible cells and decreased in concentration upon the addition of oxytetracycline to the growth medium. Depressed acid production in milk by the oxytetracycline resistant strain is evidently a consequence of the inability of this organism to metabolize arginine effectively. PMID:14063784

  3. Selective propensity of bovine jugular vein material to bacterial adhesions: An in-vitro study.

    PubMed

    Jalal, Zakaria; Galmiche, Louise; Lebeaux, David; Villemain, Olivier; Brugada, Georgia; Patel, Mehul; Ghigo, Jean-Marc; Beloin, Christophe; Boudjemline, Younes

    2015-11-01

    Percutaneous pulmonary valve implantation (PPVI) using Melody valve made of bovine jugular vein is safe and effective. However, infective endocarditis has been reported for unclear reasons. We sought to assess the impact of valvular substrates on selective bacterial adhesion. Three valved stents (Melody valve, homemade stents with bovine and porcine pericardium) were tested in-vitro for bacterial adhesion using Staphylococcus aureus and Streptococcus sanguinis strains. Bacterial adhesion was higher on bovine jugular venous wall for S. aureus and on Melody valvular leaflets for S. sanguinis in control groups and significantly increased in traumatized Melody valvular leaflets with both bacteria (traumatized vs non traumatized: p=0.05). Bacterial adhesion was lower on bovine pericardial leaflets. Selective adhesion of S. aureus and S. sanguinis pathogenic strains to Melody valve tissue was noted on healthy tissue and increased after implantation procedural steps. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  4. Chlorhexidine Digluconate Effects on Planktonic Growth and Biofilm Formation in Some Field Isolates of Animal Bacterial Pathogens

    PubMed Central

    Ebrahimi, Azizollah; Hemati, Majid; Habibian Dehkordi, Saeed; Bahadoran, Shahab; Khoshnood, Sheida; Khubani, Shahin; Dokht Faraj, Mahdi; Hakimi Alni, Reza

    2014-01-01

    Background: To study chlorhexidine digluconate disinfectant effects on planktonic growth and biofilm formation in some bacterial field isolates from animals. Objectives: The current study investigated chlorhexidine digluconate effects on planktonic growth and biofilm formation in some field isolates of veterinary bacterial pathogens. Materials and Methods: Forty clinical isolates of Escherichia coli, Salmonella serotypes, Staphylococcus. aureus and Streptococcus agalactiae (10 isolates for each) were examined for chlorhexidine digluconate effects on biofilm formation and planktonic growth using microtiter plates. In all of the examined strains in the presence of chlorhexidine digluconate, biofilm development and planktonic growth were affected at the same concentrations of the disinfectant. Results: Chlorhexidine digluconate inhibited the planktonic growth of different bacterial species at sub-MICs. But they were able to induce biofilm development of the E. coli, Salmonella spp., S. aureus and Str. agalactiae strains. Conclusions: Bacterial resistance against chlorhexidine is increasing. Sub-MIC doses of chlorhexidine digluconate can stimulate the formation of biofilm strains. PMID:24872940

  5. Antibacterial activity and mechanism of berberine against Streptococcus agalactiae

    PubMed Central

    Peng, Lianci; Kang, Shuai; Yin, Zhongqiong; Jia, Renyong; Song, Xu; Li, Li; Li, Zhengwen; Zou, Yuanfeng; Liang, Xiaoxia; Li, Lixia; He, Changliang; Ye, Gang; Yin, Lizi; Shi, Fei; Lv, Cheng; Jing, Bo

    2015-01-01

    The antibacterial activity and mechanism of berberine against Streptococcus agalactiae were investigated in this study by analyzing the growth, morphology and protein of the S. agalactiae cells treated with berberine. The antibacterial susceptibility test result indicated minimum inhibition concentration (MIC) of berberine against Streptococcus agalactiae was 78 μg/mL and the time-kill curves showed the correlation of concentration-time. After the bacteria was exposed to 78 μg/mL berberine, the fragmentary cell membrane and cells unequal division were observed by the transmission electron microscopy (TEM), indicating the bacterial cells were severely damaged. Sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) study demonstrated that berberine could damage bacterial cells through destroying cellular proteins. Meanwhile, Fluorescence microscope revealed that berberine could affect the synthesis of DNA. In conclusion, these results strongly suggested that berberine may damage the structure of bacterial cell membrane and inhibit synthesis of protein and DNA, which cause Streptococcus agalactiae bacteria to die eventually. PMID:26191220

  6. Antibacterial activity and mechanism of berberine against Streptococcus agalactiae.

    PubMed

    Peng, Lianci; Kang, Shuai; Yin, Zhongqiong; Jia, Renyong; Song, Xu; Li, Li; Li, Zhengwen; Zou, Yuanfeng; Liang, Xiaoxia; Li, Lixia; He, Changliang; Ye, Gang; Yin, Lizi; Shi, Fei; Lv, Cheng; Jing, Bo

    2015-01-01

    The antibacterial activity and mechanism of berberine against Streptococcus agalactiae were investigated in this study by analyzing the growth, morphology and protein of the S. agalactiae cells treated with berberine. The antibacterial susceptibility test result indicated minimum inhibition concentration (MIC) of berberine against Streptococcus agalactiae was 78 μg/mL and the time-kill curves showed the correlation of concentration-time. After the bacteria was exposed to 78 μg/mL berberine, the fragmentary cell membrane and cells unequal division were observed by the transmission electron microscopy (TEM), indicating the bacterial cells were severely damaged. Sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) study demonstrated that berberine could damage bacterial cells through destroying cellular proteins. Meanwhile, Fluorescence microscope revealed that berberine could affect the synthesis of DNA. In conclusion, these results strongly suggested that berberine may damage the structure of bacterial cell membrane and inhibit synthesis of protein and DNA, which cause Streptococcus agalactiae bacteria to die eventually.

  7. Differential compartmentalization of Streptococcus pyogenes virulence factors and host protein binding properties as a mechanism for host adaptation.

    PubMed

    Kilsgård, Ola; Karlsson, Christofer; Malmström, Erik; Malmström, Johan

    2016-11-01

    Streptococcus pyogenes is an important human pathogen responsible for substantial morbidity and mortality worldwide. Although S. pyogenes is a strictly human pathogen with no other known animal reservoir, several murine infection models exist to explore different aspects of the bacterial pathogenesis. Inoculating mice with wild-type S. pyogenes strains can result in the generation of new bacterial phenotypes that are hypervirulent compared to the original inoculum. In this study, we used a serial mass spectrometry based proteomics strategy to investigate if these hypervirulent strains have an altered distribution of virulence proteins across the intracellular, surface associated and secreted bacterial compartments and if any change in compartmentalization can alter the protein-protein interaction network between bacteria and host proteins. Quantitative analysis of the S. pyogenes surface and secreted proteomes revealed that animal passaged strains are associated with significantly higher amount of virulence factors on the bacterial surface and in the media. This altered virulence factor compartmentalization results in increased binding of several mouse plasma proteins to the bacterial surface, a trend that was consistent for mouse plasma from several different mouse strains. In general, both the wild-type strain and animal passaged strain were capable of binding high amounts of human plasma proteins. However, compared to the non-passaged strains, the animal passaged strains displayed an increased ability to bind mouse plasma proteins, in particular for M protein binders, indicating that the increased affinity for mouse blood plasma proteins is a consequence of host adaptation of this pathogen to a new host. In conclusion, plotting the total amount of virulence factors against the total amount of plasma proteins associated to the bacterial surface could clearly separate out animal passaged strains from wild type strains indicating a virulence model that could

  8. Molecular epidemiology and strain-specific characteristics of Streptococcus agalactiae at the herd and cow level.

    PubMed

    Mahmmod, Y S; Klaas, I C; Katholm, J; Lutton, M; Zadoks, R N

    2015-10-01

    Host-adaptation of Streptococcus agalactiae subpopulations has been described whereby strains that are commonly associated with asymptomatic carriage or disease in people differ phenotypically and genotypically from those causing mastitis in dairy cattle. Based on multilocus sequence typing (MLST), the most common strains in dairy herds in Denmark belong to sequence types (ST) that are also frequently found in people. The aim of this study was to describe epidemiological and diagnostic characteristics of such strains in relation to bovine mastitis. Among 1,199 cattle from 6 herds, cow-level prevalence of S. agalactiae was estimated to be 27.4% based on PCR and 7.8% based on bacteriological culture. Quarter-level prevalence was estimated at 2.8% based on bacteriological culture. Per herd, between 2 and 26 isolates were characterized by pulsed-field gel electrophoresis (PFGE) and MLST. Within each herd, a single PFGE type and ST predominated, consistent with a contagious mode of transmission or point source infection within herds. Evidence of within-herd evolution of S. agalactiae was detected with both typing methods, although ST belonged to a single clonal complex (CC) per herd. Detection of CC23 (3 herds) was associated with significantly lower approximate count (colony-forming units) at the quarter level and significantly lower cycle threshold value at the cow level than detection of CC1 (2 herds) or CC19 (1 herd), indicating a lower bacterial load in CC23 infections. Median values for the number of infected quarters and somatic cell count (SCC) were numerically but not significantly lower for cows infected with CC23 than for cows with CC1 or CC19. For all CC, an SCC threshold of 200,000 cells/mL was an unreliable indicator of infection status, and prescreening of animals based on SCC as part of S. agalactiae detection and eradication campaigns should be discouraged. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights

  9. The arginine-ornithine antiporter ArcD contributes to biological fitness of Streptococcus suis.

    PubMed

    Fulde, Marcus; Willenborg, Joerg; Huber, Claudia; Hitzmann, Angela; Willms, Daniela; Seitz, Maren; Eisenreich, Wolfgang; Valentin-Weigand, Peter; Goethe, Ralph

    2014-01-01

    The arginine-ornithine antiporter (ArcD) is part of the Arginine Deiminase System (ADS), a catabolic, energy-providing pathway found in a variety of different bacterial species, including the porcine zoonotic pathogen Streptococcus suis. The ADS has recently been shown to play a role in the pathogenicity of S. suis, in particular in its survival in host cells. The contribution of arginine and arginine transport mediated by ArcD, however, has yet to be clarified. In the present study, we showed by experiments using [U-(13)C6]arginine as a tracer molecule that S. suis is auxotrophic for arginine and that bacterial growth depends on the uptake of extracellular arginine. To further study the role of ArcD in arginine metabolism, we generated an arcD-specific mutant strain and characterized its growth compared to the wild-type (WT) strain, a virulent serotype 2 strain. The mutant strain showed a markedly reduced growth in chemically defined media supplemented with arginine when compared to the WT strain, suggesting that ArcD promotes arginine uptake. To further evaluate the in vivo relevance of ArcD, we studied the intracellular bacterial survival of the arcD mutant strain in an epithelial cell culture infection model. The mutant strain was substantially attenuated, and its reduced intracellular survival rate correlated with a lower ability to neutralize the acidified environment. Based on these results, we propose that ArcD, by its function as an arginine-ornithine antiporter, is important for supplying arginine as substrate of the ADS and, thereby, contributes to biological fitness and virulence of S. suis in the host.

  10. The arginine-ornithine antiporter ArcD contributes to biological fitness of Streptococcus suis

    PubMed Central

    Fulde, Marcus; Willenborg, Joerg; Huber, Claudia; Hitzmann, Angela; Willms, Daniela; Seitz, Maren; Eisenreich, Wolfgang; Valentin-Weigand, Peter; Goethe, Ralph

    2014-01-01

    The arginine-ornithine antiporter (ArcD) is part of the Arginine Deiminase System (ADS), a catabolic, energy-providing pathway found in a variety of different bacterial species, including the porcine zoonotic pathogen Streptococcus suis. The ADS has recently been shown to play a role in the pathogenicity of S. suis, in particular in its survival in host cells. The contribution of arginine and arginine transport mediated by ArcD, however, has yet to be clarified. In the present study, we showed by experiments using [U-13C6]arginine as a tracer molecule that S. suis is auxotrophic for arginine and that bacterial growth depends on the uptake of extracellular arginine. To further study the role of ArcD in arginine metabolism, we generated an arcD-specific mutant strain and characterized its growth compared to the wild-type (WT) strain, a virulent serotype 2 strain. The mutant strain showed a markedly reduced growth in chemically defined media supplemented with arginine when compared to the WT strain, suggesting that ArcD promotes arginine uptake. To further evaluate the in vivo relevance of ArcD, we studied the intracellular bacterial survival of the arcD mutant strain in an epithelial cell culture infection model. The mutant strain was substantially attenuated, and its reduced intracellular survival rate correlated with a lower ability to neutralize the acidified environment. Based on these results, we propose that ArcD, by its function as an arginine-ornithine antiporter, is important for supplying arginine as substrate of the ADS and, thereby, contributes to biological fitness and virulence of S. suis in the host. PMID:25161959

  11. CAMBerVis: visualization software to support comparative analysis of multiple bacterial strains.

    PubMed

    Woźniak, Michał; Wong, Limsoon; Tiuryn, Jerzy

    2011-12-01

    A number of inconsistencies in genome annotations are documented among bacterial strains. Visualization of the differences may help biologists to make correct decisions in spurious cases. We have developed a visualization tool, CAMBerVis, to support comparative analysis of multiple bacterial strains. The software manages simultaneous visualization of multiple bacterial genomes, enabling visual analysis focused on genome structure annotations. The CAMBerVis software is freely available at the project website: http://bioputer.mimuw.edu.pl/camber. Input datasets for Mycobacterium tuberculosis and Staphylocacus aureus are integrated with the software as examples. m.wozniak@mimuw.edu.pl Supplementary data are available at Bioinformatics online.

  12. Streptococcus caviae sp. nov., isolated from guinea pig faecal samples.

    PubMed

    Palakawong Na Ayudthaya, Susakul; Hilderink, Loes J; Oost, John van der; Vos, Willem M de; Plugge, Caroline M

    2017-05-01

    A novel cellobiose-degrading and lactate-producing bacterium, strain Cavy grass 6T, was isolated from faecal samples of guinea pigs (Cavia porcellus). Cells of the strain were ovalshaped, non-motile, non-spore-forming, Gram-stain-positive and facultatively anaerobic. The strain gr at 25-40 °C (optimum 37 °C) and pH 4.5-9.5 (optimum 8.0). Phylogenetic analysis based on 16S rRNA gene sequences showed that strain Cavy grass 6T belongs to the genus Streptococcus with its closest relative being Streptococcus devriesei CCUG 47155T with only 96.5 % similarity. Comparing strain Cavy grass 6T and Streptococcus devriesei CCUG 47155T, average nucleotide identity and level of digital DNA-DNA hybridization dDDH were only 86.9 and 33.3 %, respectively. Housekeeping genes groEL and gyrA were different between strain Cavy grass 6T and other streptococci. The G+C content of strain Cavy grass 6T was 42.6±0.3 mol%. The major (>10 %) cellular fatty acids of strain Cavy grass 6T were C16:0, C20 : 1ω9c and summed feature 8 (C18 : 1ω7c and/or C18 : 1ω6c). Strain Cavy grass 6T ferment a range of plant mono- and disaccharides as well as polymeric carbohydrates, including cellobiose, dulcitol, d-glucose, maltose, raffinose, sucrose, l-sorbose, trehalose, inulin and dried grass extract, to lactate, formate, acetate and ethanol. Based on phylogenetic and physiological characteristics, Cavy grass 6T can be distinguished from other members of the genus Streptococcus. Therefore, a novel species of the genus Streptococcus, family Streptococcaceae, order Lactobacillales is proposed, Streptococcuscaviae sp. nov. (type strain Cavy grass 6T=TISTR 2371T=DSM 102819T).

  13. Genome Sequence of Streptococcus phocae subsp. salmonis Strain C-4T, Isolated from Atlantic Salmon (Salmo salar).

    PubMed

    Avendaño-Herrera, Ruben; Suarez, Rudy; Lazo, Eduardo; Bravo, Diego; Llegues, Katerina O; Romalde, Jesús L; Godoy, Marcos G

    2014-12-11

    Streptococcus phocae subsp. salmonis is a fish pathogen that has an important impact on the Chilean salmon industry. Here, we report the genome sequence of the type strain C-4(T) isolated from Atlantic salmon (Salmo salar), showing a number of interesting features and genes related to its possible virulence factors. Copyright © 2014 Avendaño-Herrera et al.

  14. Toll-like receptor 2-independent host innate immune response against an epidemic strain of Streptococcus suis that causes a toxic shock-like syndrome in humans.

    PubMed

    Lachance, Claude; Segura, Mariela; Gerber, Pehuén Pereyra; Xu, Jianguo; Gottschalk, Marcelo

    2013-01-01

    Streptococcus suis is an emerging zoonotic agent causing meningitis and septicemia. Outbreaks in humans in China with atypical cases of streptococcal toxic shock-like syndrome have been described to be caused by a clonal epidemic S. suis strain characterized as sequence type (ST) 7 by multilocus sequence typing, different from the classical ST1 usually isolated in Europe. Previous in vitro studies showed that Toll-like receptor (TLR) 2 plays a major role in S. suis ST1 interactions with host cells. In the present study, the in vivo role of TLR2 in systemic infections caused by S. suis ST1 or ST7 strains using TLR2 deficient (TLR2(-/-)) mice was evaluated. TLR2-mediated recognition significantly contributes to the acute disease caused by the highly virulent S. suis ST1 strain, since the TLR2(-/-) mice remained unaffected when compared to wild type (WT) mice. The lack of mortality could not be associated with a lower bacterial burden; however, a significant decrease in the induction of pro-inflammatory mediators, as evaluated by microarray, real-time PCR and protein assays, was observed. On the other hand, TLR2(-/-) mice infected with the epidemic ST7 strain presented no significant differences regarding survival and expression of pro-inflammatory mediators when compared to the WT mice. Together, these results show a TLR2-independent host innate immune response to S. suis that depends on the strain.

  15. Capsular Sialic Acid of Streptococcus suis Serotype 2 Binds to Swine Influenza Virus and Enhances Bacterial Interactions with Virus-Infected Tracheal Epithelial Cells

    PubMed Central

    Wang, Yingchao; Gagnon, Carl A.; Savard, Christian; Music, Nedzad; Srednik, Mariela; Segura, Mariela; Lachance, Claude; Bellehumeur, Christian

    2013-01-01

    Streptococcus suis serotype 2 is an important swine bacterial pathogen, and it is also an emerging zoonotic agent. It is unknown how S. suis virulent strains, which are usually found in low quantities in pig tonsils, manage to cross the first host defense lines to initiate systemic disease. Influenza virus produces a contagious infection in pigs which is frequently complicated by bacterial coinfections, leading to significant economic impacts. In this study, the effect of a preceding swine influenza H1N1 virus (swH1N1) infection of swine tracheal epithelial cells (NTPr) on the ability of S. suis serotype 2 to adhere to, invade, and activate these cells was evaluated. Cells preinfected with swH1N1 showed bacterial adhesion and invasion levels that were increased more than 100-fold compared to those of normal cells. Inhibition studies confirmed that the capsular sialic acid moiety is responsible for the binding to virus-infected cell surfaces. Also, preincubation of S. suis with swH1N1 significantly increased bacterial adhesion to/invasion of epithelial cells, suggesting that S. suis also uses swH1N1 as a vehicle to invade epithelial cells when the two infections occur simultaneously. Influenza virus infection may facilitate the transient passage of S. suis at the respiratory tract to reach the bloodstream and cause bacteremia and septicemia. S. suis may also increase the local inflammation at the respiratory tract during influenza infection, as suggested by an exacerbated expression of proinflammatory mediators in coinfected cells. These results give new insight into the complex interactions between influenza virus and S. suis in a coinfection model. PMID:24082069

  16. Bisphosphonates enhance bacterial adhesion and biofilm formation on bone hydroxyapatite.

    PubMed

    Kos, Marcin; Junka, Adam; Smutnicka, Danuta; Szymczyk, Patrycja; Gluza, Karolina; Bartoszewicz, Marzenna

    2015-07-01

    Because of the suspicion that bisphosphonates enhance bacterial colonization, this study evaluated adhesion and biofilm formation by Streptococcus mutans 25175, Staphylococcus aureus 6538, and Pseudomonas aeruginosa 14454 reference strains on hydroxyapatite coated with clodronate, pamidronate, or zoledronate. Bacterial strains were cultured on bisphosphonate-coated and noncoated hydroxyapatite discs. After incubation, nonadhered bacteria were removed by centrifugation. Biofilm formation was confirmed by scanning electron microscopy. Bacterial colonization was estimated using quantitative cultures compared by means with Kruskal-Wallis and post-hoc Student-Newman-Keuls tests. Modeling of the interactions between bisphosphonates and hydroxyapatite was performed using the Density Functional Theory method. Bacterial colonization of the hydroxyapatite discs was significantly higher for all tested strains in the presence of bisphosphonates vs. Adherence in the presence of pamidronate was higher than with other bisphosphonates. Density Functional Theory analysis showed that the protonated amine group of pamidronate, which are not present in clodronate or zoledronate, forms two additional hydrogen bonds with hydroxyapatite. Moreover, the reactive cationic amino group of pamidronate may attract bacteria by direct electrostatic interaction. Increased bacterial adhesion and biofilm formation can promote osteomyelitis, cause failure of dental implants or bisphosphonate-coated joint prostheses, and complicate bone surgery in patients on bisphosphonates. Copyright © 2015 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  17. An in silico model for identification of small RNAs in whole bacterial genomes: characterization of antisense RNAs in pathogenic Escherichia coli and Streptococcus agalactiae strains.

    PubMed

    Pichon, Christophe; du Merle, Laurence; Caliot, Marie Elise; Trieu-Cuot, Patrick; Le Bouguénec, Chantal

    2012-04-01

    Characterization of small non-coding ribonucleic acids (sRNA) among the large volume of data generated by high-throughput RNA-seq or tiling microarray analyses remains a challenge. Thus, there is still a need for accurate in silico prediction methods to identify sRNAs within a given bacterial species. After years of effort, dedicated software were developed based on comparative genomic analyses or mathematical/statistical models. Although these genomic analyses enabled sRNAs in intergenic regions to be efficiently identified, they all failed to predict antisense sRNA genes (asRNA), i.e. RNA genes located on the DNA strand complementary to that which encodes the protein. The statistical models enabled any genomic region to be analyzed theorically but not efficiently. We present a new model for in silico identification of sRNA and asRNA candidates within an entire bacterial genome. This model was successfully used to analyze the Gram-negative Escherichia coli and Gram-positive Streptococcus agalactiae. In both bacteria, numerous asRNAs are transcribed from the complementary strand of genes located in pathogenicity islands, strongly suggesting that these asRNAs are regulators of the virulence expression. In particular, we characterized an asRNA that acted as an enhancer-like regulator of the type 1 fimbriae production involved in the virulence of extra-intestinal pathogenic E. coli.

  18. An in silico model for identification of small RNAs in whole bacterial genomes: characterization of antisense RNAs in pathogenic Escherichia coli and Streptococcus agalactiae strains

    PubMed Central

    Pichon, Christophe; du Merle, Laurence; Caliot, Marie Elise; Trieu-Cuot, Patrick; Le Bouguénec, Chantal

    2012-01-01

    Characterization of small non-coding ribonucleic acids (sRNA) among the large volume of data generated by high-throughput RNA-seq or tiling microarray analyses remains a challenge. Thus, there is still a need for accurate in silico prediction methods to identify sRNAs within a given bacterial species. After years of effort, dedicated software were developed based on comparative genomic analyses or mathematical/statistical models. Although these genomic analyses enabled sRNAs in intergenic regions to be efficiently identified, they all failed to predict antisense sRNA genes (asRNA), i.e. RNA genes located on the DNA strand complementary to that which encodes the protein. The statistical models enabled any genomic region to be analyzed theorically but not efficiently. We present a new model for in silico identification of sRNA and asRNA candidates within an entire bacterial genome. This model was successfully used to analyze the Gram-negative Escherichia coli and Gram-positive Streptococcus agalactiae. In both bacteria, numerous asRNAs are transcribed from the complementary strand of genes located in pathogenicity islands, strongly suggesting that these asRNAs are regulators of the virulence expression. In particular, we characterized an asRNA that acted as an enhancer-like regulator of the type 1 fimbriae production involved in the virulence of extra-intestinal pathogenic E. coli. PMID:22139924

  19. Use of colony-based bacterial strain typing for tracking the fate of Lactobacillus strains during human consumption

    PubMed Central

    2009-01-01

    Background The Lactic Acid Bacteria (LAB) are important components of the healthy gut flora and have been used extensively as probiotics. Understanding the cultivable diversity of LAB before and after probiotic administration, and being able to track the fate of administered probiotic isolates during feeding are important parameters to consider in the design of clinical trials to assess probiotic efficacy. Several methods may be used to identify bacteria at the strain level, however, PCR-based methods such as Random Amplified Polymorphic DNA (RAPD) are particularly suited to rapid analysis. We examined the cultivable diversity of LAB in the human gut before and after feeding with two Lactobacillus strains, and also tracked the fate of these two administered strains using a RAPD technique. Results A RAPD typing scheme was developed to genetically type LAB isolates from a wide range of species, and optimised for direct application to bacterial colony growth. A high-throughput strategy for fingerprinting the cultivable diversity of human faeces was developed and used to determine: (i) the initial cultivable LAB strain diversity in the human gut, and (ii) the fate of two Lactobacillus strains (Lactobacillus salivarius NCIMB 30211 and Lactobacillus acidophilus NCIMB 30156) contained within a capsule that was administered in a small-scale human feeding study. The L. salivarius strain was not cultivated from the faeces of any of the 12 volunteers prior to capsule administration, but appeared post-feeding in four. Strains matching the L. acidophilus NCIMB 30156 feeding strain were found in the faeces of three volunteers prior to consumption; after taking the Lactobacillus capsule, 10 of the 12 volunteers were culture positive for this strain. The appearance of both Lactobacillus strains during capsule consumption was statistically significant (p < 0.05). Conclusion We have shown that genetic strain typing of the cultivable human gut microbiota can be evaluated using a high

  20. Pili of oral Streptococcus sanguinis bind to fibronectin and contribute to cell adhesion.

    PubMed

    Okahashi, Nobuo; Nakata, Masanobu; Sakurai, Atsuo; Terao, Yutaka; Hoshino, Tomonori; Yamaguchi, Masaya; Isoda, Ryutaro; Sumitomo, Tomoko; Nakano, Kazuhiko; Kawabata, Shigetada; Ooshima, Takashi

    2010-01-08

    Streptococcus sanguinis is a predominant bacterium in the human oral cavity and occasionally causes infective endocarditis. We identified a unique cell surface polymeric structure named pili in this species and investigated its functions in regard to its potential virulence. Pili of S. sanguinis strain SK36 were shown to be composed of three distinctive pilus proteins (PilA, PilB, and PilC), and a pili-deficient mutant demonstrated reduced bacterial adherence to HeLa and human oral epithelial cells. PilC showed a binding ability to fibronectin, suggesting that pili are involved in colonization by this species. In addition, ATCC10556, a standard S. sanguinis strain, was unable to produce pili due to defective pilus genes, which indicates a diversity of pilus expression among various S. sanguinis strains. Copyright 2009 Elsevier Inc. All rights reserved.

  1. Solubilization of municipal sewage waste activated sludge by novel lytic bacterial strains.

    PubMed

    Lakshmi, M Veera; Merrylin, J; Kavitha, S; Kumar, S Adish; Banu, J Rajesh; Yeom, Ick-Tae

    2014-02-01

    Extracellular polymeric substances (EPS) are an extracellular matrix found in sludge which plays a crucial role in flocculation by interacting with the organic solids. Therefore, to enhance pretreatment of sludge, EPS have to be removed. In this study, EPS were removed with a chemical extractant, NaOH, to enhance the bacterial pretreatment. A lysozyme secreting bacterial consortium was isolated from the waste activated sludge (WAS). The result of density gradient gel electrophoresis (DGGE) analysis revealed that the isolated consortium consists of two strains. The two novel strains isolated were named as Jerish03 (NCBI accession number KC597266) and Jerish 04 (NCBI accession number KC597267) and they belong to the genus Bacillus. Pretreatment with these novel strains enhances the efficiency of the aerobic digestion of sludge. Sludge treated with the lysozyme secreting bacterial consortium produced 29 % and 28.5 % increase in suspended solids (SS) reduction and chemical oxygen demand (COD) removal compared to the raw activated sludge (without pretreatment) during aerobic digestion. It is specified that these two novel strains had a high potential to enhance WAS degradation efficiency in aerobic digestion.

  2. Streptococcus penaeicida sp. nov., isolated from a diseased farmed Pacific white shrimp (Penaeus vannamei).

    PubMed

    Morales-Covarrubias, Maria Soledad; Del Carmen Bolan-Mejía, María; Vela Alonso, Ana Isabel; Fernandez-Garayzabal, Jose F; Gomez-Gil, Bruno

    2018-05-01

    Strain CAIM 1838 T , isolated from the hepatopancreas of a cultured diseased Pacific white shrimp (Penaeus vannamei), was subjected to characterization by a polyphasic taxonomic approach. On the basis of 16S rRNA gene sequence analysis, strain CAIM 1838 T was most closely related to Streptococcus bovimastitidis 99.3 % and to other species of the Pyogenes clade of Streptococcus with lower similarity values. Average nucleotide identity values and the genome-to-genome distance of strain CAIM 1838 T , as compared with the type strains, confirmed the separate species status with closely related species of the genus Streptococcus and were all below the thresholds to delimit a species, 93.1 and 49.4 %, respectively. The DNA G+C content was 38.1 mol%. Differential phylogenetic distinctiveness together with phenotypic properties obtained in this study revealed that strain CAIM 1838 T could be differentiated from the closely related species. Based on these results it is proposed that strain CAIM 1838 T represents a novel species in the genus Streptococcus, for which the name Streptococcus penaeicida sp. nov is proposed (type strain, CAIM 1838 T =CECT 8596 T ,=DSM26545 T ), is proposed.

  3. [The range of antagonistic effects of Lactobacillus bacterial strains on etiologic agents of bacterial vaginosis].

    PubMed

    Strus, M; Malinowska, M

    1999-01-01

    Bacterial vaginosis is caused by uncontrolled sequential overgrowth of some anaerobic bacteria: Gardnerella vaginalis, Prevotella bivia, Bacteroides spp., Peptostreptococcus spp., Mobiluncus sp. usually occurring in stable numbers in the bacterial flora of healthy women. On the other hand, different species of bacteria belonging to the genus Lactobacillus, most frequently L. plantarum, L. rhamnosus and L. acidophilus, form a group of aerobic bacteria dominating in the same environment. The diversity and density of their populations depend on the age and health conditions. Thanks to their antagonistic and adherence properties bacteria of the genus Lactobacillus can maintain a positive balance role in this ecosystem. The aim of this study was to assess the antagonistic properties of Lactobacillus strains isolated from the vagina of healthy women against most common agents of bacterial vaginosis. It was found that nearly all of the tested Lactobacillus strains exerted distinct antagonistic activity against anaerobic bacteria: Gardnerella vaginalis, Prevotella bivia and Peptostreptococcus anaerobius and quite a number also against Gram-negative rods, while only some of them were able to inhibit Gram-positive aerobic cocci as Enterococcus faecalis or Staphylococcus aureus.

  4. The effect of bacterial environmental and metabolic stresses on a laser-induced breakdown spectroscopy (LIBS) based identification of Escherichia coli and Streptococcus viridans.

    PubMed

    Mohaidat, Qassem; Palchaudhuri, Sunil; Rehse, Steven J

    2011-04-01

    In this paper we investigate the effect that adverse environmental and metabolic stresses have on the laser-induced breakdown spectroscopy (LIBS) identification of bacterial specimens. Single-pulse LIBS spectra were acquired from a non-pathogenic strain of Escherichia coli cultured in two different nutrient media: a trypticase soy agar and a MacConkey agar with a 0.01% concentration of deoxycholate. A chemometric discriminant function analysis showed that the LIBS spectra acquired from bacteria grown in these two media were indistinguishable and easily discriminated from spectra acquired from two other non-pathogenic E. coli strains. LIBS spectra were obtained from specimens of a nonpathogenic E. coli strain and an avirulent derivative of the pathogen Streptococcus viridans in three different metabolic situations: live bacteria reproducing in the log-phase, bacteria inactivated on an abiotic surface by exposure to bactericidal ultraviolet irradiation, and bacteria killed via autoclaving. All bacteria were correctly identified regardless of their metabolic state. This successful identification suggests the possibility of testing specimens that have been rendered safe for handling prior to LIBS identification. This would greatly enhance personnel safety and lower the cost of a LIBS-based diagnostic test. LIBS spectra were obtained from pathogenic and non-pathogenic bacteria that were deprived of nutrition for a period of time ranging from one day to nine days by deposition on an abiotic surface at room temperature. All specimens were successfully classified by species regardless of the duration of nutrient deprivation. © 2011 Society for Applied Spectroscopy

  5. Sublingual immunization with the phosphate-binding-protein (PstS) reduces oral colonization by Streptococcus mutans.

    PubMed

    Ferreira, E L; Batista, M T; Cavalcante, R C M; Pegos, V R; Passos, H M; Silva, D A; Balan, A; Ferreira, L C S; Ferreira, R C C

    2016-10-01

    Bacterial ATP-binding cassette (ABC) transporters play a crucial role in the physiology and pathogenicity of different bacterial species. Components of ABC transporters have also been tested as target antigens for the development of vaccines against different bacterial species, such as those belonging to the Streptococcus genus. Streptococcus mutans is the etiological agent of dental caries, and previous studies have demonstrated that deletion of the gene encoding PstS, the substrate-binding component of the phosphate uptake system (Pst), reduced the adherence of the bacteria to abiotic surfaces. In the current study, we generated a recombinant form of the S. mutans PstS protein (rPstS) with preserved structural features, and we evaluated the induction of antibody responses in mice after sublingual mucosal immunization with a formulation containing the recombinant protein and an adjuvant derived from the heat-labile toxin from enterotoxigenic Escherichia coli strains. Mice immunized with rPstS exhibited systemic and secreted antibody responses, measured by the number of immunoglobulin A-secreting cells in draining lymph nodes. Serum antibodies raised in mice immunized with rPstS interfered with the adhesion of bacteria to the oral cavity of naive mice challenged with S. mutans. Similarly, mice actively immunized with rPstS were partially protected from oral colonization after challenge with the S. mutans NG8 strain. Therefore, our results indicate that S. mutans PstS is a potential target antigen capable of inducing specific and protective antibody responses after sublingual administration. Overall, these observations raise interesting perspectives for the development of vaccines to prevent dental caries. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  6. Pilot Screening to Determine Antimicrobial Synergies in a Multidrug-Resistant Bacterial Strain Library

    PubMed Central

    Kim, Si-Hyun; Park, Chulmin; Chun, Hye-Sun; Choi, Jae-Ki; Lee, Hyo-Jin; Cho, Sung-Yeon; Park, Sun Hee; Choi, Su-Mi; Choi, Jung-Hyun; Yoo, Jin-Hong

    2016-01-01

    With the rise in multidrug-resistant (MDR) bacterial infections, there has been increasing interest in combinations of ≥2 antimicrobial agents with synergistic effects. We established an MDR bacterial strain library to screen for in vitro antimicrobial synergy by using a broth microdilution checkerboard method and high-throughput luciferase-based bacterial cell viability assay. In total, 39 MDR bacterial strains, including 23 carbapenem-resistant gram-negative bacteria, 9 vancomycin-intermediate Staphylococcus aureus, and 7 vancomycin-resistant Enterococcus faecalis, were used to screen for potential antimicrobial synergies. Synergies were more frequently identified with combinations of imipenem plus trimethoprim–sulfamethoxazole for carbapenem-resistant Acinetobacter baumannii in the library. To verify this finding, we tested 34 A. baumannii clinical isolates resistant to both imipenem and trimethoprim–sulfamethoxazole by the checkerboard method. The imipenem plus trimethoprim–sulfamethoxazole combination showed synergy in the treatment of 21 (62%) of the clinical isolates. The results indicate that pilot screening for antimicrobial synergy in the MDR bacterial strain library could be valuable in the selection of combination therapeutic regimens to treat MDR bacterial infections. Further studies are warranted to determine whether this screening system can be useful to screen for the combined effects of conventional antimicrobials and new-generation antimicrobials or nonantimicrobials. PMID:26974861

  7. Detoxification of mercury pollutant leached from spent fluorescent lamps using bacterial strains.

    PubMed

    Al-Ghouti, Mohammad A; Abuqaoud, Reem H; Abu-Dieyeh, Mohammed H

    2016-03-01

    The spent fluorescent lamps (SFLs) are being classified as a hazardous waste due to having mercury as one of its main components. Mercury is considered the second most toxic heavy metal (arsenic is the first) with harmful effects on animal nervous system as it causes different neurological disorders. In this research, the mercury from phosphor powder was leached, then bioremediated using bacterial strains isolated from Qatari environment. Leaching of mercury was carried out with nitric and hydrochloric acid solutions using two approaches: leaching at ambient conditions and microwave-assisted leaching. The results obtained from this research showed that microwave-assisted leaching method was significantly better in leaching mercury than the acid leaching where the mercury leaching efficiency reached 76.4%. For mercury bio-uptake, twenty bacterial strains (previously isolated and purified from petroleum oil contaminated soils) were sub-cultured on Luria Bertani (LB) plates with mercury chloride to check the bacterial tolerance to mercury. Seven of these twenty strains showed a degree of tolerance to mercury. The bio-uptake capacities of the promising strains were investigated using the mercury leached from the fluorescent lamps. Three of the strains (Enterobacter helveticus, Citrobacter amalonaticus, and Cronobacter muytjensii) showed bio-uptake efficiency ranged from 28.8% to 63.6%. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Future challenges in the elimination of bacterial meningitis.

    PubMed

    Bottomley, Matthew J; Serruto, Davide; Sáfadi, Marco Aurélio Palazzi; Klugman, Keith P

    2012-05-30

    Despite the widespread implementation of several effective vaccines over the past few decades, bacterial meningitis caused by Streptococcus pneumoniae, Haemophilus influenzae, Neisseria meningitidis and Group B Streptococcus (GBS) still results in unacceptably high levels of human mortality and morbidity. A residual disease burden due to bacterial meningitis is also apparent due to a number of persistent or emerging pathogens, including Mycobacterium tuberculosis, Escherichia coli, Staphylococcus aureus, Salmonella spp. and Streptococcus suis. Here, we review the current status of bacterial meningitis caused by these pathogens, highlighting how past and present vaccination programs have attempted to counter these pathogens. We discuss how improved pathogen surveillance, implementation of current vaccines, and development of novel vaccines may be expected to further reduce bacterial meningitis and related diseases in the future. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. Clustering Analysis of Antibiograms and Antibiogram Types of Streptococcus agalactiae Strains from Tilapia in China.

    PubMed

    Liu, Chan; Feng, Juan; Zhang, Defeng; Xie, Yundan; Li, Anxing; Wang, Jiangyong; Su, Youlu

    2018-05-11

    In view of the changing antibiotic-resistance profiles of Streptococcus agalactiae from tilapia in China, antimicrobial susceptibilities of 75 S. agalactiae strains were determined by the disc diffusion method, and cluster analyses of the antibiograms and antibiogram types were performed. All strains displayed multidrug resistance (MDR). The antimicrobial-resistance rates were highest (>90%) to aminoglycosides, sulfonamides, pipemidic acid, and norfloxacin, followed by penicillin, ampicillin, and ciprofloxacin (26.7-38.7%); those to furadantin, lincomycin, erythromycin, ofloxacin, tetracycline, and florfenicol were low (<10%), and no resistance to vancomycin, cefalexin, cefoxitin, amoxicillin, medemycin, doxitard, oxytetracycline, rifampin, chloramphenicol, or thiamphenicol was detected. Statistical analysis showed that the resistance rate to ciprofloxacin increased significantly in 2016 (p = 0.009), whereas that to trimethoprim/sulfamethoxazole decreased (p = 0.017). Cluster analyses identified that the strains had 23 antibiogram types (A-W) and clustered in five groups (Groups I-V). The strains with higher antimicrobial resistance mainly clustered in Groups I and II. Our results show that the antibiograms varied with time and by location and that antibiogram types are constantly updating and expanding. Effective measures must be taken to reduce the antimicrobial resistance and spread of MDR strains.

  10. Genetic characterization of Streptococcus phocae strains isolated from Atlantic salmon, Salmo salar L., in Chile.

    PubMed

    Valdés, I; Jaureguiberry, B; Romalde, J L; Toranzo, A E; Magariños, B; Avendaño-Herrera, R

    2009-04-01

    Streptococcus phocae is a beta-haemolytic bacterium frequently involved in disease outbreaks in seals causing pneumonia or respiratory infection. Since 1999, this pathogen has been isolated from diseased Atlantic salmon, Salmo salar, causing serious economic losses in the salmon industry in Chile. In this study, we used different molecular typing methods, such as pulsed-field gel electrophoresis (PFGE), randomly amplified polymorphic DNA (RAPD), enterobacterial repetitive intergenic consensus sequence PCR (ERIC-PCR), repetitive extragenic palindromic PCR (REP-PCR) and restriction of 16S-23S rDNA intergenic spacer regions to evaluate the genetic diversity in S. phocae. Thirty-four strains isolated in different years were analysed. The S. phocae type strain ATCC 51973(T) was included for comparative purposes. The results demonstrated genetic homogeneity within the S. phocae strains isolated in Chile over several years, suggesting the existence of clonal relationships among S. phocae isolated from Atlantic salmon. The type strain ATCC 51973(T) presented a different genetic pattern with the PFGE, RAPD, ERIC-PCR and REP-PCR methods. However, the fingerprint patterns of two seal isolates were distinct from those of the type strain.

  11. Biodegradation of malathion, α- and β-endosulfan by bacterial strains isolated from agricultural soil in Veracruz, Mexico.

    PubMed

    Jimenez-Torres, Catya; Ortiz, Irmene; San-Martin, Pablo; Hernandez-Herrera, R Idalia

    2016-12-01

    The objective of this study was to evaluate the capacity of two bacterial strains isolated, cultivated, and purified from agricultural soils of Veracruz, Mexico, for biodegradation and mineralisation of malathion (diethyl 2-(dimethoxyphosphorothioyl) succinate) and α- and β-endosulfan (6,7,8,9,10,10-hexachloro-1,5,5a,6,9,9a-hexahydro-6-9-methano-2,4,3-benzodioxathiepine-3-oxide). The isolated bacterial strains were identified using biochemical and morphological characterization and the analysis of their 16S rDNA gene, as Enterobacter cloacae strain PMM16 (E1) and E. amnigenus strain XGL214 (M1). The E1 strain was able to degrade endosulfan, whereas the M1 strain was capable of degrading both pesticides. The E1 strain degraded 71.32% of α-endosulfan and 100% of β-endosulfan within 24 days. The absence of metabolites, such as endosulfan sulfate, endosulfan lactone, or endosulfan diol, would suggest degradation of endosulfan isomers through non-oxidative pathways. Malathion was completely eliminated by the M1 strain. The major metabolite was butanedioic acid. There was a time-dependent increase in bacterial biomass, typical of bacterial growth, correlated with the decrease in pesticide concentration. The CO 2 production also increased significantly with the addition of pesticides to the bacterial growth media, demonstrating that, under aerobic conditions, the bacteria utilized endosulfan and malathion as a carbon source. Here, two bacterial strains are shown to metabolize two toxic pesticides into non-toxic intermediates.

  12. Analysis of Bacterial Detachment from Substratum Surfaces by the Passage of Air-Liquid Interfaces

    PubMed Central

    Gómez-Suárez, Cristina; Busscher, Henk J.; van der Mei, Henny C.

    2001-01-01

    A theoretical analysis of the detachment of bacteria adhering to substratum surfaces upon the passage of an air-liquid interface is given, together with experimental results for bacterial detachment in the absence and presence of a conditioning film on different substratum surfaces. Bacteria (Streptococcus sobrinus HG1025, Streptococcus oralis J22, Actinomyces naeslundii T14V-J1, Bacteroides fragilis 793E, and Pseudomonas aeruginosa 974K) were first allowed to adhere to hydrophilic glass and hydrophobic dimethyldichlorosilane (DDS)-coated glass in a parallel-plate flow chamber until a density of 4 × 106 cells cm−2 was reached. For S. sobrinus HG1025, S. oralis J22, and A. naeslundii T14V-J1, the conditioning film consisted of adsorbed salivary components, while for B. fragilis 793E and P. aeruginosa 974K, the film consisted of adsorbed human plasma components. Subsequently, air bubbles were passed through the flow chamber and the bacterial detachment percentages were measured. For some experimental conditions, like with P. aeruginosa 974K adhering to DDS-coated glass and an air bubble moving at high velocity (i.e., 13.6 mm s−1), no bacteria detached upon passage of an air-liquid interface, while for others, detachment percentages between 80 and 90% were observed. The detachment percentage increased when the velocity of the passing air bubble decreased, regardless of the bacterial strain and substratum surface hydrophobicity involved. However, the variation in percentages of detachment by a passing air bubble depended greatly upon the strain and substratum surface involved. At low air bubble velocities the hydrophobicity of the substratum had no influence on the detachment, but at high air bubble velocities all bacterial strains were more efficiently detached from hydrophilic glass substrata. Furthermore, the presence of a conditioning film could either inhibit or stimulate detachment. The shape of the bacterial cell played a major role in detachment at high

  13. Analysis of bacterial detachment from substratum surfaces by the passage of air-liquid interfaces.

    PubMed

    Gómez-Suárez, C; Busscher, H J; van der Mei, H C

    2001-06-01

    A theoretical analysis of the detachment of bacteria adhering to substratum surfaces upon the passage of an air-liquid interface is given, together with experimental results for bacterial detachment in the absence and presence of a conditioning film on different substratum surfaces. Bacteria (Streptococcus sobrinus HG1025, Streptococcus oralis J22, Actinomyces naeslundii T14V-J1, Bacteroides fragilis 793E, and Pseudomonas aeruginosa 974K) were first allowed to adhere to hydrophilic glass and hydrophobic dimethyldichlorosilane (DDS)-coated glass in a parallel-plate flow chamber until a density of 4 x 10(6) cells cm(-2) was reached. For S. sobrinus HG1025, S. oralis J22, and A. naeslundii T14V-J1, the conditioning film consisted of adsorbed salivary components, while for B. fragilis 793E and P. aeruginosa 974K, the film consisted of adsorbed human plasma components. Subsequently, air bubbles were passed through the flow chamber and the bacterial detachment percentages were measured. For some experimental conditions, like with P. aeruginosa 974K adhering to DDS-coated glass and an air bubble moving at high velocity (i.e., 13.6 mm s(-1)), no bacteria detached upon passage of an air-liquid interface, while for others, detachment percentages between 80 and 90% were observed. The detachment percentage increased when the velocity of the passing air bubble decreased, regardless of the bacterial strain and substratum surface hydrophobicity involved. However, the variation in percentages of detachment by a passing air bubble depended greatly upon the strain and substratum surface involved. At low air bubble velocities the hydrophobicity of the substratum had no influence on the detachment, but at high air bubble velocities all bacterial strains were more efficiently detached from hydrophilic glass substrata. Furthermore, the presence of a conditioning film could either inhibit or stimulate detachment. The shape of the bacterial cell played a major role in detachment at high

  14. Insight into the molecular basis of pathogen abundance: group A Streptococcus inhibitor of complement inhibits bacterial adherence and internalization into human cells.

    PubMed

    Hoe, Nancy P; Ireland, Robin M; DeLeo, Frank R; Gowen, Brian B; Dorward, David W; Voyich, Jovanka M; Liu, Mengyao; Burns, Eugene H; Culnan, Derek M; Bretscher, Anthony; Musser, James M

    2002-05-28

    Streptococcal inhibitor of complement (Sic) is a secreted protein made predominantly by serotype M1 Group A Streptococcus (GAS), which contributes to persistence in the mammalian upper respiratory tract and epidemics of human disease. Unexpectedly, an isogenic sic-negative mutant adhered to human epithelial cells significantly better than the wild-type parental strain. Purified Sic inhibited the adherence of a sic negative serotype M1 mutant and of non-Sic-producing GAS strains to human epithelial cells. Sic was rapidly internalized by human epithelial cells, inducing cell flattening and loss of microvilli. Ezrin and moesin, human proteins that functionally link the cytoskeleton to the plasma membrane, were identified as Sic-binding proteins by affinity chromatography and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry analysis. Sic colocalized with ezrin inside epithelial cells and bound to the F-actin-binding site region located in the carboxyl terminus of ezrin and moesin. Synthetic peptides corresponding to two regions of Sic had GAS adherence-inhibitory activity equivalent to mature Sic and inhibited binding of Sic to ezrin. In addition, the sic mutant was phagocytosed and killed by human polymorphonuclear leukocytes significantly better than the wild-type strain, and Sic colocalized with ezrin in discrete regions of polymorphonuclear leukocytes. The data suggest that binding of Sic to ezrin alters cellular processes critical for efficient GAS contact, internalization, and killing. Sic enhances bacterial survival by enabling the pathogen to avoid the intracellular environment. This process contributes to the abundance of M1 GAS in human infections and their ability to cause epidemics.

  15. Transport processes and mutual interactions of three bacterial strains in saturated porous media

    NASA Astrophysics Data System (ADS)

    Stumpp, Christine; Lawrence, John R.; Hendry, M. Jim; Maloszewski, Pitor

    2010-05-01

    Transport processes of the bacterial strains Klebsiella oxytoca, Burkholderia cepacia G4PR-1 and Pseudomonas sp #5 were investigated in saturated column experiments to study the differences in transport characteristics and the mutual interactions of these strains during transport. Soil column experiments (114 mm long x 33 mm in diameter) were conducted with constant water velocities (3.9-5.7 cm/h) through a medium to coarse grained silica sand. All experiments were performed in freshly packed columns in quadruplicate. Chloride was used as tracer to determine the mean transit time, dispersivity and flow rate. It was injected as a pulse into the columns together with the bacterial strains suspended in artificial groundwater medium. In the first setup, each strain was investigated alone. In the second setup, transport processes were performed injecting two strains simultaneously. Finally, the transport characteristics were studied in successive experiments when one bacterium was resident on the sand grains prior to the introduction of the second strain. In all experiments the peak C/Co bacterial concentrations were attenuated with respect to the conservative tracer chloride and a well defined tailing was observed. A one dimensional mathematical model for advective-dispersive transport that accounts for irreversible and reversible sorption was used to analyze the bacterial breakthrough curves and tailing patterns. It was shown that the sorption parameters were different for the three strains that can be explained by the properties of the bacteria. For the species Klebsiella oxytoca and Burkholderia cepacia G4PR-the transport parameters were mostly in the same range independent of the experimental setup. However, Pseudomonas sp #5, which is a motile bacterium, showed differences in the breakthrough curves and sorption parameters during the experiments. The simultaneous and successive experiments indicated an influence on the reversible sorption processes when another

  16. 9230 FECAL ENTEROCOCCUS/STREPTOCOCCUS GROUPS

    EPA Science Inventory

    In 1903 the genus name Enterococcus was proposed for gram-positive, catalase-negative, coccoid-shaped bacterial of intestinal origin. Several years later, it was suggested that the genus name be changed to Streptococcus because of the organisms' ability to form chains of coccoid...

  17. Contribution of the Collagen-Binding Proteins of Streptococcus mutans to Bacterial Colonization of Inflamed Dental Pulp.

    PubMed

    Nomura, Ryota; Ogaya, Yuko; Nakano, Kazuhiko

    2016-01-01

    Streptococcus mutans is a major pathogen of dental caries. Collagen-binding proteins (CBPs) (approximately 120 kDa), termed Cnm and Cbm, are regarded as important cell surface antigens related to the adherence of S. mutans to collagenous tissue. Furthermore, CBP-positive S. mutans strains are associated with various systemic diseases involving bacteremia, such as infective endocarditis. Endodontic infection is considered to be an important cause of bacteremia, but little is known regarding the presence of S. mutans in dental pulp tissue. In the present study, the distribution and virulence of S. mutans in dental pulp tissues were investigated by focusing on CBPs. Adhesion and invasion properties of various S. mutans strains were analyzed using human dental pulp fibroblasts (HDPFs). CBP-positive strains had a significantly higher rate of adhesion to HDPFs compared with CBP-defective isogenic mutant strains (P<0.001). In addition, CBP-positive strains induced HDPF proliferation, which is a possible mechanism related to development of hyperplastic pulpitis. The distribution of S. mutans strains isolated from infected root canal specimens was then analyzed by PCR. We found that approximately 50% of the root canal specimens were positive for S. mutans. Approximately 20% of these strains were Cnm-positive, while no Cbm-positive strains were isolated. The Cnm-positive strains isolated from the specimens showed adhesion to HDPFs. Our results suggest that CBP-positive S. mutans strains exhibit high colonization in dental pulp. This could be a possible virulence factor for various systemic diseases.

  18. Dental caries induction in experimental animals by clinical strains of Streptococcus mutans isolated from Japanese children.

    PubMed

    Hamada, S; Ooshima, T; Torii, M; Imanishi, H; Masuda, N; Sobue, S; Kotani, S

    1978-01-01

    Oral implantation and the cariogenic activity of clinical strains of Streptococcus mutans which had been isolated from Japanese children and labeled with streptomycin-resistance were examined in specific pathogen-free Sprague-Dawley rats. All the seven strains tested were easily implanted and persisted during the experimental period. Extensive carious lesions were produced in rats inoculated with clinical strains of S. mutans belonging to serotypes c, d, e, and f, and maintained on caries-inducing diet no. 2000. Noninfected rats did not develop dental caries when fed diet no. 2000. Type d S. mutans preferentially induced smooth surface caries in the rats. Strains of other serotypes primarily developed caries of pit and fissure origin. Caries also developed in rats inoculated with reference S. mutans strains BHTR and FAIR (type b) that had been maintained in the laboratories for many years. However, the cariogenicity of the laboratory strains was found to have decreased markedly. All three S. sanguis strains could be implanted, but only one strain induced definite fissure caries. Two S. salivarius strains could not be implanted well in the rats and therefore they were not cariogenic. Four different species of lactobacilli also failed to induce dental caries in rats subjected to similar caries test regimen on diet no. 200. S. mutans strain MT6R (type c) also induce caries in golden hamsters and ICR mice, but of variable degrees.

  19. A variable region within the genome of Streptococcus pneumoniae contributes to strain-strain variation in virulence.

    PubMed

    Harvey, Richard M; Stroeher, Uwe H; Ogunniyi, Abiodun D; Smith-Vaughan, Heidi C; Leach, Amanda J; Paton, James C

    2011-05-05

    The bacterial factors responsible for the variation in invasive potential between different clones and serotypes of Streptococcus pneumoniae are largely unknown. Therefore, the isolation of rare serotype 1 carriage strains in Indigenous Australian communities provided a unique opportunity to compare the genomes of non-invasive and invasive isolates of the same serotype in order to identify such factors. The human virulence status of non-invasive, intermediately virulent and highly virulent serotype 1 isolates was reflected in mice and showed that whilst both human non-invasive and highly virulent isolates were able to colonize the murine nasopharynx equally, only the human highly virulent isolates were able to invade and survive in the murine lungs and blood. Genomic sequencing comparisons between these isolates identified 8 regions >1 kb in size that were specific to only the highly virulent isolates, and included a version of the pneumococcal pathogenicity island 1 variable region (PPI-1v), phage-associated adherence factors, transporters and metabolic enzymes. In particular, a phage-associated endolysin, a putative iron/lead permease and an operon within PPI-1v exhibited niche-specific changes in expression that suggest important roles for these genes in the lungs and blood. Moreover, in vivo competition between pneumococci carrying PPI-1v derivatives representing the two identified versions of the region showed that the version of PPI-1v in the highly virulent isolates was more competitive than the version from the less virulent isolates in the nasopharyngeal tissue, blood and lungs. This study is the first to perform genomic comparisons between serotype 1 isolates with distinct virulence profiles that correlate between mice and humans, and has highlighted the important role that hypervariable genomic loci, such as PPI-1v, play in pneumococcal disease. The findings of this study have important implications for understanding the processes that drive progression

  20. Stable coexistence of five bacterial strains as a cellulose-degrading community.

    PubMed

    Kato, Souichiro; Haruta, Shin; Cui, Zong Jun; Ishii, Masaharu; Igarashi, Yasuo

    2005-11-01

    A cellulose-degrading defined mixed culture (designated SF356) consisting of five bacterial strains (Clostridium straminisolvens CSK1, Clostridium sp. strain FG4, Pseudoxanthomonas sp. strain M1-3, Brevibacillus sp. strain M1-5, and Bordetella sp. strain M1-6) exhibited both functional and structural stability; namely, no change in cellulose-degrading efficiency was observed, and all members stably coexisted through 20 subcultures. In order to investigate the mechanisms responsible for the observed stability, "knockout communities" in which one of the members was eliminated from SF356 were constructed. The dynamics of the community structure and the cellulose degradation profiles of these mixed cultures were determined in order to evaluate the roles played by each eliminated member in situ and its impact on the other members of the community. Integration of each result gave the following estimates of the bacterial relationships. Synergistic relationships between an anaerobic cellulolytic bacterium (C. straminisolvens CSK1) and two strains of aerobic bacteria (Pseudoxanthomonas sp. strain M1-3 and Brevibacillus sp. strain M1-5) were observed; the aerobes introduced anaerobic conditions, and C. straminisolvens CSK1 supplied metabolites (acetate and glucose). In addition, there were negative relationships, such as the inhibition of cellulose degradation by producing excess amounts of acetic acid by Clostridium sp. strain FG4, and growth suppression of Bordetella sp. strain M1-6 by Brevibacillus sp. strain M1-5. The balance of the various types of relationships (both positive and negative) is thus considered to be essential for the stable coexistence of the members of this mixed culture.

  1. Cultivation, LD(50) determination and experimental model of Streptococcus suis serotype 2 strain HA9801.

    PubMed

    Zhao, Zhanzhong; Wang, Jian; Liu, Peihong; Zhang, Suhua; Gong, Jianpei; Huang, Xiqin; Li, Bin; Xue, Feiqun

    2009-04-01

    The effects of nutritional components and submerged culture conditions on colony-forming unit (CFU) counts by Streptococcus suis serotype 2 strain HA9801 in flask culture was investigated, and the optimal medium and cultivation conditions was confirmed by using a 50l bioreactor. The LD(50) values of HA9801 in pigs before and after fermentation were 1.8 x 10(7)CFU, which indicated that the virulence of HA9801 was very stable in the fermentation process. In addition, an experimental model that closely mimics naturally occurring disease in conventional pigs was established.

  2. Differentiation of Streptococcus pneumoniae Conjunctivitis Outbreak Isolates by Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry▿

    PubMed Central

    Williamson, Yulanda M.; Moura, Hercules; Woolfitt, Adrian R.; Pirkle, James L.; Barr, John R.; Carvalho, Maria Da Gloria; Ades, Edwin P.; Carlone, George M.; Sampson, Jacquelyn S.

    2008-01-01

    Streptococcus pneumoniae (pneumococcus [Pnc]) is a causative agent of many infectious diseases, including pneumonia, septicemia, otitis media, and conjunctivitis. There have been documented conjunctivitis outbreaks in which nontypeable (NT), nonencapsulated Pnc has been identified as the etiological agent. The use of mass spectrometry to comparatively and differentially analyze protein and peptide profiles of whole-cell microorganisms remains somewhat uncharted. In this report, we discuss a comparative proteomic analysis between NT S. pneumoniae conjunctivitis outbreak strains (cPnc) and other known typeable or NT pneumococcal and streptococcal isolates (including Pnc TIGR4 and R6, Streptococcus oralis, Streptococcus mitis, Streptococcus pseudopneumoniae, and Streptococcus pyogenes) and nonstreptococcal isolates (including Escherichia coli, Enterococcus faecalis, and Staphylococcus aureus) as controls. cPnc cells and controls were grown to mid-log phase, harvested, and subsequently treated with a 10% trifluoroacetic acid-sinapinic acid matrix mixture. Protein and peptide fragments of the whole-cell bacterial isolate-matrix combinations ranging in size from 2 to 14 kDa were evaluated by matrix-assisted laser desorption ionization-time of flight mass spectrometry. Additionally Random Forest analytical tools and dendrogramic representations (Genesis) suggested similarities and clustered the isolates into distinct clonal groups, respectively. Also, a peak list of protein and peptide masses was obtained and compared to a known Pnc protein mass library, in which a peptide common and unique to cPnc isolates was tentatively identified. Information gained from this study will lead to the identification and validation of proteins that are commonly and exclusively expressed in cPnc strains which could potentially be used as a biomarker in the rapid diagnosis of pneumococcal conjunctivitis. PMID:18708515

  3. Streptococcus pneumoniae Supragenome Hybridization Arrays for Profiling of Genetic Content and Gene Expression.

    PubMed

    Kadam, Anagha; Janto, Benjamin; Eutsey, Rory; Earl, Joshua P; Powell, Evan; Dahlgren, Margaret E; Hu, Fen Z; Ehrlich, Garth D; Hiller, N Luisa

    2015-02-02

    There is extensive genomic diversity among Streptococcus pneumoniae isolates. Approximately half of the comprehensive set of genes in the species (the supragenome or pangenome) is present in all the isolates (core set), and the remaining is unevenly distributed among strains (distributed set). The Streptococcus pneumoniae Supragenome Hybridization (SpSGH) array provides coverage for an extensive set of genes and polymorphisms encountered within this species, capturing this genomic diversity. Further, the capture is quantitative. In this manner, the SpSGH array allows for both genomic and transcriptomic analyses of diverse S. pneumoniae isolates on a single platform. In this unit, we present the SpSGH array, and describe in detail its design and implementation for both genomic and transcriptomic analyses. The methodology can be applied to construction and modification of SpSGH array platforms, as well to other bacterial species as long as multiple whole-genome sequences are available that collectively capture the vast majority of the species supragenome. Copyright © 2015 John Wiley & Sons, Inc.

  4. Streptococcus pyogenes and re-emergence of scarlet fever as a public health problem.

    PubMed

    Wong, Samson Sy; Yuen, Kwok-Yung

    2012-07-01

    Explosive outbreaks of infectious diseases occasionally occur without immediately obvious epidemiological or microbiological explanations. Plague, cholera and Streptococcus pyogenes infection are some of the epidemic-prone bacterial infections. Besides epidemiological and conventional microbiological methods, the next-generation gene sequencing technology permits prompt detection of genomic and transcriptomic profiles associated with invasive phenotypes. Horizontal gene transfer due to mobile genetic elements carrying virulence factors and antimicrobial resistance, or mutations associated with the two component CovRS operon are important bacterial factors conferring survival advantage or invasiveness. The high incidence of scarlet fever in children less than 10 years old suggests that the lack of protective immunity is an important host factor. A high population density, overcrowded living environment and a low yearly rainfall are environmental factors contributing to outbreak development. Inappropriate antibiotic use is not only ineffective for treatment, but may actually drive an epidemic caused by drug-resistant strains and worsen patient outcomes by increasing the bacterial density at the site of infection and inducing toxin production. Surveillance of severe S. pyogenes infection is important because it can complicate concurrent chickenpox and influenza. Concomitant outbreaks of these two latter infections with a highly virulent and drug-resistant S. pyogenes strain can be disastrous.

  5. Streptococcus pyogenes and re-emergence of scarlet fever as a public health problem

    PubMed Central

    Wong, Samson SY; Yuen, Kwok-Yung

    2012-01-01

    Explosive outbreaks of infectious diseases occasionally occur without immediately obvious epidemiological or microbiological explanations. Plague, cholera and Streptococcus pyogenes infection are some of the epidemic-prone bacterial infections. Besides epidemiological and conventional microbiological methods, the next-generation gene sequencing technology permits prompt detection of genomic and transcriptomic profiles associated with invasive phenotypes. Horizontal gene transfer due to mobile genetic elements carrying virulence factors and antimicrobial resistance, or mutations associated with the two component CovRS operon are important bacterial factors conferring survival advantage or invasiveness. The high incidence of scarlet fever in children less than 10 years old suggests that the lack of protective immunity is an important host factor. A high population density, overcrowded living environment and a low yearly rainfall are environmental factors contributing to outbreak development. Inappropriate antibiotic use is not only ineffective for treatment, but may actually drive an epidemic caused by drug-resistant strains and worsen patient outcomes by increasing the bacterial density at the site of infection and inducing toxin production. Surveillance of severe S. pyogenes infection is important because it can complicate concurrent chickenpox and influenza. Concomitant outbreaks of these two latter infections with a highly virulent and drug-resistant S. pyogenes strain can be disastrous. PMID:26038416

  6. Characteristics of a Bacteriocin Derived from Streptococcus faecalis var. zymogenes Antagonistic to Diplococcus peumoniae

    PubMed Central

    Bottone, Edward; Allerhand, Jona; Pisano, Michael A.

    1971-01-01

    A bacteriocin-producing strain of Streptococcus faecalis var. zymogenes (E-1) was isolated from clinical material (conjunctiva). The active substance differed from bacteriocins described by other investigators primarily in its spectrum of antibacterial activity, especially by its marked inhibition of Diplococcus pneumoniae. The E-1 bacteriocin also inhibited nonhemolytic strains of enterococci as well as one-third of the Viridans group of streptococcal strains investigated. The degree of inhibition, however, as indicated by the size of the zones against the latter organisms, was significantly reduced. No activity was detected against any of the strains belonging to the following groups of bacteria: hemolytic enterococci, beta-hemolytic streptococci, nonhemolytic streptococci, staphylococci, and various gram-negative species. Similarly, three strains each of Bacillus cereus and Listeria monocytogenes and one strain of Erysipelothrix insidiosa were not inhibited. The bacteriocin was able to diffuse through bacterial membranes as well as cellulose dialyzer tubing. It was inactivated by heating to 80 C for 20 min but resisted inactivation by either trypsin or chloroform. Images PMID:4398532

  7. The usefulness of biotyping in the determination of selected pathogenicity determinants in Streptococcus mutans

    PubMed Central

    2014-01-01

    Background Streptococcus mutans is known to be a primary etiological factor of dental caries, a widespread and growing disease in Polish children. Recognition of novel features determining the pathogenicity of this pathogen may contribute to understanding the mechanisms of bacterial infections. The goal of the study was to determine the activity of prephenate dehydrogenase (PHD) and to illuminate the role of the enzyme in S. mutans pathogenicity. The strains were biotyped based on STREPTOtest 24 biochemical identification tests and the usefulness of biotyping in the determination of S. mutans pathogenicity determinants was examined. Results Out of ninety strains isolated from children with deciduous teeth fifty three were classified as S. mutans species. PDH activity was higher (21.69 U/mg on average) in the experimental group compared to the control group (5.74 U/mg on average) (P <0.001). Moreover, it was demonstrated that biotype I, established basing on the biochemical characterization of the strain, was predominant (58.5%) in oral cavity streptococcosis. Its dominance was determined by higher PDH activity compared to biotypes II and III (P = 0.0019). Conclusions The usefulness of biotyping in the determination of Streptococcus mutans pathogenicity determinants was demonstrated. The obtained results allow for better differentiation of S. mutans species and thus may contribute to recognition of pathogenic bacteria transmission mechanisms and facilitate treatment. PMID:25096795

  8. Oral immunization of mice with engineered Lactobacillus gasseri NM713 strain expressing Streptococcus pyogenes M6 antigen.

    PubMed

    Mansour, Nahla M; Abdelaziz, Sahar A

    2016-08-01

    The aim of this in vivo study was to evaluate the effects of a recombinant probiotic strain, Lactobacillus gasseri NM713, which expresses the conserved region of streptococcal M6 protein (CRR6), as an oral vaccine against Streptococcus pyogenes. A dose of 10(9) cells of the recombinant strain in 150 μL PBS buffer was administered orally to a group of mice. One control group received an equivalent dose of Lb. gasseri NM613 (containing the empty plasmid without insert) or and another control group received PBS buffer. Each group contained 30 mice. The immunization protocol was followed on three consecutive days, after which two booster doses were administered at two week intervals. Fecal and serum samples were collected from the mice on Days 18, 32, 46, 58 after the first immunization and Day 0 prior to immunization. Anti-CRR6 IgA and IgG concentrations were measured by ELISA in fecal and sera samples, respectively, to assess immune responses. Vaccination with the recombinant Lb. gasseri NM713 strain induced significant protection after nasal challenge with S. pyogenes, only a small percentage of this group developing streptococcal infection (10%) or dying of it (3.3%) compared with the NM613 and PBS control groups, high percentages of which developed streptococcal infection (43.3% and 46.7%, respectively) and died of it (46.7% and 53%, respectively). These results indicate that recombinant Lb. gasseri NM713 has potential as an oral delivery vaccine against streptococcus group A. © 2016 The Societies and John Wiley & Sons Australia, Ltd.

  9. The Effect of a Low Fluoride Delivery System on Bacterial Metabolism.

    DTIC Science & Technology

    1980-09-01

    Fluorides, an4 -Ique mechanisms, slow release delivery, temporary restora- tions, bacterial attachment, Streptococcus mutans , bacterial metabo’ilsm...concentrations of NaF, SnF 4 , Na2SnF6 , TiF 4 , and SnCI2 on altering plaque formation by Streptococcus mutans NCTC 10449. Specific tests were...preparation. Microorganisms, Growth Media, and Growth A streptomycin resistant mutant of Streptococcus mutans NCTC 10449 (Bratthall serotype c) has been

  10. Comparative Genomics Study of Multi-Drug-Resistance Mechanisms in the Antibiotic-Resistant Streptococcus suis R61 Strain

    PubMed Central

    Zhang, Anding; Wu, Jiayan; Chen, Bo; Hua, Yafeng; Yu, Jun; Chen, Huanchun; Xiao, Jingfa; Jin, Meilin

    2011-01-01

    Background Streptococcus suis infections are a serious problem for both humans and pigs worldwide. The emergence and increasing prevalence of antibiotic-resistant S. suis strains pose significant clinical and societal challenges. Results In our study, we sequenced one multi-drug-resistant S. suis strain, R61, and one S. suis strain, A7, which is fully sensitive to all tested antibiotics. Comparative genomic analysis revealed that the R61 strain is phylogenetically distinct from other S. suis strains, and the genome of R61 exhibits extreme levels of evolutionary plasticity with high levels of gene gain and loss. Our results indicate that the multi-drug-resistant strain R61 has evolved three main categories of resistance. Conclusions Comparative genomic analysis of S. suis strains with diverse drug-resistant phenotypes provided evidence that horizontal gene transfer is an important evolutionary force in shaping the genome of multi-drug-resistant strain R61. In this study, we discovered novel and previously unexamined mutations that are strong candidates for conferring drug resistance. We believe that these mutations will provide crucial clues for designing new drugs against this pathogen. In addition, our work provides a clear demonstration that the use of drugs has driven the emergence of the multi-drug-resistant strain R61. PMID:21966396

  11. Comparative genomics study of multi-drug-resistance mechanisms in the antibiotic-resistant Streptococcus suis R61 strain.

    PubMed

    Hu, Pan; Yang, Ming; Zhang, Anding; Wu, Jiayan; Chen, Bo; Hua, Yafeng; Yu, Jun; Chen, Huanchun; Xiao, Jingfa; Jin, Meilin

    2011-01-01

    Streptococcus suis infections are a serious problem for both humans and pigs worldwide. The emergence and increasing prevalence of antibiotic-resistant S. suis strains pose significant clinical and societal challenges. In our study, we sequenced one multi-drug-resistant S. suis strain, R61, and one S. suis strain, A7, which is fully sensitive to all tested antibiotics. Comparative genomic analysis revealed that the R61 strain is phylogenetically distinct from other S. suis strains, and the genome of R61 exhibits extreme levels of evolutionary plasticity with high levels of gene gain and loss. Our results indicate that the multi-drug-resistant strain R61 has evolved three main categories of resistance. Comparative genomic analysis of S. suis strains with diverse drug-resistant phenotypes provided evidence that horizontal gene transfer is an important evolutionary force in shaping the genome of multi-drug-resistant strain R61. In this study, we discovered novel and previously unexamined mutations that are strong candidates for conferring drug resistance. We believe that these mutations will provide crucial clues for designing new drugs against this pathogen. In addition, our work provides a clear demonstration that the use of drugs has driven the emergence of the multi-drug-resistant strain R61.

  12. Genome sequence analysis of emm89 Streptococcus pyogenes strains causing infections in Scotland, 2010-2016.

    PubMed

    Beres, Stephen B; Olsen, Randall J; Ojeda Saavedra, Matthew; Ure, Roisin; Reynolds, Arlene; Lindsay, Diane S J; Smith, Andrew J; Musser, James M

    2017-12-01

    Strains of type emm89 Streptococcus pyogenes have recently increased in frequency as a cause of human infections in several countries in Europe and North America. This increase has been molecular epidemiologically linked with the emergence of a new genetically distinct clone, designated clade 3. We sought to extend our understanding of this epidemic behavior by the genetic characterization of type emm89 strains responsible in recent years for an increased frequency of infections in Scotland. We sequenced the genomes of a retrospective cohort of 122 emm89 strains recovered from patients with invasive and noninvasive infections throughout Scotland during 2010 to 2016. All but one of the 122 emm89 infection isolates are of the recently emerged epidemic clade 3 clonal lineage. The Scotland isolates are closely related to and not genetically distinct from recent emm89 strains from England, they constitute a single genetic population. The clade 3 clone causes virtually all-contemporary emm89 infections in Scotland. These findings add Scotland to a growing list of countries of Europe and North America where, by whole genome sequencing, emm89 clade 3 strains have been demonstrated to be the cause of an ongoing epidemic of invasive infections and to be genetically related due to descent from a recent common progenitor.

  13. Infective endocarditis caused by multidrug-resistant Streptococcus mitis in a combined immunocompromised patient: an autopsy case report.

    PubMed

    Matsui, Natsuko; Ito, Makoto; Kuramae, Hitoshi; Inukai, Tomomi; Sakai, Akiyoshi; Okugawa, Masaru

    2013-04-01

    An autopsy case of infective endocarditis caused by multidrug-resistant Streptococcus mitis was described in a patient with a combination of factors that compromised immune status, including autoimmune hemolytic anemia, post-splenectomy state, prolonged steroid treatment, and IgA deficiency. The isolated S. mitis strain from blood culture was broadly resistant to penicillin, cephalosporins, carbapenem, macrolides, and fluoroquinolone. Recurrent episodes of bacterial infections and therapeutic use of several antibiotics may underlie the development of multidrug resistance for S. mitis. Because clinically isolated S. mitis strains from chronically immunocompromised patients have become resistant to a wide spectrum of antibiotics, appropriate antibiotic regimens should be selected when treating invasive S. mitis infections in these compromised patients.

  14. Mutations in the tacF gene of clinical strains and laboratory transformants of Streptococcus pneumoniae: impact on choline auxotrophy and growth rate.

    PubMed

    González, Ana; Llull, Daniel; Morales, María; García, Pedro; García, Ernesto

    2008-06-01

    The nutritional requirement that Streptococcus pneumoniae has for the aminoalcohol choline as a component of teichoic and lipoteichoic acids appears to be exclusive to this prokaryote. A mutation in the tacF gene, which putatively encodes an integral membrane protein (possibly, a teichoic acid repeat unit transporter), has been recently identified as responsible for generating a choline-independent phenotype of S. pneumoniae (M. Damjanovic, A. S. Kharat, A. Eberhardt, A. Tomasz, and W. Vollmer, J. Bacteriol. 189:7105-7111, 2007). We now report that Streptococcus mitis can grow in choline-free medium, as previously illustrated for Streptococcus oralis. While we confirmed the finding by Damjanovic et al. of the involvement of TacF in the choline dependence of the pneumococcus, the genetic transformation of S. pneumoniae R6 by using S. mitis SK598 DNA and several PCR-amplified tacF fragments suggested that a minimum of two mutations were required to confer improved fitness to choline-independent S. pneumoniae mutants. This conclusion is supported by sequencing results also reported here that indicate that a spontaneous mutant of S. pneumoniae (strain JY2190) able to proliferate in the absence of choline (or analogs) is also a double mutant for the tacF gene. Microscopic observations and competition experiments during the cocultivation of choline-independent strains confirmed that a minimum of two amino acid changes were required to confer improved fitness to choline-independent pneumococcal strains when growing in medium lacking any aminoalcohol. Our results suggest complex relationships among the different regions of the TacF teichoic acid repeat unit transporter.

  15. [Antibiotic resistance to erythromycin, clindamycin and tetracycline of 573 strains of Streptococcus pyogenes (1992-1994)].

    PubMed

    Orden, B; Martínez, R; López de los Mozos, A; Franco, A

    1996-02-01

    The aim of this study was to know the antibiotic resistence of Streptococcus pyogenes to erythromycine, clindamycine and/or tetracycline in community samples. The second aim was to determine the existence of multiresistant strains and to know the relationship between resistant strains, clinical samples and age of the patient. A retrospective analysis was performed in all the strains of S. pyogenes isolated from January 1992 to December 1994. Antibiotic sensitivity was studied by MIC by the microdilution method using the Pasco semiautomatic system. During the study period 573 beta hemolytic streptococci were identified as S. pyogenes. The global resistance to erythromycine (2.8%), clindamycine (1.4%) and tetracycline (7.3%) remains at low levels but has significantly increased in the case of erythromycine (p < 0.05) and tetracycline (p < 0.05) over these 3 years. The incidence of strains resistant to clindamycine has also increased slowly although this rise is not significant. Five strains (0.9%) were not sensitive to the three antibiotics studied, 4 being isolated in the last trimester of 1994 in pharyngeal exudates. S. pyogenes resistant to erythromycine was most frequently isolated from cutaneous lesions and in pediatric patients (under the age of 14 years). These results confirm the trend towards an increase in the number of strains of S. pyogenes resistant to erythromycine, clindamycine and/or tetracycline, being most often found in cutaneous lesions and pediatric patients.

  16. Antibiotic susceptibility of periodontal Streptococcus constellatus and Streptococcus intermedius clinical isolates.

    PubMed

    Rams, Thomas E; Feik, Diane; Mortensen, Joel E; Degener, John E; van Winkelhoff, Arie J

    2014-12-01

    Streptococcus constellatus and Streptococcus intermedius in subgingival dental plaque biofilms may contribute to forms of periodontitis that resist treatment with conventional mechanical root debridement/surgical procedures and may additionally participate in some extraoral infections. Because systemic antibiotics are often used in these clinical situations, and little is known of the antibiotic susceptibility of subgingival isolates of these two bacterial species, this study determined the in vitro susceptibility to six antibiotics of fresh S. constellatus and S. intermedius clinical isolates from human periodontitis lesions. A total of 33 S. constellatus and 17 S. intermedius subgingival strains, each recovered from separate patients with severe chronic periodontitis (n = 50) before treatment, were subjected to antibiotic gradient strip susceptibility testing with amoxicillin, azithromycin, clindamycin, ciprofloxacin, and doxycycline on blood-supplemented Mueller-Hinton agar and to the inhibitory effects of metronidazole at 16 mg/L in an enriched Brucella blood agar dilution assay. Clinical and Laboratory Standards Institute and European Committee on Antimicrobial Susceptibility Testing interpretative standards were used to assess the results. Clindamycin was the most active antibiotic against S. constellatus (minimum inhibitory concentration at 90% [MIC90] 0.25 mg/L), and amoxicillin was most active against S. intermedius (MIC90 0.125 mg/L). A total of 30% of the S. constellatus and S. intermedius clinical isolates were resistant in vitro to doxycycline, 98% were only intermediate in susceptibility to ciprofloxacin, and 90% were resistant to metronidazole at 16 mg/L. Subgingival S. constellatus and S. intermedius exhibited variable antibiotic susceptibility profiles, potentially complicating empirical selection of periodontitis antibiotic therapy in patients who are species positive.

  17. Nutritionally Variant Streptococci Interfere with Streptococcus mutans Adhesion Properties and Biofilm Formation.

    PubMed

    Angius, Fabrizio; Madeddu, Maria Antonietta; Pompei, Raffaello

    2015-04-01

    The bacterial species Streptococcus mutans is known as the main cause of dental caries in humans. Therefore, much effort has focused on preventing oral colonization by this strain or clearing it from oral tissues. The oral cavity is colonized by several bacterial species that constitute the commensal oral flora, but none of these is able to interfere with the cariogenic properties of S. mutans. This paper describes the interfering ability of some nutritionally variant streptococcal strains (NVS) with S. mutans adhesion to glass surfaces and also to hydroxylapatite. In mixed cultures, NVS induce a complete inhibition of S. mutans microcolony formation on cover glass slides. NVS can also block the adherence of radiolabeled S. mutans to hydroxylapatite in the presence of both saliva and sucrose. The analysis of the action mechanism of NVS demonstrated that NVS are more hydrophobic than S. mutans and adhere tightly to hard surfaces. In addition, a cell-free culture filtrate of NVS was also able to interfere with S. mutans adhesion to hydroxylapatite. Since NVS are known to secrete some important bacteriolytic enzymes, we conclude that NVS can be a natural antagonist to the cariogenic properties of S. mutans.

  18. Streptococcus oricebi sp. nov., isolated from the oral cavity of tufted capuchin.

    PubMed

    Saito, M; Shinozaki-Kuwahara, N; Hirasawa, M; Takada, K

    2016-02-01

    A Gram-stain-positive, catalase-negative, coccus-shaped organism was isolated from the oral cavity of tufted capuchin (Cebus apella). Comparative 16S rRNA gene sequence analysis suggested classification of the organism within the genus Streptococcus. Strain M8T was related most closely to Streptococcus oralis ATCC 35037T (96.17 % similarity) followed by Streptococcus massiliensis CCUG 49690T (95.90 %) based on the 16S rRNA gene. Strain M8T was related most closely to S. massiliensis CCUG 49690T (86.58 %) based on the RNA polymerase β subunit-encoding gene (rpoB), and to Streptococcus tigurinus AZ_3aT (81.26 %) followed by S. massiliensis CCUG 49690T (80.45 %) based on the 60 kDa heat-shock protein gene (groEL). The phylogenetic trees of 16S rRNA, rpoB and groEL gene sequences showed that strain M8T was most closely related to S. massiliensis. Based on phenotypic characterization as well as 16S rRNA gene and housekeeping gene (rpoB and groEL) sequence data, a novel taxon, Streptococcus oricebi sp. nov. (type strain M8T = JCM 30719T = DSM 100101T), is proposed.

  19. Development of a quantitative PCR assay for monitoring Streptococcus agalactiae colonization and tissue tropism in experimentally infected tilapia.

    PubMed

    Su, Y-L; Feng, J; Li, Y-W; Bai, J-S; Li, A-X

    2016-02-01

    Streptococcus agalactiae has become one of the most important emerging pathogens in the aquaculture industry and has resulted in large economic losses for tilapia farms in China. In this study, three pairs of specific primers were designed and tested for their specificities and sensitivities in quantitative real-time polymerase chain reactions (qPCRs) after optimization of the annealing temperature. The primer pair IGS-s/IGS-a, which targets the 16S-23S rRNA intergenic spacer region, was finally chosen, having a detection limit of 8.6 copies of S. agalactiae DNA in a 20 μL reaction mixture. Bacterial tissue tropism was demonstrated by qPCR in Oreochromis niloticus 5 days post-injection with a virulent S. agalactiae strain. Bacterial loads were detected at the highest level in brain, followed by moderately high levels in kidney, heart, spleen, intestines, and eye. Significantly lower bacterial loads were observed in muscle, gill and liver. In addition, significantly lower bacterial loads were observed in the brain of convalescent O. niloticus 14 days post-injection with several different S. agalactiae strains. The qPCR for the detection of S. agalactiae developed in this study provides a quantitative tool for investigating bacterial tissue tropism in infected fish, as well as for monitoring bacterial colonization in convalescent fish. © 2015 John Wiley & Sons Ltd.

  20. Characteristics of group A Streptococcus strains circulating during scarlet fever epidemic, Beijing, China, 2011.

    PubMed

    Yang, Peng; Peng, Xiaomin; Zhang, Daitao; Wu, Shuangsheng; Liu, Yimeng; Cui, Shujuan; Lu, Guilan; Duan, Wei; Shi, Weixian; Liu, Shuang; Li, Jing; Wang, Quanyi

    2013-06-01

    Scarlet fever is one of a variety of diseases caused by group A Streptococcus (GAS). During 2011, a scarlet fever epidemic characterized by peak monthly incidence rates 2.9-6.7 times higher than those in 2006-2010 occurred in Beijing, China. During the epidemic, hospital-based enhanced surveillance for scarlet fever and pharyngitis was conducted to determine characteristics of circulating GAS strains. The surveillance identified 3,359 clinical cases of scarlet fever or pharyngitis. GAS was isolated from 647 of the patients; 76.4% of the strains were type emm12, and 17.1% were emm1. Almost all isolates harbored superantigens speC and ssa. All isolates were susceptible to penicillin, and resistance rates were 96.1% to erythromycin, 93.7% to tetracycline, and 79.4% to clindamycin. Because emm12 type GAS is not the predominant type in other countries, wider surveillance for the possible spread of emm12 type GAS from China to other countries is warranted.

  1. Characteristics of Group A Streptococcus Strains Circulating during Scarlet Fever Epidemic, Beijing, China, 2011

    PubMed Central

    Yang, Peng; Peng, Xiaomin; Zhang, Daitao; Wu, Shuangsheng; Liu, Yimeng; Cui, Shujuan; Lu, Guilan; Duan, Wei; Shi, Weixian; Liu, Shuang; Li, Jing

    2013-01-01

    Scarlet fever is one of a variety of diseases caused by group A Streptococcus (GAS). During 2011, a scarlet fever epidemic characterized by peak monthly incidence rates 2.9–6.7 times higher than those in 2006–2010 occurred in Beijing, China. During the epidemic, hospital-based enhanced surveillance for scarlet fever and pharyngitis was conducted to determine characteristics of circulating GAS strains. The surveillance identified 3,359 clinical cases of scarlet fever or pharyngitis. GAS was isolated from 647 of the patients; 76.4% of the strains were type emm12, and 17.1% were emm1. Almost all isolates harbored superantigens speC and ssa. All isolates were susceptible to penicillin, and resistance rates were 96.1% to erythromycin, 93.7% to tetracycline, and 79.4% to clindamycin. Because emm12 type GAS is not the predominant type in other countries, wider surveillance for the possible spread of emm12 type GAS from China to other countries is warranted. PMID:23735582

  2. Activity of nadifloxacin (OPC-7251) and seven other antimicrobial agents against aerobic and anaerobic Gram-positive bacteria isolated from bacterial skin infections.

    PubMed

    Nenoff, P; Haustein, U-F; Hittel, N

    2004-10-01

    The in vitro activity of nadifloxacin (OPC-7251), a novel topical fluoroquinolone, was assessed and compared with those of ofloxacin, oxacillin, flucloxacillin, cefotiam, erythromycin, clindamycin, and gentamicin against 144 Gram-positive bacteria: 28 Staphylococcus aureus, 10 Streptococcus spp., 68 coagulase-negative staphylococci (CNS), 36 Propionibacterium acnes, and 2 Propionibacterium granulosum strains. All strains originated from bacterial-infected skin disease and were isolated from patients with impetigo, secondary infected wounds, folliculitis and sycosis vulgaris, and impetiginized dermatitis. In vitro susceptibility of all clinical isolates was tested by agar dilution procedure and minimum inhibitory concentrations (MICs) were determined. Nadifloxacin was active against all aerobic and anaerobic isolates. MIC(90) (MIC at which 90% of the isolates are inhibited) was 0.1 microg/ml for S. aureus, 0.78 microg/ml for both Streptococcus spp. and CNS, and 0.39 microg/ml for Propionibacterium spp. On the other hand, resistant strains with MICs exceeding 12.5 mug/ml were found in tests with the other antibiotics. For both CNS and Propionibacterium acnes, MIC(90) values > or =100 microg/ml were demonstrated for erythromycin. Ofloxacin, cefotiam, erythromycin, clindamycin and gentamicin exhibited MIC(90) values < or =1 microg/ml for some bacterial species tested. Both oxacillin and flucloxacillin were active against all investigated bacterial species with MIC(90) values < or =1 microg/ml. In summary, nadifloxacin, a topical fluoroquinolone, was found to be highly active against aerobic and anaerobic bacteria isolated from patients with infected skin disease, and seems to be a new alternative for topical antibiotic treatment in bacterial skin infections.

  3. Detection of potentially cariogenic strains of Streptococcus mutans using the polymerase chain reaction.

    PubMed

    Aguilera Galaviz, Luis Alejandro; Aceves Medina, Ma del Carmen; Estrada García, Iris C

    2002-01-01

    Streptococcus mutans is a pathogen related to the occurrence of human dental caries. The determination of total amounts of mutans streptococci, as well as the proportion related to other oral bacteria, is of interest when assessing the risk of developing caries. In this context, it is better to use a sensitive, specific and non-time consuming method such as the polymerase chain reaction (PCR), than to use culture and biochemical identification methods. In this work we identified potentially cariogenic strains of S. mutans and assessed the relationship with the dmft, DMFT or dmft/DMFT index. Using DNA isolated from dental plaque, a 192 bp sequence was identified and amplified from the spaP gene and a 722 bp sequence from the dexA gene. The results suggest that it is important to evaluate the presence of cariogenic S. mutans strains in plaque content rather than the accumulation of plaque itself However, other factors like diet, hygiene, genetic background, the flow rate of saliva and the presence of specific antibodies, also play a key role in the development of caries.

  4. Streptococcus oriloxodontae sp. nov., isolated from the oral cavities of elephants.

    PubMed

    Shinozaki-Kuwahara, Noriko; Saito, Masanori; Hirasawa, Masatomo; Takada, Kazuko

    2014-11-01

    Two strains were isolated from oral cavity samples of healthy elephants. The isolates were Gram-positive, catalase-negative, coccus-shaped organisms that were tentatively identified as a streptococcal species based on the results of biochemical tests. Comparative 16S rRNA gene sequence analysis suggested classification of these organisms in the genus Streptococcus with Streptococcus criceti ATCC 19642(T) and Streptococcus orisuis NUM 1001(T) as their closest phylogenetic neighbours with 98.2 and 96.9% gene sequence similarity, respectively. When multi-locus sequence analysis using four housekeeping genes, groEL, rpoB, gyrB and sodA, was carried out, similarity of concatenated sequences of the four housekeeping genes from the new isolates and Streptococcus mutans was 89.7%. DNA-DNA hybridization experiments suggested that the new isolates were distinct from S. criceti and other species of the genus Streptococcus. On the basis of genotypic and phenotypic differences, it is proposed that the novel isolates are classified in the genus Streptococcus as representatives of Streptococcus oriloxodontae sp. nov. The type strain of S. oriloxodontae is NUM 2101(T) ( =JCM 19285(T) =DSM 27377(T)). © 2014 IUMS.

  5. High Incidence of Pathogenic Streptococcus agalactiae ST485 Strain in Pregnant/Puerperal Women and Isolation of Hyper-Virulent Human CC67 Strain

    PubMed Central

    Li, Liping; Wang, Rui; Huang, Yan; Huang, Ting; Luo, Fuguang; Huang, Weiyi; Yang, Xiuying; Lei, Aiying; Chen, Ming; Gan, Xi

    2018-01-01

    Group B streptococcus (GBS) is the major pathogen causing diseases in neonates, pregnant/puerperal women, cows and fish. Recent studies have shown that GBS may be infectious across hosts and some fish GBS strain might originate from human. The purpose of this study is to investigate the genetic relationship of CC103 strains that recently emerged in cows and humans, and explore the pathogenicity of clinical GBS isolates from human to tilapia. Ninety-two pathogenic GBS isolates were identified from 19 patients with different diseases and their evolution and pathogenicity to tilapia were analyzed. The multilocus sequence typing revealed that clonal complex (CC) 103 strain was isolated from 21.74% (20/92) of patients and ST485 strain was from 14.13% (13/92) patients with multiple diseases including neonates. Genomic evolution analysis showed that both bovine and human CC103 strains alternately form independent evolutionary branches. Three CC67 isolates carried gbs2018-C gene and formed one evolutionary branch with ST61 and ST67 strains that specifically infect dairy cows. Studies of interspecies transmission to tilapia found that 21/92 (22.83%) isolates including all ST23 isolates were highly pathogenic to tilapia and demonstrated that streptococci could break through the blood-brain barrier into brain tissue. In conclusions, CC103 strains are highly prevalent among pathogenic GBS from humans and have evolved into the highly pathogenic ST485 strains specifically infecting humans. The CC67 strains isolated from cows are able to infect humans through evolutionary events of acquiring CC17-specific type C gbs2018 gene and others. Human-derived ST23 pathogenic GBS strains are highly pathogenic to tilapia. PMID:29467722

  6. The Streptococcus agalactiae Stringent Response Enhances Virulence and Persistence in Human Blood

    PubMed Central

    Hooven, Thomas A.; Catomeris, Andrew J.; Bonakdar, Maryam; Tallon, Luke J.; Santana-Cruz, Ivette; Ott, Sandra; Daugherty, Sean C.; Tettelin, Hervé

    2017-01-01

    ABSTRACT Streptococcus agalactiae (group B Streptococcus [GBS]) causes serious infections in neonates. We previously reported a transposon sequencing (Tn-seq) system for performing genomewide assessment of gene fitness in GBS. In order to identify molecular mechanisms required for GBS to transition from a mucosal commensal lifestyle to bloodstream invasion, we performed Tn-seq on GBS strain A909 with human whole blood. Our analysis identified 16 genes conditionally essential for GBS survival in blood, of which 75% were members of the capsular polysaccharide (cps) operon. Among the non-cps genes identified as conditionally essential was relA, which encodes an enzyme whose activity is central to the bacterial stringent response—a conserved adaptation to environmental stress. We used blood coincubation studies of targeted knockout strains to confirm the expected growth defects of GBS deficient in capsule or stringent response activation. Unexpectedly, we found that the relA knockout strains demonstrated decreased expression of β-hemolysin/cytolysin, an important cytotoxin implicated in facilitating GBS invasion. Furthermore, chemical activation of the stringent response with serine hydroxamate increased β-hemolysin/cytolysin expression. To establish a mechanism by which the stringent response leads to increased cytotoxicity, we performed transcriptome sequencing (RNA-seq) on two GBS strains grown under stringent response or control conditions. This revealed a conserved decrease in the expression of genes in the arginine deiminase pathway during stringent response activation. Through coincubation with supplemental arginine and the arginine antagonist canavanine, we show that arginine availability is a determinant of GBS cytotoxicity and that the pathway between stringent response activation and increased virulence is arginine dependent. PMID:29109175

  7. Extracellular deoxyribonuclease made by group A Streptococcus assists pathogenesis by enhancing evasion of the innate immune response.

    PubMed

    Sumby, Paul; Barbian, Kent D; Gardner, Donald J; Whitney, Adeline R; Welty, Diane M; Long, R Daniel; Bailey, John R; Parnell, Michael J; Hoe, Nancy P; Adams, Gerald G; Deleo, Frank R; Musser, James M

    2005-02-01

    Many pathogenic bacteria produce extracellular DNase, but the benefit of this enzymatic activity is not understood. For example, all strains of the human bacterial pathogen group A Streptococcus (GAS) produce at least one extracellular DNase, and most strains make several distinct enzymes. Despite six decades of study, it is not known whether production of DNase by GAS enhances virulence. To test the hypothesis that extracellular DNase is required for normal progression of GAS infection, we generated seven isogenic mutant strains in which the three chromosomal- and prophage-encoded DNases made by a contemporary serotype M1 GAS strain were inactivated. Compared to the wild-type parental strain, the isogenic triple-mutant strain was significantly less virulent in two mouse models of invasive infection. The triple-mutant strain was cleared from the skin injection site significantly faster than the wild-type strain. Preferential clearance of the mutant strain was related to the differential extracellular killing of the mutant and wild-type strains, possibly through degradation of neutrophil extracellular traps, innate immune structures composed of chromatin and granule proteins. The triple-mutant strain was also significantly compromised in its ability to cause experimental pharyngeal disease in cynomolgus macaques. Comparative analysis of the seven DNase mutant strains strongly suggested that the prophage-encoded SdaD2 enzyme is the major DNase that contributes to virulence in this clone. We conclude that extracellular DNase activity made by GAS contributes to disease progression, thereby resolving a long-standing question in bacterial pathogenesis research.

  8. Comparative genomics of the bacterial genus Streptococcus illuminates evolutionary implications of species groups.

    PubMed

    Gao, Xiao-Yang; Zhi, Xiao-Yang; Li, Hong-Wei; Klenk, Hans-Peter; Li, Wen-Jun

    2014-01-01

    Members of the genus Streptococcus within the phylum Firmicutes are among the most diverse and significant zoonotic pathogens. This genus has gone through considerable taxonomic revision due to increasing improvements of chemotaxonomic approaches, DNA hybridization and 16S rRNA gene sequencing. It is proposed to place the majority of streptococci into "species groups". However, the evolutionary implications of species groups are not clear presently. We use comparative genomic approaches to yield a better understanding of the evolution of Streptococcus through genome dynamics, population structure, phylogenies and virulence factor distribution of species groups. Genome dynamics analyses indicate that the pan-genome size increases with the addition of newly sequenced strains, while the core genome size decreases with sequential addition at the genus level and species group level. Population structure analysis reveals two distinct lineages, one including Pyogenic, Bovis, Mutans and Salivarius groups, and the other including Mitis, Anginosus and Unknown groups. Phylogenetic dendrograms show that species within the same species group cluster together, and infer two main clades in accordance with population structure analysis. Distribution of streptococcal virulence factors has no obvious patterns among the species groups; however, the evolution of some common virulence factors is congruous with the evolution of species groups, according to phylogenetic inference. We suggest that the proposed streptococcal species groups are reasonable from the viewpoints of comparative genomics; evolution of the genus is congruent with the individual evolutionary trajectories of different species groups.

  9. Comparative Genomics of the Bacterial Genus Streptococcus Illuminates Evolutionary Implications of Species Groups

    PubMed Central

    Gao, Xiao-Yang; Zhi, Xiao-Yang; Li, Hong-Wei; Klenk, Hans-Peter; Li, Wen-Jun

    2014-01-01

    Members of the genus Streptococcus within the phylum Firmicutes are among the most diverse and significant zoonotic pathogens. This genus has gone through considerable taxonomic revision due to increasing improvements of chemotaxonomic approaches, DNA hybridization and 16S rRNA gene sequencing. It is proposed to place the majority of streptococci into “species groups”. However, the evolutionary implications of species groups are not clear presently. We use comparative genomic approaches to yield a better understanding of the evolution of Streptococcus through genome dynamics, population structure, phylogenies and virulence factor distribution of species groups. Genome dynamics analyses indicate that the pan-genome size increases with the addition of newly sequenced strains, while the core genome size decreases with sequential addition at the genus level and species group level. Population structure analysis reveals two distinct lineages, one including Pyogenic, Bovis, Mutans and Salivarius groups, and the other including Mitis, Anginosus and Unknown groups. Phylogenetic dendrograms show that species within the same species group cluster together, and infer two main clades in accordance with population structure analysis. Distribution of streptococcal virulence factors has no obvious patterns among the species groups; however, the evolution of some common virulence factors is congruous with the evolution of species groups, according to phylogenetic inference. We suggest that the proposed streptococcal species groups are reasonable from the viewpoints of comparative genomics; evolution of the genus is congruent with the individual evolutionary trajectories of different species groups. PMID:24977706

  10. Susceptibility to antimicrobial agents of Streptococcus suis capsular type 2 strains isolated from pigs.

    PubMed

    Seol, B; Kelneric, Z; Hajsig, D; Madic, J; Naglic, T

    1996-03-01

    The minimal inhibitory concentrations (MICs) for thirty-three epidemiologicaly unrelated clinical isolates of Streptococcus suis capsular type 2 were determined in relation to ampicillin, ampicillin-sulbactam, amoxicillin, clavulanate-amoxicillin, penicillin G, cephalexin, gentamicin, streptomycin, erythromycin, tylosin and doxycycline, using the microtitre broth dilution procedure described by the U.S. National Committee for Clinical Laboratory Standards (NCCLS). Gentamicin was the most active compound tested, with an MIC for 90% of the strains tested (MIC(90)) of 0.4 mg/L. Overall, 70% of strains were resistant to doxycycline (MIC(90) > or = 100.0 mg/L), followed by penicillin G (51% of strains) (MIC(90) + or = 100.0 mg/L). Resistance to amoxicillin and ampicillin was 36.4% (MIC(90) 12.5 mg/L) and 33.3% (MIC(90) 50.0 mg/L), respectively. 15.2% of S. suis strains were resistant to streptomycin, tylosin and cephalexin with MIC90 values of 25.0 mg/L, 12.5 mg/L and 25.0 mg/L, respectively. A combination of ampicillin and sulbactam (MIC(90) 6.3 mg/L) and a combination of amoxicillin and clavulanate (MIC(90) 3.1 mg/L) as well as erythromycin (1.6 mg/L) were of the same efficacy, with a total of 9.1% resistant S. suis strains. This high percentage of resistance to doxycycline and penicillin G precludes the use of these antibiotics as empiric therapy of swine diseases.

  11. In vitro antagonistic effect of Lactobacillus on organisms associated with bacterial vaginosis.

    PubMed

    Strus, Magdalena; Malinowska, Magdalena; Heczko, Piotr B

    2002-01-01

    To assess antagonistic properties of Lactobacillus strains isolated from the vaginas of healthy women as compared to the most common bacterial agents related to vaginosis. Antagonistic activity of different Lactobacillus strains isolated from the vaginas of healthy women not treated for infections with an antibiotic for the previous three months was screened using an agar slab method. The activity was tested against test organisms associated with bacterial vaginosis and/or urinary tract infections: Staphylococcus aureus, Enterococcus faecalis, Streptococcus agalactiae, Escherichia coli, Gardnerella vaginalis, Peptostreptococcus anaerobius and Prevotella bivia. Many of the 146 Lactobacillus strains tested exerted apparent antagonistic activities against gram-positive aerobic cocci and gram-negative rods, such as S aureus and E coli, and a marked number of Lactobacillus strains inhibited facultative bacteria, such as Gardnerella vaginalis and the anaerobes P anaerobius and P bivia. Only a few lactobacilli were able to inhibit growth of E faecalis and S agalactiae. Indicator bacteria growth inhibition probably relies upon several different complementary mechanisms. The specific indicator bacteria species determines which mechanism predominates. Lactobacillus strains taken from normal vaginal flora demonstrated antagonistic activity against a variety of bacteria related to vaginal and urinary tract infections. The specific occurrence rates of active Lactobacillus strains are different, and this difference is dependent on the indicator bacteria species.

  12. Simultaneous measurement of the viability, aggregation, and live and dead adherence of Streptococcus crista, Streptococcus mutans and Actinobacillus actinomycetemcomitans in human saliva in relation to indices of caries, dental plaque and periodontal disease.

    PubMed

    Rudney, J D; Staikov, R K

    2002-05-01

    Salivary proteins have multiple functions and many share similar functions, which may be why it has been difficult to relate variations in their concentrations to oral health and ecology. An alternative is to focus on variations in the major functions of saliva. An hydroxyapatite-coated microplate model has been developed that simultaneously measures saliva-promoted bacterial viability, bacterial aggregation, and live and dead bacterial adherence, while simulating oral temperature and shearing forces from swallowing. That model was applied to resting whole and stimulated parotid saliva from 149 individuals, using representative strains of Streptococcus crista, S. mutans, and Actinobacillus actinomycetemcomitans. Two major factors were defined by multivariate analysis (this was successful only for whole-saliva). One factor was correlated with aggregation, live adherence and dead adherence for all three strains; the other was correlated with total viability of all three strains. Participants were grouped <25th percentile and >75th percentile for each factor. Those groups were compared for clinical indices of oral health. Caries scores were significantly lower in those with high scores for aggregation-adherence, regardless of whether total viability scores were low or high. Live bacteria always predominated on surfaces when live and dead adherence scores were expressed as ratios. However, participants with high scores for aggregation-adherence showed significantly more dead adherent bacteria than those with low scores (these ratios were uncorrelated with total viability). This finding may indicate that extreme differences in the ability to kill bacteria on surfaces can influence caries risk.

  13. Monoclonal Idiotope Vaccine against Streptococcus pneumoniae Infection

    NASA Astrophysics Data System (ADS)

    McNamara, Mary K.; Ward, Ronald E.; Kohler, Heinz

    1984-12-01

    A monoclonal anti-idiotope antibody coupled to a carrier protein was used to immunize BALB/c mice against a lethal Streptococcus pneumoniae infection. Vaccinated mice developed a high titer of antibody to phosphorylcholine, which is known to protect against infection with Streptococcus pneumoniae. Measurement of the median lethal dose of the bacteria indicated that anti-idiotope immunization significantly increased the resistance of BALB/c mice to the bacterial challenge. Antibody to an idiotope can thus be used as an antigen substitute for the induction of protective immunity.

  14. Large-scale genomic analyses reveal the population structure and evolutionary trends of Streptococcus agalactiae strains in Brazilian fish farms.

    PubMed

    Barony, Gustavo M; Tavares, Guilherme C; Pereira, Felipe L; Carvalho, Alex F; Dorella, Fernanda A; Leal, Carlos A G; Figueiredo, Henrique C P

    2017-10-19

    Streptococcus agalactiae is a major pathogen and a hindrance on tilapia farming worldwide. The aims of this work were to analyze the genomic evolution of Brazilian strains of S. agalactiae and to establish spatial and temporal relations between strains isolated from different outbreaks of streptococcosis. A total of 39 strains were obtained from outbreaks and their whole genomes were sequenced and annotated for comparative analysis of multilocus sequence typing, genomic similarity and whole genome multilocus sequence typing (wgMLST). The Brazilian strains presented two sequence types, including a newly described ST, and a non-typeable lineage. The use of wgMLST could differentiate each strain in a single clone and was used to establish temporal and geographical correlations among strains. Bayesian phylogenomic analysis suggests that the studied Brazilian population was co-introduced in the country with their host, approximately 60 years ago. Brazilian strains of S. agalactiae were shown to be heterogeneous in their genome sequences and were distributed in different regions of the country according to their genotype, which allowed the use of wgMLST analysis to track each outbreak event individually.

  15. Bacterial Adhesion of Streptococcus suis to Host Cells and Its Inhibition by Carbohydrate Ligands

    PubMed Central

    Kouki, Annika; Pieters, Roland J.; Nilsson, Ulf J.; Loimaranta, Vuokko; Finne, Jukka; Haataja, Sauli

    2013-01-01

    Streptococcus suis is a Gram-positive bacterium, which causes sepsis and meningitis in pigs and humans. This review examines the role of known S. suis virulence factors in adhesion and S. suis carbohydrate-based adhesion mechanisms, as well as the inhibition of S. suis adhesion by anti-adhesion compounds in in vitro assays. Carbohydrate-binding specificities of S. suis have been identified, and these studies have shown that many strains recognize Galα1-4Gal-containing oligosaccharides present in host glycolipids. In the era of increasing antibiotic resistance, new means to treat infections are needed. Since microbial adhesion to carbohydrates is important to establish disease, compounds blocking adhesion could be an alternative to antibiotics. The use of oligosaccharides as drugs is generally hampered by their relatively low affinity (micromolar) to compete with multivalent binding to host receptors. However, screening of a library of chemically modified Galα1-4Gal derivatives has identified compounds that inhibit S. suis adhesion in nanomolar range. Also, design of multivalent Galα1-4Gal-containing dendrimers has resulted in a significant increase of the inhibitory potency of the disaccharide. The S. suis adhesin binding to Galα1-4Gal-oligosaccharides, Streptococcal adhesin P (SadP), was recently identified. It has a Galα1-4Gal-binding N-terminal domain and a C-terminal LPNTG-motif for cell wall anchoring. The carbohydrate-binding domain has no homology to E. coli P fimbrial adhesin, which suggests that these Gram-positive and Gram-negative bacterial adhesins recognizing the same receptor have evolved by convergent evolution. SadP adhesin may represent a promising target for the design of anti-adhesion ligands for the prevention and treatment of S. suis infections. PMID:24833053

  16. Molecular complexity of successive bacterial epidemics deconvoluted by comparative pathogenomics.

    PubMed

    Beres, Stephen B; Carroll, Ronan K; Shea, Patrick R; Sitkiewicz, Izabela; Martinez-Gutierrez, Juan Carlos; Low, Donald E; McGeer, Allison; Willey, Barbara M; Green, Karen; Tyrrell, Gregory J; Goldman, Thomas D; Feldgarden, Michael; Birren, Bruce W; Fofanov, Yuriy; Boos, John; Wheaton, William D; Honisch, Christiane; Musser, James M

    2010-03-02

    Understanding the fine-structure molecular architecture of bacterial epidemics has been a long-sought goal of infectious disease research. We used short-read-length DNA sequencing coupled with mass spectroscopy analysis of SNPs to study the molecular pathogenomics of three successive epidemics of invasive infections involving 344 serotype M3 group A Streptococcus in Ontario, Canada. Sequencing the genome of 95 strains from the three epidemics, coupled with analysis of 280 biallelic SNPs in all 344 strains, revealed an unexpectedly complex population structure composed of a dynamic mixture of distinct clonally related complexes. We discovered that each epidemic is dominated by micro- and macrobursts of multiple emergent clones, some with distinct strain genotype-patient phenotype relationships. On average, strains were differentiated from one another by only 49 SNPs and 11 insertion-deletion events (indels) in the core genome. Ten percent of SNPs are strain specific; that is, each strain has a unique genome sequence. We identified nonrandom temporal-spatial patterns of strain distribution within and between the epidemic peaks. The extensive full-genome data permitted us to identify genes with significantly increased rates of nonsynonymous (amino acid-altering) nucleotide polymorphisms, thereby providing clues about selective forces operative in the host. Comparative expression microarray analysis revealed that closely related strains differentiated by seemingly modest genetic changes can have significantly divergent transcriptomes. We conclude that enhanced understanding of bacterial epidemics requires a deep-sequencing, geographically centric, comparative pathogenomics strategy.

  17. Rapid and accurate bacterial identification in probiotics and yoghurts by MALDI-TOF mass spectrometry.

    PubMed

    Angelakis, Emmanouil; Million, Matthieu; Henry, Mireille; Raoult, Didier

    2011-10-01

    Probiotic food is manufactured by adding probiotic strains simultaneously with starter cultures in fermentation tanks. Here, we investigate the accuracy and feasibility of matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-TOF MS) for bacterial identification at the species level in probiotic food and yoghurts. Probiotic food and yoghurts were cultured in Columbia and Lactobacillus specific agar and tested by quantitative real-time PCR (qPCR) for the detection and quantification of Lactobacillus sp. Bacterial identification was performed by MALDI-TOF analysis and by amplification and sequencing of tuf and 16S rDNA genes. We tested 13 probiotic food and yoghurts and we identified by qPCR that they presented 10(6) to 10(7) copies of Lactobacillus spp. DNA/g. All products contained very large numbers of living bacteria varying from 10(6) to 10(9) colony forming units/g. These bacteria were identified as Lactobacillus casei, Lactococcus lactis, Bifidobacterium animalis, Lactobacillus delbrueckii, and Streptococcus thermophilus. MALDI-TOF MS presented 92% specificity compared to the molecular assays. In one product we found L. lactis, instead of Bifidus spp. which was mentioned on the label and for another L. delbrueckii and S. thermophilus instead of Bifidus spp. MALDI-TOF MS allows a rapid and accurate bacterial identification at the species level in probiotic food and yoghurts. Although the safety and functionality of probiotics are species and strain dependent, we found a discrepancy between the bacterial strain announced on the label and the strain identified. Practical Application:  MALDI-TOF MS is rapid and specific for the identification of bacteria in probiotic food and yoghurts. Although the safety and functionality of probiotics are species and strain dependent, we found a discrepancy between the bacterial strain announced on the label and the strain identified. © 2011 Institute of Food Technologists®

  18. Identification of a two-component Class IIb bacteriocin in Streptococcus pyogenes by recombinase-based in vivo expression technology.

    PubMed

    Armstrong, Brent D; Herfst, Christine A; Tonial, Nicholas C; Wakabayashi, Adrienne T; Zeppa, Joseph J; McCormick, John K

    2016-11-03

    Streptococcus pyogenes is a globally prominent bacterial pathogen that exhibits strict tropism for the human host, yet bacterial factors responsible for the ability of S. pyogenes to compete within this limited biological niche are not well understood. Using an engineered recombinase-based in vivo expression technology (RIVET) system, we identified an in vivo-induced promoter region upstream of a predicted Class IIb bacteriocin system in the M18 serotype S. pyogenes strain MGAS8232. This promoter element was not active under in vitro laboratory conditions, but was highly induced within the mouse nasopharynx. Recombinant expression of the predicted mature S. pyogenes bacteriocin peptides (designated SpbM and SpbN) revealed that both peptides were required for antimicrobial activity. Using a gain of function experiment in Lactococcus lactis, we further demonstrated S. pyogenes immunity function is encoded downstream of spbN. These data highlight the importance of bacterial gene regulation within appropriate environments to help understand mechanisms of niche adaptation by bacterial pathogens.

  19. Identification of a two-component Class IIb bacteriocin in Streptococcus pyogenes by recombinase-based in vivo expression technology

    PubMed Central

    Armstrong, Brent D.; Herfst, Christine A.; Tonial, Nicholas C.; Wakabayashi, Adrienne T.; Zeppa, Joseph J.; McCormick, John K.

    2016-01-01

    Streptococcus pyogenes is a globally prominent bacterial pathogen that exhibits strict tropism for the human host, yet bacterial factors responsible for the ability of S. pyogenes to compete within this limited biological niche are not well understood. Using an engineered recombinase-based in vivo expression technology (RIVET) system, we identified an in vivo-induced promoter region upstream of a predicted Class IIb bacteriocin system in the M18 serotype S. pyogenes strain MGAS8232. This promoter element was not active under in vitro laboratory conditions, but was highly induced within the mouse nasopharynx. Recombinant expression of the predicted mature S. pyogenes bacteriocin peptides (designated SpbM and SpbN) revealed that both peptides were required for antimicrobial activity. Using a gain of function experiment in Lactococcus lactis, we further demonstrated S. pyogenes immunity function is encoded downstream of spbN. These data highlight the importance of bacterial gene regulation within appropriate environments to help understand mechanisms of niche adaptation by bacterial pathogens. PMID:27808235

  20. Exacerbated type II interferon response drives hypervirulence and toxic shock by an emergent epidemic strain of Streptococcus suis.

    PubMed

    Lachance, Claude; Gottschalk, Marcelo; Gerber, Pehuén P; Lemire, Paul; Xu, Jianguo; Segura, Mariela

    2013-06-01

    Streptococcus suis, a major porcine pathogen, can be transmitted to humans and cause severe symptoms. A large human outbreak associated with an unusual streptococcal toxic shock-like syndrome (STSLS) was described in China. Albeit an early burst of proinflammatory cytokines following Chinese S. suis infection was suggested to be responsible for STSLS case severity, the mechanisms involved are still poorly understood. Using a mouse model, the host response to S. suis infection with a North American intermediately pathogenic strain, a European highly pathogenic strain, and the Chinese epidemic strain was investigated by a whole-genome microarray approach. Proinflammatory genes were expressed at higher levels in mice infected with the Chinese strain than those infected with the European strain. The Chinese strain induced a fast and strong gamma interferon (IFN-γ) response by natural killer (NK) cells. In fact, IFN-γ-knockout mice infected with the Chinese strain showed significantly better survival than wild-type mice. Conversely, infection with the less virulent North American strain resulted in an IFN-β-subjugated, low inflammatory response that might be beneficial for the host to clear the infection. Overall, our data suggest that a highly virulent epidemic strain has evolved to massively activate IFN-γ production, mainly by NK cells, leading to a rapid and lethal STSLS.

  1. New Class of Bacterial Phenylalanyl-tRNA Synthetase Inhibitors with High Potency and Broad-Spectrum Activity

    PubMed Central

    Beyer, Dieter; Kroll, Hein-Peter; Endermann, Rainer; Schiffer, Guido; Siegel, Stephan; Bauser, Marcus; Pohlmann, Jens; Brands, Michael; Ziegelbauer, Karl; Haebich, Dieter; Eymann, Christine; Brötz-Oesterhelt, Heike

    2004-01-01

    Phenylalanyl (Phe)-tRNA synthetase (Phe-RS) is an essential enzyme which catalyzes the transfer of phenylalanine to the Phe-specific transfer RNA (tRNAPhe), a key step in protein biosynthesis. Phenyl-thiazolylurea-sulfonamides were identified as a novel class of potent inhibitors of bacterial Phe-RS by high-throughput screening and chemical variation of the screening hit. The compounds inhibit Phe-RS of Escherichia coli, Haemophilus influenzae, Streptococcus pneumoniae, and Staphylococcus aureus, with 50% inhibitory concentrations in the nanomolar range. Enzyme kinetic measurements demonstrated that the compounds bind competitively with respect to the natural substrate Phe. All derivatives are highly selective for the bacterial Phe-RS versus the corresponding mammalian cytoplasmic and human mitochondrial enzymes. Phenyl-thiazolylurea-sulfonamides displayed good in vitro activity against Staphylococcus, Streptococcus, Haemophilus, and Moraxella strains, reaching MICs below 1 μg/ml. The antibacterial activity was partly antagonized by increasing concentrations of Phe in the culture broth in accordance with the competitive binding mode. Further evidence that inhibition of tRNAPhe charging is the antibacterial principle of this compound class was obtained by proteome analysis of Bacillus subtilis. Here, the phenyl-thiazolylurea-sulfonamides induced a protein pattern indicative of the stringent response. In addition, an E. coli strain carrying a relA mutation and defective in stringent response was more susceptible than its isogenic relA+ parent strain. In vivo efficacy was investigated in a murine S. aureus sepsis model and a S. pneumoniae sepsis model in rats. Treatment with the phenyl-thiazolylurea-sulfonamides reduced the bacterial titer in various organs by up to 3 log units, supporting the potential value of Phe-RS as a target in antibacterial therapy. PMID:14742205

  2. Population Structure and Antimicrobial Resistance Profiles of Streptococcus suis Serotype 2 Sequence Type 25 Strains.

    PubMed

    Athey, Taryn B T; Teatero, Sarah; Takamatsu, Daisuke; Wasserscheid, Jessica; Dewar, Ken; Gottschalk, Marcelo; Fittipaldi, Nahuel

    2016-01-01

    Strains of serotype 2 Streptococcus suis are responsible for swine and human infections. Different serotype 2 genetic backgrounds have been defined using multilocus sequence typing (MLST). However, little is known about the genetic diversity within each MLST sequence type (ST). Here, we used whole-genome sequencing to test the hypothesis that S. suis serotype 2 strains of the ST25 lineage are genetically heterogeneous. We evaluated 51 serotype 2 ST25 S. suis strains isolated from diseased pigs and humans in Canada, the United States of America, and Thailand. Whole-genome sequencing revealed numerous large-scale rearrangements in the ST25 genome, compared to the genomes of ST1 and ST28 S. suis strains, which result, among other changes, in disruption of a pilus island locus. We report that recombination and lateral gene transfer contribute to ST25 genetic diversity. Phylogenetic analysis identified two main and distinct Thai and North American clades grouping most strains investigated. These clades also possessed distinct patterns of antimicrobial resistance genes, which correlated with acquisition of different integrative and conjugative elements (ICEs). Some of these ICEs were found to be integrated at a recombination hot spot, previously identified as the site of integration of the 89K pathogenicity island in serotype 2 ST7 S. suis strains. Our results highlight the limitations of MLST for phylogenetic analysis of S. suis, and the importance of lateral gene transfer and recombination as drivers of diversity in this swine pathogen and zoonotic agent.

  3. Comparative proteome analysis of two Streptococcus agalactiae strains from cultured tilapia with different virulence.

    PubMed

    Li, Wei; Su, You-Lu; Mai, Yong-Zhan; Li, Yan-Wei; Mo, Ze-Quan; Li, An-Xing

    2014-05-14

    Streptococcus agalactiae is a major piscine pathogen, which causes significant morbidity and mortality among numerous fish species, and results in huge economic losses to aquaculture. Many S. agalactiae strains showing different virulence characteristics have been isolated from infected tilapia in different geographical regions throughout South China in the recent years, including natural attenuated S. agalactiae strain TFJ0901 and virulent S. agalactiae strain THN0901. In the present study, survival of tilapia challenged with S. agalactiae strain TFJ0901 and THN0901 (10(7)CFU/fish) were 93.3% and 13.3%, respectively. Moreover, there are severe lesions of the examined tissues in tilapia infected with strain THN0901, but no significant histopathological changes were observed in tilapia infected with the strain TFJ0901. In order to elucidate the factors responsible for the invasive potential of S. agalactiae between two strains TFJ0901 and THN0901, a comparative proteome analysis was applied to identify the different protein expression profiles between the two strains. 506 and 508 cellular protein spots of S. agalactiae TFJ0901 and THN0901 were separated by two dimensional electrophoresis, respectively. And 34 strain-specific spots, corresponding to 27 proteins, were identified successfully by MALDI-TOF mass spectrometry. Among them, 23 proteins presented exclusively in S. agalactiae TFJ0901 or THN0901, and the other 4 proteins presented in different isomeric forms between TFJ0901 and THN0901. Most of the strain-specific proteins were just involved in metabolic pathways, while 7 of them were presumed to be responsible for the virulence differences of S. agalactiae strain TFJ0901 and THN0901, including molecular chaperone DnaJ, dihydrolipoamide dehydrogenase, thioredoxin, manganese-dependent inorganic pyrophosphatase, elongation factor Tu, bleomycin resistance protein and cell division protein DivIVA. These virulence-associated proteins may contribute to identify new

  4. Recent trends in pediatric bacterial meningitis in Japan--a country where Haemophilus influenzae type b and Streptococcus pneumoniae conjugated vaccines have just been introduced.

    PubMed

    Shinjoh, Masayoshi; Iwata, Satoshi; Yagihashi, Tatsuhiko; Sato, Yoshitake; Akita, Hironobu; Takahashi, Takao; Sunakawa, Keisuke

    2014-08-01

    To investigate the trends in incidence and the characteristics of bacterial meningitis in Japan where Haemophilus influenzae type b (Hib) vaccine and 7-valent pneumococcal conjugated vaccine (PCV7) were introduced in 2008 and 2010, respectively, which was 5-20 years after their introduction in western countries. The nationwide Japanese survey of pediatric and neonatal bacterial meningitis was performed in 2011 and 2012. We analyzed the epidemiological and clinical data, and compared the information obtained in the previous nationwide survey database. We also investigated the risk factors for disease outcome. In the 2011-2012 surveys, 357 patients were evaluated. H. influenzae, Streptococcus pneumoniae, Streptococcus agalactiae and Escherichia coli were the main organisms. The number of patients hospitalized with bacterial meningitis per 1000 admissions decreased from 1.31 in 2009 to 0.43 in 2012 (p < 0.001). The incidence of H. influenzae and S. pneumoniae meningitis also decreased from 0.66 to 0.08 (p < 0.001), and 0.30 to 0.06 (p < 0.001), respectively. Only 0-2 cases with Neisseria meningitidis were reported each year throughout 2001-2012. The median patient age was 10-12 months in 2001-2011, and became lower in 2012 (2 month old) (p < 0.001). The fatality rate for S. agalactiae is the highest (5.9% (11/187)) throughout 2001-2012 among the four organisms. Risk factors for death and sequelae were convulsions at onset, low CSF glucose, S. agalactiae etiology, and persistent positive CSF culture. Hib vaccine and PCV7 decreased the rate of bacterial meningitis. Earlier introduction of these vaccines may have prevented bacterial meningitis among Japanese children. Copyright © 2014 Japanese Society of Chemotherapy and The Japanese Association for Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  5. Functional and Structural Properties of a Novel Protein and Virulence Factor (Protein sHIP) in Streptococcus pyogenes *

    PubMed Central

    Wisniewska, Magdalena; Happonen, Lotta; Kahn, Fredrik; Varjosalo, Markku; Malmström, Lars; Rosenberger, George; Karlsson, Christofer; Cazzamali, Giuseppe; Pozdnyakova, Irina; Frick, Inga-Maria; Björck, Lars; Streicher, Werner; Malmström, Johan; Wikström, Mats

    2014-01-01

    Streptococcus pyogenes is a significant bacterial pathogen in the human population. The importance of virulence factors for the survival and colonization of S. pyogenes is well established, and many of these factors are exposed to the extracellular environment, enabling bacterial interactions with the host. In the present study, we quantitatively analyzed and compared S. pyogenes proteins in the growth medium of a strain that is virulent to mice with a non-virulent strain. Particularly, one of these proteins was present at significantly higher levels in stationary growth medium from the virulent strain. We determined the three-dimensional structure of the protein that showed a unique tetrameric organization composed of four helix-loop-helix motifs. Affinity pull-down mass spectrometry analysis in human plasma demonstrated that the protein interacts with histidine-rich glycoprotein (HRG), and the name sHIP (streptococcal histidine-rich glycoprotein-interacting protein) is therefore proposed. HRG has antibacterial activity, and when challenged by HRG, sHIP was found to rescue S. pyogenes bacteria. This and the finding that patients with invasive S. pyogenes infection respond with antibody production against sHIP suggest a role for the protein in S. pyogenes pathogenesis. PMID:24825900

  6. Decolorization of sulfonated azo dye Metanil Yellow by newly isolated bacterial strains: Bacillus sp. strain AK1 and Lysinibacillus sp. strain AK2.

    PubMed

    Anjaneya, O; Souche, S Yogesh; Santoshkumar, M; Karegoudar, T B

    2011-06-15

    Two different bacterial strains capable of decolorizing a highly water soluble azo dye Metanil Yellow were isolated from dye contaminated soil sample collected from Atul Dyeing Industry, Bellary, India. The individual bacterial strains Bacillus sp. AK1 and Lysinibacillus sp. AK2 decolorized Metanil Yellow (200 mg L(-1)) completely within 27 and 12h respectively. Various parameters like pH, temperature, NaCl and initial dye concentrations were optimized to develop an economically feasible decolorization process. The maximum concentration of Metanil Yellow (1000 mg L(-1)) was decolorized by strains AK2 and AK1 within 78 and 84 h respectively. These strains could decolorize Metanil Yellow over a broad pH range 5.5-9.0; the optimum pH was 7.2. The decolorization of Metanil Yellow was most efficient at 40°C and confirmed by UV-visible spectroscopy, TLC, HPLC and GC/MS analysis. Further, both the strains showed the involvement of azoreductase in the decolorization process. Phytotoxicity studies of catabolic products of Metanil Yellow on the seeds of chick pea and pigeon pea revealed much reduction in the toxicity of metabolites as compared to the parent dye. These results indicating the effectiveness of strains AK1 and AK2 for the treatment of textile effluents containing azo dyes. Copyright © 2011 Elsevier B.V. All rights reserved.

  7. Non-encapsulated strains reveal novel insights in invasion and survival of Streptococcus suis in epithelial cells.

    PubMed

    Benga, L; Goethe, R; Rohde, M; Valentin-Weigand, P

    2004-09-01

    Streptococcus suis is a porcine and human pathogen causing invasive diseases, such as meningitis or septicaemia. Host cell interactions of S. suis have been studied mainly with serotype 2 strains, but multiple capsular serotypes as well as non-typeable strains exist with diverse virulence features. At present, S. suis is considered an extracellular pathogen. However, whether or not it can also invade host cells is a matter of controversial discussions. We have assessed adherence and invasion of S. suis for HEp-2 epithelial cells by comparing 10 serotype 2 strains and four non-typeable (NT) strains. Only the NT strains and a non-encapsulated serotype 2 mutant strain, but none of the serotype 2 strains, adhered strongly and were invasive. Invasion seemed to be affected by environmental signals, as suggested from comparison of strains grown in different media. Further phenotypic and genotypic characterization revealed a high diversity among the different strains. Electron microscopic analysis of invasion of selected invasive NT strains indicated different uptake mechanisms. One strain induced large invaginations comparable to those seen in 'caveolae' mediated uptake, whereas invasion of the other strains was accompanied by formation of filipodia-like membrane protrusions. Invasion of all strains, however, was similarly susceptible to hypertonic sucrose, which inhibits receptor-mediated endocytosis. Irrespective of the uptake pathway, streptococci resided in acidified phago-lysosome like vacuoles. All strains, except one, survived intracellularly as well as extracellular acidic conditions. Survival seemed to be associated with the AdiS protein, an environmentally regulated arginine deiminase of S. suis. Concluding, invasion and survival of NT strains of S. suis in epithelial cells revealed novel evidence that S. suis exhibits a broad variety of virulence-associated features depending on genetic variation and regulation.

  8. Evaluation of bacterial flora during the ripening of Kedong sufu, a typical Chinese traditional bacteria-fermented soybean product.

    PubMed

    Feng, Zhen; Gao, Wei; Ren, Dan; Chen, Xi; Li, Juan-juan

    2013-04-01

    Kedong sufu is a typical bacteria-fermented sufu in China. Isolation and identification of the autochthonous bacteria involved would allow the design of specific starters for this speciality. The purpose of the present study was to evaluate the bacterial flora during the ripening of Kedong sufu using polymerase chain reaction denaturing gradient gel electrophoresis (PCR-DGGE) and culturing. In terms of bacterial diversity, 22 strains were isolated and identified and 27 strains were detected by DGGE. Regarding bacterial dynamics, the results of culturing and PCR-DGGE exhibited a similar trend towards dominant strains. Throughout the fermentation of sufu, Enterococcus avium, Enterococcus faecalis and Staphylococcus carnosus were the dominant microflora, while the secondary microflora comprised Leuconostoc mesenteroides, Staphylococcus saprophyticus, Streptococcus lutetiensis, Kocuria rosea, Kocuria kristinae, Bacillus pumilus, Bacillus cereus and Bacillus subtilis. This study is the first to reveal the bacterial flora during the ripening of Kedong sufu using both culture-dependent and culture-independent methods. This information will help in the design of autochthonous starter cultures for the production of Kedong sufu with desirable characteristic sensory profiles and shorter ripening times. © 2012 Society of Chemical Industry.

  9. Tolerance of a Phage Element by Streptococcus pneumoniae Leads to a Fitness Defect during Colonization

    PubMed Central

    DeBardeleben, Hilary K.; Lysenko, Elena S.; Dalia, Ankur B.

    2014-01-01

    The pathogenesis of the disease caused by Streptococcus pneumoniae begins with colonization of the upper respiratory tract. Temperate phages have been identified in the genomes of up to 70% of clinical isolates. How these phages affect the bacterial host during colonization is unknown. Here, we examined a clinical isolate that carries a novel prophage element, designated Spn1, which was detected in both integrated and episomal forms. Surprisingly, both lytic and lysogenic Spn1 genes were expressed under routine growth conditions. Using a mouse model of asymptomatic colonization, we demonstrate that the Spn1− strain outcompeted the Spn1+ strain >70-fold. To determine if Spn1 causes a fitness defect through a trans-acting factor, we constructed an Spn1+ mutant that does not become an episome or express phage genes. This mutant competed equally with the Spn1− strain, indicating that expression of phage genes or phage lytic activity is required to confer this fitness defect. In vitro, we demonstrate that the presence of Spn1 correlated with a defect in LytA-mediated autolysis. Furthermore, the Spn1+ strain displayed increased chain length and resistance to lysis by penicillin compared to the Spn− strain, indicating that Spn1 alters the cell wall physiology of its host strain. We posit that these changes in cell wall physiology allow for tolerance of phage gene products and are responsible for the relative defect of the Spn1+ strain during colonization. This study provides new insight into how bacteria and prophages interact and affect bacterial fitness in vivo. PMID:24816604

  10. Genome analysis of multiple pathogenic isolates of Streptococcus agalactiae: Implications for the microbial “pan-genome”

    PubMed Central

    Tettelin, Hervé; Masignani, Vega; Cieslewicz, Michael J.; Donati, Claudio; Medini, Duccio; Ward, Naomi L.; Angiuoli, Samuel V.; Crabtree, Jonathan; Jones, Amanda L.; Durkin, A. Scott; DeBoy, Robert T.; Davidsen, Tanja M.; Mora, Marirosa; Scarselli, Maria; Margarit y Ros, Immaculada; Peterson, Jeremy D.; Hauser, Christopher R.; Sundaram, Jaideep P.; Nelson, William C.; Madupu, Ramana; Brinkac, Lauren M.; Dodson, Robert J.; Rosovitz, Mary J.; Sullivan, Steven A.; Daugherty, Sean C.; Haft, Daniel H.; Selengut, Jeremy; Gwinn, Michelle L.; Zhou, Liwei; Zafar, Nikhat; Khouri, Hoda; Radune, Diana; Dimitrov, George; Watkins, Kisha; O'Connor, Kevin J. B.; Smith, Shannon; Utterback, Teresa R.; White, Owen; Rubens, Craig E.; Grandi, Guido; Madoff, Lawrence C.; Kasper, Dennis L.; Telford, John L.; Wessels, Michael R.; Rappuoli, Rino; Fraser, Claire M.

    2005-01-01

    The development of efficient and inexpensive genome sequencing methods has revolutionized the study of human bacterial pathogens and improved vaccine design. Unfortunately, the sequence of a single genome does not reflect how genetic variability drives pathogenesis within a bacterial species and also limits genome-wide screens for vaccine candidates or for antimicrobial targets. We have generated the genomic sequence of six strains representing the five major disease-causing serotypes of Streptococcus agalactiae, the main cause of neonatal infection in humans. Analysis of these genomes and those available in databases showed that the S. agalactiae species can be described by a pan-genome consisting of a core genome shared by all isolates, accounting for ≈80% of any single genome, plus a dispensable genome consisting of partially shared and strain-specific genes. Mathematical extrapolation of the data suggests that the gene reservoir available for inclusion in the S. agalactiae pan-genome is vast and that unique genes will continue to be identified even after sequencing hundreds of genomes. PMID:16172379

  11. Streptococcus agalactiae infection in Nile tilapia (Oreochromis niloticus) and its transmission potential to cohabitated sheepshead minnows (Cyprinodon variegatus)

    USDA-ARS?s Scientific Manuscript database

    Streptococcus agalactiae has emerged as an economically important bacterial pathogen affecting global aquaculture. Worldwide aquaculture losses due to S. agalactiae are estimated around U.S. $1 billion, annually. Streptococcus agalactiae also known as a Lancefield Group B Streptococcus (GBS) is a Gr...

  12. Screening of species-specific lactic acid bacteria for veal calves multi-strain probiotic adjuncts.

    PubMed

    Ripamonti, Barbara; Agazzi, Alessandro; Bersani, Carla; De Dea, Paola; Pecorini, Chiara; Pirani, Silvia; Rebucci, Raffaella; Savoini, Giovanni; Stella, Simone; Stenico, Alberta; Tirloni, Erica; Domeneghini, Cinzia

    2011-06-01

    The selection of promising specific species of lactic acid bacteria with potential probiotic characteristics is of particular interest in producing multi species-specific probiotic adjuncts in veal calves rearing. The aim of the present work was to select and evaluate in vitro the functional activity of lactic acid bacteria, Bifidobacterium longum and Bacillus coagulans strains isolated from veal calves in order to assess their potential use as multi species-specific probiotics for veal calves. For this purpose, bacterial strains isolated from faeces collected from 40 healthy 50-day-calves, were identified by RiboPrinter and 16s rRNA gene sequence. The most frequent strains belonged to the species B. longum, Streptococcus bovis, Lactobacillus animalis and Streptococcus macedonicus. Among these, 7 strains were chosen for testing their probiotic characteristics in vitro. Three strains, namely L. animalis SB310, Lactobacillus paracasei subsp. paracasei SB137 and B. coagulans SB117 showed varying individual but promising capabilities to survive in the gastrointestinal tract, to adhere, to produce antimicrobial compounds. These three selected species-specific bacteria demonstrated in vitro, both singularly and mixed, the functional properties needed for their use as potential probiotics in veal calves. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. [Group B streptococcus meningitis and infection surrounding the spinal canal caused by bacterial transmission from rectal ulcer via Batson's plexus].

    PubMed

    Tsutsumi, Ryosuke; Saito, Masaaki; Yoshizawa, Toshihiro

    2011-07-01

    A 62-year-old man was admitted to our hospital because of fever and disturbed consciousness. He suffered from persistent constipation due to diabetic autonomic neuropathy. On admission, neck stiffness and weakness of the lower extremities were observed. Cerebrospinal fluid (CSF) pleocytosis and decreased CSF glucose concentration showed the presence of meningitis. Bacterial culture of CSF was negative. One week after admission, he suddenly suffered from massive bleeding from the rectum, where a hemorrhagic ulcer caused by severe persistent constipation was observed. Contrast-enhanced CT scans and gadolinium-enhanced MR scans demonstrated a lumbar spinal epidural abscess, paraspinal muscle abscess, and cervical osteomyelitis. Streptococcus agalactiae, a bacterial species belonging to the group B streptococci, was isolated from pus obtained by needle puncture of the paraspinal muscle abscess. His entire condition was treated successfully with ampicillin and cefotaxime. Group B streptococci normally colonize the mucous membrane of the genital or lower gastrointestinal regions and rarely cause a spinal epidural abscess. However, in this case, the existence of a rectal ulcer probably made it possible for S. agalactiae to cause an infection of the epidural space or paraspinal muscles via the spinal valveless venous system named Batson's plexus communicating with the sacral, pelvic, and prostatic venous plexus. Our case indicated the importance of Batson's plexus in group B streptococcus infections surrounding the spinal canal and the necessity to explore for intrapelvic lesions including a rectal ulcer.

  14. Influenza A Virus Infection Predisposes Hosts to Secondary Infection with Different Streptococcus pneumoniae Serotypes with Similar Outcome but Serotype-Specific Manifestation.

    PubMed

    Sharma-Chawla, Niharika; Sender, Vicky; Kershaw, Olivia; Gruber, Achim D; Volckmar, Julia; Henriques-Normark, Birgitta; Stegemann-Koniszewski, Sabine; Bruder, Dunja

    2016-12-01

    Influenza A virus (IAV) and Streptococcus pneumoniae are major causes of respiratory tract infections, particularly during coinfection. The synergism between these two pathogens is characterized by a complex network of dysregulated immune responses, some of which last until recovery following IAV infection. Despite the high serotype diversity of S. pneumoniae and the serotype replacement observed since the introduction of conjugate vaccines, little is known about pneumococcal strain dependency in the enhanced susceptibility to severe secondary S. pneumoniae infection following IAV infection. Thus, we studied how preinfection with IAV alters host susceptibility to different S. pneumoniae strains with various degrees of invasiveness using a highly invasive serotype 4 strain, an invasive serotype 7F strain, and a carrier serotype 19F strain. A murine model of pneumococcal coinfection during the acute phase of IAV infection showed a significantly increased degree of pneumonia and mortality for all tested pneumococcal strains at otherwise sublethal doses. The incidence and kinetics of systemic dissemination, however, remained bacterial strain dependent. Furthermore, we observed strain-specific alterations in the pulmonary levels of alveolar macrophages, neutrophils, and inflammatory mediators ultimately affecting immunopathology. During the recovery phase following IAV infection, bacterial growth in the lungs and systemic dissemination were enhanced in a strain-dependent manner. Altogether, this study shows that acute IAV infection predisposes the host to lethal S. pneumoniae infection irrespective of the pneumococcal serotype, while the long-lasting synergism between IAV and S. pneumoniae is bacterial strain dependent. These results hold implications for developing tailored therapeutic treatment regimens for dual infections during future IAV outbreaks. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  15. Streptococcus himalayensis sp. nov., isolated from the respiratory tract of Marmota himalayana.

    PubMed

    Niu, Lina; Lu, Shan; Lai, Xin-He; Hu, Shoukui; Chen, Cuixia; Zhang, Gui; Yang, Jing; Jin, Dong; Wang, Yi; Lan, Ruiting; Lu, Gang; Xie, Yingping; Ye, Changyun; Xu, Jianguo

    2017-02-01

    Five strains of Gram-positive-staining, catalase-negative, coccus-shaped, chain-forming organisms isolated separately from the respiratory tracts of five Marmota himalayana animals in the Qinghai-Tibet Plateau of China were subjected to phenotypic and molecular taxonomic analyses. Comparative analysis of the 16S rRNA gene indicated that these singular organisms represent a new member of the genus Streptococcus, being phylogenetically closest to Streptococcus marmotae DSM 101995T (98.4 % similarity). The groEL, sodA and rpoB sequence analysis showed interspecies similarity values between HTS2T and Streptococcus. marmotae DSM 101995T, its closest phylogenetic relative based on 16S rRNA gene sequences, of 98.2, 78.8 and 93.7 %, respectively. A whole-genome phylogenetic tree built from 82 core genes of genomes from 16 species of the genus Streptococcus validated that HTS2T forms a distinct subline and exhibits specific phylogenetic affinity with S. marmotae. In silico DNA-DNA hybridization of HTS2T showed an estimated DNA reassociation value of 40.5 % with Streptococcus. marmotae DSM 101995T. On the basis of their phenotypic characteristics and phylogenetic findings, it is proposed that the five isolates be classified as representatives of a novel species of the genus Streptococcus, Streptococcus himalayensis sp. nov. The type strain is HTS2T (=DSM 101997T=CGMCC 1.15533T). The genome of Streptococcus himalayensis sp. nov. strain HTS2T contains 2195 genes with a size of 2 275 471 bp and a mean DNA G+C content of 41.3 mol%.

  16. Lactobacillus plantarum lipoteichoic acid inhibits biofilm formation of Streptococcus mutans

    PubMed Central

    Ahn, Ki Bum; Baik, Jung Eun; Park, Ok-Jin; Yun, Cheol-Heui

    2018-01-01

    Dental caries is a biofilm-dependent oral disease and Streptococcus mutans is the known primary etiologic agent of dental caries that initiates biofilm formation on tooth surfaces. Although some Lactobacillus strains inhibit biofilm formation of oral pathogenic bacteria, the molecular mechanisms by which lactobacilli inhibit bacterial biofilm formation are not clearly understood. In this study, we demonstrated that Lactobacillus plantarum lipoteichoic acid (Lp.LTA) inhibited the biofilm formation of S. mutans on polystyrene plates, hydroxyapatite discs, and dentin slices without affecting the bacterial growth. Lp.LTA interferes with sucrose decomposition of S. mutans required for the production of exopolysaccharide, which is a main component of biofilm. Lp.LTA also attenuated the biding of fluorescein isothiocyanate-conjugated dextran to S. mutans, which is known to have a high affinity to exopolysaccharide on S. mutans. Dealanylated Lp.LTA did not inhibit biofilm formation of S. mutans implying that D-alanine moieties in the Lp.LTA structure were crucial for inhibition. Collectively, these results suggest that Lp.LTA attenuates S. mutans biofilm formation and could be used to develop effective anticaries agents. PMID:29420616

  17. Complex Population Structure and Virulence Differences among Serotype 2 Streptococcus suis Strains Belonging to Sequence Type 28

    PubMed Central

    Athey, Taryn B. T.; Auger, Jean-Philippe; Teatero, Sarah; Dumesnil, Audrey; Takamatsu, Daisuke; Wasserscheid, Jessica; Dewar, Ken; Gottschalk, Marcelo; Fittipaldi, Nahuel

    2015-01-01

    Streptococcus suis is a major swine pathogen and a zoonotic agent. Serotype 2 strains are the most frequently associated with disease. However, not all serotype 2 lineages are considered virulent. Indeed, sequence type (ST) 28 serotype 2 S. suis strains have been described as a homogeneous group of low virulence. However, ST28 strains are often isolated from diseased swine in some countries, and at least four human ST28 cases have been reported. Here, we used whole-genome sequencing and animal infection models to test the hypothesis that the ST28 lineage comprises strains of different genetic backgrounds and different virulence. We used 50 S. suis ST28 strains isolated in Canada, the United States and Japan from diseased pigs, and one ST28 strain from a human case isolated in Thailand. We report a complex population structure among the 51 ST28 strains. Diversity resulted from variable gene content, recombination events and numerous genome-wide polymorphisms not attributable to recombination. Phylogenetic analysis using core genome single-nucleotide polymorphisms revealed four discrete clades with strong geographic structure, and a fifth clade formed by US, Thai and Japanese strains. When tested in experimental animal models, strains from this latter clade were significantly more virulent than a Canadian ST28 reference strain, and a closely related Canadian strain. Our results highlight the limitations of MLST for both phylogenetic analysis and virulence prediction and raise concerns about the possible emergence of ST28 strains in human clinical cases. PMID:26375680

  18. Streptococcus sinensis may react with Lancefield group F antiserum.

    PubMed

    Woo, Patrick C Y; Teng, Jade L L; Leung, Kit-wah; Lau, Susanna K P; Tse, Herman; Wong, Beatrice H L; Yuen, Kwok-yung

    2004-11-01

    Lancefield group F streptococci have been found almost exclusively as members of the 'Streptococcus milleri' group, although they have been reported very occasionally in some other streptococcal species. Among 302 patients with bacteraemia caused by viridans streptococci over a 6-year period, three cases were caused by Streptococcus sinensis (type strain HKU4T, HKU5 and HKU6). All three patients had infective endocarditis complicating their underlying chronic rheumatic heart diseases. Gene sequencing showed no base differences between the 16S rRNA gene sequences of HKU5 and HKU6 and that of HKU4T. All three strains were Gram-positive, non-spore-forming cocci arranged in chains. All grew on sheep blood agar as alpha-haemolytic, grey colonies of 0.5-1 mm in diameter after 24 h incubation at 37 degrees C in ambient air. Lancefield grouping revealed that HKU5 and HKU6 were Lancefield group F, but HKU4T was non-groupable with Lancefield groups A, B, C, D, F or G antisera. HKU4T was identified by the Vitek system (GPI), API system (20 STREP) and ATB system (ID32 STREP) as 99 % Streptococcus intermedius, 51.3 % S. intermedius and 99.9 % Streptococcus anginosus, respectively. Using the same tests, HKU5 was identified as 87 % Streptococcus sanguinis/Streptococcus gordonii, 59 % Streptococcus salivarius and 99.6 % S. anginosus, respectively, and HKU6 as 87 % S. sanguinis/S. gordonii, 77 % Streptococcus pneumoniae and 98.3 % S. anginosus, respectively. The present data revealed that a proportion of Lancefield group F streptococci could be S. sinensis. Lancefield group F streptococci should not be automatically reported as 'S. milleri'.

  19. Loss of plasmid-mediated resistance after conversion of a group B streptococcus strain to a stable cell wall deficient variant.

    PubMed

    Schmitt-Slomska, J; Caravano, R; El-Solh, N

    1979-01-01

    A group B streptococcus strain carrying plasmid DNA determining resistance to several drugs was converted by penicillin to cell wall (CW) defective and then to CW deficient variants (L-forms). The stable CW deficient variants became susceptible to antibiotics in study. Dye-buoyant density analysis of the DNA of CW deficient variants showed that the loss of antibiotic resistance was associated with the loss of extrachromosomal DNA.

  20. Response of Fatty Acid Synthesis Genes to the Binding of Human Salivary Amylase by Streptococcus gordonii

    PubMed Central

    Nikitkova, Anna E.; Haase, Elaine M.; Vickerman, M. Margaret; Gill, Steven R.

    2012-01-01

    Streptococcus gordonii, an important primary colonizer of dental plaque biofilm, specifically binds to salivary amylase via the surface-associated amylase-binding protein A (AbpA). We hypothesized that a function of amylase binding to S. gordonii may be to modulate the expression of chromosomal genes, which could influence bacterial survival and persistence in the oral cavity. Gene expression profiling by microarray analysis was performed to detect genes in S. gordonii strain CH1 that were differentially expressed in response to the binding of purified human salivary amylase versus exposure to purified heat-denatured amylase. Selected genes found to be differentially expressed were validated by quantitative reverse transcription-PCR (qRT-PCR). Five genes from the fatty acid synthesis (FAS) cluster were highly (10- to 35-fold) upregulated in S. gordonii CH1 cells treated with native amylase relative to those treated with denatured amylase. An abpA-deficient strain of S. gordonii exposed to amylase failed to show a response in FAS gene expression similar to that observed in the parental strain. Predicted phenotypic effects of amylase binding to S. gordonii strain CH1 (associated with increased expression of FAS genes, leading to changes in fatty acid synthesis) were noted; these included increased bacterial growth, survival at low pH, and resistance to triclosan. These changes were not observed in the amylase-exposed abpA-deficient strain, suggesting a role for AbpA in the amylase-induced phenotype. These results provide evidence that the binding of salivary amylase elicits a differential gene response in S. gordonii, resulting in a phenotypic adjustment that is potentially advantageous for bacterial survival in the oral environment. PMID:22247133

  1. Comparative analysis of growth-phase-dependent gene expression in virulent and avirulent Streptococcus pneumoniae using a high-density DNA microarray.

    PubMed

    Ko, Kwan Soo; Park, Sulhee; Oh, Won Sup; Suh, Ji-Yoeun; Oh, Taejeong; Ahn, Sungwhan; Chun, Jongsik; Song, Jae-Hoon

    2006-02-28

    The global pattern of growth-dependent gene expres-sion in Streptococcus pneumoniae strains was evalu-ated using a high-density DNA microarray. Total RNAs obtained from an avirulent S. pneumoniae strain R6 and a virulent strain AMC96-6 were used to compare the expression patterns at seven time points (2.5, 3.5, 4.5, 5.5, 6.0, 6.5, and 8.0 h). The expression profile of strain R6 changed between log and station-ary growth (the Log-Stat switch). There were clear differences between the growth-dependent gene ex-pression profiles of the virulent and avirulent pneumo-coccal strains in 367 of 1,112 genes. Transcripts of genes associated with bacterial competence and capsular polysaccharide formation, as well as clpP and cbpA, were higher in the virulent strain. Our data suggest that late log or early stationary phase may be the most virulent phase of S. pneumoniae.

  2. Biochemical and genetic characterization of serologically untypable Streptococcus mutans strains isolated from patients with bacteremia.

    PubMed

    Fujiwara, T; Nakano, K; Kawaguchi, M; Ooshima, T; Sobue, S; Kawabata, S; Nakagawa, I; Hamada, S

    2001-10-01

    Four out of 522 streptococcal isolates from the peripheral blood of patients with bacteremia exhibited typical properties of Streptococcus mutans in terms of sucrose-dependent adhesion, expression of glucosyltransferases, fermentation profiles of sugars, the presence of surface protein antigen, and DNA-DNA hybridization. Two strains were determined as serotype f and e by immunodiffusion, whereas the other two isolates did not react with the specific antiserum to S. mutans serotype c. e. or f of the eight different serotypes of mutans streptococci. The latter two untypable isolates, however, expressed a new antigenic determinant that was different from serotype c/e/f specificity as revealed by immunodiffusion. Analysis of the cell wall polysaccharides revealed very low contents of glucose in the untypable isolates. Furthermore, Southern blot analysis demonstrated that the untypable strains lacked at least one gene corresponding to a glucose-adding enzyme. These results indicate that the serologically untypable nature is due to the loss of glucosidic residue from the serotype-specific polysaccharide antigens of S. mutans.

  3. The Adc/Lmb System Mediates Zinc Acquisition in Streptococcus agalactiae and Contributes to Bacterial Growth and Survival

    PubMed Central

    Moulin, Pauline; Patron, Kévin; Cano, Camille; Zorgani, Mohamed Amine; Camiade, Emilie; Borezée-Durant, Elise; Rosenau, Agnès; Mereghetti, Laurent

    2016-01-01

    ABSTRACT The Lmb protein of Streptococcus agalactiae is described as an adhesin that binds laminin, a component of the human extracellular matrix. In this study, we revealed a new role for this protein in zinc uptake. We also identified two Lmb homologs, AdcA and AdcAII, redundant binding proteins that combine with the AdcCB translocon to form a zinc-ABC transporter. Expression of this transporter is controlled by the zinc concentration in the medium through the zinc-dependent regulator AdcR. Triple deletion of lmb, adcA, and adcAII, or that of the adcCB genes, impaired growth and cell separation in a zinc-restricted environment. Moreover, we found that this Adc zinc-ABC transporter promotes S. agalactiae growth and survival in some human biological fluids, suggesting that it contributes to the infection process. These results indicated that zinc has biologically vital functions in S. agalactiae and that, under the conditions tested, the Adc/Lmb transporter constitutes the main zinc acquisition system of the bacterium. IMPORTANCE A zinc transporter, composed of three redundant binding proteins (Lmb, AdcA, and AdcAII), was characterized in Streptococcus agalactiae. This system was shown to be essential for bacterial growth and morphology in zinc-restricted environments, including human biological fluids. PMID:27672194

  4. Modeling of 3D Structure of Chimeric Constructs Based on Hemagglutinin of Influenza Virus and Immunogenic Epitopes of Streptococcus Agalactiae.

    PubMed

    Fedorova, E A; Smolonogina, T A; Isakova-Sivak, I N; Koren'kov, D A; Kotomina, T S; Leont'eva, G F; Suvorov, A N; Rudenko, L G

    2018-04-01

    A project of an experimental recombinant vector vaccine for prevention of diseases caused by pathogenic streptococci based on ScaAB lipoprotein of Streptococcus agalactiae and a coldadapted strain of live influenza vaccine as a vector was developed. The sequence of ScaAB lipoprotein was analyzed and fragments forming immunodominant epitopes were determined. Chimeric molecules of influenza virus hemagglutinin H7 carrying insertions of bacterial origin were constructed. Based on the results of simulation, the most promising variants were selected; they represented fragments of lipoprotein ScaAB lacking N-terminal domain bound to hemagglutinin via a flexible linker. These insertions should minimally modulate the properties of the influenza strain, while retaining potential immunogenicity to a wide group of pathogenic streptococci.

  5. Comparative genomics analysis of Streptococcus agalactiae reveals that isolates from cultured tilapia in China are closely related to the human strain A909.

    PubMed

    Liu, Guangjin; Zhang, Wei; Lu, Chengping

    2013-11-11

    Streptococcus agalactiae, also referred to as Group B Streptococcus (GBS), is a frequent resident of the rectovaginal tract in humans, and a major cause of neonatal infection. In addition, S. agalactiae is a known fish pathogen, which compromises food safety and represents a zoonotic hazard. The complete genome sequence of the piscine S. agalactiae isolate GD201008-001 was compared with 14 other piscine, human and bovine strains to explore their virulence determinants, evolutionary relationships and the genetic basis of host tropism in S. agalactiae. The pan-genome of S. agalactiae is open and its size increases with the addition of newly sequenced genomes. The core genes shared by all isolates account for 50 ~ 70% of any single genome. The Chinese piscine isolates GD201008-001 and ZQ0910 are phylogenetically distinct from the Latin American piscine isolates SA20-06 and STIR-CD-17, but are closely related to the human strain A909, in the context of the clustered regularly interspaced short palindromic repeats (CRISPRs), prophage, virulence-associated genes and phylogenetic relationships. We identified a unique 10 kb gene locus in Chinese piscine strains. Isolates from cultured tilapia in China have a close genomic relationship with the human strain A909. Our findings provide insight into the pathogenesis and host-associated genome content of piscine S. agalactiae isolated in China.

  6. Comparative genomics analysis of Streptococcus agalactiae reveals that isolates from cultured tilapia in China are closely related to the human strain A909

    PubMed Central

    2013-01-01

    Background Streptococcus agalactiae, also referred to as Group B Streptococcus (GBS), is a frequent resident of the rectovaginal tract in humans, and a major cause of neonatal infection. In addition, S. agalactiae is a known fish pathogen, which compromises food safety and represents a zoonotic hazard. The complete genome sequence of the piscine S. agalactiae isolate GD201008-001 was compared with 14 other piscine, human and bovine strains to explore their virulence determinants, evolutionary relationships and the genetic basis of host tropism in S. agalactiae. Results The pan-genome of S. agalactiae is open and its size increases with the addition of newly sequenced genomes. The core genes shared by all isolates account for 50 ~ 70% of any single genome. The Chinese piscine isolates GD201008-001 and ZQ0910 are phylogenetically distinct from the Latin American piscine isolates SA20-06 and STIR-CD-17, but are closely related to the human strain A909, in the context of the clustered regularly interspaced short palindromic repeats (CRISPRs), prophage, virulence-associated genes and phylogenetic relationships. We identified a unique 10 kb gene locus in Chinese piscine strains. Conclusions Isolates from cultured tilapia in China have a close genomic relationship with the human strain A909. Our findings provide insight into the pathogenesis and host-associated genome content of piscine S. agalactiae isolated in China. PMID:24215651

  7. Population Structure and Antimicrobial Resistance Profiles of Streptococcus suis Serotype 2 Sequence Type 25 Strains

    PubMed Central

    Athey, Taryn B. T.; Teatero, Sarah; Takamatsu, Daisuke; Wasserscheid, Jessica; Dewar, Ken; Gottschalk, Marcelo; Fittipaldi, Nahuel

    2016-01-01

    Strains of serotype 2 Streptococcus suis are responsible for swine and human infections. Different serotype 2 genetic backgrounds have been defined using multilocus sequence typing (MLST). However, little is known about the genetic diversity within each MLST sequence type (ST). Here, we used whole-genome sequencing to test the hypothesis that S. suis serotype 2 strains of the ST25 lineage are genetically heterogeneous. We evaluated 51 serotype 2 ST25 S. suis strains isolated from diseased pigs and humans in Canada, the United States of America, and Thailand. Whole-genome sequencing revealed numerous large-scale rearrangements in the ST25 genome, compared to the genomes of ST1 and ST28 S. suis strains, which result, among other changes, in disruption of a pilus island locus. We report that recombination and lateral gene transfer contribute to ST25 genetic diversity. Phylogenetic analysis identified two main and distinct Thai and North American clades grouping most strains investigated. These clades also possessed distinct patterns of antimicrobial resistance genes, which correlated with acquisition of different integrative and conjugative elements (ICEs). Some of these ICEs were found to be integrated at a recombination hot spot, previously identified as the site of integration of the 89K pathogenicity island in serotype 2 ST7 S. suis strains. Our results highlight the limitations of MLST for phylogenetic analysis of S. suis, and the importance of lateral gene transfer and recombination as drivers of diversity in this swine pathogen and zoonotic agent. PMID:26954687

  8. Probiotic lactobacilli interfere with Streptococcus mutans biofilm formation in vitro.

    PubMed

    Söderling, Eva M; Marttinen, Aino M; Haukioja, Anna L

    2011-02-01

    In clinical studies, probiotic bacteria have decreased the counts of salivary mutans streptococci (MS). We compared the effects of probiotic Lactobacillus strains on the biofilm formation of Streptococcus mutans. The bacterial strains used included four S. mutans strains (reference strains NCTC 10449 and Ingbritt and clinical isolates 2366 and 195) and probiotic strains Lactobacillus rhamnosus GG, L. plantarum 299v, and L. reuteri strains PTA 5289 and SD2112. The ability of MS to adhere and grow on a glass surface, reflecting biofilm formation, was studied in the presence of the lactobacilli (LB). The effect of LB culture supernatants on the viability of the MS was studied as well. All of the LB inhibited the biofilm formation of the clinical isolates of MS (P < 0.001). The biofilm formation of the reference strains of MS was also inhibited by the LB, but L. plantarum and L. reuteri PTA 5289 showed a weaker inhibition when compared to L. reuteri SD2112 and L. rhamnosus GG. Viable S. mutans cells could be detected in the biofilms and culture media only when the experiments were performed with the L. reuteri strains. The L. reuteri strains were less efficient in killing the MS also in the tests performed with the culture supernatants. The pHs of the supernatants of L. reuteri were higher compared to those of L. rhamnosus GG and L. plantarum; P < 0.001. In conclusion, our results demonstrated that four commonly used probiotics interfered with S. mutans biofilm formation in vitro, and that the antimicrobial activity against S. mutans was pH-dependent.

  9. Effects of Salts and Metal Oxides on Electrochemical and Optical Properties of Streptococcus mutans

    NASA Astrophysics Data System (ADS)

    Kawai, Tsuyoshi; Nagame, Seigo; Kambara, Masaki; Yoshino, Katsumi

    1994-10-01

    The effects of calcium salts and metal oxide powders on electrochemical, optical and biological properties of Streptococcus mutans have been studied as a novel method to determine the strain. Electrochemical signals of Streptococcus mutans show remarkable decrease in the presence of saturated calcium salts such as CaHPO4, Ca3(PO4)2, and Ca5(PO4)3OH depending on the strains of Streptococcus mutans: Ingbritt, NCTC-10449, or GS-5. The number of viable cells also decreases upon addition of these powders. The effects of metal oxides such as ZnO and BaTiO3 on the electrochemical characteristics and photoluminescence of Streptococcus mutans have also been studied.

  10. Severe invasive streptococcal infection by Streptococcus pyogenes and Streptococcus dysgalactiae subsp. equisimilis.

    PubMed

    Watanabe, Shinya; Takemoto, Norihiko; Ogura, Kohei; Miyoshi-Akiyama, Tohru

    2016-01-01

    Streptococcus pyogenes, a group A Streptococcus (GAS), has been recognized as the causative pathogen in patients with severe invasive streptococcal infection with or without necrotizing fasciitis. In recent epidemiological studies, Streptococcus dysgalactiae subsp. equisimilis (SDSE) has been isolated from severe invasive streptococcal infection. Complete genome sequence showed that SDSE is the closest bacterial species to GAS, with approximately 70% of genome coverage. SDSE, however, lacks several key virulence factors present in GAS, such as SPE-B, the hyaluronan synthesis operon and active superantigen against human immune cells. A key event in the ability of GAS to cause severe invasive streptococcal infection was shown to be the acquisition of novel genetic traits such as phages. Strikingly, however, during severe invasive infection, GAS destroys its own covRS two-component system, which negatively regulates many virulence factor genes, resulting in a hyper-virulent phenotype. In contrast, this phenomenon has not been observed in SDSE. The present review describes the epidemiology of severe invasive streptococcal infection and the detailed pathogenic mechanisms of GAS and SDSE, emphasizing findings from their genome sequences and analyses of gene expression. © 2015 The Societies and John Wiley & Sons Australia, Ltd.

  11. Transforming microbial genotyping: a robotic pipeline for genotyping bacterial strains.

    PubMed

    O'Farrell, Brian; Haase, Jana K; Velayudhan, Vimalkumar; Murphy, Ronan A; Achtman, Mark

    2012-01-01

    Microbial genotyping increasingly deals with large numbers of samples, and data are commonly evaluated by unstructured approaches, such as spread-sheets. The efficiency, reliability and throughput of genotyping would benefit from the automation of manual manipulations within the context of sophisticated data storage. We developed a medium- throughput genotyping pipeline for MultiLocus Sequence Typing (MLST) of bacterial pathogens. This pipeline was implemented through a combination of four automated liquid handling systems, a Laboratory Information Management System (LIMS) consisting of a variety of dedicated commercial operating systems and programs, including a Sample Management System, plus numerous Python scripts. All tubes and microwell racks were bar-coded and their locations and status were recorded in the LIMS. We also created a hierarchical set of items that could be used to represent bacterial species, their products and experiments. The LIMS allowed reliable, semi-automated, traceable bacterial genotyping from initial single colony isolation and sub-cultivation through DNA extraction and normalization to PCRs, sequencing and MLST sequence trace evaluation. We also describe robotic sequencing to facilitate cherrypicking of sequence dropouts. This pipeline is user-friendly, with a throughput of 96 strains within 10 working days at a total cost of < €25 per strain. Since developing this pipeline, >200,000 items were processed by two to three people. Our sophisticated automated pipeline can be implemented by a small microbiology group without extensive external support, and provides a general framework for semi-automated bacterial genotyping of large numbers of samples at low cost.

  12. Transforming Microbial Genotyping: A Robotic Pipeline for Genotyping Bacterial Strains

    PubMed Central

    Velayudhan, Vimalkumar; Murphy, Ronan A.; Achtman, Mark

    2012-01-01

    Microbial genotyping increasingly deals with large numbers of samples, and data are commonly evaluated by unstructured approaches, such as spread-sheets. The efficiency, reliability and throughput of genotyping would benefit from the automation of manual manipulations within the context of sophisticated data storage. We developed a medium- throughput genotyping pipeline for MultiLocus Sequence Typing (MLST) of bacterial pathogens. This pipeline was implemented through a combination of four automated liquid handling systems, a Laboratory Information Management System (LIMS) consisting of a variety of dedicated commercial operating systems and programs, including a Sample Management System, plus numerous Python scripts. All tubes and microwell racks were bar-coded and their locations and status were recorded in the LIMS. We also created a hierarchical set of items that could be used to represent bacterial species, their products and experiments. The LIMS allowed reliable, semi-automated, traceable bacterial genotyping from initial single colony isolation and sub-cultivation through DNA extraction and normalization to PCRs, sequencing and MLST sequence trace evaluation. We also describe robotic sequencing to facilitate cherrypicking of sequence dropouts. This pipeline is user-friendly, with a throughput of 96 strains within 10 working days at a total cost of < €25 per strain. Since developing this pipeline, >200,000 items were processed by two to three people. Our sophisticated automated pipeline can be implemented by a small microbiology group without extensive external support, and provides a general framework for semi-automated bacterial genotyping of large numbers of samples at low cost. PMID:23144721

  13. Evaluation of Iranian microbiology laboratories for identification of etiologic agents of bacterial meningitidis. Survey results of an external quality assessment scheme (EQAS) programme.

    PubMed

    Marandi, Farinaz Rashed; Rahbar, Mohammad; Sabourian, Roghieh; Saremi, Mahnaz

    2010-01-01

    To determine the ability of Iranian microbiology laboratories for identification and susceptibility testing of Streptococcus pneumoniae and Haemophilus influenzae as causative agents of bacterial meningitides. Two strains of bacteria including Haemophilus influenzae and Streptococcus pneumoniae as a common causative agents of meningitides were chosen and coded as strain number 1 and number 2. The strains were distributed among 679 microbiology laboratories. All laboratories were requested for identification of each unknown microorganism and susceptibility testing of S. pneumoniae against five commonly used antibiotics. Of 679 microbiology laboratories 310 (46%) laboratories participated in the survey and among these, 258 laboratories completely identified S. pneumoniae. About 85% laboratories produced correct susceptibility testing against oxacillin, erythromycin, tetracycline, and vancomycin. Of 310 received responses only 50 laboratories identified H. influenza correctly. The majority of the laboratories did not have the capacity to identification H. influenza. Microbiology laboratories in our country are qualified for identification and susceptibility testing of S. pneumoniae. However, majority of laboratories are not qualified for identification of H. influenzae.

  14. Live Attenuated Influenza Vaccine Enhances Colonization of Streptococcus pneumoniae and Staphylococcus aureus in Mice

    PubMed Central

    Mina, Michael J.; McCullers, Jonathan A.; Klugman, Keith P.

    2014-01-01

    ABSTRACT Community interactions at mucosal surfaces between viruses, like influenza virus, and respiratory bacterial pathogens are important contributors toward pathogenesis of bacterial disease. What has not been considered is the natural extension of these interactions to live attenuated immunizations, and in particular, live attenuated influenza vaccines (LAIVs). Using a mouse-adapted LAIV against influenza A (H3N2) virus carrying the same mutations as the human FluMist vaccine, we find that LAIV vaccination reverses normal bacterial clearance from the nasopharynx and significantly increases bacterial carriage densities of the clinically important bacterial pathogens Streptococcus pneumoniae (serotypes 19F and 7F) and Staphylococcus aureus (strains Newman and Wright) within the upper respiratory tract of mice. Vaccination with LAIV also resulted in 2- to 5-fold increases in mean durations of bacterial carriage. Furthermore, we show that the increases in carriage density and duration were nearly identical in all aspects to changes in bacterial colonizing dynamics following infection with wild-type (WT) influenza virus. Importantly, LAIV, unlike WT influenza viruses, had no effect on severe bacterial disease or mortality within the lower respiratory tract. Our findings are, to the best of our knowledge, the first to demonstrate that vaccination with a live attenuated viral vaccine can directly modulate colonizing dynamics of important and unrelated human bacterial pathogens, and does so in a manner highly analogous to that seen following wild-type virus infection. PMID:24549845

  15. [Co-occurence of indol-producing bacterial strains in the vagina of women infected with Chlamydia trachomatis].

    PubMed

    Romanik, Małgorzata; Martirosian, Gayane; Wojciechowska-Wieja, Anna; Cieślik, Katarzyna; Kaźmierczak, Wojciech

    2007-08-01

    The aim of this study was to determine if cervicitis, caused by Chlamydia trachomatis (C. trachomatis), has an influence on the frequency of occurrence of selected aerobic and anaerobic bacterial strains, connected with etiology of aerobic vaginitis (AV) and bacterial vaginosis (BV). Indole-producing bacteria have received particular attention due to their possibly inductive role in chronic cervicitis caused by C. trachomatis. The swabs from vagina and cervical canal have been obtained from 122 women (aged 18-40). The presence of C. trachomatis antigen had been detected and diagnosed with the help of direct immunofluorescence, BV with Amesl and Nugent criteria, whereas the AV with Donders criteria. The identification of the bacterial strains isolated from vagina has been performed according to classical microbiological diagnostics. Disruption of vaginal microflora (4-10 in Nugent score) was determined in 11,5% of observed women. AV was diagnosed in 4.5% women with chlamydial cervicitis, BV was diagnosed in 10.9% and 5.45% of these women, on the basis of Amsel and Nugent criteria respectively. Indole-producing bacterial strains connected with BV and AV (Peptostreptococcus anaerobius, Propionibacterium acnes, Escherichia coli) have been isolated significantly more often from vagina of women infected with C trachomatis (p = 0.0405, chi2 = 4.20) and these findings confirm co-importance of indole-producing bacterial strains in cervicitis caused by C trachomatis .

  16. Streptococcus gordonii LuxS/autoinducer-2 quorum-sensing system modulates the dual-species biofilm formation with Streptococcus mutans.

    PubMed

    Wang, Xiao; Li, Xiaolan; Ling, Junqi

    2017-07-01

    Dental plaques are mixed-species biofilms that are related to the development of dental caries. Streptococcus mutans (S. mutans) is an important cariogenic bacterium that forms mixed-species biofilms with Streptococcus gordonii (S. gordonii), an early colonizer of the tooth surface. The LuxS/autoinducer-2(AI-2) quorum sensing system is involved in the regulation of mixed-species biofilms, and AI-2 is proposed as a universal signal for the interaction between bacterial species. In this work, a S. gordonii luxS deficient strain was constructed to investigate the effect of the S. gordonii luxS gene on dual-species biofilm formed by S. mutans and S. gordonii. In addition, AI-2 was synthesized in vitro by incubating recombinant LuxS and Pfs enzymes of S. gordonii together. The effect of AI-2 on S. mutans single-species biofilm formation and cariogenic virulence gene expression were also assessed. The results showed that luxS disruption in S. gordonii altered dual-species biofilm formation, architecture, and composition, as well as the susceptibility to chlorhexidine. And the in vitro synthesized AI-2 had a concentration-dependent effect on S. mutans biofilm formation and virulence gene expression. These findings indicate that LuxS/AI-2 quorum-sensing system of S. gordonii plays a role in regulating the dual-species biofilm formation with S. mutans. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Gene Repertoire Evolution of Streptococcus pyogenes Inferred from Phylogenomic Analysis with Streptococcus canis and Streptococcus dysgalactiae

    PubMed Central

    Lefébure, Tristan; Richards, Vince P.; Lang, Ping; Pavinski-Bitar, Paulina; Stanhope, Michael J.

    2012-01-01

    Streptococcus pyogenes, is an important human pathogen classified within the pyogenic group of streptococci, exclusively adapted to the human host. Our goal was to employ a comparative evolutionary approach to better understand the genomic events concomitant with S. pyogenes human adaptation. As part of ascertaining these events, we sequenced the genome of one of the potential sister species, the agricultural pathogen S. canis, and combined it in a comparative genomics reconciliation analysis with two other closely related species, Streptococcus dysgalactiae and Streptococcus equi, to determine the genes that were gained and lost during S. pyogenes evolution. Genome wide phylogenetic analyses involving 15 Streptococcus species provided convincing support for a clade of S. equi, S. pyogenes, S. dysgalactiae, and S. canis and suggested that the most likely S. pyogenes sister species was S. dysgalactiae. The reconciliation analysis identified 113 genes that were gained on the lineage leading to S. pyogenes. Almost half (46%) of these gained genes were phage associated and 14 showed significant matches to experimentally verified bacteria virulence factors. Subsequent to the origin of S. pyogenes, over half of the phage associated genes were involved in 90 different LGT events, mostly involving different strains of S. pyogenes, but with a high proportion involving the horse specific pathogen S. equi subsp. equi, with the directionality almost exclusively (86%) in the S. pyogenes to S. equi direction. Streptococcus agalactiae appears to have played an important role in the evolution of S. pyogenes with a high proportion of LGTs originating from this species. Overall the analysis suggests that S. pyogenes adaptation to the human host was achieved in part by (i) the integration of new virulence factors (e.g. speB, and the sal locus) and (ii) the construction of new regulation networks (e.g. rgg, and to some extent speB). PMID:22666370

  18. AtlA Mediates Extracellular DNA Release, Which Contributes to Streptococcus mutans Biofilm Formation in an Experimental Rat Model of Infective Endocarditis.

    PubMed

    Jung, Chiau-Jing; Hsu, Ron-Bin; Shun, Chia-Tung; Hsu, Chih-Chieh; Chia, Jean-San

    2017-09-01

    Host factors, such as platelets, have been shown to enhance biofilm formation by oral commensal streptococci, inducing infective endocarditis (IE), but how bacterial components contribute to biofilm formation in vivo is still not clear. We demonstrated previously that an isogenic mutant strain of Streptococcus mutans deficient in autolysin AtlA (Δ atlA ) showed a reduced ability to cause vegetation in a rat model of bacterial endocarditis. However, the role of AtlA in bacterial biofilm formation is unclear. In this study, confocal laser scanning microscopy analysis showed that extracellular DNA (eDNA) was embedded in S. mutans GS5 floes during biofilm formation on damaged heart valves, but an Δ atlA strain could not form bacterial aggregates. Semiquantification of eDNA by PCR with bacterial 16S rRNA primers demonstrated that the Δ atlA mutant strain produced dramatically less eDNA than the wild type. Similar results were observed with in vitro biofilm models. The addition of polyanethol sulfonate, a chemical lysis inhibitor, revealed that eDNA release mediated by bacterial cell lysis is required for biofilm initiation and maturation in the wild-type strain. Supplementation of cultures with calcium ions reduced wild-type growth but increased eDNA release and biofilm mass. The effect of calcium ions on biofilm formation was abolished in Δ atlA cultures and by the addition of polyanethol sulfonate. The VicK sensor, but not CiaH, was found to be required for the induction of eDNA release or the stimulation of biofilm formation by calcium ions. These data suggest that calcium ion-regulated AtlA maturation mediates the release of eDNA by S. mutans , which contributes to biofilm formation in infective endocarditis. Copyright © 2017 American Society for Microbiology.

  19. AtlA Mediates Extracellular DNA Release, Which Contributes to Streptococcus mutans Biofilm Formation in an Experimental Rat Model of Infective Endocarditis

    PubMed Central

    Hsu, Ron-Bin; Shun, Chia-Tung; Hsu, Chih-Chieh

    2017-01-01

    ABSTRACT Host factors, such as platelets, have been shown to enhance biofilm formation by oral commensal streptococci, inducing infective endocarditis (IE), but how bacterial components contribute to biofilm formation in vivo is still not clear. We demonstrated previously that an isogenic mutant strain of Streptococcus mutans deficient in autolysin AtlA (ΔatlA) showed a reduced ability to cause vegetation in a rat model of bacterial endocarditis. However, the role of AtlA in bacterial biofilm formation is unclear. In this study, confocal laser scanning microscopy analysis showed that extracellular DNA (eDNA) was embedded in S. mutans GS5 floes during biofilm formation on damaged heart valves, but an ΔatlA strain could not form bacterial aggregates. Semiquantification of eDNA by PCR with bacterial 16S rRNA primers demonstrated that the ΔatlA mutant strain produced dramatically less eDNA than the wild type. Similar results were observed with in vitro biofilm models. The addition of polyanethol sulfonate, a chemical lysis inhibitor, revealed that eDNA release mediated by bacterial cell lysis is required for biofilm initiation and maturation in the wild-type strain. Supplementation of cultures with calcium ions reduced wild-type growth but increased eDNA release and biofilm mass. The effect of calcium ions on biofilm formation was abolished in ΔatlA cultures and by the addition of polyanethol sulfonate. The VicK sensor, but not CiaH, was found to be required for the induction of eDNA release or the stimulation of biofilm formation by calcium ions. These data suggest that calcium ion-regulated AtlA maturation mediates the release of eDNA by S. mutans, which contributes to biofilm formation in infective endocarditis. PMID:28674029

  20. [Streptococcus suis infection--clinical manifestations].

    PubMed

    Dragojlović, Julijana; Milosević, Branko; Sasić, Neda; Pelemis, Mijomir; Sasić, Milan

    2005-01-01

    Streptococcus suis is a bacterium causing a disease in pigs and rarely in humans. This zoonosis is mostly found as a sporadic disease in individuals that were in contact with the affected or infected pigs: farmers, veterinarians and workers engaged in fresh pork processing. It is assumed that the bacterium enters the body through a cut abrasion in the skin. Initially, the condition resembles a flu, followed by signs of bacteriemia and sepsis. The most frequent clinical manifestation of Streptococcus suis infection is meningitis, leading to hearing loss in over 75% of patients, and subsequent arthritis, endophtalmitis, endocarditis and pneumonia. Toxic shock syndrome with hemorhagic manifestations rarely develops. This study included five male patients aged 22 to 63 years treated in the Intensive Care Unit of the Institute of Infectious and Tropical Diseases in Belgrade, due to Streptococcus suis infection. The aim of this study was to point to the existence of this bacteria in our environment, to describe clinical manifestations of the disease and to point out the importance of its prevention. All patients had epidemiological evidence of being in contact with pork meat. There were no data about diseased pigs. The estimated incubation period was 4 to 8 days. All patients had meningeal signs. Clinical symptoms included shivering, fever, vomiting, headache, malaise, vertigo and tinitus. Three patients presented with alerterd level of awarrness. Four patients developed very severe bilateral hearing impairment, whereas one endophtalmtis and one developed endocarditis. The cerebrospinal fluid (CSF) was opalescent in four patients, and only one patient presented with clear CSF. CSF examination showed typical changes characteristic for bacterial meningitis. Streptoccocus suis was isolated in CSF in all patients, and in one patient the bacteria was isolated in blood as well. All patients underwent treatement with II and III generation cephalosporins and one with one

  1. Streptococcus pyogenes meningitis: report of a case and review of the literature.

    PubMed

    Berner, R; Herdeg, S; Gordjani, N; Brandis, M

    2000-07-01

    Streptococcus pyogenes is a very uncommon cause of bacterial meningitis beyond the neonatal period. A case report and a review of the recent literature is presented. We report on a previously healthy 7-year-old boy who developed S. pyogenes meningitis following a 2-day history of otitis media. A CT scan revealed right-sided mastoiditis as a possible focus of infection. The patient was treated with penicillin G for 14 days. The clinical course was uneventful, and the recovered without sequelae. By means of the polymerase chain reaction, the presence of streptococcal pyrogenic exotoxin (SPE) B and SPE C, but not SPE A genes was discovered from the bacterial DNA. Streptococcus pyogenes is a rare cause of bacterial meningitis but has to be considered as the causative pathogen beyond the neonatal period.

  2. Natural Immunoreactivity of Secretory IgA to Indigenous Strains of Streptococcus mutans From Chinese Spousal Pairs

    PubMed Central

    Nie, Min; Chen, Dong; Gao, Zhenyan; Wu, Xinyu; Li, Tong

    2016-01-01

    Background Dental caries is a well-known biofilm-mediated disease initiated by Streptococcus mutans, which should infect and colonize in a milieu perfused with components of the mucosal immune system. Little is known, however, regarding the relationship between the natural secretory IgA activity and S. mutans of a variety of diverse genotypes. Objectives The current study aimed to use spousal pairs to investigate the natural immunoreactivity of salivary secretory IgA to different genotype strains of S. mutans. Patients and Methods Indigenous strains were characterized from nine spousal pairs using polymerase reaction chain (PCR) and arbitrarily primed polymerase chain reaction (AP-PCR) by genotype monitoring. Unstimulated submandibular/sublingual secretions were collected and the concentrations of secretory IgA were determined by the enzyme-linked immunosorbent assay (ELISA). Each saliva sample was examined by Western blot to analyze the immunoreactivity of naturally occurring salivary secretory IgA antibodies for his/her own indigenous strain, spouse’s strain and reference strains including S. mutans GS-5 and Ingbritt (C). Results The results showed that naturally induced salivary IgA antibodies against S. mutans were present in all subjects. Almost all subjects had the similar individual immunoblotting profiles to different genotype strains. Conclusions The current study indicated that the immunoreactivity of secretory IgA might have no direct correlation with the colonization of indigenous flora and rejection of exogenous strains in adults. The relationship of microbes, host and dental caries should be in the light of coevolved microecosystem as a whole, but not caused by one factor alone. PMID:27303613

  3. Molecular and Biochemical Analysis of the Galactose Phenotype of Dairy Streptococcus thermophilus Strains Reveals Four Different Fermentation Profiles

    PubMed Central

    de Vin, Filip; Rådström, Peter; Herman, Lieve; De Vuyst, Luc

    2005-01-01

    Lactose-limited fermentations of 49 dairy Streptococcus thermophilus strains revealed four distinct fermentation profiles with respect to galactose consumption after lactose depletion. All the strains excreted galactose into the medium during growth on lactose, except for strain IMDOST40, which also displayed extremely high galactokinase (GalK) activity. Among this strain collection eight galactose-positive phenotypes sensu stricto were found and their fermentation characteristics and Leloir enzyme activities were measured. As the gal promoter seems to play an important role in the galactose phenotype, the galR-galK intergenic region was sequenced for all strains yielding eight different nucleotide sequences (NS1 to NS8). The gal promoter played an important role in the Gal-positive phenotype but did not determine it exclusively. Although GalT and GalE activities were detected for all Gal-positive strains, GalK activity could only be detected for two out of eight Gal-positive strains. This finding suggests that the other six S. thermophilus strains metabolize galactose via an alternative route. For each type of fermentation profile obtained, a representative strain was chosen and four complete Leloir gene clusters were sequenced. It turned out that Gal-positive strains contained more amino acid differences within their gal genes than Gal-negative strains. Finally, the biodiversity regarding lactose-galactose utilization among the different S. thermophilus strains used in this study was shown by RAPD-PCR. Five Gal-positive strains that contain nucleotide sequence NS2 in their galR-galK intergenic region were closely related. PMID:16000774

  4. Interactions between oral bacteria: inhibition of Streptococcus mutans bacteriocin production by Streptococcus gordonii.

    PubMed

    Wang, Bing-Yan; Kuramitsu, Howard K

    2005-01-01

    Streptococcus mutans has been recognized as an important etiological agent in human dental caries. Some strains of S. mutans also produce bacteriocins. In this study, we sought to demonstrate that bacteriocin production by S. mutans strains GS5 and BM71 was mediated by quorum sensing, which is dependent on a competence-stimulating peptide (CSP) signaling system encoded by the com genes. We also demonstrated that interactions with some other oral streptococci interfered with S. mutans bacteriocin production both in broth and in biofilms. The inhibition of S. mutans bacteriocin production by oral bacteria was stronger in biofilms than in broth. Using transposon Tn916 mutagenesis, we identified a gene (sgc; named for Streptococcus gordonii challisin) responsible for the inhibition of S. mutans bacteriocin production by S. gordonii Challis. Interruption of the sgc gene in S. gordonii Challis resulted in attenuated inhibition of S. mutans bacteriocin production. The supernatant fluids from the sgc mutant did not inactivate the exogenous S. mutans CSP as did those from the parent strain Challis. S. gordonii Challis did not inactivate bacteriocin produced by S. mutans GS5. Because S. mutans uses quorum sensing to regulate virulence, strategies designed to interfere with these signaling systems may have broad applicability for biological control of this caries-causing organism.

  5. Comparative genomics and the role of lateral gene transfer in the evolution of bovine adapted Streptococcus agalactiae

    PubMed Central

    Richards, Vincent P.; Lang, Ping; Pavinski Bitar, Paulina D.; Lefébure, Tristan; Schukken, Ynte H.; Zadoks, Ruth N.; Stanhope, Michael J.

    2011-01-01

    In addition to causing severe invasive infections in humans, Streptococcus agalactiae, or group B Streptococcus (GBS), is also a major cause of bovine mastitis. Here we provide the first genome sequence for S. agalactiae isolated from a cow diagnosed with clinical mastitis (strain FSL S3-026). Comparison to eight S. agalactiae genomes obtained from human disease isolates revealed 183 genes specific to the bovine strain. Subsequent polymerase chain reaction (PCR) screening for the presence/absence of a subset of these loci in additional bovine and human strains revealed strong differentiation between the two groups (Fisher exact test: p < 0.0001). The majority of the bovine strain-specific genes (~85%) clustered tightly into eight genomic islands, suggesting these genes were acquired through lateral gene transfer (LGT). This bovine GBS also contained an unusually high proportion of insertion sequences (4.3% of the total genome), suggesting frequent genomic rearrangement. Comparison to other mastitis-causing species of bacteria provided strong evidence for two cases of interspecies LGT within the shared bovine environment: bovine S. agalactiae with Streptococcus uberis (nisin U operon) and Streptococcus dysgalactiae subsp. dysgalactiae (lactose operon). We also found evidence for LGT, involving the salivaricin operon, between the bovine S. agalactiae strain and either Streptococcus pyogenes or Streptococcus salivarius. Our findings provide insight intomechanismsfacilitatingenvironmentaladaptationandacquisitionofpotential virulence factors, while highlighting both the key role LGT has played in the recent evolution of the bovine S. agalactiae strain, and the importance of LGT among pathogens within a shared environment. PMID:21536150

  6. Detection of Haemophilus influenzae type b, Streptococcus agalactiae, Streptococcus pneumoniae and Neisseria meningitidis in CSF specimens of children suspicious of Meningitis in Ahvaz, Iran.

    PubMed

    Amin, Mansour; Ghaderpanah, Mozhgan; Navidifar, Tahereh

    2016-10-01

    Meningitis is a life-threatening infection associated with a high mortality and morbidity worldwide. Neisseria meningitidis, Haemophilus influenzae, and Streptococcus pneumoniae are the most prevalent infectious agents that cause bacterial meningitis (BM). The objective of this study was to determine the frequencies of these three bacteria using bacterial cultures and polymerase chain reaction (PCR). In our cross-sectional study, cerebrospinal fluid (CSF) specimens were obtained from 196 patients who were suspected of having BM and referred to the pediatric ward of Abuzar Hospital (Ahvaz, Iran). The samples were monitored by gram stain, cultures, and the PCR method. The patients' age mean was 23 ± 0.56 months. The 196 patients comprised 92 (46.9%) boys and 104 (53.06%) girls. Based on bacterial cultures, just three isolates of H. influenzae were detected. However, PCR detected this bacterium in eight patients. Streptococcus pneumoniae was detected in five (2.5%) patients by the amplification of the lytA gene and in one (0.5%) patient by ply. In this study, no N. meningitidis isolate was in the CSF samples, based on the bacterial culture or PCR results. Streptococcus agalactiae was detected only in one patient, based on PCR. In conclusion, in the present study, the PCR method was more sensitive and rapid than culture for detecting the infectious agents in BM. For this reason, this diagnosis method is recommended for BM. Copyright © 2016. Published by Elsevier Taiwan.

  7. Biodegradation of Diclofenac by the bacterial strain Labrys portucalensis F11.

    PubMed

    Moreira, Irina S; Bessa, Vânia S; Murgolo, Sapia; Piccirillo, Clara; Mascolo, Giuseppe; Castro, Paula M L

    2018-05-15

    Diclofenac (DCF) is a widely used non-steroidal anti-inflammatory pharmaceutical which is detected in the environment at concentrations which can pose a threat to living organisms. In this study, biodegradation of DCF was assessed using the bacterial strain Labrys portucalensis F11. Biotransformation of 70% of DCF (1.7-34 μM), supplied as the sole carbon source, was achieved in 30 days. Complete degradation was reached via co-metabolism with acetate, over a period of 6 days for 1.7 µM and 25 days for 34 μM of DCF. The detection and identification of biodegradation intermediates was performed by UPLC-QTOF/MS/MS. The chemical structure of 12 metabolites is proposed. DCF degradation by strain F11 proceeds mainly by hydroxylation reactions; the formation of benzoquinone imine species seems to be a central step in the degradation pathway. Moreover, this is the first report that identified conjugated metabolites, resulting from sulfation reactions of DCF by bacteria. Stoichiometric liberation of chlorine and no detection of metabolites at the end of the experiments are strong indications of complete degradation of DCF by strain F11. To the best of our knowledge this is the first report that points to complete degradation of DCF by a single bacterial strain isolated from the environment. Copyright © 2018 Elsevier Inc. All rights reserved.

  8. Combination Therapy Strategies Against Multiple-Resistant Streptococcus Suis.

    PubMed

    Yu, Yang; Fang, Jin-Tao; Zheng, Mei; Zhang, Qing; Walsh, Timothy R; Liao, Xiao-Ping; Sun, Jian; Liu, Ya-Hong

    2018-01-01

    Streptococcus suis is a major swine pathogen, an emerging zoonotic agent responsible for meningitis, endocarditis and septicaemia followed by deafness in humans. The development of antimicrobial resistance in S. suis increases the risk for therapeutic failure in both animals and humans. In this study, we report the synergism of combination therapy against multi-resistant S. suis isolates from swine. Twelve antibiotic profiles were determined against 11 S. suis strains. To investigate their synergistic/antagonistic activity, checkerboard assay was performed for all the possible combinations. In-vitro killing curves and in-vivo treatment trials were used to confirm the synergistic activity of special combinations against S. suis dominant clones. In this study, 11 S. suis isolates were highly resistant to erythromycin, clindamycin, trimethoprim/sulfamethoxazole, and tetracycline with ratios of 80-100%, and the resistance percentages to enrofloxacin, florfenicol, and spectinomycin were ~50%. The checkerboard data identified two combination regimens, ampicillin plus apramycin and tiamulin plus spectinomycin which gave the greatest level of synergism against the S. suis strains. In-vitro kill-curves showed a bacterial reduction of over 3-logCFU with the use of combination treatments, whilst the application of mono-therapies achieve less than a 2-logCFU cell killing. In-vivo models confirm that administration of these two combinations significantly reduced the number of bacterial cells after 24 h of treatment. In conclusions, the combinations of ampicillin plus apramycin and tiamulin plus spectinomycin showed the greatest synergism and may be potential strategies for treatment of multi-resistant S. suis in animal.

  9. Comparative Genomics Analysis of Streptococcus Isolates from the Human Small Intestine Reveals their Adaptation to a Highly Dynamic Ecosystem

    PubMed Central

    Van den Bogert, Bartholomeus; Boekhorst, Jos; Herrmann, Ruth; Smid, Eddy J.; Zoetendal, Erwin G.; Kleerebezem, Michiel

    2013-01-01

    The human small-intestinal microbiota is characterised by relatively large and dynamic Streptococcus populations. In this study, genome sequences of small-intestinal streptococci from S. mitis, S. bovis, and S. salivarius species-groups were determined and compared with those from 58 Streptococcus strains in public databases. The Streptococcus pangenome consists of 12,403 orthologous groups of which 574 are shared among all sequenced streptococci and are defined as the Streptococcus core genome. Genome mining of the small-intestinal streptococci focused on functions playing an important role in the interaction of these streptococci in the small-intestinal ecosystem, including natural competence and nutrient-transport and metabolism. Analysis of the small-intestinal Streptococcus genomes predicts a high capacity to synthesize amino acids and various vitamins as well as substantial divergence in their carbohydrate transport and metabolic capacities, which is in agreement with observed physiological differences between these Streptococcus strains. Gene-specific PCR-strategies enabled evaluation of conservation of Streptococcus populations in intestinal samples from different human individuals, revealing that the S. salivarius strains were frequently detected in the small-intestine microbiota, supporting the representative value of the genomes provided in this study. Finally, the Streptococcus genomes allow prediction of the effect of dietary substances on Streptococcus population dynamics in the human small-intestine. PMID:24386196

  10. Differential Recognition and Hydrolysis of Host Carbohydrate Antigens by Streptococcus pneumoniae Family 98 Glycoside Hydrolases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Higgins, M.; Whitworth, G; El Warry, N

    2009-01-01

    The presence of a fucose utilization operon in the Streptococcus pneumoniae genome and its established importance in virulence indicates a reliance of this bacterium on the harvesting of host fucose-containing glycans. The identities of these glycans, however, and how they are harvested is presently unknown. The biochemical and high resolution x-ray crystallographic analysis of two family 98 glycoside hydrolases (GH98s) from distinctive forms of the fucose utilization operon that originate from different S. pneumoniae strains reveal that one enzyme, the predominant type among pneumococcal isolates, has a unique endo-{beta}-galactosidase activity on the LewisY antigen. Altered active site topography in themore » other species of GH98 enzyme tune its endo-{beta}-galactosidase activity to the blood group A and B antigens. Despite their different specificities, these enzymes, and by extension all family 98 glycoside hydrolases, use an inverting catalytic mechanism. Many bacterial and viral pathogens exploit host carbohydrate antigens for adherence as a precursor to colonization or infection. However, this is the first evidence of bacterial endoglycosidase enzymes that are known to play a role in virulence and are specific for distinct host carbohydrate antigens. The strain-specific distribution of two distinct types of GH98 enzymes further suggests that S. pneumoniae strains may specialize to exploit host-specific antigens that vary from host to host, a factor that may feature in whether a strain is capable of colonizing a host or establishing an invasive infection.« less

  11. Purification of preparative quantities of group B Streptococcus type III oligosaccharides.

    PubMed

    Paoletti, L C; Johnson, K D

    1995-06-30

    Many bacterial capsular polysaccharides are regularly repeating units of oligosaccharides. Bacterial oligosaccharides have been used in neoglycoconjugate vaccines and as reagents in the study of specific antibody binding. Unfortunately, separation methods have not been adequate for the purification of preparative quantities of bacterial oligosaccharides. Here we describe a size-exclusion procedure that resulted in the resolution of group B Streptococcus type III oligosaccharides composed of 4-25 sugars.

  12. Functional and structural properties of a novel protein and virulence factor (Protein sHIP) in Streptococcus pyogenes.

    PubMed

    Wisniewska, Magdalena; Happonen, Lotta; Kahn, Fredrik; Varjosalo, Markku; Malmström, Lars; Rosenberger, George; Karlsson, Christofer; Cazzamali, Giuseppe; Pozdnyakova, Irina; Frick, Inga-Maria; Björck, Lars; Streicher, Werner; Malmström, Johan; Wikström, Mats

    2014-06-27

    Streptococcus pyogenes is a significant bacterial pathogen in the human population. The importance of virulence factors for the survival and colonization of S. pyogenes is well established, and many of these factors are exposed to the extracellular environment, enabling bacterial interactions with the host. In the present study, we quantitatively analyzed and compared S. pyogenes proteins in the growth medium of a strain that is virulent to mice with a non-virulent strain. Particularly, one of these proteins was present at significantly higher levels in stationary growth medium from the virulent strain. We determined the three-dimensional structure of the protein that showed a unique tetrameric organization composed of four helix-loop-helix motifs. Affinity pull-down mass spectrometry analysis in human plasma demonstrated that the protein interacts with histidine-rich glycoprotein (HRG), and the name sHIP (streptococcal histidine-rich glycoprotein-interacting protein) is therefore proposed. HRG has antibacterial activity, and when challenged by HRG, sHIP was found to rescue S. pyogenes bacteria. This and the finding that patients with invasive S. pyogenes infection respond with antibody production against sHIP suggest a role for the protein in S. pyogenes pathogenesis. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  13. The Adc/Lmb System Mediates Zinc Acquisition in Streptococcus agalactiae and Contributes to Bacterial Growth and Survival.

    PubMed

    Moulin, Pauline; Patron, Kévin; Cano, Camille; Zorgani, Mohamed Amine; Camiade, Emilie; Borezée-Durant, Elise; Rosenau, Agnès; Mereghetti, Laurent; Hiron, Aurélia

    2016-12-15

    The Lmb protein of Streptococcus agalactiae is described as an adhesin that binds laminin, a component of the human extracellular matrix. In this study, we revealed a new role for this protein in zinc uptake. We also identified two Lmb homologs, AdcA and AdcAII, redundant binding proteins that combine with the AdcCB translocon to form a zinc-ABC transporter. Expression of this transporter is controlled by the zinc concentration in the medium through the zinc-dependent regulator AdcR. Triple deletion of lmb, adcA, and adcAII, or that of the adcCB genes, impaired growth and cell separation in a zinc-restricted environment. Moreover, we found that this Adc zinc-ABC transporter promotes S. agalactiae growth and survival in some human biological fluids, suggesting that it contributes to the infection process. These results indicated that zinc has biologically vital functions in S. agalactiae and that, under the conditions tested, the Adc/Lmb transporter constitutes the main zinc acquisition system of the bacterium. A zinc transporter, composed of three redundant binding proteins (Lmb, AdcA, and AdcAII), was characterized in Streptococcus agalactiae This system was shown to be essential for bacterial growth and morphology in zinc-restricted environments, including human biological fluids. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  14. CRISPR interference can prevent natural transformation and virulence acquisition during in vivo bacterial infection.

    PubMed

    Bikard, David; Hatoum-Aslan, Asma; Mucida, Daniel; Marraffini, Luciano A

    2012-08-16

    Pathogenic bacterial strains emerge largely due to transfer of virulence and antimicrobial resistance genes between bacteria, a process known as horizontal gene transfer (HGT). Clustered, regularly interspaced, short palindromic repeat (CRISPR) loci of bacteria and archaea encode a sequence-specific defense mechanism against bacteriophages and constitute a programmable barrier to HGT. However, the impact of CRISPRs on the emergence of virulence is unknown. We programmed the human pathogen Streptococcus pneumoniae with CRISPR sequences that target capsule genes, an essential pneumococcal virulence factor, and show that CRISPR interference can prevent transformation of nonencapsulated, avirulent pneumococci into capsulated, virulent strains during infection in mice. Further, at low frequencies bacteria can lose CRISPR function, acquire capsule genes, and mount a successful infection. These results demonstrate that CRISPR interference can prevent the emergence of virulence in vivo and that strong selective pressure for virulence or antibiotic resistance can lead to CRISPR loss in bacterial pathogens. Copyright © 2012 Elsevier Inc. All rights reserved.

  15. Sequence Elements Upstream of the Core Promoter Are Necessary for Full Transcription of the Capsule Gene Operon in Streptococcus pneumoniae Strain D39

    PubMed Central

    Wen, Zhensong; Sertil, Odeniel; Cheng, Yongxin; Zhang, Shanshan; Liu, Xue; Wang, Wen-Ching

    2015-01-01

    Streptococcus pneumoniae is a major bacterial pathogen in humans. Its polysaccharide capsule is a key virulence factor that promotes bacterial evasion of human phagocytic killing. While S. pneumoniae produces at least 94 antigenically different types of capsule, the genes for biosynthesis of almost all capsular types are arranged in the same locus. The transcription of the capsular polysaccharide (cps) locus is not well understood. This study determined the transcriptional features of the cps locus in the type 2 virulent strain D39. The initial analysis revealed that the cps genes are cotranscribed from a major transcription start site at the −25 nucleotide (G) upstream of cps2A, the first gene in the locus. Using unmarked chromosomal truncations and a luciferase-based transcriptional reporter, we showed that the full transcription of the cps genes not only depends on the core promoter immediately upstream of cps2A, but also requires additional elements upstream of the core promoter, particularly a 59-bp sequence immediately upstream of the core promoter. Unmarked deletions of these promoter elements in the D39 genome also led to significant reduction in CPS production and virulence in mice. Lastly, common cps gene (cps2ABCD) mutants did not show significant abnormality in cps transcription, although they produced significantly less CPS, indicating that the CpsABCD proteins are involved in the encapsulation of S. pneumoniae in a posttranscriptional manner. This study has yielded important information on the transcriptional characteristics of the cps locus in S. pneumoniae. PMID:25733517

  16. Devitalization of bacterial and parasitic germs in sewage sludge during aerobic digestion under laboratory conditions.

    PubMed

    Juris, P; Plachý, P; Lauková, A

    1995-05-01

    The survival of 8 bacterial species (Pseudomonas sp., Salmonella sp., Enterobacteriae, Streptococcus sp., Escherichia coli) was detected in municipal sewage sludge up to 37 hours of mesophilic aerobic digestion under laboratory conditions. The model strain Enterococcus faecium CCM 4231 survived almost twice as long as the above-mentioned isolates. Similar findings, regarding the viability of the microorganisms studied, were also determined during thermophilic aerobic digestion of municipal sewage sludges. The final reduction in the total count of bacteria was not directly dependent on the temperature during aerobic digestion. It may be supposed that E. faecium CCM 4231 strain as a bacteriocin-producing strain with a broad antimicrobial spectrum, inoculated into the sludges, could inhibit the growth of microorganisms in the sludges by the way of its bacteriocin activity. Studying the effect of aerobic digestion on the viability of helminth eggs, the observed negative effect of higher temperatures was more expressive in comparison with bacterial strains. During thermophilic digestion process all helminth eggs (Ascaris suum, Toxocara canis) were devitalized. All eggs of T. canis were killed in experiments under mesophilic temperature. However, 32% of nonembryonated A. suum eggs remained viable.

  17. Mechanisms of Host-Pathogen Protein Complex Formation and Bacterial Immune Evasion of Streptococcus suis Protein Fhb.

    PubMed

    Li, Xueqin; Liu, Peng; Gan, Shuzhen; Zhang, Chunmao; Zheng, Yuling; Jiang, Yongqiang; Yuan, Yuan

    2016-08-12

    Streptococcus suis serotype 2 (S. suis 2)-induced sepsis and meningitis are often accompanied by bacteremia. The evasion of polymorphonuclear leukocyte-mediated phagocytic clearance is central to the establishment of bacteremia caused by S. suis 2 and is facilitated by the ability of factor H (FH)-binding protein (Fhb) to bind FH on the bacterial surface, thereby impeding alternative pathway complement activation and phagocytic clearance. Here, C3b/C3d was found to bind to Fhb, along with FH, forming a large immune complex. The formation of this immune complex was mediated by domain II of Fhb via electrostatic and hydrophobic interactions, which, to our knowledge, is a new type of interaction. Interestingly, Fhb was found to be associated with the cell envelope and also present in the culture supernatant, where secreted Fhb inhibited complement activation via interactions with domain II, thereby enhancing antiphagocytic clearance by polymorphonuclear leukocytes. Thus, Fhb is a multifunctional bacterial protein, which binds host complement component C3 as well as FH and interferes with innate immune recognition in a secret protein manner. S. suis 2 therefore appears to have developed a new strategy to combat host innate immunity and enhance survival in host blood. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  18. Mechanisms of Host-Pathogen Protein Complex Formation and Bacterial Immune Evasion of Streptococcus suis Protein Fhb*

    PubMed Central

    Li, Xueqin; Liu, Peng; Gan, Shuzhen; Zhang, Chunmao; Zheng, Yuling; Jiang, Yongqiang; Yuan, Yuan

    2016-01-01

    Streptococcus suis serotype 2 (S. suis 2)-induced sepsis and meningitis are often accompanied by bacteremia. The evasion of polymorphonuclear leukocyte-mediated phagocytic clearance is central to the establishment of bacteremia caused by S. suis 2 and is facilitated by the ability of factor H (FH)-binding protein (Fhb) to bind FH on the bacterial surface, thereby impeding alternative pathway complement activation and phagocytic clearance. Here, C3b/C3d was found to bind to Fhb, along with FH, forming a large immune complex. The formation of this immune complex was mediated by domain II of Fhb via electrostatic and hydrophobic interactions, which, to our knowledge, is a new type of interaction. Interestingly, Fhb was found to be associated with the cell envelope and also present in the culture supernatant, where secreted Fhb inhibited complement activation via interactions with domain II, thereby enhancing antiphagocytic clearance by polymorphonuclear leukocytes. Thus, Fhb is a multifunctional bacterial protein, which binds host complement component C3 as well as FH and interferes with innate immune recognition in a secret protein manner. S. suis 2 therefore appears to have developed a new strategy to combat host innate immunity and enhance survival in host blood. PMID:27342778

  19. Influence of pH on inhibition of Streptococcus mutans by Streptococcus oligofermentans.

    PubMed

    Liu, Ying; Chu, Lei; Wu, Fei; Guo, Lili; Li, Mengci; Wang, Yinghui; Wu, Ligeng

    2014-02-01

    Streptococcus oligofermentans is a novel strain of oral streptococcus that can specifically inhibit the growth of Streptococcus mutans. The aims of this study were to assess the growth of S. oligofermentans and the ability of S. oligofermentans to inhibit growth of Streptococcus mutans at different pH values. Growth inhibition was investigated in vitro using an interspecies competition assay. The 4-aminoantipyine method was used to measure the initial production rate and the total yield of hydrogen peroxide in S. oligofermentans. S. oligofermentans grew best at pH 7.0 and showed the most pronounced inhibitory effect when it was inoculated earlier than S. mutans. In terms of the total yield and the initial production rate of hydrogen peroxide by S. oligofermentans, the effects of the different culture pH values were as follows: pH 7.0 > 6.5 > 6.0 > 7.5 > 5.5 = 8.0 (i.e. there was no significant difference between pH 5.5 and pH 8.0). Environmental pH and the sequence of inoculation significantly affected the ability of S. oligofermentans to inhibit the growth of S. mutans. The degree of inhibition may be attributed to the amount of hydrogen peroxide produced. © 2013 Eur J Oral Sci.

  20. Capsular Polysaccharide Expression in Commensal Streptococcus Species: Genetic and Antigenic Similarities to Streptococcus pneumoniae

    PubMed Central

    Skov Sørensen, Uffe B.; Yao, Kaihu; Yang, Yonghong; Tettelin, Hervé

    2016-01-01

    ABSTRACT Expression of a capsular polysaccharide is considered a hallmark of most invasive species of bacteria, including Streptococcus pneumoniae, in which the capsule is among the principal virulence factors and is the basis for successful vaccines. Consequently, it was previously assumed that capsule production distinguishes S. pneumoniae from closely related commensals of the mitis group streptococci. Based on antigenic and genetic analyses of 187 mitis group streptococci, including 90 recognized serotypes of S. pneumoniae, we demonstrated capsule production by the Wzy/Wzx pathway in 74% of 66 S. mitis strains and in virtually all tested strains of S. oralis (subspecies oralis, dentisani, and tigurinus) and S. infantis. Additional analyses of genomes of S. cristatus, S. parasanguinis, S. australis, S. sanguinis, S. gordonii, S. anginosus, S. intermedius, and S. constellatus revealed complete capsular biosynthesis (cps) loci in all strains tested. Truncated cps loci were detected in three strains of S. pseudopneumoniae, in 26% of S. mitis strains, and in a single S. oralis strain. The level of sequence identities of cps locus genes confirmed that the structural polymorphism of capsular polysaccharides in S. pneumoniae evolved by import of cps fragments from commensal Streptococcus species, resulting in a mosaic of genes of different origins. The demonstrated antigenic identity of at least eight of the numerous capsular polysaccharide structures expressed by commensal streptococci with recognized serotypes of S. pneumoniae raises concerns about potential misidentifications in addition to important questions concerning the consequences for vaccination and host-parasite relationships both for the commensals and for the pathogen. PMID:27935839

  1. Characterization of multi-drug tolerant persister cells in Streptococcus suis

    PubMed Central

    2014-01-01

    Background Persister cells constitute a subpopulation of dormant cells within a microbial population which are genetically identical but phenotypically different to regular cells. Notably, persister cells show an elevated tolerance to antimicrobial agents. Thus, they are considered to represent a microbial ‘bet-hedging’ strategy and are of particular importance in pathogenic bacteria. Results We studied the ability of the zoonotic pathogen Streptococcus (S.) suis to form multi-drug tolerant variants and identified persister cells dependent on the initial bacterial growth phase. We observed lower numbers of persisters in exponential phase cultures than in stationary growth phase populations. S. suis persister cells showed a high tolerance to a variety of antibiotics, and the phenotype was not inherited as tested with four passages of S. suis populations. Furthermore, we provide evidence that the persister phenotype is related to expression of genes involved in general metabolic pathways since we found higher numbers of persister cells in a mutant strain defective in the catabolic arginine deiminase system as compared to its parental wild type strain. Finally, we observed persister cell formation also in other S. suis strains and pathogenic streptococcal species. Conclusions Taken together, this is the first study that reports multi-drug tolerant persister cells in the zoonotic pathogen S. suis. PMID:24885389

  2. Characterization of multi-drug tolerant persister cells in Streptococcus suis.

    PubMed

    Willenborg, Jörg; Willms, Daniela; Bertram, Ralph; Goethe, Ralph; Valentin-Weigand, Peter

    2014-05-12

    Persister cells constitute a subpopulation of dormant cells within a microbial population which are genetically identical but phenotypically different to regular cells. Notably, persister cells show an elevated tolerance to antimicrobial agents. Thus, they are considered to represent a microbial 'bet-hedging' strategy and are of particular importance in pathogenic bacteria. We studied the ability of the zoonotic pathogen Streptococcus (S.) suis to form multi-drug tolerant variants and identified persister cells dependent on the initial bacterial growth phase. We observed lower numbers of persisters in exponential phase cultures than in stationary growth phase populations. S. suis persister cells showed a high tolerance to a variety of antibiotics, and the phenotype was not inherited as tested with four passages of S. suis populations. Furthermore, we provide evidence that the persister phenotype is related to expression of genes involved in general metabolic pathways since we found higher numbers of persister cells in a mutant strain defective in the catabolic arginine deiminase system as compared to its parental wild type strain. Finally, we observed persister cell formation also in other S. suis strains and pathogenic streptococcal species. Taken together, this is the first study that reports multi-drug tolerant persister cells in the zoonotic pathogen S. suis.

  3. Efficacy and safety of garenoxacin tablets on bacterial pneumonia: postmarketing surveillance in Japan.

    PubMed

    Izumikawa, Koichi; Watanabe, Akira; Miyashita, Naoyuki; Ishida, Tadashi; Hosono, Hiroaki; Kushimoto, Satoru; Kohno, Shigeru

    2014-09-01

    We performed a postmarketing surveillance study to determine the efficacy and safety of the oral quinolone antibacterial agent, garenoxacin (Geninax(®) Tablets 200 mg), against bacterial pneumonia. Between October 2009 and March 2011, patients with community-acquired pneumonia visited 174 facilities in Japan; we collected survey forms from 739 patients of these patients who were suspected with bacterial pneumonia on the basis of factors, e.g., the presence of purulent sputum or suspected presence of bacterial pathogens in clinical specimens. We examined the safety in 730 patients and the efficacy in 535 patients. The efficacy rate of garenoxacin for bacterial pneumonia was 92.8% (479/516 patients). The eradication rates for Streptococcus pneumoniae and Haemophilus influenzae, the major pathogens of bacterial pneumonia, were 98.5% (65/66 strains) and 100% (65/65 strains), respectively. The incidence of adverse drug reactions (including abnormal laboratory tests) was 7.9% (58/730 patients). Among the main adverse drug reactions, abnormal laboratory tests were observed in 2.1% patients (15/730), hepatobiliary disorders were observed in 1.8% patients (13/730), and skin and subcutaneous tissue disorders were observed in 1.6% patients (12/730). In conclusion, garenoxacin showed an efficacy rate of greater than 90% for bacterial pneumonia and is considered to be useful in daily practice. Copyright © 2014 Japanese Society of Chemotherapy and The Japanese Association for Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  4. Discovery of antimicrobial compounds targeting bacterial type FAD synthetases.

    PubMed

    Sebastián, María; Anoz-Carbonell, Ernesto; Gracia, Begoña; Cossio, Pilar; Aínsa, José Antonio; Lans, Isaías; Medina, Milagros

    2018-12-01

    The increase of bacterial strains resistant to most of the available antibiotics shows a need to explore novel antibacterial targets to discover antimicrobial drugs. Bifunctional bacterial FAD synthetases (FADSs) synthesise the flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD). These cofactors act in vital processes as part of flavoproteins, making FADS an essential enzyme. Bacterial FADSs are potential antibacterial targets because of differences to mammalian enzymes, particularly at the FAD producing site. We have optimised an activity-based high throughput screening assay targeting Corynebacterium ammoniagenes FADS (CaFADS) that identifies inhibitors of its different activities. We selected the three best high-performing inhibitors of the FMN:adenylyltransferase activity (FMNAT) and studied their inhibition mechanisms and binding properties. The specificity of the CaFADS hits was evaluated by studying also their effect on the Streptococcus pneumoniae FADS activities, envisaging differences that can be used to discover species-specific antibacterial drugs. The antimicrobial effect of these compounds was also evaluated on C. ammoniagenes, S. pneumoniae, and Mycobacterium tuberculosis cultures, finding hits with favourable antimicrobial properties.

  5. Susceptibility of Porphyromonas gingivalis and Streptococcus mutans to Antibacterial Effect from Mammea americana

    PubMed Central

    Herrera Herrera, Alejandra; Franco Ospina, Luis; Fang, Luis; Díaz Caballero, Antonio

    2014-01-01

    The development of periodontal disease and dental caries is influenced by several factors, such as microorganisms of bacterial biofilm or commensal bacteria in the mouth. These microorganisms trigger inflammatory and immune responses in the host. Currently, medicinal plants are treatment options for these oral diseases. Mammea americana extracts have reported antimicrobial effects against several microorganisms. Nevertheless, this effect is unknown against oral bacteria. Therefore, the aim of this study was to evaluate the antibacterial effect of M. americana extract against Porphyromonas gingivalis and Streptococcus mutans. For this, an experimental study was conducted. Ethanolic extract was obtained from seeds of M. americana (one oil phase and one ethanolic phase). The strains of Porphyromonas gingivalis ATCC 33277 and Streptococcus mutans ATCC 25175 were exposed to this extract to evaluate its antibacterial effect. Antibacterial activity was observed with the two phases of M. americana extract on P. gingivalis and S. mutans with lower MICs (minimum inhibitory concentration). Also, bactericidal and bacteriostatic activity was detected against S. mutans, depending on the concentration of the extract, while on M. americana extract presented only bacteriostatic activity against P. gingivalis. These findings provide important and promising information allowing for further exploration in the future. PMID:24864137

  6. Benchmarking Various Green Fluorescent Protein Variants in Bacillus subtilis, Streptococcus pneumoniae, and Lactococcus lactis for Live Cell Imaging

    PubMed Central

    Overkamp, Wout; Beilharz, Katrin; Detert Oude Weme, Ruud; Solopova, Ana; Karsens, Harma; Kovács, Ákos T.; Kok, Jan

    2013-01-01

    Green fluorescent protein (GFP) offers efficient ways of visualizing promoter activity and protein localization in vivo, and many different variants are currently available to study bacterial cell biology. Which of these variants is best suited for a certain bacterial strain, goal, or experimental condition is not clear. Here, we have designed and constructed two “superfolder” GFPs with codon adaptation specifically for Bacillus subtilis and Streptococcus pneumoniae and have benchmarked them against five other previously available variants of GFP in B. subtilis, S. pneumoniae, and Lactococcus lactis, using promoter-gfp fusions. Surprisingly, the best-performing GFP under our experimental conditions in B. subtilis was the one codon optimized for S. pneumoniae and vice versa. The data and tools described in this study will be useful for cell biology studies in low-GC-rich Gram-positive bacteria. PMID:23956387

  7. Capsular Polysaccharide Expression in Commensal Streptococcus Species: Genetic and Antigenic Similarities to Streptococcus pneumoniae.

    PubMed

    Skov Sørensen, Uffe B; Yao, Kaihu; Yang, Yonghong; Tettelin, Hervé; Kilian, Mogens

    2016-11-15

    Expression of a capsular polysaccharide is considered a hallmark of most invasive species of bacteria, including Streptococcus pneumoniae, in which the capsule is among the principal virulence factors and is the basis for successful vaccines. Consequently, it was previously assumed that capsule production distinguishes S. pneumoniae from closely related commensals of the mitis group streptococci. Based on antigenic and genetic analyses of 187 mitis group streptococci, including 90 recognized serotypes of S. pneumoniae, we demonstrated capsule production by the Wzy/Wzx pathway in 74% of 66 S. mitis strains and in virtually all tested strains of S. oralis (subspecies oralis, dentisani, and tigurinus) and S. infantis Additional analyses of genomes of S. cristatus, S. parasanguinis, S. australis, S. sanguinis, S. gordonii, S. anginosus, S. intermedius, and S. constellatus revealed complete capsular biosynthesis (cps) loci in all strains tested. Truncated cps loci were detected in three strains of S. pseudopneumoniae, in 26% of S. mitis strains, and in a single S. oralis strain. The level of sequence identities of cps locus genes confirmed that the structural polymorphism of capsular polysaccharides in S. pneumoniae evolved by import of cps fragments from commensal Streptococcus species, resulting in a mosaic of genes of different origins. The demonstrated antigenic identity of at least eight of the numerous capsular polysaccharide structures expressed by commensal streptococci with recognized serotypes of S. pneumoniae raises concerns about potential misidentifications in addition to important questions concerning the consequences for vaccination and host-parasite relationships both for the commensals and for the pathogen. Expression of a capsular polysaccharide is among the principal virulence factors of Streptococcus pneumoniae and is the basis for successful vaccines against infections caused by this important pathogen. Contrasting with previous

  8. The effect of a probiotic strain (Lactobacillus acidophilus) on the plaque formation of oral Streptococci.

    PubMed

    Tahmourespour, Arezoo; Kermanshahi, Rooha Kasra

    2011-02-01

    The objective of this study was to investigate the ability of biofilm formation among mutans and non mutans oral streptococci and to determine the effect of Lactobacillus acidophilus DSM 20079 as a probiotic strain on the adhesion of selected streptococcal strains on the surfaces. The sample comprised 40 isolates of oral streptococci from dental plaque and caries of volunteer persons. Streptococcus mutans ATCC35668 (no24) was as an standard strain. The probiotic strain was Lactobacillus acidophilus DSM 20079. The ability of biofilm formation was investigated with colorimetric method and the strongest isolates were selected. Then the effect of probiotic strain on the adhesion of streptococci isolates was determined in polystyrene microtiter plate simultaneously and 30 minutes before streptococci entrance to the system. The results showed that 42% of mutans streptococci were strongly adherent (SA) and in non mutans streptococci, only 23.5% of isolates were found strongly adherent. The strong biofilm forming bacterium isolated was Streptococcus mutans strain22. In the next step, in the presence of probiotic strain the streptococcal adhesion were reduced, and this reduction was non significantly stronger if the probiotic strain was inoculated to the system before the oral bacteria. The Lactobacillus acidophilus had more effect on adherence of mutans streptococci than non mutans streptococci with significant difference (p < 0.05). Adhesion reduction is likely due to bacterial interactions and colonization of adhesion sites with probiotic strain before the presence of streptococci. Adhesion reduction can be an effective way on decreasing cariogenic potential of oral streptococci.

  9. A Murine Model of Group B Streptococcus Vaginal Colonization.

    PubMed

    Patras, Kathryn A; Doran, Kelly S

    2016-11-16

    Streptococcus agalactiae (group B Streptococcus, GBS), is a Gram-positive, asymptomatic colonizer of the human gastrointestinal tract and vaginal tract of 10 - 30% of adults. In immune-compromised individuals, including neonates, pregnant women, and the elderly, GBS may switch to an invasive pathogen causing sepsis, arthritis, pneumonia, and meningitis. Because GBS is a leading bacterial pathogen of neonates, current prophylaxis is comprised of late gestation screening for GBS vaginal colonization and subsequent peripartum antibiotic treatment of GBS-positive mothers. Heavy GBS vaginal burden is a risk factor for both neonatal disease and colonization. Unfortunately, little is known about the host and bacterial factors that promote or permit GBS vaginal colonization. This protocol describes a technique for establishing persistent GBS vaginal colonization using a single β-estradiol pre-treatment and daily sampling to determine bacterial load. It further details methods to administer additional therapies or reagents of interest and to collect vaginal lavage fluid and reproductive tract tissues. This mouse model will further the understanding of the GBS-host interaction within the vaginal environment, which will lead to potential therapeutic targets to control maternal vaginal colonization during pregnancy and to prevent transmission to the vulnerable newborn. It will also be of interest to increase our understanding of general bacterial-host interactions in the female vaginal tract.

  10. Complete Genome Sequence and Comparative Genomics of a Streptococcus pyogenes emm3 Strain M3-b isolated from a Japanese Patient with Streptococcal Toxic Shock Syndrome.

    PubMed

    Ogura, Kohei; Watanabe, Shinya; Kirikae, Teruo; Miyoshi-Akiyama, Tohru

    2017-01-01

    Epidemiologic typing of Streptococcus pyogenes (GAS) is frequently based on the genotype of the emm gene, which encodes M/Emm protein. In this study, the complete genome sequence of GAS emm3 strain M3-b, isolated from a patient with streptococcal toxic shock syndrome (STSS), was determined. This strain exhibited 99% identity with other complete genome sequences of emm3 strains MGAS315, SSI-1, and STAB902. The complete genomes of five additional strains isolated from Japanese patients with and without STSS were also sequences. Maximum-likelihood phylogenetic analysis showed that strains M3-b, M3-e, and SSI-1, all which were isolated from STSS patients, were relatively close.

  11. Effects of Benzalkonium Chloride on Planktonic Growth and Biofilm Formation by Animal Bacterial Pathogens

    PubMed Central

    Ebrahimi, Azizollah; Hemati, Majid; Shabanpour, Ziba; Habibian Dehkordi, Saeed; Bahadoran, Shahab; Lotfalian, Sharareh; Khubani, Shahin

    2015-01-01

    Background: Resistance toward quaternary ammonium compounds (QACs) is widespread among a diverse range of microorganisms and is facilitated by several mechanisms such as biofilm formation. Objectives: In this study, the effects of benzalkonium chloride on planktonic growth and biofilm formation by some field isolates of animal bacterial pathogens were investigated. Materials and Methods: Forty clinical isolates of Escherichia coli, Salmonella serotypes, Staphylococcus aureus and Streptococcus agalactiae (10 isolates of each) were examined for effects of benzalkonium chloride on biofilm formation and planktonic growth using microtiter plates. For all the examined strains in the presence of benzalkonium chloride, biofilm development and planktonic growth were affected at the same concentrations of disinfectant. Results: The means of strains growth increase after the minimal inhibitory concentration (MIC) were significant in all the bacteria (except for E. coli in 1/32 and S. agalactiae in of 1/8 MIC). Biofilm formation increased with decrease of antiseptics concentration; a significant increase was found in all the samples. The most turbidity related to S. aureus and the least to Salmonella. Conclusions: Bacterial resistance against quaternary ammonium compounds is increasing which can increase the bacterial biofilm formation. PMID:25793094

  12. Effects of selected pectinolytic bacterial strains on water-retting of hemp and fibre properties.

    PubMed

    Di Candilo, M; Bonatti, P M; Guidetti, C; Focher, B; Grippo, C; Tamburini, E; Mastromei, G

    2010-01-01

    To study the effect of selected bacterial strains on hemp water-retting and properties of retted fibre. The trials were performed in laboratory tanks. The traditional water-retting process, without inoculum addition, was compared to a process modified by inoculating water tanks with two selected pectinolytic bacteria: the anaerobic strain Clostridium sp. L1/6 and the aerobic strain Bacillus sp. ROO40B. Six different incubation times were compared. Half the fibre obtained from each tank was combed. Micromorphological analyses were performed by scanning electron microscopy on uncombed and combed fibres. Moreover, organoleptic and chemical analyses of uncombed fibres were performed. The inoculum, besides speeding up the process, significantly improved the fibre quality. The fibre was not damaged by mechanical hackling, thanks to the good retting level obtained by the addition of selected strains, differently to what happened with the traditionally retted fibre. The best fibre quality was obtained after 3-4 days of retting with the addition of the bacterial inoculum. Retting is the major limitation to an efficient production of high-quality hemp fibres. The water-retting process and fibre quality were substantially improved by simultaneously inoculating water tanks with two selected pectinolytic strains.

  13. An integrated metagenomics pipeline for strain profiling reveals novel patterns of bacterial transmission and biogeography

    PubMed Central

    Nayfach, Stephen; Rodriguez-Mueller, Beltran; Garud, Nandita

    2016-01-01

    We present the Metagenomic Intra-species Diversity Analysis System (MIDAS), which is an integrated computational pipeline for quantifying bacterial species abundance and strain-level genomic variation, including gene content and single-nucleotide polymorphisms (SNPs), from shotgun metagenomes. Our method leverages a database of more than 30,000 bacterial reference genomes that we clustered into species groups. These cover the majority of abundant species in the human microbiome but only a small proportion of microbes in other environments, including soil and seawater. We applied MIDAS to stool metagenomes from 98 Swedish mothers and their infants over one year and used rare SNPs to track strains between hosts. Using this approach, we found that although species compositions of mothers and infants converged over time, strain-level similarity diverged. Specifically, early colonizing bacteria were often transmitted from an infant’s mother, while late colonizing bacteria were often transmitted from other sources in the environment and were enriched for spore-formation genes. We also applied MIDAS to 198 globally distributed marine metagenomes and used gene content to show that many prevalent bacterial species have population structure that correlates with geographic location. Strain-level genetic variants present in metagenomes clearly reveal extensive structure and dynamics that are obscured when data are analyzed at a coarser taxonomic resolution. PMID:27803195

  14. Antibiotic Resistances of Yogurt Starter Cultures Streptococcus thermophilus and Lactobacillus bulgaricus

    PubMed Central

    Sozzi, Tommaso; Smiley, Martin B.

    1980-01-01

    Twenty-nine strains of Lactobacillus bulgaricus and 15 strains of Streptococcus thermophilus were tested for resistance to 35 antimicrobial agents by using commercially available sensitivity disks. Approximately 35% of the isolates had uncharacteristic resistance patterns. PMID:16345654

  15. Efflux-mediated resistance identified among norfloxacin resistant clinical strains of group B Streptococcus from South Korea

    PubMed Central

    Dang, Trang Nguyen Doan; Srinivasan, Usha; Britt, Zachary; Marrs, Carl F.; Zhang, Lixin; Ki, Moran; Foxman, Betsy

    2014-01-01

    OBJECTIVES: Group B Streptococcus (GBS), a common bowel commensal, is a major cause of neonatal sepsis and an emerging cause of infection in immune-compromised adult populations. Fluoroquinolones are used to treat GBS infections in those allergic to beta-lactams, but GBS are increasingly resistant to fluoroquinolones. Fluoroquinolone resistance has been previously attributed to quinolone resistance determining regions (QRDRs) mutations. We demonstrate that some of fluoroquinolone resistance is due to efflux-mediated resistance. METHODS: We tested 20 GBS strains resistant only to norfloxacin with no mutations in the QRDRs, for the efflux phenotype using norfloxacin and ethidium bromide as substrates in the presence of the efflux inhibitor reserpine. Also tested were 68 GBS strains resistant only to norfloxacin not screened for QRDRs, and 58 GBS strains resistant to ciprofloxacin, levofloxacin or moxifloxacin. Isolates were randomly selected from 221 pregnant women (35-37 weeks of gestation) asymptomatically carrying GBS, and 838 patients with GBS infection identified in South Korea between 2006 and 2008. The VITEK II automatic system (Biomerieux, Durham, NC, USA) was used to determine fluoroquinolone resistance. RESULTS: The reserpine associated efflux phenotype was found in more than half of GBS strains resistant only to norfloxacin with no QRDR mutations, and half where QRDR mutations were unknown. No evidence of the efflux phenotype was detected in GBS strains that were resistant to moxifloxacin or levofloxacin or both. The reserpine sensitive efflux phenotype resulted in moderate increases in norfloxacin minimum inhibitory concentration (average=3.6 fold, range=>1-16 fold). CONCLUSIONS: A substantial portion of GBS strains resistant to norfloxacin have an efflux phenotype. PMID:25322878

  16. Molecular genetics of Streptococcus thermophilus.

    PubMed

    Mercenier, A

    1990-09-01

    The metabolism and genetics of Streptococcus thermophilus (presently Streptococcus salivarius ssp. thermophilus) have only been investigated recently despite its widespread use in milk fermentation processes. The development of recombinant DNA technology has allowed impressive progress to be made in the knowledge of thermophilic dairy streptococci. In particular, it has permitted a careful analysis of phenotypically altered variants which were derived from a mother strain by plasmid or chromosomal DNA reorganization. While natural phage defense mechanisms of S. thermophilus remain poorly documented, information on the bacteriophages responsible for fermentation failures has accumulated. The lysogenic state of two S. thermophilus strains has also been demonstrated for the first time. Gene transfer techniques for this species have been established and improved to the point that targeted manipulation of their chromosomal determinants is now feasible. Cloning and expression vectors have been constructed, and a few heterologous genes were successfully expressed in S. thermophilus. The first homologous genes, involved in carbohydrate utilization, have been cloned and sequenced, shedding some light on the molecular organization of key metabolic steps.

  17. Prevalence of β-hemolytic Streptococcus in children with special health care needs.

    PubMed

    Morais, Viviane Martha Santos de; Orsi, Alice Ramos; Maranhão, Fernanda Cristina de Albuquerque; Castro, Therezita Maria Peixoto Patury Galvão; Castro, Karina Cavalcante Beltrão de; Silva, Denise Maria Wanderlei

    2012-10-01

    Pharyngotonsillitis by β-hemolytic Streptococcus mostly affects children and immunocompromised, being Streptococcus pyogenes (Group A) the most common agent in bacterial pharyngotonsillitis. This work targeted the research of β-hemolytic Streptococcus Group-A (SBHGA) and No-A (SBHGNA) in the oropharynx of individuals with special health needs from the APAE (Maceió-AL). A prospective study with oropharynx samples from patients with Down syndrome and other mental disorders (test) and students from a private school (control) aged 5-15 years. Cultures in blood agar (5%) were identified through Gram/catalase tests and bacitracin/trimethoprim-sulfamethoxazole disk diffusion method, applying the chi-squared statistical analysis. A total of 222 bacterial colonies were isolated in 74 individuals from APAE and 65 in the control group. In the test group, previous episodes of pharyngotonsillitis were reported by 36.49% (27/74) and 9.46% (7/74) were diagnosed with symptoms and/or signs suggestive of oropharynx infection. No positive sample of S. pyogenes was confirmed at APAE, being all samples classified as SBHGNA, with 5 SBHGA in the control group. The early identification of β-hemolytic Streptococcus is important for the fast treatment of pharyngotonsillitis and the absence of S. pyogenes avoid future suppurative or not-suppurative sequels in the group from APAE.

  18. Rational Manipulation of mRNA Folding Free Energy Allows Rheostat Control of Pneumolysin Production by Streptococcus pneumoniae

    PubMed Central

    Amaral, Fábio E.; Parker, Dane; Randis, Tara M.; Kulkarni, Ritwij; Prince, Alice S.; Shirasu-Hiza, Mimi M.; Ratner, Adam J.

    2015-01-01

    The contribution of specific factors to bacterial virulence is generally investigated through creation of genetic “knockouts” that are then compared to wild-type strains or complemented mutants. This paradigm is useful to understand the effect of presence vs. absence of a specific gene product but cannot account for concentration-dependent effects, such as may occur with some bacterial toxins. In order to assess threshold and dose-response effects of virulence factors, robust systems for tunable expression are required. Recent evidence suggests that the folding free energy (ΔG) of the 5’ end of mRNA transcripts can have a significant effect on translation efficiency and overall protein abundance. Here we demonstrate that rational alteration of 5’ mRNA folding free energy by introduction of synonymous mutations allows for predictable changes in pneumolysin (PLY) expression by Streptococcus pneumoniae without the need for chemical inducers or heterologous promoters. We created a panel of isogenic S. pneumoniae strains, differing only in synonymous (silent) mutations at the 5’ end of the PLY mRNA that are predicted to alter ΔG. Such manipulation allows rheostat-like control of PLY production and alters the cytotoxicity of whole S. pneumoniae on primary and immortalized human cells. These studies provide proof-of-principle for further investigation of mRNA ΔG manipulation as a tool in studies of bacterial pathogenesis. PMID:25798590

  19. Pharmacodynamics of 750 mg and 500 mg doses of levofloxacin against ciprofloxacin-resistant strains of Streptococcus pneumoniae.

    PubMed

    Lister, Philip D

    2002-09-01

    An in vitro pharmacokinetic model (IVPM) was used to evaluate the pharmacodynamics of the 750 mg and 500 mg doses of levofloxacin against 4 ciprofloxacin-nonsusceptible Streptococcus pneumoniae. Levofloxacin MICs ranged from 1.4 to 3.2 micro g/ml. Log-phase cultures (5 x 10(7) cfu/ml) were inoculated into the IVPM and exposed to the peak free-drug concentrations of levofloxacin achieved in human serum with each dose. Levofloxacin was dosed at 0 and 24 h, elimination pharmacokinetics were simulated, and viable counts were measured over 30 h. The 750 mg dose was rapidly bactericidal against all 4 strains, achieving eradication within 30 h. Against strains with levofloxacin MICs of 1.4 and 1.8 micro g/ml, the 500 mg dose exhibited pharmacodynamics similar to the 750 mg dose. In contrast, against strains with levofloxacin MICs of 2.6 and 3.2 micro g/ml, viable counts never fell below 10(4) cfu/ml. The rapid killing and eradication of these pneumococci by the 750 mg dose warrant the clinical evaluation of this new dose in the treatment of pneumococcal infections.

  20. Re-evaluation of the taxonomy of the Mitis group of the genus Streptococcus based on whole genome phylogenetic analyses, and proposed reclassification of Streptococcus dentisani as Streptococcus oralis subsp. dentisani comb. nov., Streptococcus tigurinus as Streptococcus oralis subsp. tigurinus comb. nov., and Streptococcus oligofermentans as a later synonym of Streptococcus cristatus.

    PubMed

    Jensen, Anders; Scholz, Christian F P; Kilian, Mogens

    2016-11-01

    The Mitis group of the genus Streptococcus currently comprises 20 species with validly published names, including the pathogen S. pneumoniae. They have been the subject of much taxonomic confusion, due to phenotypic overlap and genetic heterogeneity, which has hampered a full appreciation of their clinical significance. The purpose of this study was to critically re-examine the taxonomy of the Mitis group using 195 publicly available genomes, including designated type strains for phylogenetic analyses based on core genomes, multilocus sequences and 16S rRNA gene sequences, combined with estimates of average nucleotide identity (ANI) and in silico and in vitro analyses of specific phenotypic characteristics. Our core genomic phylogenetic analyses revealed distinct clades that, to some extent, and from the clustering of type strains represent known species. However, many of the genomes have been incorrectly identified adding to the current confusion. Furthermore, our data show that 16S rRNA gene sequences and ANI are unsuitable for identifying and circumscribing new species of the Mitis group of the genus Streptococci. Based on the clustering patterns resulting from core genome phylogenetic analysis, we conclude that S. oligofermentans is a later synonym of S. cristatus. The recently described strains of the species Streptococcus dentisani includes one previously referred to as 'S. mitis biovar 2'. Together with S. oralis, S. dentisani and S. tigurinus form subclusters within a coherent phylogenetic clade. We propose that the species S. oralis consists of three subspecies: S. oralis subsp. oralis subsp. nov., S. oralis subsp. tigurinus comb. nov., and S. oralis subsp. dentisani comb. nov.

  1. Binding host proteins to the M protein contributes to the mortality associated with influenza-Streptococcus pyogenes superinfections.

    PubMed

    Herrera, Andrea L; Suso, Kuta; Allison, Stephanie; Simon, Abby; Schlenker, Evelyn; Huber, Victor C; Chaussee, Michael S

    2017-09-25

    The mortality associated with influenza A virus (IAV) is often due to the development of secondary bacterial infections known as superinfections. The group A streptococcus (GAS) is a relatively uncommon cause of IAV superinfections, but the mortality of these infections is high. We used a murine model to determine whether the surface-localized GAS M protein contributes to the outcome of IAV-GAS superinfections. A comparison between wild-type GAS and an M protein mutant strain (emm3) showed that the M3 protein was essential to virulence. To determine whether the binding, or recruitment, of host proteins to the bacterial surface contributed to virulence, GAS was suspended with BALF collected from mice that had recovered from a sub-lethal infection with IAV. Following intranasal inoculation of naïve mice, the mortality associated with the wild-type strain, but not the emm3 mutant strain, was greater compared to mice inoculated with GAS suspended with either BALF from uninfected mice or PBS. Further analyses showed that both albumin and fibrinogen (Fg) were more abundant in the respiratory tract 8 days after IAV infection, that M3 bound both proteins to the bacterial surface, and that suspension of GAS with either protein increased GAS virulence in the absence of antecedent IAV infection. Overall, the results showed that M3 is essential to the virulence of GAS in an IAV superinfection and suggested that increased abundance of albumin and Fg in the respiratory tract following IAV infection enhanced host susceptibility to secondary GAS infection.

  2. Addition of transcription activator-like effector binding sites to a pathogen strain-specific rice bacterial blight resistance gene makes it effective against additional strains and against bacterial leaf streak.

    PubMed

    Hummel, Aaron W; Doyle, Erin L; Bogdanove, Adam J

    2012-09-01

    Xanthomonas transcription activator-like (TAL) effectors promote disease in plants by binding to and activating host susceptibility genes. Plants counter with TAL effector-activated executor resistance genes, which cause host cell death and block disease progression. We asked whether the functional specificity of an executor gene could be broadened by adding different TAL effector binding elements (EBEs) to it. We added six EBEs to the rice Xa27 gene, which confers resistance to strains of the bacterial blight pathogen Xanthomonas oryzae pv. oryzae (Xoo) that deliver the TAL effector AvrXa27. The EBEs correspond to three other effectors from Xoo strain PXO99(A) and three from strain BLS256 of the bacterial leaf streak pathogen Xanthomonas oryzae pv. oryzicola (Xoc). Stable integration into rice produced healthy lines exhibiting gene activation by each TAL effector, and resistance to PXO99(A) , a PXO99(A) derivative lacking AvrXa27, and BLS256, as well as two other Xoo and 10 Xoc strains virulent toward wildtype Xa27 plants. Transcripts initiated primarily at a common site. Sequences in the EBEs were found to occur nonrandomly in rice promoters, suggesting an overlap with endogenous regulatory sequences. Thus, executor gene specificity can be broadened by adding EBEs, but caution is warranted because of the possible coincident introduction of endogenous regulatory elements. © 2012 The Authors. New Phytologist © 2012 New Phytologist Trust.

  3. Progress toward characterization of the group A Streptococcus metagenome: complete genome sequence of a macrolide-resistant serotype M6 strain.

    PubMed

    Banks, David J; Porcella, Stephen F; Barbian, Kent D; Beres, Stephen B; Philips, Lauren E; Voyich, Jovanka M; DeLeo, Frank R; Martin, Judith M; Somerville, Greg A; Musser, James M

    2004-08-15

    We describe the genome sequence of a macrolide-resistant strain (MGAS10394) of serotype M6 group A Streptococcus (GAS). The genome is 1,900,156 bp in length, and 8 prophage-like elements or remnants compose 12.4% of the chromosome. A 8.3-kb prophage remnant encodes the SpeA4 variant of streptococcal pyrogenic exotoxin A. The genome of strain MGAS10394 contains a chimeric genetic element composed of prophage genes and a transposon encoding the mefA gene conferring macrolide resistance. This chimeric element also has a gene encoding a novel surface-exposed protein (designated "R6 protein"), with an LPKTG cell-anchor motif located at the carboxyterminus. Surface expression of this protein was confirmed by flow cytometry. Humans with GAS pharyngitis caused by serotype M6 strains had antibody against the R6 protein present in convalescent, but not acute, serum samples. Our studies add to the theme that GAS prophage-encoded extracellular proteins contribute to host-pathogen interactions in a strain-specific fashion.

  4. Evaluation of indigenous bacterial strains for biocontrol of the frogeye leaf spot of soya bean caused by Cercospora sojina.

    PubMed

    Simonetti, E; Carmona, M A; Scandiani, M M; García, A F; Luque, A G; Correa, O S; Balestrasse, K B

    2012-08-01

    Assessment of biological control of Cercospora sojina, causal agent of frogeye leaf spot (FLS) of soya bean, using three indigenous bacterial strains, BNM297 (Pseudomonas fluorescens), BNM340 and BNM122 (Bacillus amyloliquefaciens). From cultures of each bacterial strain, cell suspensions and cell-free supernatants were obtained and assayed to determine their antifungal activity against C. sojina. Both mycelial growth and spore germination in vitro were more strongly inhibited by bacterial cell suspensions than by cell-free supernatants. The Bacillus strains BNM122 and BNM340 inhibited the fungal growth to a similar degree (I ≈ 52-53%), while cells from P. fluorescens BNM297 caused a lesser reduction (I ≈ 32-34%) in the fungus colony diameter. The foliar application of the two Bacillus strains on soya bean seedlings, under greenhouse conditions, significantly reduced the disease severity with respect to control soya bean seedlings and those sprayed with BNM297. This last bacterial strain was not effective in controlling FLS in vivo. Our data demonstrate that the application of antagonistic bacteria may be a promising and environmentally friendly alternative to control the FLS of soya bean.   To our knowledge, this is the first report of biological control of C. sojina by using native Bacillus strains. © 2012 The Authors. Letters in Applied Microbiology © 2012 The Society for Applied Microbiology.

  5. Fatal septicemia caused by the zoonotic bacterium Streptococcus iniae during an outbreak in Caribbean reef fish.

    PubMed

    Keirstead, N D; Brake, J W; Griffin, M J; Halliday-Simmonds, I; Thrall, M A; Soto, E

    2014-09-01

    An outbreak of Streptococcus iniae occurred in the early months of 2008 among wild reef fish in the waters of the Federation of St Kitts and Nevis, lasting almost 2 months. Moribund and dead fish were collected for gross, histological, bacteriological, and molecular analysis. Necropsy findings included diffuse fibrinous pericarditis, pale friable livers, and serosal petechiation. Cytological and histological analysis revealed granulocytic and granulomatous inflammation with abundant coccoid bacterial organisms forming long chains. Necrosis, inflammation, and vasculitis were most severe in the pericardium, meninges, liver, kidneys, and gills. Bacterial isolates revealed β-hemolytic, Gram-positive coccoid bacteria identified as S. iniae by amplification and 16S ribosomal RNA gene sequencing. Results from biochemical and antimicrobial susceptibility analysis, together with repetitive element palindromic polymerase chain reaction fingerprinting, suggest that a single strain was responsible for the outbreak. The inciting cause for this S. iniae-associated cluster of mortalities is unknown. © The Author(s) 2013.

  6. Pediatric bacterial meningitis in Japan, 2013-2015 - 3-5 years after the wide use of Haemophilus influenzae type b and Streptococcus pneumoniae conjugated vaccines.

    PubMed

    Shinjoh, Masayoshi; Yamaguchi, Yoshio; Iwata, Satoshi

    2017-07-01

    Haemophilus influenzae type b (Hib) vaccine and pneumococcal conjugated vaccine (PCV) have been widely used since 2010 in Japan when both vaccines were supported by the regional governments, and they were covered as routine recommended vaccines in 2013. The incidence of bacterial meningitis due to these organisms decreased in 2011 and 2012, but meningitis due to Streptococcus agalactiae and Escherichia coli remained unchanged. We planned to confirm whether the incidence also decreased in subsequent years. We analyzed the epidemiological and clinical data for 2013-2015, and compared the information obtained in the previous nationwide survey database and our previous reports. We also investigated the risk factors for disease outcome. In the 2013-2015 surveys, 407 patients from 366 hospitals from all prefectures were evaluated. S. agalactiae (33%), Streptococcus pneumoniae (25%), and E. coli (10%) were the main organisms. The total number of patients hospitalized with bacterial meningitis per 1000 admissions decreased from 1.19 in 2009-2010 to 0.37 in 2013-2015 (p < 0.001). The incidence of H. influenzae and S. pneumoniae meningitis significantly decreased from 0.66 in 2009-2010 to 0.01 in 2013-2015, and from 0.30 to 0.09, respectively (p < 0.001). Only 0-2 cases with Neisseria meningitidis were reported each year throughout 2001-2015. The fatality rates for H. influenzae, S. pneumoniae, S. agalactiae, and E. coli in 2013-2015 were 0.0, 4.1, 3.1, and 2.6%, respectively. Risk factors for death and sequelae were consciousness disturbance, convulsion, low CSF glucose, and Staphylococcus sp. as a causative organism (p < 0.01). Hib vaccine and PCV have decreased the rate of bacterial meningitis. S. agalactiae has subsequently become the most common cause of bacterial meningitis in Japan. Copyright © 2017 Japanese Society of Chemotherapy and The Japanese Association for Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  7. Bacterial diskospondylitis in juvenile mink from 2 Ontario mink farms.

    PubMed

    Martínez, Jorge; Vidaña, Beatriz; Cruz-Arambulo, Robert; Slavic, Durda; Tapscott, Brian; Brash, Marina L

    2013-09-01

    Nine juvenile mink with hind-limb paresis/paralysis from 2 Ontario farms were submitted for necropsy. Diagnostic tests revealed spinal compression and severe thoracic diskospondylitis with intralesional Gram-positive coccoid bacterial colonies. Streptococcus canis, Streptococcus dysgalactiae subsp. equisimilis, and hemolytic Staphylococcus spp. were isolated from vertebral lesions.

  8. The IL-8 Protease SpyCEP/ScpC of Group A Streptococcus Promotes Resistance to Neutrophil Killing

    PubMed Central

    Zinkernagel, Annelies S.; Timmer, Anjuli M.; Pence, Morgan A.; Locke, Jeffrey B.; Buchanan, John T.; Turner, Claire E.; Mishalian, Inbal; Sriskandan, Shiranee; Hanski, Emanuel; Nizet, Victor

    2009-01-01

    SUMMARY Interleukin-8 (IL-8) promotes neutrophil-mediated host defense through its chemoattractant and immunostimulatory activities. The Group A Streptococcus (GAS) protease SpyCEP (also called ScpC) cleaves IL-8, and SpyCEP expression is strongly upregulated in vivo in the M1T1 GAS strains associated with life-threatening systemic disease including necrotizing fasciitis. Coupling allelic replacement with heterologous gene expression, we show that SpyCEP is necessary and sufficient for IL-8 degradation. SpyCEP decreased IL-8-dependent neutrophil endothelial transmigration and bacterial killing, the latter by reducing neutrophil extracellular trap formation. The knockout mutant lacking SpyCEP was attenuated for virulence in murine infection models, and SpyCEP expression conferred protection to coinfecting bacteria. We also show that the zoonotic pathogen Streptococcus iniae possesses a functional homolog of SpyCEP (Cepl) that cleaves IL-8, promotes neutrophil resistance, and contributes to virulence. By inactivating the multifunctional host defense peptide IL-8, the SpyCEP protease impairs neutrophil clearance mechanisms, contributing to the pathogenesis of invasive streptococcal infection. PMID:18692776

  9. A comparative study of extracellular glucanhydrolase and glucosyltransferase enzyme activities of five different serotypes of oral Streptococcus mutans.

    PubMed

    Felgenhauer, B; Trautner, K

    1982-01-01

    The activities of glucanhydrolase (EC 3.2.1.11) and glucosyltransferase (EC 2.4.1.5) in crude enzyme preparations of 44 strains of Streptococcus mutans of five serotypes were investigated. The strains were grown in a laboratory fermentor for 16 h and the enzymes were isolated by adding solid ammonium sulphate to the culture supernatant, resulting in a 12-fold enrichment of the enzymes. For glucanhydrolase, strains of serotype a showed the lowest total activity (0.768 U, approx. 120 ml), whereas strains of serotype d had an activity 39 times higher (29.9 U). The total activities of strains of serotypes b, c and e were 5.56, 6.30 and 7.06 U, respectively. For glucosyltransferase, strains of type e showed the highest total activity (293 U), whereas differences between strains of the other four types were insignificant (type a: 158 U; type b: 175 U; type c: 191 U; type d: 225 U; approx. 120 ml). A strong correlation was found between the glucanhydrolase activity and the percentage of insoluble glucan synthesized in vitro by the respective strains. This correlation was not substantially changed if the enzyme activities were expressed as specific activities, or as total activities against bacterial weight.

  10. Deletion of ssnA Attenuates the Pathogenicity of Streptococcus suis and Confers Protection against Serovar 2 Strain Challenge.

    PubMed

    Li, Miao; Cai, Ru-Jian; Li, Chun-Ling; Song, Shuai; Li, Yan; Jiang, Zhi-Yong; Yang, Dong-Xia

    2017-01-01

    Streptococcus suis serotype 2 (SS2) is a major porcine and human pathogen which causes arthritis, meningitis, and septicemia. Streptococcus suis nuclease A (SsnA) is a recently discovered deoxyribonuclease (DNase), which has been demonstrated to contribute to escape killing in neutrophil extracellular traps (NETs). To further determine the effects of ssnA on virulence, the ssnA deletion mutant (ΔssnA) and its complemented strain (C-ΔssnA) were constructed. The ability of ΔssnA mutant to interact with human laryngeal epithelial cell (Hep-2) was evaluated and it exhibited dramatically decreased ability to adhere to and invade Hep-2 cells. This mutation was found to exhibit significant attenuation of virulence when evaluated in CD1 mice, suggesting ssnA plays a critical role in the pathogenesis of SS2. Finally, we found that immunization with the ΔssnA mutant triggered both antibody responses and cell-mediated immunity, and conferred 80% protection against virulent SS2 challenge in mice. Taken together, our results suggest that ΔssnA represents an attractive candidate for designing an attenuated live vaccine against SS2.

  11. Effects of xylitol on xylitol-sensitive versus xylitol-resistant Streptococcus mutans strains in a three-species in vitro biofilm.

    PubMed

    Marttinen, Aino M; Ruas-Madiedo, Patricia; Hidalgo-Cantabrana, Claudio; Saari, Markku A; Ihalin, Riikka A; Söderling, Eva M

    2012-09-01

    We studied the effects of xylitol on biofilms containing xylitol-resistant (Xr) and xylitol-sensitive (Xs) Streptococcus mutans, Actinomyces naeslundii and S. sanguinis. The biofilms were grown for 8 and 24 h on hydroxyapatite discs. The viable microorganisms were determined by plate culturing techniques and fluorescence in situ hybridization (FISH) was performed using a S. mutans-specific probe. Extracellular cell-bound polysaccharides (EPS) were determined by spectrofluorometry from single-species S. mutans biofilms. In the presence of 5 % xylitol, the counts of the Xs S. mutans decreased tenfold in the young (8 h) biofilm (p < 0.05) but no effect was seen in the mature (24 h) biofilm. No decrease was observed for the Xr strains, and FISH confirmed these results. No differences were detected in the EPS production of the Xs S. mutans grown with or without xylitol, nor between Xr and Xs S. mutans strains. Thus, it seems that xylitol did not affect the EPS synthesis of the S. mutans strains. Since the Xr S. mutans strains, not inhibited by xylitol, showed no xylitol-induced decrease in the biofilms, we conclude that growth inhibition could be responsible for the decrease of the counts of the Xs S. mutans strains in the clinically relevant young biofilms.

  12. Factor H-IgG Chimeric Proteins as a Therapeutic Approach against the Gram-Positive Bacterial Pathogen Streptococcus pyogenes.

    PubMed

    Blom, Anna M; Magda, Michal; Kohl, Lisa; Shaughnessy, Jutamas; Lambris, John D; Ram, Sanjay; Ermert, David

    2017-12-01

    Bacteria can cause life-threatening infections, such as pneumonia, meningitis, or sepsis. Antibiotic therapy is a mainstay of treatment, although antimicrobial resistance has drastically increased over the years. Unfortunately, safe and effective vaccines against most pathogens have not yet been approved, and thus developing alternative treatments is important. We analyzed the efficiency of factor H (FH)6-7/Fc, a novel antibacterial immunotherapeutic protein against the Gram-positive bacterium Streptococcus pyogenes This protein is composed of two domains of complement inhibitor human FH (FH complement control protein modules 6 and 7) that bind to S. pyogenes , linked to the Fc region of IgG (FH6-7/Fc). FH6-7/Fc has previously been shown to enhance complement-dependent killing of, and facilitate bacterial clearance in, animal models of the Gram-negative pathogens Haemophilus influenzae and Neisseria meningitidis We hypothesized that activation of complement by FH6-7/Fc on the surface of Gram-positive bacteria such as S. pyogenes will enable professional phagocytes to eliminate the pathogen. We found that FH6-7/Fc alleviated S. pyogenes- induced sepsis in a transgenic mouse model expressing human FH ( S. pyogenes binds FH in a human-specific manner). Furthermore, FH6-7/Fc, which binds to protein H and selected M proteins, displaced FH from the bacterial surface, enhanced alternative pathway activation, and reduced bacterial blood burden by opsonophagocytosis in a C3-dependent manner in an ex vivo human whole-blood model. In conclusion, FH-Fc chimeric proteins could serve as adjunctive treatments against multidrug-resistant bacterial infections. Copyright © 2017 by The American Association of Immunologists, Inc.

  13. Neutrophil evasion strategies by Streptococcus pneumoniae and Staphylococcus aureus.

    PubMed

    Lewis, Megan L; Surewaard, Bas G J

    2018-03-01

    Humans are well equipped to defend themselves against bacteria. The innate immune system employs diverse mechanisms to recognize, control and initiate a response that can destroy millions of different microbes. Microbes that evade the sophisticated innate immune system are able to escape detection and could become pathogens. The pathogens Streptococcus pneumoniae and Staphylococcus aureus are particularly successful due to the development of a wide variety of virulence strategies for bacterial pathogenesis and they invest significant efforts towards mechanisms that allow for neutrophil evasion. Neutrophils are a primary cellular defense and can rapidly kill invading microbes, which is an indispensable function for maintaining host health. This review compares the key features of Streptococcus pneumoniae and Staphylococcus aureus in epidemiology, with a specific focus on virulence mechanisms utilized to evade neutrophils in bacterial pathogenesis. It is important to understand the complex interactions between pathogenic bacteria and neutrophils so that we can disrupt the ability of pathogens to cause disease.

  14. Genetically Engineered Immunomodulatory Streptococcus thermophilus Strains Producing Antioxidant Enzymes Exhibit Enhanced Anti-Inflammatory Activities

    PubMed Central

    del Carmen, Silvina; de Moreno de LeBlanc, Alejandra; Martin, Rebeca; Chain, Florian; Langella, Philippe; Bermúdez-Humarán, Luis G.

    2014-01-01

    The aims of this study were to develop strains of lactic acid bacteria (LAB) having both immunomodulatory and antioxidant properties and to evaluate their anti-inflammatory effects both in vitro, in different cellular models, and in vivo, in a mouse model of colitis. Different Lactobacillus delbrueckii subsp. bulgaricus and Streptococcus thermophilus strains were cocultured with primary cultures of mononuclear cells. Analysis of the pro- and anti-inflammatory cytokines secreted by these cells after coincubation with candidate bacteria revealed that L. delbrueckii subsp. bulgaricus CRL 864 and S. thermophilus CRL 807 display the highest anti-inflammatory profiles in vitro. Moreover, these results were confirmed in vivo by the determination of the cytokine profiles in large intestine samples of mice fed with these strains. S. thermophilus CRL 807 was then transformed with two different plasmids harboring the genes encoding catalase (CAT) or superoxide dismutase (SOD) antioxidant enzymes, and the anti-inflammatory effects of recombinant streptococci were evaluated in a mouse model of colitis induced by trinitrobenzenesulfonic acid (TNBS). Our results showed a decrease in weight loss, lower liver microbial translocation, lower macroscopic and microscopic damage scores, and modulation of the cytokine production in the large intestines of mice treated with either CAT- or SOD-producing streptococci compared to those in mice treated with the wild-type strain or control mice without any treatment. Furthermore, the greatest anti-inflammatory activity was observed in mice receiving a mixture of both CAT- and SOD-producing streptococci. The addition of L. delbrueckii subsp. bulgaricus CRL 864 to this mixture did not improve their beneficial effects. These findings show that genetically engineering a candidate bacterium (e.g., S. thermophilus CRL 807) with intrinsic immunomodulatory properties by introducing a gene expressing an antioxidant enzyme enhances its anti

  15. The impact of pneumolysin on the macrophage response to Streptococcus pneumoniae is strain-dependent.

    PubMed

    Harvey, Richard M; Hughes, Catherine E; Paton, Adrienne W; Trappetti, Claudia; Tweten, Rodney K; Paton, James C

    2014-01-01

    Streptococcus pneumoniae is the world's leading cause of pneumonia, bacteremia, meningitis and otitis media. A major pneumococcal virulence factor is the cholesterol-dependent cytolysin, which has the defining property of forming pores in cholesterol-containing membranes. In recent times a clinically significant and internationally successful serotype 1 ST306 clone has been found to express a non-cytolytic variant of Ply (Ply306). However, while the pneumococcus is a naturally transformable organism, strains of the ST306 clonal group have to date been virtually impossible to transform, severely restricting efforts to understand the role of non-cytolytic Ply in the success of this clone. In this study isogenic Ply mutants were constructed in the D39 background and for the first time in the ST306 background (A0229467) to enable direct comparisons between Ply variants for their impact on the immune response in a macrophage-like cell line. Strains that expressed cytolytic Ply were found to induce a significant increase in IL-1β release from macrophage-like cells compared to the non-cytolytic and Ply-deficient strains in a background-independent manner, confirming the requirement for pore formation in the Ply-dependent activation of the NLRP3 inflammasome. However, cytolytic activity in the D39 background was found to induce increased expression of the genes encoding GM-CSF (CSF2), p19 subunit of IL-23 (IL23A) and IFNβ (IFNB1) compared to non-cytolytic and Ply-deficient D39 mutants, but had no effect in the A0229467 background. The impact of Ply on the immune response to the pneumococcus is highly dependent on the strain background, thus emphasising the importance of the interaction between specific virulence factors and other components of the genetic background of this organism.

  16. The Impact of Pneumolysin on the Macrophage Response to Streptococcus pneumoniae is Strain-Dependent

    PubMed Central

    Paton, Adrienne W.; Trappetti, Claudia; Tweten, Rodney K.; Paton, James C.

    2014-01-01

    Streptococcus pneumoniae is the world's leading cause of pneumonia, bacteremia, meningitis and otitis media. A major pneumococcal virulence factor is the cholesterol-dependent cytolysin, which has the defining property of forming pores in cholesterol-containing membranes. In recent times a clinically significant and internationally successful serotype 1 ST306 clone has been found to express a non-cytolytic variant of Ply (Ply306). However, while the pneumococcus is a naturally transformable organism, strains of the ST306 clonal group have to date been virtually impossible to transform, severely restricting efforts to understand the role of non-cytolytic Ply in the success of this clone. In this study isogenic Ply mutants were constructed in the D39 background and for the first time in the ST306 background (A0229467) to enable direct comparisons between Ply variants for their impact on the immune response in a macrophage-like cell line. Strains that expressed cytolytic Ply were found to induce a significant increase in IL-1β release from macrophage-like cells compared to the non-cytolytic and Ply-deficient strains in a background-independent manner, confirming the requirement for pore formation in the Ply-dependent activation of the NLRP3 inflammasome. However, cytolytic activity in the D39 background was found to induce increased expression of the genes encoding GM-CSF (CSF2), p19 subunit of IL-23 (IL23A) and IFNβ (IFNB1) compared to non-cytolytic and Ply-deficient D39 mutants, but had no effect in the A0229467 background. The impact of Ply on the immune response to the pneumococcus is highly dependent on the strain background, thus emphasising the importance of the interaction between specific virulence factors and other components of the genetic background of this organism. PMID:25105894

  17. The Eukaryote-Like Serine/Threonine Kinase STK Regulates the Growth and Metabolism of Zoonotic Streptococcus suis

    PubMed Central

    Zhang, Chunyan; Sun, Wen; Tan, Meifang; Dong, Mengmeng; Liu, Wanquan; Gao, Ting; Li, Lu; Xu, Zhuofei; Zhou, Rui

    2017-01-01

    Like eukaryotes, bacteria express one or more serine/threonine kinases (STKs) that initiate diverse signaling networks. The STK from Streptococcus suis is encoded by a single-copy stk gene, which is crucial in stress response and virulence. To further understand the regulatory mechanism of STK in S. suis, a stk deletion strain (Δstk) and its complementary strain (CΔstk) were constructed to systematically decode STK characteristics by applying whole transcriptome RNA sequencing (RNA-Seq) and phosphoproteomic analysis. Numerous genes were differentially expressed in Δstk compared with the wild-type parental strain SC-19, including 320 up-regulated and 219 down-regulated genes. Particularly, 32 virulence-associated genes (VAGs) were significantly down-regulated in Δstk. Seven metabolic pathways relevant to bacterial central metabolism and translation are significantly repressed in Δstk. Phosphoproteomic analysis further identified 12 phosphoproteins that exhibit differential phosphorylation in Δstk. These proteins are associated with cell growth and division, glycolysis, and translation. Consistently, phenotypic assays confirmed that the Δstk strain displayed deficient growth and attenuated pathogenicity. Thus, STK is a central regulator that plays an important role in cell growth and division, as well as S. suis metabolism. PMID:28326294

  18. Identification of a virulence-related surface protein XF in piscine Streptococcus agalactiae by pre-absorbed immunoproteomics.

    PubMed

    Liu, Guangjin; Zhang, Wei; Liu, Yongjie; Yao, Huochun; Lu, Chengping; Xu, Pao

    2014-10-26

    Since 2009, large-scale Streptococcus agalactiae infections have broken out in cultured tilapia farms in China, resulting in considerable economic losses. Screening of the surface proteins is required to identify virulence factors or protective antigens involved in piscine S.agalactiae infections in tilapia. Pre-absorbed immunoproteomics method (PAIM) is a useful method previously established in our laboratory for identifying bacterial surface proteins. A serine-rich repeat protein family 1 (Srr-1), designated XF, was identified by PAIM in piscine S. agalactiae isolate GD201008-001. To investigate the role of XF in the pathogenesis of piscine S. agalactiae, an isogenic xf mutant strain (Δxf) and a complemented strain (CΔxf) were successfully constructed. The Δxf mutant and CΔxf showed no significant differences in growth characteristics and adherence to HEp-2 cells compared with the wild-type strain. However the 50% lethal dose of Δxf was increased (4-fold) compared with that of the parental strain in a zebrafish infection model. The findings demonstrated that XF is a virulence-related, highly immunoreactive surface protein and is involved in the pathogenicity of S. agalactiae infections in fish.

  19. Suicin 90-1330 from a nonvirulent strain of Streptococcus suis: a nisin-related lantibiotic active on gram-positive swine pathogens.

    PubMed

    LeBel, Geneviève; Vaillancourt, Katy; Frenette, Michel; Gottschalk, Marcelo; Grenier, Daniel

    2014-09-01

    Streptococcus suis serotype 2 is known to cause severe infections (meningitis, endocarditis, and septicemia) in pigs and is considered an emerging zoonotic agent. Antibiotics have long been used in the swine industry for disease treatment/prevention and growth promoters. This pattern of utilization resulted in the spread of antibiotic resistance in S. suis worldwide. Interestingly, pigs may harbor S. suis in their tonsils without developing diseases, while North American strains belonging to the sequence type 28 (ST28) are nonvirulent in animal models. Consequently, the aim of this study was to purify and characterize a bacteriocin produced by a nonvirulent strain of S. suis serotype 2, with a view to a potential therapeutic and preventive application. S. suis 90-1330 belonging to ST28 and previously shown to be nonvirulent in an animal model exhibited antibacterial activity toward all S. suis pathogenic isolates tested. The bacteriocin produced by this strain was purified to homogeneity by cationic exchange and reversed-phase fast protein liquid chromatography. Given its properties (molecular mass of <4 kDa, heat, pH and protease stability, and the presence of modified amino acids), the bacteriocin, named suicin 90-1330, belongs to the lantibiotic class. Using a DNA-binding fluorophore, the bacteriocin was found to possess a membrane permeabilization activity. When tested on other swine pathogens, the suicin showed activity against Staphylococcus hyicus and Staphylococcus aureus, whereas it was inactive against all Gram-negative bacteria tested. Amino acid sequencing of the purified bacteriocin showed homology (90.9% identity) with nisin U produced by Streptococcus uberis. The putative gene cluster involved in suicin production was amplified by PCR and sequence analysis revealed the presence of 11 open reading frames, including the structural gene and those required for the modification of amino acids, export, regulation, and immunity. Further studies will

  20. Suicin 90-1330 from a Nonvirulent Strain of Streptococcus suis: a Nisin-Related Lantibiotic Active on Gram-Positive Swine Pathogens

    PubMed Central

    LeBel, Geneviève; Vaillancourt, Katy; Frenette, Michel; Gottschalk, Marcelo

    2014-01-01

    Streptococcus suis serotype 2 is known to cause severe infections (meningitis, endocarditis, and septicemia) in pigs and is considered an emerging zoonotic agent. Antibiotics have long been used in the swine industry for disease treatment/prevention and growth promoters. This pattern of utilization resulted in the spread of antibiotic resistance in S. suis worldwide. Interestingly, pigs may harbor S. suis in their tonsils without developing diseases, while North American strains belonging to the sequence type 28 (ST28) are nonvirulent in animal models. Consequently, the aim of this study was to purify and characterize a bacteriocin produced by a nonvirulent strain of S. suis serotype 2, with a view to a potential therapeutic and preventive application. S. suis 90-1330 belonging to ST28 and previously shown to be nonvirulent in an animal model exhibited antibacterial activity toward all S. suis pathogenic isolates tested. The bacteriocin produced by this strain was purified to homogeneity by cationic exchange and reversed-phase fast protein liquid chromatography. Given its properties (molecular mass of <4 kDa, heat, pH and protease stability, and the presence of modified amino acids), the bacteriocin, named suicin 90-1330, belongs to the lantibiotic class. Using a DNA-binding fluorophore, the bacteriocin was found to possess a membrane permeabilization activity. When tested on other swine pathogens, the suicin showed activity against Staphylococcus hyicus and Staphylococcus aureus, whereas it was inactive against all Gram-negative bacteria tested. Amino acid sequencing of the purified bacteriocin showed homology (90.9% identity) with nisin U produced by Streptococcus uberis. The putative gene cluster involved in suicin production was amplified by PCR and sequence analysis revealed the presence of 11 open reading frames, including the structural gene and those required for the modification of amino acids, export, regulation, and immunity. Further studies will

  1. Bacterial diskospondylitis in juvenile mink from 2 Ontario mink farms

    PubMed Central

    Martínez, Jorge; Vidaña, Beatriz; Cruz-Arambulo, Robert; Slavic, Durda; Tapscott, Brian; Brash, Marina L.

    2013-01-01

    Nine juvenile mink with hind-limb paresis/paralysis from 2 Ontario farms were submitted for necropsy. Diagnostic tests revealed spinal compression and severe thoracic diskospondylitis with intralesional Gram-positive coccoid bacterial colonies. Streptococcus canis, Streptococcus dysgalactiae subsp. equisimilis, and hemolytic Staphylococcus spp. were isolated from vertebral lesions. PMID:24155490

  2. Evaluation of insecticidal activity of a bacterial strain, Serratia sp. EML-SE1 against diamondback moth.

    PubMed

    Jeong, Hyung Uk; Mun, Hye Yeon; Oh, Hyung Keun; Kim, Seung Bum; Yang, Kwang Yeol; Kim, Iksoo; Lee, Hyang Burm

    2010-08-01

    To identify novel bioinsecticidal agents, a bacterial strain, Serratia sp. EML-SE1, was isolated from a dead larva of the lepidopteran diamondback moth (Plutella xylostella) collected from a cabbage field in Korea. In this study, the insecticidal activity of liquid cultures in Luria-Bertani broth (LBB) and nutrient broth (NB) of a bacterial strain, Serratia sp. EML-SE1 against thirty 3rd and 4th instar larvae of the diamondback moth was investigated on a Chinese cabbage leaf housed in a round plastic cage (Ø 10 x 6 cm). 72 h after spraying the cabbage leaf with LBB and NB cultures containing the bacterial strain, the mortalities of the larvae were determined to be 91.7% and 88.3%, respectively. In addition, the insecticidal activity on potted cabbage containing 14 leaves in a growth cage (165 x 83 x 124 cm) was found to be similar to that of the plastic cage experiment. The results of this study provided valuable information on the insecticidal activity of the liquid culture of a Serratia species against the diamondback moth.

  3. Identification of ssDNA aptamers specific to clinical isolates of Streptococcus mutans strains with different cariogenicity.

    PubMed

    Cui, Wei; Liu, Jiaojiao; Su, Donghua; Hu, Danyang; Hou, Shuai; Hu, Tongnan; Yang, Jiyong; Luo, Yanping; Xi, Qing; Chu, Bingfeng; Wang, Chenglong

    2016-06-01

    Streptococcus mutans, a Gram-positive facultative anaerobic bacterium, is considered to be a major etiological factor for dental caries. In this study, plaques from dental enamel surfaces of caries-active and caries-free individuals were obtained and cultivated for S. mutans isolation. Morphology examination, biochemical characterization, and polymerase chain reaction were performed to identify S. mutans The cariogenicity of S. mutans strains isolated from clinical specimens was evaluated by testing the acidogenicity, aciduricity, extracellular polysaccharide production, and adhesion ability of the bacteria. Finally, subtractive SELEX (systematic evolution of ligands by exponential enrichment) technology targeting whole intact cells was used to screen for ssDNA aptamers specific to the strains with high cariogenicity. After nine rounds of subtractive SELEX, sufficient pool enrichment was achieved as shown by radioactive isotope analysis. The enriched pool was cloned and sequenced randomly, followed by MEME online and RNA structure software analysis of the sequences. Results from the flow cytometry indicated that aptamers H1, H16, H4, L1, L10, and H19 could discriminate highly cariogenic S. mutans strains from poorly cariogenic strains. Among these, Aptamer H19 had the strongest binding capacity with cariogenic S. mutans strains with a dissociation constant of 69.45 ± 38.53 nM. In conclusion, ssDNA aptamers specific to highly cariogenic clinical S. mutans strains were successfully obtained. These ssDNA aptamers might be used for the early diagnosis and treatment of dental caries. © The Author 2016. Published by Oxford University Press on behalf of the Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  4. Persistence of wild Streptococcus thermophilus strains on wooden vat and during the manufacture of a traditional Caciocavallo type cheese.

    PubMed

    Settanni, L; Di Grigoli, A; Tornambé, G; Bellina, V; Francesca, N; Moschetti, G; Bonanno, A

    2012-04-02

    The present work was undertaken to evaluate the influence of the wooden dairy plant equipment on the microbiological characteristics of curd to be transformed into Caciocavallo Palermitano cheese. Traditional raw milk productions were performed concomitantly with standard cheese making trials carried out in stainless steel vat inoculated with a commercial starter. Milk from two different farms (A and B) was separately processed. The wooden vat was found to be a reservoir of lactic acid bacteria (LAB), while unwanted (spoilage and/or pathogenic) microorganisms were not hosted or were present at very low levels. All microbial groups were numerically different in bulk milks, showing higher levels for the farm B. LAB, especially thermophilic cocci, dominated the whole cheese making process of all productions. Undesired microorganisms decreased in number or disappeared during transformation, particularly after curd stretching. LAB were isolated from the wooden vat surface and from all dairy samples, subjected to phenotypic and genetic characterization and identification. Streptococcus thermophilus was the species found at the highest concentration in all samples analyzed and it also dominated the microbial community of the wooden vat. Fourteen other LAB species belonging to six genera (Enterococcus, Lactobacillus, Lactococcus, Leuconostoc, Streptococcus and Weissella) were also detected. All S. thermophilus isolates were genetically differentiated and a consortium of four strains persisted during the whole traditional production process. As confirmed by pH and the total acidity after the acidification step, indigenous S. thermophilus strains acted as a mixed starter culture. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. Streptococcus pneumoniae-induced ototoxicity in organ of Corti explant cultures.

    PubMed

    Perny, Michael; Solyga, Magdalena; Grandgirard, Denis; Roccio, Marta; Leib, Stephen L; Senn, Pascal

    2017-07-01

    Hearing loss remains the most common long-term complication of pneumococcal meningitis (PM) reported in up to 30% of survivors. Streptococcus pneumoniae have been shown to possess different ototoxic properties. Here we present a novel ex vivo experimental setup to examine in detail the pattern of hair cell loss upon exposure to different S. pneumoniae strains, therefore recapitulating pathogen derived aspects of PM-induced hearing loss. Our results show a higher susceptibility towards S. pneumoniae-induced cochlear damage for outer hair cells (OHC) compared to inner hair cells (IHC), which is consistent with in vivo data. S. pneumoniae-induced hair cell loss was both time and dose-dependent. Moreover, we have found significant differences in the level of cell damage between tissue from the basal and the apical turns. This shows that the higher vulnerability of hair cells located at high frequency regions observed in vivo cannot be explained solely by the spatial organisation and bacterial infiltration from the basal portion of the cochlea. Using a wild type D39 strain and a mutant defective for the pneumolysin (PLY) gene, we also have shown that the toxin PLY is an important factor involved in ototoxic damages. The obtained results indicate that PLY can cause both IHC and OHC loss. Finally, we are reporting here for the first time a higher vulnerability of HC located at the basal and middle cochlear region to pneumolysin-induced damage. The detailed description of the susceptibility of hair cells to Streptococcus pneumoniae provided in this report can in the future determine the choice and the development of novel otoprotective therapies during pneumococcal meningitis. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  6. The Protein Interactome of Streptococcus pneumoniae and Bacterial Meta-interactomes Improve Function Predictions.

    PubMed

    Wuchty, S; Rajagopala, S V; Blazie, S M; Parrish, J R; Khuri, S; Finley, R L; Uetz, P

    2017-01-01

    The functions of roughly a third of all proteins in Streptococcus pneumoniae , a significant human-pathogenic bacterium, are unknown. Using a yeast two-hybrid approach, we have determined more than 2,000 novel protein interactions in this organism. We augmented this network with meta-interactome data that we defined as the pool of all interactions between evolutionarily conserved proteins in other bacteria. We found that such interactions significantly improved our ability to predict a protein's function, allowing us to provide functional predictions for 299 S. pneumoniae proteins with previously unknown functions. IMPORTANCE Identification of protein interactions in bacterial species can help define the individual roles that proteins play in cellular pathways and pathogenesis. Very few protein interactions have been identified for the important human pathogen S. pneumoniae . We used an experimental approach to identify over 2,000 new protein interactions for S. pneumoniae , the most extensive interactome data for this bacterium to date. To predict protein function, we used our interactome data augmented with interactions from other closely related bacteria. The combination of the experimental data and meta-interactome data significantly improved the prediction results, allowing us to assign possible functions to a large number of poorly characterized proteins.

  7. The Protein Interactome of Streptococcus pneumoniae and Bacterial Meta-interactomes Improve Function Predictions

    PubMed Central

    Rajagopala, S. V.; Blazie, S. M.; Parrish, J. R.; Khuri, S.; Finley, R. L.

    2017-01-01

    ABSTRACT The functions of roughly a third of all proteins in Streptococcus pneumoniae, a significant human-pathogenic bacterium, are unknown. Using a yeast two-hybrid approach, we have determined more than 2,000 novel protein interactions in this organism. We augmented this network with meta-interactome data that we defined as the pool of all interactions between evolutionarily conserved proteins in other bacteria. We found that such interactions significantly improved our ability to predict a protein’s function, allowing us to provide functional predictions for 299 S. pneumoniae proteins with previously unknown functions. IMPORTANCE Identification of protein interactions in bacterial species can help define the individual roles that proteins play in cellular pathways and pathogenesis. Very few protein interactions have been identified for the important human pathogen S. pneumoniae. We used an experimental approach to identify over 2,000 new protein interactions for S. pneumoniae, the most extensive interactome data for this bacterium to date. To predict protein function, we used our interactome data augmented with interactions from other closely related bacteria. The combination of the experimental data and meta-interactome data significantly improved the prediction results, allowing us to assign possible functions to a large number of poorly characterized proteins. PMID:28744484

  8. Genome-wide essential gene identification in Streptococcus sanguinis

    PubMed Central

    Xu, Ping; Ge, Xiuchun; Chen, Lei; Wang, Xiaojing; Dou, Yuetan; Xu, Jerry Z.; Patel, Jenishkumar R.; Stone, Victoria; Trinh, My; Evans, Karra; Kitten, Todd; Bonchev, Danail; Buck, Gregory A.

    2011-01-01

    A clear perception of gene essentiality in bacterial pathogens is pivotal for identifying drug targets to combat emergence of new pathogens and antibiotic-resistant bacteria, for synthetic biology, and for understanding the origins of life. We have constructed a comprehensive set of deletion mutants and systematically identified a clearly defined set of essential genes for Streptococcus sanguinis. Our results were confirmed by growing S. sanguinis in minimal medium and by double-knockout of paralogous or isozyme genes. Careful examination revealed that these essential genes were associated with only three basic categories of biological functions: maintenance of the cell envelope, energy production, and processing of genetic information. Our finding was subsequently validated in two other pathogenic streptococcal species, Streptococcus pneumoniae and Streptococcus mutans and in two other gram-positive pathogens, Bacillus subtilis and Staphylococcus aureus. Our analysis has thus led to a simplified model that permits reliable prediction of gene essentiality. PMID:22355642

  9. Influence of hyaluronic acid on bacterial and fungal species, including clinically relevant opportunistic pathogens.

    PubMed

    Ardizzoni, Andrea; Neglia, Rachele G; Baschieri, Maria C; Cermelli, Claudio; Caratozzolo, Manuela; Righi, Elena; Palmieri, Beniamino; Blasi, Elisabetta

    2011-10-01

    Hyaluronic acid (HA) has several clinical applications (aesthetic surgery, dermatology, orthopaedics and ophtalmology). Following recent evidence, suggesting antimicrobial and antiviral properties for HA, we investigated its effects on 15 ATCC strains, representative of clinically relevant bacterial and fungal species. The in vitro system employed allowed to assess optical density of broth cultures as a measure of microbial load in a time-dependent manner. The results showed that different microbial species and, sometimes, different strains belonging to the same species, are differently affected by HA. In particular, staphylococci, enterococci, Streptococcus mutans, two Escherichia coli strains, Pseudomonas aeruginosa, Candida glabrata and C. parapsilosis displayed a HA dose-dependent growth inhibition; no HA effects were detected in E. coli ATCC 13768 and C. albicans; S. sanguinis was favoured by the highest HA dose. Therefore, the influence of HA on bacteria and fungi warrants further studies aimed at better establishing its relevance in clinical applications.

  10. Chromophore-enhanced bacterial photothermolysis

    NASA Astrophysics Data System (ADS)

    Huckleby, Jana K.; Morton, Rebecca J.; Bartels, Kenneth E.

    1999-06-01

    The use of chromophore dyes to enhance the bactericidal effect of laser energy was studied as a means to optimize laser treatment for the decontamination of wound. Using an in vitro study, various concentrations of indocyanine green (ICG), carbon black, and fluorescein were mixed with a suspension of bacteria and plated on tryptic soy agar. Plates were exposed to a laser beam of 10-15 watts for times ranging from 0 to 180 seconds, incubated overnight, and colony counts were performed. Bacteria not mixed with chromophore were used as controls. Six bacterial strains encompassing a range of bacterial types were used: Staphylococcus aureau, Streptococcus pyogenes, Escherichia coli, Pseudomonas aeruginosa, Bacillus cereus spore suspensions, and Clostridium perfringens. Laser treatment alone had no effect on any of the bacteria. Significant killing of gram-positive bacteria, including spores of Bacillus cereus, was observed only with the use of ICG and diode laser energy. No effect was observed using any of the chromophores on the gram-negative bacteria. The results of this study indicate that successful killing of gram-positive bacteria can be achieved using ICG combined with appropriate laser energy and wavelength. Efforts to enhance the susceptibility of gram-negative bacteria to photothermolysis by laser energy were unsuccessful.

  11. In-vitro bacterial identification using fluorescence spectroscopy with an optical fiber system

    NASA Astrophysics Data System (ADS)

    Spector, Brian C.; Werkhaven, Jay A.; Smith, Dana; Reinisch, Lou

    2000-05-01

    Acute otitis media (AOM) remains a source of significant morbidity in children. With the emergence of antibiotic resistant strains of bacteria, tympanocentesis has become an important method of bacterial identification in the setting of treatment failures. Previous studies described a prototype system for the non-invasive fluorescence identification of bacteria in vitro. We demonstrate the addition of an optical fiber to allow for the identification of a specimen distant to the spectrofluorometer. Emission spectra from three bacteria, Streptococcus pneumoniae, Haemophilus influenzae, and Staphylococcus aureus were successfully obtained in vitro. This represents a necessary step prior to the study of in vivo identification of bacteria in AOM using fluorescence spectroscopy.

  12. Beneficial role of hydrophytes in removing Cr(VI) from wastewater in association with chromate-reducing bacterial strains Ochrobactrum intermedium and Brevibacterium.

    PubMed

    Faisal, Muhammad; Hasnain, Shahida

    2005-01-01

    This study deals with the use of three chromium-resistant bacterial strains (Ochrobactrum intermedium CrT-1, Brevibacterium CrT-13, and CrM-1) in conjunction with Eichornia crassipes for the removal of toxic chromium from wastewater. Bacterial strains resulted in reduced uptake of chromate into inoculated plants as compared to noninoculated control plants. In the presence of different heavy metals, chromium uptake into the plants was 28.7 and 7.15% less at an initial K2CrO4 concentration of 100 and 500 microg ml(-1) in comparison to a metal free chromium solution. K2CrO4 uptake into the plant occurred at different pHs tested, but maximum uptake was observed at pH 5. Nevertheless, the bacterial strains caused some decrease in chromate uptake into the plants, but the combined effect of plants and bacterial strains conduce more removal of Cr(VI) from the solution.

  13. The globally disseminated M1T1 clone of Group A Streptococcus evades autophagy for intracellular replication

    PubMed Central

    Barnett, Timothy C.; Liebl, David; Seymour, Lisa M.; Gillen, Christine M.; Lim, Jin Yan; LaRock, Christopher N.; Davies, Mark R.; Schulz, Benjamin L.; Nizet, Victor; Teasdale, Rohan D.; Walker, Mark J.

    2014-01-01

    SUMMARY Autophagy is reported to be an important innate immune defence against the intracellular bacterial pathogen Group A Streptococcus (GAS). However, the GAS strains examined to-date belong to serotypes infrequently associated with human disease. We find that the globally disseminated serotype M1T1 clone of GAS can evade autophagy and replicate efficiently in the cytosol of infected cells. Cytosolic M1T1 GAS (strain 5448), but not M6 GAS (strain JRS4), avoids ubiquitylation and recognition by the host autophagy marker LC3 and ubiquitin-LC3 adaptor proteins NDP52, p62 and NBR1. Expression of SpeB, a streptococcal cysteine protease, is critical for this process, as an isogenic M1T1 ΔspeB mutant is targeted to autophagy and attenuated for intracellular replication. SpeB degrades p62, NDP52 and NBR1 in vitro and within the host cell cytosol. These results uncover a proteolytic mechanism utilized by GAS to escape the host autophagy pathway which may underpin the success of the M1T1 clone. PMID:24331465

  14. Purification and Characterization of Suicin 65, a Novel Class I Type B Lantibiotic Produced by Streptococcus suis.

    PubMed

    Vaillancourt, Katy; LeBel, Geneviève; Frenette, Michel; Fittipaldi, Nahuel; Gottschalk, Marcelo; Grenier, Daniel

    2015-01-01

    Bacteriocins are antimicrobial peptides of bacterial origin that are considered as a promising alternative to the use of conventional antibiotics. Recently, our laboratory reported the purification and characterization of two lantibiotics, suicin 90-1330 and suicin 3908, produced by the swine pathogen and zoonotic agent Streptococcus suis (serotype 2). In this study, a novel bacteriocin produced by S. suis has been identified and characterized. The producing strain S. suis 65 (serotype 2) was found to belong to the sequence type 28, that includes strains known to be weakly or avirulent in a mouse model. The bacteriocin, whose production was only possible following growth on solid culture medium, was purified to homogeneity by cationic exchange and reversed-phase high-pressure liquid chromatography. The bacteriocin, named suicin 65, was heat, pH and protease resistant. Suicin 65 was active against all S. suis isolates tested, including antibiotic resistant strains. Amino acid sequencing of the purified bacteriocin by Edman degradation revealed the presence of modified amino acids suggesting a lantibiotic. Using the partial sequence obtained, a blast was performed against published genomes of S. suis and allowed to identify a putative lantibiotic locus in the genome of S. suis 89-1591. From this genome, primers were designed and the gene cluster involved in the production of suicin 65 by S. suis 65 was amplified by PCR. Sequence analysis revealed the presence of ten open reading frames, including a duplicate of the structural gene. The structural genes (sssA and sssA') of suicin 65 encodes a 25-amino acid residue leader peptide and a 26-amino acid residue mature peptide yielding an active bacteriocin with a deducted molecular mass of 3,005 Da. Mature suicin 65 showed a high degree of identity with class I type B lantibiotics (globular structure) produced by Streptococcus pyogenes (streptococcin FF22; 84.6%), Streptococcus macedonicus (macedocin ACA-DC 198; 84

  15. Purification and Characterization of Suicin 65, a Novel Class I Type B Lantibiotic Produced by Streptococcus suis

    PubMed Central

    Vaillancourt, Katy; LeBel, Geneviève; Frenette, Michel; Fittipaldi, Nahuel; Gottschalk, Marcelo; Grenier, Daniel

    2015-01-01

    Bacteriocins are antimicrobial peptides of bacterial origin that are considered as a promising alternative to the use of conventional antibiotics. Recently, our laboratory reported the purification and characterization of two lantibiotics, suicin 90–1330 and suicin 3908, produced by the swine pathogen and zoonotic agent Streptococcus suis (serotype 2). In this study, a novel bacteriocin produced by S. suis has been identified and characterized. The producing strain S. suis 65 (serotype 2) was found to belong to the sequence type 28, that includes strains known to be weakly or avirulent in a mouse model. The bacteriocin, whose production was only possible following growth on solid culture medium, was purified to homogeneity by cationic exchange and reversed-phase high-pressure liquid chromatography. The bacteriocin, named suicin 65, was heat, pH and protease resistant. Suicin 65 was active against all S. suis isolates tested, including antibiotic resistant strains. Amino acid sequencing of the purified bacteriocin by Edman degradation revealed the presence of modified amino acids suggesting a lantibiotic. Using the partial sequence obtained, a blast was performed against published genomes of S. suis and allowed to identify a putative lantibiotic locus in the genome of S. suis 89–1591. From this genome, primers were designed and the gene cluster involved in the production of suicin 65 by S. suis 65 was amplified by PCR. Sequence analysis revealed the presence of ten open reading frames, including a duplicate of the structural gene. The structural genes (sssA and sssA’) of suicin 65 encodes a 25-amino acid residue leader peptide and a 26-amino acid residue mature peptide yielding an active bacteriocin with a deducted molecular mass of 3,005 Da. Mature suicin 65 showed a high degree of identity with class I type B lantibiotics (globular structure) produced by Streptococcus pyogenes (streptococcin FF22; 84.6%), Streptococcus macedonicus (macedocin ACA-DC 198; 84

  16. Population structure of plasmid-containing strains of Streptococcus mutans, a member of the human indigenous biota.

    PubMed

    Caufield, Page W; Saxena, Deepak; Fitch, David; Li, Yihong

    2007-02-01

    There are suggestions that the phylogeny of Streptococcus mutans, a member of the human indigenous biota that is transmitted mostly mother to child, might parallel the evolutionary history of its human host. The relatedness and phylogeny of plasmid-containing strains of S. mutans were examined based on chromosomal DNA fingerprints (CDF), a hypervariable region (HVR) of a 5.6-kb plasmid, the rRNA gene intergenic spacer region (IGSR), serotypes, and the genotypes of mutacin I and II. Plasmid-containing strains were studied because their genetic diversity was twice as great as that of plasmid-free strains. The CDF of S. mutans from unrelated human hosts were unique, except those from Caucasians, which were essentially identical. The evolutionary history of the IGSR, with or without the serotype and mutacin characters, clearly delineated an Asian clade. Also, a continuous association with mutacin II could be reconstructed through an evolutionary lineage with the IGSR, but not for serotype e. DNA sequences from the HVR of the plasmid produced a well-resolved phylogeny that differed from the chromosomal phylogeny, indicating that the horizontal transfer of the plasmid may have occurred multiple times. The plasmid phylogeny was more congruent with serotype e than with mutacin II evolution, suggesting a possible functional correlation. Thus, the history of this three-tiered relationship between human, bacterium, and plasmid supported both coevolution and independent evolution.

  17. Programmable removal of bacterial strains by use of genome-targeting CRISPR-Cas systems.

    PubMed

    Gomaa, Ahmed A; Klumpe, Heidi E; Luo, Michelle L; Selle, Kurt; Barrangou, Rodolphe; Beisel, Chase L

    2014-01-28

    CRISPR (clustered regularly interspaced short palindromic repeats)-Cas (CRISPR-associated) systems in bacteria and archaea employ CRISPR RNAs to specifically recognize the complementary DNA of foreign invaders, leading to sequence-specific cleavage or degradation of the target DNA. Recent work has shown that the accidental or intentional targeting of the bacterial genome is cytotoxic and can lead to cell death. Here, we have demonstrated that genome targeting with CRISPR-Cas systems can be employed for the sequence-specific and titratable removal of individual bacterial strains and species. Using the type I-E CRISPR-Cas system in Escherichia coli as a model, we found that this effect could be elicited using native or imported systems and was similarly potent regardless of the genomic location, strand, or transcriptional activity of the target sequence. Furthermore, the specificity of targeting with CRISPR RNAs could readily distinguish between even highly similar strains in pure or mixed cultures. Finally, varying the collection of delivered CRISPR RNAs could quantitatively control the relative number of individual strains within a mixed culture. Critically, the observed selectivity and programmability of bacterial removal would be virtually impossible with traditional antibiotics, bacteriophages, selectable markers, or tailored growth conditions. Once delivery challenges are addressed, we envision that this approach could offer a novel means to quantitatively control the composition of environmental and industrial microbial consortia and may open new avenues for the development of "smart" antibiotics that circumvent multidrug resistance and differentiate between pathogenic and beneficial microorganisms. Controlling the composition of microbial populations is a critical aspect in medicine, biotechnology, and environmental cycles. While different antimicrobial strategies, such as antibiotics, antimicrobial peptides, and lytic bacteriophages, offer partial solutions

  18. Serotype Distribution and Antibiotic Susceptibility of Streptococcus pneumoniae Strains Carried by Children Infected with Human Immunodeficiency Virus

    PubMed Central

    Safari, Dodi; Kurniati, Nia; Waslia, Lia; Khoeri, Miftahuddin Majid; Putri, Tiara; Bogaert, Debby; Trzciński, Krzysztof

    2014-01-01

    Abstract Background We studied the serotype distribution and antibiotic susceptibility of Streptococcus pneumoniae isolates carried by children infected with HIV in Jakarta, Indonesia. Methods Nasopharyngeal swabs were collected from 90 HIV infected children aged 4 to 144 months. S. pneumoniae was identified by conventional and molecular methods. Serotyping was performed with sequential multiplex PCR and antibiotic susceptibility with the disk diffusion method. Results We identified S. pneumoniae carriage in 41 children (46%). Serotype 19F was most common among 42 cultured strains (19%) followed by 19A and 6A/B (10% each), and 23F (7%). Most isolates were susceptible to chloramphenicol (86%), followed by clindamycin (79%), erythromycin (76%), tetracycline (43%), and sulphamethoxazole/trimethoprim (41%). Resistance to penicillin was most common with only 33% of strains being susceptible. Strains of serotypes targeted by the 13-valent pneumococcal conjugate polysaccharide vaccine (PCV13) were more likely to be multidrug resistant (13 of 25 or 52%) compared to non-PCV13 serotype isolates (3 of 17 or 18%; Fisher exact test p = 0.05). Conclusion Our study provides insight into the epidemiology of pneumococcal carriage in young HIV patients in Indonesia. These findings may facilitate potential preventive strategies that target invasive pneumococcal disease in Indonesia. PMID:25343448

  19. Distribution of Putative Virulence Genes in Streptococcus mutans Strains Does Not Correlate with Caries Experience▿†‖

    PubMed Central

    Argimón, Silvia; Caufield, Page W.

    2011-01-01

    Streptococcus mutans, a member of the human oral flora, is a widely recognized etiological agent of dental caries. The cariogenic potential of S. mutans is related to its ability to metabolize a wide variety of sugars, form a robust biofilm, produce copious amounts of lactic acid, and thrive in the acid environment that it generates. The remarkable genetic variability present within the species is reflected at the phenotypic level, notably in the differences in the cariogenic potential between strains. However, the genetic basis of these differences is yet to be elucidated. In this study, we surveyed by PCR and DNA hybridization the distribution of putative virulence genes, genomic islands, and insertion sequences across a collection of 33 strains isolated from either children with severe early childhood caries (S-ECC) or those who were caries free (CF). We found this genetically diverse group of isolates to be remarkably homogeneous with regard to the distribution of the putative virulence genes and genetic elements analyzed. Our findings point to the role of other factors in the pathogenesis of S-ECC, such as uncharacterized virulence genes, differences in gene expression and/or enzymatic activity, cooperation between S. mutans strains or with other members of the oral biota, and host factors. PMID:21209168

  20. Identification of 88 regulatory small RNAs in the TIGR4 strain of the human pathogen Streptococcus pneumoniae

    PubMed Central

    Acebo, Paloma; Martin-Galiano, Antonio J.; Navarro, Sara; Zaballos, Ángel; Amblar, Mónica

    2012-01-01

    Streptococcus pneumoniae is the main etiological agent of community-acquired pneumonia and a major cause of mortality and morbidity among children and the elderly. Genome sequencing of several pneumococcal strains revealed valuable information about the potential proteins and genetic diversity of this prevalent human pathogen. However, little is known about its transcriptional regulation and its small regulatory noncoding RNAs. In this study, we performed deep sequencing of the S. pneumoniae TIGR4 strain RNome to identify small regulatory RNA candidates expressed in this pathogen. We discovered 1047 potential small RNAs including intragenic, 5′- and/or 3′-overlapping RNAs and 88 small RNAs encoded in intergenic regions. With this approach, we recovered many of the previously identified intergenic small RNAs and identified 68 novel candidates, most of which are conserved in both sequence and genomic context in other S. pneumoniae strains. We confirmed the independent expression of 17 intergenic small RNAs and predicted putative mRNA targets for six of them using bioinformatics tools. Preliminary results suggest that one of these six is a key player in the regulation of competence development. This study is the biggest catalog of small noncoding RNAs reported to date in S. pneumoniae and provides a highly complete view of the small RNA network in this pathogen. PMID:22274957

  1. Evolutionary Constraints Shaping Streptococcus pyogenes-Host Interactions.

    PubMed

    Wilkening, Reid V; Federle, Michael J

    2017-07-01

    Research on the Gram-positive human-restricted pathogen Streptococcus pyogenes (Group A Streptococcus, GAS) has long focused on invasive illness, the most severe manifestations of GAS infection. Recent advances in descriptions of molecular mechanisms of GAS virulence, coupled with massive sequencing efforts to isolate genomes, have allowed the field to better understand the molecular and evolutionary changes leading to pandemic strains. These findings suggest that it is necessary to rethink the dogma involving GAS pathogenesis, and that the most productive avenues for research going forward may be investigations into GAS in its 'normal' habitat, the nasopharynx, and its ability to either live with its host in an asymptomatic lifestyle or as an agent of superficial infections. This review will consider these advances, focusing on the natural history of GAS, the evolution of pandemic strains, and novel roles for several key virulence factors that may allow the field to better understand their physiological role. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. The Antiphagocytic Activity of SeM of Streptococcus equi Requires Capsule.

    PubMed

    Timoney, John F; Suther, Pranav; Velineni, Sridhar; Artiushin, Sergey C

    2014-01-01

    Resistance to phagocytosis is a crucial virulence property of Streptococcus equi (Streptococcus equi subsp. equi; Se), the cause of equine strangles. The contribution and interdependence of capsule and SeM to killing in equine blood and neutrophils were investigated in naturally occurring strains of Se. Strains CF32, SF463 were capsule and SeM positive, strains Lex90, Lex93 were capsule negative and SeM positive and strains Se19, Se1-8 were capsule positive and SeM deficient. Phagocytosis and killing of Se19, Se1-8, Lex90 and Lex93 in equine blood and by neutrophils suspended in serum were significantly (P ≤ 0.02) greater compared to CF32 and SF463. The results indicate capsule and SeM are both required for resistance to phagocytosis and killing and that the anti-phagocytic property of SeM is greatly reduced in the absence of capsule.

  3. In Vitro Effect of Zingiber officinale Extract on Growth of Streptococcus mutans and Streptococcus sanguinis.

    PubMed

    Azizi, Arash; Aghayan, Shabnam; Zaker, Saeed; Shakeri, Mahdieh; Entezari, Navid; Lawaf, Shirin

    2015-01-01

    Background and Objectives. Tooth decay is an infectious disease of microbial origin. Considering the increasing prevalence of antibiotic resistance due to their overuse and also their side effects, medicinal plants are now considered for use against bacterial infections. This study aimed to assess the effects of different concentrations of Zingiber officinale extract on proliferation of Streptococcus mutans and Streptococcus sanguinis in vitro. Materials and Methods. In this experimental study, serial dilutions of the extract were prepared in two sets of 10 test tubes for each bacterium (total of 20). Standard amounts of bacterial suspension were added; 100ƛ of each tube was cultured on prepared solid agar plates and incubated at 37°C for 24 hours. Serial dilutions of the extract were prepared in another 20 tubes and 100ƛ of each tube was added to blood agar culture medium while being prepared. The mixture was transferred to the plates. The bacteria were inoculated on plates and incubated as described. Results. The minimum inhibitory concentration (MIC) was 0.02 mg/mL for S. mutans and 0.3 mg/mL for S. sanguinis. The minimum bactericidal concentration (MBC) was 0.04 mg for S. mutans and 0.6 mg for S. sanguinis. Conclusion. Zingiber officinale extract has significant antibacterial activity against S. mutans and S. sanguinis cariogenic microorganisms.

  4. In Vitro Effect of Zingiber officinale Extract on Growth of Streptococcus mutans and Streptococcus sanguinis

    PubMed Central

    Azizi, Arash; Aghayan, Shabnam; Zaker, Saeed; Shakeri, Mahdieh; Entezari, Navid; Lawaf, Shirin

    2015-01-01

    Background and Objectives. Tooth decay is an infectious disease of microbial origin. Considering the increasing prevalence of antibiotic resistance due to their overuse and also their side effects, medicinal plants are now considered for use against bacterial infections. This study aimed to assess the effects of different concentrations of Zingiber officinale extract on proliferation of Streptococcus mutans and Streptococcus sanguinis in vitro. Materials and Methods. In this experimental study, serial dilutions of the extract were prepared in two sets of 10 test tubes for each bacterium (total of 20). Standard amounts of bacterial suspension were added; 100ƛ of each tube was cultured on prepared solid agar plates and incubated at 37°C for 24 hours. Serial dilutions of the extract were prepared in another 20 tubes and 100ƛ of each tube was added to blood agar culture medium while being prepared. The mixture was transferred to the plates. The bacteria were inoculated on plates and incubated as described. Results. The minimum inhibitory concentration (MIC) was 0.02 mg/mL for S. mutans and 0.3 mg/mL for S. sanguinis. The minimum bactericidal concentration (MBC) was 0.04 mg for S. mutans and 0.6 mg for S. sanguinis. Conclusion. Zingiber officinale extract has significant antibacterial activity against S. mutans and S. sanguinis cariogenic microorganisms. PMID:26347778

  5. Determination of bacterial activity by use of an evanescent-wave fiber-optic sensor

    NASA Astrophysics Data System (ADS)

    John, M. Shelly; Kishen, Anil; Sing, Lim Chu; Asundi, Anand

    2002-12-01

    A novel technique based on fiber-optic evanescent-wave spectroscopy is proposed for the detection of bacterial activity in human saliva. The sensor determines the specific concentration of Streptococcus mutans in saliva, which is a major causative factor in dental caries. In this design, one prepares the fiber-optic bacterial sensor by replacing a portion of the cladding region of a multimode fiber with a dye-encapsulated xerogel, using the solgel technique. The exponential decay of the evanescent wave at the core-cladding interface of a multimode fiber is utilized for the determination of bacterial activity in saliva. The acidogenic profile of Streptococcus mutans is estimated by use of evanescent-wave absorption spectra at various levels of bacterial activity.

  6. Bioremediation of PCB-contaminated shallow river sediments: The efficacy of biodegradation using individual bacterial strains and their consortia.

    PubMed

    Horváthová, Hana; Lászlová, Katarína; Dercová, Katarína

    2018-02-01

    Elimination of dangerous toxic and hydrophobic chlorinated aromatic compounds, mainly PCBs from the environment, is one of the most important aims of the environmental biotechnologies. In this work, biodegradation of an industrial mixture of PCBs (Delor 103, equivalent to Aroclor 1242) was performed using bacterial consortia composed of four bacterial strains isolated from the historically PCB-contaminated sediments and characterized as Achromobacter xylosoxidans, Stenotrophomonas maltophilia, Ochrobactrum anthropi and Rhodococcus ruber. The objective of this research was to determine the biodegradation ability of the individual strains and artificially prepared consortia composed of two or three bacterial strains mentioned above. Based on the growth parameters, six consortia were constructed and inoculated into the historically contaminated sediment samples collected in the efflux canal of Chemko Strážske plant - the former producer of the industrial mixtures of PCBs. The efficacy of the biotreatment, namely bioaugmentation, was evaluated by determination of ecotoxicity of treated and non-treated sediments. The most effective consortia were those containing the strain R. ruber. In the combination with A. xylosoxidans, the biodegradation of the sum of the indicator congeners was 85% and in the combination with S. maltophilia nearly 80%, with inocula applied in the ratio 1:1 in both cases. Consortium containing the strain R. ruber and S. maltophilia showed pronounced degradation of the highly chlorinated PCB congeners. Among the consortia composed of three bacterial strains, only that consisting of O. anthropi, R. ruber and A. xylosoxidans showed higher biodegradation (73%). All created consortia significally reduced the toxicity of the contaminated sediment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Development of a pentaplex PCR assay for the simultaneous detection of Streptococcus thermophilus, Lactobacillus delbrueckii subsp. bulgaricus, L. delbrueckii subsp. lactis, L. helveticus, L. fermentum in whey starter for Grana Padano cheese.

    PubMed

    Cremonesi, Paola; Vanoni, Laura; Morandi, Stefano; Silvetti, Tiziana; Castiglioni, Bianca; Brasca, Milena

    2011-03-30

    A pentaplex PCR assay for the rapid, selective and simultaneous detection of Lactobacillus helveticus, L. delbrueckii subsp. lactis, L. delbrueckii subsp. bulgaricus, Streptococcus thermophilus, and L. fermentum, was developed. The target sequences were a group of genes coding for beta-galactosidase production (S. thermophilus and L. delbrueckii subsp. bulgaricus), for cell-enveloped associated proteinase synthesis (L. helveticus), for dipeptide transport system production (L. delbrueckii subsp. lactis) and for arginine-ornithine antiporter protein production (L. fermentum). The analytical specificity of the assay was evaluated with 5 reference strains and 140 lactic acid bacterial strains derived from raw milk cheeses and belonging to the Lactobacillus, Streptococcus, Lactococcus and Enterococcus genera. The identification limit for each target strain was 10(3)CFU/ml. This new molecular assay was used to investigate the LAB population by direct extraction of DNA from the 12 whey cultures for Grana Padano. The pentaplex PCR assay revealed a good correspondence with microbiological analyses and allowed to identify even minor LAB community members which, can be out-competed in vitro by numerically more abundant microbial species. Copyright © 2011 Elsevier B.V. All rights reserved.

  8. Streptococcus pyogenes degrades extracellular matrix in chondrocytes via MMP-13

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sakurai, Atsuo; Okahashi, Nobuo; Maruyama, Fumito

    2008-08-29

    Group A streptococcus (GAS) causes a wide range of human diseases, including bacterial arthritis. The pathogenesis of arthritis is characterized by synovial proliferation and the destruction of cartilage and subchondral bone in joints. We report here that GAS strain JRS4 invaded a chondrogenic cell line ATDC5 and induced the degradation of the extracellular matrix (ECM), whereas an isogenic mutant of JRS4 lacking a fibronectin-binding protein, SAM1, failed to invade the chondrocytes or degrade the ECM. Reverse transcription-PCR and Western blot analysis revealed that the expression of matrix metalloproteinase (MMP)-13 was strongly elevated during the infection with GAS. A reporter assaymore » revealed that the activation of the AP-1 transcription factor and the phosphorylation of c-Jun terminal kinase participated in MMP-13 expression. These results suggest that MMP-13 plays an important role in the destruction of infected joints during the development of septic arthritis.« less

  9. Acute abdomen due to group A streptococcus bacteremia caused by an isolate with a mutation in the csrS gene.

    PubMed

    Kaneko, Masahiko; Maruta, Masaki; Shikata, Hisaharu; Hanayama, Masakazu; Ikebe, Tadayoshi

    2015-11-01

    Streptococcus pyogenes (group A streptococcus) is an aerobic gram-positive coccus that causes infections ranging from non-invasive pharyngitis to severely invasive necrotizing fasciitis. Mutations in csrS/csrR and rgg, negative regulator genes of group A streptococcus, are crucial factors in the pathogenesis of streptococcal toxic shock syndrome, which is a severe, invasive infection characterized by sudden onset of shock and multiorgan failure, resulting in a high mortality rate. Here we present a case of group A streptococcal bacteremia in a 28-year-old Japanese woman with no relevant previous medical history. The patient developed progressive abdominal symptoms that may have been due to spontaneous bacterial peritonitis, followed by a state of shock, which did not fulfill the proposed criteria for streptococcal toxic shock. The isolate was found to harbor a mutation in the negative regulator csrS gene, whereas the csrR and rgg genes were intact. It was noteworthy that this strain carrying a csrS mutation had caused group A streptococcal bacteremia characterized by acute abdomen as the presenting symptom in a young individual who had been previously healthy. This case indicates that group A streptococcus with csrS mutations has potential virulence factors that are associated with the onset of group A streptococcal bacteremia that does not meet the diagnostic criteria for streptococcal toxic shock syndrome. Copyright © 2015 Japanese Society of Chemotherapy and The Japanese Association for Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  10. Molecular Characteristics of Erythromycin-Resistant Streptococcus pyogenes Strains Isolated from Children Patients in Tunis, Tunisia.

    PubMed

    Ksia, Sonia; Smaoui, Hanen; Hraoui, Manel; Bouafsoun, Aida; Boutiba-Ben Boubaker, Ihem; Kechrid, Amel

    2017-07-01

    The aims of our study were to characterize phenotypically and genotypically erythromycin-resistant Streptococcus pyogenes or group A streptococci (ERGAS) isolates, to evaluate macrolide resistance and to analyze the association between emm types and virulence factors. Included in this study were all ERGAS strains isolated from 2000 to 2013 at the Children's hospital of Tunis. Antimicrobial susceptibility was performed according to the CA-SFM guidelines. Macrolide resistance genes were revealed by polymerase chain reaction (PCR) method. Virulence factor genes (pyrogenic exotoxin genes and superantigen gene) were detected by PCR, and the emm types were defined by the sequencing of the variable 5' end of the emm gene. Among the 289 GAS isolates collected, 15 (5.2%) were resistant to erythromycin; 7 of the strains were assigned to the cMLS B phenotype (46.6%); 5 harbored ermB gene alone (33.3%); and 2 strains coharbored ermB and mefA (13.3%). The remaining (53.4%) were assigned to the M phenotype and harbored the mefA gene. The frequency of detection of each toxin gene among ERGAS was 13.4% for speA (2 strains), 53.4% for speC (8 strains), and 13.4% for ssa (2 strains). Emm types 1, 58, 11, and 78 were the most frequent among ERGAS strains. The distribution of the cMLS B and M phenotypes changed over the period of investigation with a decrement of cMLS B phenotype and ermB gene that predominated between 2000 and 2006 and an increase of M phenotype and mefA gene between 2007 and 2013, but this difference was nonstatistically significant because of the low number of resistant strains. Emm types 1, 58, and 4 were only present among strains assigned to the M phenotype. However strains assigned to the cMLS B phenotype were associated to emm11, emm22, emm28, emm78, or emm76. There was diversity in emm distribution in ERGAS between the two study periods. There was diversity in emm distribution among ERGAS particularly in 2000-2006. Indeed, from 2000 to 2006, the 6 ERGAS

  11. Programmable Removal of Bacterial Strains by Use of Genome-Targeting CRISPR-Cas Systems

    PubMed Central

    Gomaa, Ahmed A.; Klumpe, Heidi E.; Luo, Michelle L.; Selle, Kurt; Barrangou, Rodolphe; Beisel, Chase L.

    2014-01-01

    ABSTRACT CRISPR (clustered regularly interspaced short palindromic repeats)-Cas (CRISPR-associated) systems in bacteria and archaea employ CRISPR RNAs to specifically recognize the complementary DNA of foreign invaders, leading to sequence-specific cleavage or degradation of the target DNA. Recent work has shown that the accidental or intentional targeting of the bacterial genome is cytotoxic and can lead to cell death. Here, we have demonstrated that genome targeting with CRISPR-Cas systems can be employed for the sequence-specific and titratable removal of individual bacterial strains and species. Using the type I-E CRISPR-Cas system in Escherichia coli as a model, we found that this effect could be elicited using native or imported systems and was similarly potent regardless of the genomic location, strand, or transcriptional activity of the target sequence. Furthermore, the specificity of targeting with CRISPR RNAs could readily distinguish between even highly similar strains in pure or mixed cultures. Finally, varying the collection of delivered CRISPR RNAs could quantitatively control the relative number of individual strains within a mixed culture. Critically, the observed selectivity and programmability of bacterial removal would be virtually impossible with traditional antibiotics, bacteriophages, selectable markers, or tailored growth conditions. Once delivery challenges are addressed, we envision that this approach could offer a novel means to quantitatively control the composition of environmental and industrial microbial consortia and may open new avenues for the development of “smart” antibiotics that circumvent multidrug resistance and differentiate between pathogenic and beneficial microorganisms. PMID:24473129

  12. Influence of subinhibitory antibiotic concentration on Streptococcus pyogenes adherence and biofilm production.

    PubMed

    Šmitran, Aleksandra; Vuković, Dragana; Opavski, Nataša; Gajić, Ina; Marinković, Jelena; Božić, Ljiljana; Živanović, Irena; Kekić, Dušan; Popović, Sunčica; Ranin, Lazar

    2018-06-01

    In this study, the focus was on the effects of sub-MICs of the antibiotics on adherence, hydrophobicity, and biofilm formation by two groups of Streptococcus pyogenes strains, which were responsible for different clinical cases. The aim of this study was to explore the effects of sub-MICs of penicillin, ceftriaxone, erythromycin, and clindamycin on adherence, surface hydrophobicity, and biofilm biomass in two selected collections of group A streptococcus (GAS): strains isolated from carriers (CA) and strains isolated from patients with tonsillopharyngitis (TPh). Isolates were tested for hydrophobicity to xylene, adherence, and biofilm production in uncoated microtiter plates before and after treatment with 1/2 and 1/4 MICs of antibiotics. Penicillin reduced adherence and biofilm production in TPh strains, whereas ceftriaxone diminished adherence and biofilm formation in CA group. On the contrary, clindamycin enhanced adherence and biofilm production in both groups of strains. Erythromycin did not significantly alter adherence, but triggered biofilm production in both groups of isolates. Hydrophobicity of both groups of strains was significantly reduced after exposure to all antibiotics. Beta-lactams displayed anti-biofilm activity; penicillin diminished both adherence and biofilm production in TPh strains, whereas ceftriaxone reduced it in strains isolated from CA.

  13. Adhesion activity of glyceraldehyde-3-phosphate dehydrogenase in a Chinese Streptococcus suis type 2 strain.

    PubMed

    Wang, Kaicheng; Lu, Chengping

    2007-01-01

    A total of 36 streptococcal strains, including seven S. equi ssp.zooepidemicus, two S. suis type 1 (SS1), 24 SS2, two SS9, and one SS7, were tested for glyceraldehyde-3-phosphate dehydrogenase gene (gapdh). Except from non-virulent SS2 strain T1 5, all strains harboured gapdh. The gapdh of Chinese Sichuan SS2 isolate ZY05719 and Jiangsu SS2 isolate HA9801 were sequenced and then compared with published sequences in the GenBank. The comparison revealed a 99.9 % and 99.8 % similarity of ZY05719 and HA9801, respectively, with the published sequence. Adherence assay data demonstrated a significant ((p<0.05)) reduction in adhesion of SS2 in HEp-2 cells pre-incubated with purified GAPDH compared to non pre-incubated controls, suggesting the GAPDH mediates SS2 bacterial adhesion to host cells.

  14. Amplified fragment length polymorphism of Streptococcus suis strains correlates with their profile of virulence-associated genes and clinical background.

    PubMed

    Rehm, Thomas; Baums, Christoph G; Strommenger, Birgit; Beyerbach, Martin; Valentin-Weigand, Peter; Goethe, Ralph

    2007-01-01

    Amplified fragment length polymorphism (AFLP) typing was applied to 116 Streptococcus suis isolates with different clinical backgrounds (invasive/pneumonia/carrier/human) and with known profiles of virulence-associated genes (cps1, -2, -7 and -9, as well as mrp, epf and sly). A dendrogram was generated that allowed identification of two clusters (A and C) with different subclusters (A1, A2, C1 and C2) and two heterogeneous groups of strains (B and D). For comparison, three strains from each AFLP subcluster and group were subjected to multilocus sequence typing (MLST) analysis. The closest relationship and lowest diversity were found for patterns clustering within AFLP subcluster A1, which corresponded with sequence type (ST) complex 1. Strains within subcluster A1 were mainly invasive cps1 and mrp+ epf+ (or epf*) sly+ cps2+ strains of porcine or human origin. A new finding of this study was the clustering of invasive mrp* cps9 isolates within subcluster A2. MLST analysis suggested that A2 correlates with a single ST complex (ST87). In contrast to A1 and A2, subclusters C1 and C2 contained mainly pneumonia isolates of genotype cps7 or cps2 and epf- sly-. In conclusion, this study demonstrates that AFLP allows identification of clusters of S. suis strains with clinical relevance.

  15. Identification of Heterotrophic Zinc Mobilization Processes among Bacterial Strains Isolated from Wheat Rhizosphere (Triticum aestivum L.).

    PubMed

    Costerousse, Benjamin; Schönholzer-Mauclaire, Laurie; Frossard, Emmanuel; Thonar, Cécile

    2018-01-01

    Soil and plant inoculation with heterotrophic zinc-solubilizing bacteria (ZSB) is considered a promising approach for increasing zinc (Zn) phytoavailability and enhancing crop growth and nutritional quality. Nevertheless, it is necessary to understand the underlying bacterial solubilization processes to predict their repeatability in inoculation strategies. Acidification via gluconic acid production remains the most reported process. In this study, wheat rhizosphere soil serial dilutions were plated on several solid microbiological media supplemented with scarcely soluble Zn oxide (ZnO), and 115 putative Zn-solubilizing isolates were directly detected based on the formation of solubilization halos around the colonies. Eight strains were selected based on their Zn solubilization efficiency and siderophore production capacity. These included one strain of Curtobacterium , two of Plantibacter , three strains of Pseudomonas , one of Stenotrophomonas , and one strain of Streptomyces In ZnO liquid solubilization assays, the presence of glucose clearly stimulated organic acid production, leading to medium acidification and ZnO solubilization. While solubilization by Streptomyces and Curtobacterium was attributed to the accumulated production of six and seven different organic acids, respectively, the other strains solubilized Zn via gluconic, malonic, and oxalic acids exclusively. In contrast, in the absence of glucose, ZnO dissolution resulted from proton extrusion (e.g., via ammonia consumption by Plantibacter strains) and complexation processes (i.e., complexation with glutamic acid in cultures of Curtobacterium ). Therefore, while gluconic acid production was described as a major Zn solubilization mechanism in the literature, this study goes beyond and shows that solubilization mechanisms vary among ZSB and are strongly affected by growth conditions. IMPORTANCE Barriers toward a better understanding of the mechanisms underlying zinc (Zn) solubilization by bacteria

  16. Beyond Streptococcus mutans: Dental Caries Onset Linked to Multiple Species by 16S rRNA Community Analysis

    PubMed Central

    Gross, Erin L.; Beall, Clifford J.; Kutsch, Stacey R.; Firestone, Noah D.; Leys, Eugene J.; Griffen, Ann L.

    2012-01-01

    Dental caries in very young children may be severe, result in serious infection, and require general anesthesia for treatment. Dental caries results from a shift within the biofilm community specific to the tooth surface, and acidogenic species are responsible for caries. Streptococcus mutans, the most common acid producer in caries, is not always present and occurs as part of a complex microbial community. Understanding the degree to which multiple acidogenic species provide functional redundancy and resilience to caries-associated communities will be important for developing biologic interventions. In addition, microbial community interactions in health and caries pathogenesis are not well understood. The purpose of this study was to investigate bacterial community profiles associated with the onset of caries in the primary dentition. In a combination cross-sectional and longitudinal design, bacterial community profiles at progressive stages of caries and over time were examined and compared to those of health. 16S rRNA gene sequencing was used for bacterial community analysis. Streptococcus mutans was the dominant species in many, but not all, subjects with caries. Elevated levels of S. salivarius, S. sobrinus, and S. parasanguinis were also associated with caries, especially in subjects with no or low levels of S. mutans, suggesting these species are alternative pathogens, and that multiple species may need to be targeted for interventions. Veillonella, which metabolizes lactate, was associated with caries and was highly correlated with total acid producing species. Among children without previous history of caries, Veillonella, but not S. mutans or other acid-producing species, predicted future caries. Bacterial community diversity was reduced in caries as compared to health, as many species appeared to occur at lower levels or be lost as caries advanced, including the Streptococcus mitis group, Neisseria, and Streptococcus sanguinis. This may have

  17. Live and heat-killed Lactobacillus spp. interfere with Streptococcus mutans and Streptococcus oralis during biofilm development on titanium surface.

    PubMed

    Ciandrini, E; Campana, R; Baffone, W

    2017-06-01

    This research investigates the ability of live and heat-killed (HK) Lactic Acid Bacteria (LAB) to interfere with Streptococcus mutans ATCC 25175 and Streptococcus oralis ATCC 9811 during biofilm formation. Eight Lactobacillus spp. and two oral colonizers, pathogenic Streptococcus mutans and resident Streptococcus oralis, were characterized for their aggregation abilities, cell surface properties and biofilm formation ability on titanium surface. Then, the interference activity of selected live and HK Lactobacillus spp. during S. mutans and S. oralis biofilm development were performed. The cell-free culture supernatants (CFCS) anti-biofilm activity was also determined. LAB possess good abilities of auto-aggregation (from 14.19 to 28.97%) and of co-aggregation with S. oralis. The cell-surfaces characteristics were most pronounced in S. mutans and S. oralis, while the highest affinities to xylene and chloroform were observed in Lactobacillus rhamnosus ATCC 53103 (56.37%) and Lactobacillus paracasei B21060 (43.83%). S. mutans and S. oralis developed a biofilm on titanium surface, while LAB showed a limited or no ability to create biofilm. Live and HK L. rhamnosus ATCC 53103 and L. paracasei B21060 inhibited streptococci biofilm formation by competition and displacement mechanisms with no substantial differences. The CFCSs of both LAB strains, particularly the undiluted one of L. paracasei B21060, decreased S. mutans and S. oralis biofilm formation. This study evidenced the association of LAB aggregation abilities and cell-surface properties with the LAB-mediated inhibition of S. mutans and S. oralis biofilm formation. Lactobacilli showed different mechanisms of action and peculiar strain-specific characteristics, maintained also in the heat-killed LAB. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Serine-rich repeat proteins and pili promote Streptococcus agalactiae colonization of the vaginal tract.

    PubMed

    Sheen, Tamsin R; Jimenez, Alyssa; Wang, Nai-Yu; Banerjee, Anirban; van Sorge, Nina M; Doran, Kelly S

    2011-12-01

    Streptococcus agalactiae (group B streptococcus [GBS]) is a Gram-positive bacterium found in the female rectovaginal tract and is capable of producing severe disease in susceptible hosts, including newborns and pregnant women. The vaginal tract is considered a major reservoir for GBS, and maternal vaginal colonization poses a significant risk to the newborn; however, little is known about the specific bacterial factors that promote GBS colonization and persistence in the female reproductive tract. We have developed in vitro models of GBS interaction with the human female cervicovaginal tract using human vaginal and cervical epithelial cell lines. Analysis of isogenic mutant GBS strains deficient in cell surface organelles such as pili and serine-rich repeat (Srr) proteins shows that these factors contribute to host cell attachment. As Srr proteins are heavily glycosylated, we confirmed that carbohydrate moieties contribute to the effective interaction of Srr-1 with vaginal epithelial cells. Antibody inhibition assays identified keratin 4 as a possible host receptor for Srr-1. Our findings were further substantiated in an in vivo mouse model of GBS vaginal colonization, where mice inoculated with an Srr-1-deficient mutant exhibited decreased GBS vaginal persistence compared to those inoculated with the wild-type (WT) parental strain. Furthermore, competition experiments in mice showed that WT GBS exhibited a significant survival advantage over the ΔpilA or Δsrr-1 mutant in the vaginal tract. Our results suggest that these GBS surface proteins contribute to vaginal colonization and may offer new insights into the mechanisms of vaginal niche establishment.

  19. Substrate utilization profiles of bacterial strains in plankton from the River Warnow, a humic and eutrophic river in north Germany.

    PubMed

    Freese, Heike M; Eggert, Anja; Garland, Jay L; Schumann, Rhena

    2010-01-01

    Bacteria are very important degraders of organic substances in aquatic environments. Despite their influential role in the carbon (and many other element) cycle(s), the specific genetic identity of active bacteria is mostly unknown, although contributing phylogenetic groups had been investigated. Moreover, the degree to which phenotypic potential (i. e., utilization of environmentally relevant carbon substrates) is related to the genomic identity of bacteria or bacterial groups is unclear. The present study compared the genomic fingerprints of 27 bacterial isolates from the humic River Warnow with their ability to utilize 14 environmentally relevant substrates. Acetate was the only substrate utilized by all bacterial strains. Only 60% of the strains respired glucose, but this substrate always stimulated the highest bacterial activity (respiration and growth). Two isolates, both closely related to the same Pseudomonas sp., also had very similar substrate utilization patterns. However, similar substrate utilization profiles commonly belonged to genetically different strains (e.g., the substrate profile of Janthinobacterium lividum OW6/RT-3 and Flavobacterium sp. OW3/15-5 differed by only three substrates). Substrate consumption was sometimes totally different for genetically related isolates. Thus, the genomic profiles of bacterial strains were not congruent with their different substrate utilization profiles. Additionally, changes in pre-incubation conditions strongly influenced substrate utilization. Therefore, it is problematic to infer substrate utilization and especially microbial dissolved organic matter transformation in aquatic systems from bacterial molecular taxonomy.

  20. Phages and the Evolution of Bacterial Pathogens: from Genomic Rearrangements to Lysogenic Conversion

    PubMed Central

    Brüssow, Harald; Canchaya, Carlos; Hardt, Wolf-Dietrich

    2004-01-01

    Comparative genomics demonstrated that the chromosomes from bacteria and their viruses (bacteriophages) are coevolving. This process is most evident for bacterial pathogens where the majority contain prophages or phage remnants integrated into the bacterial DNA. Many prophages from bacterial pathogens encode virulence factors. Two situations can be distinguished: Vibrio cholerae, Shiga toxin-producing Escherichia coli, Corynebacterium diphtheriae, and Clostridium botulinum depend on a specific prophage-encoded toxin for causing a specific disease, whereas Staphylococcus aureus, Streptococcus pyogenes, and Salmonella enterica serovar Typhimurium harbor a multitude of prophages and each phage-encoded virulence or fitness factor makes an incremental contribution to the fitness of the lysogen. These prophages behave like “swarms” of related prophages. Prophage diversification seems to be fueled by the frequent transfer of phage material by recombination with superinfecting phages, resident prophages, or occasional acquisition of other mobile DNA elements or bacterial chromosomal genes. Prophages also contribute to the diversification of the bacterial genome architecture. In many cases, they actually represent a large fraction of the strain-specific DNA sequences. In addition, they can serve as anchoring points for genome inversions. The current review presents the available genomics and biological data on prophages from bacterial pathogens in an evolutionary framework. PMID:15353570

  1. Streptococcus pyogenes translocates across an epithelial barrier.

    PubMed

    Sumitomo, Tomoko

    2017-01-01

    Streptococcus pyogenes is a β-hemolytic organism responsible for a wide variety of human diseases that commonly occur as self-limiting purulent diseases of the pharynx and skin. Although the occurrence of invasive infections by S. pyogenes is rare, mortality rates remain high even with progressive medical therapy. As a prerequisite for causing the severe invasive disease, S. pyogenes must invade underlying sterile tissues by translocating across the epithelial barrier. In this study, streptolysin S and SpeB were identified as the novel factors that facilitate bacterial translocation via degradation of intercellular junctions. Furthermore, we found that S. pyogenes exploits host plasminogen for acceleration of bacterial invasion into deeper tissues via tricellular tight junctions. Here, I would like to show our study on bacterial translocation across the epithelial barrier through paracellular route.

  2. In vitro antimicrobial susceptibility of Streptococcus suis strains isolated from clinically healthy sows in China.

    PubMed

    Zhang, Chunping; Ning, Yibao; Zhang, Zhongqiu; Song, Li; Qiu, Huishen; Gao, Heyi

    2008-10-15

    Streptococcus suis is an important pathogen in the swine industry. Because transmission is generally thought to occur between healthy carrier sows and their offspring, it is important to understand which antimicrobial agents are likely to be effective against the strains isolated. This study is the first to report on the antimicrobial susceptibility of S. suis isolated from clinical healthy sows. From 2005 to 2007 a total of 421 S. suis isolates were recovered from sows in China and subjected to antimicrobial susceptibility testing in accordance with the Clinical and Laboratory Standards Institute (CLSI) standards. High-level resistance were found with tetracycline (91.7%) and sulfisoxazole (86.7%), followed by clindamycin (68.4%), erythromycin (67.2%), tilmicosin (66.7%) and trimethoprim/sulfamethoxazole (59.1%). These six antimicrobial agents presented the highest MIC50 values and the antibiogram (19.2%) most frequently observed. Lower resistance rates among the beta-Lactams support their use as the primary drugs to treat the infection of S. suis. However, appropriate dosing or combination antibiotic therapeutic regimens should be adhered to in view of the resistant and intermediate strains to penicillin (9.5% and 42.3%), ampicillin (4.0% and 29.9%) and ceftiofur (22.1% and 37.3%), respectively.

  3. Presence of Streptococcus mutans strains harbouring the cnm gene correlates with dental caries status and IgA nephropathy conditions

    PubMed Central

    Misaki, Taro; Naka, Shuhei; Hatakeyama, Rina; Fukunaga, Akiko; Nomura, Ryota; Isozaki, Taisuke; Nakano, Kazuhiko

    2016-01-01

    Streptococcus mutans is a major pathogen of human dental caries. Strains harbouring the cnm gene, which encodes Cnm, a collagen-binding protein, contribute to the development of several systemic diseases. In this study, we analysed S. mutans strains isolated from the oral cavity of immunoglobulin (Ig)A nephropathy (IgAN) patients to determine potential relationships between cnm and caries status as well as IgAN conditions. Saliva specimens were collected from 109 IgAN patients and the cnm status of isolated S. mutans strains was determined using PCR. In addition, the dental caries status (decayed, missing or filled teeth [DMFT] index) in patients who agreed to dental consultation (n = 49) was evaluated. The DMFT index and urinary protein levels in the cnm-positive group were significantly higher than those in the cnm-negative group (p < 0.05). Moreover, the urinary protein levels in the high DMFT (≥15) group were significantly higher than those in the low DMFT (<15) group (p < 0.05). Our results show that isolation of cnm-positive S. mutans strains from the oral cavity may be associated with urinary protein levels in IgAN patients, especially those with a high dental caries status. PMID:27811984

  4. Genomic Evidence for the Evolution of Streptococcus equi: Host Restriction, Increased Virulence, and Genetic Exchange with Human Pathogens

    PubMed Central

    Paillot, Romain; Steward, Karen F.; Webb, Katy; Ainslie, Fern; Jourdan, Thibaud; Bason, Nathalie C.; Holroyd, Nancy E.; Mungall, Karen; Quail, Michael A.; Sanders, Mandy; Simmonds, Mark; Willey, David; Brooks, Karen; Aanensen, David M.; Spratt, Brian G.; Jolley, Keith A.; Maiden, Martin C. J.; Kehoe, Michael; Chanter, Neil; Bentley, Stephen D.; Robinson, Carl; Maskell, Duncan J.; Parkhill, Julian; Waller, Andrew S.

    2009-01-01

    The continued evolution of bacterial pathogens has major implications for both human and animal disease, but the exchange of genetic material between host-restricted pathogens is rarely considered. Streptococcus equi subspecies equi (S. equi) is a host-restricted pathogen of horses that has evolved from the zoonotic pathogen Streptococcus equi subspecies zooepidemicus (S. zooepidemicus). These pathogens share approximately 80% genome sequence identity with the important human pathogen Streptococcus pyogenes. We sequenced and compared the genomes of S. equi 4047 and S. zooepidemicus H70 and screened S. equi and S. zooepidemicus strains from around the world to uncover evidence of the genetic events that have shaped the evolution of the S. equi genome and led to its emergence as a host-restricted pathogen. Our analysis provides evidence of functional loss due to mutation and deletion, coupled with pathogenic specialization through the acquisition of bacteriophage encoding a phospholipase A2 toxin, and four superantigens, and an integrative conjugative element carrying a novel iron acquisition system with similarity to the high pathogenicity island of Yersinia pestis. We also highlight that S. equi, S. zooepidemicus, and S. pyogenes share a common phage pool that enhances cross-species pathogen evolution. We conclude that the complex interplay of functional loss, pathogenic specialization, and genetic exchange between S. equi, S. zooepidemicus, and S. pyogenes continues to influence the evolution of these important streptococci. PMID:19325880

  5. Lineages of Streptococcus equi ssp. equi in the Irish equine industry.

    PubMed

    Moloney, Emma; Kavanagh, Kerrie S; Buckley, Tom C; Cooney, Jakki C

    2013-01-01

    Streptococcus equi ssp. equi is the causative agent of 'Strangles' in horses. This is a debilitating condition leading to economic loss, yard closures and cancellation of equestrian events. There are multiple genotypes of S. equi ssp. equi which can cause disease, but to date there has been no systematic study of strains which are prevalent in Ireland. This study identified and classified Streptococcus equi ssp. equi strains isolated from within the Irish equine industry. Two hundred veterinary isolates were subjected to SLST (single locus sequence typing) based on an internal sequence from the seM gene of Streptococcus equi ssp equi. Of the 171 samples which successfully gave an amplicon, 162 samples (137 Irish and 24 UK strains) gave robust DNA sequence information. Analysis of the sequences allowed division of the isolates into 19 groups, 13 of which contain at least 2 isolates and 6 groups containing single isolates. There were 19 positions where a DNA SNP (single nucleotide polymorphism) occurs, and one 3 bp insertion. All groups had multiple (2-8) SNPs. Of the SNPs 17 would result in an amino acid change in the encoded protein. Interestingly, the single isolate EI8, which has 6 SNPs, has the three base pair insertion which is not seen in any other isolate, this would result in the insertion of an Ile residue at position 62 in that protein sequence. Comparison of the relevant region in the determined sequences with the UK Streptococcus equi seM MLST database showed that Group B (15 isolates) and Group I (2 isolates), as well as the individual isolates EI3 and EI8, are unique to Ireland, and some groups are most likely of UK origin (Groups F and M), but many more probably passed back and forth between the two countries. The strains occurring in Ireland are not clonal and there is a considerable degree of sequence variation seen in the seM gene. There are two major clades causing infection in Ireland and these strains are also common in the UK.

  6. Differentiation of highly virulent strains of Streptococcus suis serotype 2 according to glutamate dehydrogenase electrophoretic and sequence type.

    PubMed

    Kutz, Russell; Okwumabua, Ogi

    2008-10-01

    The glutamate dehydrogenase (GDH) enzymes of 19 Streptococcus suis serotype 2 strains, consisting of 18 swine isolates and 1 human clinical isolate from a geographically varied collection, were analyzed by activity staining on a nondenaturing gel. All seven (100%) of the highly virulent strains tested produced an electrophoretic type (ET) distinct from those of moderately virulent and nonvirulent strains. By PCR and nucleotide sequence determination, the gdh genes of the 19 strains and of 2 highly virulent strains involved in recent Chinese outbreaks yielded a 1,820-bp fragment containing an open reading frame of 1,344 nucleotides, which encodes a protein of 448 amino acid residues with a calculated molecular mass of approximately 49 kDa. The nucleotide sequences contained base pair differences, but most were silent. Cluster analysis of the deduced amino acid sequences separated the isolates into three groups. Group I (ETI) consisted of the seven highly virulent isolates and the two Chinese outbreak strains, containing Ala(299)-to-Ser, Glu(305)-to-Lys, and Glu(330)-to-Lys amino acid substitutions compared with groups II and III (ETII). Groups II and III consisted of moderately virulent and nonvirulent strains, which are separated from each other by Tyr(72)-to-Asp and Thr(296)-to-Ala substitutions. Gene exchange studies resulted in the change of ETI to ETII and vice versa. A spectrophotometric activity assay for GDH did not show significant differences between the groups. These results suggest that the GDH ETs and sequence types may serve as useful markers in predicting the pathogenic behavior of strains of this serotype and that the molecular basis for the observed differences in the ETs was amino acid substitutions and not deletion, insertion, or processing uniqueness.

  7. Production and Reutilization of Fluorescent Dissolved Organic Matter by a Marine Bacterial Strain, Alteromonas macleodii

    PubMed Central

    Goto, Shuji; Tada, Yuya; Suzuki, Koji; Yamashita, Youhei

    2017-01-01

    The recalcitrant fraction of marine dissolved organic matter (DOM) plays an important role in carbon storage on the earth’s surface. Bacterial production of recalcitrant DOM (RDOM) has been proposed as a carbon sequestration process. It is still unclear whether bacterial physiology can affect RDOM production. In this study, we conducted a batch culture using the marine bacterial isolate Alteromonas macleodii, a ubiquitous gammaproteobacterium, to evaluate the linkage between bacterial growth and DOM production. Glucose (1 mmol C L-1) was used as the sole carbon source, and the bacterial number, the DOM concentration in terms of carbon, and the excitation–emission matrices (EEMs) of DOM were monitored during the 168-h incubation. The incubation period was partitioned into the exponential growth (0–24 h) and stationary phases (24–168 h) based on the growth curve. Although the DOM concentration decreased during the exponential growth phase due to glucose consumption, it remained stable during the stationary phase, corresponding to approximately 4% of the initial glucose in terms of carbon. Distinct fluorophores were not evident in the EEMs at the beginning of the incubation, but DOM produced by the strain exhibited five fluorescent peaks during exponential growth. Two fluorescent peaks were similar to protein-like fluorophores, while the others could be categorized as humic-like fluorophores. All fluorophores increased during the exponential growth phase. The tryptophan-like fluorophore decreased during the stationary phase, suggesting that the strain reused the large exopolymer. The tyrosine-like fluorophore seemed to be stable during the stationary phase, implying that the production of tyrosine-containing small peptides through the degradation of exopolymers was correlated with the reutilization of the tyrosine-like fluorophore. Two humic-like fluorophores that showed emission maxima at the longer wavelength (525 nm) increased during the stationary phase

  8. Evolution of Streptococcus pneumoniae and Its Close Commensal Relatives

    PubMed Central

    Kilian, Mogens; Poulsen, Knud; Blomqvist, Trinelise; Håvarstein, Leiv S.; Bek-Thomsen, Malene; Tettelin, Hervé; Sørensen, Uffe B. S.

    2008-01-01

    Streptococcus pneumoniae is a member of the Mitis group of streptococci which, according to 16S rRNA-sequence based phylogenetic reconstruction, includes 12 species. While other species of this group are considered prototypes of commensal bacteria, S. pneumoniae is among the most frequent microbial killers worldwide. Population genetic analysis of 118 strains, supported by demonstration of a distinct cell wall carbohydrate structure and competence pheromone sequence signature, shows that S. pneumoniae is one of several hundred evolutionary lineages forming a cluster separate from Streptococcus oralis and Streptococcus infantis. The remaining lineages of this distinct cluster are commensals previously collectively referred to as Streptococcus mitis and each represent separate species by traditional taxonomic standard. Virulence genes including the operon for capsule polysaccharide synthesis and genes encoding IgA1 protease, pneumolysin, and autolysin were randomly distributed among S. mitis lineages. Estimates of the evolutionary age of the lineages, the identical location of remnants of virulence genes in the genomes of commensal strains, the pattern of genome reductions, and the proportion of unique genes and their origin support the model that the entire cluster of S. pneumoniae, S. pseudopneumoniae, and S. mitis lineages evolved from pneumococcus-like bacteria presumably pathogenic to the common immediate ancestor of hominoids. During their adaptation to a commensal life style, most of the lineages gradually lost the majority of genes determining virulence and became genetically distinct due to sexual isolation in their respective hosts. PMID:18628950

  9. Identification of PblB mediating galactose-specific adhesion in a successful Streptococcus pneumoniae clone

    PubMed Central

    Hsieh, Yu-Chia; Lin, Tzu-Lung; Lin, Che-Ming; Wang, Jin-Town

    2015-01-01

    The pneumococcal genome is variable and there are minimal data on the influence of the accessory genome on phenotype. Pneumococcal serotype 14 sequence type (ST) 46 had been the most prevalent clone causing pneumonia in children in Taiwan. A microarray was constructed using the genomic DNA of a clinical strain (NTUH-P15) of serotype 14 ST46. Using DNA hybridization, genomic variations in NTUH-P15 were compared to those of 3 control strains. Microarray analysis identified 7 genomic regions that had significant increases in hybridization signals in the NTUH-P15 strain compared to control strains. One of these regions encoded PblB, a phage-encoded virulence factor implicated (in Streptococcus mitis) in infective endocarditis. The isogenic pblB mutant decreased adherence to A549 human lung epithelial cell compared to wild-type NTUH-P15 strain (P = 0.01). Complementation with pblB restored the adherence. PblB is predicted to contain a galactose-binding domain-like region. Preincubation of NTUH-P15 with D-galactose resulted in decreases of adherence to A549 cell in a dose-dependent manner. Challenge of mice with NTUH-P15, isogenic pblB mutant and pblB complementation strains determined that PblB was required for bacterial persistence in the nasopharynx and lung. PblB, as an adhesin mediating the galactose-specific adhesion activity of pneumococci, promote pneumococcal clonal success. PMID:26193794

  10. Characterization of Streptococcus bovis from the rumen of the dromedary camel and Rusa deer.

    PubMed

    Ghali, M B; Scott, P T; Al Jassim, R A M

    2004-01-01

    Isolation and characterization of Streptococcus bovis from the dromedary camel and Rusa deer. Bacteria were isolated from the rumen contents of four camels and two deer fed lucerne hay by culturing on the semi-selective medium MRS agar. Based on Gram morphology and RFLP analysis seven isolates, MPR1, MPR2, MPR3, MPR4, MPR5, RD09 and RD11 were selected and putatively identified as Streptococcus. The identity of these isolates was later confirmed by comparative DNA sequence analysis of the 16S rRNA gene with the homologous sequence from S. bovis strains, JB1, C14b1, NCFB2476, SbR1, SbR7 and Sb5, from cattle and sheep, and the Streptococcus equinus strain NCD01037T. The percentage similarity amongst all strains was >99%, confirming the identification of the camel isolates as S. bovis. The strains were further characterized by their ability to utilize a range of carbohydrates, the production of volatile fatty acids (VFA) and lactate and the determination of the doubling time in basal medium 10 supplemented with glucose. All the isolates produced l-lactate as a major fermentation end product, while four of five camel isolates produced VFA. The range of carbohydrates utilized by all the strains tested, including those from cattle and sheep were identical, except that all camel isolates and the deer isolate RD11 were additionally able to utilize arabinose. Streptococcus bovis was successfully isolated from the rumen of camels and deer, and shown by molecular and biochemical characterization to be almost identical to S. bovis isolates from cattle and sheep. Streptococcus bovis is considered a key lactic acid producing bacterium from the gastrointestinal tract of ruminants, and has been implicated as a causative agent of lactic acidosis. This study is the first report of the isolation and characterization of S. bovis from the dromedary camel and Rusa deer, and suggests a major contributive role of this bacterium to fermentative acidosis.

  11. Identification of a high-virulence clone of type III Streptococcus agalactiae (group B Streptococcus) causing invasive neonatal disease.

    PubMed

    Musser, J M; Mattingly, S J; Quentin, R; Goudeau, A; Selander, R K

    1989-06-01

    Chromosomal genotypes of 128 isolates of six serotypes (Ia, Ib, Ic, II, Ic/II, and III) of Streptococcus agalactiae (group B Streptococcus) recovered predominantly from human infants in the United States were characterized by an analysis of electrophoretically demonstrable allelic profiles at 11 metabolic enzyme loci. Nineteen distinctive electrophoretic types (ETs), representing multilocus clonal genotypes, were identified. Mean genetic diversity per locus among ETs of isolates of the same serotype was, on average, nearly equal to that in all 19 ETs. Cluster analysis of the ETs revealed two primary phylogenetic divisions at a genetic distance of 0.65. A single clone (ET 1) represented by 40 isolates expressing type III antigen formed division I. Division II was composed of 18 ETs in three major lineages diverging from one another at distances greater than 0.35 and included strains of all six antigenic classes. The type III organisms in division I produce more extracellular neuraminidase and apparently are more virulent than the type III strains in division II, which are related to strains of other serotypes that cause disease much less frequently. The existence of this unusually virulent clone accounts, in major part, for the high morbidity and mortality associated with infection by type III organisms.

  12. Antimicrobial and Antibiofilm Activity of Human Milk Oligosaccharides against Streptococcus agalactiae, Staphylococcus aureus, and Acinetobacter baumannii.

    PubMed

    Ackerman, Dorothy L; Craft, Kelly M; Doster, Ryan S; Weitkamp, Jörn-Hendrik; Aronoff, David M; Gaddy, Jennifer A; Townsend, Steven D

    2018-03-09

    In a previous study, we reported that human milk oligosaccharides (HMOs) isolated from five donor milk samples possessed antimicrobial and antibiofilm activity against Streptococcus agalactiae, also known as Group B Streptococcus or GBS. Herein, we present a broader evaluation of the antimicrobial and antibiofilm activity by screening HMOs from 14 new donors against three strains of GBS and two of the ESKAPE pathogens of particular interest to child health, Staphylococcus aureus and Acinetobacter baumannii. Growth and biofilm assays showed that HMOs from these new donors possessed antimicrobial and antibiofilm activity against all three strains of GBS, antibiofilm activity against methicillin-resistant S. aureus strain USA300, and antimicrobial activity against A. baumannii strain ATCC 19606.

  13. CovRS-Regulated Transcriptome Analysis of a Hypervirulent M23 Strain of Group A Streptococcus pyogenes Provides New Insights into Virulence Determinants.

    PubMed

    Bao, Yun-Juan; Liang, Zhong; Mayfield, Jeffrey A; Lee, Shaun W; Ploplis, Victoria A; Castellino, Francis J

    2015-10-01

    The two-component control of virulence (Cov) regulator (R)-sensor (S) (CovRS) regulates the virulence of Streptococcus pyogenes (group A Streptococcus [GAS]). Inactivation of CovS during infection switches the pathogenicity of GAS to a more invasive form by regulating transcription of diverse virulence genes via CovR. However, the manner in which CovRS controls virulence through expression of extended gene families has not been fully determined. In the current study, the CovS-regulated gene expression profiles of a hypervirulent emm23 GAS strain (M23ND/CovS negative [M23ND/CovS(-)]) and a noninvasive isogenic strain (M23ND/CovS(+)), under different growth conditions, were investigated. RNA sequencing identified altered expression of ∼ 349 genes (18% of the chromosome). The data demonstrated that M23ND/CovS(-) achieved hypervirulence by allowing enhanced expression of genes responsible for antiphagocytosis (e.g., hasABC), by abrogating expression of toxin genes (e.g., speB), and by compromising gene products with dispensable functions (e.g., sfb1). Among these genes, several (e.g., parE and parC) were not previously reported to be regulated by CovRS. Furthermore, the study revealed that CovS also modulated the expression of a broad spectrum of metabolic genes that maximized nutrient utilization and energy metabolism during growth and dissemination, where the bacteria encounter large variations in available nutrients, thus restructuring metabolism of GAS for adaption to diverse growth environments. From constructing a genome-scale metabolic model, we identified 16 nonredundant metabolic gene modules that constitute unique nutrient sources. These genes were proposed to be essential for pathogen growth and are likely associated with GAS virulence. The genome-wide prediction of genes associated with virulence identifies new candidate genes that potentially contribute to GAS virulence. The CovRS system modulates transcription of ∼ 18% of the genes in the

  14. Acanthamoeba castellanii interactions with Streptococcus pneumoniae and Streptococcus pyogenes.

    PubMed

    Siddiqui, Ruqaiyyah; Yee Ong, Timothy Yu; Jung, Suk Yul; Khan, Naveed Ahmed

    2017-12-01

    Among the genus Streptococcus, S. pyogenes and S. pneumoniae are the major causes of pharyngitis, impetigo, pneumonia and meningitis in humans. Streptococcus spp. are facultative anaerobes that are nutritionally fastidious, yet survive in the environment and target the predisposed population. Antibacterial disinfectants have been partially effective only, indicating the need for novel preventative measures and to understand mechanisms of bacterial resistance. Acanthamoeba is a free-living protist that is known to harbour microbial pathogens, provide shelter, and assist in their transmission to susceptible population. The overall aim of this study was to determine whether S. pyogenes and S. pneumoniae can interact with A. castellanii by associating, invading, and surviving inside trophozoites and cysts. It was observed that both S. pyogenes and S. pneumoniae were able to associate as well as invade and/or taken up by the phagocytic A. castellanii trophozoite. Notably, S. pyogenes and S. pneumoniae survived the encystation process, avoided phagocytosis, multiplied, and exhibited higher recovery from the mature cysts, compared with the trophozoite stage (approximately 2 bacteria per amoebae ratio for cyst stage versus 0.02 bacteria per amoeba ration for trophozoite stage). As Acanthamoeba cysts are resilient and can disperse through the air, A. castellanii can act as a vector in providing shelter, facilitating growth and possibly genetic exchanges. In addition, these interactions may contribute to S. pyogenes and S. pneumoniae survival in harsh environments, and transmission to susceptible population and possibly affecting their virulence. Future studies will determine the molecular mechanisms associated with Acanthamoeba interactions with Streptococcus and the evolution of pathogenic bacteria and in turn expedite the discovery of novel therapeutic and/or preventative measures. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Bacterial Coaggregation Among the Most Commonly Isolated Bacteria From Contact Lens Cases.

    PubMed

    Datta, Ananya; Stapleton, Fiona; Willcox, Mark D P

    2017-01-01

    To examine the coaggregation and cohesion between the commonly isolated bacteria from contact lens cases. Four or five strains each of commonly isolated bacteria from contact lens cases, Staphylococcus aureus, Staphylococcus epidermidis, Pseudomonas aeruginosa, and Serratia marcescens, were grown, washed, mixed in equal proportions, and allowed to coaggregate for 24 hours. Lactose (0.06 M), sucrose (0.06 M), and pronase (2 mg/mL; 2 hours, 37°C) were used to inhibit coaggregation. Oral bacterial isolates of Actinomyces naeslundii and Streptococcus sanguinis were used as a positive control for coaggregation. Cohesion was performed with the ocular bacteria that demonstrated the highest level of coaggregation. Production of growth-inhibitory substances was measured by growing strains together on agar plates. The oral bacterial pair showed >80% coaggregation. Coaggregation occurred between ocular strains of S. aureus (2/5) or S. epidermidis (2/5) with P. aeruginosa strains (3/5); 42% to 62%. There was only slight coaggregation between staphylococci and S. marcescens. Staphylococcus aureus coaggregated with S. epidermidis. Lactose or sucrose treatment of S. aureus but pronase treatment of P. aeruginosa reversed the coaggregation. There was no cohesion between the ocular isolates. P. aeruginosa was able to stop growth of S. aureus but not vice versa. This study demonstrated for the first time that ocular isolates of P. aeruginosa and S. aureus could coaggregate, probably through lectin-carbohydrate interactions. However, this may not be related to biofilm formation in contact lens cases, as there was no evidence that the coaggregation was associated with cohesion between the strains.

  16. Simultaneous Microcystis Algicidal and Microcystin Degrading Capability by a Single Acinetobacter Bacterial Strain.

    PubMed

    Li, Hong; Ai, Hainan; Kang, Li; Sun, Xingfu; He, Qiang

    2016-11-01

    Measures for removal of toxic harmful algal blooms often cause lysis of algal cells and release of microcystins (MCs). In this study, Acinetobacter sp. CMDB-2 that exhibits distinct algal lysing activity and MCs degradation capability was isolated. The physiological response and morphological characteristics of toxin-producing Microcystis aeruginosa, the dynamics of intra- and extracellular MC-LR concentration were studied in an algal/bacterial cocultured system. The results demonstrated that Acinetobacter sp. CMDB-2 caused thorough decomposition of algal cells and impairment of photosynthesis within 24 h. Enhanced algal lysis and MC-LR release appeared with increasing bacterial density from 1 × 10 3 to 1 × 10 7 cells/mL; however, the MC-LR was reduced by nearly 94% within 14 h irrespective of bacterial density. Measurement of extracellular and intracellular MC-LR revealed that the toxin was decreased by 92% in bacterial cell incubated systems relative to control and bacterial cell-free filtrate systems. The results confirmed that the bacterial metabolite caused 92% lysis of Microcystis aeruginosa cells, whereas the bacterial cells were responsible for approximately 91% reduction of MC-LR. The joint efforts of the bacterium and its metabolite accomplished the sustainable removal of algae and MC-LR. This is the first report of a single bacterial strain that achieves these dual actions.

  17. Streptococcus oralis Neuraminidase Modulates Adherence to Multiple Carbohydrates on Platelets.

    PubMed

    Singh, Anirudh K; Woodiga, Shireen A; Grau, Margaret A; King, Samantha J

    2017-03-01

    Adherence to host surfaces is often mediated by bacterial binding to surface carbohydrates. Although it is widely appreciated that some bacterial species express glycosidases, previous studies have not considered whether bacteria bind to multiple carbohydrates within host glycans as they are modified by bacterial glycosidases. Streptococcus oralis is a leading cause of subacute infective endocarditis. Binding to platelets is a critical step in disease; however, the mechanisms utilized by S. oralis remain largely undefined. Studies revealed that S. oralis , like Streptococcus gordonii and Streptococcus sanguinis , binds platelets via terminal sialic acid. However, unlike those organisms, S. oralis produces a neuraminidase, NanA, which cleaves terminal sialic acid. Further studies revealed that following NanA-dependent removal of terminal sialic acid, S. oralis bound exposed β-1,4-linked galactose. Adherence to both these carbohydrates required Fap1, the S. oralis member of the serine-rich repeat protein (SRRP) family of adhesins. Mutation of a conserved residue required for sialic acid binding by other SRRPs significantly reduced platelet binding, supporting the hypothesis that Fap1 binds this carbohydrate. The mechanism by which Fap1 contributes to β-1,4-linked galactose binding remains to be defined; however, binding may occur via additional domains of unknown function within the nonrepeat region, one of which shares some similarity with a carbohydrate binding module. This study is the first demonstration that an SRRP is required to bind β-1,4-linked galactose and the first time that one of these adhesins has been shown to be required for binding of multiple glycan receptors. Copyright © 2017 American Society for Microbiology.

  18. Specificity of monoclonal antibodies to strains of Dickeya sp. that cause bacterial heart rot of pineapple.

    PubMed

    Peckham, Gabriel D; Kaneshiro, Wendy S; Luu, Van; Berestecky, John M; Alvarez, Anne M

    2010-10-01

    During a severe outbreak of bacterial heart rot that occurred in pineapple plantations on Oahu, Hawaii, in 2003 and years following, 43 bacterial strains were isolated from diseased plants or irrigation water and identified as Erwinia chrysanthemi (now Dickeya sp.) by phenotypic, molecular, and pathogenicity assays. Rep-PCR fingerprint patterns grouped strains from pineapple plants and irrigation water into five genotypes (A-E) that differed from representatives of other Dickeya species, Pectobacterium carotovorum and other enteric saprophytes isolated from pineapple. Monoclonal antibodies produced following immunization of mice with virulent type C Dickeya sp. showed only two specificities. MAb Pine-1 (2D11G1, IgG1 with kappa light chain) reacted to all 43 pineapple/water strains and some reference strains (D. dianthicola, D. chrysanthemi, D. paradisiaca, some D. dadantii, and uncharacterized Dickeya sp.) but did not react to reference strains of D. dieffenbachiae, D. zeae, or one of the two Malaysian pineapple strains. MAb Pine-2 (2A7F2, IgG3 with kappa light chain) reacted to all type B, C, and D strains but not to any A or E strains or any reference strains except Dickeya sp. isolated from Malaysian pineapple. Pathogenicity tests showed that type C strains were more aggressive than type A strains when inoculated during cool months. Therefore, MAb Pine-2 distinguishes the more virulent type C strains from less virulent type A pineapple strains and type E water strains. MAbs with these two specificities enable development of rapid diagnostic tests that will distinguish the systemic heart rot pathogen from opportunistic bacteria associated with rotted tissues. Use of the two MAbs in field assays also permits the monitoring of a known subpopulation and provides additional decision tools for disease containment and management practices.

  19. Infective Endocarditis Complicated by Intraventricular Abscesses, Pericarditis, and Mycotic Aneurysm Due to an Emerging Strain of Serotype VI Streptococcus agalactiae.

    PubMed

    Hirai, Nobuyasu; Kasahara, Kei; Uno, Kenji; Ogawa, Yoshihiko; Ogawa, Taku; Yonekawa, Shinsuke; Nakano, Ryuichi; Yano, Hisakazu; Sakagami, Azusa; Uemura, Takayuki; Okura, Hiroyuki; Saito, Yoshihiko; Yoshikawa, Masahide; Mikasa, Keiichi

    2017-11-22

    An increasing number of invasive infections due to Streptococcus agalactiae in non-pregnant adults have been reported. We report a case of infective endocarditis complicated by intraventricular abscesses, pericarditis, and mycotic aneurysm due to S. agalactiae belonging to ST681 with a capsular serotype VI in a woman with diabetes. The patient also had a myocardial infarction and was treated with percutaneous coronary intervention, pericardiocentesis, and 6 weeks of antibiotic treatment. Invasive infections due to serotype VI S. agalactiae are common in Asian countries such as Taiwan and Japan, so continuous monitoring of invasive S. agalactiae strains is warranted.

  20. Antibacterial activity of cinnamon ethanol extract (cinnamomum burmannii) and its application as a mouthwash to inhibit streptococcus growth

    NASA Astrophysics Data System (ADS)

    Waty, Syahdiana; Suryanto, Dwi; Yurnaliza

    2018-03-01

    Cinnamon bark has been commonly used as spicy and traditional medicine. It contains several antibacterial compounds such as flavonoids, saponins, and cinnamaldehyde. Several studies have been done to know the antibacterial effect on bacteria such as Streptococcus in vitro. This study aimed to examine the antibacterial activity of cinnamon ethanol extract against Streptococcus and its application as mouthwash to inhibit the bacteria. The cinnamon bark was macerated followed by extracted in 80% ethanol. Bacterial samples were isolated from dental plaque of patients visiting dental clinic drg. Syahdiana Waty in Medan, North Sumatra. The isolates were identified using Vitek 2 compact. Secondary metabolites were detected using previously described method. Antibacterial assay was done at extract concentration of 6.25%, 12.5%, and 25%. The result showed that alkaloids, flavonoids, saponins, and glycoside were detected in the extract. Nine bacterial species were identified as Streptococcus mitis, S. sanguinis, S. salivarius, S. pluranimalium, S. pneumoniae, S. alactolyticus, Kocuria rosea, Kocuria kristinae, and Spingomonas paucimolis. It showed that the extract of Cinnamon bark significantly inhibited Streptococcus growth, and it was effective as mouthwash.

  1. Persistence of the Oral Probiotic Streptococcus salivarius M18 Is Dose Dependent and Megaplasmid Transfer Can Augment Their Bacteriocin Production and Adhesion Characteristics

    PubMed Central

    Burton, Jeremy P.; Wescombe, Philip A.; Macklaim, Jean M.; Chai, Melissa H. C.; MacDonald, Kyle; Hale, John D. F.; Tagg, John; Reid, Gregor; Gloor, Gregory B.; Cadieux, Peter A.

    2013-01-01

    Bacteriocin-producing probiotic Streptococcus salivarius M18 offers beneficial modulatory capabilities within the oral microbiome, apparently through potent inhibitory activity against potentially deleterious bacteria, such as Streptococcus pyogenes. The oral cavity persistence of S. salivarius M18 was investigated in 75 subjects receiving four different doses for 28 days. Sixty per cent of the subjects already had some inhibitor-producing S. salivarius in their saliva prior to probiotic intervention. Strain M18’s persistence was dependent upon the dose, but not the period of administration. Culture analysis indicated that in some individuals the introduced strain had almost entirely replaced the indigenous S. salivarius, though the total numbers of the species did not increase. Selected subjects showing either high or low probiotic persistence had their salivary populations profiled using Illumina sequencing of the V6 region of the 16S rRNA gene. Analysis indicated that while certain bacterial phenotypes were markedly modulated, the overall composition of the oral microbiome was not modified by the probiotic treatment. Megaplasmids encoding bacteriocins and adhesion factors were transferred in vitro to generate a transconjugant S. salivarius exhibiting enhanced antimicrobial production and binding capabilities to HEp-2 cells. Since no widespread perturbation of the existing indigenous microbiota was associated with oral instillation and given its antimicrobial activity against potentially pathogenic streptococci, it appears that application of probiotic strain M18 offers potential low impact alternative to classical antibiotic prophylaxis. For candidate probiotic strains having relatively poor antimicrobial or adhesive properties, unique derivatives displaying improved probiotic performance may be engineered in vitro by megaplasmid transfer. PMID:23785463

  2. Persistence of the oral probiotic Streptococcus salivarius M18 is dose dependent and megaplasmid transfer can augment their bacteriocin production and adhesion characteristics.

    PubMed

    Burton, Jeremy P; Wescombe, Philip A; Macklaim, Jean M; Chai, Melissa H C; Macdonald, Kyle; Hale, John D F; Tagg, John; Reid, Gregor; Gloor, Gregory B; Cadieux, Peter A

    2013-01-01

    Bacteriocin-producing probiotic Streptococcus salivarius M18 offers beneficial modulatory capabilities within the oral microbiome, apparently through potent inhibitory activity against potentially deleterious bacteria, such as Streptococcus pyogenes. The oral cavity persistence of S. salivarius M18 was investigated in 75 subjects receiving four different doses for 28 days. Sixty per cent of the subjects already had some inhibitor-producing S. salivarius in their saliva prior to probiotic intervention. Strain M18's persistence was dependent upon the dose, but not the period of administration. Culture analysis indicated that in some individuals the introduced strain had almost entirely replaced the indigenous S. salivarius, though the total numbers of the species did not increase. Selected subjects showing either high or low probiotic persistence had their salivary populations profiled using Illumina sequencing of the V6 region of the 16S rRNA gene. Analysis indicated that while certain bacterial phenotypes were markedly modulated, the overall composition of the oral microbiome was not modified by the probiotic treatment. Megaplasmids encoding bacteriocins and adhesion factors were transferred in vitro to generate a transconjugant S. salivarius exhibiting enhanced antimicrobial production and binding capabilities to HEp-2 cells. Since no widespread perturbation of the existing indigenous microbiota was associated with oral instillation and given its antimicrobial activity against potentially pathogenic streptococci, it appears that application of probiotic strain M18 offers potential low impact alternative to classical antibiotic prophylaxis. For candidate probiotic strains having relatively poor antimicrobial or adhesive properties, unique derivatives displaying improved probiotic performance may be engineered in vitro by megaplasmid transfer.

  3. Streptococcus thermophilus APC151 Strain Is Suitable for the Manufacture of Naturally GABA-Enriched Bioactive Yogurt.

    PubMed

    Linares, Daniel M; O'Callaghan, Tom F; O'Connor, Paula M; Ross, R P; Stanton, Catherine

    2016-01-01

    Consumer interest in health-promoting food products is a major driving force for the increasing global demand of functional (probiotic) dairy foods. Yogurt is considered the ideal medium for delivery of beneficial functional ingredients. Gamma-amino-butyric acid has potential as a bioactive ingredient in functional foods due to its health-promoting properties as an anti-stress, anti-hypertensive, and anti-diabetic agent. Here, we report the use of a novel Streptococcus thermophilus strain, isolated from the digestive tract of fish, for production of yogurt naturally enriched with 2 mg/ml of gamma-amino-butyric acid (200 mg in a standard yogurt volume of 100 ml), a dose in the same range as that provided by some commercially available gamma-amino-butyric acid supplements. The biotechnological suitability of this strain for industrial production of yogurt was demonstrated by comparison with the reference yogurt inoculated with the commercial CH1 starter (Chr. Hansen) widely used in the dairy industry. Both yogurts showed comparable pH curves [ΔpH/Δ t = 0.31-0.33 h -1 ], viscosity [0.49 Pa-s], water holding capacity [72-73%], and chemical composition [moisture (87-88%), protein (5.05-5.65%), fat (0.12-0.15%), sugar (4.8-5.8%), and ash (0.74-1.2%)]. Gamma-amino-butyric acid was not detected in the control yogurt. In conclusion, the S. thermophilus APC151 strain reported here provides a natural means for fortification of yogurt with gamma-amino-butyric acid.

  4. Evolution of antibiotic resistance is linked to any genetic mechanism affecting bacterial duration of carriage

    PubMed Central

    Lehtinen, Sonja; Blanquart, François; Croucher, Nicholas J.; Turner, Paul; Lipsitch, Marc; Fraser, Christophe

    2017-01-01

    Understanding how changes in antibiotic consumption affect the prevalence of antibiotic resistance in bacterial pathogens is important for public health. In a number of bacterial species, including Streptococcus pneumoniae, the prevalence of resistance has remained relatively stable despite prolonged selection pressure from antibiotics. The evolutionary processes allowing the robust coexistence of antibiotic sensitive and resistant strains are not fully understood. While allelic diversity can be maintained at a locus by direct balancing selection, there is no evidence for such selection acting in the case of resistance. In this work, we propose a mechanism for maintaining coexistence at the resistance locus: linkage to a second locus that is under balancing selection and that modulates the fitness effect of resistance. We show that duration of carriage plays such a role, with long duration of carriage increasing the fitness advantage gained from resistance. We therefore predict that resistance will be more common in strains with a long duration of carriage and that mechanisms maintaining diversity in duration of carriage will also maintain diversity in antibiotic resistance. We test these predictions in S. pneumoniae and find that the duration of carriage of a serotype is indeed positively correlated with the prevalence of resistance in that serotype. These findings suggest heterogeneity in duration of carriage is a partial explanation for the coexistence of sensitive and resistant strains and that factors determining bacterial duration of carriage will also affect the prevalence of resistance. PMID:28096340

  5. Molecular epidemiology of recurrent clinical mastitis due to Streptococcus uberis: evidence of both an environmental source and recurring infection with the same strain.

    PubMed

    Abureema, Salem; Smooker, Peter; Malmo, Jakob; Deighton, Margaret

    2014-01-01

    This study was undertaken because clinicians and farmers have observed that a considerable number of cows diagnosed with Streptococcus uberis mastitis have recurrences of mastitis in the same or a different quarter. The study was an attempt to answer whether these recurring cases were due to treatment failure (in which case a search would have begun for a better treatment for Strep. uberis mastitis) or due to reinfection with a different strain of Strep. uberis. Using pulsed-field gel electrophoresis (PFGE), we determined that the majority of recurrences (20 of 27) were caused by a new strain of Strep. uberis, indicating that treatment of the initial infection had been successful. A small number of recurrences (5 of 27) were caused by the initial strain, indicating persistence. The remaining 2 recurrences occurred in a new quarter but with the initial strain of Strep. uberis, indicating either spread between quarters or reactivation of a previous subclinical infection. Analysis of the PFGE profiles failed to reveal any strain-specific propensity to persist, because strains causing recurrences occurred in most of the major clusters. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  6. The strains recommended for use in the bacterial reverse mutation test (OECD guideline 471) can be certified as non-genetically modified organisms.

    PubMed

    Sugiyama, Kei-Ichi; Yamada, Masami; Awogi, Takumi; Hakura, Atsushi

    2016-01-01

    The bacterial reverse mutation test, commonly called Ames test, is used worldwide. In Japan, the genetically modified organisms (GMOs) are regulated under the Cartagena Domestic Law, and organisms obtained by self-cloning and/or natural occurrence would be exempted from the law case by case. The strains of Salmonella typhimurium and Escherichia coli recommended for use in the bacterial reverse mutation test (OECD guideline 471), have been considered as non-GMOs because they can be constructed by self-cloning or naturally occurring bacterial strains, or do not disturb the biological diversity. The present article explains the reasons why these tester strains should be classified as non-GMOs.

  7. Frequency of Spontaneous Resistance to Peptide Deformylase Inhibitor GSK1322322 in Haemophilus influenzae, Staphylococcus aureus, Streptococcus pyogenes, and Streptococcus pneumoniae.

    PubMed

    Min, Sharon; Ingraham, Karen; Huang, Jianzhong; McCloskey, Lynn; Rilling, Sarah; Windau, Anne; Pizzollo, Jason; Butler, Deborah; Aubart, Kelly; Miller, Linda A; Zalacain, Magdalena; Holmes, David J; O'Dwyer, Karen

    2015-08-01

    The continuous emergence of multidrug-resistant pathogenic bacteria is compromising the successful treatment of serious microbial infections. GSK1322322, a novel peptide deformylase (PDF) inhibitor, shows good in vitro antibacterial activity and has demonstrated safety and efficacy in human proof-of-concept clinical studies. In vitro studies were performed to determine the frequency of resistance (FoR) to this antimicrobial agent in major pathogens that cause respiratory tract and skin infections. Resistance to GSK1322322 occurred at high frequency through loss-of-function mutations in the formyl-methionyl transferase (FMT) protein in Staphylococcus aureus (4/4 strains) and Streptococcus pyogenes (4/4 strains) and via missense mutations in Streptococcus pneumoniae (6/21 strains), but the mutations were associated with severe in vitro and/or in vivo fitness costs. The overall FoR to GSK1322322 was very low in Haemophilus influenzae, with only one PDF mutant being identified in one of four strains. No target-based mutants were identified from S. pyogenes, and only one or no PDF mutants were isolated in three of the four S. aureus strains studied. In S. pneumoniae, PDF mutants were isolated from only six of 21 strains tested; an additional 10 strains did not yield colonies on GSK1322322-containing plates. Most of the PDF mutants characterized from those three organisms (35/37 mutants) carried mutations in residues at or in close proximity to one of three highly conserved motifs that are part of the active site of the PDF protein, with 30 of the 35 mutations occurring at position V71 (using the S. pneumoniae numbering system). Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  8. Frequency of Spontaneous Resistance to Peptide Deformylase Inhibitor GSK1322322 in Haemophilus influenzae, Staphylococcus aureus, Streptococcus pyogenes, and Streptococcus pneumoniae

    PubMed Central

    Ingraham, Karen; Huang, Jianzhong; McCloskey, Lynn; Rilling, Sarah; Windau, Anne; Pizzollo, Jason; Butler, Deborah; Aubart, Kelly; Miller, Linda A.; Zalacain, Magdalena; Holmes, David J.; O'Dwyer, Karen

    2015-01-01

    The continuous emergence of multidrug-resistant pathogenic bacteria is compromising the successful treatment of serious microbial infections. GSK1322322, a novel peptide deformylase (PDF) inhibitor, shows good in vitro antibacterial activity and has demonstrated safety and efficacy in human proof-of-concept clinical studies. In vitro studies were performed to determine the frequency of resistance (FoR) to this antimicrobial agent in major pathogens that cause respiratory tract and skin infections. Resistance to GSK1322322 occurred at high frequency through loss-of-function mutations in the formyl-methionyl transferase (FMT) protein in Staphylococcus aureus (4/4 strains) and Streptococcus pyogenes (4/4 strains) and via missense mutations in Streptococcus pneumoniae (6/21 strains), but the mutations were associated with severe in vitro and/or in vivo fitness costs. The overall FoR to GSK1322322 was very low in Haemophilus influenzae, with only one PDF mutant being identified in one of four strains. No target-based mutants were identified from S. pyogenes, and only one or no PDF mutants were isolated in three of the four S. aureus strains studied. In S. pneumoniae, PDF mutants were isolated from only six of 21 strains tested; an additional 10 strains did not yield colonies on GSK1322322-containing plates. Most of the PDF mutants characterized from those three organisms (35/37 mutants) carried mutations in residues at or in close proximity to one of three highly conserved motifs that are part of the active site of the PDF protein, with 30 of the 35 mutations occurring at position V71 (using the S. pneumoniae numbering system). PMID:26014938

  9. Serine-Rich Repeat Proteins and Pili Promote Streptococcus agalactiae Colonization of the Vaginal Tract ▿

    PubMed Central

    Sheen, Tamsin R.; Jimenez, Alyssa; Wang, Nai-Yu; Banerjee, Anirban; van Sorge, Nina M.; Doran, Kelly S.

    2011-01-01

    Streptococcus agalactiae (group B streptococcus [GBS]) is a Gram-positive bacterium found in the female rectovaginal tract and is capable of producing severe disease in susceptible hosts, including newborns and pregnant women. The vaginal tract is considered a major reservoir for GBS, and maternal vaginal colonization poses a significant risk to the newborn; however, little is known about the specific bacterial factors that promote GBS colonization and persistence in the female reproductive tract. We have developed in vitro models of GBS interaction with the human female cervicovaginal tract using human vaginal and cervical epithelial cell lines. Analysis of isogenic mutant GBS strains deficient in cell surface organelles such as pili and serine-rich repeat (Srr) proteins shows that these factors contribute to host cell attachment. As Srr proteins are heavily glycosylated, we confirmed that carbohydrate moieties contribute to the effective interaction of Srr-1 with vaginal epithelial cells. Antibody inhibition assays identified keratin 4 as a possible host receptor for Srr-1. Our findings were further substantiated in an in vivo mouse model of GBS vaginal colonization, where mice inoculated with an Srr-1-deficient mutant exhibited decreased GBS vaginal persistence compared to those inoculated with the wild-type (WT) parental strain. Furthermore, competition experiments in mice showed that WT GBS exhibited a significant survival advantage over the ΔpilA or Δsrr-1 mutant in the vaginal tract. Our results suggest that these GBS surface proteins contribute to vaginal colonization and may offer new insights into the mechanisms of vaginal niche establishment. PMID:21984789

  10. [Pathogen distribution and bacterial resistance in children with severe community-acquired pneumonia].

    PubMed

    Lu, Yun-Yun; Luo, Rong; Fu, Zhou

    2017-09-01

    To investigate the distribution of pathogens and bacterial resistance in children with severe community-acquired pneumonia (CAP). A total of 522 children with severe CAP who were hospitalized in 2016 were enrolled as study subjects. According to their age, they were divided into infant group (402 infants aged 28 days to 1 year), young children group (73 children aged 1 to 3 years), preschool children group (35 children aged 3 to 6 years), and school-aged children group (12 children aged ≥6 years). According to the onset season, all children were divided into spring group (March to May, 120 children), summer group (June to August, 93 children), autumn group (September to November, 105 children), and winter group (December to February, 204 children). Sputum specimens from the deep airway were collected from all patients. The phoenix-100 automatic bacterial identification system was used for bacterial identification and drug sensitivity test. The direct immunofluorescence assay was used to detect seven common respiratory viruses. The quantitative real-time PCR was used to detect Mycoplasma pneumoniae (MP) and Chlamydia trachomatis (CT). Of all the 522 children with severe CAP, 419 (80.3%) were found to have pathogens, among whom 190 (45.3%) had mixed infection. A total of 681 strains of pathogens were identified, including 371 bacterial strains (54.5%), 259 viral strains (38.0%), 12 fungal strains (1.8%), 15 MP strains (2.2%), and 24 CT strains (3.5%). There were significant differences in the distribution of bacterial, viral, MP, and fungal infections between different age groups (P<0.05). There were significant differences in the incidence rate of viral infection between different season groups (P<0.05), with the highest incidence rate in winter. The drug-resistance rates of Streptococcus pneumoniae to erythromycin, tetracycline, and clindamycin reached above 85%, and the drug-resistance rates of Staphylococcus aureus to penicillin, erythromycin, and clindamycin

  11. SpyB, a small heme-binding protein, affects the composition of the cell wall in Streptococcus pyogenes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Edgar, Rebecca J.; Chen, Jing; Kant, Sashi

    Streptococcus pyogenes (Group A Streptococcus or GAS) is a hemolytic human pathogen associated with a wide variety of infections ranging from minor skin and throat infections to life-threatening invasive diseases. The cell wall of GAS consists of peptidoglycan sacculus decorated with a carbohydrate comprising a polyrhamnose backbone with immunodominant N-acetylglucosamine side-chains. All GAS genomes contain the spyBA operon, which encodes a 35-amino-acid membrane protein SpyB, and a membrane-bound C 3-like ADP-ribosyltransferase SpyA. In this study, we addressed the function of SpyB in GAS. Phenotypic analysis of a spyB deletion mutant revealed increased bacterial aggregation, and reduced sensitivity to β-lactams ofmore » the cephalosporin class and peptidoglycan hydrolase PlyC. Glycosyl composition analysis of cell wall isolated from the spyB mutant suggested an altered carbohydrate structure compared with the wild-type strain. Furthermore, we found that SpyB associates with heme and protoporphyrin IX. Heme binding induces SpyB dimerization, which involves disulfide bond formation between the subunits. Furthermore, our data suggest the possibility that SpyB activity is regulated by heme.« less

  12. SpyB, a small heme-binding protein, affects the composition of the cell wall in Streptococcus pyogenes

    DOE PAGES

    Edgar, Rebecca J.; Chen, Jing; Kant, Sashi; ...

    2016-10-13

    Streptococcus pyogenes (Group A Streptococcus or GAS) is a hemolytic human pathogen associated with a wide variety of infections ranging from minor skin and throat infections to life-threatening invasive diseases. The cell wall of GAS consists of peptidoglycan sacculus decorated with a carbohydrate comprising a polyrhamnose backbone with immunodominant N-acetylglucosamine side-chains. All GAS genomes contain the spyBA operon, which encodes a 35-amino-acid membrane protein SpyB, and a membrane-bound C 3-like ADP-ribosyltransferase SpyA. In this study, we addressed the function of SpyB in GAS. Phenotypic analysis of a spyB deletion mutant revealed increased bacterial aggregation, and reduced sensitivity to β-lactams ofmore » the cephalosporin class and peptidoglycan hydrolase PlyC. Glycosyl composition analysis of cell wall isolated from the spyB mutant suggested an altered carbohydrate structure compared with the wild-type strain. Furthermore, we found that SpyB associates with heme and protoporphyrin IX. Heme binding induces SpyB dimerization, which involves disulfide bond formation between the subunits. Furthermore, our data suggest the possibility that SpyB activity is regulated by heme.« less

  13. SpyB, a Small Heme-Binding Protein, Affects the Composition of the Cell Wall in Streptococcus pyogenes.

    PubMed

    Edgar, Rebecca J; Chen, Jing; Kant, Sashi; Rechkina, Elena; Rush, Jeffrey S; Forsberg, Lennart S; Jaehrig, Bernhard; Azadi, Parastoo; Tchesnokova, Veronika; Sokurenko, Evgeni V; Zhu, Haining; Korotkov, Konstantin V; Pancholi, Vijay; Korotkova, Natalia

    2016-01-01

    Streptococcus pyogenes (Group A Streptococcus or GAS) is a hemolytic human pathogen associated with a wide variety of infections ranging from minor skin and throat infections to life-threatening invasive diseases. The cell wall of GAS consists of peptidoglycan sacculus decorated with a carbohydrate comprising a polyrhamnose backbone with immunodominant N-acetylglucosamine side-chains. All GAS genomes contain the spyBA operon, which encodes a 35-amino-acid membrane protein SpyB, and a membrane-bound C3-like ADP-ribosyltransferase SpyA. In this study, we addressed the function of SpyB in GAS. Phenotypic analysis of a spyB deletion mutant revealed increased bacterial aggregation, and reduced sensitivity to β-lactams of the cephalosporin class and peptidoglycan hydrolase PlyC. Glycosyl composition analysis of cell wall isolated from the spyB mutant suggested an altered carbohydrate structure compared with the wild-type strain. Furthermore, we found that SpyB associates with heme and protoporphyrin IX. Heme binding induces SpyB dimerization, which involves disulfide bond formation between the subunits. Thus, our data suggest the possibility that SpyB activity is regulated by heme.

  14. Insights into the Evolutionary Relationships of LytA Autolysin and Ply Pneumolysin-Like Genes in Streptococcus pneumoniae and Related Streptococci

    PubMed Central

    Morales, María; Martín-Galiano, Antonio J.; Domenech, Mirian; García, Ernesto

    2015-01-01

    Streptococcus pneumoniae (pneumococcus) is a major human pathogen. The main pneumococcal autolysin LytA and the pneumolysin Ply are two of the bacterium’s most important virulence factors. The lytA- and ply-related genes are also found in other streptococci of the Mitis group (SMG). The precise characteristics of the lytA-related—but not the ply-related—genes of SMG and their prophages have been previously described. A search of the more than 400 SMG genomic sequences available in public databases (ca. 300 for S. pneumoniae), showed Streptococcus pseudopneumoniae IS7493 to harbor four ply-related genes, two of which (plyA and plyB) have 98% identical nucleotides. The plyA homolog of S. pseudopneumoniae is conserved in all S. pneumoniae strains, and seems to be included in a pathogenicity island together with the lytA gene. However, only nonencapsulated S. pneumoniae strains possess a plyB gene, which is part of an integrative and conjugative element. Notably, the existence of a bacterial lytA-related gene in a genome is linked to the presence of plyA and vice versa. The present analysis also shows there are eight main types of plyA−lytA genomic islands. A possible stepwise scenario for the evolution of the plyA−lytA island in S. pneumoniae is proposed. PMID:26349755

  15. Group B Streptococcus β-hemolysin/Cytolysin Breaches Maternal-Fetal Barriers to Cause Preterm Birth and Intrauterine Fetal Demise in Vivo

    PubMed Central

    Randis, Tara M.; Gelber, Shari E.; Hooven, Thomas A.; Abellar, Rosanna G.; Akabas, Leor H.; Lewis, Emma L.; Walker, Lindsay B.; Byland, Leah M.; Nizet, Victor; Ratner, Adam J.

    2014-01-01

    Background. Maternal vaginal colonization with Streptococcus agalactiae (Group B Streptococcus [GBS]) is a precursor to chorioamnionitis, fetal infection, and neonatal sepsis, but the understanding of specific factors in the pathogenesis of ascending infection remains limited. Methods. We used a new murine model to evaluate the contribution of the pore-forming GBS β-hemolysin/cytolysin (βH/C) to vaginal colonization, ascension, and fetal infection. Results. Competition assays demonstrated a marked advantage to βH/C-expressing GBS during colonization. Intrauterine fetal demise and/or preterm birth were observed in 54% of pregnant mice colonized with wild-type (WT) GBS and 0% of those colonized with the toxin-deficient cylE knockout strain, despite efficient colonization and ascension by both strains. Robust placental inflammation, disruption of maternal-fetal barriers, and fetal infection were more frequent in animals colonized with WT bacteria. Histopathologic examination revealed bacterial tropism for fetal lung and liver. Conclusions. Preterm birth and fetal demise are likely the direct result of toxin-induced damage and inflammation rather than differences in efficiency of ascension into the upper genital tract. These data demonstrate a distinct contribution of βH/C to GBS chorioamnionitis and subsequent fetal infection in vivo and showcase a model for this most proximal step in GBS pathogenesis. PMID:24474814

  16. Ethanol-induced alcohol dehydrogenase E (AdhE) potentiates pneumolysin in Streptococcus pneumoniae.

    PubMed

    Luong, Truc Thanh; Kim, Eun-Hye; Bak, Jong Phil; Nguyen, Cuong Thach; Choi, Sangdun; Briles, David E; Pyo, Suhkneung; Rhee, Dong-Kwon

    2015-01-01

    Alcohol impairs the host immune system, rendering the host more vulnerable to infection. Therefore, alcoholics are at increased risk of acquiring serious bacterial infections caused by Streptococcus pneumoniae, including pneumonia. Nevertheless, how alcohol affects pneumococcal virulence remains unclear. Here, we showed that the S. pneumoniae type 2 D39 strain is ethanol tolerant and that alcohol upregulates alcohol dehydrogenase E (AdhE) and potentiates pneumolysin (Ply). Hemolytic activity, colonization, and virulence of S. pneumoniae, as well as host cell myeloperoxidase activity, proinflammatory cytokine secretion, and inflammation, were significantly attenuated in adhE mutant bacteria (ΔadhE strain) compared to D39 wild-type bacteria. Therefore, AdhE might act as a pneumococcal virulence factor. Moreover, in the presence of ethanol, S. pneumoniae AdhE produced acetaldehyde and NADH, which subsequently led Rex (redox-sensing transcriptional repressor) to dissociate from the adhE promoter. An increase in AdhE level under the ethanol condition conferred an increase in Ply and H2O2 levels. Consistently, S. pneumoniae D39 caused higher cytotoxicity to RAW 264.7 cells than the ΔadhE strain under the ethanol stress condition, and ethanol-fed mice (alcoholic mice) were more susceptible to infection with the D39 wild-type bacteria than with the ΔadhE strain. Taken together, these data indicate that AdhE increases Ply under the ethanol stress condition, thus potentiating pneumococcal virulence. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  17. Antibacterial Effects of Amoxicillin-Clavulanate against Streptococcus pneumoniae and Haemophilus influenzae Strains for Which MICs Are High, in an In Vitro Pharmacokinetic Model

    PubMed Central

    MacGowan, Alasdair P.; Noel, Alan R.; Rogers, Chris A.; Bowker, Karen E.

    2004-01-01

    The antibacterial effect of amoxicillin-clavulanate in two formulations, pharmacokinetically enhanced 16:1 amoxicillin-clavulanate twice a day (b.i.d.) and standard 7:1 amoxicillin-clavulanate b.i.d., were studied in an in vitro pharmacokinetic model of infection. Five strains of Streptococcus pneumoniae and two of Haemophilus influenzae, all associated with raised MICs (2 to 8 mg/liter), were used. The antibacterial effect was measured over 24 h by the area under the bacterial kill curve (AUBKC) and the log change in viable count at 24 h (Δ24). A high 108 CFU/ml and low 106 CFU/ml initial inocula were used. Employing the Δ24 effect measure, the time above MIC (T>MIC) 50% maximum effect (EC50) for S. pneumoniae was in the range 21 to 28% with an 80% maximal response of 41 to 51%, for the AUBKC measure, the value was 26 to 39%, irrespective of inoculum. For H. influenzae, the T>MIC EC50 was 28 to 37%, and the 80% maximum response was 32 to 48% for the Δ24 measure and 20 to 48% for AUBKC. The maximum response occurred at a T>MIC of 50 to 60% for both species and inocula. The S. pneumoniae data were analyzed by analysis of variance to assess the effect of inoculum, formulation, and MIC on antibacterial effect. Standard and enhanced formulations had different effects depending on MIC, with the standard formulation less effective at higher amoxicillin-clavulanate MICs. This is explained by the greater T>MICs of the enhanced formulation. Although resistant to amoxicillin-clavulanate by conventional breakpoints, S. pneumoniae and H. influenzae strains for which MICs are 2 or 4 mg/liter may well respond to therapy with pharmacokinetically enhanced formulation amoxicillin-clavulanate. PMID:15215115

  18. Antibacterial effects of amoxicillin-clavulanate against Streptococcus pneumoniae and Haemophilus influenzae strains for which MICs are high, in an in vitro pharmacokinetic model.

    PubMed

    MacGowan, Alasdair P; Noel, Alan R; Rogers, Chris A; Bowker, Karen E

    2004-07-01

    The antibacterial effect of amoxicillin-clavulanate in two formulations, pharmacokinetically enhanced 16:1 amoxicillin-clavulanate twice a day (b.i.d.) and standard 7:1 amoxicillin-clavulanate b.i.d., were studied in an in vitro pharmacokinetic model of infection. Five strains of Streptococcus pneumoniae and two of Haemophilus influenzae, all associated with raised MICs (2 to 8 mg/liter), were used. The antibacterial effect was measured over 24 h by the area under the bacterial kill curve (AUBKC) and the log change in viable count at 24 h (Delta24). A high 10(8) CFU/ml and low 10(6) CFU/ml initial inocula were used. Employing the Delta24 effect measure, the time above MIC (T>MIC) 50% maximum effect (EC(50)) for S. pneumoniae was in the range 21 to 28% with an 80% maximal response of 41 to 51%, for the AUBKC measure, the value was 26 to 39%, irrespective of inoculum. For H. influenzae, the T>MIC EC(50) was 28 to 37%, and the 80% maximum response was 32 to 48% for the Delta24 measure and 20 to 48% for AUBKC. The maximum response occurred at a T>MIC of 50 to 60% for both species and inocula. The S. pneumoniae data were analyzed by analysis of variance to assess the effect of inoculum, formulation, and MIC on antibacterial effect. Standard and enhanced formulations had different effects depending on MIC, with the standard formulation less effective at higher amoxicillin-clavulanate MICs. This is explained by the greater T>MICs of the enhanced formulation. Although resistant to amoxicillin-clavulanate by conventional breakpoints, S. pneumoniae and H. influenzae strains for which MICs are 2 or 4 mg/liter may well respond to therapy with pharmacokinetically enhanced formulation amoxicillin-clavulanate.

  19. Evaluation of free-stall mattress bedding treatments to reduce mastitis bacterial growth.

    PubMed

    Kristula, M A; Dou, Z; Toth, J D; Smith, B I; Harvey, N; Sabo, M

    2008-05-01

    Bacterial counts were compared in free-stall mattresses and teat ends exposed to 5 treatments in a factorial study design on 1 dairy farm. Mattresses in five 30-cow groups were subjected to 1 of 5 bedding treatments every other day: 0.5 kg of hydrated limestone, 120 mL of commercial acidic conditioner, 1 kg of coal fly ash, 1 kg of kiln-dried wood shavings, and control (no bedding). Counts of coliforms, Klebsiella spp., Escherichia coli, and Streptococcus spp. were lowest on mattresses bedded with lime. Mattresses bedded with the commercial acidic conditioner had the next lowest counts for coliforms, Klebsiella spp., and Streptococcus spp. Wood shavings and the no-bedding control had the highest counts for coliform and Klebsiella spp. Compared with wood shavings or control, fly ash reduced the counts of coliforms, whereas for the other 3 bacterial groups, the reduction was not always significant. Streptococcus spp. counts were greatest in the control group and did not differ among the shavings and fly ash groups. Teat swab results indicated that hydrated lime was the only bedding treatment that significantly decreased the counts of both coliforms and Klebsiella spp. There were no differences in Streptococcus spp. numbers on the teats between any of the bedding treatments. Bacterial populations grew steadily on mattresses and were generally higher at 36 to 48 h than at 12 to 24 h, whereas bacterial populations on teats grew rapidly by 12 h and then remained constant. Hydrated lime was the only treatment that significantly reduced bacterial counts on both mattresses and teat ends, but it caused some skin irritation.

  20. Evaluation of free-stall mattress bedding treatments to reduce mastitis bacterial growth

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kristula, M.A.; Dou, Z.; Toth, J.D.

    2008-05-15

    Bacterial counts were compared in free-stall mattresses and teat ends exposed to 5 treatments in a factorial study design on 1 dairy farm. Mattresses in five 30-cow groups were subjected to 1 of 5 bedding treatments every other day: 0.5 kg of hydrated limestone, 120 mL of commercial acidic conditioner, 1 kg of coal fly ash, 1 kg of kiln-dried wood shavings, and control (no bedding). Counts of coliforms, Klebsiella spp., Escherichia coli, and Streptococcus spp. were lowest on mattresses bedded with lime. Mattresses bedded with the commercial acidic conditioner had the next lowest counts for coliforms, Klebsiella spp., andmore » Streptococcus spp. Wood shavings and the no-bedding control had the highest counts for coliform and Klebsiella spp. Compared with wood shavings or control, fly ash reduced the counts of coliforms, whereas for the other 3 bacterial groups, the reduction was not always significant. Streptococcus spp. counts were greatest in the control group and did not differ among the shavings and fly ash groups. Teat swab results indicated that hydrated lime was the only bedding treatment that significantly decreased the counts of both coliforms and Klebsiella spp. There were no differences in Streptococcus spp. numbers on the teats between any of the bedding treatments. Bacterial populations grew steadily on mattresses and were generally higher at 36 to 48 h than at 12 to 24 h, whereas bacterial populations on teats grew rapidly by 12 h and then remained constant. Hydrated lime was the only treatment that significantly reduced bacterial counts on both mattresses and teat ends, but it caused some skin irritation.« less

  1. Nonhemolytic Streptococcus pyogenes Isolates That Lack Large Regions of the sag Operon Mediating Streptolysin S Production▿

    PubMed Central

    Yoshino, Miho; Murayama, Somay Y.; Sunaoshi, Katsuhiko; Wajima, Takeaki; Takahashi, Miki; Masaki, Junko; Kurokawa, Iku; Ubukata, Kimiko

    2010-01-01

    Among nonhemolytic Streptococcus pyogenes (group A streptococcus) strains (n = 9) isolated from patients with pharyngitis or acute otitis media, we identified three deletions in the region from the epf gene, encoding the extracellular matrix binding protein, to the sag operon, mediating streptolysin S production. PMID:20018818

  2. A comparative study of the extracellular glucosyl- and fructosyltransferases from cariogenic and non-cariogenic Streptococcus mutans strains of two different serotypes.

    PubMed

    Asem, K; Cornish-Bowden, A J; Cole, J A

    1986-01-01

    Extracellular proteins from continuous cultures of serotype c and g Streptococcus mutans strains were separated by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulphate. Gels stained with raffinose after electrophoresis revealed that although serotype c strains secrete two fructosyltransferases of molecular mass 68 kDa and 79 kDa, no fructosyltransferase was secreted by the serotype g strain K1. A sucrose activity stain was used to detect two glucosyltransferases (GTF) of molecular mass 162 kDa (bifunctional 1,6-alpha-D-glucan 3-alpha- and 6-alpha GTF or 'dextransucrase') and 153 kDa (a 1,3-alpha-D-glucan 3-alpha-GTF) in samples from cariogenic serotype c strains. Neither the 153 kDa protein nor the corresponding GTF activity was secreted by the non-cariogenic mutant C 67-25. The molecular masses of the corresponding 1,3-alpha and 1,6-alpha-GTF proteins from the serotype g strain K1 were 164 kDa and 158 kDa, respectively. All of the GTF proteins were degraded to discrete bands of lower molecular mass on storage at 4 degrees C even after extensive purification. The results provide an explanation for several outstanding controversies in the GTF literature.

  3. Novel Regulatory Small RNAs in Streptococcus pyogenes

    PubMed Central

    Tesorero, Rafael A.; Yu, Ning; Wright, Jordan O.; Svencionis, Juan P.; Cheng, Qiang; Kim, Jeong-Ho; Cho, Kyu Hong

    2013-01-01

    Streptococcus pyogenes (Group A Streptococcus or GAS) is a Gram-positive bacterial pathogen that has shown complex modes of regulation of its virulence factors to cause diverse diseases. Bacterial small RNAs are regarded as novel widespread regulators of gene expression in response to environmental signals. Recent studies have revealed that several small RNAs (sRNAs) have an important role in S. pyogenes physiology and pathogenesis by regulating gene expression at the translational level. To search for new sRNAs in S. pyogenes, we performed a genomewide analysis through computational prediction followed by experimental verification. To overcome the limitation of low accuracy in computational prediction, we employed a combination of three different computational algorithms (sRNAPredict, eQRNA and RNAz). A total of 45 candidates were chosen based on the computational analysis, and their transcription was analyzed by reverse-transcriptase PCR and Northern blot. Through this process, we discovered 7 putative novel trans-acting sRNAs. Their abundance varied between different growth phases, suggesting that their expression is influenced by environmental or internal signals. Further, to screen target mRNAs of an sRNA, we employed differential RNA sequencing analysis. This study provides a significant resource for future study of small RNAs and their roles in physiology and pathogenesis of S. pyogenes. PMID:23762235

  4. [Bacterial flora and mycosis of the vagina in women with symptoms of vaginal inflammation].

    PubMed

    Dybaś, Irena; Sidor-Wójtowicz, Anna; Kozioł-Montewka, Maria

    2005-05-01

    To estimate the microbiological profile of vaginal flora in 30 women with gynecologic problems and 20 pregnant women complaining about pathological symptoms {pruritus, burning, vaginal discharge}. The discharge from posterior vaginal vault was examined microbiologically on the Columbia Agar with sheep blood, MacConkey and Sabourand cultures incubated of 48 hours in the temperature of 37 degrees C. Bacterial infections were detected in 33 cases (66%), 12 of these women (24%) lived in urban, 21 (42%) in rural environment. From bacteria isolated from the vagina, most often because at 14 women stepped out Streptococcus agalactiae, at 11 Enterococcus faecalis at 8 Escherichia coli. In 5 cases bacterial inflammation was caused by two kinds of bacterium. At two women stepped out both Enterococcus faecalis and Escherichia coli. In single cases it was Klebsiella pneumoniae and Proteus vulgaris, Escherichia coli and Streptococcus agalactiae. In all cases of inflammation mycosis was called out by from Candida albicans. One ascertained it at 14 among all given an examination women. Mixed inflammations called out both by mycosis and bacterial stepped out in 3 cases in age of 21-30. At two women it was Candida albicans and Streptococcus agalactiae, at one inflammation mycosis accompanied Enterococcus faecalis. The common reason of vaginitis are bacterial infections caused by Streptococcus agalactiae, Enterococcus faecalis, E coli. Both, place of living and women' s age influence the type of etiological factor.

  5. Genome sequence and comparative microarray analysis of serotype M18 group A Streptococcus strains associated with acute rheumatic fever outbreaks.

    PubMed

    Smoot, James C; Barbian, Kent D; Van Gompel, Jamie J; Smoot, Laura M; Chaussee, Michael S; Sylva, Gail L; Sturdevant, Daniel E; Ricklefs, Stacy M; Porcella, Stephen F; Parkins, Larye D; Beres, Stephen B; Campbell, David S; Smith, Todd M; Zhang, Qing; Kapur, Vivek; Daly, Judy A; Veasy, L George; Musser, James M

    2002-04-02

    Acute rheumatic fever (ARF), a sequelae of group A Streptococcus (GAS) infection, is the most common cause of preventable childhood heart disease worldwide. The molecular basis of ARF and the subsequent rheumatic heart disease are poorly understood. Serotype M18 GAS strains have been associated for decades with ARF outbreaks in the U.S. As a first step toward gaining new insight into ARF pathogenesis, we sequenced the genome of strain MGAS8232, a serotype M18 organism isolated from a patient with ARF. The genome is a circular chromosome of 1,895,017 bp, and it shares 1.7 Mb of closely related genetic material with strain SF370 (a sequenced serotype M1 strain). Strain MGAS8232 has 178 ORFs absent in SF370. Phages, phage-like elements, and insertion sequences are the major sources of variation between the genomes. The genomes of strain MGAS8232 and SF370 encode many of the same proven or putative virulence factors. Importantly, strain MGAS8232 has genes encoding many additional secreted proteins involved in human-GAS interactions, including streptococcal pyrogenic exotoxin A (scarlet fever toxin) and two uncharacterized pyrogenic exotoxin homologues, all phage-associated. DNA microarray analysis of 36 serotype M18 strains from diverse localities showed that most regions of variation were phages or phage-like elements. Two epidemics of ARF occurring 12 years apart in Salt Lake City, UT, were caused by serotype M18 strains that were genetically identical, or nearly so. Our analysis provides a critical foundation for accelerated research into ARF pathogenesis and a molecular framework to study the plasticity of GAS genomes.

  6. Hypervariability generated by natural selection in an extracellular complement-inhibiting protein of serotype M1 strains of group A Streptococcus.

    PubMed

    Stockbauer, K E; Grigsby, D; Pan, X; Fu, Y X; Mejia, L M; Cravioto, A; Musser, J M

    1998-03-17

    In many countries, M1 strains of the human pathogenic bacterium group A Streptococcus are the most common serotype recovered from patients with invasive disease episodes. Strains of this serotype express an extracellular protein that inhibits complement [streptococcal inhibitor of complement (Sic)] and is therefore believed to be a virulence factor. Comparative sequence analysis of the 915-bp sic gene in 165 M1 organisms recovered from diverse localities and infection types identified 62 alleles. Inasmuch as multilocus enzyme electrophoresis and pulsed-field gel electrophoresis previously showed that most M1 organisms represent a distinct streptococcal clone, the extent of sic gene polymorphism was unexpected. The level of polymorphism greatly exceeds that recorded for all other genes examined in serotype M1 strains. All insertions and deletions are in frame, and virtually all nucleotide substitutions alter the amino acid sequence of the Sic protein. These molecular features indicate that structural change in Sic is mediated by natural selection. Study of 70 strains recovered from two temporally distinct epidemics of streptococcal infections in the former East Germany found little sharing of Sic variants among strains recovered in the different time periods. Taken together, the data indicate that sic is a uniquely variable gene and provide insight into a potential molecular mechanism contributing to fluctuations in streptococcal disease frequency and severity.

  7. Current Taxonomical Situation of Streptococcus suis.

    PubMed

    Okura, Masatoshi; Osaki, Makoto; Nomoto, Ryohei; Arai, Sakura; Osawa, Ro; Sekizaki, Tsutomu; Takamatsu, Daisuke

    2016-06-24

    Streptococcus suis, a major porcine pathogen and an important zoonotic agent, is considered to be composed of phenotypically and genetically diverse strains. However, recent studies reported several "S. suis-like strains" that were identified as S. suis by commonly used methods for the identification of this bacterium, but were regarded as distinct species from S. suis according to the standards of several taxonomic analyses. Furthermore, it has been suggested that some S. suis-like strains can be assigned to several novel species. In this review, we discuss the current taxonomical situation of S. suis with a focus on (1) the classification history of the taxon of S. suis; (2) S. suis-like strains revealed by taxonomic analyses; (3) methods for detecting and identifying this species, including a novel method that can distinguish S. suis isolates from S. suis-like strains; and (4) current topics on the reclassification of S. suis-like strains.

  8. Nisin H Is a New Nisin Variant Produced by the Gut-Derived Strain Streptococcus hyointestinalis DPC6484

    PubMed Central

    O'Connor, Paula M.; O'Shea, Eileen F.; Guinane, Caitriona M.; O'Sullivan, Orla; Cotter, Paul D.; Hill, Colin

    2015-01-01

    Accumulating evidence suggests that bacteriocin production represents a probiotic trait for intestinal strains to promote dominance, fight infection, and even signal the immune system. In this respect, in a previous study, we isolated from the porcine intestine a strain of Streptococcus hyointestinalis DPC6484 that displays antimicrobial activity against a wide range of Gram-positive bacteria and produces a bacteriocin with a mass of 3,453 Da. Interestingly, the strain was also found to be immune to a nisin-producing strain. Genome sequencing revealed the genetic determinants responsible for a novel version of nisin, designated nisin H, consisting of the nshABTCPRKGEF genes, with transposases encoded between nshP and nshR and between nshK and nshG. A similar gene cluster is also found in S. hyointestinalis LMG14581. Notably, the cluster lacks an equivalent of the nisin immunity gene, nisI. Nisin H is proposed to have the same structure as the prototypical nisin A but differs at 5 amino acid positions—Ile1Phe (i.e., at position 1, nisin A has Ile while nisin H has Phe), Leu6Met, Gly18Dhb (threonine dehydrated to dehydrobutyrine), Met21Tyr, and His31Lys—-and appears to represent an intermediate between the lactococcal nisin A and the streptococcal nisin U variant of nisin. Purified nisin H inhibits a wide range of Gram-positive bacteria, including staphylococci, streptococci, Listeria spp., bacilli, and enterococci. It represents the first example of a natural nisin variant produced by an intestinal isolate of streptococcal origin. PMID:25841003

  9. Assessment of bacterial contamination of lipstick using pyrosequencing.

    PubMed

    Lee, So Y; Lee, Si Y

    As soon as they are exposed to the environment, cosmetics become contaminated with microorganisms, and this contamination accumulates with increased use. In this study, we employed pyrosequencing to investigate the diversity of bacteria found on lipstick. Bacterial DNA was extracted from 20 lipstick samples and mixed in equal ratios for pyrosequencing analysis. As a result, 105 bacterial genera were detected, four of which ( Leifsonia , Methylobacterium , Streptococcus , and Haemophilus ) were predominant in 92% of the 19,863 total sequence reads. Potentially pathogenic genera such as Staphylococcus , Pseudomonas , Escherichia , Salmonella , Corynebacterium , Mycobacterium , and Neisseria accounted for 27.6% of the 105 genera. The most commonly identified oral bacteria belonged to the Streptococcus genus, although other oral genera such as Actinomyces , Fusobacterium , Porphyromonas , and Lactobacillus were also detected.

  10. A novel endolysin disrupts Streptococcus suis with high efficiency.

    PubMed

    Ji, Wenhui; Huang, Qingqing; Sun, Liang; Wang, Hengan; Yan, Yaxian; Sun, Jianhe

    2015-12-01

    Streptococcus suis serotype 2 (S. suis 2) is a zoonotic pathogen that exhibits high-level resistance and multi-drug resistance to classic antibiotics and causes serious human casualties and heavy economic losses in the swine industry worldwide. Therefore, alternative therapies or novel antibacterial agents need to be developed to combat this pathogen. A novel endolysin derived from the S. suis temperate phage phi7917, termed Ly7917, was identified, which had broad lytic activity against S. suis type 1, 2, 7 and 9. Ly7917 consisted of an N-terminal cysteine, histidine-dependent amidohydrolases/peptidase catalytic domain and C-terminal SH3b cell wall binding domain. The endolysin maintained activity at high pH and its catalytic activity could be improved by addition of 10 μM 1.5 mM Ca(2+). In animal studies, 90% of BALB/c mice challenged with typical virulent strain HA9801 of S. suis 2 were protected by Ly7917 treatment. The bacterial load in the blood of HA9801-challenged mice was efficiently reduced almost 50% by Ly7917 while that of penicillin-G-treated mice kept almost unchanged. Our data suggest that Ly7917 may be an alternative therapeutic agent for infections caused by virulent S. suis strains. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  11. Pyruvate oxidase of Streptococcus pneumoniae contributes to pneumolysin release.

    PubMed

    Bryant, Joseph C; Dabbs, Ridge C; Oswalt, Katie L; Brown, Lindsey R; Rosch, Jason W; Seo, Keun S; Donaldson, Janet R; McDaniel, Larry S; Thornton, Justin A

    2016-11-09

    Streptococcus pneumoniae is one of the leading causes of community acquired pneumonia and acute otitis media. Certain aspects of S. pneumoniae's virulence are dependent upon expression and release of the protein toxin pneumolysin (PLY) and upon the activity of the peroxide-producing enzyme, pyruvate oxidase (SpxB). We investigated the possible synergy of these two proteins and identified that release of PLY is enhanced by expression of SpxB prior to stationary phase growth. Mutants lacking the spxB gene were defective in PLY release and complementation of spxB restored PLY release. This was demonstrated by cytotoxic effects of sterile filtered supernatants upon epithelial cells and red blood cells. Additionally, peroxide production appeared to contribute to the mechanism of PLY release since a significant correlation was found between peroxide production and PLY release among a panel of clinical isolates. Exogenous addition of H 2 O 2 failed to induce PLY release and catalase supplementation prevented PLY release in some strains, indicating peroxide may exert its effect intracellularly or in a strain-dependent manner. SpxB expression did not trigger bacterial cell death or LytA-dependent autolysis, but did predispose cells to deoxycholate lysis. Here we demonstrate a novel link between spxB expression and PLY release. These findings link liberation of PLY toxin to oxygen availability and pneumococcal metabolism.

  12. Plant domestication and the assembly of bacterial and fungal communities associated with strains of the common sunflower, Helianthus annuus.

    PubMed

    Leff, Jonathan W; Lynch, Ryan C; Kane, Nolan C; Fierer, Noah

    2017-04-01

    Root and rhizosphere microbial communities can affect plant health, but it remains undetermined how plant domestication may influence these bacterial and fungal communities. We grew 33 sunflower (Helianthus annuus) strains (n = 5) that varied in their extent of domestication and assessed rhizosphere and root endosphere bacterial and fungal communities. We also assessed fungal communities in the sunflower seeds to investigate the degree to which root and rhizosphere communities were influenced by vertical transmission of the microbiome through seeds. Neither root nor rhizosphere bacterial communities were affected by the extent of sunflower domestication, but domestication did affect the composition of rhizosphere fungal communities. In particular, more modern sunflower strains had lower relative abundances of putative fungal pathogens. Seed-associated fungal communities strongly differed across strains, but several lines of evidence suggest that there is minimal vertical transmission of fungi from seeds to the adult plants. Our results indicate that plant-associated fungal communities are more strongly influenced by host genetic factors and plant breeding than bacterial communities, a finding that could influence strategies for optimizing microbial communities to improve crop yields. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  13. The PerR-Regulated P1B-4-Type ATPase (PmtA) Acts as a Ferrous Iron Efflux Pump in Streptococcus pyogenes.

    PubMed

    Turner, Andrew G; Ong, Cheryl-Lynn Y; Djoko, Karrera Y; West, Nicholas P; Davies, Mark R; McEwan, Alastair G; Walker, Mark J

    2017-06-01

    Streptococcus pyogenes (group A Streptococcus [GAS]) is an obligate human pathogen responsible for a broad spectrum of human disease. GAS has a requirement for metal homeostasis within the human host and, as such, tightly modulates metal uptake and efflux during infection. Metal acquisition systems are required to combat metal sequestration by the host, while metal efflux systems are essential to protect against metal overload poisoning. Here, we investigated the function of PmtA ( P erR-regulated m etal t ransporter A ), a P 1B-4 -type ATPase efflux pump, in invasive GAS M1T1 strain 5448. We reveal that PmtA functions as a ferrous iron [Fe(II)] efflux system. In the presence of high Fe(II) concentrations, the 5448Δ pmtA deletion mutant exhibited diminished growth and accumulated 5-fold-higher levels of intracellular Fe(II) than did the wild type and the complemented mutant. The 5448Δ pmtA deletion mutant also showed enhanced susceptibility to killing by the Fe-dependent antibiotic streptonigrin as well as increased sensitivity to hydrogen peroxide and superoxide. We suggest that the PerR-mediated control of Fe(II) efflux by PmtA is important for bacterial defense against oxidative stress. PmtA represents an exemplar for an Fe(II) efflux system in a host-adapted Gram-positive bacterial pathogen. Copyright © 2017 American Society for Microbiology.

  14. Acidic pH Strongly Enhances In Vitro Biofilm Formation by a Subset of Hypervirulent ST-17 Streptococcus agalactiae Strains

    PubMed Central

    D'Urzo, Nunzia; Pezzicoli, Alfredo; De Cesare, Virginia; Pinto, Vittoria; Margarit, Immaculada; Telford, John Laird; Maione, Domenico

    2014-01-01

    Streptococcus agalactiae, also known as group B Streptococcus (GBS), is a primary colonizer of the anogenital mucosa of up to 40% of healthy women and an important cause of invasive neonatal infections worldwide. Among the 10 known capsular serotypes, GBS type III accounts for 30 to 76% of the cases of neonatal meningitis. In recent years, the ability of GBS to form biofilm attracted attention for its possible role in fitness and virulence. Here, a new in vitro biofilm formation protocol was developed to guarantee more stringent conditions, to better discriminate between strong-, low-, and non-biofilm-forming strains, and to facilitate interpretation of data. This protocol was used to screen the biofilm-forming abilities of 366 GBS clinical isolates from pregnant women and from neonatal infections of different serotypes in relation to medium composition and pH. The results identified a subset of isolates of serotypes III and V that formed strong biofilms under acidic conditions. Importantly, the best biofilm formers belonged to serotype III hypervirulent clone ST-17. Moreover, the abilities of proteinase K to strongly inhibit biofilm formation and to disaggregate mature biofilms suggested that proteins play an essential role in promoting GBS biofilm initiation and contribute to biofilm structural stability. PMID:24487536

  15. Phenotypic and genotypic antimicrobial susceptibility pattern of Streptococcus spp. isolated from cases of clinical mastitis in dairy cattle in Poland.

    PubMed

    Kaczorek, E; Małaczewska, J; Wójcik, R; Rękawek, W; Siwicki, A K

    2017-08-01

    Mastitis of dairy cattle is one of the most frequently diagnosed diseases worldwide. The main etiological agents of mastitis are bacteria of the genus Streptococcus spp., in which several antibiotic resistance mechanisms have been identified. However, detailed studies addressing this problem have not been conducted in northeastern Poland. Therefore, the aim of our study was to analyze, on phenotypic and genotypic levels, the antibiotic resistance pattern of Streptococcus spp. isolated from clinical cases of mastitis from dairy cattle in this region of Poland. The research was conducted using 135 strains of Streptococcus (Streptococcus uberis, n = 53; Streptococcus dysgalactiae, n = 41; Streptococcus agalactiae, n = 27; other streptococci, n = 14). The investigation of the antimicrobial susceptibility to 8 active substances applied in therapy in the analyzed region, as well as a selected bacteriocin (nisin), was performed using the minimum inhibitory concentration method. The presence of selected resistance genes (n = 14) was determined via PCR. We also investigated the correlation between the presence of resistance genes and the antimicrobial susceptibility of the examined strains in vitro. The highest observed resistance of Streptococcus spp. was toward gentamicin, kanamycin, and tetracycline, whereas the highest susceptibility occurred toward penicillin, enrofloxacin, and marbofloxacin. Additionally, the tested bacteriocin showed high efficacy. The presence of 13 analyzed resistance genes was observed in the examined strains [gene mef(A) was not detected]. In most strains, at least one resistance gene, mainly responsible for resistance to tetracyclines [tet(M), tet(K), tet(L)], was observed. However, a relationship between the presence of a given resistance gene and antimicrobial susceptibility on the phenotypic level was not always observed. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  16. Patterns of isolation of common gram positive bacterial pathogens and their susceptibilities to antimicrobial agents in Jimma Hospital.

    PubMed

    Gebreselassie, Solomon

    2002-04-01

    Gram positive bacteria are frequently emerging as antibiotic resistant pathogens, causing serious infections than ever before in the ill and debilitated patients. The pattern of isolation and the antimicrobial susceptibilities of common Gram positive cocci including Staphylococcus aureus, coagulase negative staphylococcus (CoNS), Streptococcus pyogenes, Enterococcus species and Streptococcus pneumoniae was investigated between January 1997 and June 2000 in Jimma Hospital. Of the 500 specimens collected from children and adults, 116 (23.2%) consisted of one or more of the above organisms. The following strains: Staphylococcus aureus, 47 (40.5%), CoNS, 36 (31.0%), Streptococcus pneumoniae, 26 (22.4%) Streptococcus pyogenes, 5 (4.3%) and Streptococcus faecalis, 2(1.7%) were isolated from different specimens including pus, sputum, urine, stool, blood and oro/nasopharyngeal swabs of patients. The in vitro activities of 14 different antibiotics including penicillin G, ampicillin, cloxacillin, cephalothin, gentamicin, kanamycin, tetracycline, chloramphenicol, erythromycin, trimethoprim-sulfamethoxazole, streptomycin, methicillin, vancomycin and clindamycin was determined against the clinical bacterial isolates. The antimicrobial activities were evaluated by agar diffusion technique using Mueller-Hinton agar according to NCCLS recommendations. The majority of the pathogens, 59(50.9%) were recovered from upper respiratory tract infections and 17 (14.6%) from the lower respiratory tract. The resistance patterns of S. aureus, CoNS, S. pneumoniae and enterococci to penicillin was 91.5%, 94.4%, 7.7% and 100% respectively. Penicillin, ampicillin and cloxacillin showed low effects (< 60%) on both S. aureus and CoNS. Multi-drug resistance was observed in all the gram-positive isolates, especially higher in staphylococcus species. All isolates of S. aureus (100%) were susceptible to vancomycin, clindamycin and gentamicin. In order to reduce morbidity and mortality due to antibiotic

  17. Complement-mediated opsonization of invasive group A Streptococcus pyogenes strain AP53 is regulated by the bacterial two-component cluster of virulence responder/sensor (CovRS) system.

    PubMed

    Agrahari, Garima; Liang, Zhong; Mayfield, Jeffrey A; Balsara, Rashna D; Ploplis, Victoria A; Castellino, Francis J

    2013-09-20

    Group A Streptococcus pyogenes (GAS) strain AP53 is a primary isolate from a patient with necrotizing fasciitis. These AP53 cells contain an inactivating mutation in the sensor component of the cluster of virulence (cov) responder (R)/sensor (S) two-component gene regulatory system (covRS), which enhances the virulence of the primary strain, AP53/covR(+)S(-). However, specific mechanisms by which the covRS system regulates the survival of GAS in humans are incomplete. Here, we show a key role for covRS in the regulation of opsonophagocytosis of AP53 by human neutrophils. AP53/covR(+)S(-) cells displayed potent binding of host complement inhibitors of C3 convertase, viz. Factor H (FH) and C4-binding protein (C4BP), which concomitantly led to minimal C3b deposition on AP53 cells, further showing that these plasma protein inhibitors are active on GAS cells. This resulted in weak killing of the bacteria by human neutrophils and a corresponding high death rate of mice after injection of these cells. After targeted allelic alteration of covS(-) to wild-type covS (covS(+)), a dramatic loss of FH and C4BP binding to the AP53/covR(+)S(+) cells was observed. This resulted in elevated C3b deposition on AP53/covR(+)S(+) cells, a high level of opsonophagocytosis by human neutrophils, and a very low death rate of mice infected with AP53/covR(+)S(+). We show that covRS is a critical transcriptional regulator of genes directing AP53 killing by neutrophils and regulates the levels of the receptors for FH and C4BP, which we identify as the products of the fba and enn genes, respectively.

  18. Six-Month Multicenter Study on Invasive Infections Due to Streptococcus pyogenes and Streptococcus dysgalactiae subsp. equisimilis in Argentina

    PubMed Central

    Lopardo, Horacio A.; Vidal, Patricia; Sparo, Monica; Jeric, Paola; Centron, Daniela; Facklam, Richard R.; Paganini, Hugo; Pagniez, N. Gaston; Lovgren, Marguerite; Beall, Bernard

    2005-01-01

    During a 6-month period, 95 invasive infections due to Streptococcus pyogenes and group C or group G Streptococcus dysgalactiae subsp. equisimilis were recorded from 40 centers of 16 cities in Argentina. We describe here epidemiologic data available for 55 and 19 patients, respectively, associated with invasive infections due to S. pyogenes and S. dysgalactiae subsp. equisimilis. The associated isolates and 58 additional pharyngeal isolates were genotyped and subjected to serologic and/or antibiotic susceptibility testing. Group A streptococcal emm type distribution and strain association with toxic shock appeared to differ somewhat from results found within the United States; however, serologic characterization and sof sequence typing suggested that emm types found in both countries are reflective of shared clonal types. PMID:15695683

  19. Streptococcus pyogenes pharyngeal colonization resulting in recurrent, prepubertal vulvovaginitis.

    PubMed

    Hansen, Megan T; Sanchez, Veronica T; Eyster, Kathleen; Hansen, Keith A

    2007-10-01

    Recurrent, prepubertal, vaginal infections are an uncommon, troublesome problem for the patient and her family. Failure of initial therapy to alleviate vulvovaginitis may be related to vulvar skin disease, foreign body, sexual abuse, pinworms, reactions to medications, anatomic anomalies, or allergies. This report describes a case of recurrent Streptococcus pyogenes vulvovaginitis secondary to presumed vaginal re-inoculation from pharyngeal colonization. A 4-yr-old presented with one year of culture proven, recurrent Streptococcus pyogenes vulvovaginitis. Her symptoms repeatedly resolved with penicillin therapy, but continued to recur following cessation of antibiotic therapy. Evaluation included physical examination, trans-abdominal pelvic ultrasound, and vaginoscopy which all revealed normal upper and lower genital tract anatomy. Both the patient and her mother demonstrated culture proven, Group A Streptococcus pharyngeal colonization. Because of the possibility of repeated inoculations of the vaginal area from the colonized pharynx, they were both treated for decolonization with a regimen of amoxicillin and rifampin for ten days. Following this therapy there was resolution of vaginal symptoms with no further recurrence. Follow-up pharyngeal culture done on both mother and child on their last visit were negative for Group A Streptococcus. This case demonstrated an unusual specific cause of recurrent vaginitis resulting from presumed self or maternal re-inoculation with group A beta-hemolytic streptococcus from pharyngeal colonization. Group A beta-hemolytic streptococcus are consistently sensitive to penicillin, but up to 25% of acute pharyngitis cases treated with penicillin having continued asymptomatic, bacterial carriage within the nasopharynx. Thus initial alleviation of symptoms in a patient with Group A beta-hemolytic vulvovaginitis treated with penicillin, can have continued asymptomatic pharyngeal colonization which can result in recurrence of the

  20. Draft Genome Sequence of Two Strains of Xanthomonas arboricola Isolated from Prunus persica Which Are Dissimilar to Strains That Cause Bacterial Spot Disease on Prunus spp.

    PubMed Central

    Garita-Cambronero, Jerson; Palacio-Bielsa, Ana; López, María M.

    2016-01-01

    The draft genome sequences of two strains of Xanthomonas arboricola, isolated from asymptomatic peach trees in Spain, are reported here. These strains are avirulent and do not belong to the same phylogroup as X. arboricola pv. pruni, a causal agent of bacterial spot disease of stone fruits and almonds. PMID:27609931

  1. Antibacterial screening of traditional herbal plants and standard antibiotics against some human bacterial pathogens.

    PubMed

    Awan, Uzma Azeem; Andleeb, Saiqa; Kiyani, Ayesha; Zafar, Atiya; Shafique, Irsa; Riaz, Nazia; Azhar, Muhammad Tehseen; Uddin, Hafeez

    2013-11-01

    Chloroformic and isoamyl alcohol extracts of Cinnnamomum zylanicum, Cuminum cyminum, Curcuma long Linn, Trachyspermum ammi and selected standard antibiotics were investigated for their in vitro antibacterial activity against six human bacterial pathogens. The antibacterial activity was evaluated and based on the zone of inhibition using agar disc diffusion method. The tested bacterial strains were Streptococcus pyogenes, Staphylococcus epidermidis, Klebsiella pneumonia, Staphylococcus aurues, Serratia marcesnces, and Pseudomonas aeruginosa. Ciprofloxacin showed highly significant action against K. pneumonia and S. epidermidis while Ampicillin and Amoxicillin indicated lowest antibacterial activity against tested pathogens. Among the plants chloroform and isoamyl alcohol extracts of C. cyminum, S. aromaticum and C. long Linn had significant effect against P. aeruginosa, S. marcesnces and S. pyogenes. Comparison of antibacterial activity of medicinal herbs and standard antibiotics was also recorded via activity index. Used medicinal plants have various phytochemicals which reasonably justify their use as antibacterial agent.

  2. Mechanisms of group A Streptococcus resistance to reactive oxygen species

    PubMed Central

    Henningham, Anna; Döhrmann, Simon; Nizet, Victor; Cole, Jason N.

    2015-01-01

    Streptococcus pyogenes, also known as group A Streptococcus (GAS), is an exclusively human Gram-positive bacterial pathogen ranked among the ‘top 10’ causes of infection-related deaths worldwide. GAS commonly causes benign and self-limiting epithelial infections (pharyngitis and impetigo), and less frequent severe invasive diseases (bacteremia, toxic shock syndrome and necrotizing fasciitis). Annually, GAS causes 700 million infections, including 1.8 million invasive infections with a mortality rate of 25%. In order to establish an infection, GAS must counteract the oxidative stress conditions generated by the release of reactive oxygen species (ROS) at the infection site by host immune cells such as neutrophils and monocytes. ROS are the highly reactive and toxic byproducts of oxygen metabolism, including hydrogen peroxide (H2O2), superoxide anion (O2•−), hydroxyl radicals (OH•) and singlet oxygen (O2*), which can damage bacterial nucleic acids, proteins and cell membranes. This review summarizes the enzymatic and regulatory mechanisms utilized by GAS to thwart ROS and survive under conditions of oxidative stress. PMID:25670736

  3. Mechanisms of group A Streptococcus resistance to reactive oxygen species.

    PubMed

    Henningham, Anna; Döhrmann, Simon; Nizet, Victor; Cole, Jason N

    2015-07-01

    Streptococcus pyogenes, also known as group A Streptococcus (GAS), is an exclusively human Gram-positive bacterial pathogen ranked among the 'top 10' causes of infection-related deaths worldwide. GAS commonly causes benign and self-limiting epithelial infections (pharyngitis and impetigo), and less frequent severe invasive diseases (bacteremia, toxic shock syndrome and necrotizing fasciitis). Annually, GAS causes 700 million infections, including 1.8 million invasive infections with a mortality rate of 25%. In order to establish an infection, GAS must counteract the oxidative stress conditions generated by the release of reactive oxygen species (ROS) at the infection site by host immune cells such as neutrophils and monocytes. ROS are the highly reactive and toxic byproducts of oxygen metabolism, including hydrogen peroxide (H2O2), superoxide anion (O2•(-)), hydroxyl radicals (OH•) and singlet oxygen (O2*), which can damage bacterial nucleic acids, proteins and cell membranes. This review summarizes the enzymatic and regulatory mechanisms utilized by GAS to thwart ROS and survive under conditions of oxidative stress. © FEMS 2015.

  4. Concentration-Dependent Multiple Binding Sites on Saliva-Treated Hydroxyapatite for Streptococcus sanguis

    PubMed Central

    Gibbons, R. J.; Moreno, E. C.; Etherden, I.

    1983-01-01

    The influence of bacterial cell concentration on estimates of the number of binding sites and the affinity for the adsorption of a strain of Streptococcus sanguis to saliva-treated hydroxyapatite was determined, and the possible presence of multiple binding sites for this organism was tested. The range of concentrations of available bacteria varied from 4.7 × 106 to 5,960 × 106 cells per ml. The numbers of adsorbed bacteria increased over the entire range tested, but a suggestion of a break in an otherwise smooth adsorption isotherm was evident. Values for the number of binding sites and the affinity varied considerably depending upon the range of available bacterial concentrations used to estimate them; high correlation coefficients were obtained in all cases. The use of low bacterial cell concentrations yielded lower values for the number of sites and much higher values for the affinity constant than did the use of high bacterial cell concentrations. When data covering the entire range of bacterial concentrations were employed, values for the number of sites and the affinity were similar to those obtained by using only high bacterial cell concentrations. The simplest explanation for these results is that there are multiple binding sites for S. sanguis on saliva-treated hydroxyapatite surfaces. When present in low concentration, the streptococci evidently attach to more specific high-affinity sites which become saturated when higher bacterial concentrations are employed. The possibility of multiple binding sites was substantiated by comparing estimates of the adsorption parameters from a computer-simulated isotherm with those derived from the experimentally generated isotherm. A mathematical model describing bacterial adsorption to binary binding sites was further evidence for the existence of at least two classes of binding sites for S. sanguis. Far fewer streptococci adsorbed to experimental pellicles prepared from saliva depleted of bacterial aggregating

  5. Lineages of Streptococcus equi ssp. equi in the Irish equine industry

    PubMed Central

    2013-01-01

    Background Streptococcus equi ssp. equi is the causative agent of ‘Strangles’ in horses. This is a debilitating condition leading to economic loss, yard closures and cancellation of equestrian events. There are multiple genotypes of S. equi ssp. equi which can cause disease, but to date there has been no systematic study of strains which are prevalent in Ireland. This study identified and classified Streptococcus equi ssp. equi strains isolated from within the Irish equine industry. Results Two hundred veterinary isolates were subjected to SLST (single locus sequence typing) based on an internal sequence from the seM gene of Streptococcus equi ssp equi. Of the 171 samples which successfully gave an amplicon, 162 samples (137 Irish and 24 UK strains) gave robust DNA sequence information. Analysis of the sequences allowed division of the isolates into 19 groups, 13 of which contain at least 2 isolates and 6 groups containing single isolates. There were 19 positions where a DNA SNP (single nucleotide polymorphism) occurs, and one 3 bp insertion. All groups had multiple (2–8) SNPs. Of the SNPs 17 would result in an amino acid change in the encoded protein. Interestingly, the single isolate EI8, which has 6 SNPs, has the three base pair insertion which is not seen in any other isolate, this would result in the insertion of an Ile residue at position 62 in that protein sequence. Comparison of the relevant region in the determined sequences with the UK Streptococcus equi seM MLST database showed that Group B (15 isolates) and Group I (2 isolates), as well as the individual isolates EI3 and EI8, are unique to Ireland, and some groups are most likely of UK origin (Groups F and M), but many more probably passed back and forth between the two countries. Conclusions The strains occurring in Ireland are not clonal and there is a considerable degree of sequence variation seen in the seM gene. There are two major clades causing infection in Ireland and these strains are

  6. Epidemiological survey of Streptococcus mutans among Japanese children. Identification and serological typing of the isolated strains.

    PubMed

    Hamada, S; Masuda, N; Ooshima, T; Sobue, S; Kotani, S

    1976-02-01

    An epidemiological investigation was carried out to identify and determine the serotypes of Streptococcus mutans from carious lesions of young Japanese children. For this purpose, a direct fluorescent antibody technique was mainly used. Fluorescein isothiocyanate-conjugated antibodies were prepared for the five known serotypes of S. mutans. Cross reactions and nonspecific reactions were eliminated by adsorption, counterstaining, or DEAE-cellulosecolumn chromatography. Agar-gel immunodiffusion was used to distinguish between serotypes a and d. The epidemiological survey suggested that serotype c strains were most prevalent in dental plaques of Japanese children. The d and e serotypes were rare and serotypes a and b were not detected. It was also noted that more than one serotype of S. mutans could be found in the same locus of a carious lesion and that there might be no relationship between the degree of caries and the causative serotype(s) of S. mutans.

  7. Characterization of a Complement-Binding Protein, DRS, from Strains of Streptococcus pyogenes Containing the emm12 and emm55 Genes

    PubMed Central

    Binks, Michael; Sriprakash, K. S.

    2004-01-01

    An extracellular protein of Streptococcus pyogenes, streptococcal inhibitor of complement (SIC), and its variant, called DRS (distantly related to SIC), are expressed by some S. pyogenes strains. SIC from type 1 (M1) isolates of S. pyogenes interferes with complement-mediated cell lysis, reportedly via its interaction with complement proteins. In this study we demonstrate that S. pyogenes strains carrying emm12 and emm55 (the genes for the M12 and M55 proteins, respectively) express and secrete DRS. This protein, like SIC, binds to the C6 and C7 complement proteins, and competition enzyme-linked immunosorbent assay experiments demonstrate that DRS competes with SIC for C6 and C7 binding. Similarly, SIC competes with DRS for binding to the complement proteins. Despite this, the recombinant DRS preparation showed no significant effect on complement function, as determined by lysis of sensitized sheep erythrocytes. Furthermore, the presence of DRS is not inhibitory to SIC activity. PMID:15213143

  8. Characterization of a complement-binding protein, DRS, from strains of Streptococcus pyogenes containing the emm12 and emm55 genes.

    PubMed

    Binks, Michael; Sriprakash, K S

    2004-07-01

    An extracellular protein of Streptococcus pyogenes, streptococcal inhibitor of complement (SIC), and its variant, called DRS (distantly related to SIC), are expressed by some S. pyogenes strains. SIC from type 1 (M1) isolates of S. pyogenes interferes with complement-mediated cell lysis, reportedly via its interaction with complement proteins. In this study we demonstrate that S. pyogenes strains carrying emm12 and emm55 (the genes for the M12 and M55 proteins, respectively) express and secrete DRS. This protein, like SIC, binds to the C6 and C7 complement proteins, and competition enzyme-linked immunosorbent assay experiments demonstrate that DRS competes with SIC for C6 and C7 binding. Similarly, SIC competes with DRS for binding to the complement proteins. Despite this, the recombinant DRS preparation showed no significant effect on complement function, as determined by lysis of sensitized sheep erythrocytes. Furthermore, the presence of DRS is not inhibitory to SIC activity.

  9. Multilocus analysis of extracellular putative virulence proteins made by group A Streptococcus: population genetics, human serologic response, and gene transcription.

    PubMed

    Reid, S D; Green, N M; Buss, J K; Lei, B; Musser, J M

    2001-06-19

    Species of pathogenic microbes are composed of an array of evolutionarily distinct chromosomal genotypes characterized by diversity in gene content and sequence (allelic variation). The occurrence of substantial genetic diversity has hindered progress in developing a comprehensive understanding of the molecular basis of virulence and new therapeutics such as vaccines. To provide new information that bears on these issues, 11 genes encoding extracellular proteins in the human bacterial pathogen group A Streptococcus identified by analysis of four genomes were studied. Eight of the 11 genes encode proteins with a LPXTG(L) motif that covalently links Gram-positive virulence factors to the bacterial cell surface. Sequence analysis of the 11 genes in 37 geographically and phylogenetically diverse group A Streptococcus strains cultured from patients with different infection types found that recent horizontal gene transfer has contributed substantially to chromosomal diversity. Regions of the inferred proteins likely to interact with the host were identified by molecular population genetic analysis, and Western immunoblot analysis with sera from infected patients confirmed that they were antigenic. Real-time reverse transcriptase-PCR (TaqMan) assays found that transcription of six of the 11 genes was substantially up-regulated in the stationary phase. In addition, transcription of many genes was influenced by the covR and mga trans-acting gene regulatory loci. Multilocus investigation of putative virulence genes by the integrated approach described herein provides an important strategy to aid microbial pathogenesis research and rapidly identify new targets for therapeutics research.

  10. Pathogenicity of Human ST23 Streptococcus agalactiae to Fish and Genomic Comparison of Pathogenic and Non-pathogenic Isolates.

    PubMed

    Wang, Rui; Li, Liping; Huang, Yin; Huang, Ting; Tang, Jiayou; Xie, Ting; Lei, Aiying; Luo, Fuguang; Li, Jian; Huang, Yan; Shi, Yunliang; Wang, Dongying; Chen, Ming; Mi, Qiang; Huang, Weiyi

    2017-01-01

    Streptococcus agalactiae , or Group B Streptococcus (GBS), is a major pathogen causing neonatal sepsis and meningitis, bovine mastitis, and fish meningoencephalitis. CC23, including its namesake ST23, is not only the predominant GBS strain derived from human and cattle, but also can infect a variety of homeothermic and poikilothermic species. However, it has never been characterized in fish. This study aimed to determine the pathogenicity of ST23 GBS to fish and explore the mechanisms causing the difference in the pathogenicity of ST23 GBS based on the genome analysis. Infection of tilapia with 10 human-derived ST23 GBS isolates caused tissue damage and the distribution of pathogens within tissues. The mortality rate of infection was ranged from 76 to 100%, and it was shown that the mortality rate caused by only three human isolates had statistically significant difference compared with fish-derived ST7 strain ( P < 0.05), whereas the mortality caused by other seven human isolates did not show significant difference compared with fish-derived ST7 strain. The genome comparison and prophage analysis showed that the major genome difference between virulent and non-virulent ST23 GBS was attributed to the different prophage sequences. The prophage in the P1 region contained about 43% GC and encoded 28-39 proteins, which can mediate the acquisition of YafQ/DinJ structure for GBS by phage recombination. YafQ/DinJ belongs to one of the bacterial toxin-antitoxin (TA) systems and allows cells to cope with stress. The ST23 GBS strains carrying this prophage were not pathogenic to tilapia, but the strains without the prophage or carrying the pophage that had gene mutation or deletion, especially the deletion of YafQ/DinJ structure, were highly pathogenic to tilapia. In conclusion, human ST23 GBS is highly pathogenic to fish, which may be related to the phage recombination.

  11. Pathogenicity of Human ST23 Streptococcus agalactiae to Fish and Genomic Comparison of Pathogenic and Non-pathogenic Isolates

    PubMed Central

    Wang, Rui; Li, Liping; Huang, Yin; Huang, Ting; Tang, Jiayou; Xie, Ting; Lei, Aiying; Luo, Fuguang; Li, Jian; Huang, Yan; Shi, Yunliang; Wang, Dongying; Chen, Ming; Mi, Qiang; Huang, Weiyi

    2017-01-01

    Streptococcus agalactiae, or Group B Streptococcus (GBS), is a major pathogen causing neonatal sepsis and meningitis, bovine mastitis, and fish meningoencephalitis. CC23, including its namesake ST23, is not only the predominant GBS strain derived from human and cattle, but also can infect a variety of homeothermic and poikilothermic species. However, it has never been characterized in fish. This study aimed to determine the pathogenicity of ST23 GBS to fish and explore the mechanisms causing the difference in the pathogenicity of ST23 GBS based on the genome analysis. Infection of tilapia with 10 human-derived ST23 GBS isolates caused tissue damage and the distribution of pathogens within tissues. The mortality rate of infection was ranged from 76 to 100%, and it was shown that the mortality rate caused by only three human isolates had statistically significant difference compared with fish-derived ST7 strain (P < 0.05), whereas the mortality caused by other seven human isolates did not show significant difference compared with fish-derived ST7 strain. The genome comparison and prophage analysis showed that the major genome difference between virulent and non-virulent ST23 GBS was attributed to the different prophage sequences. The prophage in the P1 region contained about 43% GC and encoded 28–39 proteins, which can mediate the acquisition of YafQ/DinJ structure for GBS by phage recombination. YafQ/DinJ belongs to one of the bacterial toxin–antitoxin (TA) systems and allows cells to cope with stress. The ST23 GBS strains carrying this prophage were not pathogenic to tilapia, but the strains without the prophage or carrying the pophage that had gene mutation or deletion, especially the deletion of YafQ/DinJ structure, were highly pathogenic to tilapia. In conclusion, human ST23 GBS is highly pathogenic to fish, which may be related to the phage recombination. PMID:29056932

  12. A Thioesterase Bypasses the Requirement for Exogenous Fatty Acids in the plsX Deletion of Streptococcus pneumoniae

    PubMed Central

    Parsons, Joshua B.; Frank, Matthew W.; Eleveld, Marc J.; Schalkwijk, Joost; Broussard, Tyler C.; de Jonge, Marien I.; Rock, Charles O.

    2015-01-01

    Summary PlsX is an acyl-acyl carrier protein (ACP):phosphate transacylase that interconverts the two acyl donors in Gram-positive bacterial phospholipid synthesis. The deletion of plsX in Staphylococcus aureus results in a requirement for both exogenous fatty acids and de novo type II fatty acid biosynthesis. Deletion of plsX (SP0037) in Streptococcus pneumoniae did not result in an auxotrophic phenotype. The ΔplsX S. pneumoniae strain was refractory to myristic acid-dependent growth arrest, and unlike the wild-type strain, was susceptible to fatty acid synthesis inhibitors in the presence of exogenous oleate. The ΔplsX strain contained longer-chain saturated fatty acids imparting a distinctly altered phospholipid molecular species profile. An elevated pool of 18- and 20-carbon saturated fatty acids was detected in the ΔplsX strain. A S. pneumoniae thioesterase (TesS, SP1408) hydrolyzed acyl-ACP in vitro, and the ΔtesS ΔplsX double knockout strain was a fatty acid auxotroph. Thus, the TesS thioesterase hydrolyzed the accumulating acyl-ACP in the ΔplsX strain to liberate fatty acids that were activated by fatty acid kinase to bypass a requirement for extracellular fatty acid. This work identifies tesS as the gene responsible for the difference in exogenous fatty acid growth requirement of the ΔplsX strains of S. aureus and S. pneumoniae. PMID:25534847

  13. Alanine racemase is essential for the growth and interspecies competitiveness of Streptococcus mutans.

    PubMed

    Wei, Yuan; Qiu, Wei; Zhou, Xue-Dong; Zheng, Xin; Zhang, Ke-Ke; Wang, Shi-Da; Li, Yu-Qing; Cheng, Lei; Li, Ji-Yao; Xu, Xin; Li, Ming-Yun

    2016-12-16

    D-alanine (D-Ala) is an essential amino acid that has a key role in bacterial cell wall synthesis. Alanine racemase (Alr) is a unique enzyme that interconverts L-alanine and D-alanine in most bacteria, making this enzyme a potential target for antimicrobial drug development. Streptococcus mutans is a major causative factor of dental caries. The factors involved in the survival, virulence and interspecies interactions of S. mutans could be exploited as potential targets for caries control. The current study aimed to investigate the physiological role of Alr in S. mutans. We constructed alr mutant strain of S. mutans and evaluated its phenotypic traits and interspecies competitiveness compared with the wild-type strain. We found that alr deletion was lethal to S. mutans. A minimal supplement of D-Ala (150 μg·mL -1 ) was required for the optimal growth of the alr mutant. The depletion of D-alanine in the growth medium resulted in cell wall perforation and cell lysis in the alr mutant strain. We also determined the compromised competitiveness of the alr mutant strain relative to the wild-type S. mutans against other oral streptococci (S. sanguinis or S. gordonii), demonstrated using either conditioned medium assays or dual-species fluorescent in situ hybridization analysis. Given the importance and necessity of alr to the growth and competitiveness of S. mutans, Alr may represent a promising target to modulate the cariogenicity of oral biofilms and to benefit the management of dental caries.

  14. [Microbiology of bronchoalveolar lavage in infants with bacterial community-acquired pneumonia with poor outcome].

    PubMed

    García-Elorriaga, Guadalupe; Palma-Alaniz, Laura; García-Bolaños, Carlos; Ruelas-Vargas, Consuelo; Méndez-Tovar, Socorro; Del Rey-Pineda, Guillermo

    Community-acquired pneumonia (CAP) is one of the most common infectious causes of morbidity and mortality in children <5 years of age. The aim of the study was to clarify the bacterial etiologic diagnosis in infants with CAP. A prospective, cross-sectional and descriptive study in patients 6 months to 2 years 11 months of age with CAP with poor outcome was conducted. Patients were admitted to the Pediatric Pneumology Service and underwent bronchoscopy with bronchoalveolar lavage (BAL), taking appropriate measures during the procedure to limit the risk of contamination. Aerobic bacteria isolated were Moraxella sp. 23%, Streptococcus mitis 23%, Streptococcus pneumoniae 18%, Haemophilus influenzae 12%, Streptococcus oralis 12%, and Streptococcus salivarius 12%. In contrast to other reports, we found Moraxella sp. to be a major bacterial pathogen, possibly because of improved detection with bronchoscopy plus BAL. Copyright © 2015 Hospital Infantil de México Federico Gómez. Publicado por Masson Doyma México S.A. All rights reserved.

  15. Streptococcus pyogenes strains in Sao Paulo, Brazil: molecular characterization as a basis for StreptInCor coverage capacity analysis.

    PubMed

    Freschi de Barros, Samar; De Amicis, Karine Marafigo; Alencar, Raquel; Smeesters, Pierre Robert; Trunkel, Ariel; Postól, Edilberto; Almeida Junior, João Nóbrega; Rossi, Flavia; Pignatari, Antonio Carlos Campos; Kalil, Jorge; Guilherme, Luiza

    2015-08-05

    Several human diseases are caused by Streptococcus pyogenes, ranging from common infections to autoimmunity. Characterization of the most prevalent strains worldwide is a useful tool for evaluating the coverage capacity of vaccines under development. In this study, a collection of S. pyogenes strains from Sao Paulo, Brazil, was analyzed to describe the diversity of strains and assess the vaccine coverage capacity of StreptInCor. Molecular epidemiology of S. pyogenes strains was performed by emm-genotyping the 229 isolates from different clinical sites, and PCR was used for superantigen profile analysis. The emm-pattern and tissue tropism for these M types were also predicted and compared based on the emm-cluster classification. The strains were fit into 12 different emm-clusters, revealing a diverse phylogenetic origin and, consequently, different mechanisms of infection and escape of the host immune system. Forty-eight emm-types were distinguished in 229 samples, and the 10 most frequently observed types accounted for 69 % of all isolates, indicating a diverse profile of circulating strains comparable to other countries under development. A similar proportion of E and A-C emm-patterns were observed, whereas pattern D was less frequent, indicating that the strains of this collection primarily had a tissue tropism for the throat. In silico analysis of the coverage capacity of StreptInCor, an M protein-conserved regionally based vaccine candidate developed by our group, had a range of 94.5 % to 59.7 %, with a mean of 71.0 % identity between the vaccine antigen and the predicted amino acid sequence of the emm-types included here. This is the first report of S. pyogenes strain characterization in Sao Paulo, one of the largest cities in the world; thus, the strain panel described here is a representative sample for vaccine coverage capacity analysis. Our results enabled evaluation of StreptInCor candidate vaccine coverage capacity against diverse M-types, indicating

  16. Streptococcus thermophilus APC151 Strain Is Suitable for the Manufacture of Naturally GABA-Enriched Bioactive Yogurt

    PubMed Central

    Linares, Daniel M.; O’Callaghan, Tom F.; O’Connor, Paula M.; Ross, R. P.; Stanton, Catherine

    2016-01-01

    Consumer interest in health-promoting food products is a major driving force for the increasing global demand of functional (probiotic) dairy foods. Yogurt is considered the ideal medium for delivery of beneficial functional ingredients. Gamma-amino-butyric acid has potential as a bioactive ingredient in functional foods due to its health-promoting properties as an anti-stress, anti-hypertensive, and anti-diabetic agent. Here, we report the use of a novel Streptococcus thermophilus strain, isolated from the digestive tract of fish, for production of yogurt naturally enriched with 2 mg/ml of gamma-amino-butyric acid (200 mg in a standard yogurt volume of 100 ml), a dose in the same range as that provided by some commercially available gamma-amino-butyric acid supplements. The biotechnological suitability of this strain for industrial production of yogurt was demonstrated by comparison with the reference yogurt inoculated with the commercial CH1 starter (Chr. Hansen) widely used in the dairy industry. Both yogurts showed comparable pH curves [ΔpH/Δt = 0.31-0.33 h-1], viscosity [0.49 Pa-s], water holding capacity [72–73%], and chemical composition [moisture (87–88%), protein (5.05–5.65%), fat (0.12–0.15%), sugar (4.8–5.8%), and ash (0.74–1.2%)]. Gamma-amino-butyric acid was not detected in the control yogurt. In conclusion, the S. thermophilus APC151 strain reported here provides a natural means for fortification of yogurt with gamma-amino-butyric acid. PMID:27920772

  17. Analysis of the bacterial strains using Biolog plates in the contaminated soil from Riyadh community.

    PubMed

    Al-Dhabaan, Fahad Abdullah M; Bakhali, Ali Hassan

    2017-05-01

    Routine manufacture, detonation and disposal of explosives in land and groundwater have resulted in complete pollution. Explosives are xenobiotic compounds, being toxic to biological systems, and their recalcitrance leads to persistence in the environment. The methods currently used for the remediation of explosive contaminated sites are expensive and can result in the formation of toxic products. The present study aimed to investigate the bacterial strains using the Biolog plates in the soil from the Riyadh community. The microbial strains were isolated using the spread plate technique and were identified using the Biolog method. In this study we have analyzed from bacterial families of soil samples, obtained from the different sites in 5 regions at Explosive Institute. Our results conclude that Biolog MicroPlates were developed for the rapid identification of bacterial isolates by sole-carbon source utilization and can be used for the identification of bacteria. Out of five communities, only four families of bacteria indicate that the microbial community lacks significant diversity in region one from the Riyadh community in Saudi Arabia. More studies are needed to be carried out in different regions to validate our results.

  18. Current Taxonomical Situation of Streptococcus suis

    PubMed Central

    Okura, Masatoshi; Osaki, Makoto; Nomoto, Ryohei; Arai, Sakura; Osawa, Ro; Sekizaki, Tsutomu; Takamatsu, Daisuke

    2016-01-01

    Streptococcus suis, a major porcine pathogen and an important zoonotic agent, is considered to be composed of phenotypically and genetically diverse strains. However, recent studies reported several “S. suis-like strains” that were identified as S. suis by commonly used methods for the identification of this bacterium, but were regarded as distinct species from S. suis according to the standards of several taxonomic analyses. Furthermore, it has been suggested that some S. suis-like strains can be assigned to several novel species. In this review, we discuss the current taxonomical situation of S. suis with a focus on (1) the classification history of the taxon of S. suis; (2) S. suis-like strains revealed by taxonomic analyses; (3) methods for detecting and identifying this species, including a novel method that can distinguish S. suis isolates from S. suis-like strains; and (4) current topics on the reclassification of S. suis-like strains. PMID:27348006

  19. [Septic arthritis caused by Streptococcus suis].

    PubMed

    Hedegaard, Sofie Sommer; Zaccarin, Matthias; Lindberg, Jens

    2013-05-27

    Streptococcus suis is a global endemic swine pathogen. S. suis can cause meningitis, endocarditis and severe sepsis in humans, who are exposed to swine. Human infection with S. suis was first reported in 1968, since then, human infections have been sporadic although an outbreak in China counted 215 cases. In a rare case of disseminated arthritis we found that correct clinical diagnosis was difficult due to unspecific symptomatology and slow growing bacterial culture. However, conducting thorough examinations is crucial, and if treated correctly the outcome is favourable.

  20. Comparisons of Internal Behavior after Exposure to Flavobacterium psychrophilum between Two Ayu (Plecoglossus altivelis altivelis) Strains Showing Different Cumulative Mortality to Bacterial Cold Water Disease

    PubMed Central

    KAGEYAMA, Tetsushi; KUWADA, Tomonori; OHARA, Kenichi; NOUNO, Aya; UMINO, Tetsuya; FURUSAWA, Shuichi

    2013-01-01

    ABSTRACT Bacterial cold water disease (BCWD) in ayu (Plecoglossus altivelis altivelis) has a serious impact on aquaculture and fisheries. There is known to be a significant difference among ayu strains with regard to mortality caused by BCWD. In this study, the immune response of different ayu strains against Flavobacterium psychrophilum infection was observed. One strain was resistant to infection by F. psychrophilum, and the other was susceptible to infection by the same bacteria. The number of bacteria in the body was observed in each ayu strain, and the change in bacterial counts was similar. However, there was a significant difference in bacterial count in the spleen between the two strains on days 6, 9, 12 and 15 after exposure. To observe the immune response against F. psychrophilum, agglutination assay using serum was performed. An agglutination reaction in the resistant ayu strain was observed in 4 out of 6 ayu on day 6 after exposure, while no reactions in the susceptible ayu strain were observed in any sampled fish until day 12. However, some reactions in the susceptible ayu strain were observed in surviving ayu. These results indicate that there is a correlation between the presence of bacterial multiplication and agglutination reaction against F. psychrophilum. PMID:23902927

  1. Simultaneous Detection of 13 Key Bacterial Respiratory Pathogens by Combination of Multiplex PCR and Capillary Electrophoresis.

    PubMed

    Jiang, Lu Xi; Ren, Hong Yu; Zhou, Hai Jian; Zhao, Si Hong; Hou, Bo Yan; Yan, Jian Ping; Qin, Tian; Chen, Yu

    2017-08-01

    Lower respiratory tract infections continue to pose a significant threat to human health. It is important to accurately and rapidly detect respiratory bacteria. To compensate for the limits of current respiratory bacteria detection methods, we developed a combination of multiplex polymerase chain reaction (PCR) and capillary electrophoresis (MPCE) assay to detect thirteen bacterial pathogens responsible for lower respiratory tract infections, including Streptococcus pneumoniae, Haemophilus influenzae, Moraxella catarrhalis, Pseudomonas aeruginosa, Klebsiella pneumoniae, Escherichia coli, Staphylococcus aureus, Mycoplasma pneumoniae, Legionella spp., Bordetella pertussis, Mycobacterium tuberculosis complex, Corynebacterium diphtheriae, and Streptococcus pyogenes. Three multiplex PCR reactions were built, and the products were analyzed by capillary electrophoresis using the high-throughput DNA analyzer. The specificity of the MPCE assay was examined and the detection limit was evaluated using DNA samples from each bacterial strain and the simulative samples of each strain. This assay was further evaluated using 152 clinical specimens and compared with real-time PCR reactions. For this assay, three nested-multiplex-PCRs were used to detect these clinical specimens. The detection limits of the MPCE assay for the 13 pathogens were very low and ranged from 10-7 to 10-2 ng/μL. Furthermore, analysis of the 152 clinical specimens yielded a specificity ranging from 96.5%-100.0%, and a sensitivity of 100.0% for the 13 pathogens. This study revealed that the MPCE assay is a rapid, reliable, and high-throughput method with high specificity and sensitivity. This assay has great potential in the molecular epidemiological survey of respiratory pathogens. Copyright © 2017 The Editorial Board of Biomedical and Environmental Sciences. Published by China CDC. All rights reserved.

  2. Streptococcus suis meningoencephalitis with seizure from raw pork ingestion: a case report.

    PubMed

    Wongjittraporn, Suwarat; Teerasukjinda, Ornusa; Yee, Melvin; Chung, Heath H

    2014-09-01

    Streptococcus suis meningoencephalitis is a rare but increasingly important condition. Good history taking will give clues to the diagnosis. This is the fourth case report in the United States. A 52-year-old Filipino man who recently returned from a trip to the Philippines was admitted with classic symptoms of bacterial meningitis. His cerebrospinal fluid culture grew Streptococcus suis. His clinical course was complicated by seizures, hearing loss, and permanent tinnitus. Clinicians should be aware of this emerging disease especially in patients with recent travel history to endemic areas. Early recognition and appropriate management could potentially prevent complications.

  3. Steroids in bacterial meningitis: yes.

    PubMed

    Benninger, Felix; Steiner, Israel

    2013-02-01

    Bacterial meningitis is an infectious condition associated with severe morbidity and mortality, even with rapid diagnosis and appropriate antibiotic therapy. Despite decrease in the rate of bacterial meningitis brought about by vaccination programs against Haemophilus influenzae type-B and Streptococcus pneumonia, the incidence of meningitis is still unacceptably high and acute treatment remains the mainstay of therapy. The infection is accompanied by intense inflammatory response, which may carry deleterious effects upon the tissue. This led to the possibility of adjuvant corticosteroid therapy, as an anti-inflammatory agent, in bacterial meningitis. The debate focuses on the rational and evidence supporting and refuting such an approach.

  4. Molecular analysis of the genes involved in the biosynthesis of serotype specific polysaccharide in the novel serotype k strains of Streptococcus mutans.

    PubMed

    Nomura, R; Nakano, K; Ooshima, T

    2005-10-01

    We previously reported the new serotype k of Streptococcus mutans, which, compared to serotypes c, e, and f, features a drastic reduction in the length of the glucose side chain linked to the rhamnose backbone of the serotype specific polysaccharide. The 5' region of the rgpF gene of serotype k strains contains a distinctive nucleotide sequence, which suggests that an alteration of the rgpF gene in serotype k strains may explain the shortened glucose side chain. However, in the present study, expression of the rgpF gene of MT8148 (serotype c) in serotype k isolates was not found to lead to serotype conversion. Furthermore, mRNA expression of rgpE, known to be associated with glucose side chain formation, was not detected in any of the tested serotype k isolates with an RT-PCR method. The nucleotide alignment of all genes known to be involved in the biosynthesis of serotype specific polysaccharide in serotype k strains was shown to be quite similar to that of serotype c strains, as compared to serotype e and f strains, especially in the region downstream of rgpF. Our results indicate that the common characteristics of serotype k isolates may be caused by a lack of expression of the gene involved in glucose side chain formation.

  5. Genetic basis of coaggregation receptor polysaccharide biosynthesis in Streptococcus sanguinis and related species.

    PubMed

    Yang, J; Yoshida, Y; Cisar, J O

    2014-02-01

    Interbacterial adhesion between streptococci and actinomyces promotes early dental plaque biofilm development. Recognition of coaggregation receptor polysaccharides (RPS) on strains of Streptococcus sanguinis, Streptococcus gordonii and Streptococcus oralis by Actinomyces spp. type 2 fimbriae is the principal mechanism of these interactions. Previous studies of genetic loci for synthesis of RPS (rps) and RPS precursors (rml, galE1 and galE2) in S. gordonii 38 and S. oralis 34 revealed differences between these strains. To determine whether these differences are strain-specific or species-specific, we identified and compared loci for polysaccharide biosynthesis in additional strains of these species and in several strains of the previously unstudied species, S. sanguinis. Genes for synthesis of RPS precursors distinguished the rps loci of different streptococci. Hence, rml genes for synthesis of TDP-L-Rha were in rps loci of S. oralis strains but at other loci in S. gordonii and S. sanguinis. Genes for two distinct galactose epimerases were also distributed differently. Hence, galE1 for epimerization of UDP-Glc and UDP-Gal was in galactose operons of S. gordonii and S. sanguinis strains but surprisingly, this gene was not present in S. oralis. Moreover, galE2 for epimerization of both UDP-Glc and UDP-Gal and UDP-GlcNAc and UDP-GalNAc was at a different locus in each species, including rps operons of S. sanguinis. The findings provide insight into cell surface properties that distinguish different RPS-producing streptococci and open an approach for identifying these bacteria based on the arrangement of genes for synthesis of polysaccharide precursors. Published 2013. This article is a U.S. Government work and is in the public domain in the USA.

  6. Inactivation of the CovR/S Virulence Regulator Impairs Infection in an Improved Murine Model of Streptococcus pyogenes Naso-Pharyngeal Infection

    PubMed Central

    Alam, Faraz M.; Turner, Claire E.; Smith, Ken; Wiles, Siouxsie; Sriskandan, Shiranee

    2013-01-01

    Streptococcus pyogenes is a leading cause of pharyngeal infection, with an estimated 616 million cases per year. The human nasopharynx represents the major reservoir for all S. pyogenes infection, including severe invasive disease. To investigate bacterial and host factors that influence S. pyogenes infection, we have devised an improved murine model of nasopharyngeal colonization, with an optimized dosing volume to avoid fulminant infections and a sensitive host strain. In addition we have utilized a refined technique for longitudinal monitoring of bacterial burden that is non-invasive thereby reducing the numbers of animals required. The model was used to demonstrate that the two component regulatory system, CovR/S, is required for optimum infection and transmission from the nasopharynx. There is a fitness cost conferred by covR/S mutation that is specific to the nasopharynx. This may explain why S. pyogenes with altered covR/S have not become prevalent in community infections despite possessing a selective advantage in invasive infection. PMID:23637876

  7. Streptococcus faecium M 74 in control of diarrhoea induced by a human enterotoxigenic Escherichia coli strain in an infant rabbit model.

    PubMed

    Wadström, T

    1984-08-01

    Streptococcus faecium strain M 74 was evaluated as a prophylacticum for enterotoxigenic Escherichia coli (ETEC) diarrhoea with human isolates of E. coli with CFA/I and CFA/II surface fimbrial haemagglutinins (adhesins) in a rabbit model. Young rabbits (3 to 4 days old) were given S. faecium organisms (5 X 10(9)) 15 min before (group A), 6 h before (group B) and 12 h after (group C) challenge with ETEC organisms. Only 4 out of 26 rabbits in group A, 6 out of 21 in group B and 7 out of 23 in group C developed diarrhoea. In conclusion, this S. faecium strain M 74 seems efficiently to protect animals from ETEC diarrhoea when given as a prophylactic agent at a high dose. This animal model seems useful for comparative studies on new preventive methods for ETEC diarrhoea such as testing probiotics and antiadhesive drugs.

  8. Detection of Streptococcus pyogenes using rapid visual molecular assay.

    PubMed

    Zhao, Xiangna; He, Xiaoming; Li, Huan; Zhao, Jiangtao; Huang, Simo; Liu, Wei; Wei, Xiao; Ding, Yiwei; Wang, Zhaoyan; Zou, Dayang; Wang, Xuesong; Dong, Derong; Yang, Zhan; Yan, Xiabei; Huang, Liuyu; Du, Shuangkui; Yuan, Jing

    2015-09-01

    Streptococcus pyogenes is an increasingly important pathogen in many parts of the world. Rapid and accurate detection of S. pyogenes aids in the control of the infection. In this study, a loop-mediated isothermal amplification (LAMP) assay was developed and validated for the specific detection of S. pyogenes. The assay incorporates two methods: a chromogenic analysis using a calcein/Mn(2+) complex and real-time turbidity monitoring to assess the reaction. Both methods detected the target DNA within 60 min under 64°C isothermal conditions. The assay used specifically designed primers to target spy1258, and correctly identified 111 strains of S. pyogenes and 32 non-S. pyogenes strains, including other species of the genus Streptococcus. Tests using reference strains showed that the LAMP assay was highly specific. The sensitivity of the assay, with a detection limit of 1.49 pg DNA, was 10-fold greater than that of PCR. The LAMP assay established in this study is simple, fast and sensitive, and does not rely upon any special equipment; thus, it could be employed in clinical diagnosis. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  9. Bacterial adherence to graft tissues in static and flow conditions.

    PubMed

    Veloso, Tiago Rafael; Claes, Jorien; Van Kerckhoven, Soetkin; Ditkowski, Bartosz; Hurtado-Aguilar, Luis G; Jockenhoevel, Stefan; Mela, Petra; Jashari, Ramadan; Gewillig, Marc; Hoylaerts, Marc F; Meyns, Bart; Heying, Ruth

    2018-01-01

    Various conduits and stent-mounted valves are used as pulmonary valve graft tissues for right ventricular outflow tract reconstruction with good hemodynamic results. Valve replacement carries an increased risk of infective endocarditis (IE). Recent observations have increased awareness of the risk of IE after transcatheter implantation of a stent-mounted bovine jugular vein valve. This study focused on the susceptibility of graft tissue surfaces to bacterial adherence as a potential risk factor for subsequent IE. Adhesion of Staphylococcus aureus, Staphylococcus epidermidis, and Streptococcus sanguinis to bovine pericardium (BP) patch, bovine jugular vein (BJV), and cryopreserved homograft (CH) tissues was quantified under static and shear stress conditions. Microscopic analysis and histology were performed to evaluate bacterial adhesion to matrix components. In general, similar bacteria numbers were recovered from CH and BJV tissue surfaces for all strains, especially in flow conditions. Static bacterial adhesion to the CH wall was lower for S sanguinis adhesion (P < .05 vs BP patch). Adhesion to the BJV wall, CH wall, and leaflet was decreased for S epidermidis in static conditions (P < .05 vs BP patch). Bacterial adhesion under shear stress indicated similar bacterial adhesion to all tissues, except for lower adhesion to the BJV wall after S sanguinis incubation. Microscopic analysis showed the importance of matrix component exposure for bacterial adherence to CH. Our data provide evidence that the surface composition of BJV and CH tissues themselves, bacterial surface proteins, and shear forces per se are not the prime determinants of bacterial adherence. Copyright © 2017 The American Association for Thoracic Surgery. Published by Elsevier Inc. All rights reserved.

  10. Nisin H Is a New Nisin Variant Produced by the Gut-Derived Strain Streptococcus hyointestinalis DPC6484.

    PubMed

    O'Connor, Paula M; O'Shea, Eileen F; Guinane, Caitriona M; O'Sullivan, Orla; Cotter, Paul D; Ross, R Paul; Hill, Colin

    2015-06-15

    Accumulating evidence suggests that bacteriocin production represents a probiotic trait for intestinal strains to promote dominance, fight infection, and even signal the immune system. In this respect, in a previous study, we isolated from the porcine intestine a strain of Streptococcus hyointestinalis DPC6484 that displays antimicrobial activity against a wide range of Gram-positive bacteria and produces a bacteriocin with a mass of 3,453 Da. Interestingly, the strain was also found to be immune to a nisin-producing strain. Genome sequencing revealed the genetic determinants responsible for a novel version of nisin, designated nisin H, consisting of the nshABTCPRKGEF genes, with transposases encoded between nshP and nshR and between nshK and nshG. A similar gene cluster is also found in S. hyointestinalis LMG14581. Notably, the cluster lacks an equivalent of the nisin immunity gene, nisI. Nisin H is proposed to have the same structure as the prototypical nisin A but differs at 5 amino acid positions-Ile1Phe (i.e., at position 1, nisin A has Ile while nisin H has Phe), Leu6Met, Gly18Dhb (threonine dehydrated to dehydrobutyrine), Met21Tyr, and His31Lys--and appears to represent an intermediate between the lactococcal nisin A and the streptococcal nisin U variant of nisin. Purified nisin H inhibits a wide range of Gram-positive bacteria, including staphylococci, streptococci, Listeria spp., bacilli, and enterococci. It represents the first example of a natural nisin variant produced by an intestinal isolate of streptococcal origin. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  11. A Nonluminescent and Highly Virulent Vibrio harveyi Strain Is Associated with “Bacterial White Tail Disease” of Litopenaeus vannamei Shrimp

    PubMed Central

    Zhou, Junfang; Fang, Wenhong; Yang, Xianle; Zhou, Shuai; Hu, Linlin; Li, Xincang; Qi, Xinyong; Su, Hang; Xie, Layue

    2012-01-01

    Recurrent outbreaks of a disease in pond-cultured juvenile and subadult Litopenaeus vannamei shrimp in several districts in China remain an important problem in recent years. The disease was characterized by “white tail” and generally accompanied by mass mortalities. Based on data from the microscopical analyses, PCR detection and 16S rRNA sequencing, a new Vibrio harveyi strain (designated as strain HLB0905) was identified as the etiologic pathogen. The bacterial isolation and challenge tests demonstrated that the HLB0905 strain was nonluminescent but highly virulent. It could cause mass mortality in affected shrimp during a short time period with a low dose of infection. Meanwhile, the histopathological and electron microscopical analysis both showed that the HLB0905 strain could cause severe fiber cell damages and striated muscle necrosis by accumulating in the tail muscle of L. vannamei shrimp, which led the affected shrimp to exhibit white or opaque lesions in the tail. The typical sign was closely similar to that caused by infectious myonecrosis (IMN), white tail disease (WTD) or penaeid white tail disease (PWTD). To differentiate from such diseases as with a sign of “white tail” but of non-bacterial origin, the present disease was named as “bacterial white tail disease (BWTD)”. Present study revealed that, just like IMN and WTD, BWTD could also cause mass mortalities in pond-cultured shrimp. These results suggested that some bacterial strains are changing themselves from secondary to primary pathogens by enhancing their virulence in current shrimp aquaculture system. PMID:22383954

  12. Comparing the impact of ultrafine particles from petrodiesel and biodiesel combustion to bacterial metabolism by targeted HPLC-MS/MS metabolic profiling.

    PubMed

    Zhong, Fanyi; Xu, Mengyang; Schelli, Katie; Rutowski, Joshua; Holmén, Britt A; Zhu, Jiangjiang

    2017-08-01

    Alterations of gut bacterial metabolism play an important role in their host metabolism, and can result in diseases such as obesity and diabetes. While many factors were discovered influencing the gut bacterial metabolism, exposure to ultrafine particles (UFPs) from engine combustions were recently proposed to be a potential risk factor for the perturbation of gut bacterial metabolism, and consequentially to obesity and diabetes development. This study focused on evaluation of how UFPs from diesel engine combustions impact gut bacterial metabolism. We hypothesize that UFPs from different type of diesel (petrodiesel vs. biodiesel) will both impact bacterial metabolism, and the degree of impact is also diesel type-dependent. Targeted metabolic profiling of 221 metabolites were applied to three model gut bacteria in vitro, Streptococcus salivarius, Lactobacillus acidophilus and Lactobacillus fermentum. UFPs from two types of fuels, petrodiesel (B0) and a biodiesel blend (B20: 20% soy biodiesel/80% B0 by volume), were exposed to the bacteria and their metabolic changes were compared. For each bacterial strain, metabolites with significantly changed abundance were observed in both perturbations, and all three strains have increased number of altered metabolites detected from B20 UFPs perturbation in comparison to B0 UFPs. Multivariate statistical analysis further confirmed that the metabolic profiles were clearly different between testing groups. Metabolic pathway analyses also demonstrated several important metabolic pathways, including pathways involves amino acids biosynthesis and sugar metabolism, were significantly impacted by UFPs exposure. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. The ability of four strains of Streptococcus uberis to induce clinical mastitis after intramammary inoculation in lactating cows.

    PubMed

    Notcovich, S; deNicolo, G; Williamson, N B; Grinberg, A; Lopez-Villalobos, N; Petrovski, K R

    2016-07-01

    To compare the ability of four strains of Streptococcus uberis at two doses to induce clinical mastitis in lactating dairy cows after intramammary inoculation in order to evaluate their usefulness for future experimental infection models. Four field strains of S. uberis (26LB, S418, and S523 and SR115) were obtained from cows with clinical mastitis in the Wairarapa and Waikato regions of New Zealand. Twenty-four crossbred lactating cows, with no history of mastitis and absence of major pathogens following culture of milk samples, were randomly allocated to four groups (one per strain) of six cows. Each cow was infused (Day 0) in one quarter with approximately 10(4) cfu and in the contralateral quarter with approximately 10(6) cfu of the same strain. The other two quarters remained unchallenged. All four quarters were then inspected for signs of clinical mastitis, by palpation and observation of the foremilk, twice daily from Days 0-9, and composite milk samples were collected from Days 0-8 for analysis of somatic cell counts (SCC). Quarters were treated with penicillin when clinical mastitis was observed. Duplicate milk samples were collected and cultured on presentation of each clinical case and on Day 4 from challenged quarters with no clinical signs. Clinical mastitis was diagnosed in 26/48 (54%) challenged quarters. Challenge with strain S418 resulted in more cases of mastitis (12/12 quarters) than strains SR115 (7/12), 26LB (6/12) or S523 (1/12), and the mean interval from challenge to first diagnosis of mastitis was shorter for S418 than the other strains (p<0.001). The proportion of quarters from which S. uberis could be isolated after challenge was less for strain 26LB (1/6) than SR115 (6/7) (p<0.05), and SCC following challenge was lower for strain S523 than the other strains (p<0.05). There were significant differences between the strains in the proportion of quarters developing clinical mastitis, the interval to mastitis onset, SCC following challenge

  14. The Streptococcus sanguinis competence regulon is not required for infective endocarditis virulence in a rabbit model.

    PubMed

    Callahan, Jill E; Munro, Cindy L; Kitten, Todd

    2011-01-01

    Streptococcus sanguinis is an important component of dental plaque and a leading cause of infective endocarditis. Genetic competence in S. sanguinis requires a quorum sensing system encoded by the early comCDE genes, as well as late genes controlled by the alternative sigma factor, ComX. Previous studies of Streptococcus pneumoniae and Streptococcus mutans have identified functions for the >100-gene com regulon in addition to DNA uptake, including virulence. We investigated this possibility in S. sanguinis. Strains deleted for the comCDE or comX master regulatory genes were created. Using a rabbit endocarditis model in conjunction with a variety of virulence assays, we determined that both mutants possessed infectivity equivalent to that of a virulent control strain, and that measures of disease were similar in rabbits infected with each strain. These results suggest that the com regulon is not required for S. sanguinis infective endocarditis virulence in this model. We propose that the different roles of the S. sanguinis, S. pneumoniae, and S. mutans com regulons in virulence can be understood in relation to the pathogenic mechanisms employed by each species.

  15. The oral bacterial microbiome of occlusal surfaces in children and its association with diet and caries.

    PubMed

    Ribeiro, Apoena Aguiar; Azcarate-Peril, Maria Andrea; Cadenas, Maria Belen; Butz, Natasha; Paster, Bruce J; Chen, Tsute; Bair, Eric; Arnold, Roland R

    2017-01-01

    Dental caries is the most prevalent disease in humans globally. Efforts to control it have been invigorated by an increasing knowledge of the oral microbiome composition. This study aimed to evaluate the bacterial diversity in occlusal biofilms and its relationship with clinical surface diagnosis and dietary habits. Anamneses were recorded from thirteen 12-year-old children. Biofilm samples collected from occlusal surfaces of 46 permanent second molars were analyzed by 16S rRNA amplicon sequencing combined with the BLASTN-based search algorithm for species identification. The overall mean decayed, missing and filled surfaces modified index [DMFSm Index, including active white spot lesions (AWSL)] value was 8.77±7.47. Biofilm communities were highly polymicrobial collectively, representing 10 bacterial phyla, 25 classes, 29 orders, 58 families, 107 genera, 723 species. Streptococcus sp_Oral_Taxon_065, Corynebacterium matruchotii, Actinomyces viscosus, Actinomyces sp_Oral_Taxon_175, Actinomyces sp_Oral_Taxon_178, Actinomyces sp_Oral_Taxon_877, Prevotella nigrescens, Dialister micraerophilus, Eubacterium_XI G 1 infirmum were more abundant among surfaces with AWSL, and Streptococcus gordonii, Streptococcus sp._Oral_Taxon_058, Enterobacter sp._str._638 Streptococcus australis, Yersinia mollaretii, Enterobacter cloacae, Streptococcus sp._Oral_Taxon_71, Streptococcus sp._Oral_Taxon_F11, Centipeda sp._Oral_Taxon_D18 were more abundant among sound surfaces. Streptococcus mutans was detected on all surfaces in all patients, while Streptococcus sobrinus was detected only in three patients (mean relative abundances 7.1% and 0.6%, respectively). Neither species differentiated healthy from diseased sites. Diets of nine of the subjects were scored as high in fermentable carbohydrates (≧2X/day between meals). A direct association between relative abundances of bacteria and carbohydrate consumption was observed among 18 species. High consumption of fermentable carbohydrates and

  16. The oral bacterial microbiome of occlusal surfaces in children and its association with diet and caries

    PubMed Central

    Azcarate-Peril, Maria Andrea; Cadenas, Maria Belen; Butz, Natasha; Paster, Bruce J.; Chen, Tsute; Bair, Eric

    2017-01-01

    Dental caries is the most prevalent disease in humans globally. Efforts to control it have been invigorated by an increasing knowledge of the oral microbiome composition. This study aimed to evaluate the bacterial diversity in occlusal biofilms and its relationship with clinical surface diagnosis and dietary habits. Anamneses were recorded from thirteen 12-year-old children. Biofilm samples collected from occlusal surfaces of 46 permanent second molars were analyzed by 16S rRNA amplicon sequencing combined with the BLASTN-based search algorithm for species identification. The overall mean decayed, missing and filled surfaces modified index [DMFSm Index, including active white spot lesions (AWSL)] value was 8.77±7.47. Biofilm communities were highly polymicrobial collectively, representing 10 bacterial phyla, 25 classes, 29 orders, 58 families, 107 genera, 723 species. Streptococcus sp_Oral_Taxon_065, Corynebacterium matruchotii, Actinomyces viscosus, Actinomyces sp_Oral_Taxon_175, Actinomyces sp_Oral_Taxon_178, Actinomyces sp_Oral_Taxon_877, Prevotella nigrescens, Dialister micraerophilus, Eubacterium_XI G 1 infirmum were more abundant among surfaces with AWSL, and Streptococcus gordonii, Streptococcus sp._Oral_Taxon_058, Enterobacter sp._str._638 Streptococcus australis, Yersinia mollaretii, Enterobacter cloacae, Streptococcus sp._Oral_Taxon_71, Streptococcus sp._Oral_Taxon_F11, Centipeda sp._Oral_Taxon_D18 were more abundant among sound surfaces. Streptococcus mutans was detected on all surfaces in all patients, while Streptococcus sobrinus was detected only in three patients (mean relative abundances 7.1% and 0.6%, respectively). Neither species differentiated healthy from diseased sites. Diets of nine of the subjects were scored as high in fermentable carbohydrates (≧2X/day between meals). A direct association between relative abundances of bacteria and carbohydrate consumption was observed among 18 species. High consumption of fermentable carbohydrates and

  17. Autolytic defective mutant of Streptococcus faecalis.

    PubMed Central

    Cornett, J B; Redman, B E; Shockman, G D

    1978-01-01

    Properties of a variant of Streptococcus faecalis ATCC 9790 with defective cellular autolysis are described. The mutant strain was selected as a survivor from a mutagenized cell population simultaneously challenged with two antibiotics which inhibit cell wall biosynthesis, penicillin G and cycloserine. Compared to the parental strain, the mutant strain exhibited: (i) a thermosensitive pattern of cellular autolysis; (ii) an autolytic enzyme activity that had only a slightly increased thermolability when tested in solution in the absence of wall substrate; and (iii) an isolated autolysin that had hydrolytic activity on isolated S. faecalis wall substrate indistinguishable from that of the parental strain, but that was inactive when tested on walls of Micrococcus lysodeikticus as a substrate. These data indicate an alteration in the substrate specificity of the autolytic enzyme of the mutant which appears to result from the synthesis of an altered form of autolytic enzyme. PMID:415045

  18. Long-term survival of Streptococcus pyogenes in rich media is pH-dependent

    PubMed Central

    McShan, William M.

    2012-01-01

    The mechanisms that allow Streptococcus pyogenes to survive and persist in the human host, often in spite of antibiotic therapy, remain poorly characterized. Therefore, the determination of culture conditions for long-term studies is crucial to advancement in this field. Stationary cultures of S. pyogenes strain NZ131 and its spontaneous small-colony variant OK171 were found to survive in rich medium for less than 2 weeks, and this inability to survive resulted from the acidification of the medium to below pH 5.5, which the cells did not tolerate for longer than 6–7 days. The growth of NZ131 resulted in acidification of the culture to below pH 5.5 by the onset of stationary phase, and the loss of viability occurred in a linear fashion. These results were also found to be true for M49 strain CS101 and for M1 strain SF370. The S. pyogenes strains could be protected from killing by the addition of a buffer that stabilized the pH of the medium at pH 6.5, ensuring bacterial survival to at least 70 days. By contrast, increasing the glucose added to the medium accelerated the loss of culture viability in strain NZ131 but not OK171, suggesting that the small-colony variant is altered in glucose uptake or metabolism. Similarly, acidification of the medium prior to inoculation or at the middle of exponential phase resulted in growth inhibition of all strains. These results suggest that control of the pH is crucial for establishing long-term cultures of S. pyogenes. PMID:22361943

  19. Bath immersion, booster vaccination strategy holds potential for protecting juvenile tilapia against Streptococcus iniae

    USDA-ARS?s Scientific Manuscript database

    Streptococcus iniae is a significant bacterial pathogen that causes hemorrhagic septicemia and meningoencephalitis in tilapia, hybrid striped bass, rainbow trout, olive flounder, yellowtail, barramundi and other species of cultured and wild fish worldwide. In tilapia production, vaccination of fry ...

  20. Dynamics of Colonization of Streptococcus pneumoniae Strains in Healthy Peruvian Children

    PubMed Central

    Nelson, Kristin N; Grijalva, Carlos G; Chochua, Sopio; Hawkins, Paulina A; Gil, Ana I; Lanata, Claudio F; Griffin, Marie R; Edwards, Kathryn M; Klugman, Keith P; Vidal, Jorge E

    2018-01-01

    Abstract Background Although asymptomatic carriage of Streptococcus pneumoniae (Spn) is common, acquisition of the bacteria is the first step in disease pathogenesis. We examined the effect of introduction of the 7-valent pneumococcal vaccine on Spn carriage patterns in a cohort of Peruvian children. Methods We used data from a prospective cohort study that collected monthly nasopharyngeal samples from children under 3 years of age. Spn isolates were serotyped using Quellung reactions, and bacterial density was determined by quantitative polymerase chain reaction. Changes in Spn carriage patterns, including the rate of carriage and number and density of serotypes carried over time, were evaluated before (2009) and after widespread vaccination with PCV7 (2011). Using all pneumococcal detections from each child and year, we identified serotypes that were present both at first and last detection as “persisters” and serotypes that replaced a different earlier type and were detected last as “recolonizers.” Results Ninety-two percent (467/506) of children in 2009 and 89% (451/509) in 2011 carried Spn at least once. In 2009 and 2011, rates of carriage were 9.03 and 9.04 Spn detections per person-year, respectively. In 2009, 23F, a serotype included in PCV7, was the only type identified as a persister and 6A, 15B, and 19A were identified as recolonizer serotypes. In 2011, 6B and 7C were persister serotypes and 13 was a frequent recolonizer serotype. Conclusions Overall Spn carriage among children under 3 in Peru was similar before and after introduction of PCV7; however, serotype-specific rates and longitudinal carriage patterns have shifted. PMID:29588913