Sample records for bacterial 23s rrna

  1. Methylation of 23S rRNA Nucleotide G748 by RlmAII Methyltransferase Renders Streptococcus pneumoniae Telithromycin Susceptible

    PubMed Central

    Sato, Yoshiharu; Shoji, Tatsuma; Yamamoto, Tomoko

    2013-01-01

    Several posttranscriptional modifications of bacterial rRNAs are important in determining antibiotic resistance or sensitivity. In all Gram-positive bacteria, dimethylation of nucleotide A2058, located in domain V of 23S rRNA, by the dimethyltransferase Erm(B) results in low susceptibility and resistance to telithromycin (TEL). However, this is insufficient to produce high-level resistance to TEL in Streptococcus pneumoniae. Inactivation of the methyltransferase RlmAII, which methylates the N-1 position of nucleotide G748, located in hairpin 35 of domain II of 23S rRNA, results in increased resistance to TEL in erm(B)-carrying S. pneumoniae. Sixteen TEL-resistant mutants (MICs, 16 to 32 μg/ml) were obtained from a clinically isolated S. pneumoniae strain showing low TEL susceptibility (MIC, 2 μg/ml), with mutation resulting in constitutive dimethylation of A2058 because of nucleotide differences in the regulatory region of erm(B) mRNA. Primer extension analysis showed that the degree of methylation at G748 in all TEL-resistant mutants was significantly reduced by a mutation in the gene encoding RlmAII to create a stop codon or change an amino acid residue. Furthermore, RNA footprinting with dimethyl sulfate and a molecular modeling study suggested that methylation of G748 may contribute to the stable interaction of TEL with domain II of 23S rRNA, even after dimethylation of A2058 by Erm(B). This novel finding shows that methylation of G748 by RlmAII renders S. pneumoniae TEL susceptible. PMID:23716046

  2. Methylation of 23S rRNA nucleotide G748 by RlmAII methyltransferase renders Streptococcus pneumoniae telithromycin susceptible.

    PubMed

    Takaya, Akiko; Sato, Yoshiharu; Shoji, Tatsuma; Yamamoto, Tomoko

    2013-08-01

    Several posttranscriptional modifications of bacterial rRNAs are important in determining antibiotic resistance or sensitivity. In all Gram-positive bacteria, dimethylation of nucleotide A2058, located in domain V of 23S rRNA, by the dimethyltransferase Erm(B) results in low susceptibility and resistance to telithromycin (TEL). However, this is insufficient to produce high-level resistance to TEL in Streptococcus pneumoniae. Inactivation of the methyltransferase RlmA(II), which methylates the N-1 position of nucleotide G748, located in hairpin 35 of domain II of 23S rRNA, results in increased resistance to TEL in erm(B)-carrying S. pneumoniae. Sixteen TEL-resistant mutants (MICs, 16 to 32 μg/ml) were obtained from a clinically isolated S. pneumoniae strain showing low TEL susceptibility (MIC, 2 μg/ml), with mutation resulting in constitutive dimethylation of A2058 because of nucleotide differences in the regulatory region of erm(B) mRNA. Primer extension analysis showed that the degree of methylation at G748 in all TEL-resistant mutants was significantly reduced by a mutation in the gene encoding RlmA(II) to create a stop codon or change an amino acid residue. Furthermore, RNA footprinting with dimethyl sulfate and a molecular modeling study suggested that methylation of G748 may contribute to the stable interaction of TEL with domain II of 23S rRNA, even after dimethylation of A2058 by Erm(B). This novel finding shows that methylation of G748 by RlmA(II) renders S. pneumoniae TEL susceptible.

  3. Punctual mutations in 23S rRNA gene of clarithromycin-resistant Helicobacter pylori in Colombian populations

    PubMed Central

    Matta, Andrés Jenuer; Zambrano, Diana Carolina; Pazos, Alvaro Jairo

    2018-01-01

    AIM To characterize punctual mutations in 23S rRNA gene of clarithromycin-resistant Helicobacter pylori (H. pylori) and determine their association with therapeutic failure. METHODS PCR products of 23S rRNA gene V domain of 74 H. pylori isolates; 34 resistant to clarithromycin (29 from a low-risk gastric cancer (GC) population: Tumaco-Colombia, and 5 from a high-risk population: Tuquerres-Colombia) and 40 from a susceptible population (28 from Tumaco and 12 from Túquerres) were sequenced using capillary electrophoresis. The concordance between mutations of V domain 23S rRNA gene of H. pylori and therapeutic failure was determined using the Kappa coefficient and McNemar’s test was performed to determine the relationship between H. pylori mutations and clarithromycin resistance. RESULTS 23S rRNA gene from H. pylori was amplified in 56/74 isolates, of which 25 were resistant to clarithromycin (20 from Tumaco and 5 from Túquerres, respectively). In 17 resistant isolates (13 from Tumaco and 4 from Túquerres) the following mutations were found: A1593T1, A1653G2, C1770T, C1954T1, and G1827C in isolates from Tumaco, and A2144G from Túquerres. The mutations T2183C, A2144G and C2196T in H. pylori isolates resistant to clarithromycin from Colombia are reported for the first time. No association between the H. pylori mutations and in vitro clarithromycin resistance was found. However, therapeutic failure of eradication treatment was associated with mutations of 23S rRNA gene in clarithromycin-resistant H. pylori (κ = 0.71). CONCLUSION The therapeutic failure of eradication treatment in the two populations from Colombia was associated with mutations of the 23S rRNA gene in clarithromycin-resistant H. pylori. PMID:29662291

  4. Punctual mutations in 23S rRNA gene of clarithromycin-resistant Helicobacter pylori in Colombian populations.

    PubMed

    Matta, Andrés Jenuer; Zambrano, Diana Carolina; Pazos, Alvaro Jairo

    2018-04-14

    To characterize punctual mutations in 23S rRNA gene of clarithromycin-resistant Helicobacter pylori ( H. pylori ) and determine their association with therapeutic failure. PCR products of 23S rRNA gene V domain of 74 H. pylori isolates; 34 resistant to clarithromycin (29 from a low-risk gastric cancer (GC) population: Tumaco-Colombia, and 5 from a high-risk population: Tuquerres-Colombia) and 40 from a susceptible population (28 from Tumaco and 12 from Túquerres) were sequenced using capillary electrophoresis. The concordance between mutations of V domain 23S rRNA gene of H. pylori and therapeutic failure was determined using the Kappa coefficient and McNemar's test was performed to determine the relationship between H. pylori mutations and clarithromycin resistance. 23S rRNA gene from H. pylori was amplified in 56/74 isolates, of which 25 were resistant to clarithromycin (20 from Tumaco and 5 from Túquerres, respectively). In 17 resistant isolates (13 from Tumaco and 4 from Túquerres) the following mutations were found: A1593T1, A1653G2, C1770T, C1954T1, and G1827C in isolates from Tumaco, and A2144G from Túquerres. The mutations T2183C, A2144G and C2196T in H. pylori isolates resistant to clarithromycin from Colombia are reported for the first time. No association between the H. pylori mutations and in vitro clarithromycin resistance was found. However, therapeutic failure of eradication treatment was associated with mutations of 23S rRNA gene in clarithromycin-resistant H. pylori ( κ = 0.71). The therapeutic failure of eradication treatment in the two populations from Colombia was associated with mutations of the 23S rRNA gene in clarithromycin-resistant H. pylori .

  5. Lessons from an evolving rRNA: 16S and 23S rRNA structures from a comparative perspective

    NASA Technical Reports Server (NTRS)

    Gutell, R. R.; Larsen, N.; Woese, C. R.

    1994-01-01

    The 16S and 23S rRNA higher-order structures inferred from comparative analysis are now quite refined. The models presented here differ from their immediate predecessors only in minor detail. Thus, it is safe to assert that all of the standard secondary-structure elements in (prokaryotic) rRNAs have been identified, with approximately 90% of the individual base pairs in each molecule having independent comparative support, and that at least some of the tertiary interactions have been revealed. It is interesting to compare the rRNAs in this respect with tRNA, whose higher-order structure is known in detail from its crystal structure (36) (Table 2). It can be seen that rRNAs have as great a fraction of their sequence in established secondary-structure elements as does tRNA. However, the fact that the former show a much lower fraction of identified tertiary interactions and a greater fraction of unpaired nucleotides than the latter implies that many of the rRNA tertiary interactions remain to be located. (Alternatively, the ribosome might involve protein-rRNA rather than intramolecular rRNA interactions to stabilize three-dimensional structure.) Experimental studies on rRNA are consistent to a first approximation with the structures proposed here, confirming the basic assumption of comparative analysis, i.e., that bases whose compositions strictly covary are physically interacting. In the exhaustive study of Moazed et al. (45) on protection of the bases in the small-subunit rRNA against chemical modification, the vast majority of bases inferred to pair by covariation are found to be protected from chemical modification, both in isolated small-subunit rRNA and in the 30S subunit. The majority of the tertiary interactions are reflected in the chemical protection data as well (45). On the other hand, many of the bases not shown as paired in Fig. 1 are accessible to chemical attack (45). However, in this case a sizeable fraction of them are also protected against chemical

  6. 16S rRNA beacons for bacterial monitoring during human space missions.

    PubMed

    Larios-Sanz, Maia; Kourentzi, Katerina D; Warmflash, David; Jones, Jeffrey; Pierson, Duane L; Willson, Richard C; Fox, George E

    2007-04-01

    Microorganisms are unavoidable in space environments and their presence has, at times, been a source of problems. Concerns about disease during human space missions are particularly important considering the significant changes the immune system incurs during spaceflight and the history of microbial contamination aboard the Mir space station. Additionally, these contaminants may have adverse effects on instrumentation and life-support systems. A sensitive, highly specific system to detect, characterize, and monitor these microbial populations is essential. Herein we describe a monitoring approach that uses 16S rRNA targeted molecular beacons to successfully detect several specific bacterial groupings. This methodology will greatly simplify in-flight monitoring by minimizing sample handling and processing. We also address and provide solutions to target accessibility problems encountered in hybridizations that target 16S rRNA.

  7. Detection and identification of bacteria in clinical samples by 16S rRNA gene sequencing: comparison of two different approaches in clinical practice.

    PubMed

    Jenkins, Claire; Ling, Clare L; Ciesielczuk, Holly L; Lockwood, Julianne; Hopkins, Susan; McHugh, Timothy D; Gillespie, Stephen H; Kibbler, Christopher C

    2012-04-01

    Amplification and sequence analysis of the 16S rRNA gene can be applied to detect and identify bacteria in clinical samples. We examined 75 clinical samples (17 culture-positive, 58 culture-negative) prospectively by two different PCR protocols, amplifying either a single fragment (1343 bp) or two fragments (762/598 bp) of the 16S rRNA gene. The 1343 bp PCR and 762/598 bp PCRs detected and identified the bacterial 16S rRNA gene in 23 (31 %) and 38 (51 %) of the 75 samples, respectively. The 1343 bp PCR identified 19 of 23 (83 %) PCR-positive samples to species level while the 762/598 bp PCR identified 14 of 38 (37 %) bacterial 16S rRNA gene fragments to species level and 24 to the genus level only. Amplification of shorter fragments of the bacterial 16S rRNA gene (762 and 598 bp) resulted in a more sensitive assay; however, analysis of a large fragment (1343 bp) improved species discrimination. Although not statistically significant, the 762/598 bp PCR detected the bacterial 16S rRNA gene in more samples than the 1343 bp PCR, making it more likely to be a more suitable method for the primary detection of the bacterial 16S rRNA gene in the clinical setting. The 1343 bp PCR may be used in combination with the 762/598 bp PCR when identification of the bacterial rRNA gene to species level is required.

  8. Dry reagent dipstick test combined with 23S rRNA PCR for molecular diagnosis of bacterial infection in arthroplasty.

    PubMed

    Kalogianni, Despina P; Goura, Sophia; Aletras, Alexios J; Christopoulos, Theodore K; Chanos, Michalis G; Christofidou, Myrto; Skoutelis, Athanasios; Ioannou, Penelope C; Panagiotopoulos, Elias

    2007-02-15

    Periprosthetic joint infections present a challenging problem in orthopaedics. Conventional methods for detection of arthroplasty infections rely on bacterial culture of synovial fluid aspirates. During recent years, however, molecular tests that are based on DNA amplification by the polymerase chain reaction (PCR), followed by electrophoretic analysis of the products, have been introduced. We report a simple and inexpensive assay that allows visual detection and confirmation of the PCR-amplified sequences by hybridization within minutes. The assay is performed in a dry reagent dipstick format (strip) and does not require special instrumentation. Universal primers are used for PCR of the 23S ribosomal RNA (rRNA) gene. The biotinylated amplification product is hybridized with dA-tailed probes that are specific for six pathogens commonly involved in periprosthetic joint infections. The mixture is applied to the strip, which is then immersed in the appropriate buffer. The buffer migrates along the strip by capillary action and rehydrates gold nanoparticles with oligo(dT) strands attached to their surface. The nanoparticles bind to the target DNA through hybridization, and the hybrids are captured by immobilized streptavidin at the test zone of the strip, producing a characteristic red line. Unbound nanoparticles are captured by immobilized oligo(dT) strands at the control zone of the strip, generating a second line. The dipstick test was applied to the detection of Escherichia coli, Staphylococcus aureus, Staphylococcus epidermidis, Streptococcus pneumoniae, Enterococcus faesium, and Haemophilus influenza. Twelve samples of synovial fluids from patients were analyzed for the detection and identification of the infection caused by the six pathogens. The results were compared with bacterial cultures.

  9. Bacterial 16S rRNA gene analysis revealed that bacteria related to Arcobacter spp. constitute an abundant and common component of the oyster microbiota (Tiostrea chilensis).

    PubMed

    Romero, J; García-Varela, M; Laclette, J P; Espejo, R T

    2002-11-01

    To explore the bacterial microbiota in Chilean oyster (Tiostrea chilensis), a molecular approach that permits detection of different bacteria, independently of their capacity to grow in culture media, was used. Bacterial diversity was assessed by analysis of both the 16S rDNA and the 16S-23S intergenic region, obtained by PCR amplifications of DNA extracted from depurated oysters. RFLP of the PCR amplified 16S rDNA showed a prevailing pattern in most of the individuals analyzed, indicating that a few bacterial species were relatively abundant and common in oysters. Cloning and sequencing of the 16S rDNA with the prevailing RFLP pattern indicated that this rRNA was most closely related to Arcobacter spp. However, analysis by the size of the amplified 16S-23S rRNA intergenic regions revealed not Arcobacter spp. but Staphylococcus spp. related bacteria as a major and common component in oyster. These different results may be caused by the absence of target for one of the primers employed for amplification of the intergenic region. Neither of the two bacteria species found in large abundance was recovered after culturing under aerobic, anaerobic, or microaerophilic conditions. This result, however, is expected because the number of bacteria recovered after cultivation was less than 0.01% of the total. All together, these observations suggest that Arcobacter-related strains are probably abundant and common in the Chilean oyster bacterial microbiota.

  10. Rapid differentiation of Francisella species and subspecies by fluorescent in situ hybridization targeting the 23S rRNA

    PubMed Central

    2010-01-01

    Background Francisella (F.) tularensis is the causative agent of tularemia. Due to its low infectious dose, ease of dissemination and high case fatality rate, F. tularensis was the subject in diverse biological weapons programs and is among the top six agents with high potential if misused in bioterrorism. Microbiological diagnosis is cumbersome and time-consuming. Methods for the direct detection of the pathogen (immunofluorescence, PCR) have been developed but are restricted to reference laboratories. Results The complete 23S rRNA genes of representative strains of F. philomiragia and all subspecies of F. tularensis were sequenced. Single nucleotide polymorphisms on species and subspecies level were confirmed by partial amplification and sequencing of 24 additional strains. Fluorescent In Situ Hybridization (FISH) assays were established using species- and subspecies-specific probes. Different FISH protocols allowed the positive identification of all 4 F. philomiragia strains, and more than 40 F. tularensis strains tested. By combination of different probes, it was possible to differentiate the F. tularensis subspecies holarctica, tularensis, mediasiatica and novicida. No cross reactivity with strains of 71 clinically relevant bacterial species was observed. FISH was also successfully applied to detect different F. tularensis strains in infected cells or tissue samples. In blood culture systems spiked with F. tularensis, bacterial cells of different subspecies could be separated within single samples. Conclusion We could show that FISH targeting the 23S rRNA gene is a rapid and versatile method for the identification and differentiation of F. tularensis isolates from both laboratory cultures and clinical samples. PMID:20205957

  11. Discrimination of Bacillus anthracis from closely related microorganisms by analysis of 16S and 23S rRNA with oligonucleotide microchips

    DOEpatents

    Bavykin, Sergei G.; Mirzabekova, legal representative, Natalia V.; Mirzabekov, deceased, Andrei D.

    2007-12-04

    The present invention relates to methods and compositions for using nucleotide sequence variations of 16S and 23S rRNA within the B. cereus group to discriminate a highly infectious bacterium B. anthracis from closely related microorganisms. Sequence variations in the 16S and 23S rRNA of the B. cereus subgroup including B. anthracis are utilized to construct an array that can detect these sequence variations through selective hybridizations and discriminate B. cereus group that includes B. anthracis. Discrimination of single base differences in rRNA was achieved with a microchip during analysis of B. cereus group isolates from both single and in mixed samples, as well as identification of polymorphic sites. Successful use of a microchip to determine the appropriate subgroup classification using eight reference microorganisms from the B. cereus group as a study set, was demonstrated.

  12. Using DGGE and 16S rRNA gene sequence analysis to evaluate changes in oral bacterial composition.

    PubMed

    Chen, Zhou; Trivedi, Harsh M; Chhun, Nok; Barnes, Virginia M; Saxena, Deepak; Xu, Tao; Li, Yihong

    2011-01-01

    To investigate whether a standard dental prophylaxis followed by tooth brushing with an antibacterial dentifrice will affect the oral bacterial community, as determined by denaturing gradient gel electrophoresis (DGGE) combined with 16S rRNA gene sequence analysis. Twenty-four healthy adults were instructed to brush their teeth using commercial dentifrice for 1 week during a washout period. An initial set of pooled supragingival plaque samples was collected from each participant at baseline (0 h) before prophylaxis treatment. The subjects were given a clinical examination and dental prophylaxis and asked to brush for 1 min with a dentifrice containing 0.3% triclosan, 2.0% PVM/MA copolymer and 0.243% sodium fluoride (Colgate Total). On the following day, a second set of pooled supragingival plaque samples (24 h) was collected. Total bacterial genomic DNA was isolated from the samples. Differences in the microbial composition before and after the prophylactic procedure and tooth brushing were assessed by comparing the DGGE profiles and 16S rRNA gene segments sequence analysis. Two distinct clusters of DGGE profiles were found, suggesting that a shift in the microbial composition had occurred 24 h after the prophylaxis and brushing. A detailed sequencing analysis of 16S rRNA gene segments further identified 6 phyla and 29 genera, including known and unknown bacterial species. Importantly, an increase in bacterial diversity was observed after 24 h, including members of the Streptococcaceae family, Prevotella, Corynebacterium, TM7 and other commensal bacteria. The results suggest that the use of a standard prophylaxis followed by the use of the dentifrice containing 0.3% triclosan, 2.0% PVM/MA copolymer and 0.243% sodium fluoride may promote a healthier composition within the oral bacterial community.

  13. Crystal structure of RlmAI: Implications for understanding the 23S rRNA G745/G748-methylation at the macrolide antibiotic-binding site

    PubMed Central

    Das, Kalyan; Acton, Thomas; Chiang, Yiwen; Shih, Lydia; Arnold, Eddy; Montelione, Gaetano T.

    2004-01-01

    The RlmA class of enzymes (RlmAI and RlmAII) catalyzes N1-methylation of a guanine base (G745 in Gram-negative and G748 in Gram-positive bacteria) of hairpin 35 of 23S rRNA. We have determined the crystal structure of Escherichia coli RlmAI at 2.8-Å resolution, providing 3D structure information for the RlmA class of RNA methyltransferases. The dimeric protein structure exhibits features that provide new insights into its molecular function. Each RlmAI molecule has a Zn-binding domain, responsible for specific recognition and binding of its rRNA substrate, and a methyltransferase domain. The asymmetric RlmAI dimer observed in the crystal structure has a well defined W-shaped RNA-binding cleft. Two S-adenosyl-l-methionine substrate molecules are located at the two valleys of the W-shaped RNA-binding cleft. The unique shape of the RNA-binding cleft, different from that of known RNA-binding proteins, is highly specific and structurally complements the 3D structure of hairpin 35 of bacterial 23S rRNA. Apart from the hairpin 35, parts of hairpins 33 and 34 also interact with the RlmAI dimer. PMID:14999102

  14. The methyltransferase YfgB/RlmN is responsible for modification of adenosine 2503 in 23S rRNA

    PubMed Central

    Toh, Seok-Ming; Xiong, Liqun; Bae, Taeok; Mankin, Alexander S.

    2008-01-01

    A2503 in 23S rRNA of the Gram-negative bacterium Escherichia coli is located in a functionally important region of the ribosome, at the entrance to the nascent peptide exit tunnel. In E. coli, and likely in other species, this adenosine residue is post-transcriptionally modified to m2A. The enzyme responsible for this modification was previously unknown. We identified E. coli protein YfgB, which belongs to the radical SAM enzyme superfamily, as the methyltransferase that modifies A2503 of 23S rRNA to m2A. Inactivation of the yfgB gene in E. coli led to the loss of modification at nucleotide A2503 of 23S rRNA as revealed by primer extension analysis and thin layer chromatography. The A2503 modification was restored when YfgB protein was expressed in the yfgB knockout strain. A similar protein was shown to catalyze post-transcriptional modification of A2503 in 23S rRNA in Gram-positive Staphylococcus aureus. The yfgB knockout strain loses in competition with wild type in a co-growth experiment, indicating functional importance of A2503 modification. The location of A2503 in the exit tunnel suggests its possible involvement in interaction with the nascent peptide and raises the possibility that its post-transcriptional modification may influence such an interaction. PMID:18025251

  15. Single 23S rRNA mutations at the ribosomal peptidyl transferase centre confer resistance to valnemulin and other antibiotics in Mycobacterium smegmatis by perturbation of the drug binding pocket.

    PubMed

    Long, Katherine S; Poehlsgaard, Jacob; Hansen, Lykke H; Hobbie, Sven N; Böttger, Erik C; Vester, Birte

    2009-03-01

    Tiamulin and valnemulin target the peptidyl transferase centre (PTC) on the bacterial ribosome. They are used in veterinary medicine to treat infections caused by a variety of bacterial pathogens, including the intestinal spirochetes Brachyspira spp. Mutations in ribosomal protein L3 and 23S rRNA have previously been associated with tiamulin resistance in Brachyspira spp. isolates, but as multiple mutations were isolated together, the roles of the individual mutations are unclear. In this work, individual 23S rRNA mutations associated with pleuromutilin resistance at positions 2055, 2447, 2504 and 2572 (Escherichia coli numbering) are introduced into a Mycobacterium smegmatis strain with a single rRNA operon. The single mutations each confer a significant and similar degree of valnemulin resistance and those at 2447 and 2504 also confer cross-resistance to other antibiotics that bind to the PTC in M. smegmatis. Antibiotic footprinting experiments on mutant ribosomes show that the introduced mutations cause structural perturbations at the PTC and reduced binding of pleuromutilin antibiotics. This work underscores the fact that mutations at nucleotides distant from the pleuromutilin binding site can confer the same level of valnemulin resistance as those at nucleotides abutting the bound drug, and suggests that the former function indirectly by altering local structure and flexibility at the drug binding pocket.

  16. Comprehensive Analysis of Bacterial Flora in Postoperative Maxillary Cyst Fluid by 16S rRNA Gene and Culture Methods

    PubMed Central

    Sano, Naoto; Yamashita, Yoshio; Fukuda, Kazumasa; Taniguchi, Hatsumi; Goto, Masaaki; Miyamoto, Hiroshi

    2012-01-01

    Intracystic fluid was aseptically collected from 11 patients with postoperative maxillary cyst (POMC), and DNA was extracted from the POMC fluid. Bacterial species were identified by sequencing after cloning of approximately 580 bp of the 16S rRNA gene. Identification of pathogenic bacteria was also performed by culture methods. The phylogenetic identity was determined by sequencing 517–596 bp in each of the 1139 16S rRNA gene clones. A total of 1114 clones were classified while the remaining 25 clones were unclassified. A total of 103 bacterial species belonging to 42 genera were identified in POMC fluid samples by 16S rRNA gene analysis. Species of Prevotella (91%), Neisseria (73%), Fusobacterium (73%), Porphyromonas (73%), and Propionibacterium (73%) were found to be highly prevalent in all patients. Streptococcus mitis (64%), Fusobacterium nucleatum (55%), Propionibacterium acnes (55%), Staphylococcus capitis (55%), and Streptococcus salivarius (55%) were detected in more than 6 of the 11 patients. The results obtained by the culture method were different from those obtained by 16S rRNA gene analysis, but both approaches may be necessary for the identification of pathogens, especially of bacteria that are difficult to detect by culture methods, and the development of rational treatments for patients with POMC. PMID:22685668

  17. The avilamycin resistance determinants AviRa and AviRb methylate 23S rRNA at the guanosine 2535 base and the uridine 2479 ribose.

    PubMed

    Treede, Irina; Jakobsen, Lene; Kirpekar, Finn; Vester, Birte; Weitnauer, Gabriele; Bechthold, Andreas; Douthwaite, Stephen

    2003-07-01

    Avilamycin is an orthosomycin antibiotic that has shown considerable potential for clinical use, although it is presently used as a growth promoter in animal feed. Avilamycin inhibits bacterial protein synthesis by binding to the 50S ribosomal subunit. The ribosomes of the producer strain, Streptomyces viridochromogenes Tü57, are protected from the drug by the action of three resistance factors located in the avilamycin biosynthetic gene cluster. Two of the resistance factors, aviRa and aviRb, encode rRNA methyltransferases that specifically target 23S rRNA. Recombinant AviRa and AviRb proteins retain their activity after purification, and both specifically methylate in vitro transcripts of 23S rRNA domain V. Reverse transcriptase primer extension indicated that AviRa is an N-methyltransferase that targets G2535 within helix 91 of the rRNA, whereas AviRb modified the 2'-O-ribose position of nucleotide U2479 within helix 89. MALDI mass spectrometry confirmed the exact positions of each of these modifications, and additionally established that a single methyl group is added at each nucleotide. Neither of these two nucleotides have previously been described as a target for enzymatic methylation. Molecular models of the 50S subunit crystal structure show that the N-1 of the G2535 base and the 2'-hydroxyl of U2479 are separated by approximately 10 A, a distance that can be spanned by avilamycin. In addition to defining new resistance mechanisms, these data refine our understanding of the probable ribosome contacts made by orthosomycins and of how these antibiotics inhibit protein synthesis.

  18. Suitability of partial 16S ribosomal RNA gene sequence analysis for the identification of dangerous bacterial pathogens.

    PubMed

    Ruppitsch, W; Stöger, A; Indra, A; Grif, K; Schabereiter-Gurtner, C; Hirschl, A; Allerberger, F

    2007-03-01

    In a bioterrorism event a rapid tool is needed to identify relevant dangerous bacteria. The aim of the study was to assess the usefulness of partial 16S rRNA gene sequence analysis and the suitability of diverse databases for identifying dangerous bacterial pathogens. For rapid identification purposes a 500-bp fragment of the 16S rRNA gene of 28 isolates comprising Bacillus anthracis, Brucella melitensis, Burkholderia mallei, Burkholderia pseudomallei, Francisella tularensis, Yersinia pestis, and eight genus-related and unrelated control strains was amplified and sequenced. The obtained sequence data were submitted to three public and two commercial sequence databases for species identification. The most frequent reason for incorrect identification was the lack of the respective 16S rRNA gene sequences in the database. Sequence analysis of a 500-bp 16S rDNA fragment allows the rapid identification of dangerous bacterial species. However, for discrimination of closely related species sequencing of the entire 16S rRNA gene, additional sequencing of the 23S rRNA gene or sequencing of the 16S-23S rRNA intergenic spacer is essential. This work provides comprehensive information on the suitability of partial 16S rDNA analysis and diverse databases for rapid and accurate identification of dangerous bacterial pathogens.

  19. Leuconostoc pseudomesenteroides WCFur3 partial 16S rRNA gene

    USDA-ARS?s Scientific Manuscript database

    This study used a partial 535 base pair 16S rRNA gene sequence to identify a bacterial isolate. Fatty acid profiles are consistent with the 16S rRNA gene sequence identification of this bacterium. The isolate was obtained from a compost bin in Fort Collins, Colorado, USA. The 16S rRNA gene sequen...

  20. Characterization of bovine ruminal epithelial bacterial communities using 16S rRNA sequencing, PCR-DGGE, and qRT-PCR analysis.

    PubMed

    Li, Meiju; Zhou, Mi; Adamowicz, Elizabeth; Basarab, John A; Guan, Le Luo

    2012-02-24

    Currently, knowledge regarding the ecology and function of bacteria attached to the epithelial tissue of the rumen wall is limited. In this study, the diversity of the bacterial community attached to the rumen epithelial tissue was compared to the rumen content bacterial community using 16S rRNA gene sequencing, PCR-DGGE, and qRT-PCR analysis. Sequence analysis of 2785 randomly selected clones from six 16S rDNA (∼1.4kb) libraries showed that the community structures of three rumen content libraries clustered together and were separated from the rumen tissue libraries. The diversity index of each library revealed that ruminal content bacterial communities (4.12/4.42/4.88) were higher than ruminal tissue communities (2.90/2.73/3.23), based on 97% similarity. The phylum Firmicutes was predominant in the ruminal tissue communities, while the phylum Bacteroidetes was predominant in the ruminal content communities. The phyla Fibrobacteres, Planctomycetes, and Verrucomicrobia were only detected in the ruminal content communities. PCR-DGGE analysis of the bacterial profiles of the rumen content and ruminal epithelial tissue samples from 22 steers further confirmed that there is a distinct bacterial community that inhibits the rumen epithelium. The distinctive epimural bacterial communities suggest that Firmicutes, together with other epithelial-specific species, may have additional functions other than food digestion. Copyright © 2011 Elsevier B.V. All rights reserved.

  1. Specific detection and identification of [Actinobacillus] muris by PCR using primers targeting the 16S-23S rRNA internal transcribed spacer regions.

    PubMed

    Benga, Laurentiu; Benten, W Peter M; Engelhardt, Eva; Gougoula, Christina; Sager, Martin

    2013-08-01

    [Actinobacillus] muris represents along with [Pasteurella] pneumotropica the most prevalent Pasteurellaceae species isolated from the laboratory mouse. Despite the biological and economic importance of Pasteurellaceae in relation to experimental animals, no molecular based methods for the identification of [A.] muris are available. The aim of the present investigation was to develop a PCR method allowing detection and identification of [A.] muris. In this assay, a Pasteurellaceae common forward primer based on a conserved region of the 16S rRNA gene was used in conjunction with two different reverse primers specific for [A.] muris, targeting the 16S-23S internal transcribed spacer sequences. The specificity of the assay was tested against 78 reference and clinical isolates of Pasteurellaceae, including 37 strains of [A.] muris. In addition, eight other mice associated bacterial species which could pose a diagnostic problem were included. The assay showed 100% sensitivity and 97.95% specificity. Identification of the clinical isolates was validated by ITS profiling and when necessary by 16S rRNA sequencing. This multiplex PCR represents the first molecular tool able to detect [A.] muris and may become a reliable alternative to the present diagnostic methods. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Detection of a mixed infection in a culture-negative brain abscess by broad-spectrum bacterial 16S rRNA gene PCR.

    PubMed

    Keller, Peter M; Rampini, Silvana K; Bloemberg, Guido V

    2010-06-01

    We describe the identification of two bacterial pathogens from a culture-negative brain abscess by the use of broad-spectrum 16S rRNA gene PCR. Simultaneous detection of Fusobacterium nucleatum and Porphyromonas endodontalis was possible due to a 24-bp length difference of their partially amplified 16S rRNA genes, which allowed separation by high-resolution polyacrylamide gel electrophoresis.

  3. Vertical Distribution of Bacterial Communities in the Indian Ocean as Revealed by Analyses of 16S rRNA and nasA Genes.

    PubMed

    Jiang, Xuexia; Jiao, Nianzhi

    2016-09-01

    Bacteria play an important role in the marine biogeochemical cycles. However, research on the bacterial community structure of the Indian Ocean is scarce, particularly within the vertical dimension. In this study, we investigated the bacterial diversity of the pelagic, mesopelagic and bathypelagic zones of the southwestern Indian Ocean (50.46°E, 37.71°S). The clone libraries constructed by 16S rRNA gene sequence revealed that most phylotypes retrieved from the Indian Ocean were highly divergent from those retrieved from other oceans. Vertical differences were observed based on the analysis of natural bacterial community populations derived from the 16S rRNA gene sequences. Based on the analysis of the nasA gene sequences from GenBank database, a pair of general primers was developed and used to amplify the bacterial nitrate-assimilating populations. Environmental factors play an important role in mediating the bacterial communities in the Indian Ocean revealed by canonical correlation analysis.

  4. Comparative analysis of bacteria associated with different mosses by 16S rRNA and 16S rDNA sequencing.

    PubMed

    Tian, Yang; Li, Yan Hong

    2017-01-01

    To understand the differences of the bacteria associated with different mosses, a phylogenetic study of bacterial communities in three mosses was carried out based on 16S rDNA and 16S rRNA sequencing. The mosses used were Hygroamblystegium noterophilum, Entodon compressus and Grimmia montana, representing hygrophyte, shady plant and xerophyte, respectively. In total, the operational taxonomic units (OTUs), richness and diversity were different regardless of the moss species and the library level. All the examined 1183 clones were assigned to 248 OTUs, 56 genera were assigned in rDNA libraries and 23 genera were determined at the rRNA level. Proteobacteria and Bacteroidetes were considered as the most dominant phyla in all the libraries, whereas abundant Actinobacteria and Acidobacteria were detected in the rDNA library of Entodon compressus and approximately 24.7% clones were assigned to Candidate division TM7 in Grimmia montana at rRNA level. The heatmap showed the bacterial profiles derived from rRNA and rDNA were partly overlapping. However, the principle component analysis of all the profiles derived from rDNA showed sharper differences between the different mosses than that of rRNA-based profiles. This suggests that the metabolically active bacterial compositions in different mosses were more phylogenetically similar and the differences of the bacteria associated with different mosses were mainly detected at the rDNA level. Obtained results clearly demonstrate that combination of 16S rDNA and 16S rRNA sequencing is preferred approach to have a good understanding on the constitution of the microbial communities in mosses. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Use of 16S-23S rRNA spacer-region (SR)-PCR for identification of intestinal clostridia.

    PubMed

    Song, Yuli; Liu, Chengxu; Molitoris, Denise; Tomzynski, Thomas J; Mc Teague, Maureen; Read, Erik; Finegold, Sydney M

    2002-12-01

    The suitability of a species identification technique based on PCR analysis of 16S-23S rRNA spacer region (SR) polymorphism for human intestinal Clostridium species was evaluated. This SR-PCR based technique is highly reproducible and successfully differentiated the strains tested, which included 17 ATCC type strains of Clostridium and 152 human stool Clostridium isolates, at the species or intraspecies level. Ninety-eight of 152 stool isolates, including C. bifermentans, C. butyricum, C. cadaveris, C. orbiscindens, C. paraputrificum, C. pefringens, C. ramosum, C. scindens, C. spiroforme, C. symbiosum and C. tertium, were identified to species level by SR-PCR patterns that were identical to those of their corresponding ATCC type strains. The other 54 stool isolates distributed among ten SR-PCR patterns that are unique and possibly represent ten novel Clostridium species or subspecies. The species identification obtained by SR-PCR pattern analysis completely agreed with that obtained by 16S rRNA sequencing, and led to identification that clearly differed from that obtained by cellular fatty acid analysis for 23/152 strains (15%). These results indicate that SR-PCR provides an accurate and rapid molecular method for the identification of human intestinal Clostridium species.

  6. Phytoplasma phylogenetics based on analysis of secA and 23S rRNA gene sequences for improved resolution of candidate species of 'Candidatus Phytoplasma'.

    PubMed

    Hodgetts, Jennifer; Boonham, Neil; Mumford, Rick; Harrison, Nigel; Dickinson, Matthew

    2008-08-01

    Phytoplasma phylogenetics has focused primarily on sequences of the non-coding 16S rRNA gene and the 16S-23S rRNA intergenic spacer region (16-23S ISR), and primers that enable amplification of these regions from all phytoplasmas by PCR are well established. In this study, primers based on the secA gene have been developed into a semi-nested PCR assay that results in a sequence of the expected size (about 480 bp) from all 34 phytoplasmas examined, including strains representative of 12 16Sr groups. Phylogenetic analysis of secA gene sequences showed similar clustering of phytoplasmas when compared with clusters resolved by similar sequence analyses of a 16-23S ISR-23S rRNA gene contig or of the 16S rRNA gene alone. The main differences between trees were in the branch lengths, which were elongated in the 16-23S ISR-23S rRNA gene tree when compared with the 16S rRNA gene tree and elongated still further in the secA gene tree, despite this being a shorter sequence. The improved resolution in the secA gene-derived phylogenetic tree resulted in the 16SrII group splitting into two distinct clusters, while phytoplasmas associated with coconut lethal yellowing-type diseases split into three distinct groups, thereby supporting past proposals that they represent different candidate species within 'Candidatus Phytoplasma'. The ability to differentiate 16Sr groups and subgroups by virtual RFLP analysis of secA gene sequences suggests that this gene may provide an informative alternative molecular marker for pathogen identification and diagnosis of phytoplasma diseases.

  7. Analysis of the function of E. coli 23S rRNA helix-loop 69 by mutagenesis

    PubMed Central

    Liiv, Aivar; Karitkina, Diana; Maiväli, Ülo; Remme, Jaanus

    2005-01-01

    Background The ribosome is a two-subunit enzyme known to exhibit structural dynamism during protein synthesis. The intersubunit bridges have been proposed to play important roles in decoding, translocation, and the peptidyl transferase reaction; yet the physical nature of their contributions is ill understood. An intriguing intersubunit bridge, B2a, which contains 23S rRNA helix 69 as a major component, has been implicated by proximity in a number of catalytically important regions. In addition to contacting the small ribosomal subunit, helix 69 contacts both the A and P site tRNAs and several translation factors. Results We scanned the loop of helix 69 by mutagenesis and analyzed the mutant ribosomes using a plasmid-borne IPTG-inducible expression system. We assayed the effects of 23S rRNA mutations on cell growth, contribution of mutant ribosomes to cellular polysome pools and the ability of mutant ribosomes to function in cell-free translation. Mutations A1912G, and A1919G have very strong growth phenotypes, are inactive during in vitro protein synthesis, and under-represented in the polysomes. Mutation Ψ1917C has a very strong growth phenotype and leads to a general depletion of the cellular polysome pool. Mutation A1916G, having a modest growth phenotype, is apparently defective in the assembly of the 70S ribosome. Conclusion Mutations A1912G, A1919G, and Ψ1917C of 23S rRNA strongly inhibit translation. Mutation A1916G causes a defect in the 50S subunit or 70S formation. Mutations Ψ1911C, A1913G, C1914A, Ψ1915C, and A1918G lack clear phenotypes. PMID:16053518

  8. Rapid identification of 11 human intestinal Lactobacillus species by multiplex PCR assays using group- and species-specific primers derived from the 16S-23S rRNA intergenic spacer region and its flanking 23S rRNA.

    PubMed

    Song, Y; Kato, N; Liu, C; Matsumiya, Y; Kato, H; Watanabe, K

    2000-06-15

    Rapid and reliable two-step multiplex polymerase chain reaction (PCR) assays were established to identify human intestinal lactobacilli; a multiplex PCR was used for grouping of lactobacilli with a mixture of group-specific primers followed by four multiplex PCR assays with four sorts of species-specific primer mixtures for identification at the species level. Primers used were designed from nucleotide sequences of the 16S-23S rRNA intergenic spacer region and its flanking 23S rRNA gene of members of the genus Lactobacillus which are commonly isolated from human stool specimens: Lactobacillus acidophilus, Lactobacillus crispatus, Lactobacillus delbrueckii (ssp. bulgaricus and ssp. lactis), Lactobacillus fermentum, Lactobacillus gasseri, Lactobacillus jensenii, Lactobacillus paracasei (ssp. paracasei and ssp. tolerans), Lactobacillus plantarum, Lactobacillus reuteri, Lactobacillus rhamnosus and Lactobacillus salivarius (ssp. salicinius and ssp. salivarius). The established two-step multiplex PCR assays were applied to the identification of 84 Lactobacillus strains isolated from human stool specimens and the PCR results were consistent with the results from the DNA-DNA hybridization assay. These results suggest that the multiplex PCR system established in this study is a simple, rapid and reliable method for the identification of common Lactobacillus isolates from human stool samples.

  9. A framework for establishing predictive relationships between specific bacterial 16S rRNA sequence abundances and biotransformation rates.

    PubMed

    Helbling, Damian E; Johnson, David R; Lee, Tae Kwon; Scheidegger, Andreas; Fenner, Kathrin

    2015-03-01

    The rates at which wastewater treatment plant (WWTP) microbial communities biotransform specific substrates can differ by orders of magnitude among WWTP communities. Differences in taxonomic compositions among WWTP communities may predict differences in the rates of some types of biotransformations. In this work, we present a novel framework for establishing predictive relationships between specific bacterial 16S rRNA sequence abundances and biotransformation rates. We selected ten WWTPs with substantial variation in their environmental and operational metrics and measured the in situ ammonia biotransformation rate constants in nine of them. We isolated total RNA from samples from each WWTP and analyzed 16S rRNA sequence reads. We then developed multivariate models between the measured abundances of specific bacterial 16S rRNA sequence reads and the ammonia biotransformation rate constants. We constructed model scenarios that systematically explored the effects of model regularization, model linearity and non-linearity, and aggregation of 16S rRNA sequences into operational taxonomic units (OTUs) as a function of sequence dissimilarity threshold (SDT). A large percentage (greater than 80%) of model scenarios resulted in well-performing and significant models at intermediate SDTs of 0.13-0.14 and 0.26. The 16S rRNA sequences consistently selected into the well-performing and significant models at those SDTs were classified as Nitrosomonas and Nitrospira groups. We then extend the framework by applying it to the biotransformation rate constants of ten micropollutants measured in batch reactors seeded with the ten WWTP communities. We identified phylogenetic groups that were robustly selected into all well-performing and significant models constructed with biotransformation rates of isoproturon, propachlor, ranitidine, and venlafaxine. These phylogenetic groups can be used as predictive biomarkers of WWTP microbial community activity towards these specific

  10. Impact of training sets on classification of high-throughput bacterial 16s rRNA gene surveys

    PubMed Central

    Werner, Jeffrey J; Koren, Omry; Hugenholtz, Philip; DeSantis, Todd Z; Walters, William A; Caporaso, J Gregory; Angenent, Largus T; Knight, Rob; Ley, Ruth E

    2012-01-01

    Taxonomic classification of the thousands–millions of 16S rRNA gene sequences generated in microbiome studies is often achieved using a naïve Bayesian classifier (for example, the Ribosomal Database Project II (RDP) classifier), due to favorable trade-offs among automation, speed and accuracy. The resulting classification depends on the reference sequences and taxonomic hierarchy used to train the model; although the influence of primer sets and classification algorithms have been explored in detail, the influence of training set has not been characterized. We compared classification results obtained using three different publicly available databases as training sets, applied to five different bacterial 16S rRNA gene pyrosequencing data sets generated (from human body, mouse gut, python gut, soil and anaerobic digester samples). We observed numerous advantages to using the largest, most diverse training set available, that we constructed from the Greengenes (GG) bacterial/archaeal 16S rRNA gene sequence database and the latest GG taxonomy. Phylogenetic clusters of previously unclassified experimental sequences were identified with notable improvements (for example, 50% reduction in reads unclassified at the phylum level in mouse gut, soil and anaerobic digester samples), especially for phylotypes belonging to specific phyla (Tenericutes, Chloroflexi, Synergistetes and Candidate phyla TM6, TM7). Trimming the reference sequences to the primer region resulted in systematic improvements in classification depth, and greatest gains at higher confidence thresholds. Phylotypes unclassified at the genus level represented a greater proportion of the total community variation than classified operational taxonomic units in mouse gut and anaerobic digester samples, underscoring the need for greater diversity in existing reference databases. PMID:21716311

  11. Detection of a Mixed Infection in a Culture-Negative Brain Abscess by Broad-Spectrum Bacterial 16S rRNA Gene PCR ▿ †

    PubMed Central

    Keller, Peter M.; Rampini, Silvana K.; Bloemberg, Guido V.

    2010-01-01

    We describe the identification of two bacterial pathogens from a culture-negative brain abscess by the use of broad-spectrum 16S rRNA gene PCR. Simultaneous detection of Fusobacterium nucleatum and Porphyromonas endodontalis was possible due to a 24-bp length difference of their partially amplified 16S rRNA genes, which allowed separation by high-resolution polyacrylamide gel electrophoresis. PMID:20392909

  12. Mapping of ribosomal 23S ribosomal RNA modifications in Clostridium sporogenes.

    PubMed

    Kirpekar, Finn; Hansen, Lykke H; Mundus, Julie; Tryggedsson, Stine; Teixeira Dos Santos, Patrícia; Ntokou, Eleni; Vester, Birte

    2018-06-27

    All organisms contain RNA modifications in their ribosomal RNA (rRNA), but the importance, positions and exact function of these are still not fully elucidated. Various functions such as stabilising structures, controlling ribosome assembly and facilitating interactions have been suggested and in some cases substantiated. Bacterial rRNA contains much fewer modifications than eukaryotic rRNA. The rRNA modification patterns in bacteria differ from each other, but too few organisms have been mapped to draw general conclusions. This study maps 23S ribosomal RNA modifications in Clostridium sporogenes that can be characterised as a non-toxin producing Clostridium botulinum. Clostridia are able to sporulate and thereby survive harsh conditions, and are in general considered to be resilient to antibiotics. Selected regions of the 23S rRNA were investigated by mass spectrometry and by primer extension analysis to pinpoint modified sites and the nature of the modifications. Apparently, C. sporogenes 23S rRNA contains few modifications compared to other investigated bacteria. No modifications were identified in domain II and III of 23S rRNA. Three modifications were identified in domain IV, all of which have also been found in other organisms. Two unusual modifications were identified in domain V, methylated dihydrouridine at position U2449 and dihydrouridine at position U2500 (Escherichia coli numbering), in addition to four previously known modified positions. The enzymes responsible for the modifications were searched for in the C. sporogenes genome using BLAST with characterised enzymes as query. The search identified genes potentially coding for RNA modifying enzymes responsible for most of the found modifications.

  13. Prevalence of Corynebacterial 16S rRNA Sequences in Patients with Bacterial and “Nonbacterial” Prostatitis

    PubMed Central

    Tanner, Michael A.; Shoskes, Daniel; Shahed, Asha; Pace, Norman R.

    1999-01-01

    The etiology of chronic prostatitis syndromes in men is controversial, particularly when positive cultures for established uropathogens are lacking. Although identification of bacteria in prostatic fluid has relied on cultivation and microscopy, most microorganisms in the environment, including some human pathogens, are resistant to cultivation. We report here on an rRNA-based molecular phylogenetic approach to the identification of bacteria in prostate fluid from prostatitis patients. Positive bacterial signals were seen for 65% of patients with chronic prostatitis overall. Seven of 11 patients with bacterial signals but none of 6 patients without bacterial signals were cured with antibiotic-based therapy. Results indicate the occurrence in the prostate fluid of a wide spectrum of bacterial species representing several genera. Most rRNA genes were closely related to those of species belonging to the genera Corynebacterium, Staphylococcus, Peptostreptococcus, Streptococcus, and Escherichia. Unexpectedly, a wide diversity of Corynebacterium species was found in high proportion compared to the proportions of other bacterial species found. A subset of these 16S rRNA sequences represent those of undescribed species on the basis of their positions in phylogenetic trees. These uncharacterized organisms were not detected in control samples, suggesting that the organisms have a role in the disease or are the consequence of the disease. These studies show that microorganisms associated with prostatitis generally occur as complex microbial communities that differ between patients. The results also indicate that microbial communities distinct from those associated with prostatitis may occur at low levels in normal prostatic fluid. PMID:10325338

  14. SOT1, a pentatricopeptide repeat protein with a small MutS-related domain, is required for correct processing of plastid 23S-4.5S rRNA precursors in Arabidopsis thaliana.

    PubMed

    Wu, Wenjuan; Liu, Sheng; Ruwe, Hannes; Zhang, Delin; Melonek, Joanna; Zhu, Yajuan; Hu, Xupeng; Gusewski, Sandra; Yin, Ping; Small, Ian D; Howell, Katharine A; Huang, Jirong

    2016-03-01

    Ribosomal RNA processing is essential for plastid ribosome biogenesis, but is still poorly understood in higher plants. Here, we show that SUPPRESSOR OF THYLAKOID FORMATION1 (SOT1), a plastid-localized pentatricopeptide repeat (PPR) protein with a small MutS-related domain, is required for maturation of the 23S-4.5S rRNA dicistron. Loss of SOT1 function leads to slower chloroplast development, suppression of leaf variegation, and abnormal 23S and 4.5S processing. Predictions based on the PPR motif sequences identified the 5' end of the 23S-4.5S rRNA dicistronic precursor as a putative SOT1 binding site. This was confirmed by electrophoretic mobility shift assay, and by loss of the abundant small RNA 'footprint' associated with this site in sot1 mutants. We found that more than half of the 23S-4.5S rRNA dicistrons in sot1 mutants contain eroded and/or unprocessed 5' and 3' ends, and that the endonucleolytic cleavage product normally released from the 5' end of the precursor is absent in a sot1 null mutant. We postulate that SOT1 binding protects the 5' extremity of the 23S-4.5S rRNA dicistron from exonucleolytic attack, and favours formation of the RNA structure that allows endonucleolytic processing of its 5' and 3' ends. © 2016 The Authors The Plant Journal © 2016 John Wiley & Sons Ltd.

  15. From learning taxonomies to phylogenetic learning: integration of 16S rRNA gene data into FAME-based bacterial classification.

    PubMed

    Slabbinck, Bram; Waegeman, Willem; Dawyndt, Peter; De Vos, Paul; De Baets, Bernard

    2010-01-30

    Machine learning techniques have shown to improve bacterial species classification based on fatty acid methyl ester (FAME) data. Nonetheless, FAME analysis has a limited resolution for discrimination of bacteria at the species level. In this paper, we approach the species classification problem from a taxonomic point of view. Such a taxonomy or tree is typically obtained by applying clustering algorithms on FAME data or on 16S rRNA gene data. The knowledge gained from the tree can then be used to evaluate FAME-based classifiers, resulting in a novel framework for bacterial species classification. In view of learning in a taxonomic framework, we consider two types of trees. First, a FAME tree is constructed with a supervised divisive clustering algorithm. Subsequently, based on 16S rRNA gene sequence analysis, phylogenetic trees are inferred by the NJ and UPGMA methods. In this second approach, the species classification problem is based on the combination of two different types of data. Herein, 16S rRNA gene sequence data is used for phylogenetic tree inference and the corresponding binary tree splits are learned based on FAME data. We call this learning approach 'phylogenetic learning'. Supervised Random Forest models are developed to train the classification tasks in a stratified cross-validation setting. In this way, better classification results are obtained for species that are typically hard to distinguish by a single or flat multi-class classification model. FAME-based bacterial species classification is successfully evaluated in a taxonomic framework. Although the proposed approach does not improve the overall accuracy compared to flat multi-class classification, it has some distinct advantages. First, it has better capabilities for distinguishing species on which flat multi-class classification fails. Secondly, the hierarchical classification structure allows to easily evaluate and visualize the resolution of FAME data for the discrimination of bacterial

  16. From learning taxonomies to phylogenetic learning: Integration of 16S rRNA gene data into FAME-based bacterial classification

    PubMed Central

    2010-01-01

    Background Machine learning techniques have shown to improve bacterial species classification based on fatty acid methyl ester (FAME) data. Nonetheless, FAME analysis has a limited resolution for discrimination of bacteria at the species level. In this paper, we approach the species classification problem from a taxonomic point of view. Such a taxonomy or tree is typically obtained by applying clustering algorithms on FAME data or on 16S rRNA gene data. The knowledge gained from the tree can then be used to evaluate FAME-based classifiers, resulting in a novel framework for bacterial species classification. Results In view of learning in a taxonomic framework, we consider two types of trees. First, a FAME tree is constructed with a supervised divisive clustering algorithm. Subsequently, based on 16S rRNA gene sequence analysis, phylogenetic trees are inferred by the NJ and UPGMA methods. In this second approach, the species classification problem is based on the combination of two different types of data. Herein, 16S rRNA gene sequence data is used for phylogenetic tree inference and the corresponding binary tree splits are learned based on FAME data. We call this learning approach 'phylogenetic learning'. Supervised Random Forest models are developed to train the classification tasks in a stratified cross-validation setting. In this way, better classification results are obtained for species that are typically hard to distinguish by a single or flat multi-class classification model. Conclusions FAME-based bacterial species classification is successfully evaluated in a taxonomic framework. Although the proposed approach does not improve the overall accuracy compared to flat multi-class classification, it has some distinct advantages. First, it has better capabilities for distinguishing species on which flat multi-class classification fails. Secondly, the hierarchical classification structure allows to easily evaluate and visualize the resolution of FAME data for

  17. Detailed analysis of RNA-protein interactions within the bacterial ribosomal protein L5/5S rRNA complex.

    PubMed

    Perederina, Anna; Nevskaya, Natalia; Nikonov, Oleg; Nikulin, Alexei; Dumas, Philippe; Yao, Min; Tanaka, Isao; Garber, Maria; Gongadze, George; Nikonov, Stanislav

    2002-12-01

    The crystal structure of ribosomal protein L5 from Thermus thermophilus complexed with a 34-nt fragment comprising helix III and loop C of Escherichia coli 5S rRNA has been determined at 2.5 A resolution. The protein specifically interacts with the bulged nucleotides at the top of loop C of 5S rRNA. The rRNA and protein contact surfaces are strongly stabilized by intramolecular interactions. Charged and polar atoms forming the network of conserved intermolecular hydrogen bonds are located in two narrow planar parallel layers belonging to the protein and rRNA, respectively. The regions, including these atoms conserved in Bacteria and Archaea, can be considered an RNA-protein recognition module. Comparison of the T. thermophilus L5 structure in the RNA-bound form with the isolated Bacillus stearothermophilus L5 structure shows that the RNA-recognition module on the protein surface does not undergo significant changes upon RNA binding. In the crystal of the complex, the protein interacts with another RNA molecule in the asymmetric unit through the beta-sheet concave surface. This protein/RNA interface simulates the interaction of L5 with 23S rRNA observed in the Haloarcula marismortui 50S ribosomal subunit.

  18. Detailed analysis of RNA-protein interactions within the bacterial ribosomal protein L5/5S rRNA complex.

    PubMed Central

    Perederina, Anna; Nevskaya, Natalia; Nikonov, Oleg; Nikulin, Alexei; Dumas, Philippe; Yao, Min; Tanaka, Isao; Garber, Maria; Gongadze, George; Nikonov, Stanislav

    2002-01-01

    The crystal structure of ribosomal protein L5 from Thermus thermophilus complexed with a 34-nt fragment comprising helix III and loop C of Escherichia coli 5S rRNA has been determined at 2.5 A resolution. The protein specifically interacts with the bulged nucleotides at the top of loop C of 5S rRNA. The rRNA and protein contact surfaces are strongly stabilized by intramolecular interactions. Charged and polar atoms forming the network of conserved intermolecular hydrogen bonds are located in two narrow planar parallel layers belonging to the protein and rRNA, respectively. The regions, including these atoms conserved in Bacteria and Archaea, can be considered an RNA-protein recognition module. Comparison of the T. thermophilus L5 structure in the RNA-bound form with the isolated Bacillus stearothermophilus L5 structure shows that the RNA-recognition module on the protein surface does not undergo significant changes upon RNA binding. In the crystal of the complex, the protein interacts with another RNA molecule in the asymmetric unit through the beta-sheet concave surface. This protein/RNA interface simulates the interaction of L5 with 23S rRNA observed in the Haloarcula marismortui 50S ribosomal subunit. PMID:12515387

  19. Use of 16S rRNA Gene for Identification of a Broad Range of Clinically Relevant Bacterial Pathogens

    PubMed Central

    Srinivasan, Ramya; Karaoz, Ulas; Volegova, Marina; MacKichan, Joanna; Kato-Maeda, Midori; Miller, Steve; Nadarajan, Rohan; Brodie, Eoin L.; Lynch, Susan V.

    2015-01-01

    According to World Health Organization statistics of 2011, infectious diseases remain in the top five causes of mortality worldwide. However, despite sophisticated research tools for microbial detection, rapid and accurate molecular diagnostics for identification of infection in humans have not been extensively adopted. Time-consuming culture-based methods remain to the forefront of clinical microbial detection. The 16S rRNA gene, a molecular marker for identification of bacterial species, is ubiquitous to members of this domain and, thanks to ever-expanding databases of sequence information, a useful tool for bacterial identification. In this study, we assembled an extensive repository of clinical isolates (n = 617), representing 30 medically important pathogenic species and originally identified using traditional culture-based or non-16S molecular methods. This strain repository was used to systematically evaluate the ability of 16S rRNA for species level identification. To enable the most accurate species level classification based on the paucity of sequence data accumulated in public databases, we built a Naïve Bayes classifier representing a diverse set of high-quality sequences from medically important bacterial organisms. We show that for species identification, a model-based approach is superior to an alignment based method. Overall, between 16S gene based and clinical identities, our study shows a genus-level concordance rate of 96% and a species-level concordance rate of 87.5%. We point to multiple cases of probable clinical misidentification with traditional culture based identification across a wide range of gram-negative rods and gram-positive cocci as well as common gram-negative cocci. PMID:25658760

  20. RlmCD-mediated U747 methylation promotes efficient G748 methylation by methyltransferase RlmAII in 23S rRNA in Streptococcus pneumoniae; interplay between two rRNA methylations responsible for telithromycin susceptibility

    PubMed Central

    Shoji, Tatsuma; Takaya, Akiko; Sato, Yoshiharu; Kimura, Satoshi; Suzuki, Tsutomu; Yamamoto, Tomoko

    2015-01-01

    Adenine at position 752 in a loop of helix 35 from positions 745 to 752 in domain II of 23S rRNA is involved in binding to the ribosome of telithromycin (TEL), a member of ketolides. Methylation of guanine at position 748 by the intrinsic methyltransferase RlmAII enhances binding of telithromycin (TEL) to A752 in Streptococcus pneumoniae. We have found that another intrinsic methylation of the adjacent uridine at position 747 enhances G748 methylation by RlmAII, rendering TEL susceptibility. U747 and another nucleotide, U1939, were methylated by the dual-specific methyltransferase RlmCD encoded by SP_1029 in S. pneumoniae. Inactivation of RlmCD reduced N1-methylated level of G748 by RlmAII in vivo, leading to TEL resistance when the nucleotide A2058, located in domain V of 23S rRNA, was dimethylated by the dimethyltransferase Erm(B). In vitro methylation of rRNA showed that RlmAII activity was significantly enhanced by RlmCD-mediated pre-methylation of 23S rRNA. These results suggest that RlmCD-mediated U747 methylation promotes efficient G748 methylation by RlmAII, thereby facilitating TEL binding to the ribosome. PMID:26365244

  1. Rapid identification of probiotic Lactobacillus species by multiplex PCR using species-specific primers based on the region extending from 16S rRNA through 23S rRNA.

    PubMed

    Kwon, Hyuk-Sang; Yang, Eun-Hee; Yeon, Seung-Woo; Kang, Byoung-Hwa; Kim, Tae-Yong

    2004-10-15

    This study aimed to develop a novel multiplex polymerase chain reaction (PCR) primer set for the identification of seven probiotic Lactobacillus species such as Lactobacillus acidophilus, Lactobacillus delbrueckii, Lactobacillus casei, Lactobacillus gasseri, Lactobacillus plantarum, Lactobacillus reuteri and Lactobacillus rhamnosus. The primer set, comprising of seven specific and two conserved primers, was derived from the integrated sequences of 16S and 23S rRNA genes and their rRNA intergenic spacer region of each species. It was able to identify the seven target species with 93.6% accuracy, which exceeds that of the general biochemical methods. The phylogenetic analyses, using 16S rDNA sequences of the probiotic isolates, also provided further support that the results from the multiplex PCR assay were trustworthy. Taken together, we suggest that the multiplex primer set is an efficient tool for simple, rapid and reliable identification of seven Lactobacillus species.

  2. RlmCD-mediated U747 methylation promotes efficient G748 methylation by methyltransferase RlmAII in 23S rRNA in Streptococcus pneumoniae; interplay between two rRNA methylations responsible for telithromycin susceptibility.

    PubMed

    Shoji, Tatsuma; Takaya, Akiko; Sato, Yoshiharu; Kimura, Satoshi; Suzuki, Tsutomu; Yamamoto, Tomoko

    2015-10-15

    Adenine at position 752 in a loop of helix 35 from positions 745 to 752 in domain II of 23S rRNA is involved in binding to the ribosome of telithromycin (TEL), a member of ketolides. Methylation of guanine at position 748 by the intrinsic methyltransferase RlmA(II) enhances binding of telithromycin (TEL) to A752 in Streptococcus pneumoniae. We have found that another intrinsic methylation of the adjacent uridine at position 747 enhances G748 methylation by RlmA(II), rendering TEL susceptibility. U747 and another nucleotide, U1939, were methylated by the dual-specific methyltransferase RlmCD encoded by SP_1029 in S. pneumoniae. Inactivation of RlmCD reduced N1-methylated level of G748 by RlmA(II) in vivo, leading to TEL resistance when the nucleotide A2058, located in domain V of 23S rRNA, was dimethylated by the dimethyltransferase Erm(B). In vitro methylation of rRNA showed that RlmA(II) activity was significantly enhanced by RlmCD-mediated pre-methylation of 23S rRNA. These results suggest that RlmCD-mediated U747 methylation promotes efficient G748 methylation by RlmA(II), thereby facilitating TEL binding to the ribosome. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  3. Functional genetic selection of Helix 66 in Escherichia coli 23S rRNA identified the eukaryotic-binding sequence for ribosomal protein L2

    PubMed Central

    Kitahara, Kei; Kajiura, Akimasa; Sato, Neuza Satomi; Suzuki, Tsutomu

    2007-01-01

    Ribosomal protein L2 is a highly conserved primary 23S rRNA-binding protein. L2 specifically recognizes the internal bulge sequence in Helix 66 (H66) of 23S rRNA and is localized to the intersubunit space through formation of bridge B7b with 16S rRNA. The L2-binding site in H66 is highly conserved in prokaryotic ribosomes, whereas the corresponding site in eukaryotic ribosomes has evolved into distinct classes of sequences. We performed a systematic genetic selection of randomized rRNA sequences in Escherichia coli, and isolated 20 functional variants of the L2-binding site. The isolated variants consisted of eukaryotic sequences, in addition to prokaryotic sequences. These results suggest that L2/L8e does not recognize a specific base sequence of H66, but rather a characteristic architecture of H66. The growth phenotype of the isolated variants correlated well with their ability of subunit association. Upon continuous cultivation of a deleterious variant, we isolated two spontaneous mutations within domain IV of 23S rRNA that compensated for its weak subunit association, and alleviated its growth defect, implying that functional interactions between intersubunit bridges compensate ribosomal function. PMID:17553838

  4. Use of 16S rRNA gene for identification of a broad range of clinically relevant bacterial pathogens

    DOE PAGES

    Srinivasan, Ramya; Karaoz, Ulas; Volegova, Marina; ...

    2015-02-06

    According to World Health Organization statistics of 2011, infectious diseases remain in the top five causes of mortality worldwide. However, despite sophisticated research tools for microbial detection, rapid and accurate molecular diagnostics for identification of infection in humans have not been extensively adopted. Time-consuming culture-based methods remain to the forefront of clinical microbial detection. The 16S rRNA gene, a molecular marker for identification of bacterial species, is ubiquitous to members of this domain and, thanks to ever-expanding databases of sequence information, a useful tool for bacterial identification. In this study, we assembled an extensive repository of clinical isolates (n =more » 617), representing 30 medically important pathogenic species and originally identified using traditional culture-based or non-16S molecular methods. This strain repository was used to systematically evaluate the ability of 16S rRNA for species level identification. To enable the most accurate species level classification based on the paucity of sequence data accumulated in public databases, we built a Naïve Bayes classifier representing a diverse set of high-quality sequences from medically important bacterial organisms. We show that for species identification, a model-based approach is superior to an alignment based method. Overall, between 16S gene based and clinical identities, our study shows a genus-level concordance rate of 96% and a species-level concordance rate of 87.5%. We point to multiple cases of probable clinical misidentification with traditional culture based identification across a wide range of gram-negative rods and gram-positive cocci as well as common gram-negative cocci.« less

  5. Resistance mechanisms of linezolid-nonsusceptible enterococci in Korea: low rate of 23S rRNA mutations in Enterococcus faecium.

    PubMed

    Lee, Sae-Mi; Huh, Hee Jae; Song, Dong Joon; Shim, Hyang Jin; Park, Kyung Sun; Kang, Cheol-In; Ki, Chang-Seok; Lee, Nam Yong

    2017-12-01

    To investigate linezolid-resistance mechanisms in linezolid-nonsusceptible enterococci (LNSE) isolated from a tertiary hospital in Korea. Enterococcal isolates exhibiting linezolid MICs ≥4 mg l -1 that were isolated between December 2011 and May 2016 were investigated by PCR and sequencing for mutations in 23S rRNA or ribosomal proteins (L3, L4 and L22) and for the presence of cfr, cfr(B) and optrA genes.Results/Key findings. Among 135 LNSE (87 Enterococcus faecium and 48 Enterococcus faecalis isolates), 39.1 % (34/87) of E. faecium and 18.8 % (9/48) of E. faecalis isolates were linezolid-resistant. The optrA carriage was the dominant mechanism in E. faecalis: 13 isolates, including 10 E. faecalis [70 % (7/10) linezolid-resistant and 30 % (3/10) linezolid-intermediate] and three E. faecium [33.3 % (1/3) linezolid-resistant and 66.7 % (2/3) linezolid-intermediate], contained the optrA gene. G2576T mutations in the 23S rRNA gene were detected only in E. faecium [14 isolates; 71.4 % (10/14) linezolid-resistant and 28.6 % (4/14) linezolid-intermediate]. One linezolid-intermediate E. faecium harboured a L22 protein alteration (Ser77Thr). No isolates contained cfr or cfr(B) genes and any L3 or L4 protein alterations. No genetic mechanism of resistance was identified for 67.6 % (23/34) of linezolid-resistant E. faecium. A low rate of 23S rRNA mutations and the absence of known linezolid-resistance mechanisms in the majority of E. faecium isolates suggest regional differences in the mechanisms of linezolid resistance and the possibility of additional mechanisms.

  6. Analysis of 16S-23S rRNA intergenic spacer regions of Vibrio cholerae and Vibrio mimicus.

    PubMed

    Chun, J; Huq, A; Colwell, R R

    1999-05-01

    Vibrio cholerae identification based on molecular sequence data has been hampered by a lack of sequence variation from the closely related Vibrio mimicus. The two species share many genes coding for proteins, such as ctxAB, and show almost identical 16S DNA coding for rRNA (rDNA) sequences. Primers targeting conserved sequences flanking the 3' end of the 16S and the 5' end of the 23S rDNAs were used to amplify the 16S-23S rRNA intergenic spacer regions of V. cholerae and V. mimicus. Two major (ca. 580 and 500 bp) and one minor (ca. 750 bp) amplicons were consistently generated for both species, and their sequences were determined. The largest fragment contains three tRNA genes (tDNAs) coding for tRNAGlu, tRNALys, and tRNAVal, which has not previously been found in bacteria examined to date. The 580-bp amplicon contained tDNAIle and tDNAAla, whereas the 500-bp fragment had single tDNA coding either tRNAGlu or tRNAAla. Little variation, i.e., 0 to 0.4%, was found among V. cholerae O1 classical, O1 El Tor, and O139 epidemic strains. Slightly more variation was found against the non-O1/non-O139 serotypes (ca. 1% difference) and V. mimicus (2 to 3% difference). A pair of oligonucleotide primers were designed, based on the region differentiating all of V. cholerae strains from V. mimicus. The PCR system developed was subsequently evaluated by using representatives of V. cholerae from environmental and clinical sources, and of other taxa, including V. mimicus. This study provides the first molecular tool for identifying the species V. cholerae.

  7. Analysis of 16S-23S intergenic spacer regions of the rRNA operons in Edwardsiella ictaluri and Edwardsiella tarda isolates from fish.

    PubMed

    Panangala, V S; van Santen, V L; Shoemaker, C A; Klesius, P H

    2005-01-01

    To analyse interspecies and intraspecies differences based on the 16S-23S rRNA intergenic spacer region (ISR) sequences of the fish pathogens Edwardsiella ictaluri and Edwardsiella tarda. The 16S-23S rRNA spacer regions of 19 Edw. ictaluri and four Edw. tarda isolates from four geographical regions were amplified by PCR with primers complementary to conserved sequences within the flanking 16S-23S rRNA coding sequences. Two products were generated from all isolates, without interspecies or intraspecific size polymorphisms. Sequence analysis of the amplified fragments revealed a smaller ISR of 350 bp, which contained a gene for tRNA(Glu), and a larger ISR of 441 bp, which contained genes for tRNA(Ile) and tRNA(Ala). The sequences of the smaller ISR of different Edw. ictaluri isolates were essentially identical to each other. Partial sequences of larger ISR from several Edw. ictaluri isolates also revealed no differences from the one complete Edw. ictaluri large ISR sequence obtained. The sequences of the smaller ISR of Edw. tarda were 97% identical to the Edw. ictaluri smaller ISR and the larger ISR were 96-98% identical to the Edw. ictaluri larger ISR sequence. The Edw. tarda isolates displayed limited ISR sequence heterogeneity, with > or =97% sequence identity among isolates for both small and large ISR. There is a high degree of size and sequence similarity of 16S-23S ISR both among isolates within Edw. ictaluri and Edw. tarda species and between the two species. Our results confirm a close genetic relationship between Edw. ictaluri and Edw. tarda and the relative homogeneity of Edw. ictaluri isolates compared with Edw. tarda isolates. Because no differences were found in ISR sequences among Edw. ictaluri isolates, sequence analysis of the ISR will not be useful to distinguish isolates of Edw. ictaluri. However, we identified restriction sites that differ between ISR sequences of Edw. ictaluri and Edw. tarda, which will be useful in distinguishing the two species.

  8. Combined Use of 16S Ribosomal DNA and 16S rRNA To Study the Bacterial Community of Polychlorinated Biphenyl-Polluted Soil

    PubMed Central

    Nogales, Balbina; Moore, Edward R. B.; Llobet-Brossa, Enrique; Rossello-Mora, Ramon; Amann, Rudolf; Timmis, Kenneth N.

    2001-01-01

    The bacterial diversity assessed from clone libraries prepared from rRNA (two libraries) and ribosomal DNA (rDNA) (one library) from polychlorinated biphenyl (PCB)-polluted soil has been analyzed. A good correspondence of the community composition found in the two types of library was observed. Nearly 29% of the cloned sequences in the rDNA library were identical to sequences in the rRNA libraries. More than 60% of the total cloned sequence types analyzed were grouped in phylogenetic groups (a clone group with sequence similarity higher than 97% [98% for Burkholderia and Pseudomonas-type clones]) represented in both types of libraries. Some of those phylogenetic groups, mostly represented by a single (or pair) of cloned sequence type(s), were observed in only one of the types of library. An important difference between the libraries was the lack of clones representative of the Actinobacteria in the rDNA library. The PCB-polluted soil exhibited a high bacterial diversity which included representatives of two novel lineages. The apparent abundance of bacteria affiliated to the beta-subclass of the Proteobacteria, and to the genus Burkholderia in particular, was confirmed by fluorescence in situ hybridization analysis. The possible influence on apparent diversity of low template concentrations was assessed by dilution of the RNA template prior to amplification by reverse transcription-PCR. Although differences in the composition of the two rRNA libraries obtained from high and low RNA concentrations were observed, the main components of the bacterial community were represented in both libraries, and therefore their detection was not compromised by the lower concentrations of template used in this study. PMID:11282645

  9. Panel of 23S rRNA Gene-Based Real-Time PCR Assays for Improved Universal and Group-Specific Detection of Phytoplasmas▿ †

    PubMed Central

    Hodgetts, Jennifer; Boonham, Neil; Mumford, Rick; Dickinson, Matthew

    2009-01-01

    Primers and probes based on the 23S rRNA gene have been utilized to design a range of real-time PCR assays for routine phytoplasma diagnostics. These assays have been authenticated as phytoplasma specific and shown to be at least as sensitive as nested PCR. A universal assay to detect all phytoplasmas has been developed, along with a multiplex assay to discriminate 16SrI group phytoplasmas from members of all of the other 16Sr groups. Assays for the 16SrII, 16SrIV, and 16SrXII groups have also been developed to confirm that the 23S rRNA gene can be used to design group-specific assays. PMID:19270148

  10. Discrimination of Bacillus anthracis from closely related microorganisms by analysis of 16S and 23S rRNA with oligonucleotide microchips

    DOEpatents

    Bavykin, Sergei G.; Mirzabekov, Andrei D.

    2007-10-30

    The present invention is directed to a novel method of discriminating a highly infectious bacterium Bacillus anthracis from a group of closely related microorganisms. Sequence variations in the 16S and 23S rRNA of the B. cereus subgroup including B. anthracis are utilized to construct an array that can detect these sequence variations through selective hybridizations. The identification and analysis of these sequence variations enables positive discrimination of isolates of the B. cereus group that includes B. anthracis. Discrimination of single base differences in rRNA was achieved with a microchip during analysis of B. cereus group isolates from both single and in mixed probes, as well as identification of polymorphic sites. Successful use of a microchip to determine the appropriate subgroup classification using eight reference microorganisms from the B. cereus group as a study set, was demonstrated.

  11. 16S rRNA partial gene sequencing for the differentiation and molecular subtyping of Listeria species.

    PubMed

    Hellberg, Rosalee S; Martin, Keely G; Keys, Ashley L; Haney, Christopher J; Shen, Yuelian; Smiley, R Derike

    2013-12-01

    Use of 16S rRNA partial gene sequencing within the regulatory workflow could greatly reduce the time and labor needed for confirmation and subtyping of Listeria monocytogenes. The goal of this study was to build a 16S rRNA partial gene reference library for Listeria spp. and investigate the potential for 16S rRNA molecular subtyping. A total of 86 isolates of Listeria representing L. innocua, L. seeligeri, L. welshimeri, and L. monocytogenes were obtained for use in building the custom library. Seven non-Listeria species and three additional strains of Listeria were obtained for use in exclusivity and food spiking tests. Isolates were sequenced for the partial 16S rRNA gene using the MicroSeq ID 500 Bacterial Identification Kit (Applied Biosystems). High-quality sequences were obtained for 84 of the custom library isolates and 23 unique 16S sequence types were discovered for use in molecular subtyping. All of the exclusivity strains were negative for Listeria and the three Listeria strains used in food spiking were consistently recovered and correctly identified at the species level. The spiking results also allowed for differentiation beyond the species level, as 87% of replicates for one strain and 100% of replicates for the other two strains consistently matched the same 16S type. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. N6-Methylation Assessment in Escherichia coli 23S rRNA Utilizing a Bulge Loop in an RNA-DNA Hybrid.

    PubMed

    Yoshioka, Kyoko; Kurita, Ryoji

    2018-06-07

    We propose a sequence-selective assay of N6-methyl-adenosine (m6A) in RNA without PCR or reverse transcription, by employing a hybridization assay with a DNA probe designed to form a bulge loop at the position of a target modified nucleotide. The m6A in the bulge in the RNA-DNA hybrid was assumed to be sufficiently mobile to be selectively recognized by an anti-m6A antibody with a high affinity. By employing a surface-plasmon-resonance measurement or using a microtiter-plate immunoassay method, a specific m6A in the Escherichia coli 23S rRNA sequence could be detected at the nanomolar level when synthesized and purified oligo-RNA fragments were used for measurement. We have successfully achieved the first selective detection of m6A 2030 specifically in 23S rRNA from real samples of E. coli total RNA by using our immunochemical approach.

  13. Rifaximin Reduces Markers of Inflammation and Bacterial 16S rRNA in Zambian Adults with Hepatosplenic Schistosomiasis: A Randomized Control Trial.

    PubMed

    Sinkala, Edford; Zyambo, Kanekwa; Besa, Ellen; Kaonga, Patrick; Nsokolo, Bright; Kayamba, Violet; Vinikoor, Michael; Zulu, Rabison; Bwalya, Martin; Foster, Graham R; Kelly, Paul

    2018-04-01

    Cirrhosis is the dominant cause of portal hypertension globally but may be overshadowed by hepatosplenic schistosomiasis (HSS) in the tropics. In Zambia, schistosomiasis seroprevalence can reach 88% in endemic areas. Bacterial translocation (BT) drives portal hypertension in cirrhosis contributing to mortality but remains unexplored in HSS. Rifaximin, a non-absorbable antibiotic may reduce BT. We aimed to explore the influence of rifaximin on BT, inflammation, and fibrosis in HSS. In this phase II open-label trial (ISRCTN67590499), 186 patients with HSS in Zambia were evaluated and 85 were randomized to standard care with or without rifaximin for 42 days. Changes in markers of inflammation, BT, and fibrosis were the primary outcomes. BT was measured using plasma 16S rRNA, lipopolysaccharide-binding protein, and lipopolysaccharide, whereas hyaluronan was used to measure fibrosis. Tumor necrosis factor receptor 1 (TNFR1) and soluble cluster of differentiation 14 (sCD14) assessed inflammation. 16S rRNA reduced from baseline (median 146 copies/µL, interquartile range [IQR] 9, 537) to day 42 in the rifaximin group (median 63 copies/µL, IQR 12, 196), P < 0.01. The rise in sCD14 was lower ( P < 0.01) in the rifaximin group (median rise 122 ng/mL, IQR-184, 783) than in the non-rifaximin group (median rise 832 ng/mL, IQR 530, 967). TNFR1 decreased ( P < 0.01) in the rifaximin group (median -39 ng/mL IQR-306, 563) but increased in the non-rifaximin group (median 166 ng/mL, IQR 3, 337). Other markers remained unaffected. Rifaximin led to a reduction of inflammatory markers and bacterial 16S rRNA which may implicate BT in the inflammation in HSS.

  14. Rifaximin Reduces Markers of Inflammation and Bacterial 16S rRNA in Zambian Adults with Hepatosplenic Schistosomiasis: A Randomized Control Trial

    PubMed Central

    Sinkala, Edford; Zyambo, Kanekwa; Besa, Ellen; Kaonga, Patrick; Nsokolo, Bright; Kayamba, Violet; Vinikoor, Michael; Zulu, Rabison; Bwalya, Martin; Foster, Graham R.; Kelly, Paul

    2018-01-01

    Abstract. Cirrhosis is the dominant cause of portal hypertension globally but may be overshadowed by hepatosplenic schistosomiasis (HSS) in the tropics. In Zambia, schistosomiasis seroprevalence can reach 88% in endemic areas. Bacterial translocation (BT) drives portal hypertension in cirrhosis contributing to mortality but remains unexplored in HSS. Rifaximin, a non-absorbable antibiotic may reduce BT. We aimed to explore the influence of rifaximin on BT, inflammation, and fibrosis in HSS. In this phase II open-label trial (ISRCTN67590499), 186 patients with HSS in Zambia were evaluated and 85 were randomized to standard care with or without rifaximin for 42 days. Changes in markers of inflammation, BT, and fibrosis were the primary outcomes. BT was measured using plasma 16S rRNA, lipopolysaccharide-binding protein, and lipopolysaccharide, whereas hyaluronan was used to measure fibrosis. Tumor necrosis factor receptor 1 (TNFR1) and soluble cluster of differentiation 14 (sCD14) assessed inflammation. 16S rRNA reduced from baseline (median 146 copies/µL, interquartile range [IQR] 9, 537) to day 42 in the rifaximin group (median 63 copies/µL, IQR 12, 196), P < 0.01. The rise in sCD14 was lower (P < 0.01) in the rifaximin group (median rise 122 ng/mL, IQR-184, 783) than in the non-rifaximin group (median rise 832 ng/mL, IQR 530, 967). TNFR1 decreased (P < 0.01) in the rifaximin group (median -39 ng/mL IQR-306, 563) but increased in the non-rifaximin group (median 166 ng/mL, IQR 3, 337). Other markers remained unaffected. Rifaximin led to a reduction of inflammatory markers and bacterial 16S rRNA which may implicate BT in the inflammation in HSS. PMID:29436337

  15. Vegetation cover of forest, shrub and pasture strongly influences soil bacterial community structure as revealed by 16S rRNA gene T-RFLP analysis.

    PubMed

    Chim Chan, On; Casper, Peter; Sha, Li Qing; Feng, Zhi Li; Fu, Yun; Yang, Xiao Dong; Ulrich, Andreas; Zou, Xiao Ming

    2008-06-01

    Bacterial community structure is influenced by vegetation, climate and soil chemical properties. To evaluate these influences, terminal restriction fragment length polymorphism (T-RFLP) and cloning of the 16S rRNA gene were used to analyze the soil bacterial communities in different ecosystems in southwestern China. We compared (1) broad-leaved forest, shrub and pastures in a high-plateau region, (2) three broad-leaved forests representing a climate gradient from high-plateau temperate to subtropical and tropical regions and (3) the humus and mineral soil layers of forests, shrub lands and pastures with open and restricted grazing activities, having varied soil carbon and nutrient contents. Principal component analysis of the T-RFLP patterns revealed that soil bacterial communities of the three vegetation types were distinct. The broad-leaved forests in different climates clustered together, and relatively minor differences were observed between the soil layers or the grazing regimes. Acidobacteria dominated the broad-leaved forests (comprising 62% of the total clone sequences), but exhibited lower relative abundances in the soils of shrub (31%) and pasture (23%). Betaproteobacteria was another dominant taxa of shrub land (31%), whereas Alpha- (19%) and Gammaproteobacteria (13%) and Bacteriodetes (16%) were major components of pasture. Vegetation exerted more pronounced influences than climate and soil chemical properties.

  16. Binding of the 3' terminus of tRNA to 23S rRNA in the ribosomal exit site actively promotes translocation.

    PubMed Central

    Lill, R; Robertson, J M; Wintermeyer, W

    1989-01-01

    A key event in ribosomal protein synthesis is the translocation of deacylated tRNA, peptidyl tRNA and mRNA, which is catalyzed by elongation factor G (EF-G) and requires GTP. To address the molecular mechanism of the reaction we have studied the functional role of a tRNA exit site (E site) for tRNA release during translocation. We show that modifications of the 3' end of tRNAPhe, which considerably decrease the affinity of E-site binding, lower the translocation rate up to 40-fold. Furthermore, 3'-end modifications lower or abolish the stimulation by P site-bound tRNA of the GTPase activity of EF-G on the ribosome. The results suggest that a hydrogen-bonding interaction of the 3'-terminal adenine of the leaving tRNA in the E site, most likely base-pairing with 23S rRNA, is essential for the translocation reaction. Furthermore, this interaction stimulates the GTP hydrolyzing activity of EF-G on the ribosome. We propose the following molecular model of translocation: after the binding of EF-G.GTP, the P site-bound tRNA, by a movement of the 3'-terminal single-stranded ACCA tail, establishes an interaction with 23S rRNA in the adjacent E site, thereby initiating the tRNA transfer from the P site to the E site and promoting GTP hydrolysis. The co-operative interaction between the E site and the EF-G binding site, which are distantly located on the 50S ribosomal subunit, is probably mediated by a conformational change of 23S rRNA. PMID:2583120

  17. Bacterial DNA detected on pathologically changed heart valves using 16S rRNA gene amplification.

    PubMed

    Chalupova, Miroslava; Skalova, Anna; Hajek, Tomas; Geigerova, Lenka; Kralova, Dana; Liska, Pavel; Hecova, Hana; Molacek, Jiri; Hrabak, Jaroslav

    2018-05-22

    Nowadays, dental diseases are one of the most common illnesses in the world. Some of them can lead to translocation of oral bacteria to the bloodstream causing intermittent bacteraemia. Therefore, a potential association between oral infection and cardiovascular diseases has been discussed in recent years as a result of adhesion of oral microbes to the heart valves. The aim of this study was to detect oral bacteria on pathologically changed heart valves not caused by infective endocarditis. In the study, patients with pathologically changed heart valves were involved. Samples of heart valves removed during heart valve replacement surgery were cut into two parts. One aliquot was cultivated aerobically and anaerobically. Bacterial DNA was extracted using Ultra-Deep Microbiome Prep (Molzym GmbH, Bremen, Germany) followed by a 16S rRNA gene PCR amplification using Mastermix 16S Complete kit (Molzym GmbH, Bremen, Germany). Positive PCR products were sequenced and the sequences were analyzed using BLAST database ( http://www.ncbi.nlm.nih/BLAST ). During the study period, 41 samples were processed. Bacterial DNA of the following bacteria was detected in 21 samples: Cutibacterium acnes (formerly Propionibacterium acnes) (n = 11; 52.38% of patients with positive bacterial DNA detection), Staphylococcus sp. (n = 9; 42.86%), Streptococcus sp. (n = 1; 4.76%), Streptococcus sanguinis (n = 4; 19.05%), Streptococcus oralis (n = 1; 4.76%), Carnobacterium sp. (n = 1; 4.76%), Bacillus sp. (n = 2; 9.52%), and Bergeyella sp. (n = 1; 4.76%). In nine samples, multiple bacteria were found. Our results showed significant appearance of bacteria on pathologically changed heart valves in patients with no symptoms of infective endocarditis.

  18. Mineral Type and Solution Chemistry Affect the Structure and Composition of Actively Growing Bacterial Communities as Revealed by Bromodeoxyuridine Immunocapture and 16S rRNA Pyrosequencing.

    PubMed

    Kelly, L C; Colin, Y; Turpault, M-P; Uroz, S

    2016-08-01

    Understanding how minerals affect bacterial communities and their in situ activities in relation to environmental conditions are central issues in soil microbial ecology, as minerals represent essential reservoirs of inorganic nutrients for the biosphere. To determine the impact of mineral type and solution chemistry on soil bacterial communities, we compared the diversity, composition, and functional abilities of a soil bacterial community incubated in presence/absence of different mineral types (apatite, biotite, obsidian). Microcosms were prepared containing different liquid culture media devoid of particular essential nutrients, the nutrients provided only in the introduced minerals and therefore only available to the microbial community through mineral dissolution by biotic and/or abiotic processes. By combining functional screening of bacterial isolates and community analysis by bromodeoxyuridine DNA immunocapture and 16S rRNA gene pyrosequencing, we demonstrated that bacterial communities were mainly impacted by the solution chemistry at the taxonomic level and by the mineral type at the functional level. Metabolically active bacterial communities varied with solution chemistry and mineral type. Burkholderia were significantly enriched in the obsidian treatment compared to the biotite treatment and were the most effective isolates at solubilizing phosphorous or mobilizing iron, in all the treatments. A detailed analysis revealed that the 16S rRNA gene sequences of the OTUs or isolated strains assigned as Burkholderia in our study showed high homology with effective mineral-weathering bacteria previously recovered from the same experimental site.

  19. Bacterial diversity in typical Italian salami at different ripening stages as revealed by high-throughput sequencing of 16S rRNA amplicons.

    PubMed

    Połka, Justyna; Rebecchi, Annalisa; Pisacane, Vincenza; Morelli, Lorenzo; Puglisi, Edoardo

    2015-04-01

    The bacterial diversity involved in food fermentations is one of the most important factors shaping the final characteristics of traditional foods. Knowledge about this diversity can be greatly improved by the application of high-throughput sequencing technologies (HTS) coupled to the PCR amplification of the 16S rRNA subunit. Here we investigated the bacterial diversity in batches of Salame Piacentino PDO (Protected Designation of Origin), a dry fermented sausage that is typical of a regional area of Northern Italy. Salami samples from 6 different local factories were analysed at 0, 21, 49 and 63 days of ripening; raw meat at time 0 and casing samples at 21 days of ripening where also analysed, and the effect of starter addition was included in the experimental set-up. Culture-based microbiological analyses and PCR-DGGE were carried out in order to be compared with HTS results. A total of 722,196 high quality sequences were obtained after trimming, paired-reads assembly and quality screening of raw reads obtained by Illumina MiSeq sequencing of the two bacterial 16S hypervariable regions V3 and V4; manual curation of 16S database allowed a correct taxonomical classification at the species for 99.5% of these reads. Results confirmed the presence of main bacterial species involved in the fermentation of salami as assessed by PCR-DGGE, but with a greater extent of resolution and quantitative assessments that are not possible by the mere analyses of gel banding patterns. Thirty-two different Staphylococcus and 33 Lactobacillus species where identified in the salami from different producers, while the whole data set obtained accounted for 13 main families and 98 rare ones, 23 of which were present in at least 10% of the investigated samples, with casings being the major sources of the observed diversity. Multivariate analyses also showed that batches from 6 local producers tend to cluster altogether after 21 days of ripening, thus indicating that HTS has the potential

  20. The Human Microbiome and Understanding the 16S rRNA Gene in Translational Nursing Science.

    PubMed

    Ames, Nancy J; Ranucci, Alexandra; Moriyama, Brad; Wallen, Gwenyth R

    As more is understood regarding the human microbiome, it is increasingly important for nurse scientists and healthcare practitioners to analyze these microbial communities and their role in health and disease. 16S rRNA sequencing is a key methodology in identifying these bacterial populations that has recently transitioned from use primarily in research to having increased utility in clinical settings. The objectives of this review are to (a) describe 16S rRNA sequencing and its role in answering research questions important to nursing science; (b) provide an overview of the oral, lung, and gut microbiomes and relevant research; and (c) identify future implications for microbiome research and 16S sequencing in translational nursing science. Sequencing using the 16S rRNA gene has revolutionized research and allowed scientists to easily and reliably characterize complex bacterial communities. This type of research has recently entered the clinical setting, one of the best examples involving the use of 16S sequencing to identify resistant pathogens, thereby improving the accuracy of bacterial identification in infection control. Clinical microbiota research and related requisite methods are of particular relevance to nurse scientists-individuals uniquely positioned to utilize these techniques in future studies in clinical settings.

  1. The Human Microbiome and Understanding the 16S rRNA Gene in Translational Nursing Science

    PubMed Central

    Ames, Nancy J.; Ranucci, Alexandra; Moriyama, Brad; Wallen, Gwenyth R.

    2017-01-01

    Background As more is understood regarding the human microbiome, it is increasingly important for nurse scientists and health care practitioners to analyze these microbial communities and their role in health and disease.16S rRNA sequencing is a key methodology in identifying these bacterial populations that has recently transitioned from use primarily in research to having increased utility in clinical settings. Objectives The objectives of this review are to: (a) describe 16S rRNA sequencing and its role in answering research questions important to nursing science; (b) provide an overview of the oral, lung and gut microbiomes and relevant research; and (c) identify future implications for microbiome research and 16S sequencing in translational nursing science. Discussion Sequencing using the 16S rRNA gene has revolutionized research and allowed scientists to easily and reliably characterize complex bacterial communities. This type of research has recently entered the clinical setting, one of the best examples involving the use of 16S sequencing to identify resistant pathogens, thereby improving the accuracy of bacterial identification in infection control. Clinical microbiota research and related requisite methods are of particular relevance to nurse scientists—individuals uniquely positioned to utilize these techniques in future studies in clinical settings. PMID:28252578

  2. Bacterial Community Diversity of Oil-Contaminated Soils Assessed by High Throughput Sequencing of 16S rRNA Genes.

    PubMed

    Peng, Mu; Zi, Xiaoxue; Wang, Qiuyu

    2015-09-24

    Soil bacteria play a major role in ecological and biodegradable function processes in oil-contaminated soils. Here, we assessed the bacterial diversity and changes therein in oil-contaminated soils exposed to different periods of oil pollution using 454 pyrosequencing of 16S rRNA genes. No less than 24,953 valid reads and 6246 operational taxonomic units (OTUs) were obtained from all five studied samples. OTU richness was relatively higher in contaminated soils than clean samples. Acidobacteria, Actinobacteria, Bacteroidetes, Chloroflexi, Planctomycetes and Proteobacteria were the dominant phyla among all the soil samples. The heatmap plot depicted the relative percentage of each bacterial family within each sample and clustered five samples into two groups. For the samples, bacteria in the soils varied at different periods of oil exposure. The oil pollution exerted strong selective pressure to propagate many potentially petroleum degrading bacteria. Redundancy analysis (RDA) indicated that organic matter was the highest determinant factor for explaining the variations in community compositions. This suggests that compared to clean soils, oil-polluted soils support more diverse bacterial communities and soil bacterial community shifts were mainly controlled by organic matter and exposure time. These results provide some useful information for bioremediation of petroleum contaminated soil in the future.

  3. Endophytic bacterial diversity in grapevine (Vitis vinifera L.) leaves described by 16S rRNA gene sequence analysis and length heterogeneity-PCR.

    PubMed

    Bulgari, Daniela; Casati, Paola; Brusetti, Lorenzo; Quaglino, Fabio; Brasca, Milena; Daffonchio, Daniele; Bianco, Piero Attilio

    2009-08-01

    Diversity of bacterial endophytes associated with grapevine leaf tissues was analyzed by cultivation and cultivation-independent methods. In order to identify bacterial endophytes directly from metagenome, a protocol for bacteria enrichment and DNA extraction was optimized. Sequence analysis of 16S rRNA gene libraries underscored five diverse Operational Taxonomic Units (OTUs), showing best sequence matches with gamma-Proteobacteria, family Enterobacteriaceae, with a dominance of the genus Pantoea. Bacteria isolation through cultivation revealed the presence of six OTUs, showing best sequence matches with Actinobacteria, genus Curtobacterium, and with Firmicutes genera Bacillus and Enterococcus. Length Heterogeneity-PCR (LH-PCR) electrophoretic peaks from single bacterial clones were used to setup a database representing the bacterial endophytes identified in association with grapevine tissues. Analysis of healthy and phytoplasma-infected grapevine plants showed that LH-PCR could be a useful complementary tool for examining the diversity of bacterial endophytes especially for diversity survey on a large number of samples.

  4. Phytoplasma-specific PCR primers based on sequences of the 16S-23S rRNA spacer region.

    PubMed Central

    Smart, C D; Schneider, B; Blomquist, C L; Guerra, L J; Harrison, N A; Ahrens, U; Lorenz, K H; Seemüller, E; Kirkpatrick, B C

    1996-01-01

    In order to develop a diagnostic tool to identify phytoplasmas and classify them according to their phylogenetic group, we took advantage of the sequence diversity of the 16S-23S intergenic spacer regions (SRs) of phytoplasmas. Ten PCR primers were developed from the SR sequences and were shown to amplify in a group-specific fashion. For some groups of phytoplasmas, such as elm yellows, ash yellows, and pear decline, the SR primer was paired with a specific primer from within the 16S rRNA gene. Each of these primer pairs was specific for a specific phytoplasma group, and they did not produce PCR products of the correct size from any other phytoplasma group. One primer was designed to anneal within the conserved tRNA(Ile) and, when paired with a universal primer, amplified all phytoplasmas tested. None of the primers produced PCR amplification products of the correct size from healthy plant DNA. These primers can serve as effective tools for identifying particular phytoplasmas in field samples. PMID:8702291

  5. Detection of Verrucomicrobia in a Pasture Soil by PCR-Mediated Amplification of 16S rRNA Genes

    PubMed Central

    O’Farrell, Katrina A.; Janssen, Peter H.

    1999-01-01

    Oligonucleotide primers were designed and used to amplify, by PCR, partial 16S rRNA genes of members of the bacterial division Verrucomicrobia in DNA extracted from a pasture soil. By applying most-probable-number theory to the assay, verrucomicrobia appeared to contribute some 0.2% of the soil DNA. Amplified ribosomal DNA restriction analysis of 53 cloned PCR-amplified partial 16S rRNA gene fragments and comparative sequence analysis of 21 nonchimeric partial 16S rRNA genes showed that these primers amplified only 16S rRNA genes of members of the Verrucomicrobia in DNA extracted from the soil. PMID:10473454

  6. 16S-23S rRNA gene internal transcribed spacer sequences for analysis of the phylogenetic relationships among species of the genus Porphyromonas.

    PubMed

    Conrads, Georg; Citron, Diane M; Tyrrell, Kerin L; Horz, Hans-Peter; Goldstein, Ellie J C

    2005-03-01

    The 16S-23S rRNA gene internal transcribed spacer (ITS) regions of 11 reference strains of Porphyromonas species, together with Bacteroides distasonis and Tannerella forsythensis, were analysed to examine interspecies relationships. Compared with the phylogenetic tree generated using 16S rRNA gene sequences, the resolution of the ITS sequence-based tree was higher, but species positioning and clustering were similar with both approaches. The recent separation of Porphyromonas gulae and Porphyromonas gingivalis into distinct species was confirmed by the ITS data. In addition, analysis of the ITS sequences of 24 clinical isolates of Porphyromonas asaccharolytica plus the type strain ATCC 25260(T) divided the sequences into two clusters, of which one was alpha-fucosidase-positive (like the type strain) while the other was alpha-fucosidase-negative. The latter resembled the previously studied unusual extra-oral isolates of 'Porphyromonas endodontalis-like organisms' (PELOs) which could therefore be called 'Porphyromonas asaccharolytica-like organisms' (PALOs), based on the genetic identification. Moreover, the proposal of alpha-fucosidase-negative P. asaccharolytica strains as a new species should also be considered.

  7. Automated Identification of Medically Important Bacteria by 16S rRNA Gene Sequencing Using a Novel Comprehensive Database, 16SpathDB▿

    PubMed Central

    Woo, Patrick C. Y.; Teng, Jade L. L.; Yeung, Juilian M. Y.; Tse, Herman; Lau, Susanna K. P.; Yuen, Kwok-Yung

    2011-01-01

    Despite the increasing use of 16S rRNA gene sequencing, interpretation of 16S rRNA gene sequence results is one of the most difficult problems faced by clinical microbiologists and technicians. To overcome the problems we encountered in the existing databases during 16S rRNA gene sequence interpretation, we built a comprehensive database, 16SpathDB (http://147.8.74.24/16SpathDB) based on the 16S rRNA gene sequences of all medically important bacteria listed in the Manual of Clinical Microbiology and evaluated its use for automated identification of these bacteria. Among 91 nonduplicated bacterial isolates collected in our clinical microbiology laboratory, 71 (78%) were reported by 16SpathDB as a single bacterial species having >98.0% nucleotide identity with the query sequence, 19 (20.9%) were reported as more than one bacterial species having >98.0% nucleotide identity with the query sequence, and 1 (1.1%) was reported as no match. For the 71 bacterial isolates reported as a single bacterial species, all results were identical to their true identities as determined by a polyphasic approach. For the 19 bacterial isolates reported as more than one bacterial species, all results contained their true identities as determined by a polyphasic approach and all of them had their true identities as the “best match in 16SpathDB.” For the isolate (Gordonibacter pamelaeae) reported as no match, the bacterium has never been reported to be associated with human disease and was not included in the Manual of Clinical Microbiology. 16SpathDB is an automated, user-friendly, efficient, accurate, and regularly updated database for 16S rRNA gene sequence interpretation in clinical microbiology laboratories. PMID:21389154

  8. Low bacterial community diversity in two introduced aphid pests revealed with 16S rRNA amplicon sequencing

    PubMed Central

    Ortiz-Martínez, Sebastían; Silva, Andrea X.; Lavandero, Blas

    2018-01-01

    Bacterial endosymbionts that produce important phenotypic effects on their hosts are common among plant sap-sucking insects. Aphids have become a model system of insect-symbiont interactions. However, endosymbiont research has focused on a few aphid species, making it necessary to make greater efforts to other aphid species through different regions, in order to have a better understanding of the role of endosymbionts in aphids as a group. Aphid endosymbionts have frequently been studied by PCR-based techniques, using species-specific primers, nevertheless this approach may omit other non-target bacteria cohabiting a particular host species. Advances in high-throughput sequencing technologies are complementing our knowledge of microbial communities by allowing us the study of whole microbiome of different organisms. We used a 16S rRNA amplicon sequencing approach to study the microbiome of aphids in order to describe the bacterial community diversity in introduced populations of the cereal aphids, Sitobion avenae and Rhopalosiphum padi in Chile (South America). An absence of secondary endosymbionts and two common secondary endosymbionts of aphids were found in the aphids R. padi and S. avenae, respectively. Of those endosymbionts, Regiella insecticola was the dominant secondary endosymbiont among the aphid samples. In addition, the presence of a previously unidentified bacterial species closely related to a phytopathogenic Pseudomonad species was detected. We discuss these results in relation to the bacterial endosymbiont diversity found in other regions of the native and introduced range of S. avenae and R. padi. A similar endosymbiont diversity has been reported for both aphid species in their native range. However, variation in the secondary endosymbiont infection could be observed among the introduced and native populations of the aphid S. avenae, indicating that aphid-endosymbiont associations can vary across the geographic range of an aphid species. In

  9. Bacterial community composition in the gut content of Lampetra japonica revealed by 16S rRNA gene pyrosequencing.

    PubMed

    Zuo, Yu; Xie, Wenfang; Pang, Yue; Li, Tiesong; Li, Qingwei; Li, Yingying

    2017-01-01

    The composition of the bacterial communities in the hindgut contents of Lampetrs japonica was surveyed by Illumina MiSeq of the 16S rRNA gene. An average of 32385 optimized reads was obtained from three samples. The rarefaction curve based on the operational taxonomic units tended to approach the asymptote. The rank abundance curve representing the species richness and evenness was calculated. The composition of microbe in six classification levels was also analyzed. Top 20 members in genera level were displayed as the classification tree. The abundance of microorganisms in different individuals was displayed as the pie charts at the branch nodes in the classification tree. The differences of top 50 genera in abundance between individuals of lamprey are displayed as a heatmap. The pairwise comparison of bacterial taxa abundance revealed that there are no significant differences of gut microbiota between three individuals of lamprey at a given rarefied depth. Also, the gut microbiota derived from L. japonica displays little similarity with other aquatic organism of Vertebrata after UPGMA analysis. The metabolic function of the bacterial communities was predicted through KEGG analysis. This study represents the first analysis of the bacterial community composition in the gut content of L. japonica. The investigation of the gut microbiota associated with L. japonica will broaden our understanding of this unique organism.

  10. 16S rRNA gene pyrosequencing reveals bacterial dysbiosis in the duodenum of dogs with idiopathic inflammatory bowel disease.

    PubMed

    Suchodolski, Jan S; Dowd, Scot E; Wilke, Vicky; Steiner, Jörg M; Jergens, Albert E

    2012-01-01

    Canine idiopathic inflammatory bowel disease (IBD) is believed to be caused by a complex interaction of genetic, immunologic, and microbial factors. While mucosa-associated bacteria have been implicated in the pathogenesis of canine IBD, detailed studies investigating the enteric microbiota using deep sequencing techniques are lacking. The objective of this study was to evaluate mucosa-adherent microbiota in the duodenum of dogs with spontaneous idiopathic IBD using 16 S rRNA gene pyrosequencing. Biopsy samples of small intestinal mucosa were collected endoscopically from healthy dogs (n = 6) and dogs with moderate IBD (n = 7) or severe IBD (n = 7) as assessed by a clinical disease activity index. Total RNA was extracted from biopsy specimens and 454-pyrosequencing of the 16 S rRNA gene was performed on aliquots of cDNA from each dog. Intestinal inflammation was associated with significant differences in the composition of the intestinal microbiota when compared to healthy dogs. PCoA plots based on the unweighted UniFrac distance metric indicated clustering of samples between healthy dogs and dogs with IBD (ANOSIM, p<0.001). Proportions of Fusobacteria (p = 0.010), Bacteroidaceae (p = 0.015), Prevotellaceae (p = 0.022), and Clostridiales (p = 0.019) were significantly more abundant in healthy dogs. In contrast, specific bacterial genera within Proteobacteria, including Diaphorobacter (p = 0.044) and Acinetobacter (p = 0.040), were either more abundant or more frequently identified in IBD dogs. In conclusion, dogs with spontaneous IBD exhibit alterations in microbial groups, which bear resemblance to dysbiosis reported in humans with chronic intestinal inflammation. These bacterial groups may serve as useful targets for monitoring intestinal inflammation.

  11. Bacterial taxa associated with the hematophagous mite Dermanyssus gallinae detected by 16S rRNA PCR amplification and TTGE fingerprinting.

    PubMed

    Valiente Moro, Claire; Thioulouse, Jean; Chauve, Claude; Normand, Philippe; Zenner, Lionel

    2009-01-01

    Dermanyssus gallinae (Arthropoda, Mesostigmata) is suspected to be involved in the transmission of a wide variety of pathogens, but nothing is known about its associated non-pathogenic bacterial community. To address this question, we examined the composition of bacterial communities in D. gallinae collected from standard poultry farms in Brittany, France. Genetic fingerprints of bacterial communities were generated by temporal temperature gradient gel electrophoresis (TTGE) separation of individual polymerase chain reaction (PCR)-amplified 16S rRNA gene fragments, followed by DNA sequence analysis. Most of the sequences belonged to the Proteobacteria and Firmicute phyla, with a majority of sequences corresponding to the Enterobacteriales order and the Staphylococcus genus. By using statistical analysis, we showed differences in biodiversity between poultry farms. We also determined the major phylotypes that compose the characteristic microbiota associated with D. gallinae. Saprophytes, opportunistic pathogens and pathogenic agents such as Pasteurella multocida, Erysipelothrix rhusiopathiae and sequences close to the genus Aerococcus were identified. Endosymbionts such as Schineria sp., Spiroplasma sp. Anistosticta, "Candidatus Cardinium hertigii" and Rickettsiella sp. were also present in the subdominant bacterial community. Identification of potential targets within the symbiont community may be considered in the future as a means of ectoparasite control.

  12. Expansion of the aminoglycoside-resistance 16S rRNA (m(1)A1408) methyltransferase family: expression and functional characterization of four hypothetical enzymes of diverse bacterial origin.

    PubMed

    Witek, Marta A; Conn, Graeme L

    2014-09-01

    The global dissemination, potential activity in diverse species and broad resistance spectrum conferred by the aminoglycoside-resistance ribosomal RNA methyltransferases make them a significant potential new threat to the efficacy of aminoglycoside antibiotics in the treatment of serious bacterial infections. The N1 methylation of adenosine 1408 (m(1)A1408) confers resistance to structurally diverse aminoglycosides, including kanamycin, neomycin and apramycin. The limited analyses to date of the enzymes responsible have identified common features but also potential differences in their molecular details of action. Therefore, with the goal of expanding the known 16S rRNA (m(1)A1408) methyltransferase family as a platform for developing a more complete mechanistic understanding, we report here the cloning, expression and functional analyses of four hypothetical aminoglycoside-resistance rRNA methyltransferases from recent genome sequences of diverse bacterial species. Each of the genes produced a soluble, folded protein with a secondary structure, as determined from circular dichroism (CD) spectra, consistent with enzymes for which high-resolution structures are available. For each enzyme, antibiotic minimum inhibitory concentration (MIC) assays revealed a resistance spectrum characteristic of the known 16S rRNA (m(1)A1408) methyltransferases and the modified nucleotide was confirmed by reverse transcription as A1408. In common with other family members, higher binding affinity for the methylation reaction by-product S-adenosylhomocysteine (SAH) than the cosubstrate S-adenosyl-L-methionine (SAM) was observed for three methyltransferases, while one unexpectedly showed no measurable affinity for SAH. Collectively, these results confirm that each hypothetical enzyme is a functional 16S rRNA (m(1)A1408) methyltransferase but also point to further potential mechanistic variation within this enzyme family. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. 5S rRNA and ribosome.

    PubMed

    Gongadze, G M

    2011-12-01

    5S rRNA is an integral component of the ribosome of all living organisms. It is known that the ribosome without 5S rRNA is functionally inactive. However, the question about the specific role of this RNA in functioning of the translation apparatus is still open. This review presents a brief history of the discovery of 5S rRNA and studies of its origin and localization in the ribosome. The previously expressed hypotheses about the role of this RNA in the functioning of the ribosome are discussed considering the unique location of 5S rRNA in the ribosome and its intermolecular contacts. Based on analysis of the current data on ribosome structure and its functional complexes, the role of 5S rRNA as an intermediary between ribosome functional domains is discussed.

  14. Enzymic colorimetry-based DNA chip: a rapid and accurate assay for detecting mutations for clarithromycin resistance in the 23S rRNA gene of Helicobacter pylori.

    PubMed

    Xuan, Shi-Hai; Zhou, Yu-Gui; Shao, Bo; Cui, Ya-Lin; Li, Jian; Yin, Hong-Bo; Song, Xiao-Ping; Cong, Hui; Jing, Feng-Xiang; Jin, Qing-Hui; Wang, Hui-Min; Zhou, Jie

    2009-11-01

    Macrolide drugs, such as clarithromycin (CAM), are a key component of many combination therapies used to eradicate Helicobacter pylori. However, resistance to CAM is increasing in H. pylori and is becoming a serious problem in H. pylori eradication therapy. CAM resistance in H. pylori is mostly due to point mutations (A2142G/C, A2143G) in the peptidyltransferase-encoding region of the 23S rRNA gene. In this study an enzymic colorimetry-based DNA chip was developed to analyse single-nucleotide polymorphisms of the 23S rRNA gene to determine the prevalence of mutations in CAM-related resistance in H. pylori-positive patients. The results of the colorimetric DNA chip were confirmed by direct DNA sequencing. In 63 samples, the incidence of the A2143G mutation was 17.46 % (11/63). The results of the colorimetric DNA chip were concordant with DNA sequencing in 96.83 % of results (61/63). The colorimetric DNA chip could detect wild-type and mutant signals at every site, even at a DNA concentration of 1.53 x 10(2) copies microl(-1). Thus, the colorimetric DNA chip is a reliable assay for rapid and accurate detection of mutations in the 23S rRNA gene of H. pylori that lead to CAM-related resistance, directly from gastric tissues.

  15. Bacterial Community Dynamics during Production of Registered Designation of Origin Salers Cheese as Evaluated by 16S rRNA Gene Single-Strand Conformation Polymorphism Analysis

    PubMed Central

    Duthoit, Frédérique; Godon, Jean-Jacques; Montel, Marie-Christine

    2003-01-01

    Microbial dynamics during processing and ripening of traditional cheeses such as registered designation of origin Salers cheese, an artisanal cheese produced in France, play an important role in the elaboration of sensory qualities. The aim of the present study was to obtain a picture of the dynamics of the microbial ecosystem of RDO Salers cheese by using culture-independent methods. This included DNA extraction, PCR, and single-strand conformation polymorphism (SSCP) analysis. Bacterial and high-GC% gram-positive bacterial primers were used to amplify V2 or V3 regions of the 16S rRNA gene. SSCP patterns revealed changes during the manufacturing of the cheese. Patterns of the ecosystems of cheeses that were provided by three farmers were also quite different. Cloning and sequencing of the 16S rRNA gene revealed sequences related to lactic acid bacteria (Lactococcus lactis, Streptococcus thermophilus, Enterococcus faecium, Leuconostoc mesenteroides, Leuconostoc pseudomesenteroides, Lactobacillus plantarum, and Lactobacillus pentosus), which were predominant during manufacturing and ripening. Bacteria belonging to the high-GC% gram-positive group (essentially corynebacteria) were found by using specific primers. The present molecular approach can effectively describe the ecosystem of artisanal dairy products. PMID:12839752

  16. Overaccumulation of the chloroplast antisense RNA AS5 is correlated with decreased abundance of 5S rRNA in vivo and inefficient 5S rRNA maturation in vitro

    PubMed Central

    Sharwood, Robert E.; Hotto, Amber M.; Bollenbach, Thomas J.; Stern, David B.

    2011-01-01

    Post-transcriptional regulation in the chloroplast is exerted by nucleus-encoded ribonucleases and RNA-binding proteins. One of these ribonucleases is RNR1, a 3′-to-5′ exoribonuclease of the RNase II family. We have previously shown that Arabidopsis rnr1-null mutants exhibit specific abnormalities in the expression of the rRNA operon, including the accumulation of precursor 23S, 16S, and 4.5S species and a concomitant decrease in the mature species. 5S rRNA transcripts, however, accumulate to a very low level in both precursor and mature forms, suggesting that they are unstable in the rnr1 background. Here we demonstrate that rnr1 plants overaccumulate an antisense RNA, AS5, that is complementary to the 5S rRNA, its intergenic spacer, and the downstream trnR gene, which encodes tRNAArg, raising the possibility that AS5 destabilizes 5S rRNA or its precursor and/or blocks rRNA maturation. To investigate this, we used an in vitro system that supports 5S rRNA and trnR processing. We show that AS5 inhibits 5S rRNA maturation from a 5S-trnR precursor, and shorter versions of AS5 demonstrate that inhibition requires intergenic sequences. To test whether the sense and antisense RNAs form double-stranded regions in vitro, treatment with the single-strand-specific mung bean nuclease was used. These results suggest that 5S–AS5 duplexes interfere with a sense-strand secondary structure near the endonucleolytic cleavage site downstream from the 5S rRNA coding region. We hypothesize that these duplexes are degraded by a dsRNA-specific ribonuclease in vivo, contributing to the 5S rRNA deficiency observed in rnr1. PMID:21148395

  17. 16S rRNA Gene Pyrosequencing Reveals Bacterial Dysbiosis in the Duodenum of Dogs with Idiopathic Inflammatory Bowel Disease

    PubMed Central

    Suchodolski, Jan S.; Dowd, Scot E.; Wilke, Vicky; Steiner, Jörg M.; Jergens, Albert E.

    2012-01-01

    Background Canine idiopathic inflammatory bowel disease (IBD) is believed to be caused by a complex interaction of genetic, immunologic, and microbial factors. While mucosa-associated bacteria have been implicated in the pathogenesis of canine IBD, detailed studies investigating the enteric microbiota using deep sequencing techniques are lacking. The objective of this study was to evaluate mucosa-adherent microbiota in the duodenum of dogs with spontaneous idiopathic IBD using 16 S rRNA gene pyrosequencing. Methodology/Principal Findings Biopsy samples of small intestinal mucosa were collected endoscopically from healthy dogs (n = 6) and dogs with moderate IBD (n = 7) or severe IBD (n = 7) as assessed by a clinical disease activity index. Total RNA was extracted from biopsy specimens and 454-pyrosequencing of the 16 S rRNA gene was performed on aliquots of cDNA from each dog. Intestinal inflammation was associated with significant differences in the composition of the intestinal microbiota when compared to healthy dogs. PCoA plots based on the unweighted UniFrac distance metric indicated clustering of samples between healthy dogs and dogs with IBD (ANOSIM, p<0.001). Proportions of Fusobacteria (p = 0.010), Bacteroidaceae (p = 0.015), Prevotellaceae (p = 0.022), and Clostridiales (p = 0.019) were significantly more abundant in healthy dogs. In contrast, specific bacterial genera within Proteobacteria, including Diaphorobacter (p = 0.044) and Acinetobacter (p = 0.040), were either more abundant or more frequently identified in IBD dogs. Conclusions/Significance In conclusion, dogs with spontaneous IBD exhibit alterations in microbial groups, which bear resemblance to dysbiosis reported in humans with chronic intestinal inflammation. These bacterial groups may serve as useful targets for monitoring intestinal inflammation. PMID:22720094

  18. 23S rRNA gene-based enterococci community signatures in Lake Pontchartrain, Louisiana, USA, following urban runoff inputs after Hurricane Katrina.

    PubMed

    Bae, Hee-Sung; Hou, Aixin

    2013-02-01

    Little is known about the impacts of fecal polluted urban runoff inputs on the structure of enterococci communities in estuarine waters. This study employed a 23S rRNA gene-based polymerase chain reaction (PCR) assay with newly designed genus-specific primers, Ent127F-Ent907R, to determine the possible impacts of Hurricane Katrina floodwaters via the 17th Street Canal discharge on the community structure of enterococci in Lake Pontchartrain. A total of 94 phylotypes were identified through the restriction fragment length polymorphism (RFLP) screening of 494 clones while only 8 phylotypes occurred among 88 cultivated isolates. Sequence analyses of representative phylotypes and their temporal and spatial distribution in the lake and the canal indicated the Katrina floodwater input introduced a large portion of Enterococcus flavescens, Enterococcus casseliflavus, and Enterococcus dispar into the lake; typical fecal groups Enterococcus faecium, Enterococcus durans, Enterococcus hirae, and Enterococcus mundtii were detected primarily in the floodwater-impacted waters. This study provides a global picture of enterococci in estuarine waters impacted by Hurricane Katrina-derived urban runoff. It also demonstrates the culture-independent PCR approach using 23S rRNA gene as a molecular marker could be a good alternative in ecological studies of enterococci in natural environments to overcome the limitation of conventional cultivation methods.

  19. Comparative evaluation of rRNA depletion procedures for the improved analysis of bacterial biofilm and mixed pathogen culture transcriptomes

    PubMed Central

    Petrova, Olga E.; Garcia-Alcalde, Fernando; Zampaloni, Claudia; Sauer, Karin

    2017-01-01

    Global transcriptomic analysis via RNA-seq is often hampered by the high abundance of ribosomal (r)RNA in bacterial cells. To remove rRNA and enrich coding sequences, subtractive hybridization procedures have become the approach of choice prior to RNA-seq, with their efficiency varying in a manner dependent on sample type and composition. Yet, despite an increasing number of RNA-seq studies, comparative evaluation of bacterial rRNA depletion methods has remained limited. Moreover, no such study has utilized RNA derived from bacterial biofilms, which have potentially higher rRNA:mRNA ratios and higher rRNA carryover during RNA-seq analysis. Presently, we evaluated the efficiency of three subtractive hybridization-based kits in depleting rRNA from samples derived from biofilm, as well as planktonic cells of the opportunistic human pathogen Pseudomonas aeruginosa. Our results indicated different rRNA removal efficiency for the three procedures, with the Ribo-Zero kit yielding the highest degree of rRNA depletion, which translated into enhanced enrichment of non-rRNA transcripts and increased depth of RNA-seq coverage. The results indicated that, in addition to improving RNA-seq sensitivity, efficient rRNA removal enhanced detection of low abundance transcripts via qPCR. Finally, we demonstrate that the Ribo-Zero kit also exhibited the highest efficiency when P. aeruginosa/Staphylococcus aureus co-culture RNA samples were tested. PMID:28117413

  20. Isolation of temperature-sensitive mutants of 16 S rRNA in Escherichia coli.

    PubMed

    Triman, K; Becker, E; Dammel, C; Katz, J; Mori, H; Douthwaite, S; Yapijakis, C; Yoast, S; Noller, H F

    1989-10-20

    Temperature-sensitive mutants have been isolated following hydroxylamine mutagenesis of a plasmid containing Escherichia coli rRNA genes carrying selectable markers for spectinomycin resistance (U1192 in 16 S rRNA) and erythromycin resistance (G2058 in 23 S rRNA). These antibiotic resistance alleles, originally identified by Morgan and co-workers, enable us to follow expression of cloned rRNA genes in vivo. Recessive mutations causing the loss of expression of the cloned 16 S rRNA gene were identified by the loss of the ability of cells to survive on media containing spectinomycin. The mutations were localized by in vitro restriction fragment replacement followed by in vivo marker rescue and were identified by DNA sequence analysis. We report here seven single-base alterations in 16 S rRNA (A146, U153, A350, A359, A538, A1292 and U1293), five of which produce temperature-sensitive spectinomycin resistance and two that produce unconditional loss of resistance. In each case, loss of ribosomal function can be accounted for by disruption of base-pairing in the secondary structure of 16 S rRNA. For the temperature-sensitive mutants, there is a lag period of about two generations between a shift to the restrictive temperature and cessation of growth, implying that the structural defects cause impairment of ribosome assembly.

  1. Analysis of the 16S–23S rRNA Gene Internal Transcribed Spacer Region in Klebsiella Species▿

    PubMed Central

    Wang, Min; Cao, Boyang; Yu, Qunfang; Liu, Lei; Gao, Qili; Wang, Lei; Feng, Lu

    2008-01-01

    The 16S-23S rRNA gene internal transcribed spacer (ITS) regions of Klebsiella spp., including Klebsiella pneumoniae subsp. pneumoniae, Klebsiella pneumoniae subsp. ozaenae, Klebsiella pneumoniae subsp. rhinoscleromatis, Klebsiella oxytoca, Klebsiella planticola, Klebsiella terrigena, and Klebsiella ornithinolytica, were characterized, and the feasibility of using ITS sequences to discriminate Klebsiella species and subspecies was explored. A total of 336 ITS sequences from 21 representative strains and 11 clinical isolates of Klebsiella were sequenced and analyzed. Three distinct ITS types—ITSnone (without tRNA genes), ITSglu [with a tRNAGlu (UUC) gene], and ITSile+ala [with tRNAIle (GAU) and tRNAAla (UGC) genes]—were detected in all species except for K. pneumoniae subsp. rhinoscleromatis, which has only ITSglu and ITSile+ala. The presence of ITSnone in Enterobacteriaceae had never been reported before. Both the length and the sequence of each ITS type are highly conserved within the species, with identity levels from 0.961 to 1.000 for ITSnone, from 0.967 to 1.000 for ITSglu, and from 0.968 to 1.000 for ITSile+ala. Interspecies sequence identities range from 0.775 to 0.989 for ITSnone, from 0.798 to 0.997 for ITSglu, and from 0.712 to 0.985 for ITSile+ala. Regions with significant interspecies variations but low intraspecies polymorphisms were identified; these may be targeted in the design of probes for the identification of Klebsiella to the species level. Phylogenetic analysis based on ITS regions reveals the relationships among Klebsiella species similarly to that based on 16S rRNA genes. PMID:18753345

  2. Increased 5S rRNA oxidation in Alzheimer's disease.

    PubMed

    Ding, Qunxing; Zhu, Haiyan; Zhang, Bing; Soriano, Augusto; Burns, Roxanne; Markesbery, William R

    2012-01-01

    It is widely accepted that oxidative stress is involved in neurodegenerative disorders such as Alzheimer's disease (AD). Ribosomal RNA (rRNA) is one of the most abundant molecules in most cells and is affected by oxidative stress in the human brain. Previous data have indicated that total rRNA levels were decreased in the brains of subjects with AD and mild cognitive impairment concomitant with an increase in rRNA oxidation. In addition, level of 5S rRNA, one of the essential components of the ribosome complex, was significantly lower in the inferior parietal lobule (IP) brain area of subjects with AD compared with control subjects. To further evaluate the alteration of 5S rRNA in neurodegenerative human brains, multiple brain regions from both AD and age-matched control subjects were used in this study, including IP, superior and middle temporal gyro, temporal pole, and cerebellum. Different molecular pools including 5S rRNA integrated into ribosome complexes, free 5S rRNA, cytoplasmic 5S rRNA, and nuclear 5S rRNA were studied. Free 5S rRNA levels were significantly decreased in the temporal pole region of AD subjects and the oxidation of ribosome-integrated and free 5S rRNA was significantly increased in multiple brain regions in AD subjects compared with controls. Moreover, a greater amount of oxidized 5S rRNA was detected in the cytoplasm and nucleus of AD subjects compared with controls. These results suggest that the increased oxidation of 5S rRNA, especially the oxidation of free 5S rRNA, may be involved in the neurodegeneration observed in AD.

  3. A one-step reaction for the rapid identification of Lactobacillus mindensis, Lactobacillus panis, Lactobacillus paralimentarius, Lactobacillus pontis and Lactobacillus frumenti using oligonucleotide primers designed from the 16S-23S rRNA intergenic sequences.

    PubMed

    Ferchichi, M; Valcheva, R; Prévost, H; Onno, B; Dousset, X

    2008-06-01

    Species-specific primers targeting the 16S-23S ribosomal DNA (rDNA) intergenic spacer region (ISR) were designed to rapidly discriminate between Lactobacillus mindensis, Lactobacillus panis, Lactobacillus paralimentarius, Lactobacillus pontis and Lactobacillus frumenti species recently isolated from French sourdough. The 16S-23S ISRs were amplified using primers 16S/p2 and 23S/p7, which anneal to positions 1388-1406 of the 16S rRNA gene and to positions 207-189 of the 23S rRNA gene respectively, Escherichia coli numbering (GenBank accession number V00331). Clone libraries of the resulting amplicons were constructed using a pCR2.1 TA cloning kit and sequenced. Species-specific primers were designed based on the sequences obtained and were used to amplify the 16S-23S ISR in the Lactobacillus species considered. For all of them, two PCR amplicons, designated as small ISR (S-ISR) and large ISR (L-ISR), were obtained. The L-ISR is composed of the corresponding S-ISR, interrupted by a sequence containing tRNA(Ile) and tRNA(Ala) genes. Based on these sequences, species-specific primers were designed and proved to identify accurately the species considered among 30 reference Lactobacillus species tested. Designed species-specific primers enable a rapid and accurate identification of L. mindensis, L. paralimentarius, L. panis, L. pontis and L. frumenti species among other lactobacilli. The proposed method provides a powerful and convenient means of rapidly identifying some sourdough lactobacilli, which could be of help in large starter culture surveys.

  4. Sequence heterogeneity in the two 16S rRNA genes of Phormium yellow leaf phytoplasma.

    PubMed Central

    Liefting, L W; Andersen, M T; Beever, R E; Gardner, R C; Forster, R L

    1996-01-01

    Phormium yellow leaf (PYL) phytoplasma causes a lethal disease of the monocotyledon, New Zealand flax (Phormium tenax). The 16S rRNA genes of PYL phytoplasma were amplified from infected flax by PCR and cloned, and the nucleotide sequences were determined. DNA sequencing and Southern hybridization analysis of genomic DNA indicated the presence of two copies of the 16S rRNA gene. The two 16S rRNA genes exhibited sequence heterogeneity in 4 nucleotide positions and could be distinguished by the restriction enzymes BpmI and BsrI. This is the first record in which sequence heterogeneity in the 16S rRNA genes of a phytoplasma has been determined by sequence analysis. A phylogenetic tree based on 16S rRNA gene sequences showed that PYL phytoplasma is most closely related to the stolbur and German grapevine yellows phytoplasmas, which form the stolbur subgroup of the aster yellows group. This phylogenetic position of PYL phytoplasma was supported by 16S/23S spacer region sequence data. PMID:8795200

  5. Seasonal variation in detection of bacterial DNA in arthritic stifle joints of dogs with cranial cruciate ligament rupture using PCR amplification of the 16S rRNA gene.

    PubMed

    Muir, Peter; Fox, Robin; Wu, Qiang; Baker, Theresa A; Zitzer, Nina C; Hudson, Alan P; Manley, Paul A; Schaefer, Susan L; Hao, Zhengling

    2010-02-24

    An underappreciated cause and effect relationship between environmental bacteria and arthritis may exist. Previously, we found that stifle arthritis in dogs was associated with the presence of environmental bacteria within synovium. Cranial cruciate ligament rupture (CCLR) is often associated with stifle arthritis in dogs. We now wished to determine whether seasonal variation in detection of bacterial material may exist in affected dogs, and to also conduct analyses of both synovium and synovial fluid. We also wished to analyze a larger clone library of the 16S rRNA gene to further understanding of the microbial population in the canine stifle. Synovial biopsies were obtained from 117 affected dogs from January to December 2006. Using PCR, synovium and synovial fluid were tested for Borrelia burgdorferi and Stenotrophomonas maltophilia DNA. Broad-ranging 16S rRNA primers were also used and PCR products were cloned and sequenced for bacterial identification. Overall, 41% of arthritic canine stifle joints contained bacterial DNA. Detection of bacterial DNA in synovial fluid samples was increased, when compared with synovium (p<0.01). Detection rates were highest in the winter and spring and lowest in the summer period, suggesting environmental factors influence the risk of translocation to the stifle. Organisms detected were predominately Gram's negative Proteobacteria, particularly the orders Rhizobiales (32.8% of clones) and Burkholderiales (20.0% of clones), usually as part of a polymicrobial population. PCR-positivity was inversely correlated with severity of arthritis assessed radiographically and with dog age. Bacterial translocation to the canine stifle may be associated with changes to the indoor environment. Copyright 2009 Elsevier B.V. All rights reserved.

  6. Dual Priming Oligonucleotides for Broad-Range Amplification of the Bacterial 16S rRNA Gene Directly from Human Clinical Specimens

    PubMed Central

    Simmon, Keith; Karaca, Dilek; Langeland, Nina; Wiker, Harald G.

    2012-01-01

    Broad-range amplification and sequencing of the bacterial 16S rRNA gene directly from clinical specimens are offered as a diagnostic service in many laboratories. One major pitfall is primer cross-reactivity with human DNA which will result in mixed chromatograms. Mixed chromatograms will complicate subsequent sequence analysis and impede identification. In SYBR green real-time PCR assays, it can also affect crossing threshold values and consequently the status of a specimen as positive or negative. We evaluated two conventional primer pairs in common use and a new primer pair based on the dual priming oligonucleotide (DPO) principle. Cross-reactivity was observed when both conventional primer pairs were used, resulting in interpretation difficulties. No cross-reactivity was observed using the DPOs even in specimens with a high ratio of human to bacterial DNA. In addition to reducing cross-reactivity, the DPO principle also offers a high degree of flexibility in the design of primers and should be considered for any PCR assay intended for detection and identification of pathogens directly from human clinical specimens. PMID:22278843

  7. Bacterial community variations in an alfalfa-rice rotation system revealed by 16S rRNA gene 454-pyrosequencing.

    PubMed

    Lopes, Ana R; Manaia, Célia M; Nunes, Olga C

    2014-03-01

    Crop rotation is a practice harmonized with the sustainable rice production. Nevertheless, the implications of this empirical practice are not well characterized, mainly in relation to the bacterial community composition and structure. In this study, the bacterial communities of two adjacent paddy fields in the 3rd and 4th year of the crop rotation cycle and of a nonseeded subplot were characterized before rice seeding and after harvesting, using 454-pyrosequencing of the 16S rRNA gene. Although the phyla Acidobacteria, Proteobacteria, Chloroflexi, Actinobacteria and Bacteroidetes predominated in all the samples, there were variations in relative abundance of these groups. Samples from the 3rd and 4th years of the crop rotation differed on the higher abundance of groups of presumable aerobic bacteria and of presumable anaerobic and acidobacterial groups, respectively. Members of the phylum Nitrospira were more abundant after rice harvest than in the previously sampled period. Rice cropping was positively correlated with the abundance of members of the orders Acidobacteriales and 'Solibacterales' and negatively with lineages such as Chloroflexi 'Ellin6529'. Studies like this contribute to understand variations occurring in the microbial communities in soils under sustainable rice production, based on real-world data. © 2013 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  8. Bacterial Population Changes in a Membrane Bioreactor for Graywater Treatment Monitored by Denaturing Gradient Gel Electrophoretic Analysis of 16S rRNA Gene Fragments

    PubMed Central

    Stamper, David M.; Walch, Marianne; Jacobs, Rachel N.

    2003-01-01

    The bacterial population of a graywater treatment system was monitored over the course of 100 days, along with several wastewater biochemical parameters. The graywater treatment system employed an 1,800-liter membrane bioreactor (MBR) to process the waste, with essentially 100% recycling of the biomass. Graywater feed consisting of 10% galley water and 90% laundry water, selected to approximate the graywater composition on board U.S. Navy ships, was collected offsite. Five-day biological oxygen demand (BOD5), oils and greases (O/G), nitrogen, and phosphorus were monitored in the feed and were found to vary greatly day to day. Changes in the bacterial population were monitored by PCR amplification of region 332 to 518 (Escherichia coli numbering) of the 16S rRNA gene and denaturing gradient gel electrophoresis (DGGE) analysis of the resultant PCR products. DGGE analysis indicated a diverse and unstable bacterial population throughout the 100-day period, with spikes in feed strength causing significant changes in community structure. Long-term similarity between the communities was 0 to 25%, depending on the method of analysis. In spite of the unstable bacterial population, the MBR system was able to meet effluent quality parameters approximately 90% of the time. PMID:12571004

  9. Bacterial population changes in a membrane bioreactor for graywater treatment monitored by denaturing gradient gel electrophoretic analysis of 16S rRNA gene fragments.

    PubMed

    Stamper, David M; Walch, Marianne; Jacobs, Rachel N

    2003-02-01

    The bacterial population of a graywater treatment system was monitored over the course of 100 days, along with several wastewater biochemical parameters. The graywater treatment system employed an 1,800-liter membrane bioreactor (MBR) to process the waste, with essentially 100% recycling of the biomass. Graywater feed consisting of 10% galley water and 90% laundry water, selected to approximate the graywater composition on board U.S. Navy ships, was collected offsite. Five-day biological oxygen demand (BOD(5)), oils and greases (O/G), nitrogen, and phosphorus were monitored in the feed and were found to vary greatly day to day. Changes in the bacterial population were monitored by PCR amplification of region 332 to 518 (Escherichia coli numbering) of the 16S rRNA gene and denaturing gradient gel electrophoresis (DGGE) analysis of the resultant PCR products. DGGE analysis indicated a diverse and unstable bacterial population throughout the 100-day period, with spikes in feed strength causing significant changes in community structure. Long-term similarity between the communities was 0 to 25%, depending on the method of analysis. In spite of the unstable bacterial population, the MBR system was able to meet effluent quality parameters approximately 90% of the time.

  10. Detection of bacterial 16S rRNA using a molecular beacon-based X sensor

    PubMed Central

    Gerasimova, Yulia V.; Kolpashchikov, Dmitry M.

    2012-01-01

    We demonstrate how a long structurally constrained RNA can be analyzed in homogeneous solution at ambient temperatures with high specificity using a sophisticated biosensor. The sensor consists of a molecular beacon probe as a signal reporter and two DNA adaptor strands, which have fragments complementary to the reporter and to the analyzed RNA. One adaptor strand uses its long RNA-binding arm to unwind the RNA secondary structure. Second adaptor strand with a short RNA-binding arm hybridizes only to a fully complementary site, thus providing high recognition specificity. Overall the three-component sensor and the target RNA form a four-stranded DNA crossover (X) structure. Using this sensor, E.coli 16S rRNA was detected in real time with the detection limit of ~ 0.17 nM. The high specificity of the analysis was proven by differentiating B.subtilus from E.coli 16S rRNA sequences. The sensor responds to the presence of the analyte within seconds. PMID:23021850

  11. Detection and characterization of Pasteuria 16S rRNA gene sequences from nematodes and soils.

    PubMed

    Duan, Y P; Castro, H F; Hewlett, T E; White, J H; Ogram, A V

    2003-01-01

    Various bacterial species in the genus Pasteuria have great potential as biocontrol agents against plant-parasitic nematodes, although study of this important genus is hampered by the current inability to cultivate Pasteuria species outside their host. To aid in the study of this genus, an extensive 16S rRNA gene sequence phylogeny was constructed and this information was used to develop cultivation-independent methods for detection of Pasteuria in soils and nematodes. Thirty new clones of Pasteuria 16S rRNA genes were obtained directly from nematodes and soil samples. These were sequenced and used to construct an extensive phylogeny of this genus. These sequences were divided into two deeply branching clades within the low-G + C, Gram-positive division; some sequences appear to represent novel species within the genus Pasteuria. In addition, a surprising degree of 16S rRNA gene sequence diversity was observed within what had previously been designated a single strain of Pasteuria penetrans (P-20). PCR primers specific to Pasteuria 16S rRNA for detection of Pasteuria in soils were also designed and evaluated. Detection limits for soil DNA were 100-10,000 Pasteuria endospores (g soil)(-1).

  12. Microbial community in persistent apical periodontitis: a 16S rRNA gene clone library analysis.

    PubMed

    Zakaria, M N; Takeshita, T; Shibata, Y; Maeda, H; Wada, N; Akamine, A; Yamashita, Y

    2015-08-01

    To characterize the microbial composition of persistent periapical lesions of root filled teeth using a molecular genetics approach. Apical lesion samples were collected from 12 patients (23-80 years old) who visited the Kyushu University Hospital for apicectomy with persistent periapical lesions associated with root filled teeth. DNA was directly extracted from each sample and the microbial composition was comprehensively analysed using clone library analysis of the 16S rRNA gene. Enterococcus faecalis, Candida albicans and specific fimA genotypes of Porphyromonas gingivalis were confirmed using polymerase chain reaction (PCR) analysis with specific primers. Bacteria were detected in all samples, and the dominant findings were P. gingivalis (19.9%), Fusobacterium nucleatum (11.2%) and Propionibacterium acnes (9%). Bacterial diversity was greater in symptomatic lesions than in asymptomatic ones. In addition, the following bacteria or bacterial combinations were characteristic to symptomatic lesions: Prevotella spp., Treponema spp., Peptostreptococcaceae sp. HOT-113, Olsenella uli, Slackia exigua, Selemonas infelix, P. gingivalis with type IV fimA, and a combination of P. gingivalis, F. nucleatum, and Peptostreptococcaceae sp. HOT-113 and predominance of Streptococcus spp. On the other hand, neither Enterococcus faecalis nor C. albicans were detected in any of the samples. Whilst a diverse bacterial species were observed in the persistent apical lesions, some characteristic patterns of bacterial community were found in the symptomatic lesions. The diverse variation of community indicates that bacterial combinations as a community may cause persistent inflammation in periapical tissues rather than specific bacterial species. © 2014 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  13. Characterization of bacterial community associated with phytoplankton bloom in a eutrophic lake in South Norway using 16S rRNA gene amplicon sequence analysis.

    PubMed

    Parulekar, Niranjan Nitin; Kolekar, Pandurang; Jenkins, Andrew; Kleiven, Synne; Utkilen, Hans; Johansen, Anette; Sawant, Sangeeta; Kulkarni-Kale, Urmila; Kale, Mohan; Sæbø, Mona

    2017-01-01

    Interactions between different phytoplankton taxa and heterotrophic bacterial communities within aquatic environments can differentially support growth of various heterotrophic bacterial species. In this study, phytoplankton diversity was studied using traditional microscopic techniques and the bacterial communities associated with phytoplankton bloom were studied using High Throughput Sequencing (HTS) analysis of 16S rRNA gene amplicons from the V1-V3 and V3-V4 hypervariable regions. Samples were collected from Lake Akersvannet, a eutrophic lake in South Norway, during the growth season from June to August 2013. Microscopic examination revealed that the phytoplankton community was mostly represented by Cyanobacteria and the dinoflagellate Ceratium hirundinella. The HTS results revealed that Proteobacteria (Alpha, Beta, and Gamma), Bacteriodetes, Cyanobacteria, Actinobacteria and Verrucomicrobia dominated the bacterial community, with varying relative abundances throughout the sampling season. Species level identification of Cyanobacteria showed a mixed population of Aphanizomenon flos-aquae, Microcystis aeruginosa and Woronichinia naegeliana. A significant proportion of the microbial community was composed of unclassified taxa which might represent locally adapted freshwater bacterial groups. Comparison of cyanobacterial species composition from HTS and microscopy revealed quantitative discrepancies, indicating a need for cross validation of results. To our knowledge, this is the first study that uses HTS methods for studying the bacterial community associated with phytoplankton blooms in a Norwegian lake. The study demonstrates the value of considering results from multiple methods when studying bacterial communities.

  14. Use of 16S rRNA sequencing and quantitative PCR to correlate venous leg ulcer bacterial bioburden dynamics with wound expansion, antibiotic therapy, and healing

    PubMed Central

    Sprockett, Daniel D.; Ammons, Christine G.; Tuttle, Marie S.

    2016-01-01

    Clinical diagnosis of infection in chronic wounds is currently limited to subjective clinical signs and culture-based methods that underestimate the complexity of wound microbial bioburden as revealed by DNA-based microbial identification methods. Here, we use 16S rRNA next generation sequencing and quantitative polymerase chain reaction to characterize weekly changes in bacterial load, community structure, and diversity associated with a chronic venous leg ulcer over the 15-week course of treatment and healing. Our DNA-based methods and detailed sampling scheme reveal that the bacterial bioburden of the wound is unexpectedly dynamic, including changes in the bacterial load and community structure that correlate with wound expansion, antibiotic therapy, and healing. We demonstrate that these multidimensional changes in bacterial bioburden can be summarized using swabs taken prior to debridement, and therefore, can be more easily collected serially than debridement or biopsy samples. Overall, this case illustrates the importance of detailed clinical indicators and longitudinal sampling to determine the pathogenic significance of chronic wound microbial dynamics and guide best use of antimicrobials for improvement of healing outcomes. PMID:25902876

  15. Bacteria evade immune recognition via TLR13 and binding of their 23S rRNA by MLS antibiotics by the same mechanisms

    PubMed Central

    Hochrein, Hubertus; Kirschning, Carsten J.

    2013-01-01

    The immune system recognizes pathogens and other danger by means of pattern recognition receptors. Recently, we have demonstrated that the orphan Toll-like receptor 13 (TLR13) senses a defined sequence of the bacterial rRNA and that bacteria use specific mechanisms to evade macrolide lincosamide streptogramin (MLS) antibiotics detection via TLR13. PMID:23802068

  16. The rRNA methyltransferase Bud23 shows functional interaction with components of the SSU processome and RNase MRP.

    PubMed

    Sardana, Richa; White, Joshua P; Johnson, Arlen W

    2013-06-01

    Bud23 is responsible for the conserved methylation of G1575 of 18S rRNA, in the P-site of the small subunit of the ribosome. bud23Δ mutants have severely reduced small subunit levels and show a general failure in cleavage at site A2 during rRNA processing. Site A2 is the primary cleavage site for separating the precursors of 18S and 25S rRNAs. Here, we have taken a genetic approach to identify the functional environment of BUD23. We found mutations in UTP2 and UTP14, encoding components of the SSU processome, as spontaneous suppressors of a bud23Δ mutant. The suppressors improved growth and subunit balance and restored cleavage at site A2. In a directed screen of 50 ribosomal trans-acting factors, we identified strong positive and negative genetic interactions with components of the SSU processome and strong negative interactions with components of RNase MRP. RNase MRP is responsible for cleavage at site A3 in pre-rRNA, an alternative cleavage site for separating the precursor rRNAs. The strong negative genetic interaction between RNase MRP mutants and bud23Δ is likely due to the combined defects in cleavage at A2 and A3. Our results suggest that Bud23 plays a role at the time of A2 cleavage, earlier than previously thought. The genetic interaction with the SSU processome suggests that Bud23 could be involved in triggering disassembly of the SSU processome, or of particular subcomplexes of the processome.

  17. Identification of characteristic oligonucleotides in the bacterial 16S ribosomal RNA sequence dataset

    NASA Technical Reports Server (NTRS)

    Zhang, Zhengdong; Willson, Richard C.; Fox, George E.

    2002-01-01

    MOTIVATION: The phylogenetic structure of the bacterial world has been intensively studied by comparing sequences of 16S ribosomal RNA (16S rRNA). This database of sequences is now widely used to design probes for the detection of specific bacteria or groups of bacteria one at a time. The success of such methods reflects the fact that there are local sequence segments that are highly characteristic of particular organisms or groups of organisms. It is not clear, however, the extent to which such signature sequences exist in the 16S rRNA dataset. A better understanding of the numbers and distribution of highly informative oligonucleotide sequences may facilitate the design of hybridization arrays that can characterize the phylogenetic position of an unknown organism or serve as the basis for the development of novel approaches for use in bacterial identification. RESULTS: A computer-based algorithm that characterizes the extent to which any individual oligonucleotide sequence in 16S rRNA is characteristic of any particular bacterial grouping was developed. A measure of signature quality, Q(s), was formulated and subsequently calculated for every individual oligonucleotide sequence in the size range of 5-11 nucleotides and for 15mers with reference to each cluster and subcluster in a 929 organism representative phylogenetic tree. Subsequently, the perfect signature sequences were compared to the full set of 7322 sequences to see how common false positives were. The work completed here establishes beyond any doubt that highly characteristic oligonucleotides exist in the bacterial 16S rRNA sequence dataset in large numbers. Over 16,000 15mers were identified that might be useful as signatures. Signature oligonucleotides are available for over 80% of the nodes in the representative tree.

  18. How Much Do rRNA Gene Surveys Underestimate Extant Bacterial Diversity?

    PubMed

    Rodriguez-R, Luis M; Castro, Juan C; Kyrpides, Nikos C; Cole, James R; Tiedje, James M; Konstantinidis, Konstantinos T

    2018-03-15

    The most common practice in studying and cataloguing prokaryotic diversity involves the grouping of sequences into operational taxonomic units (OTUs) at the 97% 16S rRNA gene sequence identity level, often using partial gene sequences, such as PCR-generated amplicons. Due to the high sequence conservation of rRNA genes, organisms belonging to closely related yet distinct species may be grouped under the same OTU. However, it remains unclear how much diversity has been underestimated by this practice. To address this question, we compared the OTUs of genomes defined at the 97% or 98.5% 16S rRNA gene identity level against OTUs of the same genomes defined at the 95% whole-genome average nucleotide identity (ANI), which is a much more accurate proxy for species. Our results show that OTUs resulting from a 98.5% 16S rRNA gene identity cutoff are more accurate than 97% compared to 95% ANI (90.5% versus 89.9% accuracy) but indistinguishable from any other threshold in the 98.29 to 98.78% range. Even with the more stringent thresholds, however, the 16S rRNA gene-based approach commonly underestimates the number of OTUs by ∼12%, on average, compared to the ANI-based approach (∼14% underestimation when using the 97% identity threshold). More importantly, the degree of underestimation can become 50% or more for certain taxa, such as the genera Pseudomonas , Burkholderia , Escherichia , Campylobacter , and Citrobacter These results provide a quantitative view of the degree of underestimation of extant prokaryotic diversity by 16S rRNA gene-defined OTUs and suggest that genomic resolution is often necessary. IMPORTANCE Species diversity is one of the most fundamental pieces of information for community ecology and conservational biology. Therefore, employing accurate proxies for what a species or the unit of diversity is are cornerstones for a large set of microbial ecology and diversity studies. The most common proxies currently used rely on the clustering of 16S rRNA

  19. Diversity within Italian Cheesemaking Brine-Associated Bacterial Communities Evidenced by Massive Parallel 16S rRNA Gene Tag Sequencing

    PubMed Central

    Marino, Marilena; Innocente, Nadia; Maifreni, Michela; Mounier, Jérôme; Cobo-Díaz, José F.; Coton, Emmanuel; Carraro, Lisa; Cardazzo, Barbara

    2017-01-01

    This study explored the bacterial diversity of brines used for cheesemaking in Italy, as well as their physicochemical characteristics. In this context, 19 brines used to salt soft, semi-hard, and hard Italian cheeses were collected in 14 commercial cheese plants and analyzed using a culture-independent amplicon sequencing approach in order to describe their bacterial microbiota. Large NaCl concentration variations were observed among the selected brines, with hard cheese brines exhibiting the highest values. Acidity values showed a great variability too, probably in relation to the brine use prior to sampling. Despite their high salt content, brine microbial loads ranged from 2.11 to 6.51 log CFU/mL for the total mesophilic count. Microbial community profiling assessed by 16S rRNA gene sequencing showed that these ecosystems were dominated by Firmicutes and Proteobacteria, followed by Actinobacteria and Bacteroidetes. Cheese type and brine salinity seem to be the main parameters accountable for brine microbial diversity. On the contrary, brine pH, acidity and protein concentration, correlated to cheese brine age, did not have any selective effect on the microbiota composition. Nine major genera were present in all analyzed brines, indicating that they might compose the core microbiome of cheese brines. Staphylococcus aureus was occasionally detected in brines using selective culture media. Interestingly, bacterial genera associated with a functional and technological use were frequently detected. Indeed Bifidobacteriaceae, which might be valuable probiotic candidates, and specific microbial genera such as Tetragenococcus, Corynebacterium and non-pathogenic Staphylococcus, which can contribute to sensorial properties of ripened cheeses, were widespread within brines. PMID:29163411

  20. First Report of the 23S rRNA Gene A2058G Point Mutation Associated With Macrolide Resistance in Treponema pallidum From Syphilis Patients in Cuba.

    PubMed

    Noda, Angel A; Matos, Nelvis; Blanco, Orestes; Rodríguez, Islay; Stamm, Lola Virginia

    2016-05-01

    This study aimed to assess the presence of macrolide-resistant Treponema pallidum subtypes in Havana, Cuba. Samples from 41 syphilis patients were tested for T. pallidum 23S rRNA gene mutations. Twenty-five patients (61%) harbored T. pallidum with the A2058G mutation, which was present in all 8 subtypes that were identified. The A2059G mutation was not detected.

  1. Horizon-Specific Bacterial Community Composition of German Grassland Soils, as Revealed by Pyrosequencing-Based Analysis of 16S rRNA Genes ▿ †

    PubMed Central

    Will, Christiane; Thürmer, Andrea; Wollherr, Antje; Nacke, Heiko; Herold, Nadine; Schrumpf, Marion; Gutknecht, Jessica; Wubet, Tesfaye; Buscot, François; Daniel, Rolf

    2010-01-01

    The diversity of bacteria in soil is enormous, and soil bacterial communities can vary greatly in structure. Here, we employed a pyrosequencing-based analysis of the V2-V3 16S rRNA gene region to characterize the overall and horizon-specific (A and B horizons) bacterial community compositions in nine grassland soils, which covered three different land use types. The entire data set comprised 752,838 sequences, 600,544 of which could be classified below the domain level. The average number of sequences per horizon was 41,824. The dominant taxonomic groups present in all samples and horizons were the Acidobacteria, Betaproteobacteria, Actinobacteria, Gammaproteobacteria, Alphaproteobacteria, Deltaproteobacteria, Chloroflexi, Firmicutes, and Bacteroidetes. Despite these overarching dominant taxa, the abundance, diversity, and composition of bacterial communities were horizon specific. In almost all cases, the estimated bacterial diversity (H′) was higher in the A horizons than in the corresponding B horizons. In addition, the H′ was positively correlated with the organic carbon content, the total nitrogen content, and the C-to-N ratio, which decreased with soil depth. It appeared that lower land use intensity results in higher bacterial diversity. The majority of sequences affiliated with the Actinobacteria, Bacteroidetes, Cyanobacteria, Fibrobacteres, Firmicutes, Spirochaetes, Verrucomicrobia, Alphaproteobacteria, Betaproteobacteria, and Gammaproteobacteria were derived from A horizons, whereas the majority of the sequences related to Acidobacteria, Chloroflexi, Gemmatimonadetes, Nitrospira, TM7, and WS3 originated from B horizons. The distribution of some bacterial phylogenetic groups and subgroups in the different horizons correlated with soil properties such as organic carbon content, total nitrogen content, or microbial biomass. PMID:20729324

  2. Diagnosis and follow-up of Whipple's disease by amplification of the 16S rRNA gene of Tropheryma whippelii.

    PubMed

    Pron, B; Poyart, C; Abachin, E; Fest, T; Belanger, C; Bonnet, C; Capelle, P; Bretagne, J F; Fabianek, A; Girard, L; Hagège, H; Berche, P

    1999-01-01

    Amplification of the 16S rRNA gene of Tropheryma whippelii was performed in eight patients with Whipple's disease and 34 control patients to confirm a diagnosis of Whipple's disease and to monitor the course of disease. Polymerase chain reaction (PCR) tests were positive before treatment in 13 of 15 tissue samples from Whipple's disease patients (gut 8/8; lymph nodes 2/2; bone marrow 1/2; peripheral blood 2/3), in contrast to none of 54 tissue samples from controls. PCR tests converted to negative within 4-6 months in six of the Whipple's disease patients undergoing therapy. These results show that PCR is a reliable and useful tool for diagnosis of Whipple's disease and for monitoring bacterial elimination during antibiotic therapy.

  3. The Role of 16S rRNA Gene Sequencing in Identification of Microorganisms Misidentified by Conventional Methods

    PubMed Central

    Petti, C. A.; Polage, C. R.; Schreckenberger, P.

    2005-01-01

    Traditional methods for microbial identification require the recognition of differences in morphology, growth, enzymatic activity, and metabolism to define genera and species. Full and partial 16S rRNA gene sequencing methods have emerged as useful tools for identifying phenotypically aberrant microorganisms. We report on three bacterial blood isolates from three different College of American Pathologists-certified laboratories that were referred to ARUP Laboratories for definitive identification. Because phenotypic identification suggested unusual organisms not typically associated with the submitted clinical diagnosis, consultation with the Medical Director was sought and further testing was performed including partial 16S rRNA gene sequencing. All three patients had endocarditis, and conventional methods identified isolates from patients A, B, and C as a Facklamia sp., Eubacterium tenue, and a Bifidobacterium sp. 16S rRNA gene sequencing identified the isolates as Enterococcus faecalis, Cardiobacterium valvarum, and Streptococcus mutans, respectively. We conclude that the initial identifications of these three isolates were erroneous, may have misled clinicians, and potentially impacted patient care. 16S rRNA gene sequencing is a more objective identification tool, unaffected by phenotypic variation or technologist bias, and has the potential to reduce laboratory errors. PMID:16333109

  4. Optimisation of 16S rRNA gut microbiota profiling of extremely low birth weight infants.

    PubMed

    Alcon-Giner, Cristina; Caim, Shabhonam; Mitra, Suparna; Ketskemety, Jennifer; Wegmann, Udo; Wain, John; Belteki, Gusztav; Clarke, Paul; Hall, Lindsay J

    2017-11-02

    Infants born prematurely, particularly extremely low birth weight infants (ELBW) have altered gut microbial communities. Factors such as maternal health, gut immaturity, delivery mode, and antibiotic treatments are associated with microbiota disturbances, and are linked to an increased risk of certain diseases such as necrotising enterocolitis. Therefore, there is a requirement to optimally characterise microbial profiles in this at-risk cohort, via standardisation of methods, particularly for studying the influence of microbiota therapies (e.g. probiotic supplementation) on community profiles and health outcomes. Profiling of faecal samples using the 16S rRNA gene is a cost-efficient method for large-scale clinical studies to gain insights into the gut microbiota and additionally allows characterisation of cohorts were sample quantities are compromised (e.g. ELBW infants). However, DNA extraction method, and the 16S rRNA region targeted can significantly change bacterial community profiles obtained, and so confound comparisons between studies. Thus, we sought to optimise a 16S rRNA profiling protocol to allow standardisation for studying ELBW infant faecal samples, with or without probiotic supplementation. Using ELBW faecal samples, we compared three different DNA extraction methods, and subsequently PCR amplified and sequenced three hypervariable regions of the 16S rRNA gene (V1 + V2 + V3), (V4 + V5) and (V6 + V7 + V8), and compared two bioinformatics approaches to analyse results (OTU and paired end). Paired shotgun metagenomics was used as a 'gold-standard'. Results indicated a longer bead-beating step was required for optimal bacterial DNA extraction and that sequencing regions (V1 + V2 + V3) and (V6 + V7 + V8) provided the most representative taxonomic profiles, which was confirmed via shotgun analysis. Samples sequenced using the (V4 + V5) region were found to be underrepresented in specific taxa including Bifidobacterium, and had

  5. Identification of the Microbiota in Carious Dentin Lesions Using 16S rRNA Gene Sequencing

    PubMed Central

    Obata, Junko; Takeshita, Toru; Shibata, Yukie; Yamanaka, Wataru; Unemori, Masako; Akamine, Akifumi; Yamashita, Yoshihisa

    2014-01-01

    While mutans streptococci have long been assumed to be the specific pathogen responsible for human dental caries, the concept of a complex dental caries-associated microbiota has received significant attention in recent years. Molecular analyses revealed the complexity of the microbiota with the predominance of Lactobacillus and Prevotella in carious dentine lesions. However, characterization of the dentin caries-associated microbiota has not been extensively explored in different ethnicities and races. In the present study, the bacterial communities in the carious dentin of Japanese subjects were analyzed comprehensively with molecular approaches using the16S rRNA gene. Carious dentin lesion samples were collected from 32 subjects aged 4–76 years, and the 16S rRNA genes, amplified from the extracted DNA with universal primers, were sequenced with a pyrosequencer. The bacterial composition was classified into clusters I, II, and III according to the relative abundance (high, middle, low) of Lactobacillus. The bacterial composition in cluster II was composed of relatively high proportions of Olsenella and Propionibacterium or subdominated by heterogeneous genera. The bacterial communities in cluster III were characterized by the predominance of Atopobium, Prevotella, or Propionibacterium with Streptococcus or Actinomyces. Some samples in clusters II and III, mainly related to Atopobium and Propionibacterium, were novel combinations of microbiota in carious dentin lesions and may be characteristic of the Japanese population. Clone library analysis revealed that Atopobium sp. HOT-416 and P. acidifaciens were specific species associated with dentinal caries among these genera in a Japanese population. We summarized the bacterial composition of dentinal carious lesions in a Japanese population using next-generation sequencing and found typical Japanese types with Atopobium or Propionibacterium predominating. PMID:25083880

  6. Identification of the microbiota in carious dentin lesions using 16S rRNA gene sequencing.

    PubMed

    Obata, Junko; Takeshita, Toru; Shibata, Yukie; Yamanaka, Wataru; Unemori, Masako; Akamine, Akifumi; Yamashita, Yoshihisa

    2014-01-01

    While mutans streptococci have long been assumed to be the specific pathogen responsible for human dental caries, the concept of a complex dental caries-associated microbiota has received significant attention in recent years. Molecular analyses revealed the complexity of the microbiota with the predominance of Lactobacillus and Prevotella in carious dentine lesions. However, characterization of the dentin caries-associated microbiota has not been extensively explored in different ethnicities and races. In the present study, the bacterial communities in the carious dentin of Japanese subjects were analyzed comprehensively with molecular approaches using the16S rRNA gene. Carious dentin lesion samples were collected from 32 subjects aged 4-76 years, and the 16S rRNA genes, amplified from the extracted DNA with universal primers, were sequenced with a pyrosequencer. The bacterial composition was classified into clusters I, II, and III according to the relative abundance (high, middle, low) of Lactobacillus. The bacterial composition in cluster II was composed of relatively high proportions of Olsenella and Propionibacterium or subdominated by heterogeneous genera. The bacterial communities in cluster III were characterized by the predominance of Atopobium, Prevotella, or Propionibacterium with Streptococcus or Actinomyces. Some samples in clusters II and III, mainly related to Atopobium and Propionibacterium, were novel combinations of microbiota in carious dentin lesions and may be characteristic of the Japanese population. Clone library analysis revealed that Atopobium sp. HOT-416 and P. acidifaciens were specific species associated with dentinal caries among these genera in a Japanese population. We summarized the bacterial composition of dentinal carious lesions in a Japanese population using next-generation sequencing and found typical Japanese types with Atopobium or Propionibacterium predominating.

  7. Development of an Analysis Pipeline Characterizing Multiple Hypervariable Regions of 16S rRNA Using Mock Samples.

    PubMed

    Barb, Jennifer J; Oler, Andrew J; Kim, Hyung-Suk; Chalmers, Natalia; Wallen, Gwenyth R; Cashion, Ann; Munson, Peter J; Ames, Nancy J

    2016-01-01

    There is much speculation on which hypervariable region provides the highest bacterial specificity in 16S rRNA sequencing. The optimum solution to prevent bias and to obtain a comprehensive view of complex bacterial communities would be to sequence the entire 16S rRNA gene; however, this is not possible with second generation standard library design and short-read next-generation sequencing technology. This paper examines a new process using seven hypervariable or V regions of the 16S rRNA (six amplicons: V2, V3, V4, V6-7, V8, and V9) processed simultaneously on the Ion Torrent Personal Genome Machine (Life Technologies, Grand Island, NY). Four mock samples were amplified using the 16S Ion Metagenomics Kit™ (Life Technologies) and their sequencing data is subjected to a novel analytical pipeline. Results are presented at family and genus level. The Kullback-Leibler divergence (DKL), a measure of the departure of the computed from the nominal bacterial distribution in the mock samples, was used to infer which region performed best at the family and genus levels. Three different hypervariable regions, V2, V4, and V6-7, produced the lowest divergence compared to the known mock sample. The V9 region gave the highest (worst) average DKL while the V4 gave the lowest (best) average DKL. In addition to having a high DKL, the V9 region in both the forward and reverse directions performed the worst finding only 17% and 53% of the known family level and 12% and 47% of the genus level bacteria, while results from the forward and reverse V4 region identified all 17 family level bacteria. The results of our analysis have shown that our sequencing methods using 6 hypervariable regions of the 16S rRNA and subsequent analysis is valid. This method also allowed for the assessment of how well each of the variable regions might perform simultaneously. Our findings will provide the basis for future work intended to assess microbial abundance at different time points throughout a

  8. Acquisition of 16S rRNA methylase gene in Pseudomonas aeruginosa.

    PubMed

    Yokoyama, Keiko; Doi, Yohei; Yamane, Kunikazu; Kurokawa, Hiroshi; Shibata, Naohiro; Shibayama, Keigo; Yagi, Tetsuya; Kato, Haru; Arakawa, Yoshichika

    2003-12-06

    Bacteria develop resistance to aminoglycosides by producing aminoglycoside-modifying enzymes such as acetyltransferase, phosphorylase, and adenyltransferase. These enzymes, however, cannot confer consistent resistance to various aminoglycosides because of their substrate specificity. Notwithstanding, a Pseudomonas aeruginosa strain AR-2 showing high-level resistance (minimum inhibitory concentration >1024 mg/L) to various aminoglycosides was isolated clinically. We aimed to clone and characterise the genetic determinant of this resistance. We used conventional methods for DNA manipulation, susceptibility testing, and gene analyses to clone and characterise the genetic determinant of the resistance seen. PCR detection of the gene was also done on a stock of P aeruginosa strains that were isolated clinically since 1997. An aminoglycoside-resistance gene, designated rmtA, was identified in P aeruginosa AR-2. The Escherichia coli transformant and transconjugant harbouring the rmtA gene showed very high-level resistance to various aminoglycosides, including amikacin, tobramycin, isepamicin, arbekacin, kanamycin, and gentamicin. The 756-bp nucleotide rmtA gene encoded a protein, RmtA. This protein showed considerable similarity to the 16S rRNA methylases of aminoglycoside-producing actinomycetes, which protect bacterial 16S rRNA from intrinsic aminoglycosides by methylation. Incorporation of radiolabelled methyl groups into the 30S ribosome was detected in the presence of RmtA. Of 1113 clinically isolated P aeruginosa strains, nine carried the rmtA gene, as shown by PCR analyses. Our findings strongly suggest intergeneric lateral gene transfer of 16S rRNA methylase gene from some aminoglycoside-producing microorganisms to P aeruginosa. Further dissemination of the rmtA gene in nosocomial bacteria could be a matter of concern in the future.

  9. Diversity, dynamics, and activity of bacterial communities during production of an artisanal Sicilian cheese as evaluated by 16S rRNA analysis.

    PubMed

    Randazzo, Cinzia L; Torriani, Sandra; Akkermans, Antoon D L; de Vos, Willem M; Vaughan, Elaine E

    2002-04-01

    The diversity and dynamics of the microbial communities during the manufacturing of Ragusano cheese, an artisanal cheese produced in Sicily (Italy), were investigated by a combination of classical and culture-independent approaches. The latter included PCR, reverse transcriptase-PCR (RT-PCR), and denaturing gradient gel electrophoresis (DGGE) of 16S rRNA genes (rDNA). Bacterial and Lactobacillus group-specific primers were used to amplify the V6 to V8 and V1 to V3 regions of the 16S rRNA gene, respectively. DGGE profiles from samples taken during cheese production indicated dramatic shifts in the microbial community structure. Cloning and sequencing of rDNA amplicons revealed that mesophilic lactic acid bacteria (LAB), including species of Leuconostoc, Lactococcus lactis, and Macrococcus caseolyticus were dominant in the raw milk, while Streptococcus thermophilus prevailed during lactic fermentation. Other thermophilic LAB, especially Lactobacillus delbrueckii and Lactobacillus fermentum, also flourished during ripening. Comparison of the rRNA-derived patterns obtained by RT-PCR to the rDNA DGGE patterns indicated a substantially different degree of metabolic activity for the microbial groups detected. Identification of cultivated LAB isolates by phenotypic characterization and 16S rDNA analysis indicated a variety of species, reflecting to a large extent the results obtained from the 16S rDNA clone libraries, with the significant exception of the Lactobacillus delbrueckii species, which dominated in the ripening cheese but was not detected by cultivation. The present molecular approaches combined with culture can effectively describe the complex ecosystem of natural fermented dairy products, giving useful information for starter culture design and preservation of artisanal fermented food technology.

  10. Composition and Metabolic Activities of the Bacterial Community in Shrimp Sauce at the Flavor-Forming Stage of Fermentation As Revealed by Metatranscriptome and 16S rRNA Gene Sequencings.

    PubMed

    Duan, Shan; Hu, Xiaoxi; Li, Mengru; Miao, Jianyin; Du, Jinghe; Wu, Rongli

    2016-03-30

    The bacterial community and the metabolic activities involved at the flavor-forming stage during the fermentation of shrimp sauce were investigated using metatranscriptome and 16S rRNA gene sequencings. Results showed that the abundance of Tetragenococcus was 95.1%. Tetragenococcus halophilus was identified in 520 of 588 transcripts annotated in the Nr database. Activation of the citrate cycle and oxidative phosphorylation, along with the absence of lactate dehydrogenase gene expression, in T. halophilus suggests that T. halophilus probably underwent aerobic metabolism during shrimp sauce fermentation. The metabolism of amino acids, production of peptidase, and degradation of limonene and pinene were very active in T. halophilus. Carnobacterium, Pseudomonas, Escherichia, Staphylococcus, Bacillus, and Clostridium were also metabolically active, although present in very small populations. Enterococcus, Abiotrophia, Streptococcus, and Lactobacillus were detected in metatranscriptome sequencing, but not in 16S rRNA gene sequencing. Many minor taxa showed no gene expression, suggesting that they were in dormant status.

  11. A novel RT-PCR for the detection of Helicobacter pylori and identification of clarithromycin resistance mediated by mutations in the 23S rRNA gene.

    PubMed

    Redondo, Javier Jareño; Keller, Peter M; Zbinden, Reinhard; Wagner, Karoline

    2018-01-01

    In this study we evaluated the commercially available LightMix® RT-PCR assay for Helicobacter pylori detection and identification of clarithromycin (CLR) resistance in culture and clinical specimens (gastric biopsies and stool). The H. pylori LightMix® RT-PCR detects a 97bp long fragment of the 23S rRNA gene and allows the identification of 3 distinct point mutations conferring CLR resistance via melting curve analysis. The performance of the H. pylori LightMix® RT-PCR was evaluated using a set of 60 H. pylori strains showing phenotypical CLR susceptibility or CLR resistance (Minimum inhibitory concentrations from 0.016 to 256mg/L). We found high concordance (95%) between phenotypical CLR resistance screening by E-Test® and the Lightmix® RT-PCR. Discrepant results were verified by sequencing of the 23S rRNA gene that always confirmed the results obtained by Lightmix® RT-PCR. Furthermore, H. pylori was detected in clinical biopsy and stool specimens by Lightmix® RT-PCR that identified the correct H. pylori genotype. The LightMix® RT-PCR is an accurate, sensitive and easy to use test for H. pylori and CLR resistance detection and can therefore be readily implemented in any diagnostic laboratory. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  12. Abundance and activity of 16S rRNA, amoA and nifH bacterial genes during assisted phytostabilization of mine tailings

    PubMed Central

    Nelson, Karis N.; Neilson, Julia W.; Root, Robert A.; Chorover, Jon; Maier, Raina M.

    2014-01-01

    Mine tailings in semiarid regions are highly susceptible to erosion and are sources of dust pollution and potential avenues of human exposure to toxic metals. One constraint to revegetation of tailings by phytostabilization is the absence of microbial communities critical for biogeochemical cycling of plant nutrients. The objective of this study was to evaluate specific genes as in situ indicators of biological soil response during phytoremediation. The abundance and activity of 16S rRNA, nifH, and amoA were monitored during a nine month phytostabilization study using buffalo grass and quailbush grown in compost-amended, metalliferous tailings. The compost amendment provided a greater than 5-log increase in bacterial abundance, and survival of this compost-inoculum was more stable in planted treatments. Despite increased abundance, the activity of the introduced community was low, and significant increases were not detected until six and nine months in quailbush, and unplanted compost and buffalo grass treatments, respectively. In addition, increased abundances of nitrogen-fixation (nifH) and ammonia-oxidizing (amoA) genes were observed in rhizospheres of buffalo grass and quailbush, respectively. Thus, plant establishment facilitated the short term stabilization of introduced bacterial biomass and supported the growth of two key nitrogen-cycling populations in compost-amended tailings. PMID:25495940

  13. Abundance and Activity of 16S rRNA, AmoA and NifH Bacterial Genes During Assisted Phytostabilization of Mine Tailings.

    PubMed

    Nelson, Karis N; Neilson, Julia W; Root, Robert A; Chorover, Jon; Maier, Raina M

    2015-01-01

    Mine tailings in semiarid regions are highly susceptible to erosion and are sources of dust pollution and potential avenues of human exposure to toxic metals. One constraint to revegetation of tailings by phytostabilization is the absence of microbial communities critical for biogeochemical cycling of plant nutrients. The objective of this study was to evaluate specific genes as in situ indicators of biological soil response during phytoremediation. The abundance and activity of 16S rRNA, nifH, and amoA were monitored during a nine month phytostabilization study using buffalo grass and quailbush grown in compost-amended, metalliferous tailings. The compost amendment provided a greater than 5-log increase in bacterial abundance, and survival of this compost-inoculum was more stable in planted treatments. Despite increased abundance, the activity of the introduced community was low, and significant increases were not detected until six and nine months in quailbush, and unplanted compost and buffalo grass treatments, respectively. In addition, increased abundances of nitrogen-fixation (nifH) and ammonia-oxidizing (amoA) genes were observed in rhizospheres of buffalo grass and quailbush, respectively. Thus, plant establishment facilitated the short term stabilization of introduced bacterial biomass and supported the growth of two key nitrogen-cycling populations in compost-amended tailings.

  14. Evaluation of the Bacterial Diversity in the Human Tongue Coating Based on Genus-Specific Primers for 16S rRNA Sequencing.

    PubMed

    Sun, Beili; Zhou, Dongrui; Tu, Jing; Lu, Zuhong

    2017-01-01

    The characteristics of tongue coating are very important symbols for disease diagnosis in traditional Chinese medicine (TCM) theory. As a habitat of oral microbiota, bacteria on the tongue dorsum have been proved to be the cause of many oral diseases. The high-throughput next-generation sequencing (NGS) platforms have been widely applied in the analysis of bacterial 16S rRNA gene. We developed a methodology based on genus-specific multiprimer amplification and ligation-based sequencing for microbiota analysis. In order to validate the efficiency of the approach, we thoroughly analyzed six tongue coating samples from lung cancer patients with different TCM types, and more than 600 genera of bacteria were detected by this platform. The results showed that ligation-based parallel sequencing combined with enzyme digestion and multiamplification could expand the effective length of sequencing reads and could be applied in the microbiota analysis.

  15. Crystal Structure of the Escherichia coli 23S rRNA: m{5}C Methyltransferase RlmI (YccW) Reveals Evolutionary Links Between RNA Modification Enzymes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sunita, S.; Tkaczuk, K; Purta, E

    2008-01-01

    Methylation is the most common RNA modification in the three domains of life. Transfer of the methyl group from S-adenosyl-l-methionine (AdoMet) to specific atoms of RNA nucleotides is catalyzed by methyltransferase (MTase) enzymes. The rRNA MTase RlmI (rRNA large subunit methyltransferase gene I; previously known as YccW) specifically modifies Escherichia coli 23S rRNA at nucleotide C1962 to form 5-methylcytosine. Here, we report the crystal structure of RlmI refined at 2 {angstrom} to a final R-factor of 0.194 (R{sub free} = 0.242). The RlmI molecule comprises three domains: the N-terminal PUA domain; the central domain, which resembles a domain previously foundmore » in RNA:5-methyluridine MTases; and the C-terminal catalytic domain, which contains the AdoMet-binding site. The central and C-terminal domains are linked by a {Beta}-hairpin structure that has previously been observed in several MTases acting on nucleic acids or proteins. Based on bioinformatics analyses, we propose a model for the RlmI-AdoMet-RNA complex. Comparative structural analyses of RlmI and its homologs provide insight into the potential function of several structures that have been solved by structural genomics groups and furthermore indicate that the evolutionary paths of RNA and DNA 5-methyluridine and 5-methylcytosine MTases have been closely intertwined.« less

  16. Evaluating the Detection of Hydrocarbon-Degrading Bacteria in 16S rRNA Gene Sequencing Surveys

    PubMed Central

    Berry, David; Gutierrez, Tony

    2017-01-01

    Hydrocarbonoclastic bacteria (HCB) play a key role in the biodegradation of oil hydrocarbons in marine and other environments. A small number of taxa have been identified as obligate HCB, notably the Gammaproteobacterial genera Alcanivorax, Cycloclasticus, Marinobacter, Neptumonas, Oleiphilus, Oleispira, and Thalassolituus, as well as the Alphaproteobacterial genus Thalassospira. Detection of HCB in amplicon-based sequencing surveys relies on high coverage by PCR primers and accurate taxonomic classification. In this study, we performed a phylogenetic analysis to identify 16S rRNA gene sequence regions that represent the breadth of sequence diversity within these taxa. Using validated sequences, we evaluated 449 universal 16S rRNA gene-targeted bacterial PCR primer pairs for their coverage of these taxa. The results of this analysis provide a practical framework for selection of suitable primer sets for optimal detection of HCB in sequencing surveys. PMID:28567035

  17. Evaluating the Detection of Hydrocarbon-Degrading Bacteria in 16S rRNA Gene Sequencing Surveys.

    PubMed

    Berry, David; Gutierrez, Tony

    2017-01-01

    Hydrocarbonoclastic bacteria (HCB) play a key role in the biodegradation of oil hydrocarbons in marine and other environments. A small number of taxa have been identified as obligate HCB, notably the Gammaproteobacterial genera Alcanivorax, Cycloclasticus, Marinobacter, Neptumonas, Oleiphilus, Oleispira , and Thalassolituus , as well as the Alphaproteobacterial genus Thalassospira . Detection of HCB in amplicon-based sequencing surveys relies on high coverage by PCR primers and accurate taxonomic classification. In this study, we performed a phylogenetic analysis to identify 16S rRNA gene sequence regions that represent the breadth of sequence diversity within these taxa. Using validated sequences, we evaluated 449 universal 16S rRNA gene-targeted bacterial PCR primer pairs for their coverage of these taxa. The results of this analysis provide a practical framework for selection of suitable primer sets for optimal detection of HCB in sequencing surveys.

  18. Detection of Prosthetic Hip Infection at Revision Arthroplasty by Immunofluorescence Microscopy and PCR Amplification of the Bacterial 16S rRNA Gene

    PubMed Central

    Tunney, Michael M.; Patrick, Sheila; Curran, Martin D.; Ramage, Gordon; Hanna, Donna; Nixon, James R.; Gorman, Sean P.; Davis, Richard I.; Anderson, Neil

    1999-01-01

    In this study the detection rates of bacterial infection of hip prostheses by culture and nonculture methods were compared for 120 patients with total hip revision surgery. By use of strict anaerobic bacteriological practice during the processing of samples and without enrichment, the incidence of infection by culture of material dislodged from retrieved prostheses after ultrasonication (sonicate) was 22%. Bacteria were observed by immunofluorescence microscopy in 63% of sonicate samples with a monoclonal antibody specific for Propionibacterium acnes and polyclonal antiserum specific for Staphylococcus spp. The bacteria were present either as single cells or in aggregates of up to 300 bacterial cells. These aggregates were not observed without sonication to dislodge the biofilm. Bacteria were observed in all of the culture-positive samples, and in some cases in which only one type of bacterium was identified by culture, both coccoid and coryneform bacteria were observed by immunofluorescence microscopy. Bacteria from skin-flake contamination were readily distinguishable from infecting bacteria by immunofluorescence microscopy. Examination of skin scrapings did not reveal large aggregates of bacteria but did reveal skin cells. These were not observed in the sonicates. Bacterial DNA was detected in 72% of sonicate samples by PCR amplification of a region of the bacterial 16S rRNA gene with universal primers. All of the culture-positive samples were also positive for bacterial DNA. Evidence of high-level infiltration either of neutrophils or of lymphocytes or macrophages into associated tissue was observed in 73% of patients. Our results indicate that the incidence of prosthetic joint infection is grossly underestimated by current culture detection methods. It is therefore imperative that current clinical practice with regard to the detection and subsequent treatment of prosthetic joint infection be reassessed in the light of these results. PMID:10488193

  19. Changes in the Composition of Drinking Water Bacterial Clone Libraries Introduced by Using Two Different 16S rRna Gene PCR Primers

    EPA Science Inventory

    Sequence analysis of 16S rRNA gene clone libraries is a popular tool used to describe the composition of natural microbial communities. Commonly, clone libraries are developed by direct cloning of 16S rRNA gene PCR products. Different primers are often employed in the initial amp...

  20. Changes in the Composition of Drinking Water Bacterial Clone Libraries Introduced by Using Two Different 16S rRNA Gene PCR Primers

    EPA Science Inventory

    Sequence analysis of 16S rRNA gene clone libraries is a popular tool used to describe the composition of natural microbial communities. Commonly, clone libraries are developed by direct cloning of 16S rRNA gene PCR products. Different primers are often employed in the initial amp...

  1. Recognition of Potentially Novel Human Disease-Associated Pathogens by Implementation of Systematic 16S rRNA Gene Sequencing in the Diagnostic Laboratory▿ †

    PubMed Central

    Keller, Peter M.; Rampini, Silvana K.; Büchler, Andrea C.; Eich, Gerhard; Wanner, Roger M.; Speck, Roberto F.; Böttger, Erik C.; Bloemberg, Guido V.

    2010-01-01

    Clinical isolates that are difficult to identify by conventional means form a valuable source of novel human pathogens. We report on a 5-year study based on systematic 16S rRNA gene sequence analysis. We found 60 previously unknown 16S rRNA sequences corresponding to potentially novel bacterial taxa. For 30 of 60 isolates, clinical relevance was evaluated; 18 of the 30 isolates analyzed were considered to be associated with human disease. PMID:20631113

  2. Common 5S rRNA variants are likely to be accepted in many sequence contexts

    NASA Technical Reports Server (NTRS)

    Zhang, Zhengdong; D'Souza, Lisa M.; Lee, Youn-Hyung; Fox, George E.

    2003-01-01

    Over evolutionary time RNA sequences which are successfully fixed in a population are selected from among those that satisfy the structural and chemical requirements imposed by the function of the RNA. These sequences together comprise the structure space of the RNA. In principle, a comprehensive understanding of RNA structure and function would make it possible to enumerate which specific RNA sequences belong to a particular structure space and which do not. We are using bacterial 5S rRNA as a model system to attempt to identify principles that can be used to predict which sequences do or do not belong to the 5S rRNA structure space. One promising idea is the very intuitive notion that frequently seen sequence changes in an aligned data set of naturally occurring 5S rRNAs would be widely accepted in many other 5S rRNA sequence contexts. To test this hypothesis, we first developed well-defined operational definitions for a Vibrio region of the 5S rRNA structure space and what is meant by a highly variable position. Fourteen sequence variants (10 point changes and 4 base-pair changes) were identified in this way, which, by the hypothesis, would be expected to incorporate successfully in any of the known sequences in the Vibrio region. All 14 of these changes were constructed and separately introduced into the Vibrio proteolyticus 5S rRNA sequence where they are not normally found. Each variant was evaluated for its ability to function as a valid 5S rRNA in an E. coli cellular context. It was found that 93% (13/14) of the variants tested are likely valid 5S rRNAs in this context. In addition, seven variants were constructed that, although present in the Vibrio region, did not meet the stringent criteria for a highly variable position. In this case, 86% (6/7) are likely valid. As a control we also examined seven variants that are seldom or never seen in the Vibrio region of 5S rRNA sequence space. In this case only two of seven were found to be potentially valid. The

  3. Characterization and Evolution of Cell Division and Cell Wall Synthesis Genes in the Bacterial Phyla Verrucomicrobia, Lentisphaerae, Chlamydiae, and Planctomycetes and Phylogenetic Comparison with rRNA Genes▿ †

    PubMed Central

    Pilhofer, Martin; Rappl, Kristina; Eckl, Christina; Bauer, Andreas Peter; Ludwig, Wolfgang; Schleifer, Karl-Heinz; Petroni, Giulio

    2008-01-01

    In the past, studies on the relationships of the bacterial phyla Planctomycetes, Chlamydiae, Lentisphaerae, and Verrucomicrobia using different phylogenetic markers have been controversial. Investigations based on 16S rRNA sequence analyses suggested a relationship of the four phyla, showing the branching order Planctomycetes, Chlamydiae, Verrucomicrobia/Lentisphaerae. Phylogenetic analyses of 23S rRNA genes in this study also support a monophyletic grouping and their branching order—this grouping is significant for understanding cell division, since the major bacterial cell division protein FtsZ is absent from members of two of the phyla Chlamydiae and Planctomycetes. In Verrucomicrobia, knowledge about cell division is mainly restricted to the recent report of ftsZ in the closely related genera Prosthecobacter and Verrucomicrobium. In this study, genes of the conserved division and cell wall (dcw) cluster (ddl, ftsQ, ftsA, and ftsZ) were characterized in all verrucomicrobial subdivisions (1 to 4) with cultivable representatives (1 to 4). Sequence analyses and transcriptional analyses in Verrucomicrobia and genome data analyses in Lentisphaerae suggested that cell division is based on FtsZ in all verrucomicrobial subdivisions and possibly also in the sister phylum Lentisphaerae. Comprehensive sequence analyses of available genome data for representatives of Verrucomicrobia, Lentisphaerae, Chlamydiae, and Planctomycetes strongly indicate that their last common ancestor possessed a conserved, ancestral type of dcw gene cluster and an FtsZ-based cell division mechanism. This implies that Planctomycetes and Chlamydiae may have shifted independently to a non-FtsZ-based cell division mechanism after their separate branchings from their last common ancestor with Verrucomicrobia. PMID:18310338

  4. Cyanobacterial endobionts within a major marine planktonic calcifier (Globigerina bulloides, Foraminifera) revealed by 16S rRNA metabarcoding

    NASA Astrophysics Data System (ADS)

    Bird, Clare; Darling, Kate F.; Russell, Ann D.; Davis, Catherine V.; Fehrenbacher, Jennifer; Free, Andrew; Wyman, Michael; Ngwenya, Bryne T.

    2017-02-01

    We investigated the possibility of bacterial symbiosis in Globigerina bulloides, a palaeoceanographically important, planktonic foraminifer. This marine protist is commonly used in micropalaeontological investigations of climatically sensitive subpolar and temperate water masses as well as wind-driven upwelling regions of the world's oceans. G. bulloides is unusual because it lacks the protist algal symbionts that are often found in other spinose species. In addition, it has a large offset in its stable carbon and oxygen isotopic compositions compared to other planktonic foraminifer species, and also that predicted from seawater equilibrium. This is suggestive of novel differences in ecology and life history of G. bulloides, making it a good candidate for investigating the potential for bacterial symbiosis as a contributory factor influencing shell calcification. Such information is essential to evaluate fully the potential response of G. bulloides to ocean acidification and climate change. To investigate possible ecological interactions between G. bulloides and marine bacteria, 18S rRNA gene sequencing, fluorescence microscopy, 16S rRNA gene metabarcoding and transmission electron microscopy (TEM) were performed on individual specimens of G. bulloides (type IId) collected from two locations in the California Current. Intracellular DNA extracted from five G. bulloides specimens was subjected to 16S rRNA gene metabarcoding and, remarkably, 37-87 % of all 16S rRNA gene sequences recovered were assigned to operational taxonomic units (OTUs) from the picocyanobacterium Synechococcus. This finding was supported by TEM observations of intact Synechococcus cells in both the cytoplasm and vacuoles of G. bulloides. Their concentrations were up to 4 orders of magnitude greater inside the foraminifera than those reported for the California Current water column and approximately 5 % of the intracellular Synechococcus cells observed were undergoing cell division. This suggests

  5. Archaeal and bacterial diversity in two hot springs from geothermal regions in Bulgaria as demostrated by 16S rRNA and GH-57 genes.

    PubMed

    Stefanova, Katerina; Tomova, Iva; Tomova, Anna; Radchenkova, Nadja; Atanassov, Ivan; Kambourova, Margarita

    2015-12-01

    Archaeal and bacterial diversity in two Bulgarian hot springs, geographically separated with different tectonic origin and different temperature of water was investigated exploring two genes, 16S rRNA and GH-57. Archaeal diversity was significantly higher in the hotter spring Levunovo (LV) (82°C); on the contrary, bacterial diversity was higher in the spring Vetren Dol (VD) (68°C). The analyzed clones from LV library were referred to twenty eight different sequence types belonging to five archaeal groups from Crenarchaeota and Euryarchaeota. A domination of two groups was observed, Candidate Thaumarchaeota and Methanosarcinales. The majority of the clones from VD were referred to HWCG (Hot Water Crenarchaeotic Group). The formation of a group of thermophiles in the order Methanosarcinales was suggested. Phylogenetic analysis revealed high numbers of novel sequences, more than one third of archaeal and half of the bacterial phylotypes displayed similarity lower than 97% with known ones. The retrieved GH-57 gene sequences showed a complex phylogenic distribution. The main part of the retrieved homologous GH-57 sequences affiliated with bacterial phyla Bacteroidetes, Deltaproteobacteria, Candidate Saccharibacteria and affiliation of almost half of the analyzed sequences is not fully resolved. GH-57 gene analysis allows an increased resolution of the biodiversity assessment and in depth analysis of specific taxonomic groups. [Int Microbiol 18(4):217-223 (2015)]. Copyright© by the Spanish Society for Microbiology and Institute for Catalan Studies.

  6. Diagnosis of Meningococcal Meningitis by Broad-Range Bacterial PCR with Cerebrospinal Fluid

    PubMed Central

    Kotilainen, Pirkko; Jalava, Jari; Meurman, Olli; Lehtonen, Olli-Pekka; Rintala, Esa; Seppälä, Olli-Pekka; Eerola, Erkki; Nikkari, Simo

    1998-01-01

    We used broad-range bacterial PCR combined with DNA sequencing to examine prospectively cerebrospinal fluid (CSF) samples from patients with suspected meningitis. Fifty-six CSF samples from 46 patients were studied during the year 1995. Genes coding for bacterial 16S and/or 23S rRNA genes could be amplified from the CSF samples from five patients with a clinical picture consistent with acute bacterial meningitis. For these patients, the sequenced PCR product shared 98.3 to 100% homology with the Neisseria meningitidis sequence. For one patient, the diagnosis was initially made by PCR alone. Of the remaining 51 CSF samples, for 50 (98.0%) samples the negative PCR findings were in accordance with the negative findings by bacterial culture and Gram staining, as well as with the eventual clinical diagnosis for the patient. However, the PCR test failed to detect the bacterial rRNA gene in one CSF sample, the culture of which yielded Listeria monocytogenes. These results invite new research efforts to be focused on the application of PCR with broad-range bacterial primers to improve the etiologic diagnosis of bacterial meningitis. In a clinical setting, Gram staining and bacterial culture still remain the cornerstones of diagnosis. PMID:9665992

  7. Characterization of 16S rRNA Processing with Pre-30S Subunit Assembly Intermediates from E. coli.

    PubMed

    Smith, Brian A; Gupta, Neha; Denny, Kevin; Culver, Gloria M

    2018-06-08

    Ribosomal RNA (rRNA) is a major component of ribosomes and is fundamental to the process of translation. In bacteria, 16S rRNA is a component of the small ribosomal subunit and plays a critical role in mRNA decoding. rRNA maturation entails the removal of intervening spacer sequences contained within the pre-rRNA transcript by nucleolytic enzymes. Enzymatic activities involved in maturation of the 5'-end of 16S rRNA have been identified, but those involved in 3'-end maturation of 16S rRNA are more enigmatic. Here, we investigate molecular details of 16S rRNA maturation using purified in vivo-formed small subunit (SSU) assembly intermediates (pre-SSUs) from wild-type Escherichia coli that contain precursor 16S rRNA (17S rRNA). Upon incubation of pre-SSUs with E. coli S100 cell extracts or purified enzymes implicated in 16S rRNA processing, the 17S rRNA is processed into additional intermediates and mature 16S rRNA. These results illustrate that exonucleases RNase R, RNase II, PNPase, and RNase PH can process the 3'-end of pre-SSUs in vitro. However, the endonuclease YbeY did not exhibit nucleolytic activity with pre-SSUs under these conditions. Furthermore, these data demonstrate that multiple pathways facilitate 16S rRNA maturation with pre-SSUs in vitro, with the dominant pathways entailing complete processing of the 5'-end of 17S rRNA prior to 3'-end maturation or partial processing of the 5'-end with concomitant processing of the 3'-end. These results reveal the multifaceted nature of SSU biogenesis and suggest that E. coli may be able to escape inactivation of any one enzyme by using an existing complementary pathway. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. 16S rRNA Amplicon Sequencing for Epidemiological Surveys of Bacteria in Wildlife

    PubMed Central

    Razzauti, Maria; Bard, Emilie; Bernard, Maria; Brouat, Carine; Charbonnel, Nathalie; Dehne-Garcia, Alexandre; Loiseau, Anne; Tatard, Caroline; Tamisier, Lucie; Vayssier-Taussat, Muriel; Vignes, Helene

    2016-01-01

    ABSTRACT The human impact on natural habitats is increasing the complexity of human-wildlife interactions and leading to the emergence of infectious diseases worldwide. Highly successful synanthropic wildlife species, such as rodents, will undoubtedly play an increasingly important role in transmitting zoonotic diseases. We investigated the potential for recent developments in 16S rRNA amplicon sequencing to facilitate the multiplexing of the large numbers of samples needed to improve our understanding of the risk of zoonotic disease transmission posed by urban rodents in West Africa. In addition to listing pathogenic bacteria in wild populations, as in other high-throughput sequencing (HTS) studies, our approach can estimate essential parameters for studies of zoonotic risk, such as prevalence and patterns of coinfection within individual hosts. However, the estimation of these parameters requires cleaning of the raw data to mitigate the biases generated by HTS methods. We present here an extensive review of these biases and of their consequences, and we propose a comprehensive trimming strategy for managing these biases. We demonstrated the application of this strategy using 711 commensal rodents, including 208 Mus musculus domesticus, 189 Rattus rattus, 93 Mastomys natalensis, and 221 Mastomys erythroleucus, collected from 24 villages in Senegal. Seven major genera of pathogenic bacteria were detected in their spleens: Borrelia, Bartonella, Mycoplasma, Ehrlichia, Rickettsia, Streptobacillus, and Orientia. Mycoplasma, Ehrlichia, Rickettsia, Streptobacillus, and Orientia have never before been detected in West African rodents. Bacterial prevalence ranged from 0% to 90% of individuals per site, depending on the bacterial taxon, rodent species, and site considered, and 26% of rodents displayed coinfection. The 16S rRNA amplicon sequencing strategy presented here has the advantage over other molecular surveillance tools of dealing with a large spectrum of bacterial

  9. Insights into the phylogenetic positions of photosynthetic bacteria obtained from 5S rRNA and 16S rRNA sequence data

    NASA Technical Reports Server (NTRS)

    Fox, G. E.

    1985-01-01

    Comparisons of complete 16S ribosomal ribonucleic acid (rRNA) sequences established that the secondary structure of these molecules is highly conserved. Earlier work with 5S rRNA secondary structure revealed that when structural conservation exists the alignment of sequences is straightforward. The constancy of structure implies minimal functional change. Under these conditions a uniform evolutionary rate can be expected so that conditions are favorable for phylogenetic tree construction.

  10. 16S rRNA Gene Sequence Analysis of Drinking Water Using RNA and DNA Extracts as Targets for Clone Library Development

    EPA Science Inventory

    The bacterial composition of chlorinated drinking water was analyzed using 16S rRNA gene clone libraries derived from DNA extracts of 12 samples and compared to clone libraries previously generated using RNA extracts from the same samples. Phylogenetic analysis of 761 DNA-based ...

  11. 16S rRNA Gene Sequence Analysis of Drinking Water Using RNA and DNA Extracts as Targets for Clone Library Development

    EPA Science Inventory

    We examined the bacterial composition of chlorinated drinking water using 16S rRNA gene clone libraries derived from RNA and DNA extracted from twelve water samples collected in three different months (June, August, and September of 2007). Phylogenetic analysis of 1234 and 1117 ...

  12. Changes in Metabolically Active Bacterial Community during Rumen Development, and Their Alteration by Rhubarb Root Powder Revealed by 16S rRNA Amplicon Sequencing.

    PubMed

    Wang, Zuo; Elekwachi, Chijioke; Jiao, Jinzhen; Wang, Min; Tang, Shaoxun; Zhou, Chuanshe; Tan, Zhiliang; Forster, Robert J

    2017-01-01

    The objective of this present study was to explore the initial establishment of metabolically active bacteria and subsequent evolution in four fractions: rumen solid-phase (RS), liquid-phase (RL), protozoa-associated (RP), and epithelium-associated (RE) through early weaning and supplementing rhubarb root powder in 7 different age groups (1, 10, 20, 38, 41, 50, and 60 d) during rumen development. Results of the 16S rRNA sequencing based on RNA isolated from the four fractions revealed that the potentially active bacterial microbiota in four fractions were dominated by the phyla Proteobacteria, Firmicutes , and Bacteroidetes regardless of different ages. An age-dependent increment of Chao 1 richness was observed in the fractions of RL and RE. The principal coordinate analysis (PCoA) indicated that samples in four fractions all clustered based on different age groups, and the structure of the bacterial community in RE was distinct from those in other three fractions. The abundances of Proteobacteria decreased significantly ( P < 0.05) with age, while increases in the abundances of Firmicutes and Bacteroidetes were noted. At the genus level, the abundance of the predominant genus Mannheimia in the Proteobacteria phylum decreased significantly ( P < 0.05) after 1 d, while the genera Quinella, Prevotella, Fretibacterium, Ruminococcus, Lachnospiraceae NK3A20 group , and Atopobium underwent different manners of increases and dominated the bacterial microbiota across four fractions. Variations of the distributions of some specific bacterial genera across fractions were observed, and supplementation of rhubarb affected the relative abundance of various genera of bacteria.

  13. Changes in Metabolically Active Bacterial Community during Rumen Development, and Their Alteration by Rhubarb Root Powder Revealed by 16S rRNA Amplicon Sequencing

    PubMed Central

    Wang, Zuo; Elekwachi, Chijioke; Jiao, Jinzhen; Wang, Min; Tang, Shaoxun; Zhou, Chuanshe; Tan, Zhiliang; Forster, Robert J.

    2017-01-01

    The objective of this present study was to explore the initial establishment of metabolically active bacteria and subsequent evolution in four fractions: rumen solid-phase (RS), liquid-phase (RL), protozoa-associated (RP), and epithelium-associated (RE) through early weaning and supplementing rhubarb root powder in 7 different age groups (1, 10, 20, 38, 41, 50, and 60 d) during rumen development. Results of the 16S rRNA sequencing based on RNA isolated from the four fractions revealed that the potentially active bacterial microbiota in four fractions were dominated by the phyla Proteobacteria, Firmicutes, and Bacteroidetes regardless of different ages. An age-dependent increment of Chao 1 richness was observed in the fractions of RL and RE. The principal coordinate analysis (PCoA) indicated that samples in four fractions all clustered based on different age groups, and the structure of the bacterial community in RE was distinct from those in other three fractions. The abundances of Proteobacteria decreased significantly (P < 0.05) with age, while increases in the abundances of Firmicutes and Bacteroidetes were noted. At the genus level, the abundance of the predominant genus Mannheimia in the Proteobacteria phylum decreased significantly (P < 0.05) after 1 d, while the genera Quinella, Prevotella, Fretibacterium, Ruminococcus, Lachnospiraceae NK3A20 group, and Atopobium underwent different manners of increases and dominated the bacterial microbiota across four fractions. Variations of the distributions of some specific bacterial genera across fractions were observed, and supplementation of rhubarb affected the relative abundance of various genera of bacteria. PMID:28223972

  14. Eukaryotic 5S rRNA biogenesis

    PubMed Central

    Ciganda, Martin; Williams, Noreen

    2012-01-01

    The ribosome is a large complex containing both protein and RNA which must be assembled in a precise manner to allow proper functioning in the critical role of protein synthesis. 5S rRNA is the smallest of the RNA components of the ribosome, and although it has been studied for decades, we still do not have a clear understanding of its function within the complex ribosome machine. It is the only RNA species that binds ribosomal proteins prior to its assembly into the ribosome. Its transport into the nucleolus requires this interaction. Here we present an overview of some of the key findings concerning the structure and function of 5S rRNA and how its association with specific proteins impacts its localization and function. PMID:21957041

  15. Saturation Mutagenesis of 5S rRNA in Saccharomyces cerevisiae

    PubMed Central

    Smith, Maria W.; Meskauskas, Arturas; Wang, Pinger; Sergiev, Petr V.; Dinman, Jonathan D.

    2001-01-01

    rRNAs are the central players in the reactions catalyzed by ribosomes, and the individual rRNAs are actively involved in different ribosome functions. Our previous demonstration that yeast 5S rRNA mutants (called mof9) can impact translational reading frame maintenance showed an unexpected function for this ubiquitous biomolecule. At the time, however, the highly repetitive nature of the genes encoding rRNAs precluded more detailed genetic and molecular analyses. A new genetic system allows all 5S rRNAs in the cell to be transcribed from a small, easily manipulated plasmid. The system is also amenable for the study of the other rRNAs, and provides an ideal genetic platform for detailed structural and functional studies. Saturation mutagenesis reveals regions of 5S rRNA that are required for cell viability, translational accuracy, and virus propagation. Unexpectedly, very few lethal alleles were identified, demonstrating the resilience of this molecule. Superimposition of genetic phenotypes on a physical map of 5S rRNA reveals the existence of phenotypic clusters of mutants, suggesting that specific regions of 5S rRNA are important for specific functions. Mapping these mutants onto the Haloarcula marismortui large subunit reveals that these clusters occur at important points of physical interaction between 5S rRNA and the different functional centers of the ribosome. Our analyses lead us to propose that one of the major functions of 5S rRNA may be to enhance translational fidelity by acting as a physical transducer of information between all of the different functional centers of the ribosome. PMID:11713264

  16. Evaluation of composition and individual variability of rumen microbiota in yaks by 16S rRNA high-throughput sequencing technology.

    PubMed

    Guo, Wei; Li, Ying; Wang, Lizhi; Wang, Jiwen; Xu, Qin; Yan, Tianhai; Xue, Bai

    2015-08-01

    The Yak (Bos grunniens) is a unique species of ruminant animals that is important to agriculture of the Tibetan plateau, and has a complex intestinal microbial community. The objective of the present study was to characterize the composition and individual variability of microbiota in the rumen of yaks using 16S rRNA gene high-throughput sequencing technique. Rumen samples used in the present study were obtained from grazing adult male yaks (n = 6) in a commercial farm in Ganzi Autonomous Prefecture of Sichuan Province, China. Universal prokaryote primers were used to target the V4-V5 hypervariable region of 16S rRNA gene. A total of 7200 operational taxonomic units (OTUs) were obtained after sequence filtering and chimera removal. Within these OTUs, 0.56% belonged to Archaea (40 OTUs), 7.19% to unassigned species (518 OTUs), and the remaining OTUs (6642) in all samples were of bacterial origin. When examining the community structure of bacteria, we identified 23 phyla within 159 families after taxonomic summarization. Bacteroidetes and Firmicutes were the predominant phyla accounting for 39.68% (SD = 0.05) and 45.90% (SD = 0.06), respectively. Moreover, 3764 OTUs were identified as shared OTUs (i.e. represented in all yaks) and belonged to 35 genera, exhibiting highly variable abundance across individual samples. Phylogenetic placement of these genera across individual samples was examined. In addition, we evaluated the distance among the 6 rumen samples by adding taxon phylogeny using UniFrac, representing 24.1% of average distance. In summary, the current study reveals a shared rumen microbiome and phylogenetic lineage and presents novel information on composition and individual variability of the bacterial community in the rumen of yaks. Copyright © 2015. Published by Elsevier Ltd.

  17. Analysis of bacterial and archaeal diversity in coastal microbial mats using massive parallel 16S rRNA gene tag sequencing.

    PubMed

    Bolhuis, Henk; Stal, Lucas J

    2011-11-01

    Coastal microbial mats are small-scale and largely closed ecosystems in which a plethora of different functional groups of microorganisms are responsible for the biogeochemical cycling of the elements. Coastal microbial mats play an important role in coastal protection and morphodynamics through stabilization of the sediments and by initiating the development of salt-marshes. Little is known about the bacterial and especially archaeal diversity and how it contributes to the ecological functioning of coastal microbial mats. Here, we analyzed three different types of coastal microbial mats that are located along a tidal gradient and can be characterized as marine (ST2), brackish (ST3) and freshwater (ST3) systems. The mats were sampled during three different seasons and subjected to massive parallel tag sequencing of the V6 region of the 16S rRNA genes of Bacteria and Archaea. Sequence analysis revealed that the mats are among the most diverse marine ecosystems studied so far and consist of several novel taxonomic levels ranging from classes to species. The diversity between the different mat types was far more pronounced than the changes between the different seasons at one location. The archaeal community for these mats have not been studied before and revealed a strong reaction on a short period of draught during summer resulting in a massive increase in halobacterial sequences, whereas the bacterial community was barely affected. We concluded that the community composition and the microbial diversity were intrinsic of the mat type and depend on the location along the tidal gradient indicating a relation with salinity.

  18. 16S rRNA Gene-Based Metagenomic Analysis of Ozark Cave Bacteria.

    PubMed

    Oliveira, Cássia; Gunderman, Lauren; Coles, Cathryn A; Lochmann, Jason; Parks, Megan; Ballard, Ethan; Glazko, Galina; Rahmatallah, Yasir; Tackett, Alan J; Thomas, David J

    2017-09-01

    The microbial diversity within cave ecosystems is largely unknown. Ozark caves maintain a year-round stable temperature (12-14 °C), but most parts of the caves experience complete darkness. The lack of sunlight and geological isolation from surface-energy inputs generate nutrient-poor conditions that may limit species diversity in such environments. Although microorganisms play a crucial role in sustaining life on Earth and impacting human health, little is known about their diversity, ecology, and evolution in community structures. We used five Ozark region caves as test sites for exploring bacterial diversity and monitoring long-term biodiversity. Illumina MiSeq sequencing of five cave soil samples and a control sample revealed a total of 49 bacterial phyla, with seven major phyla: Proteobacteria, Acidobacteria, Actinobacteria, Firmicutes, Chloroflexi, Bacteroidetes, and Nitrospirae. Variation in bacterial composition was observed among the five caves studied. Sandtown Cave had the lowest richness and most divergent community composition. 16S rRNA gene-based metagenomic analysis of cave-dwelling microbial communities in the Ozark caves revealed that species abundance and diversity are vast and included ecologically, agriculturally, and economically relevant taxa.

  19. 16S rRNA Gene-Based Metagenomic Analysis of Ozark Cave Bacteria

    PubMed Central

    Oliveira, Cássia; Gunderman, Lauren; Coles, Cathryn A.; Lochmann, Jason; Parks, Megan; Ballard, Ethan; Glazko, Galina; Rahmatallah, Yasir; Tackett, Alan J.; Thomas, David J.

    2018-01-01

    The microbial diversity within cave ecosystems is largely unknown. Ozark caves maintain a year-round stable temperature (12–14 °C), but most parts of the caves experience complete darkness. The lack of sunlight and geological isolation from surface-energy inputs generate nutrient-poor conditions that may limit species diversity in such environments. Although microorganisms play a crucial role in sustaining life on Earth and impacting human health, little is known about their diversity, ecology, and evolution in community structures. We used five Ozark region caves as test sites for exploring bacterial diversity and monitoring long-term biodiversity. Illumina MiSeq sequencing of five cave soil samples and a control sample revealed a total of 49 bacterial phyla, with seven major phyla: Proteobacteria, Acidobacteria, Actinobacteria, Firmicutes, Chloroflexi, Bacteroidetes, and Nitrospirae. Variation in bacterial composition was observed among the five caves studied. Sandtown Cave had the lowest richness and most divergent community composition. 16S rRNA gene-based metagenomic analysis of cave-dwelling microbial communities in the Ozark caves revealed that species abundance and diversity are vast and included ecologically, agriculturally, and economically relevant taxa. PMID:29551950

  20. Identification of thermophilic bacterial strains producing thermotolerant hydrolytic enzymes from manure compost.

    PubMed

    Charbonneau, David M; Meddeb-Mouelhi, Fatma; Boissinot, Maurice; Sirois, Marc; Beauregard, Marc

    2012-03-01

    Ten thermophilic bacterial strains were isolated from manure compost. Phylogenetic analysis based on 16S rRNA genes and biochemical characterization allowed identification of four different species belonging to four genera: Geobacillus thermodenitrificans, Bacillus smithii, Ureibacillus suwonensis and Aneurinibacillus thermoaerophilus. PCR-RFLP profiles of the 16S-ITS-23S rRNA region allowed us to distinguish two subgroups among the G. thermodenitrificans isolates. Isolates were screened for thermotolerant hydrolytic activities (60-65°C). Thermotolerant lipolytic activities were detected for G. thermodenitrificans, A. thermoaerophilus and B. smithii. Thermotolerant protease, α-amylase and xylanase activities were also observed in the G. thermodenitrificans group. These species represent a source of potential novel thermostable enzymes for industrial applications.

  1. 16S rRNA Gene Sequence Analysis of Drinking Water Using RNA and DNA Extracts as Targets for Clone Library Development - Poster

    EPA Science Inventory

    We examined the bacterial composition of chlorinated drinking water using 16S rRNA gene clone libraries derived from RNA and DNA extracted from twelve water samples collected in three different months (June, August, and September of 2007). Phylogenetic analysis of 1234 and 1117 ...

  2. Microbial community profiling of fresh basil and pitfalls in taxonomic assignment of enterobacterial pathogenic species based upon 16S rRNA amplicon sequencing.

    PubMed

    Ceuppens, Siele; De Coninck, Dieter; Bottledoorn, Nadine; Van Nieuwerburgh, Filip; Uyttendaele, Mieke

    2017-09-18

    Application of 16S rRNA (gene) amplicon sequencing on food samples is increasingly applied for assessing microbial diversity but may as unintended advantage also enable simultaneous detection of any human pathogens without a priori definition. In the present study high-throughput next-generation sequencing (NGS) of the V1-V2-V3 regions of the 16S rRNA gene was applied to identify the bacteria present on fresh basil leaves. However, results were strongly impacted by variations in the bioinformatics analysis pipelines (MEGAN, SILVAngs, QIIME and MG-RAST), including the database choice (Greengenes, RDP and M5RNA) and the annotation algorithm (best hit, representative hit and lowest common ancestor). The use of pipelines with default parameters will lead to discrepancies. The estimate of microbial diversity of fresh basil using 16S rRNA (gene) amplicon sequencing is thus indicative but subject to biases. Salmonella enterica was detected at low frequencies, between 0.1% and 0.4% of bacterial sequences, corresponding with 37 to 166 reads. However, this result was dependent upon the pipeline used: Salmonella was detected by MEGAN, SILVAngs and MG-RAST, but not by QIIME. Confirmation of Salmonella sequences by real-time PCR was unsuccessful. It was shown that taxonomic resolution obtained from the short (500bp) sequence reads of the 16S rRNA gene containing the hypervariable regions V1-V3 cannot allow distinction of Salmonella with closely related enterobacterial species. In conclusion 16S amplicon sequencing, getting the status of standard method in microbial ecology studies of foods, needs expertise on both bioinformatics and microbiology for analysis of results. It is a powerful tool to estimate bacterial diversity but amenable to biases. Limitations concerning taxonomic resolution for some bacterial species or its inability to detect sub-dominant (pathogenic) species should be acknowledged in order to avoid overinterpretation of results. Copyright © 2017 Elsevier B

  3. High frequency of the 23S rRNA A2058G mutation of Treponema pallidum in Shanghai is associated with a current strategy for the treatment of syphilis.

    PubMed

    Lu, Haikong; Li, Kang; Gong, Weimin; Yan, Limeng; Gu, Xin; Chai, Ze; Guan, Zhifang; Zhou, Pingyu

    2015-02-01

    The preferred drugs for the treatment of syphilis, benzathine and procaine penicillin, have not been available in Shanghai for many years, and currently, the incidence of syphilis is increasing. Alternative antibiotics for patients with syphilis during the benzathine and procaine penicillin shortage include macrolides. The failure of macrolide treatment in syphilis patients has been reported in Shanghai, but the reason for this treatment failure remains unclear. We used polymerase chain reaction technology to detect a 23S rRNA A2058G mutation in Treponema pallidum in 109 specimens from syphilis patients. The use of azithromycin/erythromycin in the syphilis patients and the physicians' prescription habits were also assessed based on two questionnaires regarding the use of macrolides. A total of 104 specimens (95.4%) were positive for the A2058G mutation in both copies of the 23S rRNA gene, indicating macrolide resistance. A questionnaire provided to 122 dermatologists showed that during the penicillin shortage, they prescribed erythromycin and azithromycin for 8.24±13.95% and 3.21±6.37% of their patients, respectively, and in the case of penicillin allergy, erythromycin and azithromycin were prescribed 15.24±22.89% and 7.23±16.60% of the time, respectively. A second questionnaire provided to the syphilis patients showed that 150 (33.7%), 106 (23.8%) and 34 (7.6%) individuals had used azithromycin, erythromycin or both, respectively, although the majority did not use the drugs for syphilis treatment. Our findings suggest that macrolide resistance in Treponema pallidum is widespread in Shanghai. More than half of the syphilis patients had a history of macrolide use for other treatment purposes, which may have led to the high prevalence of macrolide resistance. Physicians in China are advised to not use azithromycin for early syphilis.

  4. Domain organization and crystal structure of the catalytic domain of E.coli RluF, a pseudouridine synthase that acts on 23S rRNA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sunita,S.; Zhenxing, H.; Swaathi, J.

    2006-01-01

    Pseudouridine synthases catalyze the isomerization of uridine to pseudouridine ({psi}) in rRNA and tRNA. The pseudouridine synthase RluF from Escherichia coli (E.C. 4.2.1.70) modifies U2604 in 23S rRNA, and belongs to a large family of pseudouridine synthases present in all kingdoms of life. Here we report the domain architecture and crystal structure of the catalytic domain of E. coli RluF at 2.6 Angstroms resolution. Limited proteolysis, mass spectrometry and N-terminal sequencing indicate that RluF has a distinct domain architecture, with the catalytic domain flanked at the N and C termini by additional domains connected to it by flexible linkers. Themore » structure of the catalytic domain of RluF is similar to those of RsuA and TruB. RluF is a member of the RsuA sequence family of {psi}-synthases, along with RluB and RluE. Structural comparison of RluF with its closest structural homologues, RsuA and TruB, suggests possible functional roles for the N-terminal and C-terminal domains of RluF.« less

  5. Comparison of Cultivable Acetic Acid Bacterial Microbiota in Organic and Conventional Apple Cider Vinegar.

    PubMed

    Štornik, Aleksandra; Skok, Barbara; Trček, Janja

    2016-03-01

    Organic apple cider vinegar is produced from apples that go through very restricted treatment in orchard. During the first stage of the process, the sugars from apples are fermented by yeasts to cider. The produced ethanol is used as a substrate by acetic acid bacteria in a second separated bioprocess. In both, the organic and conventional apple cider vinegars the ethanol oxidation to acetic acid is initiated by native microbiota that survived alcohol fermentation. We compared the cultivable acetic acid bacterial microbiota in the production of organic and conventional apple cider vinegars from a smoothly running oxidation cycle of a submerged industrial process. In this way we isolated and characterized 96 bacteria from organic and 72 bacteria from conventional apple cider vinegar. Using the restriction analysis of the PCR-amplified 16S-23S rRNA gene ITS regions, we identified four different Hae III and five different Hpa II restriction profiles for bacterial isolates from organic apple cider vinegar. Each type of restriction profile was further analyzed by sequence analysis of the 16S-23S rRNA gene ITS regions, resulting in identification of the following species: Acetobacter pasteurianus (71.90%), Acetobacter ghanensis (12.50%), Komagataeibacter oboediens (9.35%) and Komagataeibacter saccharivorans (6.25%). Using the same analytical approach in conventional apple cider vinegar, we identified only two different Hae III and two different Hpa II restriction profiles of the 16S‒23S rRNA gene ITS regions, which belong to the species Acetobacter pasteurianus (66.70%) and Komagataeibacter oboediens (33.30%). Yeasts that are able to resist 30 g/L of acetic acid were isolated from the acetic acid production phase and further identified by sequence analysis of the ITS1-5.8S rDNA‒ITS2 region as Candida ethanolica , Pichia membranifaciens and Saccharomycodes ludwigii . This study has shown for the first time that the bacterial microbiota for the industrial production of

  6. Structural and functional analysis of 5S rRNA in Saccharomyces cerevisiae

    PubMed Central

    Kiparisov, S.; Sergiev, P. V.; Dontsova, O. A.; Petrov, A.; Meskauskas, A.; Dinman, J. D.

    2005-01-01

    5S rRNA extends from the central protuberance of the large ribosomal subunit, through the A-site finger, and down to the GTPase-associated center. Here, we present a structure-function analysis of seven 5S rRNA alleles which are sufficient for viability in the yeast Saccharomyces cerevisiae when expressed in the absence of wild-type 5S rRNAs, and extend this analysis using a large bank of mutant alleles that show semidominant phenotypes in the presence of wild-type 5S rRNA. This analysis supports the hypothesis that 5S rRNA serves to link together several different functional centers of the ribosome. Data are also presented which suggest that in eukaryotic genomes selection has favored the maintenance of multiple alleles of 5S rRNA, and that these may provide cells with a mechanism to post-transcriptionally regulate gene expression. PMID:16047201

  7. In silico analysis of 16S ribosomal RNA gene sequencing‐based methods for identification of medically important anaerobic bacteria

    PubMed Central

    Woo, Patrick C Y; Chung, Liliane M W; Teng, Jade L L; Tse, Herman; Pang, Sherby S Y; Lau, Veronica Y T; Wong, Vanessa W K; Kam, Kwok‐ling; Lau, Susanna K P; Yuen, Kwok‐Yung

    2007-01-01

    This study is the first study that provides useful guidelines to clinical microbiologists and technicians on the usefulness of full 16S rRNA sequencing, 5′‐end 527‐bp 16S rRNA sequencing and the existing MicroSeq full and 500 16S rDNA bacterial identification system (MicroSeq, Perkin‐Elmer Applied Biosystems Division, Foster City, California, USA) databases for the identification of all existing medically important anaerobic bacteria. Full and 527‐bp 16S rRNA sequencing are able to identify 52–63% of 130 Gram‐positive anaerobic rods, 72–73% of 86 Gram‐negative anaerobic rods and 78% of 23 anaerobic cocci. The existing MicroSeq databases are able to identify only 19–25% of 130 Gram‐positive anaerobic rods, 38% of 86 Gram‐negative anaerobic rods and 39% of 23 anaerobic cocci. These represent only 45–46% of those that should be confidently identified by full and 527‐bp 16S rRNA sequencing. To improve the usefulness of MicroSeq, bacterial species that should be confidently identified by full and/or 527‐bp 16S rRNA sequencing but not included in the existing MicroSeq databases should be included. PMID:17046845

  8. Bacterial taxa abundance pattern in an industrial wastewater treatment system determined by the full rRNA cycle approach.

    PubMed

    Figuerola, Eva L M; Erijman, Leonardo

    2007-07-01

    The description of the diversity and structure of microbial communities through quantification of the constituent populations is one of the major objectives in environmental microbiology. The implications of models for community assembly are practical as well as theoretical, because the extent of biodiversity is thought to influence the function of ecosystems. Current attempts to predict species diversity in different environments derive the numbers of individuals for each operational taxonomic unit (OTU) from the frequency of clones in 16S rDNA gene libraries, which are subjected to a number of inherent biases and artefacts. We show that diversity of the bacterial community present in a complex microbial ensemble can be estimated by fitting the data of the full-cycle rRNA approach to a model of species abundance distribution. Sequences from a 16S rDNA gene library from activated sludge were reliably assigned to OTUs at a genetic distance of 0.04. A group of 17 newly designed rRNA-targeted oligonucleotide probes were used to quantify by fluorescence in situ hybridization, OTUs represented with more than three clones in the 16S rDNA clone library. Cell abundance distribution was best described by a geometric series, after the goodness of fit was evaluated by the Kolmogorov-Smirnov test. Although a complete mechanistic understanding of all the ecological processes involved is still not feasible, describing the distribution pattern of a complex bacterial assemblage model can shed light on the way bacterial communities operate.

  9. Phylogenetic Network Analysis Revealed the Occurrence of Horizontal Gene Transfer of 16S rRNA in the Genus Enterobacter

    PubMed Central

    Sato, Mitsuharu; Miyazaki, Kentaro

    2017-01-01

    Horizontal gene transfer (HGT) is a ubiquitous genetic event in bacterial evolution, but it seldom occurs for genes involved in highly complex supramolecules (or biosystems), which consist of many gene products. The ribosome is one such supramolecule, but several bacteria harbor dissimilar and/or chimeric 16S rRNAs in their genomes, suggesting the occurrence of HGT of this gene. However, we know little about whether the genes actually experience HGT and, if so, the frequency of such a transfer. This is primarily because the methods currently employed for phylogenetic analysis (e.g., neighbor-joining, maximum likelihood, and maximum parsimony) of 16S rRNA genes assume point mutation-driven tree-shape evolution as an evolutionary model, which is intrinsically inappropriate to decipher the evolutionary history for genes driven by recombination. To address this issue, we applied a phylogenetic network analysis, which has been used previously for detection of genetic recombination in homologous alleles, to the 16S rRNA gene. We focused on the genus Enterobacter, whose phylogenetic relationships inferred by multi-locus sequence alignment analysis and 16S rRNA sequences are incompatible. All 10 complete genomic sequences were retrieved from the NCBI database, in which 71 16S rRNA genes were included. Neighbor-joining analysis demonstrated that the genes residing in the same genomes clustered, indicating the occurrence of intragenomic recombination. However, as suggested by the low bootstrap values, evolutionary relationships between the clusters were uncertain. We then applied phylogenetic network analysis to representative sequences from each cluster. We found three ancestral 16S rRNA groups; the others were likely created through recursive recombination between the ancestors and chimeric descendants. Despite the large sequence changes caused by the recombination events, the RNA secondary structures were conserved. Successive intergenomic and intragenomic recombination

  10. High level bacterial contamination of secondary school students' mobile phones.

    PubMed

    Kõljalg, Siiri; Mändar, Rando; Sõber, Tiina; Rööp, Tiiu; Mändar, Reet

    2017-06-01

    While contamination of mobile phones in the hospital has been found to be common in several studies, little information about bacterial abundance on phones used in the community is available. Our aim was to quantitatively determine the bacterial contamination of secondary school students' mobile phones. Altogether 27 mobile phones were studied. The contact plate method and microbial identification using MALDI-TOF mass spectrometer were used for culture studies. Quantitative PCR reaction for detection of universal 16S rRNA, Enterococcus faecalis 16S rRNA and Escherichia coli allantoin permease were performed, and the presence of tetracycline ( tet A, tet B, tet M), erythromycin ( erm B) and sulphonamide ( sul 1) resistance genes was assessed. We found a high median bacterial count on secondary school students' mobile phones (10.5 CFU/cm 2 ) and a median of 17,032 bacterial 16S rRNA gene copies per phone. Potentially pathogenic microbes ( Staphylococcus aureus , Acinetobacter spp. , Pseudomonas spp., Bacillus cereus and Neisseria flavescens ) were found among dominant microbes more often on phones with higher percentage of E. faecalis in total bacterial 16S rRNA. No differences in contamination level or dominating bacterial species between phone owner's gender and between phone types (touch screen/keypad) were found. No antibiotic resistance genes were detected on mobile phone surfaces. Quantitative study methods revealed high level bacterial contamination of secondary school students' mobile phones.

  11. Biphasic Study to Characterize Agricultural Biogas Plants by High-Throughput 16S rRNA Gene Amplicon Sequencing and Microscopic Analysis.

    PubMed

    Maus, Irena; Kim, Yong Sung; Wibberg, Daniel; Stolze, Yvonne; Off, Sandra; Antonczyk, Sebastian; Pühler, Alfred; Scherer, Paul; Schlüter, Andreas

    2017-02-28

    Process surveillance within agricultural biogas plants (BGPs) was concurrently studied by high-throughput 16S rRNA gene amplicon sequencing and an optimized quantitative microscopic fingerprinting (QMF) technique. In contrast to 16S rRNA gene amplicons, digitalized microscopy is a rapid and cost-effective method that facilitates enumeration and morphological differentiation of the most significant groups of methanogens regarding their shape and characteristic autofluorescent factor 420. Moreover, the fluorescence signal mirrors cell vitality. In this study, four different BGPs were investigated. The results indicated stable process performance in the mesophilic BGPs and in the thermophilic reactor. Bacterial subcommunity characterization revealed significant differences between the four BGPs. Most remarkably, the genera Defluviitoga and Halocella dominated the thermophilic bacterial subcommunity, whereas members of another taxon, Syntrophaceticus , were found to be abundant in the mesophilic BGP. The domain Archaea was dominated by the genus Methanoculleus in all four BGPs, followed by Methanosaeta in BGP1 and BGP3. In contrast, Methanothermobacter members were highly abundant in the thermophilic BGP4. Furthermore, a high consistency between the sequencing approach and the QMF method was shown, especially for the thermophilic BGP. The differences elucidated that using this biphasic approach for mesophilic BGPs provided novel insights regarding disaggregated single cells of Methanosarcina and Methanosaeta species. Both dominated the archaeal subcommunity and replaced coccoid Methanoculleus members belonging to the same group of Methanomicrobiales that have been frequently observed in similar BGPs. This work demonstrates that combining QMF and 16S rRNA gene amplicon sequencing is a complementary strategy to describe archaeal community structures within biogas processes.

  12. Arabidopsis Chloroplast Mini-Ribonuclease III Participates in rRNA Maturation and Intron Recycling

    PubMed Central

    Hotto, Amber M.; Castandet, Benoît; Gilet, Laetitia; Higdon, Andrea; Condon, Ciarán; Stern, David B.

    2015-01-01

    RNase III proteins recognize double-stranded RNA structures and catalyze endoribonucleolytic cleavages that often regulate gene expression. Here, we characterize the functions of RNC3 and RNC4, two Arabidopsis thaliana chloroplast Mini-RNase III-like enzymes sharing 75% amino acid sequence identity. Whereas rnc3 and rnc4 null mutants have no visible phenotype, rnc3/rnc4 (rnc3/4) double mutants are slightly smaller and chlorotic compared with the wild type. In Bacillus subtilis, the RNase Mini-III is integral to 23S rRNA maturation. In Arabidopsis, we observed imprecise maturation of 23S rRNA in the rnc3/4 double mutant, suggesting that exoribonucleases generated staggered ends in the absence of specific Mini-III-catalyzed cleavages. A similar phenotype was found at the 3′ end of the 16S rRNA, and the primary 4.5S rRNA transcript contained 3′ extensions, suggesting that Mini-III catalyzes several processing events of the polycistronic rRNA precursor. The rnc3/4 mutant showed overaccumulation of a noncoding RNA complementary to the 4.5S-5S rRNA intergenic region, and its presence correlated with that of the extended 4.5S rRNA precursor. Finally, we found rnc3/4-specific intron degradation intermediates that are probable substrates for Mini-III and show that B. subtilis Mini-III is also involved in intron regulation. Overall, this study extends our knowledge of the key role of Mini-III in intron and noncoding RNA regulation and provides important insight into plastid rRNA maturation. PMID:25724636

  13. High level bacterial contamination of secondary school students’ mobile phones

    PubMed Central

    Kõljalg, Siiri; Mändar, Rando; Sõber, Tiina; Rööp, Tiiu; Mändar, Reet

    2017-01-01

    Introduction While contamination of mobile phones in the hospital has been found to be common in several studies, little information about bacterial abundance on phones used in the community is available. Our aim was to quantitatively determine the bacterial contamination of secondary school students’ mobile phones. Methods Altogether 27 mobile phones were studied. The contact plate method and microbial identification using MALDI-TOF mass spectrometer were used for culture studies. Quantitative PCR reaction for detection of universal 16S rRNA, Enterococcus faecalis 16S rRNA and Escherichia coli allantoin permease were performed, and the presence of tetracycline (tetA, tetB, tetM), erythromycin (ermB) and sulphonamide (sul1) resistance genes was assessed. Results We found a high median bacterial count on secondary school students’ mobile phones (10.5 CFU/cm2) and a median of 17,032 bacterial 16S rRNA gene copies per phone. Potentially pathogenic microbes (Staphylococcus aureus, Acinetobacter spp., Pseudomonas spp., Bacillus cereus and Neisseria flavescens) were found among dominant microbes more often on phones with higher percentage of E. faecalis in total bacterial 16S rRNA. No differences in contamination level or dominating bacterial species between phone owner’s gender and between phone types (touch screen/keypad) were found. No antibiotic resistance genes were detected on mobile phone surfaces. Conclusion Quantitative study methods revealed high level bacterial contamination of secondary school students’ mobile phones. PMID:28626737

  14. Use of 16S rRNA Sequencing for Identification of Actinobacillus ureae Isolated from a Cerebrospinal Fluid Sample

    PubMed Central

    Whitelaw, A. C.; Shankland, I. M.; Elisha, B. G.

    2002-01-01

    Actinobacillus ureae, previously Pasteurella ureae, has on rare occasions been described as a cause of human infection. Owing to its rarity, it may not be easily identified in clinical microbiology laboratories by standard tests. This report describes a patient with acute bacterial meningitis due to A. ureae. The identity of the isolate was determined by means of DNA sequence analysis of a portion of the 16S rRNA gene. PMID:11825992

  15. Rapid in situ hybridization technique using 16S rRNA segments for detecting and differentiating the closely related gram-positive organisms Bacillus polymyxa and Bacillus macerans

    NASA Technical Reports Server (NTRS)

    Jurtshuk, R. J.; Blick, M.; Bresser, J.; Fox, G. E.; Jurtshuk, P. Jr

    1992-01-01

    A rapid, sensitive, inexpensive in situ hybridization technique, using 30-mer 16S rRNA probes, can specifically differentiate two closely related Bacillus spp., B. polymyxa and B. macerans. The 16S rRNA probes were labeled with a rhodamine derivative (Texas Red), and quantitative fluorescence measurements were made on individual bacterial cells. The microscopic fields analyzed were selected by phase-contrast microscopy, and the fluorescence imaging analyses were performed on 16 to 67 individual cells. The labeled 16S rRNA probe, POL, whose sequence was a 100% match with B. polymyxa 16S rRNA but only a 60% match with B. macerans 16S rRNA, gave quantitative fluorescence ratio measurements that were 34.8-fold higher for B. polymyxa cells than for B. macerans cells. Conversely, the labeled probe, MAC, which matched B. polymyxa 16S rRNA in 86.6% of its positions and B. macerans 16S rRNA in 100% of its positions, gave quantitative fluorescence measurements that were 59.3-fold higher in B. macerans cells than in B. polymyxa cells. Control probes, whose 16S rRNA sequence segment (P-M) was present in both B. polymyxa and B. macerans as well as a panprokaryotic probe (16S), having a 100% match with all known bacteria, hybridized equally well with both organisms. These latter hybridizations generated very high fluorescence signals, but their comparative fluorescence ratios (the differences between two organisms) were low. The control paneukaryotic probe (28S), which had less than 30% identity for both B. macerans and B. polymyxa, did not hybridize with either organism.

  16. Crystallization of the two-domain N-terminal fragment of the archaeal ribosomal protein L10(P0) in complex with a specific fragment of 23S rRNA

    NASA Astrophysics Data System (ADS)

    Kravchenko, O. V.; Mitroshin, I. V.; Gabdulkhakov, A. G.; Nikonov, S. V.; Garber, M. B.

    2011-07-01

    Lateral L12-stalk (P1-stalk in Archaea, P1/P2-stalk in eukaryotes) is an obligatory morphological element of large ribosomal subunits in all organisms studied. This stalk is composed of the complex of ribosomal proteins L10(P0) and L12(P1) and interacts with 23S rRNA through the protein L10(P0). L12(P1)-stalk is involved in the formation of GTPase center of the ribosome and plays an important role in the ribosome interaction with translation factors. High mobility of this stalk puts obstacles in determination of its structure within the intact ribosome. Crystals of a two-domain N-terminal fragment of ribosomal protein L10(P0) from the archaeon Methanococcus jannaschii in complex with a specific fragment of rRNA from the same organism have been obtained. The crystals diffract X-rays at 3.2 Å resolution.

  17. Critical 23S rRNA interactions for macrolide-dependent ribosome stalling on the ErmCL nascent peptide chain.

    PubMed

    Koch, Miriam; Willi, Jessica; Pradère, Ugo; Hall, Jonathan; Polacek, Norbert

    2017-06-20

    The nascent peptide exit tunnel has recently been identified as a functional region of ribosomes contributing to translation regulation and co-translational protein folding. Inducible expression of the erm resistance genes depends on ribosome stalling at specific codons of an upstream open reading frame in the presence of an exit tunnel-bound macrolide antibiotic. The molecular basis for this translation arrest is still not fully understood. Here, we used a nucleotide analog interference approach to unravel important functional groups on 23S rRNA residues in the ribosomal exit tunnel for ribosome stalling on the ErmC leader peptide. By replacing single nucleobase functional groups or even single atoms we were able to demonstrate the importance of A2062, A2503 and U2586 for drug-dependent ribosome stalling. Our data show that the universally conserved A2062 and A2503 are capable of forming a non-Watson-Crick base pair that is critical for sensing and transmitting the stalling signal from the exit tunnel back to the peptidyl transferase center of the ribosome. The nucleobases of A2062, A2503 as well as U2586 do not contribute significantly to the overall mechanism of protein biosynthesis, yet their elaborate role for co-translational monitoring of nascent peptide chains inside the exit tunnel can explain their evolutionary conservation. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  18. Comparison of Cultivable Acetic Acid Bacterial Microbiota in Organic and Conventional Apple Cider Vinegar

    PubMed Central

    Štornik, Aleksandra; Skok, Barbara

    2016-01-01

    Summary Organic apple cider vinegar is produced from apples that go through very restricted treatment in orchard. During the first stage of the process, the sugars from apples are fermented by yeasts to cider. The produced ethanol is used as a substrate by acetic acid bacteria in a second separated bioprocess. In both, the organic and conventional apple cider vinegars the ethanol oxidation to acetic acid is initiated by native microbiota that survived alcohol fermentation. We compared the cultivable acetic acid bacterial microbiota in the production of organic and conventional apple cider vinegars from a smoothly running oxidation cycle of a submerged industrial process. In this way we isolated and characterized 96 bacteria from organic and 72 bacteria from conventional apple cider vinegar. Using the restriction analysis of the PCR-amplified 16S−23S rRNA gene ITS regions, we identified four different HaeIII and five different HpaII restriction profiles for bacterial isolates from organic apple cider vinegar. Each type of restriction profile was further analyzed by sequence analysis of the 16S−23S rRNA gene ITS regions, resulting in identification of the following species: Acetobacter pasteurianus (71.90%), Acetobacter ghanensis (12.50%), Komagataeibacter oboediens (9.35%) and Komagataeibacter saccharivorans (6.25%). Using the same analytical approach in conventional apple cider vinegar, we identified only two different HaeIII and two different HpaII restriction profiles of the 16S‒23S rRNA gene ITS regions, which belong to the species Acetobacter pasteurianus (66.70%) and Komagataeibacter oboediens (33.30%). Yeasts that are able to resist 30 g/L of acetic acid were isolated from the acetic acid production phase and further identified by sequence analysis of the ITS1−5.8S rDNA‒ITS2 region as Candida ethanolica, Pichia membranifaciens and Saccharomycodes ludwigii. This study has shown for the first time that the bacterial microbiota for the industrial

  19. Diversity of Bacterial Communities in Container Habitats of Mosquitoes

    PubMed Central

    Ponnusamy, Loganathan; Xu, Ning; Stav, Gil; Wesson, Dawn M.; Schal, Coby

    2010-01-01

    We investigated the bacterial diversity of microbial communities in water-filled, human-made and natural container habitats of the mosquitoes Aedes aegypti and Aedes albopictus in suburban landscapes of New Orleans, Louisiana in 2003. We collected water samples from three classes of containers, including tires (n=12), cemetery urns (n=23), and miscellaneous containers that included two tree holes (n=19). Total genomic DNA was extracted from water samples, and 16S ribosomal DNA fragments (operational taxonomic units, OTUs) were amplified by PCR and separated by denaturing gradient gel electrophoresis (DGGE). The bacterial communities in containers represented diverse DGGE-DNA banding patterns that were not related to the class of container or to the local spatial distribution of containers. Mean richness and evenness of OTUs were highest in water samples from tires. Bacterial phylotypes were identified by comparative sequence analysis of 90 16S rDNA DGGE band amplicons. The majority of sequences were placed in five major taxa: Alpha-, Beta- and Gammaproteobacteria, Actinobacteria, Bacteroidetes, Cyanobacteria, Firmicutes, and an unclassified group; Proteobacteria and Bacteroidetes were the predominant heterotrophic bacteria in containers. The bacterial communities in human-made containers consisted mainly of undescribed species, and a phylogenetic analysis based on 16S rRNA sequences suggested that species composition was independent of both container type and the spatial distribution of containers. Comparative PCR-based, cultivation-independent rRNA surveys of microbial communities associated with mosquito habitats can provide significant insight into community organization and dynamics of bacterial species. PMID:18373113

  20. Microbial Diversity in Commercial Bee Pollen from Europe, Chile, and Mexico, Based on 16S rRNA Gene Amplicon Metagenome Sequencing

    PubMed Central

    Moreno Andrade, Vicente D.; Saldaña Gutiérrez, Carlos; Calvillo Medina, Rosa P.; Cruz Hérnandez, Andrés; Vázquez Cruz, Moisés A.; Torres Ruíz, Alfonso; Romero Gómez, Sergio; Ramos López, Miguel A.; Álvarez-Hidalgo, Erika; López-Gaytan, Silvia B.; Ramírez, Natanahel Salvador; Jones, George H.

    2018-01-01

    ABSTRACT Bee pollen is a highly nutritive natural foodstuff. Because of its use as a comestible, the association of bacteria with bee pollen is commercially and biologically important. We report here the bacterial diversity of seven bee pollen samples (five from Europe, one from Chile, and one from Mexico) based on 16S rRNA gene amplicon metagenome sequencing. PMID:29773615

  1. Diversity of ribosomal 16S DNA- and RNA-based bacterial community in an office building drinking water system.

    PubMed

    Inkinen, J; Jayaprakash, B; Santo Domingo, J W; Keinänen-Toivola, M M; Ryu, H; Pitkänen, T

    2016-06-01

    Next-generation sequencing of 16S ribosomal RNA genes (rDNA) and ribosomal RNA (rRNA) was used to characterize water and biofilm microbiome collected from a drinking water distribution system of an office building after its first year of operation. The total bacterial community (rDNA) and active bacterial members (rRNA) sequencing databases were generated by Illumina MiSeq PE250 platform. As estimated by Chao1 index, species richness in cold water system was lower (180-260) in biofilms (Sphingomonas spp., Methylobacterium spp., Limnohabitans spp., Rhizobiales order) than in waters (250-580), (also Methylotenera spp.) (P = 0·005, n = 20). Similarly species richness (Chao1) was slightly higher (210-580) in rDNA libraries compared to rRNA libraries (150-400; P = 0·054, n = 24). Active Mycobacterium spp. was found in cross-linked polyethylene (PEX), but not in corresponding copper pipeline biofilm. Nonpathogenic Legionella spp. was found in rDNA libraries but not in rRNA libraries. Microbial communities differed between water and biofilms, between cold and hot water systems, locations in the building and between water rRNA and rDNA libraries, as shown by clear clusters in principal component analysis (PcoA). By using the rRNA method, we found that not all bacterial community members were active (e.g. Legionella spp.), whereas other members showed increased activity in some locations; for example, Pseudomonas spp. in hot water circulations' biofilm and order Rhizobiales and Limnohabitans spp. in stagnated locations' water and biofilm. rRNA-based methods may be better than rDNA-based methods for evaluating human health implications as rRNA methods can be used to describe the active bacterial fraction. This study indicates that copper as a pipeline material might have an adverse impact on the occurrence of Mycobacterium spp. The activity of Legionella spp. maybe questionable when detected solely by using DNA-based methods. © 2016 The Society for Applied

  2. The nucleotide sequence of the intergenic region between the 5.8S and 26S rRNA genes of the yeast ribosomal RNA operon. Possible implications for the interaction between 5.8S and 26S rRNA and the processing of the primary transcript.

    PubMed Central

    Veldman, G M; Klootwijk, J; van Heerikhuizen, H; Planta, R J

    1981-01-01

    We have determined the nucleotide sequence of part of a cloned yeast ribosomal RNA operon extending from the 5.8S RNA gene downstream into the 5' -terminal region of the 26S RNA gene. We mapped the pertinent processing sites, viz. the 5' end of 26S rRNA and the 3'ends of 5.8S rRNA and its immediate precursor, 7S RNA. At the 3' end of 7S RNA we find the sequence UCGUUU which is very similar to the type I consensus sequence UCAUUA/U present at the 3' ends of 17S, 5.8S and 26S rRNA as well as 18S precursor rRNA in yeast. At the 5' end of the 26S RNA gene we find a sequence of thirteen nucleotides which is homologous to the type II sequence present at the 5' termini of both the 17S and the 5.8S RNA gene. These findings further support the suggestion put forward earlier (G.M. Veldman et al. (1980) Nucl. Acids Res. 8, 2907-2920) that both consensus sequences are involved in the recognition of precursor rRNA by the processing nuclease(s). We discuss a model for the processing of yeast rRNA in which a processing enzyme sequentially recognizes several combinations of a type I and a type II consensus sequence. We also describe the existence of a significant base complementarity between sequences in the 5' -terminal region of 26S rRNA and the 3' -terminal region of 5.8S rRNA. We suggest that base pairing between these sequences contributes to the binding between 5.8S and 26S rRNA. Images PMID:7312619

  3. Composition and Dynamics of Bacterial Communities of a Drinking Water Supply System as Assessed by RNA- and DNA-Based 16S rRNA Gene Fingerprinting

    PubMed Central

    Eichler, Stefan; Christen, Richard; Höltje, Claudia; Westphal, Petra; Bötel, Julia; Brettar, Ingrid; Mehling, Arndt; Höfle, Manfred G.

    2006-01-01

    Bacterial community dynamics of a whole drinking water supply system (DWSS) were studied from source to tap. Raw water for this DWSS is provided by two reservoirs with different water characteristics in the Harz mountains of Northern Germany. Samples were taken after different steps of treatment of raw water (i.e., flocculation, sand filtration, and chlorination) and at different points along the supply system to the tap. RNA and DNA were extracted from the sampled water. The 16S rRNA or its genes were partially amplified by reverse transcription-PCR or PCR and analyzed by single-strand conformation polymorphism community fingerprints. The bacterial community structures of the raw water samples from the two reservoirs were very different, but no major changes of these structures occurred after flocculation and sand filtration. Chlorination of the processed raw water strongly affected bacterial community structure, as reflected by the RNA-based fingerprints. This effect was less pronounced for the DNA-based fingerprints. After chlorination, the bacterial community remained rather constant from the storage containers to the tap. Furthermore, the community structure of the tap water did not change substantially for several months. Community composition was assessed by sequencing of abundant bands and phylogenetic analysis of the sequences obtained. The taxonomic compositions of the bacterial communities from both reservoirs were very different at the species level due to their different limnologies. On the other hand, major taxonomic groups, well known to occur in freshwater, such as Alphaproteobacteria, Betaproteobacteria, and Bacteroidetes, were found in both reservoirs. Significant differences in the detection of the major groups were observed between DNA-based and RNA-based fingerprints irrespective of the reservoir. Chlorination of the drinking water seemed to promote growth of nitrifying bacteria. Detailed analysis of the community dynamics of the whole DWSS

  4. Identification to the species level of Lactobacillus isolated in probiotic prospecting studies of human, animal or food origin by 16S-23S rRNA restriction profiling

    PubMed Central

    Moreira, João Luiz S; Mota, Rodrigo M; Horta, Maria F; Teixeira, Santuza MR; Neumann, Elisabeth; Nicoli, Jacques R; Nunes, Álvaro C

    2005-01-01

    Background The accurate identification of Lactobacillus and other co-isolated bacteria during microbial ecological studies of ecosystems such as the human or animal intestinal tracts and food products is a hard task by phenotypic methods requiring additional tests such as protein and/or lipids profiling. Results Bacteria isolated in different probiotic prospecting studies, using de Man, Rogosa and Sharpe medium (MRS), were typed at species level by PCR amplification of 16S-23S rRNA intergenic spacers using universal primers that anneal within 16S and 23S genes, followed by restriction digestion analyses of PCR products. The set of enzymes chosen differentiates most species of Lactobacillus genus and also co-isolated bacteria such as Enterococcus, Streptococcus, Weissella, Staphylococcus, and Escherichia species. The in silico predictions of restriction patterns generated by the Lactobacillus shorter spacers digested with 11 restriction enzymes with 6 bp specificities allowed us to distinguish almost all isolates at the species level but not at the subspecies one. Simultaneous theoretical digestions of the three spacers (long, medium and short) with the same set of enzymes provided more complex patterns and allowed us to distinguish the species without purifying and cloning of PCR products. Conclusion Lactobacillus isolates and several other strains of bacteria co-isolated on MRS medium from gastrointestinal ecosystem and fermented food products could be identified using DNA fingerprints generated by restriction endonucleases. The methodology based on amplified ribosomal DNA restriction analysis (ARDRA) is easier, faster and more accurate than the current methodologies based on fermentation profiles, used in most laboratories for the purpose of identification of these bacteria in different prospecting studies. PMID:15788104

  5. Critical 23S rRNA interactions for macrolide-dependent ribosome stalling on the ErmCL nascent peptide chain

    PubMed Central

    Koch, Miriam; Willi, Jessica; Pradère, Ugo; Hall, Jonathan

    2017-01-01

    Abstract The nascent peptide exit tunnel has recently been identified as a functional region of ribosomes contributing to translation regulation and co-translational protein folding. Inducible expression of the erm resistance genes depends on ribosome stalling at specific codons of an upstream open reading frame in the presence of an exit tunnel-bound macrolide antibiotic. The molecular basis for this translation arrest is still not fully understood. Here, we used a nucleotide analog interference approach to unravel important functional groups on 23S rRNA residues in the ribosomal exit tunnel for ribosome stalling on the ErmC leader peptide. By replacing single nucleobase functional groups or even single atoms we were able to demonstrate the importance of A2062, A2503 and U2586 for drug-dependent ribosome stalling. Our data show that the universally conserved A2062 and A2503 are capable of forming a non-Watson–Crick base pair that is critical for sensing and transmitting the stalling signal from the exit tunnel back to the peptidyl transferase center of the ribosome. The nucleobases of A2062, A2503 as well as U2586 do not contribute significantly to the overall mechanism of protein biosynthesis, yet their elaborate role for co-translational monitoring of nascent peptide chains inside the exit tunnel can explain their evolutionary conservation. PMID:28369621

  6. Microbial Diversity in Commercial Bee Pollen from Europe, Chile, and Mexico, Based on 16S rRNA Gene Amplicon Metagenome Sequencing.

    PubMed

    Moreno Andrade, Vicente D; Saldaña Gutiérrez, Carlos; Calvillo Medina, Rosa P; Cruz Hérnandez, Andrés; Vázquez Cruz, Moisés A; Torres Ruíz, Alfonso; Romero Gómez, Sergio; Ramos López, Miguel A; Álvarez-Hidalgo, Erika; López-Gaytan, Silvia B; Ramírez, Natanahel Salvador; Jones, George H; Hernandez-Flores, Jose Luis; Campos-Guillén, Juan

    2018-05-17

    Bee pollen is a highly nutritive natural foodstuff. Because of its use as a comestible, the association of bacteria with bee pollen is commercially and biologically important. We report here the bacterial diversity of seven bee pollen samples (five from Europe, one from Chile, and one from Mexico) based on 16S rRNA gene amplicon metagenome sequencing. Copyright © 2018 Moreno Andrade et al.

  7. Bacterial communities in the phylloplane of Prunus species.

    PubMed

    Jo, Yeonhwa; Cho, Jin Kyong; Choi, Hoseong; Chu, Hyosub; Lian, Sen; Cho, Won Kyong

    2015-04-01

    Bacterial populations in the phylloplane of four different Prunus species were investigated by 16 S rRNA pyrosequencing. Bioinformatic analysis identified an average of 510 operational taxonomic units belonging to 159 genera in 76 families. The two genera, Sphingomonas and Methylobacterium, were dominant in the phylloplane of four Prunus species. Twenty three genera were commonly identified in the four Prunus species, indicating a high level of bacterial diversity dependent on the plant species. Our study based on 16 S rRNA sequencing reveals the complexity of bacterial diversity in the phylloplane of Prunus species in detail. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Deep 16S rRNA Pyrosequencing Reveals a Bacterial Community Associated with Banana Fusarium Wilt Disease Suppression Induced by Bio-Organic Fertilizer Application

    PubMed Central

    Ruan, Yunze; Xue, Chao; Zhang, Jian; Li, Rong; Shen, Qirong

    2014-01-01

    Our previous work demonstrated that application of a bio-organic fertilizer (BIO) to a banana mono-culture orchard with serious Fusarium wilt disease effectively decreased the number of soil Fusarium sp. and controlled the soil-borne disease. Because bacteria are an abundant and diverse group of soil organisms that responds to soil health, deep 16 S rRNA pyrosequencing was employed to characterize the composition of the bacterial community to investigate how it responded to BIO or the application of other common composts and to explore the potential correlation between bacterial community, BIO application and Fusarium wilt disease suppression. After basal quality control, 137,646 sequences and 9,388 operational taxonomic units (OTUs) were obtained from the 15 soil samples. Proteobacteria, Acidobacteria, Bacteroidetes, Gemmatimonadetes and Actinobacteria were the most frequent phyla and comprised up to 75.3% of the total sequences. Compared to the other soil samples, BIO-treated soil revealed higher abundances of Gemmatimonadetes and Acidobacteria, while Bacteroidetes were found in lower abundance. Meanwhile, on genus level, higher abundances compared to other treatments were observed for Gemmatimonas and Gp4. Correlation and redundancy analysis showed that the abundance of Gemmatimonas and Sphingomonas and the soil total nitrogen and ammonium nitrogen content were higher after BIO application, and they were all positively correlated with disease suppression. Cumulatively, the reduced Fusarium wilt disease incidence that was seen after BIO was applied for 1-year might be attributed to the general suppression based on a shift within the bacteria soil community, including specific enrichment of Gemmatimonas and Sphingomonas. PMID:24871319

  9. Molecular evolution of the mitochondrial 12S rRNA in Ungulata (mammalia).

    PubMed

    Douzery, E; Catzeflis, F M

    1995-11-01

    The complete 12S rRNA gene has been sequenced in 4 Ungulata (hoofed eutherians) and 1 marsupial and compared to 38 available mammalian sequences in order to investigate the molecular evolution of the mitochondrial small-subunit ribosomal RNA molecule. Ungulata were represented by one artiodactyl (the collared peccary, Tayassu tajacu, suborder Suiformes), two perissodactyls (the Grevy's zebra, Equus grevyi, suborder Hippomorpha; the white rhinoceros, Ceratotherium simum, suborder Ceratomorpha), and one hyracoid (the tree hyrax, Dendrohyrax dorsalis). The fifth species was a marsupial, the eastern gray kangaroo (Macropus giganteus). Several transition/transversion biases characterized the pattern of changes between mammalian 12S rRNA molecules. A bias toward transitions was found among 12S rRNA sequences of Ungulata, illustrating the general bias exhibited by ribosomal and protein-encoding genes of the mitochondrial genome. The derivation of a mammalian 12S rRNA secondary structure model from the comparison of 43 eutherian and marsupial sequences evidenced a pronounced bias against transversions in stems. Moreover, transversional compensatory changes were rare events within double-stranded regions of the ribosomal RNA. Evolutionary characteristics of the 12S rRNA were compared with those of the nuclear 18S and 28S rRNAs. From a phylogenetic point of view, transitions, transversions and indels in stems as well as transversional and indels events in loops gave congruent results for comparisons within orders. Some compensatory changes in double-stranded regions and some indels in single-stranded regions also constituted diagnostic events. The 12S rRNA molecule confirmed the monophyly of infraorder Pecora and order Cetacea and demonstrated the monophyly of the suborder Ruminantia was not supported and the branching pattern between Cetacea and the artiodacytyl suborders Ruminantia and Suiformes was not established. The monophyly of the order Perissodactyla was evidenced

  10. Distribution of 16S rRNA Methylases Among Different Species of Aminoglycoside-Resistant Enterobacteriaceae in a Tertiary Care Hospital in Poland.

    PubMed

    Piekarska, Katarzyna; Zacharczuk, Katarzyna; Wołkowicz, Tomasz; Rzeczkowska, Magdalena; Bareja, Elżbieta; Olak, Monika; Gierczyński, Rafał

    2016-01-01

    Aminoglycosides are a group of antimicrobial agents still the most commonly used in the treatment of life-threatening bacterial infections in human and animals. The emergence and spread of 16S rRNA methylases, which confer high-level resistance to the majority of clinically relevant aminoglycosides, constitute a major public health concern. Our goal was to evaluate the distribution of 16S rRNA methylases among different species of Enterobacteriaceae during a five month-long survey in a tertiary hospital in Warszawa, Poland. In the survey, a total of 1770 non-duplicate clinical isolates were collected from all hospital wards in a tertiary hospital in Warszawa, Poland. The survey was conducted between 19 April and 19 September 2010. The ability to produce 16S rRNA methylase was examined by determining MICs for gentamicin, kanamycin, amikacin by means of the agar dilution method. The isolates resistant to high concentration of aminoglycosides were PCR tested for genes: armA, rmtA, rmtB and rmtC. PCR products were subjected to DNA sequencing by the Sanger method. The genetic similarity of the ArmA-producing isolates was analysed by pulsed-filed gel electrophoresis (PFGE). ArmA was the only 16S rRNA methylase detected in 20 of 1770 tested isolates. The overall prevalence rate of ArmA was 1.13%. In K. pneumoniae (n = 742), P. mirabilis (n = 130), and E. cloacae (n = 253) collected in the survey, the prevalence of ArmA was 0.4%, 0.8% and 5.9%, respectively. The PFGE revealed both horizontal and clonal spread of the armA gene in the hospital. The prevalence of 16S rRNA methylase ArmA reported in this study is significantly higher than observed in other countries in Europe.

  11. Beyond Streptococcus mutans: Dental Caries Onset Linked to Multiple Species by 16S rRNA Community Analysis

    PubMed Central

    Gross, Erin L.; Beall, Clifford J.; Kutsch, Stacey R.; Firestone, Noah D.; Leys, Eugene J.; Griffen, Ann L.

    2012-01-01

    Dental caries in very young children may be severe, result in serious infection, and require general anesthesia for treatment. Dental caries results from a shift within the biofilm community specific to the tooth surface, and acidogenic species are responsible for caries. Streptococcus mutans, the most common acid producer in caries, is not always present and occurs as part of a complex microbial community. Understanding the degree to which multiple acidogenic species provide functional redundancy and resilience to caries-associated communities will be important for developing biologic interventions. In addition, microbial community interactions in health and caries pathogenesis are not well understood. The purpose of this study was to investigate bacterial community profiles associated with the onset of caries in the primary dentition. In a combination cross-sectional and longitudinal design, bacterial community profiles at progressive stages of caries and over time were examined and compared to those of health. 16S rRNA gene sequencing was used for bacterial community analysis. Streptococcus mutans was the dominant species in many, but not all, subjects with caries. Elevated levels of S. salivarius, S. sobrinus, and S. parasanguinis were also associated with caries, especially in subjects with no or low levels of S. mutans, suggesting these species are alternative pathogens, and that multiple species may need to be targeted for interventions. Veillonella, which metabolizes lactate, was associated with caries and was highly correlated with total acid producing species. Among children without previous history of caries, Veillonella, but not S. mutans or other acid-producing species, predicted future caries. Bacterial community diversity was reduced in caries as compared to health, as many species appeared to occur at lower levels or be lost as caries advanced, including the Streptococcus mitis group, Neisseria, and Streptococcus sanguinis. This may have

  12. A critical role for noncoding 5S rRNA in regulating Mdmx stability.

    PubMed

    Li, Muyang; Gu, Wei

    2011-09-16

    Both p53 and Mdmx are ubiquitinated and degraded by the same E3 ligase Mdm2; interestingly, however, while p53 is rapidly degraded by Mdm2, Mdmx is a stable protein in most cancer cells. Thus, the mechanism by which Mdmx is degraded by Mdm2 needs further elucidation. Here, we identified the noncoding 5S rRNA as a major component of Mdmx-associated complexes from human cells. We show that 5S rRNA acts as a natural inhibitor of Mdmx degradation by Mdm2. RNAi-mediated knockdown of endogenous 5S rRNA, while not affecting p53 levels, significantly induces Mdmx degradation and, subsequently, activates p53-dependent growth arrest. Notably, 5S rRNA binds the RING domain of Mdmx and blocks its ubiquitination by Mdm2, whereas Mdm2-mediated p53 ubiquitination remains intact. These results provide insights into the differential effects on p53 and Mdmx by Mdm2 in vivo and reveal a critical role for noncoding 5S rRNA in modulating the p53-Mdmx axis. Copyright © 2011 Elsevier Inc. All rights reserved.

  13. Bacterial diversity in permanently cold and alkaline ikaite columns from Greenland.

    PubMed

    Schmidt, Mariane; Priemé, Anders; Stougaard, Peter

    2006-12-01

    Bacterial diversity in alkaline (pH 10.4) and permanently cold (4 degrees C) ikaite tufa columns from the Ikka Fjord, SW Greenland, was investigated using growth characterization of cultured bacterial isolates with Terminal-restriction fragment length polymorphism (T-RFLP) and sequence analysis of bacterial 16S rRNA gene fragments. More than 200 bacterial isolates were characterized with respect to pH and temperature tolerance, and it was shown that the majority were cold-active alkaliphiles. T-RFLP analysis revealed distinct bacterial communities in different fractions of three ikaite columns, and, along with sequence analysis, it showed the presence of rich and diverse bacterial communities. Rarefaction analysis showed that the 109 sequenced clones in the 16S rRNA gene library represented between 25 and 65% of the predicted species richness in the three ikaite columns investigated. Phylogenetic analysis of the 16S rRNA gene sequences revealed many sequences with similarity to alkaliphilic or psychrophilic bacteria, and showed that 33% of the cloned sequences and 33% of the cultured bacteria showed less than 97% sequence identity to known sequences in databases, and may therefore represent yet unknown species.

  14. Bacterial microbiome of the nose of healthy dogs and dogs with nasal disease

    PubMed Central

    Dorn, Elisabeth S.; Suchodolski, Jan S.; Nisar, Tariq; Ravindran, Prajesh; Weber, Karin; Hartmann, Katrin; Schulz, Bianka S.

    2017-01-01

    The role of bacterial communities in canine nasal disease has not been studied so far using next generation sequencing methods. Sequencing of bacterial 16S rRNA genes has revealed that the canine upper respiratory tract harbors a diverse microbial community; however, changes in the composition of nasal bacterial communities in dogs with nasal disease have not been described so far. Aim of the study was to characterize the nasal microbiome of healthy dogs and compare it to that of dogs with histologically confirmed nasal neoplasia and chronic rhinitis. Nasal swabs were collected from healthy dogs (n = 23), dogs with malignant nasal neoplasia (n = 16), and dogs with chronic rhinitis (n = 8). Bacterial DNA was extracted and sequencing of the bacterial 16S rRNA gene was performed. Data were analyzed using Quantitative Insights Into Microbial Ecology (QIIME). A total of 376 Operational Taxonomic Units out of 26 bacterial phyla were detected. In healthy dogs, Moraxella spp. was the most common species, followed by Phyllobacterium spp., Cardiobacteriaceae, and Staphylococcus spp. While Moraxella spp. were significantly decreased in diseased compared to healthy dogs (p = 0.005), Pasteurellaceae were significantly increased (p = 0.001). Analysis of similarities used on the unweighted UniFrac distance metric (p = 0.027) was significantly different when nasal microbial communities of healthy dogs were compared to those of dogs with nasal disease. The study showed that the canine nasal cavity is inhabited by a highly species-rich bacterial community, and suggests significant differences between the nasal microbiome of healthy dogs and dogs with nasal disease. PMID:28459886

  15. Bacterial microbiome of the nose of healthy dogs and dogs with nasal disease.

    PubMed

    Tress, Barbara; Dorn, Elisabeth S; Suchodolski, Jan S; Nisar, Tariq; Ravindran, Prajesh; Weber, Karin; Hartmann, Katrin; Schulz, Bianka S

    2017-01-01

    The role of bacterial communities in canine nasal disease has not been studied so far using next generation sequencing methods. Sequencing of bacterial 16S rRNA genes has revealed that the canine upper respiratory tract harbors a diverse microbial community; however, changes in the composition of nasal bacterial communities in dogs with nasal disease have not been described so far. Aim of the study was to characterize the nasal microbiome of healthy dogs and compare it to that of dogs with histologically confirmed nasal neoplasia and chronic rhinitis. Nasal swabs were collected from healthy dogs (n = 23), dogs with malignant nasal neoplasia (n = 16), and dogs with chronic rhinitis (n = 8). Bacterial DNA was extracted and sequencing of the bacterial 16S rRNA gene was performed. Data were analyzed using Quantitative Insights Into Microbial Ecology (QIIME). A total of 376 Operational Taxonomic Units out of 26 bacterial phyla were detected. In healthy dogs, Moraxella spp. was the most common species, followed by Phyllobacterium spp., Cardiobacteriaceae, and Staphylococcus spp. While Moraxella spp. were significantly decreased in diseased compared to healthy dogs (p = 0.005), Pasteurellaceae were significantly increased (p = 0.001). Analysis of similarities used on the unweighted UniFrac distance metric (p = 0.027) was significantly different when nasal microbial communities of healthy dogs were compared to those of dogs with nasal disease. The study showed that the canine nasal cavity is inhabited by a highly species-rich bacterial community, and suggests significant differences between the nasal microbiome of healthy dogs and dogs with nasal disease.

  16. Onset and establishment of diazotrophs and other bacterial associates in the early life history stages of the coral Acropora millepora.

    PubMed

    Lema, Kimberley A; Bourne, David G; Willis, Bette L

    2014-10-01

    Early establishment of coral-microbial symbioses is fundamental to the fitness of corals, but comparatively little is known about the onset and succession of bacterial communities in their early life history stages. In this study, bacterial associates of the coral Acropora millepora were characterized throughout the first year of life, from larvae and 1-week-old juveniles reared in laboratory conditions in the absence of the dinoflagellate endosymbiont Symbiodinium to field-outplanted juveniles with established Symbiodinium symbioses, and sampled at 2 weeks and at 3, 6 and 12 months. Using an amplicon pyrosequencing approach, the diversity of both nitrogen-fixing bacteria and of bacterial communities overall was assessed through analysis of nifH and 16S rRNA genes, respectively. The consistent presence of sequences affiliated with diazotrophs of the order Rhizobiales (23-58% of retrieved nifH sequences; 2-12% of 16S rRNA sequences), across all samples from larvae to 12-month-old coral juveniles, highlights the likely functional importance of this nitrogen-fixing order to the coral holobiont. Dominance of Roseobacter-affiliated sequences (>55% of retrieved 16S rRNA sequences) in larvae and 1-week-old juveniles, and the consistent presence of sequences related to Oceanospirillales and Altermonadales throughout all early life history stages, signifies their potential importance as coral associates. Increased diversity of bacterial communities once juveniles were transferred to the field, particularly of Cyanobacteria and Deltaproteobacteria, demonstrates horizontal (environmental) uptake of coral-associated bacterial communities. Although overall bacterial communities were dynamic, bacteria with likely important functional roles remain stable throughout early life stages of Acropora millepora. © 2014 John Wiley & Sons Ltd.

  17. Identification of virulence factors in 16S-23S rRNA intergenic spacer genotyped Staphylococcus aureus isolated from water buffaloes and small ruminants.

    PubMed

    Cremonesi, P; Zottola, T; Locatelli, C; Pollera, C; Castiglioni, B; Scaccabarozzi, L; Moroni, P

    2013-01-01

    Staphylococcus aureus is an important human and animal pathogen, and is regarded as an important cause of intramammary infection (IMI) in ruminants. Staphylococcus aureus genetic variability and virulence factors have been well studied in veterinary medicine, especially in cows as support for control and management of IMI. The aim of the present study was to genotype 71 Staph. aureus isolates from the bulk tank and foremilk of water buffaloes (n=40) and from udder tissue (n=7) and foremilk (n=24) from small ruminants. The method used was previously applied to bovine Staph. aureus and is based on the amplification of the 16S-23S rRNA intergenic spacer region. The technique applied was able to identify different Staph. aureus genotypes isolated from dairy species other than the bovine species, and cluster the genotypes according to species and herds. Virulence gene distribution was consistent with genotype differentiation. The isolates were also characterized through determination of the presence of 19 virulence-associated genes by specific PCR. Enterotoxins A, C, D, G, I, J, and L were associated with Staph. aureus isolates from buffaloes, whereas enterotoxins C and L were linked to small ruminants. Genes coding for methicillin resistance, Panton-Valentine leukocidin, exfoliative toxins A and B, and enterotoxins B, E, and H were undetected. These findings indicate that RNA template-specific PCR is a valid technique for typing Staph. aureus from buffaloes and small ruminants and is a useful tool for understanding udder infection epidemiology. Copyright © 2013 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  18. An Archaea 5S rRNA analog is stably expressed in Escherichia coli

    NASA Technical Reports Server (NTRS)

    Yang, Y.; Fox, G. E.

    1996-01-01

    Mini-genes for 5S-like rRNA were constructed. These genes had a sequence which largely resembles that of the naturally occurring 5S rRNA of a bacterium, Halococcus morrhuae, which phylogenetically belongs to the Archaea. Plasmids carrying the mini-genes were transformed into Escherichia coli (Ec). Ribosomal incorporation was not a prerequisite for stable accumulation of the RNA product. However, only those constructs with a well-base-paired helix I accumulated RNA product. This result strongly implies that this aspect of the structure is likely to be an important condition for stabilizing 5S rRNA-like products. The results are consistent with our current understanding of 5S rRNA processing in Ec. When used in conjunction with rRNA probe technology, the resulting chimeric RNA may be useful as a monitoring tool for genetically engineered microorganisms or naturally occurring organisms that are released into the environment.

  19. Next-Generation Sequencing Combined with Specific PCR Assays To Determine the Bacterial 16S rRNA Gene Profiles of Middle Ear Fluid Collected from Children with Acute Otitis Media

    PubMed Central

    Kramna, Lenka; Oikarinen, Sami; Sipilä, Markku; Rautiainen, Markus; Aittoniemi, Janne; Laranne, Jussi; Hyöty, Heikki; Cinek, Ondrej

    2017-01-01

    ABSTRACT The aim of the study was to analyze the bacteriome of acute otitis media with a novel modification of next-generation sequencing techniques. Outpatient children with acute otitis media were enrolled in the study, and middle ear fluids were collected during 90 episodes from 79 subjects aged 5 to 42 months (median age, 19 months). The bacteriome profiles of middle ear fluid samples were determined by a nested-PCR amplification of the 16S rRNA gene (V4 region), followed by mass sequencing. The profiling results were compared to the results of specific PCR assays targeting selected prevalent pathogens. Bacteriome profiling using nested amplification of low-volume samples was aided by a bioinformatic subtraction of signal contaminants from the recombinant polymerase, achieving a sensitivity slightly lower than that of specific PCR detection. Streptococcus pneumoniae was detected in 28 (31%) samples, Haemophilus influenzae in 24 (27%), Moraxella catarrhalis in 18 (20%), Staphylococcus spp. in 21 (23%), Turicella otitidis in 5 (5.6%), Alloiococcus otitidis in 3 (3.3%), and other bacteria in 14 (16%) using bacteriome profiling. S. pneumoniae was the dominant pathogen in 14 (16%) samples, H. influenzae in 15 (17%), M. catarrhalis in 5 (5.6%), T. otitidis in 2, and Staphylococcus auricularis in 2. Weaker signals of Prevotella melaninogenica, Veillonella dispar, and Veillonella montpellierensis were noted in several samples. Fourteen samples (16%) were not explainable by bacterial pathogens; novel causative agents were not detected. In conclusion, unbiased bacteriome profiling helped in depicting the true mutual quantitative ratios of ear bacteria, but at present, its complicated protocol impedes its routine clinical use. IMPORTANCE Although S. pneumoniae, H. influenzae, and M. catarrhalis have been long established as the most important pathogens in acute otitis media using culture and specific PCR assays, the knowledge of their mutual quantitative relations

  20. Prevalence of Mitochondrial 12S rRNA Mutations Associated with Aminoglycoside Ototoxicity

    ERIC Educational Resources Information Center

    Guan, Min-Xin

    2005-01-01

    The mitochondrial DNA (mtDNA) 12S rRNA is a hot spot for mutations associated with both aminoglycoside-induced and nonsyndromic hearing loss. Of those, the homoplasmic A1555G and C1494T mutations at a highly conserved decoding region of the 12S rRNA have been associated with hearing loss. These two mutations account for a significant number of…

  1. 5S rRNA gene arrangements in protists: a case of nonadaptive evolution.

    PubMed

    Drouin, Guy; Tsang, Corey

    2012-06-01

    Given their high copy number and high level of expression, one might expect that both the sequence and organization of eukaryotic ribosomal RNA genes would be conserved during evolution. Although the organization of 18S, 5.8S and 28S ribosomal RNA genes is indeed relatively well conserved, that of 5S rRNA genes is much more variable. Here, we review the different types of 5S rRNA gene arrangements which have been observed in protists. This includes linkages to the other ribosomal RNA genes as well as linkages to ubiquitin, splice-leader, snRNA and tRNA genes. Mapping these linkages to independently derived phylogenies shows that these diverse linkages have repeatedly been gained and lost during evolution. This argues against such linkages being the primitive condition not only in protists but also in other eukaryote species. Because the only characteristic the diverse genes with which 5S rRNA genes are found linked with is that they are tandemly repeated, these arrangements are unlikely to provide any selective advantage. Rather, the observed high variability in 5S rRNA genes arrangements is likely the result of the fact that 5S rRNA genes contain internal promoters, that these genes are often transposed by diverse recombination mechanisms and that these new gene arrangements are rapidly homogenized by unequal crossingovers and/or by gene conversions events in species with short generation times and frequent founder events.

  2. Mapping of chloroplast mutations conferring resistance to antibiotics in Chlamydomonas: evidence for a novel site of streptomycin resistance in the small subunit rRNA.

    PubMed

    Gauthier, A; Turmel, M; Lemieux, C

    1988-10-01

    A major obstacle to our understanding of the mechanisms governing the inheritance, recombination and segregation of chloroplast genes in Chlamydomonas is that the majority of antibiotic resistance mutations that have been used to gain insights into such mechanisms have not been physically localized on the chloroplast genome. We report here the physical mapping of two chloroplast antibiotic resistance mutations: one conferring cross-resistance to erythromycin and spiramycin in Chlamydomonas moewusii (er-nM1) and the other conferring resistance to streptomycin in the interfertile species C. eugametos (sr-2). The er-nM1 mutation results from a C to G transversion at a well-known site of macrolide resistance within the peptidyl transferase loop region of the large subunit rRNA gene. This locus, designated rib-2 in yeast mitochondrial DNA, corresponds to residue C-2611 in the 23 S rRNA of Escherichia coli. The sr-2 locus maps within the small subunit (SSU) rRNA gene at a site that has not been described previously. The mutation results from an A to C transversion at a position equivalent to residue A-523 in the E. coli 16 S rRNA. Although this region of the E. coli SSU rRNA has no binding affinity for streptomycin, it binds to ribosomal protein S4, a protein that has long been associated with the response of bacterial cells to this antibiotic. We propose that the sr-2 mutation indirectly affects the nearest streptomycin binding site through an altered interaction between a ribosomal protein and the SSU rRNA.

  3. Modified RNA-seq method for microbial community and diversity analysis using rRNA in different types of environmental samples

    PubMed Central

    Yan, Yong-Wei; Zou, Bin; Zhu, Ting; Hozzein, Wael N.

    2017-01-01

    RNA-seq-based SSU (small subunit) rRNA (ribosomal RNA) analysis has provided a better understanding of potentially active microbial community within environments. However, for RNA-seq library construction, high quantities of purified RNA are typically required. We propose a modified RNA-seq method for SSU rRNA-based microbial community analysis that depends on the direct ligation of a 5’ adaptor to RNA before reverse-transcription. The method requires only a low-input quantity of RNA (10–100 ng) and does not require a DNA removal step. The method was initially tested on three mock communities synthesized with enriched SSU rRNA of archaeal, bacterial and fungal isolates at different ratios, and was subsequently used for environmental samples of high or low biomass. For high-biomass salt-marsh sediments, enriched SSU rRNA and total nucleic acid-derived RNA-seq datasets revealed highly consistent community compositions for all of the SSU rRNA sequences, and as much as 46.4%-59.5% of 16S rRNA sequences were suitable for OTU (operational taxonomic unit)-based community and diversity analyses with complete coverage of V1-V2 regions. OTU-based community structures for the two datasets were also highly consistent with those determined by all of the 16S rRNA reads. For low-biomass samples, total nucleic acid-derived RNA-seq datasets were analyzed, and highly active bacterial taxa were also identified by the OTU-based method, notably including members of the previously underestimated genus Nitrospira and phylum Acidobacteria in tap water, members of the phylum Actinobacteria on a shower curtain, and members of the phylum Cyanobacteria on leaf surfaces. More than half of the bacterial 16S rRNA sequences covered the complete region of primer 8F, and non-coverage rates as high as 38.7% were obtained for phylum-unclassified sequences, providing many opportunities to identify novel bacterial taxa. This modified RNA-seq method will provide a better snapshot of diverse

  4. Evaluation of 16S Rrna amplicon sequencing using two next-generation sequencing technologies for phylogenetic analysis of the rumen bacterial community in steers

    USDA-ARS?s Scientific Manuscript database

    Next generation sequencing technologies have vastly changed the approach of sequencing of the 16S rRNA gene for studies in microbial ecology. Three distinct technologies are available for large-scale 16S sequencing. All three are subject to biases introduced by sequencing error rates, amplificatio...

  5. Diversity and distribution of 16S rRNA and phenol monooxygenase genes in the rhizosphere and endophytic bacteria isolated from PAH-contaminated sites

    NASA Astrophysics Data System (ADS)

    Peng, Anping; Liu, Juan; Ling, Wanting; Chen, Zeyou; Gao, Yanzheng

    2015-07-01

    This is the first investigation of the diversity and distribution of 16S rRNA and phenol monooxygenase (PHE) genes in endophytic and rhizosphere bacteria of plants at sites contaminated with different levels of PAHs. Ten PAHs at concentrations from 34.22 to 55.29 and 45.79 to 97.81 mg·kg-1 were measured in rhizosphere soils of Alopecurus aequalis Sobol and Oxalis corniculata L., respectively. The diversity of 16S rRNA and PHE genes in rhizosphere soils or plants changed with varying PAH pollution levels, as shown based on PCR-DGGE data. Generally, higher Shannon-Weiner indexes were found in mild or moderate contaminated areas. A total of 82 different bacterial 16S rRNA gene sequences belonging to five phyla; namely, Acfinobacteria, Proteobacteria, Chloroflexi, Cyanophyta, and Bacteroidetes, were obtained from rhizosphere soils. For the 57 identified PHE gene sequences, 18 were excised from rhizosphere bacteria and 39 from endophytic bacteria. The copy numbers of 16S rRNA and PHE genes in rhizosphere and endophytic bacteria varied from 3.83 × 103 to 2.28 × 106 and 4.17 × 102 to 1.99 × 105, respectively. The copy numbers of PHE genes in rhizosphere bacteria were significantly higher than in endophytic bacteria. Results increase our understanding of the diversity of rhizosphere and endophytic bacteria from plants grown in PAH-contaminated sites.

  6. Bacterial diversity of the Colombian fermented milk "Suero Costeño" assessed by culturing and high-throughput sequencing and DGGE analysis of 16S rRNA gene amplicons.

    PubMed

    Motato, Karina Edith; Milani, Christian; Ventura, Marco; Valencia, Francia Elena; Ruas-Madiedo, Patricia; Delgado, Susana

    2017-12-01

    "Suero Costeño" (SC) is a traditional soured cream elaborated from raw milk in the Northern-Caribbean coast of Colombia. The natural microbiota that characterizes this popular Colombian fermented milk is unknown, although several culturing studies have previously been attempted. In this work, the microbiota associated with SC from three manufacturers in two regions, "Planeta Rica" (Córdoba) and "Caucasia" (Antioquia), was analysed by means of culturing methods in combination with high-throughput sequencing and DGGE analysis of 16S rRNA gene amplicons. The bacterial ecosystem of SC samples was revealed to be composed of lactic acid bacteria belonging to the Streptococcaceae and Lactobacillaceae families; the proportions and genera varying among manufacturers and region of elaboration. Members of the Lactobacillus acidophilus group, Lactocococcus lactis, Streptococcus infantarius and Streptococcus salivarius characterized this artisanal product. In comparison with culturing, the use of molecular in deep culture-independent techniques provides a more realistic picture of the overall bacterial communities residing in SC. Besides the descriptive purpose, these approaches will facilitate a rational strategy to follow (culture media and growing conditions) for the isolation of indigenous strains that allow standardization in the manufacture of SC. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. High-Resolution Melt Analysis for Rapid Comparison of Bacterial Community Compositions

    PubMed Central

    Hjelmsø, Mathis Hjort; Hansen, Lars Hestbjerg; Bælum, Jacob; Feld, Louise; Holben, William E.

    2014-01-01

    In the study of bacterial community composition, 16S rRNA gene amplicon sequencing is today among the preferred methods of analysis. The cost of nucleotide sequence analysis, including requisite computational and bioinformatic steps, however, takes up a large part of many research budgets. High-resolution melt (HRM) analysis is the study of the melt behavior of specific PCR products. Here we describe a novel high-throughput approach in which we used HRM analysis targeting the 16S rRNA gene to rapidly screen multiple complex samples for differences in bacterial community composition. We hypothesized that HRM analysis of amplified 16S rRNA genes from a soil ecosystem could be used as a screening tool to identify changes in bacterial community structure. This hypothesis was tested using a soil microcosm setup exposed to a total of six treatments representing different combinations of pesticide and fertilization treatments. The HRM analysis identified a shift in the bacterial community composition in two of the treatments, both including the soil fumigant Basamid GR. These results were confirmed with both denaturing gradient gel electrophoresis (DGGE) analysis and 454-based 16S rRNA gene amplicon sequencing. HRM analysis was shown to be a fast, high-throughput technique that can serve as an effective alternative to gel-based screening methods to monitor microbial community composition. PMID:24610853

  8. Bacterial diversity, community structure and potential growth rates along an estuarine salinity gradient

    PubMed Central

    Campbell, Barbara J; Kirchman, David L

    2013-01-01

    Very little is known about growth rates of individual bacterial taxa and how they respond to environmental flux. Here, we characterized bacterial community diversity, structure and the relative abundance of 16S rRNA and 16S rRNA genes (rDNA) using pyrosequencing along the salinity gradient in the Delaware Bay. Indices of diversity, evenness, structure and growth rates of the surface bacterial community significantly varied along the transect, reflecting active mixing between the freshwater and marine ends of the estuary. There was no positive correlation between relative abundances of 16S rRNA and rDNA for the entire bacterial community, suggesting that abundance of bacteria does not necessarily reflect potential growth rate or activity. However, for almost half of the individual taxa, 16S rRNA positively correlated with rDNA, suggesting that activity did follow abundance in these cases. The positive relationship between 16S rRNA and rDNA was less in the whole water community than for free-living taxa, indicating that the two communities differed in activity. The 16S rRNA:rDNA ratios of some typically marine taxa reflected differences in light, nutrient concentrations and other environmental factors along the estuarine gradient. The ratios of individual freshwater taxa declined as salinity increased, whereas the 16S rRNA:rDNA ratios of only some typical marine bacteria increased as salinity increased. These data suggest that physical and other bottom-up factors differentially affect growth rates, but not necessarily abundance of individual taxa in this highly variable environment. PMID:22895159

  9. Alternative splicing of anciently exonized 5S rRNA regulates plant transcription factor TFIIIA

    PubMed Central

    Fu, Yan; Bannach, Oliver; Chen, Hao; Teune, Jan-Hendrik; Schmitz, Axel; Steger, Gerhard; Xiong, Liming; Barbazuk, W. Brad

    2009-01-01

    Identifying conserved alternative splicing (AS) events among evolutionarily distant species can prioritize AS events for functional characterization and help uncover relevant cis- and trans-regulatory factors. A genome-wide search for conserved cassette exon AS events in higher plants revealed the exonization of 5S ribosomal RNA (5S rRNA) within the gene of its own transcription regulator, TFIIIA (transcription factor for polymerase III A). The 5S rRNA-derived exon in TFIIIA gene exists in all representative land plant species but not in green algae and nonplant species, suggesting it is specific to land plants. TFIIIA is essential for RNA polymerase III-based transcription of 5S rRNA in eukaryotes. Integrating comparative genomics and molecular biology revealed that the conserved cassette exon derived from 5S rRNA is coupled with nonsense-mediated mRNA decay. Utilizing multiple independent Arabidopsis overexpressing TFIIIA transgenic lines under osmotic and salt stress, strong accordance between phenotypic and molecular evidence reveals the biological relevance of AS of the exonized 5S rRNA in quantitative autoregulation of TFIIIA homeostasis. Most significantly, this study provides the first evidence of ancient exaptation of 5S rRNA in plants, suggesting a novel gene regulation model mediated by the AS of an anciently exonized noncoding element. PMID:19211543

  10. Investigation of postpartum dairy cows' uterine microbial diversity using metagenomic pyrosequencing of the 16S rRNA gene.

    PubMed

    Machado, V S; Oikonomou, G; Bicalho, M L S; Knauer, W A; Gilbert, R; Bicalho, R C

    2012-10-12

    The objective of this study was the use of metagenomic pyrosequencing of the 16S rRNA gene for the investigation of postpartum dairy cows' uterine bacterial diversity. The effect of subcutaneous supplementation of a trace mineral supplement containing Zn, Mn, Se, and Cu (Multimin North America, Inc., Fort Collins, CO) at 230 days of gestation and 260 days of gestation on dairy cows' uterine microbiota was also evaluated. Uterine lavage samples were collected at 35 DIM and were visually scored for the presence of purulent or mucopurulent secretion. The same samples were also used for the acquisition of bacterial DNA. The 16S rRNA genes were individually amplified from each sample. Pyrosequencing of the samples was carried at the Cornell University Life Sciences Core Laboratories Center using Roche 454 GS-FLX System Titanium Chemistry. The Ribosomal Database Project online tools were used for the analysis of the obtained sequences library. Bacteroides spp., Ureaplasma spp., Fusobacterium spp., Peptostreptococcus spp., Sneathia spp., Prevotella spp. and Arcanobacterium spp. prevalence was significantly (P<0.05) higher in samples derived from cows that had a higher uterine lavage sample score. Bacteroides spp., Ureaplasma spp., Fusobacterium spp., and Arcanobacterium spp. prevalence was significantly (P<0.05) higher in samples derived from cows that were not pregnant by 200 DIM. Anaerococcus spp., Peptostreptococcus spp., Parabacteroides spp., and Propionibacterium spp. prevalence was significantly (P<0.05) lower in samples derived from cows that were trace mineral supplemented. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. Comparison of PCR-Electrospray Ionization Mass Spectrometry with 16S rRNA PCR and Amplicon Sequencing for Detection of Bacteria in Excised Heart Valves

    PubMed Central

    Peeters, Bart; Herijgers, Paul; Beuselinck, Kurt; Peetermans, Willy E.; Herregods, Marie-Christin

    2016-01-01

    Identification of the causative pathogen of infective endocarditis (IE) is crucial for adequate management and therapy. A broad-range PCR-electrospray ionization mass spectrometry (PCR-ESI-MS) technique was compared with broad-spectrum 16S rRNA PCR and amplicon sequencing (16S rRNA PCR) for the detection of bacterial pathogens in 40 heart valves obtained from 34 definite infective endocarditis patients according to the modified Duke criteria and six nonendocarditis patients. Concordance between the two molecular techniques was 98% for being positive or negative, 97% for concordant identification up to the genus level, and 77% for concordant identification up to the species level. Sensitivity for detecting the causative pathogen (up to the genus level) in excised heart valves was 88% for 16S rRNA PCR and 85% for PCR-ESI-MS; the specificity was 83% for both methods. The two molecular techniques were significantly more sensitive than valve culture (18%) and accurately identified bacteria in excised heart valves. In eight patients with culture-negative IE, the following results were obtained: concordant detection of Coxiella burnetii (n = 2), Streptococcus gallolyticus (n = 1), Propionibacterium acnes (n = 1), and viridans group streptococci (n = 1) by both molecular tests, detection of P. acnes by PCR-ESI-MS whereas the 16S rRNA PCR was negative (n = 1), and a false-negative result by both molecular techniques (n = 2). In one case of IE caused by viridans streptococci, PCR-ESI-MS was positive for Enterococcus spp. The advantages of PCR-ESI-MS compared to 16S rRNA PCR are its automated workflow and shorter turnaround times. PMID:27629895

  12. Potential applications of next generation DNA sequencing of 16S rRNA gene amplicons in microbial water quality monitoring

    PubMed Central

    Vierheilig, J.; Savio, D.; Ley, R. E.; Mach, R. L.; Farnleitner, A. H.

    2016-01-01

    The applicability of next generation DNA sequencing (NGS) methods for water quality assessment has so far not been broadly investigated. This study set out to evaluate the potential of an NGS-based approach in a complex catchment with importance for drinking water abstraction. In this multicompartment investigation, total bacterial communities in water, faeces, soil, and sediment samples were investigated by 454 pyrosequencing of bacterial 16S rRNA gene amplicons to assess the capabilities of this NGS method for (i) the development and evaluation of environmental molecular diagnostics, (ii) direct screening of the bulk bacterial communities, and (iii) the detection of faecal pollution in water. Results indicate that NGS methods can highlight potential target populations for diagnostics and will prove useful for the evaluation of existing and the development of novel DNA-based detection methods in the field of water microbiology. The used approach allowed unveiling of dominant bacterial populations but failed to detect populations with low abundances such as faecal indicators in surface waters. In combination with metadata, NGS data will also allow the identification of drivers of bacterial community composition during water treatment and distribution, highlighting the power of this approach for monitoring of bacterial regrowth and contamination in technical systems. PMID:26606090

  13. [Identification of Hydrocarbon-Oxidizing Dietzia Bacteria from Petroleum Reservoirs Based on Phenotypic Properties and Analysis of the 16S rRNA and gyrB Genes].

    PubMed

    Nazina, T N; Shumkova, E S; Sokolova, D Sh; Babich, T L; Zhurina, M V; Xue, Yan-Fen; Osipov, G A; Poltaraus, A B; Tourova, T P

    2015-01-01

    The taxonomic position of hydrocarbon-oxidizing bacterial strains 263 and 32d isolated from formation water of the Daqing petroleum reservoir (PRC) was determined by polyphasic taxonomy techniques, including analysis of the 16S rRNA and the gyrB genes. The major chemotaxonomic characteristics of both strains, including the IV type cell wall, composition of cell wall fatty acids, mycolic acids, and menaquinones, agreed with those typical of Dietzia strains. The DNA G+C content of strains 263 and 32d were 67.8 and 67.6 mol%, respectively. Phylogenetic analysis of the 16S rRNA gene of strain 32d revealed 99.7% similarity to the gene of D. maris, making it possible to identify strain 32d as belonging to this species. The 16S rRNA gene sequence of strain 263 exhibited 99.7 and 99.9% similarity to those of D. natronolimnaea and D. cercidiphylli YIM65002(T), respectively. Analysis of the gyrB genes of the subterranean isolates and of a number of Dietzia type strains confirmed classiffication of strain 32d as a D. maris strain and of strain 263, as a D. natronolimnaea strain. A conclusion was made concerning higher resolving power of phylogenetic analysis of the gyrB gene compared to the 16S rRNA gene analysis in the case of determination of the species position of Dietzia isolates.

  14. Promoter variants of Xa23 alleles affect bacterial blight resistance and evolutionary pattern

    PubMed Central

    Xu, Feifei; Tang, Yongchao; Gao, Ying

    2017-01-01

    Bacterial blight, caused by Xanthomonas oryzae pv. oryzae (Xoo), is the most important bacterial disease in rice (Oryza sativa L.). Our previous studies have revealed that the bacterial blight resistance gene Xa23 from wild rice O. rufipogon Griff. confers the broadest-spectrum resistance against all the naturally occurring Xoo races. As a novel executor R gene, Xa23 is transcriptionally activated by the bacterial avirulence (Avr) protein AvrXa23 via binding to a 28-bp DNA element (EBEAvrXa23) in the promoter region. So far, the evolutionary mechanism of Xa23 remains to be illustrated. Here, a rice germplasm collection of 97 accessions, including 29 rice cultivars (indica and japonica) and 68 wild relatives, was used to analyze the evolution, phylogeographic relationship and association of Xa23 alleles with bacterial blight resistance. All the ~ 473 bp DNA fragments consisting of promoter and coding regions of Xa23 alleles in the germplasm accessions were PCR-amplified and sequenced, and nine single nucleotide polymorphisms (SNPs) were detected in the promoter regions (~131 bp sequence upstream from the start codon ATG) of Xa23/xa23 alleles while only two SNPs were found in the coding regions. The SNPs in the promoter regions formed 5 haplotypes (Pro-A, B, C, D, E) which showed no significant difference in geographic distribution among these 97 rice accessions. However, haplotype association analysis indicated that Pro-A is the most favored haplotype for bacterial blight resistance. Moreover, SNP changes among the 5 haplotypes mostly located in the EBE/ebe regions (EBEAvrXa23 and corresponding ebes located in promoters of xa23 alleles), confirming that the EBE region is the key factor to confer bacterial blight resistance by altering gene expression. Polymorphism analysis and neutral test implied that Xa23 had undergone a bottleneck effect, and selection process of Xa23 was not detected in cultivated rice. In addition, the Xa23 coding region was found highly

  15. Promoter variants of Xa23 alleles affect bacterial blight resistance and evolutionary pattern.

    PubMed

    Cui, Hua; Wang, Chunlian; Qin, Tengfei; Xu, Feifei; Tang, Yongchao; Gao, Ying; Zhao, Kaijun

    2017-01-01

    Bacterial blight, caused by Xanthomonas oryzae pv. oryzae (Xoo), is the most important bacterial disease in rice (Oryza sativa L.). Our previous studies have revealed that the bacterial blight resistance gene Xa23 from wild rice O. rufipogon Griff. confers the broadest-spectrum resistance against all the naturally occurring Xoo races. As a novel executor R gene, Xa23 is transcriptionally activated by the bacterial avirulence (Avr) protein AvrXa23 via binding to a 28-bp DNA element (EBEAvrXa23) in the promoter region. So far, the evolutionary mechanism of Xa23 remains to be illustrated. Here, a rice germplasm collection of 97 accessions, including 29 rice cultivars (indica and japonica) and 68 wild relatives, was used to analyze the evolution, phylogeographic relationship and association of Xa23 alleles with bacterial blight resistance. All the ~ 473 bp DNA fragments consisting of promoter and coding regions of Xa23 alleles in the germplasm accessions were PCR-amplified and sequenced, and nine single nucleotide polymorphisms (SNPs) were detected in the promoter regions (~131 bp sequence upstream from the start codon ATG) of Xa23/xa23 alleles while only two SNPs were found in the coding regions. The SNPs in the promoter regions formed 5 haplotypes (Pro-A, B, C, D, E) which showed no significant difference in geographic distribution among these 97 rice accessions. However, haplotype association analysis indicated that Pro-A is the most favored haplotype for bacterial blight resistance. Moreover, SNP changes among the 5 haplotypes mostly located in the EBE/ebe regions (EBEAvrXa23 and corresponding ebes located in promoters of xa23 alleles), confirming that the EBE region is the key factor to confer bacterial blight resistance by altering gene expression. Polymorphism analysis and neutral test implied that Xa23 had undergone a bottleneck effect, and selection process of Xa23 was not detected in cultivated rice. In addition, the Xa23 coding region was found highly

  16. High-Throughput rRNA Gene Sequencing Reveals High
and Complex Bacterial Diversity Associated with
Brazilian Coffee Bean Fermentation

    PubMed Central

    Vinícius de Melo, Gilberto

    2018-01-01

    Summary Coffee bean fermentation is a spontaneous, on-farm process involving the action of different microbial groups, including bacteria and fungi. In this study, high-throughput sequencing approach was employed to study the diversity and dynamics of bacteria associated with Brazilian coffee bean fermentation. The total DNA from fermenting coffee samples was extracted at different time points, and the 16S rRNA gene with segments around the V4 variable region was sequenced by Illumina high-throughput platform. Using this approach, the presence of over eighty bacterial genera was determined, many of which have been detected for the first time during coffee bean fermentation, including Fructobacillus, Pseudonocardia, Pedobacter, Sphingomonas and Hymenobacter. The presence of Fructobacillus suggests an influence of these bacteria on fructose metabolism during coffee fermentation. Temporal analysis showed a strong dominance of lactic acid bacteria with over 97% of read sequences at the end of fermentation, mainly represented by the Leuconostoc and Lactococcus. Metabolism of lactic acid bacteria was associated with the high formation of lactic acid during fermentation, as determined by HPLC analysis. The results reported in this study confirm the underestimation of bacterial diversity associated with coffee fermentation. New microbial groups reported in this study may be explored as functional starter cultures for on-farm coffee processing.

  17. Microbial profiles of a drinking water resource based on different 16S rRNA V regions during a heavy cyanobacterial bloom in Lake Taihu, China.

    PubMed

    Zhang, Junyi; Zhu, Congming; Guan, Rui; Xiong, Zhipeng; Zhang, Wen; Shi, Junzhe; Sheng, Yi; Zhu, Bingchuan; Tu, Jing; Ge, Qinyu; Chen, Ting; Lu, Zuhong

    2017-05-01

    Understanding of the bacterial community structure in drinking water resources helps to enhance the security of municipal water supplies. In this study, bacterial communities were surveyed in water and sediment during a heavy cyanobacterial bloom in a drinking water resource of Lake Taihu, China. A total of 325,317 high-quality sequences were obtained from different 16S ribosomal RNA (rRNA) regions (V3, V4, and V6) using the Miseq sequencing platform. A notable difference was shown between the water and sediment samples, as predominated by Cyanobacteria, Proteobacteria, and Actinobacteria in the water and Proteobacteria, Chloroflexi, and Verrucomicrobia in the sediment, respectively. The LD12 family dominated the water surface and was tightly associated with related indicators of cyanobacterial propagation, indicating involvement in the massive proliferation of cyanobacterial blooms. Alternatively, the genus Nitrospira dominated the sediment samples, which indicates that nitrite oxidation was very active in the sediment. Although pathogenic bacteria were not detected in a large amount, some genera such as Mycobacterium, Acinetobacter, and Legionella were still identified but in very low abundance. In addition, the effects of different V regions on bacterial diversity survey were evaluated. Overall, V4 and V3 were proven to be more promising V regions for bacterial diversity survey in water and sediment samples during heavy water blooms in Lake Taihu, respectively. As longer, cheaper, and faster DNA sequencing technologies become more accessible, we expect that bacterial community structures based on 16S rRNA amplicons as an indicator could be used alongside with physical and chemical indicators, to conduct comprehensive assessments for drinking water resource management.

  18. Beyond 16S rRNA Community Profiling: Intra-Species Diversity in the Gut Microbiota

    PubMed Central

    Ellegaard, Kirsten M.; Engel, Philipp

    2016-01-01

    Interactions with microbes affect many aspects of animal biology, including immune system development, nutrition and health. In vertebrates, the gut microbiota is dominated by a small subset of phyla, but the species composition within these phyla is typically not conserved. Moreover, several recent studies have shown that bacterial species in the gut are composed of a multitude of strains, which frequently co-exist in their host, and may be host-specific. However, since the study of intra-species diversity is challenging, particularly in the setting of complex, host-associated microbial communities, our current understanding of the distribution, evolution and functional relevance of intra-species diversity in the gut is scarce. In order to unravel how genomic diversity translates into phenotypic diversity, community analyses going beyond 16S rRNA profiling, in combination with experimental approaches, are needed. Recently, the honeybee has emerged as a promising model for studying gut bacterial communities, particularly in terms of strain-level diversity. Unlike most other invertebrates, the honeybee gut is colonized by a remarkably consistent and specific core microbiota, which is dominated by only eight bacterial species. As for the vertebrate gut microbiota, these species are composed of highly diverse strains suggesting that similar evolutionary forces shape gut community structures in vertebrates and social insects. In this review, we outline current knowledge on the evolution and functional relevance of strain diversity within the gut microbiota, including recent insights gained from mammals and other animals such as the honeybee. We discuss methodological approaches and propose possible future avenues for studying strain diversity in complex bacterial communities. PMID:27708630

  19. Beyond 16S rRNA Community Profiling: Intra-Species Diversity in the Gut Microbiota.

    PubMed

    Ellegaard, Kirsten M; Engel, Philipp

    2016-01-01

    Interactions with microbes affect many aspects of animal biology, including immune system development, nutrition and health. In vertebrates, the gut microbiota is dominated by a small subset of phyla, but the species composition within these phyla is typically not conserved. Moreover, several recent studies have shown that bacterial species in the gut are composed of a multitude of strains, which frequently co-exist in their host, and may be host-specific. However, since the study of intra-species diversity is challenging, particularly in the setting of complex, host-associated microbial communities, our current understanding of the distribution, evolution and functional relevance of intra-species diversity in the gut is scarce. In order to unravel how genomic diversity translates into phenotypic diversity, community analyses going beyond 16S rRNA profiling, in combination with experimental approaches, are needed. Recently, the honeybee has emerged as a promising model for studying gut bacterial communities, particularly in terms of strain-level diversity. Unlike most other invertebrates, the honeybee gut is colonized by a remarkably consistent and specific core microbiota, which is dominated by only eight bacterial species. As for the vertebrate gut microbiota, these species are composed of highly diverse strains suggesting that similar evolutionary forces shape gut community structures in vertebrates and social insects. In this review, we outline current knowledge on the evolution and functional relevance of strain diversity within the gut microbiota, including recent insights gained from mammals and other animals such as the honeybee. We discuss methodological approaches and propose possible future avenues for studying strain diversity in complex bacterial communities.

  20. Estimating Bacterial Diversity for Ecological Studies: Methods, Metrics, and Assumptions

    PubMed Central

    Birtel, Julia; Walser, Jean-Claude; Pichon, Samuel; Bürgmann, Helmut; Matthews, Blake

    2015-01-01

    Methods to estimate microbial diversity have developed rapidly in an effort to understand the distribution and diversity of microorganisms in natural environments. For bacterial communities, the 16S rRNA gene is the phylogenetic marker gene of choice, but most studies select only a specific region of the 16S rRNA to estimate bacterial diversity. Whereas biases derived from from DNA extraction, primer choice and PCR amplification are well documented, we here address how the choice of variable region can influence a wide range of standard ecological metrics, such as species richness, phylogenetic diversity, β-diversity and rank-abundance distributions. We have used Illumina paired-end sequencing to estimate the bacterial diversity of 20 natural lakes across Switzerland derived from three trimmed variable 16S rRNA regions (V3, V4, V5). Species richness, phylogenetic diversity, community composition, β-diversity, and rank-abundance distributions differed significantly between 16S rRNA regions. Overall, patterns of diversity quantified by the V3 and V5 regions were more similar to one another than those assessed by the V4 region. Similar results were obtained when analyzing the datasets with different sequence similarity thresholds used during sequences clustering and when the same analysis was used on a reference dataset of sequences from the Greengenes database. In addition we also measured species richness from the same lake samples using ARISA Fingerprinting, but did not find a strong relationship between species richness estimated by Illumina and ARISA. We conclude that the selection of 16S rRNA region significantly influences the estimation of bacterial diversity and species distributions and that caution is warranted when comparing data from different variable regions as well as when using different sequencing techniques. PMID:25915756

  1. Analysis of 16S rRNA and mxaF genes revealing insights into Methylobacterium niche-specific plant association

    PubMed Central

    Dourado, Manuella Nóbrega; Andreote, Fernando Dini; Dini-Andreote, Francisco; Conti, Raphael; Araújo, Janete Magali; Araújo, Welington Luiz

    2012-01-01

    The genus Methylobacterium comprises pink-pigmented facultative methylotrophic (PPFM) bacteria, known to be an important plant-associated bacterial group. Species of this group, described as plant-nodulating, have the dual capacity of producing cytokinin and enzymes, such as pectinase and cellulase, involved in systemic resistance induction and nitrogen fixation under specific plant environmental conditions. The aim hereby was to evaluate the phylogenetic distribution of Methylobacterium spp. isolates from different host plants. Thus, a comparative analysis between sequences from structural (16S rRNA) and functional mxaF (which codifies for a subunit of the enzyme methanol dehydrogenase) ubiquitous genes, was undertaken. Notably, some Methylobacterium spp. isolates are generalists through colonizing more than one host plant, whereas others are exclusively found in certain specific plant-species. Congruency between phylogeny and specific host inhabitance was higher in the mxaF gene than in the 16S rRNA, a possible indication of function-based selection in this niche. Therefore, in a first stage, plant colonization by Methylobacterium spp. could represent generalist behavior, possibly related to microbial competition and adaptation to a plant environment. Otherwise, niche-specific colonization is apparently impelled by the host plant. PMID:22481887

  2. Analysis of 16S rRNA and mxaF genes revealing insights into Methylobacterium niche-specific plant association.

    PubMed

    Dourado, Manuella Nóbrega; Andreote, Fernando Dini; Dini-Andreote, Francisco; Conti, Raphael; Araújo, Janete Magali; Araújo, Welington Luiz

    2012-01-01

    The genus Methylobacterium comprises pink-pigmented facultative methylotrophic (PPFM) bacteria, known to be an important plant-associated bacterial group. Species of this group, described as plant-nodulating, have the dual capacity of producing cytokinin and enzymes, such as pectinase and cellulase, involved in systemic resistance induction and nitrogen fixation under specific plant environmental conditions. The aim hereby was to evaluate the phylogenetic distribution of Methylobacterium spp. isolates from different host plants. Thus, a comparative analysis between sequences from structural (16S rRNA) and functional mxaF (which codifies for a subunit of the enzyme methanol dehydrogenase) ubiquitous genes, was undertaken. Notably, some Methylobacterium spp. isolates are generalists through colonizing more than one host plant, whereas others are exclusively found in certain specific plant-species. Congruency between phylogeny and specific host inhabitance was higher in the mxaF gene than in the 16S rRNA, a possible indication of function-based selection in this niche. Therefore, in a first stage, plant colonization by Methylobacterium spp. could represent generalist behavior, possibly related to microbial competition and adaptation to a plant environment. Otherwise, niche-specific colonization is apparently impelled by the host plant.

  3. Seasonal Change in Bacterial Flora and Biomass in Mountain Snow from the Tateyama Mountains, Japan, Analyzed by 16S rRNA Gene Sequencing and Real-Time PCR

    PubMed Central

    Segawa, Takahiro; Miyamoto, Koji; Ushida, Kazunari; Agata, Kiyokazu; Okada, Norihiro; Kohshima, Shiro

    2005-01-01

    The bacterial flora and biomass in mountain snow from the Tateyama Mountains, Toyama Prefecture, Japan, one of the heaviest snowfall regions in the world, were analyzed by amplified ribosomal DNA restriction analysis followed by 16S rRNA gene sequencing and DNA quantification by real-time PCR. Samples of surface snow collected in various months during the melting season contained a psychrophilic bacterium, Cryobacterium psychrophilum, and two psychrotrophic bacteria, Variovorax paradoxus and Janthinobacterium lividum. Bacterial colonies that developed in an in situ meltwater medium at 4°C were revealed to be V. paradoxus. The biomasses of C. psychrophilum, J. lividum, and V. paradoxus, as estimated by real-time PCR, showed large increases during the melting season from March to October (2.0 × 105-fold, 1.5 × 105-fold, and 1.0 × 104-fold increases, respectively), suggesting their rapid growth in the surface snow. The biomasses of C. psychrophilum and J. lividum increased significantly from March to April, reached a maximum in August, and dropped at the end of the melting season. In contrast, the biomass of V. paradoxus did not increase as rapidly during the early melting season but continued to increase from June until October. The differences in development observed among these bacterial species suggest that their growth was promoted by different nutrients and/or environmental conditions in the snow. Since these three types of bacteria have also been reported to be present in a glacier in Antarctica and a Greenland ice core, they seem to be specialized members of the snow biota that are distributed in snow and ice environments in various parts of the world. PMID:15640179

  4. Seasonal change in bacterial flora and biomass in mountain snow from the Tateyama Mountains, Japan, analyzed by 16S rRNA gene sequencing and real-time PCR.

    PubMed

    Segawa, Takahiro; Miyamoto, Koji; Ushida, Kazunari; Agata, Kiyokazu; Okada, Norihiro; Kohshima, Shiro

    2005-01-01

    The bacterial flora and biomass in mountain snow from the Tateyama Mountains, Toyama Prefecture, Japan, one of the heaviest snowfall regions in the world, were analyzed by amplified ribosomal DNA restriction analysis followed by 16S rRNA gene sequencing and DNA quantification by real-time PCR. Samples of surface snow collected in various months during the melting season contained a psychrophilic bacterium, Cryobacterium psychrophilum, and two psychrotrophic bacteria, Variovorax paradoxus and Janthinobacterium lividum. Bacterial colonies that developed in an in situ meltwater medium at 4 degrees C were revealed to be V. paradoxus. The biomasses of C. psychrophilum, J. lividum, and V. paradoxus, as estimated by real-time PCR, showed large increases during the melting season from March to October (2.0 x 10(5)-fold, 1.5 x 10(5)-fold, and 1.0 x 10(4)-fold increases, respectively), suggesting their rapid growth in the surface snow. The biomasses of C. psychrophilum and J. lividum increased significantly from March to April, reached a maximum in August, and dropped at the end of the melting season. In contrast, the biomass of V. paradoxus did not increase as rapidly during the early melting season but continued to increase from June until October. The differences in development observed among these bacterial species suggest that their growth was promoted by different nutrients and/or environmental conditions in the snow. Since these three types of bacteria have also been reported to be present in a glacier in Antarctica and a Greenland ice core, they seem to be specialized members of the snow biota that are distributed in snow and ice environments in various parts of the world.

  5. Novel variants of the 5S rRNA genes in Eruca sativa.

    PubMed

    Singh, K; Bhatia, S; Lakshmikumaran, M

    1994-02-01

    The 5S ribosomal RNA (rRNA) genes of Eruca sativa were cloned and characterized. They are organized into clusters of tandemly repeated units. Each repeat unit consists of a 119-bp coding region followed by a noncoding spacer region that separates it from the coding region of the next repeat unit. Our study reports novel gene variants of the 5S rRNA genes in plants. Two families of the 5S rDNA, the 0.5-kb size family and the 1-kb size family, coexist in the E. sativa genome. The 0.5-kb size family consists of the 5S rRNA genes (S4) that have coding regions similar to those of other reported plant 5S rDNA sequences, whereas the 1-kb size family consists of the 5S rRNA gene variants (S1) that exist as 1-kb BamHI tandem repeats. S1 is made up of two variant units (V1 and V2) of 5S rDNA where the BamHI site between the two units is mutated. Sequence heterogeneity among S4, V1, and V2 units exists throughout the sequence and is not limited to the noncoding spacer region only. The coding regions of V1 and V2 show approximately 20% dissimilarity to the coding regions of S4 and other reported plant 5S rDNA sequences. Such a large variation in the coding regions of the 5S rDNA units within the same plant species has been observed for the first time. Restriction site variation is observed between the two size classes of 5S rDNA in E. sativa.(ABSTRACT TRUNCATED AT 250 WORDS)

  6. Multiple independent insertions of 5S rRNA genes in the spliced-leader gene family of trypanosome species.

    PubMed

    Beauparlant, Marc A; Drouin, Guy

    2014-02-01

    Analyses of the 5S rRNA genes found in the spliced-leader (SL) gene repeat units of numerous trypanosome species suggest that such linkages were not inherited from a common ancestor, but were the result of independent 5S rRNA gene insertions. In trypanosomes, 5S rRNA genes are found either in the tandemly repeated units coding for SL genes or in independent tandemly repeated units. Given that trypanosome species where 5S rRNA genes are within the tandemly repeated units coding for SL genes are phylogenetically related, one might hypothesize that this arrangement is the result of an ancestral insertion of 5S rRNA genes into the tandemly repeated SL gene family of trypanosomes. Here, we use the types of 5S rRNA genes found associated with SL genes, the flanking regions of the inserted 5S rRNA genes and the position of these insertions to show that most of the 5S rRNA genes found within SL gene repeat units of trypanosome species were not acquired from a common ancestor but are the results of independent insertions. These multiple 5S rRNA genes insertion events in trypanosomes are likely the result of frequent founder events in different hosts and/or geographical locations in species having short generation times.

  7. Evaluation of 16S rRNA amplicon sequencing using two next-generation sequencing technologies for phylogenetic analysis of the rumen bacterial community in steers

    USDA-ARS?s Scientific Manuscript database

    Next generation sequencing technologies have vastly changed the approach of sequencing of the 16S rRNA gene for studies in microbial ecology. Three distinct technologies are available for large-scale 16S sequencing. All three are subject to biases introduced by sequencing error rates, amplificatio...

  8. Metagenomic and near full-length 16S rRNA sequence data in support of the phylogenetic analysis of the rumen bacterial community in steers

    USDA-ARS?s Scientific Manuscript database

    Next generation sequencing technologies have vastly changed the approach of sequencing of the 16S rRNA gene for studies in microbial ecology. Three distinct technologies are available for large-scale 16S sequencing. All three are subject to biases introduced by sequencing error rates, amplificatio...

  9. Pre-45s rRNA promotes colon cancer and is associated with poor survival of CRC patients.

    PubMed

    Tsoi, H; Lam, K C; Dong, Y; Zhang, X; Lee, C K; Zhang, J; Ng, S C; Ng, S S M; Zheng, S; Chen, Y; Fang, J; Yu, J

    2017-11-02

    One characteristic of cancer cells is the abnormally high rate of cell metabolism to sustain their enhanced proliferation. However, the behind mechanism of this phenomenon is still elusive. Here we find that enhanced precursor 45s ribosomal RNA (pre-45s rRNA) is one of the core mechanisms in promoting the pathogenesis of colorectal cancer (CRC). Pre-45s rRNA expression is significantly higher in primary CRC tumor tissues samples and cancer cell lines compared with the non-tumorous colon tissues, and is associated with tumor sizes. Knockdown of pre-45s rRNA inhibits G1/S cell-cycle transition by stabilizing p53 through inducing murine double minute 2 (MDM2) and ribosomal protein L11 (RpL11) interaction. In addition, we revealed that high rate of cancer cell metabolism triggers the passive release of calcium ion from endoplasmic reticulum to the cytoplasm. The elevated calcium ion in the cytoplasm activates the signaling cascade of calcium/calmodulin-dependent protein kinase II, ribosomal S6 kinase (S6K) and ribosomal S6K (CaMKII-S6K-UBF). The activated UBF promotes the transcription of rDNA, which therefore increases pre-45s rRNA. Disruption of CaMKII-S6K-UBF axis by either RNAi or pharmaceutical approaches leads to reduction of pre-45s rRNA expression, which subsequently suppresses cell proliferation in colon cancer cells by causing cell-cycle arrest. Knockdown of APC activates CaMKII-S6K-UBF cascade and thus enhances pre-45s rRNA expression. Moreover, the high expression level of pre-45s rRNA is associated with poor survival of CRC patients in two independent cohorts. Our study identifies a novel mechanism in CRC pathogenesis mediated by pre-45s rRNA and a prognostic factor of pre-45s rRNA in CRC patients.

  10. Low Maternal Microbiota Sharing across Gut, Breast Milk and Vagina, as Revealed by 16S rRNA Gene and Reduced Metagenomic Sequencing.

    PubMed

    Avershina, Ekaterina; Angell, Inga Leena; Simpson, Melanie; Storrø, Ola; Øien, Torbjørn; Johnsen, Roar; Rudi, Knut

    2018-05-01

    The maternal microbiota plays an important role in infant gut colonization. In this work we have investigated which bacterial species are shared across the breast milk, vaginal and stool microbiotas of 109 women shortly before and after giving birth using 16S rRNA gene sequencing and a novel reduced metagenomic sequencing (RMS) approach in a subgroup of 16 women. All the species predicted by the 16S rRNA gene sequencing were also detected by RMS analysis and there was good correspondence between their relative abundances estimated by both approaches. Both approaches also demonstrate a low level of maternal microbiota sharing across the population and RMS analysis identified only two species common to most women and in all sample types ( Bifidobacterium longum and Enterococcus faecalis ). Breast milk was the only sample type that had significantly higher intra- than inter- individual similarity towards both vaginal and stool samples. We also searched our RMS dataset against an in silico generated reference database derived from bacterial isolates in the Human Microbiome Project. The use of this reference-based search enabled further separation of Bifidobacterium longum into Bifidobacterium longum ssp. longum and Bifidobacterium longum ssp. infantis . We also detected the Lactobacillus rhamnosus GG strain, which was used as a probiotic supplement by some women, demonstrating the potential of RMS approach for deeper taxonomic delineation and estimation.

  11. Low Maternal Microbiota Sharing across Gut, Breast Milk and Vagina, as Revealed by 16S rRNA Gene and Reduced Metagenomic Sequencing

    PubMed Central

    Angell, Inga Leena; Storrø, Ola; Øien, Torbjørn; Johnsen, Roar; Rudi, Knut

    2018-01-01

    The maternal microbiota plays an important role in infant gut colonization. In this work we have investigated which bacterial species are shared across the breast milk, vaginal and stool microbiotas of 109 women shortly before and after giving birth using 16S rRNA gene sequencing and a novel reduced metagenomic sequencing (RMS) approach in a subgroup of 16 women. All the species predicted by the 16S rRNA gene sequencing were also detected by RMS analysis and there was good correspondence between their relative abundances estimated by both approaches. Both approaches also demonstrate a low level of maternal microbiota sharing across the population and RMS analysis identified only two species common to most women and in all sample types (Bifidobacterium longum and Enterococcus faecalis). Breast milk was the only sample type that had significantly higher intra- than inter- individual similarity towards both vaginal and stool samples. We also searched our RMS dataset against an in silico generated reference database derived from bacterial isolates in the Human Microbiome Project. The use of this reference-based search enabled further separation of Bifidobacterium longum into Bifidobacterium longum ssp. longum and Bifidobacterium longum ssp. infantis. We also detected the Lactobacillus rhamnosus GG strain, which was used as a probiotic supplement by some women, demonstrating the potential of RMS approach for deeper taxonomic delineation and estimation. PMID:29724017

  12. RNase MRP is required for entry of 35S precursor rRNA into the canonical processing pathway.

    PubMed

    Lindahl, Lasse; Bommankanti, Ananth; Li, Xing; Hayden, Lauren; Jones, Adrienne; Khan, Miriam; Oni, Tolulope; Zengel, Janice M

    2009-07-01

    RNase MRP is a nucleolar RNA-protein enzyme that participates in the processing of rRNA during ribosome biogenesis. Previous experiments suggested that RNase MRP makes a nonessential cleavage in the first internal transcribed spacer. Here we report experiments with new temperature-sensitive RNase MRP mutants in Saccharomyces cerevisiae that show that the abundance of all early intermediates in the processing pathway is severely reduced upon inactivation of RNase MRP. Transcription of rRNA continues unabated as determined by RNA polymerase run-on transcription, but the precursor rRNA transcript does not accumulate, and appears to be unstable. Taken together, these observations suggest that inactivation of RNase MRP blocks cleavage at sites A0, A1, A2, and A3, which in turn, prevents precursor rRNA from entering the canonical processing pathway (35S > 20S + 27S > 18S + 25S + 5.8S rRNA). Nevertheless, at least some cleavage at the processing site in the second internal transcribed spacer takes place to form an unusual 24S intermediate, suggesting that cleavage at C2 is not blocked. Furthermore, the long form of 5.8S rRNA is made in the absence of RNase MRP activity, but only in the presence of Xrn1p (exonuclease 1), an enzyme not required for the canonical pathway. We conclude that RNase MRP is a key enzyme for initiating the canonical processing of precursor rRNA transcripts, but alternative pathway(s) might provide a backup for production of small amounts of rRNA.

  13. Size Matters: Assessing Optimum Soil Sample Size for Fungal and Bacterial Community Structure Analyses Using High Throughput Sequencing of rRNA Gene Amplicons

    DOE PAGES

    Penton, C. Ryan; Gupta, Vadakattu V. S. R.; Yu, Julian; ...

    2016-06-02

    We examined the effect of different soil sample sizes obtained from an agricultural field, under a single cropping system uniform in soil properties and aboveground crop responses, on bacterial and fungal community structure and microbial diversity indices. DNA extracted from soil sample sizes of 0.25, 1, 5, and 10 g using MoBIO kits and from 10 and 100 g sizes using a bead-beating method (SARDI) were used as templates for high-throughput sequencing of 16S and 28S rRNA gene amplicons for bacteria and fungi, respectively, on the Illumina MiSeq and Roche 454 platforms. Sample size significantly affected overall bacterial and fungalmore » community structure, replicate dispersion and the number of operational taxonomic units (OTUs) retrieved. Richness, evenness and diversity were also significantly affected. The largest diversity estimates were always associated with the 10 g MoBIO extractions with a corresponding reduction in replicate dispersion. For the fungal data, smaller MoBIO extractions identified more unclassified Eukaryota incertae sedis and unclassified glomeromycota while the SARDI method retrieved more abundant OTUs containing unclassified Pleosporales and the fungal genera Alternaria and Cercophora. Overall, these findings indicate that a 10 g soil DNA extraction is most suitable for both soil bacterial and fungal communities for retrieving optimal diversity while still capturing rarer taxa in concert with decreasing replicate variation.« less

  14. Size Matters: Assessing Optimum Soil Sample Size for Fungal and Bacterial Community Structure Analyses Using High Throughput Sequencing of rRNA Gene Amplicons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Penton, C. Ryan; Gupta, Vadakattu V. S. R.; Yu, Julian

    We examined the effect of different soil sample sizes obtained from an agricultural field, under a single cropping system uniform in soil properties and aboveground crop responses, on bacterial and fungal community structure and microbial diversity indices. DNA extracted from soil sample sizes of 0.25, 1, 5, and 10 g using MoBIO kits and from 10 and 100 g sizes using a bead-beating method (SARDI) were used as templates for high-throughput sequencing of 16S and 28S rRNA gene amplicons for bacteria and fungi, respectively, on the Illumina MiSeq and Roche 454 platforms. Sample size significantly affected overall bacterial and fungalmore » community structure, replicate dispersion and the number of operational taxonomic units (OTUs) retrieved. Richness, evenness and diversity were also significantly affected. The largest diversity estimates were always associated with the 10 g MoBIO extractions with a corresponding reduction in replicate dispersion. For the fungal data, smaller MoBIO extractions identified more unclassified Eukaryota incertae sedis and unclassified glomeromycota while the SARDI method retrieved more abundant OTUs containing unclassified Pleosporales and the fungal genera Alternaria and Cercophora. Overall, these findings indicate that a 10 g soil DNA extraction is most suitable for both soil bacterial and fungal communities for retrieving optimal diversity while still capturing rarer taxa in concert with decreasing replicate variation.« less

  15. Size Matters: Assessing Optimum Soil Sample Size for Fungal and Bacterial Community Structure Analyses Using High Throughput Sequencing of rRNA Gene Amplicons

    PubMed Central

    Penton, C. Ryan; Gupta, Vadakattu V. S. R.; Yu, Julian; Tiedje, James M.

    2016-01-01

    We examined the effect of different soil sample sizes obtained from an agricultural field, under a single cropping system uniform in soil properties and aboveground crop responses, on bacterial and fungal community structure and microbial diversity indices. DNA extracted from soil sample sizes of 0.25, 1, 5, and 10 g using MoBIO kits and from 10 and 100 g sizes using a bead-beating method (SARDI) were used as templates for high-throughput sequencing of 16S and 28S rRNA gene amplicons for bacteria and fungi, respectively, on the Illumina MiSeq and Roche 454 platforms. Sample size significantly affected overall bacterial and fungal community structure, replicate dispersion and the number of operational taxonomic units (OTUs) retrieved. Richness, evenness and diversity were also significantly affected. The largest diversity estimates were always associated with the 10 g MoBIO extractions with a corresponding reduction in replicate dispersion. For the fungal data, smaller MoBIO extractions identified more unclassified Eukaryota incertae sedis and unclassified glomeromycota while the SARDI method retrieved more abundant OTUs containing unclassified Pleosporales and the fungal genera Alternaria and Cercophora. Overall, these findings indicate that a 10 g soil DNA extraction is most suitable for both soil bacterial and fungal communities for retrieving optimal diversity while still capturing rarer taxa in concert with decreasing replicate variation. PMID:27313569

  16. Structural basis for 16S ribosomal RNA cleavage by the cytotoxic domain of colicin E3.

    PubMed

    Ng, C Leong; Lang, Kathrin; Meenan, Nicola Ag; Sharma, Amit; Kelley, Ann C; Kleanthous, Colin; Ramakrishnan, V

    2010-10-01

    The toxin colicin E3 targets the 30S subunit of bacterial ribosomes and cleaves a phosphodiester bond in the decoding center. We present the crystal structure of the 70S ribosome in complex with the cytotoxic domain of colicin E3 (E3-rRNase). The structure reveals how the rRNase domain of colicin binds to the A site of the decoding center in the 70S ribosome and cleaves the 16S ribosomal RNA (rRNA) between A1493 and G1494. The cleavage mechanism involves the concerted action of conserved residues Glu62 and His58 of the cytotoxic domain of colicin E3. These residues activate the 16S rRNA for 2' OH-induced hydrolysis. Conformational changes observed for E3-rRNase, 16S rRNA and helix 69 of 23S rRNA suggest that a dynamic binding platform is required for colicin E3 binding and function.

  17. Two Novel Real-Time Reverse Transcriptase PCR Assays for Rapid Detection of Bacterial Contamination in Platelet Concentrates

    PubMed Central

    Dreier, Jens; Störmer, Melanie; Kleesiek, Knut

    2004-01-01

    The incidence of platelet bacterial contamination is approximately 1 per 2,000 units and has been acknowledged as the most frequent infectious risk from transfusion. In preliminary studies, the sterility of platelet concentrates (PCs) was tested with an automated bacterial blood culturing system and molecular genetic assays. Two real-time reverse transcriptase PCR (RT-PCR) assays performed in a LightCycler instrument were developed and compared regarding specificity and sensitivity by the use of different templates to detect the majority of the clinically important bacterial species in platelets. Primers and probes specific for the conserved regions of the eubacterial 23S rRNA gene or the groEL gene (encoding the 60-kDa heat shock protein Hsp60) were designed. During the development of the 23S rRNA RT-PCR, problems caused by the contamination of reagents with bacterial DNA were noted. Treatment with 8-methoxypsoralen and UV irradiation reduced the level of contaminating DNA. The sensitivity of the assays was greatly influenced by the enzyme system which was used. With rTth DNA polymerase in a one-enzyme system, we detected 500 CFU of Escherichia coli or Staphylococcus epidermidis/ml. With a two-enzyme system consisting of Moloney murine leukemia virus RT and Taq DNA polymerase, we detected 16 CFU/ml. With groEL mRNA as the target of RT-PCR under optimized conditions, we detected 125 CFU of E. coli/ml, and no problems with false-positive results caused by reagent contamination or a cross-reaction with human nucleic acids were found. Furthermore, the use of mRNA as an indicator of viability was demonstrated. Here we report the application of novel real-time RT-PCR assays for the detection of bacterial contamination of PCs that are appropriate for transfusion services. PMID:15472337

  18. Biological significance of 5S rRNA import into human mitochondria: role of ribosomal protein MRP-L18

    PubMed Central

    Smirnov, Alexandre; Entelis, Nina; Martin, Robert P.; Tarassov, Ivan

    2011-01-01

    5S rRNA is an essential component of ribosomes of all living organisms, the only known exceptions being mitochondrial ribosomes of fungi, animals, and some protists. An intriguing situation distinguishes mammalian cells: Although the mitochondrial genome contains no 5S rRNA genes, abundant import of the nuclear DNA-encoded 5S rRNA into mitochondria was reported. Neither the detailed mechanism of this pathway nor its rationale was clarified to date. In this study, we describe an elegant molecular conveyor composed of a previously identified human 5S rRNA import factor, rhodanese, and mitochondrial ribosomal protein L18, thanks to which 5S rRNA molecules can be specifically withdrawn from the cytosolic pool and redirected to mitochondria, bypassing the classic nucleolar reimport pathway. Inside mitochondria, the cytosolic 5S rRNA is shown to be associated with mitochondrial ribosomes. PMID:21685364

  19. Posttranscriptional modifications in the A-loop of 23S rRNAs from selected archaea and eubacteria.

    PubMed

    Hansen, M A; Kirpekar, F; Ritterbusch, W; Vester, B

    2002-02-01

    Posttranscriptional modifications were mapped in helices 90-92 of 23S rRNA from the following phylogenetically diverse organisms: Haloarcula marismortui, Sulfolobus acidocaldarius, Bacillus subtilis, and Bacillus stearothermophilus. Helix 92 is a component of the ribosomal A-site, which contacts the aminoacyl-tRNA during protein synthesis, implying that posttranscriptional modifications in helices 90-92 may be important for ribosome function. RNA fragments were isolated from 23S rRNA by site-directed RNase H digestion. A novel method of mapping modifications by analysis of short, nucleotide-specific, RNase digestion fragments with Matrix Assisted Laser Desorption/Ionization Mass Spectrometry (MALDI-MS) was utilized. The MALDI-MS data were complemented by two primer extension techniques using reverse transcriptase. One technique utilizes decreasing concentrations of deoxynucleotide triphosphates to map 2'-O-ribose methylations. In the other, the rRNA is chemically modified, followed by mild alkaline hydrolysis to map pseudouridines (psis). A total of 10 posttranscriptionally methylated nucleotides and 6 psis were detected in the five organisms. Eight of the methylated nucleotides and one psi have not been reported previously. The distribution of modified nucleotides and their locations on the surface of the ribosomal peptidyl transferase cleft suggests functional importance.

  20. Identification of RNA species in the RNA-toxin complex and structure of the complex in Clostridium botulinum type E.

    PubMed

    Kitamura, Masaru

    2002-02-15

    Clostridium botulinum type E toxin was isolated in the form of a complex with RNA(s) from bacterial cells. Characterization of the complexed RNA remains to be elucidated. The RNA is identified here as ribosomal RNA (rRNA) having 23S and 16S components. The RNA-toxin complexes were found to be made up of three types with different molecular sizes. The three types of RNA-toxin complex are toxin bound to both the 23S and 16S rRNA, toxin bound to the 16S rRNA and a small amount of 23S rRNA, and toxin bound only to the 16S rRNA. ©2002 Elsevier Science (USA).

  1. Inflammatory Monocyte Recruitment Is Regulated by Interleukin-23 during Systemic Bacterial Infection

    PubMed Central

    Indramohan, Mohanalaxmi; Sieve, Amy N.; Break, Timothy J.

    2012-01-01

    Listeria monocytogenes is a Gram-positive intracellular pathogen that causes meningitis and septicemia in immunocompromised individuals and spontaneous abortion in pregnant women. The innate immune response against L. monocytogenes is primarily mediated by neutrophils and monocytes. Interleukin-23 (IL-23) is an important proinflammatory cytokine well known for its role in neutrophil recruitment in various infectious and autoimmune diseases. We have previously shown that IL-23 is required for host resistance against L. monocytogenes and for neutrophil recruitment to the liver, but not the spleen, during infection. Despite efficient neutrophil recruitment to the spleen, IL-23p19 knockout (KO) mice have an increased bacterial burden in this organ, suggesting that IL-23 may regulate the recruitment/function of another cell type to the spleen. In this study, we show that specific depletion of neutrophils abrogated the differences in bacterial burdens in the livers but not the spleens of C57BL/6 (B6) and IL-23p19 KO mice. Interestingly, L. monocytogenes-infected IL-23p19 KO mice had fewer monocytes in the spleen than B6 mice, as well as a reduction in the monocyte-recruiting chemokines CCL2 and CCL7. Additionally, the overall concentrations of tumor necrosis factor alpha (TNF-α) and nitric oxide (NO•), as well as the percentages and total numbers of monocytes producing TNF-α and NO•, were reduced in IL-23p19 KO mice compared to levels in B6 mice, leading to increased bacterial burdens in the spleens of L. monocytogenes-infected IL-23p19 KO mice. Collectively, our data establish that IL-23 is required for the optimal recruitment of TNF-α- and NO•-producing inflammatory monocytes, thus revealing a novel mechanism by which this proinflammatory cytokine provides protection against bacterial infection. PMID:22966045

  2. Active bacterial community structure along vertical redox gradients in Baltic Sea sediment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jansson, Janet; Edlund, Anna; Hardeman, Fredrik

    Community structures of active bacterial populations were investigated along a vertical redox profile in coastal Baltic Sea sediments by terminal-restriction fragment length polymorphism (T-RFLP) and clone library analysis. According to correspondence analysis of T-RFLP results and sequencing of cloned 16S rRNA genes, the microbial community structures at three redox depths (179 mV, -64 mV and -337 mV) differed significantly. The bacterial communities in the community DNA differed from those in bromodeoxyuridine (BrdU)-labeled DNA, indicating that the growing members of the community that incorporated BrdU were not necessarily the most dominant members. The structures of the actively growing bacterial communities weremore » most strongly correlated to organic carbon followed by total nitrogen and redox potentials. Bacterial identification by sequencing of 16S rRNA genes from clones of BrdU-labeled DNA and DNA from reverse transcription PCR (rt-PCR) showed that bacterial taxa involved in nitrogen and sulfur cycling were metabolically active along the redox profiles. Several sequences had low similarities to previously detected sequences indicating that novel lineages of bacteria are present in Baltic Sea sediments. Also, a high number of different 16S rRNA gene sequences representing different phyla were detected at all sampling depths.« less

  3. Taxonomic resolutions based on 18S rRNA genes: a case study of subclass copepoda.

    PubMed

    Wu, Shu; Xiong, Jie; Yu, Yuhe

    2015-01-01

    Biodiversity studies are commonly conducted using 18S rRNA genes. In this study, we compared the inter-species divergence of variable regions (V1-9) within the copepod 18S rRNA gene, and tested their taxonomic resolutions at different taxonomic levels. Our results indicate that the 18S rRNA gene is a good molecular marker for the study of copepod biodiversity, and our conclusions are as follows: 1) 18S rRNA genes are highly conserved intra-species (intra-species similarities are close to 100%); and could aid in species-level analyses, but with some limitations; 2) nearly-whole-length sequences and some partial regions (around V2, V4, and V9) of the 18S rRNA gene can be used to discriminate between samples at both the family and order levels (with a success rate of about 80%); 3) compared with other regions, V9 has a higher resolution at the genus level (with an identification success rate of about 80%); and 4) V7 is most divergent in length, and would be a good candidate marker for the phylogenetic study of Acartia species. This study also evaluated the correlation between similarity thresholds and the accuracy of using nuclear 18S rRNA genes for the classification of organisms in the subclass Copepoda. We suggest that sample identification accuracy should be considered when a molecular sequence divergence threshold is used for taxonomic identification, and that the lowest similarity threshold should be determined based on a pre-designated level of acceptable accuracy.

  4. Taxonomic Resolutions Based on 18S rRNA Genes: A Case Study of Subclass Copepoda

    PubMed Central

    Wu, Shu; Xiong, Jie; Yu, Yuhe

    2015-01-01

    Biodiversity studies are commonly conducted using 18S rRNA genes. In this study, we compared the inter-species divergence of variable regions (V1–9) within the copepod 18S rRNA gene, and tested their taxonomic resolutions at different taxonomic levels. Our results indicate that the 18S rRNA gene is a good molecular marker for the study of copepod biodiversity, and our conclusions are as follows: 1) 18S rRNA genes are highly conserved intra-species (intra-species similarities are close to 100%); and could aid in species-level analyses, but with some limitations; 2) nearly-whole-length sequences and some partial regions (around V2, V4, and V9) of the 18S rRNA gene can be used to discriminate between samples at both the family and order levels (with a success rate of about 80%); 3) compared with other regions, V9 has a higher resolution at the genus level (with an identification success rate of about 80%); and 4) V7 is most divergent in length, and would be a good candidate marker for the phylogenetic study of Acartia species. This study also evaluated the correlation between similarity thresholds and the accuracy of using nuclear 18S rRNA genes for the classification of organisms in the subclass Copepoda. We suggest that sample identification accuracy should be considered when a molecular sequence divergence threshold is used for taxonomic identification, and that the lowest similarity threshold should be determined based on a pre-designated level of acceptable accuracy. PMID:26107258

  5. Prediction of functional profiles of gut microbiota from 16S rRNA metagenomic data provides a more robust evaluation of gut dysbiosis occurring in Japanese type 2 diabetic patients.

    PubMed

    Inoue, Ryo; Ohue-Kitano, Ryuji; Tsukahara, Takamitsu; Tanaka, Masashi; Masuda, Shinya; Inoue, Takayuki; Yamakage, Hajime; Kusakabe, Toru; Hasegawa, Koji; Shimatsu, Akira; Satoh-Asahara, Noriko

    2017-11-01

    We assessed whether gut microbial functional profiles predicted from 16S rRNA metagenomics differed in Japanese type 2 diabetic patients. A total of 22 Japanese subjects were recruited from our outpatient clinic in an observational study. Fecal samples were obtained from 12 control and 10 type 2 diabetic subjects. 16S rRNA metagenomic data were generated and functional profiles predicted using "Phylogenetic Investigation of Communities by Reconstruction of Unobserved States" software. We measured the parameters of glucose metabolism, gut bacterial taxonomy and functional profile, and examined the associations in a cross-sectional manner. Eleven of 288 "Kyoto Encyclopedia of Genes and Genomes" pathways were significantly enriched in diabetic patients compared with control subjects ( p <0.05, q<0.1). The relative abundance of almost all pathways, including the Insulin signaling pathway and Glycolysis/Gluconeogenesis , showed strong, positive correlations with hemoglobin A 1c (HbA 1c ) and fasting plasma glucose (FPG) levels. Bacterial taxonomic analysis showed that genus Blautia significantly differed between groups and had negative correlations with HbA 1c and FPG levels. Our findings suggest a novel pathophysiological relationship between gut microbial communities and diabetes, further highlighting the significance and utility of combining prediction of functional profiles with ordinal bacterial taxonomic analysis (UMIN Clinical Trails Registry number: UMIN000026592).

  6. Characterization of Halophilic Bacterial Communities in Turda Salt Mine (Romania)

    NASA Astrophysics Data System (ADS)

    Carpa, Rahela; Keul, Anca; Muntean, Vasile; Dobrotă, Cristina

    2014-09-01

    Halophilic organisms are having adaptations to extreme salinity, the majority of them being Archaean, which have the ability to grow at extremely high salt concentrations, (from 3 % to 35 %). Level of salinity causes natural fluctuations in the halophilic populations that inhabit this particular habitat, raising problems in maintaining homeostasis of the osmotic pressure. Samples such as salt and water taken from Turda Salt Mine were analyzed in order to identify the eco-physiological bacterial groups. Considering the number of bacteria of each eco-physiological group, the bacterial indicators of salt quality (BISQ) were calculated and studied for each sample. The phosphatase, catalase and dehydrogenases enzymatic activities were quantitatively determined and the enzymatic indicators of salt quality (EISQ) were calculated. Bacterial isolates were analyzed using 16S rRNA gene sequence analysis. Universal bacterial primers, targeting the consensus region of the bacterial 16S rRNA gene were used. Analysis of a large fragment, of 1499 bp was performed to improve discrimination at the species level.

  7. Restructuring of the Aquatic Bacterial Community by Hydric Dynamics Associated with Superstorm Sandy

    PubMed Central

    Ulrich, Nikea; Rosenberger, Abigail; Brislawn, Colin; Wright, Justin; Kessler, Collin; Toole, David; Solomon, Caroline; Strutt, Steven; McClure, Erin

    2016-01-01

    ABSTRACT Bacterial community composition and longitudinal fluctuations were monitored in a riverine system during and after Superstorm Sandy to better characterize inter- and intracommunity responses associated with the disturbance associated with a 100-year storm event. High-throughput sequencing of the 16S rRNA gene was used to assess microbial community structure within water samples from Muddy Creek Run, a second-order stream in Huntingdon, PA, at 12 different time points during the storm event (29 October to 3 November 2012) and under seasonally matched baseline conditions. High-throughput sequencing of the 16S rRNA gene was used to track changes in bacterial community structure and divergence during and after Superstorm Sandy. Bacterial community dynamics were correlated to measured physicochemical parameters and fecal indicator bacteria (FIB) concentrations. Bioinformatics analyses of 2.1 million 16S rRNA gene sequences revealed a significant increase in bacterial diversity in samples taken during peak discharge of the storm. Beta-diversity analyses revealed longitudinal shifts in the bacterial community structure. Successional changes were observed, in which Betaproteobacteria and Gammaproteobacteria decreased in 16S rRNA gene relative abundance, while the relative abundance of members of the Firmicutes increased. Furthermore, 16S rRNA gene sequences matching pathogenic bacteria, including strains of Legionella, Campylobacter, Arcobacter, and Helicobacter, as well as bacteria of fecal origin (e.g., Bacteroides), exhibited an increase in abundance after peak discharge of the storm. This study revealed a significant restructuring of in-stream bacterial community structure associated with hydric dynamics of a storm event. IMPORTANCE In order to better understand the microbial risks associated with freshwater environments during a storm event, a more comprehensive understanding of the variations in aquatic bacterial diversity is warranted. This study

  8. Bacterial communities in soil samples from the Mingyong Glacier of southwestern China.

    PubMed

    Li, Haoyu; Taj, Muhammad Kamran; Ji, Xiuling; Zhang, Qi; Lin, Liangbing; Zhou, Zhimei; Wei, Yunlin

    2017-05-01

    The present study was an effort to determine the bacterial diversity of soils in Mingyong Glacier located at the Meili Snow Mountains of southwestern China. Mingyong Glacier has different climatic zones within a very narrow area, and bacterial community diversity in this low temperature area remains largely unknown. In this study, soil samples were collected from four different climatic zones: M11A (dry warm valley), M14 (forest), M15 (grass land), and M16 (glacier zones). Phylogenetic analysis based on 16S rRNA gene V6 hypervariable region showed high bacterial abundance in the glacier. The number of Operational Taxonomic Units ranged from 2.24×10 3 to 5.56×10 3 in soil samples. Statistical analysis of 16S rRNA gene clone libraries results showed that bacterial diversity in zones M11A,M14 and M16 are higher than in zone M15. The bacterial community structures are clearly distinguishable, and phylogenetic analysis showed that the predominant phyla were Proteobacteria, Deinococcus-Thermus, Firmicutes, Actinobacteria, and Nitrospirae in Mingyong Glacier. Seventy-nine different orders from four zones have been isolated. Bacterial diversity and distribution of bacterial communities related to the anthropogenic perturbations in zone (M15) were confirmed by diversity index analysis, and the diversity index of other three zones was satisfactory through this analysis software. The results suggest that bacterial diversity and distribution analyses using bacterial 16S rRNA gene V6 hypervariable region were successful, and bacterial communities in this area not only had the same bacterial phyla compared to other glaciers but also had their own rare species.

  9. Linezolid-resistant Staphylococcus haemolyticus and Staphylococcus hominis: single and double mutations at the domain V of 23S rRNA among isolates from a Rio de Janeiro hospital.

    PubMed

    Chamon, Raiane Cardoso; Iorio, Natalia Lopes Pontes; Cavalcante, Fernanda Sampaio; Teodoro, Cristiane R S; de Oliveira, Ana Paula Chaves; Maia, Fernanda; dos Santos, Kátia Regina Netto

    2014-12-01

    In this work, the molecular and phenotypic antimicrobial resistance and clonal diversity of 10 linezolid-resistant Staphylococcus spp. isolates were investigated. The 7 Staphylococcus haemolyticus isolates presented Staphylococcal cassete chromosome mec (SCCmec) V and belonged to the same pulsed-field gel electrophoresis pulsotype. Their MICs for oxacillin, vancomycin, and linezolid were ≥ 256 μg/mL, 1-4 μg/mL, and 8-16 μg/mL, respectively. The 3 S. hominis presented MIC values 32 to >256 μg/mL, 2-4 μg/mL, and 12-24 μg/mL, and all carried the nontypeable SCCmec (ccr1 + mecA class) and belonged to 2 different genotypes. The cfr gene was not found, but the mutation G2603T was detected in S. haemolyticus and C2190T and G2603T in Staphylococcus hominis in 23S rRNA. This study demonstrates the spread of a linezolid-resistant S. haemolyticus genotype and, for the first time, describes the mutation C2190T among S. hominis isolates with a double mutation in Brazil. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Benthic bacterial diversity in submerged sinkhole ecosystems.

    PubMed

    Nold, Stephen C; Pangborn, Joseph B; Zajack, Heidi A; Kendall, Scott T; Rediske, Richard R; Biddanda, Bopaiah A

    2010-01-01

    Physicochemical characterization, automated ribosomal intergenic spacer analysis (ARISA) community profiling, and 16S rRNA gene sequencing approaches were used to study bacterial communities inhabiting submerged Lake Huron sinkholes inundated with hypoxic, sulfate-rich groundwater. Photosynthetic cyanobacterial mats on the sediment surface were dominated by Phormidium autumnale, while deeper, organically rich sediments contained diverse and active bacterial communities.

  11. Identification of Bacterial Species in Kuwaiti Waters Through DNA Sequencing

    NASA Astrophysics Data System (ADS)

    Chen, K.

    2017-01-01

    With an objective of identifying the bacterial diversity associated with ecosystem of various Kuwaiti Seas, bacteria were cultured and isolated from 3 water samples. Due to the difficulties for cultured and isolated fecal coliforms on the selective agar plates, bacterial isolates from marine agar plates were selected for molecular identification. 16S rRNA genes were successfully amplified from the genome of the selected isolates using Universal Eubacterial 16S rRNA primers. The resulted amplification products were subjected to automated DNA sequencing. Partial 16S rDNA sequences obtained were compared directly with sequences in the NCBI database using BLAST as well as with the sequences available with Ribosomal Database Project (RDP).

  12. Insight into the effects of different cropping systems on soil bacterial community and tobacco bacterial wilt rate.

    PubMed

    Niu, Jiaojiao; Chao, Jin; Xiao, Yunhua; Chen, Wu; Zhang, Chao; Liu, Xueduan; Rang, Zhongwen; Yin, Huaqun; Dai, Linjian

    2017-01-01

    Rotation is an effective strategy to control crop disease and improve plant health. However, the effects of crop rotation on soil bacterial community composition and structure, and crop health remain unclear. In this study, using 16S rRNA gene sequencing, we explored the soil bacterial communities under four different cropping systems, continuous tobacco cropping (control group), tobacco-maize rotation, tobacco-lily rotation, and tobacco-turnip rotation. Results of detrended correspondence analysis and dissimilarity tests showed that soil bacterial community composition and structure changed significantly among the four groups, such that Acidobacteria and Actinobacteria were more abundant in the maize rotation group (16.6 and 11.5%, respectively) than in the control (8.5 and 7.1%, respectively). Compared with the control group (57.78%), maize and lily were effective rotation crops in controlling tobacco bacterial wilt (about 23.54 and 48.67%). On the other hand, tobacco bacterial wilt rate was increased in the turnip rotation (59.62%) relative to the control. Further study revealed that the abundances of several bacterial populations were directly correlated with tobacco bacterial wilt. For example, Acidobacteria and Actinobacteria were significantly negatively correlated to the tobacco bacterial wilt rate, so they may be probiotic bacteria. Canonical correspondence analysis showed that soil pH and calcium content were key factors in determining soil bacterial communities. In conclusion, our study revealed the composition and structure of bacterial communities under four different cropping systems and may unveil molecular mechanisms for the interactions between soil microorganisms and crop health. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. [Bacterial diversity within different sections of summer sea-ice samples from the Prydz Bay, Antarctica].

    PubMed

    Ma, Jifei; Du, Zongjun; Luo, Wei; Yu, Yong; Zeng, Yixin; Chen, Bo; Li, Huirong

    2013-02-04

    In order to assess bacterial abundance and diversity within three different sections of summer sea-ice samples collected from the Prydz Bay, Antarctica. Fluorescence in situ hybridization was applied to determine the proportions of Bacteria in sea-ice. Bacterial community composition within sea ice was analyzed by 16S rRNA gene clone library construction. Correlation analysis was performed between the physicochemical parameters and the bacterial diversity and abundance within sea ice. The result of fluorescence in situ hybridization shows that bacteria were abundant in the bottom section, and the concentration of total organic carbon, total organic nitrogen and phosphate may be the main factors for bacterial abundance. In bacterial 16S rRNA gene libraries of sea-ice, nearly complete 16S rRNA gene sequences were grouped into three distinct lineages of Bacteria (gamma-Proteobacteria, alpha-Proteobacteria and Bacteroidetes). Most clone sequences were related to cultured bacterial isolates from the marine environment, arctic and Antarctic sea-ice with high similarity. The member of Bacteroidetes was not detected in the bottom section of sea-ice. The bacterial communities within sea-ice were little heterogeneous at the genus-level between different sections, and the concentration of NH4+ may cause this distribution. The number of bacteria was abundant in the bottom section of sea-ice. Gamma-proteobacteria was the dominant bacterial lineage in sea-ice.

  14. Methyltransferase That Modifies Guanine 966 of the 16 S rRNA: FUNCTIONAL IDENTIFICATION AND TERTIARY STRUCTURE*

    PubMed Central

    Lesnyak, Dmitry V.; Osipiuk, Jerzy; Skarina, Tatiana; Sergiev, Petr V.; Bogdanov, Alexey A.; Edwards, Aled; Savchenko, Alexei; Joachimiak, Andrzej; Dontsova, Olga A.

    2010-01-01

    N2-Methylguanine 966 is located in the loop of Escherichia coli 16 S rRNA helix 31, forming a part of the P-site tRNA-binding pocket. We found yhhF to be a gene encoding for m2G966 specific 16 S rRNA methyltransferase. Disruption of the yhhF gene by kanamycin resistance marker leads to a loss of modification at G966. The modification could be rescued by expression of recombinant protein from the plasmid carrying the yhhF gene. Moreover, purified m2G966 methyltransferase, in the presence of S-adenosylomethionine (AdoMet), is able to methylate 30 S ribosomal subunits that were purified from yhhF knock-out strain in vitro. The methylation is specific for G966 base of the 16 S rRNA. The m2G966 methyltransferase was crystallized, and its structure has been determined and refined to 2.05 Å. The structure closely resembles RsmC rRNA methyltransferase, specific for m2G1207 of the 16 S rRNA. Structural comparisons and analysis of the enzyme active site suggest modes for binding AdoMet and rRNA to m2G966 methyltransferase. Based on the experimental data and current nomenclature the protein expressed from the yhhF gene was renamed to RsmD. A model for interaction of RsmD with ribosome has been proposed. PMID:17189261

  15. Methyltransferase that modifies guanine 966 of the 16 S rRNA: functional identification and tertiary structure.

    PubMed

    Lesnyak, Dmitry V; Osipiuk, Jerzy; Skarina, Tatiana; Sergiev, Petr V; Bogdanov, Alexey A; Edwards, Aled; Savchenko, Alexei; Joachimiak, Andrzej; Dontsova, Olga A

    2007-02-23

    N(2)-Methylguanine 966 is located in the loop of Escherichia coli 16 S rRNA helix 31, forming a part of the P-site tRNA-binding pocket. We found yhhF to be a gene encoding for m(2)G966 specific 16 S rRNA methyltransferase. Disruption of the yhhF gene by kanamycin resistance marker leads to a loss of modification at G966. The modification could be rescued by expression of recombinant protein from the plasmid carrying the yhhF gene. Moreover, purified m(2)G966 methyltransferase, in the presence of S-adenosylomethionine (AdoMet), is able to methylate 30 S ribosomal subunits that were purified from yhhF knock-out strain in vitro. The methylation is specific for G966 base of the 16 S rRNA. The m(2)G966 methyltransferase was crystallized, and its structure has been determined and refined to 2.05A(.) The structure closely resembles RsmC rRNA methyltransferase, specific for m(2)G1207 of the 16 S rRNA. Structural comparisons and analysis of the enzyme active site suggest modes for binding AdoMet and rRNA to m(2)G966 methyltransferase. Based on the experimental data and current nomenclature the protein expressed from the yhhF gene was renamed to RsmD. A model for interaction of RsmD with ribosome has been proposed.

  16. Bacterial and cytokine mixtures predict the length of gestation and are associated with miRNA expression in the cervix.

    PubMed

    Sanders, Alison P; Gennings, Chris; Svensson, Katherine; Motta, Valeria; Mercado-Garcia, Adriana; Solano, Maritsa; Baccarelli, Andrea A; Tellez-Rojo, Martha M; Wright, Robert O; Burris, Heather H

    2017-01-01

    Bacterial vaginosis may lead to preterm birth through epigenetic programming of the inflammatory response, specifically via miRNA expression. We quantified bacterial 16S rRNA, cytokine mRNA and 800 miRNA from cervical swabs obtained from 80 women at 16-19 weeks' gestation. We generated bacterial and cytokine indices using weighted quantile sum regression and examined associations with miRNA and gestational age at delivery. Each decile of the bacterial and cytokine indices was associated with shorter gestations (p < 0.005). The bacterial index was associated with miR-494, 371a, 4286, 185, 320e, 888 and 23a (p < 0.05). miR-494 remained significant after false discovery rate correction (q < 0.1). The cytokine index was associated with 27 miRNAs (p < 0.05; q < 0.01). Future investigation into the role of bacterial vaginosis- and inflammation-associated miRNA and preterm birth is warranted.

  17. Toolbox Approaches Using Molecular Markers and 16S rRNA Gene Amplicon Data Sets for Identification of Fecal Pollution in Surface Water

    PubMed Central

    Staley, C.; Sadowsky, M. J.; Gyawali, P.; Sidhu, J. P. S.; Palmer, A.; Beale, D. J.; Toze, S.

    2015-01-01

    In this study, host-associated molecular markers and bacterial 16S rRNA gene community analysis using high-throughput sequencing were used to identify the sources of fecal pollution in environmental waters in Brisbane, Australia. A total of 92 fecal and composite wastewater samples were collected from different host groups (cat, cattle, dog, horse, human, and kangaroo), and 18 water samples were collected from six sites (BR1 to BR6) along the Brisbane River in Queensland, Australia. Bacterial communities in the fecal, wastewater, and river water samples were sequenced. Water samples were also tested for the presence of bird-associated (GFD), cattle-associated (CowM3), horse-associated, and human-associated (HF183) molecular markers, to provide multiple lines of evidence regarding the possible presence of fecal pollution associated with specific hosts. Among the 18 water samples tested, 83%, 33%, 17%, and 17% were real-time PCR positive for the GFD, HF183, CowM3, and horse markers, respectively. Among the potential sources of fecal pollution in water samples from the river, DNA sequencing tended to show relatively small contributions from wastewater treatment plants (up to 13% of sequence reads). Contributions from other animal sources were rarely detected and were very small (<3% of sequence reads). Source contributions determined via sequence analysis versus detection of molecular markers showed variable agreement. A lack of relationships among fecal indicator bacteria, host-associated molecular markers, and 16S rRNA gene community analysis data was also observed. Nonetheless, we show that bacterial community and host-associated molecular marker analyses can be combined to identify potential sources of fecal pollution in an urban river. This study is a proof of concept, and based on the results, we recommend using bacterial community analysis (where possible) along with PCR detection or quantification of host-associated molecular markers to provide information on

  18. Toolbox Approaches Using Molecular Markers and 16S rRNA Gene Amplicon Data Sets for Identification of Fecal Pollution in Surface Water.

    PubMed

    Ahmed, W; Staley, C; Sadowsky, M J; Gyawali, P; Sidhu, J P S; Palmer, A; Beale, D J; Toze, S

    2015-10-01

    In this study, host-associated molecular markers and bacterial 16S rRNA gene community analysis using high-throughput sequencing were used to identify the sources of fecal pollution in environmental waters in Brisbane, Australia. A total of 92 fecal and composite wastewater samples were collected from different host groups (cat, cattle, dog, horse, human, and kangaroo), and 18 water samples were collected from six sites (BR1 to BR6) along the Brisbane River in Queensland, Australia. Bacterial communities in the fecal, wastewater, and river water samples were sequenced. Water samples were also tested for the presence of bird-associated (GFD), cattle-associated (CowM3), horse-associated, and human-associated (HF183) molecular markers, to provide multiple lines of evidence regarding the possible presence of fecal pollution associated with specific hosts. Among the 18 water samples tested, 83%, 33%, 17%, and 17% were real-time PCR positive for the GFD, HF183, CowM3, and horse markers, respectively. Among the potential sources of fecal pollution in water samples from the river, DNA sequencing tended to show relatively small contributions from wastewater treatment plants (up to 13% of sequence reads). Contributions from other animal sources were rarely detected and were very small (<3% of sequence reads). Source contributions determined via sequence analysis versus detection of molecular markers showed variable agreement. A lack of relationships among fecal indicator bacteria, host-associated molecular markers, and 16S rRNA gene community analysis data was also observed. Nonetheless, we show that bacterial community and host-associated molecular marker analyses can be combined to identify potential sources of fecal pollution in an urban river. This study is a proof of concept, and based on the results, we recommend using bacterial community analysis (where possible) along with PCR detection or quantification of host-associated molecular markers to provide information on

  19. Structure and dynamics of the bacterial communities in fermentation of the traditional Chinese post-fermented pu-erh tea revealed by 16S rRNA gene clone library.

    PubMed

    Zhao, Ming; Xiao, Wei; Ma, Yan; Sun, Tingting; Yuan, Wenxia; Tang, Na; Zhang, Donglian; Wang, Yongxia; Li, Yali; Zhou, Hongjie; Cui, Xiaolong

    2013-10-01

    Microbes are thought to have key roles in the development of the special properties of post-fermented pu-erh tea (pu-erh shucha), a well-known traditional Chinese tea; however, little is known about the bacteria during the fermentation. In this work, the structure and dynamics of the bacterial community involved in the production of pu-erh shucha were investigated using 16S rRNA gene clone libraries constructed from samples collected on days zero (LD-0), 5 (LD-5), 10 (LD-10), 15 (LD-15) and 20 (LD-20) of the fermentation. A total of 747 sequences with individual clone library containing 115-174 sequences and 4-20 unique operational taxonomic units (OTUs) were obtained. These OTUs were grouped into four phyla (Actinobacteria, Bacteroidetes, Firmicutes and Proteobacteria) and further identified as members of 10 families, such as Alcaligenaceae, Bacillaceae, Enterobacteriaceae, etc. The dominant bacteria were Enterobacteriaceae in the raw material (LD-0) and in the initial stages of fermentation (LD-5 and LD-10), which changed to Bacillaceae at the last stages of fermentation (LD-15 and LD-20) at a temperature of 40-60 °C. It is interesting that the dominant OTUs in libraries LD-15 and LD-20 were very closely related to Bacillus coagulans, which is a safe thermoduric probiotic. Together the bacterial diversity and dynamics during a fermentation of pu-erh shucha were demonstrated, and a worthy clue for artificial inoculation of B. coagulans to improve the health benefits of pu-erh shucha or produce probiotic pu-erh tea were provided.

  20. Different bacterial communities in ectomycorrhizae and surrounding soil

    PubMed Central

    Vik, Unni; Logares, Ramiro; Blaalid, Rakel; Halvorsen, Rune; Carlsen, Tor; Bakke, Ingrid; Kolstø, Anne-Brit; Økstad, Ole Andreas; Kauserud, Håvard

    2013-01-01

    Several eukaryotic symbioses have shown to host a rich diversity of prokaryotes that interact with their hosts. Here, we study bacterial communities associated with ectomycorrhizal root systems of Bistorta vivipara compared to bacterial communities in bulk soil using pyrosequencing of 16S rRNA amplicons. A high richness of Operational Taxonomic Units (OTUs) was found in plant roots (3,571 OTUs) and surrounding soil (3,476 OTUs). The community composition differed markedly between these two environments. Actinobacteria, Armatimonadetes, Chloroflexi and OTUs unclassified at phylum level were significantly more abundant in plant roots than in soil. A large proportion of the OTUs, especially those in plant roots, presented low similarity to Sanger 16S rRNA reference sequences, suggesting novel bacterial diversity in ectomycorrhizae. Furthermore, the bacterial communities of the plant roots were spatially structured up to a distance of 60 cm, which may be explained by bacteria using fungal hyphae as a transport vector. The analyzed ectomycorrhizae presents a distinct microbiome, which likely influence the functioning of the plant-fungus symbiosis. PMID:24326907

  1. Posttranscriptional modifications in the A-loop of 23S rRNAs from selected archaea and eubacteria.

    PubMed Central

    Hansen, M A; Kirpekar, F; Ritterbusch, W; Vester, B

    2002-01-01

    Posttranscriptional modifications were mapped in helices 90-92 of 23S rRNA from the following phylogenetically diverse organisms: Haloarcula marismortui, Sulfolobus acidocaldarius, Bacillus subtilis, and Bacillus stearothermophilus. Helix 92 is a component of the ribosomal A-site, which contacts the aminoacyl-tRNA during protein synthesis, implying that posttranscriptional modifications in helices 90-92 may be important for ribosome function. RNA fragments were isolated from 23S rRNA by site-directed RNase H digestion. A novel method of mapping modifications by analysis of short, nucleotide-specific, RNase digestion fragments with Matrix Assisted Laser Desorption/Ionization Mass Spectrometry (MALDI-MS) was utilized. The MALDI-MS data were complemented by two primer extension techniques using reverse transcriptase. One technique utilizes decreasing concentrations of deoxynucleotide triphosphates to map 2'-O-ribose methylations. In the other, the rRNA is chemically modified, followed by mild alkaline hydrolysis to map pseudouridines (psis). A total of 10 posttranscriptionally methylated nucleotides and 6 psis were detected in the five organisms. Eight of the methylated nucleotides and one psi have not been reported previously. The distribution of modified nucleotides and their locations on the surface of the ribosomal peptidyl transferase cleft suggests functional importance. PMID:11911366

  2. The nucleotide sequence of 5S rRNA from a cellular slime mold Dictyostelium discoideum.

    PubMed Central

    Hori, H; Osawa, S; Iwabuchi, M

    1980-01-01

    The nucleotide sequence of ribosomal 5S rRNA from a cellular slime mold Dictyostelium discoideum is GUAUACGGCCAUACUAGGUUGGAAACACAUCAUCCCGUUCGAUCUGAUA AGUAAAUCGACCUCAGGCCUUCCAAGUACUCUGGUUGGAGACAACAGGGGAACAUAGGGUGCUGUAUACU. A model for the secondary structure of this 5S rRNA is proposed. The sequence is more similar to those of animals (62% similarity on the average) rather than those of yeasts (56%). Images PMID:7465421

  3. Cutaneous manifestations of Crohn's disease, its spectrum, and its pathogenesis: intracellular consensus bacterial 16S rRNA is associated with the gastrointestinal but not the cutaneous manifestations of Crohn's disease.

    PubMed

    Crowson, A Neil; Nuovo, Gerard J; Mihm, Martin C; Magro, Cynthia

    2003-11-01

    The classic pathology of skin disease discontinuous from the inflamed gastrointestinal (GI) tract in patients with Crohn's disease (CD) includes pyoderma gangrenosum (PG), erythema nodosum (EN), and so-called metastatic Crohn's disease. The purpose of this study was two-fold: First, we explored the full spectrum of cutaneous lesions associated with Crohn's disease, and second, we sought to explore a potential molecular basis of the skin lesions in patients with CD. In this regard, we analyzed skin and GI tract biopsies from affected patients for the consensus bacterial SrRNA to determine whether direct bacterial infection was associated with either condition. Formalin-fixed, paraffin-embedded sections were studied and correlated to clinical presentation and histories from 33 patients with CD. Consensus bacterial RNA sequences were analyzed using an RT in situ PCR assay on both skin biopsy and GI biopsy material. The GI tract material included biopsies from 3 patients who had skin lesions and from 7 patients in whom there were no known skin manifestations. There were 8 cases of neutrophilic dominant dermal infiltrates, including pyoderma gangrenosum, 6 cases of granuloma annulare/necrobiosis lipoidica-like lesions, 5 cases of sterile neutrophilic folliculitis, 5 cases of panniculitis, 4 cases of vasculitis, 2 cases of psoriasis, 2 cases of lichenoid and granulomatous inflammation, and 1 case of classic metastatic CD. Intracellular bacterial 16S rRNA was detected in 8 of 10 tissues of active CD in the GI tract, of which 3 of the cases tested were from patients who also developed skin lesions at some point in their clinical course; in contrast, none of the skin biopsies had detectable bacterial RNA. The dermatopathological manifestations of CD discontiguous from the involved GI tract mucosa have in common a vascular injury syndrome, typically with a prominent extravascular neutrophilic and/or histiocytic dermal infiltrate. In addition, this study, the first to

  4. Bacterial Community Composition of South China Sea Sediments through Pyrosequencing-Based Analysis of 16S rRNA Genes

    PubMed Central

    Zhu, Daochen; Tanabe, Shoko-Hosoi; Yang, Chong; Zhang, Weimin; Sun, Jianzhong

    2013-01-01

    Background Subseafloor sediments accumulate large amounts of organic and inorganic materials that contain a highly diverse microbial ecosystem. The aim of this study was to survey the bacterial community of subseafloor sediments from the South China Sea. Methodology/Principal Findings Pyrosequencing of over 265,000 amplicons of the V3 hypervariable region of the 16S ribosomal RNA gene was performed on 16 sediment samples collected from multiple locations in the northern region of the South China Sea from depths ranging from 35 to 4000 m. A total of 9,726 operational taxonomic units (OTUs; between 695 and 2819 unique OTUs per sample) at 97% sequence similarity level were generated. In total, 40 bacterial phyla including 22 formally described phyla and 18 candidate phyla, with Proteobacteria, Firmicutes, Planctomycetes, Actinobacteria and Chloroflexi being most diverse, were identified. The most abundant phylotype, accounting for 42.6% of all sequences, belonged to Gammaproteobacteria, which possessed absolute predominance in the samples analyzed. Among the 18 candidate phyla, 12 were found for the first time in the South China Sea. Conclusions This study provided a novel insight into the composition of bacterial communities of the South China Sea subseafloor. Furthermore, abundances and community similarity analysis showed that the compositions of the bacterial communities are very similar at phylum level at different depths from 35-4000 m. PMID:24205246

  5. Bacterial community composition of South China Sea sediments through pyrosequencing-based analysis of 16S rRNA genes.

    PubMed

    Zhu, Daochen; Tanabe, Shoko-Hosoi; Yang, Chong; Zhang, Weimin; Sun, Jianzhong

    2013-01-01

    Subseafloor sediments accumulate large amounts of organic and inorganic materials that contain a highly diverse microbial ecosystem. The aim of this study was to survey the bacterial community of subseafloor sediments from the South China Sea. Pyrosequencing of over 265,000 amplicons of the V3 hypervariable region of the 16S ribosomal RNA gene was performed on 16 sediment samples collected from multiple locations in the northern region of the South China Sea from depths ranging from 35 to 4000 m. A total of 9,726 operational taxonomic units (OTUs; between 695 and 2819 unique OTUs per sample) at 97% sequence similarity level were generated. In total, 40 bacterial phyla including 22 formally described phyla and 18 candidate phyla, with Proteobacteria, Firmicutes, Planctomycetes, Actinobacteria and Chloroflexi being most diverse, were identified. The most abundant phylotype, accounting for 42.6% of all sequences, belonged to Gammaproteobacteria, which possessed absolute predominance in the samples analyzed. Among the 18 candidate phyla, 12 were found for the first time in the South China Sea. This study provided a novel insight into the composition of bacterial communities of the South China Sea subseafloor. Furthermore, abundances and community similarity analysis showed that the compositions of the bacterial communities are very similar at phylum level at different depths from 35-4000 m.

  6. A nested array of rRNA targeted probes for the detection and identification of enterococci by reverse hybridization.

    PubMed

    Behr, T; Koob, C; Schedl, M; Mehlen, A; Meier, H; Knopp, D; Frahm, E; Obst, U; Schleifer, K; Niessner, R; Ludwig, W

    2000-12-01

    Complete 23S and almost complete 16S rRNA gene sequences were determined for the type strains of the validly described Enterococcus species, Melissococcus pluton and Tetragenococcus halophilus. A comprehensive set of rRNA targeted specific oligonucleotide hybridization probes was designed according to the multiple probe concept. In silico probe design and evaluation was performed using the respective tools of the ARB program package in combination with the ARB databases comprising the currently available 16S as well as 23S rRNA primary structures. The probes were optimized with respect to their application for reverse hybridization in microplate format. The target comprising 16S and 23S rDNA was amplified and labeled by PCR (polymerase chain reaction) using general primers targeting a wide spectrum of bacteria. Alternatively, amplification of two adjacent rDNA fragments of enterococci was performed by using specific primers. In vitro evaluation of the probe set was done including all Enterococcus type strains, and a selection of other representatives of the gram-positive bacteria with a low genomic DNA G+C content. The optimized probe set was used to analyze enriched drinking water samples as well as original samples from waste water treatment plants.

  7. Identification of an Alternative rRNA Post-transcriptional Maturation of 26S rRNA in the Kingdom Fungi.

    PubMed

    Navarro-Ródenas, Alfonso; Carra, Andrea; Morte, Asunción

    2018-01-01

    Despite of the integrity of their RNA, some desert truffles present a non-canonical profile of rRNA where 3.3 kb is absent, 1.8 kb is clear and a band of 1.6 kb is observed. A similar rRNA profile was identified in organisms belonging to different life kingdoms, with the exception of the Kingdom Fungi, as a result of a split LSU rRNA called hidden gap . rRNA profiles of desert truffles were analyzed to verify the presence of the non-canonical profile. The RNA of desert truffles and yeast were blotted and hybridized with probes complementary to LSU extremes. RACE of LSU rRNA was carried out to determine the LSU rRNA breakage point. LSU rRNA of desert truffles presents a post-transcriptional cleavage of five nucleotides that generates a hidden gap located in domain D7. LSU splits into two molecules of 1.6 and 1.8 kb. Similar to other organisms, a UAAU tract, downstream of the breakage point, was identified. Phylogenetic comparison suggests that during fungi evolution mutations were introduced in the hypervariable D7 domain, resulting in a sequence that is specifically post-transcriptionally cleaved in some desert truffles.

  8. Assessing Cat Flea Microbiomes in Northern and Southern California by 16S rRNA Next-Generation Sequencing.

    PubMed

    Vasconcelos, Elton J R; Billeter, Sarah A; Jett, Lindsey A; Meinersmann, Richard J; Barr, Margaret C; Diniz, Pedro P V P; Oakley, Brian B

    2018-06-12

    Flea-borne diseases (FBDs) impact both human and animal health worldwide. Because adult fleas are obligately hematophagous and can harbor potential pathogens, fleas act as ectoparasites of vertebrates, as well as zoonotic disease vectors. Cat fleas (Ctenocephalides felis) are important vectors of two zoonotic bacterial genera listed as priority pathogens by the National Institute of Allergy and Infectious Diseases (NIAID-USA): Bartonella spp. and Rickettsia spp., causative agents of bartonelloses and rickettsioses, respectively. In this study, we introduce the first microbiome analysis of C. felis samples from California, determining the presence and abundance of relevant pathogenic genera by characterizing the cat flea microbiome through 16S rRNA next-generation sequencing (16S-NGS). Samples from both northern (NoCal) and southern (SoCal) California were assessed to expand current knowledge regarding FBDs in the state. We identified Rickettsia and Bartonella, as well as the endosymbiont Wolbachia, as the most abundant genera, followed by less abundant taxa. In comparison to our previous study screening Californian cat fleas for rickettsiae using PCR/digestion/sequencing of the ompB gene, the 16S-NGS approach applied herein showed a 95% level of agreement in detecting Rickettsia spp. There was no overall difference in microbiome diversity between NoCal and SoCal samples. Bacterial taxa identified by 16S-NGS in this study may help to improve epidemiological investigations, pathogen surveillance efforts, and clinical diagnostics of FBDs in California and elsewhere.

  9. 16S rRNA PCR-Denaturing Gradient Gel Electrophoresis of Oral Lactobacillus casei Group and Their Phenotypic Appearances.

    PubMed

    Piwat, S; Teanpaisan, R

    2013-01-01

    This study aimed to develop a 16S rRNA PCR-denaturing gradient gel electrophoresis (DGGE) to identify the species level of Lactobacillus casei group and to investigate their characteristics of acid production and inhibitory effect. PCR-DGGE has been developed based on the 16S rRNA gene, and a set of HDA-1-GC and HDA-2, designed at V2-V3 region, and another set of CARP-1-GC and CARP-2, designed at V1 region, have been used. The bacterial strains included L. casei ATCC 393, L. paracasei CCUG 32212, L. rhamnosus ATCC 7469, L. zeae CCUG 35515, and 46 clinical strains of L. casei/paracasei/rhamnosus. Inhibitory effect against Streptococcus mutans and acid production were examined. Results revealed that each type species strain and identified clinical isolate showed its own unique DGGE pattern using CARP1-GC and CARP2 primers. HDA1-GC and HDA2 primers could distinguish the strains of L. paracasei from L. casei. It was found that inhibitory effect of L. paracasei was stronger than L. casei and L. rhamnosus. The acid production of L. paracasei was lower than L. casei and L. rhamnosus. In conclusion, the technique has been proven to be able to differentiate between closely related species in L. casei group and thus provide reliable information of their phenotypic appearances.

  10. 16S rRNA PCR-Denaturing Gradient Gel Electrophoresis of Oral Lactobacillus casei Group and Their Phenotypic Appearances

    PubMed Central

    Piwat, S.; Teanpaisan, R.

    2013-01-01

    This study aimed to develop a 16S rRNA PCR-denaturing gradient gel electrophoresis (DGGE) to identify the species level of Lactobacillus casei group and to investigate their characteristics of acid production and inhibitory effect. PCR-DGGE has been developed based on the 16S rRNA gene, and a set of HDA-1-GC and HDA-2, designed at V2-V3 region, and another set of CARP-1-GC and CARP-2, designed at V1 region, have been used. The bacterial strains included L. casei ATCC 393, L. paracasei CCUG 32212, L. rhamnosus ATCC 7469, L. zeae CCUG 35515, and 46 clinical strains of L. casei/paracasei/rhamnosus. Inhibitory effect against Streptococcus mutans and acid production were examined. Results revealed that each type species strain and identified clinical isolate showed its own unique DGGE pattern using CARP1-GC and CARP2 primers. HDA1-GC and HDA2 primers could distinguish the strains of L. paracasei from L. casei. It was found that inhibitory effect of L. paracasei was stronger than L. casei and L. rhamnosus. The acid production of L. paracasei was lower than L. casei and L. rhamnosus. In conclusion, the technique has been proven to be able to differentiate between closely related species in L. casei group and thus provide reliable information of their phenotypic appearances. PMID:24191230

  11. Seasonal and regional diversity of maple sap microbiota revealed using community PCR fingerprinting and 16S rRNA gene clone libraries.

    PubMed

    Filteau, Marie; Lagacé, Luc; LaPointe, Gisèle; Roy, Denis

    2010-04-01

    An arbitrary primed community PCR fingerprinting technique based on capillary electrophoresis was developed to study maple sap microbial community characteristics among 19 production sites in Québec over the tapping season. Presumptive fragment identification was made with corresponding fingerprint profiles of bacterial isolate cultures. Maple sap microbial communities were subsequently compared using a representative subset of 13 16S rRNA gene clone libraries followed by gene sequence analysis. Results from both methods indicated that all maple sap production sites and flow periods shared common microbiota members, but distinctive features also existed. Changes over the season in relative abundance of predominant populations showed evidence of a common pattern. Pseudomonas (64%) and Rahnella (8%) were the most abundantly and frequently represented genera of the 2239 sequences analyzed. Janthinobacterium, Leuconostoc, Lactococcus, Weissella, Epilithonimonas and Sphingomonas were revealed as occasional contaminants in maple sap. Maple sap microbiota showed a low level of deep diversity along with a high variation of similar 16S rRNA gene sequences within the Pseudomonas genus. Predominance of Pseudomonas is suggested as a typical feature of maple sap microbiota across geographical regions, production sites, and sap flow periods.

  12. Polybacterial community analysis in human conjunctiva through 16S rRNA gene libraries.

    PubMed

    Deepthi, KrishnanNair Geetha; Jayasudha, Rajagopalaboopathi; Girish, Rameshan Nair; Manikandan, Palanisamy; Ram, Rammohan; Narendran, Venkatapathy; Prabagaran, Solai Ramatchandirane

    2018-05-14

    The conjunctival sac of healthy human harbours a variety of microorganisms. When the eye is compromised, an occasional inadvertent spread happens to the adjacent tissue, resulting in bacterial ocular infections. Microbiological investigation of the conjunctival swab is one of the broadly used modality to study the aetiological agent of conjunctiva. However, most of the time such methods yield unsatisfactory results. Hence, the present study intends to identify the bacterial community in human conjunctiva of pre-operative subjects through 16S rRNA gene libraries. Out of 45 samples collected from preoperative patients undergoing cataract surgery, 36 libraries were constructed with bacterial nested-PCR-positive samples. The representative clones with unique restriction pattern were generated through Amplified Ribosomal DNA Restriction Analysis (ARDRA) which were sequenced for phylogenetic affiliation. A total of 211 representative clones were obtained which were distributed in phyla Actinobacteria, Firmicutes, α-Proteobacteria, β-Proteobacteria, γ-Proteobacteria, Bacteroidetes, and Deinococcus-Thermus. Findings revealed the presence of polybacterial community, especially in some cases even though no bacterium or a single bacterium alone was identified through cultivable method. Remarkably, we identified 17 species which have never been reported in any ocular infections. The sequencing data reported 6 unidentified bacteria suggesting the possibility of novel organisms in the sample. Since, polybacterial community has been identified consisting of both gram positive and gram negative bacteria, a broad spectrum antibiotic therapy is advisable to the patients who are undergoing cataract surgery. Consolidated effort would significantly improve a clear understanding of the nature of microbial community in the human conjunctiva which will promote administration of appropriate antibiotic regimen and also help in the development of oligonucleotide probes to screen the

  13. Horizontal Transfer of Segments of the 16S rRNA Genes between Species of the Streptococcus anginosus Group

    PubMed Central

    Schouls, Leo M.; Schot, Corrie S.; Jacobs, Jan A.

    2003-01-01

    The nature in variation of the 16S rRNA gene of members of the Streptococcus anginosus group was investigated by hybridization and DNA sequencing. A collection of 708 strains was analyzed by reverse line blot hybridization. This revealed the presence of distinct reaction patterns representing 11 different hybridization groups. The 16S rRNA genes of two strains of each hybridization group were sequenced to near-completion, and the sequence data confirmed the reverse line blot hybridization results. Closer inspection of the sequences revealed mosaic-like structures, strongly suggesting horizontal transfer of segments of the 16S rRNA gene between different species belonging to the Streptococcus anginosus group. Southern blot hybridization further showed that within a single strain all copies of the 16S rRNA gene had the same composition, indicating that the apparent mosaic structures were not PCR-induced artifacts. These findings indicate that the highly conserved rRNA genes are also subject to recombination and that these events may be fixed in the population. Such recombination may lead to the construction of incorrect phylogenetic trees based on the 16S rRNA genes. PMID:14645285

  14. Variable Copy Number, Intra-Genomic Heterogeneities and Lateral Transfers of the 16S rRNA Gene in Pseudomonas

    PubMed Central

    Bodilis, Josselin; Nsigue-Meilo, Sandrine; Besaury, Ludovic; Quillet, Laurent

    2012-01-01

    Even though the 16S rRNA gene is the most commonly used taxonomic marker in microbial ecology, its poor resolution is still not fully understood at the intra-genus level. In this work, the number of rRNA gene operons, intra-genomic heterogeneities and lateral transfers were investigated at a fine-scale resolution, throughout the Pseudomonas genus. In addition to nineteen sequenced Pseudomonas strains, we determined the 16S rRNA copy number in four other Pseudomonas strains by Southern hybridization and Pulsed-Field Gel Electrophoresis, and studied the intra-genomic heterogeneities by Denaturing Gradient Gel Electrophoresis and sequencing. Although the variable copy number (from four to seven) seems to be correlated with the evolutionary distance, some close strains in the P. fluorescens lineage showed a different number of 16S rRNA genes, whereas all the strains in the P. aeruginosa lineage displayed the same number of genes (four copies). Further study of the intra-genomic heterogeneities revealed that most of the Pseudomonas strains (15 out of 19 strains) had at least two different 16S rRNA alleles. A great difference (5 or 19 nucleotides, essentially grouped near the V1 hypervariable region) was observed only in two sequenced strains. In one of our strains studied (MFY30 strain), we found a difference of 12 nucleotides (grouped in the V3 hypervariable region) between copies of the 16S rRNA gene. Finally, occurrence of partial lateral transfers of the 16S rRNA gene was further investigated in 1803 full-length sequences of Pseudomonas available in the databases. Remarkably, we found that the two most variable regions (the V1 and V3 hypervariable regions) had probably been laterally transferred from another evolutionary distant Pseudomonas strain for at least 48.3 and 41.6% of the 16S rRNA sequences, respectively. In conclusion, we strongly recommend removing these regions of the 16S rRNA gene during the intra-genus diversity studies. PMID:22545126

  15. Seasonal changes in bacterial communities associated with healthy and diseased Porites coral in southern Taiwan.

    PubMed

    Lin, Chorng-Horng; Chuang, Chih-Hsiang; Twan, Wen-Hung; Chiou, Shu-Fen; Wong, Tit-Yee; Liu, Jong-Kang; Kao, Chyuan-Yao; Kuo, Jimmy

    2016-12-01

    We compared the bacterial communities associated with healthy scleractinian coral Porites sp. with those associated with coral infected with pink spot syndrome harvested during summer and winter from waters off the coast of southern Taiwan. Members of the bacterial community associated with the coral were characterized by means of denaturing gradient gel electrophoresis (DGGE) of a short region of the 16S rRNA gene and clone library analysis. Of 5 different areas of the 16S rRNA gene, we demonstrated that the V3 hypervariable region is most suited to represent the coral-associated bacterial community. The DNA sequences of 26 distinct bands extracted from DGGE gels and 269 sequences of the 16S rRNA gene from clone libraries were determined. We found that the communities present in diseased coral were more heterogeneous than the bacterial communities of uninfected coral. In addition, bacterial communities associated with coral harvested in the summer were more diverse than those associated with coral collected in winter, regardless of the health status of the coral. Our study suggested that the compositions of coral-associated bacteria communities are complex, and the population of bacteria varies greatly between seasons and in coral of differing health status.

  16. Hot topic: 16S rRNA gene sequencing reveals the microbiome of the virgin and pregnant bovine uterus.

    PubMed

    Moore, S G; Ericsson, A C; Poock, S E; Melendez, P; Lucy, M C

    2017-06-01

    . Interestingly, many bacterial species associated with postpartum uterine disease (i.e., Trueperella spp., Acinetobacter spp., Fusobacteria spp., Proteus spp., Prevotella spp., and Peptostreptococcus spp.) were also present in the uterus of virgin heifers and of pregnant cows. The presence of 16S rRNA gene sequence reads in the samples from the current study suggests that the uterine microbiome is established by the time a female reaches reproductive maturity, and that pregnancies are established and maintained in the presence of a uterine microbiome. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  17. Fastidious Gram-Negatives: Identification by the Vitek 2 Neisseria-Haemophilus Card and by Partial 16S rRNA Gene Sequencing Analysis.

    PubMed

    Sönksen, Ute Wolff; Christensen, Jens Jørgen; Nielsen, Lisbeth; Hesselbjerg, Annemarie; Hansen, Dennis Schrøder; Bruun, Brita

    2010-12-31

    Taxonomy and identification of fastidious Gram negatives are evolving and challenging. We compared identifications achieved with the Vitek 2 Neisseria-Haemophilus (NH) card and partial 16S rRNA gene sequence (526 bp stretch) analysis with identifications obtained with extensive phenotypic characterization using 100 fastidious Gram negative bacteria. Seventy-five strains represented 21 of the 26 taxa included in the Vitek 2 NH database and 25 strains represented related species not included in the database. Of the 100 strains, 31 were the type strains of the species. Vitek 2 NH identification results: 48 of 75 database strains were correctly identified, 11 strains gave `low discrimination´, seven strains were unidentified, and nine strains were misidentified. Identification of 25 non-database strains resulted in 14 strains incorrectly identified as belonging to species in the database. Partial 16S rRNA gene sequence analysis results: For 76 strains phenotypic and sequencing identifications were identical, for 23 strains the sequencing identifications were either probable or possible, and for one strain only the genus was confirmed. Thus, the Vitek 2 NH system identifies most of the commonly occurring species included in the database. Some strains of rarely occurring species and strains of non-database species closely related to database species cause problems. Partial 16S rRNA gene sequence analysis performs well, but does not always suffice, additional phenotypical characterization being useful for final identification.

  18. Combination of culture-independent and culture-dependent molecular methods for the determination of bacterial community of iru, a fermented Parkia biglobosa seeds.

    PubMed

    Adewumi, Gbenga A; Oguntoyinbo, Folarin A; Keisam, Santosh; Romi, Wahengbam; Jeyaram, Kumaraswamy

    2012-01-01

    In this study, bacterial composition of iru produced by natural, uncontrolled fermentation of Parkia biglobosa seeds was assessed using culture-independent method in combination with culture-based genotypic typing techniques. PCR-denaturing gradient gel electrophoresis (DGGE) revealed similarity in DNA fragments with the two DNA extraction methods used and confirmed bacterial diversity in the 16 iru samples from different production regions. DNA sequencing of the highly variable V3 region of the 16S rRNA genes obtained from PCR-DGGE identified species related to Bacillus subtilis as consistent bacterial species in the fermented samples, while other major bands were identified as close relatives of Staphylococcus vitulinus, Morganella morganii, B. thuringiensis, S. saprophyticus, Tetragenococcus halophilus, Ureibacillus thermosphaericus, Brevibacillus parabrevis, Salinicoccus jeotgali, Brevibacterium sp. and uncultured bacteria clones. Bacillus species were cultured as potential starter cultures and clonal relationship of different isolates determined using amplified ribosomal DNA restriction analysis (ARDRA) combined with 16S-23S rRNA gene internal transcribed spacer (ITS) PCR amplification, restriction analysis (ITS-PCR-RFLP), and randomly amplified polymorphic DNA (RAPD-PCR). This further discriminated B. subtilis and its variants from food-borne pathogens such as B. cereus and suggested the need for development of controlled fermentation processes and good manufacturing practices (GMP) for iru production to achieve product consistency, safety quality, and improved shelf life.

  19. Primer selection impacts specific population abundances but not community dynamics in a monthly time-series 16S rRNA gene amplicon analysis of coastal marine bacterioplankton.

    PubMed

    Wear, Emma K; Wilbanks, Elizabeth G; Nelson, Craig E; Carlson, Craig A

    2018-03-09

    Primers targeting the 16S small subunit ribosomal RNA marker gene, used to characterize bacterial and archaeal communities, have recently been re-evaluated for marine planktonic habitats. To investigate whether primer selection affects the ecological interpretation of bacterioplankton populations and community dynamics, amplicon sequencing with four primer sets targeting several hypervariable regions of the 16S rRNA gene was conducted on both mock communities constructed from cloned 16S rRNA genes and a time-series of DNA samples from the temperate coastal Santa Barbara Channel. Ecological interpretations of community structure (delineation of depth and seasonality, correlations with environmental factors) were similar across primer sets, while population dynamics varied. We observed substantial differences in relative abundances of taxa known to be poorly resolved by some primer sets, such as Thaumarchaeota and SAR11, and unexpected taxa including Roseobacter clades. Though the magnitude of relative abundances of common OTUs differed between primer sets, the relative abundances of the OTUs were nonetheless strongly correlated. We do not endorse one primer set but rather enumerate strengths and weaknesses to facilitate selection appropriate to a system or experimental goal. While 16S rRNA gene primer bias suggests caution in assessing quantitative population dynamics, community dynamics appear robust across studies using different primers. © 2018 The Authors. Environmental Microbiology published by Society for Applied Microbiology and John Wiley & Sons Ltd.

  20. Bacterial community and arsenic functional genes diversity in arsenic contaminated soils from different geographic locations

    PubMed Central

    Gu, Yunfu; D. Van Nostrand, Joy; Wu, Liyou; He, Zhili; Qin, Yujia; Zhao, Fang-Jie; Zhou, Jizhong

    2017-01-01

    To understand how soil microbial communities and arsenic (As) functional genes respond to soil arsenic (As) contamination, five soils contaminated with As at different levels were collected from diverse geographic locations, incubated for 54 days under flooded conditions, and examined by both MiSeq sequencing of 16S rRNA gene amplicons and functional gene microarray (GeoChip 4.0). The results showed that both bacterial community structure and As functional gene structure differed among geographical locations. The diversity of As functional genes correlated positively with the diversity of 16S rRNA genes (P< 0.05). Higher diversities of As functional genes and 16S rRNA genes were observed in the soils with higher available As. Soil pH, phosphate-extractable As, and amorphous Fe content were the most important factors in shaping the bacterial community structure and As transformation functional genes. Geographic location was also important in controlling both the bacterial community and As transformation functional potential. These findings provide insights into the variation of As transformation functional genes in soils contaminated with different levels of As at different geographic locations, and the impact of environmental As contamination on the soil bacterial community. PMID:28475654

  1. Near full-length 16S rRNA gene next-generation sequencing revealed Asaia as a common midgut bacterium of wild and domesticated Queensland fruit fly larvae.

    PubMed

    Deutscher, Ania T; Burke, Catherine M; Darling, Aaron E; Riegler, Markus; Reynolds, Olivia L; Chapman, Toni A

    2018-05-05

    Gut microbiota affects tephritid (Diptera: Tephritidae) fruit fly development, physiology, behavior, and thus the quality of flies mass-reared for the sterile insect technique (SIT), a target-specific, sustainable, environmentally benign form of pest management. The Queensland fruit fly, Bactrocera tryoni (Tephritidae), is a significant horticultural pest in Australia and can be managed with SIT. Little is known about the impacts that laboratory-adaptation (domestication) and mass-rearing have on the tephritid larval gut microbiome. Read lengths of previous fruit fly next-generation sequencing (NGS) studies have limited the resolution of microbiome studies, and the diversity within populations is often overlooked. In this study, we used a new near full-length (> 1300 nt) 16S rRNA gene amplicon NGS approach to characterize gut bacterial communities of individual B. tryoni larvae from two field populations (developing in peaches) and three domesticated populations (mass- or laboratory-reared on artificial diets). Near full-length 16S rRNA gene sequences were obtained for 56 B. tryoni larvae. OTU clustering at 99% similarity revealed that gut bacterial diversity was low and significantly lower in domesticated larvae. Bacteria commonly associated with fruit (Acetobacteraceae, Enterobacteriaceae, and Leuconostocaceae) were detected in wild larvae, but were largely absent from domesticated larvae. However, Asaia, an acetic acid bacterium not frequently detected within adult tephritid species, was detected in larvae of both wild and domesticated populations (55 out of 56 larval gut samples). Larvae from the same single peach shared a similar gut bacterial profile, whereas larvae from different peaches collected from the same tree had different gut bacterial profiles. Clustering of the Asaia near full-length sequences at 100% similarity showed that the wild flies from different locations had different Asaia strains. Variation in the gut bacterial communities of B

  2. Transcript levels, alternative splicing and proteolytic cleavage of TFIIIA control 5S rRNA accumulation during Arabidopsis thaliana development.

    PubMed

    Layat, Elodie; Cotterell, Sylviane; Vaillant, Isabelle; Yukawa, Yasushi; Tutois, Sylvie; Tourmente, Sylvette

    2012-07-01

    Ribosome biogenesis is critical for eukaryotic cells and requires coordinated synthesis of the protein and rRNA moieties of the ribosome, which are therefore highly regulated. 5S ribosomal RNA, an essential component of the large ribosomal subunit, is transcribed by RNA polymerase III and specifically requires transcription factor IIIA (TFIIIA). To obtain insight into the regulation of 5S rRNA transcription, we have investigated the expression of 5S rRNA and the exon-skipped (ES) and exon-including (EI) TFIIIA transcripts, two transcript isoforms that result from alternative splicing of the TFIIIA gene, and TFIIIA protein amounts with respect to requirements for 5S rRNA during development. We show that 5S rRNA quantities are regulated through distinct but complementary mechanisms operating through transcriptional and post-transcriptional control of TFIIIA transcripts as well as at the post-translational level through proteolytic cleavage of the TFIIIA protein. During the reproductive phase, high expression of the TFIIIA gene together with low proteolytic cleavage contributes to accumulation of functional, full-length TFIIIA protein, and results in 5S rRNA accumulation in the seed. In contrast, just after germination, the levels of TFIIIA-encoding transcripts are low and stable. Full-length TFIIIA protein is undetectable, and the level of 5S rRNA stored in the embryo progressively decreases. After day 4, in correlation with the reorganization of 5S rDNA chromatin to a mature state, full-length TFIIIA protein with transcriptional activity accumulates and permits de novo transcription of 5S rRNA. © 2012 The Authors. The Plant Journal © 2012 Blackwell Publishing Ltd.

  3. Benthic Bacterial Diversity in Submerged Sinkhole Ecosystems▿ †

    PubMed Central

    Nold, Stephen C.; Pangborn, Joseph B.; Zajack, Heidi A.; Kendall, Scott T.; Rediske, Richard R.; Biddanda, Bopaiah A.

    2010-01-01

    Physicochemical characterization, automated ribosomal intergenic spacer analysis (ARISA) community profiling, and 16S rRNA gene sequencing approaches were used to study bacterial communities inhabiting submerged Lake Huron sinkholes inundated with hypoxic, sulfate-rich groundwater. Photosynthetic cyanobacterial mats on the sediment surface were dominated by Phormidium autumnale, while deeper, organically rich sediments contained diverse and active bacterial communities. PMID:19880643

  4. Diversity of Bacterial Communities of Fitness Center Surfaces in a U.S. Metropolitan Area

    PubMed Central

    Mukherjee, Nabanita; Dowd, Scot E.; Wise, Andy; Kedia, Sapna; Vohra, Varun; Banerjee, Pratik

    2014-01-01

    Public fitness centers and exercise facilities have been implicated as possible sources for transmitting community-acquired bacterial infections. However, the overall diversity of the bacterial community residing on the surfaces in these indoor environments is still unknown. In this study, we investigated the overall bacterial ecology of selected fitness centers in a metropolitan area (Memphis, TN, USA) utilizing culture-independent pyrosequencing of the 16S rRNA genes. Samples were collected from the skin-contact surfaces (e.g., exercise instruments, floor mats, handrails, etc.) within fitness centers. Taxonomical composition revealed the abundance of Firmicutes phyla, followed by Proteobacter and Actinobacteria, with a total of 17 bacterial families and 25 bacterial genera. Most of these bacterial genera are of human and environmental origin (including, air, dust, soil, and water). Additionally, we found the presence of some pathogenic or potential pathogenic bacterial genera including Salmonella, Staphylococcus, Klebsiella, and Micrococcus. Staphylococcus was found to be the most prevalent genus. Presence of viable forms of these pathogens elevates risk of exposure of any susceptible individuals. Several factors (including personal hygiene, surface cleaning and disinfection schedules of the facilities) may be the reasons for the rich bacterial diversity found in this study. The current finding underscores the need to increase public awareness on the importance of personal hygiene and sanitation for public gym users. PMID:25479039

  5. Microbial rRNA: rDNA gene ratios may be unexpectedly low due to extracellular DNA preservation in soils

    USDA-ARS?s Scientific Manuscript database

    We tested a method of estimating the activity of detectable individual bacterial and archaeal OTUs within a community by calculating ratios of absolute 16S rRNA to rDNA copy numbers. We investigated phylogenetically coherent patterns of activity among soil prokaryotes in non-growing soil communitie...

  6. Linking maternal and somatic 5S rRNA types with different sequence-specific non-LTR retrotransposons

    PubMed Central

    Pagano, Johanna F.B.; Ensink, Wim A.; van Olst, Marina; van Leeuwen, Selina; Nehrdich, Ulrike; Zhu, Kongju; Spaink, Herman P.; Girard, Geneviève; Rauwerda, Han; Jonker, Martijs J.; Dekker, Rob J.

    2017-01-01

    5S rRNA is a ribosomal core component, transcribed from many gene copies organized in genomic repeats. Some eukaryotic species have two 5S rRNA types defined by their predominant expression in oogenesis or adult tissue. Our next-generation sequencing study on zebrafish egg, embryo, and adult tissue identified maternal-type 5S rRNA that is exclusively accumulated during oogenesis, replaced throughout the embryogenesis by a somatic-type, and thus virtually absent in adult somatic tissue. The maternal-type 5S rDNA contains several thousands of gene copies on chromosome 4 in tandem repeats with small intergenic regions, whereas the somatic-type is present in only 12 gene copies on chromosome 18 with large intergenic regions. The nine-nucleotide variation between the two 5S rRNA types likely affects TFIII binding and riboprotein L5 binding, probably leading to storage of maternal-type rRNA. Remarkably, these sequence differences are located exactly at the sequence-specific target site for genome integration by the 5S rRNA-specific Mutsu retrotransposon family. Thus, we could define maternal- and somatic-type MutsuDr subfamilies. Furthermore, we identified four additional maternal-type and two new somatic-type MutsuDr subfamilies, each with their own target sequence. This target-site specificity, frequently intact maternal-type retrotransposon elements, plus specific presence of Mutsu retrotransposon RNA and piRNA in egg and adult tissue, suggest an involvement of retrotransposons in achieving the differential copy number of the two types of 5S rDNA loci. PMID:28003516

  7. Bacterial endophyte communities of three agricultural important grass species differ in their response towards management regimes

    NASA Astrophysics Data System (ADS)

    Wemheuer, Franziska; Kaiser, Kristin; Karlovsky, Petr; Daniel, Rolf; Vidal, Stefan; Wemheuer, Bernd

    2017-01-01

    Endophytic bacteria are critical for plant growth and health. However, compositional and functional responses of bacterial endophyte communities towards agricultural practices are still poorly understood. Hence, we analyzed the influence of fertilizer application and mowing frequency on bacterial endophytes in three agriculturally important grass species. For this purpose, we examined bacterial endophytic communities in aerial plant parts of Dactylis glomerata L., Festuca rubra L., and Lolium perenne L. by pyrotag sequencing of bacterial 16S rRNA genes over two consecutive years. Although management regimes influenced endophyte communities, observed responses were grass species-specific. This might be attributed to several bacteria specifically associated with a single grass species. We further predicted functional profiles from obtained 16S rRNA data. These profiles revealed that predicted abundances of genes involved in plant growth promotion or nitrogen metabolism differed between grass species and between management regimes. Moreover, structural and functional community patterns showed no correlation to each other indicating that plant species-specific selection of endophytes is driven by functional rather than phylogenetic traits. The unique combination of 16S rRNA data and functional profiles provided a holistic picture of compositional and functional responses of bacterial endophytes in agricultural relevant grass species towards management practices.

  8. Influence of menstruation on the microbiota of healthy women's labia minora as analyzed using a 16S rRNA gene-based clone library method.

    PubMed

    Shiraishi, Tsukasa; Fukuda, Kazumasa; Morotomi, Nobuo; Imamura, Yuri; Mishima, Junko; Imai, Shigeo; Miyazawa, Kiyoshi; Taniguchi, Hatsumi

    2011-01-01

    The aim of this study was to determine the influence of menstruation on the bacterial population of healthy Japanese women's vulvas, especially the labia minora. Labia minora swabs were obtained from 10 premenopausal, nonpregnant Japanese women at premenstruation and on day 2 of menstruation. Vaginal swabs were also obtained from 3 out of the 10 women. No significant difference was found in the average bacterial cell count between the menstruation and premenstruation samples. Molecular analysis using a 16S rRNA gene-based clone library method detected 22 genera from the labia minora swabs (total 20), with the genus Lactobacillus being predominant at both premenstruation and during menstruation in 7 out of the 10 women. Of the other 3 women, 2 showed various kinds of bacterial species, including oral and fecal bacteria, with Atopobium vaginae and Gardnerella vaginalis predominating in the remaining woman's vulva in both conditions. In total, 6 out of 10 cases (60%) showed significantly different microbiota of the labia minora between the two conditions. These results imply that menstruation may promote a distortion of the bacterial flora around the vulva, although it causes no significant increase of the bacterial count.

  9. Phylogenetic Analysis of Pasteuria penetrans by 16S rRNA Gene Cloning and Sequencing.

    PubMed

    Anderson, J M; Preston, J F; Dickson, D W; Hewlett, T E; Williams, N H; Maruniak, J E

    1999-09-01

    Pasteuria penetrans is an endospore-forming bacterial parasite of Meloidogyne spp. This organism is among the most promising agents for the biological control of root-knot nematodes. In order to establish the phylogenetic position of this species relative to other endospore-forming bacteria, the 16S ribosomal genes from two isolates of P. penetrans, P-20, which preferentially infects M. arenaria race 1, and P-100, which preferentially infects M. incognita and M. javanica, were PCR-amplified from a purified endospore extraction. Universal primers for the 16S rRNA gene were used to amplify DNA which was cloned, and a nucleotide sequence was obtained for 92% of the gene (1,390 base pairs) encoding the 16S rDNA from each isolate. Comparison of both isolates showed identical sequences that were compared to 16S rDNA sequences of 30 other endospore-forming bacteria obtained from GenBank. Parsimony analyses indicated that P. penetrans is a species within a clade that includes Alicyclobacillus acidocaldarius, A. cycloheptanicus, Sulfobacillus sp., Bacillus tusciae, B. schlegelii, and P. ramosa. Its closest neighbor is P. ramosa, a parasite of Daphnia spp. (water fleas). This study provided a genomic basis for the relationship of species assigned to the genus Pasteuria, and for comparison of species that are parasites of different phytopathogenic nematodes.

  10. Synthetic spike-in standards for high-throughput 16S rRNA gene amplicon sequencing

    PubMed Central

    Tourlousse, Dieter M.; Yoshiike, Satowa; Ohashi, Akiko; Matsukura, Satoko; Noda, Naohiro

    2017-01-01

    Abstract High-throughput sequencing of 16S rRNA gene amplicons (16S-seq) has become a widely deployed method for profiling complex microbial communities but technical pitfalls related to data reliability and quantification remain to be fully addressed. In this work, we have developed and implemented a set of synthetic 16S rRNA genes to serve as universal spike-in standards for 16S-seq experiments. The spike-ins represent full-length 16S rRNA genes containing artificial variable regions with negligible identity to known nucleotide sequences, permitting unambiguous identification of spike-in sequences in 16S-seq read data from any microbiome sample. Using defined mock communities and environmental microbiota, we characterized the performance of the spike-in standards and demonstrated their utility for evaluating data quality on a per-sample basis. Further, we showed that staggered spike-in mixtures added at the point of DNA extraction enable concurrent estimation of absolute microbial abundances suitable for comparative analysis. Results also underscored that template-specific Illumina sequencing artifacts may lead to biases in the perceived abundance of certain taxa. Taken together, the spike-in standards represent a novel bioanalytical tool that can substantially improve 16S-seq-based microbiome studies by enabling comprehensive quality control along with absolute quantification. PMID:27980100

  11. Drivers shaping the diversity and biogeography of total and active bacterial communities in the South China Sea

    PubMed Central

    Zhang, Yao; Zhao, Zihao; Dai, Minhan; Jiao, Nianzhi; Herndl, Gerhard J

    2014-01-01

    To test the hypothesis that different drivers shape the diversity and biogeography of the total and active bacterial community, we examined the bacterial community composition along two transects, one from the inner Pearl River estuary to the open waters of the South China Sea (SCS) and the other from the Luzon Strait to the SCS basin, using 454 pyrosequencing of the 16S rRNA and 16S rRNA gene (V1-3 regions) and thereby characterizing the active and total bacterial community, respectively. The diversity and biogeographic patterns differed substantially between the active and total bacterial communities. Although the composition of both the total and active bacterial community was strongly correlated with environmental factors and weakly correlated with geographic distance, the active bacterial community displayed higher environmental sensitivity than the total community and particularly a greater distance effect largely caused by the active assemblage from deep waters. The 16S rRNA vs. rDNA relationships indicated that the active bacteria were low in relative abundance in the SCS. This might be due to a high competition between active bacterial taxa as indicated by our community network models. Based on these analyses, we speculate that high competition could cause some dispersal limitation of the active bacterial community resulting in a distinct distance-decay relationship. Altogether, our results indicated that the biogeographic distribution of bacteria in the SCS is the result of both environmental control and distance decay. PMID:24684298

  12. Linking maternal and somatic 5S rRNA types with different sequence-specific non-LTR retrotransposons.

    PubMed

    Locati, Mauro D; Pagano, Johanna F B; Ensink, Wim A; van Olst, Marina; van Leeuwen, Selina; Nehrdich, Ulrike; Zhu, Kongju; Spaink, Herman P; Girard, Geneviève; Rauwerda, Han; Jonker, Martijs J; Dekker, Rob J; Breit, Timo M

    2017-04-01

    5S rRNA is a ribosomal core component, transcribed from many gene copies organized in genomic repeats. Some eukaryotic species have two 5S rRNA types defined by their predominant expression in oogenesis or adult tissue. Our next-generation sequencing study on zebrafish egg, embryo, and adult tissue identified maternal-type 5S rRNA that is exclusively accumulated during oogenesis, replaced throughout the embryogenesis by a somatic-type, and thus virtually absent in adult somatic tissue. The maternal-type 5S rDNA contains several thousands of gene copies on chromosome 4 in tandem repeats with small intergenic regions, whereas the somatic-type is present in only 12 gene copies on chromosome 18 with large intergenic regions. The nine-nucleotide variation between the two 5S rRNA types likely affects TFIII binding and riboprotein L5 binding, probably leading to storage of maternal-type rRNA. Remarkably, these sequence differences are located exactly at the sequence-specific target site for genome integration by the 5S rRNA-specific Mutsu retrotransposon family. Thus, we could define maternal- and somatic-type MutsuDr subfamilies. Furthermore, we identified four additional maternal-type and two new somatic-type MutsuDr subfamilies, each with their own target sequence. This target-site specificity, frequently intact maternal-type retrotransposon elements, plus specific presence of Mutsu retrotransposon RNA and piRNA in egg and adult tissue, suggest an involvement of retrotransposons in achieving the differential copy number of the two types of 5S rDNA loci. © 2017 Locati et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  13. Prevalence of 16S rRNA methylase genes among β-lactamase-producing Enterobacteriaceae clinical isolates in Saudi Arabia

    PubMed Central

    Al Sheikh, Yazeed A.; Marie, Mohammed Ali M.; John, James; Krishnappa, Lakshmana Gowda; Dabwab, Khaled Homoud M.

    2014-01-01

    Background Co production of 16S rRNA methylases gene and β-Lactamase gene among Enterobacteriaceae isolates conferring resistance to both therapeutic options has serious implications for clinicians worldwide. Methods To study co existence of 16S rRNA methylases (armA, rmtA, rmtB, rmtC, rmtD, and npmA) and β-Lactamase (blaTEM-1, blaSHV-12, blaCTX-M-14) genes, we screened all phenotypic positive β-Lactamase producing enterobacteriaceae by polymerase chain reaction (PCR) targeting above genes. A total of 330 enterobacteriaceae strains were collected during study period out of that 218 isolates were identified phenotypically as β-Lactamase producers, which include 50 (22.9%) Escherichia coli; 92 (42.2%) Klebsiella pneumoniae, 44 (20.2%), Citrobactor freundii and 32 (14.7%) Enterobacter spp. Results Among this 218, only 188 isolates harbored the resistant gene for β-Lactamase production. Major β-Lactamase producing isolates were bla TEM-1 type. 122 (56 %) isolates were found to produce any one of the 16S rRNA methylase genes. A total of 116 isolates co produced β-Lactamase and at least one 16S rRNA methylases gene Co production of armA gene was found in 26 isolates with rmtB and in 4 isolates with rmtC. The rmtA and rmtD genes were not detected in any of the tested isolates. Six isolates were positive for a 16S rRNA methylase gene alone. Conclusion β-Lactamase producing isolates appears to coexist with 16S rRNA methylase predominantly armA and rmtB genes in the same isolate. We conclude the major β-Lactamase and 16S rRNA methylases co-producer was K. pneumoniae followed by E. coli. We suggest further work on evaluating other β-lactamases types and novel antibiotic resistance mechanisms among Enterobacteriaceae. PMID:25005152

  14. Phylogenetic relatedness determined between antibiotic resistance and 16S rRNA genes in actinobacteria.

    PubMed

    Sagova-Mareckova, Marketa; Ulanova, Dana; Sanderova, Petra; Omelka, Marek; Kamenik, Zdenek; Olsovska, Jana; Kopecky, Jan

    2015-04-01

    Distribution and evolutionary history of resistance genes in environmental actinobacteria provide information on intensity of antibiosis and evolution of specific secondary metabolic pathways at a given site. To this day, actinobacteria producing biologically active compounds were isolated mostly from soil but only a limited range of soil environments were commonly sampled. Consequently, soil remains an unexplored environment in search for novel producers and related evolutionary questions. Ninety actinobacteria strains isolated at contrasting soil sites were characterized phylogenetically by 16S rRNA gene, for presence of erm and ABC transporter resistance genes and antibiotic production. An analogous analysis was performed in silico with 246 and 31 strains from Integrated Microbial Genomes (JGI_IMG) database selected by the presence of ABC transporter genes and erm genes, respectively. In the isolates, distances of erm gene sequences were significantly correlated to phylogenetic distances based on 16S rRNA genes, while ABC transporter gene distances were not. The phylogenetic distance of isolates was significantly correlated to soil pH and organic matter content of isolation sites. In the analysis of JGI_IMG datasets the correlation between phylogeny of resistance genes and the strain phylogeny based on 16S rRNA genes or five housekeeping genes was observed for both the erm genes and ABC transporter genes in both actinobacteria and streptomycetes. However, in the analysis of sequences from genomes where both resistance genes occurred together the correlation was observed for both ABC transporter and erm genes in actinobacteria but in streptomycetes only in the erm gene. The type of erm resistance gene sequences was influenced by linkage to 16S rRNA gene sequences and site characteristics. The phylogeny of ABC transporter gene was correlated to 16S rRNA genes mainly above the genus level. The results support the concept of new specific secondary metabolite

  15. Directed hydroxyl radical probing of the rRNA neighborhood of ribosomal protein S13 using tethered Fe(II).

    PubMed Central

    Heilek, G M; Noller, H F

    1996-01-01

    Directed hydroxyl radical probing was used to probe the rRNA neighborhood around protein S13 in the 30S ribosomal subunit. The unique cysteine at position 84 of S13 served as a tethering site for attachment of Fe(II)-1-(p-bromoacetamidobenzyl)-EDTA. Derivatized S13 (Fe-C84-S13) was then assembled into 30S ribosomal subunits by in vitro reconstitution with 16S rRNA and a mixture of the remaining 30S subunit proteins. Hydroxyl radicals generated from the tethered Fe(II) resulted in cleavage of the RNA backbone in two localized regions of the 3' major domain of 16S rRNA. One region spans nt 1308-1333 and is close to a site previously crosslinked to S13. A second set of cleavages is found in the 950/1230 helix. Both regions have been implicated in binding of S13 by previous chemical footprinting studies using base-specific chemical probes and solution-based hydroxyl radical probing. These results place both regions of 16S rRNA in proximity to position C84 of S13 in the three-dimensional structure of the 30S ribosomal subunit. PMID:8718688

  16. Fastidious Gram-Negatives: Identification by the Vitek 2 Neisseria-Haemophilus Card and by Partial 16S rRNA Gene Sequencing Analysis

    PubMed Central

    Sönksen, Ute Wolff; Christensen, Jens Jørgen; Nielsen, Lisbeth; Hesselbjerg, Annemarie; Hansen, Dennis Schrøder; Bruun, Brita

    2010-01-01

    Taxonomy and identification of fastidious Gram negatives are evolving and challenging. We compared identifications achieved with the Vitek 2 Neisseria-Haemophilus (NH) card and partial 16S rRNA gene sequence (526 bp stretch) analysis with identifications obtained with extensive phenotypic characterization using 100 fastidious Gram negative bacteria. Seventy-five strains represented 21 of the 26 taxa included in the Vitek 2 NH database and 25 strains represented related species not included in the database. Of the 100 strains, 31 were the type strains of the species. Vitek 2 NH identification results: 48 of 75 database strains were correctly identified, 11 strains gave `low discrimination´, seven strains were unidentified, and nine strains were misidentified. Identification of 25 non-database strains resulted in 14 strains incorrectly identified as belonging to species in the database. Partial 16S rRNA gene sequence analysis results: For 76 strains phenotypic and sequencing identifications were identical, for 23 strains the sequencing identifications were either probable or possible, and for one strain only the genus was confirmed. Thus, the Vitek 2 NH system identifies most of the commonly occurring species included in the database. Some strains of rarely occurring species and strains of non-database species closely related to database species cause problems. Partial 16S rRNA gene sequence analysis performs well, but does not always suffice, additional phenotypical characterization being useful for final identification. PMID:21347215

  17. International interlaboratory study comparing single organism 16S rRNA gene sequencing data: Beyond consensus sequence comparisons

    PubMed Central

    Olson, Nathan D.; Lund, Steven P.; Zook, Justin M.; Rojas-Cornejo, Fabiola; Beck, Brian; Foy, Carole; Huggett, Jim; Whale, Alexandra S.; Sui, Zhiwei; Baoutina, Anna; Dobeson, Michael; Partis, Lina; Morrow, Jayne B.

    2015-01-01

    This study presents the results from an interlaboratory sequencing study for which we developed a novel high-resolution method for comparing data from different sequencing platforms for a multi-copy, paralogous gene. The combination of PCR amplification and 16S ribosomal RNA gene (16S rRNA) sequencing has revolutionized bacteriology by enabling rapid identification, frequently without the need for culture. To assess variability between laboratories in sequencing 16S rRNA, six laboratories sequenced the gene encoding the 16S rRNA from Escherichia coli O157:H7 strain EDL933 and Listeria monocytogenes serovar 4b strain NCTC11994. Participants performed sequencing methods and protocols available in their laboratories: Sanger sequencing, Roche 454 pyrosequencing®, or Ion Torrent PGM®. The sequencing data were evaluated on three levels: (1) identity of biologically conserved position, (2) ratio of 16S rRNA gene copies featuring identified variants, and (3) the collection of variant combinations in a set of 16S rRNA gene copies. The same set of biologically conserved positions was identified for each sequencing method. Analytical methods using Bayesian and maximum likelihood statistics were developed to estimate variant copy ratios, which describe the ratio of nucleotides at each identified biologically variable position, as well as the likely set of variant combinations present in 16S rRNA gene copies. Our results indicate that estimated variant copy ratios at biologically variable positions were only reproducible for high throughput sequencing methods. Furthermore, the likely variant combination set was only reproducible with increased sequencing depth and longer read lengths. We also demonstrate novel methods for evaluating variable positions when comparing multi-copy gene sequence data from multiple laboratories generated using multiple sequencing technologies. PMID:27077030

  18. 5S rRNA and accompanying proteins in gonads: powerful markers to identify sex and reproductive endocrine disruption in fish.

    PubMed

    Diaz de Cerio, Oihane; Rojo-Bartolomé, Iratxe; Bizarro, Cristina; Ortiz-Zarragoitia, Maren; Cancio, Ibon

    2012-07-17

    In anuran ovaries, 5S rDNA is regulated transcriptionally by transcription factor IIIA (TFIIIA), which upon transcription, binds 5S rRNA, forming 7S RNP. 5S rRNA can be stockpiled also in the form of 42S RNP bound to 42sp43. The aim of the present study was to assess the differential transcriptional regulation of 5S rRNA and associated proteins in thicklip gray mullet (Chelon labrosus) gonads. Up to 75% of the total RNA from mullet ovaries was 5S rRNA. qPCR quantification of 5S rRNA expression, in gonads of histologically sexed individuals from different geographical areas, successfully sexed animals. All males had expression levels that were orders of magnitude below expression levels in females, throughout an annual reproductive cycle, with the exception of two individuals: one in November and one in December. Moreover, intersex mullets from a polluted harbor had expression levels between both sexes. TFIIIA and 42sp43 were also very active transcriptionally in gonads of female and intersex mullets, in comparison to males. Nucleocytoplasmatic transport is important in this context and we also analyzed transcriptional levels of importins-α1, -α2, and -β2 and different exportins. Importin-αs behaved similarly to 5S rRNA. Thus, 5S rRNA and associated proteins constitute very powerful molecular markers of sex and effects of xenosterogens in fish gonads, with potential technological applications in the analysis of fish stock dynamics and reproduction as well as in environmental health assessment.

  19. Characterization of a Novel Association between Two Trypanosome-Specific Proteins and 5S rRNA

    PubMed Central

    Ciganda, Martin; Williams, Noreen

    2012-01-01

    P34 and P37 are two previously identified RNA binding proteins in the flagellate protozoan Trypanosoma brucei. RNA interference studies have determined that the proteins are essential and are involved in ribosome biogenesis. Here, we show that these proteins interact in vitro with the 5S rRNA with nearly identical binding characteristics in the absence of other cellular factors. The T. brucei 5S rRNA has a complex secondary structure and presents four accessible loops (A to D) for interactions with RNA-binding proteins. In other eukaryotes, loop C is bound by the L5 ribosomal protein and loop A mainly by TFIIIA. The binding of P34 and P37 to T. brucei 5S rRNA involves the LoopA region of the RNA, but these proteins also protect the L5 binding site located on LoopC. PMID:22253864

  20. Synthetic spike-in standards for high-throughput 16S rRNA gene amplicon sequencing.

    PubMed

    Tourlousse, Dieter M; Yoshiike, Satowa; Ohashi, Akiko; Matsukura, Satoko; Noda, Naohiro; Sekiguchi, Yuji

    2017-02-28

    High-throughput sequencing of 16S rRNA gene amplicons (16S-seq) has become a widely deployed method for profiling complex microbial communities but technical pitfalls related to data reliability and quantification remain to be fully addressed. In this work, we have developed and implemented a set of synthetic 16S rRNA genes to serve as universal spike-in standards for 16S-seq experiments. The spike-ins represent full-length 16S rRNA genes containing artificial variable regions with negligible identity to known nucleotide sequences, permitting unambiguous identification of spike-in sequences in 16S-seq read data from any microbiome sample. Using defined mock communities and environmental microbiota, we characterized the performance of the spike-in standards and demonstrated their utility for evaluating data quality on a per-sample basis. Further, we showed that staggered spike-in mixtures added at the point of DNA extraction enable concurrent estimation of absolute microbial abundances suitable for comparative analysis. Results also underscored that template-specific Illumina sequencing artifacts may lead to biases in the perceived abundance of certain taxa. Taken together, the spike-in standards represent a novel bioanalytical tool that can substantially improve 16S-seq-based microbiome studies by enabling comprehensive quality control along with absolute quantification. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  1. The pre-existing population of 5S rRNA effects p53 stabilization during ribosome biogenesis inhibition.

    PubMed

    Onofrillo, Carmine; Galbiati, Alice; Montanaro, Lorenzo; Derenzini, Massimo

    2017-01-17

    Pre-ribosomal complex RPL5/RPL11/5S rRNA (5S RNP) is considered the central MDM2 inhibitory complex that control p53 stabilization during ribosome biogenesis inhibition. Despite its role is well defined, the dynamic of 5S RNP assembly still requires further characterization. In the present work, we report that MDM2 inhibition is dependent by a pre-existing population of 5S rRNA.

  2. Chimeric 16S rRNA sequence formation and detection in Sanger and 454-pyrosequenced PCR amplicons

    PubMed Central

    Haas, Brian J.; Gevers, Dirk; Earl, Ashlee M.; Feldgarden, Mike; Ward, Doyle V.; Giannoukos, Georgia; Ciulla, Dawn; Tabbaa, Diana; Highlander, Sarah K.; Sodergren, Erica; Methé, Barbara; DeSantis, Todd Z.; Petrosino, Joseph F.; Knight, Rob; Birren, Bruce W.

    2011-01-01

    Bacterial diversity among environmental samples is commonly assessed with PCR-amplified 16S rRNA gene (16S) sequences. Perceived diversity, however, can be influenced by sample preparation, primer selection, and formation of chimeric 16S amplification products. Chimeras are hybrid products between multiple parent sequences that can be falsely interpreted as novel organisms, thus inflating apparent diversity. We developed a new chimera detection tool called Chimera Slayer (CS). CS detects chimeras with greater sensitivity than previous methods, performs well on short sequences such as those produced by the 454 Life Sciences (Roche) Genome Sequencer, and can scale to large data sets. By benchmarking CS performance against sequences derived from a controlled DNA mixture of known organisms and a simulated chimera set, we provide insights into the factors that affect chimera formation such as sequence abundance, the extent of similarity between 16S genes, and PCR conditions. Chimeras were found to reproducibly form among independent amplifications and contributed to false perceptions of sample diversity and the false identification of novel taxa, with less-abundant species exhibiting chimera rates exceeding 70%. Shotgun metagenomic sequences of our mock community appear to be devoid of 16S chimeras, supporting a role for shotgun metagenomics in validating novel organisms discovered in targeted sequence surveys. PMID:21212162

  3. Description of Drinking Water Bacterial Communities Using 16S rRNA Gene Sequence Analyses

    EPA Science Inventory

    Descriptions of bacterial communities inhabiting water distribution systems (WDS) have mainly been accomplished using culture-based approaches. Due to the inherent selective nature of culture-based approaches, the majority of bacteria inhabiting WDS remain uncharacterized. The go...

  4. Comparative analysis of vaginal microbiota sampling using 16S rRNA gene analysis.

    PubMed

    Virtanen, Seppo; Kalliala, Ilkka; Nieminen, Pekka; Salonen, Anne

    2017-01-01

    Molecular methods such as next-generation sequencing are actively being employed to characterize the vaginal microbiota in health and disease. Previous studies have focused on characterizing the biological variation in the microbiota, and less is known about how factors related to sampling contribute to the results. Our aim was to investigate the impact of a sampling device and anatomical sampling site on the quantitative and qualitative outcomes relevant for vaginal microbiota research. We sampled 10 Finnish women representing diverse clinical characteristics with flocked swabs, the Evalyn® self-sampling device, sterile plastic spatulas and a cervical brush that were used to collect samples from fornix, vaginal wall and cervix. Samples were compared on DNA and protein yield, bacterial load, and microbiota diversity and species composition based on Illumina MiSeq sequencing of the 16S rRNA gene. We quantified the relative contributions of sampling variables versus intrinsic variables in the overall microbiota variation, and evaluated the microbiota profiles using several commonly employed metrics such as alpha and beta diversity as well as abundance of major bacterial genera and species. The total DNA yield was strongly dependent on the sampling device and to a lesser extent on the anatomical site of sampling. The sampling strategy did not affect the protein yield or the bacterial load. All tested sampling methods produced highly comparable microbiota profiles based on MiSeq sequencing. The sampling method explained only 2% (p-value = 0.89) of the overall microbiota variation, markedly surpassed by intrinsic factors such as clinical status (microscopy for bacterial vaginosis 53%, p = 0.0001), bleeding (19%, p = 0.0001), and the variation between subjects (11%, p-value 0.0001). The results indicate that different sampling strategies yield comparable vaginal microbiota composition and diversity. Hence, past and future vaginal microbiota studies employing different

  5. Comparative analysis of vaginal microbiota sampling using 16S rRNA gene analysis

    PubMed Central

    Kalliala, Ilkka; Nieminen, Pekka; Salonen, Anne

    2017-01-01

    Background Molecular methods such as next-generation sequencing are actively being employed to characterize the vaginal microbiota in health and disease. Previous studies have focused on characterizing the biological variation in the microbiota, and less is known about how factors related to sampling contribute to the results. Our aim was to investigate the impact of a sampling device and anatomical sampling site on the quantitative and qualitative outcomes relevant for vaginal microbiota research. We sampled 10 Finnish women representing diverse clinical characteristics with flocked swabs, the Evalyn® self-sampling device, sterile plastic spatulas and a cervical brush that were used to collect samples from fornix, vaginal wall and cervix. Samples were compared on DNA and protein yield, bacterial load, and microbiota diversity and species composition based on Illumina MiSeq sequencing of the 16S rRNA gene. We quantified the relative contributions of sampling variables versus intrinsic variables in the overall microbiota variation, and evaluated the microbiota profiles using several commonly employed metrics such as alpha and beta diversity as well as abundance of major bacterial genera and species. Results The total DNA yield was strongly dependent on the sampling device and to a lesser extent on the anatomical site of sampling. The sampling strategy did not affect the protein yield or the bacterial load. All tested sampling methods produced highly comparable microbiota profiles based on MiSeq sequencing. The sampling method explained only 2% (p-value = 0.89) of the overall microbiota variation, markedly surpassed by intrinsic factors such as clinical status (microscopy for bacterial vaginosis 53%, p = 0.0001), bleeding (19%, p = 0.0001), and the variation between subjects (11%, p-value 0.0001). Conclusions The results indicate that different sampling strategies yield comparable vaginal microbiota composition and diversity. Hence, past and future vaginal

  6. Chronic N-amended soils exhibit an altered bacterial community structure in Harvard Forest, MA, USA

    Treesearch

    Swathi A. Turlapati; Rakesh Minocha; Premsai S. Bhiravarasa; Louise S. Tisa; William K. Thomas; Subhash C. Minocha

    2013-01-01

    At the Harvard Forest, Petersham, MA, the impact of 20 years of annual ammonium nitrate application to the mixed hardwood stand on soil bacterial communities was studied using 16S rRNA genes pyrosequencing. Amplification of 16S rRNA genes was done using DNA extracted from 30 soil samples (three treatments x two horizons x five subplots) collected from untreated (...

  7. Selective Phylogenetic Analysis Targeted at 16S rRNA Genes of Thermophiles and Hyperthermophiles in Deep-Subsurface Geothermal Environments

    PubMed Central

    Kimura, Hiroyuki; Sugihara, Maki; Kato, Kenji; Hanada, Satoshi

    2006-01-01

    Deep-subsurface samples obtained by deep drilling are likely to be contaminated with mesophilic microorganisms in the drilling fluid, and this could affect determination of the community structure of the geothermal microflora using 16S rRNA gene clone library analysis. To eliminate possible contamination by PCR-amplified 16S rRNA genes from mesophiles, a combined thermal denaturation and enzyme digestion method, based on a strong correlation between the G+C content of the 16S rRNA gene and the optimum growth temperatures of most known prokaryotic cultures, was used prior to clone library construction. To validate this technique, hot spring fluid (76°C) and river water (14°C) were used to mimic a deep-subsurface sample contaminated with drilling fluid. After DNA extraction and PCR amplification of the 16S rRNA genes from individual samples separately, the amplified products from river water were observed to be denatured at 82°C and completely digested by exonuclease I (Exo I), while the amplified products from hot spring fluid remained intact after denaturation at 84°C and enzyme digestion with Exo I. DNAs extracted from the two samples were mixed and used as a template for amplification of the 16S rRNA genes. The amplified rRNA genes were denatured at 84°C and digested with Exo I before clone library construction. The results indicated that the 16S rRNA gene sequences from the river water were almost completely eliminated, whereas those from the hot spring fluid remained. PMID:16391020

  8. Bacterial diversity associated with the rotifer Brachionus plicatilis sp. complex determined by culture-dependent and -independent methods.

    PubMed

    Ishino, Ryota; Iehata, Shunpei; Nakano, Miyo; Tanaka, Reiji; Yoshimatsu, Takao; Maeda, Hiroto

    2012-03-01

    The bacterial communities associated with rotifers (Brachionus plicatilis sp. complex) and their culture water were determined using culture-dependent and -independent methods (16S rRNA gene clone library). The bacterial communities determined by the culture-independent method were more diverse than those determined by the culture-dependent method. Although the culture-dependent method indicated the bacterial community of rotifers was relatively similar to that of the culture water, 16S rRNA gene clone library analyses revealed a great difference between the two microbiotas. Our results suggest that most bacteria associated with rotifers are not easily cultured using conventional methods, and that the microbiota of rotifers do not correspond with that of the culture water completely.

  9. Characterization of bacterial diversity associated with deep sea ferromanganese nodules from the South China Sea.

    PubMed

    Zhang, De-Chao; Liu, Yan-Xia; Li, Xin-Zheng

    2015-09-01

    Deep sea ferromanganese (FeMn) nodules contain metallic mineral resources and have great economic potential. In this study, a combination of culture-dependent and culture-independent (16S rRNA genes clone library and pyrosequencing) methods was used to investigate the bacterial diversity in FeMn nodules from Jiaolong Seamount, the South China Sea. Eleven bacterial strains including some moderate thermophiles were isolated. The majority of strains belonged to the phylum Proteobacteria; one isolate belonged to the phylum Firmicutes. A total of 259 near full-length bacterial 16S rRNA gene sequences in a clone library and 67,079 valid reads obtained using pyrosequencing indicated that members of the Gammaproteobacteria dominated, with the most abundant bacterial genera being Pseudomonas and Alteromonas. Sequence analysis indicated the presence of many organisms whose closest relatives are known manganese oxidizers, iron reducers, hydrogen-oxidizing bacteria and methylotrophs. This is the first reported investigation of bacterial diversity associated with deep sea FeMn nodules from the South China Sea.

  10. The pre-existing population of 5S rRNA effects p53 stabilization during ribosome biogenesis inhibition

    PubMed Central

    Onofrillo, Carmine; Galbiati, Alice; Montanaro, Lorenzo; Derenzini, Massimo

    2017-01-01

    Pre-ribosomal complex RPL5/RPL11/5S rRNA (5S RNP) is considered the central MDM2 inhibitory complex that control p53 stabilization during ribosome biogenesis inhibition. Despite its role is well defined, the dynamic of 5S RNP assembly still requires further characterization. In the present work, we report that MDM2 inhibition is dependent by a pre-existing population of 5S rRNA. PMID:28032591

  11. Sampling and pyrosequencing methods for characterizing bacterial communities in the human gut using 16S sequence tags

    PubMed Central

    2010-01-01

    Intense interest centers on the role of the human gut microbiome in health and disease, but optimal methods for analysis are still under development. Here we present a study of methods for surveying bacterial communities in human feces using 454/Roche pyrosequencing of 16S rRNA gene tags. We analyzed fecal samples from 10 individuals and compared methods for storage, DNA purification and sequence acquisition. To assess reproducibility, we compared samples one cm apart on a single stool specimen for each individual. To analyze storage methods, we compared 1) immediate freezing at -80°C, 2) storage on ice for 24 or 3) 48 hours. For DNA purification methods, we tested three commercial kits and bead beating in hot phenol. Variations due to the different methodologies were compared to variation among individuals using two approaches--one based on presence-absence information for bacterial taxa (unweighted UniFrac) and the other taking into account their relative abundance (weighted UniFrac). In the unweighted analysis relatively little variation was associated with the different analytical procedures, and variation between individuals predominated. In the weighted analysis considerable variation was associated with the purification methods. Particularly notable was improved recovery of Firmicutes sequences using the hot phenol method. We also carried out surveys of the effects of different 454 sequencing methods (FLX versus Titanium) and amplification of different 16S rRNA variable gene segments. Based on our findings we present recommendations for protocols to collect, process and sequence bacterial 16S rDNA from fecal samples--some major points are 1) if feasible, bead-beating in hot phenol or use of the PSP kit improves recovery; 2) storage methods can be adjusted based on experimental convenience; 3) unweighted (presence-absence) comparisons are less affected by lysis method. PMID:20673359

  12. Sampling and pyrosequencing methods for characterizing bacterial communities in the human gut using 16S sequence tags.

    PubMed

    Wu, Gary D; Lewis, James D; Hoffmann, Christian; Chen, Ying-Yu; Knight, Rob; Bittinger, Kyle; Hwang, Jennifer; Chen, Jun; Berkowsky, Ronald; Nessel, Lisa; Li, Hongzhe; Bushman, Frederic D

    2010-07-30

    Intense interest centers on the role of the human gut microbiome in health and disease, but optimal methods for analysis are still under development. Here we present a study of methods for surveying bacterial communities in human feces using 454/Roche pyrosequencing of 16S rRNA gene tags. We analyzed fecal samples from 10 individuals and compared methods for storage, DNA purification and sequence acquisition. To assess reproducibility, we compared samples one cm apart on a single stool specimen for each individual. To analyze storage methods, we compared 1) immediate freezing at -80 degrees C, 2) storage on ice for 24 or 3) 48 hours. For DNA purification methods, we tested three commercial kits and bead beating in hot phenol. Variations due to the different methodologies were compared to variation among individuals using two approaches--one based on presence-absence information for bacterial taxa (unweighted UniFrac) and the other taking into account their relative abundance (weighted UniFrac). In the unweighted analysis relatively little variation was associated with the different analytical procedures, and variation between individuals predominated. In the weighted analysis considerable variation was associated with the purification methods. Particularly notable was improved recovery of Firmicutes sequences using the hot phenol method. We also carried out surveys of the effects of different 454 sequencing methods (FLX versus Titanium) and amplification of different 16S rRNA variable gene segments. Based on our findings we present recommendations for protocols to collect, process and sequence bacterial 16S rDNA from fecal samples--some major points are 1) if feasible, bead-beating in hot phenol or use of the PSP kit improves recovery; 2) storage methods can be adjusted based on experimental convenience; 3) unweighted (presence-absence) comparisons are less affected by lysis method.

  13. An intergenic non-coding rRNA correlated with expression of the rRNA and frequency of an rRNA single nucleotide polymorphism in lung cancer cells.

    PubMed

    Shiao, Yih-Horng; Lupascu, Sorin T; Gu, Yuhan D; Kasprzak, Wojciech; Hwang, Christopher J; Fields, Janet R; Leighty, Robert M; Quiñones, Octavio; Shapiro, Bruce A; Alvord, W Gregory; Anderson, Lucy M

    2009-10-19

    Ribosomal RNA (rRNA) is a central regulator of cell growth and may control cancer development. A cis noncoding rRNA (nc-rRNA) upstream from the 45S rRNA transcription start site has recently been implicated in control of rRNA transcription in mouse fibroblasts. We investigated whether a similar nc-rRNA might be expressed in human cancer epithelial cells, and related to any genomic characteristics. Using quantitative rRNA measurement, we demonstrated that a nc-rRNA is transcribed in human lung epithelial and lung cancer cells, starting from approximately -1000 nucleotides upstream of the rRNA transcription start site (+1) and extending at least to +203. This nc-rRNA was significantly more abundant in the majority of lung cancer cell lines, relative to a nontransformed lung epithelial cell line. Its abundance correlated negatively with total 45S rRNA in 12 of 13 cell lines (P = 0.014). During sequence analysis from -388 to +306, we observed diverse, frequent intercopy single nucleotide polymorphisms (SNPs) in rRNA, with a frequency greater than predicted by chance at 12 sites. A SNP at +139 (U/C) in the 5' leader sequence varied among the cell lines and correlated negatively with level of the nc-rRNA (P = 0.014). Modelling of the secondary structure of the rRNA 5'-leader sequence indicated a small increase in structural stability due to the +139 U/C SNP and a minor shift in local configuration occurrences. The results demonstrate occurrence of a sense nc-rRNA in human lung epithelial and cancer cells, and imply a role in regulation of the rRNA gene, which may be affected by a +139 SNP in the 5' leader sequence of the primary rRNA transcript.

  14. Intrinsic challenges in ancient microbiome reconstruction using 16S rRNA gene amplification.

    PubMed

    Ziesemer, Kirsten A; Mann, Allison E; Sankaranarayanan, Krithivasan; Schroeder, Hannes; Ozga, Andrew T; Brandt, Bernd W; Zaura, Egija; Waters-Rist, Andrea; Hoogland, Menno; Salazar-García, Domingo C; Aldenderfer, Mark; Speller, Camilla; Hendy, Jessica; Weston, Darlene A; MacDonald, Sandy J; Thomas, Gavin H; Collins, Matthew J; Lewis, Cecil M; Hofman, Corinne; Warinner, Christina

    2015-11-13

    To date, characterization of ancient oral (dental calculus) and gut (coprolite) microbiota has been primarily accomplished through a metataxonomic approach involving targeted amplification of one or more variable regions in the 16S rRNA gene. Specifically, the V3 region (E. coli 341-534) of this gene has been suggested as an excellent candidate for ancient DNA amplification and microbial community reconstruction. However, in practice this metataxonomic approach often produces highly skewed taxonomic frequency data. In this study, we use non-targeted (shotgun metagenomics) sequencing methods to better understand skewed microbial profiles observed in four ancient dental calculus specimens previously analyzed by amplicon sequencing. Through comparisons of microbial taxonomic counts from paired amplicon (V3 U341F/534R) and shotgun sequencing datasets, we demonstrate that extensive length polymorphisms in the V3 region are a consistent and major cause of differential amplification leading to taxonomic bias in ancient microbiome reconstructions based on amplicon sequencing. We conclude that systematic amplification bias confounds attempts to accurately reconstruct microbiome taxonomic profiles from 16S rRNA V3 amplicon data generated using universal primers. Because in silico analysis indicates that alternative 16S rRNA hypervariable regions will present similar challenges, we advocate for the use of a shotgun metagenomics approach in ancient microbiome reconstructions.

  15. Sequence of the chloroplast 16S rRNA gene and its surrounding regions of Chlamydomonas reinhardii.

    PubMed Central

    Dron, M; Rahire, M; Rochaix, J D

    1982-01-01

    The sequence of a 2 kb DNA fragment containing the chloroplast 16S ribosomal RNA gene from Chlamydomonas reinhardii and its flanking regions has been determined. The algal 16S rRNA sequence (1475 nucleotides) and secondary structure are highly related to those found in bacteria and in the chloroplasts of higher plants. In contrast, the flanking regions are very different. In C. reinhardii the 16S rRNA gene is surrounded by AT rich segments of about 180 bases, which are followed by a long stretch of complementary bases separated from each other by 1833 nucleotides. It is likely that these structures play an important role in the folding and processing of the precursor of 16S rRNA. The primary and secondary structures of the binding sites of two ribosomal proteins in the 16SrRNAs of E. coli and C. reinhardii are considerably related. Images PMID:6296784

  16. Intra-Genomic Heterogeneity in 16S rRNA Genes in Strictly Anaerobic Clinical Isolates from Periodontal Abscesses.

    PubMed

    Chen, Jiazhen; Miao, Xinyu; Xu, Meng; He, Junlin; Xie, Yi; Wu, Xingwen; Chen, Gang; Yu, Liying; Zhang, Wenhong

    2015-01-01

    Members of the genera Prevotella, Veillonella and Fusobacterium are the predominant culturable obligate anaerobic bacteria isolated from periodontal abscesses. When determining the cumulative number of clinical anaerobic isolates from periodontal abscesses, ambiguous or overlapping signals were frequently encountered in 16S rRNA gene sequencing chromatograms, resulting in ambiguous identifications. With the exception of the genus Veillonella, the high intra-chromosomal heterogeneity of rrs genes has not been reported. The 16S rRNA genes of 138 clinical, strictly anaerobic isolates and one reference strain were directly sequenced, and the chromatograms were carefully examined. Gene cloning was performed for 22 typical isolates with doublet sequencing signals for the 16S rRNA genes, and four copies of the rrs-ITS genes of 9 Prevotella intermedia isolates were separately amplified by PCR, sequenced and compared. Five conserved housekeeping genes, hsp60, recA, dnaJ, gyrB1 and rpoB from 89 clinical isolates of Prevotella were also amplified by PCR and sequenced for identification and phylogenetic analysis along with 18 Prevotella reference strains. Heterogeneity of 16S rRNA genes was apparent in clinical, strictly anaerobic oral bacteria, particularly in the genera Prevotella and Veillonella. One hundred out of 138 anaerobic strains (72%) had intragenomic nucleotide polymorphisms (SNPs) in multiple locations, and 13 strains (9.4%) had intragenomic insertions or deletions in the 16S rRNA gene. In the genera Prevotella and Veillonella, 75% (67/89) and 100% (19/19) of the strains had SNPs in the 16S rRNA gene, respectively. Gene cloning and separate amplifications of four copies of the rrs-ITS genes confirmed that 2 to 4 heterogeneous 16S rRNA copies existed. Sequence alignment of five housekeeping genes revealed that intra-species nucleotide similarities were very high in the genera Prevotella, ranging from 94.3-100%. However, the inter-species similarities were

  17. Intra-Genomic Heterogeneity in 16S rRNA Genes in Strictly Anaerobic Clinical Isolates from Periodontal Abscesses

    PubMed Central

    Chen, Jiazhen; Miao, Xinyu; Xu, Meng; He, Junlin; Xie, Yi; Wu, Xingwen; Chen, Gang; Yu, Liying; Zhang, Wenhong

    2015-01-01

    Background Members of the genera Prevotella, Veillonella and Fusobacterium are the predominant culturable obligate anaerobic bacteria isolated from periodontal abscesses. When determining the cumulative number of clinical anaerobic isolates from periodontal abscesses, ambiguous or overlapping signals were frequently encountered in 16S rRNA gene sequencing chromatograms, resulting in ambiguous identifications. With the exception of the genus Veillonella, the high intra-chromosomal heterogeneity of rrs genes has not been reported. Methods The 16S rRNA genes of 138 clinical, strictly anaerobic isolates and one reference strain were directly sequenced, and the chromatograms were carefully examined. Gene cloning was performed for 22 typical isolates with doublet sequencing signals for the 16S rRNA genes, and four copies of the rrs-ITS genes of 9 Prevotella intermedia isolates were separately amplified by PCR, sequenced and compared. Five conserved housekeeping genes, hsp60, recA, dnaJ, gyrB1 and rpoB from 89 clinical isolates of Prevotella were also amplified by PCR and sequenced for identification and phylogenetic analysis along with 18 Prevotella reference strains. Results Heterogeneity of 16S rRNA genes was apparent in clinical, strictly anaerobic oral bacteria, particularly in the genera Prevotella and Veillonella. One hundred out of 138 anaerobic strains (72%) had intragenomic nucleotide polymorphisms (SNPs) in multiple locations, and 13 strains (9.4%) had intragenomic insertions or deletions in the 16S rRNA gene. In the genera Prevotella and Veillonella, 75% (67/89) and 100% (19/19) of the strains had SNPs in the 16S rRNA gene, respectively. Gene cloning and separate amplifications of four copies of the rrs-ITS genes confirmed that 2 to 4 heterogeneous 16S rRNA copies existed. Conclusion Sequence alignment of five housekeeping genes revealed that intra-species nucleotide similarities were very high in the genera Prevotella, ranging from 94.3–100%. However, the

  18. Use of in-field bioreactors demonstrate groundwater filtration influences planktonic bacterial community assembly, but not biofilm composition

    DOE PAGES

    Christensen, Geoffrey A.; Moon, Ji Won; Veach, Allison M.; ...

    2018-03-20

    Using in-field bioreactors, we investigated the influence of exogenous microorganisms in groundwater planktonic and biofilm microbial communities as part of the Integrated Field Research Challenge (IFRC). After an acclimation period with source groundwater, bioreactors received either filtered (0.22 μM filter) or unfiltered well groundwater in triplicate and communities were tracked routinely for 23 days after filtration was initiated. To address geochemical influences, the planktonic phase was assayed periodically for protein, organic acids, physico-/geochemical measurements and bacterial community (via 16S rRNA gene sequencing), while biofilms (i.e. microbial growth on sediment coupons) were targeted for bacterial community composition at the completion ofmore » the experiment (23 d). Based on Bray-Curtis distance, planktonic bacterial community composition varied temporally and between treatments (filtered, unfiltered bioreactors). Notably, filtration led to an increase in the dominant genus, Zoogloea relative abundance over time within the planktonic community, while remaining relatively constant when unfiltered. At day 23, biofilm communities were more taxonomically and phylogenetically diverse and substantially different from planktonic bacterial communities; however, the biofilm bacterial communities were similar regardless of filtration. These results suggest that although planktonic communities were sensitive to groundwater filtration, bacterial biofilm communities were stable and resistant to filtration. Bioreactors are useful tools in addressing questions pertaining to microbial community assembly and succession. These data provide a first step in understanding how an extrinsic factor, such as a groundwater inoculation and flux of microbial colonizers, impact how microbial communities assemble in environmental systems.« less

  19. Use of in-field bioreactors demonstrate groundwater filtration influences planktonic bacterial community assembly, but not biofilm composition

    PubMed Central

    Moon, JiWon; Veach, Allison M.; Mosher, Jennifer J.; Wymore, Ann M.; van Nostrand, Joy D.; Zhou, Jizhong; Hazen, Terry C.; Arkin, Adam P.; Elias, Dwayne A.

    2018-01-01

    Using in-field bioreactors, we investigated the influence of exogenous microorganisms in groundwater planktonic and biofilm microbial communities as part of the Integrated Field Research Challenge (IFRC). After an acclimation period with source groundwater, bioreactors received either filtered (0.22 μM filter) or unfiltered well groundwater in triplicate and communities were tracked routinely for 23 days after filtration was initiated. To address geochemical influences, the planktonic phase was assayed periodically for protein, organic acids, physico-/geochemical measurements and bacterial community (via 16S rRNA gene sequencing), while biofilms (i.e. microbial growth on sediment coupons) were targeted for bacterial community composition at the completion of the experiment (23 d). Based on Bray-Curtis distance, planktonic bacterial community composition varied temporally and between treatments (filtered, unfiltered bioreactors). Notably, filtration led to an increase in the dominant genus, Zoogloea relative abundance over time within the planktonic community, while remaining relatively constant when unfiltered. At day 23, biofilm communities were more taxonomically and phylogenetically diverse and substantially different from planktonic bacterial communities; however, the biofilm bacterial communities were similar regardless of filtration. These results suggest that although planktonic communities were sensitive to groundwater filtration, bacterial biofilm communities were stable and resistant to filtration. Bioreactors are useful tools in addressing questions pertaining to microbial community assembly and succession. These data provide a first step in understanding how an extrinsic factor, such as a groundwater inoculation and flux of microbial colonizers, impact how microbial communities assemble in environmental systems. PMID:29558522

  20. Use of in-field bioreactors demonstrate groundwater filtration influences planktonic bacterial community assembly, but not biofilm composition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Christensen, Geoffrey A.; Moon, Ji Won; Veach, Allison M.

    Using in-field bioreactors, we investigated the influence of exogenous microorganisms in groundwater planktonic and biofilm microbial communities as part of the Integrated Field Research Challenge (IFRC). After an acclimation period with source groundwater, bioreactors received either filtered (0.22 μM filter) or unfiltered well groundwater in triplicate and communities were tracked routinely for 23 days after filtration was initiated. To address geochemical influences, the planktonic phase was assayed periodically for protein, organic acids, physico-/geochemical measurements and bacterial community (via 16S rRNA gene sequencing), while biofilms (i.e. microbial growth on sediment coupons) were targeted for bacterial community composition at the completion ofmore » the experiment (23 d). Based on Bray-Curtis distance, planktonic bacterial community composition varied temporally and between treatments (filtered, unfiltered bioreactors). Notably, filtration led to an increase in the dominant genus, Zoogloea relative abundance over time within the planktonic community, while remaining relatively constant when unfiltered. At day 23, biofilm communities were more taxonomically and phylogenetically diverse and substantially different from planktonic bacterial communities; however, the biofilm bacterial communities were similar regardless of filtration. These results suggest that although planktonic communities were sensitive to groundwater filtration, bacterial biofilm communities were stable and resistant to filtration. Bioreactors are useful tools in addressing questions pertaining to microbial community assembly and succession. These data provide a first step in understanding how an extrinsic factor, such as a groundwater inoculation and flux of microbial colonizers, impact how microbial communities assemble in environmental systems.« less

  1. Comparison of 16S rRNA sequencing with biochemical testing for species-level identification of clinical isolates of Neisseria spp.

    PubMed

    Mechergui, Arij; Achour, Wafa; Ben Hassen, Assia

    2014-08-01

    We aimed to compare accuracy of genus and species level identification of Neisseria spp. using biochemical testing and 16S rRNA sequence analysis. These methods were evaluated using 85 Neisseria spp. clinical isolates initially identified to the genus level by conventional biochemical tests and API NH system (Bio-Mérieux(®)). In 34 % (29/85), more than one possibility was given by 16S rRNA sequence analysis. In 6 % (5/85), one of the possibilities offered by 16S rRNA gene sequencing, agreed with the result given by biochemical testing. In 4 % (3/85), the same species was given by both methods. 16S rRNA gene sequencing results did not correlate well with biochemical tests.

  2. Stability of a biogas-producing bacterial, archaeal and fungal community degrading food residues.

    PubMed

    Bengelsdorf, Frank R; Gerischer, Ulrike; Langer, Susanne; Zak, Manuel; Kazda, Marian

    2013-04-01

    The resident microbiota was analyzed in a mesophilic, continuously operating biogas plant predominantly utilizing food residues, stale bread, and other waste cosubstrates together with pig manure and maize silage. The dominating bacterial, archaeal, and eukaryotic community members were characterized by two different 16S/18S rRNA gene culture-independent approaches. Prokaryotic 16S rRNA gene and eukaryotic 18S rRNA gene clone libraries were constructed and further analyzed by restriction fragment length polymorphism (RFLP), 16S/18S rRNA gene sequencing, and phylogenetic tree reconstruction. The most dominant bacteria belonged to the phyla Bacteriodetes, Chloroflexus, and Firmicutes. On the family level, the bacterial composition confirmed high differences among biogas plants studied so fare. In contrast, the methanogenic archaeal community was similar to that of other studied biogas plants. Furthermore, it was possible to identify fungi at the genus level, namely Saccharomyces and Mucor. Both genera, which are important for microbial degradation of complex compounds, were up to now not found in biogas plants. The results revealed their long-term presence as indicated by denaturating gradient gel electrophoresis (DGGE). The DGGE method confirmed that the main members of the microbial community were constantly present over more than one-year period. © 2012 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  3. Rifaximin has minor effects on bacterial composition, inflammation, and bacterial translocation in cirrhosis: A randomized trial.

    PubMed

    Kimer, Nina; Pedersen, Julie S; Tavenier, Juliette; Christensen, Jeffrey E; Busk, Troels M; Hobolth, Lise; Krag, Aleksander; Al-Soud, Waleed Abu; Mortensen, Martin S; Sørensen, Søren J; Møller, Søren; Bendtsen, Flemming

    2018-01-01

    Decompensated cirrhosis is characterized by disturbed hemodynamics, immune dysfunction, and high risk of infections. Translocation of viable bacteria and bacterial products from the gut to the blood is considered a key driver in this process. Intestinal decontamination with rifaximin may reduce bacterial translocation (BT) and decrease inflammation. A randomized, placebo-controlled trial investigated the effects of rifaximin on inflammation and BT in decompensated cirrhosis. Fifty-four out-patients with cirrhosis and ascites were randomized, mean age 56 years (± 8.4), and model for end-stage liver disease score 12 (± 3.9). Patients received rifaximin 550-mg BD (n = 36) or placebo BD (n = 18). Blood and fecal (n = 15) sampling were conducted at baseline and after 4 weeks. Bacterial DNA in blood was determined by real-time qPCR 16S rRNA gene quantification. Bacterial composition in feces was analyzed by 16S rRNA gene sequencing. Circulating markers of inflammation, including tumor necrosis factor alpha, interleukins 6, 10, and 18, stromal cell-derived factor 1-α, transforming growth factor β-1, and high sensitivity C-reactive protein, were unaltered by rifaximin treatment. Rifaximin altered abundance of bacterial taxa in blood marginally, only a decrease in Pseudomonadales was observed. In feces, rifaximin decreased bacterial richness, but effect on particular species was not observed. Subgroup analyses on patients with severely disturbed hemodynamics (n = 34) or activated lipopolysaccharide binding protein (n = 37) revealed no effect of rifaximin. Four weeks of treatment with rifaximin had no impact on the inflammatory state and only minor effects on BT and intestinal bacterial composition in stable, decompensated cirrhosis (NCT01769040). © 2017 Journal of Gastroenterology and Hepatology Foundation and John Wiley & Sons Australia, Ltd.

  4. Tomato (Solanum lycopersicum) variety discrimination and hybridization analysis based on the 5S rRNA region.

    PubMed

    Sun, Yan-Lin; Kang, Ho-Min; Kim, Young-Sik; Baek, Jun-Pill; Zheng, Shi-Lin; Xiang, Jin-Jun; Hong, Soon-Kwan

    2014-05-04

    The tomato ( Solanum lycopersicum ) is a major vegetable crop worldwide. To satisfy popular demand, more than 500 tomato varieties have been bred. However, a clear variety identification has not been found. Thorough understanding of the phylogenetic relationship and hybridization information of tomato varieties is very important for further variety breeding. Thus, in this study, we collected 26 tomato varieties and attempted to distinguish them based on the 5S rRNA region, which is widely used in the determination of phylogenetic relations. Sequence analysis of the 5S rRNA region suggested that a large number of nucleotide variations exist among tomato varieties. These variable nucleotide sites were also informative regarding hybridization. Chromas sequencing of Yellow Mountain View and Seuwiteuking varieties indicated three and one variable nucleotide sites in the non-transcribed spacer (NTS) of the 5S rRNA region showing hybridization, respectively. Based on a phylogenetic tree constructed using the 5S rRNA sequences, we observed that 16 tomato varieties were divided into three groups at 95% similarity. Rubiking and Sseommeoking, Lang Selection Procedure and Seuwiteuking, and Acorn Gold and Yellow Mountain View exhibited very high identity with their partners. This work will aid variety authentication and provides a basis for further tomato variety breeding.

  5. DNA extraction protocols cause differences in 16S rRNA amplicon sequencing efficiency but not in community profile composition or structure

    DOE PAGES

    None

    2014-12-01

    The recent development of methods applying next-generation sequencing to microbial community characterization has led to the proliferation of these studies in a wide variety of sample types. Yet, variation in the physical properties of environmental samples demands that optimal DNA extraction techniques be explored for each new environment. The microbiota associated with many species of insects offer an extraction challenge as they are frequently surrounded by an armored exoskeleton, inhibiting disruption of the tissues within. In this study, we examine the efficacy of several commonly used protocols for extracting bacterial DNA from ants. While bacterial community composition recovered using Illuminamore » 16S rRNA amplicon sequencing was not detectably biased by any method, the quantity of bacterial DNA varied drastically, reducing the number of samples that could be amplified and sequenced. These results indicate that the concentration necessary for dependable sequencing is around 10,000 copies of target DNA per microliter. Exoskeletal pulverization and tissue digestion increased the reliability of extractions, suggesting that these steps should be included in any study of insect-associated microorganisms that relies on obtaining microbial DNA from intact body segments. Although laboratory and analysis techniques should be standardized across diverse sample types as much as possible, minimal modifications such as these will increase the number of environments in which bacterial communities can be successfully studied.« less

  6. Detecting 16S rRNA Methyltransferases in Enterobacteriaceae by Use of Arbekacin

    PubMed Central

    Chahine, Sarah; Okafor, Darius; Ong, Ana C.; Maybank, Rosslyn; Kwak, Yoon I.; Wilson, Kerry; Zapor, Michael; Lesho, Emil; Hinkle, Mary

    2015-01-01

    16S rRNA methyltransferases confer resistance to most aminoglycosides, but discriminating their activity from that of aminoglycoside-modifying enzymes (AMEs) is challenging using phenotypic methods. We demonstrate that arbekacin, an aminoglycoside refractory to most AMEs, can rapidly detect 16S methyltransferase activity in Enterobacteriaceae with high specificity using the standard disk susceptibility test. PMID:26537447

  7. Technologically important extremophile 16S rRNA sequence Shannon entropy and fractal property comparison with long term dormant microbes

    NASA Astrophysics Data System (ADS)

    Holden, Todd; Gadura, N.; Dehipawala, S.; Cheung, E.; Tuffour, M.; Schneider, P.; Tremberger, G., Jr.; Lieberman, D.; Cheung, T.

    2011-10-01

    Technologically important extremophiles including oil eating microbes, uranium and rocket fuel perchlorate reduction microbes, electron producing microbes and electrode electrons feeding microbes were compared in terms of their 16S rRNA sequences, a standard targeted sequence in comparative phylogeny studies. Microbes that were reported to have survived a prolonged dormant duration were also studied. Examples included the recently discovered microbe that survives after 34,000 years in a salty environment while feeding off organic compounds from other trapped dead microbes. Shannon entropy of the 16S rRNA nucleotide composition and fractal dimension of the nucleotide sequence in terms of its atomic number fluctuation analyses suggest a selected range for these extremophiles as compared to other microbes; consistent with the experience of relatively mild evolutionary pressure. However, most of the microbes that have been reported to survive in prolonged dormant duration carry sequences with fractal dimension between 1.995 and 2.005 (N = 10 out of 13). Similar results are observed for halophiles, red-shifted chlorophyll and radiation resistant microbes. The results suggest that prolonged dormant duration, in analogous to high salty or radiation environment, would select high fractal 16S rRNA sequences. Path analysis in structural equation modeling supports a causal relation between entropy and fractal dimension for the studied 16S rRNA sequences (N = 7). Candidate choices for high fractal 16S rRNA microbes could offer protection for prolonged spaceflights. BioBrick gene network manipulation could include extremophile 16S rRNA sequences in synthetic biology and shed more light on exobiology and future colonization in shielded spaceflights. Whether the high fractal 16S rRNA sequences contain an asteroidlike extra-terrestrial source could be speculative but interesting.

  8. Comparison of synovial fluid culture and 16S rRNA PCR in dogs with suspected septic arthritis.

    PubMed

    Scharf, V F; Lewis, D D; Wellehan, J F; Wamsley, H L; Richardson, R

    2015-06-01

    To prospectively compare the sensitivity and specificity of 16S rRNA PCR with culture for identifying the causative organism in synovial fluid obtained from dogs with suspected septic arthritis. Synovial fluid cytology, PCR analysis and aerobic, anaerobic and Mycoplasma culture of samples from the affected joints of 18 dogs presenting with suspected septic arthritis were performed. Synovial fluid samples from the corresponding contralateral joints of 7 dogs were also analysed as negative controls. There was no significant difference between the sensitivity of bacterial detection via culture (63.2%) versus PCR (73.7%) of synovial fluid (P=0.728) or between culture and combined PCR and culture (89.5%) of synovial fluid (P=0.124). The specificity of PCR (42.9%) was significantly lower than culture specificity (100%) (P=0.07). Although 16S PCR may hold potential as an ancillary diagnostic test for identifying the causative organism in dogs with septic arthritis, our study failed to demonstrate improved accuracy compared with traditional synovial fluid culture. © 2015 Australian Veterinary Association.

  9. The E. coli 16S rRNA binding site of ribosomal protein S15: higher-order structure in the absence and in the presence of the protein.

    PubMed Central

    Mougel, M; Philippe, C; Ebel, J P; Ehresmann, B; Ehresmann, C

    1988-01-01

    We have investigated in detail the secondary and tertiary structures of E. coli 16S rRNA binding site of protein S15 using a variety of enzymatic and chemical probes. RNase T1 and nuclease S1 were used to probe unpaired nucleotides and RNase V1 to monitor base-paired or stacked nucleotides. Bases were probed with dimethylsulfate (at A(N-1), C(N-3) and G(N-7)), with 1-cyclohexyl-3 (2-(1-methylmorpholino)-ethyl)-carboiimide-p- toluenesulfonate (at U(N-3) and G(N-1)) and with diethylpyrocarbonate (at A(N-7)). The RNA region corresponding to nucleotides 652 to 753 was tested within: (1) the complete 16S rRNA molecule; (2) a 16S rRNA fragment corresponding to nucleotides 578 to 756 obtained by transcription in vitro; (3) the S15-16S rRNA complex; (4) the S15-fragment complex. Cleavage and modification sites were detected by primer extension with reverse transcriptase. Our results show that: (1) The synthetized fragment folds into the same overall secondary structure as in the complete 16S rRNA, with the exception of the large asymmetrical internal loop (nucleotides 673-676/714-733) which is fully accessible in the fragment while it appears conformationally heterogeneous in the 16S rRNA; (2) the reactivity patterns of the S15-16S rRNA and S15-fragment complexes are identical; (3) the protein protects defined RNA regions, located in the large interior loop and in the 3'-end strand of helix [655-672]-[734-751]; (4) the protein also causes enhanced chemical reactivity and enzyme accessibility interpreted as resulting from a local conformational rearrangement, induced by S15 binding. Images PMID:2453025

  10. Marine mesocosm bacterial colonisation of volcanic ash

    NASA Astrophysics Data System (ADS)

    Witt, Verena; Cimarelli, Corrado; Ayris, Paul; Kueppers, Ulrich; Erpenbeck, Dirk; Dingwell, Donald; Woerheide, Gert

    2015-04-01

    Volcanic eruptions regularly eject large quantities of ash particles into the atmosphere, which can be deposited via fallout into oceanic environments. Such fallout has the potential to alter pH, light and nutrient availability at local scales. Shallow-water coral reef ecosystems - "rainforests of the sea" - are highly sensitive to disturbances, such as ocean acidification, sedimentation and eutrophication. Therefore, wind-delivered volcanic ash may lead to burial and mortality of such reefs. Coral reef ecosystem resilience may depend on pioneer bacterial colonisation of the ash layer, supporting subsequent establishment of the micro- and ultimately the macro-community. However, which bacteria are involved in pioneer colonisation remain unknown. We hypothesize that physico-chemical properties (i.e., morphology, mineralogy) of the ash may dictate bacterial colonisation. The effect of substrate properties on bacterial colonisation was tested by exposing five substrates: i) quartz sand ii) crystalline ash (Sakurajima, Japan) iii) volcanic glass iv) carbonate reef sand and v) calcite sand of similar grain size, in controlled marine coral reef aquaria under low light conditions for six months. Bacterial communities were screened every month by Automated Ribosomal Intergenic Spacer Analysis of the 16S-23S rRNA Internal Transcribed Spacer region. Multivariate statistics revealed discrete groupings of bacterial communities on substrates of volcanic origin (ash and glass) and reef origin (three sands). Analysis of Similarity supported significantly different communities associated with all substrates (p=0.0001), only quartz did not differ from both carbonate and calcite sands. The ash substrate exhibited the most diverse bacterial community with the most substrate-specific bacterial operational taxonomic units. Our findings suggest that bacterial diversity and community composition during colonisation of volcanic ash in a coral reef-like environment is controlled by the

  11. Marine Mesocosm Bacterial Colonisation of Volcanic Ash

    NASA Astrophysics Data System (ADS)

    Witt, V.; Cimarelli, C.; Ayris, P. M.; Kueppers, U.; Erpenbeck, D.; Dingwell, D. B.; Woerheide, G.

    2014-12-01

    Explosive volcanic eruptions regularly eject large quantities of ash particles into the atmosphere, which can be deposited via fallout into oceanic environments. Such fallout has the potential to alter pH, light and nutrient availability at local or regional scales. Shallow-water coral reef ecosystems - "rainforests of the sea" - are highly sensitive to disturbances, such as ocean acidification, sedimentation and eutrophication. Therefore, ash deposition may lead to burial and mortality of such reefs. Coral reef ecosystem resilience may depend on pioneer bacterial colonisation of the ash layer, supporting subsequent establishment of the micro- and ultimately the macro-community. However, it is currently unknown which bacteria are involved in pioneer colonisation. We hypothesize that physico-chemical properties (i.e., morphology, chemistry, mineralogy) of the ash may dictate bacterial colonisation. We have tested the effect of substrate properties on bacterial diversity and abundance colonising five substrates: i) quartz sand ii) crystalline ash from the Sakurajima volcano (Japan) iii) volcanic glass iv) carbonate reef sand and v) calcite sand of similar grain size - by incubation in a controlled marine mesocosm (coral reef aquarium) under low light conditions for three months. Bacterial communities were screened every month by Automated Ribosomal Intergenic Spacer Analysis of the 16S-23S rRNA Internal Transcribed Spacer region. Multivariate statistics revealed discrete groupings of bacterial communities on substrates of volcanic origin (ash and glass) and reef origin (three sands). Analysis Of Similarity supports significantly different communities associated with all substrates (p=0.0001), only quartz did not differ from both carbonate and calcite sands. The ash substrate exhibited the most diverse bacterial community and carried the most substrate-specific bacterial operational taxonomic units. Our findings suggest that bacterial diversity and community

  12. Deciphering chicken gut microbial dynamics based on high-throughput 16S rRNA metagenomics analyses.

    PubMed

    Mohd Shaufi, Mohd Asrore; Sieo, Chin Chin; Chong, Chun Wie; Gan, Han Ming; Ho, Yin Wan

    2015-01-01

    Chicken gut microbiota has paramount roles in host performance, health and immunity. Understanding the topological difference in gut microbial community composition is crucial to provide knowledge on the functions of each members of microbiota to the physiological maintenance of the host. The gut microbiota profiling of the chicken was commonly performed previously using culture-dependent and early culture-independent methods which had limited coverage and accuracy. Advances in technology based on next-generation sequencing (NGS), offers unparalleled coverage and depth in determining microbial gut dynamics. Thus, the aim of this study was to investigate the ileal and caecal microbiota development as chicken aged, which is important for future effective gut modulation. Ileal and caecal contents of broiler chicken were extracted from 7, 14, 21 and 42-day old chicken. Genomic DNA was then extracted and amplified based on V3 hyper-variable region of 16S rRNA. Bioinformatics, ecological and statistical analyses such as Principal Coordinate Analysis (PCoA) was performed in mothur software and plotted using PRIMER 6. Additional analyses for predicted metagenomes were performed through PICRUSt and STAMP software package based on Greengenes databases. A distinctive difference in bacterial communities was observed between ilea and caeca as the chicken aged (P < 0.001). The microbial communities in the caeca were more diverse in comparison to the ilea communities. The potentially pathogenic bacteria such as Clostridium were elevated as the chicken aged and the population of beneficial microbe such as Lactobacillus was low at all intervals. On the other hand, based on predicted metagenomes analysed, clear distinction in functions and roles of gut microbiota such as gene pathways related to nutrient absorption (e.g. sugar and amino acid metabolism), and bacterial proliferation and colonization (e.g. bacterial motility proteins, two-component system and bacterial secretion

  13. How close is close: 16S rRNA sequence identity may not be sufficient to guarantee species identity

    NASA Technical Reports Server (NTRS)

    Fox, G. E.; Wisotzkey, J. D.; Jurtshuk, P. Jr

    1992-01-01

    16S rRNA (genes coding for rRNA) sequence comparisons were conducted with the following three psychrophilic strains: Bacillus globisporus W25T (T = type strain) and Bacillus psychrophilus W16AT, and W5. These strains exhibited more than 99.5% sequence identity and within experimental uncertainty could be regarded as identical. Their close taxonomic relationship was further documented by phenotypic similarities. In contrast, previously published DNA-DNA hybridization results have convincingly established that these strains do not belong to the same species if current standards are used. These results emphasize the important point that effective identity of 16S rRNA sequences is not necessarily a sufficient criterion to guarantee species identity. Thus, although 16S rRNA sequences can be used routinely to distinguish and establish relationships between genera and well-resolved species, very recently diverged species may not be recognizable.

  14. Common bacterial responses in six ecosystems exposed to 10 years of elevated atmospheric carbon dioxide.

    PubMed

    Dunbar, John; Eichorst, Stephanie A; Gallegos-Graves, La Verne; Silva, Shannon; Xie, Gary; Hengartner, N W; Evans, R David; Hungate, Bruce A; Jackson, Robert B; Megonigal, J Patrick; Schadt, Christopher W; Vilgalys, Rytas; Zak, Donald R; Kuske, Cheryl R

    2012-05-01

    Six terrestrial ecosystems in the USA were exposed to elevated atmospheric CO(2) in single or multifactorial experiments for more than a decade to assess potential impacts. We retrospectively assessed soil bacterial community responses in all six-field experiments and found ecosystem-specific and common patterns of soil bacterial community response to elevated CO(2) . Soil bacterial composition differed greatly across the six ecosystems. No common effect of elevated atmospheric CO(2) on bacterial biomass, richness and community composition across all of the ecosystems was identified, although significant responses were detected in individual ecosystems. The most striking common trend across the sites was a decrease of up to 3.5-fold in the relative abundance of Acidobacteria Group 1 bacteria in soils exposed to elevated CO(2) or other climate factors. The Acidobacteria Group 1 response observed in exploratory 16S rRNA gene clone library surveys was validated in one ecosystem by 100-fold deeper sequencing and semi-quantitative PCR assays. Collectively, the 16S rRNA gene sequencing approach revealed influences of elevated CO(2) on multiple ecosystems. Although few common trends across the ecosystems were detected in the small surveys, the trends may be harbingers of more substantive changes in less abundant, more sensitive taxa that can only be detected by deeper surveys. Representative bacterial 16S rRNA gene clone sequences were deposited in GenBank with Accession No. JQ366086–JQ387568. Published 2012. This article is a U.S. Government work and is in the public domain in the USA.

  15. Bacterial Communities in Women with Bacterial Vaginosis: High Resolution Phylogenetic Analyses Reveal Relationships of Microbiota to Clinical Criteria

    PubMed Central

    Srinivasan, Sujatha; Hoffman, Noah G.; Morgan, Martin T.; Matsen, Frederick A.; Fiedler, Tina L.; Hall, Robert W.; Ross, Frederick J.; McCoy, Connor O.; Bumgarner, Roger; Marrazzo, Jeanne M.; Fredricks, David N.

    2012-01-01

    Background Bacterial vaginosis (BV) is a common condition that is associated with numerous adverse health outcomes and is characterized by poorly understood changes in the vaginal microbiota. We sought to describe the composition and diversity of the vaginal bacterial biota in women with BV using deep sequencing of the 16S rRNA gene coupled with species-level taxonomic identification. We investigated the associations between the presence of individual bacterial species and clinical diagnostic characteristics of BV. Methodology/Principal Findings Broad-range 16S rRNA gene PCR and pyrosequencing were performed on vaginal swabs from 220 women with and without BV. BV was assessed by Amsel’s clinical criteria and confirmed by Gram stain. Taxonomic classification was performed using phylogenetic placement tools that assigned 99% of query sequence reads to the species level. Women with BV had heterogeneous vaginal bacterial communities that were usually not dominated by a single taxon. In the absence of BV, vaginal bacterial communities were dominated by either Lactobacillus crispatus or Lactobacillus iners. Leptotrichia amnionii and Eggerthella sp. were the only two BV-associated bacteria (BVABs) significantly associated with each of the four Amsel’s criteria. Co-occurrence analysis revealed the presence of several sub-groups of BVABs suggesting metabolic co-dependencies. Greater abundance of several BVABs was observed in Black women without BV. Conclusions/Significance The human vaginal bacterial biota is heterogeneous and marked by greater species richness and diversity in women with BV; no species is universally present. Different bacterial species have different associations with the four clinical criteria, which may account for discrepancies often observed between Amsel and Nugent (Gram stain) diagnostic criteria. Several BVABs exhibited race-dependent prevalence when analyzed in separate groups by BV status which may contribute to increased incidence of BV in

  16. Intrinsic challenges in ancient microbiome reconstruction using 16S rRNA gene amplification

    PubMed Central

    Ziesemer, Kirsten A.; Mann, Allison E.; Sankaranarayanan, Krithivasan; Schroeder, Hannes; Ozga, Andrew T.; Brandt, Bernd W.; Zaura, Egija; Waters-Rist, Andrea; Hoogland, Menno; Salazar-García, Domingo C.; Aldenderfer, Mark; Speller, Camilla; Hendy, Jessica; Weston, Darlene A.; MacDonald, Sandy J.; Thomas, Gavin H.; Collins, Matthew J.; Lewis, Cecil M.; Hofman, Corinne; Warinner, Christina

    2015-01-01

    To date, characterization of ancient oral (dental calculus) and gut (coprolite) microbiota has been primarily accomplished through a metataxonomic approach involving targeted amplification of one or more variable regions in the 16S rRNA gene. Specifically, the V3 region (E. coli 341–534) of this gene has been suggested as an excellent candidate for ancient DNA amplification and microbial community reconstruction. However, in practice this metataxonomic approach often produces highly skewed taxonomic frequency data. In this study, we use non-targeted (shotgun metagenomics) sequencing methods to better understand skewed microbial profiles observed in four ancient dental calculus specimens previously analyzed by amplicon sequencing. Through comparisons of microbial taxonomic counts from paired amplicon (V3 U341F/534R) and shotgun sequencing datasets, we demonstrate that extensive length polymorphisms in the V3 region are a consistent and major cause of differential amplification leading to taxonomic bias in ancient microbiome reconstructions based on amplicon sequencing. We conclude that systematic amplification bias confounds attempts to accurately reconstruct microbiome taxonomic profiles from 16S rRNA V3 amplicon data generated using universal primers. Because in silico analysis indicates that alternative 16S rRNA hypervariable regions will present similar challenges, we advocate for the use of a shotgun metagenomics approach in ancient microbiome reconstructions. PMID:26563586

  17. Molecular analysis of 16S rRNA genes identifies potentially periodontal pathogenic bacteria and archaea in the plaque of partially erupted third molars.

    PubMed

    Mansfield, J M; Campbell, J H; Bhandari, A R; Jesionowski, A M; Vickerman, M M

    2012-07-01

    Small subunit rRNA sequencing and phylogenetic analysis were used to identify cultivable and uncultivable microorganisms present in the dental plaque of symptomatic and asymptomatic partially erupted third molars to determine the prevalence of putative periodontal pathogens in pericoronal sites. Template DNA prepared from subgingival plaque collected from partially erupted symptomatic and asymptomatic mandibular third molars and healthy incisors was used in polymerase chain reaction with broad-range oligonucleotide primers to amplify 16S rRNA bacterial and archaeal genes. Amplicons were cloned, sequenced, and compared with known nucleotide sequences in online databases to identify the microorganisms present. Two thousand three hundred two clones from the plaque of 12 patients carried bacterial sequences from 63 genera belonging to 11 phyla, including members of the uncultivable TM7, SR1, and Chloroflexi, and difficult-to-cultivate Synergistetes and Spirochaetes. Dialister invisus, Filifactor alocis, Fusobacterium nucleatum, Porphyromonas endodontalis, Prevotella denticola, Tannerella forsythia, and Treponema denticola, which have been associated with periodontal disease, were found in significantly greater abundance in pericoronal compared with incisor sites. Dialister invisus and F nucleatum were found in greater abundance in sites exhibiting clinical symptoms. The archaeal species, Methanobrevibacter oralis, which has been associated with severe periodontitis, was found in 3 symptomatic patients. These findings have provided new insights into the complex microbiota of pericoronitis. Several bacterial and archaeal species implicated in periodontal disease were recovered in greater incidence and abundance from the plaque of partially erupted third molars compared with incisors, supporting the hypothesis that the pericoronal region may provide a favored niche for periodontal pathogens in otherwise healthy mouths. Copyright © 2012 American Association of Oral and

  18. Identification of bacterial endophytes associated with traditional medicinal plant Tridax procumbens Linn.

    PubMed

    Preveena, Jagadesan; Bhore, Subhash J

    2013-01-01

    In traditional medicine, Tridax procumbens Linn. is used in the treatment of injuries and wounds. The bacterial endophytes (BEs) of medicinal plants could produce medicinally important metabolites found in their hosts; and hence, the involvement of BEs in conferring wound healing properties to T. Procumbens cannot be ruled out. But, we do not know which types of BEs are associated with T. Procumbens. The objective of this study was to investigate the fast growing and cultivable BEs associated with T. procumbens. Leaves and stems of healthy T. Procumbens plants were collected and cultivable BEs were isolated from surface-sterilized leaf and stem tissue samples using Luria-Bertani (LB) agar (medium) at standard conditions. A polymerase chain reaction was employed to amplify 16S rRNA coding gene fragments from the isolates. Cultivable endophytic bacterial isolates (EBIs) were identified using 16S rRNA gene nucleotide sequence similarity based method of bacterial identification. Altogether, 50 culturable EBIs were isolated. 16S rRNA gene nucleotide sequences analysis using the Basic Local Alignment Search Tool (BLAST) revealed identities of the EBIs. Analysis reveals that cultivable Bacillus spp., Cronobacter sakazakii, Enterobacter spp., Lysinibacillus sphaericus, Pantoea spp., Pseudomonas spp. and Terribacillus saccharophilus are associated with T. Procumbens. Based on the results, we conclude that 24 different types of culturable BEs are associated with traditionally used medicinal plant, T. Procumbens, and require further study.

  19. A Novel Association between Two Trypanosome-Specific Factors and the Conserved L5-5S rRNA Complex

    PubMed Central

    Ciganda, Martin; Prohaska, Kimberly; Hellman, Kristina; Williams, Noreen

    2012-01-01

    P34 and P37 are two previously identified RNA binding proteins in the flagellate protozoan Trypanosoma brucei. RNA interference studies have determined that the proteins are involved in and essential for ribosome biogenesis. The proteins interact with the 5S rRNA with nearly identical binding characteristics. We have shown that this interaction is achieved mainly through the LoopA region of the RNA, but P34 and P37 also protect the L5 binding site located on LoopC. We now provide evidence to show that these factors form a novel pre-ribosomal particle through interactions with both 5S rRNA and the L5 ribosomal protein. Further in silico and in vitro analysis of T. brucei L5 indicates a lower affinity for 5S rRNA than expected, based on other eukaryotic L5 proteins. We hypothesize that P34 and P37 complement L5 and bridge the interaction with 5S rRNA, stabilizing it and aiding in the early steps of ribosome biogenesis. PMID:22859981

  20. Deep sequencing reveals exceptional diversity and modes of transmission for bacterial sponge symbionts

    PubMed Central

    Webster, Nicole S; Taylor, Michael W; Behnam, Faris; Lücker, Sebastian; Rattei, Thomas; Whalan, Stephen; Horn, Matthias; Wagner, Michael

    2010-01-01

    Marine sponges contain complex bacterial communities of considerable ecological and biotechnological importance, with many of these organisms postulated to be specific to sponge hosts. Testing this hypothesis in light of the recent discovery of the rare microbial biosphere, we investigated three Australian sponges by massively parallel 16S rRNA gene tag pyrosequencing. Here we show bacterial diversity that is unparalleled in an invertebrate host, with more than 250 000 sponge-derived sequence tags being assigned to 23 bacterial phyla and revealing up to 2996 operational taxonomic units (95% sequence similarity) per sponge species. Of the 33 previously described ‘sponge-specific’ clusters that were detected in this study, 48% were found exclusively in adults and larvae – implying vertical transmission of these groups. The remaining taxa, including ‘Poribacteria’, were also found at very low abundance among the 135 000 tags retrieved from surrounding seawater. Thus, members of the rare seawater biosphere may serve as seed organisms for widely occurring symbiont populations in sponges and their host association might have evolved much more recently than previously thought. PMID:21966903

  1. Identification of causative pathogens in mouse eyes with bacterial keratitis by sequence analysis of 16S rDNA libraries

    PubMed Central

    Song, Hong-Yan; Qiu, Bao-Feng; Liu, Chun; Zhu, Shun-Xing; Wang, Sheng-Cun; Miao, Jin; Jing, Jing; Shao, Yi-Xiang

    2014-01-01

    The clone library method using PCR amplification of the 16S ribosomal RNA (rRNA) gene was used to identify pathogens from corneal scrapings of C57BL/6-corneal opacity (B6-Co) mice with bacterial keratitis. All 10 samples from the eyes with bacterial keratitis showed positive PCR results. All 10 samples from the normal cornea showed negative PCR results. In all 10 PCR-positive samples, the predominant and second most predominant species accounted for 20.9 to 40.6% and 14.7 to 26.1%, respectively, of each clone library. The predominant species were Staphylococcus lentus, Pseudomonas aeruginosa, and Staphylococcus epidermidis. The microbiota analysis detected a diverse group of microbiota in the eyes of B6-Co mice with bacterial keratitis and showed that the causative pathogens could be determined based on percentages of bacterial species in the clone libraries. The bacterial species detected in this study were mostly in accordance with results of studies on clinical bacterial keratitis in human eyes. Based on the results of our previous studies and this study, the B6-Co mouse should be considered a favorable model for studying bacterial keratitis. PMID:25312507

  2. Detecting 16S rRNA Methyltransferases in Enterobacteriaceae by Use of Arbekacin.

    PubMed

    McGann, Patrick; Chahine, Sarah; Okafor, Darius; Ong, Ana C; Maybank, Rosslyn; Kwak, Yoon I; Wilson, Kerry; Zapor, Michael; Lesho, Emil; Hinkle, Mary

    2016-01-01

    16S rRNA methyltransferases confer resistance to most aminoglycosides, but discriminating their activity from that of aminoglycoside-modifying enzymes (AMEs) is challenging using phenotypic methods. We demonstrate that arbekacin, an aminoglycoside refractory to most AMEs, can rapidly detect 16S methyltransferase activity in Enterobacteriaceae with high specificity using the standard disk susceptibility test. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  3. Characterization of Bacterial Communities Associated with the Tyrian Purple Producing Gland in a Marine Gastropod

    PubMed Central

    Ngangbam, Ajit Kumar; Baten, Abdul; Waters, Daniel L. E.; Whalan, Steve; Benkendorff, Kirsten

    2015-01-01

    Dicathais orbita is a marine mollusc recognised for the production of anticancer compounds that are precursors to Tyrian purple. This study aimed to assess the diversity and identity of bacteria associated with the Tyrian purple producing hypobranchial gland, in comparison with foot tissue, using a high-throughput sequencing approach. Taxonomic and phylogenetic analysis of variable region V1-V3 of 16S rRNA bacterial gene amplicons in QIIME and MEGAN were carried out. This analysis revealed a highly diverse bacterial assemblage associated with the hypobranchial gland and foot tissues of D. orbita. The dominant bacterial phylum in the 16S rRNA bacterial profiling data set was Proteobacteria followed by Bacteroidetes, Tenericutes and Spirochaetes. In comparison to the foot, the hypobranchial gland had significantly lower bacterial diversity and a different community composition, based on taxonomic assignment at the genus level. A higher abundance of indole producing Vibrio spp. and the presence of bacteria with brominating capabilities in the hypobranchial gland suggest bacteria have a potential role in biosynthesis of Tyrian purple in D. orbita. PMID:26488885

  4. Nested PCR Biases in Interpreting Microbial Community Structure in 16S rRNA Gene Sequence Datasets

    PubMed Central

    Yu, Guoqin; Fadrosh, Doug; Goedert, James J.; Ravel, Jacques; Goldstein, Alisa M.

    2015-01-01

    Background Sequencing of the PCR-amplified 16S rRNA gene has become a common approach to microbial community investigations in the fields of human health and environmental sciences. This approach, however, is difficult when the amount of DNA is too low to be amplified by standard PCR. Nested PCR can be employed as it can amplify samples with DNA concentration several-fold lower than standard PCR. However, potential biases with nested PCRs that could affect measurement of community structure have received little attention. Results In this study, we used 17 DNAs extracted from vaginal swabs and 12 DNAs extracted from stool samples to study the influence of nested PCR amplification of the 16S rRNA gene on the estimation of microbial community structure using Illumina MiSeq sequencing. Nested and standard PCR methods were compared on alpha- and beta-diversity metrics and relative abundances of bacterial genera. The effects of number of cycles in the first round of PCR (10 vs. 20) and microbial diversity (relatively low in vagina vs. high in stool) were also investigated. Vaginal swab samples showed no significant difference in alpha diversity or community structure between nested PCR and standard PCR (one round of 40 cycles). Stool samples showed significant differences in alpha diversity (except Shannon’s index) and relative abundance of 13 genera between nested PCR with 20 cycles in the first round and standard PCR (P<0.01), but not between nested PCR with 10 cycles in the first round and standard PCR. Operational taxonomic units (OTUs) that had low relative abundance (sum of relative abundance <0.167) accounted for most of the distortion (>27% of total OTUs in stool). Conclusions Nested PCR introduced bias in estimated diversity and community structure. The bias was more significant for communities with relatively higher diversity and when more cycles were applied in the first round of PCR. We conclude that nested PCR could be used when standard PCR does not work

  5. Bacterial diversity of Taxus rhizosphere: culture-independent and culture-dependent approaches.

    PubMed

    Hao, Da Cheng; Ge, Guang Bo; Yang, Ling

    2008-07-01

    The regional variability of Taxus rhizosphere bacterial community composition and diversity was studied by comparative analysis of three large 16S rRNA gene clone libraries from the Taxus rhizosphere in different regions of China (subtropical and temperate regions). One hundred and forty-six clones were screened for three libraries. Phylogenetic analysis of 16S rRNA gene sequences demonstrated that the abundance of sequences affiliated with Gammaproteobacteria, Betaproteobacteria, and Actinobacteria was higher in the library from the T. xmedia rhizosphere of the temperate region compared with the subtropical Taxus mairei rhizosphere. On the other hand, Acidobacteria was more abundant in libraries from the subtropical Taxus mairei rhizosphere. Richness estimates and diversity indices of three libraries revealed major differences, indicating a higher richness in the Taxus rhizosphere bacterial communities of the subtropical region and considerable variability in the bacterial community composition within this region. By enrichment culture, a novel Actinobacteria strain DICP16 was isolated from the T. xmedia rhizosphere of the temperate region and was identified as Leifsonia shinshuensis sp. via 16S rRNA gene and gyrase B sequence analyses. DICP16 was able to remove the xylosyl group from 7-xylosyl-10-deacetylbaccatin III and 7-xylosyl-10-deacetylpaclitaxel, thereby making the xylosyltaxanes available as sources of 10-deacetylbaccatin III and the anticancer drug paclitaxel. Taken together, the present studies provide, for the first time, the knowledge of the biodiversity of microorganisms populating Taxus rhizospheres.

  6. Nucleotides in 16S rRNA that are required in unmodified form for features recognized by ribosomal protein S8.

    PubMed Central

    Thurlow, D L; Ehresmann, C; Ehresmann, B

    1983-01-01

    Nucleotides in 16S rRNA which are required in unmodified form for specific recognition of ribosomal protein S8 from Escherichia coli were identified using a damage-selection experimental approach. Prior to complex formation with S8, 16S rRNA was treated under fully denaturing conditions with either diethyl pyrocarbonate or 25% hydrazine. Following separation of bound from unbound fragments of RNA, those associated with S8 were analyzed for their content of modified bases by treatment with aniline. Nucleotides found to be consistently unmodified in such fragments were located near the base of a stable helix (encompassing bases 581-656) or near the apex of the helix on the 3' proximal side. A minor S8 ribonucleoprotein particle was found to contain fragments which extended in the 3' direction to position 671. Images PMID:6356037

  7. Antarctic ice core samples: culturable bacterial diversity.

    PubMed

    Shivaji, Sisinthy; Begum, Zareena; Shiva Nageswara Rao, Singireesu Soma; Vishnu Vardhan Reddy, Puram V; Manasa, Poorna; Sailaja, Buddi; Prathiba, Mambatta S; Thamban, Meloth; Krishnan, Kottekkatu P; Singh, Shiv M; Srinivas, Tanuku N R

    2013-01-01

    Culturable bacterial abundance at 11 different depths of a 50.26 m ice core from the Tallaksenvarden Nunatak, Antarctica, varied from 0.02 to 5.8 × 10(3) CFU ml(-1) of the melt water. A total of 138 bacterial strains were recovered from the 11 different depths of the ice core. Based on 16S rRNA gene sequence analyses, the 138 isolates could be categorized into 25 phylotypes belonging to phyla Actinobacteria, Bacteroidetes, Firmicutes and Proteobacteria. All isolates had 16S rRNA sequences similar to previously determined sequences (97.2-100%). No correlation was observed in the distribution of the isolates at the various depths either at the phylum, genus or species level. The 25 phylotypes varied in growth temperature range, tolerance to NaCl, growth pH range and ability to produce eight different extracellular enzymes at either 4 or 18 °C. Iso-, anteiso-, unsaturated and saturated fatty acids together constituted a significant proportion of the total fatty acid composition. Copyright © 2012 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  8. Apoptosis-like programmed cell death induces antisense ribosomal RNA (rRNA) fragmentation and rRNA degradation in Leishmania.

    PubMed

    Padmanabhan, P K; Samant, M; Cloutier, S; Simard, M J; Papadopoulou, B

    2012-12-01

    Few natural antisense (as) RNAs have been reported as yet in the unicellular protozoan Leishmania. Here, we describe that Leishmania produces natural asRNAs complementary to all ribosomal RNA (rRNA) species. Interestingly, we show that drug-induced apoptosis-like programmed cell death triggers fragmentation of asRNA complementary to the large subunit gamma (LSU-γ) rRNA, one of the six 28S rRNA processed fragments in Leishmania. Heat and oxidative stress also induce fragmentation of asrRNA, but to a lesser extent. Extensive asrRNA cleavage correlates with rRNA breakdown and translation inhibition. Indeed, overexpression of asLSU-γ rRNA accelerates rRNA degradation upon induction of apoptosis. In addition, we provide mechanistic insight into the regulation of apoptosis-induced asrRNA fragmentation by a 67 kDa ATP-dependent RNA helicase of the DEAD-box subfamily. This helicase binds both sense (s)LSU-γ and asLSU-γ rRNAs, and appears to have a key role in protecting rRNA from degradation by preventing asrRNA cleavage and thus cell death. Remarkably, the asrRNA fragmentation process operates not only in trypanosomatid protozoa but also in mammals. Our findings uncover a novel mechanism of regulation involving asrRNA fragmentation and rRNA breakdown, that is triggered by apoptosis and conditions of reduced translation under stress, and seems to be evolutionary conserved.

  9. Apoptosis-like programmed cell death induces antisense ribosomal RNA (rRNA) fragmentation and rRNA degradation in Leishmania

    PubMed Central

    Padmanabhan, P K; Samant, M; Cloutier, S; Simard, M J; Papadopoulou, B

    2012-01-01

    Few natural antisense (as) RNAs have been reported as yet in the unicellular protozoan Leishmania. Here, we describe that Leishmania produces natural asRNAs complementary to all ribosomal RNA (rRNA) species. Interestingly, we show that drug-induced apoptosis-like programmed cell death triggers fragmentation of asRNA complementary to the large subunit gamma (LSU-γ) rRNA, one of the six 28S rRNA processed fragments in Leishmania. Heat and oxidative stress also induce fragmentation of asrRNA, but to a lesser extent. Extensive asrRNA cleavage correlates with rRNA breakdown and translation inhibition. Indeed, overexpression of asLSU-γ rRNA accelerates rRNA degradation upon induction of apoptosis. In addition, we provide mechanistic insight into the regulation of apoptosis-induced asrRNA fragmentation by a 67 kDa ATP-dependent RNA helicase of the DEAD-box subfamily. This helicase binds both sense (s)LSU-γ and asLSU-γ rRNAs, and appears to have a key role in protecting rRNA from degradation by preventing asrRNA cleavage and thus cell death. Remarkably, the asrRNA fragmentation process operates not only in trypanosomatid protozoa but also in mammals. Our findings uncover a novel mechanism of regulation involving asrRNA fragmentation and rRNA breakdown, that is triggered by apoptosis and conditions of reduced translation under stress, and seems to be evolutionary conserved. PMID:22767185

  10. Exploring internal features of 16S rRNA gene for identification of clinically relevant species of the genus Streptococcus

    PubMed Central

    2011-01-01

    Background Streptococcus is an economically important genus as a number of species belonging to this genus are human and animal pathogens. The genus has been divided into different groups based on 16S rRNA gene sequence similarity. The variability observed among the members of these groups is low and it is difficult to distinguish them. The present study was taken up to explore 16S rRNA gene sequence to develop methods that can be used for preliminary identification and can supplement the existing methods for identification of clinically-relevant isolates of the genus Streptococcus. Methods 16S rRNA gene sequences belonging to the isolates of S. dysgalactiae, S. equi, S. pyogenes, S. agalactiae, S. bovis, S. gallolyticus, S. mutans, S. sobrinus, S. mitis, S. pneumoniae, S. thermophilus and S. anginosus were analyzed with the purpose to define genetic variability within each species to generate a phylogenetic framework, to identify species-specific signatures and in-silico restriction enzyme analysis. Results The framework based analysis was used to segregate Streptococcus spp. previously identified upto genus level. This segregation was validated using species-specific signatures and in-silico restriction enzyme analysis. 43 uncharacterized Streptococcus spp. could be identified using this approach. Conclusions The markers generated exploring 16S rRNA gene sequences provided useful tool that can be further used for identification of different species of the genus Streptococcus. PMID:21702978

  11. Growth properties associated with A-U replacement of specific G-C base pairs in 16S rRNA from Escherichia coli.

    PubMed Central

    Triman, K L

    1995-01-01

    Mutations that disrupt each of seven specific G-C base pairs in 16S rRNA from Escherichia coli confer loss of expression of a plasmid-encoded 16S rRNA selectable marker (spectinomycin resistance). However, A-U replacement of G-C base pairs at nucleotides 359/52 or 1292/1245 in 16S rRNA permits normal expression of the marker. By contrast, A-U replacements at 146/176, 153/168, 350/339, or 1293/1244 are associated with loss of expression of the marker. These genetic studies are designed to determine the importance of specific base pairs by assessment of the structural and functional impairments of 16S rRNA molecules resulting from expression of base pair substitutions at these positions. PMID:7543481

  12. 16S-23S rDNA intergenic spacer region polymorphism of Lactococcus garvieae, Lactococcus raffinolactis and Lactococcus lactis as revealed by PCR and nucleotide sequence analysis.

    PubMed

    Blaiotta, Giuseppe; Pepe, Olimpia; Mauriello, Gianluigi; Villani, Francesco; Andolfi, Rosamaria; Moschetti, Giancarlo

    2002-12-01

    The intergenic spacer region (ISR) between the 16S and 23S rRNA genes was tested as a tool for differentiating lactococci commonly isolated in a dairy environment. 17 reference strains, representing 11 different species belonging to the genera Lactococcus, Streptococcus, Lactobacillus, Enterococcus and Leuconostoc, and 127 wild streptococcal strains isolated during the whole fermentation process of "Fior di Latte" cheese were analyzed. After 16S-23S rDNA ISR amplification by PCR, species or genus-specific patterns were obtained for most of the reference strains tested. Moreover, results obtained after nucleotide analysis show that the 16S-23S rDNA ISR sequences vary greatly, in size and sequence, among Lactococcus garvieae, Lactococcus raffinolactis, Lactococcus lactis as well as other streptococci from dairy environments. Because of the high degree of inter-specific polymorphism observed, 16S-23S rDNA ISR can be considered a good potential target for selecting species-specific molecular assays, such as PCR primer or probes, for a rapid and extremely reliable differentiation of dairy lactococcal isolates.

  13. Bacterial population dynamics during the ensiling of Medicago sativa (alfalfa) and subsequent exposure to air.

    PubMed

    McGarvey, J A; Franco, R B; Palumbo, J D; Hnasko, R; Stanker, L; Mitloehner, F M

    2013-06-01

    To describe, at high resolution, the bacterial population dynamics and chemical transformations during the ensiling of alfalfa and subsequent exposure to air. Samples of alfalfa, ensiled alfalfa and silage exposed to air were collected and their bacterial population structures compared using 16S rRNA gene libraries containing approximately 1900 sequences each. Cultural and chemical analyses were also performed to complement the 16S gene sequence data. Sequence analysis revealed significant differences (P < 0·05) in the bacterial populations at each time point. The alfalfa-derived library contained mostly sequences associated with the Gammaproteobacteria (including the genera: Enterobacter, Erwinia and Pantoea); the ensiled material contained mostly sequences associated with the lactic acid bacteria (LAB) (including the genera: Lactobacillus, Pediococcus and Lactococcus). Exposure to air resulted in even greater percentages of LAB, especially among the genus Lactobacillus, and a significant drop in bacterial diversity. In-depth 16S rRNA gene sequence analysis revealed significant bacterial population structure changes during ensiling and again during exposure to air. This in-depth description of the bacterial population dynamics that occurred during ensiling and simulated feed out expands our knowledge of these processes. © 2013 The Society for Applied Microbiology No claim to US Government works.

  14. 16S rRNA analysis provides evidence of biofilms on all components of three infected periprosthetic knees including permanent braided suture.

    PubMed

    Swearingen, Matthew C; DiBartola, Alex C; Dusane, Devendra; Granger, Jeffrey; Stoodley, Paul

    2016-10-01

    Bacterial biofilms are the main etiological agent of periprosthetic joint infections (PJI); however, it is unclear if biofilms colonize one or multiple components. Because biofilms can colonize a variety of surfaces, we hypothesized that biofilms would be present on all components. 16S ribosomal RNA (rRNA) gene sequencing analysis was used to identify bacteria recovered from individual components and non-absorbable suture material recovered from three PJI total knee revision cases. Bray-Curtis non-metric multidimensional scaling analysis revealed no significant differences in similarity when factoring component, material type, or suture versus non-suture material, but did reveal significant differences in organism profile between patients (P < 0.001) and negative controls (P < 0.001). Confocal microscopy and a novel agar encasement culturing method also confirmed biofilm growth on a subset of components. While 16S sequencing suggested that the microbiology was more complex than revealed by culture contaminating, bacterial DNA generates a risk of false positives. This report highlights that biofilm bacteria may colonize all infected prosthetic components including braided suture material, and provides further evidence that clinical culture can fail to sufficiently identify the full pathogen profile in PJI cases. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  15. Species-specific identification of Dekkera/Brettanomyces yeasts by fluorescently labeled DNA probes targeting the 26S rRNA.

    PubMed

    Röder, Christoph; König, Helmut; Fröhlich, Jürgen

    2007-09-01

    Sequencing of the complete 26S rRNA genes of all Dekkera/Brettanomyces species colonizing different beverages revealed the potential for a specific primer and probe design to support diagnostic PCR approaches and FISH. By analysis of the complete 26S rRNA genes of all five currently known Dekkera/Brettanomyces species (Dekkera bruxellensis, D. anomala, Brettanomyces custersianus, B. nanus and B. naardenensis), several regions with high nucleotide sequence variability yet distinct from the D1/D2 domains were identified. FISH species-specific probes targeting the 26S rRNA gene's most variable regions were designed. Accessibility of probe targets for hybridization was facilitated by the construction of partially complementary 'side'-labeled probes, based on secondary structure models of the rRNA sequences. The specificity and routine applicability of the FISH-based method for yeast identification were tested by analyzing different wine isolates. Investigation of the prevalence of Dekkera/Brettanomyces yeasts in the German viticultural regions Wonnegau, Nierstein and Bingen (Rhinehesse, Rhineland-Palatinate) resulted in the isolation of 37 D. bruxellensis strains from 291 wine samples.

  16. Bacterial Degraders of Coexisting Dichloromethane, Benzene, and Toluene, Identified by Stable-Isotope Probing.

    PubMed

    Yoshikawa, Miho; Zhang, Ming; Kurisu, Futoshi; Toyota, Koki

    2017-01-01

    Most bioremediation studies on volatile organic compounds (VOCs) have focused on a single contaminant or its derived compounds and degraders have been identified under single contaminant conditions. Bioremediation of multiple contaminants remains a challenging issue. To identify a bacterial consortium that degrades multiple VOCs (dichloromethane (DCM), benzene, and toluene), we applied DNA-stable isotope probing. For individual tests, we combined a 13 C-labeled VOC with other two unlabeled VOCs, and prepared three unlabeled VOCs as a reference. Over 11 days, DNA was periodically extracted from the consortia, and the bacterial community was evaluated by next-generation sequencing of bacterial 16S rRNA gene amplicons. Density gradient fractions of the DNA extracts were amplified by universal bacterial primers for the 16S rRNA gene sequences, and the amplicons were analyzed by terminal restriction fragment length polymorphism (T-RFLP) using restriction enzymes: Hha I and Msp I. The T-RFLP fragments were identified by 16S rRNA gene cloning and sequencing. Under all test conditions, the consortia were dominated by Rhodanobacter , Bradyrhizobium / Afipia , Rhizobium , and Hyphomicrobium . DNA derived from Hyphomicrobium and Propioniferax shifted toward heavier fractions under the condition added with 13 C-DCM and 13 C-benzene, respectively, compared with the reference, but no shifts were induced by 13 C-toluene addition. This implies that Hyphomicrobium and Propioniferax were the main DCM and benzene degraders, respectively, under the coexisting condition. The known benzene degrader Pseudomonas sp. was present but not actively involved in the degradation.

  17. Characterization of copy numbers of 16S rDNA and 16S rRNA of Candidatus Liberibacter asiaticus and the implication in detection in planta using quantitative PCR.

    PubMed

    Kim, Jeong-Soon; Wang, Nian

    2009-03-06

    Citrus Huanglongbing (HLB) is one of the most devastating diseases on citrus and is associated with Candidatus Liberibacter spp.. The pathogens are phloem limited and have not been cultured in vitro. The current management strategy of HLB is to remove infected citrus trees and reduce psyllid populations with insecticides to prevent the spreading. This strategy requires sensitive and reliable diagnostic methods for early detection. We investigated the copy numbers of the 16S rDNA and 16S rRNA of the HLB pathogen and the implication of improving the diagnosis of HLB for early detection using Quantitative PCR. We compared the detection of HLB with different Quantitative PCR based methods with primers/probe targeting either 16S rDNA, beta-operon DNA, 16S rRNA, or beta-operon RNA. The 16S rDNA copy number of Ca. Liberibacter asiaticus was estimated to be three times of that of the beta-operon region, thus allowing detection of lower titer of Ca. L. asiaticus. Quantitative reverse transcriptional PCR (QRT-PCR) indicated that the 16S rRNA averaged 7.83 times more than that of 16S rDNA for the same samples. Dilution analysis also indicates that QRT-PCR targeting 16S rRNA is 10 time more sensitive than QPCR targeting 16S rDNA. Thus QRT-PCR was able to increase the sensitivity of detection by targeting 16S rRNA. Our result indicates that Candidatus Liberibacter asiaticus contains three copies of 16S rDNA. The copy number of 16S rRNA of Ca. L. asiaticus in planta averaged about 7.8 times of 16S rDNA for the same set of samples tested in this study. Detection sensitivity of HLB could be improved through the following approaches: using 16S rDNA based primers/probe in the QPCR assays; and using QRT-PCR assays targeting 16S rRNA.

  18. [Congenital skull base defect causing recurrent bacterial meningitis].

    PubMed

    Berliner, Elihay; Bar Meir, Maskit; Megged, Orli

    2012-08-01

    Bacterial meningitis is a life threatening disease. Most patients will experience only one episode throughout life. Children who experience bacterial meningitis more than once, require further immunologic or anatomic evaluation. We report a 9 year old child with five episodes of bacterial meningitis due to a congenital defect of the skull base. A two and a half year old boy first presented to our medical center with pneumococcal meningitis. He was treated with antibiotics and fully recovered. Two months later he presented again with a similar clinical picture. Streptococcus pneumoniae grew in cerebrospinal fluid (CSF) culture. CT scan and later MRI of the brain revealed a defect in the anterior middle fossa floor, with protrusion of brain tissue into the sphenoidal sinus. Corrective surgery was recommended but the parents refused. Three months later, a third episode of pneumococcal meningitis occurred. The child again recovered with antibiotics and this time corrective surgery was performed. Five years later, the boy presented once again with clinical signs and symptoms consistent with bacterial meningitis. CSF culture was positive, but the final identification of the bacteria was conducted by broad spectrum 16S ribosomal RNA PCR (16S rRNA PCR) which revealed a sequence of Neisseria lactamica. CT and MRI showed recurrence of the skull base defect with encephalocele in the sphenoid sinus. The parents again refused neurosurgical intervention. A year later the patient presented with bacterial meningitis. CSF culture obtained after initiation of antibiotics was negative, but actinobacillus was identified in the CSF by 16S rRNA PCR. The patient is scheduled for neurosurgical intervention. In patients with recurrent bacterial meningitis caused by organisms colonizing the oropharynx or nasopharynx, an anatomical defect should be carefully sought and surgically repaired.

  19. A comparative study of COI and 16 S rRNA genes for DNA barcoding of cultivable carps in India.

    PubMed

    Mohanty, Mausumee; Jayasankar, Pallipuram; Sahoo, Lakshman; Das, Paramananda

    2015-02-01

    The 5' region of the mitochondrial DNA gene cytochrome c oxidase subunit I (COI) is the standard marker for DNA barcoding. However, 16 S rRNA has also been advocated for DNA barcoding in many animal species. Herein, we directly compare the usefulness of COI and 16 S rRNA in discriminating six cultivable carp species: Labeo rohita, Catla catla, Cirrhinus mrigala, Labeo fimbriatus, Labeo bata and Cirrhinus reba from India. Analysis of partial sequences of these two gene fragments from 171 individuals indicated close genetic relationship between Catla catla and Labeo rohita. The results of the present study indicated COI to be more useful than 16 S rRNA for DNA barcoding of Indian carps.

  20. Investigation of bacterial and archaeal communities: novel protocols using modern sequencing by Illumina MiSeq and traditional DGGE-cloning.

    PubMed

    Kraková, Lucia; Šoltys, Katarína; Budiš, Jaroslav; Grivalský, Tomáš; Ďuriš, František; Pangallo, Domenico; Szemes, Tomáš

    2016-09-01

    Different protocols based on Illumina high-throughput DNA sequencing and denaturing gradient gel electrophoresis (DGGE)-cloning were developed and applied for investigating hot spring related samples. The study was focused on three target genes: archaeal and bacterial 16S rRNA and mcrA of methanogenic microflora. Shorter read lengths of the currently most popular technology of sequencing by Illumina do not allow analysis of the complete 16S rRNA region, or of longer gene fragments, as was the case of Sanger sequencing. Here, we demonstrate that there is no need for special indexed or tailed primer sets dedicated to short variable regions of 16S rRNA since the presented approach allows the analysis of complete bacterial 16S rRNA amplicons (V1-V9) and longer archaeal 16S rRNA and mcrA sequences. Sample augmented with transposon is represented by a set of approximately 300 bp long fragments that can be easily sequenced by Illumina MiSeq. Furthermore, a low proportion of chimeric sequences was observed. DGGE-cloning based strategies were performed combining semi-nested PCR, DGGE and clone library construction. Comparing both investigation methods, a certain degree of complementarity was observed confirming that the DGGE-cloning approach is not obsolete. Novel protocols were created for several types of laboratories, utilizing the traditional DGGE technique or using the most modern Illumina sequencing.

  1. Unusual intraindividual variation of the nuclear 18S rRNA gene is widespread within the Acipenseridae.

    PubMed

    Krieger, Jeannette; Hett, Anne Kathrin; Fuerst, Paul A; Birstein, Vadim J; Ludwig, Arne

    2006-01-01

    Significant intraindividual variation in the sequence of the 18S rRNA gene is unusual in animal genomes. In a previous study, multiple 18S rRNA gene sequences were observed within individuals of eight species of sturgeon from North America but not in the North American paddlefish, Polyodon spathula, in two species of Polypterus (Polypterus delhezi and Polypterus senegalus), in other primitive fishes (Erpetoichthys calabaricus, Lepisosteus osseus, Amia calva) or in a lungfish (Protopterus sp.). These observations led to the hypothesis that this unusual genetic characteristic arose within the Acipenseriformes after the presumed divergence of the sturgeon and paddlefish families. In the present study, a survey of nearly all Eurasian acipenseriform species was conducted to examine 18S rDNA variation. Intraindividual variation was not found in the polyodontid species, the Chinese paddlefish, Psephurus gladius, but variation was detected in all Eurasian acipenserid species. The comparison of sequences from two major segments of the 18S rRNA gene and identification of sites where insertion/deletion events have occurred are placed in the context of evolutionary relationships within the Acipenseriformes and the evolution of rDNA variation in this group.

  2. El Verde Ridge, El Verde Valley, and Rio Icacos root phosphatase and bacterial community composition (December 2015)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cabugao, Kristine; Timm, Collin; Carrell, Alyssa

    Raw data of resin P values, root phosphatase, bacterial community 16S rRNA gene sequences, and bacterial isolate phosphatase and P solubilization in Rio Icacos, El Verde Ridge and El Verde Valley. Contact cabugaokm@ornl.gov if you need to use this dataset for additional information.

  3. Identification of bacterial endophytes associated with traditional medicinal plant Tridax procumbens Linn.

    PubMed Central

    Preveena, Jagadesan; Bhore, Subhash J.

    2013-01-01

    Background: In traditional medicine, Tridax procumbens Linn. is used in the treatment of injuries and wounds. The bacterial endophytes (BEs) of medicinal plants could produce medicinally important metabolites found in their hosts; and hence, the involvement of BEs in conferring wound healing properties to T. Procumbens cannot be ruled out. But, we do not know which types of BEs are associated with T. Procumbens. Objective: The objective of this study was to investigate the fast growing and cultivable BEs associated with T. procumbens. Materials and Methods: Leaves and stems of healthy T. Procumbens plants were collected and cultivable BEs were isolated from surface-sterilized leaf and stem tissue samples using Luria-Bertani (LB) agar (medium) at standard conditions. A polymerase chain reaction was employed to amplify 16S rRNA coding gene fragments from the isolates. Cultivable endophytic bacterial isolates (EBIs) were identified using 16S rRNA gene nucleotide sequence similarity based method of bacterial identification. Results: Altogether, 50 culturable EBIs were isolated. 16S rRNA gene nucleotide sequences analysis using the Basic Local Alignment Search Tool (BLAST) revealed identities of the EBIs. Analysis reveals that cultivable Bacillus spp., Cronobacter sakazakii, Enterobacter spp., Lysinibacillus sphaericus, Pantoea spp., Pseudomonas spp. and Terribacillus saccharophilus are associated with T. Procumbens. Conclusion: Based on the results, we conclude that 24 different types of culturable BEs are associated with traditionally used medicinal plant, T. Procumbens, and require further study. PMID:24501447

  4. Mycobacterial RNA isolation optimized for non-coding RNA: high fidelity isolation of 5S rRNA from Mycobacterium bovis BCG reveals novel post-transcriptional processing and a complete spectrum of modified ribonucleosides.

    PubMed

    Hia, Fabian; Chionh, Yok Hian; Pang, Yan Ling Joy; DeMott, Michael S; McBee, Megan E; Dedon, Peter C

    2015-03-11

    A major challenge in the study of mycobacterial RNA biology is the lack of a comprehensive RNA isolation method that overcomes the unusual cell wall to faithfully yield the full spectrum of non-coding RNA (ncRNA) species. Here, we describe a simple and robust procedure optimized for the isolation of total ncRNA, including 5S, 16S and 23S ribosomal RNA (rRNA) and tRNA, from mycobacteria, using Mycobacterium bovis BCG to illustrate the method. Based on a combination of mechanical disruption and liquid and solid-phase technologies, the method produces all major species of ncRNA in high yield and with high integrity, enabling direct chemical and sequence analysis of the ncRNA species. The reproducibility of the method with BCG was evident in bioanalyzer electrophoretic analysis of isolated RNA, which revealed quantitatively significant differences in the ncRNA profiles of exponentially growing and non-replicating hypoxic bacilli. The method also overcame an historical inconsistency in 5S rRNA isolation, with direct sequencing revealing a novel post-transcriptional processing of 5S rRNA to its functional form and with chemical analysis revealing seven post-transcriptional ribonucleoside modifications in the 5S rRNA. This optimized RNA isolation procedure thus provides a means to more rigorously explore the biology of ncRNA species in mycobacteria. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  5. Changes in Soil Bacterial Communities and Diversity in ...

    EPA Pesticide Factsheets

    Silver-induced selective pressure is becoming increasingly important due to the growing use of silver (Ag) as an antimicrobial agent in biomedical and commercial products. With demonstrated links between environmental resistomes and clinical pathogens, it is important to identify microbial profiles related to silver tolerance/resistance. We investigated the effects of ionic Ag stress on soil bacterial communities and identified resistant/persistant bacterial populations. Silver treatments of 50 - 400 mg Ag kg-1 soil were established in five soils. Chemical lability measurements using diffusive gradients in thin-film devices confirmed that significant (albeit decreasing) labile Ag concentrations were present throughout the 9-month incubation period. Synchrotron X-ray absorption near edge structure spectroscopy demonstrate that this decreasing lability was due to changes in Ag speciation to less soluble forms such as Ag0 and Ag2S. Real-time PCR and Illumina MiSeq screening of 16S rRNA bacterial genes showed β-diversity in response to Ag pressure, and immediate and significant reductions in 16S rRNA gene counts with varying degrees of recovery. These effects were more strongly influenced by exposure time than by Ag dose at these rates. Ag-selected dominant OTUs principally resided in known persister taxa (mainly Gram positive), including metal-tolerant bacteria and slow-growing Mycobacteria. Soil microbial communities have been implicated as sources of an

  6. Response of Bacterial Communities to Different Detritus Compositions in Arctic Deep-Sea Sediments.

    PubMed

    Hoffmann, Katy; Hassenrück, Christiane; Salman-Carvalho, Verena; Holtappels, Moritz; Bienhold, Christina

    2017-01-01

    Benthic deep-sea communities are largely dependent on particle flux from surface waters. In the Arctic Ocean, environmental changes occur more rapidly than in other ocean regions, and have major effects on the export of organic matter to the deep sea. Because bacteria constitute the majority of deep-sea benthic biomass and influence global element cycles, it is important to better understand how changes in organic matter input will affect bacterial communities at the Arctic seafloor. In a multidisciplinary ex situ experiment, benthic bacterial deep-sea communities from the Long-Term Ecological Research Observatory HAUSGARTEN were supplemented with different types of habitat-related detritus (chitin, Arctic algae) and incubated for 23 days under in situ conditions. Chitin addition caused strong changes in community activity, while community structure remained similar to unfed control incubations. In contrast, the addition of phytodetritus resulted in strong changes in community composition, accompanied by increased community activity, indicating the need for adaptation in these treatments. High-throughput sequencing of the 16S rRNA gene and 16S rRNA revealed distinct taxonomic groups of potentially fast-growing, opportunistic bacteria in the different detritus treatments. Compared to the unfed control, Colwelliaceae, Psychromonadaceae , and Oceanospirillaceae increased in relative abundance in the chitin treatment, whereas Flavobacteriaceae, Marinilabiaceae , and Pseudoalteromonadaceae increased in the phytodetritus treatments. Hence, these groups may constitute indicator taxa for the different organic matter sources at this study site. In summary, differences in community structure and in the uptake and remineralization of carbon in the different treatments suggest an effect of organic matter quality on bacterial diversity as well as on carbon turnover at the seafloor, an important feedback mechanism to be considered in future climate change scenarios.

  7. Response of Bacterial Communities to Different Detritus Compositions in Arctic Deep-Sea Sediments

    PubMed Central

    Hoffmann, Katy; Hassenrück, Christiane; Salman-Carvalho, Verena; Holtappels, Moritz; Bienhold, Christina

    2017-01-01

    Benthic deep-sea communities are largely dependent on particle flux from surface waters. In the Arctic Ocean, environmental changes occur more rapidly than in other ocean regions, and have major effects on the export of organic matter to the deep sea. Because bacteria constitute the majority of deep-sea benthic biomass and influence global element cycles, it is important to better understand how changes in organic matter input will affect bacterial communities at the Arctic seafloor. In a multidisciplinary ex situ experiment, benthic bacterial deep-sea communities from the Long-Term Ecological Research Observatory HAUSGARTEN were supplemented with different types of habitat-related detritus (chitin, Arctic algae) and incubated for 23 days under in situ conditions. Chitin addition caused strong changes in community activity, while community structure remained similar to unfed control incubations. In contrast, the addition of phytodetritus resulted in strong changes in community composition, accompanied by increased community activity, indicating the need for adaptation in these treatments. High-throughput sequencing of the 16S rRNA gene and 16S rRNA revealed distinct taxonomic groups of potentially fast-growing, opportunistic bacteria in the different detritus treatments. Compared to the unfed control, Colwelliaceae, Psychromonadaceae, and Oceanospirillaceae increased in relative abundance in the chitin treatment, whereas Flavobacteriaceae, Marinilabiaceae, and Pseudoalteromonadaceae increased in the phytodetritus treatments. Hence, these groups may constitute indicator taxa for the different organic matter sources at this study site. In summary, differences in community structure and in the uptake and remineralization of carbon in the different treatments suggest an effect of organic matter quality on bacterial diversity as well as on carbon turnover at the seafloor, an important feedback mechanism to be considered in future climate change scenarios. PMID:28286496

  8. Bacterial community composition characterization of a lead-contaminated Microcoleus sp. consortium.

    PubMed

    Giloteaux, Ludovic; Solé, Antoni; Esteve, Isabel; Duran, Robert

    2011-08-01

    A Microcoleus sp. consortium, obtained from the Ebro delta microbial mat, was maintained under different conditions including uncontaminated, lead-contaminated, and acidic conditions. Terminal restriction fragment length polymorphism and 16S rRNA gene library analyses were performed in order to determine the effect of lead and culture conditions on the Microcoleus sp. consortium. The bacterial composition inside the consortium revealed low diversity and the presence of specific terminal-restriction fragments under lead conditions. 16S rRNA gene library analyses showed that members of the consortium were affiliated to the Alpha, Beta, and Gammaproteobacteria and Cyanobacteria. Sequences closely related to Achromobacter spp., Alcaligenes faecalis, and Thiobacillus species were exclusively found under lead conditions while sequences related to Geitlerinema sp., a cyanobacterium belonging to the Oscillatoriales, were not found in presence of lead. This result showed a strong lead selection of the bacterial members present in the Microcoleus sp. consortium. Several of the 16S rRNA sequences were affiliated to nitrogen-fixing microorganisms including members of the Rhizobiaceae and the Sphingomonadaceae. Additionally, confocal laser scanning microscopy and scanning and transmission electron microscopy showed that under lead-contaminated condition Microcoleus sp. cells were grouped and the number of electrodense intracytoplasmic inclusions was increased.

  9. Species-Level Identification of Actinomyces Isolates Causing Invasive Infections: Multiyear Comparison of Vitek MS (Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry) to Partial Sequencing of the 16S rRNA Gene.

    PubMed

    Lynch, T; Gregson, D; Church, D L

    2016-03-01

    Actinomyces species are uncommon but important causes of invasive infections. The ability of our regional clinical microbiology laboratory to report species-level identification of Actinomyces relied on molecular identification by partial sequencing of the 16S ribosomal gene prior to the implementation of the Vitek MS (matrix-assisted laser desorption ionization-time of flight mass spectrometry [MALDI-TOF MS]) system. We compared the use of the Vitek MS to that of 16S rRNA gene sequencing for reliable species-level identification of invasive infections caused by Actinomyces spp. because limited data had been published for this important genera. A total of 115 cases of Actinomyces spp., either alone or as part of a polymicrobial infection, were diagnosed between 2011 and 2014. Actinomyces spp. were considered the principal pathogen in bloodstream infections (n = 17, 15%), in skin and soft tissue abscesses (n = 25, 22%), and in pulmonary (n = 26, 23%), bone (n = 27, 23%), intraabdominal (n = 16, 14%), and central nervous system (n = 4, 3%) infections. Compared to sequencing and identification from the SmartGene Integrated Database Network System (IDNS), Vitek MS identified 47/115 (41%) isolates to the correct species and 10 (9%) isolates to the correct genus. However, the Vitek MS was unable to provide identification for 43 (37%) isolates while 15 (13%) had discordant results. Phylogenetic analyses of the 16S rRNA sequences demonstrate high diversity in recovered Actinomyces spp. and provide additional information to compare/confirm discordant identifications between MALDI-TOF and 16S rRNA gene sequences. This study highlights the diversity of clinically relevant Actinomyces spp. and provides an important typing comparison. Based on our analysis, 16S rRNA gene sequencing should be used to rapidly identify Actinomyces spp. until MALDI-TOF databases are optimized. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  10. Species-Level Identification of Actinomyces Isolates Causing Invasive Infections: Multiyear Comparison of Vitek MS (Matrix-Assisted Laser Desorption Ionization–Time of Flight Mass Spectrometry) to Partial Sequencing of the 16S rRNA Gene

    PubMed Central

    Gregson, D.; Church, D. L.

    2016-01-01

    Actinomyces species are uncommon but important causes of invasive infections. The ability of our regional clinical microbiology laboratory to report species-level identification of Actinomyces relied on molecular identification by partial sequencing of the 16S ribosomal gene prior to the implementation of the Vitek MS (matrix-assisted laser desorption ionization–time of flight mass spectrometry [MALDI-TOF MS]) system. We compared the use of the Vitek MS to that of 16S rRNA gene sequencing for reliable species-level identification of invasive infections caused by Actinomyces spp. because limited data had been published for this important genera. A total of 115 cases of Actinomyces spp., either alone or as part of a polymicrobial infection, were diagnosed between 2011 and 2014. Actinomyces spp. were considered the principal pathogen in bloodstream infections (n = 17, 15%), in skin and soft tissue abscesses (n = 25, 22%), and in pulmonary (n = 26, 23%), bone (n = 27, 23%), intraabdominal (n = 16, 14%), and central nervous system (n = 4, 3%) infections. Compared to sequencing and identification from the SmartGene Integrated Database Network System (IDNS), Vitek MS identified 47/115 (41%) isolates to the correct species and 10 (9%) isolates to the correct genus. However, the Vitek MS was unable to provide identification for 43 (37%) isolates while 15 (13%) had discordant results. Phylogenetic analyses of the 16S rRNA sequences demonstrate high diversity in recovered Actinomyces spp. and provide additional information to compare/confirm discordant identifications between MALDI-TOF and 16S rRNA gene sequences. This study highlights the diversity of clinically relevant Actinomyces spp. and provides an important typing comparison. Based on our analysis, 16S rRNA gene sequencing should be used to rapidly identify Actinomyces spp. until MALDI-TOF databases are optimized. PMID:26739153

  11. Detection of Porphyromonas endodontalis in infected root canals by 16S rRNA gene-directed polymerase chain reaction.

    PubMed

    Machado de Oliveira, J C; Siqueira, J F; Alves, G B; Hirata, R; Andrade, A F

    2000-12-01

    Porphyromonas endodontalis has been isolated from the endodontic infections mainly in symptomatic teeth. This study evaluated the occurrence of P. endodontalis in both symptomatic and asymptomatic endodontic infections using 16S rRNA gene-directed polymerase chain reaction. P. endodontalis was detected in 39.5% of the cases (17 of 43 teeth). It was present in 4 of the 6 cases with acute periradicular abscess (66.7%) and in 13 of the 37 other cases (35.1%). The presence of P. endodontalis was associated with an asymptomatic periradicular lesion in 6 cases (25%) and in 10 teeth with tenderness to percussion (52.6%). P. endodontalis was also found in one asymptomatic case without evidence of periradicular pathosis. Our results indicated that, although P. endodontalis is commonly detected in symptomatic cases, it can be present in asymptomatic root canal infections. Further studies should determine if this bacterial species is really an important endodontopathogen.

  12. The Era GTPase recognizes the GAUCACCUCC sequence and binds helix 45 near the 3; end of 16S rRNA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tu, Chao; Zhou, Xiaomei; Tarasov, Sergey G.

    2012-03-26

    Era, composed of a GTPase domain and a K homology domain, is essential for bacterial cell viability. It is required for the maturation of 16S rRNA and assembly of the 30S ribosomal subunit. We showed previously that the protein recognizes nine nucleotides (1531{sup AUCACCUCC}1539) near the 3{prime} end of 16S rRNA, and that this recognition stimulates GTP-hydrolyzing activity of Era. In all three kingdoms of life, the 1530{sup GAUCA}1534 sequence and helix 45 (h45) (nucleotides 1506-1529) are highly conserved. It has been shown that the 1530{sup GA}1531 to 1530{sup AG}1531 double mutation severely affects the viability of bacteria. However, whethermore » Era interacts with G1530 and/or h45 and whether such interactions (if any) contribute to the stimulation of Era's GTPase activity were not known. Here, we report two RNA structures that contain nucleotides 1506-1542 (RNA301), one in complex with Era and GDPNP (GNP), a nonhydrolysable GTP-analogue, and the other in complex with Era, GNP, and the KsgA methyltransferase. The structures show that Era recognizes 10 nucleotides, including G1530, and that Era also binds h45. Moreover, GTPase assay experiments show that G1530 does not stimulate Era's GTPase activity. Rather, A1531 and A1534 are most important for stimulation and h45 further contributes to the stimulation. Although G1530 does not contribute to the intrinsic GTPase activity of Era, its interaction with Era is important for binding and is essential for the protein to function, leading to the discovery of a new cold-sensitive phenotype of Era.« less

  13. Deoxygenation alters bacterial diversity and community composition in the ocean’s largest oxygen minimum zone

    NASA Astrophysics Data System (ADS)

    Beman, J. Michael; Carolan, Molly T.

    2013-10-01

    Oceanic oxygen minimum zones (OMZs) have a central role in biogeochemical cycles and are expanding as a consequence of climate change, yet how deoxygenation will affect the microbial communities that control these cycles is unclear. Here we sample across dissolved oxygen gradients in the oceans’ largest OMZ and show that bacterial richness displays a unimodal pattern with decreasing dissolved oxygen, reaching maximum values on the edge of the OMZ and decreasing within it. Rare groups on the OMZ margin are abundant at lower dissolved oxygen concentrations, including sulphur-cycling Chromatiales, for which 16S rRNA was amplified from extracted RNA. Microbial species distribution models accurately replicate community patterns based on multivariate environmental data, demonstrate likely changes in distributions and diversity in the eastern tropical North Pacific Ocean, and highlight the sensitivity of key bacterial groups to deoxygenation. Through these mechanisms, OMZ expansion may alter microbial composition, competition, diversity and function, all of which have implications for biogeochemical cycling in OMZs.

  14. Selective phylogenetic analysis targeting 16S rRNA genes of hyperthermophilic archaea in the deep-subsurface hot biosphere.

    PubMed

    Kimura, Hiroyuki; Ishibashi, Jun-Ichiro; Masuda, Harue; Kato, Kenji; Hanada, Satoshi

    2007-04-01

    International drilling projects for the study of microbial communities in the deep-subsurface hot biosphere have been expanded. Core samples obtained by deep drilling are commonly contaminated with mesophilic microorganisms in the drilling fluid, making it difficult to examine the microbial community by 16S rRNA gene clone library analysis. To eliminate mesophilic organism contamination, we previously developed a new method (selective phylogenetic analysis [SePA]) based on the strong correlation between the guanine-plus-cytosine (G+C) contents of the 16S rRNA genes and the optimal growth temperatures of prokaryotes, and we verified the method's effectiveness (H. Kimura, M. Sugihara, K. Kato, and S. Hanada, Appl. Environ. Microbiol. 72:21-27, 2006). In the present study we ascertained SePA's ability to eliminate contamination by archaeal rRNA genes, using deep-sea hydrothermal fluid (117 degrees C) and surface seawater (29.9 degrees C) as substitutes for deep-subsurface geothermal samples and drilling fluid, respectively. Archaeal 16S rRNA gene fragments, PCR amplified from the surface seawater, were denatured at 82 degrees C and completely digested with exonuclease I (Exo I), while gene fragments from the deep-sea hydrothermal fluid remained intact after denaturation at 84 degrees C because of their high G+C contents. An examination using mixtures of DNAs from the two environmental samples showed that denaturation at 84 degrees C and digestion with Exo I completely eliminated archaeal 16S rRNA genes from the surface seawater. Our method was quite useful for culture-independent community analysis of hyperthermophilic archaea in core samples recovered from deep-subsurface geothermal environments.

  15. Phylogenetic characterization and in situ detection of bacterial communities associated with seahorses (Hippocampus guttulatus) in captivity.

    PubMed

    Balcázar, José L; Lee, Natuschka M; Pintado, José; Planas, Miquel

    2010-03-01

    Although there are several studies describing bacteria associated with marine fish, the bacterial composition associated with seahorses has not been extensively investigated since these studies have been restricted to the identification of bacterial pathogens. In this study, the phylogenetic affiliation of seahorse-associated bacteria was assessed by 16S rRNA gene sequencing of cloned DNA fragments. Fluorescence in situ hybridization (FISH) was used to confirm the presence of the predominant groups indicated by 16S rRNA analysis. Both methods revealed that Vibrionaceae was the dominant population in Artemia sp. (live prey) and intestinal content of the seahorses, while Rhodobacteraceae was dominant in water samples from the aquaculture system and cutaneous mucus of the seahorses. To our knowledge, this is the first time that bacterial communities associated with healthy seahorses in captivity have been described. Crown Copyright 2010. Published by Elsevier GmbH. All rights reserved.

  16. Assessment of fecal pollution sources in a small northern-plains watershed using PCR and phylogenetic analyses of Bacteroidetes 16S rRNA gene

    USGS Publications Warehouse

    Lamendella, R.; Domingo, J.W.S.; Oerther, D.B.; Vogel, J.R.; Stoeckel, D.M.

    2007-01-01

    We evaluated the efficacy, sensitivity, host-specificity, and spatial/temporal dynamics of human- and ruminant-specific 16S rRNA gene Bacteroidetes markers used to assess the sources of fecal pollution in a fecally impacted watershed. Phylogenetic analyses of 1271 fecal and environmental 16S rRNA gene clones were also performed to study the diversity of Bacteroidetes in this watershed. The host-specific assays indicated that ruminant feces were present in 28-54% of the water samples and in all sampling seasons, with increasing frequency in downstream sites. The human-targeted assays indicated that only 3-5% of the water samples were positive for human fecal signals, although a higher percentage of human-associated signals (19-24%) were detected in sediment samples. Phylogenetic analysis indicated that 57% of all water clones clustered with yet-to-be-cultured Bacteroidetes species associated with sequences obtained from ruminant feces, further supporting the prevalence of ruminant contamination in this watershed. However, since several clusters contained sequences from multiple sources, future studies need to consider the potential cosmopolitan nature of these bacterial populations when assessing fecal pollution sources using Bacteroidetes markers. Moreover, additional data is needed in order to understand the distribution of Bacteroidetes host-specific markers and their relationship to water quality regulatory standards. ?? 2006 Federation of European Microbiological Societies.

  17. Salinity inhibits post transcriptional processing of chloroplast 16S rRNA in shoot cultures of jojoba (Simmondsia chinesis).

    PubMed

    Mizrahi-Aviv, Ela; Mills, David; Benzioni, Aliza; Bar-Zvi, Dudy

    2005-03-01

    Chloroplast metabolism is rapidly affected by salt stress. Photosynthesis is one of the first processes known to be affected by salinity. Here, we report that salinity inhibits chloroplast post-transcriptional RNA processing. A differentially expressed 680-bp cDNA, containing the 3' sequence of 16S rRNA, transcribed intergenic spacer, exon 1 and intron of tRNA(Ile), was isolated by differential display reverse transcriptase PCR from salt-grown jojoba (Simmondsia chinesis) shoot cultures. Northern blot analysis indicated that although most rRNA appears to be fully processed, partially processed chloroplast 16S rRNA accumulates in salt-grown cultures. Thus, salinity appears to decrease the processing of the rrn transcript. The possible effect of this decreased processing on physiological processes is, as yet, unknown.

  18. Comparative analysis of the 5S rRNA and its associated proteins reveals unique primitive rather than parasitic features in Giardia lamblia.

    PubMed

    Feng, Jin-Mei; Sun, Jun; Xin, De-Dong; Wen, Jian-Fan

    2012-01-01

    5S rRNA is a highly conserved ribosomal component. Eukaryotic 5S rRNA and its associated proteins (5S rRNA system) have become very well understood. Giardia lamblia was thought by some researchers to be the most primitive extant eukaryote while others considered it a highly evolved parasite. Previous reports have indicated that some aspects of its 5S rRNA system are simpler than that of common eukaryotes. We here explore whether this is true to its entire system, and whether this simplicity is a primitive or parasitic feature. By collecting and confirming pre-existing data and identifying new data, we obtained almost complete datasets of the system of three isolates of G. lamblia, two other parasitic excavates (Trichomonas vaginalis, Trypanosoma cruzi), and one free-living one (Naegleria gruberi). After comprehensively comparing each aspect of the system among these excavates and also with those of archaea and common eukaryotes, we found all the three Giardia isolates to harbor a same simplified 5S rRNA system, which is not only much simpler than that of common eukaryotes but also the simplest one among those of these excavates, and is surprisingly very similar to that of archaea; we also found among these excavates the system in parasitic species is not necessarily simpler than that in free-living species, conversely, the system of free-living species is even simpler in some respects than those of parasitic ones. The simplicity of Giardia 5S rRNA system should be considered a primitive rather than parasitically-degenerated feature. Therefore, Giardia 5S rRNA system might be a primitive system that is intermediate between that of archaea and the common eukaryotic model system, and it may reflect the evolutionary history of the eukaryotic 5S rRNA system from the archaeal form. Our results also imply G. lamblia might be a primitive eukaryote with secondary parasitically-degenerated features.

  19. Comparative Analysis of the 5S rRNA and Its Associated Proteins Reveals Unique Primitive Rather Than Parasitic Features in Giardia lamblia

    PubMed Central

    Xin, De-Dong; Wen, Jian-Fan

    2012-01-01

    Background 5S rRNA is a highly conserved ribosomal component. Eukaryotic 5S rRNA and its associated proteins (5S rRNA system) have become very well understood. Giardia lamblia was thought by some researchers to be the most primitive extant eukaryote while others considered it a highly evolved parasite. Previous reports have indicated that some aspects of its 5S rRNA system are simpler than that of common eukaryotes. We here explore whether this is true to its entire system, and whether this simplicity is a primitive or parasitic feature. Methodology/Principal Findings By collecting and confirming pre-existing data and identifying new data, we obtained almost complete datasets of the system of three isolates of G. lamblia, two other parasitic excavates (Trichomonas vaginalis, Trypanosoma cruzi), and one free-living one (Naegleria gruberi). After comprehensively comparing each aspect of the system among these excavates and also with those of archaea and common eukaryotes, we found all the three Giardia isolates to harbor a same simplified 5S rRNA system, which is not only much simpler than that of common eukaryotes but also the simplest one among those of these excavates, and is surprisingly very similar to that of archaea; we also found among these excavates the system in parasitic species is not necessarily simpler than that in free-living species, conversely, the system of free-living species is even simpler in some respects than those of parasitic ones. Conclusion/Significance The simplicity of Giardia 5S rRNA system should be considered a primitive rather than parasitically-degenerated feature. Therefore, Giardia 5S rRNA system might be a primitive system that is intermediate between that of archaea and the common eukaryotic model system, and it may reflect the evolutionary history of the eukaryotic 5S rRNA system from the archaeal form. Our results also imply G. lamblia might be a primitive eukaryote with secondary parasitically-degenerated features. PMID

  20. Identification of the bacterial etiology of culture-negative endocarditis by amplification and sequencing of a small ribosomal RNA gene.

    PubMed

    Khulordava, Irakli; Miller, Geraldine; Haas, David; Li, Haijing; McKinsey, Joel; Vanderende, Daniel; Tang, Yi-Wei

    2003-05-01

    We report two cases of culture-negative bacterial endocarditis in which the organisms were identified by amplification and sequencing of the bacterial 16S rRNA gene. These results support an important role for polymerase chain reaction followed by direct sequencing to determine the etiology of culture-negative bacterial endocarditis and to guide appropriate antimicrobial therapy.

  1. Dancing together and separate again: gymnosperms exhibit frequent changes of fundamental 5S and 35S rRNA gene (rDNA) organisation.

    PubMed

    Garcia, S; Kovařík, A

    2013-07-01

    In higher eukaryotes, the 5S rRNA genes occur in tandem units and are arranged either separately (S-type arrangement) or linked to other repeated genes, in most cases to rDNA locus encoding 18S-5.8S-26S genes (L-type arrangement). Here we used Southern blot hybridisation, PCR and sequencing approaches to analyse genomic organisation of rRNA genes in all large gymnosperm groups, including Coniferales, Ginkgoales, Gnetales and Cycadales. The data are provided for 27 species (21 genera). The 5S units linked to the 35S rDNA units occur in some but not all Gnetales, Coniferales and in Ginkgo (∼30% of the species analysed), while the remaining exhibit separate organisation. The linked 5S rRNA genes may occur as single-copy insertions or as short tandems embedded in the 26S-18S rDNA intergenic spacer (IGS). The 5S transcript may be encoded by the same (Ginkgo, Ephedra) or opposite (Podocarpus) DNA strand as the 18S-5.8S-26S genes. In addition, pseudogenised 5S copies were also found in some IGS types. Both L- and S-type units have been largely homogenised across the genomes. Phylogenetic relationships based on the comparison of 5S coding sequences suggest that the 5S genes independently inserted IGS at least three times in the course of gymnosperm evolution. Frequent transpositions and rearrangements of basic units indicate relatively relaxed selection pressures imposed on genomic organisation of 5S genes in plants.

  2. Bacterial microbiome and nematode occurrence in different potato agricultural soils

    USDA-ARS?s Scientific Manuscript database

    Pratylenchus neglectus and Meloidogyne chitwoodi are the main plant-parasitic nematodes in potato crops of the San Luis Valley, Colorado. Bacterial microbiome (16S rRNA copies per gram of soil) and nematode communities (nematodes per 200 gr of soil) from five different potato farms were analyzed to ...

  3. Nested PCR Biases in Interpreting Microbial Community Structure in 16S rRNA Gene Sequence Datasets.

    PubMed

    Yu, Guoqin; Fadrosh, Doug; Goedert, James J; Ravel, Jacques; Goldstein, Alisa M

    2015-01-01

    Sequencing of the PCR-amplified 16S rRNA gene has become a common approach to microbial community investigations in the fields of human health and environmental sciences. This approach, however, is difficult when the amount of DNA is too low to be amplified by standard PCR. Nested PCR can be employed as it can amplify samples with DNA concentration several-fold lower than standard PCR. However, potential biases with nested PCRs that could affect measurement of community structure have received little attention. In this study, we used 17 DNAs extracted from vaginal swabs and 12 DNAs extracted from stool samples to study the influence of nested PCR amplification of the 16S rRNA gene on the estimation of microbial community structure using Illumina MiSeq sequencing. Nested and standard PCR methods were compared on alpha- and beta-diversity metrics and relative abundances of bacterial genera. The effects of number of cycles in the first round of PCR (10 vs. 20) and microbial diversity (relatively low in vagina vs. high in stool) were also investigated. Vaginal swab samples showed no significant difference in alpha diversity or community structure between nested PCR and standard PCR (one round of 40 cycles). Stool samples showed significant differences in alpha diversity (except Shannon's index) and relative abundance of 13 genera between nested PCR with 20 cycles in the first round and standard PCR (P<0.01), but not between nested PCR with 10 cycles in the first round and standard PCR. Operational taxonomic units (OTUs) that had low relative abundance (sum of relative abundance <0.167) accounted for most of the distortion (>27% of total OTUs in stool). Nested PCR introduced bias in estimated diversity and community structure. The bias was more significant for communities with relatively higher diversity and when more cycles were applied in the first round of PCR. We conclude that nested PCR could be used when standard PCR does not work. However, rare taxa detected by

  4. Novel Accurate Bacterial Discrimination by MALDI-Time-of-Flight MS Based on Ribosomal Proteins Coding in S10-spc-alpha Operon at Strain Level S10-GERMS

    NASA Astrophysics Data System (ADS)

    Tamura, Hiroto; Hotta, Yudai; Sato, Hiroaki

    2013-08-01

    Matrix-assisted laser-desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) is one of the most widely used mass-based approaches for bacterial identification and classification because of the simple sample preparation and extremely rapid analysis within a few minutes. To establish the accurate MALDI-TOF MS bacterial discrimination method at strain level, the ribosomal subunit proteins coded in the S 10-spc-alpha operon, which encodes half of the ribosomal subunit protein and is highly conserved in eubacterial genomes, were selected as reliable biomarkers. This method, named the S10-GERMS method, revealed that the strains of genus Pseudomonas were successfully identified and discriminated at species and strain levels, respectively; therefore, the S10-GERMS method was further applied to discriminate the pathovar of P. syringae. The eight selected biomarkers (L24, L30, S10, S12, S14, S16, S17, and S19) suggested the rapid discrimination of P. syringae at the strain (pathovar) level. The S10-GERMS method appears to be a powerful tool for rapid and reliable bacterial discrimination and successful phylogenetic characterization. In this article, an overview of the utilization of results from the S10-GERMS method is presented, highlighting the characterization of the Lactobacillus casei group and discrimination of the bacteria of genera Bacillus and Sphingopyxis despite only two and one base difference in the 16S rRNA gene sequence, respectively.

  5. Characterization of hydrocortisone biometabolites and 18S rRNA gene in Chlamydomonas reinhardtii cultures.

    PubMed

    Ghasemi, Younes; Rasoul-Amini, Sara; Morowvat, Mohammad Hossein; Raee, Mohammad Javad; Ghoshoon, Mohammad Bagher; Nouri, Fatemeh; Negintaji, Narges; Parvizi, Rezvan; Mosavi-Azam, Seyed Bagher

    2008-10-31

    A unicellular microalga, Chlamydomonas reinhardtii, was isolated from rice paddy-field soil and water samples and used in the biotransformation of hydrocortisone (1). This strain has not been previously tested for steroid bioconversion. Fermentation was carried out in BG-11 medium supplemented with 0.05% substrate at 25 degrees C for 14 days of incubation. The products obtained were chromatographically purified and characterized using spectroscopic methods. 11b,17 beta-Dihydroxyandrost-4-en-3-one (2), 11 beta-hydroxyandrost-4-en-3,17-dione (3), 11 beta,17 alpha,20 beta,21-tetrahydroxypregn-4-en-3-one (4) and prednisolone (5) were the main products of the bioconversion. The observed bioreaction features were the side chain degradation of the substrate to give compounds 2 and 3 and the 20-ketone reduction and 1,2-dehydrogenation affording compounds 4 and 5, respectively. A time course study showed the accumulation of product 2 from the second day of the fermentation and of compounds 3, 4 and 5 from the third day. All the metabolites reached their maximum concentration in seven days. Microalgal 18S rRNA gene was also amplified by PCR. PCR products were sequenced to confirm their authenticity as 18S rRNA gene of microalgae. The result of PCR blasted with other sequenced microalgae in NCBI showed 100% homology to the 18S small subunit rRNA of two Chlamydomonas reinhardtii spp.

  6. Elucidating the 16S rRNA 3' boundaries and defining optimal SD/aSD pairing in Escherichia coli and Bacillus subtilis using RNA-Seq data.

    PubMed

    Wei, Yulong; Silke, Jordan R; Xia, Xuhua

    2017-12-15

    Bacterial translation initiation is influenced by base pairing between the Shine-Dalgarno (SD) sequence in the 5' UTR of mRNA and the anti-SD (aSD) sequence at the free 3' end of the 16S rRNA (3' TAIL) due to: 1) the SD/aSD sequence binding location and 2) SD/aSD binding affinity. In order to understand what makes an SD/aSD interaction optimal, we must define: 1) terminus of the 3' TAIL and 2) extent of the core aSD sequence within the 3' TAIL. Our approach to characterize these components in Escherichia coli and Bacillus subtilis involves 1) mapping the 3' boundary of the mature 16S rRNA using high-throughput RNA sequencing (RNA-Seq), and 2) identifying the segment within the 3' TAIL that is strongly preferred in SD/aSD pairing. Using RNA-Seq data, we resolve previous discrepancies in the reported 3' TAIL in B. subtilis and recovered the established 3' TAIL in E. coli. Furthermore, we extend previous studies to suggest that both highly and lowly expressed genes favor SD sequences with intermediate binding affinity, but this trend is exclusive to SD sequences that complement the core aSD sequences defined herein.

  7. Nuclear counterparts of the cytoplasmic mitochondrial 12S rRNA gene: a problem of ancient DNA and molecular phylogenies.

    PubMed

    van der Kuyl, A C; Kuiken, C L; Dekker, J T; Perizonius, W R; Goudsmit, J

    1995-06-01

    Monkey mummy bones and teeth originating from the North Saqqara Baboon Galleries (Egypt), soft tissue from a mummified baboon in a museum collection, and nineteenth/twentieth-century skin fragments from mangabeys were used for DNA extraction and PCR amplification of part of the mitochondrial 12S rRNA gene. Sequences aligning with the 12S rRNA gene were recovered but were only distantly related to contemporary monkey mitochondrial 12S rRNA sequences. However, many of these sequences were identical or closely related to human nuclear DNA sequences resembling mitochondrial 12S rRNA (isolated from a cell line depleted in mitochondria) and therefore have to be considered contamination. Subsequently in a separate study we were able to recover genuine mitochondrial 12S rRNA sequences from many extant species of nonhuman Old World primates and sequences closely resembling the human nuclear integrations. Analysis of all sequences by the neighbor-joining (NJ) method indicated that mitochondrial DNA sequences and their nuclear counterparts can be divided into two distinct clusters. One cluster contained all temporary cytoplasmic mitochondrial DNA sequences and approximately half of the monkey nuclear mitochondriallike sequences. A second cluster contained most human nuclear sequences and the other half of monkey nuclear sequences with a separate branch leading to human and gorilla mitochondrial and nuclear sequences. Sequences recovered from ancient materials were equally divided between the two clusters. These results constitute a warning for when working with ancient DNA or performing phylogenetic analysis using mitochondrial DNA as a target sequence: Nuclear counterparts of mitochondrial genes may lead to faulty interpretation of results.

  8. Combining flow cytometry and 16S rRNA gene pyrosequencing: a promising approach for drinking water monitoring and characterization.

    PubMed

    Prest, E I; El-Chakhtoura, J; Hammes, F; Saikaly, P E; van Loosdrecht, M C M; Vrouwenvelder, J S

    2014-10-15

    The combination of flow cytometry (FCM) and 16S rRNA gene pyrosequencing data was investigated for the purpose of monitoring and characterizing microbial changes in drinking water distribution systems. High frequency sampling (5 min intervals for 1 h) was performed at the outlet of a treatment plant and at one location in the full-scale distribution network. In total, 52 bulk water samples were analysed with FCM, pyrosequencing and conventional methods (adenosine-triphosphate, ATP; heterotrophic plate count, HPC). FCM and pyrosequencing results individually showed that changes in the microbial community occurred in the water distribution system, which was not detected with conventional monitoring. FCM data showed an increase in the total bacterial cell concentrations (from 345 ± 15 × 10(3) to 425 ± 35 × 10(3) cells mL(-1)) and in the percentage of intact bacterial cells (from 39 ± 3.5% to 53 ± 4.4%) during water distribution. This shift was also observed in the FCM fluorescence fingerprints, which are characteristic of each water sample. A similar shift was detected in the microbial community composition as characterized with pyrosequencing, showing that FCM and genetic fingerprints are congruent. FCM and pyrosequencing data were subsequently combined for the calculation of cell concentration changes for each bacterial phylum. The results revealed an increase in cell concentrations of specific bacterial phyla (e.g., Proteobacteria), along with a decrease in other phyla (e.g., Actinobacteria), which could not be concluded from the two methods individually. The combination of FCM and pyrosequencing methods is a promising approach for future drinking water quality monitoring and for advanced studies on drinking water distribution pipeline ecology. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Overexpression of a natural chloroplast-encoded antisense RNA in tobacco destabilizes 5S rRNA and retards plant growth.

    PubMed

    Hotto, Amber M; Huston, Zoe E; Stern, David B

    2010-09-29

    The roles of non-coding RNAs in regulating gene expression have been extensively studied in both prokaryotes and eukaryotes, however few reports exist as to their roles in organellar gene regulation. Evidence for accumulation of natural antisense RNAs (asRNAs) in chloroplasts comes from the expressed sequence tag database and cDNA libraries, while functional data have been largely obtained from artificial asRNAs. In this study, we used Nicotiana tabacum to investigate the effect on sense strand transcripts of overexpressing a natural chloroplast asRNA, AS5, which is complementary to the region which encodes the 5S rRNA and tRNAArg. AS5-overexpressing (AS5ox) plants obtained by chloroplast transformation exhibited slower growth and slightly pale green leaves. Analysis of AS5 transcripts revealed four distinct species in wild-type (WT) and AS5ox plants, and additional AS5ox-specific products. Of the corresponding sense strand transcripts, tRNAArg overaccumulated several-fold in transgenic plants whereas 5S rRNA was unaffected. However, run-on transcription showed that the 5S-trnR region was transcribed four-fold more in the AS5ox plants compared to WT, indicating that overexpression of AS5 was associated with decreased stability of 5S rRNA. In addition, polysome analysis of the transformants showed less 5S rRNA and rbcL mRNA associated with ribosomes. Our results suggest that AS5 can modulate 5S rRNA levels, giving it the potential to affect Chloroplast translation and plant growth. More globally, overexpression of asRNAs via chloroplast transformation may be a useful strategy for defining their functions.

  10. Deep sequencing reveals exceptional diversity and modes of transmission for bacterial sponge symbionts.

    PubMed

    Webster, Nicole S; Taylor, Michael W; Behnam, Faris; Lücker, Sebastian; Rattei, Thomas; Whalan, Stephen; Horn, Matthias; Wagner, Michael

    2010-08-01

    Marine sponges contain complex bacterial communities of considerable ecological and biotechnological importance, with many of these organisms postulated to be specific to sponge hosts. Testing this hypothesis in light of the recent discovery of the rare microbial biosphere, we investigated three Australian sponges by massively parallel 16S rRNA gene tag pyrosequencing. Here we show bacterial diversity that is unparalleled in an invertebrate host, with more than 250,000 sponge-derived sequence tags being assigned to 23 bacterial phyla and revealing up to 2996 operational taxonomic units (95% sequence similarity) per sponge species. Of the 33 previously described 'sponge-specific' clusters that were detected in this study, 48% were found exclusively in adults and larvae - implying vertical transmission of these groups. The remaining taxa, including 'Poribacteria', were also found at very low abundance among the 135,000 tags retrieved from surrounding seawater. Thus, members of the rare seawater biosphere may serve as seed organisms for widely occurring symbiont populations in sponges and their host association might have evolved much more recently than previously thought. © 2009 Society for Applied Microbiology and Blackwell Publishing Ltd.

  11. Bacterial community changes in copper and PEX drinking water pipeline biofilms under extra disinfection and magnetic water treatment.

    PubMed

    Inkinen, J; Jayaprakash, B; Ahonen, M; Pitkänen, T; Mäkinen, R; Pursiainen, A; Santo Domingo, J W; Salonen, H; Elk, M; Keinänen-Toivola, M M

    2018-02-01

    To study the stability of biofilms and water quality in pilot scale drinking water copper and PEX pipes in changing conditions (extra disinfection, magnetic water treatment, MWT). Next-generation sequencing (NGS) of 16S ribosomal RNA genes (rDNA) to describe total bacterial community and ribosomal RNA (rRNA) to describe active bacterial members in addition to traditional microbiological methods were applied. Biofilms from control copper and PEX pipes shared same most abundant bacteria (Methylobacterium spp., Sphingomonas spp., Zymomonas spp.) and average species diversities (Shannon 3·8-4·2) in rDNA and rRNA libraries, whereas few of the taxa differed by their abundance such as lower total Mycobacterium spp. occurrence in copper (<0·02%) to PEX (<0·2%) pipes. Extra disinfection (total chlorine increase from c. 0·5 to 1 mg l -1 ) affected total and active population in biofilms seen as decrease in many bacterial species and diversity (Shannon 2·7, P < 0·01, rRNA) and increase in Sphingomonas spp. as compared to control samples. Furthermore, extra-disinfected copper and PEX samples formed separate clusters in unweighted non-metric multidimensional scaling plot (rRNA) similarly to MWT-treated biofilms of copper (but not PEX) pipes that instead showed higher species diversity (Shannon 4·8, P < 0·05 interaction). Minor chlorine dose addition increased selection pressure and many species were sensitive to chlorination. Pipe material seemed to affect mycobacteria occurrence, and bacterial communities with MWT in copper but not in PEX pipes. This study using rRNA showed that chlorination affects especially active fraction of bacterial communities. Copper and PEX differed by the occurrence of some bacterial members despite similar community profiles. © 2017 The Society for Applied Microbiology.

  12. Elevations of novel cytokines in bacterial meningitis in infants.

    PubMed

    Srinivasan, Lakshmi; Kilpatrick, Laurie; Shah, Samir S; Abbasi, Soraya; Harris, Mary C

    2018-01-01

    Bacterial meningitis is challenging to diagnose in infants, especially in the common setting of antibiotic pre-treatment, which diminishes yield of cerebrospinal fluid (CSF) cultures. Prior studies of diagnostic markers have not demonstrated sufficient accuracy. Interleukin-23 (IL-23), interleukin-18 (IL-18) and soluble receptor for advanced glycation end products (sRAGE) possess biologic plausibility, and may be useful as diagnostic markers in bacterial meningitis. In a prospective cohort study, we measured IL-23, IL-18 and sRAGE levels in CSF. We compared differences between infected and non-infected infants, and conducted receiver operating characteristic (ROC) analyses to identify individual markers and combinations of markers with the best diagnostic accuracy. 189 infants <6 months, including 8 with bacterial meningitis, 30 without meningitis, and 151 with indeterminate diagnosis (due to antibiotic pretreatment) were included. CSF IL-23, IL-18 and sRAGE levels were significantly elevated in infants with culture proven meningitis. Among individual markers, IL-23 possessed the greatest accuracy for diagnosis of bacterial meningitis (area under the curve (AUC) 0.9698). The combination of all three markers had an AUC of 1. IL-23, alone and in combination with IL-18 and sRAGE, identified bacterial meningitis with excellent accuracy. Following validation, these markers could aid clinicians in diagnosis of bacterial meningitis and decision-making regarding prolongation of antibiotic therapy.

  13. Dancing together and separate again: gymnosperms exhibit frequent changes of fundamental 5S and 35S rRNA gene (rDNA) organisation

    PubMed Central

    Garcia, S; Kovařík, A

    2013-01-01

    In higher eukaryotes, the 5S rRNA genes occur in tandem units and are arranged either separately (S-type arrangement) or linked to other repeated genes, in most cases to rDNA locus encoding 18S–5.8S–26S genes (L-type arrangement). Here we used Southern blot hybridisation, PCR and sequencing approaches to analyse genomic organisation of rRNA genes in all large gymnosperm groups, including Coniferales, Ginkgoales, Gnetales and Cycadales. The data are provided for 27 species (21 genera). The 5S units linked to the 35S rDNA units occur in some but not all Gnetales, Coniferales and in Ginkgo (∼30% of the species analysed), while the remaining exhibit separate organisation. The linked 5S rRNA genes may occur as single-copy insertions or as short tandems embedded in the 26S–18S rDNA intergenic spacer (IGS). The 5S transcript may be encoded by the same (Ginkgo, Ephedra) or opposite (Podocarpus) DNA strand as the 18S–5.8S–26S genes. In addition, pseudogenised 5S copies were also found in some IGS types. Both L- and S-type units have been largely homogenised across the genomes. Phylogenetic relationships based on the comparison of 5S coding sequences suggest that the 5S genes independently inserted IGS at least three times in the course of gymnosperm evolution. Frequent transpositions and rearrangements of basic units indicate relatively relaxed selection pressures imposed on genomic organisation of 5S genes in plants. PMID:23512008

  14. Refractory Chronic Pleurisy Caused by Helicobacter equorum-Like Bacterium in a Patient with X-Linked Agammaglobulinemia ▿

    PubMed Central

    Funato, Michinori; Kaneko, Hideo; Ohkusu, Kiyofumi; Sasai, Hideo; Kubota, Kazuo; Ohnishi, Hidenori; Kato, Zenichiro; Fukao, Toshiyuki; Kondo, Naomi

    2011-01-01

    We describe a 35-year-old man with X-linked agammaglobulinemia who had refractory chronic pleurisy caused by a Helicobacter equorum-like bacterium. Broad-range bacterial PCR targeting the 16S and 23S rRNA genes and in situ hybridization targeting the 16S rRNA gene of H. equorum confirmed the presence of this pathogen in a human for the first time. PMID:21677071

  15. Soil-Borne Bacterial Structure and Diversity Does Not Reflect Community Activity in Pampa Biome

    PubMed Central

    Lupatini, Manoeli; Suleiman, Afnan Khalil Ahmad; Jacques, Rodrigo Josemar Seminoti; Antoniolli, Zaida Inês; Kuramae, Eiko Eurya; de Oliveira Camargo, Flávio Anastácio; Roesch, Luiz Fernando Würdig

    2013-01-01

    The Pampa biome is considered one of the main hotspots of the world’s biodiversity and it is estimated that half of its original vegetation was removed and converted to agricultural land and tree plantations. Although an increasing amount of knowledge is being assembled regarding the response of soil bacterial communities to land use change, to the associated plant community and to soil properties, our understanding about how these interactions affect the microbial community from the Brazilian Pampa is still poor and incomplete. In this study, we hypothesized that the same soil type from the same geographic region but under distinct land use present dissimilar soil bacterial communities. To test this hypothesis, we assessed the soil bacterial communities from four land-uses within the same soil type by 454-pyrosequencing of 16S rRNA gene and by soil microbial activity analyzes. We found that the same soil type under different land uses harbor similar (but not equal) bacterial communities and the differences were controlled by many microbial taxa. No differences regarding diversity and richness between natural areas and areas under anthropogenic disturbance were detected. However, the measures of microbial activity did not converge with the 16S rRNA data supporting the idea that the coupling between functioning and composition of bacterial communities is not necessarily correlated. PMID:24146873

  16. Natural-abundance stable carbon isotopes of small-subunit ribosomal RNA (SSU rRNA) from Guaymas Basin (Mexico)

    NASA Astrophysics Data System (ADS)

    MacGregor, B. J.; Mendlovitz, H.; Albert, D.; Teske, A. P.

    2012-12-01

    Small-subunit ribosomal RNA (SSU rRNA) is a phylogenetically informative molecule found in all species. Because it is poorly preserved in most environments, it is a useful marker for active microbial populations. We are using the natural-abundance stable carbon isotopic composition of specific microbial groups to help identify the carbon substrates contributing to microbial biomass in a variety of marine environments. At Guaymas Basin, hydrothermal fluids interact with abundant sedimentary organic carbon to produce natural gas and petroleum. Where this reaches the sediment surface, it can support dense patches of seafloor life, including Beggiatoa mats. We report here on the stable carbon isotopic composition of SSU rRNA from a Beggiatoa mat transect, a cold background site, a warm site with high oil concentration, and a second Beggiatoa mat. The central part of the transect mat overlay the steepest temperature gradient, and was visually dominated by orange Beggiatoa. This was fringed by white Beggiatoa mat and bare, but still warm, sediment. Methane concentrations were saturating beneath the orange and white mats and at the oily site, lower beneath bare sediment, and below detection at the background site. Our initial hypotheses were that rRNA isotopic composition would be strongly influenced by methane supply, and that archaeal rRNA might be lighter than bacterial due to contributions from methanogens and anaerobic methane oxidizers. We used biotin-labeled oligonucleotides to capture Bacterial and Archaeal SSU rRNA for isotopic determination. Background-site rRNA was isotopically heaviest, and bacterial RNA from below 2 cm at the oily site was lightest, consistent with control by methane. Within the transect mat, however, the pattern was more complicated; at some sediment depths, rRNA from the mat periphery was isotopically lightest. Part of this may be due to the spatially and temporally variable paths followed by hydrothermal fluid, which can include horizontal

  17. Phylogenetic analysis of Fusobacterium prausnitzii based upon the 16S rRNA gene sequence and PCR confirmation.

    PubMed

    Wang, R F; Cao, W W; Cerniglia, C E

    1996-01-01

    In order to develop a PCR method to detect Fusobacterium prausnitzii in human feces and to clarify the phylogenetic position of this species, its 16S rRNA gene sequence was determined. The sequence described in this paper is different from the 16S rRNA gene sequence is specific for F. prausnitzii, and the results of this assay confirmed that F. prausnitzii is the most common species in human feces. However, a PCR assay based on the original GenBank sequence was negative when it was performed with two strains of F. prausnitzii obtained from the American Type Culture Collection. A phylogenetic tree based on the new 16S rRNA gene sequence was constructed. On this tree F. prausnitzii was not a member of the Fusobacterium group but was closer to some Eubacterium spp. and located between Clostridium "clusters III and IV" (M.D. Collins, P.A. Lawson, A. Willems, J.J. Cordoba, J. Fernandez-Garayzabal, P. Garcia, J. Cai, H. Hippe, and J.A.E. Farrow, Int. J. Syst. Bacteriol. 44:812-826, 1994).

  18. The significance of oral streptococci in patients with pneumonia with risk factors for aspiration: the bacterial floral analysis of 16S ribosomal RNA gene using bronchoalveolar lavage fluid.

    PubMed

    Akata, Kentaro; Yatera, Kazuhiro; Yamasaki, Kei; Kawanami, Toshinori; Naito, Keisuke; Noguchi, Shingo; Fukuda, Kazumasa; Ishimoto, Hiroshi; Taniguchi, Hatsumi; Mukae, Hiroshi

    2016-05-11

    Aspiration pneumonia has been a growing interest in an aging population. Anaerobes are important pathogens, however, the etiology of aspiration pneumonia is not fully understood. In addition, the relationship between the patient clinical characteristics and the causative pathogens in pneumonia patients with aspiration risk factors are unclear. To evaluate the relationship between the patient clinical characteristics with risk factors for aspiration and bacterial flora in bronchoalveolar lavage fluid (BALF) in pneumonia patients, the bacterial floral analysis of 16S ribosomal RNA gene was applied in addition to cultivation methods in BALF samples. From April 2010 to February 2014, BALF samples were obtained from the affected lesions of pneumonia via bronchoscopy, and were evaluated by the bacterial floral analysis of 16S rRNA gene in addition to cultivation methods in patients with community-acquired pneumonia (CAP) and healthcare-associated pneumonia (HCAP). Factors associated with aspiration risks in these patients were analyzed. A total of 177 (CAP 83, HCAP 94) patients were enrolled. According to the results of the bacterial floral analysis, detection rate of oral streptococci as the most detected bacterial phylotypes in BALF was significantly higher in patients with aspiration risks (31.0 %) than in patients without aspiration risks (14.7 %) (P = 0.009). In addition, the percentages of oral streptococci in each BALF sample were significantly higher in patients with aspiration risks (26.6 ± 32.0 %) than in patients without aspiration risks (13.8 ± 25.3 %) (P = 0.002). A multiple linear regression analysis showed that an Eastern Cooperative Oncology Group (ECOG) performance status (PS) of ≥3, the presence of comorbidities, and a history of pneumonia within a previous year were significantly associated with a detection of oral streptococci in BALF. The bacterial floral analysis of 16S rRNA gene revealed that oral streptococci were mostly

  19. Bacterial diversity analysis of Huanglongbing pathogen-infected citrus, using PhyloChip and 16S rRNA gene clone library sequencing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shankar Sagaram, U.; DeAngelis, K.M.; Trivedi, P.

    The bacterial diversity associated with citrus leaf midribs was characterized 1 from citrus groves that contained the Huanglongbing (HLB) pathogen, which has yet to be cultivated in vitro. We employed a combination of high-density phylogenetic 16S rDNA microarray and 16S rDNA clone library sequencing to determine the microbial community composition of symptomatic and asymptomatic citrus midribs. Our results revealed that citrus leaf midribs can support a diversity of microbes. PhyloChip analysis indicated that 47 orders of bacteria from 15 phyla were present in the citrus leaf midribs while 20 orders from phyla were observed with the cloning and sequencing method.more » PhyloChip arrays indicated that nine taxa were significantly more abundant in symptomatic midribs compared to asymptomatic midribs. Candidatus Liberibacter asiaticus (Las) was detected at a very low level in asymptomatic plants, but was over 200 times more abundant in symptomatic plants. The PhyloChip analysis was further verified by sequencing 16S rDNA clone libraries, which indicated the dominance of Las in symptomatic leaves. These data implicate Las as the pathogen responsible for HLB disease. Citrus is the most important commercial fruit crop in Florida. In recent years, citrus Huanglongbing (HLB), also called citrus greening, has severely affected Florida's citrus production and hence has drawn an enormous amount of attention. HLB is one of the most devastating diseases of citrus (6,13), characterized by blotchy mottling with green islands on leaves, as well as stunting, fruit decline, and small, lopsided fruits with poor coloration. The disease tends to be associated with a phloem-limited fastidious {alpha}-proteobacterium given a provisional Candidatus status (Candidatus Liberobacter spp. later changed to Candidatus Liberibacter spp.) in nomenclature (18,25,34). Previous studies indicate that HLB infection causes disorder in the phloem and severely impairs the translocation of assimilates

  20. Phylogenetic position of the enigmatic clawless eutardigrade genus Apodibius Dastych, 1983 (Tardigrada), based on 18S and 28S rRNA sequence data from its type species A. confusus.

    PubMed

    Dabert, Miroslawa; Dastych, Hieronymus; Hohberg, Karin; Dabert, Jacek

    2014-01-01

    The systematics of Eutardigrada, the largest lineage among the three classes of the phylum Tardigrada, is based mainly on the morphology of the leg claws and of the buccal apparatus. However, three members of the rarely recorded and poorly known limno-terrestrial eutardigrade genus Apodibius have no claws on their strongly reduced legs, a unique character among all tardigrades. This absence of all claws makes the systematic position of Apodibius one of the most enigmatic among the whole class. Until now all known associates of the genus Apodibius have been located in the incertae sedis species group or, quite recently, included into the Necopinatidae family. In the present study, phylogenetic analyses of 18S and 28S rRNA sequence data from 31 tardigrade species representing four parachelan superfamilies (Isohypsibioidea, Hypsibioidea, Macrobiotoidea, Eohypsibioidea), the apochelan Milnesium tardigradum, and the type species of the genus Apodibius, A. confusus, indicated close relationship of the Apodibius with tardigrade species recently included in the superfamily Isohypsibioidea. This result was well-supported and consistent across all markers (separate 18S rRNA, 28S rRNA, and combined 18S rRNA+28S rRNA datasets) and methods (MP, ML) applied. Copyright © 2013 Elsevier Inc. All rights reserved.

  1. Effect of Field Inoculation with Sinorhizobium meliloti L33 on the Composition of Bacterial Communities in Rhizospheres of a Target Plant (Medicago sativa) and a Non-Target Plant (Chenopodium album)—Linking of 16S rRNA Gene-Based Single-Strand Conformation Polymorphism Community Profiles to the Diversity of Cultivated Bacteria

    PubMed Central

    Schwieger, Frank; Tebbe, Christoph C.

    2000-01-01

    Fourteen weeks after field release of luciferase gene-tagged Sinorhizobium meliloti L33 in field plots seeded with Medicago sativa, we found that the inoculant also occurred in bulk soil from noninoculated control plots. In rhizospheres of M. sativa plants, S. meliloti L33 could be detected in noninoculated plots 12 weeks after inoculation, indicating that growth in the rhizosphere preceded spread into bulk soil. To determine whether inoculation affected bacterial diversity, 1,119 bacteria were isolated from the rhizospheres of M. sativa and Chenopodium album, which was the dominant weed in the field plots. Amplified ribosomal DNA restriction analysis (ARDRA) revealed plant-specific fragment size frequencies. Dominant ARDRA groups were identified by 16S rRNA gene nucleotide sequencing. Database comparisons indicated that the rhizospheres contained members of the Proteobacteria (α, β, and γ subgroups), members of the Cytophaga-Flavobacterium group, and gram-positive bacteria with high G+C DNA contents. The levels of many groups were affected by the plant species and, in the case of M. sativa, by inoculation. The most abundant isolates were related to Variovorax sp., Arthrobacter ramosus, and Acinetobacter calcoaceticus. In the rhizosphere of M. sativa, inoculation reduced the numbers of cells of A. calcoaceticus and members of the genus Pseudomonas and increased the number of rhizobia. Cultivation-independent PCR–single-strand conformation polymorphism (SSCP) profiles of a 16S rRNA gene region confirmed the existence of plant-specific rhizosphere communities and the effect of the inoculant. All dominant ARDRA groups except Variovorax species could be detected. On the other hand, the SSCP profiles revealed products which could not be assigned to the dominant cultured isolates, indicating that the bacterial diversity was greater than the diversity suggested by cultivation. PMID:10919821

  2. Bacterial flora analysis of coliforms in sewage, river water, and ground water using MALDI-TOF mass spectrometry.

    PubMed

    Suzuki, Yoshihiro; Niina, Kouki; Matsuwaki, Tomonori; Nukazawa, Kei; Iguchi, Atsushi

    2018-01-28

    The aim of this study was to rapidly and effectively analyze coliforms, which are the most fundamental indicators of water quality for fecal pollution, using matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS). Coliform bacteria were isolated from municipal sewage, river water, and groundwater. For each sample, 100 isolates were determined by MALDI-TOF MS. In addition, these same 100 isolates were also identified via 16S rRNA gene sequence analysis. Obtained MALDI-TOF MS data were compared with the 16S rRNA sequencing analysis, and the validity of MALDI-TOF MS for classification of coliform bacteria was examined. The concordance rate of bacterial identification for the 100 isolates obtained by MALDI-TOF MS analysis and 16S rRNA gene sequence analysis for sewage, river water, and ground water were 96%, 74%, and 62% at the genus level, respectively. Among the sewage, river water, and ground water samples, the coliform bacterial flora were distinct. The dominant genus of coliforms in sewage, river water, and groundwater were Klebsiella spp., Enterobacter spp., and Serratia spp., respectively. We determined that MALDI-TOF MS is a rapid and accurate tool that can be used to identify coliforms. Therefore, without using conventional 16S rRNA sequencing, it is possible to rapidly and effectively classify coliforms in water using MALDI-TOF MS.

  3. Microbial diversity and activity in the Nematostella vectensis holobiont: insights from 16S rRNA gene sequencing, isolate genomes, and a pilot-scale survey of gene expression.

    PubMed

    Har, Jia Y; Helbig, Tim; Lim, Ju H; Fernando, Samodha C; Reitzel, Adam M; Penn, Kevin; Thompson, Janelle R

    2015-01-01

    We have characterized the molecular and genomic diversity of the microbiota of the starlet sea anemone Nematostella vectensis, a cnidarian model for comparative developmental and functional biology and a year-round inhabitant of temperate salt marshes. Molecular phylogenetic analysis of 16S rRNA gene clone libraries revealed four ribotypes associated with N. vectensis at multiple locations and times. These associates include two novel ribotypes within the ε-Proteobacterial order Campylobacterales and the Spirochetes, respectively, each sharing <85% identity with cultivated strains, and two γ-Proteobacterial ribotypes sharing >99% 16S rRNA identity with Endozoicomonas elysicola and Pseudomonas oleovorans, respectively. Species-specific PCR revealed that these populations persisted in N. vectensis asexually propagated under laboratory conditions. cDNA indicated expression of the Campylobacterales and Endozoicomonas 16S rRNA in anemones from Sippewissett Marsh, MA. A collection of bacteria from laboratory raised N. vectensis was dominated by isolates from P. oleovorans and Rhizobium radiobacter. Isolates from field-collected anemones revealed an association with Limnobacter and Stappia isolates. Genomic DNA sequencing was carried out on 10 cultured bacterial isolates representing field- and laboratory-associates, i.e., Limnobacter spp., Stappia spp., P. oleovorans and R. radiobacter. Genomes contained multiple genes identified as virulence (host-association) factors while S. stellulata and L. thiooxidans genomes revealed pathways for mixotrophic sulfur oxidation. A pilot metatranscriptome of laboratory-raised N. vectensis was compared to the isolate genomes and indicated expression of ORFs from L. thiooxidans with predicted functions of motility, nutrient scavenging (Fe and P), polyhydroxyalkanoate synthesis for carbon storage, and selective permeability (porins). We hypothesize that such activities may mediate acclimation and persistence of bacteria in a N

  4. Microbial diversity and activity in the Nematostella vectensis holobiont: insights from 16S rRNA gene sequencing, isolate genomes, and a pilot-scale survey of gene expression

    PubMed Central

    Har, Jia Y.; Helbig, Tim; Lim, Ju H.; Fernando, Samodha C.; Reitzel, Adam M.; Penn, Kevin; Thompson, Janelle R.

    2015-01-01

    We have characterized the molecular and genomic diversity of the microbiota of the starlet sea anemone Nematostella vectensis, a cnidarian model for comparative developmental and functional biology and a year-round inhabitant of temperate salt marshes. Molecular phylogenetic analysis of 16S rRNA gene clone libraries revealed four ribotypes associated with N. vectensis at multiple locations and times. These associates include two novel ribotypes within the ε-Proteobacterial order Campylobacterales and the Spirochetes, respectively, each sharing <85% identity with cultivated strains, and two γ-Proteobacterial ribotypes sharing >99% 16S rRNA identity with Endozoicomonas elysicola and Pseudomonas oleovorans, respectively. Species-specific PCR revealed that these populations persisted in N. vectensis asexually propagated under laboratory conditions. cDNA indicated expression of the Campylobacterales and Endozoicomonas 16S rRNA in anemones from Sippewissett Marsh, MA. A collection of bacteria from laboratory raised N. vectensis was dominated by isolates from P. oleovorans and Rhizobium radiobacter. Isolates from field-collected anemones revealed an association with Limnobacter and Stappia isolates. Genomic DNA sequencing was carried out on 10 cultured bacterial isolates representing field- and laboratory-associates, i.e., Limnobacter spp., Stappia spp., P. oleovorans and R. radiobacter. Genomes contained multiple genes identified as virulence (host-association) factors while S. stellulata and L. thiooxidans genomes revealed pathways for mixotrophic sulfur oxidation. A pilot metatranscriptome of laboratory-raised N. vectensis was compared to the isolate genomes and indicated expression of ORFs from L. thiooxidans with predicted functions of motility, nutrient scavenging (Fe and P), polyhydroxyalkanoate synthesis for carbon storage, and selective permeability (porins). We hypothesize that such activities may mediate acclimation and persistence of bacteria in a N

  5. Three Cases of Anaerobiospirillum succiniciproducens Bacteremia Confirmed by 16S rRNA Gene Sequencing

    PubMed Central

    Tee, Wee; Korman, Tony M.; Waters, Mary Jo; Macphee, Andrew; Jenney, Adam; Joyce, Linda; Dyall-Smith, Michael L.

    1998-01-01

    We describe three cases of Anaerobiospirillum succiniciproducens bacteremia from Australia. We believe one of these cases represents the first report of A. succiniciproducens bacteremia in a human immunodeficiency virus (HIV)-infected individual. The other two patients had an underlying disorder (one patient had bleeding esophageal varices complicating alcohol liver disease and one patient had non-Hodgkin’s lymphoma). A motile, gram-negative, spiral anaerobe was isolated by culturing blood from all patients. Electron microscopy showed a curved bacterium with bipolar tufts of flagella resembling Anaerobiospirillum spp. Sequencing of the 16S rRNA genes of the isolates revealed no close relatives (organisms likely to be in the same genus) in the sequence databases, nor were any sequence data available for A. succiniciproducens. This report presents for the first time the 16S rRNA gene sequence of the type strain of A. succiniciproducens, strain ATCC 29305. Two of the three clinical isolates have sequences identical to that of the type strain, while the sequence of the other strain differs from that of the type strain at 4 nucleotides. PMID:9574678

  6. Rapid polymerase chain reaction-based screening assay for bacterial biothreat agents.

    PubMed

    Yang, Samuel; Rothman, Richard E; Hardick, Justin; Kuroki, Marcos; Hardick, Andrew; Doshi, Vishal; Ramachandran, Padmini; Gaydos, Charlotte A

    2008-04-01

    To design and evaluate a rapid polymerase chain reaction (PCR)-based assay for detecting Eubacteria and performing early screening for selected Class A biothreat bacterial pathogens. The authors designed a two-step PCR-based algorithm consisting of an initial broad-based universal detection step, followed by specific pathogen identification targeted for identification of the Class A bacterial biothreat agents. A region in the bacterial 16S rRNA gene containing a highly variable sequence flanked by clusters of conserved sequences was chosen as the target for the PCR assay design. A previously described highly conserved region located within the 16S rRNA amplicon was selected as the universal probe (UniProbe, Integrated DNA Technology, Coralville, IA). Pathogen-specific TaqMan probes were designed for Bacillus anthracis, Yersinia pestis, and Francisella tularensis. Performance of the assay was assessed using genomic DNA extracted from the aforementioned biothreat-related organisms (inactivated or surrogate) and other common bacteria. The UniProbe detected the presence of all tested Eubacteria (31/31) with high analytical sensitivity. The biothreat-specific probes accurately identified organisms down to the closely related species and genus level, but were unable to discriminate between very close surrogates, such as Yersinia philomiragia and Bacillus cereus. A simple, two-step PCR-based assay proved capable of both universal bacterial detection and identification of select Class A bacterial biothreat and biothreat-related pathogens. Although this assay requires confirmatory testing for definitive species identification, the method has great potential for use in ED-based settings for rapid diagnosis in cases of suspected Category A bacterial biothreat agents.

  7. Specific recognition of rpsO mRNA and 16S rRNA by Escherichia coli ribosomal protein S15 relies on both mimicry and site differentiation.

    PubMed

    Mathy, Nathalie; Pellegrini, Olivier; Serganov, Alexander; Patel, Dinshaw J; Ehresmann, Chantal; Portier, Claude

    2004-05-01

    The ribosomal protein S15 binds to 16S rRNA, during ribosome assembly, and to its own mRNA (rpsO mRNA), affecting autocontrol of its expression. In both cases, the RNA binding site is bipartite with a common subsite consisting of a G*U/G-C motif. The second subsite is located in a three-way junction in 16S rRNA and in the distal part of a stem forming a pseudoknot in Escherichia coli rpsO mRNA. To determine the extent of mimicry between these two RNA targets, we determined which amino acids interact with rpsO mRNA. A plasmid carrying rpsO (the S15 gene) was mutagenized and introduced into a strain lacking S15 and harbouring an rpsO-lacZ translational fusion. Analysis of deregulated mutants shows that each subsite of rpsO mRNA is recognized by a set of amino acids known to interact with 16S rRNA. In addition to the G*U/G-C motif, which is recognized by the same amino acids in both targets, the other subsite interacts with amino acids also involved in contacts with helix H22 of 16S rRNA, in the region adjacent to the three-way junction. However, specific S15-rpsO mRNA interactions can also be found, probably with A(-46) in loop L1 of the pseudoknot, demonstrating that mimicry between the two targets is limited.

  8. Initial insights into bacterial succession during human decomposition.

    PubMed

    Hyde, Embriette R; Haarmann, Daniel P; Petrosino, Joseph F; Lynne, Aaron M; Bucheli, Sibyl R

    2015-05-01

    Decomposition is a dynamic ecological process dependent upon many factors such as environment, climate, and bacterial, insect, and vertebrate activity in addition to intrinsic properties inherent to individual cadavers. Although largely attributed to microbial metabolism, very little is known about the bacterial basis of human decomposition. To assess the change in bacterial community structure through time, bacterial samples were collected from several sites across two cadavers placed outdoors to decompose and analyzed through 454 pyrosequencing and analysis of variable regions 3-5 of the bacterial 16S ribosomal RNA (16S rRNA) gene. Each cadaver was characterized by a change in bacterial community structure for all sites sampled as time, and decomposition, progressed. Bacteria community structure is variable at placement and before purge for all body sites. At bloat and purge and until tissues began to dehydrate or were removed, bacteria associated with flies, such as Ignatzschineria and Wohlfahrtimonas, were common. After dehydration and skeletonization, bacteria associated with soil, such as Acinetobacter, were common at most body sites sampled. However, more cadavers sampled through multiple seasons are necessary to assess major trends in bacterial succession.

  9. Recommendations to address the difficulties encountered when determining linezolid resistance from whole genome sequencing data.

    PubMed

    Beukers, Alicia G; Hasman, Henrik; Hegstad, Kristin; van Hal, Sebastiaan J

    2018-05-29

    Mutations associated with linezolid resistance within the V domain of 23S rRNA are annotated using an Escherichia coli numbering system. The 23S rRNA gene varies in length, nucleotide sequence and copy number between bacterial species. Consequently, this numbering system is not intuitive and can lead to confusion when locating mutation sites using whole genome sequencing data. Using the mutation G2576T as an example, we demonstrate the difficulties associated with using the E. coli numbering system. © Crown copyright 2018.

  10. Responses of Baltic Sea Ice and Open-Water Natural Bacterial Communities to Salinity Change

    PubMed Central

    Kaartokallio, Hermanni; Laamanen, Maria; Sivonen, Kaarina

    2005-01-01

    To investigate the responses of Baltic Sea wintertime bacterial communities to changing salinity (5 to 26 practical salinity units), an experimental study was conducted. Bacterial communities of Baltic seawater and sea ice from a coastal site in southwest Finland were used in two batch culture experiments run for 17 or 18 days at 0°C. Bacterial abundance, cell volume, and leucine and thymidine incorporation were measured during the experiments. The bacterial community structure was assessed using denaturing gradient gel electrophoresis (DGGE) of PCR-amplified partial 16S rRNA genes with sequencing of DGGE bands from initial communities and communities of day 10 or 13 of the experiment. The sea ice-derived bacterial community was metabolically more active than the open-water community at the start of the experiment. Ice-derived bacterial communities were able to adapt to salinity change with smaller effects on physiology and community structure, whereas in the open-water bacterial communities, the bacterial cell volume evolution, bacterial abundance, and community structure responses indicated the presence of salinity stress. The closest relatives for all eight partial 16S rRNA gene sequences obtained were either organisms found in polar sea ice and other cold habitats or those found in summertime Baltic seawater. All sequences except one were associated with the α- and γ-proteobacteria or the Cytophaga-Flavobacterium-Bacteroides group. The overall physiological and community structure responses were parallel in ice-derived and open-water bacterial assemblages, which points to a linkage between community structure and physiology. These results support previous assumptions of the role of salinity fluctuation as a major selective factor shaping the sea ice bacterial community structure. PMID:16085826

  11. Nucleosome Translational Position, Not Histone Acetylation, Determines TFIIIA Binding to Nucleosomal Xenopus laevis 5S rRNA Genes

    PubMed Central

    Howe, LeAnn; Ausió, Juan

    1998-01-01

    We sought to study the binding constraints placed on the nine-zinc-finger protein transcription factor IIIA (TFIIIA) by a histone octamer. To this end, five overlapping fragments of the Xenopus laevis oocyte and somatic 5S rRNA genes were reconstituted into nucleosomes, and it was subsequently shown that nucleosome translational positioning is a major determinant of the binding of TFIIIA to the 5S rRNA genes. Furthermore, it was found that histone acetylation cannot override the TFIIIA binding constraints imposed by unfavorable translational positions. PMID:9488430

  12. Bacterial meningoencephalomyelitis in dogs: a retrospective study of 23 cases (1990-1999).

    PubMed

    Radaelli, Simona T; Platt, Simon R

    2002-01-01

    The clinical records of 23 dogs (1990-1999) with histopathologically confirmed bacterial meningoencephalomyelitis were evaluated retrospectively. No breed, age, sex, or weight predisposition was found. All the dogs presented with clinical signs of a brain lesion, whereas 5 of 23 had neck pain. Pyrexia was detected in 11 of 23 dogs on admission. CBCs revealed neutrophilic leucocytosis in 7 of 21 dogs and thrombocytopenia in 3 of 21 dogs. The serum chemistry profiles were abnormal in 15 of 21 dogs. The results of cerebrospinal fluid (CSF) analysis were abnormal in 13 of 14 dogs and aerobic CSF culture was positive for bacteria in 1of 8 samples. At postmortem examination, the lesions were localized to the central nervous system. Escherichia coli, Streptococcus, and Klebsiella spp were the most frequently isolated bacteria from cultures collected at postmortem examination. Twelve papers reporting 51 total clinical cases of canine bacterial meningoencephalomyelitis were reviewed. The clinical signs and results of the CBC, serum chemistry, blood culture, and CSF analysis were collated and compared with those of this study. The results of the CSF analysis in this study were similar to those in the literature. CSF cultures documented in the literature were positive for Staphylococcus, Pasteurella. Actinomyces, Nocardia spp, and various anaerobic species including Peptostreptococcus, Eubacterium, and Bacteroides spp.

  13. Distinct summer and winter bacterial communities in the active layer of Svalbard permafrost revealed by DNA- and RNA-based analyses

    DOE PAGES

    Schostag, Morten; Stibal, Marek; Jacobsen, Carsten S.; ...

    2015-04-30

    The active layer of soil overlaying permafrost in the Arctic is subjected to dramatic annual changes in temperature and soil chemistry, which likely affect bacterial activity and community structure. We studied seasonal variations in the bacterial community of active layer soil from Svalbard (78°N) by co-extracting DNA and RNA from 12 soil cores collected monthly over a year. PCR amplicons of 16S rRNA genes (DNA) and reverse transcribed transcripts (cDNA) were quantified and sequenced to test for the effect of low winter temperature and seasonal variation in concentration of easily degradable organic matter on the bacterial communities. The copy numbermore » of 16S rRNA genes and transcripts revealed no distinct seasonal changes indicating potential bacterial activity during winter despite soil temperatures well below -10°C. Multivariate statistical analysis of the bacterial diversity data (DNA and cDNA libraries) revealed a season-based clustering of the samples, and, e.g., the relative abundance of potentially active Cyanobacteria peaked in June and Alphaproteobacteria increased over the summer and then declined from October to November. The structure of the bulk (DNA-based) community was significantly correlated with pH and dissolved organic carbon, while the potentially active (RNA-based) community structure was not significantly correlated with any of the measured soil parameters. A large fraction of the 16S rRNA transcripts was assigned to nitrogen-fixing bacteria (up to 24% in June) and phototrophic organisms (up to 48% in June) illustrating the potential importance of nitrogen fixation in otherwise nitrogen poor Arctic ecosystems and of phototrophic bacterial activity on the soil surface.« less

  14. Distinct summer and winter bacterial communities in the active layer of Svalbard permafrost revealed by DNA- and RNA-based analyses

    PubMed Central

    Schostag, Morten; Stibal, Marek; Jacobsen, Carsten S.; Bælum, Jacob; Taş, Neslihan; Elberling, Bo; Jansson, Janet K.; Semenchuk, Philipp; Priemé, Anders

    2015-01-01

    The active layer of soil overlaying permafrost in the Arctic is subjected to dramatic annual changes in temperature and soil chemistry, which likely affect bacterial activity and community structure. We studied seasonal variations in the bacterial community of active layer soil from Svalbard (78°N) by co-extracting DNA and RNA from 12 soil cores collected monthly over a year. PCR amplicons of 16S rRNA genes (DNA) and reverse transcribed transcripts (cDNA) were quantified and sequenced to test for the effect of low winter temperature and seasonal variation in concentration of easily degradable organic matter on the bacterial communities. The copy number of 16S rRNA genes and transcripts revealed no distinct seasonal changes indicating potential bacterial activity during winter despite soil temperatures well below −10°C. Multivariate statistical analysis of the bacterial diversity data (DNA and cDNA libraries) revealed a season-based clustering of the samples, and, e.g., the relative abundance of potentially active Cyanobacteria peaked in June and Alphaproteobacteria increased over the summer and then declined from October to November. The structure of the bulk (DNA-based) community was significantly correlated with pH and dissolved organic carbon, while the potentially active (RNA-based) community structure was not significantly correlated with any of the measured soil parameters. A large fraction of the 16S rRNA transcripts was assigned to nitrogen-fixing bacteria (up to 24% in June) and phototrophic organisms (up to 48% in June) illustrating the potential importance of nitrogen fixation in otherwise nitrogen poor Arctic ecosystems and of phototrophic bacterial activity on the soil surface. PMID:25983731

  15. 16S rRNA gene-based phylogenetic microarray for simultaneous identification of members of the genus Burkholderia.

    PubMed

    Schönmann, Susan; Loy, Alexander; Wimmersberger, Céline; Sobek, Jens; Aquino, Catharine; Vandamme, Peter; Frey, Beat; Rehrauer, Hubert; Eberl, Leo

    2009-04-01

    For cultivation-independent and highly parallel analysis of members of the genus Burkholderia, an oligonucleotide microarray (phylochip) consisting of 131 hierarchically nested 16S rRNA gene-targeted oligonucleotide probes was developed. A novel primer pair was designed for selective amplification of a 1.3 kb 16S rRNA gene fragment of Burkholderia species prior to microarray analysis. The diagnostic performance of the microarray for identification and differentiation of Burkholderia species was tested with 44 reference strains of the genera Burkholderia, Pandoraea, Ralstonia and Limnobacter. Hybridization patterns based on presence/absence of probe signals were interpreted semi-automatically using the novel likelihood-based strategy of the web-tool Phylo- Detect. Eighty-eight per cent of the reference strains were correctly identified at the species level. The evaluated microarray was applied to investigate shifts in the Burkholderia community structure in acidic forest soil upon addition of cadmium, a condition that selected for Burkholderia species. The microarray results were in agreement with those obtained from phylogenetic analysis of Burkholderia 16S rRNA gene sequences recovered from the same cadmiumcontaminated soil, demonstrating the value of the Burkholderia phylochip for determinative and environmental studies.

  16. RNomics in Archaea reveals a further link between splicing of archaeal introns and rRNA processing

    PubMed Central

    Tang, Thean Hock; Rozhdestvensky, Timofey S.; d’Orval, Béatrice Clouet; Bortolin, Marie-Line; Huber, Harald; Charpentier, Bruno; Branlant, Christiane; Bachellerie, Jean-Pierre; Brosius, Jürgen; Hüttenhofer, Alexander

    2002-01-01

    The bulge–helix–bulge (BHB) motif recognised by the archaeal splicing endonuclease is also found in the long processing stems of archaeal rRNA precursors in which it is cleaved to generate pre-16S and pre-23S rRNAs. We show that in two species, Archaeoglobus fulgidus and Sulfolobus solfataricus, representatives from the two major archaeal kingdoms Euryarchaeota and Crenarchaeota, respectively, the pre-rRNA spacers cleaved at the BHB motifs surrounding pre-16S and pre-23S rRNAs subsequently become ligated. In addition, we present evidence that this is accompanied by circularisation of ribosomal pre-16S and pre-23S rRNAs in both species. These data reveal a further link between intron splicing and pre-rRNA processing in Archaea, which might reflect a common evolutionary origin of the two processes. One spliced RNA species designated 16S-D RNA, resulting from religation at the BHB motif of 16S pre-rRNA, is a highly abundant and stable RNA which folds into a three-stem structure interrupted by two single-stranded regions as assessed by chemical probing. It spans a region of the pre-rRNA 5′ external transcribed spacer exhibiting a highly conserved folding pattern in Archaea. Surprisingly, 16S-D RNA contains structural motifs found in archaeal C/D box small RNAs and binds to the L7Ae protein, a core component of archaeal C/D box RNPs. This supports the notion that it might have an important but still unknown role in pre-rRNA biogenesis or might even target RNA molecules other than rRNA. PMID:11842103

  17. IMNGS: A comprehensive open resource of processed 16S rRNA microbial profiles for ecology and diversity studies.

    PubMed

    Lagkouvardos, Ilias; Joseph, Divya; Kapfhammer, Martin; Giritli, Sabahattin; Horn, Matthias; Haller, Dirk; Clavel, Thomas

    2016-09-23

    The SRA (Sequence Read Archive) serves as primary depository for massive amounts of Next Generation Sequencing data, and currently host over 100,000 16S rRNA gene amplicon-based microbial profiles from various host habitats and environments. This number is increasing rapidly and there is a dire need for approaches to utilize this pool of knowledge. Here we created IMNGS (Integrated Microbial Next Generation Sequencing), an innovative platform that uniformly and systematically screens for and processes all prokaryotic 16S rRNA gene amplicon datasets available in SRA and uses them to build sample-specific sequence databases and OTU-based profiles. Via a web interface, this integrative sequence resource can easily be queried by users. We show examples of how the approach allows testing the ecological importance of specific microorganisms in different hosts or ecosystems, and performing targeted diversity studies for selected taxonomic groups. The platform also offers a complete workflow for de novo analysis of users' own raw 16S rRNA gene amplicon datasets for the sake of comparison with existing data. IMNGS can be accessed at www.imngs.org.

  18. Plastid 16S rRNA gene diversity among eukaryotic picophytoplankton sorted by flow cytometry from the South Pacific Ocean.

    PubMed

    Shi, Xiao Li; Lepère, Cécile; Scanlan, David J; Vaulot, Daniel

    2011-04-28

    The genetic diversity of photosynthetic picoeukaryotes was investigated in the South East Pacific Ocean. Genetic libraries of the plastid 16S rRNA gene were constructed on picoeukaryote populations sorted by flow cytometry, using two different primer sets, OXY107F/OXY1313R commonly used to amplify oxygenic organisms, and PLA491F/OXY1313R, biased towards plastids of marine algae. Surprisingly, the two sets revealed quite different photosynthetic picoeukaryote diversity patterns, which were moreover different from what we previously reported using the 18S rRNA nuclear gene as a marker. The first 16S primer set revealed many sequences related to Pelagophyceae and Dictyochophyceae, the second 16S primer set was heavily biased toward Prymnesiophyceae, while 18S sequences were dominated by Prasinophyceae, Chrysophyceae and Haptophyta. Primer mismatches with major algal lineages is probably one reason behind this discrepancy. However, other reasons, such as DNA accessibility or gene copy numbers, may be also critical. Based on plastid 16S rRNA gene sequences, the structure of photosynthetic picoeukaryotes varied along the BIOSOPE transect vertically and horizontally. In oligotrophic regions, Pelagophyceae, Chrysophyceae, and Prymnesiophyceae dominated. Pelagophyceae were prevalent at the DCM depth and Chrysophyceae at the surface. In mesotrophic regions Pelagophyceae were still important but Chlorophyta contribution increased. Phylogenetic analysis revealed a new clade of Prasinophyceae (clade 16S-IX), which seems to be restricted to hyper-oligotrophic stations. Our data suggest that a single gene marker, even as widely used as 18S rRNA, provides a biased view of eukaryotic communities and that the use of several markers is necessary to obtain a complete image.

  19. Comprehensive Molecular Characterization of Bacterial Communities in Feces of Pet Birds Using 16S Marker Sequencing.

    PubMed

    Garcia-Mazcorro, Jose F; Castillo-Carranza, Stephany A; Guard, Blake; Gomez-Vazquez, Jose P; Dowd, Scot E; Brigthsmith, Donald J

    2017-01-01

    Birds and other animals live and evolve in close contact with millions of microorganisms (microbiota). While the avian microbiota has been well characterized in domestic poultry, the microbiota of other bird species has been less investigated. The aim of this study was to describe the fecal bacterial communities of pet birds. Pooled fecal samples from 22 flocks representing over 150 individual birds of three different species (Melopsittacus undulatus or budgerigars, Nymphicus hollandicus or cockatiels, and Serinus canaria or domestic canaries) were used for analysis using the 16S rRNA gene sequencing in the MiSeq platform (Illumina). Firmicutes was the most abundant phylum (median 88.4 %; range 12.9-98.4 %) followed by other low-abundant phyla such as Proteobacteria (median 2.3 %; 0.1-85.3 %) and Actinobacteria (median 1.7 %; 0-18.3 %). Lactobacillaceae (mostly Lactobacillus spp.) was the most abundant family (median 78.1 %; 1.4-97.5 %), especially in budgerigars and canaries, and it deserves attention because of the ascribed beneficial properties of lactic acid bacteria. Importantly, feces from birds contain intestinal, urinary, and reproductive-associated microbiota thus posing a serious problem to study one anatomical region at a time. Other groups of interest include the family Clostridiaceae that showed very low abundance (overall median <0.1 %) with the exception of two samples from cockatiels (14 and 45.9 %) and one sample from budgerigars (19.9 %). Analysis of UniFrac metrics showed that overall, the microbial communities from the 22 flocks tended to cluster together for each bird species, meaning each species shed distinctive bacterial communities in feces. This descriptive analysis provides insight into the fecal microbiota of pet birds.

  20. [Phylogeny of protostome moulting animals (Ecdysozoa) inferred from 18 and 28S rRNA gene sequences].

    PubMed

    Petrov, N B; Vladychenskaia, N S

    2005-01-01

    Reliability of reconstruction of phylogenetic relationships within a group of protostome moulting animals was evaluated by means of comparison of 18 and 28S rRNA gene sequences sets both taken separately and combined. Reliability of reconstructions was evaluated by values of the bootstrap support of major phylogenetic tree nodes and by degree of congruence of phylogenetic trees inferred by various methods. By both criteria, phylogenetic trees reconstructed from the combined 18 and 28S rRNA gene sequences were better than those inferred from 18 and 28S sequences taken separately. Results obtained are consistent with phylogenetic hypothesis separating protostome animals into two major clades, moulting Ecdysozoa (Priapulida + Kinorhyncha, Nematoda + Nematomorpha, Onychophora + Tardigrada, Myriapoda + Chelicerata, Crustacea + Hexapoda) and unmoulting Lophotrochozoa (Plathelminthes, Nemertini, Annelida, Mollusca, Echiura, Sipuncula). Clade Cephalorhyncha does not include nematomorphs (Nematomorpha). Conclusion was taken that it is necessary to use combined 18 and 28S data in phylogenetic studies.

  1. Specific recognition of rpsO mRNA and 16S rRNA by Escherichia coli ribosomal protein S15 relies on both mimicry and site differentiation

    PubMed Central

    Mathy, Nathalie; Pellegrini, Olivier; Serganov, Alexander; Patel, Dinshaw J.; Ehresmann, Chantal; Portier, Claude

    2015-01-01

    Summary The ribosomal protein S15 binds to 16S rRNA, during ribosome assembly, and to its own mRNA (rpsO mRNA), affecting autocontrol of its expression. In both cases, the RNA binding site is bipartite with a common subsite consisting of a G•U/G-C motif. The second subsite is located in a three-way junction in 16S rRNA and in the distal part of a stem forming a pseudoknot in Escherichia coli rpsO mRNA. To determine the extent of mimicry between these two RNA targets, we determined which amino acids interact with rpsO mRNA. A plasmid carrying rpsO (the S15 gene) was mutagenized and introduced into a strain lacking S15 and harbouring an rpsO–lacZ translational fusion. Analysis of deregulated mutants shows that each subsite of rpsO mRNA is recognized by a set of amino acids known to interact with 16S rRNA. In addition to the G•U/G-C motif, which is recognized by the same amino acids in both targets, the other subsite interacts with amino acids also involved in contacts with helix H22 of 16S rRNA, in the region adjacent to the three-way junction. However, specific S15–rpsO mRNA interactions can also be found, probably with A(−46) in loop L1 of the pseudoknot, demonstrating that mimicry between the two targets is limited. PMID:15101974

  2. Bacterial Communities Associated with Host-Adapted Populations of Pea Aphids Revealed by Deep Sequencing of 16S Ribosomal DNA

    PubMed Central

    Gauthier, Jean-Pierre; Outreman, Yannick; Mieuzet, Lucie; Simon, Jean-Christophe

    2015-01-01

    Associations between microbes and animals are ubiquitous and hosts may benefit from harbouring microbial communities through improved resource exploitation or resistance to environmental stress. The pea aphid, Acyrthosiphon pisum, is the host of heritable bacterial symbionts, including the obligate endosymbiont Buchnera aphidicola and several facultative symbionts. While obligate symbionts supply aphids with key nutrients, facultative symbionts influence their hosts in many ways such as protection against natural enemies, heat tolerance, color change and reproduction alteration. The pea aphid also encompasses multiple plant-specialized biotypes, each adapted to one or a few legume species. Facultative symbiont communities differ strongly between biotypes, although bacterial involvement in plant specialization is uncertain. Here, we analyse the diversity of bacterial communities associated with nine biotypes of the pea aphid complex using amplicon pyrosequencing of 16S rRNA genes. Combined clustering and phylogenetic analyses of 16S sequences allowed identifying 21 bacterial OTUs (Operational Taxonomic Unit). More than 98% of the sequencing reads were assigned to known pea aphid symbionts. The presence of Wolbachia was confirmed in A. pisum while Erwinia and Pantoea, two gut associates, were detected in multiple samples. The diversity of bacterial communities harboured by pea aphid biotypes was very low, ranging from 3 to 11 OTUs across samples. Bacterial communities differed more between than within biotypes but this difference did not correlate with the genetic divergence between biotypes. Altogether, these results confirm that the aphid microbiota is dominated by a few heritable symbionts and that plant specialization is an important structuring factor of bacterial communities associated with the pea aphid complex. However, since we examined the microbiota of aphid samples kept a few generations in controlled conditions, it may be that bacterial diversity was

  3. Relative expression of rRNA transcripts and 45S rDNA promoter methylation status are dysregulated in tumors in comparison with matched-normal tissues in breast cancer.

    PubMed

    Karahan, Gurbet; Sayar, Nilufer; Gozum, Gokcen; Bozkurt, Betul; Konu, Ozlen; Yulug, Isik G

    2015-06-01

    Ribosomal RNA (rRNA) expression, one of the most important factors regulating ribosome production, is primarily controlled by a CG-rich 45 S rDNA promoter. However, the DNA methylation state of the 45 S rDNA promoter, as well as its effect on rRNA gene expression in types of human cancers is controversial. In the present study we analyzed the methylation status of the rDNA promoter (-380 to +53 bp) as well as associated rRNA expression levels in breast cancer cell lines and breast tumor-normal tissue pairs. We found that the aforementioned regulatory region was extensively methylated (74-96%) in all cell lines and in 68% (13/19 tumor-normal pairs) of the tumors. Expression levels of rRNA transcripts 18 S, 28 S, 5.8 S and 45 S external transcribed spacer (45 S ETS) greatly varied in the breast cancer cell lines regardless of their methylation status. Analyses of rRNA transcript expression levels in the breast tumor and normal matched tissues showed no significant difference when normalized with TBP. On the other hand, using the geometric mean of the rRNA expression values (GM-rRNA) as reference enabled us to identify significant changes in the relative expression of rRNAs in the tissue samples. We propose GM-rRNA normalization as a novel strategy to analyze expression differences between rRNA transcripts. Accordingly, the 18S rRNA/GM-rRNA ratio was significantly higher whereas the 5.8S rRNA/GM-rRNA ratio was significantly lower in breast tumor samples than this ratio in the matched normal samples. Moreover, the 18S rRNA/GM-rRNA ratio was negatively correlated with the 45 S rDNA promoter methylation level in the normal breast tissue samples, yet not in the breast tumors. Significant correlations observed between the expression levels of rRNA transcripts in the normal samples were lost in the tumor samples. We showed that the expression of rRNA transcripts may not be based solely on promoter methylation. Carcinogenesis may cause dysregulation of the correlation

  4. Soil-borne bacterial structure and diversity does not reflect community activity in Pampa biome.

    PubMed

    Lupatini, Manoeli; Suleiman, Afnan Khalil Ahmad; Jacques, Rodrigo Josemar Seminoti; Antoniolli, Zaida Inês; Kuramae, Eiko Eurya; de Oliveira Camargo, Flávio Anastácio; Roesch, Luiz Fernando Würdig

    2013-01-01

    The Pampa biome is considered one of the main hotspots of the world's biodiversity and it is estimated that half of its original vegetation was removed and converted to agricultural land and tree plantations. Although an increasing amount of knowledge is being assembled regarding the response of soil bacterial communities to land use change, to the associated plant community and to soil properties, our understanding about how these interactions affect the microbial community from the Brazilian Pampa is still poor and incomplete. In this study, we hypothesized that the same soil type from the same geographic region but under distinct land use present dissimilar soil bacterial communities. To test this hypothesis, we assessed the soil bacterial communities from four land-uses within the same soil type by 454-pyrosequencing of 16S rRNA gene and by soil microbial activity analyzes. We found that the same soil type under different land uses harbor similar (but not equal) bacterial communities and the differences were controlled by many microbial taxa. No differences regarding diversity and richness between natural areas and areas under anthropogenic disturbance were detected. However, the measures of microbial activity did not converge with the 16S rRNA data supporting the idea that the coupling between functioning and composition of bacterial communities is not necessarily correlated.

  5. Characterization of the bacterial community in a biotrickling filter treating high loads of H(2)S by molecular biology tools.

    PubMed

    Maestre, Juan P; Rovira, Roger; Gamisans, Xavier; Kinney, Kerry A; Kirisits, Mary Jo; Lafuente, Javier; Gabriel, David

    2009-01-01

    The diversity and spatial distribution of bacteria in a lab-scale biotrickling filter treating high loads of hydrogen sulfide (H(2)S) were investigated. Diversity and community structure were studied by terminal-restriction fragment length polymorphism (T-RFLP). A 16S rRNA gene clone library was established. Near Full-length 16S rRNA gene sequences were obtained, and clones were clustered into 24 operational taxonomic units (OTUs). Nearly 74% and 26% of the clones were affiliated with the phyla Proteobacteria and Bacteroidetes, respectively. Beta-, epsilon- and gamma-proteobacteria accounted for 15, 9 and 48%, respectively. Around 45% of the sequences retrieved were affiliated to bacteria of the sulfur cycle including Thiothrix spp., Thiobacillus spp. and Sulfurimonas denitrificans. Sequences related to Thiothrix lacustris accounted for a 38%. Rarefaction curve demonstrated that clone library constructed can be sufficient to describe the vast majority of the bacterial diversity of this reactor operating under strict conditions (2,000 ppm(v) of H(2)S). A spatial distribution of bacteria was found along the length of the reactor by means of the T-RFLP technique. Although aerobic species were predominant along the reactor, facultative anaerobes had a major relative abundance in the inlet part of the reactor, where the sulfide to oxygen ratio is higher.

  6. Linking soil bacterial biodiversity and soil carbon stability.

    PubMed

    Mau, Rebecca L; Liu, Cindy M; Aziz, Maliha; Schwartz, Egbert; Dijkstra, Paul; Marks, Jane C; Price, Lance B; Keim, Paul; Hungate, Bruce A

    2015-06-01

    Native soil carbon (C) can be lost in response to fresh C inputs, a phenomenon observed for decades yet still not understood. Using dual-stable isotope probing, we show that changes in the diversity and composition of two functional bacterial groups occur with this 'priming' effect. A single-substrate pulse suppressed native soil C loss and reduced bacterial diversity, whereas repeated substrate pulses stimulated native soil C loss and increased diversity. Increased diversity after repeated C amendments contrasts with resource competition theory, and may be explained by increased predation as evidenced by a decrease in bacterial 16S rRNA gene copies. Our results suggest that biodiversity and composition of the soil microbial community change in concert with its functioning, with consequences for native soil C stability.

  7. A Simple Method to Decode the Complete 18-5.8-28S rRNA Repeated Units of Green Algae by Genome Skimming.

    PubMed

    Lin, Geng-Ming; Lai, Yu-Heng; Audira, Gilbert; Hsiao, Chung-Der

    2017-11-06

    Green algae, Chlorella ellipsoidea , Haematococcus pluvialis and Aegagropila linnaei (Phylum Chlorophyta) were simultaneously decoded by a genomic skimming approach within 18-5.8-28S rRNA region. Whole genomic DNAs were isolated from green algae and directly subjected to low coverage genome skimming sequencing. After de novo assembly and mapping, the size of complete 18-5.8-28S rRNA repeated units for three green algae were ranged from 5785 to 6028 bp, which showed high nucleotide diversity (π is around 0.5-0.6) within ITS1 and ITS2 (Internal Transcribed Spacer) regions. Previously, the evolutional diversity of algae has been difficult to decode due to the inability design universal primers that amplify specific marker genes across diverse algal species. In this study, our method provided a rapid and universal approach to decode the 18-5.8-28S rRNA repeat unit in three green algal species. In addition, the completely sequenced 18-5.8-28S rRNA repeated units provided a solid nuclear marker for phylogenetic and evolutionary analysis for green algae for the first time.

  8. Bacterial diversity in Adélie penguin, Pygoscelis adeliae, guano: molecular and morpho-physiological approaches.

    PubMed

    Zdanowski, Marek K; Weglenski, Piotr; Golik, Pawel; Sasin, Joanna M; Borsuk, Piotr; Zmuda, Magdalena J; Stankovic, Anna

    2004-11-01

    The total number of bacteria and culturable bacteria in Adélie penguin (Pygoscelis adeliae) guano was determined during 42 days of decomposition in a location adjacent to the rookery in Admiralty Bay, King George Island, Antarctica. Of the culturable bacteria, 72 randomly selected colonies were described using 49 morpho-physiological tests, 27 of which were subsequently considered significant in characterizing and differentiating the isolates. On the basis of the nucleotide sequence of a fragment of the 16S rRNA gene in each of 72 pure isolates, three major phylogenetic groups were identified, namely the Moraxellaceae/Pseudomonadaceae (29 isolates), the Flavobacteriaceae (14), and the Micrococcaceae (29). Grouping of the isolates on the basis of morpho-physiological tests (whether 49 or 27 parameters) showed similar results to those based on 16S rRNA gene sequences. Clusters were characterized by considerable intra-cluster variation in both 16S rRNA gene sequences and morpho-physiological responses. High diversity in abundance and morphometry of total bacterial communities during penguin guano decomposition was supported by image analysis of epifluorescence micrographs. The results indicate that the bacterial community in penguin guano is not only one of the richest in Antarctica, but is extremely diverse, both phylogenetically and morpho-physiologically.

  9. Exploring the bacterial gut microbiota of supralittoral talitrid amphipods.

    PubMed

    Abdelrhman, Khaled F A; Bacci, Giovanni; Marras, Barbara; Nistri, Annamaria; Schintu, Marco; Ugolini, Alberto; Mengoni, Alessio

    2017-01-01

    Talitrid amphipods (sandhoppers and beach fleas) are typical of the supralittoral zone. They are known to thrive on stranded materials, including detrital marine angiosperms and macroalgae, as well as occasional dead animals. In this work, the gut microbiota of five species of talitrid amphipods (Talitrus saltator, Talorchestia ugolinii, Sardorchestia pelecaniformis, Orchestia montagui and Orchestia stephenseni) collected in Sardinia (Italy) has been investigated through: i) metabarcoding analysis of the amplified 16S rRNA V4 region; and ii) quantification of family 48 glycosyl hydrolase genes (GHF48), involved in cellulose degradation. Results indicate that, though talitrid gut biodiversity is not directly related to taxon or sampling locality, the animals' digestive tracts may host species-specific bacterial communities. In particular, gut microbiota of O. montagui, an inhabitant of Posidonia banquettes and macro-algae mat, showed the greatest differences in taxonomic composition and the highest proportion of GHF48 genes with respect to 16S rRNA genes. These results suggest that the different talitrid species may host species-specific bacterial communities whose function could partially reflect the different microhabitats and food preferences of their host. Copyright © 2016 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  10. The nucleotide sequence of the entire ribosomal DNA operon and the structure of the large subunit rRNA of Giardia muris.

    PubMed

    van Keulen, H; Gutell, R R; Campbell, S R; Erlandsen, S L; Jarroll, E L

    1992-10-01

    The total nucleotide sequence of the rDNA of Giardia muris, an intestinal protozoan parasite of rodents, has been determined. The repeat unit is 7668 basepairs (bp) in size and consists of a spacer of 3314 bp, a small-subunit rRNA (SSU-rRNA) gene of 1429, and a large-subunit rRNA (LSU-rRNA) gene of 2698 bp. The spacer contains long direct repeats and is heterogeneous in size. The LSU-rRNA of G. muris was compared to that of the human intestinal parasite Giardia duodenalis, to the bird parasite Giardia ardeae, and to that of Escherichia coli. The LSU-rRNA has a size comparable to the 23S rRNA of E. coli but shows structural features typical for eukaryotes. Some variable regions are typically small and account for the overall smaller size of this rRNA. The structure of the G. muris LSU-rRNA is similar to that of the other Giardia rRNA, but each rRNA has characteristic features residing in a number of variable regions.

  11. Metagenomic analysis of bacterial and archaeal assemblages in the soil-mousse surrounding a geothermal spring.

    PubMed

    Bhatia, Sonu; Batra, Navneet; Pathak, Ashish; Joshi, Amit; Souza, Leila; Almeida, Paulo; Chauhan, Ashvini

    2015-09-01

    The soil-mousse surrounding a geothermal spring was analyzed for bacterial and archaeal diversity using 16S rRNA gene amplicon metagenomic sequencing which revealed the presence of 18 bacterial phyla distributed across 109 families and 219 genera. Firmicutes, Actinobacteria, and the Deinococcus-Thermus group were the predominant bacterial assemblages with Crenarchaeota and Thaumarchaeota as the main archaeal assemblages in this largely understudied geothermal habitat. Several metagenome sequences remained taxonomically unassigned suggesting the presence of a repertoire of hitherto undescribed microbes in this geothermal soil-mousse econiche.

  12. Presence of pathogenic Escherichia coli is correlated with bacterial community diversity and composition on pre-harvest cattle hides.

    PubMed

    Chopyk, Jessica; Moore, Ryan M; DiSpirito, Zachary; Stromberg, Zachary R; Lewis, Gentry L; Renter, David G; Cernicchiaro, Natalia; Moxley, Rodney A; Wommack, K Eric

    2016-03-22

    Since 1982, specific serotypes of Shiga toxin-producing Escherichia coli (STEC) have been recognized as significant foodborne pathogens acquired from contaminated beef and, more recently, other food products. Cattle are the major reservoir hosts of these organisms, and while there have been advancements in food safety practices and industry standards, STEC still remains prevalent within beef cattle operations with cattle hides implicated as major sources of carcass contamination. To investigate whether the composition of hide-specific microbial communities are associated with STEC prevalence, 16S ribosomal RNA (rRNA) bacterial community profiles were obtained from hide and fecal samples collected from a large commercial feedlot over a 3-month period. These community data were examined amidst an extensive collection of prevalence data on a subgroup of STEC that cause illness in humans, referred to as enterohemorrhagic E. coli (EHEC). Fecal 16S rRNA gene OTUs (operational taxonomic units) were subtracted from the OTUs found within each hide 16S rRNA amplicon library to identify hide-specific bacterial populations. Comparative analysis of alpha diversity revealed a significant correlation between low bacterial diversity and samples positive for the presence of E. coli O157:H7 and/or the non-O157 groups: O26, O111, O103, O121, O45, and O145. This trend occurred regardless of diversity metric or fecal OTU presence. The number of EHEC serogroups present in the samples had a compounding effect on the inverse relationship between pathogen presence and bacterial diversity. Beta diversity data showed differences in bacterial community composition between samples containing O157 and non-O157 populations, with certain OTUs demonstrating significant changes in relative abundance. The cumulative prevalence of the targeted EHEC serogroups was correlated with low bacterial community diversity on pre-harvest cattle hides. Understanding the relationship between indigenous hide

  13. Characterizing bacterial communities in tilapia pond surface sediment and their responses to pond differences and temporal variations.

    PubMed

    Fan, Limin; Barry, Kamira; Hu, Gengdong; Meng, Shunlong; Song, Chao; Qiu, Liping; Zheng, Yao; Wu, Wei; Qu, Jianhong; Chen, Jiazhang; Xu, Pao

    2017-01-01

    Bacterial community compositions in the surface sediment of tilapia ponds and their responses to pond characteristics or seasonal variations were investigated. For that, three ponds with different stocking densities were selected to collect the samples. And the method of Illumina high-throughput sequencing was used to amplify the bacterial 16S rRNA genes. A total of 662, 876 valid reads and 5649 operational taxonomic units were obtained. Further analysis showed that the dominant phyla in all three ponds were Proteobacteria, Bacteroidetes, Chloroflexi, and Acidobacteria. The phyla Planctomycetes, Firmicutes, Chlorobi, and Spirochaetae were also relatively abundant. Among the eight phyla, the abundances of only Proteobacteria, Bacteroidetes, Firmicutes, and Spirochaetae were affected by seasonal variations, while seven of these (with the exception of Acidobacteria) were affected by pond differences. A comprehensive analysis of the richness and diversity of the bacterial 16S rRNA gene, and of the similarity in bacterial community composition in sediment also showed that the communities in tilapia pond sediment were shaped more by pond differences than by seasonal variations. Linear discriminant analysis further indicated that the influences of pond characteristics on sediment bacterial communities might be related to feed coefficients and stocking densities of genetically improved farmed tilapia (GIFT).

  14. Estimates of Soil Bacterial Ribosome Content and Diversity Are Significantly Affected by the Nucleic Acid Extraction Method Employed

    PubMed Central

    Wüst, Pia K.; Nacke, Heiko; Kaiser, Kristin; Marhan, Sven; Sikorski, Johannes; Kandeler, Ellen; Daniel, Rolf

    2016-01-01

    Modern sequencing technologies allow high-resolution analyses of total and potentially active soil microbial communities based on their DNA and RNA, respectively. In the present study, quantitative PCR and 454 pyrosequencing were used to evaluate the effects of different extraction methods on the abundance and diversity of 16S rRNA genes and transcripts recovered from three different types of soils (leptosol, stagnosol, and gleysol). The quality and yield of nucleic acids varied considerably with respect to both the applied extraction method and the analyzed type of soil. The bacterial ribosome content (calculated as the ratio of 16S rRNA transcripts to 16S rRNA genes) can serve as an indicator of the potential activity of bacterial cells and differed by 2 orders of magnitude between nucleic acid extracts obtained by the various extraction methods. Depending on the extraction method, the relative abundances of dominant soil taxa, in particular Actinobacteria and Proteobacteria, varied by a factor of up to 10. Through this systematic approach, the present study allows guidelines to be deduced for the selection of the appropriate extraction protocol according to the specific soil properties, the nucleic acid of interest, and the target organisms. PMID:26896137

  15. Alignment-Independent Comparisons of Human Gastrointestinal Tract Microbial Communities in a Multidimensional 16S rRNA Gene Evolutionary Space▿

    PubMed Central

    Rudi, Knut; Zimonja, Monika; Kvenshagen, Bente; Rugtveit, Jarle; Midtvedt, Tore; Eggesbø, Merete

    2007-01-01

    We present a novel approach for comparing 16S rRNA gene clone libraries that is independent of both DNA sequence alignment and definition of bacterial phylogroups. These steps are the major bottlenecks in current microbial comparative analyses. We used direct comparisons of taxon density distributions in an absolute evolutionary coordinate space. The coordinate space was generated by using alignment-independent bilinear multivariate modeling. Statistical analyses for clone library comparisons were based on multivariate analysis of variance, partial least-squares regression, and permutations. Clone libraries from both adult and infant gastrointestinal tract microbial communities were used as biological models. We reanalyzed a library consisting of 11,831 clones covering complete colons from three healthy adults in addition to a smaller 390-clone library from infant feces. We show that it is possible to extract detailed information about microbial community structures using our alignment-independent method. Our density distribution analysis is also very efficient with respect to computer operation time, meeting the future requirements of large-scale screenings to understand the diversity and dynamics of microbial communities. PMID:17337554

  16. Assessing hog lagoon waste contamination in the Cape Fear Watershed using Bacteroidetes 16S rRNA gene pyrosequencing.

    PubMed

    Arfken, Ann M; Song, Bongkeun; Mallin, Michael A

    2015-09-01

    Hog lagoons can be major sources of waste and nutrient contamination to watersheds adjacent to pig farms. Fecal source tracking methods targeting Bacteroidetes 16S rRNA genes in pig fecal matter may underestimate or fail to detect hog lagoon contamination in riverine environments. In order to detect hog lagoon wastewater contamination in the Cape Fear Watershed, where a large number of hog farms are present, we conducted pyrosequencing analyses of Bacteroidetes 16S rRNA genes in hog lagoon waste and identified new hog lagoon-specific marker sequences. Additional pyrosequencing analyses of Bacteroidetes 16S rRNA genes were conducted with surface water samples collected at 4 sites during 5 months in the Cape Fear Watershed. Using an operational taxonomic unit (OTU) identity cutoff value of 97 %, these newly identified hog lagoon markers were found in 3 of the river samples, while only 1 sample contained the pig fecal marker. In the sample containing the pig fecal marker, there was a relatively high percentage (14.1 %) of the hog lagoon markers and a low pig fecal marker relative abundance of 0.4 % in the Bacteroidetes 16S rRNA gene sequences. This suggests that hog lagoon contamination must be somewhat significant in order for pig fecal markers to be detected, and low levels of hog lagoon contamination cannot be detected targeting only pig-specific fecal markers. Thus, new hog lagoon markers have a better detection capacity for lagoon waste contamination, and in conjunction with a pig fecal marker, provide a more comprehensive and accurate detection of hog lagoon waste contamination in susceptible watersheds.

  17. Comparison of Sanger and next generation sequencing performance for genotyping Cryptosporidium isolates at the 18S rRNA and actin loci.

    PubMed

    Paparini, Andrea; Gofton, Alexander; Yang, Rongchang; White, Nicole; Bunce, Michael; Ryan, Una M

    2015-01-01

    Cryptosporidium is an important enteric pathogen that infects a wide range of humans and animals. Rapid and reliable detection and characterisation methods are essential for understanding the transmission dynamics of the parasite. Sanger sequencing, and high-throughput sequencing (HTS) on an Ion Torrent platform, were compared with each other for their sensitivity and accuracy in detecting and characterising 25 Cryptosporidium-positive human and animal faecal samples. Ion Torrent reads (n = 123,857) were obtained at both 18S rRNA and actin loci for 21 of the 25 samples. Of these, one isolate at the actin locus (Cattle 05) and three at the 18S rRNA locus (HTS 10, HTS 11 and HTS 12), suffered PCR drop-out (i.e. PCR failures) when using fusion-tagged PCR. Sanger sequences were obtained for both loci for 23 of the 25 samples and showed good agreement with Ion Torrent-based genotyping. Two samples both from pythons (SK 02 and SK 05) produced mixed 18S and actin chromatograms by Sanger sequencing but were clearly identified by Ion Torrent sequencing as C. muris. One isolate (SK 03) was typed as C. muris by Sanger sequencing but was identified as a mixed C. muris and C. tyzzeri infection by HTS. 18S rRNA Type B sequences were identified in 4/6 C. parvum isolates when deep sequenced but were undetected in Sanger sequencing. Sanger was cheaper than Ion Torrent when sequencing a small numbers of samples, but when larger numbers of samples are considered (n = 60), the costs were comparative. Fusion-tagged amplicon based approaches are a powerful way of approaching mixtures, the only draw-back being the loss of PCR efficiency on low-template samples when using primers coupled to MID tags and adaptors. Taken together these data show that HTS has excellent potential for revealing the "true" composition of species/types in a Cryptosporidium infection, but that HTS workflows need to be carefully developed to ensure sensitivity, accuracy and contamination are

  18. Comparison of Species Richness Estimates Obtained Using Nearly Complete Fragments and Simulated Pyrosequencing-Generated Fragments in 16S rRNA Gene-Based Environmental Surveys▿ †

    PubMed Central

    Youssef, Noha; Sheik, Cody S.; Krumholz, Lee R.; Najar, Fares Z.; Roe, Bruce A.; Elshahed, Mostafa S.

    2009-01-01

    Pyrosequencing-based 16S rRNA gene surveys are increasingly utilized to study highly diverse bacterial communities, with special emphasis on utilizing the large number of sequences obtained (tens to hundreds of thousands) for species richness estimation. However, it is not yet clear how the number of operational taxonomic units (OTUs) and, hence, species richness estimates determined using shorter fragments at different taxonomic cutoffs correlates with the number of OTUs assigned using longer, nearly complete 16S rRNA gene fragments. We constructed a 16S rRNA clone library from an undisturbed tallgrass prairie soil (1,132 clones) and used it to compare species richness estimates obtained using eight pyrosequencing candidate fragments (99 to 361 bp in length) and the nearly full-length fragment. Fragments encompassing the V1 and V2 (V1+V2) region and the V6 region (generated using primer pairs 8F-338R and 967F-1046R) overestimated species richness; fragments encompassing the V3, V7, and V7+V8 hypervariable regions (generated using primer pairs 338F-530R, 1046F-1220R, and 1046F-1392R) underestimated species richness; and fragments encompassing the V4, V5+V6, and V6+V7 regions (generated using primer pairs 530F-805R, 805F-1046R, and 967F-1220R) provided estimates comparable to those obtained with the nearly full-length fragment. These patterns were observed regardless of the alignment method utilized or the parameter used to gauge comparative levels of species richness (number of OTUs observed, slope of scatter plots of pairwise distance values for short and nearly complete fragments, and nonparametric and parametric species richness estimates). Similar results were obtained when analyzing three other datasets derived from soil, adult Zebrafish gut, and basaltic formations in the East Pacific Rise. Regression analysis indicated that these observed discrepancies in species richness estimates within various regions could readily be explained by the proportions of

  19. Bacterial and archeal community composition in hot springs from Indo-Burma region, North-east India.

    PubMed

    Panda, Amrita Kumari; Bisht, Satpal Singh; De Mandal, Surajit; Kumar, Nachimuthu Senthil

    2016-12-01

    Bacterial and archaeal diversity of two alkaline Indian hot springs, Jakrem (Meghalaya) and Yumthang (Sikkim), were studied. Thirteen major bacterial phyla were identified of which Firmicutes, Chloroflexi and Thermi were dominant in Jakrem and Proteobacteria in Yumthang. The dominant genera were Clostridium, Chloroflexus and Meiothermus at Jakrem (water temperature 46 °C, pH 9) and Thiobacillus, Sulfuritalea at Yumthang (water temperature 39 °C, pH 8) hot springs. The four Euryarchaeota taxa that were observed in both the hot springs were Methanoculleus, Methanosaeta, Methanosarcina and Methanocorposculum. Elstera litoralis, Thiovirga sp., Turneriella sp. were observed for the first time in association with hot springs along with Tepidibacter sp., Ignavibacterium sp., Teribacillus sp. and Dechloromonas sp. Individual bacterial phyla were found to be specifically correlated with certain physico-chemical factors such as temperature, dissolved SiO 2 , elemental S, total sulphide, calcium concentrations in hot spring water. Bacterial reads involved in sulfur cycle were identified in both16S rRNA gene library and sulfur metabolism may play key physiological functions in this hot spring. Members within Desulfobacterales and Thermodesulfovibrionaceae were identified and hypothesized their role in regulating sulfur cycle. The presence of many taxonomically unsolved sequences in the 16S rRNA gene tag datasets from these hot springs could be a sign of novel microbe richness in these less known hot water bodies of Northeastern India.

  20. Identification of Actinomyces meyeri actinomycosis in middle ear and mastoid by 16S rRNA analysis.

    PubMed

    Kakuta, Risako; Hidaka, Hiroshi; Yano, Hisakazu; Miyazaki, Hiromitsu; Suzaki, Hiroshi; Nakamura, Yasuhiro; Kanamori, Hajime; Endo, Shiro; Hirakata, Yoichi; Kaku, Mitsuo; Kobayashi, Toshimitsu

    2013-08-01

    Actinomycosis of the middle ear and mastoid is extremely rare. Here, we report a unique case of actinomycosis of the middle ear and mastoid caused by Actinomyces meyeri diagnosed by 16S rRNA gene sequence analysis.

  1. Altamira cave Paleolithic paintings harbor partly unknown bacterial communities.

    PubMed

    Schabereiter-Gurtner, Claudia; Saiz-Jimenez, Cesareo; Piñar, Guadalupe; Lubitz, Werner; Rölleke, Sabine

    2002-05-21

    Since it has been reported that microorganisms can affect painting pigments, Paleolithic painting microbiology deserves attention. The present study is the first report on the bacterial colonization of the valuable Paleolithic paintings in the famous Altamira cave (Spain). One sample taken from a painting area in the Polychromes Hall was analyzed culture-independently. This was the first time microbiologists were allowed to take sample material directly from Altamira paintings. Identification methods included PCR amplification of 16S rRNA genes (16S rDNA) and community fingerprinting by denaturing gradient gel electrophoresis (DGGE). The applied approach gave insight into a great bacterial taxonomic diversity, and allowed the detection of unexpected and unknown bacteria with potential effects on the conservation of the painting. Regarding the number of 29 visible DGGE bands in the community fingerprint, the numbers of analyzed clones described about 72% of the phylogenetic diversity present in the sample. Thirty-eight percent of the sequences analyzed were phylogenetically most closely related to cultivated bacteria, while the majority (62%) were most closely related to environmental 16S rDNA clones. Bacteria identified in Altamira were related with sequence similarities between 84.8 and 99.4% to members of the cosmopolitan Proteobacteria (52.3%), to members of the Acidobacterium division (23.8%), Cytophaga/Flexibacter/Bacteroides phylum (9.5%), green non-sulfur bacteria (4.8%), Planctomycetales (4.8%) and Actinobacteria (4.8%). The high number of clones most closely related to environmental 16S rDNA clones showed the broad spectrum of unknown and yet to be cultivated bacteria in Altamira cave.

  2. Pyrosequencing of Bacterial Symbionts within Axinella corrugata Sponges: Diversity and Seasonal Variability

    PubMed Central

    White, James R.; Patel, Jignasa; Ottesen, Andrea; Arce, Gabriela; Blackwelder, Patricia; Lopez, Jose V.

    2012-01-01

    Background Marine sponge species are of significant interest to many scientific fields including marine ecology, conservation biology, genetics, host-microbe symbiosis and pharmacology. One of the most intriguing aspects of the sponge “holobiont” system is the unique physiology, interaction with microbes from the marine environment and the development of a complex commensal microbial community. However, intraspecific variability and temporal stability of sponge-associated bacterial symbionts remain relatively unknown. Methodology/Principal Findings We have characterized the bacterial symbiont community biodiversity of seven different individuals of the Caribbean reef sponge Axinella corrugata, from two different Florida reef locations during variable seasons using multiplex 454 pyrosequencing of 16 S rRNA amplicons. Over 265,512 high-quality 16 S rRNA sequences were generated and analyzed. Utilizing versatile bioinformatics methods and analytical software such as the QIIME and CloVR packages, we have identified 9,444 distinct bacterial operational taxonomic units (OTUs). Approximately 65,550 rRNA sequences (24%) could not be matched to bacteria at the class level, and may therefore represent novel taxa. Differentially abundant classes between seasonal Axinella communities included Gammaproteobacteria, Flavobacteria, Alphaproteobacteria, Cyanobacteria, Acidobacter and Nitrospira. Comparisons with a proximal outgroup sponge species (Amphimedon compressa), and the growing sponge symbiont literature, indicate that this study has identified approximately 330 A. corrugata-specific symbiotic OTUs, many of which are related to the sulfur-oxidizing Ectothiorhodospiraceae. This family appeared exclusively within A. corrugata, comprising >34.5% of all sequenced amplicons. Other A. corrugata symbionts such as Deltaproteobacteria, Bdellovibrio, and Thiocystis among many others are described. Conclusions/Significance Slight shifts in several bacterial taxa were observed

  3. Bacterial Community Dynamics in Dichloromethane-Contaminated Groundwater Undergoing Natural Attenuation

    PubMed Central

    Wright, Justin; Kirchner, Veronica; Bernard, William; Ulrich, Nikea; McLimans, Christopher; Campa, Maria F.; Hazen, Terry; Macbeth, Tamzen; Marabello, David; McDermott, Jacob; Mackelprang, Rachel; Roth, Kimberly; Lamendella, Regina

    2017-01-01

    The uncontrolled release of the industrial solvent methylene chloride, also known as dichloromethane (DCM), has resulted in widespread groundwater contamination in the United States. Here we investigate the role of groundwater bacterial communities in the natural attenuation of DCM at an undisclosed manufacturing site in New Jersey. This study investigates the bacterial community structure of groundwater samples differentially contaminated with DCM to better understand the biodegradation potential of these autochthonous bacterial communities. Bacterial community analysis was completed using high-throughput sequencing of the 16S rRNA gene of groundwater samples (n = 26) with DCM contamination ranging from 0.89 to 9,800,000 μg/L. Significant DCM concentration-driven shifts in overall bacterial community structure were identified between samples, including an increase in the abundance of Firmicutes within the most contaminated samples. Across all samples, a total of 6,134 unique operational taxonomic units (OTUs) were identified, with 16 taxa having strong correlations with increased DCM concentration. Putative DCM degraders such as Pseudomonas, Dehalobacterium and Desulfovibrio were present within groundwater across all levels of DCM contamination. Interestingly, each of these taxa dominated specific DCM contamination ranges respectively. Potential DCM degrading lineages yet to be cited specifically as a DCM degrading organisms, such as the Desulfosporosinus, thrived within the most heavily contaminated groundwater samples. Co-occurrence network analysis revealed aerobic and anaerobic bacterial taxa with DCM-degrading potential were present at the study site. Our 16S rRNA gene survey serves as the first in situ bacterial community assessment of contaminated groundwater harboring DCM concentrations ranging over seven orders of magnitude. Diversity analyses revealed known as well as potentially novel DCM degrading taxa within defined DCM concentration ranges

  4. Bacterial Community Dynamics in Dichloromethane-Contaminated Groundwater Undergoing Natural Attenuation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wright, Justin; Kirchner, Veronica; Bernard, William

    The uncontrolled release of the industrial solvent methylene chloride, also known as dichloromethane (DCM), has resulted in widespread groundwater contamination in the United States. Here we investigate the role of groundwater bacterial communities in the natural attenuation of DCM at an undisclosed manufacturing site in New Jersey. Here, we investigate the bacterial community structure of groundwater samples differentially contaminated with DCM to better understand the biodegradation potential of these autochthonous bacterial communities. Bacterial community analysis was completed using high-throughput sequencing of the 16S rRNA gene of groundwater samples (n = 26) with DCM contamination ranging from 0.89 to 9,800,000 μg/L.more » Significant DCM concentration-driven shifts in overall bacterial community structure were identified between samples, including an increase in the abundance of Firmicutes within the most contaminated samples. And across all samples, a total of 6,134 unique operational taxonomic units (OTUs) were identified, with 16 taxa having strong correlations with increased DCM concentration. Putative DCM degraders such as Pseudomonas, Dehalobacterium and Desulfovibrio were present within groundwater across all levels of DCM contamination. Interestingly, each of these taxa dominated specific DCM contamination ranges respectively. Potential DCM degrading lineages yet to be cited specifically as a DCM degrading organisms, such as the Desulfosporosinus, thrived within the most heavily contaminated groundwater samples. Co-occurrence network analysis revealed aerobic and anaerobic bacterial taxa with DCM-degrading potential were present at the study site. Our 16S rRNA gene survey serves as the first in situ bacterial community assessment of contaminated groundwater harboring DCM concentrations ranging over seven orders of magnitude. Diversity analyses revealed known as well as potentially novel DCM degrading taxa within defined DCM concentration ranges

  5. Bacterial Community Dynamics in Dichloromethane-Contaminated Groundwater Undergoing Natural Attenuation

    DOE PAGES

    Wright, Justin; Kirchner, Veronica; Bernard, William; ...

    2017-11-22

    The uncontrolled release of the industrial solvent methylene chloride, also known as dichloromethane (DCM), has resulted in widespread groundwater contamination in the United States. Here we investigate the role of groundwater bacterial communities in the natural attenuation of DCM at an undisclosed manufacturing site in New Jersey. Here, we investigate the bacterial community structure of groundwater samples differentially contaminated with DCM to better understand the biodegradation potential of these autochthonous bacterial communities. Bacterial community analysis was completed using high-throughput sequencing of the 16S rRNA gene of groundwater samples (n = 26) with DCM contamination ranging from 0.89 to 9,800,000 μg/L.more » Significant DCM concentration-driven shifts in overall bacterial community structure were identified between samples, including an increase in the abundance of Firmicutes within the most contaminated samples. And across all samples, a total of 6,134 unique operational taxonomic units (OTUs) were identified, with 16 taxa having strong correlations with increased DCM concentration. Putative DCM degraders such as Pseudomonas, Dehalobacterium and Desulfovibrio were present within groundwater across all levels of DCM contamination. Interestingly, each of these taxa dominated specific DCM contamination ranges respectively. Potential DCM degrading lineages yet to be cited specifically as a DCM degrading organisms, such as the Desulfosporosinus, thrived within the most heavily contaminated groundwater samples. Co-occurrence network analysis revealed aerobic and anaerobic bacterial taxa with DCM-degrading potential were present at the study site. Our 16S rRNA gene survey serves as the first in situ bacterial community assessment of contaminated groundwater harboring DCM concentrations ranging over seven orders of magnitude. Diversity analyses revealed known as well as potentially novel DCM degrading taxa within defined DCM concentration ranges

  6. Benchmarking taxonomic assignments based on 16S rRNA gene profiling of the microbiota from commonly sampled environments.

    PubMed

    Almeida, Alexandre; Mitchell, Alex L; Tarkowska, Aleksandra; Finn, Robert D

    2018-05-01

    Taxonomic profiling of ribosomal RNA (rRNA) sequences has been the accepted norm for inferring the composition of complex microbial ecosystems. Quantitative Insights Into Microbial Ecology (QIIME) and mothur have been the most widely used taxonomic analysis tools for this purpose, with MAPseq and QIIME 2 being two recently released alternatives. However, no independent and direct comparison between these four main tools has been performed. Here, we compared the default classifiers of MAPseq, mothur, QIIME, and QIIME 2 using synthetic simulated datasets comprised of some of the most abundant genera found in the human gut, ocean, and soil environments. We evaluate their accuracy when paired with both different reference databases and variable sub-regions of the 16S rRNA gene. We show that QIIME 2 provided the best recall and F-scores at genus and family levels, together with the lowest distance estimates between the observed and simulated samples. However, MAPseq showed the highest precision, with miscall rates consistently <2%. Notably, QIIME 2 was the most computationally expensive tool, with CPU time and memory usage almost 2 and 30 times higher than MAPseq, respectively. Using the SILVA database generally yielded a higher recall than using Greengenes, while assignment results of different 16S rRNA variable sub-regions varied up to 40% between samples analysed with the same pipeline. Our results support the use of either QIIME 2 or MAPseq for optimal 16S rRNA gene profiling, and we suggest that the choice between the two should be based on the level of recall, precision, and/or computational performance required.

  7. Protein-RNA crosslinking in Escherichia coli 30S ribosomal subunits. Identification of a 16S rRNA fragment crosslinked to protein S12 by the use of the chemical crosslinking reagent 1-ethyl-3-dimethyl-aminopropylcarbodiimide.

    PubMed Central

    Chiaruttini, C; Expert-Bezançon, A; Hayes, D; Ehresmann, B

    1982-01-01

    1-ethyl-3-dimethyl aminopropylcarbodiimide (EDC) was used to cross-link 30S ribosomal proteins to 16S rRNA within the E. coli 3OS ribosomal subunit. Covalently linked complexes containing 30S proteins and 16S rRNA, isolated by sedimentation of dissociated crosslinked 30S subunits through SDS containing sucrose gradients, were digested with RNase T1, and the resulting oligonucleotide-protein complexes were fractionated on SDS containing polyacrylamide gels. Eluted complexes containing 30S proteins S9 and S12 linked to oligonucleotides were obtained in pure form. Oligonucleotide 5'terminal labelling was successful in the case of S12 containing but not of the S9 containing complex and led to identification of the S12 bound oligonucleotide as CAACUCG which is located at positions 1316-1322 in the 16S rRNA sequence. Protein S12 is crosslinked to the terminal G of this heptanucleotide. Images PMID:6760129

  8. Vineyard soil bacterial diversity and composition revealed by 16S rRNA genes: Differentiation by vineyard management

    USDA-ARS?s Scientific Manuscript database

    Here, we demonstrate how vineyard management practices influence shifts in soil resources, which in turn affects shifts in soil-borne bacterial communities. The objective is to determine the hierarchical effects of management practices, soil attributes and location factors on the structure of soil-b...

  9. FISH and AgNor mapping of the 45S and 5S rRNA genes in wild and cultivated species of Capsicum (Solananceae).

    PubMed

    Scaldaferro, Marisel A; da Cruz, M Victoria Romero; Cecchini, Nicolás M; Moscone, Eduardo A

    2016-02-01

    Chromosome number and position of rDNA were studied in 12 wild and cultivated species of the genus Capsicum with chromosome numbers x = 12 and x = 13 (22 samples). For the first time in these species, the 5S and 45S rRNA loci were localized and physically mapped using two-color fluorescence in situ hybridization and AgNOR banding. We focused on the comparison of the results obtained with both methods with the aim of accurately revealing the real functional rRNA genes. The analyzes were based on a previous work that reported that the 18S-5.8S-25S loci mostly coincide with GC-rich heterochromatic regions and likely have given rise to satellite DNAs, which are not active genes. These data show the variability of rDNA within karyotypes of the genus Capsicum, providing anchor points for (comparative) genetic maps. In addition, the obtained information might be useful for studies on evolution of repetitive DNA.

  10. Metagenomic analysis of bacterial and archaeal assemblages in the soil-mousse surrounding a geothermal spring

    PubMed Central

    Bhatia, Sonu; Batra, Navneet; Pathak, Ashish; Joshi, Amit; Souza, Leila; Almeida, Paulo; Chauhan, Ashvini

    2015-01-01

    The soil-mousse surrounding a geothermal spring was analyzed for bacterial and archaeal diversity using 16S rRNA gene amplicon metagenomic sequencing which revealed the presence of 18 bacterial phyla distributed across 109 families and 219 genera. Firmicutes, Actinobacteria, and the Deinococcus-Thermus group were the predominant bacterial assemblages with Crenarchaeota and Thaumarchaeota as the main archaeal assemblages in this largely understudied geothermal habitat. Several metagenome sequences remained taxonomically unassigned suggesting the presence of a repertoire of hitherto undescribed microbes in this geothermal soil-mousse econiche. PMID:26484255

  11. Characteristics of the nuclear (18S, 5.8S, 28S and 5S) and mitochondrial (12S and 16S) rRNA genes of Apis mellifera (Insecta: Hymenoptera): structure, organization, and retrotransposable elements

    PubMed Central

    Gillespie, J J; Johnston, J S; Cannone, J J; Gutell, R R

    2006-01-01

    As an accompanying manuscript to the release of the honey bee genome, we report the entire sequence of the nuclear (18S, 5.8S, 28S and 5S) and mitochondrial (12S and 16S) ribosomal RNA (rRNA)-encoding gene sequences (rDNA) and related internally and externally transcribed spacer regions of Apis mellifera (Insecta: Hymenoptera: Apocrita). Additionally, we predict secondary structures for the mature rRNA molecules based on comparative sequence analyses with other arthropod taxa and reference to recently published crystal structures of the ribosome. In general, the structures of honey bee rRNAs are in agreement with previously predicted rRNA models from other arthropods in core regions of the rRNA, with little additional expansion in non-conserved regions. Our multiple sequence alignments are made available on several public databases and provide a preliminary establishment of a global structural model of all rRNAs from the insects. Additionally, we provide conserved stretches of sequences flanking the rDNA cistrons that comprise the externally transcribed spacer regions (ETS) and part of the intergenic spacer region (IGS), including several repetitive motifs. Finally, we report the occurrence of retrotransposition in the nuclear large subunit rDNA, as R2 elements are present in the usual insertion points found in other arthropods. Interestingly, functional R1 elements usually present in the genomes of insects were not detected in the honey bee rRNA genes. The reverse transcriptase products of the R2 elements are deduced from their putative open reading frames and structurally aligned with those from another hymenopteran insect, the jewel wasp Nasonia (Pteromalidae). Stretches of conserved amino acids shared between Apis and Nasonia are illustrated and serve as potential sites for primer design, as target amplicons within these R2 elements may serve as novel phylogenetic markers for Hymenoptera. Given the impending completion of the sequencing of the Nasonia genome

  12. The impact of persistent bacterial bronchitis on the pulmonary microbiome of children

    PubMed Central

    Bingle, Lynne; Cookson, William O. C. M.; Everard, Mark L.; Moffatt, Miriam F.

    2017-01-01

    Introduction Persistent bacterial bronchitis (PBB) is a leading cause of chronic wet cough in young children. This study aimed to characterise the respiratory bacterial microbiota of healthy children and to assess the impact of the changes associated with the development of PBB. Blind, protected brushings were obtained from 20 healthy controls and 24 children with PBB, with an additional directed sample obtained from PBB patients. DNA was extracted, quantified using a 16S rRNA gene quantitative PCR assay prior to microbial community analysis by 16S rRNA gene sequencing. Results No significant difference in bacterial diversity or community composition (R2 = 0.01, P = 0.36) was observed between paired blind and non-blind brushes, showing that blind brushings are a valid means of accessing the airway microbiota. This has important implications for collecting lower respiratory samples from healthy children. A significant decrease in bacterial diversity (P < 0.001) and change in community composition (R2 = 0.08, P = 0.004) was observed among controls, in comparison with patients. Bacterial communities within patients with PBB were dominated by Proteobacteria, and indicator species analysis showed that Haemophilus and Neisseria were significantly associated with the patient group. In 15 (52.9%) cases the dominant organism by sequencing was not identified by standard routine clinical culture. Conclusion The bacteria present in the lungs of patients with PBB were less diverse in terms of richness and evenness. The results validate the clinical diagnosis, and suggest that more attention to bacterial communities in children with chronic cough may lead to more rapid recognition of this condition with earlier treatment and reduction in disease burden. PMID:29281698

  13. Histophagous ciliate Pseudocollinia brintoni and bacterial assemblage interaction with krill Nyctiphanes simplex. I. Transmission process.

    PubMed

    Gómez-Gutiérrez, Jaime; López-Cortés, Alejandro; Aguilar-Méndez, Mario J; Del Angel-Rodríguez, Jorge A; Tremblay, Nelly; Zenteno-Savín, Tania; Robinson, Carlos J

    2015-10-27

    Histophagous ciliates of the genus Pseudocollinia cause epizootic events that kill adult female krill (Euphausiacea), but their mode of transmission is unknown. We compared 16S rRNA sequences of bacterial strains isolated from stomachs of healthy krill Nyctiphanes simplex specimens with sequences of bacterial isolates and sequences of natural bacterial communities from the hemocoel of N. simplex specimens infected with P. brintoni to determine possible transmission pathways. All P. brintoni endoparasitic life stages and the transmission tomite stage (outside the host) were associated with bacterial assemblages. 16S rRNA sequences from isolated bacterial strains showed that Photobacterium spp. and Pseudoalteromonas spp. were dominant members of the bacterial assemblages during all life phases of P. brintoni and potential pathobionts. They were apparently unaffected by the krill's immune system or the histophagous activity of P. brintoni. However, other bacterial strains were found only in certain P. brintoni life phases, indicating that as the infection progressed, microhabitat conditions and microbial interactions may have become unfavorable for some strains of bacteria. Trophic infection is the most parsimonious explanation for how P. brintoni infects krill. We estimated N. simplex vulnerability to P. brintoni infection during more than three-fourths of their life span, infecting mostly adult females. The ciliates have relatively high prevalence levels (albeit at <10% of sampled stations) and a short life cycle (estimated <7 d). Histophagous ciliate-krill interactions may occur in other krill species, particularly those that form dense swarms and attain high population densities that potentially enhance trophic transmission and allow completion of the Pseudocollinia spp. life cycle.

  14. Investigation of histone H4 hyperacetylation dynamics in the 5S rRNA genes family by chromatin immunoprecipitation assay.

    PubMed

    Burlibașa, Liliana; Suciu, Ilinca

    2015-12-01

    Oogenesis is a critical event in the formation of female gamete, whose role in development is to transfer genomic information to the next generation. During this process, the gene expression pattern changes dramatically concomitant with genome remodelling, while genomic information is stably maintained. The aim of the present study was to investigate the presence of H4 acetylation of the oocyte and somatic 5S rRNA genes in Triturus cristatus, using chromatin immunoprecipitation assay (ChIP). Our findings suggest that some epigenetic mechanisms such as histone acetylation could be involved in the transcriptional regulation of 5S rRNA gene families.

  15. Neighborhood of 16S rRNA nucleotides U788/U789 in the 30S ribosomal subunit determined by site-directed crosslinking.

    PubMed

    Mundus, D; Wollenzien, P

    1998-11-01

    Site-specific photo crosslinking has been used to investigate the RNA neighborhood of 16S rRNA positions U788/ U789 in Escherichia coli 30S subunits. For these studies, site-specific psoralen (SSP) which contains a sulfhydryl group on a 17 A side chain was first added to nucleotides U788/U789 using a complementary guide DNA by annealing and phototransfer. Modified RNA was purified from the DNA and unmodified RNA. For some experiments, the SSP, which normally crosslinks at an 8 A distance, was derivitized with azidophenacylbromide (APAB) resulting in the photoreactive azido moiety at a maximum of 25 A from the 4' position on psoralen (SSP25APA). 16S rRNA containing SSP, SSP25APA or control 16S rRNA were reconstituted and 30S particles were isolated. The reconstituted subunits containing SSP or SSP25APA had normal protein composition, were active in tRNA binding and had the usual pattern of chemical reactivity except for increased kethoxal reactivity at G791 and modest changes in four other regions. Irradiation of the derivatized 30S subunits in activation buffer produced several intramolecular RNA crosslinks that were visualized and separated by gel electrophoresis and characterized by primer extension. Four major crosslink sites made by the SSP reagent were identified at positions U561/U562, U920/U921, C866 and U723; a fifth major crosslink at G693 was identified when the SSP25APA reagent was used. A number of additional crosslinks of lower frequency were seen, particularly with the APA reagent. These data indicate a central location close to the decoding region and central pseudoknot for nucleotides U788/U789 in the activated 30S subunit.

  16. Rrp6p, the yeast homologue of the human PM-Scl 100-kDa autoantigen, is essential for efficient 5.8 S rRNA 3' end formation.

    PubMed

    Briggs, M W; Burkard, K T; Butler, J S

    1998-05-22

    The eukaryotic 25 S, 18 S, and 5.8 S rRNAs are synthesized as a single transcript with two internal transcribed spacers (ITS1 and ITS2), which are removed by endo- and exoribonucleolytic steps to produce mature rRNA. Genetic selection for suppressors of a polyadenylation defect yielded two cold-sensitive alleles of a gene that we named RRP6 (ribosomal RNA processing). Molecular cloning of RRP6 revealed its homology to a 100-kDa human, nucleolar PM-Scl autoantigen and to Escherichia coli RNase D, a 3'-5' exoribonuclease. Recessive mutations in rrp6 result in the accumulation of a novel 5. 8 S rRNA processing intermediate, called 5.8 S*, which has normal 5' ends, but retains approximately 30 nucleotides of ITS2. Pulse-chase analysis of 5.8 S rRNA processing in an rrp6- strain revealed a precursor-product relationship between 5.8 S* and 5.8 S rRNAs, suggesting that Rrp6p plays a role in the removal of the last 30 nucleotides of ITS2 from 5.8 S precursors. A portion of 5.8 S* rRNA assembles into 60 S ribosomes which form polyribosomes, suggesting that they function in protein synthesis. These findings indicate that Rrp6p plays a role in 5.8 S rRNA 3' end formation, and they identify a functional intermediate in the rRNA processing pathway.

  17. Sequence characterization of 5S ribosomal RNA from eight gram positive procaryotes

    NASA Technical Reports Server (NTRS)

    Woese, C. R.; Luehrsen, K. R.; Pribula, C. D.; Fox, G. E.

    1976-01-01

    Complete nucleotide sequences are presented for 5S rRNA from Bacillus subtilis, B. firmus, B. pasteurii, B. brevis, Lactobacillus brevis, and Streptococcus faecalis, and 5S rRNA oligonucleotide catalogs and partial sequence data are given for B. cereus and Sporosarcina ureae. These data demonstrate a striking consistency of 5S rRNA primary and secondary structure within a given bacterial grouping. An exception is B. brevis, in which the 5S rRNA sequence varies significantly from that of other bacilli in the tuned helix and the procaryotic loop. The localization of these variations suggests that B. brevis occupies an ecological niche that selects such changes. It is noted that this organism produces antibiotics which affect ribosome function.

  18. Seasonal changes in the digesta-adherent rumen bacterial communities of dairy cattle grazing pasture.

    PubMed

    Noel, Samantha J; Attwood, Graeme T; Rakonjac, Jasna; Moon, Christina D; Waghorn, Garry C; Janssen, Peter H

    2017-01-01

    The complex microbiota that resides within the rumen is responsible for the break-down of plant fibre. The bacteria that attach to ingested plant matter within the rumen are thought to be responsible for initial fibre degradation. Most studies examining the ecology of this important microbiome only offer a 'snapshot' in time. We monitored the diversity of rumen bacteria in four New Zealand dairy cows, grazing a rye-grass and clover pasture over five consecutive seasons, using high throughput pyrosequencing of bacterial 16S rRNA genes. We chose to focus on the digesta-adherent bacterial community to learn more about the stability of this community over time. 16S rRNA gene sequencing showed a high level of bacterial diversity, totalling 1539 operational taxonomic units (OTUs, grouped at 96% sequence similarity) across all samples, and ranging from 653 to 926 OTUs per individual sample. The nutritive composition of the pasture changed with the seasons as did the production phase of the animals. Sequence analysis showed that, overall, the bacterial communities were broadly similar between the individual animals. The adherent bacterial community was strongly dominated by members of Firmicutes (82.1%), followed by Bacteroidetes (11.8%). This community differed between the seasons, returning to close to that observed in the same season one year later. These seasonal differences were only small, but were statistically significant (p < 0.001), and were probably due to the seasonal differences in the diet. These results demonstrate a general invariability of the ruminal bacterial community structure in these grazing dairy cattle.

  19. Seasonal changes in the digesta-adherent rumen bacterial communities of dairy cattle grazing pasture

    PubMed Central

    Attwood, Graeme T.; Rakonjac, Jasna; Moon, Christina D.; Waghorn, Garry C.; Janssen, Peter H.

    2017-01-01

    The complex microbiota that resides within the rumen is responsible for the break-down of plant fibre. The bacteria that attach to ingested plant matter within the rumen are thought to be responsible for initial fibre degradation. Most studies examining the ecology of this important microbiome only offer a ‘snapshot’ in time. We monitored the diversity of rumen bacteria in four New Zealand dairy cows, grazing a rye-grass and clover pasture over five consecutive seasons, using high throughput pyrosequencing of bacterial 16S rRNA genes. We chose to focus on the digesta-adherent bacterial community to learn more about the stability of this community over time. 16S rRNA gene sequencing showed a high level of bacterial diversity, totalling 1539 operational taxonomic units (OTUs, grouped at 96% sequence similarity) across all samples, and ranging from 653 to 926 OTUs per individual sample. The nutritive composition of the pasture changed with the seasons as did the production phase of the animals. Sequence analysis showed that, overall, the bacterial communities were broadly similar between the individual animals. The adherent bacterial community was strongly dominated by members of Firmicutes (82.1%), followed by Bacteroidetes (11.8%). This community differed between the seasons, returning to close to that observed in the same season one year later. These seasonal differences were only small, but were statistically significant (p < 0.001), and were probably due to the seasonal differences in the diet. These results demonstrate a general invariability of the ruminal bacterial community structure in these grazing dairy cattle. PMID:28296930

  20. A Bayesian taxonomic classification method for 16S rRNA gene sequences with improved species-level accuracy.

    PubMed

    Gao, Xiang; Lin, Huaiying; Revanna, Kashi; Dong, Qunfeng

    2017-05-10

    Species-level classification for 16S rRNA gene sequences remains a serious challenge for microbiome researchers, because existing taxonomic classification tools for 16S rRNA gene sequences either do not provide species-level classification, or their classification results are unreliable. The unreliable results are due to the limitations in the existing methods which either lack solid probabilistic-based criteria to evaluate the confidence of their taxonomic assignments, or use nucleotide k-mer frequency as the proxy for sequence similarity measurement. We have developed a method that shows significantly improved species-level classification results over existing methods. Our method calculates true sequence similarity between query sequences and database hits using pairwise sequence alignment. Taxonomic classifications are assigned from the species to the phylum levels based on the lowest common ancestors of multiple database hits for each query sequence, and further classification reliabilities are evaluated by bootstrap confidence scores. The novelty of our method is that the contribution of each database hit to the taxonomic assignment of the query sequence is weighted by a Bayesian posterior probability based upon the degree of sequence similarity of the database hit to the query sequence. Our method does not need any training datasets specific for different taxonomic groups. Instead only a reference database is required for aligning to the query sequences, making our method easily applicable for different regions of the 16S rRNA gene or other phylogenetic marker genes. Reliable species-level classification for 16S rRNA or other phylogenetic marker genes is critical for microbiome research. Our software shows significantly higher classification accuracy than the existing tools and we provide probabilistic-based confidence scores to evaluate the reliability of our taxonomic classification assignments based on multiple database matches to query sequences. Despite

  1. Simultaneous amplicon sequencing to explore co-occurrence patterns of bacterial, archaeal and eukaryotic microorganisms in rumen microbial communities.

    PubMed

    Kittelmann, Sandra; Seedorf, Henning; Walters, William A; Clemente, Jose C; Knight, Rob; Gordon, Jeffrey I; Janssen, Peter H

    2013-01-01

    Ruminants rely on a complex rumen microbial community to convert dietary plant material to energy-yielding products. Here we developed a method to simultaneously analyze the community's bacterial and archaeal 16S rRNA genes, ciliate 18S rRNA genes and anaerobic fungal internal transcribed spacer 1 genes using 12 DNA samples derived from 11 different rumen samples from three host species (Ovis aries, Bos taurus, Cervus elephas) and multiplex 454 Titanium pyrosequencing. We show that the mixing ratio of the group-specific DNA templates before emulsion PCR is crucial to compensate for differences in amplicon length. This method, in contrast to using a non-specific universal primer pair, avoids sequencing non-targeted DNA, such as plant- or endophyte-derived rRNA genes, and allows increased or decreased levels of community structure resolution for each microbial group as needed. Communities analyzed with different primers always grouped by sample origin rather than by the primers used. However, primer choice had a greater impact on apparent archaeal community structure than on bacterial community structure, and biases for certain methanogen groups were detected. Co-occurrence analysis of microbial taxa from all three domains of life suggested strong within- and between-domain correlations between different groups of microorganisms within the rumen. The approach used to simultaneously characterize bacterial, archaeal and eukaryotic components of a microbiota should be applicable to other communities occupying diverse habitats.

  2. Bacterial communities in the rumen of Holstein heifers differ when fed orchardgrass as pasture vs. hay

    PubMed Central

    Mohammed, Riazuddin; Brink, Geoffrey E.; Stevenson, David M.; Neumann, Anthony P.; Beauchemin, Karen A.; Suen, Garret; Weimer, Paul J.

    2014-01-01

    The rich and diverse microbiota of the rumen provides ruminant animals the capacity to utilize highly fibrous feedstuffs as their energy source, but there is surprisingly little information on the composition of the microbiome of ruminants fed all-forage diets, despite the importance of such agricultural production systems worldwide. In three 28-day periods, three ruminally-cannulated Holstein heifers sequentially grazed orchardgrass pasture (OP), then were fed orchardgrass hay (OH), then returned to OP. These heifers displayed greater shifts in ruminal bacterial community composition (determined by automated ribosomal intergenic spacer analysis and by pyrotag sequencing of 16S rRNA genes) than did two other heifers maintained 84 d on the same OP. Phyla Firmicutes and Bacteroidetes dominated all ruminal samples, and quantitative PCR indicated that members of the genus Prevotella averaged 23% of the 16S rRNA gene copies, well below levels previously reported with cows fed total mixed rations. Differences in bacterial community composition and ruminal volatile fatty acid (VFA) profiles were observed between the OP and OH despite similarities in gross chemical composition. Compared to OP, feeding OH increased the molar proportion of ruminal acetate (P = 0.02) and decreased the proportion of ruminal butyrate (P < 0.01), branched-chain VFA (P < 0.01) and the relative population size of the abundant genus Butyrivibrio (P < 0.001), as determined by pyrotag sequencing. Despite the low numbers of animals examined, the observed changes in VFA profile in the rumens of heifers on OP vs. OH are consistent with the shifts in Butyrivibrio abundance and its known physiology as a butyrate producer that ferments both carbohydrates and proteins. PMID:25538699

  3. Bacterial diversity in fumarole environments of the Paricutín volcano, Michoacán (Mexico).

    PubMed

    Medrano-Santillana, Miguel; Souza-Brito, Elcia Margaret; Duran, Robert; Gutierrez-Corona, Felix; Reyna-López, Georgina Elena

    2017-05-01

    Active volcanoes are among the most extreme environments on Earth. The extreme temperatures, presence of toxic heavy metals and low nutrient bioavailability favor the development of extremophiles. We characterized the physical-chemical parameters of and bacterial communities (T-RFLP and 16S rRNA gene libraries) inhabiting fumarole niches of the Paricutín volcano located in Michoacán (Mexico). This volcano, which surged in 1943, is one of the youngest volcanoes on Earth and the microbial diversity in this area is yet to be characterized. The sampling stations were characterized in a pH range from 5.34 to 7.89 and showed different temperatures (soil, 27-87 °C; air, 13.6-56 °C) with high concentrations of metals such as iron and arsenic. The most abundant bacterial populations, confirmed by T-RFLP and 16S rRNA gene libraries, were related to members of Firmicutes and Proteobacteria phyla including sequences associated with thermophiles and sulfate reducing bacteria. Overall, the Paricutín volcano showed low bacterial diversity and its prokaryotic diversity was characterized by the impossibility of amplifying Archaea-related sequences.

  4. Development of a single-tube loop-mediated isothermal amplification assay for detection of four pathogens of bacterial meningitis.

    PubMed

    Huy, Nguyen Tien; Hang, Le Thi Thuy; Boamah, Daniel; Lan, Nguyen Thi Phuong; Van Thanh, Phan; Watanabe, Kiwao; Huong, Vu Thi Thu; Kikuchi, Mihoko; Ariyoshi, Koya; Morita, Kouichi; Hirayama, Kenji

    2012-12-01

    Several loop-mediated isothermal amplification (LAMP) assays have been developed to detect common causative pathogens of bacterial meningitis (BM). However, no LAMP assay is reported to detect Streptococcus agalactiae and Streptococcus suis, which are also among common pathogens of BM. Moreover, it is laborious and expensive by performing multiple reactions for each sample to detect bacterial pathogen. Thus, we aimed to design and develop a single-tube LAMP assay capable of detecting multiple bacterial species, based on the nucleotide sequences of the 16S rRNA genes of the bacteria. The nucleotide sequences of the 16S rRNA genes of main pathogens involved in BM were aligned to identify conserved regions, which were further used to design broad range specific LAMP assay primers. We successfully designed a set of broad range specific LAMP assay primers for simultaneous detection of four species including Staphylococcus aureus, Streptococcus pneumoniae, S. suis and S. agalactiae. The broad range LAMP assay was highly specific without cross-reactivity with other bacteria including Haemophilus influenzae, Neisseria meningitidis and Escherichia coli. The sensitivity of our LAMP assay was 100-1000 times higher compared with the conventional PCR assay. The bacterial species could be identified after digestion of the LAMP products with restriction endonuclease DdeI and HaeIII. © 2012 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  5. Anaplasma phagocytophilum in questing Ixodes ricinus ticks: comparison of prevalences and partial 16S rRNA gene variants in urban, pasture, and natural habitats.

    PubMed

    Overzier, Evelyn; Pfister, Kurt; Thiel, Claudia; Herb, Ingrid; Mahling, Monia; Silaghi, Cornelia

    2013-03-01

    Urban, natural, and pasture areas were investigated for prevalences and 16S rRNA gene variants of Anaplasma phagocytophilum in questing Ixodes ricinus ticks. The prevalences differed significantly between habitat types, and year-to-year variations in prevalence and habitat-dependent occurrence of 16S rRNA gene variants were detected.

  6. Office space bacterial abundance and diversity in three metropolitan areas.

    PubMed

    Hewitt, Krissi M; Gerba, Charles P; Maxwell, Sheri L; Kelley, Scott T

    2012-01-01

    People in developed countries spend approximately 90% of their lives indoors, yet we know little about the source and diversity of microbes in built environments. In this study, we combined culture-based cell counting and multiplexed pyrosequencing of environmental ribosomal RNA (rRNA) gene sequences to investigate office space bacterial diversity in three metropolitan areas. Five surfaces common to all offices were sampled using sterile double-tipped swabs, one tip for culturing and one for DNA extraction, in 30 different offices per city (90 offices, 450 total samples). 16S rRNA gene sequences were PCR amplified using bar-coded "universal" bacterial primers from 54 of the surfaces (18 per city) and pooled for pyrosequencing. A three-factorial Analysis of Variance (ANOVA) found significant differences in viable bacterial abundance between offices inhabited by men or women, among the various surface types, and among cities. Multiplex pyrosequencing identified more than 500 bacterial genera from 20 different bacterial divisions. The most abundant of these genera tended to be common inhabitants of human skin, nasal, oral or intestinal cavities. Other commonly occurring genera appeared to have environmental origins (e.g., soils). There were no significant differences in the bacterial diversity between offices inhabited by men or women or among surfaces, but the bacterial community diversity of the Tucson samples was clearly distinguishable from that of New York and San Francisco, which were indistinguishable. Overall, our comprehensive molecular analysis of office building microbial diversity shows the potential of these methods for studying patterns and origins of indoor bacterial contamination. "[H]umans move through a sea of microbial life that is seldom perceived except in the context of potential disease and decay." - Feazel et al. (2009).

  7. Phylogenetic diversity and spatial distribution of the microbial community associated with the Caribbean deep-water sponge Polymastia cf. corticata by 16S rRNA, aprA, and amoA gene analysis.

    PubMed

    Meyer, Birte; Kuever, Jan

    2008-08-01

    Denaturing gradient gel electrophoresis (DGGE)-based analyses of 16S rRNA, aprA, and amoA genes demonstrated that a phylogenetically diverse and complex microbial community was associated with the Caribbean deep-water sponge Polymastia cf. corticata Ridley and Dendy, 1887. From the 38 archaeal and bacterial 16S rRNA phylotypes identified, 53% branched into the sponge-specific, monophyletic sequence clusters determined by previous studies (considering predominantly shallow-water sponge species), whereas 26% appeared to be P. cf. corticata specifically associated microorganisms ("specialists"); 21% of the phylotypes were confirmed to represent seawater- and sediment-derived proteobacterial species ("contaminants") acquired by filtration processes from the host environment. Consistently, the aprA and amoA gene-based analyses indicated the presence of environmentally derived sulfur- and ammonia-oxidizers besides putative sponge-specific sulfur-oxidizing Gammaproteobacteria and Alphaproteobacteria and a sulfate-reducing archaeon. A sponge-specific, endosymbiotic sulfur cycle as described for marine oligochaetes is proposed to be also present in P. cf. corticata. Overall, the results of this work support the recent studies that demonstrated the sponge species specificity of the associated microbial community while the biogeography of the host collection site has only a minor influence on the composition. In P. cf. corticata, the specificity of the sponge-microbe associations is even extended to the spatial distribution of the microorganisms within the sponge body; distinct bacterial populations were associated with the different tissue sections, papillae, outer and inner cortex, and choanosome. The local distribution of a phylotype within P. cf. corticata correlated with its (1) phylogenetic affiliation, (2) classification as sponge-specific or nonspecifically associated microorganism, and (3) potential ecological role in the host sponge.

  8. Anti-replicative recombinant 5S rRNA molecules can modulate the mtDNA heteroplasmy in a glucose-dependent manner.

    PubMed

    Loutre, Romuald; Heckel, Anne-Marie; Jeandard, Damien; Tarassov, Ivan; Entelis, Nina

    2018-01-01

    Mutations in mitochondrial DNA are an important source of severe and incurable human diseases. The vast majority of these mutations are heteroplasmic, meaning that mutant and wild-type genomes are present simultaneously in the same cell. Only a very high proportion of mutant mitochondrial DNA (heteroplasmy level) leads to pathological consequences. We previously demonstrated that mitochondrial targeting of small RNAs designed to anneal with mutant mtDNA can decrease the heteroplasmy level by specific inhibition of mutant mtDNA replication, thus representing a potential therapy. We have also shown that 5S ribosomal RNA, partially imported into human mitochondria, can be used as a vector to deliver anti-replicative oligoribonucleotides into human mitochondria. So far, the efficiency of cellular expression of recombinant 5S rRNA molecules bearing therapeutic insertions remained very low. In the present study, we designed new versions of anti-replicative recombinant 5S rRNA targeting a large deletion in mitochondrial DNA which causes the KSS syndrome, analyzed their specific annealing to KSS mitochondrial DNA and demonstrated their import into mitochondria of cultured human cells. To obtain an increased level of the recombinant 5S rRNA stable expression, we created transmitochondrial cybrid cell line bearing a site for Flp-recombinase and used this system for the recombinase-mediated integration of genes coding for the anti-replicative recombinant 5S rRNAs into nuclear genome. We demonstrated that stable expression of anti-replicative 5S rRNA versions in human transmitochondrial cybrid cells can induce a shift in heteroplasmy level of KSS mutation in mtDNA. This shift was directly dependent on the level of the recombinant 5S rRNA expression and the sequence of the anti-replicative insertion. Quantification of mtDNA copy number in transfected cells revealed the absence of a non-specific effect on wild type mtDNA replication, indicating that the decreased proportion

  9. Efficient (3S)-Acetoin and (2S,3S)-2,3-Butanediol Production from meso-2,3-Butanediol Using Whole-Cell Biocatalysis.

    PubMed

    He, Yuanzhi; Chen, Feixue; Sun, Meijing; Gao, Huifang; Guo, Zewang; Lin, Hui; Chen, Jiebo; Jin, Wensong; Yang, Yunlong; Zhang, Liaoyuan; Yuan, Jun

    2018-03-19

    (3 S )-Acetoin and (2 S ,3 S )-2,3-butanediol are important platform chemicals widely applied in the asymmetric synthesis of valuable chiral chemicals. However, their production by fermentative methods is difficult to perform. This study aimed to develop a whole-cell biocatalysis strategy for the production of (3 S )-acetoin and (2 S ,3 S )-2,3-butanediol from meso -2,3-butanediol. First, E. coli co-expressing (2 R ,3 R )-2,3-butanediol dehydrogenase, NADH oxidase and Vitreoscilla hemoglobin was developed for (3 S )-acetoin production from meso -2,3-butanediol. Maximum (3 S )-acetoin concentration of 72.38 g/L with the stereoisomeric purity of 94.65% was achieved at 24 h under optimal conditions. Subsequently, we developed another biocatalyst co-expressing (2 S ,3 S )-2,3-butanediol dehydrogenase and formate dehydrogenase for (2 S ,3 S )-2,3-butanediol production from (3 S )-acetoin. Synchronous catalysis together with two biocatalysts afforded 38.41 g/L of (2 S ,3 S )-butanediol with stereoisomeric purity of 98.03% from 40 g/L meso -2,3-butanediol. These results exhibited the potential for (3 S )-acetoin and (2 S ,3 S )-butanediol production from meso -2,3-butanediol as a substrate via whole-cell biocatalysis.

  10. Community structure of the metabolically active rumen bacterial and archaeal communities of dairy cows over the transition period

    PubMed Central

    Zhu, Zhigang; Noel, Samantha Joan; Difford, Gareth Frank; Al-Soud, Waleed Abu; Brejnrod, Asker; Sørensen, Søren Johannes; Lassen, Jan; Løvendahl, Peter; Højberg, Ole

    2017-01-01

    Dairy cows experience dramatic changes in host physiology from gestation to lactation period and dietary switch from high-forage prepartum diet to high-concentrate postpartum diet over the transition period (parturition +/- three weeks). Understanding the community structure and activity of the rumen microbiota and its associative patterns over the transition period may provide insight for e.g. improving animal health and production. In the present study, rumen samples from ten primiparous Holstein dairy cows were collected over seven weeks spanning the transition period. Total RNA was extracted from the rumen samples and cDNA thereof was subsequently used for characterizing the metabolically active bacterial (16S rRNA transcript amplicon sequencing) and archaeal (qPCR, T-RFLP and mcrA and 16S rRNA transcript amplicon sequencing) communities. The metabolically active bacterial community was dominated by three phyla, showing significant changes in relative abundance range over the transition period: Firmicutes (from prepartum 57% to postpartum 35%), Bacteroidetes (from prepartum 22% to postpartum 18%) and Proteobacteria (from prepartum 7% to postpartum 32%). For the archaea, qPCR analysis of 16S rRNA transcript number, revealed a significant prepartum to postpartum increase in Methanobacteriales, in accordance with an observed increase (from prepartum 80% to postpartum 89%) in relative abundance of 16S rRNA transcript amplicons allocated to this order. On the other hand, a significant prepartum to postpartum decrease (from 15% to 2%) was observed in relative abundance of Methanomassiliicoccales 16S rRNA transcripts. In contrast to qPCR analysis of the 16S rRNA transcripts, quantification of mcrA transcripts revealed no change in total abundance of metabolically active methanogens over the transition period. According to T-RFLP analysis of the mcrA transcripts, two Methanobacteriales genera, Methanobrevibacter and Methanosphaera (represented by the T-RFs 39 and 267

  11. Use of the MicroSeq 500 16S rRNA Gene-Based Sequencing for Identification of Bacterial Isolates That Commercial Automated Systems Failed To Identify Correctly

    PubMed Central

    Fontana, Carla; Favaro, Marco; Pelliccioni, Marco; Pistoia, Enrico Salvatore; Favalli, Cartesio

    2005-01-01

    Reliable automated identification and susceptibility testing of clinically relevant bacteria is an essential routine for microbiology laboratories, thus improving patient care. Examples of automated identification systems include the Phoenix (Becton Dickinson) and the VITEK 2 (bioMérieux). However, more and more frequently, microbiologists must isolate “difficult” strains that automated systems often fail to identify. An alternative approach could be the genetic identification of isolates; this is based on 16S rRNA gene sequencing and analysis. The aim of the present study was to evaluate the possible use of MicroSeq 500 (Applera) for sequencing the 16S rRNA gene to identify isolates whose identification is unobtainable by conventional systems. We analyzed 83 “difficult” clinical isolates: 25 gram-positive and 58 gram-negative strains that were contemporaneously identified by both systems—VITEK 2 and Phoenix—while genetic identification was performed by using the MicroSeq 500 system. The results showed that phenotypic identifications by VITEK 2 and Phoenix were remarkably similar: 74% for gram-negative strains (43 of 58) and 80% for gram-positive strains were concordant by both systems and also concordant with genetic characterization. The exceptions were the 15 gram-negative and 9 gram-positive isolates whose phenotypic identifications were contrasting or inconclusive. For these, the use of MicroSeq 500 was fundamental to achieving species identification. In clinical microbiology the use of MicroSeq 500, particularly for strains with ambiguous biochemical profiles (including slow-growing strains), identifies strains more easily than do conventional systems. Moreover, MicroSeq 500 is easy to use and cost-effective, making it applicable also in the clinical laboratory. PMID:15695654

  12. Pyrosequencing of mcrA and Archaeal 16S rRNA Genes Reveals Diversity and Substrate Preferences of Methanogen Communities in Anaerobic Digesters

    PubMed Central

    Wilkins, David; Lu, Xiao-Ying; Shen, Zhiyong; Chen, Jiapeng

    2014-01-01

    Methanogenic archaea play a key role in biogas-producing anaerobic digestion and yet remain poorly taxonomically characterized. This is in part due to the limitations of low-throughput Sanger sequencing of a single (16S rRNA) gene, which in the past may have undersampled methanogen diversity. In this study, archaeal communities from three sludge digesters in Hong Kong and one wastewater digester in China were examined using high-throughput pyrosequencing of the methyl coenzyme M reductase (mcrA) and 16S rRNA genes. Methanobacteriales, Methanomicrobiales, and Methanosarcinales were detected in each digester, indicating that both hydrogenotrophic and acetoclastic methanogenesis was occurring. Two sludge digesters had similar community structures, likely due to their similar design and feedstock. Taxonomic classification of the mcrA genes suggested that these digesters were dominated by acetoclastic methanogens, particularly Methanosarcinales, while the other digesters were dominated by hydrogenotrophic Methanomicrobiales. The proposed euryarchaeotal order Methanomassiliicoccales and the uncultured WSA2 group were detected with the 16S rRNA gene, and potential mcrA genes for these groups were identified. 16S rRNA gene sequencing also recovered several crenarchaeotal groups potentially involved in the initial anaerobic digestion processes. Overall, the two genes produced different taxonomic profiles for the digesters, while greater methanogen richness was detected using the mcrA gene, supporting the use of this functional gene as a complement to the 16S rRNA gene to better assess methanogen diversity. A significant positive correlation was detected between methane production and the abundance of mcrA transcripts in digesters treating sludge and wastewater samples, supporting the mcrA gene as a biomarker for methane yield. PMID:25381241

  13. Comparison of gull-specific assays targeting 16S rRNA gene of Catellicoccus marimammalium and Streptococcus spp.

    EPA Science Inventory

    Gulls have been implicated as a source of fecal contamination in inland and coastal waters. Only one gull-specific assay is currently available (i.e., gull2 qPCR assay). This assay is based on the 16S rRNA gene of Catellicocclls marimammalium and has showed a high level of host-s...

  14. Nucleolus-like bodies of fully-grown mouse oocytes contain key nucleolar proteins but are impoverished for rRNA.

    PubMed

    Shishova, Kseniya V; Lavrentyeva, Elena A; Dobrucki, Jurek W; Zatsepina, Olga V

    2015-01-15

    It is well known that fully-grown mammalian oocytes, rather than typical nucleoli, contain prominent but structurally homogenous bodies called "nucleolus-like bodies" (NLBs). NLBs accumulate a vast amount of material, but their biochemical composition and functions remain uncertain. To clarify the composition of the NLB material in mouse GV oocytes, we devised an assay to detect internal oocyte proteins with fluorescein-5-isothiocyanate (FITC) and applied the fluorescent RNA-binding dye acridine orange to examine whether NLBs contain RNA. Our results unequivocally show that, similarly to typical nucleoli, proteins and RNA are major constituents of transcriptionally active (or non-surrounded) NLBs as well as of transcriptionally silent (or surrounded) NLBs. We also show, by exposing fixed oocytes to a mild proteinase K treatment, that the NLB mass in oocytes of both types contains nucleolar proteins that are involved in all major steps of ribosome biogenesis, including rDNA transcription (UBF), early rRNA processing (fibrillarin), and late rRNA processing (NPM1/nucleophosmin/B23, nucleolin/C23), but none of the nuclear proteins tested, including SC35, NOBOX, topoisomerase II beta, HP1α, and H3. The ribosomal RPL26 protein was detected within the NLBs of NSN-type oocytes but is virtually absent from NLBs of SN-type oocytes. Taking into account that the major class of nucleolar RNA is ribosomal RNA (rRNA), we applied fluorescence in situ hybridization with oligonucleotide probes targeting 18S and 28S rRNAs. The results show that, in contrast to active nucleoli, NLBs of fully-grown oocytes are impoverished for the rRNAs, which is consistent with the absence of transcribed ribosomal genes in the NLB mass. Overall, the results of this study suggest that NLBs of fully-grown mammalian oocytes serve for storing major nucleolar proteins but not rRNA. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Tracking bacterial infection of macrophages using a novel red-emission pH sensor.

    PubMed

    Jin, Yuguang; Tian, Yanqing; Zhang, Weiwen; Jang, Sei-Hum; Jen, Alex K-Y; Meldrum, Deirdre R

    2010-10-01

    The relationship between bacteria and host phagocytic cells is key to the induction of immunity. To visualize and monitor bacterial infection, we developed a novel bacterial membrane permeable pH sensor for the noninvasive monitoring of bacterial entry into murine macrophages. The pH sensor was constructed using 2-dicyanomethylene-3-cyano-4,5,5-trimethyl-2,5-dihydrofuran (TCF) as an electron-withdrawing group and aniline as an electron-donating group. A piperazine moiety was used as the pH-sensitive group. Because of the strong electron-donating and -withdrawing units conjugated in the sensing moiety M, the fluorophore emitted in the red spectral window, away from the autofluorescence regions of the bacteria. Following the engulfment of sensor-labeled bacteria by macrophages and their subsequent merger with host lysosomes, the resulting low-pH environment enhances the fluorescence intensity of the pH sensors inside the bacteria. Time-lapse analysis of the fluorescent intensity suggested significant heterogeneity of bacterial uptake among macrophages. In addition, qRT-PCR analysis of the bacterial 16 S rRNA gene expression within single macrophage cells suggested that the 16 S rRNA of the bacteria was still intact 120 min after they had been engulfed by macrophages. A toxicity assay showed that the pH sensor has no cytotoxicity towards either E. coli or murine macrophages. The sensor shows good repeatability, a long lifetime, and a fast response to pH changes, and can be used for a variety of bacteria.

  16. Nucleotide sequence of the ribosomal RNA gene of Physarum polycephalum: intron 2 and its flanking regions of the 26S rRNA gene.

    PubMed Central

    Nomiyama, H; Kuhara, S; Kukita, T; Otsuka, T; Sakaki, Y

    1981-01-01

    The 26S ribosomal RNA gene of Physarum polycephalum is interrupted by two introns, and we have previously determined the sequence of one of them (intron 1) (Nomiyama et al. Proc.Natl.Acad.Sci.USA 78, 1376-1380, 1981). In this study we sequenced the second intron (intron 2) of about 0.5 kb length and its flanking regions, and found that one nucleotide at each junction is identical in intron 1 and intron 2, though the junction regions share no other sequence homology. Comparison of the flanking exon sequences to E. coli 23S rRNA sequences shows that conserved sequences are interspersed with tracts having little homology. In particular, the region encompassing the intron 2 interruption site is highly conserved. The E. coli ribosomal protein L1 binding region is also conserved. Images PMID:6171776

  17. Elevated levels of Era GTPase improve growth, 16S rRNA processing, and 70S ribosome assembly of Escherichia coli lacking highly conserved multifunctional YbeY endoribonuclease.

    PubMed

    Ghosal, Anubrata; Babu, Vignesh M P; Walker, Graham C

    2018-06-18

    YbeY is a highly conserved, multifunctional endoribonuclease that plays a significant role in ribosome biogenesis and has several additional roles. Here, we show in Escherichia coli that overexpressing the conserved GTPase, Era, partially suppresses the growth defect of a ΔybeY strain while improving 16S rRNA processing and 70S ribosome assembly. This suppression requires both Era's ability to hydrolyze GTP and the function of three exoribonucleases, RNase II, RNase R and RNase PH, suggesting a model for Era's action. Overexpressing Vibrio cholerae Era similarly partially suppresses the defects of an E. coli ΔybeY strain indicating this property of Era is conserved in bacteria other than E. coli Importance This work provides additional insights into the critical, but still incompletely understood, mechanism of the processing of the E. coli 16S rRNA 3'-terminus. The highly conserved GTPase, Era, is known to bind to the precursor of the 16S rRNA near its 3-end. Both the endoribonuclease YbeY, which binds to Era, and four exoribonucleases have been implicated in this 3'-end processing. Results reported here offer additional insights into the role of Era in 16S rRNA 3'-maturation and into the relationship between the action of the endoribonuclease YbeY and the four exoribonucleases. This study also hints at why YbeY is only essential in some bacteria and suggests that the YbeY could be a target for a new class of antibiotic in these bacteria. Copyright © 2018 American Society for Microbiology.

  18. Permeable Reactive Barriers Designed To Mitigate Eutrophication Alter Bacterial Community Composition and Aquifer Redox Conditions

    PubMed Central

    Hiller, Kenly A.; Foreman, Kenneth H.; Weisman, David

    2015-01-01

    Permeable reactive barriers (PRBs) consist of a labile carbon source that is positioned to intercept nitrate-laden groundwater to prevent eutrophication. Decomposition of carbon in the PRB drives groundwater anoxic, fostering microbial denitrification. Such PRBs are an ideal habitat to examine microbial community structure under high-nitrate, carbon-replete conditions in coastal aquifers. We examined a PRB installed at the Waquoit Bay National Estuarine Research Reserve in Falmouth, MA. Groundwater within and below the PRB was depleted in oxygen compared to groundwater at sites upgradient and at adjacent reference sites. Nitrate concentrations declined from a high of 25 μM upgradient and adjacent to the barrier to <0.1 μM within the PRB. We analyzed the total and active bacterial communities filtered from groundwater flowing through the PRB using amplicons of 16S rRNA and of the 16S rRNA genes. Analysis of the 16S rRNA genes collected from the PRB showed that the total bacterial community had high relative abundances of bacteria thought to have alternative metabolisms, such as fermentation, including candidate phyla OD1, OP3, TM7, and GN02. In contrast, the active bacteria had lower abundances of many of these bacteria, suggesting that the bacterial taxa that differentiate the PRB groundwater community were not actively growing. Among the environmental variables analyzed, dissolved oxygen concentration explained the largest proportion of total community structure. There was, however, no significant correlation between measured environmental parameters and the active microbial community, suggesting that controls on the active portion may differ from the community as a whole. PMID:26231655

  19. Design and Evaluation of Illumina MiSeq-Compatible, 18S rRNA Gene-Specific Primers for Improved Characterization of Mixed Phototrophic Communities.

    PubMed

    Bradley, Ian M; Pinto, Ameet J; Guest, Jeremy S

    2016-10-01

    The use of high-throughput sequencing technologies with the 16S rRNA gene for characterization of bacterial and archaeal communities has become routine. However, the adoption of sequencing methods for eukaryotes has been slow, despite their significance to natural and engineered systems. There are large variations among the target genes used for amplicon sequencing, and for the 18S rRNA gene, there is no consensus on which hypervariable region provides the most suitable representation of diversity. Additionally, it is unclear how much PCR/sequencing bias affects the depiction of community structure using current primers. The present study amplified the V4 and V8-V9 regions from seven microalgal mock communities as well as eukaryotic communities from freshwater, coastal, and wastewater samples to examine the effect of PCR/sequencing bias on community structure and membership. We found that degeneracies on the 3' end of the current V4-specific primers impact read length and mean relative abundance. Furthermore, the PCR/sequencing error is markedly higher for GC-rich members than for communities with balanced GC content. Importantly, the V4 region failed to reliably capture 2 of the 12 mock community members, and the V8-V9 hypervariable region more accurately represents mean relative abundance and alpha and beta diversity. Overall, the V4 and V8-V9 regions show similar community representations over freshwater, coastal, and wastewater environments, but specific samples show markedly different communities. These results indicate that multiple primer sets may be advantageous for gaining a more complete understanding of community structure and highlight the importance of including mock communities composed of species of interest. The quantification of error associated with community representation by amplicon sequencing is a critical challenge that is often ignored. When target genes are amplified using currently available primers, differential amplification efficiencies

  20. Acidovorax anthurii sp. nov., a new phytopathogenic bacterium which causes bacterial leaf-spot of anthurium.

    PubMed

    Gardan, L; Dauga, C; Prior, P; Gillis, M; Saddler, G S

    2000-01-01

    The bacterial leaf-spot of anthurium emerged during the 1980s, in the French West Indies and Trinidad. This new bacterial disease is presently wide spread and constitutes a serious limiting factor for commercial anthurium production. Twenty-nine strains isolated from leaf-spots of naturally infected anthurium were characterized and compared with reference strains belonging to the Comamonadaceae family, the genera Ralstonia and Burkholderia, and representative fluorescent pseudomonads. From artificial inoculations 25 out of 29 strains were pathogenic on anthurium. Biochemical and physiological tests, fatty acid analysis, DNA-DNA hybridization, 16S rRNA gene sequence analysis, DNA-16S RNA hybridization were performed. The 25 pathogenic strains on anthurium were clustered in one phenon closely related to phytopathogenic strains of the genus Acidovorax. Anthurium strains were 79-99% (deltaTm range 0.2-1.6) related to the strain CFBP 3232 and constituted a discrete DNA homology group indicating that they belong to the same species. DNA-rRNA hybridization, 16S rRNA sequence and fatty acid analysis confirmed that this new species belongs to the beta-subclass of Proteobacteria and to rRNA superfamily III, to the family of Comamonadaceae and to the genus Acidovorax. The name Acidovorax anthurii is proposed for this new phytopathogenic bacterium. The type strain has been deposited in the Collection Française des Bactéries Phytopathogènes as CFBP 3232T.

  1. Variations in gut microbiota and fecal metabolic phenotype associated with depression by 16S rRNA gene sequencing and LC/MS-based metabolomics.

    PubMed

    Yu, Meng; Jia, Hongmei; Zhou, Chao; Yang, Yong; Zhao, Yang; Yang, Maohua; Zou, Zhongmei

    2017-05-10

    As a prevalent, life-threatening and highly recurrent psychiatric illness, depression is characterized by a wide range of pathological changes; however, its etiology remains incompletely understood. Accumulating evidence supports that gut microbiota affects not only gastrointestinal physiology but also central nervous system (CNS) function and behavior through the microbiota-gut-brain axis. To assess the impact of gut microbiota on fecal metabolic phenotype in depressive conditions, an integrated approach of 16S rRNA gene sequencing combined with ultra high-performance liquid chromatography-mass spectrometry (UHPLC-MS) based metabolomics was performed in chronic variable stress (CVS)-induced depression rat model. Interestingly, depression led to significant gut microbiota changes, at the phylum and genus levels in rats treated with CVS compared to controls. The relative abundances of the bacterial genera Marvinbryantia, Corynebacterium, Psychrobacter, Christensenella, Lactobacillus, Peptostreptococcaceae incertae sedis, Anaerovorax, Clostridiales incertae sedis and Coprococcus were significantly decreased, whereas Candidatus Arthromitus and Oscillibacter were markedly increased in model rats compared with normal controls. Meanwhile, distinct changes in fecal metabolic phenotype of depressive rats were also found, including lower levels of amino acids, and fatty acids, and higher amounts of bile acids, hypoxanthine and stercobilins. Moreover, there were substantial associations of perturbed gut microbiota genera with the altered fecal metabolites, especially compounds involved in the metabolism of tryptophan and bile acids. These results showed that the gut microbiota was altered in association with fecal metabolism in depressive conditions. These findings suggest that the 16S rRNA gene sequencing and LC-MS based metabolomics approach can be further applied to assess pathogenesis of depression. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. The impact of different DNA extraction kits and laboratories upon the assessment of human gut microbiota composition by 16S rRNA gene sequencing.

    PubMed

    Kennedy, Nicholas A; Walker, Alan W; Berry, Susan H; Duncan, Sylvia H; Farquarson, Freda M; Louis, Petra; Thomson, John M; Satsangi, Jack; Flint, Harry J; Parkhill, Julian; Lees, Charlie W; Hold, Georgina L

    2014-01-01

    Determining bacterial community structure in fecal samples through DNA sequencing is an important facet of intestinal health research. The impact of different commercially available DNA extraction kits upon bacterial community structures has received relatively little attention. The aim of this study was to analyze bacterial communities in volunteer and inflammatory bowel disease (IBD) patient fecal samples extracted using widely used DNA extraction kits in established gastrointestinal research laboratories. Fecal samples from two healthy volunteers (H3 and H4) and two relapsing IBD patients (I1 and I2) were investigated. DNA extraction was undertaken using MoBio Powersoil and MP Biomedicals FastDNA SPIN Kit for Soil DNA extraction kits. PCR amplification for pyrosequencing of bacterial 16S rRNA genes was performed in both laboratories on all samples. Hierarchical clustering of sequencing data was done using the Yue and Clayton similarity coefficient. DNA extracted using the FastDNA kit and the MoBio kit gave median DNA concentrations of 475 (interquartile range 228-561) and 22 (IQR 9-36) ng/µL respectively (p<0.0001). Hierarchical clustering of sequence data by Yue and Clayton coefficient revealed four clusters. Samples from individuals H3 and I2 clustered by patient; however, samples from patient I1 extracted with the MoBio kit clustered with samples from patient H4 rather than the other I1 samples. Linear modelling on relative abundance of common bacterial families revealed significant differences between kits; samples extracted with MoBio Powersoil showed significantly increased Bacteroidaceae, Ruminococcaceae and Porphyromonadaceae, and lower Enterobacteriaceae, Lachnospiraceae, Clostridiaceae, and Erysipelotrichaceae (p<0.05). This study demonstrates significant differences in DNA yield and bacterial DNA composition when comparing DNA extracted from the same fecal sample with different extraction kits. This highlights the importance of ensuring that samples

  3. Accuracy of taxonomy prediction for 16S rRNA and fungal ITS sequences

    PubMed Central

    2018-01-01

    Prediction of taxonomy for marker gene sequences such as 16S ribosomal RNA (rRNA) is a fundamental task in microbiology. Most experimentally observed sequences are diverged from reference sequences of authoritatively named organisms, creating a challenge for prediction methods. I assessed the accuracy of several algorithms using cross-validation by identity, a new benchmark strategy which explicitly models the variation in distances between query sequences and the closest entry in a reference database. When the accuracy of genus predictions was averaged over a representative range of identities with the reference database (100%, 99%, 97%, 95% and 90%), all tested methods had ≤50% accuracy on the currently-popular V4 region of 16S rRNA. Accuracy was found to fall rapidly with identity; for example, better methods were found to have V4 genus prediction accuracy of ∼100% at 100% identity but ∼50% at 97% identity. The relationship between identity and taxonomy was quantified as the probability that a rank is the lowest shared by a pair of sequences with a given pair-wise identity. With the V4 region, 95% identity was found to be a twilight zone where taxonomy is highly ambiguous because the probabilities that the lowest shared rank between pairs of sequences is genus, family, order or class are approximately equal. PMID:29682424

  4. Bacterial community analysis of drinking water biofilms in southern Sweden.

    PubMed

    Lührig, Katharina; Canbäck, Björn; Paul, Catherine J; Johansson, Tomas; Persson, Kenneth M; Rådström, Peter

    2015-01-01

    Next-generation sequencing of the V1-V2 and V3 variable regions of the 16S rRNA gene generated a total of 674,116 reads that described six distinct bacterial biofilm communities from both water meters and pipes. A high degree of reproducibility was demonstrated for the experimental and analytical work-flow by analyzing the communities present in parallel water meters, the rare occurrence of biological replicates within a working drinking water distribution system. The communities observed in water meters from households that did not complain about their drinking water were defined by sequences representing Proteobacteria (82-87%), with 22-40% of all sequences being classified as Sphingomonadaceae. However, a water meter biofilm community from a household with consumer reports of red water and flowing water containing elevated levels of iron and manganese had fewer sequences representing Proteobacteria (44%); only 0.6% of all sequences were classified as Sphingomonadaceae; and, in contrast to the other water meter communities, markedly more sequences represented Nitrospira and Pedomicrobium. The biofilm communities in pipes were distinct from those in water meters, and contained sequences that were identified as Mycobacterium, Nocardia, Desulfovibrio, and Sulfuricurvum. The approach employed in the present study resolved the bacterial diversity present in these biofilm communities as well as the differences that occurred in biofilms within a single distribution system, and suggests that next-generation sequencing of 16S rRNA amplicons can show changes in bacterial biofilm communities associated with different water qualities.

  5. Evolution of bacterial consortia in spontaneously started rye sourdoughs during two months of daily propagation.

    PubMed

    Bessmeltseva, Marianna; Viiard, Ene; Simm, Jaak; Paalme, Toomas; Sarand, Inga

    2014-01-01

    The evolution of bacterial consortia was studied in six semi-solid rye sourdoughs during long-term backslopping at different temperatures. Each rye sourdough was started spontaneously in a laboratory (dough yield 200), propagated at either 20°C or 30°C, and renewed daily at an inoculation rate of 1∶10 for 56 days. The changes in bacterial diversity over time were followed by both DGGE coupled with partial 16S rRNA gene sequencing and pyrosequencing of bar-coded 16S rRNA gene amplicons. Four species from the genus Lactobacillus (brevis, crustorum, plantarum, and paralimentarius) were detected in different combinations in all sourdoughs after 56 propagation cycles. Facultative heterofermentative lactic acid bacteria dominated in sourdoughs fermented at 30°C, while both obligate and facultative heterofermentative LAB were found to dominate in sourdoughs fermented at 20°C. After 56 propagation cycles, Kazachstania unispora (formerly Saccharomyces unisporus) was identified as the only yeast species that dominated in sourdoughs fermented at 20°C, while different combinations of strains from four yeast species (Kazachstania unispora, Saccharomyces cerevisiae, Candida krusei and Candida glabrata) were detected in sourdoughs propagated at 30°C. The evolution of bacterial communities in sourdoughs fermented at the same temperature did not follow the same time course and changes in the composition of dominant and subdominant bacterial communities occurred even after six weeks of backslopping.

  6. Analysis of Structure and Composition of Bacterial Core Communities in Mature Drinking Water Biofilms and Bulk Water of a Citywide Network in Germany

    PubMed Central

    Henne, Karsten; Kahlisch, Leila; Brettar, Ingrid

    2012-01-01

    The bacterial core communities of bulk water and corresponding biofilms of a more than 20-year-old drinking water network were compared using 16S rRNA single-strand confirmation polymorphism (SSCP) fingerprints based on extracted DNA and RNA. The structure and composition of the bacterial core community in the bulk water was highly similar (>70%) across the city of Braunschweig, Germany, whereas all biofilm samples contained a unique community with no overlapping phylotypes from bulk water. Biofilm samples consisted mainly of Alphaproteobacteria (26% of all phylotypes), Gammaproteobacteria (11%), candidate division TM6 (11%), Chlamydiales (9%), and Betaproteobacteria (9%). The bulk water community consisted primarily of Bacteroidetes (25%), Betaproteobacteria (20%), Actinobacteria (16%), and Alphaproteobacteria (11%). All biofilm communities showed higher relative abundances of single phylotypes and a reduced richness compared to bulk water. Only biofilm communities sampled at nearby sampling points showed similar communities irrespective of support materials. In all of our bulk water studies, the community composition determined from 16S rRNA was completely different from the 16S rRNA gene-based community composition, whereas in biofilms both molecular fractions resulted in community compositions that were similar to each other. We hypothesize that a higher fraction of active bacterial phylotypes and a better protection from oxidative stress in drinking water biofilms are responsible for this higher similarity. PMID:22389373

  7. Analysis of structure and composition of bacterial core communities in mature drinking water biofilms and bulk water of a citywide network in Germany.

    PubMed

    Henne, Karsten; Kahlisch, Leila; Brettar, Ingrid; Höfle, Manfred G

    2012-05-01

    The bacterial core communities of bulk water and corresponding biofilms of a more than 20-year-old drinking water network were compared using 16S rRNA single-strand confirmation polymorphism (SSCP) fingerprints based on extracted DNA and RNA. The structure and composition of the bacterial core community in the bulk water was highly similar (>70%) across the city of Braunschweig, Germany, whereas all biofilm samples contained a unique community with no overlapping phylotypes from bulk water. Biofilm samples consisted mainly of Alphaproteobacteria (26% of all phylotypes), Gammaproteobacteria (11%), candidate division TM6 (11%), Chlamydiales (9%), and Betaproteobacteria (9%). The bulk water community consisted primarily of Bacteroidetes (25%), Betaproteobacteria (20%), Actinobacteria (16%), and Alphaproteobacteria (11%). All biofilm communities showed higher relative abundances of single phylotypes and a reduced richness compared to bulk water. Only biofilm communities sampled at nearby sampling points showed similar communities irrespective of support materials. In all of our bulk water studies, the community composition determined from 16S rRNA was completely different from the 16S rRNA gene-based community composition, whereas in biofilms both molecular fractions resulted in community compositions that were similar to each other. We hypothesize that a higher fraction of active bacterial phylotypes and a better protection from oxidative stress in drinking water biofilms are responsible for this higher similarity.

  8. Dietary and developmental shifts in butterfly-associated bacterial communities

    PubMed Central

    2018-01-01

    Bacterial communities associated with insects can substantially influence host ecology, evolution and behaviour. Host diet is a key factor that shapes bacterial communities, but the impact of dietary transitions across insect development is poorly understood. We analysed bacterial communities of 12 butterfly species across different developmental stages, using amplicon sequencing of the 16S rRNA gene. Butterfly larvae typically consume leaves of a single host plant, whereas adults are more generalist nectar feeders. Thus, we expected bacterial communities to vary substantially across butterfly development. Surprisingly, only few species showed significant dietary and developmental transitions in bacterial communities, suggesting weak impacts of dietary transitions across butterfly development. On the other hand, bacterial communities were strongly influenced by butterfly species and family identity, potentially due to dietary and physiological variation across the host phylogeny. Larvae of most butterfly species largely mirrored bacterial community composition of their diets, suggesting passive acquisition rather than active selection. Overall, our results suggest that although butterflies harbour distinct microbiomes across taxonomic groups and dietary guilds, the dramatic dietary shifts that occur during development do not impose strong selection to maintain distinct bacterial communities across all butterfly hosts. PMID:29892359

  9. The novel mitochondrial 16S rRNA 2336T>C mutation is associated with hypertrophic cardiomyopathy

    PubMed Central

    Liu, Zhong; Song, Yanrui; Li, Dan; He, Xiangyu; Li, Shishi; Wu, Bifeng; Wang, Wei; Gu, Shulian; Zhu, Xiaoyu; Wang, Xuexiang; Zhou, Qiyin; Dai, Yu; Yan, Qingfeng

    2014-01-01

    Background Hypertrophic cardiomyopathy (HCM) is a primary disorder characterised by asymmetric thickening of septum and left ventricular wall, with a prevalence of 0.2% in the general population. Objective To describe a novel mitochondrial DNA mutation and its association with the pathogenesis of HCM. Methods and results All maternal members of a Chinese family with maternally transmitted HCM exhibited variable severity and age at onset, and were implanted permanent pacemakers due to complete atrioventricular block (AVB). Nuclear gene screening (MYH7, MYBPC3, TNNT2 and TNNI3) was performed, and no potential pathogenic mutation was identified. Mitochondrial DNA sequencing analysis identified a novel homoplasmic 16S rRNA 2336T>C mutation. This mutation was exclusively present in maternal members and absent in non-maternal members. Conservation index by comparison to 16 other vertebrates was 94.1%. This mutation disturbs the 2336U-A2438 base pair in the stem–loop structure of 16S rRNA domain III, which is involved in the assembly of mitochondrial ribosome. Oxygen consumption rate of the lymphoblastoid cells carrying 2336T>C mutation had decreased by 37% compared with controls. A reduction in mitochondrial ATP synthesis and an increase in reactive oxidative species production were also observed. Electron microscopic analysis indicated elongated mitochondria and abnormal mitochondrial cristae shape in mutant cells. Conclusions It is suggested that the 2336T>C mutation is one of pathogenic mutations of HCM. This is the first report of mitochondrial 16S rRNA 2336T>C mutation and an association with maternally inherited HCM combined with AVB. Our findings provide a new insight into the pathogenesis of HCM. PMID:24367055

  10. Bioluminescent symbionts of the Caribbean flashlight fish (Kryptophanaron alfredi) have a single rRNA operon.

    PubMed

    Wolfe, C J; Haygood, M G

    1993-08-01

    Ribosomal RNA (rRNA) operon copy number and gene order were determined for the luminous bacterial symbiont of Kryptophanaron alfredi, an anomalopid (flashlight) fish, and estimated for the luminous symbionts of 3 other fish families and of 3 luminous seawater isolates. Compared with the seawater isolates and other fish symbionts, the copy number of rRNA genes in the K. alfredi symbiont was radically reduced, although gene order appeared conserved among all the strains. The K. alfredi symbiont possesses only a single rRNA operon, whereas the other strains examined have minimum copy numbers ranging from 8 to 11. No difference in copy number was observed between light organ and seawater isolates of the same species, or between isolates of the same species from the light organs of 2 different host families. Thus, the anomalopid symbiosis appears unique among characterized light organ symbioses.

  11. Characterization of Mycobacterium leprae Genotypes in China--Identification of a New Polymorphism C251T in the 16S rRNA Gene.

    PubMed

    Yuan, Youhua; Wen, Yan; You, Yuangang; Xing, Yan; Li, Huanying; Weng, Xiaoman; Wu, Nan; Liu, Shuang; Zhang, Shanshan; Zhang, Wenhong; Zhang, Ying

    2015-01-01

    Leprosy continues to be prevalent in some mountainous regions of China, and genotypes of leprosy strains endemic to the country are not known. Mycobacterium lepromatosis is a new species that was discovered in Mexico in 2008, and it remains unclear whether this species exists in China. Here, we conducted PCR- restriction fragment length polymorphism (RFLP) analysis to classify genotypes of 85 DNA samples collected from patients from 18 different provinces. All 171 DNA samples from skin biopsies of leprosy patients were tested for the presence of Mycobacterium leprae and Mycobacterium lepromatosis by amplifying the 16S rRNA gene using nested PCR, followed by DNA sequencing. The new species M. lepromatosis was not found among the 171 specimens from leprosy patients in 22 provinces in China. However, we found three SNP genotypes among 85 leprosy patients. A mutation at C251T in the 16S rRNA gene was found in 76% of the strains. We also found that the strains that showed the 16S rRNA C251T mutation belonged to SNP type 3, whereas strains without the point mutation belonged to SNP type 1. The SNP type 3 leprosy strains were observed in patients from both the inner and coastal regions of China, but the SNP type 1 strains were focused only in the coastal region. This indicated that the SNP type 3 leprosy strains were more prevalent than the SNP type 1 strains in China. In addition, the 16S rRNA gene sequence mutation at C251T also indicated a difference in the geographical distribution of the strains. To our knowledge, this is the first report of a new polymorphism in 16S rRNA gene in M. leprae in China. Our findings shed light on the prevalent genotypes and provide insight about leprosy transmission that are important for leprosy control in China.

  12. Sequence variation identified in the 18S rRNA gene of Theileria mutans and Theileria velifera from the African buffalo (Syncerus caffer).

    PubMed

    Chaisi, Mamohale E; Collins, Nicola E; Potgieter, Fred T; Oosthuizen, Marinda C

    2013-01-16

    The African buffalo (Syncerus caffer) is a natural reservoir host for both pathogenic and non-pathogenic Theileria species. These often occur naturally as mixed infections in buffalo. Although the benign and mildly pathogenic forms do not have any significant economic importance, their presence could complicate the interpretation of diagnostic test results aimed at the specific diagnosis of the pathogenic Theileria parva in cattle and buffalo in South Africa. The 18S rRNA gene has been used as the target in a quantitative real-time PCR (qPCR) assay for the detection of T. parva infections. However, the extent of sequence variation within this gene in the non-pathogenic Theileria spp. of the Africa buffalo is not well known. The aim of this study was, therefore, to characterise the full-length 18S rRNA genes of Theileria mutans, Theileria sp. (strain MSD) and T. velifera and to determine the possible influence of any sequence variation on the specific detection of T. parva using the 18S rRNA qPCR. The reverse line blot (RLB) hybridization assay was used to select samples which either tested positive for several different Theileria spp., or which hybridised only with the Babesia/Theileria genus-specific probe and not with any of the Babesia or Theileria species-specific probes. The full-length 18S rRNA genes from 14 samples, originating from 13 buffalo and one bovine from different localities in South Africa, were amplified, cloned and the resulting recombinants sequenced. Variations in the 18S rRNA gene sequences were identified in T. mutans, Theileria sp. (strain MSD) and T. velifera, with the greatest diversity observed amongst the T. mutans variants. This variation possibly explained why the RLB hybridization assay failed to detect T. mutans and T. velifera in some of the analysed samples. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. Microbial Contaminants of Cord Blood Units Identified by 16S rRNA Sequencing and by API Test System, and Antibiotic Sensitivity Profiling

    PubMed Central

    França, Luís; Simões, Catarina; Taborda, Marco; Diogo, Catarina; da Costa, Milton S.

    2015-01-01

    Over a period of ten months a total of 5618 cord blood units (CBU) were screened for microbial contamination under routine conditions. The antibiotic resistance profile for all isolates was also examined using ATB strips. The detection rate for culture positive units was 7.5%, corresponding to 422 samples.16S rRNA sequence analysis and identification with API test system were used to identify the culturable aerobic, microaerophilic and anaerobic bacteria from CBUs. From these samples we recovered 485 isolates (84 operational taxonomic units, OTUs) assigned to the classes Bacteroidia, Actinobacteria, Clostridia, Bacilli, Betaproteobacteria and primarily to the Gammaproteobacteria. Sixty-nine OTUs, corresponding to 447 isolates, showed 16S rRNA sequence similarities above 99.0% with known cultured bacteria. However, 14 OTUs had 16S rRNA sequence similarities between 95 and 99% in support of genus level identification and one OTU with 16S rRNA sequence similarity of 90.3% supporting a family level identification only. The phenotypic identification formed 29 OTUs that could be identified to the species level and 9 OTUs that could be identified to the genus level by API test system. We failed to obtain identification for 14 OTUs, while 32 OTUs comprised organisms producing mixed identifications. Forty-two OTUs covered species not included in the API system databases. The API test system Rapid ID 32 Strep and Rapid ID 32 E showed the highest proportion of identifications to the species level, the lowest ratio of unidentified results and the highest agreement to the results of 16S rRNA assignments. Isolates affiliated to the Bacilli and Bacteroidia showed the highest antibiotic multi-resistance indices and microorganisms of the Clostridia displayed the most antibiotic sensitive phenotypes. PMID:26512991

  14. Microbial Contaminants of Cord Blood Units Identified by 16S rRNA Sequencing and by API Test System, and Antibiotic Sensitivity Profiling.

    PubMed

    França, Luís; Simões, Catarina; Taborda, Marco; Diogo, Catarina; da Costa, Milton S

    2015-01-01

    Over a period of ten months a total of 5618 cord blood units (CBU) were screened for microbial contamination under routine conditions. The antibiotic resistance profile for all isolates was also examined using ATB strips. The detection rate for culture positive units was 7.5%, corresponding to 422 samples.16S rRNA sequence analysis and identification with API test system were used to identify the culturable aerobic, microaerophilic and anaerobic bacteria from CBUs. From these samples we recovered 485 isolates (84 operational taxonomic units, OTUs) assigned to the classes Bacteroidia, Actinobacteria, Clostridia, Bacilli, Betaproteobacteria and primarily to the Gammaproteobacteria. Sixty-nine OTUs, corresponding to 447 isolates, showed 16S rRNA sequence similarities above 99.0% with known cultured bacteria. However, 14 OTUs had 16S rRNA sequence similarities between 95 and 99% in support of genus level identification and one OTU with 16S rRNA sequence similarity of 90.3% supporting a family level identification only. The phenotypic identification formed 29 OTUs that could be identified to the species level and 9 OTUs that could be identified to the genus level by API test system. We failed to obtain identification for 14 OTUs, while 32 OTUs comprised organisms producing mixed identifications. Forty-two OTUs covered species not included in the API system databases. The API test system Rapid ID 32 Strep and Rapid ID 32 E showed the highest proportion of identifications to the species level, the lowest ratio of unidentified results and the highest agreement to the results of 16S rRNA assignments. Isolates affiliated to the Bacilli and Bacteroidia showed the highest antibiotic multi-resistance indices and microorganisms of the Clostridia displayed the most antibiotic sensitive phenotypes.

  15. BacDive--The Bacterial Diversity Metadatabase in 2016.

    PubMed

    Söhngen, Carola; Podstawka, Adam; Bunk, Boyke; Gleim, Dorothea; Vetcininova, Anna; Reimer, Lorenz Christian; Ebeling, Christian; Pendarovski, Cezar; Overmann, Jörg

    2016-01-04

    BacDive-the Bacterial Diversity Metadatabase (http://bacdive.dsmz.de) provides strain-linked information about bacterial and archaeal biodiversity. The range of data encompasses taxonomy, morphology, physiology, sampling and concomitant environmental conditions as well as molecular biology. The majority of data is manually annotated and curated. Currently (with release 9/2015), BacDive covers 53 978 strains. Newly implemented RESTful web services provide instant access to the content in machine-readable XML and JSON format. Besides an overall increase of data content, BacDive offers new data fields and features, e.g. the search for gene names, plasmids or 16S rRNA in the advanced search, as well as improved linkage of entries to external life science web resources. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  16. Identification of a novel 16S rRNA gene variant of Actinomyces funkei from six patients with purulent infections.

    PubMed

    Hinić, V; Straub, C; Schultheiss, E; Kaempfer, P; Frei, R; Goldenberger, D

    2013-07-01

    Little is known about the clinical significance and laboratory diagnosis of Actinomyces funkei. In this report we describe six clinical cases where A. funkei was isolated from purulent, polymicrobial infections. Conventional identification procedures were compared with molecular methods including matrix-assisted laser desorption/ionization time-of-flight mass spectrometry technique. Analysis of the full 16S rRNA gene sequence of the six investigated strains revealed differences from the A. funkei type strain. DNA-DNA hybridization showed that the clinical strains represent a novel 16S rRNA gene variant within the species of A. funkei. © 2013 The Authors Clinical Microbiology and Infection © 2013 European Society of Clinical Microbiology and Infectious Diseases.

  17. Analysis of Bacterial and Fungal Nucleic Acid in Canine Sterile Granulomatous and Pyogranulomatous Dermatitis and Panniculitis.

    PubMed

    Rosa, Fabio B; Older, Caitlin E; Meason-Smith, Courtney; Suchodolski, Jan S; Lingsweiler, Sonia; Mansell, Joanne E; Hoffmann, Aline Rodrigues

    2018-01-01

    Next generation sequencing (NGS) studies are revealing a diverse microbiota on the skin of dogs. The skin microbiota of canine sterile granulomatous and pyogranulomatous dermatitis (SGPD) has yet to be investigated using NGS techniques. NGS targeting the 16S rRNA and ITS-1 region of bacterial and fungal DNA, respectively, were used to investigate if bacterial and fungal DNA were associated with skin lesions in cases of canine SGPD. The study included 20 formalin-fixed paraffin-embedded (FFPE) skin samples and 12 fresh samples from SGPD-affected dogs, and 10 FFPE and 10 fresh samples from healthy dogs. DNA was extracted from deep dermis and panniculus, and microbial DNA was amplified using primers targeting the bacterial 16S rRNA V1-V3 and fungal ITS-1 regions. The amplified DNA was utilized for NGS on an Illumina MiSeq instrument. The sequences were processed using QIIME. No differences in fungal or bacterial alpha diversity were observed between the SGPD and control samples. Beta diversity analysis demonstrated differences in the bacterial communities between SGPD and control, but not in the fungal communities. Compared to controls, the family Erysipelotrichaceae and genus Staphylococcus were significantly more abundant in the SGPD FFPE samples, and genus Corynebacterium were more abundant in fresh samples. The bacteria found to be more abundant in SGPD are common inhabitants of skin surfaces, and likely secondary contaminants in SGPD cases. This study provides additional evidence that SGPD lesions are likely sterile.

  18. Effects of Hydrogen Sulfide on Bacterial Communities on the Surface of Galatheid Crab, Shinkaia crosnieri, and in a Bacterial Mat Cultured in Rearing Tanks

    PubMed Central

    Konishi, Masaaki; Watsuji, Tomo-o; Nakagawa, Satoshi; Hatada, Yuji; Takai, Ken; Toyofuku, Takashi

    2013-01-01

    To investigate the effects of H2S on the bacterial consortia on the galatheid crab, Shinkaia crosnieri, crabs of this species were cultivated in the laboratory under two different conditions, with and without hydrogen sulfide feeding. We developed a novel rearing tank system equipped with a feedback controller using a semiconductor sensor for hydrogen sulfide feeding. H2S aqueous concentration was successfully maintained between 5 to 40 μM for 80 d with the exception of brief periods of mechanical issues. According to real-time PCR analysis, the numbers of copies of partial 16S rRNA gene of an episymbiont of the crabs with H2S feeding was three orders of magnitude larger than that without feeding. By phylogenetic analysis of partial 16S rRNA gene, we detected several clones related to symbionts of deep sea organisms in Alphaproteobacteria, Gammaproteobacteria, Epsilonproteobacteria, and Flavobacteria, from a crab with H2S feeding. The symbiont-related clones were grouped into four different groups: Gammaproteobacteria in marine epibiont group I, Sulfurovum-affiliated Epsilonproteobacteria, Osedax mucofloris endosymbiont-affiliated Epsilonproteobacteria, and Flavobacteria closely related to CFB group bacterial epibiont of Rimicaris exoculata. The other phylotypes were related to Roseobacter, and some Flavobacteria, seemed to be free-living psychrophiles. Furthermore, white biofilm occurred on the surface of the rearing tank with H2S feeding. The biofilms contained various phylotypes of Gammaproteobacteria, Epsilonproteobacteria, and Flavobacteria, as determined by phylogenetic analysis. Interestingly, major clones were related to symbionts of Alviniconcha sp. type 2 and to endosymbionts of Osedax mucofloris, in Epsilonproteobacteria. PMID:23080406

  19. Coral-associated bacterial diversity is conserved across two deep-sea Anthothela species

    USGS Publications Warehouse

    Lawler, Stephanie N.; Kellogg, Christina A.; France, Scott C; Clostio, Rachel W; Brooke, Sandra D.; Ross, Steve W.

    2016-01-01

    Cold-water corals, similar to tropical corals, contain diverse and complex microbial assemblages. These bacteria provide essential biological functions within coral holobionts, facilitating increased nutrient utilization and production of antimicrobial compounds. To date, few cold-water octocoral species have been analyzed to explore the diversity and abundance of their microbial associates. For this study, 23 samples of the family Anthothelidae were collected from Norfolk (n = 12) and Baltimore Canyons (n = 11) from the western Atlantic in August 2012 and May 2013. Genetic testing found that these samples comprised two Anthothela species (Anthothela grandiflora and Anthothela sp.) and Alcyonium grandiflorum. DNA was extracted and sequenced with primers targeting the V4-V5 variable region of the 16S rRNA gene using 454 pyrosequencing with GS FLX Titanium chemistry. Results demonstrated that the coral host was the primary driver of bacterial community composition. Al. grandiflorum, dominated by Alteromonadales and Pirellulales had much higher species richness, and a distinct bacterial community compared to Anthothela samples. Anthothela species (A. grandiflora and Anthothela sp.) had very similar bacterial communities, dominated by Oceanospirillales and Spirochaetes. Additional analysis of core-conserved bacteria at 90% sample coverage revealed genus level conservation across Anthothela samples. This core included unclassified Oceanospirillales, Kiloniellales, Campylobacterales, and genus Spirochaeta. Members of this core were previously recognized for their functional capabilities in nitrogen cycling and suggest the possibility of a nearly complete nitrogen cycle within Anthothela species. Overall, many of the bacterial associates identified in this study have the potential to contribute to the acquisition and cycling of nutrients within the coral holobiont.

  20. Identification of Bacillus Probiotics Isolated from Soil Rhizosphere Using 16S rRNA, recA, rpoB Gene Sequencing and RAPD-PCR.

    PubMed

    Mohkam, Milad; Nezafat, Navid; Berenjian, Aydin; Mobasher, Mohammad Ali; Ghasemi, Younes

    2016-03-01

    Some Bacillus species, especially Bacillus subtilis and Bacillus pumilus groups, have highly similar 16S rRNA gene sequences, which are hard to identify based on 16S rDNA sequence analysis. To conquer this drawback, rpoB, recA sequence analysis along with randomly amplified polymorphic (RAPD) fingerprinting was examined as an alternative method for differentiating Bacillus species. The 16S rRNA, rpoB and recA genes were amplified via a polymerase chain reaction using their specific primers. The resulted PCR amplicons were sequenced, and phylogenetic analysis was employed by MEGA 6 software. Identification based on 16S rRNA gene sequencing was underpinned by rpoB and recA gene sequencing as well as RAPD-PCR technique. Subsequently, concatenation and phylogenetic analysis showed that extent of diversity and similarity were better obtained by rpoB and recA primers, which are also reinforced by RAPD-PCR methods. However, in one case, these approaches failed to identify one isolate, which in combination with the phenotypical method offsets this issue. Overall, RAPD fingerprinting, rpoB and recA along with concatenated genes sequence analysis discriminated closely related Bacillus species, which highlights the significance of the multigenic method in more precisely distinguishing Bacillus strains. This research emphasizes the benefit of RAPD fingerprinting, rpoB and recA sequence analysis superior to 16S rRNA gene sequence analysis for suitable and effective identification of Bacillus species as recommended for probiotic products.

  1. Bacterial loads of Ureaplasma parvum contribute to the development of inflammatory responses in the male urethra.

    PubMed

    Deguchi, Takashi; Shimada, Yasushi; Horie, Kengo; Mizutani, Kohsuke; Seike, Kensaku; Tsuchiya, Tomohiro; Yokoi, Shigeaki; Yasuda, Mitsuru; Ito, Shin

    2015-12-01

    Ureaplasma parvum, which has been recognised as a coloniser in the male urethra, is detected in some men with non-gonococcal urethritis. In this study, we quantified the 16 S rRNA genes of U. parvum by a real-time polymerase chain reaction-based assay in first-voided urine from 15 symptomatic and 38 asymptomatic men who were positive only for U. parvum. We also determined the leukocyte counts by automated quantitative urine particle analysis in their first-voided urine. Positive correlations were observed between copies of the 16 S rRNA genes of U. parvum/ml and the leukocyte counts/µl in first-voided urine (p = 0.0019). The loads of ≥10(4) copies of the 16 S rRNA gene/ml, corresponding to ≥5 × 10(3) cells of U. parvum/ml, were significantly associated with the presence of ≥12.5 leukocytes/µl in first-voided urine that might document the presence of inflammatory responses in the urethra. However, a large portion of the subjects (83.0%) had bacterial loads of <5 × 10(3) cells of U. parvum/ml, and 79.5% of them showed <12.5 leukocytes/µl. The ambiguity of the pathogenic role of U. parvum in non-gonococcal urethritis could, in part, be due to its low bacterial loads, which might not give rise to inflammatory responses in the male urethra. © The Author(s) 2015.

  2. Simultaneous Amplicon Sequencing to Explore Co-Occurrence Patterns of Bacterial, Archaeal and Eukaryotic Microorganisms in Rumen Microbial Communities

    PubMed Central

    Kittelmann, Sandra; Seedorf, Henning; Walters, William A.; Clemente, Jose C.; Knight, Rob; Gordon, Jeffrey I.; Janssen, Peter H.

    2013-01-01

    Ruminants rely on a complex rumen microbial community to convert dietary plant material to energy-yielding products. Here we developed a method to simultaneously analyze the community's bacterial and archaeal 16S rRNA genes, ciliate 18S rRNA genes and anaerobic fungal internal transcribed spacer 1 genes using 12 DNA samples derived from 11 different rumen samples from three host species (Ovis aries, Bos taurus, Cervus elephas) and multiplex 454 Titanium pyrosequencing. We show that the mixing ratio of the group-specific DNA templates before emulsion PCR is crucial to compensate for differences in amplicon length. This method, in contrast to using a non-specific universal primer pair, avoids sequencing non-targeted DNA, such as plant- or endophyte-derived rRNA genes, and allows increased or decreased levels of community structure resolution for each microbial group as needed. Communities analyzed with different primers always grouped by sample origin rather than by the primers used. However, primer choice had a greater impact on apparent archaeal community structure than on bacterial community structure, and biases for certain methanogen groups were detected. Co-occurrence analysis of microbial taxa from all three domains of life suggested strong within- and between-domain correlations between different groups of microorganisms within the rumen. The approach used to simultaneously characterize bacterial, archaeal and eukaryotic components of a microbiota should be applicable to other communities occupying diverse habitats. PMID:23408926

  3. Rapid bacterial colonization of low-density polyethylene microplastics in coastal sediment microcosms.

    PubMed

    Harrison, Jesse P; Schratzberger, Michaela; Sapp, Melanie; Osborn, A Mark

    2014-09-23

    Synthetic microplastics (≤5-mm fragments) are emerging environmental contaminants that have been found to accumulate within coastal marine sediments worldwide. The ecological impacts and fate of microplastic debris are only beginning to be revealed, with previous research into these topics having primarily focused on higher organisms and/or pelagic environments. Despite recent research into plastic-associated microorganisms in seawater, the microbial colonization of microplastics in benthic habitats has not been studied. Therefore, we employed a 14-day microcosm experiment to investigate bacterial colonization of low-density polyethylene (LDPE) microplastics within three types of coastal marine sediment from Spurn Point, Humber Estuary, U.K. Bacterial attachment onto LDPE within sediments was demonstrated by scanning electron microscopy and catalyzed reporter deposition fluorescence in situ hybridisation (CARD-FISH). Log-fold increases in the abundance of 16S rRNA genes from LDPE-associated bacteria occurred within 7 days with 16S rRNA gene numbers on LDPE surfaces differing significantly across sediment types, as shown by quantitative PCR. Terminal-restriction fragment length polymorphism (T-RFLP) analysis demonstrated rapid selection of LDPE-associated bacterial assemblages whose structure and composition differed significantly from those in surrounding sediments. Additionally, T-RFLP analysis revealed successional convergence of the LDPE-associated communities from the different sediments over the 14-day experiment. Sequencing of cloned 16S rRNA genes demonstrated that these communities were dominated after 14 days by the genera Arcobacter and Colwellia (totalling 84-93% of sequences). Attachment by Colwellia spp. onto LDPE within sediments was confirmed by CARD-FISH. These results demonstrate that bacteria within coastal marine sediments can rapidly colonize LDPE microplastics, with evidence for the successional formation of plastisphere-specific bacterial

  4. Effects of bacterial inoculants on the indigenous microbiome and secondary metabolites of chamomile plants

    PubMed Central

    Schmidt, Ruth; Köberl, Martina; Mostafa, Amr; Ramadan, Elshahat M.; Monschein, Marlene; Jensen, Kenneth B.; Bauer, Rudolf; Berg, Gabriele

    2014-01-01

    Plant-associated bacteria fulfill important functions for plant growth and health. However, our knowledge about the impact of bacterial treatments on the host's microbiome and physiology is limited. The present study was conducted to assess the impact of bacterial inoculants on the microbiome of chamomile plants Chamomilla recutita (L.) Rauschert grown in a field under organic management in Egypt. Chamomile seedlings were inoculated with three indigenous Gram-positive strains (Streptomyces subrutilus Wbn2-11, Bacillus subtilis Co1-6, Paenibacillus polymyxa Mc5Re-14) from Egypt and three European Gram-negative strains (Pseudomonas fluorescens L13-6-12, Stenotrophomonas rhizophila P69, Serratia plymuthica 3Re4-18) already known for their beneficial plant-microbe interaction. Molecular fingerprints of 16S rRNA gene as well as real-time PCR analyses did not show statistically significant differences for all applied bacterial antagonists compared to the control. In contrast, a pyrosequencing analysis of the 16S rRNA gene libraries revealed significant differences in the community structure of bacteria between the treatments. These differences could be clearly shown by a shift within the community structure and corresponding beta-diversity indices. Moreover, B. subtilis Co1-6 and P. polymyxa Mc5Re-14 showed an enhancement of the bioactive secondary metabolite apigenin-7-O-glucoside. This indicates a possible new function of bacterial inoculants: to interact with the plant microbiome as well as to influence the plant metabolome. PMID:24600444

  5. Hexavalent chromium reduction by bacterial consortia and pure strains from an alkaline industrial effluent.

    PubMed

    Piñón-Castillo, H A; Brito, E M S; Goñi-Urriza, M; Guyoneaud, R; Duran, R; Nevarez-Moorillon, G V; Gutiérrez-Corona, J F; Caretta, C A; Reyna-López, G E

    2010-12-01

    To characterize the bacterial consortia and isolates selected for their role in hexavalent chromium removal by adsorption and reduction. Bacterial consortia from industrial wastes revealed significant Cr(VI) removal after 15 days when incubated in medium M9 at pH 6·5 and 8·0. The results suggested chromium reduction. The bacterial consortia diversity (T-RFLP based on 16S rRNA gene) indicated a highest number of operational taxonomic units in an alkaline carbonate medium mimicking in situ conditions. However, incubations under such conditions revealed low Cr(VI) removal. Genomic libraries were obtained for the consortia exhibiting optimal Cr(VI) removal (M9 medium at pH 6·5 and 8·0). They revealed the dominance of 16S rRNA gene sequences related to the genera Pseudomonas/Stenotrophomonas or Enterobacter/Halomonas, respectively. Isolates related to Pseudomonas fluorescens and Enterobacter aerogenes were efficient in Cr(VI) reduction and adsorption to the biomass. Cr(VI) reduction was better at neutral pH rather than under in situ conditions (alkaline pH with carbonate). Isolated strains exhibited significant capacity for Cr(VI) reduction and adsorption. Bacterial communities from chromium-contaminated industrial wastes as well as isolates were able to remove Cr(VI). The results suggest a good potential for bioremediation of industrial wastes when optimal conditions are applied. Journal of Applied Microbiology © 2010 The Society for Applied Microbiology. No claim to Mexican Government works.

  6. Psychrophile spoilers dominate the bacterial microbiome in musculature samples of slaughter pigs.

    PubMed

    Mann, Evelyne; Wetzels, Stefanie U; Pinior, Beate; Metzler-Zebeli, Barbara U; Wagner, Martin; Schmitz-Esser, Stephan

    2016-07-01

    The aim of this study was to disentangle the microbial diversity on porcine musculature. The hypervariable V1-V2 region of the 16S rRNA gene was amplified from DNA samples of clinically healthy slaughter pigs (n=8). Pyrosequencing yielded 37,000 quality-controlled reads and a diverse microbiome with 54-159 OTUs per sample was detected. Interestingly, 6 out of 8 samples were strongly dominated by 1-2 highly abundant OTUs (best hits of highly abundant OTUs: Serratia proteamaculans, Pseudomonas syringae, Aeromonas allosaccharophila, Brochothrix thermosphacta, Acidiphilium cryptum and Escherichia coli). In 1g musculature scraping, 3.20E+06 16S rRNA gene copies and 4.45E+01 Enterobacteriaceae rRNA gene copies were detected with qPCR. We conclude that i.) next-generation sequencing technologies help encompass the full content of complex, bacterial contamination, ii.) psychrophile spoilers dominated the microbiota and iii.) E. coli is an effective marker species for pork contamination, as it was one of very few abundant species being present in all samples. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Metagenomic Evaluation of Bacterial and Archaeal Diversity in the Geothermal Hot Springs of Manikaran, India

    PubMed Central

    Pathak, Ashish; Green, Stefan J.; Joshi, Amit; Chauhan, Ashvini

    2015-01-01

    Bacterial and archaeal diversity in geothermal spring water were investigated using 16S rRNA gene amplicon metagenomic sequencing. This revealed the dominance of Firmicutes, Aquificae, and the Deinococcus-Thermus group in this thermophilic environment. A number of sequences remained taxonomically unresolved, indicating the presence of potentially novel microbes in this unique habitat. PMID:25700403

  8. MicroRNA-155 regulates host immune response to postviral bacterial pneumonia via IL-23/IL-17 pathway.

    PubMed

    Podsiad, Amy; Standiford, Theodore J; Ballinger, Megan N; Eakin, Richard; Park, Pauline; Kunkel, Steven L; Moore, Bethany B; Bhan, Urvashi

    2016-03-01

    Postinfluenza bacterial pneumonia is associated with significant mortality and morbidity. MicroRNAs (miRNAs) are small, noncoding RNAs that regulate gene expression posttranscriptionally. miR-155 has recently emerged as a crucial regulator of innate immunity and inflammatory responses and is induced in macrophages during infection. We hypothesized upregulation of miR-155 inhibits IL-17 and increases susceptibility to secondary bacterial pneumonia. Mice were challenged with 100 plaque-forming units H1N1 intranasally and were infected with 10(7) colony-forming units of MRSA intratracheally at day 5 postviral challenge. Lungs were harvested 24 h later, and expression of miR-155, IL-17, and IL-23 was measured by real-time RT-PCR. Induction of miR-155 was 3.6-fold higher in dual-infected lungs compared with single infection. miR-155(-/-) mice were protected with significantly lower (4-fold) bacterial burden and no differences in viral load, associated with robust induction of IL-23 and IL-17 (2.2- and 4.8-fold, respectively) postsequential challenge with virus and bacteria, compared with WT mice. Treatment with miR-155 antagomir improved lung bacterial clearance by 4.2-fold compared with control antagomir postsequential infection with virus and bacteria. Moreover, lung macrophages collected from patients with postviral bacterial pneumonia also had upregulation of miR-155 expression compared with healthy controls, consistent with observations in our murine model. This is the first demonstration that cellular miRNAs regulate postinfluenza immune response to subsequent bacterial challenge by suppressing the IL-17 pathway in the lung. Our findings suggest that antagonizing certain microRNA might serve as a potential therapeutic strategy against secondary bacterial infection. Copyright © 2016 the American Physiological Society.

  9. A novel multiplex PCR assay for simultaneous detection of nine clinically significant bacterial pathogens associated with bovine mastitis.

    PubMed

    Ashraf, Aqeela; Imran, Muhammad; Yaqub, Tahir; Tayyab, Muhammad; Shehzad, Wasim; Thomson, Peter C

    2017-06-01

    For rapid and simultaneous detection of nine bovine mastitic pathogens, a sensitive and specific multiplex PCR assay was developed. The assay was standardized using reference strains and validated on mastitic milk cultures which were identified to species level based on 16S rRNA sequencing. Multiplex PCR assay also efficiently detected the target bacterial strains directly from milk. The detection limit of the assay was up to 50 pg for DNA isolated from pure cultures and 10 4  CFU/ml for spiked milk samples. As estimated by latent class analysis, the assay was sensitive up to 88% and specific up to 98% for targeted mastitic pathogens, compared with the bacterial culture method and the 16S rRNA sequence analysis. This novel molecular assay could be useful for monitoring and maintaining the bovine udder health, ensuring the bacteriological safety of milk, and conducting epidemiological studies. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Diversity of thermophiles in a Malaysian hot spring determined using 16S rRNA and shotgun metagenome sequencing.

    PubMed

    Chan, Chia Sing; Chan, Kok-Gan; Tay, Yea-Ling; Chua, Yi-Heng; Goh, Kian Mau

    2015-01-01

    The Sungai Klah (SK) hot spring is the second hottest geothermal spring in Malaysia. This hot spring is a shallow, 150-m-long, fast-flowing stream, with temperatures varying from 50 to 110°C and a pH range of 7.0-9.0. Hidden within a wooded area, the SK hot spring is continually fed by plant litter, resulting in a relatively high degree of total organic content (TOC). In this study, a sample taken from the middle of the stream was analyzed at the 16S rRNA V3-V4 region by amplicon metagenome sequencing. Over 35 phyla were detected by analyzing the 16S rRNA data. Firmicutes and Proteobacteria represented approximately 57% of the microbiome. Approximately 70% of the detected thermophiles were strict anaerobes; however, Hydrogenobacter spp., obligate chemolithotrophic thermophiles, represented one of the major taxa. Several thermophilic photosynthetic microorganisms and acidothermophiles were also detected. Most of the phyla identified by 16S rRNA were also found using the shotgun metagenome approaches. The carbon, sulfur, and nitrogen metabolism within the SK hot spring community were evaluated by shotgun metagenome sequencing, and the data revealed diversity in terms of metabolic activity and dynamics. This hot spring has a rich diversified phylogenetic community partly due to its natural environment (plant litter, high TOC, and a shallow stream) and geochemical parameters (broad temperature and pH range). It is speculated that symbiotic relationships occur between the members of the community.

  11. Comparison of bacteroides-prevotella 16S rRNA genetic markers for fecal samples from different animal species.

    PubMed

    Fogarty, Lisa R; Voytek, Mary A

    2005-10-01

    To effectively manage surface and ground waters it is necessary to improve our ability to detect and identify sources of fecal contamination. We evaluated the use of the anaerobic bacterial group Bacteroides-Prevotella as a potential fecal indicator. Terminal restriction length polymorphism (T-RFLP) of the 16S rRNA genes from this group was used to determine differences in populations and to identify any unique populations in chickens, cows, deer, dogs, geese, horses, humans, pigs, and seagulls. The group appears to be a good potential fecal indicator in all groups tested except for avians. Cluster analysis of Bacteroides-Prevotella community T-RFLP profiles indicates that Bacteroides-Prevotella populations from samples of the same host species are much more similar to each other than to samples from different source species. We were unable to identify unique peaks that were exclusive to any source species; however, for most host species, at least one T-RFLP peak was identified to be more commonly found in that species, and a combination of peaks could be used to identify the source. T-RFLP profiles obtained from water spiked with known-source feces contained the expected diagnostic peaks from the source. These results indicate that the approach of identifying Bacteroides-Prevotella molecular markers associated with host species might be useful in identifying sources of fecal contamination in the environment.

  12. Comparison of Bacteroides-Prevotella 16S rRNA Genetic Markers for Fecal Samples from Different Animal Species

    PubMed Central

    Fogarty, Lisa R.; Voytek, Mary A.

    2005-01-01

    To effectively manage surface and ground waters it is necessary to improve our ability to detect and identify sources of fecal contamination. We evaluated the use of the anaerobic bacterial group Bacteroides-Prevotella as a potential fecal indicator. Terminal restriction length polymorphism (T-RFLP) of the 16S rRNA genes from this group was used to determine differences in populations and to identify any unique populations in chickens, cows, deer, dogs, geese, horses, humans, pigs, and seagulls. The group appears to be a good potential fecal indicator in all groups tested except for avians. Cluster analysis of Bacteroides-Prevotella community T-RFLP profiles indicates that Bacteroides-Prevotella populations from samples of the same host species are much more similar to each other than to samples from different source species. We were unable to identify unique peaks that were exclusive to any source species; however, for most host species, at least one T-RFLP peak was identified to be more commonly found in that species, and a combination of peaks could be used to identify the source. T-RFLP profiles obtained from water spiked with known-source feces contained the expected diagnostic peaks from the source. These results indicate that the approach of identifying Bacteroides-Prevotella molecular markers associated with host species might be useful in identifying sources of fecal contamination in the environment. PMID:16204514

  13. Comparison of Bacteroides-Prevotella 16S rRNA genetic markers for fecal samples from different animal species

    USGS Publications Warehouse

    Fogarty, L.R.; Voytek, M.A.

    2005-01-01

    To effectively manage surface and ground waters it is necessary to improve our ability to detect and identify sources of fecal contamination. We evaluated the use of the anaerobic bacterial group Bacteroides-Prevotella as a potential fecal indicator. Terminal restriction length polymorphism (T-RFLP) of the 16S rRNA genes from this group was used to determine differences in populations and to identify any unique populations in chickens, cows, deer, dogs, geese, horses, humans, pigs, and seagulls. The group appears to be a good potential fecal indicator in all groups tested except for avians. Cluster analysis of Bacteroides-Prevotella community T-RFLP profiles indicates that Bacteroides-Prevotella populations from samples of the same host species are much more similar to each other than to samples from different source species. We were unable to identify unique peaks that were exclusive to any source species; however, for most host species, at least one T-RFLP peak was identified to be more commonly found in that species, and a combination of peaks could be used to identify the source. T-RFLP profiles obtained from water spiked with known-source feces contained the expected diagnostic peaks from the source. These results indicate that the approach of identifying Bacteroides-Prevotella molecular markers associated with host species might be useful in identifying sources of fecal contamination in the environment.

  14. Specific primer design of mitochondrial 12S rRNA for species identification in raw meats

    NASA Astrophysics Data System (ADS)

    Cahyadi, M.; Puruhita; Barido, F. H.; Hertanto, B. S.

    2018-01-01

    Polymerase chain reaction (PCR) is a molecular technique that widely used in agriculture area including species identification in animal-based products for halalness and food safety reasons. Amplification of DNA using PCR needs a primer pair (forward and reverse primers) to isolate specific DNA fragment in the genome. This objective of this study was to design specific primer from mitochondrial 12S rRNA region for species identification in raw beef, pork and chicken meat. Three published sequences, HQ184045, JN601075, and KT626857, were downloaded from National Center for Biotechnology Information (NCBI) website. Furthermore, those reference sequences were used to design specific primer for bovine, pig, and chicken species using primer3 v.0.4.0. A total of 15 primer pairs were picked up from primer3 software. Of these, an universal forward primer and three reverse primers which are specific for bovine, pig, and chicken species were selected to be optimized using multiplex-PCR technique. The selected primers were namely UNIF (5’-ACC GCG GTC ATA CGA TTA AC-3’), SPR (5’-AGT GCG TCG GCT ATT GTA GG-3’), BBR (5’-GAA TTG GCA AGG GTT GGT AA-3’), and AR (5’-CGG TAT GTA CGT GCC TCA GA-3’). In addition, the PCR products were visualized using 2% agarose gels under the UV light and sequenced to be aligned with reference sequences using Clustal Omega. The result showed that those primers were specifically amplified mitochondrial 12S rRNA regions from bovine, pig, and chicken using PCR. It was indicated by the existence of 155, 357, and 611 bp of DNA bands for bovine, pig, and chicken species, respectively. Moreover, sequence analysis revealed that our sequences were identically similar with reference sequences. It can be concluded that mitochondrial 12S rRNA may be used as a genetic marker for species identification in meat products.

  15. Analysis of Dissimilatory Sulfite Reductase and 16S rRNA Gene Fragments from Deep-Sea Hydrothermal Sites of the Suiyo Seamount, Izu-Bonin Arc, Western Pacific

    PubMed Central

    Nakagawa, Tatsunori; Ishibashi, Jun-Ichiro; Maruyama, Akihiko; Yamanaka, Toshiro; Morimoto, Yusuke; Kimura, Hiroyuki; Urabe, Tetsuro; Fukui, Manabu

    2004-01-01

    This study describes the occurrence of unique dissimilatory sulfite reductase (DSR) genes at a depth of 1,380 m from the deep-sea hydrothermal vent field at the Suiyo Seamount, Izu-Bonin Arc, Western Pacific, Japan. The DSR genes were obtained from microbes that grew in a catheter-type in situ growth chamber deployed for 3 days on a vent and from the effluent water of drilled holes at 5°C and natural vent fluids at 7°C. DSR clones SUIYOdsr-A and SUIYOdsr-B were not closely related to cultivated species or environmental clones. Moreover, samples of microbial communities were examined by PCR-denaturing gradient gel electrophoresis (DGGE) analysis of the 16S rRNA gene. The sequence analysis of 16S rRNA gene fragments obtained from the vent catheter after a 3-day incubation revealed the occurrence of bacterial DGGE bands affiliated with the Aquificae and γ- and ɛ-Proteobacteria as well as the occurrence of archaeal phylotypes affiliated with the Thermococcales and of a unique archaeon sequence that clustered with “Nanoarchaeota.” The DGGE bands obtained from drilled holes and natural vent fluids from 7 to 300°C were affiliated with the δ-Proteobacteria, genus Thiomicrospira, and Pelodictyon. The dominant DGGE bands retrieved from the effluent water of casing pipes at 3 and 4°C were closely related to phylotypes obtained from the Arctic Ocean. Our results suggest the presence of microorganisms corresponding to a unique DSR lineage not detected previously from other geothermal environments. PMID:14711668

  16. Analysis of dissimilatory sulfite reductase and 16S rRNA gene fragments from deep-sea hydrothermal sites of the Suiyo Seamount, Izu-Bonin Arc, Western Pacific.

    PubMed

    Nakagawa, Tatsunori; Ishibashi, Jun-Ichiro; Maruyama, Akihiko; Yamanaka, Toshiro; Morimoto, Yusuke; Kimura, Hiroyuki; Urabe, Tetsuro; Fukui, Manabu

    2004-01-01

    This study describes the occurrence of unique dissimilatory sulfite reductase (DSR) genes at a depth of 1,380 m from the deep-sea hydrothermal vent field at the Suiyo Seamount, Izu-Bonin Arc, Western Pacific, Japan. The DSR genes were obtained from microbes that grew in a catheter-type in situ growth chamber deployed for 3 days on a vent and from the effluent water of drilled holes at 5 degrees C and natural vent fluids at 7 degrees C. DSR clones SUIYOdsr-A and SUIYOdsr-B were not closely related to cultivated species or environmental clones. Moreover, samples of microbial communities were examined by PCR-denaturing gradient gel electrophoresis (DGGE) analysis of the 16S rRNA gene. The sequence analysis of 16S rRNA gene fragments obtained from the vent catheter after a 3-day incubation revealed the occurrence of bacterial DGGE bands affiliated with the Aquificae and gamma- and epsilon-Proteobacteria as well as the occurrence of archaeal phylotypes affiliated with the Thermococcales and of a unique archaeon sequence that clustered with "Nanoarchaeota." The DGGE bands obtained from drilled holes and natural vent fluids from 7 to 300 degrees C were affiliated with the delta-Proteobacteria, genus Thiomicrospira, and Pelodictyon. The dominant DGGE bands retrieved from the effluent water of casing pipes at 3 and 4 degrees C were closely related to phylotypes obtained from the Arctic Ocean. Our results suggest the presence of microorganisms corresponding to a unique DSR lineage not detected previously from other geothermal environments.

  17. Modeling the integration of bacterial rRNA fragments into the human cancer genome.

    PubMed

    Sieber, Karsten B; Gajer, Pawel; Dunning Hotopp, Julie C

    2016-03-21

    Cancer is a disease driven by the accumulation of genomic alterations, including the integration of exogenous DNA into the human somatic genome. We previously identified in silico evidence of DNA fragments from a Pseudomonas-like bacteria integrating into the 5'-UTR of four proto-oncogenes in stomach cancer sequencing data. The functional and biological consequences of these bacterial DNA integrations remain unknown. Modeling of these integrations suggests that the previously identified sequences cover most of the sequence flanking the junction between the bacterial and human DNA. Further examination of these reads reveals that these integrations are rich in guanine nucleotides and the integrated bacterial DNA may have complex transcript secondary structures. The models presented here lay the foundation for future experiments to test if bacterial DNA integrations alter the transcription of the human genes.

  18. 16S rRNA Gene Sequencing for Deciphering the Colorectal Cancer Gut Microbiome: Current Protocols and Workflows.

    PubMed

    Osman, Muhammad-Afiq; Neoh, Hui-Min; Ab Mutalib, Nurul-Syakima; Chin, Siok-Fong; Jamal, Rahman

    2018-01-01

    The human gut holds the densest microbiome ecosystem essential in maintaining a healthy host physiology, whereby disruption of this ecosystem has been linked to the development of colorectal cancer (CRC). The advent of next-generation sequencing technologies such as the 16S rRNA gene sequencing has enabled characterization of the CRC gut microbiome architecture in an affordable and culture-free approach. Nevertheless, the lack of standardization in handling and storage of biospecimens, nucleic acid extraction, 16S rRNA gene primer selection, length, and depth of sequencing and bioinformatics analyses have contributed to discrepancies found in various published studies of this field. Accurate characterization of the CRC microbiome found in different stages of CRC has the potential to be developed into a screening tool in the clinical setting. This mini review aims to concisely compile all available CRC microbiome studies performed till end of 2016 and to suggest standardized protocols that are crucial in developing a gut microbiome screening panel for CRC.

  19. Characterization of the two intra-individual sequence variants in the 18S rRNA gene in the plant parasitic nematode, Rotylenchulus reniformis.

    PubMed

    Nyaku, Seloame T; Sripathi, Venkateswara R; Kantety, Ramesh V; Gu, Yong Q; Lawrence, Kathy; Sharma, Govind C

    2013-01-01

    The 18S rRNA gene is fundamental to cellular and organismal protein synthesis and because of its stable persistence through generations it is also used in phylogenetic analysis among taxa. Sequence variation in this gene within a single species is rare, but it has been observed in few metazoan organisms. More frequently it has mostly been reported in the non-transcribed spacer region. Here, we have identified two sequence variants within the near full coding region of 18S rRNA gene from a single reniform nematode (RN) Rotylenchulus reniformis labeled as reniform nematode variant 1 (RN_VAR1) and variant 2 (RN_VAR2). All sequences from three of the four isolates had both RN variants in their sequences; however, isolate 13B had only RN variant 2 sequence. Specific variable base sites (96 or 5.5%) were found within the 18S rRNA gene that can clearly distinguish the two 18S rDNA variants of RN, in 11 (25.0%) and 33 (75.0%) of the 44 RN clones, for RN_VAR1 and RN_VAR2, respectively. Neighbor-joining trees show that the RN_VAR1 is very similar to the previously existing R. reniformis sequence in GenBank, while the RN_VAR2 sequence is more divergent. This is the first report of the identification of two major variants of the 18S rRNA gene in the same single RN, and documents the specific base variation between the two variants, and hypothesizes on simultaneous co-existence of these two variants for this gene.

  20. Characterization of the Two Intra-Individual Sequence Variants in the 18S rRNA Gene in the Plant Parasitic Nematode, Rotylenchulus reniformis

    PubMed Central

    Nyaku, Seloame T.; Sripathi, Venkateswara R.; Kantety, Ramesh V.; Gu, Yong Q.; Lawrence, Kathy; Sharma, Govind C.

    2013-01-01

    The 18S rRNA gene is fundamental to cellular and organismal protein synthesis and because of its stable persistence through generations it is also used in phylogenetic analysis among taxa. Sequence variation in this gene within a single species is rare, but it has been observed in few metazoan organisms. More frequently it has mostly been reported in the non-transcribed spacer region. Here, we have identified two sequence variants within the near full coding region of 18S rRNA gene from a single reniform nematode (RN) Rotylenchulus reniformis labeled as reniform nematode variant 1 (RN_VAR1) and variant 2 (RN_VAR2). All sequences from three of the four isolates had both RN variants in their sequences; however, isolate 13B had only RN variant 2 sequence. Specific variable base sites (96 or 5.5%) were found within the 18S rRNA gene that can clearly distinguish the two 18S rDNA variants of RN, in 11 (25.0%) and 33 (75.0%) of the 44 RN clones, for RN_VAR1 and RN_VAR2, respectively. Neighbor-joining trees show that the RN_VAR1 is very similar to the previously existing R. reniformis sequence in GenBank, while the RN_VAR2 sequence is more divergent. This is the first report of the identification of two major variants of the 18S rRNA gene in the same single RN, and documents the specific base variation between the two variants, and hypothesizes on simultaneous co-existence of these two variants for this gene. PMID:23593343