Science.gov

Sample records for bacterial ammonia oxidizers

  1. Autotrophic Growth of Bacterial and Archaeal Ammonia Oxidizers in Freshwater Sediment Microcosms Incubated at Different Temperatures

    PubMed Central

    Wu, Yucheng; Ke, Xiubin; Hernández, Marcela; Wang, Baozhan; Dumont, Marc G.; Jia, Zhongjun

    2013-01-01

    Both bacteria and archaea potentially contribute to ammonia oxidation, but their roles in freshwater sediments are still poorly understood. Seasonal differences in the relative activities of these groups might exist, since cultivated archaeal ammonia oxidizers have higher temperature optima than their bacterial counterparts. In this study, sediment collected from eutrophic freshwater Lake Taihu (China) was incubated at different temperatures (4°C, 15°C, 25°C, and 37°C) for up to 8 weeks. We examined the active bacterial and archaeal ammonia oxidizers in these sediment microcosms by using combined stable isotope probing (SIP) and molecular community analysis. The results showed that accumulation of nitrate in microcosms correlated negatively with temperature, although ammonium depletion was the same, which might have been related to enhanced activity of other nitrogen transformation processes. Incubation at different temperatures significantly changed the microbial community composition, as revealed by 454 pyrosequencing targeting bacterial 16S rRNA genes. After 8 weeks of incubation, [13C]bicarbonate labeling of bacterial amoA genes, which encode the ammonia monooxygenase subunit A, and an observed increase in copy numbers indicated the activity of ammonia-oxidizing bacteria in all microcosms. Nitrosomonas sp. strain Is79A3 and Nitrosomonas communis lineages dominated the heavy fraction of CsCl gradients at low and high temperatures, respectively, indicating a niche differentiation of active bacterial ammonia oxidizers along the temperature gradient. The 13C labeling of ammonia-oxidizing archaea in microcosms incubated at 4 to 25°C was minor. In contrast, significant 13C labeling of Nitrososphaera-like archaea and changes in the abundance and composition of archaeal amoA genes were observed at 37°C, implicating autotrophic growth of ammonia-oxidizing archaea under warmer conditions. PMID:23455342

  2. Abundance and Composition of Epiphytic Bacterial and Archaeal Ammonia Oxidizers of Marine Red and Brown Macroalgae

    PubMed Central

    Trias, Rosalia; García-Lledó, Arantzazu; Sánchez, Noemí; López-Jurado, José Luis; Hallin, Sara

    2012-01-01

    Ammonia-oxidizing bacteria (AOB) and archaea (AOA) are important for nitrogen cycling in marine ecosystems. Little is known about the diversity and abundance of these organisms on the surface of marine macroalgae, despite the algae's potential importance to create surfaces and local oxygen-rich environments supporting ammonia oxidation at depths with low dissolved oxygen levels. We determined the abundance and composition of the epiphytic bacterial and archaeal ammonia-oxidizing communities on three species of macroalgae, Osmundaria volubilis, Phyllophora crispa, and Laminaria rodriguezii, from the Balearic Islands (western Mediterranean Sea). Quantitative PCR of bacterial and archaeal 16S rRNA and amoA genes was performed. In contrast to what has been shown for most other marine environments, the macroalgae's surfaces were dominated by bacterial amoA genes rather than those from the archaeal counterpart. On the basis of the sequences retrieved from AOB and AOA amoA gene clone libraries from each algal species, the bacterial ammonia-oxidizing communities were related to Nitrosospira spp. and to Nitrosomonas europaea and only 6 out of 15 operational taxonomic units (OTUs) were specific for the host species. Conversely, the AOA diversity was higher (43 OTUs) and algal species specific, with 17 OTUs specific for L. rodriguezii, 3 for O. volubilis, and 9 for P. crispa. Altogether, the results suggest that marine macroalgae may exert an ecological niche for AOB in marine environments, potentially through specific microbe-host interactions. PMID:22081571

  3. Quantitative assessment of ammonia-oxidizing bacterial communities in the epiphyton of submerged macrophytes in shallow lakes.

    PubMed

    Coci, M; Nicol, G W; Pilloni, G N; Schmid, M; Kamst-van Agterveld, M P; Bodelier, P L E; Laanbroek, H J

    2010-03-01

    In addition to the benthic and pelagic habitats, the epiphytic compartment of submerged macrophytes in shallow freshwater lakes offers a niche to bacterial ammonia-oxidizing communities. However, the diversity, numbers, and activity of epiphytic ammonia-oxidizing bacteria have long been overlooked. In the present study, we analyzed quantitatively the epiphytic communities of three shallow lakes by a potential nitrification assay and by quantitative PCR of 16S rRNA genes. On the basis of the m(2) of the lake surface, the gene copy numbers of epiphytic ammonia oxidizers were not significantly different from those in the benthic and pelagic compartments. The potential ammonia-oxidizing activities measured in the epiphytic compartment were also not significantly different from the activities determined in the benthic compartment. No potential ammonia-oxidizing activities were observed in the pelagic compartment. No activity was detected in the epiphyton of Chara aspera, the dominant submerged macrophyte in Lake Nuldernauw in The Netherlands. The presence of ammonia-oxidizing bacterial cells in the epiphyton of Potamogeton pectinatus was also demonstrated by fluorescent in situ hybridization microscopy images. By comparing the community composition as assessed by the 16S rRNA gene PCR-denaturing gradient gel electrophoresis approach, it was concluded that the epiphytic ammonia-oxidizing communities consisted of cells that were also present in the benthic and pelagic compartments. Of the environmental parameters examined, only the water retention time, the Kjeldahl nitrogen content, and the total phosphorus content correlated with potential ammonia-oxidizing activities. None of these parameters correlated with the numbers of gene copies related to ammonia-oxidizing betaproteobacteria.

  4. The influence of synthetic sheep urine on ammonia oxidizing bacterial communities in grassland soil.

    PubMed

    Mahmood, Shahid; Prosser, James I

    2006-06-01

    In grazed, grassland soils, sheep urine generates heterogeneity in ammonia concentrations, with potential impact on ammonia oxidizer community structure and soil N cycling. The influence of different levels of synthetic sheep urine on ammonia oxidizers was studied in grassland soil microcosms. 'Total' and active ammonia oxidizers were distinguished by comparing denaturing gradient gel electrophoresis (DGGE) profiles following PCR and RT-PCR amplification of 16S rRNA gene fragments, targeting DNA and RNA, respectively. The RNA-based approach indicated earlier, more reproducible and finer scale qualitative shifts in ammonia oxidizing communities than DNA-based analysis, but led to amplification of a small number of nonammonia oxidizer sequences. Qualitative changes in RNA-derived DGGE profiles were related to changes in nitrate accumulation. Sequence analysis of excised DGGE bands revealed that ammonia oxidizing communities in synthetic sheep urine-treated soils consisted mainly of Nitrosospira clusters 2, 3 and 4. Nitrosospira cluster 2 increased in relative abundance in microcosms treated with all levels of synthetic sheep urine. Low levels additionally led to increased relative abundance of Nitrosospira cluster 4 and medium and high levels increased relative abundance of cluster 3. Synthetic sheep urine is therefore likely to influence the spatial distribution and composition of ammonia oxidizer communities, with consequent effects on nitrate accumulation.

  5. Bacterial domination over archaea in ammonia oxidation in a monsoon-driven tropical estuary.

    PubMed

    Puthiya Veettil, Vipindas; Abdulaziz, Anas; Chekidhenkuzhiyil, Jasmin; Kalanthingal Ramkollath, Lallu; Karayadi Hamza, Fausia; Kizhakkepat Kalam, Balachandran; Kallungal Ravunnikutty, Muraleedharan; Nair, Shanta

    2015-04-01

    Autotrophic ammonia oxidizing microorganisms, which are responsible for the rate-limiting step of nitrification in most aquatic systems, have not been studied in tropical estuaries. Cochin estuary (CE) is one of the largest, productive, and monsoon-driven estuary in India opening into the southeast Arabian Sea. CE receives surplus quantities of ammonia through industrial and domestic discharges. The distribution of ammonia-oxidizing bacteria (AOB), ammonia-oxidizing archaea (AOA), and anaerobic ammonia-oxidizing bacteria (anammox) were studied using fluorescence in situ hybridization (FISH) and their relative contribution to the process as well as the governing factors were examined and reported for the first time from CE. The order of occurrence of these assemblages was β-proteobacteria (0.79 to 2 × 10(5) cells ml(-1)) > γ-proteobacteria (0.9 to 4.6 × 10(4) cells ml(-1)) > anammox (0.49 to 1.9 × 10(4) cells ml(-1)) > AOA (0.56 to 6.3 × 10(3) cells ml(-1)). Phylogenetic analysis of DGGE bands showed major affiliation of AOB to β-proteobacteria, while AOA was affiliated to Crenarchaeota. The abundance of AOB was mostly influenced by ammonia concentrations. The recovered ammonia oxidation rate of AOB was in the range of 45-65%, whereas for AOA, it was 15-45%, indicating that AOB were mostly responsible for the ammonia oxidation in CE during the study period. Overall, the present study provides an insight into the relevance and contribution of different groups of ammonia oxidizing bacteria in CE and emphasizes the need for further in depth studies across space and on season scale.

  6. Response of Ammonia-oxidizing Bacterial and Archaeal Populations to Organic Nitrogen Amendments in Low-Nutrient Groundwater

    SciTech Connect

    David W. Reed; Yoshiko Fujita; Jason M. Smith; Christopher A. Francis

    2010-02-01

    To better understand the fate of ammonia introduced into low-nutrient groundwater as a result of the application of a novel remediation approach for trace metal contaminants, the diversity and abundance of ammonia-oxidizing bacteria and archaea (AOB and AOA, respectively) were examined in samples collected during a field trial of the approach. The ammonia is derived from microbial urea hydrolysis, which has the potential to induce the formation of calcite and remove contaminants by coprecipitation in the calcite. The in situ oxidation of the ammonia by AOB and AOA could, however, potentially destabilize the calcite and lead to elevated nitrate levels in the groundwater. To evaluate the potential for stimulating ammonia oxidation by addition of urea, samples were collected from the Eastern Snake River Plain Aquifer in Idaho before, during, and after the addition of molasses and urea, and subjected to PCR analysis of ammonia monooxygenase subunit A (amoA) genes. AOB and AOA were present in all of the samples tested, with the AOA amoA genes more numerous in all of the samples except those collected following urea addition, when AOB genes were slightly more abundant. Following urea addition, nitrate levels rose and ammonia-oxidizing microorganisms (AOB + AOA) increased relative to the total microbial population, evidence that nitrification was stimulated by urea hydrolysis. Bacterial amoA diversity was limited to two sequence types, whereas the archaeal amoA analyses revealed 20 unique operational taxonomic units (OTUs), including several that were significantly different from any reported previously from other environments. In view of the results from this study, the potential for stimulation of ammonia-oxidizing communities should be considered in field-scale engineering activities involving microbial urea hydrolysis in groundwater.

  7. Responses of Ammonia-Oxidizing Bacterial and Archaeal Populations to Organic Nitrogen Amendments in Low-Nutrient Groundwater ▿

    PubMed Central

    Reed, David W.; Smith, Jason M.; Francis, Christopher A.; Fujita, Yoshiko

    2010-01-01

    To evaluate the potential for organic nitrogen addition to stimulate the in situ growth of ammonia oxidizers during a field scale bioremediation trial, samples collected from the Eastern Snake River Plain Aquifer in Idaho before, during, and after the addition of molasses and urea were subjected to PCR analysis of ammonia monooxygenase subunit A (amoA) genes. Ammonia-oxidizing bacteria (AOB) and archaea (AOA) were present in all of the samples tested, with AOA amoA genes outnumbering AOB amoA genes in all of the samples. Following urea addition, nitrate levels rose and bacterial amoA copy numbers increased dramatically, suggesting that urea hydrolysis stimulated nitrification. Bacterial amoA diversity was limited to two Nitrosomonas phylotypes, whereas archaeal amoA analyses revealed 20 distinct operational taxonomic units, including several that were markedly different from all previously reported sequences. Results from this study demonstrate the likelihood of stimulating ammonia-oxidizing communities during field scale manipulation of groundwater conditions to promote urea hydrolysis. PMID:20190081

  8. Responses of ammonia-oxidizing bacterial and archaeal populations to organic nitrogen amendments in low-nutrient groundwater.

    PubMed

    Reed, David W; Smith, Jason M; Francis, Christopher A; Fujita, Yoshiko

    2010-04-01

    To evaluate the potential for organic nitrogen addition to stimulate the in situ growth of ammonia oxidizers during a field scale bioremediation trial, samples collected from the Eastern Snake River Plain Aquifer in Idaho before, during, and after the addition of molasses and urea were subjected to PCR analysis of ammonia monooxygenase subunit A (amoA) genes. Ammonia-oxidizing bacteria (AOB) and archaea (AOA) were present in all of the samples tested, with AOA amoA genes outnumbering AOB amoA genes in all of the samples. Following urea addition, nitrate levels rose and bacterial amoA copy numbers increased dramatically, suggesting that urea hydrolysis stimulated nitrification. Bacterial amoA diversity was limited to two Nitrosomonas phylotypes, whereas archaeal amoA analyses revealed 20 distinct operational taxonomic units, including several that were markedly different from all previously reported sequences. Results from this study demonstrate the likelihood of stimulating ammonia-oxidizing communities during field scale manipulation of groundwater conditions to promote urea hydrolysis.

  9. Ultrasonic Treatment Enhanced Ammonia-Oxidizing Bacterial (AOB) Activity for Nitritation Process.

    PubMed

    Zheng, Min; Liu, Yan-Chen; Xin, Jia; Zuo, Hao; Wang, Cheng-Wen; Wu, Wei-Min

    2016-01-19

    Oxidation of ammonia to nitrite rather than nitrate is critical for nitritation process for wastewater treatment. We proposed a promising approach by using controlled ultrasonic treatment to enhance the activity of ammonia-oxidizing bacteria (AOB) and suppress that of nitrite-oxidizing bacteria (NOB). Batch activity assays indicated that when ultrasound was applied, AOB activity reached a peak level and then declined but NOB activity deteriorated continuously as the power intensity of ultrasound increased. Kinetic analysis of relative microbial activity versus ultrasonic energy density was performed to investigate the effect of operational factors (power, sludge concentration, and aeration) on AOB and NOB activities and the test parameters were selected for reactor tests. Laboratory sequential batch reactor (SBR) was further used to test the ultrasonic stimulus with 8 h per day operational cycle and synthetic waste urine as influent. With specific ultrasonic energy density of 0.09 kJ/mg VSS and continuously fed influent containing above 200 mg NH3-N/L, high AOB reproductive activity was achieved and nearly complete conversion of ammonia-N to nitrite was maintained. Microbial structure analysis confirmed that the treatment changed community of AOB, NOB, and heterotrophs. Known AOB Nitrosomonas genus remained at similar level in the biomass while typical NOB Nitrospira genus disappeared in the SBR under ultrasonic treatment and after the treatment was off for 30 days.

  10. Ultrasonic Treatment Enhanced Ammonia-Oxidizing Bacterial (AOB) Activity for Nitritation Process.

    PubMed

    Zheng, Min; Liu, Yan-Chen; Xin, Jia; Zuo, Hao; Wang, Cheng-Wen; Wu, Wei-Min

    2016-01-19

    Oxidation of ammonia to nitrite rather than nitrate is critical for nitritation process for wastewater treatment. We proposed a promising approach by using controlled ultrasonic treatment to enhance the activity of ammonia-oxidizing bacteria (AOB) and suppress that of nitrite-oxidizing bacteria (NOB). Batch activity assays indicated that when ultrasound was applied, AOB activity reached a peak level and then declined but NOB activity deteriorated continuously as the power intensity of ultrasound increased. Kinetic analysis of relative microbial activity versus ultrasonic energy density was performed to investigate the effect of operational factors (power, sludge concentration, and aeration) on AOB and NOB activities and the test parameters were selected for reactor tests. Laboratory sequential batch reactor (SBR) was further used to test the ultrasonic stimulus with 8 h per day operational cycle and synthetic waste urine as influent. With specific ultrasonic energy density of 0.09 kJ/mg VSS and continuously fed influent containing above 200 mg NH3-N/L, high AOB reproductive activity was achieved and nearly complete conversion of ammonia-N to nitrite was maintained. Microbial structure analysis confirmed that the treatment changed community of AOB, NOB, and heterotrophs. Known AOB Nitrosomonas genus remained at similar level in the biomass while typical NOB Nitrospira genus disappeared in the SBR under ultrasonic treatment and after the treatment was off for 30 days. PMID:26678011

  11. Simazine degradation in bioaugmented soil: urea impact and response of ammonia-oxidizing bacteria and other soil bacterial communities.

    PubMed

    Guo, Qingwei; Wan, Rui; Xie, Shuguang

    2014-01-01

    The objective of this study was to investigate the impact of exogenous urea nitrogen on ammonia-oxidizing bacteria (AOB) and other soil bacterial communities in soil bioaugmented for simazine remediation. The previously isolated simazine-degrading Arthrobacter sp. strain SD1 was used to degrade the herbicide. The effect of urea on the simazine degradation capacity of the soil bioaugmented with Arthrobacter strain SD1 was assessed using quantitative PCR targeting the s-triazine-degrading trzN and atzC genes. Structures of bacterial and AOB communities were characterized using terminal restriction fragment length polymorphism. Urea fertilizer could affect simazine biodegradation and decreased the proportion of its trzN and atzC genes in soil augmented with Arthrobacter strain SD1. Bioaugmentation process could significantly alter the structures of both bacterial and AOB communities, which were strongly affected by urea amendment, depending on the dosage. This study could provide some new insights towards s-triazine bioremediation and microbial ecology in a bioaugmented system. However, further studies are necessary in order to elucidate the impact of different types and levels of nitrogen sources on s-triazine-degraders and bacterial and AOB communities in bioaugmented soil.

  12. Responses of bacterial and archaeal ammonia oxidizers to soil organic and fertilizer amendments under long-term management

    SciTech Connect

    Wessen, E.; Nyberg, K.; Jansson, J.K.; Hallin, S.

    2010-05-01

    Ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA) co-exist in soil, but their relative distribution may vary depending on the environmental conditions. Effects of changes in soil organic matter and nutrient content on the AOB and AOA are poorly understood. Our aim was to compare effects of long-term soil organic matter depletion and amendments with labile (straw) and more recalcitrant (peat) organic matter, with and without easily plant-available nitrogen, on the activities, abundances and community structures of AOB and AOA. Soil was sampled from a long-term field site in Sweden that was established in 1956. The potential ammonia oxidation rates, the AOB and AOA amoA gene abundances and the community structures of both groups based on T-RFLP of amoA genes were determined. Straw amendment during 50 years had not altered any of the measured soil parameters, while the addition of peat resulted in a significant increase of soil organic carbon as well as a decrease in pH. Nitrogen fertilization alone resulted in a small decrease in soil pH, organic carbon and total nitrogen, but an increase in primary production. Type and amount of organic matter had an impact on the AOB and AOA community structures and the AOA abundance. Our findings confirmed that AOA are abundant in soil, but showed that under certain conditions the AOB dominate, suggesting niche differentiation between the two groups at the field site. The large differences in potential rates between treatments correlated to the AOA community size, indicating that they were functionally more important in the nitrification process than the AOB. The AOA abundance was positively related to addition of labile organic carbon, which supports the idea that AOA could have alternative growth strategies using organic carbon. The AOB community size varied little in contrast to that of the AOA. This indicates that the bacterial ammonia oxidizers as a group have a greater ecophysiological diversity and

  13. Comparison of ammonia-oxidizing bacterial community structure in membrane-assisted bioreactors using PCR-DGGE and FISH.

    PubMed

    Ziembińska, A; Ciesielski, S; Gnida, A; Zabczyńki, S; Surmacz-Górska, J; Miksch, K

    2012-08-01

    The ammonia-oxidizing bacterial (AOB) communities in three membrane bioreactors (MBRs) were monitored for 2 months after an acclimation period in order to investigate the influence of sludge age and medium type on AOB changeability and its connection with nitrification effectiveness. One MBR with a sludge age of 4 days was fed with a synthetic medium, whereas the other two with sludge ages of 8 and 32 days were fed with landfill leachate. The research revealed that landfill leachate can be effectively treated in an MBR with a higher sludge age for longer periods of time and that this improvement in performance was correlated with an increase in AOB biodiversity. Interestingly, the medium type has a stronger influence on AOB biocenosis formation than the sludge age. PMID:22713978

  14. Effects of 30 Years of Crop Rotation and Tillage on Bacterial and Archaeal Ammonia Oxidizers.

    PubMed

    Munroe, Jake W; McCormick, Ian; Deen, William; Dunfield, Kari E

    2016-05-01

    Ammonia-oxidizing bacteria (AOB) and archaea (AOA) both mediate soil nitrification and may have specialized niches in the soil. Little is understood of how these microorganisms are affected by long-term crop rotation and tillage practices. In this study, we assessed abundance and gene expression of AOB and AOA under two contrasting crop rotations and tillage regimes at a 30-yr-old long-term experiment on a Canadian silt loam soil. Continuous corn ( L.) (CC) was compared with a corn-corn-soybean [ (L.) Merr.]-winter wheat ( L.) rotation under-seeded with red clover ( L.) (RC), with conventional tillage (CT) and no-till (NT) as subplot treatments. Soil sampling was performed during the first corn year at four time points throughout the 2010 season and at three discrete depths (0-5, 5-15, and 15-30 cm). Overall, AOA abundance was found to be more than 10 times that of AOB, although AOA transcriptional activity was below detectable levels across all treatments. Crop rotation had a marginally significant effect on AOB abundance, with 1.3 times as many gene copies under the simpler CC rotation than under the more diverse RC rotation. More pronounced effects of depth on AOB abundance and gene expression were observed under NT versus CT management, and NT supported higher abundances of total archaea and AOA than CT across the growing season. We suggest that AOB may be more functionally important than AOA in this high-input agricultural soil but that NT management can promote enhanced soil archaeal populations. PMID:27136161

  15. Effects of 30 Years of Crop Rotation and Tillage on Bacterial and Archaeal Ammonia Oxidizers.

    PubMed

    Munroe, Jake W; McCormick, Ian; Deen, William; Dunfield, Kari E

    2016-05-01

    Ammonia-oxidizing bacteria (AOB) and archaea (AOA) both mediate soil nitrification and may have specialized niches in the soil. Little is understood of how these microorganisms are affected by long-term crop rotation and tillage practices. In this study, we assessed abundance and gene expression of AOB and AOA under two contrasting crop rotations and tillage regimes at a 30-yr-old long-term experiment on a Canadian silt loam soil. Continuous corn ( L.) (CC) was compared with a corn-corn-soybean [ (L.) Merr.]-winter wheat ( L.) rotation under-seeded with red clover ( L.) (RC), with conventional tillage (CT) and no-till (NT) as subplot treatments. Soil sampling was performed during the first corn year at four time points throughout the 2010 season and at three discrete depths (0-5, 5-15, and 15-30 cm). Overall, AOA abundance was found to be more than 10 times that of AOB, although AOA transcriptional activity was below detectable levels across all treatments. Crop rotation had a marginally significant effect on AOB abundance, with 1.3 times as many gene copies under the simpler CC rotation than under the more diverse RC rotation. More pronounced effects of depth on AOB abundance and gene expression were observed under NT versus CT management, and NT supported higher abundances of total archaea and AOA than CT across the growing season. We suggest that AOB may be more functionally important than AOA in this high-input agricultural soil but that NT management can promote enhanced soil archaeal populations.

  16. Autotrophic ammonia oxidation by soil thaumarchaea.

    PubMed

    Zhang, Li-Mei; Offre, Pierre R; He, Ji-Zheng; Verhamme, Daniel T; Nicol, Graeme W; Prosser, James I

    2010-10-01

    Nitrification plays a central role in the global nitrogen cycle and is responsible for significant losses of nitrogen fertilizer, atmospheric pollution by the greenhouse gas nitrous oxide, and nitrate pollution of groundwaters. Ammonia oxidation, the first step in nitrification, was thought to be performed by autotrophic bacteria until the recent discovery of archaeal ammonia oxidizers. Autotrophic archaeal ammonia oxidizers have been cultivated from marine and thermal spring environments, but the relative importance of bacteria and archaea in soil nitrification is unclear and it is believed that soil archaeal ammonia oxidizers may use organic carbon, rather than growing autotrophically. In this soil microcosm study, stable isotope probing was used to demonstrate incorporation of (13)C-enriched carbon dioxide into the genomes of thaumarchaea possessing two functional genes: amoA, encoding a subunit of ammonia monooxygenase that catalyses the first step in ammonia oxidation; and hcd, a key gene in the autotrophic 3-hydroxypropionate/4-hydroxybutyrate cycle, which has been found so far only in archaea. Nitrification was accompanied by increases in archaeal amoA gene abundance and changes in amoA gene diversity, but no change was observed in bacterial amoA genes. Archaeal, but not bacterial, amoA genes were also detected in (13)C-labeled DNA, demonstrating inorganic CO(2) fixation by archaeal, but not bacterial, ammonia oxidizers. Autotrophic archaeal ammonia oxidation was further supported by coordinate increases in amoA and hcd gene abundance in (13)C-labeled DNA. The results therefore provide direct evidence for a role for archaea in soil ammonia oxidation and demonstrate autotrophic growth of ammonia oxidizing archaea in soil.

  17. Down under the tunic: bacterial biodiversity hotspots and widespread ammonia-oxidizing archaea in coral reef ascidians.

    PubMed

    Erwin, Patrick M; Pineda, Mari Carmen; Webster, Nicole; Turon, Xavier; López-Legentil, Susanna

    2014-03-01

    Ascidians are ecologically important components of marine ecosystems yet the ascidian microbiota remains largely unexplored beyond a few model species. We used 16S rRNA gene tag pyrosequencing to provide a comprehensive characterization of microbial symbionts in the tunic of 42 Great Barrier Reef ascidian samples representing 25 species. Results revealed high bacterial biodiversity (3 217 unique operational taxonomic units (OTU0.03) from 19 described and 14 candidate phyla) and the widespread occurrence of ammonia-oxidizing Thaumarchaeota in coral reef ascidians (24 of 25 host species). The ascidian microbiota was clearly differentiated from seawater microbial communities and included symbiont lineages shared with other invertebrate hosts as well as unique, ascidian-specific phylotypes. Several rare seawater microbes were markedly enriched (200-700 fold) in the ascidian tunic, suggesting that the rare biosphere of seawater may act as a conduit for horizontal symbiont transfer. However, most OTUs (71%) were rare and specific to single hosts and a significant correlation between host relatedness and symbiont community similarity was detected, indicating a high degree of host-specificity and potential role of vertical transmission in structuring these communities. We hypothesize that the complex ascidian microbiota revealed herein is maintained by the dynamic microenvironments within the ascidian tunic, offering optimal conditions for different metabolic pathways such as ample chemical substrate (ammonia-rich host waste) and physical habitat (high oxygen, low irradiance) for nitrification. Thus, ascidian hosts provide unique and fertile niches for diverse microorganisms and may represent an important and previously unrecognized habitat for nitrite/nitrate regeneration in coral reef ecosystems.

  18. The Bacterial Communities of Full-Scale Biologically Active, Granular Activated Carbon Filters Are Stable and Diverse and Potentially Contain Novel Ammonia-Oxidizing Microorganisms.

    PubMed

    LaPara, Timothy M; Hope Wilkinson, Katheryn; Strait, Jacqueline M; Hozalski, Raymond M; Sadowksy, Michael J; Hamilton, Matthew J

    2015-10-01

    The bacterial community composition of the full-scale biologically active, granular activated carbon (BAC) filters operated at the St. Paul Regional Water Services (SPRWS) was investigated using Illumina MiSeq analysis of PCR-amplified 16S rRNA gene fragments. These bacterial communities were consistently diverse (Shannon index, >4.4; richness estimates, >1,500 unique operational taxonomic units [OTUs]) throughout the duration of the 12-month study period. In addition, only modest shifts in the quantities of individual bacterial populations were observed; of the 15 most prominent OTUs, the most highly variable population (a Variovorax sp.) modulated less than 13-fold over time and less than 8-fold from filter to filter. The most prominent population in the profiles was a Nitrospira sp., representing 13 to 21% of the community. Interestingly, very few of the known ammonia-oxidizing bacteria (AOB; <0.07%) and no ammonia-oxidizing Archaea were detected in the profiles. Quantitative PCR of amoA genes, however, suggested that AOB were prominent in the bacterial communities (amoA/16S rRNA gene ratio, 1 to 10%). We conclude, therefore, that the BAC filters at the SPRWS potentially contained significant numbers of unidentified and novel ammonia-oxidizing microorganisms that possess amoA genes similar to those of previously described AOB. PMID:26209671

  19. The Bacterial Communities of Full-Scale Biologically Active, Granular Activated Carbon Filters Are Stable and Diverse and Potentially Contain Novel Ammonia-Oxidizing Microorganisms

    PubMed Central

    Hope Wilkinson, Katheryn; Strait, Jacqueline M.; Hozalski, Raymond M.; Sadowksy, Michael J.; Hamilton, Matthew J.

    2015-01-01

    The bacterial community composition of the full-scale biologically active, granular activated carbon (BAC) filters operated at the St. Paul Regional Water Services (SPRWS) was investigated using Illumina MiSeq analysis of PCR-amplified 16S rRNA gene fragments. These bacterial communities were consistently diverse (Shannon index, >4.4; richness estimates, >1,500 unique operational taxonomic units [OTUs]) throughout the duration of the 12-month study period. In addition, only modest shifts in the quantities of individual bacterial populations were observed; of the 15 most prominent OTUs, the most highly variable population (a Variovorax sp.) modulated less than 13-fold over time and less than 8-fold from filter to filter. The most prominent population in the profiles was a Nitrospira sp., representing 13 to 21% of the community. Interestingly, very few of the known ammonia-oxidizing bacteria (AOB; <0.07%) and no ammonia-oxidizing Archaea were detected in the profiles. Quantitative PCR of amoA genes, however, suggested that AOB were prominent in the bacterial communities (amoA/16S rRNA gene ratio, 1 to 10%). We conclude, therefore, that the BAC filters at the SPRWS potentially contained significant numbers of unidentified and novel ammonia-oxidizing microorganisms that possess amoA genes similar to those of previously described AOB. PMID:26209671

  20. The Bacterial Communities of Full-Scale Biologically Active, Granular Activated Carbon Filters Are Stable and Diverse and Potentially Contain Novel Ammonia-Oxidizing Microorganisms.

    PubMed

    LaPara, Timothy M; Hope Wilkinson, Katheryn; Strait, Jacqueline M; Hozalski, Raymond M; Sadowksy, Michael J; Hamilton, Matthew J

    2015-10-01

    The bacterial community composition of the full-scale biologically active, granular activated carbon (BAC) filters operated at the St. Paul Regional Water Services (SPRWS) was investigated using Illumina MiSeq analysis of PCR-amplified 16S rRNA gene fragments. These bacterial communities were consistently diverse (Shannon index, >4.4; richness estimates, >1,500 unique operational taxonomic units [OTUs]) throughout the duration of the 12-month study period. In addition, only modest shifts in the quantities of individual bacterial populations were observed; of the 15 most prominent OTUs, the most highly variable population (a Variovorax sp.) modulated less than 13-fold over time and less than 8-fold from filter to filter. The most prominent population in the profiles was a Nitrospira sp., representing 13 to 21% of the community. Interestingly, very few of the known ammonia-oxidizing bacteria (AOB; <0.07%) and no ammonia-oxidizing Archaea were detected in the profiles. Quantitative PCR of amoA genes, however, suggested that AOB were prominent in the bacterial communities (amoA/16S rRNA gene ratio, 1 to 10%). We conclude, therefore, that the BAC filters at the SPRWS potentially contained significant numbers of unidentified and novel ammonia-oxidizing microorganisms that possess amoA genes similar to those of previously described AOB.

  1. [Bacterial anaerobic ammonia oxidation (Anammox) in the marine nitrogen cycle--a review].

    PubMed

    Hong, Yiguo; Li, Meng; Gu, Jidong

    2009-03-01

    Anaerobic ammonium oxidation (Anammox) is a microbial oxidation process of ammonium, with nitrite as the electron acceptor and dinitrogen gas as the main product, and is performed by a clade of deeply branched Planctomycetes, which possess an intracytoplasmic membrane-bounded organelle, the anammoxosome, for the Anammox process. The wide distribution of Anammox bacteria in different natural environments has been greatly modified the traditional view of biogeochemical cycling of nitrogen, in which microbial denitrifier is considered as the only organism to respire nitrate and nitrite to produce nitric and nitrous oxides, and eventually nitrogen gas. More evidences indicate that Anammox is responsible for the production of more than 50% of oceanic N2 and plays an important role in global nitrogen cycling. Moreover, due to the close relationship between nitrogen and carbon cycling, it is anticipated that Anammox process might also affect the concentration of CO2 in the atmosphere, and influence the global climate change. In addition, the simultaneous transformation of nitrite and ammonium in wastewater treatment by Anammox would allow a 90% reduction in operational costs and provide a much more effective biotechnological process for wastewater treatment.

  2. [Impact of land-use type changes on soil nitrification and ammonia-oxidizing bacterial community composition].

    PubMed

    Yang, Li-Lin; Mao, Ren-Zhao; Liu, Jun-Jie; Liu, Xiao-Jing

    2011-11-01

    A comparative study was conducted to determine nitrification potentials and ammonia-oxidizing bacterial (AOB) community composition in 0-20 cm soil depth in adjacent native forest,natural grassland, and cropland soils on the Tibetan Plateau, by incubation experiment and by denaturing gradient gel electrophoresis (DGGE) of 16S rDNA, respectively. Cropland has the highest nitrification potential and nitrate concentration among the three land-use types (LUT), approximately 9 folds and more than 11 folds than that of the forests and grasslands, respectively. NO3(-) -N accounted for 70%-90% of inorganic N in cropland soil, while NH4(+) -N was the main form of inorganic N in forest and grassland soils. Nitrification potentials and nitrate concentrations showed no significant difference between native forest and grassland soils. The native forest showed the lowest nitrification potentials and the lowest AOB diversity and community composition among the three LUT. Conversions from natural grasslands to croplands remarkably decreased the AOB diversity and composition, but croplands remain high similarity in AOB community composition compared with grasslands. The minimal and the lowest diversity of AOB in native forests directly resulted to the lowest nitrification potentials compared to natural grasslands and croplands. From the fact of the highest nitrification potentials and nitrate concentrations in croplands indicated that there were the most substantial AOB with higher activity and priority. The results provide evidence that changes of land-use type can affect both soil nitrogen internal cycling process, the diversity, community and activity of AOB, which further affect soil environment quality and the long-term sustainability of ecosystems.

  3. Evidence of novel plant-species specific ammonia oxidizing bacterial clades in acidic South African fynbos soils.

    PubMed

    Ramond, Jean-Baptiste; Lako, Joseph D W; Stafford, William H L; Tuffin, Marla I; Cowan, Don A

    2015-08-01

    Ammonia-oxidizing bacteria (AOB) are essential in the biogeochemical cycling of nitrogen as they catalyze the rate-limiting oxidation of ammonia into nitrite. Since their first isolation in the late 19th century, chemolithoautotrophic AOBs have been identified in a wide range of natural (e.g., soils, sediments, estuarine, and freshwaters) and man created or impacted habitats (e.g., wastewater treatment plants and agricultural soils). However, little is known on the plant-species association of AOBs, particularly in the nutrient-starved fynbos terrestrial biome. In this study, we evaluated the diversity of AOBs in the plant canopy of three South African fynbos-specific plant species, namely Leucadendron xanthoconus, Leucospermum truncatulum and Leucadendron microcephalum, through the construction of amoA-gene clone libraries. Our results clearly demonstrate that plant-species specific and monophyletic AOB clades are present in fynbos canopy soils.

  4. Ammonia and nitrite oxidation in the Eastern Tropical North Pacific

    NASA Astrophysics Data System (ADS)

    Peng, Xuefeng; Fuchsman, Clara A.; Jayakumar, Amal; Oleynik, Sergey; Martens-Habbena, Willm; Devol, Allan H.; Ward, Bess B.

    2015-12-01

    Nitrification plays a key role in the marine nitrogen (N) cycle, including in oceanic oxygen minimum zones (OMZs), which are hot spots for denitrification and anaerobic ammonia oxidation (anammox). Recent evidence suggests that nitrification links the source (remineralized organic matter) and sink (denitrification and anammox) of fixed N directly in the steep oxycline in the OMZs. We performed shipboard incubations with 15N tracers to characterize the depth distribution of nitrification in the Eastern Tropical North Pacific (ETNP). Additional experiments were conducted to investigate photoinhibition. Allylthiourea (ATU) was used to distinguish the contribution of archaeal and bacterial ammonia oxidation. The abundance of archaeal and β-proteobacterial ammonia monooxygenase gene subunit A (amoA) was determined by quantitative polymerase chain reaction. The rates of ammonia and nitrite oxidation showed distinct subsurface maxima, with the latter slightly deeper than the former. The ammonia oxidation maximum coincided with the primary nitrite concentration maximum, archaeal amoA gene maximum, and the subsurface nitrous oxide maximum. Negligible rates of ammonia oxidation were found at anoxic depths, where high rates of nitrite oxidation were measured. Archaeal amoA gene abundance was generally 1 to 2 orders of magnitude higher than bacterial amoA gene abundance, and inhibition of ammonia-oxidizing bacteria with 10 μM ATU did not affect ammonia oxidation rates, indicating the dominance of archaea in ammonia oxidation. These results depict highly dynamic activities of ammonia and nitrite oxidation in the oxycline of the ETNP OMZ.

  5. Ammonia-oxidizing bacterial community composition in estuarine and oceanic environments assessed using a functional gene microarray.

    PubMed

    Ward, Bess B; Eveillard, Damien; Kirshtein, Julie D; Nelson, Joshua D; Voytek, Mary A; Jackson, George A

    2007-10-01

    The relationship between environmental factors and functional gene diversity of ammonia-oxidizing bacteria (AOB) was investigated across a transect from the freshwater portions of the Chesapeake Bay and Choptank River out into the Sargasso Sea. Oligonucleotide probes (70-bp) designed to represent the diversity of ammonia monooxygenase (amoA) genes from Chesapeake Bay clone libraries and cultivated AOB were used to construct a glass slide microarray. Hybridization patterns among the probes in 14 samples along the transect showed clear variations in amoA community composition. Probes representing uncultivated members of the Nitrosospira-like AOB dominated the probe signal, especially in the more marine samples. Of the cultivated species, only Nitrosospira briensis was detected at appreciable levels. Discrimination analysis of hybridization signals detected two guilds. Guild 1 was dominated by the marine Nitrosospira-like probe signal, and Guild 2's largest contribution was from upper bay (freshwater) sediment probes. Principal components analysis showed that Guild 1 was positively correlated with salinity, temperature and chlorophyll a concentration, while Guild 2 was positively correlated with concentrations of oxygen, dissolved organic carbon, and particulate nitrogen and carbon, suggesting that different amoA sequences represent organisms that occupy different ecological niches within the estuarine/marine environment. The trend from most diversity of AOB in the upper estuary towards dominance of a single type in the polyhaline region of the Bay is consistent with the declining importance of AOB with increasing salinity, and with the idea that AO-Archaea are the more important ammonia oxidizers in the ocean. PMID:17803777

  6. Ammonia-oxidizing bacterial community composition in estuarine and oceanic environments assessed using a functional gene microarray

    USGS Publications Warehouse

    Ward, B.B.; Eveillard, D.; Kirshtein, J.D.; Nelson, J.D.; Voytek, M.A.; Jackson, G.A.

    2007-01-01

    The relationship between environmental factors and functional gene diversity of ammonia-oxidizing bacteria (AOB) was investigated across a transect from the freshwater portions of the Chesapeake Bay and Choptank River out into the Sargasso Sea. Oligonucleotide probes (70-bp) designed to represent the diversity of ammonia monooxygenase (amoA) genes from Chesapeake Bay clone libraries and cultivated AOB were used to construct a glass slide microarray. Hybridization patterns among the probes in 14 samples along the transect showed clear variations in amoA community composition. Probes representing uncultivated members of the Nitrosospira-like AOB dominated the probe signal, especially in the more marine samples. Of the cultivated species, only Nitrosospira briensis was detected at appreciable levels. Discrimination analysis of hybridization signals detected two guilds. Guild 1 was dominated by the marine Nitrosospira-like probe signal, and Guild 2???s largest contribution was from upper bay (freshwater) sediment probes. Principal components analysis showed that Guild 1 was positively correlated with salinity, temperature and chlorophyll a concentration, while Guild 2 was positively correlated with concentrations of oxygen, dissolved organic carbon, and particulate nitrogen and carbon, suggesting that different amoA sequences represent organisms that occupy different ecological niches within the estuarine/marine environment. The trend from most diversity of AOB in the upper estuary towards dominance of a single type in the polyhaline region of the Bay is consistent with the declining importance of AOB with increasing salinity, and with the idea that AO-Archaea are the more important ammonia oxidizers in the ocean. ?? 2007 The Authors.

  7. Bacterial and archaeal symbionts in the South China Sea sponge Phakellia fusca: community structure, relative abundance, and ammonia-oxidizing populations.

    PubMed

    Han, Minqi; Liu, Fang; Zhang, Fengli; Li, Zhiyong; Lin, Houwen

    2012-12-01

    Many biologically active natural products have been isolated from Phakellia fusca, an indigenous sponge in the South China Sea; however, the microbial symbionts of Phakellia fusca remain unknown. The present investigations on sponge microbial community are mainly based on qualitative analysis, while quantitative analysis, e.g., relative abundance, is rarely carried out, and little is known about the roles of microbial symbionts. In this study, the community structure and relative abundance of bacteria, actinobacteria, and archaea associated with Phakellia fusca were revealed by 16S rRNA gene library-based sequencing and quantitative real time PCR (qRT-PCR). The ammonia-oxidizing populations were investigated based on amoA gene and anammox-specific 16S rRNA gene libraries. As a result, it was found that bacterial symbionts of sponge Phakellia fusca consist of Proteobacteria including Gamma-, Alpha-, and Delta-proteobacteria, Cyanobacteria with Gamma-proteobacteria as the predominant components. In particular, the diversity of actinobacterial symbionts in Phakellia fusca is high, which is composed of Corynebacterineae, Acidimicrobidae, Frankineae, Micrococcineae, and Streptosporangineae. All the observed archaea in sponge Phakellia fusca belong to Crenarchaeota, and the detected ammonia-oxidizing populations are ammonia-oxidizing archaea, suggesting the nitrification function of sponge archaeal symbionts. According to qRT-PCR analysis, bacterial symbionts dominated the microbial community, while archaea represented the second predominant symbionts, followed by actinobacteria. The revealed diverse prokaryotic symbionts of Phakellia fusca are valuable for the understanding and in-depth utilization of Phakellia fusca microbial symbionts. This study extends our knowledge of the community, especially the relative abundance of microbial symbionts in sponges.

  8. Bacterial and archaea community present in the Pine Barrens Forest of Long Island, NY: unusually high percentage of ammonia oxidizing bacteria.

    PubMed

    Shah, Vishal; Shah, Shreya; Kambhampati, Murty S; Ambrose, Jeffery; Smith, Nyesha; Dowd, Scot E; McDonnell, Kevin T; Panigrahi, Bishnu; Green, Timothy

    2011-01-01

    Of the few preserved areas in the northeast of United States, the soil in the Pine Barrens Forests presents a harsh environment for the microorganisms to grow and survive. In the current study we report the use of clustering methods to scientifically select the sampling locations that would represent the entire forest and also report the microbial diversity present in various horizons of the soil. Sixty six sampling locations were selected across the forest and soils were collected from three horizons (sampling depths). The three horizons were 0-10 cm (Horizon O); 11-25 cm (Horizon A) and 26-40 cm (Horizon B). Based on the total microbial substrate utilization pattern and K-means clustering analysis, the soil in the Pine Barrens Forest can be classified into four distinct clusters at each of the three horizons. One soil sample from each of the four clusters were selected and archaeal and bacterial populations within the soil studied using pyrosequencing method. The results show the microbial communities present in each of these clusters are different. Within the microbial communities present, microorganisms involved in nitrogen cycle occupy a major fraction of microbial community in the soil. High level of diversity was observed for nitrogen fixing bacteria. In contrast, Nitrosovibrio and Nitrosocaldus spp are the single bacterial and archaeal population respectively carrying out ammonia oxidation in the soil. PMID:22028845

  9. Bacterial and Archaea Community Present in the Pine Barrens Forest of Long Island, NY: Unusually High Percentage of Ammonia Oxidizing Bacteria

    PubMed Central

    Shah, Vishal; Shah, Shreya; Kambhampati, Murty S.; Ambrose, Jeffery; Smith, Nyesha; Dowd, Scot E.; McDonnell, Kevin T.; Panigrahi, Bishnu; Green, Timothy

    2011-01-01

    Of the few preserved areas in the northeast of United States, the soil in the Pine Barrens Forests presents a harsh environment for the microorganisms to grow and survive. In the current study we report the use of clustering methods to scientifically select the sampling locations that would represent the entire forest and also report the microbial diversity present in various horizons of the soil. Sixty six sampling locations were selected across the forest and soils were collected from three horizons (sampling depths). The three horizons were 0–10 cm (Horizon O); 11–25 cm (Horizon A) and 26–40 cm (Horizon B). Based on the total microbial substrate utilization pattern and K-means clustering analysis, the soil in the Pine Barrens Forest can be classified into four distinct clusters at each of the three horizons. One soil sample from each of the four clusters were selected and archaeal and bacterial populations within the soil studied using pyrosequencing method. The results show the microbial communities present in each of these clusters are different. Within the microbial communities present, microorganisms involved in nitrogen cycle occupy a major fraction of microbial community in the soil. High level of diversity was observed for nitrogen fixing bacteria. In contrast, Nitrosovibrio and Nitrosocaldus spp are the single bacterial and archaeal population respectively carrying out ammonia oxidation in the soil. PMID:22028845

  10. Bacterial and archaea community present in the Pine Barrens Forest of Long Island, NY: unusually high percentage of ammonia oxidizing bacteria.

    PubMed

    Shah, Vishal; Shah, Shreya; Kambhampati, Murty S; Ambrose, Jeffery; Smith, Nyesha; Dowd, Scot E; McDonnell, Kevin T; Panigrahi, Bishnu; Green, Timothy

    2011-01-01

    Of the few preserved areas in the northeast of United States, the soil in the Pine Barrens Forests presents a harsh environment for the microorganisms to grow and survive. In the current study we report the use of clustering methods to scientifically select the sampling locations that would represent the entire forest and also report the microbial diversity present in various horizons of the soil. Sixty six sampling locations were selected across the forest and soils were collected from three horizons (sampling depths). The three horizons were 0-10 cm (Horizon O); 11-25 cm (Horizon A) and 26-40 cm (Horizon B). Based on the total microbial substrate utilization pattern and K-means clustering analysis, the soil in the Pine Barrens Forest can be classified into four distinct clusters at each of the three horizons. One soil sample from each of the four clusters were selected and archaeal and bacterial populations within the soil studied using pyrosequencing method. The results show the microbial communities present in each of these clusters are different. Within the microbial communities present, microorganisms involved in nitrogen cycle occupy a major fraction of microbial community in the soil. High level of diversity was observed for nitrogen fixing bacteria. In contrast, Nitrosovibrio and Nitrosocaldus spp are the single bacterial and archaeal population respectively carrying out ammonia oxidation in the soil.

  11. Bacterial and Archaea Community Present in the Pine Barrens Forest of Long Island, NY: Unusually High Percentage of Ammonia Oxidizing Bacteria

    SciTech Connect

    Shah, V.; Green, T.; Shah, V.; Shah, S.; Kambhampati, M.; Ambrose, J.; Smith, N.; Dowd, S.; McDonnell, K.; Panigrahi, B.

    2011-10-20

    Of the few preserved areas in the northeast of United States, the soil in the Pine Barrens Forests presents a harsh environment for the microorganisms to grow and survive. In the current study we report the use of clustering methods to scientifically select the sampling locations that would represent the entire forest and also report the microbial diversity present in various horizons of the soil. Sixty six sampling locations were selected across the forest and soils were collected from three horizons (sampling depths). The three horizons were 0-10 cm (Horizon O); 11-25 cm (Horizon A) and 26-40 cm (Horizon B). Based on the total microbial substrate utilization pattern and K-means clustering analysis, the soil in the Pine Barrens Forest can be classified into four distinct clusters at each of the three horizons. One soil sample from each of the four clusters were selected and archaeal and bacterial populations within the soil studied using pyrosequencing method. The results show the microbial communities present in each of these clusters are different. Within the microbial communities present, microorganisms involved in nitrogen cycle occupy a major fraction of microbial community in the soil. High level of diversity was observed for nitrogen fixing bacteria. In contrast, Nitrosovibrio and Nitrosocaldus spp are the single bacterial and archaeal population respectively carrying out ammonia oxidation in the soil.

  12. Ammonia manipulates the ammonia-oxidizing archaea and bacteria in the coastal sediment-water microcosms.

    PubMed

    Zhang, Yan; Chen, Lujun; Dai, Tianjiao; Sun, Renhua; Wen, Donghui

    2015-08-01

    Ammonia was observed as a potential significant factor to manipulate the abundance and activity of ammonia-oxidizing microorganisms (AOMs) in water environments. For the first time, this study confirmed this phenomenon by laboratory cultivation. In a series of estuarine sediment-coastal water microcosms, we investigated the AOM's phylogenetic composition and activity change in response to ammonia concentration. Increase of ammonia concentration promoted bacterial amoA gene abundance in a linear pattern. The ratio of transcribed ammonia-oxidizing bacteria (AOB) amoA gene/ammonia-oxidizing archaea (AOA) amoA gene increased from 0.1 to 43 as NH4 (+)-N increased from less than 0.1 to 12 mg L(-1), and AOA amoA transcription was undetected under 20 mg NH4 (+)-N L(-1). The incubation of stable isotope probing (SIP) microcosms revealed a faster (13)C-NaHCO3 incorporation rate of AOA amoA gene under 0.1 mg NH4 (+)-N L(-1) and a sole (13)C-NaHCO3 utilization of the AOB amoA gene under 20 mg NH4 (+)-N L(-1). Our results indicate that ammonia concentration manipulates the structure of AOM. AOA prefers to live and perform higher amoA transcription activity than AOB in ammonia-limited water environments, and AOB tends to take the first contributor place in ammonia-rich ones.

  13. Production of oceanic nitrous oxide by ammonia-oxidizing archaea

    NASA Astrophysics Data System (ADS)

    Löscher, C. R.; Kock, A.; Könneke, M.; LaRoche, J.; Bange, H. W.; Schmitz, R. A.

    2012-07-01

    The recent finding that microbial ammonia oxidation in the ocean is performed by archaea to a greater extent than by bacteria has drastically changed the view on oceanic nitrification. The numerical dominance of archaeal ammonia-oxidizers (AOA) over their bacterial counterparts (AOB) in large parts of the ocean leads to the hypothesis that AOA rather than AOB could be the key organisms for the oceanic production of the strong greenhouse gas nitrous oxide (N2O) that occurs as a by-product of nitrification. Very recently, enrichment cultures of marine ammonia-oxidizing archaea have been reported to produce N2O. Here, we demonstrate that archaeal ammonia monooxygenase genes (amoA) were detectable throughout the water column of the eastern tropical North Atlantic (ETNA) and eastern tropical South Pacific (ETSP) Oceans. Particularly in the ETNA, comparable patterns of abundance and expression of archaeal amoA genes and N2O co-occurred in the oxygen minimum, whereas the abundances of bacterial amoA genes were negligible. Moreover, selective inhibition of archaea in seawater incubations from the ETNA decreased the N2O production significantly. In studies with the only cultivated marine archaeal ammonia-oxidizer Nitrosopumilus maritimus SCM1, we provide the first direct evidence for N2O production in a pure culture of AOA, excluding the involvement of other microorganisms as possibly present in enrichments. N. maritimus showed high N2O production rates under low oxygen concentrations comparable to concentrations existing in the oxycline of the ETNA, whereas the N2O production from two AOB cultures was comparably low under similar conditions. Based on our findings, we hypothesize that the production of N2O in tropical ocean areas results mainly from archaeal nitrification and will be affected by the predicted decrease in dissolved oxygen in the ocean.

  14. Production of oceanic nitrous oxide by ammonia-oxidizing archaea

    NASA Astrophysics Data System (ADS)

    Loescher, C. R.; Kock, A.; Koenneke, M.; Laroche, J.; Bange, H. W.; Schmitz, R. A.

    2012-02-01

    The recent finding that microbial ammonia oxidation in the ocean is performed by archaea to a greater extent than by bacteria has drastically changed the view on oceanic nitrification. The numerical dominance of archaeal ammonia-oxidizers (AOA) over their bacterial counterparts (AOB) in large parts of the ocean leads to the hypothesis that AOA rather than AOB could be the key organisms for the oceanic production of the strong greenhouse gas nitrous oxide (N2O) which occurs as a by-product of nitrification. Very recently, enrichment cultures of marine ammonia-oxidizing archaea have been described to produce N2O. Here, we demonstrate that archaeal ammonia monooxygenase genes (amoA) were detectable throughout the water column of the Eastern Tropical North Atlantic (ETNA) and Eastern Tropical South Pacific Oceans (ETSP). Particularly in the ETNA, maxima in abundance and expression of archaeal amoA genes correlated with the N2O maximum and the oxygen minimum, whereas the abundances of bacterial amoA genes were negligible. Moreover, selective inhibition of archaea in seawater incubations from the ETNA decreased the N2O production significantly. In studies with the only cultivated marine archaeal ammonia-oxidizer Nitrosopumilus maritimus SCM1, we provide the first direct evidence for N2O production in a pure culture of AOA, excluding the involvement of other microorganisms as possibly present in enrichments. N. maritimus showed high N2O production rates under low oxygen concentrations comparable to concentrations existing in the oxycline of the ETNA, whereas the N2O production from two AOB cultures was comparably low under similar conditions. Based on our findings, we hypothesize that the production of N2O in tropical ocean areas results mainly from archaeal nitrification and will be affected by the predicted decrease in dissolved oxygen in the ocean.

  15. Effect of vortex flows on ammonia oxidation

    SciTech Connect

    Beskov, V.S.; Shpinel', E.E.

    1988-09-01

    The oxidation of ammonia over platinum sieve catalysts was investigated given the vortex flows found in industrial contact units. Mathematical and physical models were used to assess the influence of vortices on ammonia oxidation. The flow pattern of the ammonia-air mixture in the reactor was modeled as a stream with a partial recycle. It is shown that vortex flows reduce the conversion of ammonia to nitrogen monoxide and increase the passage of unconverted ammonia through the catalyst sieve. Over long contact periods, the main effect of vortices is to increase the passage of unconverted ammonia, which may lead to the formation of explosive compounds.

  16. Nitric oxide scavengers differentially inhibit ammonia oxidation in ammonia-oxidizing archaea and bacteria.

    PubMed

    Sauder, Laura A; Ross, Ashley A; Neufeld, Josh D

    2016-04-01

    Differential inhibitors are important for measuring the relative contributions of microbial groups, such as ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA), to biogeochemical processes in environmental samples. In particular, 2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl 3-oxide (PTIO) represents a nitric oxide scavenger used for the specific inhibition of AOA, implicating nitric oxide as an intermediate of thaumarchaeotal ammonia oxidation. This study investigated four alternative nitric oxide scavengers for their ability to differentially inhibit AOA and AOB in comparison to PTIO. Caffeic acid, curcumin, methylene blue hydrate and trolox were tested onNitrosopumilus maritimus, two unpublished AOA representatives (AOA-6f and AOA-G6) as well as the AOB representative Nitrosomonas europaea All four scavengers inhibited ammonia oxidation by AOA at lower concentrations than for AOB. In particular, differential inhibition of AOA and AOB by caffeic acid (100 μM) and methylene blue hydrate (3 μM) was comparable to carboxy-PTIO (100 μM) in pure and enrichment culture incubations. However, when added to aquarium sponge biofilm microcosms, both scavengers were unable to inhibit ammonia oxidation consistently, likely due to degradation of the inhibitors themselves. This study provides evidence that a variety of nitric oxide scavengers result in differential inhibition of ammonia oxidation in AOA and AOB, and provides support to the proposed role of nitric oxide as a key intermediate in the thaumarchaeotal ammonia oxidation pathway.

  17. Factors Driving Potential Ammonia Oxidation in Canadian Arctic Ecosystems: Does Spatial Scale Matter?

    PubMed Central

    Banerjee, Samiran

    2012-01-01

    Ammonia oxidation is a major process in nitrogen cycling, and it plays a key role in nitrogen limited soil ecosystems such as those in the arctic. Although mm-scale spatial dependency of ammonia oxidizers has been investigated, little is known about the field-scale spatial dependency of aerobic ammonia oxidation processes and ammonia-oxidizing archaeal and bacterial communities, particularly in arctic soils. The purpose of this study was to explore the drivers of ammonia oxidation at the field scale in cryosols (soils with permafrost within 1 m of the surface). We measured aerobic ammonia oxidation potential (both autotrophic and heterotrophic) and functional gene abundance (bacterial amoA and archaeal amoA) in 279 soil samples collected from three arctic ecosystems. The variability associated with quantifying genes was substantially less than the spatial variability observed in these soils, suggesting that molecular methods can be used reliably evaluate spatial dependency in arctic ecosystems. Ammonia-oxidizing archaeal and bacterial communities and aerobic ammonia oxidation were spatially autocorrelated. Gene abundances were spatially structured within 4 m, whereas biochemical processes were structured within 40 m. Ammonia oxidation was driven at small scales (<1m) by moisture and total organic carbon, whereas gene abundance and other edaphic factors drove ammonia oxidation at medium (1 to 10 m) and large (10 to 100 m) scales. In these arctic soils heterotrophs contributed between 29 and 47% of total ammonia oxidation potential. The spatial scale for aerobic ammonia oxidation genes differed from potential ammonia oxidation, suggesting that in arctic ecosystems edaphic, rather than genetic, factors are an important control on ammonia oxidation. PMID:22081570

  18. Thaumarchaeal ammonia oxidation in an acidic forest peat soil is not influenced by ammonium amendment.

    PubMed

    Stopnisek, Nejc; Gubry-Rangin, Cécile; Höfferle, Spela; Nicol, Graeme W; Mandic-Mulec, Ines; Prosser, James I

    2010-11-01

    Both bacteria and thaumarchaea contribute to ammonia oxidation, the first step in nitrification. The abundance of putative ammonia oxidizers is estimated by quantification of the functional gene amoA, which encodes ammonia monooxygenase subunit A. In soil, thaumarchaeal amoA genes often outnumber the equivalent bacterial genes. Ecophysiological studies indicate that thaumarchaeal ammonia oxidizers may have a selective advantage at low ammonia concentrations, with potential adaptation to soils in which mineralization is the major source of ammonia. To test this hypothesis, thaumarchaeal and bacterial ammonia oxidizers were investigated during nitrification in microcosms containing an organic, acidic forest peat soil (pH 4.1) with a low ammonium concentration but high potential for ammonia release during mineralization. Net nitrification rates were high but were not influenced by addition of ammonium. Bacterial amoA genes could not be detected, presumably because of low abundance of bacterial ammonia oxidizers. Phylogenetic analysis of thaumarchaeal 16S rRNA gene sequences indicated that dominant populations belonged to group 1.1c, 1.3, and "deep peat" lineages, while known amo-containing lineages (groups 1.1a and 1.1b) comprised only a small proportion of the total community. Growth of thaumarchaeal ammonia oxidizers was indicated by increased abundance of amoA genes during nitrification but was unaffected by addition of ammonium. Similarly, denaturing gradient gel electrophoresis analysis of amoA gene transcripts demonstrated small temporal changes in thaumarchaeal ammonia oxidizer communities but no effect of ammonium amendment. Thaumarchaea therefore appeared to dominate ammonia oxidation in this soil and oxidized ammonia arising from mineralization of organic matter rather than added inorganic nitrogen.

  19. Distribution and Abundance of Archaeal and Bacterial Ammonia Oxidizers in the Sediments of the Dongjiang River, a Drinking Water Supply for Hong Kong

    PubMed Central

    Sun, Wei; Xia, Chunyu; Xu, Meiying; Guo, Jun; Wang, Aijie; Sun, Guoping

    2013-01-01

    Ammonia-oxidizing archaea (AOA) and bacteria (AOB) play important roles in nitrification. However, limited information about the characteristics of AOA and AOB in the river ecosystem is available. The distribution and abundance of AOA and AOB in the sediments of the Dongjiang River, a drinking water source for Hong Kong, were investigated by clone library analysis and quantitative real-time PCR. Phylogenetic analysis showed that Group 1.1b-and Group 1.1b-associated sequences of AOA predominated in sediments with comparatively high carbon and nitrogen contents (e.g. total carbon (TC) >13 g kg−1 sediment, NH4+-N >144 mg kg−1 sediment), while Group 1.1a- and Group 1.1a-associated sequences were dominant in sediments with opposite conditions (e.g. TC <4 g kg−1 sediment, NH4+-N <93 mg kg−1 sediment). Although Nitrosomonas- and Nitrosospira-related sequences of AOB were detected in the sediments, nearly 70% of the sequences fell into the Nitrosomonas-like B cluster, suggesting similar sediment AOB communities along the river. Higher abundance of AOB than AOA was observed in almost all of the sediments in the Dongjiang River, while significant correlations were only detected between the distribution of AOA and the sediment pH and TC, which suggested that AOA responded more sensitively than AOB to variations of environmental factors. These results extend our knowledge about the environmental responses of ammonia oxidizers in the river ecosystem. PMID:24256973

  20. Distribution and abundance of archaeal and bacterial ammonia oxidizers in the sediments of the Dongjiang River, a drinking water supply for Hong Kong.

    PubMed

    Sun, Wei; Xia, Chunyu; Xu, Meiying; Guo, Jun; Wang, Aijie; Sun, Guoping

    2013-01-01

    Ammonia-oxidizing archaea (AOA) and bacteria (AOB) play important roles in nitrification. However, limited information about the characteristics of AOA and AOB in the river ecosystem is available. The distribution and abundance of AOA and AOB in the sediments of the Dongjiang River, a drinking water source for Hong Kong, were investigated by clone library analysis and quantitative real-time PCR. Phylogenetic analysis showed that Group 1.1b- and Group 1.1b-associated sequences of AOA predominated in sediments with comparatively high carbon and nitrogen contents (e.g. total carbon (TC) >13 g kg(-1) sediment, NH4(+)-N >144 mg kg(-1) sediment), while Group 1.1a- and Group 1.1a-associated sequences were dominant in sediments with opposite conditions (e.g. TC <4 g kg(-1) sediment, NH4(+)-N <93 mg kg(-1) sediment). Although Nitrosomonas- and Nitrosospira-related sequences of AOB were detected in the sediments, nearly 70% of the sequences fell into the Nitrosomonas-like B cluster, suggesting similar sediment AOB communities along the river. Higher abundance of AOB than AOA was observed in almost all of the sediments in the Dongjiang River, while significant correlations were only detected between the distribution of AOA and the sediment pH and TC, which suggested that AOA responded more sensitively than AOB to variations of environmental factors. These results extend our knowledge about the environmental responses of ammonia oxidizers in the river ecosystem.

  1. Ammonia release method for depositing metal oxides

    DOEpatents

    Silver, G.L.; Martin, F.S.

    1994-12-13

    A method is described for depositing metal oxides on substrates which is indifferent to the electrochemical properties of the substrates and which comprises forming ammine complexes containing metal ions and thereafter effecting removal of ammonia from the ammine complexes so as to permit slow precipitation and deposition of metal oxide on the substrates. 1 figure.

  2. Ammonia release method for depositing metal oxides

    DOEpatents

    Silver, Gary L.; Martin, Frank S.

    1994-12-13

    A method of depositing metal oxides on substrates which is indifferent to the electrochemical properties of the substrates and which comprises forming ammine complexes containing metal ions and thereafter effecting removal of ammonia from the ammine complexes so as to permit slow precipitation and deposition of metal oxide on the substrates.

  3. Ammonia release method for depositing metal oxides

    SciTech Connect

    Silver, G.L.; Martin, F.S.

    1993-12-31

    A method of depositing metal oxides on substrates which is indifferent to the electrochemical properties of the substrates and which comprises forming ammine complexes containing metal ions and thereafter effecting removal of ammonia from the ammine complexes so as to permit slow precipitation and deposition of metal oxide on the substrates.

  4. Diversity, Physiology, and Niche Differentiation of Ammonia-Oxidizing Archaea

    PubMed Central

    2012-01-01

    Nitrification, the aerobic oxidation of ammonia to nitrate via nitrite, has been suggested to have been a central part of the global biogeochemical nitrogen cycle since the oxygenation of Earth. The cultivation of several ammonia-oxidizing archaea (AOA) as well as the discovery that archaeal ammonia monooxygenase (amo)-like gene sequences are nearly ubiquitously distributed in the environment and outnumber their bacterial counterparts in many habitats fundamentally revised our understanding of nitrification. Surprising insights into the physiological distinctiveness of AOA are mirrored by the recognition of the phylogenetic uniqueness of these microbes, which fall within a novel archaeal phylum now known as Thaumarchaeota. The relative importance of AOA in nitrification, compared to ammonia-oxidizing bacteria (AOB), is still under debate. This minireview provides a synopsis of our current knowledge of the diversity and physiology of AOA, the factors controlling their ecology, and their role in carbon cycling as well as their potential involvement in the production of the greenhouse gas nitrous oxide. It emphasizes the importance of activity-based analyses in AOA studies and formulates priorities for future research. PMID:22923400

  5. The history of aerobic ammonia oxidizers: from the first discoveries to today.

    PubMed

    Monteiro, Maria; Séneca, Joana; Magalhães, Catarina

    2014-07-01

    Nitrification, the oxidation of ammonia to nitrite and nitrate, has long been considered a central biological process in the global nitrogen cycle, with its first description dated 133 years ago. Until 2005, bacteria were considered the only organisms capable of nitrification. However, the recent discovery of a chemoautotrophic ammonia-oxidizing archaeon, Nitrosopumilus maritimus, changed our concept of the range of organisms involved in nitrification, highlighting the importance of ammonia-oxidizing archaea (AOA) as potential players in global biogeochemical nitrogen transformations. The uniqueness of these archaea justified the creation of a novel archaeal phylum, Thaumarchaeota. These recent discoveries increased the global scientific interest within the microbial ecology society and have triggered an analysis of the importance of bacterial vs archaeal ammonia oxidation in a wide range of natural ecosystems. In this mini review we provide a chronological perspective of the current knowledge on the ammonia oxidation pathway of nitrification, based on the main physiological, ecological and genomic discoveries.

  6. Ammonia oxidation rates and nitrification in the Arabian Sea

    NASA Astrophysics Data System (ADS)

    Newell, Silvia E.; Babbin, Andrew R.; Jayakumar, Amal; Ward, Bess B.

    2011-12-01

    Nitrification rates, as well as the relationships between rates and ammonia oxidizer abundance (both archaeal and bacterial), were investigated in the Arabian Sea. Ammonia oxidation rates were measured directly using 15N-NH4+stable isotope additions in gas-impermeable, trace metal clean trilaminate bags (500 mL) at in situ temperature. Tracer incubations were performed at three stations at depths above, below, and within the oxycline of the open-ocean oxygen minimum zone (OMZ). Ammonia oxidation rates were similar to previous open-ocean measurements, ranging from undetectable to 21.6 ± 0.1 nmol L-1 d-1. The highest rates at each station occurred at the primary nitrite maximum (above the OMZ), and rates were very low at depths greater than 900 m. The abundances of both ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) were estimated using theamoA gene by quantitative polymerase chain reaction (qPCR). Both AOA and AOB amoA were detected above, within, and below the OMZ, although the AOA were always more abundant than the AOB, by a factor of 35-216. Nitrification rates were not directly correlated to AOA or AOB amoA abundance. These rates offer new insight into the role of nitrification in the mesopelagic zone. The abundance of AOA amoA genes at 1000 m suggests that ˜50% of the microbial biomass could be autotrophic. Additionally, the integrated nitrification rate at depth implies that nitrification could consume most of the ammonium produced by the flux of organic carbon in the mesopelagic zone.

  7. Metabolism of Nitrogen Oxides in Ammonia-Oxidizing Bacteria

    NASA Astrophysics Data System (ADS)

    Kozlowski, J.; Stein, L. Y.

    2014-12-01

    Ammonia-oxidizing bacteria (AOB) are key microorganisms in the transformation of nitrogen intermediates in most all environments. Until recently there was very little work done to elucidate the physiology of ammonia-oxidizing bacteria cultivated from variable trophic state environments. With a greater variety of ammonia-oxidizers now in pure culture the importance of comparative physiological and genomic analysis is crucial. Nearly all known physiology of ammonia-oxidizing bacteria lies within the Nitrosomonas genus with Nitrosomonas europaea strain ATCC 19718 as the model. To more broadly characterize and understand the nature of obligate ammonia chemolithotrophy and the contribution of AOB to production of nitrogen oxides, Nitrosomonas spp. and Nitrosospira spp. isolated from variable trophic states and with sequenced genomes, were utilized. Instantaneous ammonia- and hydroxylamine-oxidation kinetics as a function of oxygen and substrate concentration were measured using an oxygen micro-sensor. The pathway intermediates nitric oxide and nitrous oxide were measured in real time using substrate-specific micro-sensors to elucidate whether production of these molecules is stoichiometric with rates of substrate oxidation. Genomic inventory was compared among the strains to identify specific pathways and modules to explain physiological differences in kinetic rates and production of N-oxide intermediates as a condition of their adaptation to different ammonium concentrations. This work provides knowledge of how nitrogen metabolism is differentially controlled in AOB that are adapted to different concentrations of ammonium. Overall, this work will provide further insight into the control of ammonia oxidizing chemolithotrophy across representatives of the Nitrosomonas and Nitrosospira genus, which can then be applied to examine additional genome-sequenced AOB isolates.

  8. Links between ammonia oxidizer species composition, functional diversity and nitrification kinetics in grassland soils.

    PubMed

    Webster, Gordon; Embley, T Martin; Freitag, Thomas E; Smith, Zena; Prosser, James I

    2005-05-01

    Molecular approaches have revealed considerable diversity and uncultured novelty in natural prokaryotic populations, but not direct links between the new genotypes detected and ecosystem processes. Here we describe the influence of the structure of communities of ammonia-oxidizing bacteria on nitrogen cycling in microcosms containing natural and managed grasslands and amended with artificial sheep urine, a major factor determining local ammonia concentrations in these environments. Nitrification kinetics were assessed by analysis of changes in urea, ammonia, nitrite and nitrate concentrations and ammonia oxidizer communities were characterized by analysis of 16S rRNA genes amplified from extracted DNA using ammonia oxidizer-specific primers. In natural soils, ammonia oxidizer community structure determined the delay preceding nitrification, which depended on the relative abundance of two Nitrosospira clusters, termed 3a and 3b. In batch cultures, pure culture and enrichment culture representatives of Nitrosospira 3a were sensitive to high ammonia concentration, while Nitrosospira cluster 3b representatives and Nitrosomonas europaea were tolerant. Delays in nitrification occurred in natural soils dominated by Nitrosospira cluster 3a and resulted from the time required for growth of low concentrations of Nitrosospira cluster 3b. In microcosms dominated by Nitrosospira cluster 3b and Nitrosomonas, no substantial delays were observed. In managed soils, no delays in nitrification were detected, regardless of initial ammonia oxidizer community structure, most probably resulting from higher ammonia oxidizer cell concentrations. The data therefore demonstrate a direct link between bacterial community structure, physiological diversity and ecosystem function.

  9. Ammonia oxidizing bacteria and archaea in horizontal flow biofilm reactors treating ammonia-contaminated air at 10 °C.

    PubMed

    Gerrity, Seán; Clifford, Eoghan; Kennelly, Colm; Collins, Gavin

    2016-05-01

    The objective of this study was to demonstrate the feasibility of novel, Horizontal Flow Biofilm Reactor (HFBR) technology for the treatment of ammonia (NH3)-contaminated airstreams. Three laboratory-scale HFBRs were used for remediation of an NH3-containing airstream at 10 °C during a 90-d trial to test the efficacy of low-temperature treatment. Average ammonia removal efficiencies of 99.7 % were achieved at maximum loading rates of 4.8 g NH3 m(3) h(-1). Biological nitrification of ammonia to nitrite (NO2 (-)) and nitrate (NO3 (-)) was mediated by nitrifying bacterial and archaeal biofilm populations. Ammonia-oxidising bacteria (AOB) were significantly more abundant than ammonia-oxidising archaea (AOA) vertically at each of seven sampling zones along the vertical HFBRs. Nitrosomonas and Nitrosospira, were the two most dominant bacterial genera detected in the HFBRs, while an uncultured archaeal clone dominated the AOA community. The bacterial community composition across the three HFBRs was highly conserved, although variations occurred between HFBR zones and were driven by physicochemical variables. The study demonstrates the feasibility of HFBRs for the treatment of ammonia-contaminated airstreams at low temperatures; identifies key nitrifying microorganisms driving the removal process; and provides insights for process optimisation and control. The findings are significant for industrial applications of gas oxidation technology in temperate climates. PMID:26879980

  10. Biogeography of anaerobic ammonia-oxidizing (anammox) bacteria

    PubMed Central

    Sonthiphand, Puntipar; Hall, Michael W.; Neufeld, Josh D.

    2014-01-01

    Anaerobic ammonia-oxidizing (anammox) bacteria are able to oxidize ammonia and reduce nitrite to produce N2 gas. After being discovered in a wastewater treatment plant (WWTP), anammox bacteria were subsequently characterized in natural environments, including marine, estuary, freshwater, and terrestrial habitats. Although anammox bacteria play an important role in removing fixed N from both engineered and natural ecosystems, broad scale anammox bacterial distributions have not yet been summarized. The objectives of this study were to explore global distributions and diversity of anammox bacteria and to identify factors that influence their biogeography. Over 6000 anammox 16S rRNA gene sequences from the public database were analyzed in this current study. Data ordinations indicated that salinity was an important factor governing anammox bacterial distributions, with distinct populations inhabiting natural and engineered ecosystems. Gene phylogenies and rarefaction analysis demonstrated that freshwater environments and the marine water column harbored the highest and the lowest diversity of anammox bacteria, respectively. Co-occurrence network analysis indicated that Ca. Scalindua strongly connected with other Ca. Scalindua taxa, whereas Ca. Brocadia co-occurred with taxa from both known and unknown anammox genera. Our survey provides a better understanding of ecological factors affecting anammox bacterial distributions and provides a comprehensive baseline for understanding the relationships among anammox communities in global environments. PMID:25147546

  11. Growth of ammonia-oxidizing archaea and bacteria in cattle manure compost under various temperatures and ammonia concentrations.

    PubMed

    Oishi, Ryu; Tada, Chika; Asano, Ryoki; Yamamoto, Nozomi; Suyama, Yoshihisa; Nakai, Yutaka

    2012-05-01

    A recent study showed that ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA) coexist in the process of cattle manure composting. To investigate their physiological characteristics, liquid cultures seeded with fermenting cattle manure compost were incubated at various temperatures (37°C, 46°C, or 60°C) and ammonium concentrations (0.5, 1, 4, or 10 mM NH (4) (+) -N). The growth rates of the AOB and AOA were monitored using real-time polymerase chain reaction analysis targeting the bacterial and archaeal ammonia monooxygenase subunit A genes. AOB grew at 37°C and 4 or 10 mM NH (4) (+) -N, whereas AOA grew at 46°C and 10 mM NH (4) (+) -N. Incubation with allylthiourea indicated that the AOB and AOA grew by oxidizing ammonia. Denaturing gradient gel electrophoresis and subsequent sequencing analyses revealed that a bacterium related to Nitrosomonas halophila and an archaeon related to Candidatus Nitrososphaera gargensis were the predominant AOB and AOA, respectively, in the seed compost and in cultures after incubation. This is the first report to demonstrate that the predominant AOA in cattle manure compost can grow and can probably oxidize ammonia under moderately thermophilic conditions.

  12. Determination of Ammonia Oxidizing Bacteria and Nitrate Oxidizing Bacteria in Wastewater and Bioreactors

    NASA Technical Reports Server (NTRS)

    Francis, Somilez Asya

    2014-01-01

    The process of water purification has many different physical, chemical, and biological processes. One part of the biological process is the task of ammonia oxidizing bacteria (AOB) and nitrite oxidizing bacteria (NOB). Both play critical roles in the treatment of wastewater by oxidizing toxic compounds. The broad term is nitrification, a naturally occurring process that is carried out by AOB and NOB by using oxidation to convert ammonia to nitrite and nitrite to nitrate. To monitor this biological activity, bacterial staining was performed on wastewater contained in inoculum tanks and biofilm samples from bioreactors. Using microscopy and qPCR, the purpose of this experiment was to determine if the population of AOB and NOB in wastewater and membrane bioreactors changed depending on temperature and hibernation conditions to determine the optimal parameters for AOB/NOB culture to effectively clean wastewater.

  13. Hydroxylamine as an intermediate in ammonia oxidation by globally abundant marine archaea

    PubMed Central

    Vajrala, Neeraja; Martens-Habbena, Willm; Sayavedra-Soto, Luis A.; Schauer, Andrew; Bottomley, Peter J.; Stahl, David A.; Arp, Daniel J.

    2013-01-01

    The ammonia-oxidizing archaea have recently been recognized as a significant component of many microbial communities in the biosphere. Although the overall stoichiometry of archaeal chemoautotrophic growth via ammonia (NH3) oxidation to nitrite (NO2−) is superficially similar to the ammonia-oxidizing bacteria, genome sequence analyses point to a completely unique biochemistry. The only genomic signature linking the bacterial and archaeal biochemistries of NH3 oxidation is a highly divergent homolog of the ammonia monooxygenase (AMO). Although the presumptive product of the putative AMO is hydroxylamine (NH2OH), the absence of genes encoding a recognizable ammonia-oxidizing bacteria-like hydroxylamine oxidoreductase complex necessitates either a novel enzyme for the oxidation of NH2OH or an initial oxidation product other than NH2OH. We now show through combined physiological and stable isotope tracer analyses that NH2OH is both produced and consumed during the oxidation of NH3 to NO2− by Nitrosopumilus maritimus, that consumption is coupled to energy conversion, and that NH2OH is the most probable product of the archaeal AMO homolog. Thus, despite their deep phylogenetic divergence, initial oxidation of NH3 by bacteria and archaea appears mechanistically similar. They however diverge biochemically at the point of oxidation of NH2OH, the archaea possibly catalyzing NH2OH oxidation using a novel enzyme complex. PMID:23277575

  14. Differential contributions of ammonia oxidizers and nitrite oxidizers to nitrification in four paddy soils.

    PubMed

    Wang, Baozhan; Zhao, Jun; Guo, Zhiying; Ma, Jing; Xu, Hua; Jia, Zhongjun

    2015-05-01

    Rice paddy fields are characterized by regular flooding and nitrogen fertilization, but the functional importance of aerobic ammonia oxidizers and nitrite oxidizers under unique agricultural management is poorly understood. In this study, we report the differential contributions of ammonia-oxidizing archaea (AOA), bacteria (AOB) and nitrite-oxidizing bacteria (NOB) to nitrification in four paddy soils from different geographic regions (Zi-Yang (ZY), Jiang-Du (JD), Lei-Zhou (LZ) and Jia-Xing (JX)) that are representative of the rice ecosystems in China. In urea-amended microcosms, nitrification activity varied greatly with 11.9, 9.46, 3.03 and 1.43 μg NO3(-)-N g(-1) dry weight of soil per day in the ZY, JD, LZ and JX soils, respectively, over the course of a 56-day incubation period. Real-time quantitative PCR of amoA genes and pyrosequencing of 16S rRNA genes revealed significant increases in the AOA population to various extents, suggesting that their relative contributions to ammonia oxidation activity decreased from ZY to JD to LZ. The opposite trend was observed for AOB, and the JX soil stimulated only the AOB populations. DNA-based stable-isotope probing further demonstrated that active AOA numerically outcompeted their bacterial counterparts by 37.0-, 10.5- and 1.91-fold in (13)C-DNA from ZY, JD and LZ soils, respectively, whereas AOB, but not AOA, were labeled in the JX soil during active nitrification. NOB were labeled to a much greater extent than AOA and AOB, and the addition of acetylene completely abolished the assimilation of (13)CO2 by nitrifying populations. Phylogenetic analysis suggested that archaeal ammonia oxidation was predominantly catalyzed by soil fosmid 29i4-related AOA within the soil group 1.1b lineage. Nitrosospira cluster 3-like AOB performed most bacterial ammonia oxidation in the ZY, LZ and JX soils, whereas the majority of the (13)C-AOB in the JD soil was affiliated with the Nitrosomona communis lineage. The (13)C-NOB was

  15. Differential contributions of ammonia oxidizers and nitrite oxidizers to nitrification in four paddy soils

    PubMed Central

    Wang, Baozhan; Zhao, Jun; Guo, Zhiying; Ma, Jing; Xu, Hua; Jia, Zhongjun

    2015-01-01

    Rice paddy fields are characterized by regular flooding and nitrogen fertilization, but the functional importance of aerobic ammonia oxidizers and nitrite oxidizers under unique agricultural management is poorly understood. In this study, we report the differential contributions of ammonia-oxidizing archaea (AOA), bacteria (AOB) and nitrite-oxidizing bacteria (NOB) to nitrification in four paddy soils from different geographic regions (Zi-Yang (ZY), Jiang-Du (JD), Lei-Zhou (LZ) and Jia-Xing (JX)) that are representative of the rice ecosystems in China. In urea-amended microcosms, nitrification activity varied greatly with 11.9, 9.46, 3.03 and 1.43 μg NO3−-N g−1 dry weight of soil per day in the ZY, JD, LZ and JX soils, respectively, over the course of a 56-day incubation period. Real-time quantitative PCR of amoA genes and pyrosequencing of 16S rRNA genes revealed significant increases in the AOA population to various extents, suggesting that their relative contributions to ammonia oxidation activity decreased from ZY to JD to LZ. The opposite trend was observed for AOB, and the JX soil stimulated only the AOB populations. DNA-based stable-isotope probing further demonstrated that active AOA numerically outcompeted their bacterial counterparts by 37.0-, 10.5- and 1.91-fold in 13C-DNA from ZY, JD and LZ soils, respectively, whereas AOB, but not AOA, were labeled in the JX soil during active nitrification. NOB were labeled to a much greater extent than AOA and AOB, and the addition of acetylene completely abolished the assimilation of 13CO2 by nitrifying populations. Phylogenetic analysis suggested that archaeal ammonia oxidation was predominantly catalyzed by soil fosmid 29i4-related AOA within the soil group 1.1b lineage. Nitrosospira cluster 3-like AOB performed most bacterial ammonia oxidation in the ZY, LZ and JX soils, whereas the majority of the 13C-AOB in the JD soil was affiliated with the Nitrosomona communis lineage. The 13C-NOB was overwhelmingly

  16. Nitrate Reduction to Nitrite, Nitric Oxide and Ammonia by Gut Bacteria under Physiological Conditions

    PubMed Central

    Tiso, Mauro; Schechter, Alan N.

    2015-01-01

    The biological nitrogen cycle involves step-wise reduction of nitrogen oxides to ammonium salts and oxidation of ammonia back to nitrites and nitrates by plants and bacteria. Neither process has been thought to have relevance to mammalian physiology; however in recent years the salivary bacterial reduction of nitrate to nitrite has been recognized as an important metabolic conversion in humans. Several enteric bacteria have also shown the ability of catalytic reduction of nitrate to ammonia via nitrite during dissimilatory respiration; however, the importance of this pathway in bacterial species colonizing the human intestine has been little studied. We measured nitrite, nitric oxide (NO) and ammonia formation in cultures of Escherichia coli, Lactobacillus and Bifidobacterium species grown at different sodium nitrate concentrations and oxygen levels. We found that the presence of 5 mM nitrate provided a growth benefit and induced both nitrite and ammonia generation in E.coli and L.plantarum bacteria grown at oxygen concentrations compatible with the content in the gastrointestinal tract. Nitrite and ammonia accumulated in the growth medium when at least 2.5 mM nitrate was present. Time-course curves suggest that nitrate is first converted to nitrite and subsequently to ammonia. Strains of L.rhamnosus, L.acidophilus and B.longum infantis grown with nitrate produced minor changes in nitrite or ammonia levels in the cultures. However, when supplied with exogenous nitrite, NO gas was readily produced independently of added nitrate. Bacterial production of lactic acid causes medium acidification that in turn generates NO by non-enzymatic nitrite reduction. In contrast, nitrite was converted to NO by E.coli cultures even at neutral pH. We suggest that the bacterial nitrate reduction to ammonia, as well as the related NO formation in the gut, could be an important aspect of the overall mammalian nitrate/nitrite/NO metabolism and is yet another way in which the microbiome

  17. Phylogenetically diverse denitrifying and ammonia-oxidizing bacteria in corals Alcyonium gracillimum and Tubastraea coccinea.

    PubMed

    Yang, Shan; Sun, Wei; Zhang, Fengli; Li, Zhiyong

    2013-10-01

    To date, the association of coral-bacteria and the ecological roles of bacterial symbionts in corals remain largely unknown. In particular, little is known about the community components of bacterial symbionts of corals involved in the process of denitrification and ammonia oxidation. In this study, the nitrite reductase (nirS and nirK) and ammonia monooxygenase subunit A (amoA) genes were used as functional markers. Diverse bacteria with the potential to be active as denitrifiers and ammonia-oxidizing bacteria (AOB) were found in two East China Sea corals: stony coral Alcyonium gracillimum and soft coral Tubastraea coccinea. The 16S rRNA gene library analysis demonstrated different communities of bacterial symbionts in these two corals of the same location. Nitrite reductase nirK gene was found only in T. coccinea, while both nirK and nirS genes were detected in A. gracillimum, which might be the result of the presence of different bacterial symbionts in these two corals. AOB rather than ammonia-oxidizing archaea were detected in both corals, suggesting that AOB might play an important role in the ammonia oxidation process of the corals. This study indicates that the coral bacterial symbionts with the potential for nitrite reduction and ammonia oxidation might have multiple ecological roles in the coral holobiont, which promotes our understanding of bacteria-mediated nitrogen cycling in corals. To our knowledge, this study is the first assessment of the community structure and phylogenetic diversity of denitrifying bacteria and AOB in corals based on nirK, nirS, and amoA gene library analysis. PMID:23564007

  18. Ammonia-oxidizing archaea versus bacteria in two soil aquifer treatment systems.

    PubMed

    Ding, Kun; Wen, Xianghua; Li, Yuyang; Shen, Bo; Zhang, Bing

    2015-02-01

    So far, the contribution of ammonia-oxidizing archaea (AOA) to ammonia oxidation in wastewater treatment processes has not been well understood. In this study, two soil aquifer treatment (SATs) systems were built up to treat synthetic domestic wastewater (column 1) and secondary effluent (column 4), accomplishing an average of 95% ammonia removal during over 550 days of operation. Except at day 322, archaeal amoA genes always outnumbered bacterial amoA genes in both SATs as determined by using quantitative polymerase chain reaction (q-PCR). The ratios of archaeal amoA to 16S rRNA gene averaged at 0.70 ± 0.56 and 0.82 ± 0.62 in column 1 and column 4, respectively, indicating that all the archaea could be AOA carrying amoA gene in the SATs. The results of MiSeq-pyrosequencing targeting on archaeal and bacterial 16S rRNA genes with the primer pair of modified 515R/806R indicated that Nitrososphaera cluster affiliated with thaumarchaeal group I.1b was the dominant AOA species, while Nitrosospira cluster was the dominant ammonia-oxidizing bacteria (AOB). The statistical analysis showed significant relationship between AOA abundance (compared to AOB abundance) and inorganic and total nitrogen concentrations. Based on the mathematical model calculation for microbial growth, AOA had much greater capacity of ammonia oxidation as compared to the specific influent ammonia loading for AOA in the SATs, implying that a small fraction of the total AOA would actively work to oxidize ammonia chemoautotrophically whereas most of AOA would exhibit some level of functional redundancy. These results all pointed that AOA involved in microbial ammonia oxidation in the SATs.

  19. Ammonia-oxidizing archaea respond positively to inorganic nitrogen addition in desert soils.

    PubMed

    Marusenko, Yevgeniy; Garcia-Pichel, Ferran; Hall, Sharon J

    2015-02-01

    In soils, nitrogen (N) addition typically enhances ammonia oxidation (AO) rates and increases the population density of ammonia-oxidizing bacteria (AOB), but not that of ammonia-oxidizing archaea (AOA). We asked if long-term inorganic N addition also has similar consequences in arid land soils, an understudied yet spatially ubiquitous ecosystem type. Using Sonoran Desert top soils from between and under shrubs within a long-term N-enrichment experiment, we determined community concentration-response kinetics of AO and measured the total and relative abundance of AOA and AOB based on amoA gene abundance. As expected, N addition increased maximum AO rates and the abundance of bacterial amoA genes compared to the controls. Surprisingly, N addition also increased the abundance of archaeal amoA genes. We did not detect any major effects of N addition on ammonia-oxidizing community composition. The ammonia-oxidizing communities in these desert soils were dominated by AOA as expected (78% of amoA gene copies were related to Nitrososphaera), but contained unusually high contributions of Nitrosomonas (18%) and unusually low numbers of Nitrosospira (2%). This study highlights unique traits of ammonia oxidizers in arid lands, which should be considered globally in predictions of AO responses to changes in N availability.

  20. Metal-decorated graphene oxide for ammonia adsorption

    NASA Astrophysics Data System (ADS)

    Li, Yunguo; Pathak, Biswarup; Nisar, Jawad; Qian, Zhao; Ahuja, Rajeev

    2013-07-01

    Based on the first-principles density functional theory, we have studied the stability, electronic structure and ammonia storage capacity of metal-decorated graphene oxide (GO). Metal atoms (Mg and Li) are bonded strongly to the epoxy oxygen atoms on the surface of the GO sheet, which can act as high-surface-area adsorbent for the ammonia uptake and release. Each metal atom can bind several ammonia molecules around itself with a reasonable binding energy. We find metal-decorated GO can store up to tens of moles of ammonia per kilogram, which is far better than the recently reported excellent ammonia adsorption by GO.

  1. Bioturbation determines the response of benthic ammonia-oxidizing microorganisms to ocean acidification.

    PubMed

    Laverock, B; Kitidis, V; Tait, K; Gilbert, J A; Osborn, A M; Widdicombe, S

    2013-01-01

    Ocean acidification (OA), caused by the dissolution of increasing concentrations of atmospheric carbon dioxide (CO2) in seawater, is projected to cause significant changes to marine ecology and biogeochemistry. Potential impacts on the microbially driven cycling of nitrogen are of particular concern. Specifically, under seawater pH levels approximating future OA scenarios, rates of ammonia oxidation (the rate-limiting first step of the nitrification pathway) have been shown to dramatically decrease in seawater, but not in underlying sediments. However, no prior study has considered the interactive effects of microbial ammonia oxidation and macrofaunal bioturbation activity, which can enhance nitrogen transformation rates. Using experimental mesocosms, we investigated the responses to OA of ammonia oxidizing microorganisms inhabiting surface sediments and sediments within burrow walls of the mud shrimp Upogebia deltaura. Seawater was acidified to one of four target pH values (pHT 7.90, 7.70, 7.35 and 6.80) in comparison with a control (pHT 8.10). At pHT 8.10, ammonia oxidation rates in burrow wall sediments were, on average, fivefold greater than in surface sediments. However, at all acidified pH values (pH ≤ 7.90), ammonia oxidation rates in burrow sediments were significantly inhibited (by 79-97%; p < 0.01), whereas rates in surface sediments were unaffected. Both bacterial and archaeal abundances increased significantly as pHT declined; by contrast, relative abundances of bacterial and archaeal ammonia oxidation (amoA) genes did not vary. This research suggests that OA could cause substantial reductions in total benthic ammonia oxidation rates in coastal bioturbated sediments, leading to corresponding changes in coupled nitrogen cycling between the benthic and pelagic realms.

  2. Nitrification of archaeal ammonia oxidizers in a high- temperature hot spring

    NASA Astrophysics Data System (ADS)

    Chen, Shun; Peng, Xiaotong; Xu, Hengchao; Ta, Kaiwen

    2016-04-01

    The oxidation of ammonia by microbes has been shown to occur in diverse natural environments. However, the link of in situ nitrification activity to taxonomic identities of ammonia oxidizers in high-temperature environments remains poorly understood. Here, we studied in situ ammonia oxidation rates and the diversity of ammonia-oxidizing Archaea (AOA) in surface and bottom sediments at 77 °C in the Gongxiaoshe hot spring, Tengchong, Yunnan, China. The in situ ammonia oxidation rates measured by the 15N-NO3- pool dilution technique in the surface and bottom sediments were 4.80 and 5.30 nmol N g-1 h-1, respectively. Real-time quantitative polymerase chain reaction (qPCR) indicated that the archaeal 16S rRNA genes and amoA genes were present in the range of 0.128 to 1.96 × 108 and 2.75 to 9.80 × 105 gene copies g-1 sediment, respectively, while bacterial amoA was not detected. Phylogenetic analysis of 16S rRNA genes showed high sequence similarity to thermophilic Candidatus Nitrosocaldus yellowstonii, which represented the most abundant operational taxonomic units (OTU) in both surface and bottom sediments. The archaeal predominance was further supported by fluorescence in situ hybridization (FISH) visualization. The cell-specific rate of ammonia oxidation was estimated to range from 0.410 to 0.790 fmol N archaeal cell-1 h-1, higher than those in the two US Great Basin hot springs. These results suggest the importance of archaeal rather than bacterial ammonia oxidation in driving the nitrogen cycle in terrestrial geothermal environments.

  3. Ammonia transformations and abundance of ammonia oxidizers in a clay soil underlying a manure pond.

    PubMed

    Sher, Yonatan; Baram, Shahar; Dahan, Ofer; Ronen, Zeev; Nejidat, Ali

    2012-07-01

    Unlined manure ponds are constructed on clay soil worldwide to manage farm waste. Seepage of ammonia-rich liquor into underlying soil layers contributes to groundwater contamination by nitrate. To identify the possible processes that lead to the production of nitrate from ammonia in this oxygen-limited environment, we studied the diversity and abundance of ammonia-transforming microorganisms under an unlined manure pond. The numbers of ammonia-oxidizing bacteria and anammox bacteria were most abundant in the top of the soil profile and decreased significantly with depth (0.5 m), correlating with soil pore-water ammonia concentrations and soil ammonia concentrations, respectively. On the other hand, the numbers of ammonia-oxidizing archaea were relatively constant throughout the soil profile (10(7) amoA copies per g(soil)). Nitrite-oxidizing bacteria were detected mainly in the top 0.2 m. The results suggest that nitrate accumulation in the vadose zone under the manure pond could be the result of complete aerobic nitrification (ammonia oxidation to nitrate) and could exist as a byproduct of anammox activity. While the majority of the nitrogen was removed within the 0.5-m soil section, possibly by combined anammox and heterotrophic denitrification, a fraction of the produced nitrate leached into the groundwater.

  4. Isotopic Signature of N2O Produced by Marine Ammonia-Oxidizing Archaea

    NASA Astrophysics Data System (ADS)

    Santoro, Alyson E.; Buchwald, Carolyn; McIlvin, Matthew R.; Casciotti, Karen L.

    2011-09-01

    The ocean is an important global source of nitrous oxide (N2O), a greenhouse gas that contributes to stratospheric ozone destruction. Bacterial nitrification and denitrification are thought to be the primary sources of marine N2O, but the isotopic signatures of N2O produced by these processes are not consistent with the marine contribution to the global N2O budget. Based on enrichment cultures, we report that archaeal ammonia oxidation also produces N2O. Natural-abundance stable isotope measurements indicate that the produced N2O had bulk δ15N and δ18O values higher than observed for ammonia-oxidizing bacteria but similar to the δ15N and δ18O values attributed to the oceanic N2O source to the atmosphere. Our results suggest that ammonia-oxidizing archaea may be largely responsible for the oceanic N2O source.

  5. Isotopic signature of N(2)O produced by marine ammonia-oxidizing archaea.

    PubMed

    Santoro, Alyson E; Buchwald, Carolyn; McIlvin, Matthew R; Casciotti, Karen L

    2011-09-01

    The ocean is an important global source of nitrous oxide (N(2)O), a greenhouse gas that contributes to stratospheric ozone destruction. Bacterial nitrification and denitrification are thought to be the primary sources of marine N(2)O, but the isotopic signatures of N(2)O produced by these processes are not consistent with the marine contribution to the global N(2)O budget. Based on enrichment cultures, we report that archaeal ammonia oxidation also produces N(2)O. Natural-abundance stable isotope measurements indicate that the produced N(2)O had bulk δ(15)N and δ(18)O values higher than observed for ammonia-oxidizing bacteria but similar to the δ(15)N and δ(18)O values attributed to the oceanic N(2)O source to the atmosphere. Our results suggest that ammonia-oxidizing archaea may be largely responsible for the oceanic N(2)O source. PMID:21798895

  6. Nitrogen isotope fractionation during archaeal ammonia oxidation: Coupled estimates from isotopic measurements of ammonium and nitrite

    NASA Astrophysics Data System (ADS)

    Mooshammer, Maria; Stieglmeier, Michaela; Bayer, Barbara; Jochum, Lara; Melcher, Michael; Wanek, Wolfgang

    2014-05-01

    Ammonia-oxidizing archaea (AOA) are ubiquitous in marine and terrestrial environments and knowledge about the nitrogen (N) isotope effect associated with their ammonia oxidation activity will allow a better understanding of natural abundance isotope ratios, and therefore N transformation processes, in the environment. Here we examine the kinetic isotope effect for ammonia oxidation in a pure soil AOA culture (Ca. Nitrososphaera viennensis) and a marine AOA enrichment culture. We estimated the isotope effect from both isotopic signatures of ammonium and nitrite over the course of ammonia oxidation. Estimates of the isotope effect based on the change in the isotopic signature of ammonium give valuable insight, because these estimates are not subject to the same concerns (e.g., accumulation of an intermediate) as estimates based on isotopic measurements of nitrite. Our results show that both the pure soil AOA culture and a marine AOA enrichment culture have similar but substantial isotope effect during ammonia consumption (31-34 per mill; based on ammonium) and nitrite production (43-45 per mill; based on nitrite). The 15N fractionation factors of both cultures tested fell in the upper range of the reported isotope effects for archaeal and bacterial ammonia oxidation (10-41 per mill) or were even higher than those. The isotope fractionation for nitrite production was significantly larger than for ammonium consumption, indicating that (1) some intermediate (e.g., hydroxylamine) of ammonia oxidation accumulates, allowing for a second 15N fractionation step to be expressed, (2) a fraction of ammonia oxidized is lost via gaseous N forms (e.g., NO or N2O), which is 15N-enriched or (3) a fraction of ammonium is assimilated into AOA biomass, biomass becoming 15N-enriched. The significance of these mechanisms will be explored in more detail for the soil AOA culture, based on isotope modeling and isotopic measurements of biomass and N2O.

  7. Inhibition of Ammonia Oxidation in Nitrosomonas europaea by Sulfur Compounds: Thioethers Are Oxidized to Sulfoxides by Ammonia Monooxygenase

    PubMed Central

    Juliette, Lisa Y.; Hyman, Michael R.; Arp, Daniel J.

    1993-01-01

    Organic sulfur compounds are well-known nitrification inhibitors. The inhibitory effects of dimethylsulfide, dimethyldisulfide, and ethanethiol on ammonia oxidation by Nitrosomonas europaea were examined. Both dimethylsulfide and dimethyldisulfide were weak inhibitors of ammonia oxidation and exhibited inhibitory characteristics typical of substrates for ammonia monooxygenase (AMO). Depletion of dimethylsulfide required O2 and was prevented with either acetylene or allylthiourea, two inhibitors of AMO. The inhibition of ammonia oxidation by dimethylsulfide was examined in detail. Cell suspensions incubated in the presence of ammonia oxidized dimethylsulfide to dimethyl sulfoxide. Depletion of six other thioethers was also prevented by treating cell suspensions with either allylthiourea or acetylene. The oxidative products of three thioethers were identified as the corresponding sulfoxides. The amount of sulfoxide formed accounted for a majority of the amount of sulfide depleted. By using gas chromatography coupled with mass spectrometry, allylmethylsulfide was shown to be oxidized to allylmethylsulfoxide by N. europaea with the incorporation of a single atom of 18O derived from 18O2 into the sulfide. This result supported our conclusion that a monooxygenase was involved in the oxidation of allylmethylsulfide. The thioethers are concluded to be a new class of substrates for AMO. This is the first report of the oxidation of the sulfur atom by AMO in whole cells of N. europaea. The ability of N. europaea to oxidize dimethylsulfide is not unique among the ammonia-oxidizing bacteria. Nitrosococcus oceanus, a marine nitrifier, was also demonstrated to oxidize dimethylsulfide to dimethyl sulfoxide. PMID:16349086

  8. Effect of ammonia plasma treatment on graphene oxide LB monolayers

    SciTech Connect

    Singh, Gulbagh; Botcha, V. Divakar; Narayanam, Pavan K.; Sutar, D. S.; Talwar, S. S.; Major, S. S.; Srinivasa, R. S.

    2013-02-05

    Graphene oxide monolayer sheets were transferred on Si and SiO{sub 2}/Si substrates by Langmuir-Blodgett technique and were exposed to ammonia plasma at room temperature. The monolayer character of both graphene oxide and plasma treated graphene oxide sheets were ascertained by atomic force microscopy. X-ray photoelectron spectroscopy and Raman spectroscopy revealed that ammonia plasma treatment results in enhancement of graphitic carbon content along with the incorporation of nitrogen. The conductivity of graphene oxide monolayers, which was in the range of 10{sup -6}-10{sup -7} S/cm, increased to 10{sup -2}-10{sup -3} S/cm after the ammonia plasma treatment. These results indicate that the graphene oxide was simultaneously reduced and N-doped during ammonia plasma treatment, without affecting the morphological stability of sheets.

  9. Nitrogen metabolism and kinetics of ammonia-oxidizing archaea.

    PubMed

    Martens-Habbena, Willm; Stahl, David A

    2011-01-01

    The discovery of ammonia-oxidizing mesophilic and thermophilic Group I archaea changed the century-old paradigm that aerobic ammonia oxidation is solely mediated by two small clades of Beta- and Gammaproteobacteria. Group I archaea are extremely diverse and ubiquitous in marine and terrestrial environments, accounting for 20-30% of the microbial plankton in the global oceans. Recent studies indicated that many of these organisms carry putative ammonia monooxygenase genes and are more abundant than ammonia-oxidizing bacteria in most natural environments suggesting a potentially significant role in the nitrogen cycle. The isolation of Nitrosopumilus maritimus strain SCM1 provided the first direct evidence that Group I archaea indeed gain energy from ammonia oxidation. To characterize the physiology of this archaeal nitrifier, we developed a respirometry setup particularly suited for activity measurements in dilute microbial cultures with extremely low oxygen uptake rates. Here, we describe the setup and review the kinetic experiments conducted with N. maritimus and other nitrifying microorganisms. These experiments demonstrated that N. maritimus is adapted to grow on ammonia concentrations found in oligotrophic open ocean environments, far below the survival threshold of ammonia-oxidizing bacteria. The described setup and experimental procedures should facilitate physiological studies on other nitrifying archaea and oligotrophic microorganisms in general.

  10. [Inhibition of aromatics on ammonia-oxidizing activity of sediment].

    PubMed

    Dong, Chun-hong; Hu, Hong-ying; Wei, Dong-bin; Huang, Xia; Qian, Yi

    2004-03-01

    The inhibition of 24 aromatics on ammonia-oxidizing activity of nitrifying bacteria in sediment was measured. The effects of the kind, number and position of substituted groups on ammonia-oxidizing activity of nitrifying bacteria were discussed. The inhibition of mono-substituted benzenes on ammonia-oxidizing activity of nitrifying bacteria were in order of -OH > -NO2 > -NH2 > -Cl > -CH3 > -H. The position of substituted groups of di-substituted benzenes also affected the inhibition, and the inhibitions of dimethylbenzenes(xylene) were in order of meta-> ortho-> para-. The increase in number of substituted group on benzene-ring enhanced the inhibition of aromatics studied in this study on nitrifying bacteria. There was a linear relationship between inhibition (IC50, mumol.L-1) of aromatics on ammonia-oxidizing activity and total electronegativity (sigma E) of aromatics: lgIC50 = 14.72 - 0.91 sigma E.

  11. Quantification of ammonia oxidation rates and the distribution of ammonia-oxidizing Archaea and Bacteria in marine sediment depth profiles from Catalina Island, California

    PubMed Central

    Beman, J. M.; Bertics, Victoria J.; Braunschweiler, Thomas; Wilson, Jesse M.

    2012-01-01

    Microbial communities present in marine sediments play a central role in nitrogen biogeochemistry at local to global scales. Along the oxidation–reduction gradients present in sediment profiles, multiple nitrogen cycling processes (such as nitrification, denitrification, nitrogen fixation, and anaerobic ammonium oxidation) are active and actively coupled to one another – yet the microbial communities responsible for these transformations and the rates at which they occur are still poorly understood. We report pore water geochemical (O2, NH4+, and NO3−) profiles, quantitative profiles of archaeal and bacterial amoA genes, and ammonia oxidation rate measurements, from bioturbated marine sediments of Catalina Island, California. Across triplicate sediment cores collected offshore at Bird Rock (BR) and within Catalina Harbor (CH), oxygen penetration (0.24–0.5 cm depth) and the abundance of amoA genes (up to 9.30 × 107 genes g–1) varied with depth and between cores. Bacterial amoA genes were consistently present at depths of up to 10 cm, and archaeal amoA was readily detected in BR cores, and CH cores from 2008, but not 2007. Although detection of DNA is not necessarily indicative of active growth and metabolism, ammonia oxidation rate measurements made in 2008 (using isotope tracer) demonstrated the production of oxidized nitrogen at depths where amoA was present. Rates varied with depth and between cores, but indicate that active ammonia oxidation occurs at up to 10 cm depth in bioturbated CH sediments, where it may be carried out by either or both ammonia-oxidizing archaea and bacteria. PMID:22837756

  12. Wastewater effluent impacts ammonia-oxidizing prokaryotes of the Grand River, Canada.

    PubMed

    Sonthiphand, Puntipar; Cejudo, Eduardo; Schiff, Sherry L; Neufeld, Josh D

    2013-12-01

    The Grand River (Ontario, Canada) is impacted by wastewater treatment plants (WWTPs) that release ammonia (NH3 and NH4+) into the river. In-river microbial communities help transform this ammonia into more oxidized compounds (e.g., NO3- or N2), although the spatial distribution and relative abundance of freshwater autotrophic ammonia-oxidizing prokaryotes (AOP) are not well characterized. This study investigated freshwater N cycling within the Grand River, focusing on sediment and water columns, both inside and outside a WWTP effluent plume. The diversity, relative abundance, and nitrification activity of AOP were investigated by denaturing gradient gel electrophoresis (DGGE), quantitative real-time PCR (qPCR), and reverse transcriptase qPCR (RT-qPCR), targeting both 16S rRNA and functional genes, together with activity assays. The analysis of bacterial 16S rRNA gene fingerprints showed that the WWTP effluent strongly affected autochthonous bacterial patterns in the water column but not those associated with sediment nucleic acids. Molecular and activity data demonstrated that ammonia-oxidizing archaea (AOA) were numerically and metabolically dominant in samples taken from outside the WWTP plume, whereas ammonia-oxidizing bacteria (AOB) dominated numerically within the WWTP effluent plume. Potential nitrification rate measurements supported the dominance of AOB activity in downstream sediment. Anaerobic ammonia-oxidizing (anammox) bacteria were detected primarily in sediment nucleic acids. In-river AOA patterns were completely distinct from effluent AOA patterns. This study demonstrates the importance of combined molecular and activity-based studies for disentangling molecular signatures of wastewater effluent from autochthonous prokaryotic communities.

  13. Temporal and Spatial Stability of Ammonia-Oxidizing Archaea and Bacteria in Aquarium Biofilters

    PubMed Central

    Sauder, Laura A.; Mosquera, Mariela; Neufeld, Josh D.; Boon, Nico

    2014-01-01

    Nitrifying biofilters are used in aquaria and aquaculture systems to prevent accumulation of ammonia by promoting rapid conversion to nitrate via nitrite. Ammonia-oxidizing archaea (AOA), as opposed to ammonia-oxidizing bacteria (AOB), were recently identified as the dominant ammonia oxidizers in most freshwater aquaria. This study investigated biofilms from fixed-bed aquarium biofilters to assess the temporal and spatial dynamics of AOA and AOB abundance and diversity. Over a period of four months, ammonia-oxidizing microorganisms from six freshwater and one marine aquarium were investigated at 4–5 time points. Nitrogen balances for three freshwater aquaria showed that active nitrification by aquarium biofilters accounted for ≥81–86% of total nitrogen conversion in the aquaria. Quantitative PCR (qPCR) for bacterial and thaumarchaeal ammonia monooxygenase (amoA) genes demonstrated that AOA were numerically dominant over AOB in all six freshwater aquaria tested, and contributed all detectable amoA genes in three aquarium biofilters. In the marine aquarium, however, AOB outnumbered AOA by three to five orders of magnitude based on amoA gene abundances. A comparison of AOA abundance in three carrier materials (fine sponge, rough sponge and sintered glass or ceramic rings) of two three-media freshwater biofilters revealed preferential growth of AOA on fine sponge. Denaturing gel gradient electrophoresis (DGGE) of thaumarchaeal 16S rRNA genes indicated that community composition within a given biofilter was stable across media types. In addition, DGGE of all aquarium biofilters revealed low AOA diversity, with few bands, which were stable over time. Nonmetric multidimensional scaling (NMDS) based on denaturing gradient gel electrophoresis (DGGE) fingerprints of thaumarchaeal 16S rRNA genes placed freshwater and marine aquaria communities in separate clusters. These results indicate that AOA are the dominant ammonia-oxidizing microorganisms in freshwater aquarium

  14. Temporal and spatial stability of ammonia-oxidizing archaea and bacteria in aquarium biofilters.

    PubMed

    Bagchi, Samik; Vlaeminck, Siegfried E; Sauder, Laura A; Mosquera, Mariela; Neufeld, Josh D; Boon, Nico

    2014-01-01

    Nitrifying biofilters are used in aquaria and aquaculture systems to prevent accumulation of ammonia by promoting rapid conversion to nitrate via nitrite. Ammonia-oxidizing archaea (AOA), as opposed to ammonia-oxidizing bacteria (AOB), were recently identified as the dominant ammonia oxidizers in most freshwater aquaria. This study investigated biofilms from fixed-bed aquarium biofilters to assess the temporal and spatial dynamics of AOA and AOB abundance and diversity. Over a period of four months, ammonia-oxidizing microorganisms from six freshwater and one marine aquarium were investigated at 4-5 time points. Nitrogen balances for three freshwater aquaria showed that active nitrification by aquarium biofilters accounted for ≥ 81-86% of total nitrogen conversion in the aquaria. Quantitative PCR (qPCR) for bacterial and thaumarchaeal ammonia monooxygenase (amoA) genes demonstrated that AOA were numerically dominant over AOB in all six freshwater aquaria tested, and contributed all detectable amoA genes in three aquarium biofilters. In the marine aquarium, however, AOB outnumbered AOA by three to five orders of magnitude based on amoA gene abundances. A comparison of AOA abundance in three carrier materials (fine sponge, rough sponge and sintered glass or ceramic rings) of two three-media freshwater biofilters revealed preferential growth of AOA on fine sponge. Denaturing gel gradient electrophoresis (DGGE) of thaumarchaeal 16S rRNA genes indicated that community composition within a given biofilter was stable across media types. In addition, DGGE of all aquarium biofilters revealed low AOA diversity, with few bands, which were stable over time. Nonmetric multidimensional scaling (NMDS) based on denaturing gradient gel electrophoresis (DGGE) fingerprints of thaumarchaeal 16S rRNA genes placed freshwater and marine aquaria communities in separate clusters. These results indicate that AOA are the dominant ammonia-oxidizing microorganisms in freshwater aquarium

  15. SOIL NITROUS OXIDE, NITRIC OXIDE, AND AMMONIA EMISSIONS FROM A RECOVERING RIPARIAN ECOSYSTEM IN SOUTHERN APPALACHIA

    EPA Science Inventory

    The paper presents two years of seasonal nitric oxide, ammonia, and nitrous oxide trace gas fluxes measured in a recovering riparian zone with cattle excluded and in an adjacent riparian zone grazed by cattle. In the recovering riparian zone, average nitric oxide, ammonia, and ni...

  16. Habitat-associated phylogenetic community patterns of microbial ammonia oxidizers.

    PubMed

    Fernàndez-Guerra, Antoni; Casamayor, Emilio O

    2012-01-01

    Microorganisms mediating ammonia oxidation play a fundamental role in the connection between biological nitrogen fixation and anaerobic nitrogen losses. Bacteria and Archaea ammonia oxidizers (AOB and AOA, respectively) have colonized similar habitats worldwide. Ammonia oxidation is the rate-limiting step in nitrification, and the ammonia monooxygenase (Amo) is the key enzyme involved. The molecular ecology of this process has been extensively explored by surveying the gene of the subunit A of the Amo (amoA gene). In the present study, we explored the phylogenetic community ecology of AOB and AOA, analyzing 5776 amoA gene sequences from >300 isolation sources, and clustering habitats by environmental ontologies. As a whole, phylogenetic richness was larger in AOA than in AOB, and sediments contained the highest phylogenetic richness whereas marine plankton the lowest. We also observed that freshwater ammonia oxidizers were phylogenetically richer than their marine counterparts. AOA communities were more dissimilar to each other than those of AOB, and consistent monophyletic lineages were observed for sediments, soils, and marine plankton in AOA but not in AOB. The diversification patterns showed a more constant cladogenesis through time for AOB whereas AOA apparently experienced two fast diversification events separated by a long steady-state episode. The diversification rate (γ statistic) for most of the habitats indicated γ(AOA) > γ(AOB). Soil and sediment experienced earlier bursts of diversification whereas habitats usually eutrophic and rich in ammonium such as wastewater and sludge showed accelerated diversification rates towards the present. Overall, this work shows for the first time a global picture of the phylogenetic community structure of both AOB and AOA assemblages following the strictest analytical standards, and provides an ecological view on the differential evolutionary paths experienced by widespread ammonia-oxidizing microorganisms. The

  17. [Characteristics of sulfate reduction-ammonia oxidation reaction].

    PubMed

    Yuan, Yi; Huang, Yong; Li, Xiang; Zhang, Chun-Lei; Zhang, Li; Pan, Yang; Liu, Fu-Xin

    2013-11-01

    The sulfate reduction-ammonia oxidation reaction with ANAMMOX sludge at autotrophic condition was implemented. It was found that the pH level decreased during the reaction. Elemental sulfur and nitrogen gas were the final products, while NO3(-) -N was the intermediate product during the sulfate reduction-ammonia oxidation reaction. The conversion ratio of NH4(+) -N/SO4(2-) -S decreased with the decrease in n(N)/n(S) (molar ratio) of raw water. n(N)/n(S) of raw water had little effect on the ammonia conversion ratio. Lower n(N)/n(S) could improve the SO4(2-)-S conversion ratio, but with more NH4(+) -N oxidized into NO3(-) -N, resulting in decreased n(TN)/n(TS) removal ratio. This indicates that the sulfate reduction-ammonia oxidation reaction is not an elementary reaction. Ammonia can be oxidized into NO2(-) -N or NO3(-) -N by sulfate. Shortening the reaction time would be conducive to nitrogen losses, because the reaction of NO3(-) -N production is the rate-limiting step.

  18. Ammonia-oxidizing archaea have better adaptability in oxygenated/hypoxic alternant conditions compared to ammonia-oxidizing bacteria.

    PubMed

    Liu, Shuai; Hu, Baolan; He, Zhanfei; Zhang, Bin; Tian, Guangming; Zheng, Ping; Fang, Fang

    2015-10-01

    Ammonia oxidation is performed by both ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB). Few studies compared the adaptability of AOA and AOB for oxygenated/hypoxic alternant conditions in water-level-fluctuating zones. Here, using qPCR and 454 high-throughput sequencing of functional amoA genes of AOA and AOB, we examined the changes of abundances, diversities, and community structures of AOA and AOB in periodically flooded soils compared to the non-flooded soils in Three Gorges Reservoir. The increased AOA operational taxonomic unit (OTU) numbers and the higher ratios of abundance (AOA:AOB) in the periodically flooded soils suggested AOA have better adaptability for oxygenated/hypoxic alternant conditions in the water-level-fluctuating zones in the Three Gorges Reservoir and probably responsible for the ammonia oxidation there. Canonical correspondence analysis (CCA) showed that oxidation-reduction potential (ORP) had the most significant effect on the community distribution of AOA (p < 0.01). Pearson analysis also indicated that ORP was the most important factor influencing the abundances and diversities of ammonia-oxidizing microbes. ORP was significantly negatively correlated with AOA OTU numbers (p < 0.05), ratio of OTU numbers (AOA:AOB) (p < 0.01), and ratio of amoA gene abundances (AOA:AOB) (p < 0.05). ORP was also significantly positively correlated with AOB abundance (p < 0.05). PMID:26099334

  19. Ammonia-oxidizing archaea have better adaptability in oxygenated/hypoxic alternant conditions compared to ammonia-oxidizing bacteria.

    PubMed

    Liu, Shuai; Hu, Baolan; He, Zhanfei; Zhang, Bin; Tian, Guangming; Zheng, Ping; Fang, Fang

    2015-10-01

    Ammonia oxidation is performed by both ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB). Few studies compared the adaptability of AOA and AOB for oxygenated/hypoxic alternant conditions in water-level-fluctuating zones. Here, using qPCR and 454 high-throughput sequencing of functional amoA genes of AOA and AOB, we examined the changes of abundances, diversities, and community structures of AOA and AOB in periodically flooded soils compared to the non-flooded soils in Three Gorges Reservoir. The increased AOA operational taxonomic unit (OTU) numbers and the higher ratios of abundance (AOA:AOB) in the periodically flooded soils suggested AOA have better adaptability for oxygenated/hypoxic alternant conditions in the water-level-fluctuating zones in the Three Gorges Reservoir and probably responsible for the ammonia oxidation there. Canonical correspondence analysis (CCA) showed that oxidation-reduction potential (ORP) had the most significant effect on the community distribution of AOA (p < 0.01). Pearson analysis also indicated that ORP was the most important factor influencing the abundances and diversities of ammonia-oxidizing microbes. ORP was significantly negatively correlated with AOA OTU numbers (p < 0.05), ratio of OTU numbers (AOA:AOB) (p < 0.01), and ratio of amoA gene abundances (AOA:AOB) (p < 0.05). ORP was also significantly positively correlated with AOB abundance (p < 0.05).

  20. Impacts of Edaphic Factors on Communities of Ammonia-Oxidizing Archaea, Ammonia-Oxidizing Bacteria and Nitrification in Tropical Soils

    PubMed Central

    de Gannes, Vidya; Eudoxie, Gaius; Hickey, William J.

    2014-01-01

    Nitrification is a key process in soil nitrogen (N) dynamics, but relatively little is known about it in tropical soils. In this study, we examined soils from Trinidad to determine the edaphic drivers affecting nitrification levels and community structure of ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA) in non-managed soils. The soils were naturally vegetated, ranged in texture from sands to clays and spanned pH 4 to 8. The AOA were detected by qPCR in all soils (ca. 105 to 106 copies archaeal amoA g−1 soil), but AOB levels were low and bacterial amoA was infrequently detected. AOA abundance showed a significant negative correlation (p<0.001) with levels of soil organic carbon, clay and ammonium, but was not correlated to pH. Structures of AOA and AOB communities, as determined by amoA terminal restriction fragment (TRF) analysis, differed significantly between soils (p<0.001). Variation in AOA TRF profiles was best explained by ammonium-N and either Kjeldahl N or total N (p<0.001) while variation in AOB TRF profiles was best explained by phosphorus, bulk density and iron (p<0.01). In clone libraries, phylotypes of archaeal amoA (predominantly Nitrososphaera) and bacterial amoA (predominanatly Nitrosospira) differed between soils, but variation was not correlated with pH. Nitrification potential was positively correlated with clay content and pH (p<0.001), but not to AOA or AOB abundance or community structure. Collectively, the study showed that AOA and AOB communities were affected by differing sets of edaphic factors, notably that soil N characteristics were significant for AOA, but not AOB, and that pH was not a major driver for either community. Thus, the effect of pH on nitrification appeared to mainly reflect impacts on AOA or AOB activity, rather than selection for AOA or AOB phylotypes differing in nitrifying capacity. PMID:24586878

  1. Hydrothermal oxidation of ammonia/organic waste mixtures

    SciTech Connect

    Luan, Li; Proesmans, P.I.; Buelow, S.J.

    1997-05-01

    Hydrothermal oxidation is a promising new technology for the treatment of radioactive contaminated hazardous organic wastes. Los Alamos National Laboratory is currently evaluating this technology for the U. S. Department of Energy. In this paper, we present experimental results from the study of the hydrothermal oxidation of an ammonia/alcohol/uranium waste mixture. The use of a co-oxidant system consisting of hydrogen peroxide combined with nitrate is discussed. Experiments demonstrate near complete destruction of ammonia and organic compounds at 500{degrees} C, 38 MPa, and 50 seconds reaction time. The ammonia and total organic carbon (TOC) concentrations in a waste simulant is reduced from 8,500 mg/L of ammonia and 12,500 mg/L TOC to 30 mg/L ammonia and less than 10 mg/L TOC. The major reaction products are CO{sub 2}, N{sub 2}, and a small amount of N{sub 2}O. Comparison experiments with nitrate and hydrogen peroxide used individually show the advantage of the co-oxidant system.

  2. Macroecological patterns of archaeal ammonia oxidizers in the Atlantic Ocean.

    PubMed

    Sintes, Eva; De Corte, Daniele; Ouillon, Natascha; Herndl, Gerhard J

    2015-10-01

    Macroecological patterns are found in animals and plants, but also in micro-organisms. Macroecological and biogeographic distribution patterns in marine Archaea, however, have not been studied yet. Ammonia-oxidizing Archaea (AOA) show a bipolar distribution (i.e. similar communities in the northernmost and the southernmost locations, separated by distinct communities in the tropical and gyral regions) throughout the Atlantic, detectable from epipelagic to upper bathypelagic layers (<2000 m depth). This tentatively suggests an influence of the epipelagic conditions of organic matter production on bathypelagic AOA communities. The AOA communities below 2000 m depth showed a less pronounced biogeographic distribution pattern than the upper 2000 m water column. Overall, AOA in the surface and deep Atlantic waters exhibit distance-decay relationships and follow the Rapoport rule in a similar way as bacterial communities and macroorganisms. This indicates a major role of environmental conditions in shaping the community composition and assembly (species sorting) and no, or only weak limits for dispersal in the oceanic thaumarchaeal communities. However, there is indication of a different strength of these relationships between AOA and Bacteria, linked to the intrinsic differences between these two domains.

  3. Ammonia biofiltration and community analysis of ammonia-oxidizing bacteria in biofilters.

    PubMed

    Jun, Yin; Wenfeng, Xu

    2009-09-01

    Biological removal of ammonia was investigated using compost and sludge as packing materials in laboratory-scale biofilters. The aim of this study is to characterize the composition of ammonia-oxidizing bacteria (AOB) in two biofilters designed to remove ammonia. Experimental tests and measurements included analysis of removal efficiency and metabolic products. The inlet concentration of ammonia applied was 20-100 mg m(-3). Removal efficiencies of BFC and BFS were in the range of 97-99% and 95-99%, respectively. Periodic analysis of the biofilter packing materials showed ammonia was removed from air stream by nitrification and by the improved absorption of NH(3) in the resultant acidity. Nitrate was the dominant product of NH(3) transformation. Changes in the composition of AOB were examined by using nested PCR, denaturing gradient gel electrophoresis (DGGE) and sequencing of DGGE bands. DGGE analysis of biofilter samples revealed that shifts in the community structure of AOB were observed in the experiment; however, the idle phase did not cause the structural shift of AOB. Phylogenetic analysis revealed the population of AOB showed Nitrosospira sp. remains the predominant population in BFC, while Nitrosomonas sp. is the predominant population in BFS.

  4. Ammonia oxidation driven by archaea rather than bacteria in the hot spring at Tengchong geothermal field, China.

    NASA Astrophysics Data System (ADS)

    Chen, Shun; Peng, Xiaotong; Xu, Hengchao; Li, Jiwei; Ta, Kaiwen

    2015-04-01

    The occurrence of microbial mediated ammonia oxidation and these organisms are present in large numbers in natural environments indicated a potential biogeochemical role for them in the global nitrogen cycle. However, very little is understood about their role and contribution to nitrification in the high temperature extreme environments. Here we explore the ammonia oxidation rates and abundance of potential ammonia-oxidizing archaea (AOA) in upper and bottom sediments from Gongxiaoshe hot spring, Tengchong, Yunnan, China. The 15N-incorporating AOA cells and cell aggregated were detected with Fluorescence in situ hybridization (FISH) and Nano secondary ion mass spectrometry (Nano-SIMS). Ammonia oxidation rates measured using 15N-NO3- pool dilution in upper and bottom sediments (without NH4+ stimulated) were 4.8 and 5.3 nmol N g-1h-1, respectively. Close relatives of the autotrophic, ammonia-oxidizing archaeon 'Candidatus Nitrosocaldus yellowstonii' represented the most abundant OTU in both of the two spring sediments by 16S rRNA gene analysis. Furthermore, it should be noted that no ammonia-oxidizing bacterial clones detected in this study. Quantitative PCR (qPCR) indicated that AOA and 16S rRNA genes were present at 2.75-9.80×105 and 0.128-1.96×108 gene copies g-1 sediment. Based on the reaction rates and AOA abundance, we estimated the cell-specific nitrification rates were 0.41 to 0.79 fmol N archaeal cell-1 h-1, which are comparable to those observed in estuary environment. We suggest that AOA have the responsibility in nitrification in this hot spring, and these archaea rather than bacteria may be considered as a driver in nitrogen cycling in terrestrial hot ecosystems. Key words: ammonia-oxidizing archaea (AOA); nitrification; ammonia-oxidizing rate; hot spring;

  5. Microbial Community Dynamics and Stability during an Ammonia-Induced Shift to Syntrophic Acetate Oxidation

    PubMed Central

    Werner, Jeffrey J.; Garcia, Marcelo L.; Perkins, Sarah D.; Yarasheski, Kevin E.; Smith, Samuel R.; Muegge, Brian D.; Stadermann, Frank J.; DeRito, Christopher M.; Floss, Christine; Madsen, Eugene L.; Gordon, Jeffrey I.

    2014-01-01

    Anaerobic digesters rely on the diversity and distribution of parallel metabolic pathways mediated by complex syntrophic microbial communities to maintain robust and optimal performance. Using mesophilic swine waste digesters, we experimented with increased ammonia loading to induce a shift from aceticlastic methanogenesis to an alternative acetate-consuming pathway of syntrophic acetate oxidation. In comparison with control digesters, we observed shifts in bacterial 16S rRNA gene content and in functional gene repertoires over the course of the digesters' 3-year operating period. During the first year, under identical startup conditions, all bioreactors mirrored each other closely in terms of bacterial phylotype content, phylogenetic structure, and evenness. When we perturbed the digesters by increasing the ammonia concentration or temperature, the distribution of bacterial phylotypes became more uneven, followed by a return to more even communities once syntrophic acetate oxidation had allowed the experimental bioreactors to regain stable operation. The emergence of syntrophic acetate oxidation coincided with a partial shift from aceticlastic to hydrogenotrophic methanogens. Our 16S rRNA gene analysis also revealed that acetate-fed enrichment experiments resulted in communities that did not represent the bioreactor community. Analysis of shotgun sequencing of community DNA suggests that syntrophic acetate oxidation was carried out by a heterogeneous community rather than by a specific keystone population with representatives of enriched cultures with this metabolic capacity. PMID:24657858

  6. Microbial community dynamics and stability during an ammonia-induced shift to syntrophic acetate oxidation.

    PubMed

    Werner, Jeffrey J; Garcia, Marcelo L; Perkins, Sarah D; Yarasheski, Kevin E; Smith, Samuel R; Muegge, Brian D; Stadermann, Frank J; DeRito, Christopher M; Floss, Christine; Madsen, Eugene L; Gordon, Jeffrey I; Angenent, Largus T

    2014-06-01

    Anaerobic digesters rely on the diversity and distribution of parallel metabolic pathways mediated by complex syntrophic microbial communities to maintain robust and optimal performance. Using mesophilic swine waste digesters, we experimented with increased ammonia loading to induce a shift from aceticlastic methanogenesis to an alternative acetate-consuming pathway of syntrophic acetate oxidation. In comparison with control digesters, we observed shifts in bacterial 16S rRNA gene content and in functional gene repertoires over the course of the digesters' 3-year operating period. During the first year, under identical startup conditions, all bioreactors mirrored each other closely in terms of bacterial phylotype content, phylogenetic structure, and evenness. When we perturbed the digesters by increasing the ammonia concentration or temperature, the distribution of bacterial phylotypes became more uneven, followed by a return to more even communities once syntrophic acetate oxidation had allowed the experimental bioreactors to regain stable operation. The emergence of syntrophic acetate oxidation coincided with a partial shift from aceticlastic to hydrogenotrophic methanogens. Our 16S rRNA gene analysis also revealed that acetate-fed enrichment experiments resulted in communities that did not represent the bioreactor community. Analysis of shotgun sequencing of community DNA suggests that syntrophic acetate oxidation was carried out by a heterogeneous community rather than by a specific keystone population with representatives of enriched cultures with this metabolic capacity.

  7. The production of nitric oxide by marine ammonia-oxidizing archaea and inhibition of archaeal ammonia oxidation by a nitric oxide scavenger.

    PubMed

    Martens-Habbena, Willm; Qin, Wei; Horak, Rachel E A; Urakawa, Hidetoshi; Schauer, Andrew J; Moffett, James W; Armbrust, E Virginia; Ingalls, Anitra E; Devol, Allan H; Stahl, David A

    2015-07-01

    Nitrification is a critical process for the balance of reduced and oxidized nitrogen pools in nature, linking mineralization to the nitrogen loss processes of denitrification and anammox. Recent studies indicate a significant contribution of ammonia-oxidizing archaea (AOA) to nitrification. However, quantification of the relative contributions of AOA and ammonia-oxidizing bacteria (AOB) to in situ ammonia oxidation remains challenging. We show here the production of nitric oxide (NO) by Nitrosopumilus maritimus SCM1. Activity of SCM1 was always associated with the release of NO with quasi-steady state concentrations between 0.05 and 0.08 μM. NO production and metabolic activity were inhibited by the nitrogen free radical scavenger 2-phenyl-4,4,5,5,-tetramethylimidazoline-1-oxyl-3-oxide (PTIO). Comparison of marine and terrestrial AOB strains with SCM1 and the recently isolated marine AOA strain HCA1 demonstrated a differential sensitivity of AOB and AOA to PTIO and allylthiourea (ATU). Similar to the investigated AOA strains, bulk water column nitrification at coastal and open ocean sites with sub-micromolar ammonia/ammonium concentrations was inhibited by PTIO and insensitive to ATU. These experiments support predictions from kinetic, molecular and biogeochemical studies, indicating that marine nitrification at low ammonia/ammonium concentrations is largely driven by archaea and suggest an important role of NO in the archaeal metabolism.

  8. Mathematical models and bacterial communities for ammonia toxicity in mesophilic anaerobes not acclimated to high concentrations of ammonia.

    PubMed

    Park, Seyong; Cui, Fenghao; Mo, Kyung; Kim, Moonil

    2016-01-01

    In this study, we evaluated ammonia toxicity in mesophilic anaerobic digestion at various pH values and total ammonia nitrogen (TAN) concentrations. We performed anaerobic toxicity assays (ATAs) to evaluate the toxicity effects of TAN and pH on mesophilic anaerobic digestion. Modeling based on the results of the ATAs indicated that the specific methanogenic activity (SMA) decreased by 30% at a TAN concentration higher than 3.0 g/L compared to a TAN concentration of 0 g/L. In addition, the highest SMA for a given TAN level (0.5-10.0 g/L) was observed at a pH of around 7.6. The results of bacterial community analyses showed that the diversity and richness of microorganisms with increasing TAN concentration were decreased. Chloroflexi and Synergistetes were the dominant phyla at TAN concentrations less than 3.0 g/L, and Firmicutes was the dominant phylum at TAN concentrations higher than 3.0 g/L, implying that the ammonia toxicity concentration may influence the kind of dominant species. In conclusion, to start a stable mesophilic anaerobic digestion concerning ammonia toxicity, a TAN concentration less than 3.0 g/L is preferable. PMID:27533868

  9. Characteristics of the microbial community associated with ammonia oxidation in a full-scale rockwool biofilter treating malodors from livestock manure composting.

    PubMed

    Yasuda, Tomoko; Kuroda, Kazutaka; Hanajima, Dai; Fukumoto, Yasuyuki; Waki, Miyoko; Suzuki, Kazuyoshi

    2010-01-01

    The relationship between the activity and community structure of microbes associated with the oxidation of ammonia in a full-scale rockwool biofilter was examined by kinetic, denaturing gradient gel electrophoresis (DGGE), and sequence analyses. The packing materials were sampled from two different depths at 3 sites. Estimated K(m) values were similar among depths at same sampling sites, while V(max) differed in the mid-point sample. The lower depth of this site had the highest V(max). A correspondence analysis showed the DGGE profile of ammonia-oxidizing bacterial amoA of the lower depth of the mid-point sample to be distinguishable from the others. Banding patterns at other sites were similar among depths. Banding patterns of ammonia-oxidizing archaeal amoA of the mid-point sample were also similar among depths. The results suggested an association between the ammonia-oxidizing bacterial community's composition and ammonium oxidation kinetics in samples. Sequence analysis indicated that the ammonia-oxidizing bacterial community mainly belonged to the Nitrosomonas europaea lineage and Nitrosospira cluster 3. The ammonia-oxidizing archaeal amoA-like sequences were related to those belonging to soil and sediment groups, including one with 84% nucleotide similarity with Nitrosopumilus maritimus.

  10. Ammonia modification of oxide-free Si(111) surfaces

    NASA Astrophysics Data System (ADS)

    Chopra, Tatiana Peixoto; Longo, Roberto C.; Cho, Kyeongjae; Chabal, Yves J.

    2016-08-01

    Amination of surfaces is useful in a variety of fields, ranging from device manufacturing to biological applications. Previous studies of ammonia reaction on silicon surfaces have concentrated on vapor phase rather than wet chemical processes, and mostly on clean Si surfaces. In this work, the interaction of liquid and vapor-phase ammonia is examined on three types of oxide-free surfaces - passivated by hydrogen, fluorine (1/3 monolayer) or chlorine - combining infrared absorption spectroscopy, X-ray photoelectron spectroscopy, and first-principles calculations. The resulting chemical composition highly depends on the starting surface; there is a stronger reaction on both F- and Cl-terminated than on the H-terminated Si surfaces, as evidenced by the formation of Si-NH2. Side reactions can also occur, such as solvent reaction with surfaces, formation of ammonium salt by-products (in the case of 0.2 M ammonia in dioxane solution), and nitridation of silicon (in the case of neat and gas-phase ammonia reactions for instance). Unexpectedly, there is formation of Si-H bonds on hydrogen-free Cl-terminated Si(111) surfaces in all cases, whether vapor phase of neat liquid ammonia is used. The first-principles modeling of this complex system suggests that step-edge surface defects may play a key role in enabling the reaction under certain circumstances, despite the endothermic nature for Si-H bond formation.

  11. Oxidation of ammonia and methane in an alkaline, saline lake

    USGS Publications Warehouse

    Joye, S.B.; Connell, T.L.; Miller, L.G.; Oremland, R.S.; Jellison, R.S.

    1999-01-01

    The oxidation of ammonia (NH3) and methane (CH4) was investigated in an alkaline saline lake, Mono Lake, California (U.S.A.). Ammonia oxidation was examined in April and July 1995 by comparing dark 14CO2 fixation rates in the presence or absence of methyl fluoride (MeF), an inhibitor of NH3 oxidation. Ammonia oxidizer-mediated dark 14CO2 fixation rates were similar in surface (5-7 m) and oxycline (11-15 m) waters, ranging between 70-340 and 89-186 nM d-1, respectively, or 1-7% of primary production by phytoplankton. Ammonia oxidation rates ranged between 580-2,830 nM d-1 in surface waters and 732-1,548 nM d-1 in oxycline waters. Methane oxidation was examined using a 14CH4 tracer technique in July 1994, April 1995, and July 1995. Methane oxidation rates were consistently higher in July, and rates in oxycline and anaerobic bottom waters (0.5-37 and 7-48 nM d-1, respectively) were 10-fold higher than those in aerobic surface waters (0.04-3.8 nM d-1). The majority of CH4 oxidation, in terms of integrated activity, occurred within anoxic bottom waters. Water column oxidation reduced the potential lake-atmosphere CH4 flux by a factor of two to three. Measured oxidation rates and water column concentrations were used to estimate the biological turnover times of NH3 and CH4. The NH3 pool turns over rapidly, on time scales of 0.8 d in surface waters and 10 d within the oxycline, while CH4 is cycled on 103-d time scales in surface waters and 102-d time scales within oxycline and bottom waters. Our data suggest an important role for NH3 oxidation in alkaline, saline lakes since the process converts volatile NH3 to soluble NO2-, thereby reducing loss via lake-atmosphere exchange and maintaining nitrogen in a form that is readily available to phytoplankton.

  12. [Effect of dissolved oxygen on diversity of ammonia-oxidizing microorganisms in enrichment culture from estuarine wetland surface sediments and ammonia-oxidizing rate].

    PubMed

    Qiu, Zhao-Zheng; Luo, Zhuan-Xi; Zhao, Yan-Ling; Yan, Chang-Zhou

    2013-02-01

    Dissolved oxygen (DO) is one of the important environmental factors influencing the ammonia oxidation process. In order to examine the effects of DO on ammonia oxidation process and its potential mechanisms, surface sediments from Jiulong River Estuarine Wetland were collected and cultured to obtain enrichment cultures. Then the enrichment cultures were inoculated under different levels of DO, and the diversity of ammonia-oxidizing microorganisms was analyzed using PCR-DGGE technique to determine the effect of DO on the ammonia oxidation rate and the ammonia-oxidizing microorganism diversity. Results showed that the Shannon index was 2. 00 and 2.05 for ammonia-oxidizing bacteria (AOB) under saturated and aerobic conditions, respectively, and the values were 2.49 (saturated) and 2.03 (aerobic) for ammonia-oxidizing archaea (AOA). However, this index was 1.76 and 1.80 for AOB under hypoxia and anaerobic condition, and 1.27 and 2. 21 for AOA. Under saturated and aerobic conditions ( higher DO level), the ammonia-oxidizing rates were 14.20 mg.(L.d)-1 and 13.36 mg.(L.d)-1 and the related conversation rates of NH+4 -N were 93.8% and 88. 2% , respectively. In comparison, under hypoxia and anaerobic conditions (lower DO level), the ammonia-oxidizing rates were 7.82 mg.(L.d) -1 and 5.66 mg.(L.d)-1 and the related conversation rates of NH+4 -N were 51.7% and 37.4% , respectively. The correlation analysis showed that DO concentration was highly significantly positively correlated with the ammonia oxidation rate, and was significantly positively correlated with the AOB diversity index; DO and ammonia oxidation rate had no correlation with indices of AOA community.

  13. Phylogenetic and functional marker genes to study ammonia-oxidizing microorganisms (AOM) in the environment.

    PubMed

    Junier, Pilar; Molina, Verónica; Dorador, Cristina; Hadas, Ora; Kim, Ok-Sun; Junier, Thomas; Witzel, Jean-Paul; Imhoff, Johannes F

    2010-01-01

    The oxidation of ammonia plays a significant role in the transformation of fixed nitrogen in the global nitrogen cycle. Autotrophic ammonia oxidation is known in three groups of microorganisms. Aerobic ammonia-oxidizing bacteria and archaea convert ammonia into nitrite during nitrification. Anaerobic ammonia-oxidizing bacteria (anammox) oxidize ammonia using nitrite as electron acceptor and producing atmospheric dinitrogen. The isolation and cultivation of all three groups in the laboratory are quite problematic due to their slow growth rates, poor growth yields, unpredictable lag phases, and sensitivity to certain organic compounds. Culture-independent approaches have contributed importantly to our understanding of the diversity and distribution of these microorganisms in the environment. In this review, we present an overview of approaches that have been used for the molecular study of ammonia oxidizers and discuss their application in different environments.

  14. Phylogenetic and functional marker genes to study ammonia-oxidizing microorganisms (AOM) in the environment.

    PubMed

    Junier, Pilar; Molina, Verónica; Dorador, Cristina; Hadas, Ora; Kim, Ok-Sun; Junier, Thomas; Witzel, Jean-Paul; Imhoff, Johannes F

    2010-01-01

    The oxidation of ammonia plays a significant role in the transformation of fixed nitrogen in the global nitrogen cycle. Autotrophic ammonia oxidation is known in three groups of microorganisms. Aerobic ammonia-oxidizing bacteria and archaea convert ammonia into nitrite during nitrification. Anaerobic ammonia-oxidizing bacteria (anammox) oxidize ammonia using nitrite as electron acceptor and producing atmospheric dinitrogen. The isolation and cultivation of all three groups in the laboratory are quite problematic due to their slow growth rates, poor growth yields, unpredictable lag phases, and sensitivity to certain organic compounds. Culture-independent approaches have contributed importantly to our understanding of the diversity and distribution of these microorganisms in the environment. In this review, we present an overview of approaches that have been used for the molecular study of ammonia oxidizers and discuss their application in different environments. PMID:19830422

  15. EXAMINING THE TEMPORAL VARIABILITY OF AMMONIA AND NITRIC OXIDE EMISSIONS FROM AGRICULTURAL PROCESSES

    EPA Science Inventory

    This paper examines the temporal variability of airborne emissions of ammonia from livestock operations and fertilizer application and nitric oxide from soils. In the United States, the livestock operations and fertilizer categories comprise the majority of the ammonia emissions...

  16. Effects of drought on nitrogen turnover and abundances of ammonia-oxidizers in mountain grassland

    NASA Astrophysics Data System (ADS)

    Fuchslueger, L.; Kastl, E.-M.; Bauer, F.; Kienzl, S.; Hasibeder, R.; Ladreiter-Knauss, T.; Schmitt, M.; Bahn, M.; Schloter, M.; Richter, A.; Szukics, U.

    2014-06-01

    Future climate scenarios suggest an increased frequency of summer drought periods in the European Alpine Region. Drought can affect soil nitrogen (N) cycling, by altering N transformation rates, as well as the abundances of ammonia-oxidizing bacteria and archaea. However, the extent to which drought affects N cycling under in situ conditions is still controversial. The goal of this study was to analyse effects of drought on soil N turnover and ammonia-oxidizer abundances. To this end we conducted a rain-exclusion experiment at two differently managed mountain grassland sites, an annually mown and occasionally fertilized meadow and an abandoned grassland. Soils were sampled before, during and after drought and were analysed for gross rates of N mineralization, microbial uptake of inorganic N, nitrification, and the abundances of bacterial and archaeal ammonia oxidizers based on gene copy numbers of the amoA gene (AOB and AOA, respectively). Our results showed that the response to drought differed between the two sites. Effects were stronger at the managed meadow, where NH4+ immobilization rates increased and AOA abundances decreased. At the abandoned site gross nitrification and NO3- immobilization rates decreased during drought, while neither AOB, nor AOA abundances were affected. The different responses of the two sites to drought were likely related to site specific differences, such as soil organic matter content, nitrogen pools and absolute soil water content, resulting from differences in land-management. At both sites rewetting after drought had only minor short-term effects on the parameters that had been affected by drought, and seven weeks after the drought no effects of drought were detectable anymore. Thus, our findings indicate that drought can have distinct transient effects on soil nitrogen cycling and ammonia-oxidizer abundances in mountain grasslands and that the effect strength could be modulated by grassland management.

  17. Effects of drought on nitrogen turnover and abundances of ammonia-oxidizers in mountain grassland

    NASA Astrophysics Data System (ADS)

    Fuchslueger, L.; Kastl, E.-M.; Bauer, F.; Kienzl, S.; Hasibeder, R.; Ladreiter-Knauss, T.; Schmitt, M.; Bahn, M.; Schloter, M.; Richter, A.; Szukics, U.

    2014-11-01

    Future climate scenarios suggest an increased frequency of summer drought periods in the European Alpine Region. Drought can affect soil nitrogen (N) cycling, by altering N transformation rates, as well as the abundances of ammonia-oxidizing bacteria and archaea. However, the extent to which drought affects N cycling under in situ conditions is still controversial. The goal of this study was to analyse effects of drought on soil N turnover and ammonia-oxidizer abundances in soil without drought history. To this end we conducted rain-exclusion experiments at two differently managed mountain grassland sites, an annually mown and occasionally fertilized meadow and an abandoned grassland. Soils were sampled before, during and after drought and were analysed for potential gross rates of N mineralization, microbial uptake of inorganic N, nitrification, and the abundances of bacterial and archaeal ammonia-oxidizers based on gene copy numbers of the amoA gene (AOB and AOA, respectively). Drought induced different responses at the two studied sites. At the managed meadow drought increased NH4+ immobilization rates and NH4+ concentrations in the soil water solution, but led to a reduction of AOA abundance compared to controls. At the abandoned site gross nitrification and NO3- immobilization rates decreased during drought, while AOB and AOA abundances remained stable. Rewetting had only minor, short-term effects on the parameters that had been affected by drought. Seven weeks after the end of drought no differences to control plots could be detected. Thus, our findings demonstrated that in mountain grasslands drought had distinct transient effects on soil nitrogen cycling and ammonia-oxidizers, which could have been related to a niche differentiation of AOB and AOA with increasing NH4+ levels. However, the effect strength of drought was modulated by grassland management.

  18. Effect of Different Ammonia Concentrations on Community Succession of Ammonia-oxidizing Microorganisms in a Simulated Paddy Soil Column

    PubMed Central

    Baolan, Hu; Shuai, Liu; Lidong, Shen; Ping, Zheng; Xiangyang, Xu; Liping, Lou

    2012-01-01

    Ammonia oxidation is performed by both ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA). To explore the effect of ammonia concentration on the population dynamic changes of ammonia-oxidizing microorganisms, we examined changes in the abundance and community composition of AOA and AOB in different layers. Most of the archaeal amoA sequences were Nitrosotalea-related and the proportion that Nitrosotalea cluster occupied decreased in the surface layer and increased in the deep layer during the cultivation process. Nitrosopumilus-related sequences were only detected in the deep layer in the first stage and disappeared later. Both phylogenetic and quantitative analysis showed that there were increased Nitrosomonas-related sequences appeared in the surface layer where the ammonia concentration was the highest. Both AOA and AOB OTU numbers in different layers decreased under selective pressure and then recovered. The potential nitrification rates were 25.06 µg·N·L−1·g−1 dry soil·h−1 in the mid layer which was higher than the other two layers. In general, obvious population dynamic changes were found for both AOA and AOB under the selective pressure of exogenous ammonia and the changes were different in three layers of the soil column. PMID:22952893

  19. Autotrophic ammonia oxidation at low pH through urea hydrolysis.

    PubMed

    Burton, S A; Prosser, J I

    2001-07-01

    Ammonia oxidation in laboratory liquid batch cultures of autotrophic ammonia oxidizers rarely occurs at pH values less than 7, due to ionization of ammonia and the requirement for ammonium transport rather than diffusion of ammonia. Nevertheless, there is strong evidence for autotrophic nitrification in acid soils, which may be carried out by ammonia oxidizers capable of using urea as a source of ammonia. To determine the mechanism of urea-linked ammonia oxidation, a ureolytic autotrophic ammonia oxidizer, Nitrosospira sp. strain NPAV, was grown in liquid batch culture at a range of pH values with either ammonium or urea as the sole nitrogen source. Growth and nitrite production from ammonium did not occur at pH values below 7. Growth on urea occurred at pH values in the range 4 to 7.5 but ceased when urea hydrolysis was complete, even though ammonia, released during urea hydrolysis, remained in the medium. The results support a mechanism whereby urea enters the cells by diffusion and intracellular urea hydrolysis and ammonia oxidation occur independently of extracellular pH in the range 4 to 7.5. A proportion of the ammonia produced during this process diffuses from the cell and is not subsequently available for growth if the extracellular pH is less than 7. Ureolysis therefore provides a mechanism for nitrification in acid soils, but a proportion of the ammonium produced is likely to be released from the cell and may be used by other soil organisms.

  20. The effect of human settlement on the abundance and community structure of ammonia oxidizers in tropical stream sediments

    PubMed Central

    Reis, Mariana P.; Ávila, Marcelo P.; Keijzer, Rosalinde M.; Barbosa, Francisco A. R.; Chartone-Souza, Edmar; Nascimento, Andréa M. A.; Laanbroek, Hendrikus J.

    2015-01-01

    Ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) are a diverse and functionally important group in the nitrogen cycle. Nevertheless, AOA and AOB communities driving this process remain uncharacterized in tropical freshwater sediment. Here, the effect of human settlement on the AOA and AOB diversity and abundance have been assessed by phylogenetic and quantitative PCR analyses, using archaeal and bacterial amoA and 16S rRNA genes. Overall, each environment contained specific clades of amoA and 16S rRNA genes sequences, suggesting that selective pressures lead to AOA and AOB inhabiting distinct ecological niches. Human settlement activities, as derived from increased metal and mineral nitrogen contents, appear to cause a response among the AOB community, with Nitrosomonas taking advantage over Nitrosospira in impacted environments. We also observed a dominance of AOB over AOA in mining-impacted sediments, suggesting that AOB might be the primary drivers of ammonia oxidation in these sediments. In addition, ammonia concentrations demonstrated to be the driver for the abundance of AOA, with an inversely proportional correlation between them. Our findings also revealed the presence of novel ecotypes of Thaumarchaeota, such as those related to the obligate acidophilic Nitrosotalea devanaterra at ammonia-rich places of circumneutral pH. These data add significant new information regarding AOA and AOB from tropical freshwater sediments, albeit future studies would be required to provide additional insights into the niche differentiation among these microorganisms. PMID:26379659

  1. Putative ammonia-oxidizing bacteria and archaea in an acidic red soil with different land utilization patterns.

    PubMed

    Ying, Jiao-Yan; Zhang, Li-Mei; He, Ji-Zheng

    2010-04-01

    Ammonia-oxidizers play a key role in nitrification, which is important for nitrogen cycling and soil function. However, little is known about how vegetation successions and agricultural practices caused by human activities impact the ammonia-oxidizers and nitrification process. Putative ammonia-oxidizing bacteria (AOB) and archaea (AOA) communities under different land utilization patterns of restoration (forest), degradation (pasture), cropland and pine plantation were analysed in an acidic red soil based on bacterial and archaeal amoA genes together with archaeal 16S rRNA gene. Real-time PCR, terminal restriction fragment length polymorphism (T-RFLP) and sequencing of clone libraries were conducted to study their abundance and community structure. Land utilization pattern showed significant effects on the copy numbers of all these genes, but only the bacterial amoA gene correlated significantly with potential nitrification rates (PNR). The cropland plot possessed the highest bacterial amoA gene copies and PNR, while the degradation plot was opposite to that. There were no significant variations in the bacterial amoA gene structure, which was dominated by Clusters 10 and 11 in Nitrosospira. However, archaeal amoA gene structure varied among different land utilization patterns especially for the cropland. The degradation plot was dominated by Crenarchaea 1.1c-related groups from which the amoA gene could not been amplified in this study, while other plots were dominated by Crenarchaea 1.1a/b group based on archaeal 16S rRNA gene analysis. These results indicated significant effects of land utilization patterns on putative ammonia oxidizers, which were especially obvious in the degradation and cropland plots where frequent human disturbance occurred.

  2. Characterization of polyaniline / metal oxide composite films for sensing ammonia

    NASA Astrophysics Data System (ADS)

    Patrick, Eddie

    Sensors are attractive because of their affordable price, compact size, the opportunity that they provide in determining various analytes (gases) under special conditions both in the laboratory and in the field. The increased concern about environmental protection has led to continuous expansion in sensor development. Ammonia is amongst a group of very toxic gases that can cause harm to our body. It is important to be able to monitor and detect this gas in many applications. The objective of the research is to discover a better way to fabricate an ammonia sensor. This paper describes and characterizes the gas sensing properties of a PANI (polyaniline)/Co3O4 composite thin film NH3 sensor at room temperature. Additional research is done to compare and contrast how the polymer (polyaniline) reacts with other metal oxides (PANI/V2O5 and PANI/Nb 2O5) at different temperatures. The results in the present work demonstrate that the PANI/Co3O4 composite sample devices produced optimum ammonia gas sensing characteristics at room temperature.

  3. Evolutionary relationships among ammonia- and nitrite-oxidizing bacteria.

    PubMed Central

    Teske, A; Alm, E; Regan, J M; Toze, S; Rittmann, B E; Stahl, D A

    1994-01-01

    Comparative 16S rRNA sequencing was used to evaluate phylogenetic relationships among selected strains of ammonia- and nitrite-oxidizing bacteria. All characterized strains were shown to be affiliated with the proteobacteria. The study extended recent 16S rRNA-based studies of phylogenetic diversity among nitrifiers by the comparison of eight strains of the genus Nitrobacter and representatives of the genera Nitrospira and Nitrospina. The later genera were shown to be affiliated with the delta subdivision of the proteobacteria but did not share a specific relationship to each other or to other members of the delta subdivision. All characterized Nitrobacter strains constituted a closely related assemblage within the alpha subdivision of the proteobacteria. As previously observed, all ammonia-oxidizing genera except Nitrosococcus oceanus constitute a monophyletic assemblage within the beta subdivision of the proteobacteria. Errors in the 16S rRNA sequences for two strains previously deposited in the databases by other investigators (Nitrosolobus multiformis C-71 and Nitrospira briensis C-128) were corrected. Consideration of physiology and phylogenetic distribution suggested that nitrite-oxidizing bacteria of the alpha and gamma subdivisions are derived from immediate photosynthetic ancestry. Each nitrifier retains the general structural features of the specific ancestor's photosynthetic membrane complex. Thus, the nitrifiers, as a group, apparently are not derived from an ancestral nitrifying phenotype. PMID:7961414

  4. Archaea dominate ammonia oxidizers in the permian water ecosystem of midland basin.

    PubMed

    Hong, Yiguo; Youshao, Wang; Chen, Feng

    2013-01-01

    We investigated the existence and characteristics of ammonia oxidizers in Permian water from Midland Basin. Molecular surveys targeting the amoA gene showed that only ammonia-oxidizing archaea (AOA) exist and have potential activity in this special environment. In contrast, no ammonia-oxidizing bacteria (AOB) were detected in the water. Phylogenetic analysis indicated that 72-89% of the total screened AOA clones were affiliated with those found in underground water, and 10-24% of the AOA clones were related to those found in marine water or sediments. Our results indicate AOA might be the most abundant ammonia-oxidizing microbes in this ecological niche.

  5. Aquarium Nitrification Revisited: Thaumarchaeota Are the Dominant Ammonia Oxidizers in Freshwater Aquarium Biofilters

    PubMed Central

    Sauder, Laura A.; Engel, Katja; Stearns, Jennifer C.; Masella, Andre P.; Pawliszyn, Richard; Neufeld, Josh D.

    2011-01-01

    Ammonia-oxidizing archaea (AOA) outnumber ammonia-oxidizing bacteria (AOB) in many terrestrial and aquatic environments. Although nitrification is the primary function of aquarium biofilters, very few studies have investigated the microorganisms responsible for this process in aquaria. This study used quantitative real-time PCR (qPCR) to quantify the ammonia monooxygenase (amoA) and 16S rRNA genes of Bacteria and Thaumarchaeota in freshwater aquarium biofilters, in addition to assessing the diversity of AOA amoA genes by denaturing gradient gel electrophoresis (DGGE) and clone libraries. AOA were numerically dominant in 23 of 27 freshwater biofilters, and in 12 of these biofilters AOA contributed all detectable amoA genes. Eight saltwater aquaria and two commercial aquarium nitrifier supplements were included for comparison. Both thaumarchaeal and bacterial amoA genes were detected in all saltwater samples, with AOA genes outnumbering AOB genes in five of eight biofilters. Bacterial amoA genes were abundant in both supplements, but thaumarchaeal amoA and 16S rRNA genes could not be detected. For freshwater aquaria, the proportion of amoA genes from AOA relative to AOB was inversely correlated with ammonium concentration. DGGE of AOA amoA genes revealed variable diversity across samples, with nonmetric multidimensional scaling (NMDS) indicating separation of freshwater and saltwater fingerprints. Composite clone libraries of AOA amoA genes revealed distinct freshwater and saltwater clusters, as well as mixed clusters containing both freshwater and saltwater amoA gene sequences. These results reveal insight into commonplace residential biofilters and suggest that aquarium biofilters may represent valuable biofilm microcosms for future studies of AOA ecology. PMID:21858055

  6. Ecosystem-specific selection of microbial ammonia oxidizers in an acid soil

    NASA Astrophysics Data System (ADS)

    Saiful Alam, M.; Ren, G.; Lu, L.; Zheng, Y.; Peng, X.; Jia, Z.

    2013-01-01

    The function of ammonia-oxidizing archaea (AOA) and bacteria (AOB) depends on the availability of ammonia substrate and the supply of oxygen. The interactions and evolutions of AOA and AOB communities along ecological gradients of substrate availability in complex environment have been much debated, but rarely tested. In this study, two ecosystems of maize and rice crops under different fertilization regimes were selected to investigate the community diversification of soil AOA and AOB in response to long-term field fertilization and flooding management in an acid soil. Real-time quantitative PCR of amoA genes demonstrated that the abundance of AOA was significantly stimulated after conversion of upland to paddy soils, while slight decline of AOB populations was observed. DGGE fingerprints of amoA genes further revealed remarkable changes in community compositions of AOA in paddy soil when compared to upland soil. Sequencing analysis revealed that upland soil was dominated by AOA within the soil group 1.1b lineage, while the marine group 1.1a lineage predominated AOA communities in paddy soils. Irrespective of upland and paddy soils, long-term field fertilizations led to higher abundance of amoA genes of AOA and AOB than control treatment that received no fertilization, whereas archaeal amoA gene abundances outnumbered their bacterial counterpart in all samples. Phylogenetic analyses of amoA genes showed that Nitrosospira cluster 3-like AOB dominated bacterial ammonia oxidizers in both paddy and upland soils, regardless of fertilization treatments. The results of this study suggest that the marine group 1.1a AOA could be better adapted to low-oxygen environment than AOA ecotypes of the soil group 1.1b lineage, and implicate that long-term flooding as the dominant selective force driving the community diversification of AOA populations in the acid soil tested.

  7. Aquarium nitrification revisited: Thaumarchaeota are the dominant ammonia oxidizers in freshwater aquarium biofilters.

    PubMed

    Sauder, Laura A; Engel, Katja; Stearns, Jennifer C; Masella, Andre P; Pawliszyn, Richard; Neufeld, Josh D

    2011-01-01

    Ammonia-oxidizing archaea (AOA) outnumber ammonia-oxidizing bacteria (AOB) in many terrestrial and aquatic environments. Although nitrification is the primary function of aquarium biofilters, very few studies have investigated the microorganisms responsible for this process in aquaria. This study used quantitative real-time PCR (qPCR) to quantify the ammonia monooxygenase (amoA) and 16S rRNA genes of Bacteria and Thaumarchaeota in freshwater aquarium biofilters, in addition to assessing the diversity of AOA amoA genes by denaturing gradient gel electrophoresis (DGGE) and clone libraries. AOA were numerically dominant in 23 of 27 freshwater biofilters, and in 12 of these biofilters AOA contributed all detectable amoA genes. Eight saltwater aquaria and two commercial aquarium nitrifier supplements were included for comparison. Both thaumarchaeal and bacterial amoA genes were detected in all saltwater samples, with AOA genes outnumbering AOB genes in five of eight biofilters. Bacterial amoA genes were abundant in both supplements, but thaumarchaeal amoA and 16S rRNA genes could not be detected. For freshwater aquaria, the proportion of amoA genes from AOA relative to AOB was inversely correlated with ammonium concentration. DGGE of AOA amoA genes revealed variable diversity across samples, with nonmetric multidimensional scaling (NMDS) indicating separation of freshwater and saltwater fingerprints. Composite clone libraries of AOA amoA genes revealed distinct freshwater and saltwater clusters, as well as mixed clusters containing both freshwater and saltwater amoA gene sequences. These results reveal insight into commonplace residential biofilters and suggest that aquarium biofilters may represent valuable biofilm microcosms for future studies of AOA ecology.

  8. Plant nitrogen-use strategy as a driver of rhizosphere archaeal and bacterial ammonia oxidiser abundance.

    PubMed

    Thion, Cécile E; Poirel, Jessica D; Cornulier, Thomas; De Vries, Franciska T; Bardgett, Richard D; Prosser, James I

    2016-07-01

    The influence of plants on archaeal (AOA) and bacterial (AOB) ammonia oxidisers (AO) is poorly understood. Higher microbial activity in the rhizosphere, including organic nitrogen (N) mineralisation, may stimulate both groups, while ammonia uptake by plants may favour AOA, considered to prefer lower ammonia concentration. We therefore hypothesised (i) higher AOA and AOB abundances in the rhizosphere than bulk soil and (ii) that AOA are favoured over AOB in the rhizosphere of plants with an exploitative strategy and high N demand, especially (iii) during early growth, when plant N uptake is higher. These hypotheses were tested by growing 20 grassland plants, covering a spectrum of resource-use strategies, and determining AOA and AOB amoA gene abundances, rhizosphere and bulk soil characteristics and plant functional traits. Joint Bayesian mixed models indicated no increase in AO in the rhizosphere, but revealed that AOA were more abundant in the rhizosphere of exploitative plants, mostly grasses, and less abundant under conservative plants. In contrast, AOB abundance in the rhizosphere and bulk soil depended on pH, rather than plant traits. These findings provide a mechanistic basis for plant-ammonia oxidiser interactions and for links between plant functional traits and ammonia oxidiser ecology.

  9. Plant nitrogen-use strategy as a driver of rhizosphere archaeal and bacterial ammonia oxidiser abundance.

    PubMed

    Thion, Cécile E; Poirel, Jessica D; Cornulier, Thomas; De Vries, Franciska T; Bardgett, Richard D; Prosser, James I

    2016-07-01

    The influence of plants on archaeal (AOA) and bacterial (AOB) ammonia oxidisers (AO) is poorly understood. Higher microbial activity in the rhizosphere, including organic nitrogen (N) mineralisation, may stimulate both groups, while ammonia uptake by plants may favour AOA, considered to prefer lower ammonia concentration. We therefore hypothesised (i) higher AOA and AOB abundances in the rhizosphere than bulk soil and (ii) that AOA are favoured over AOB in the rhizosphere of plants with an exploitative strategy and high N demand, especially (iii) during early growth, when plant N uptake is higher. These hypotheses were tested by growing 20 grassland plants, covering a spectrum of resource-use strategies, and determining AOA and AOB amoA gene abundances, rhizosphere and bulk soil characteristics and plant functional traits. Joint Bayesian mixed models indicated no increase in AO in the rhizosphere, but revealed that AOA were more abundant in the rhizosphere of exploitative plants, mostly grasses, and less abundant under conservative plants. In contrast, AOB abundance in the rhizosphere and bulk soil depended on pH, rather than plant traits. These findings provide a mechanistic basis for plant-ammonia oxidiser interactions and for links between plant functional traits and ammonia oxidiser ecology. PMID:27130939

  10. Amperometric detection and electrochemical oxidation of aliphatic amines and ammonia on silver-lead oxide thin-film electrodes

    SciTech Connect

    Ge, Jisheng

    1996-01-08

    This thesis comprises three parts: Electrocatalysis of anodic oxygen-transfer reactions: aliphatic amines at mixed Ag-Pb oxide thin-film electrodes; oxidation of ammonia at anodized Ag-Pb eutectic alloy electrodes; and temperature effects on oxidation of ethylamine, alanine, and aquated ammonia.

  11. Drivers of archaeal ammonia-oxidizing communities in soil.

    PubMed

    Zhalnina, Kateryna; de Quadros, Patrícia Dörr; Camargo, Flavio A O; Triplett, Eric W

    2012-01-01

    Soil ammonia-oxidizing archaea (AOA) are highly abundant and play an important role in the nitrogen cycle. In addition, AOA have a significant impact on soil quality. Nitrite produced by AOA and further oxidized to nitrate can cause nitrogen loss from soils, surface and groundwater contamination, and water eutrophication. The AOA discovered to date are classified in the phylum Thaumarchaeota. Only a few archaeal genomes are available in databases. As a result, AOA genes are not well annotated, and it is difficult to mine and identify archaeal genes within metagenomic libraries. Nevertheless, 16S rRNA and comparative analysis of ammonia monooxygenase sequences show that soils can vary greatly in the relative abundance of AOA. In some soils, AOA can comprise more than 10% of the total prokaryotic community. In other soils, AOA comprise less than 0.5% of the community. Many approaches have been used to measure the abundance and diversity of this group including DGGE, T-RFLP, q-PCR, and DNA sequencing. AOA have been studied across different soil types and various ecosystems from the Antarctic dry valleys to the tropical forests of South America to the soils near Mount Everest. Different studies have identified multiple soil factors that trigger the abundance of AOA. These factors include pH, concentration of available ammonia, organic matter content, moisture content, nitrogen content, clay content, as well as other triggers. Land use management appears to have a major effect on the abundance of AOA in soil, which may be the result of nitrogen fertilizer used in agricultural soils. This review summarizes the published results on this topic and suggests future work that will increase our understanding of how soil management and edaphoclimatic factors influence AOA.

  12. Distribution and Abundance of Archaea in South China Sea Sponge Holoxea sp. and the Presence of Ammonia-Oxidizing Archaea in Sponge Cells.

    PubMed

    Liu, Fang; Han, Minqi; Zhang, Fengli; Zhang, Baohua; Li, Zhiyong

    2011-01-01

    Compared with bacterial symbionts, little is known about archaea in sponges especially about their spatial distribution and abundance. Understanding the distribution and abundance of ammonia-oxidizing archaea will help greatly in elucidating the potential function of symbionts in nitrogen cycling in sponges. In this study, gene libraries of 16S rRNA gene and ammonia monooxygenase subunit A (amoA) genes and quantitative real-time PCR were used to study the spatial distribution and abundance of archaea in the South China Sea sponge Holoxea sp. As a result, Holoxea sp. specific AOA, mainly group C1a (marine group I: Crenarchaeota) were identified. The presence of ammonia-oxidizing crenarchaea was observed for the first time within sponge cells. This study suggested a close relationship between sponge host and its archaeal symbionts as well as the archaeal potential contribution to sponge host in the ammonia-oxidizing process of nitrification.

  13. Comparative study on ammonia oxidation over Ni-based cermet anodes for solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Molouk, Ahmed Fathi Salem; Yang, Jun; Okanishi, Takeou; Muroyama, Hiroki; Matsui, Toshiaki; Eguchi, Koichi

    2016-02-01

    In the current work, we investigate the performance of solid oxide fuel cells (SOFCs) with Ni‒yttria-stabilized zirconia (Ni-YSZ) and Ni‒gadolinia-dope ceria (Ni-GDC) cermet anodes fueled with H2 or NH3 in terms of the catalytic activity of ammonia decomposition. The cermet of Ni-GDC shows higher catalytic activity for ammonia decomposition than Ni-YSZ. In response to this, the performance of direct NH3-fueled SOFC improved by using Ni-GDC anode. Moreover, we observe further enhancement in the cell performance and the catalytic activity for ammonia decomposition with applying Ni-GDC anode synthesised by the glycine-nitrate combustion process. These results reveal that the high performance of Ni-GDC anode for the direct NH3-fueled SOFC results from its mixed ionic-electronic conductivity as well as high catalytic activity for ammonia decomposition.

  14. Bacterial responses to photo-oxidative stress

    PubMed Central

    Ziegelhoffer, Eva C.; Donohue, Timothy J.

    2009-01-01

    Singlet oxygen is one of several reactive oxygen species that can destroy biomolecules, microorganisms and other cells. Traditionally, the response to singlet oxygen has been termed photo-oxidative stress, as light-dependent processes in photosynthetic cells are major biological sources of singlet oxygen. Recent work identifying a core set of singlet oxygen stress response genes across various bacterial species highlights the importance of this response for survival by both photosynthetic and non-photosynthetic cells. Here, we review how bacterial cells mount a transcriptional response to photo-oxidative stress in the context of what is known about bacterial stress responses to other reactive oxygen species. PMID:19881522

  15. Ammonia

    Integrated Risk Information System (IRIS)

    Ammonia ; CASRN 7664 - 41 - 7 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Effects

  16. Ammonia-oxidizing bacteria and archaea in sediments of the Gulf of Mexico.

    PubMed

    Flood, Matthew; Frabutt, Dylan; Floyd, Dalton; Powers, Ashley; Ezegwe, Uche; Devol, Allan; Tiquia-Arashiro, Sonia M

    2015-01-01

    The diversity (richness and community composition) of ammonia-oxidizing archaea (AOA) and bacteria (AOB) within sediments of the Gulf of Mexico was examined. Using polymerase chain reaction primers designed to specifically target the archaeal ammonia monooxygenase-subunit (amoA) gene and bacterial amoA gene, we found AOA and AOB to be present in all three sampling sites. Archaeal amoA libraries were dominated by a few widely distributed Nitrosopumilus-like sequence types, whereas AOB diversity showed significant variation in both richness and community composition. Majority of the bacterial amoA sequences recovered belong to Betaproteobacteria and very few belong to Gammaproteobacteria. Results suggest that water depth and nutrient availability were identified as potential drivers that affected the selection of the AOA and AOB communities. Besides influencing the abundance of individual taxa, these environmental factors also had an impact on the overall richness of the overall AOA and AOB communities. The richness and diversity of AOA and AOB genes were higher at the shallowest sediments (100 m depth) and the deepest sediments (1300 m depth). The reduced diversity in the deepest sediments could be explained by much lower nutrient availability.

  17. Ammonia-oxidizing bacteria and archaea in sediments of the Gulf of Mexico.

    PubMed

    Flood, Matthew; Frabutt, Dylan; Floyd, Dalton; Powers, Ashley; Ezegwe, Uche; Devol, Allan; Tiquia-Arashiro, Sonia M

    2015-01-01

    The diversity (richness and community composition) of ammonia-oxidizing archaea (AOA) and bacteria (AOB) within sediments of the Gulf of Mexico was examined. Using polymerase chain reaction primers designed to specifically target the archaeal ammonia monooxygenase-subunit (amoA) gene and bacterial amoA gene, we found AOA and AOB to be present in all three sampling sites. Archaeal amoA libraries were dominated by a few widely distributed Nitrosopumilus-like sequence types, whereas AOB diversity showed significant variation in both richness and community composition. Majority of the bacterial amoA sequences recovered belong to Betaproteobacteria and very few belong to Gammaproteobacteria. Results suggest that water depth and nutrient availability were identified as potential drivers that affected the selection of the AOA and AOB communities. Besides influencing the abundance of individual taxa, these environmental factors also had an impact on the overall richness of the overall AOA and AOB communities. The richness and diversity of AOA and AOB genes were higher at the shallowest sediments (100 m depth) and the deepest sediments (1300 m depth). The reduced diversity in the deepest sediments could be explained by much lower nutrient availability. PMID:25409591

  18. Community Structure of Ammonia-Oxidizing Archaea and Ammonia-Oxidizing Bacteria in Soil Treated with the Insecticide Imidacloprid

    PubMed Central

    Cycoń, Mariusz; Piotrowska-Seget, Zofia

    2015-01-01

    The purpose of this experiment was to assess the effect of imidacloprid on the community structure of ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) in soil using the denaturing gradient gel electrophoresis (DGGE) approach. Analysis showed that AOA and AOB community members were affected by the insecticide treatment. However, the calculation of the richness (S) and the Shannon-Wiener index (H) values for soil treated with the field rate (FR) dosage of imidacloprid (1 mg/kg soil) showed no changes in measured indices for the AOA and AOB community members. In turn, the 10∗FR dosage of insecticide (10 mg/kg soil) negatively affected the AOA community, which was confirmed by the decrease of the S and H values in comparison with the values obtained for the control soil. In the case of AOB community, an initial decline followed by the increase of the S and H values was obtained. Imidacloprid decreased the nitrification rate while the ammonification process was stimulated by the addition of imidacloprid. Changes in the community structure of AOA and AOB could be due to an increase in the concentration of N-NH4+, known as the most important factor which determines the contribution of these microorganisms to soil nitrification. PMID:25705674

  19. Temperature responses of ammonia-oxidizing prokaryotes in freshwater sediment microcosms.

    PubMed

    Zeng, Jin; Zhao, Dayong; Yu, Zhongbo; Huang, Rui; Wu, Qinglong L

    2014-01-01

    In order to investigate the effects of temperature on the abundances and community compositions of ammonia-oxidizing archaea (AOA) and bacteria (AOB), lake microcosms were constructed and incubated at 15°C, 25°C and 35°C for 40 days, respectively. Temperature exhibited different effects on the abundance and diversity of archaeal and bacterial amoA gene. The elevated temperature increased the abundance of archaeal amoA gene, whereas the abundance of bacterial amoA gene decreased. The highest diversity of bacterial amoA gene was found in the 25°C treatment sample. However, the 25°C treatment sample maintained the lowest diversity of archaeal amoA gene. Most of the archaeal amoA sequences obtained in this study affiliated with the Nitrosopumilus cluster. Two sequences obtained from the 15°C treatment samples were affiliated with the Nitrosotalea cluster. N. oligotropha lineage was the most dominant bacterial amoA gene group. Several sequences affiliated to Nitrosospira and undefined N. europaea/NC. mobilis like lineage were found in the pre-incubation and 25°C treatment groups.

  20. Temperature Responses of Ammonia-Oxidizing Prokaryotes in Freshwater Sediment Microcosms

    PubMed Central

    Yu, Zhongbo; Huang, Rui; Wu, Qinglong L.

    2014-01-01

    In order to investigate the effects of temperature on the abundances and community compositions of ammonia-oxidizing archaea (AOA) and bacteria (AOB), lake microcosms were constructed and incubated at 15°C, 25°C and 35°C for 40 days, respectively. Temperature exhibited different effects on the abundance and diversity of archaeal and bacterial amoA gene. The elevated temperature increased the abundance of archaeal amoA gene, whereas the abundance of bacterial amoA gene decreased. The highest diversity of bacterial amoA gene was found in the 25°C treatment sample. However, the 25°C treatment sample maintained the lowest diversity of archaeal amoA gene. Most of the archaeal amoA sequences obtained in this study affiliated with the Nitrosopumilus cluster. Two sequences obtained from the 15°C treatment samples were affiliated with the Nitrosotalea cluster. N. oligotropha lineage was the most dominant bacterial amoA gene group. Several sequences affiliated to Nitrosospira and undefined N. europaea/NC. mobilis like lineage were found in the pre-incubation and 25°C treatment groups. PMID:24959960

  1. Ammonia-oxidizing activity and microbial community structure in acid tea (Camellia sinensis) orchard soil

    NASA Astrophysics Data System (ADS)

    Okamura, K.; Takanashi, A.; Yamada, T.; Hiraishi, A.

    2012-03-01

    The purpose of this study was to determine the ammonia-oxidizing activity and the phylogentic composition of microorganisms involved in acid tea (Camellia sinensis) orchard soil. All soil samples were collected from three sites located in Tahara and Toyohashi, Aichi Prefecture, Japan. The potential nitrification rate (PNR) was measured by the chlorate inhibition method. The soil pH of tea orchards studied ranged from 2.78 to 4.84, differing significantly from sample to sample, whereas that of meadow and unplanted fields ranged from 5.78 to 6.35. The PNR ranged from 0.050 to 0.193 μg NO2--Ng-1 h-1 and were positively correlated with the soil pH (r2 = 0.382, p<0.001). Bulk DNA was extracted from a tea orchard soil (pH 4.8; PNR, 0.078 μg NO2--Ng-1 h-1) and subjected to PCR-aided clone library analyses targeting archaeal and bacterial amoA genes. The detected archaeal clones separated from the cluster of the 'Soil clones' and tightly clustered with the clones originating from other acidic soil environments including the Chinese tea orchard soil. These results suggest that the specific archaeal populations dominate as the ammonia oxidizers in acid tea-orchard soils and possibly other acid soils, independent of geographic locations, which results from the adaptation to specific ecological niches.

  2. [Element Sulfur Autotrophic Denitrification Combined Anaerobic Ammonia Oxidation].

    PubMed

    Zhou, Jian; Huang, Yong; Liu, Xin; Yuan, Yi; Li Xiang; Wangyan, De-qing; Ding, Liang; Shao, Jing-wei; Zhao, Rong

    2016-03-15

    A novel element sulfur autotrophic denitrification combined anaerobic ammonia oxidation process, reacted in CSTR, was used to investigate the sulfate production and alkalinity consumption during the whole process. The element sulfur dosage was 50 g · L⁻¹. The inoculation volume of ANAMMOX granular sludge was 100 g · L⁻¹. The agitation rate and environment reaction temperature of the CSTR were set to 120 r · min⁻¹ and 35°C ± 0.5°C, respectively. The pH of influent was maintained in range of 8. 0-8. 4. During the start-up stage of sulfur based autotrophic denitrification, the nitrogen removal loading rate could reach 0.56-0.71 kg · (m³ · d) ⁻¹ in the condition of 5.3 h hydrogen retention time and 200 mg · L⁻¹ nitrate nitrogen. After the addition of 60 mg · L⁻¹ ammonia nitrogen, Δn(SO₄²⁻):Δn(NO₃⁻) decreased from 1.21 ± 0.06 to 1.01 ± 0.10, Δ(IC): Δ(NO₃⁻-N) decreased from 0.72 ± 0.1 to 0.51 ± 0.11, and the effluent pH increased from 6.5 to 7.2. During the combined stage, the ammonia concentration of effluent was 10.1-19.2 mg · L⁻¹, and the nitrate-nitrogen removal loading rate could be maintained in range of 0.66-0.88 kg · (m³ · d)⁻¹. The Δn (NH₄⁺): Δn (NO₃⁻) ratio reached 0.43, and the NO₃⁻ removal rate was increased by 60% in the simultaneous ammonia and nitrate removal reaction under the condition of G(T) = 22-64 s⁻¹ and pH = 8.08, while improper conditions reduced the efficiency of simultaneous reaction.

  3. [Element Sulfur Autotrophic Denitrification Combined Anaerobic Ammonia Oxidation].

    PubMed

    Zhou, Jian; Huang, Yong; Liu, Xin; Yuan, Yi; Li Xiang; Wangyan, De-qing; Ding, Liang; Shao, Jing-wei; Zhao, Rong

    2016-03-15

    A novel element sulfur autotrophic denitrification combined anaerobic ammonia oxidation process, reacted in CSTR, was used to investigate the sulfate production and alkalinity consumption during the whole process. The element sulfur dosage was 50 g · L⁻¹. The inoculation volume of ANAMMOX granular sludge was 100 g · L⁻¹. The agitation rate and environment reaction temperature of the CSTR were set to 120 r · min⁻¹ and 35°C ± 0.5°C, respectively. The pH of influent was maintained in range of 8. 0-8. 4. During the start-up stage of sulfur based autotrophic denitrification, the nitrogen removal loading rate could reach 0.56-0.71 kg · (m³ · d) ⁻¹ in the condition of 5.3 h hydrogen retention time and 200 mg · L⁻¹ nitrate nitrogen. After the addition of 60 mg · L⁻¹ ammonia nitrogen, Δn(SO₄²⁻):Δn(NO₃⁻) decreased from 1.21 ± 0.06 to 1.01 ± 0.10, Δ(IC): Δ(NO₃⁻-N) decreased from 0.72 ± 0.1 to 0.51 ± 0.11, and the effluent pH increased from 6.5 to 7.2. During the combined stage, the ammonia concentration of effluent was 10.1-19.2 mg · L⁻¹, and the nitrate-nitrogen removal loading rate could be maintained in range of 0.66-0.88 kg · (m³ · d)⁻¹. The Δn (NH₄⁺): Δn (NO₃⁻) ratio reached 0.43, and the NO₃⁻ removal rate was increased by 60% in the simultaneous ammonia and nitrate removal reaction under the condition of G(T) = 22-64 s⁻¹ and pH = 8.08, while improper conditions reduced the efficiency of simultaneous reaction. PMID:27337901

  4. Composition of ammonia-oxidizing archaea and their contribution to nitrification in a high-temperature hot spring

    NASA Astrophysics Data System (ADS)

    Chen, S.; Peng, X.-T.; Xu, H.-C.; Ta, K.-W.

    2015-10-01

    The oxidation of ammonia by microbes and associated organisms has been shown to occur in diverse natural environments. However, the contribution of ammonia-oxidizing archaea to nitrification in high-temperature environments remains unclear. Here, we studied in situ ammonia oxidation rates and the abundance of ammonia-oxidizing archaea (AOA) in surface and bottom sediments at 77 °C in the Gongxiaoshe hot spring, Tengchong, Yunnan, China. The in situ ammonia oxidation rates measured by the 15N-NO3- pool dilution technique in the surface sinter and bottom sediments were 4.8 and 5.3 nmol N g-1 h-1, respectively. Relative abundances of Crenarchaea in both samples were determined by fluorescence in situ hybridization (FISH). Phylogenetic analysis of 16S rRNA genes showed high sequence similarity to thermophilic "Candidatus Nitrosocaldus yellowstonii", which represented the most abundant operation taxonomic units (OTU) in both sediments. Furthermore, bacterial amoA was not detected in this study. Quantitative PCR (qPCR) indicated that AOA and 16S rRNA genes were present in the range of 2.75 to 9.80 × 105 and 0.128 to 1.96 × 108 gene copies g-1 sediment. The cell-specific nitrification rates were estimated to be in the range of 0.41 to 0.79 fmol N archaeal cell-1 h-1, which is consistent with earlier estimates in estuary environments. This study demonstrated that AOA were widely involved in nitrification in this hot spring. It further indicated the importance of archaea rather than bacteria in driving the nitrogen cycle in terrestrial geothermal environments.

  5. FORMATION OF HYDROXYLAMINE ON DUST GRAINS VIA AMMONIA OXIDATION

    SciTech Connect

    He, Jiao; Vidali, Gianfranco; Lemaire, Jean-Louis; Garrod, Robin T.

    2015-01-20

    The quest to detect prebiotic molecules in space, notably amino acids, requires an understanding of the chemistry involving nitrogen atoms. Hydroxylamine (NH{sub 2}OH) is considered a precursor to the amino acid glycine. Although not yet detected, NH{sub 2}OH is considered a likely target of detection with ALMA. We report on an experimental investigation of the formation of hydroxylamine on an amorphous silicate surface via the oxidation of ammonia. The experimental data are then fed into a simulation of the formation of NH{sub 2}OH in dense cloud conditions. On ices at 14 K and with a modest activation energy barrier, NH{sub 2}OH is found to be formed with an abundance that never falls below a factor 10 with respect to NH{sub 3}. Suggestions of conditions for future observations are provided.

  6. Bacteria dominate the ammonia-oxidizing community in a hydrothermal vent site at the Mid-Atlantic Ridge of the South Atlantic Ocean.

    PubMed

    Xu, Wei; Li, Meng; Ding, Jie-Fei; Gu, Ji-Dong; Luo, Zhu-Hua

    2014-09-01

    Ammonia oxidation is the first and rate-limiting step of nitrification, which is carried out by two groups of microorganisms: ammonia-oxidizing bacteria (AOB) and the recently discovered ammonia-oxidizing archaea (AOA). In this study, diversity and abundance of AOB and AOA were investigated in five rock samples from a deep-sea hydrothermal vent site at the Mid-Atlantic Ridge (MAR) of the South Atlantic Ocean. Both bacterial and archaeal ammonia monooxygenase subunit A (amoA) gene sequences obtained in this study were closely related to the sequences retrieved from deep-sea environments, indicating that AOB and AOA in this hydrothermal vent site showed typical deep ocean features. AOA were more diverse but less abundant than AOB. The ratios of AOA/AOB amoA gene abundance ranged from 1/3893 to 1/242 in all investigate samples, indicating that bacteria may be the major members responding to the aerobic ammonia oxidation in this hydrothermal vent site. Furthermore, diversity and abundance of AOA and AOB were significantly correlated with the contents of total nitrogen and total sulfur in investigated samples, suggesting that these two environmental factors exert strong influences on distribution of ammonia oxidizers in deep-sea hydrothermal vent environment.

  7. Low-ammonia niche of ammonia-oxidizing archaea in rotating biological contactors of a municipal wastewater treatment plant

    PubMed Central

    Sauder, Laura A; Peterse, Francien; Schouten, Stefan; Neufeld, Josh D

    2012-01-01

    The first step of nitrification is catalysed by both ammonia-oxidizing bacteria (AOB) and archaea (AOA), but physicochemical controls on the relative abundance and function of these two groups are not yet fully understood, especially in freshwater environments. This study investigated ammonia-oxidizing populations in nitrifying rotating biological contactors (RBCs) from a municipal wastewater treatment plant. Individual RBC stages are arranged in series, with nitrification at each stage creating an ammonia gradient along the flowpath. This RBC system provides a valuable experimental system for testing the hypothesis that ammonia concentration determines the relative abundance of AOA and AOB. The results demonstrate that AOA increased as ammonium decreased across the RBC flowpath, as indicated by qPCR for thaumarchaeal amoA and 16S rRNA genes, and core lipid (CL) and intact polar lipid (IPL) crenarchaeol abundances. Overall, there was a negative logarithmic relationship (R2 = 0.51) between ammonium concentration and the relative abundance of AOA amoA genes. A single AOA population was detected in the RBC biofilms; this phylotype shared low amoA and 16S rRNA gene homology with existing AOA cultures and enrichments. These results provide evidence that ammonia availability influences the relative abundances of AOA and AOB, and that AOA are abundant in some municipal wastewater treatment systems. PMID:22639927

  8. pH as a Driver for Ammonia-Oxidizing Archaea in Forest Soils.

    PubMed

    Stempfhuber, Barbara; Engel, Marion; Fischer, Doreen; Neskovic-Prit, Ganna; Wubet, Tesfaye; Schöning, Ingo; Gubry-Rangin, Cécile; Kublik, Susanne; Schloter-Hai, Brigitte; Rattei, Thomas; Welzl, Gerhard; Nicol, Graeme W; Schrumpf, Marion; Buscot, Francois; Prosser, James I; Schloter, Michael

    2015-05-01

    In this study, we investigated the impact of soil pH on the diversity and abundance of archaeal ammonia oxidizers in 27 different forest soils across Germany. DNA was extracted from topsoil samples, the amoA gene, encoding ammonia monooxygenase, was amplified; and the amplicons were sequenced using a 454-based pyrosequencing approach. As expected, the ratio of archaeal (AOA) to bacterial (AOB) ammonia oxidizers' amoA genes increased sharply with decreasing soil pH. The diversity of AOA differed significantly between sites with ultra-acidic soil pH (<3.5) and sites with higher pH values. The major OTUs from soil samples with low pH could be detected at each site with a soil pH <3.5 but not at sites with pH >4.5, regardless of geographic position and vegetation. These OTUs could be related to the Nitrosotalea group 1.1 and the Nitrososphaera subcluster 7.2, respectively, and showed significant similarities to OTUs described from other acidic environments. Conversely, none of the major OTUs typical of sites with a soil pH >4.6 could be found in the ultra- and extreme acidic soils. Based on a comparison with the amoA gene sequence data from a previous study performed on agricultural soils, we could clearly show that the development of AOA communities in soils with ultra-acidic pH (<3.5) is mainly triggered by soil pH and is not influenced significantly by the type of land use, the soil type, or the geographic position of the site, which was observed for sites with acido-neutral soil pH.

  9. Archaeal dominated ammonia-oxidizing communities in Icelandic grassland soils are moderately affected by long-term N fertilization and geothermal heating

    PubMed Central

    Daebeler, Anne; Abell, Guy C. J.; Bodelier, Paul L. E.; Bodrossy, Levente; Frampton, Dion M. F.; Hefting, Mariet M.; Laanbroek, Hendrikus J.

    2012-01-01

    The contribution of ammonia-oxidizing bacteria and archaea (AOB and AOA, respectively) to the net oxidation of ammonia varies greatly between terrestrial environments. To better understand, predict and possibly manage terrestrial nitrogen turnover, we need to develop a conceptual understanding of ammonia oxidation as a function of environmental conditions including the ecophysiology of associated organisms. We examined the discrete and combined effects of mineral nitrogen deposition and geothermal heating on ammonia-oxidizing communities by sampling soils from a long-term fertilization site along a temperature gradient in Icelandic grasslands. Microarray, clone library and quantitative PCR analyses of the ammonia monooxygenase subunit A (amoA) gene accompanied by physico-chemical measurements of the soil properties were conducted. In contrast to most other terrestrial environments, the ammonia-oxidizing communities consisted almost exclusively of archaea. Their bacterial counterparts proved to be undetectable by quantitative polymerase chain reaction suggesting AOB are only of minor relevance for ammonia oxidation in these soils. Our results show that fertilization and local, geothermal warming affected detectable ammonia-oxidizing communities, but not soil chemistry: only a subset of the detected AOA phylotypes was present in higher temperature soils and AOA abundance was increased in the fertilized soils, while soil physio-chemical properties remained unchanged. Differences in distribution and structure of AOA communities were best explained by soil pH and clay content irrespective of temperature or fertilizer treatment in these grassland soils, suggesting that these factors have a greater potential for ecological niche-differentiation of AOA in soil than temperature and N fertilization. PMID:23060870

  10. Autotrophic Ammonia Oxidation at Low pH through Urea Hydrolysis

    PubMed Central

    Burton, Simon A. Q.; Prosser, Jim I.

    2001-01-01

    Ammonia oxidation in laboratory liquid batch cultures of autotrophic ammonia oxidizers rarely occurs at pH values less than 7, due to ionization of ammonia and the requirement for ammonium transport rather than diffusion of ammonia. Nevertheless, there is strong evidence for autotrophic nitrification in acid soils, which may be carried out by ammonia oxidizers capable of using urea as a source of ammonia. To determine the mechanism of urea-linked ammonia oxidation, a ureolytic autotrophic ammonia oxidizer, Nitrosospira sp. strain NPAV, was grown in liquid batch culture at a range of pH values with either ammonium or urea as the sole nitrogen source. Growth and nitrite production from ammonium did not occur at pH values below 7. Growth on urea occurred at pH values in the range 4 to 7.5 but ceased when urea hydrolysis was complete, even though ammonia, released during urea hydrolysis, remained in the medium. The results support a mechanism whereby urea enters the cells by diffusion and intracellular urea hydrolysis and ammonia oxidation occur independently of extracellular pH in the range 4 to 7.5. A proportion of the ammonia produced during this process diffuses from the cell and is not subsequently available for growth if the extracellular pH is less than 7. Ureolysis therefore provides a mechanism for nitrification in acid soils, but a proportion of the ammonium produced is likely to be released from the cell and may be used by other soil organisms. PMID:11425707

  11. Habitat specialization along a wetland moisture gradient differs between ammonia-oxidizing and denitrifying microorganisms.

    PubMed

    Peralta, Ariane L; Matthews, Jeffrey W; Kent, Angela D

    2014-08-01

    Gradients in abiotic parameters, such as soil moisture,can strongly influence microbial community structure and function. Denitrifying and ammonia-oxidizing microorganisms,in particular, have contrasting physiological responses to abiotic factors such as oxygen concentration and soil moisture. Identifying abiotic factors that govern the composition and activity of denitrifying and ammonia-oxidizing communities is critical for understanding the nitrogen cycle.The objectives of this study were to (i) examine denitrifier andarchaeal ammonia oxidizer community composition and (ii) assess the taxa occurring within each functional group related to soil conditions along an environmental gradient. Soil was sampled across four transects at four locations along a dry to saturated environmental gradient at a restored wetland. Soil pH and soil organic matter content increased from dry to saturated plots. Composition of soil denitrifier and ammonia oxidizer functional groups was assessed by terminal restriction fragment length polymorphism (T-RFLP) community analysis, and local soil factors were also characterized. Microbial community composition of denitrifiers and ammonia oxidizers differed along the moisture gradient (denitrifier:ANOSIM R = 0.739, P < 0.001; ammonia oxidizers: ANOSIMR = 0.760, P < 0.001). Individual denitrifier taxa were observed over a larger range of moisture levels than individual archaeal ammonia oxidizer taxa (Wilcoxon rank sum, W = 2413, P value = 0.0002). Together, our data suggest that variation in environmental tolerance of microbial taxa have potential to influence nitrogen cycling in terrestrial ecosystems.

  12. Identifying Potential Mechanisms Enabling Acidophily in the Ammonia-Oxidizing Archaeon “Candidatus Nitrosotalea devanaterra”

    PubMed Central

    Sayavedra-Soto, Luis A.; Gallois, Nicolas; Schouten, Stefan; Stein, Lisa Y.; Prosser, James I.; Nicol, Graeme W.

    2016-01-01

    Ammonia oxidation is the first and rate-limiting step in nitrification and is dominated by two distinct groups of microorganisms in soil: ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB). AOA are often more abundant than AOB and dominate activity in acid soils. The mechanism of ammonia oxidation under acidic conditions has been a long-standing paradox. While high rates of ammonia oxidation are frequently measured in acid soils, cultivated ammonia oxidizers grew only at near-neutral pH when grown in standard laboratory culture. Although a number of mechanisms have been demonstrated to enable neutrophilic AOB growth at low pH in the laboratory, these have not been demonstrated in soil, and the recent cultivation of the obligately acidophilic ammonia oxidizer “Candidatus Nitrosotalea devanaterra” provides a more parsimonious explanation for the observed high rates of activity. Analysis of the sequenced genome, transcriptional activity, and lipid content of “Ca. Nitrosotalea devanaterra” reveals that previously proposed mechanisms used by AOB for growth at low pH are not essential for archaeal ammonia oxidation in acidic environments. Instead, the genome indicates that “Ca. Nitrosotalea devanaterra” contains genes encoding both a predicted high-affinity substrate acquisition system and potential pH homeostasis mechanisms absent in neutrophilic AOA. Analysis of mRNA revealed that candidate genes encoding the proposed homeostasis mechanisms were all expressed during acidophilic growth, and lipid profiling by high-performance liquid chromatography–mass spectrometry (HPLC-MS) demonstrated that the membrane lipids of “Ca. Nitrosotalea devanaterra” were not dominated by crenarchaeol, as found in neutrophilic AOA. This study for the first time describes a genome of an obligately acidophilic ammonia oxidizer and identifies potential mechanisms enabling this unique phenotype for future biochemical characterization. PMID:26896134

  13. Identifying Potential Mechanisms Enabling Acidophily in the Ammonia-Oxidizing Archaeon "Candidatus Nitrosotalea devanaterra".

    PubMed

    Lehtovirta-Morley, Laura E; Sayavedra-Soto, Luis A; Gallois, Nicolas; Schouten, Stefan; Stein, Lisa Y; Prosser, James I; Nicol, Graeme W

    2016-05-01

    Ammonia oxidation is the first and rate-limiting step in nitrification and is dominated by two distinct groups of microorganisms in soil: ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB). AOA are often more abundant than AOB and dominate activity in acid soils. The mechanism of ammonia oxidation under acidic conditions has been a long-standing paradox. While high rates of ammonia oxidation are frequently measured in acid soils, cultivated ammonia oxidizers grew only at near-neutral pH when grown in standard laboratory culture. Although a number of mechanisms have been demonstrated to enable neutrophilic AOB growth at low pH in the laboratory, these have not been demonstrated in soil, and the recent cultivation of the obligately acidophilic ammonia oxidizer "Candidatus Nitrosotalea devanaterra" provides a more parsimonious explanation for the observed high rates of activity. Analysis of the sequenced genome, transcriptional activity, and lipid content of "Ca Nitrosotalea devanaterra" reveals that previously proposed mechanisms used by AOB for growth at low pH are not essential for archaeal ammonia oxidation in acidic environments. Instead, the genome indicates that "Ca Nitrosotalea devanaterra" contains genes encoding both a predicted high-affinity substrate acquisition system and potential pH homeostasis mechanisms absent in neutrophilic AOA. Analysis of mRNA revealed that candidate genes encoding the proposed homeostasis mechanisms were all expressed during acidophilic growth, and lipid profiling by high-performance liquid chromatography-mass spectrometry (HPLC-MS) demonstrated that the membrane lipids of "Ca Nitrosotalea devanaterra" were not dominated by crenarchaeol, as found in neutrophilic AOA. This study for the first time describes a genome of an obligately acidophilic ammonia oxidizer and identifies potential mechanisms enabling this unique phenotype for future biochemical characterization. PMID:26896134

  14. A Zinc Oxide Nanorod Ammonia Microsensor Integrated with a Readout Circuit on-a-Chip

    PubMed Central

    Yang, Ming-Zhi; Dai, Ching-Liang; Wu, Chyan-Chyi

    2011-01-01

    A zinc oxide nanorod ammonia microsensor integrated with a readout circuit on-a-chip fabricated using the commercial 0.35 μm complementary metal oxide semiconductor (CMOS) process was investigated. The structure of the ammonia sensor is composed of a sensitive film and polysilicon electrodes. The ammonia sensor requires a post-process to etch the sacrificial layer, and to coat the sensitive film on the polysilicon electrodes. The sensitive film that is prepared by a hydrothermal method is made of zinc oxide. The sensor resistance changes when the sensitive film adsorbs or desorbs ammonia gas. The readout circuit is used to convert the sensor resistance into the voltage output. Experiments show that the ammonia sensor has a sensitivity of about 1.5 mV/ppm at room temperature. PMID:22247656

  15. A zinc oxide nanorod ammonia microsensor integrated with a readout circuit on-a-chip.

    PubMed

    Yang, Ming-Zhi; Dai, Ching-Liang; Wu, Chyan-Chyi

    2011-01-01

    A zinc oxide nanorod ammonia microsensor integrated with a readout circuit on-a-chip fabricated using the commercial 0.35 μm complementary metal oxide semiconductor (CMOS) process was investigated. The structure of the ammonia sensor is composed of a sensitive film and polysilicon electrodes. The ammonia sensor requires a post-process to etch the sacrificial layer, and to coat the sensitive film on the polysilicon electrodes. The sensitive film that is prepared by a hydrothermal method is made of zinc oxide. The sensor resistance changes when the sensitive film adsorbs or desorbs ammonia gas. The readout circuit is used to convert the sensor resistance into the voltage output. Experiments show that the ammonia sensor has a sensitivity of about 1.5 mV/ppm at room temperature.

  16. A novel ammonia-oxidizing archaeon from wastewater treatment plant: Its enrichment, physiological and genomic characteristics

    NASA Astrophysics Data System (ADS)

    Li, Yuyang; Ding, Kun; Wen, Xianghua; Zhang, Bing; Shen, Bo; Yang, Yunfeng

    2016-03-01

    Ammonia-oxidizing archaea (AOA) are recently found to participate in the ammonia removal processes in wastewater treatment plants (WWTPs), similar to their bacterial counterparts. However, due to lack of cultivated AOA strains from WWTPs, their functions and contributions in these systems remain unclear. Here we report a novel AOA strain SAT1 enriched from activated sludge, with its physiological and genomic characteristics investigated. The maximal 16S rRNA gene similarity between SAT1 and other reported AOA strain is 96% (with “Ca. Nitrosotenuis chungbukensis”), and it is affiliated with Wastewater Cluster B (WWC-B) based on amoA gene phylogeny, a cluster within group I.1a and specific for activated sludge. Our strain is autotrophic, mesophilic (25 °C–33 °C) and neutrophilic (pH 5.0–7.0). Its genome size is 1.62 Mb, with a large fragment inversion (accounted for 68% genomic size) inside. The strain could not utilize urea due to truncation of the urea transporter gene. The lack of the pathways to synthesize usual compatible solutes makes it intolerant to high salinity (>0.03%), but could adapt to low salinity (0.005%) environments. This adaptation, together with possibly enhanced cell-biofilm attachment ability, makes it suitable for WWTPs environment. We propose the name “Candidatus Nitrosotenuis cloacae” for the strain SAT1.

  17. A novel ammonia-oxidizing archaeon from wastewater treatment plant: Its enrichment, physiological and genomic characteristics.

    PubMed

    Li, Yuyang; Ding, Kun; Wen, Xianghua; Zhang, Bing; Shen, Bo; Yang, Yunfeng

    2016-01-01

    Ammonia-oxidizing archaea (AOA) are recently found to participate in the ammonia removal processes in wastewater treatment plants (WWTPs), similar to their bacterial counterparts. However, due to lack of cultivated AOA strains from WWTPs, their functions and contributions in these systems remain unclear. Here we report a novel AOA strain SAT1 enriched from activated sludge, with its physiological and genomic characteristics investigated. The maximal 16S rRNA gene similarity between SAT1 and other reported AOA strain is 96% (with "Ca. Nitrosotenuis chungbukensis"), and it is affiliated with Wastewater Cluster B (WWC-B) based on amoA gene phylogeny, a cluster within group I.1a and specific for activated sludge. Our strain is autotrophic, mesophilic (25 °C-33 °C) and neutrophilic (pH 5.0-7.0). Its genome size is 1.62 Mb, with a large fragment inversion (accounted for 68% genomic size) inside. The strain could not utilize urea due to truncation of the urea transporter gene. The lack of the pathways to synthesize usual compatible solutes makes it intolerant to high salinity (>0.03%), but could adapt to low salinity (0.005%) environments. This adaptation, together with possibly enhanced cell-biofilm attachment ability, makes it suitable for WWTPs environment. We propose the name "Candidatus Nitrosotenuis cloacae" for the strain SAT1. PMID:27030530

  18. A novel ammonia-oxidizing archaeon from wastewater treatment plant: Its enrichment, physiological and genomic characteristics

    PubMed Central

    Li, Yuyang; Ding, Kun; Wen, Xianghua; Zhang, Bing; Shen, Bo; Yang, Yunfeng

    2016-01-01

    Ammonia-oxidizing archaea (AOA) are recently found to participate in the ammonia removal processes in wastewater treatment plants (WWTPs), similar to their bacterial counterparts. However, due to lack of cultivated AOA strains from WWTPs, their functions and contributions in these systems remain unclear. Here we report a novel AOA strain SAT1 enriched from activated sludge, with its physiological and genomic characteristics investigated. The maximal 16S rRNA gene similarity between SAT1 and other reported AOA strain is 96% (with “Ca. Nitrosotenuis chungbukensis”), and it is affiliated with Wastewater Cluster B (WWC-B) based on amoA gene phylogeny, a cluster within group I.1a and specific for activated sludge. Our strain is autotrophic, mesophilic (25 °C–33 °C) and neutrophilic (pH 5.0–7.0). Its genome size is 1.62 Mb, with a large fragment inversion (accounted for 68% genomic size) inside. The strain could not utilize urea due to truncation of the urea transporter gene. The lack of the pathways to synthesize usual compatible solutes makes it intolerant to high salinity (>0.03%), but could adapt to low salinity (0.005%) environments. This adaptation, together with possibly enhanced cell-biofilm attachment ability, makes it suitable for WWTPs environment. We propose the name “Candidatus Nitrosotenuis cloacae” for the strain SAT1. PMID:27030530

  19. Diversity, Abundance, and Niche Differentiation of Ammonia-Oxidizing Prokaryotes in Mud Deposits of the Eastern China Marginal Seas

    PubMed Central

    Yu, Shaolan; Yao, Peng; Liu, Jiwen; Zhao, Bin; Zhang, Guiling; Zhao, Meixun; Yu, Zhigang; Zhang, Xiao-Hua

    2016-01-01

    The eastern China marginal seas (ECMS) are prominent examples of river-dominated ocean margins, whose most characteristic feature is the existence of isolated mud patches on sandy sediments. Ammonia-oxidizing prokaryotes play a crucial role in the nitrogen cycles of many marine environments, including marginal seas. However, few studies have attempted to address the distribution patterns of ammonia-oxidizing prokaryotes in mud deposits of these seas. The horizontal and vertical community composition and abundance of ammonia-oxidizing archaea (AOA) and bacteria (AOB) were investigated in mud deposits of the South Yellow Sea (SYS) and the East China Sea (ECS) by using amoA clone libraries and quantitative PCR. The diversity of AOB was comparable or higher in the mud zone of SYS and lower in ECS when compared with AOA. Vertically, surface sediments had generally higher diversity of AOA and AOB than middle and bottom layers. Diversity of AOA and AOB showed significant correlation with latitude. Nitrosopumilus and Nitrosospira lineages dominated AOA and AOB communities, respectively. Both AOA and AOB assemblages exhibited greater variations across different sites than those among various depths at one site. The abundance of bacterial amoA was generally higher than that of archaeal amoA, and both of them decreased with depth. Niche differentiation, which was affected by dissolved oxygen, salinity, ammonia, and silicate (SiO32-), was observed between AOA and AOB and among different groups of them. The spatial distribution of AOA and AOB was significantly correlated with δ15NTN and SiO32-, and nitrate and δ13C, respectively. Both archaeal and bacterial amoA abundance correlated strongly with SiO32-. This study improves our understanding of spatial distribution of AOA and AOB in ecosystems featuring oceanic mud deposits. PMID:26904010

  20. Diversity, Abundance, and Niche Differentiation of Ammonia-Oxidizing Prokaryotes in Mud Deposits of the Eastern China Marginal Seas.

    PubMed

    Yu, Shaolan; Yao, Peng; Liu, Jiwen; Zhao, Bin; Zhang, Guiling; Zhao, Meixun; Yu, Zhigang; Zhang, Xiao-Hua

    2016-01-01

    The eastern China marginal seas (ECMS) are prominent examples of river-dominated ocean margins, whose most characteristic feature is the existence of isolated mud patches on sandy sediments. Ammonia-oxidizing prokaryotes play a crucial role in the nitrogen cycles of many marine environments, including marginal seas. However, few studies have attempted to address the distribution patterns of ammonia-oxidizing prokaryotes in mud deposits of these seas. The horizontal and vertical community composition and abundance of ammonia-oxidizing archaea (AOA) and bacteria (AOB) were investigated in mud deposits of the South Yellow Sea (SYS) and the East China Sea (ECS) by using amoA clone libraries and quantitative PCR. The diversity of AOB was comparable or higher in the mud zone of SYS and lower in ECS when compared with AOA. Vertically, surface sediments had generally higher diversity of AOA and AOB than middle and bottom layers. Diversity of AOA and AOB showed significant correlation with latitude. Nitrosopumilus and Nitrosospira lineages dominated AOA and AOB communities, respectively. Both AOA and AOB assemblages exhibited greater variations across different sites than those among various depths at one site. The abundance of bacterial amoA was generally higher than that of archaeal amoA, and both of them decreased with depth. Niche differentiation, which was affected by dissolved oxygen, salinity, ammonia, and silicate (SiO[Formula: see text]), was observed between AOA and AOB and among different groups of them. The spatial distribution of AOA and AOB was significantly correlated with δ(15)NTN and SiO[Formula: see text], and nitrate and δ(13)C, respectively. Both archaeal and bacterial amoA abundance correlated strongly with SiO[Formula: see text]. This study improves our understanding of spatial distribution of AOA and AOB in ecosystems featuring oceanic mud deposits.

  1. Distribution of ammonia oxidizers in relation to vegetation characteristics in the Qilian Mountains, northwestern China

    NASA Astrophysics Data System (ADS)

    Tai, X. S.; Mao, W. L.; Liu, G. X.; Chen, T.; Zhang, W.; Wu, X. K.; Long, H. Z.; Zhang, B. G.; Gao, T. P.

    2014-04-01

    Nitrogen is the major limiting nutrient in cold environments, and its availability is strongly dependent on nitrification. However, microbial communities driving this process remain largely uncharacterized in alpine meadow soils in northwestern China, namely those catalyzing the rate-limiting step of ammonia oxidation. In this study, ammonia-oxidizing communities in alpine meadow soils were characterized by real-time PCR and clone sequencing by targeting on amoA genes, which putatively encode ammonia monooxygenase subunit A. The results demonstrated that ammonia-oxidizing archaea (AOA) outnumbered ammonia-oxidizing bacteria (AOB) in the alpine meadow soils. Most of the AOA phylotypes detected in the study region fell within typical Group I.1b of Thaumarchaeota. Interestingly, a new ammonia-oxidizing archaeal group named "Kobresia meadow soil group" was found. Phylogenetic analysis of AOB communities exhibited a dominance of Nitrosospira-like sequences affiliated to beta-Proteobacteria. Compared with other alpine environments, Qilian Mountains had a great phylogenetic diversity of ammonia oxidizers. Principal Component Analysis (PCA) analysis showed that distinct AOA/AOB phylotype groups were attributed to different meadow types, reflecting an overall distribution of ammonia-oxidizing communities associated with meadow types. Redundancy Analysis (RDA) analysis showed that Axis 1 (90.9%) together with Axis 2 (9.1%) explained all the variables while Axis 1 exhibited a significant explanatory power. So that vegetation coverage mostly correlated to Axis 1 was the most powerful environmental factor in the study region. Characteristics of ammonia-oxidizing communities showed a close association with vegetation coverage.

  2. Simazine biodegradation and community structures of ammonia-oxidizing microorganisms in bioaugmented soil: impact of ammonia and nitrate nitrogen sources.

    PubMed

    Wan, Rui; Yang, Yuyin; Sun, Weimin; Wang, Zhao; Xie, Shuguang

    2014-02-01

    The objective of the present study was to investigate the impact of ammonia and nitrate nitrogen sources on simazine biodegradation by Arthrobacter sp. strain SD1 and the community structures of ammonia-oxidizing archaea (AOA) and bacteria (AOB) in non-agricultural soil. Soil microcosms with different treatments were constructed for herbicide biodegradation test. The relative abundance of the strain SD1 and the structures of AOA and AOB communities were assessed using quantitative PCR (q-PCR) and terminal restriction fragment length polymorphism (TRFLP), respectively. The co-existence of two inorganic nitrogen sources (ammonia and nitrate) had certain impact on simazine dissipation by the strain SD1. Bioaugmentation could induce a shift in the community structures of both AOA and AOB, but AOA were more responsive. Nitrogen application had significant impacts on AOA and AOB communities in bioaugmented soils. Moreover, in non-bioaugmented soil, the community structure of AOA, instead of AOB, could be quickly recovered after herbicide application. This study could add some new insights towards the impacts of nitrogen sources on s-triazine bioremediation and ammonia-oxidizing microorganisms in soil ecosystem.

  3. Urease-Encoding Genes in Ammonia-Oxidizing Bacteria†

    PubMed Central

    Koper, Teresa E.; El-Sheikh, Amal F.; Norton, Jeanette M.; Klotz, Martin G.

    2004-01-01

    Many but not all ammonia-oxidizing bacteria (AOB) produce urease (urea amidohydrolase, EC 3.5.1.5) and are capable of using urea for chemolithotrophic growth. We sequenced the urease operons from two AOB, the β-proteobacterium Nitrosospira sp. strain NpAV and the γ-proteobacterium Nitrosococcus oceani. In both organisms, all seven urease genes were contiguous: the three structural urease genes ureABC were preceded and succeeded by the accessory genes ureD and ureEFG, respectively. Green fluorescent protein reporter gene fusions revealed that the ure genes were under control of a single operon promoter upstream of the ureD gene in Nitrosococcus oceani. Southern analyses revealed two copies of ureC in the Nitrosospira sp. strain NpAV genome, while a single copy of the ure operon was detected in the genome of Nitrosococcus oceani. The ureC gene encodes the alpha subunit protein containing the active site and conserved nickel binding ligands; these conserved regions were suitable primer targets for obtaining further ureC sequences from additional AOB. In order to develop molecular tools for detecting the ureolytic ecotype of AOB, ureC genes were sequenced from several β-proteobacterial AOB. Pairwise identity values ranged from 80 to 90% for the UreC peptides of AOB within a subdivision. UreC sequences deduced from AOB urease genes and available UreC sequences in the public databases were used to construct alignments and make phylogenetic inferences. The UreC proteins from β-proteobacterial AOB formed a distinct monophyletic group. Unexpectedly, the peptides from AOB did not group most closely with the UreC proteins from other β-proteobacteria. Instead, it appears that urease in β-proteobacterial autotrophic ammonia oxidizers is the product of divergent evolution in the common ancestor of γ- and β-proteobacteria that was initiated before their divergence during speciation. Sequence motifs conserved for the proteobacteria and variable regions possibly

  4. Control of nitric oxide, nitrous oxide, and ammonia emissions using microwave plasmas

    PubMed

    Wojtowicz; Miknis; Grimes; Smith; Serio

    2000-05-29

    The subject of this paper is mitigation of the undesirable side-effects of selective non-catalytic reduction (SNCR) and selective catalytic reduction (SCR): ammonia slip, residual NO(x), and N(2)O emissions. The use of microwave-plasma discharge within the flue gas was explored as a potential pollution-control method. The key issues addressed were: (1) N(2)O, NH(3), and NO removal efficiencies; and (2) sustaining a stable plasma at atmospheric, or close to atmospheric, pressure. In non-oxidizing atmospheres, removal efficiencies were always close to 100% for all species. In the presence of oxygen, however, appreciable amounts of nitric oxide and ammonia were formed. Methods leading to preventing these undesirable effects were examined. In a number of runs, stable plasma operation was attained at pressures close to atmospheric.

  5. BACTERIAL OXIDATION OF DIPICOLINIC ACID I.

    PubMed Central

    Arima, Kei; Kobayashi, Yasuo

    1962-01-01

    Arima, Kei (University of Tokyo, Tokyo, Japan) and Yasuo Kobayashi. Bacterial oxidation of dipicolinic acid. I. Isolation of microorganisms, their culture conditions, and end products. J. Bacteriol. 84:759–764. 1962.—In a study of the metabolic pathway(s) of dipicolinic acid (DPA) in microorganisms, 436 strains of soil microorganisms were isolated by use of an enrichment culture technique. Most of them were bacteria, and one of them, Achromobacter, which had the strongest DPA-oxidizing activity, was used for the following experiments. In DPA-free medium, the enzymes which oxidize DPA were not produced. The best culture condition for enzyme production and cell growth was: Nutrient Broth supplemented with 0.1% DPA, 30 C, and 20 hr of shake culture. End products were oxalic acid, NH3, and CO2. Oxalic acid was not oxidized further by this bacterium. The over-all reaction equation of DPA oxidation was determined. PMID:16561964

  6. Effects of bioaugmentation in para-nitrophenol-contaminated soil on the abundance and community structure of ammonia-oxidizing bacteria and archaea.

    PubMed

    Chi, Xiang-Qun; Liu, Kun; Zhou, Ning-Yi

    2015-07-01

    Pseudomonas sp. strain WBC-3 mineralizes the priority pollutant para-nitrophenol (PNP) and releases nitrite (NO2 (-)), which is probably involved in the nitrification. In this study, the rate of PNP removal in soil bioaugmented with strain WBC-3 was more accelerated with more NO2 (-) accumulation than in uninoculated soils. Strain WBC-3 survived well and remained stable throughout the entire period. Real-time polymerase chain reaction (real-time PCR) indicated a higher abundance of ammonia-oxidizing bacteria (AOB) than ammonia-oxidizing archaea (AOA), suggesting that AOB played a greater role in nitrification in the original sampled soil. Real-time PCR and multivariate analysis based on the denaturing gradient gel electrophoresis showed that PNP contamination did not significantly alter the abundance and community structure of ammonia oxidizers except for inhibiting the AOB abundance. Bioaugmentation of PNP-contaminated soil showed a significant effect on AOB populations and community structure as well as AOA populations. In addition, ammonium (NH4 (+)) variation was found to be the primary factor affecting the AOB community structure, as determined by the correlation between the community structures of ammonia oxidizers and environmental factors. It is here proposed that the balance between archaeal and bacterial ammonia oxidation could be influenced significantly by the variation in NH4 (+) levels as caused by bioaugmentation of contaminated soil by a pollutant containing nitrogen.

  7. Spatial distribution and factors shaping the niche segregation of ammonia-oxidizing microorganisms in the Qiantang River, China.

    PubMed

    Liu, Shuai; Shen, Lidong; Lou, Liping; Tian, Guangming; Zheng, Ping; Hu, Baolan

    2013-07-01

    Ammonia oxidation is performed by both ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB). However, the current knowledge of the distribution, diversity, and relative abundance of these two microbial groups in freshwater sediments is insufficient. We examined the spatial distribution and analyzed the possible factors leading to the niche segregation of AOA and AOB in the sediments of the Qiantang River, using clone library construction and quantitative PCR for both archaeal and bacterial amoA genes. pH and NH4(+)-N content had a significant effect on AOA abundance and AOA operational taxonomy unit (OTU) numbers. pH and organic carbon content influenced the ratio of AOA/AOB OTU numbers significantly. The influence of these factors showed an obvious spatial trend along the Qiantang River. This result suggested that AOA may contribute more than AOB to the upstream reaches of the Qiantang River, where the pH is lower and the organic carbon and NH4(+)-N contents are higher, but AOB were the principal driver of nitrification downstream, where the opposite environmental conditions were present.

  8. Ammonia-Oxidizing Bacteria in Biofilters Removing Trihalomethanes Are Related to Nitrosomonas oligotropha

    EPA Science Inventory

    Nitrifying biofilters degrading the four regulated trihalomethanes (THMs) trichloromethane (TCM), bromodichloromethane (BDCM), dibromochloromethane (DBCM), and tribromomethane (TBM) -were analyzed for the presence and activity of ammonia-oxidizing bacteria (AOB). Biofilter perfor...

  9. Bilogical Treatment for Ammonia Oxidation in Drinking Water Facilities

    EPA Science Inventory

    Ammonia is an unregulated compound, but is naturally occurring in many drinking water sources. It is also used by some treatment facilities to produce chloramines for disinfection purposes. Because ammonia is non-toxic, its presence in drinking water is often disregarded. Thro...

  10. Ammonia-Oxidizing Bacteria Rather than Ammonia-Oxidizing Archaea were Widely Distributed in Animal Manure Composts from Field-Scale Facilities

    PubMed Central

    Yamamoto, Nozomi; Oishi, Ryu; Suyama, Yoshihisa; Tada, Chika; Nakai, Yutaka

    2012-01-01

    The distribution of ammonia-oxidizing archaea (AOA) and bacteria (AOB) in cattle, swine, and chicken manure compost was analyzed. PCR-denaturing gradient gel electrophoresis (DGGE) showed that a Candidatus Nitrososphaera gargensis-like sequence dominated in cattle manure compost, while few AOA were detected in other composts. In the case of AOB, Nitrosomonas-like sequences were detected with higher diversity in cattle and swine manure composts. The relative abundance of ammonia oxidizers by real-time PCR revealed that more AOB was present in compost except in one swine manure compost. Our results indicated that AOB rather than AOA are widely distributed in animal manure compost. PMID:22972386

  11. Characterization and quantification of ammonia-oxidizing bacteria in eutrophic coastal marine sediments using polyphasic molecular approaches and immunofluorescence staining.

    PubMed

    Urakawa, Hidetoshi; Kurata, Shinya; Fujiwara, Taketomo; Kuroiwa, Daisuke; Maki, Hideaki; Kawabata, Sumiko; Hiwatari, Takehiko; Ando, Haruo; Kawai, Toshio; Watanabe, Masataka; Kohata, Kunio

    2006-05-01

    Tokyo Bay, a eutrophic bay in Japan, receives nutrients from wastewater plants and other urban diffuse sources via river input. A transect was conducted along a line from the Arakawa River into Tokyo Bay to investigate the ecological relationship between the river outflow and the distribution, abundance and population structure of ammonia-oxidizing bacteria (AOB). Five surficial marine sediments were collected and analysed with polyphasic approaches. Heterogeneity and genetic diversity of beta-AOB populations were examined using restriction fragment length polymorphism (RFLP) analysis of 16S rRNA and amoA genes. A shift of the microbial community was detected in samples along the transect. Both 16S rRNA and amoA genes generated polymorphisms in the restriction profiles that were distinguishable at each sampling site. Two 16S rRNA gene libraries were constructed using the reverse transcription polymerase chain reaction (RT-PCR) method to determine the major ammonia oxidizers maintaining high cellular rRNA content. Two major groups were observed in the Nitrosomonas lineage; no Nitrosospira were detected. The effort to isolate novel AOB was successful; the isolate dominated in the gene libraries. For quantitative analysis, a real-time PCR assay targeting the 16S rRNA gene was developed. The population sizes of beta-AOB ranged from 1.6 x 10(7) to 3.0 x 10(8) cells g(-1) in dry sediments, which corresponded to 0.1-1.1% of the total bacterial population. An immunofluorescence staining using anti-hydroxylamine oxidoreductase (HAO) antibody was also tested to obtain complementary data. The population sizes of ammonia oxidizers ranged between 2.4 x 10(8) and 1.2 x 10(9) cells g(-1) of dry sediments, which corresponded to 1.2-4.3% of the total bacterial fraction. Ammonia-oxidizing bacteria cell numbers deduced by the two methods were correlated (R = 0.79, P < 0.01). In both methods, the number of AOB increased with the distance from the river mouth; ammonia-oxidizing

  12. Higher diversity of ammonia/ammonium-oxidizing prokaryotes in constructed freshwater wetland than natural coastal marine wetland.

    PubMed

    Wang, Yong-Feng; Gu, Ji-Dong

    2013-08-01

    Anaerobic ammonium-oxidizing (anammox) bacteria, aerobic ammonia-oxidizing archaea (AOA), and ammonia-oxidizing bacteria (AOB) are three groups of ammonium/ammonia-oxidizing prokaryotes (AOPs) that are involved in the nitrogen cycle. This research compared the AOP communities in a constructed freshwater wetland with a natural coastal marine wetland in the subtropical Hong Kong. Both vegetated/rhizosphere and nonvegetated sediments were investigated to identify the effects of different macrophytes on the AOP communities. The polymerase chain reaction (PCR)-amplified gene fragments of 16S rRNA and archaeal and bacterial amoA (encoding the ammonia monooxygenase alpha subunit) were applied as molecular biomarkers to analyze the AOPs' phylogeny and diversity. Quantitative PCR was used to determine the abundances of AOPs in the sediments. The results showed that the relatively more heterogeneous freshwater wetland contained a broader range of phylotypes, higher diversity, more complex community structures, and more unevenly distributed abundances of AOPs than the coastal wetland. The effects of vegetation on the community structures of AOPs were plant-specific. The exotic Typha angustifolia affected the community structures of all AOPs and enhanced their abundances in the rhizosphere region. Both Phragmites australis and Cyperus malaccensis showed some effects on the community structures of AOB, but minimal effects on those of anammox bacteria or AOA. Kandelia obovata had almost no detectable effect on all AOPs due to their smaller size. This study suggested that the freshwater and coastal marine wetlands may have different contributions to the inorganic N removal due to the variations in AOP communities and plant types. PMID:23053083

  13. Ammonia-oxidizing microbial communities in reactors with efficient nitrification at low-dissolved oxygen

    PubMed Central

    Fitzgerald, Colin M.; Camejo, Pamela; Oshlag, J. Zachary; Noguera, Daniel R.

    2015-01-01

    Ammonia-oxidizing microbial communities involved in ammonia oxidation under low dissolved oxygen (DO) conditions (<0.3 mg/L) were investigated using chemostat reactors. One lab-scale reactor (NS_LowDO) was seeded with sludge from a full-scale wastewater treatment plant (WWTP) not adapted to low-DO nitrification, while a second reactor (JP_LowDO) was seeded with sludge from a full-scale WWTP already achieving low-DO nitrifiaction. The experimental evidence from quantitative PCR, rDNA tag pyrosequencing, and fluorescence in situ hybridization (FISH) suggested that ammonia-oxidizing bacteria (AOB) in the Nitrosomonas genus were responsible for low-DO nitrification in the NS_LowDO reactor, whereas in the JP_LowDO reactor nitrification was not associated with any known ammonia-oxidizing prokaryote. Neither reactor had a significant population of ammonia-oxidizing archaea (AOA) or anaerobic ammonium oxidation (anammox) organisms. Organisms isolated from JP_LowDO were capable of autotrophic and heterotrophic ammonia utilization, albeit without stoichiometric accumulation of nitrite or nitrate. Based on the experimental evidence we propose that Pseudomonas, Xanthomonadaceae, Rhodococcus, and Sphingomonas are involved in nitrification under low-DO conditions. PMID:25506762

  14. Ammonia-oxidizing microbial communities in reactors with efficient nitrification at low-dissolved oxygen.

    PubMed

    Fitzgerald, Colin M; Camejo, Pamela; Oshlag, J Zachary; Noguera, Daniel R

    2015-03-01

    Ammonia-oxidizing microbial communities involved in ammonia oxidation under low dissolved oxygen (DO) conditions (<0.3 mg/L) were investigated using chemostat reactors. One lab-scale reactor (NS_LowDO) was seeded with sludge from a full-scale wastewater treatment plant (WWTP) not adapted to low-DO nitrification, while a second reactor (JP_LowDO) was seeded with sludge from a full-scale WWTP already achieving low-DO nitrifiaction. The experimental evidence from quantitative PCR, rDNA tag pyrosequencing, and fluorescence in situ hybridization (FISH) suggested that ammonia-oxidizing bacteria (AOB) in the Nitrosomonas genus were responsible for low-DO nitrification in the NS_LowDO reactor, whereas in the JP_LowDO reactor nitrification was not associated with any known ammonia-oxidizing prokaryote. Neither reactor had a significant population of ammonia-oxidizing archaea (AOA) or anaerobic ammonium oxidation (anammox) organisms. Organisms isolated from JP_LowDO were capable of autotrophic and heterotrophic ammonia utilization, albeit without stoichiometric accumulation of nitrite or nitrate. Based on the experimental evidence we propose that Pseudomonas, Xanthomonadaceae, Rhodococcus, and Sphingomonas are involved in nitrification under low-DO conditions.

  15. Evaluation of bacterial communities by bacteriome analysis targeting 16S rRNA genes and quantitative analysis of ammonia monooxygenase gene in different types of compost.

    PubMed

    Kitamura, Rika; Ishii, Kazuo; Maeda, Isamu; Kozaki, Toshinori; Iwabuchi, Kazunori; Saito, Takahiro

    2016-01-01

    Biofiltration technology based on microbial degradation and assimilation is used for the removal of malodorous compounds, such as ammonia. Microbes that degrade malodorous and/or organic substances are involved in composting and are retained after composting; therefore, mature composts can serve as an ideal candidate for a biofilter medium. In this study, we focused on different types of raw compost materials, as these are important factors determining the bacterial community profile and the chemical component of the compost. Therefore, bacterial community profiles, the abundance of the bacterial ammonia monooxygenase gene (amoA), and the quantities of chemical components were analyzed in composts produced from either food waste or cattle manure. The community profiles with the lowest beta diversity were obtained from single type of cattle manure compost. However, cattle manure composts showed greater alpha diversity, contained higher amounts of various rRNA gene fragments than those of food waste composts and contained the amoA gene by relative quantification, and Proteobacteria were abundantly found and nitrifying bacteria were detected in it. Nitrifying bacteria are responsible for ammonia oxidation and mainly belong to the Proteobacteria or Nitrospira phyla. The quantities of chemical components, such as salt, phosphorus, and nitrogen, differed between the cattle manure and food waste composts, indicating that the raw materials provided different fermentation environments that were crucial for the formation of different community profiles. The results also suggest that cattle manure might be a more suitable raw material for the production of composts to be used in the biofiltration of ammonia.

  16. Evaluation of bacterial communities by bacteriome analysis targeting 16S rRNA genes and quantitative analysis of ammonia monooxygenase gene in different types of compost.

    PubMed

    Kitamura, Rika; Ishii, Kazuo; Maeda, Isamu; Kozaki, Toshinori; Iwabuchi, Kazunori; Saito, Takahiro

    2016-01-01

    Biofiltration technology based on microbial degradation and assimilation is used for the removal of malodorous compounds, such as ammonia. Microbes that degrade malodorous and/or organic substances are involved in composting and are retained after composting; therefore, mature composts can serve as an ideal candidate for a biofilter medium. In this study, we focused on different types of raw compost materials, as these are important factors determining the bacterial community profile and the chemical component of the compost. Therefore, bacterial community profiles, the abundance of the bacterial ammonia monooxygenase gene (amoA), and the quantities of chemical components were analyzed in composts produced from either food waste or cattle manure. The community profiles with the lowest beta diversity were obtained from single type of cattle manure compost. However, cattle manure composts showed greater alpha diversity, contained higher amounts of various rRNA gene fragments than those of food waste composts and contained the amoA gene by relative quantification, and Proteobacteria were abundantly found and nitrifying bacteria were detected in it. Nitrifying bacteria are responsible for ammonia oxidation and mainly belong to the Proteobacteria or Nitrospira phyla. The quantities of chemical components, such as salt, phosphorus, and nitrogen, differed between the cattle manure and food waste composts, indicating that the raw materials provided different fermentation environments that were crucial for the formation of different community profiles. The results also suggest that cattle manure might be a more suitable raw material for the production of composts to be used in the biofiltration of ammonia. PMID:26111599

  17. Comparison of Nitrogen Oxide Metabolism among Diverse Ammonia-Oxidizing Bacteria

    PubMed Central

    Kozlowski, Jessica A.; Kits, K. Dimitri; Stein, Lisa Y.

    2016-01-01

    Ammonia-oxidizing bacteria (AOB) have well characterized genes that encode and express nitrite reductases (NIR) and nitric oxide reductases (NOR). However, the connection between presence or absence of these and other genes for nitrogen transformations with the physiological production of nitric oxide (NO) and nitrous oxide (N2O) has not been tested across AOB isolated from various trophic states, with diverse phylogeny, and with closed genomes. It is therefore unclear if genomic content for nitrogen oxide metabolism is predictive of net N2O production. Instantaneous microrespirometry experiments were utilized to measure NO and N2O emitted by AOB during active oxidation of ammonia (NH3) or hydroxylamine (NH2OH) and through a period of anoxia. This data was used in concert with genomic content and phylogeny to assess whether taxonomic factors were predictive of nitrogen oxide metabolism. Results showed that two oligotrophic AOB strains lacking annotated NOR-encoding genes released large quantities of NO and produced N2O abiologically at the onset of anoxia following NH3-oxidation. Furthermore, high concentrations of N2O were measured during active O2-dependent NH2OH oxidation by the two oligotrophic AOB in contrast to non-oligotrophic strains that only produced N2O at the onset of anoxia. Therefore, complete nitrifier denitrification did not occur in the two oligotrophic strains, but did occur in meso- and eutrophic strains, even in Nitrosomonas communis Nm2 that lacks an annotated NIR-encoding gene. Regardless of mechanism, all AOB strains produced measureable N2O under tested conditions. This work further confirms that AOB require NOR activity to enzymatically reduce NO to N2O in the nitrifier denitrification pathway, and also that abiotic reactions play an important role in N2O formation, in oligotrophic AOB lacking NOR activity. PMID:27462312

  18. Comparison of Nitrogen Oxide Metabolism among Diverse Ammonia-Oxidizing Bacteria.

    PubMed

    Kozlowski, Jessica A; Kits, K Dimitri; Stein, Lisa Y

    2016-01-01

    Ammonia-oxidizing bacteria (AOB) have well characterized genes that encode and express nitrite reductases (NIR) and nitric oxide reductases (NOR). However, the connection between presence or absence of these and other genes for nitrogen transformations with the physiological production of nitric oxide (NO) and nitrous oxide (N2O) has not been tested across AOB isolated from various trophic states, with diverse phylogeny, and with closed genomes. It is therefore unclear if genomic content for nitrogen oxide metabolism is predictive of net N2O production. Instantaneous microrespirometry experiments were utilized to measure NO and N2O emitted by AOB during active oxidation of ammonia (NH3) or hydroxylamine (NH2OH) and through a period of anoxia. This data was used in concert with genomic content and phylogeny to assess whether taxonomic factors were predictive of nitrogen oxide metabolism. Results showed that two oligotrophic AOB strains lacking annotated NOR-encoding genes released large quantities of NO and produced N2O abiologically at the onset of anoxia following NH3-oxidation. Furthermore, high concentrations of N2O were measured during active O2-dependent NH2OH oxidation by the two oligotrophic AOB in contrast to non-oligotrophic strains that only produced N2O at the onset of anoxia. Therefore, complete nitrifier denitrification did not occur in the two oligotrophic strains, but did occur in meso- and eutrophic strains, even in Nitrosomonas communis Nm2 that lacks an annotated NIR-encoding gene. Regardless of mechanism, all AOB strains produced measureable N2O under tested conditions. This work further confirms that AOB require NOR activity to enzymatically reduce NO to N2O in the nitrifier denitrification pathway, and also that abiotic reactions play an important role in N2O formation, in oligotrophic AOB lacking NOR activity.

  19. Comparison of Nitrogen Oxide Metabolism among Diverse Ammonia-Oxidizing Bacteria.

    PubMed

    Kozlowski, Jessica A; Kits, K Dimitri; Stein, Lisa Y

    2016-01-01

    Ammonia-oxidizing bacteria (AOB) have well characterized genes that encode and express nitrite reductases (NIR) and nitric oxide reductases (NOR). However, the connection between presence or absence of these and other genes for nitrogen transformations with the physiological production of nitric oxide (NO) and nitrous oxide (N2O) has not been tested across AOB isolated from various trophic states, with diverse phylogeny, and with closed genomes. It is therefore unclear if genomic content for nitrogen oxide metabolism is predictive of net N2O production. Instantaneous microrespirometry experiments were utilized to measure NO and N2O emitted by AOB during active oxidation of ammonia (NH3) or hydroxylamine (NH2OH) and through a period of anoxia. This data was used in concert with genomic content and phylogeny to assess whether taxonomic factors were predictive of nitrogen oxide metabolism. Results showed that two oligotrophic AOB strains lacking annotated NOR-encoding genes released large quantities of NO and produced N2O abiologically at the onset of anoxia following NH3-oxidation. Furthermore, high concentrations of N2O were measured during active O2-dependent NH2OH oxidation by the two oligotrophic AOB in contrast to non-oligotrophic strains that only produced N2O at the onset of anoxia. Therefore, complete nitrifier denitrification did not occur in the two oligotrophic strains, but did occur in meso- and eutrophic strains, even in Nitrosomonas communis Nm2 that lacks an annotated NIR-encoding gene. Regardless of mechanism, all AOB strains produced measureable N2O under tested conditions. This work further confirms that AOB require NOR activity to enzymatically reduce NO to N2O in the nitrifier denitrification pathway, and also that abiotic reactions play an important role in N2O formation, in oligotrophic AOB lacking NOR activity. PMID:27462312

  20. Abundance of ammonia oxidizing bacteria and archaea under long-term maize cropping systems.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nitrification involves the oxidation of ammonium and is an important component of the overall N cycle. Nitrification occurs in two steps; first by oxidizing ammonium to nitrite, and then to nitrate. The first step is often the rate limiting step. Until recently ammonia-oxidizing bacteria were though...

  1. Genomes of two new ammonia-oxidizing archaea enriched from deep marine sediments.

    PubMed

    Park, Soo-Je; Ghai, Rohit; Martín-Cuadrado, Ana-Belén; Rodríguez-Valera, Francisco; Chung, Won-Hyong; Kwon, KaeKyoung; Lee, Jung-Hyun; Madsen, Eugene L; Rhee, Sung-Keun

    2014-01-01

    Ammonia-oxidizing archaea (AOA) are ubiquitous and abundant and contribute significantly to the carbon and nitrogen cycles in the ocean. In this study, we assembled AOA draft genomes from two deep marine sediments from Donghae, South Korea, and Svalbard, Arctic region, by sequencing the enriched metagenomes. Three major microorganism clusters belonging to Thaumarchaeota, Epsilonproteobacteria, and Gammaproteobacteria were deduced from their 16S rRNA genes, GC contents, and oligonucleotide frequencies. Three archaeal genomes were identified, two of which were distinct and were designated Ca. "Nitrosopumilus koreensis" AR1 and "Nitrosopumilus sediminis" AR2. AR1 and AR2 exhibited average nucleotide identities of 85.2% and 79.5% to N. maritimus, respectively. The AR1 and AR2 genomes contained genes pertaining to energy metabolism and carbon fixation as conserved in other AOA, but, conversely, had fewer heme-containing proteins and more copper-containing proteins than other AOA. Most of the distinctive AR1 and AR2 genes were located in genomic islands (GIs) that were not present in other AOA genomes or in a reference water-column metagenome from the Sargasso Sea. A putative gene cluster involved in urea utilization was found in the AR2 genome, but not the AR1 genome, suggesting niche specialization in marine AOA. Co-cultured bacterial genome analysis suggested that bacterial sulfur and nitrogen metabolism could be involved in interactions with AOA. Our results provide fundamental information concerning the metabolic potential of deep marine sedimentary AOA.

  2. Gold and silver nanoparticle effects on ammonia-oxidizing bacteria cultures under ammoxidation.

    PubMed

    Luo, Zhuanxi; Chen, Zheng; Qiu, Zhaozheng; Li, Yancai; Laing, Gijs Du; Liu, Aifen; Yan, Changzhou

    2015-02-01

    Owing to their wide application in industry and manufacturing, understanding the environmental safety of gold (Au) and silver (Ag) nanoparticles entering aquatic environment is a global issue of concern. For this study, ammonia-oxidizing bacteria (AOB) enrichment cultures reproduced from surface sediments taken from the Jiulong River estuary wetlands (Fujian Province, China) were spiked with nano-Ag and nano-Au to determine their impact on ammoxidation and the mechanisms involved in the process. Results showed that nano-Ag significantly inhibited bacterial ammoxidation in aquatic environment, with the average ammoxidation rate decreasing with increasing nano-Ag concentration. The average ammoxidation rate was significantly correlated to the Shannon index, the Simpson index, and AOB abundance. This suggested that ammoxidation inhibition resulted primarily from AOB biodiversity and abundance reduction, caused by the antibacterial property of nano-Ag. However, AOB biodiversity and abundance as well as bacterial ammoxidation were not inhibited by nano-Au (with a maximum experimental concentration of 2 mg L(-1)). Moreover, an insignificant correlation was found between AOB biodiversity and abundance and the average ammoxidation rate under the nano-Au treatment. Given that ammoxidation is regarded as a rate-limiting procedure in nitrogen (N) circulation, nano-Ag would affect N cycling but nano-Au would not after entering aquatic environments. Identified nano-Ag and nano-Au impacts on ammonium nitrogen transformation could be generalized in aquatic environment according to their extensive representation in the phylogenetic tree. PMID:24559932

  3. Genomes of two new ammonia-oxidizing archaea enriched from deep marine sediments.

    PubMed

    Park, Soo-Je; Ghai, Rohit; Martín-Cuadrado, Ana-Belén; Rodríguez-Valera, Francisco; Chung, Won-Hyong; Kwon, KaeKyoung; Lee, Jung-Hyun; Madsen, Eugene L; Rhee, Sung-Keun

    2014-01-01

    Ammonia-oxidizing archaea (AOA) are ubiquitous and abundant and contribute significantly to the carbon and nitrogen cycles in the ocean. In this study, we assembled AOA draft genomes from two deep marine sediments from Donghae, South Korea, and Svalbard, Arctic region, by sequencing the enriched metagenomes. Three major microorganism clusters belonging to Thaumarchaeota, Epsilonproteobacteria, and Gammaproteobacteria were deduced from their 16S rRNA genes, GC contents, and oligonucleotide frequencies. Three archaeal genomes were identified, two of which were distinct and were designated Ca. "Nitrosopumilus koreensis" AR1 and "Nitrosopumilus sediminis" AR2. AR1 and AR2 exhibited average nucleotide identities of 85.2% and 79.5% to N. maritimus, respectively. The AR1 and AR2 genomes contained genes pertaining to energy metabolism and carbon fixation as conserved in other AOA, but, conversely, had fewer heme-containing proteins and more copper-containing proteins than other AOA. Most of the distinctive AR1 and AR2 genes were located in genomic islands (GIs) that were not present in other AOA genomes or in a reference water-column metagenome from the Sargasso Sea. A putative gene cluster involved in urea utilization was found in the AR2 genome, but not the AR1 genome, suggesting niche specialization in marine AOA. Co-cultured bacterial genome analysis suggested that bacterial sulfur and nitrogen metabolism could be involved in interactions with AOA. Our results provide fundamental information concerning the metabolic potential of deep marine sedimentary AOA. PMID:24798206

  4. Effects of ammonia exposure on apoptosis, oxidative stress and immune response in pufferfish (Takifugu obscurus).

    PubMed

    Cheng, Chang-Hong; Yang, Fang-Fang; Ling, Ren-Zhi; Liao, Shao-An; Miao, Yu-Tao; Ye, Chao-Xia; Wang, An-Li

    2015-07-01

    Ammonia is one of major environmental pollutants in the freshwater aquatic system that affects the survival and growth of organisms. In the present study, we investigated the effects of ammonia exposure on apoptosis, oxidative stress and immune response in pufferfish (Takifugu obscurus). Fish were exposed to various concentrations of ammonia (0, 1.43, 3.57, 7.14mM) for 72h. The date showed that ammonia exposure could induce intracellular reactive oxygen species (ROS), interrupt intracellular Ca(2+) (cf-Ca(2+)) homeostasis, and subsequently lead to DNA damage and cell apoptosis. To test the apoptotic pathway, the expression patterns of some key apoptotic related genes including P53, Bax Bcl2, Caspase 9, Caspase 8 and Caspase 3 in the liver were examined. The results showed that ammonia stress could change these genes transcription, associated with increasing of cell apoptosis, suggesting that the P53-Bax-Bcl2 pathway and caspase-dependent apoptotic pathway could be involved in cell apoptosis induced by ammonia stress. In addition, ammonia stress could induced up-regulation of inflammatory cytokines (BAFF, TNF-α, IL-6 and IL-12) transcription, indicating that innate immune system play important roles in ammonia-induced toxicity in fish. Furthermore, the gene expressions of antioxidant enzymes (Mn-SOD, CAT, GPx, and GR) and heat shock proteins (HSP90 and HSP70) in the liver were induced by ammonia stress, suggesting that antioxidant system and heat shock proteins tried to protect cells from oxidative stress and apoptosis induced by ammonia stress. Our results will be helpful to understand the mechanism of aquatic toxicology induced by ammonia in fish.

  5. Ammonia effect on hydrogenotrophic methanogens and syntrophic acetate-oxidizing bacteria.

    PubMed

    Wang, Han; Fotidis, Ioannis A; Angelidaki, Irini

    2015-11-01

    Ammonia-rich substrates can cause inhibition on anaerobic digestion process. Syntrophic acetate-oxidizing bacteria (SAOB) and hydrogenotrophic methanogens are important for the ammonia inhibitory mechanism on anaerobic digestion. The roles and interactions of SAOB and hydrogenotrophic methanogens to ammonia inhibition effect are still unclear. The aim of the current study was to determine the ammonia toxicity levels of various pure strains of SAOB and hydrogenotrophic methanogens. Moreover, ammonia toxicity on the syntrophic-cultivated strains of SAOB and hydrogenotrophic methanogens was tested. Thus, four hydrogenotrophic methanogens (i.e. Methanoculleus bourgensis, Methanobacterium congolense, Methanoculleu thermophilus and Methanothermobacter thermautotrophicus), two SAOB (i.e. Tepidanaerobacter acetatoxydans and Thermacetogenium phaeum) and their syntrophic cultivation were assessed under 0.26, 3, 5 and 7 g NH4 (+)-N L(-1). The results showed that some hydrogenotrophic methanogens were equally, or in some cases, more tolerant to high ammonia levels compared to SAOB. Furthermore, a mesophilic hydrogenotrophic methanogen was more sensitive to ammonia toxicity compared to thermophilic methanogens tested in the study, which is contradicting to the general belief that thermophilic methanogens are more vulnerable to high ammonia loads compared to mesophilic. This unexpected finding underlines the fact that the complete knowledge of ammonia inhibition effect on hydrogenotrophic methanogens is still absent.

  6. Enrichment of a novel marine ammonia-oxidizing archaeon obtained from sand of an eelgrass zone.

    PubMed

    Matsutani, Naoki; Nakagawa, Tatsunori; Nakamura, Kyoko; Takahashi, Reiji; Yoshihara, Kiyoshi; Tokuyama, Tatsuaki

    2011-01-01

    Ammonia-oxidizing archaea (AOA) are generally cultivated at ammonium concentrations of less than 2 mM. The physiology and abundance in the environment of AOA suggest an important role in the nitrogen cycle. We report here a novel marine ammonia-oxidizing crenarchaeote, strain NM25 belonged to 'Candidatus Nitrosopumilus', that was enriched from coastal sand of an eelgrass zone and grew in a medium containing 15 mM ammonium at 30°C. A phylogenetic analysis based on the 16S rRNA gene revealed this crenarchaeote was related to the ammonia-oxidizing archaeon 'Candidatus Nitrosopumilus maritimus' strain SCM1, with 98.5% identity. The ammonia monooxygenase subunit A (amoA) gene of strain NM25 was less closely related to that of known cultivable AOA (>95%) and environmental clones (>97%). This finding suggests the existence of AOA adapted to high ammonium-containing environments.

  7. Distinct Responses in Ammonia-Oxidizing Archaea and Bacteria after Addition of Biosolids to an Agricultural Soil▿

    PubMed Central

    Kelly, John J.; Policht, Katherine; Grancharova, Tanya; Hundal, Lakhwinder S.

    2011-01-01

    The recently discovered ammonia-oxidizing archaea (AOA) have been suggested as contributors to the first step of nitrification in terrestrial ecosystems, a role that was previously assigned exclusively to ammonia-oxidizing bacteria (AOB). The current study assessed the effects of agricultural management, specifically amendment of soil with biosolids or synthetic fertilizer, on nitrification rates and copy numbers of archaeal and bacterial ammonia monooxygenase (amoA) genes. Anaerobically digested biosolids or synthetic fertilizer was applied annually for three consecutive years to field plots used for corn production. Biosolids were applied at two loading rates, a typical agronomic rate (27 Mg hectare−1 year−1) and double the agronomic rate (54 Mg hectare−1 year−1), while synthetic fertilizer was applied at an agronomic rate typical for the region (291 kg N hectare−1 year−1). Both biosolids amendments and synthetic fertilizer increased soil N and corn yield, but only the biosolids amendments resulted in significant increases in nitrification rates and increases in the copy numbers of archaeal and bacterial amoA genes. In addition, only archaeal amoA gene copy numbers increased in response to biosolids applied at the typical agronomic rate and showed a significant correlation with nitrification rates. Finally, copy numbers of archaeal amoA genes were significantly higher than copy numbers of bacterial amoA genes for all treatments. These results implicate AOA as being primarily responsible for the increased nitrification observed in an agricultural soil amended with biosolids. These results also support the hypothesis that physiological differences between AOA and AOB may enable them to occupy distinct ecological niches. PMID:21803892

  8. Ammonia Oxidizers in a Pilot-Scale Multilayer Rapid Infiltration System for Domestic Wastewater Treatment

    PubMed Central

    Lian, Yingli; Xu, Meiying; Zhong, Yuming; Yang, Yongqiang; Chen, Fanrong; Guo, Jun

    2014-01-01

    A pilot-scale multilayer rapid infiltration system (MRIS) for domestic wastewater treatment was established and efficient removal of ammonia and chemical oxygen demand (COD) was achieved in this study. The microbial community composition and abundance of ammonia oxidizers were investigated. Efficient biofilms of ammonia oxidizers in the stationary phase (packing material) was formed successfully in the MRIS without special inoculation. DGGE and phylogenetic analyses revealed that proteobacteria dominated in the MRIS. Relative abundance of ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) showed contrary tendency. In the flowing phase (water effluent), AOA diversity was significantly correlated with the concentration of dissolve oxygen (DO), NO3-N and NH3-N. AOB abundance was significantly correlated with the concentration of DO and chemical oxygen demand (COD). NH3-N and COD were identified as the key factors to shape AOB community structure, while no variable significantly correlated with that of AOA. AOA might play an important role in the MRIS. This study could reveal key environmental factors affecting the community composition and abundance of ammonia oxidizers in the MRIS. PMID:25479611

  9. Geographic Distribution of Archaeal Ammonia Oxidizing Ecotypes in the Atlantic Ocean.

    PubMed

    Sintes, Eva; De Corte, Daniele; Haberleitner, Elisabeth; Herndl, Gerhard J

    2016-01-01

    In marine ecosystems, Thaumarchaeota are most likely the major ammonia oxidizers. While ammonia concentrations vary by about two orders of magnitude in the oceanic water column, archaeal ammonia oxidizers (AOA) vary by only one order of magnitude from surface to bathypelagic waters. Thus, the question arises whether the key enzyme responsible for ammonia oxidation, ammonia monooxygenase (amo), exhibits different affinities to ammonia along the oceanic water column and consequently, whether there are different ecotypes of AOA present in the oceanic water column. We determined the abundance and phylogeny of AOA based on their amoA gene. Two ecotypes of AOA exhibited a distribution pattern reflecting the reported availability of ammonia and the physico-chemical conditions throughout the Atlantic, and from epi- to bathypelagic waters. The distinction between these two ecotypes was not only detectable at the nucleotide level. Consistent changes were also detected at the amino acid level. These changes include substitutions of polar to hydrophobic amino acid, and glycine substitutions that could have an effect on the configuration of the amo protein and thus, on its activity. Although we cannot identify the specific effect, the ratio of non-synonymous to synonymous substitutions (dN/dS) between the two ecotypes indicates a strong positive selection between them. Consequently, our results point to a certain degree of environmental selection on these two ecotypes that have led to their niche specialization.

  10. Geographic Distribution of Archaeal Ammonia Oxidizing Ecotypes in the Atlantic Ocean

    PubMed Central

    Sintes, Eva; De Corte, Daniele; Haberleitner, Elisabeth; Herndl, Gerhard J.

    2016-01-01

    In marine ecosystems, Thaumarchaeota are most likely the major ammonia oxidizers. While ammonia concentrations vary by about two orders of magnitude in the oceanic water column, archaeal ammonia oxidizers (AOA) vary by only one order of magnitude from surface to bathypelagic waters. Thus, the question arises whether the key enzyme responsible for ammonia oxidation, ammonia monooxygenase (amo), exhibits different affinities to ammonia along the oceanic water column and consequently, whether there are different ecotypes of AOA present in the oceanic water column. We determined the abundance and phylogeny of AOA based on their amoA gene. Two ecotypes of AOA exhibited a distribution pattern reflecting the reported availability of ammonia and the physico-chemical conditions throughout the Atlantic, and from epi- to bathypelagic waters. The distinction between these two ecotypes was not only detectable at the nucleotide level. Consistent changes were also detected at the amino acid level. These changes include substitutions of polar to hydrophobic amino acid, and glycine substitutions that could have an effect on the configuration of the amo protein and thus, on its activity. Although we cannot identify the specific effect, the ratio of non-synonymous to synonymous substitutions (dN/dS) between the two ecotypes indicates a strong positive selection between them. Consequently, our results point to a certain degree of environmental selection on these two ecotypes that have led to their niche specialization. PMID:26903961

  11. Mathematical Modeling of Ammonia Electro-Oxidation on Polycrystalline Pt Deposited Electrodes

    NASA Astrophysics Data System (ADS)

    Diaz Aldana, Luis A.

    The ammonia electrolysis process has been proposed as a feasible way for electrochemical generation of fuel grade hydrogen (H2). Ammonia is identified as one of the most suitable energy carriers due to its high hydrogen density, and its safe and efficient distribution chain. Moreover, the fact that this process can be applied even at low ammonia concentration feedstock opens its application to wastewater treatment along with H 2 co-generation. In the ammonia electrolysis process, ammonia is electro-oxidized in the anode side to produce N2 while H2 is evolved from water reduction in the cathode. A thermodynamic energy requirement of just five percent of the energy used in hydrogen production from water electrolysis is expected from ammonia electrolysis. However, the absence of a complete understanding of the reaction mechanism and kinetics involved in the ammonia electro-oxidation has not yet allowed the full commercialization of this process. For that reason, a kinetic model that can be trusted in the design and scale up of the ammonia electrolyzer needs to be developed. This research focused on the elucidation of the reaction mechanism and kinetic parameters for the ammonia electro-oxidation. The definition of the most relevant elementary reactions steps was obtained through the parallel analysis of experimental data and the development of a mathematical model of the ammonia electro-oxidation in a well defined hydrodynamic system, such as the rotating disk electrode (RDE). Ammonia electro-oxidation to N 2 as final product was concluded to be a slow surface confined process where parallel reactions leading to the deactivation of the catalyst are present. Through the development of this work it was possible to define a reaction mechanism and values for the kinetic parameters for ammonia electro-oxidation that allow an accurate representation of the experimental observations on a RDE system. Additionally, the validity of the reaction mechanism and kinetic parameters

  12. Spatial distribution and abundance of ammonia-oxidizing microorganisms in deep-sea sediments of the Pacific Ocean.

    PubMed

    Luo, Zhu-Hua; Xu, Wei; Li, Meng; Gu, Ji-Dong; Zhong, Tian-Hua

    2015-08-01

    Nitrification, the aerobic oxidation of ammonia to nitrate via nitrite, is performed by nitrifying microbes including ammonia-oxidizing bacteria (AOB) and archaea (AOA). In the current study, the phylogenetic diversity and abundance of AOB and AOA in deep-sea sediments of the Pacific Ocean were investigated using ammonia monooxygenase subunit A (amoA) coding genes as molecular markers. The study uncovered 3 AOB unique operational taxonomic units (OTUs, defined at sequence groups that differ by ≤5 %), which indicates lower diversity than AOA (13 OTUs obtained). All AOB amoA gene sequences were phylogenetically related to amoA sequences similar to those found in marine Nitrosospira species, and all AOA amoA gene sequences were affiliated with the marine sediment clade. Quantitative PCR revealed similar archaeal amoA gene abundances [1.68 × 10(5)-1.89 × 10(6) copies/g sediment (wet weight)] among different sites. Bacterial amoA gene abundances ranged from 5.28 × 10(3) to 2.29 × 10(6) copies/g sediment (wet weight). The AOA/AOB amoA gene abundance ratios ranged from 0.012 to 162 and were negatively correlated with total C and C/N ratio. These results suggest that organic loading may be a key factor regulating the relative abundance of AOA and AOB in deep-sea environments of the Pacific Ocean. PMID:26014493

  13. Spatial distribution and abundance of ammonia-oxidizing microorganisms in deep-sea sediments of the Pacific Ocean.

    PubMed

    Luo, Zhu-Hua; Xu, Wei; Li, Meng; Gu, Ji-Dong; Zhong, Tian-Hua

    2015-08-01

    Nitrification, the aerobic oxidation of ammonia to nitrate via nitrite, is performed by nitrifying microbes including ammonia-oxidizing bacteria (AOB) and archaea (AOA). In the current study, the phylogenetic diversity and abundance of AOB and AOA in deep-sea sediments of the Pacific Ocean were investigated using ammonia monooxygenase subunit A (amoA) coding genes as molecular markers. The study uncovered 3 AOB unique operational taxonomic units (OTUs, defined at sequence groups that differ by ≤5 %), which indicates lower diversity than AOA (13 OTUs obtained). All AOB amoA gene sequences were phylogenetically related to amoA sequences similar to those found in marine Nitrosospira species, and all AOA amoA gene sequences were affiliated with the marine sediment clade. Quantitative PCR revealed similar archaeal amoA gene abundances [1.68 × 10(5)-1.89 × 10(6) copies/g sediment (wet weight)] among different sites. Bacterial amoA gene abundances ranged from 5.28 × 10(3) to 2.29 × 10(6) copies/g sediment (wet weight). The AOA/AOB amoA gene abundance ratios ranged from 0.012 to 162 and were negatively correlated with total C and C/N ratio. These results suggest that organic loading may be a key factor regulating the relative abundance of AOA and AOB in deep-sea environments of the Pacific Ocean.

  14. Spatial distribution of total, ammonia-oxidizing, and denitrifying bacteria in biological wastewater treatment reactors for bioregenerative life support.

    PubMed

    Sakano, Yuko; Pickering, Karen D; Strom, Peter F; Kerkhof, Lee J

    2002-05-01

    Bioregenerative life support systems may be necessary for long-term space missions due to the high cost of lifting supplies and equipment into orbit. In this study, we investigated two biological wastewater treatment reactors designed to recover potable water for a spacefaring crew being tested at Johnson Space Center. The experiment (Lunar-Mars Life Support Test Project-Phase III) consisted of four crew members confined in a test chamber for 91 days. In order to recycle all water during the experiment, an immobilized cell bioreactor (ICB) was employed for organic carbon removal and a trickling filter bioreactor (TFB) was utilized for ammonia removal, followed by physical-chemical treatment. In this study, the spatial distribution of various microorganisms within each bioreactor was analyzed by using biofilm samples taken from four locations in the ICB and three locations in the TFB. Three target genes were used for characterization of bacteria: the 16S rRNA gene for the total bacterial community, the ammonia monooxygenase (amoA) gene for ammonia-oxidizing bacteria, and the nitrous oxide reductase (nosZ) gene for denitrifying bacteria. A combination of terminal restriction fragment length polymorphism (T-RFLP), sequence, and phylogenetic analyses indicated that the microbial community composition in the ICB and the TFB consisted mainly of Proteobacteria, low-G+C gram-positive bacteria, and a Cytophaga-Flexibacter-Bacteroides group. Fifty-seven novel 16S rRNA genes, 8 novel amoA genes, and 12 new nosZ genes were identified in this study. Temporal shifts in the species composition of total bacteria in both the ICB and the TFB and ammonia-oxidizing and denitrifying bacteria in the TFB were also detected when the biofilms were compared with the inocula after 91 days. This result suggests that specific microbial populations were either brought in by the crew or enriched in the reactors during the course of operation.

  15. Spatial distribution of total, ammonia-oxidizing, and denitrifying bacteria in biological wastewater treatment reactors for bioregenerative life support

    NASA Technical Reports Server (NTRS)

    Sakano, Yuko; Pickering, Karen D.; Strom, Peter F.; Kerkhof, Lee J.; Janes, H. W. (Principal Investigator)

    2002-01-01

    Bioregenerative life support systems may be necessary for long-term space missions due to the high cost of lifting supplies and equipment into orbit. In this study, we investigated two biological wastewater treatment reactors designed to recover potable water for a spacefaring crew being tested at Johnson Space Center. The experiment (Lunar-Mars Life Support Test Project-Phase III) consisted of four crew members confined in a test chamber for 91 days. In order to recycle all water during the experiment, an immobilized cell bioreactor (ICB) was employed for organic carbon removal and a trickling filter bioreactor (TFB) was utilized for ammonia removal, followed by physical-chemical treatment. In this study, the spatial distribution of various microorganisms within each bioreactor was analyzed by using biofilm samples taken from four locations in the ICB and three locations in the TFB. Three target genes were used for characterization of bacteria: the 16S rRNA gene for the total bacterial community, the ammonia monooxygenase (amoA) gene for ammonia-oxidizing bacteria, and the nitrous oxide reductase (nosZ) gene for denitrifying bacteria. A combination of terminal restriction fragment length polymorphism (T-RFLP), sequence, and phylogenetic analyses indicated that the microbial community composition in the ICB and the TFB consisted mainly of Proteobacteria, low-G+C gram-positive bacteria, and a Cytophaga-Flexibacter-Bacteroides group. Fifty-seven novel 16S rRNA genes, 8 novel amoA genes, and 12 new nosZ genes were identified in this study. Temporal shifts in the species composition of total bacteria in both the ICB and the TFB and ammonia-oxidizing and denitrifying bacteria in the TFB were also detected when the biofilms were compared with the inocula after 91 days. This result suggests that specific microbial populations were either brought in by the crew or enriched in the reactors during the course of operation.

  16. Response of performance and ammonia oxidizing bacteria community to high salinity stress in membrane bioreactor with elevated ammonia loading.

    PubMed

    Wang, Zhu; Luo, Gan; Li, Jun; Chen, Shi-Yu; Li, Yan; Li, Wen-Tao; Li, Ai-Min

    2016-09-01

    Effect of elevated ammonia loading rate (ALR) and increasing salinity on the operation of membrane bioreactor (MBR) and the response of microbial community were investigated. Results showed that MBR started up with 1% NaCl stress achieved amazing nitrification performance at high salinity up to 4% when treating wastewater containing 1000mg/L NH(+)4-N. Further increasing salinity to 7% led to failure of MBR unrecoverably. Steep decline of sludge activity contributed to the extremely worse performance. High-throughput sequencing analysis showed that both ALR and salinity had selective effects on the microbial community structure. In genus level, Methyloversatilis and Maribacter were enriched during the operation. Survival of salt-resistant microbes contributed to the rising of richness and diversity at 2% and 4% NaCl stress. Analysis of amoA-gene-based cloning revealed Nitrosomonas marina are chiefly responsible for catalyzing ammonia oxidation in high ALR at high salinity stress. PMID:27290667

  17. Benthic ammonia oxidizers differ in community structure and biogeochemical potential across a riverine delta

    PubMed Central

    Damashek, Julian; Smith, Jason M.; Mosier, Annika C.; Francis, Christopher A.

    2015-01-01

    Nitrogen pollution in coastal zones is a widespread issue, particularly in ecosystems with urban or agricultural watersheds. California's Sacramento-San Joaquin Delta, at the landward reaches of San Francisco Bay, is highly impacted by both agricultural runoff and sewage effluent, leading to chronically high nutrient loadings. In particular, the extensive discharge of ammonium into the Sacramento River has altered this ecosystem by vastly increasing ammonium concentrations and thus changing the stoichiometry of inorganic nitrogen stocks, with potential effects throughout the food web. This debate surrounding ammonium inputs highlights the importance of understanding the rates of, and controls on, nitrogen (N) cycling processes across the delta. To date, however, there has been little research examining N biogeochemistry or N-cycling microbial communities in this system. We report the first data on benthic ammonia-oxidizing microbial communities and potential nitrification rates for the Sacramento-San Joaquin Delta, focusing on the functional gene amoA (which codes for the α-subunit of ammonia monooxygenase). There were stark regional differences in ammonia-oxidizing communities, with ammonia-oxidizing bacteria (AOB) outnumbering ammonia-oxidizing archaea (AOA) only in the ammonium-rich Sacramento River. High potential nitrification rates in the Sacramento River suggested these communities may be capable of oxidizing significant amounts of ammonium, compared to the San Joaquin River and the upper reaches of San Francisco Bay. Gene diversity also showed regional patterns, as well as phylogenetically unique ammonia oxidizers in the Sacramento River. The benthic ammonia oxidizers in this nutrient-rich aquatic ecosystem may be important players in its overall nutrient cycling, and their community structure and biogeochemical function appear related to nutrient loadings. Unraveling the microbial ecology and biogeochemistry of N cycling pathways, including benthic

  18. Benthic ammonia oxidizers differ in community structure and biogeochemical potential across a riverine delta.

    PubMed

    Damashek, Julian; Smith, Jason M; Mosier, Annika C; Francis, Christopher A

    2014-01-01

    Nitrogen pollution in coastal zones is a widespread issue, particularly in ecosystems with urban or agricultural watersheds. California's Sacramento-San Joaquin Delta, at the landward reaches of San Francisco Bay, is highly impacted by both agricultural runoff and sewage effluent, leading to chronically high nutrient loadings. In particular, the extensive discharge of ammonium into the Sacramento River has altered this ecosystem by vastly increasing ammonium concentrations and thus changing the stoichiometry of inorganic nitrogen stocks, with potential effects throughout the food web. This debate surrounding ammonium inputs highlights the importance of understanding the rates of, and controls on, nitrogen (N) cycling processes across the delta. To date, however, there has been little research examining N biogeochemistry or N-cycling microbial communities in this system. We report the first data on benthic ammonia-oxidizing microbial communities and potential nitrification rates for the Sacramento-San Joaquin Delta, focusing on the functional gene amoA (which codes for the α-subunit of ammonia monooxygenase). There were stark regional differences in ammonia-oxidizing communities, with ammonia-oxidizing bacteria (AOB) outnumbering ammonia-oxidizing archaea (AOA) only in the ammonium-rich Sacramento River. High potential nitrification rates in the Sacramento River suggested these communities may be capable of oxidizing significant amounts of ammonium, compared to the San Joaquin River and the upper reaches of San Francisco Bay. Gene diversity also showed regional patterns, as well as phylogenetically unique ammonia oxidizers in the Sacramento River. The benthic ammonia oxidizers in this nutrient-rich aquatic ecosystem may be important players in its overall nutrient cycling, and their community structure and biogeochemical function appear related to nutrient loadings. Unraveling the microbial ecology and biogeochemistry of N cycling pathways, including benthic

  19. Nitrous oxide emission related to ammonia-oxidizing bacteria and mitigation options from N fertilization in a tropical soil

    NASA Astrophysics Data System (ADS)

    Soares, Johnny R.; Cassman, Noriko A.; Kielak, Anna M.; Pijl, Agata; Carmo, Janaína B.; Lourenço, Kesia S.; Laanbroek, Hendrikus J.; Cantarella, Heitor; Kuramae, Eiko E.

    2016-07-01

    Nitrous oxide (N2O) from nitrogen fertilizers applied to sugarcane has high environmental impact on ethanol production. This study aimed to determine the main microbial processes responsible for the N2O emissions from soil fertilized with different N sources, to identify options to mitigate N2O emissions, and to determine the impacts of the N sources on the soil microbiome. In a field experiment, nitrogen was applied as calcium nitrate, urea, urea with dicyandiamide or 3,4 dimethylpyrazone phosphate nitrification inhibitors (NIs), and urea coated with polymer and sulfur (PSCU). Urea caused the highest N2O emissions (1.7% of N applied) and PSCU did not reduce cumulative N2O emissions compared to urea. NIs reduced N2O emissions (95%) compared to urea and had emissions comparable to those of the control (no N). Similarly, calcium nitrate resulted in very low N2O emissions. Interestingly, N2O emissions were significantly correlated only with bacterial amoA, but not with denitrification gene (nirK, nirS, nosZ) abundances, suggesting that ammonia-oxidizing bacteria, via the nitrification pathway, were the main contributors to N2O emissions. Moreover, the treatments had little effect on microbial composition or diversity. We suggest nitrate-based fertilizers or the addition of NIs in NH4+-N based fertilizers as viable options for reducing N2O emissions in tropical soils and lessening the environmental impact of biofuel produced from sugarcane.

  20. Nitrous oxide emission related to ammonia-oxidizing bacteria and mitigation options from N fertilization in a tropical soil

    PubMed Central

    Soares, Johnny R.; Cassman, Noriko A.; Kielak, Anna M.; Pijl, Agata; Carmo, Janaína B.; Lourenço, Kesia S.; Laanbroek, Hendrikus J.; Cantarella, Heitor; Kuramae, Eiko E.

    2016-01-01

    Nitrous oxide (N2O) from nitrogen fertilizers applied to sugarcane has high environmental impact on ethanol production. This study aimed to determine the main microbial processes responsible for the N2O emissions from soil fertilized with different N sources, to identify options to mitigate N2O emissions, and to determine the impacts of the N sources on the soil microbiome. In a field experiment, nitrogen was applied as calcium nitrate, urea, urea with dicyandiamide or 3,4 dimethylpyrazone phosphate nitrification inhibitors (NIs), and urea coated with polymer and sulfur (PSCU). Urea caused the highest N2O emissions (1.7% of N applied) and PSCU did not reduce cumulative N2O emissions compared to urea. NIs reduced N2O emissions (95%) compared to urea and had emissions comparable to those of the control (no N). Similarly, calcium nitrate resulted in very low N2O emissions. Interestingly, N2O emissions were significantly correlated only with bacterial amoA, but not with denitrification gene (nirK, nirS, nosZ) abundances, suggesting that ammonia-oxidizing bacteria, via the nitrification pathway, were the main contributors to N2O emissions. Moreover, the treatments had little effect on microbial composition or diversity. We suggest nitrate-based fertilizers or the addition of NIs in NH4+-N based fertilizers as viable options for reducing N2O emissions in tropical soils and lessening the environmental impact of biofuel produced from sugarcane. PMID:27460335

  1. Nitrous oxide emission related to ammonia-oxidizing bacteria and mitigation options from N fertilization in a tropical soil.

    PubMed

    Soares, Johnny R; Cassman, Noriko A; Kielak, Anna M; Pijl, Agata; Carmo, Janaína B; Lourenço, Kesia S; Laanbroek, Hendrikus J; Cantarella, Heitor; Kuramae, Eiko E

    2016-01-01

    Nitrous oxide (N2O) from nitrogen fertilizers applied to sugarcane has high environmental impact on ethanol production. This study aimed to determine the main microbial processes responsible for the N2O emissions from soil fertilized with different N sources, to identify options to mitigate N2O emissions, and to determine the impacts of the N sources on the soil microbiome. In a field experiment, nitrogen was applied as calcium nitrate, urea, urea with dicyandiamide or 3,4 dimethylpyrazone phosphate nitrification inhibitors (NIs), and urea coated with polymer and sulfur (PSCU). Urea caused the highest N2O emissions (1.7% of N applied) and PSCU did not reduce cumulative N2O emissions compared to urea. NIs reduced N2O emissions (95%) compared to urea and had emissions comparable to those of the control (no N). Similarly, calcium nitrate resulted in very low N2O emissions. Interestingly, N2O emissions were significantly correlated only with bacterial amoA, but not with denitrification gene (nirK, nirS, nosZ) abundances, suggesting that ammonia-oxidizing bacteria, via the nitrification pathway, were the main contributors to N2O emissions. Moreover, the treatments had little effect on microbial composition or diversity. We suggest nitrate-based fertilizers or the addition of NIs in NH4(+)-N based fertilizers as viable options for reducing N2O emissions in tropical soils and lessening the environmental impact of biofuel produced from sugarcane. PMID:27460335

  2. Nitrous oxide emission related to ammonia-oxidizing bacteria and mitigation options from N fertilization in a tropical soil.

    PubMed

    Soares, Johnny R; Cassman, Noriko A; Kielak, Anna M; Pijl, Agata; Carmo, Janaína B; Lourenço, Kesia S; Laanbroek, Hendrikus J; Cantarella, Heitor; Kuramae, Eiko E

    2016-07-27

    Nitrous oxide (N2O) from nitrogen fertilizers applied to sugarcane has high environmental impact on ethanol production. This study aimed to determine the main microbial processes responsible for the N2O emissions from soil fertilized with different N sources, to identify options to mitigate N2O emissions, and to determine the impacts of the N sources on the soil microbiome. In a field experiment, nitrogen was applied as calcium nitrate, urea, urea with dicyandiamide or 3,4 dimethylpyrazone phosphate nitrification inhibitors (NIs), and urea coated with polymer and sulfur (PSCU). Urea caused the highest N2O emissions (1.7% of N applied) and PSCU did not reduce cumulative N2O emissions compared to urea. NIs reduced N2O emissions (95%) compared to urea and had emissions comparable to those of the control (no N). Similarly, calcium nitrate resulted in very low N2O emissions. Interestingly, N2O emissions were significantly correlated only with bacterial amoA, but not with denitrification gene (nirK, nirS, nosZ) abundances, suggesting that ammonia-oxidizing bacteria, via the nitrification pathway, were the main contributors to N2O emissions. Moreover, the treatments had little effect on microbial composition or diversity. We suggest nitrate-based fertilizers or the addition of NIs in NH4(+)-N based fertilizers as viable options for reducing N2O emissions in tropical soils and lessening the environmental impact of biofuel produced from sugarcane.

  3. Platinum electrodeposition at unsupported electrochemically reduced nanographene oxide for enhanced ammonia oxidation.

    PubMed

    Cunci, Lisandro; Velez, Carlos A; Perez, Ivan; Suleiman, Amal; Larios, Eduardo; José-Yacamán, Miguel; Watkins, James J; Cabrera, Carlos R

    2014-02-12

    The electrochemical reduction of highly oxidized unsupported graphene oxide nanosheets and its platinum electrodeposition was done by the rotating disk slurry electrode technique. Avoiding the use of a solid electrode, graphene oxide was electrochemically reduced in a slurry solution with a scalable process without the use of a reducing agent. Graphene oxide nanosheets were synthesized from carbon platelet nanofibers to obtain highly hydrophilic layers of less than 250 nm in width. The graphene oxide and electrochemically reduced graphene oxide/Pt (erGOx/Pt) hybrid materials were characterized through different spectroscopy and microscopy techniques. Pt nanoparticles with 100 facets, clusters, and atoms at erGOx were identified by high resolution transmission electron microscopy (HRTEM). Cyclic voltammetry was used to characterize the electrocatalytic activity of the highly dispersed erGOx/Pt hybrid material toward the oxidation of ammonia, which showed a 5-fold current density increase when compared with commercially available Vulcan/Pt 20%. This is in agreement with having Pt (100) facets present in the HRTEM images of the erGOx/Pt material.

  4. Platinum Electrodeposition at Unsupported Electrochemically Reduced Nanographene Oxide for Enhanced Ammonia Oxidation

    PubMed Central

    2015-01-01

    The electrochemical reduction of highly oxidized unsupported graphene oxide nanosheets and its platinum electrodeposition was done by the rotating disk slurry electrode technique. Avoiding the use of a solid electrode, graphene oxide was electrochemically reduced in a slurry solution with a scalable process without the use of a reducing agent. Graphene oxide nanosheets were synthesized from carbon platelet nanofibers to obtain highly hydrophilic layers of less than 250 nm in width. The graphene oxide and electrochemically reduced graphene oxide/Pt (erGOx/Pt) hybrid materials were characterized through different spectroscopy and microscopy techniques. Pt nanoparticles with 100 facets, clusters, and atoms at erGOx were identified by high resolution transmission electron microscopy (HRTEM). Cyclic voltammetry was used to characterize the electrocatalytic activity of the highly dispersed erGOx/Pt hybrid material toward the oxidation of ammonia, which showed a 5-fold current density increase when compared with commercially available Vulcan/Pt 20%. This is in agreement with having Pt (100) facets present in the HRTEM images of the erGOx/Pt material. PMID:24417177

  5. Effect of acetylene and ammonia as reburn fuel additions to methane in nitric oxide reburning

    SciTech Connect

    Kumpaty, S.K.; Nokku, V.P.; Subramanian, K.

    1996-12-31

    Presented in this paper are the computational results of NO reburning with (a) a combination of methane and acetylene and (b) a combination of methane and ammonia. An updated reaction mechanism that was more comprehensive in terms of predicting the ammonia and isocyanic acid oxidation chemistry was employed to run the CKINTERP program. Using the binary file created by executing the above program and the input stoichiometric ratio conditions, the CHEMKIN package predicted the exit concentrations of various species involved in NO reburning.

  6. Anti-Oxidative Defences Are Modulated Differentially in Three Freshwater Teleosts in Response to Ammonia-Induced Oxidative Stress

    PubMed Central

    Giblen, Terri; Zinta, Gaurav; De Rop, Michelle; Asard, Han; Blust, Ronny; De Boeck, Gudrun

    2014-01-01

    Oxidative stress and the antioxidant response induced by high environmental ammonia (HEA) were investigated in the liver and gills of three freshwater teleosts differing in their sensitivities to ammonia. The highly ammonia-sensitive salmonid Oncorhynchus mykiss (rainbow trout), the less ammonia sensitive cyprinid Cyprinus carpio (common carp) and the highly ammonia-resistant cyprinid Carassius auratus (goldfish) were exposed to 1 mM ammonia (as NH4HCO3) for 0 h (control), 3 h, 12 h, 24 h, 48 h, 84 h and 180 h. Results show that HEA exposure increased ammonia accumulation significantly in the liver of all the three fish species from 24 h–48 h onwards which was associated with an increment in oxidative stress, evidenced by elevation of xanthine oxidase activity and levels of hydrogen peroxide (H2O2) and malondialdehyde (MDA). Unlike in trout, H2O2 and MDA accumulation in carp and goldfish liver was restored to control levels (84 h–180 h); which was accompanied by a concomitant increase in superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase activity and reduced ascorbate content. Many of these defence parameters remained unaffected in trout liver, while components of the glutathione redox cycle (reduced glutathione, glutathione peroxidase and glutathione reductase) enhanced to a greater extent. The present findings suggest that trout rely mainly on glutathione dependent defensive mechanism while carp utilize SOD, CAT and ascorbate as anti-oxidative sentinels. Hepatic cells of goldfish appear to utilize each of these protective systems, and showed more effective anti-oxidative compensatory responses towards HEA than carp, while trout were least effective. The present work also indicates that HEA exposure resulted in a relatively mild oxidative stress in the gills of all three species. This probably explains the almost complete lack of anti-oxidative responses in branchial tissue. This research suggests that oxidative stress, as well as the antioxidant

  7. Anti-oxidative defences are modulated differentially in three freshwater teleosts in response to ammonia-induced oxidative stress.

    PubMed

    Sinha, Amit Kumar; AbdElgawad, Hamada; Giblen, Terri; Zinta, Gaurav; De Rop, Michelle; Asard, Han; Blust, Ronny; De Boeck, Gudrun

    2014-01-01

    Oxidative stress and the antioxidant response induced by high environmental ammonia (HEA) were investigated in the liver and gills of three freshwater teleosts differing in their sensitivities to ammonia. The highly ammonia-sensitive salmonid Oncorhynchus mykiss (rainbow trout), the less ammonia sensitive cyprinid Cyprinus carpio (common carp) and the highly ammonia-resistant cyprinid Carassius auratus (goldfish) were exposed to 1 mM ammonia (as NH4HCO3) for 0 h (control), 3 h, 12 h, 24 h, 48 h, 84 h and 180 h. Results show that HEA exposure increased ammonia accumulation significantly in the liver of all the three fish species from 24 h-48 h onwards which was associated with an increment in oxidative stress, evidenced by elevation of xanthine oxidase activity and levels of hydrogen peroxide (H2O2) and malondialdehyde (MDA). Unlike in trout, H2O2 and MDA accumulation in carp and goldfish liver was restored to control levels (84 h-180 h); which was accompanied by a concomitant increase in superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase activity and reduced ascorbate content. Many of these defence parameters remained unaffected in trout liver, while components of the glutathione redox cycle (reduced glutathione, glutathione peroxidase and glutathione reductase) enhanced to a greater extent. The present findings suggest that trout rely mainly on glutathione dependent defensive mechanism while carp utilize SOD, CAT and ascorbate as anti-oxidative sentinels. Hepatic cells of goldfish appear to utilize each of these protective systems, and showed more effective anti-oxidative compensatory responses towards HEA than carp, while trout were least effective. The present work also indicates that HEA exposure resulted in a relatively mild oxidative stress in the gills of all three species. This probably explains the almost complete lack of anti-oxidative responses in branchial tissue. This research suggests that oxidative stress, as well as the antioxidant

  8. Diversity of Ammonia Oxidation (amoA) and Nitrogen Fixation (nifH) Genes in Lava Caves of Terceira, Azores, Portugal

    PubMed Central

    Hathaway, Jennifer J. Marshall; Sinsabaugh, Robert L.; Dapkevicius, Maria De Lurdes N. E.; Northup, Diana E.

    2015-01-01

    Lava caves are an understudied ecosystem in the subterranean world, particularly in regard to nitrogen cycling. The diversity of ammonia oxidation (amoA) and nitrogen fixation (nifH) genes in bacterial mats collected from lava cave walls on the island of Terceira (Azores, Portugal) was investigated using denaturing gradient gel electrophoresis (DGGE). A total of 55 samples were collected from 11 lava caves that were selected with regard to surface land use. Land use types above the lava caves were categorized into pasture, forested, and sea/urban, and used to determine if land use influenced the ammonia oxidizing and nitrogen fixing bacterial communities within the lava caves. The soil and water samples from each lava cave were analyzed for total organic carbon, inorganic carbon, total nitrogen, ammonium, nitrate, phosphate and sulfate, to determine if land use influences either the nutrient content entering the lava cave or the nitrogen cycling bacteria present within the cave. Nitrosospira-like sequences dominated the ammonia-oxidizing bacteria (AOB) community, and the majority of the diversity was found in lava caves under forested land. The nitrogen fixation community was dominated by Klebsiella pneumoniae-like sequences, and diversity was evenly distributed between pasture and forested land, but very little overlap in diversity was observed. The results suggest that land use is impacting both the AOB and the nitrogen fixing bacterial communities. PMID:26778867

  9. The abundance and diversity of ammonia-oxidizing bacteria in activated sludge under autotrophic domestication.

    PubMed

    Li, Qiang; Ma, Chao; Sun, Shifang; Xie, Hui; Zhang, Wei; Feng, Jun; Song, Cunjiang

    2013-04-01

    Ammonia-oxidizing bacteria (AOB) play a key role in nitrogen-removal wastewater treatment plants (WWTPs) as they can transform ammonia into nitrite. AOB can be enriched in activated sludge through autotrophic domestication although they are difficult to be isolated. In this study, autotrophic domestication was carried out in a lab-scale sequencing-batch-reactor (SBR) system with two activated sludge samples. The ammonia removal capacity of the sludge samples increased during the domestication, and pH exhibited a negative correlation with the ammonia removal amount, which indicated that it was one important factor of microbial ammonia oxidation. The count of AOB, measured by the most probable number (MPN) method, increased significantly during autotrophic domestication as ammonia oxidation efficiency was enhanced. We investigated the changes in the community structure of AOB before and after domestication by amoA clone library and T-RFLP profile. It showed that AOB had been successfully enriched and the community structure significantly shifted during the domestication. Two groups of AOB were found in sludge samples: Nitrosomonas-like group remained predominant all the time and Nitrosospira-like group changed obviously. Simultaneously, the total heterotrophic bacteria were investigated by MPN and Biolog assay. The metabolic diversity of heterotrophs had changed minutely, although the count of them decreased significantly and lost superiority of microbial communities in the sludge.

  10. Biotransformation of Two Pharmaceuticals by the Ammonia-Oxidizing Archaeon Nitrososphaera gargensis.

    PubMed

    Men, Yujie; Han, Ping; Helbling, Damian E; Jehmlich, Nico; Herbold, Craig; Gulde, Rebekka; Onnis-Hayden, Annalisa; Gu, April Z; Johnson, David R; Wagner, Michael; Fenner, Kathrin

    2016-05-01

    The biotransformation of some micropollutants has previously been observed to be positively associated with ammonia oxidation activities and the transcript abundance of the archaeal ammonia monooxygenase gene (amoA) in nitrifying activated sludge. Given the increasing interest in and potential importance of ammonia-oxidizing archaea (AOA), we investigated the capabilities of an AOA pure culture, Nitrososphaera gargensis, to biotransform ten micropollutants belonging to three structurally similar groups (i.e., phenylureas, tertiary amides, and tertiary amines). N. gargensis was able to biotransform two of the tertiary amines, mianserin (MIA) and ranitidine (RAN), exhibiting similar compound specificity as two ammonia-oxidizing bacteria (AOB) strains that were tested for comparison. The same MIA and RAN biotransformation reactions were carried out by both the AOA and AOB strains. The major transformation product (TP) of MIA, α-oxo MIA was likely formed via a two-step oxidation reaction. The first hydroxylation step is typically catalyzed by monooxygenases. Three RAN TP candidates were identified from nontarget analysis. Their tentative structures and possible biotransformation pathways were proposed. The biotransformation of MIA and RAN only occurred when ammonia oxidation was active, suggesting cometabolic transformations. Consistently, a comparative proteomic analysis revealed no significant differential expression of any protein-encoding gene in N. gargensis grown on ammonium with MIA or RAN compared with standard cultivation on ammonium only. Taken together, this study provides first important insights regarding the roles played by AOA in micropollutant biotransformation. PMID:27046099

  11. Biotransformation of Two Pharmaceuticals by the Ammonia-Oxidizing Archaeon Nitrososphaera gargensis

    PubMed Central

    2016-01-01

    The biotransformation of some micropollutants has previously been observed to be positively associated with ammonia oxidation activities and the transcript abundance of the archaeal ammonia monooxygenase gene (amoA) in nitrifying activated sludge. Given the increasing interest in and potential importance of ammonia-oxidizing archaea (AOA), we investigated the capabilities of an AOA pure culture, Nitrososphaera gargensis, to biotransform ten micropollutants belonging to three structurally similar groups (i.e., phenylureas, tertiary amides, and tertiary amines). N. gargensis was able to biotransform two of the tertiary amines, mianserin (MIA) and ranitidine (RAN), exhibiting similar compound specificity as two ammonia-oxidizing bacteria (AOB) strains that were tested for comparison. The same MIA and RAN biotransformation reactions were carried out by both the AOA and AOB strains. The major transformation product (TP) of MIA, α-oxo MIA was likely formed via a two-step oxidation reaction. The first hydroxylation step is typically catalyzed by monooxygenases. Three RAN TP candidates were identified from nontarget analysis. Their tentative structures and possible biotransformation pathways were proposed. The biotransformation of MIA and RAN only occurred when ammonia oxidation was active, suggesting cometabolic transformations. Consistently, a comparative proteomic analysis revealed no significant differential expression of any protein-encoding gene in N. gargensis grown on ammonium with MIA or RAN compared with standard cultivation on ammonium only. Taken together, this study provides first important insights regarding the roles played by AOA in micropollutant biotransformation. PMID:27046099

  12. [Distribution of Aerobic Ammonia-Oxidizing Microorganisms in Sediments from Adjacent Waters of Rushan Bay].

    PubMed

    He, Hui; Zhen, Yu; Mi, Tie-zhu; Zhang, Yu; Fu, Lu-lu; Yu, Zhi-gang

    2015-11-01

    Nitrogen cycle is a key process in material circulation of marine ecosystem, which plays an important role in maintaining ecological balance. The ammonia oxidation process promoted by aerobic ammonia-oxidizing microorganism (AOM) is a rate-limiting step of nitrification. Real-time quantitative polymerase chain reaction (qPCR ), along with the determination of potential nitrification rates (PNR) was carried out in this study to understand the distribution of AOM in sediments of adjacent waters of Rushan Bay in August, 2014. The results indicated that the abundance of total ammonia-oxidizing bacteria (AOB) was always greater than that of total ammonia-oxidizing archaea (AOA) in the three sampling stations; the ratio of active AOB to total AOB was less than 1%, while no active AOA was detected in this study; the PNR significantly decreased after adding ampicillin which could inhibit the activity of AOB (P < 0.05). It was speculated that AOB might play a more important role in the ammonia oxidation in sediments of adjacent waters of Rushan Bay in August, 2014. Dissolved oxygen concentrations, temperature and ammonium concentrations played a significant role in distribution of AOM in sediments of adjacent waters of Rushan Bay.

  13. Multiple factors affect diversity and abundance of ammonia-oxidizing microorganisms in iron mine soil.

    PubMed

    Xing, Yi; Si, Yan-Xiao; Hong, Chen; Li, Yang

    2015-07-01

    Ammonia oxidation by microorganisms is a critical process in the nitrogen cycle. In this study, four soil samples collected from a desert zone in an iron-exploration area and others from farmland and planted forest soil in an iron mine surrounding area. We analyzed the abundance and diversity of ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) in iron-mining area near the Miyun reservoir using ammonia monooxygenase. A subunit gene (amoA) as molecular biomarker. Quantitative polymerase chain reaction was applied to explore the relationships between the abundance of AOA and AOB and soil physicochemical parameters. The results showed that AOA were more abundant than AOB and may play a more dominant role in the ammonia-oxidizing process in the whole region. PCR-denaturing gradient gel electrophoresis was used to analyze the structural changes of AOA and AOB. The results showed that AOB were much more diverse than AOA. Nitrosospira cluster three constitute the majority of AOB, and AOA were dominated by group 1.1b in the soil. Redundancy analysis was performed to explore the physicochemical parameters potentially important to AOA and AOB. Soil characteristics (i.e. water, ammonia, organic carbon, total nitrogen, available phosphorus, and soil type) were proposed to potentially contribute to the distributions of AOB, whereas Cd was also closely correlated to the distributions of AOB. The community of AOA correlated with ammonium and water contents. These results highlight the importance of multiple drivers in microbial niche formation as well as their affect on ammonia oxidizer composition, both which have significant consequences for ecosystem nitrogen functioning.

  14. Multiple factors affect diversity and abundance of ammonia-oxidizing microorganisms in iron mine soil.

    PubMed

    Xing, Yi; Si, Yan-Xiao; Hong, Chen; Li, Yang

    2015-07-01

    Ammonia oxidation by microorganisms is a critical process in the nitrogen cycle. In this study, four soil samples collected from a desert zone in an iron-exploration area and others from farmland and planted forest soil in an iron mine surrounding area. We analyzed the abundance and diversity of ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) in iron-mining area near the Miyun reservoir using ammonia monooxygenase. A subunit gene (amoA) as molecular biomarker. Quantitative polymerase chain reaction was applied to explore the relationships between the abundance of AOA and AOB and soil physicochemical parameters. The results showed that AOA were more abundant than AOB and may play a more dominant role in the ammonia-oxidizing process in the whole region. PCR-denaturing gradient gel electrophoresis was used to analyze the structural changes of AOA and AOB. The results showed that AOB were much more diverse than AOA. Nitrosospira cluster three constitute the majority of AOB, and AOA were dominated by group 1.1b in the soil. Redundancy analysis was performed to explore the physicochemical parameters potentially important to AOA and AOB. Soil characteristics (i.e. water, ammonia, organic carbon, total nitrogen, available phosphorus, and soil type) were proposed to potentially contribute to the distributions of AOB, whereas Cd was also closely correlated to the distributions of AOB. The community of AOA correlated with ammonium and water contents. These results highlight the importance of multiple drivers in microbial niche formation as well as their affect on ammonia oxidizer composition, both which have significant consequences for ecosystem nitrogen functioning. PMID:25860433

  15. Inhabitancy of active Nitrosopumilus-like ammonia-oxidizing archaea and Nitrospira nitrite-oxidizing bacteria in the sponge Theonella swinhoei

    PubMed Central

    Feng, Guofang; Sun, Wei; Zhang, Fengli; Karthik, Loganathan; Li, Zhiyong

    2016-01-01

    Nitrification directly contributes to the ammonia removal in sponges, and it plays an indispensable role in sponge-mediated nitrogen cycle. Previous studies have demonstrated genomic evidences of nitrifying lineages in the sponge Theonella swinhoei. However, little is known about the transcriptional activity of nitrifying community in this sponge. In this study, combined DNA- and transcript-based analyses were performed to reveal the composition and transcriptional activity of the nitrifiers in T. swinhoei from the South China Sea. Transcriptional activity of ammonia-oxidizing archaea (AOA) and nitrite-oxidizing bacteria (NOB) in this sponge were confirmed by targeting their nitrifying genes,16S rRNA genes and their transcripts. Phylogenetic analysis coupled with RDP rRNA classification indicated that archaeal 16S rRNA genes, amoA (the subunit of ammonia monooxygenase) genes and their transcripts were closely related to Nitrosopumilus-like AOA; whereas nitrifying bacterial 16S rRNA genes, nxrB (the subunit of nitrite oxidoreductase) genes and their transcripts were closely related to Nitrospira NOB. Quantitative assessment demonstrated relative higher abundances of nitrifying genes and transcripts of Nitrosopumilus-like AOA than those of Nitrospira NOB in this sponge. This study illustrated the transcriptional potentials of Nitrosopumilus-like archaea and Nitrospira bacteria that would predominantly contribute to the nitrification functionality in the South China Sea T. swinhoei. PMID:27113140

  16. Inhabitancy of active Nitrosopumilus-like ammonia-oxidizing archaea and Nitrospira nitrite-oxidizing bacteria in the sponge Theonella swinhoei.

    PubMed

    Feng, Guofang; Sun, Wei; Zhang, Fengli; Karthik, Loganathan; Li, Zhiyong

    2016-01-01

    Nitrification directly contributes to the ammonia removal in sponges, and it plays an indispensable role in sponge-mediated nitrogen cycle. Previous studies have demonstrated genomic evidences of nitrifying lineages in the sponge Theonella swinhoei. However, little is known about the transcriptional activity of nitrifying community in this sponge. In this study, combined DNA- and transcript-based analyses were performed to reveal the composition and transcriptional activity of the nitrifiers in T. swinhoei from the South China Sea. Transcriptional activity of ammonia-oxidizing archaea (AOA) and nitrite-oxidizing bacteria (NOB) in this sponge were confirmed by targeting their nitrifying genes,16S rRNA genes and their transcripts. Phylogenetic analysis coupled with RDP rRNA classification indicated that archaeal 16S rRNA genes, amoA (the subunit of ammonia monooxygenase) genes and their transcripts were closely related to Nitrosopumilus-like AOA; whereas nitrifying bacterial 16S rRNA genes, nxrB (the subunit of nitrite oxidoreductase) genes and their transcripts were closely related to Nitrospira NOB. Quantitative assessment demonstrated relative higher abundances of nitrifying genes and transcripts of Nitrosopumilus-like AOA than those of Nitrospira NOB in this sponge. This study illustrated the transcriptional potentials of Nitrosopumilus-like archaea and Nitrospira bacteria that would predominantly contribute to the nitrification functionality in the South China Sea T. swinhoei. PMID:27113140

  17. Inhabitancy of active Nitrosopumilus-like ammonia-oxidizing archaea and Nitrospira nitrite-oxidizing bacteria in the sponge Theonella swinhoei.

    PubMed

    Feng, Guofang; Sun, Wei; Zhang, Fengli; Karthik, Loganathan; Li, Zhiyong

    2016-01-01

    Nitrification directly contributes to the ammonia removal in sponges, and it plays an indispensable role in sponge-mediated nitrogen cycle. Previous studies have demonstrated genomic evidences of nitrifying lineages in the sponge Theonella swinhoei. However, little is known about the transcriptional activity of nitrifying community in this sponge. In this study, combined DNA- and transcript-based analyses were performed to reveal the composition and transcriptional activity of the nitrifiers in T. swinhoei from the South China Sea. Transcriptional activity of ammonia-oxidizing archaea (AOA) and nitrite-oxidizing bacteria (NOB) in this sponge were confirmed by targeting their nitrifying genes,16S rRNA genes and their transcripts. Phylogenetic analysis coupled with RDP rRNA classification indicated that archaeal 16S rRNA genes, amoA (the subunit of ammonia monooxygenase) genes and their transcripts were closely related to Nitrosopumilus-like AOA; whereas nitrifying bacterial 16S rRNA genes, nxrB (the subunit of nitrite oxidoreductase) genes and their transcripts were closely related to Nitrospira NOB. Quantitative assessment demonstrated relative higher abundances of nitrifying genes and transcripts of Nitrosopumilus-like AOA than those of Nitrospira NOB in this sponge. This study illustrated the transcriptional potentials of Nitrosopumilus-like archaea and Nitrospira bacteria that would predominantly contribute to the nitrification functionality in the South China Sea T. swinhoei.

  18. Quantitative and compositional responses of ammonia-oxidizing archaea and bacteria to long-term field fertilization.

    PubMed

    Xue, Chao; Zhang, Xu; Zhu, Chen; Zhao, Jun; Zhu, Ping; Peng, Chang; Ling, Ning; Shen, Qirong

    2016-01-01

    Archaeal (AOA) and bacterial (AOB) ammonia-oxidizer responses to long-term field fertilization in a Mollisol soil were assessed through pyrosequencing of amoA genes. Long-term fertilization treatments including chemical fertilizer (NPK), NPK plus manure (NPKM), and no fertilization over 23 years altered soil properties resulting in significant shifts in AOA and AOB community composition and abundance. NPK exhibited a strong influence on AOA and AOB composition while the addition of manure neutralized the community change induced by NPK. NPK also led to significant soil acidification and enrichment of Nitrosotalea. Nitrosospira cluster 9 and 3c were the most abundant AOB populations with opposing responses to fertilization treatments. NPKM had the largest abundance of ammonia-oxidizers and highest potential nitrification activity (PNA), suggesting high N loss potential due to a doubling of nutrient input compared to NPK. PNA was strongly correlated to AOA and AOB community composition indicating that both were important in ammonium oxidization in this Mollisol soil. Total N and organic C were the most important factors driving shifts in AOA and AOB community composition. The AOA community was strongly correlated to the activities of all sugar hydrolysis associated soil enzymes and was more responsive to C and N input than AOB. PMID:27356769

  19. Quantitative and compositional responses of ammonia-oxidizing archaea and bacteria to long-term field fertilization

    PubMed Central

    Xue, Chao; Zhang, Xu; Zhu, Chen; Zhao, Jun; Zhu, Ping; Peng, Chang; Ling, Ning; Shen, Qirong

    2016-01-01

    Archaeal (AOA) and bacterial (AOB) ammonia-oxidizer responses to long-term field fertilization in a Mollisol soil were assessed through pyrosequencing of amoA genes. Long-term fertilization treatments including chemical fertilizer (NPK), NPK plus manure (NPKM), and no fertilization over 23 years altered soil properties resulting in significant shifts in AOA and AOB community composition and abundance. NPK exhibited a strong influence on AOA and AOB composition while the addition of manure neutralized the community change induced by NPK. NPK also led to significant soil acidification and enrichment of Nitrosotalea. Nitrosospira cluster 9 and 3c were the most abundant AOB populations with opposing responses to fertilization treatments. NPKM had the largest abundance of ammonia-oxidizers and highest potential nitrification activity (PNA), suggesting high N loss potential due to a doubling of nutrient input compared to NPK. PNA was strongly correlated to AOA and AOB community composition indicating that both were important in ammonium oxidization in this Mollisol soil. Total N and organic C were the most important factors driving shifts in AOA and AOB community composition. The AOA community was strongly correlated to the activities of all sugar hydrolysis associated soil enzymes and was more responsive to C and N input than AOB. PMID:27356769

  20. Quantitative and compositional responses of ammonia-oxidizing archaea and bacteria to long-term field fertilization

    NASA Astrophysics Data System (ADS)

    Xue, Chao; Zhang, Xu; Zhu, Chen; Zhao, Jun; Zhu, Ping; Peng, Chang; Ling, Ning; Shen, Qirong

    2016-06-01

    Archaeal (AOA) and bacterial (AOB) ammonia-oxidizer responses to long-term field fertilization in a Mollisol soil were assessed through pyrosequencing of amoA genes. Long-term fertilization treatments including chemical fertilizer (NPK), NPK plus manure (NPKM), and no fertilization over 23 years altered soil properties resulting in significant shifts in AOA and AOB community composition and abundance. NPK exhibited a strong influence on AOA and AOB composition while the addition of manure neutralized the community change induced by NPK. NPK also led to significant soil acidification and enrichment of Nitrosotalea. Nitrosospira cluster 9 and 3c were the most abundant AOB populations with opposing responses to fertilization treatments. NPKM had the largest abundance of ammonia-oxidizers and highest potential nitrification activity (PNA), suggesting high N loss potential due to a doubling of nutrient input compared to NPK. PNA was strongly correlated to AOA and AOB community composition indicating that both were important in ammonium oxidization in this Mollisol soil. Total N and organic C were the most important factors driving shifts in AOA and AOB community composition. The AOA community was strongly correlated to the activities of all sugar hydrolysis associated soil enzymes and was more responsive to C and N input than AOB.

  1. Quantitative and compositional responses of ammonia-oxidizing archaea and bacteria to long-term field fertilization.

    PubMed

    Xue, Chao; Zhang, Xu; Zhu, Chen; Zhao, Jun; Zhu, Ping; Peng, Chang; Ling, Ning; Shen, Qirong

    2016-01-01

    Archaeal (AOA) and bacterial (AOB) ammonia-oxidizer responses to long-term field fertilization in a Mollisol soil were assessed through pyrosequencing of amoA genes. Long-term fertilization treatments including chemical fertilizer (NPK), NPK plus manure (NPKM), and no fertilization over 23 years altered soil properties resulting in significant shifts in AOA and AOB community composition and abundance. NPK exhibited a strong influence on AOA and AOB composition while the addition of manure neutralized the community change induced by NPK. NPK also led to significant soil acidification and enrichment of Nitrosotalea. Nitrosospira cluster 9 and 3c were the most abundant AOB populations with opposing responses to fertilization treatments. NPKM had the largest abundance of ammonia-oxidizers and highest potential nitrification activity (PNA), suggesting high N loss potential due to a doubling of nutrient input compared to NPK. PNA was strongly correlated to AOA and AOB community composition indicating that both were important in ammonium oxidization in this Mollisol soil. Total N and organic C were the most important factors driving shifts in AOA and AOB community composition. The AOA community was strongly correlated to the activities of all sugar hydrolysis associated soil enzymes and was more responsive to C and N input than AOB.

  2. Removal of ammonia from air on molybdenum and tungsten oxide modified activated carbons.

    PubMed

    Petit, Camille; Bandosz, Teresa J

    2008-04-15

    Microporous coconut-based activated carbon was impregnated with solutions of ammonium metatungstate or ammonium molybdate and then calcined in air in order to convert the salts into their corresponding oxides. The surface of those materials was characterized using adsorption of nitrogen, potentiometric titration, Fourier-transform infrared spectroscopy, X-ray diffraction, and thermal analysis. The results indicated a significant increase in surface acidity related to the presence of tungsten or molybdenum oxides. On the materials obtained, adsorption of ammonia from either dry or moist air was carried out. The oxides distributed on the surface provided Lewis and/or Brønsted centers for interactions with ammonia molecules or ammonium ions. Water on the surface of carbon or in the gas phase increased the amount of ammonia adsorbed via involvement of Brønsted-type interactions and/or by leading to the formation of molybdate or tungstate salts on the surface. Although the amount of ammonia adsorbed is closely related to the number of moles of oxides and their acidic centers, the carbon surface also contributes to the adsorption via providing small pores where ammonia can be dissolved in the water film.

  3. Moisture and temperature controls on nitrification differ among ammonia oxidizer communities from three alpine soil habitats

    USGS Publications Warehouse

    Osborne, Brooke B; Baron, Jill S.; Wallenstein, Matthew D.

    2015-01-01

    Climate change is altering the timing and magnitude of biogeochemical fluxes in many high elevation ecosystems. The consequent changes in alpine nitrification rates have the potential to influence ecosystem scale responses. In order to better understand how changing temperature and moisture conditions may influence ammonia oxidizers and nitrification activity, we conducted laboratory incubations on soils collected in a Colorado watershed from three alpine habitats (glacial outwash, talus, and meadow). We found that bacteria, not archaea, dominated all ammonia oxidizer communities. Nitrification increased with moisture in all soils and under all temperature treatments. However, temperature was not correlated with nitrification rates in all soils. Site-specific temperature trends suggest the development of generalist ammonia oxidizer communities in soils with greater in situ temperature fluctuations and specialists in soils with more steady temperature regimes. Rapidly increasing temperatures and changing soil moisture conditions could explain recent observations of increased nitrate production in some alpine soils.

  4. Selective reduction of nitric oxides with ammonia using a cellular block catalyst

    SciTech Connect

    M.V. D'yakov; A.I. Kozlov; E.S. Lukin

    2004-03-15

    An aluminum-vanadium cellular block catalyst for selective reduction of nitric oxides with ammonia has been developed. With an average degree of conversion of oxides over 90%, the efficiency of the proposed catalyst is significantly higher than that of industrial catalysts currently used. Such catalyst can be recommended for use in selective plants for purification of waste gases from nitric oxides, which makes it possible to significantly decrease the cost of making a catalyst block.

  5. Genomes of Two New Ammonia-Oxidizing Archaea Enriched from Deep Marine Sediments

    PubMed Central

    Park, Soo-Je; Ghai, Rohit; Martín-Cuadrado, Ana-Belén; Rodríguez-Valera, Francisco; Chung, Won-Hyong; Kwon, KaeKyoung; Lee, Jung-Hyun; Madsen, Eugene L.; Rhee, Sung-Keun

    2014-01-01

    Ammonia-oxidizing archaea (AOA) are ubiquitous and abundant and contribute significantly to the carbon and nitrogen cycles in the ocean. In this study, we assembled AOA draft genomes from two deep marine sediments from Donghae, South Korea, and Svalbard, Arctic region, by sequencing the enriched metagenomes. Three major microorganism clusters belonging to Thaumarchaeota, Epsilonproteobacteria, and Gammaproteobacteria were deduced from their 16S rRNA genes, GC contents, and oligonucleotide frequencies. Three archaeal genomes were identified, two of which were distinct and were designated Ca. “Nitrosopumilus koreensis” AR1 and “Nitrosopumilus sediminis” AR2. AR1 and AR2 exhibited average nucleotide identities of 85.2% and 79.5% to N. maritimus, respectively. The AR1 and AR2 genomes contained genes pertaining to energy metabolism and carbon fixation as conserved in other AOA, but, conversely, had fewer heme-containing proteins and more copper-containing proteins than other AOA. Most of the distinctive AR1 and AR2 genes were located in genomic islands (GIs) that were not present in other AOA genomes or in a reference water-column metagenome from the Sargasso Sea. A putative gene cluster involved in urea utilization was found in the AR2 genome, but not the AR1 genome, suggesting niche specialization in marine AOA. Co-cultured bacterial genome analysis suggested that bacterial sulfur and nitrogen metabolism could be involved in interactions with AOA. Our results provide fundamental information concerning the metabolic potential of deep marine sedimentary AOA. PMID:24798206

  6. Formation of High-Purity Indium Oxide Nanoparticles and Their Application to Sensitive Detection of Ammonia.

    PubMed

    Bhardwaj, Sanjeev K; Bhardwaj, Neha; Kukkar, Manil; Sharma, Amit L; Kim, Ki-Hyun; Deep, Akash

    2015-01-01

    High-purity In₂O₃ nanoparticles were recovered from scrap indium tin oxide substrates in a stepwise process involving acidic leaching, liquid-liquid extraction with a phosphine oxide extractant, and combustion of the organic phase. The morphological and structural parameters of the recovered nanoparticles were investigated to support the formation of the desired products. These In₂O₃ nanoparticles were used for sensitive sensing of ammonia gas using a four-probe electrode device. The proposed sensor offered very quick response time (around 10 s) and highly sensitive detection of ammonia (at a detection limit of 1 ppm).

  7. Formation of High-Purity Indium Oxide Nanoparticles and Their Application to Sensitive Detection of Ammonia

    PubMed Central

    Bhardwaj, Sanjeev K.; Bhardwaj, Neha; Kukkar, Manil; Sharma, Amit L.; Kim, Ki-Hyun; Deep, Akash

    2015-01-01

    High-purity In2O3 nanoparticles were recovered from scrap indium tin oxide substrates in a stepwise process involving acidic leaching, liquid-liquid extraction with a phosphine oxide extractant, and combustion of the organic phase. The morphological and structural parameters of the recovered nanoparticles were investigated to support the formation of the desired products. These In2O3 nanoparticles were used for sensitive sensing of ammonia gas using a four-probe electrode device. The proposed sensor offered very quick response time (around 10 s) and highly sensitive detection of ammonia (at a detection limit of 1 ppm). PMID:26694415

  8. The Significance of Myriophyllum elatinoides for Swine Wastewater Treatment: Abundance and Community Structure of Ammonia-Oxidizing Microorganisms in Sediments

    PubMed Central

    Li, Xi; Zhang, Miaomiao; Liu, Feng; Li, Yong; He, Yang; Zhang, Shunan; Wu, Jinshui

    2015-01-01

    Myriophyllum elatinoides was reported to effectively treat wastewater by removing nitrogen (N) and phosphorus (P). However, little is known about the abundance and community structure of ammonia-oxidizing microorganisms associated with M. elatinoides purification systems. The objective of this research was to characterize the abundance and community structure of ammonia-oxidizing microorganisms in swine wastewater and determine the main nitrogen removal pathways. In this study, five different waters were treated by M. elatinoides in microcosms for one month. The five waters included tap water (Control), swine wastewater (SW), 50% diluted swine wastewater (50% SW), and two synthetic wastewaters: 200 mg NH4+-N L−1 (200 NH4+-N) and 400 mg NH4+-N L−1 (400 NH4+-N). The most dramatic changes were in NH4+-N and total N (TN) concentrations, with average removal rates of 84% and 90%, respectively, in the treatments containing swine wastewater. On days 7, 14, and 28, the dissolved oxygen (DO) increased by 81.8%, 210.4% and 136.5%, respectively, compared with on day 0, in the swine wastewater. The results also showed that the bacterial amoA (AOB) copy numbers in the sediments of the treatments were significantly higher than those of archaeal amoA (AOA) copy numbers (p = 0.015). In addition, the high DO concentrations in swine wastewater responded well to the high abundance of AOB. The AOA and AOB community distributions were positively related with NO3-N and were negatively related with DO in swine wastewater treatments. In summary, our experimental results suggested that the M. elatinoides purification system could improve the activity of ammonia-oxidizing microorganisms and consequently might contribute to the significant N removal from the swine wastewater. PMID:26444015

  9. Effects of agronomic treatments on structure and function of ammonia-oxidizing communities.

    PubMed

    Phillips, C J; Harris, D; Dollhopf, S L; Gross, K L; Prosser, J I; Paul, E A

    2000-12-01

    The aim of this study was to determine the effects of different agricultural treatments and plant communities on the diversity of ammonia oxidizer populations in soil. Denaturing gradient gel electrophoresis (DGGE), coupled with specific oligonucleotide probing, was used to analyze 16S rRNA genes of ammonia oxidizers belonging to the beta subgroup of the division Proteobacteria by use of DNA extracted from cultivated, successional, and native deciduous forest soils. Community profiles of the different soil types were compared with nitrification rates and most-probable-number (MPN) counts. Despite significant variation in measured nitrification rates among communities, there were no differences in the DGGE banding profiles of DNAs extracted from these soils. DGGE profiles of DNA extracted from samples of MPN incubations, cultivated at a range of ammonia concentrations, showed the presence of bands not amplified from directly extracted DNA. Nitrosomonas-like bands were seen in the MPN DNA but were not detected in the DNA extracted directly from soils. These bands were detected in some samples taken from MPN incubations carried out with medium containing 1,000 microg of NH(4)(+)-N ml(-1), to the exclusion of bands detected in the native DNA. Cell concentrations of ammonia oxidizers determined by MPN counts were between 10- and 100-fold lower than those determined by competitive PCR (cPCR). Although no differences were seen in ammonia oxidizer MPN counts from the different soil treatments, cPCR revealed higher numbers in fertilized soils. The use of a combination of traditional and molecular methods to investigate the activities and compositions of ammonia oxidizers in soil demonstrates differences in fine-scale compositions among treatments that may be associated with changes in population size and function.

  10. Ammonia Oxidizing Bacteria Community Dynamics in a Pilot-Scale Wastewater Treatment Plant

    PubMed Central

    Wang, Xiaohui; Wen, Xianghua; Xia, Yu; Hu, Ma; Zhao, Fang; Ding, Kun

    2012-01-01

    Background Chemoautotrophic ammonia oxidizing bacteria (AOB) have the metabolic ability to oxidize ammonia to nitrite aerobically. This metabolic feature has been widely used, in combination with denitrification, to remove nitrogen from wastewater in wastewater treatment plants (WWTPs). However, the relative influence of specific deterministic environmental factors to AOB community dynamics in WWTP is uncertain. The ecological principles underlying AOB community dynamics and nitrification stability and how they are related are also poorly understood. Methodology/Principal Findings The community dynamics of ammonia oxidizing bacteria (AOB) in a pilot-scale WWTP were monitored over a one-year period by Terminal Restriction Fragment Length Polymorphism (T-RFLP). During the study period, the effluent ammonia concentrations were almost below 2 mg/L, except for the first 60 days, indicting stable nitrification. T-RFLP results showed that, during the test period with stable nitrification, the AOB community structures were not stable, and the average change rate (every 15 days) of AOB community structures was 10%±8%. The correlations between T-RFLP profiles and 10 operational and environmental parameters were tested by Canonical Correlation Analysis (CCA) and Mantel test. The results indicated that the dynamics of AOB community correlated most strongly with Dissolved Oxygen (DO), effluent ammonia, effluent Biochemical Oxygen Demand (BOD) and temperature. Conclusions/Significance This study suggests that nitrification stability is not necessarily accompanied by a stable AOB community, and provides insight into parameters controlling the AOB community dynamics within bioreactors with stable nitrification. PMID:22558415

  11. Aerobic cometabolic degradation of trichloroethene by methane and ammonia oxidizing microorganisms naturally associated with Carex comosa roots.

    PubMed

    Powell, C L; Nogaro, G; Agrawal, A

    2011-06-01

    The degradation potential of trichloroethene by the aerobic methane- and ammonia-oxidizing microorganisms naturally associated with wetland plant (Carex comosa) roots was examined in this study. In bench-scale microcosm experiments with washed (soil free) Carex comosa roots, the activity of root-associated methane- and ammonia-oxidizing microorganisms, which were naturally present on the root surface and/or embedded within the roots, was investigated. Significant methane and ammonia oxidation were observed reproducibly in batch reactors with washed roots incubated in growth media, where methane oxidation developed faster (2 weeks) compared to ammonia oxidation (4 weeks) in live microcosms. After enrichment, the methane oxidizers demonstrated their ability to degrade 150 μg l(-1) TCE effectively at 1.9 mg l(-1) of aqueous CH(4). In contrast, ammonia oxidizers showed a rapid and complete inhibition of ammonia oxidation with 150 μg l(-1) TCE at 20 mg l(-1) of NH(4)(+)-N, which may be attributed to greater sensitivity of ammonia oxidizers to TCE or its degradation product. No such inhibitory effect of TCE degradation was detected on methane oxidation at the above experimental conditions. The results presented here suggest that microorganisms associated with wetland plant roots can assist in the natural attenuation of TCE in contaminated aquatic environments.

  12. Moisture and temperature controls on nitrification differ among ammonia oxidizer communities from three alpine soil habitats

    NASA Astrophysics Data System (ADS)

    Osborne, Brooke B.; Baron, Jill S.; Wallenstein, Matthew D.

    2016-03-01

    Climate change is altering the timing and magnitude of biogeochemical fluxes in many highelevation ecosystems. The consequent changes in alpine nitrification rates have the potential to influence ecosystem scale responses. In order to better understand how changing temperature and moisture conditions may influence ammonia oxidizers and nitrification activity, we conducted laboratory incubations on soils collected in a Colorado watershed from three alpine habitats (glacial outwash, talus, and meadow). We found that bacteria, not archaea, dominated all ammonia oxidizer communities. Nitrification increased with moisture in all soils and under all temperature treatments. However, temperature was not correlated with nitrification rates in all soils. Site-specific temperature trends suggest the development of generalist ammonia oxidzer communities in soils with greater in situ temperature fluctuations and specialists in soils with more steady temperature regimes. Rapidly increasing temperatures and changing soil moisture conditions could explain recent observations of increased nitrate production in some alpine soils.

  13. Ammonia oxidation, denitrification and dissimilatory nitrate reduction to ammonium in two US Great Basin hot springs with abundant ammonia-oxidizing archaea.

    PubMed

    Dodsworth, Jeremy A; Hungate, Bruce A; Hedlund, Brian P

    2011-08-01

    Many thermophiles catalyse free energy-yielding redox reactions involving nitrogenous compounds; however, little is known about these processes in natural thermal environments. Rates of ammonia oxidation, denitrification and dissimilatory nitrate reduction to ammonium (DNRA) were measured in source water and sediments of two ≈ 80°C springs in the US Great Basin. Ammonia oxidation and denitrification occurred mainly in sediments. Ammonia oxidation rates measured using (15)N-NO(3)(-) pool dilution ranged from 5.5 ± 0.8 to 8.6 ± 0.9 nmol N g(-1) h(-1) and were unaffected or only mildly stimulated by amendment with NH(4) Cl. Denitrification rates measured using acetylene block ranged from 15.8 ± 0.7 to 51 ± 12 nmol N g(-1) h(-1) and were stimulated by amendment with NO(3)(-) and complex organic compounds. The DNRA rate in one spring sediment measured using an (15)N-NO(3)(-) tracer was 315 ± 48 nmol N g(-1) h(-1). Both springs harboured distinct planktonic and sediment microbial communities. Close relatives of the autotrophic, ammonia-oxidizing archaeon 'Candidatus Nitrosocaldus yellowstonii' represented the most abundant OTU in both spring sediments by 16S rRNA gene pyrotag analysis. Quantitative PCR (qPCR) indicated that 'Ca. N. yellowstonii'amoA and 16S rRNA genes were present at 3.5-3.9 × 10(8) and 6.4-9.0 × 10(8) copies g(-1) sediment. Potential denitrifiers included members of the Aquificales and Thermales. Thermus spp. comprised <1% of 16S rRNA gene pyrotags in both sediments and qPCR for T. thermophilus narG revealed sediment populations of 1.3-1.7 × 10(6) copies g(-1) sediment. These data indicate a highly active nitrogen cycle (N-cycle) in these springs and suggest that ammonia oxidation may be a major source of energy fuelling primary production.

  14. Ammonia oxidation, denitrification and dissimilatory nitrate reduction to ammonium in two US Great Basin hot springs with abundant ammonia-oxidizing archaea.

    PubMed

    Dodsworth, Jeremy A; Hungate, Bruce A; Hedlund, Brian P

    2011-08-01

    Many thermophiles catalyse free energy-yielding redox reactions involving nitrogenous compounds; however, little is known about these processes in natural thermal environments. Rates of ammonia oxidation, denitrification and dissimilatory nitrate reduction to ammonium (DNRA) were measured in source water and sediments of two ≈ 80°C springs in the US Great Basin. Ammonia oxidation and denitrification occurred mainly in sediments. Ammonia oxidation rates measured using (15)N-NO(3)(-) pool dilution ranged from 5.5 ± 0.8 to 8.6 ± 0.9 nmol N g(-1) h(-1) and were unaffected or only mildly stimulated by amendment with NH(4) Cl. Denitrification rates measured using acetylene block ranged from 15.8 ± 0.7 to 51 ± 12 nmol N g(-1) h(-1) and were stimulated by amendment with NO(3)(-) and complex organic compounds. The DNRA rate in one spring sediment measured using an (15)N-NO(3)(-) tracer was 315 ± 48 nmol N g(-1) h(-1). Both springs harboured distinct planktonic and sediment microbial communities. Close relatives of the autotrophic, ammonia-oxidizing archaeon 'Candidatus Nitrosocaldus yellowstonii' represented the most abundant OTU in both spring sediments by 16S rRNA gene pyrotag analysis. Quantitative PCR (qPCR) indicated that 'Ca. N. yellowstonii'amoA and 16S rRNA genes were present at 3.5-3.9 × 10(8) and 6.4-9.0 × 10(8) copies g(-1) sediment. Potential denitrifiers included members of the Aquificales and Thermales. Thermus spp. comprised <1% of 16S rRNA gene pyrotags in both sediments and qPCR for T. thermophilus narG revealed sediment populations of 1.3-1.7 × 10(6) copies g(-1) sediment. These data indicate a highly active nitrogen cycle (N-cycle) in these springs and suggest that ammonia oxidation may be a major source of energy fuelling primary production. PMID:21631688

  15. Identification of ciliate grazers of autotrophic bacteria in ammonia-oxidizing activated sludge by RNA stable isotope probing.

    PubMed

    Moreno, Ana Maria; Matz, Carsten; Kjelleberg, Staffan; Manefield, Mike

    2010-04-01

    It is well understood that protozoa play a major role in controlling bacterial biomass and regulating nutrient cycling in the environment. Little is known, however, about the movement of carbon from specific reduced substrates, through functional groups of bacteria, to particular clades of protozoa. In this study we first identified the active protozoan phylotypes present in activated sludge, via the construction of an rRNA-derived eukaryote clone library. Most of the sequences identified belonged to ciliates of the subclass Peritrichia and amoebae, confirming the dominance of surface-associated protozoa in the activated sludge environment. We then demonstrated that (13)C-labeled protozoan RNA can be retrieved from activated sludge amended with (13)C-labeled protozoa or (13)C-labeled Escherichia coli cells by using an RNA stable isotope probing (RNA-SIP) approach. Finally, we used RNA-SIP to track carbon from bicarbonate and acetate into protozoa under ammonia-oxidizing and denitrifying conditions, respectively. RNA-SIP analysis revealed that the peritrich ciliate Epistylis galea dominated the acquisition of carbon from bacteria with access to CO(2) under ammonia-oxidizing conditions, while there was no evidence of specific grazing on acetate consumers under denitrifying conditions.

  16. Population and diversity of ammonia-oxidizing archaea and bacteria in a pollutants' receiving area in Hangzhou Bay.

    PubMed

    Zhang, Yan; Chen, Lujun; Sun, Renhua; Dai, Tianjiao; Tian, Jinping; Zheng, Wei; Wen, Donghui

    2016-07-01

    The community structure of ammonia-oxidizing microorganisms is sensitive to various environmental factors, including pollutions. In this study, real-time PCR and 454 pyrosequencing were adopted to investigate the population and diversity of ammonia-oxidizing archaea (AOA) and bacteria (AOB) temporally and spatially in the sediments of an industrial effluent receiving area in the Qiantang River's estuary, Hangzhou Bay. The abundances of AOA and AOB amoA genes fluctuated in 10(5)-10(7) gene copies per gram of sediment; the ratio of AOA amoA/AOB amoA ranged in 0.39-5.52. The AOA amoA/archaeal 16S rRNA, AOB amoA/bacterial 16S rRNA, and AOA amoA/AOB amoA were found to positively correlate with NH4 (+)-N concentration of the seawater. Nitrosopumilus cluster and Nitrosomonas-like cluster were the dominant AOA and AOB, respectively. The community structures of both AOA and AOB in the sediments exhibited significant seasonal differences rather than spatial changes in the effluent receiving area. The phylogenetic distribution of AOB in this area was consistent with the wastewater treatment plants (WWTPs) discharging the effluent but differed from the Qiantang River and other estuaries, which might be an outcome of long-term effluent discharge. PMID:26960319

  17. Association of running manner with bacterial community dynamics in a partial short-term nitrifying bioreactor for treatment of piggery wastewater with high ammonia content.

    PubMed

    Du, Wei-Li; Huang, Qiang; Miao, Li-Li; Liu, Ying; Liu, Zhi-Pei

    2016-12-01

    Optimization of running parameters in a bioreactor requires detailed understanding of microbial community dynamics during the startup and running periods. Using a novel piggery wastewater treatment system termed "UASB + SHARON + ANAMMOX" constructed in our laboratory, we investigated microbial community dynamics using the Illumina MiSeq method, taking activated sludge samples at ~2-week intervals during a ~300-day period. Ammonia-oxidizing bacteria (AOB) were further investigated by quantification of AOB amoA genes and construction of gene clone libraries. Major changes in bacterial community composition and dynamics occurred when running manner was changed from continuous flow manner (CFM) to sequencing batch manner (SBM), and when effluent from an upflow anaerobic sludge blanket (UASB) reactor for practical treatment of real piggery wastewater was used as influent; differences among these three experimental groups were significant (R (2)  = 0.94, p < 0.01). When running manner was changed from CFM to SBM, relative abundance of the genus Nitrospira decreased sharply from 18.1 % on day 116 to 1.5 % on day 130, and to undetectable level thereafter. Relative abundance of the genus Nitrosomonas increased from ~0.67 % during the CFM period to 8.0 % by day 220, and thereafter decreased to a near-constant ~1.6 %. Environmental factors such as load ammonia, effluent ammonia, effluent nitrite, UASB effluent, pH, and DO levels collectively drove bacterial community dynamics and contributed to maintenance of effluent NH4 (+)-N/NO2 (-)-N ratio ~1. Theses results might provide useful clues for the control of the startup processes and maintaining high efficiency of such bioreactors. PMID:27637946

  18. Conversion of upland to paddy field specifically alters the community structure of archaeal ammonia oxidizers in an acid soil

    NASA Astrophysics Data System (ADS)

    Alam, M. S.; Ren, G. D.; Lu, L.; Zheng, Y.; Peng, X. H.; Jia, Z. J.

    2013-08-01

    The function of ammonia-oxidizing archaea (AOA) and bacteria (AOB) depends on the major energy-generating compounds (i.e., ammonia and oxygen). The diversification of AOA and AOB communities along ecological gradients of substrate availability in a complex environment have been much debated but rarely tested. In this study, two ecosystems of maize and rice crops under different fertilization regimes were selected to investigate the community diversification of soil AOA and AOB upon conversion of an upland field to a paddy field and long-term field fertilization in an acid soil. Real-time quantitative polymerase chain reaction of ammonia monooxygenase (amoA) genes demonstrated that the abundance of AOA was significantly stimulated after conversion of upland to paddy soils for more than 100 yr, whereas a slight decline in AOB numbers was observed. Denaturing gradient gel electrophoresis fingerprints of amoA genes further revealed remarkable changes in the community compositions of AOA after conversion of aerobic upland to flooded paddy field. Sequencing analysis revealed that upland soil was dominated by AOA within the soil group 1.1b lineage, whereas the marine group 1.1a-associated lineage predominated in AOA communities in paddy soils. Irrespective of whether the soil was upland or paddy soil, long-term field fertilization led to increased abundance of amoA genes in AOA and AOB compared with control treatments (no fertilization), whereas archaeal amoA gene abundances outnumbered their bacterial counterparts in all samples. Phylogenetic analyses of amoA genes showed that Nitrosospira cluster-3-like AOB dominated bacterial ammonia oxidizers in both paddy and upland soils, regardless of fertilization treatment. The results of this study suggest that the marine group 1.1a-associated AOA will be better adapted to the flooded paddy field than AOA ecotypes of the soil group 1.1b lineage, and indicate that long-term flooding is the dominant selective force driving the

  19. Seasonal changes in abundance of ammonia-oxidizing archaea and ammonia-oxidizing bacteria and their nitrification in sand of an eelgrass zone.

    PubMed

    Ando, Yoshifumi; Nakagawa, Tatsunori; Takahashi, Reiji; Yoshihara, Kiyoshi; Tokuyama, Tatsuaki

    2009-01-01

    Seasonal changes in the abundance of ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) within the sand of an eelgrass (Zostera marina) zone were examined by a quantitative PCR of both crenarchaeotal and betaproteobacterial ammonia monooxygenase alpha subunit (amoA) genes together with temperature and concentrations of ammonium, nitrite, and nitrate from May 2007 to June 2008 at Tanoura Bay, Shizuoka, Japan. The abundance of both amoAs in the sand between May and June 2007 and between January and March 2008 was 1.5 to 2 orders of magnitude higher than the 10(4) copies g(-1) of estimated amoA between September and December. Archaeal amoA was more diverse than betaproteobacterial amoA. Betaproteobacterial amoA clone libraries were dominated by Nitrosospira-like sequence types. An incubation experiment was conducted with sands collected in February 2008 and community structure was analyzed based on reverse-transcribed amoAs. RNA was extracted from sand incubated for 12 days at 30°C, 17 days at 20°C, and 80 days at 10°C. Different amoA clones were detected from in situ sand and incubated sand. This study reveals clear evidence of seasonal change in the abundance of AOA and AOB within the sand of an eelgrass zone.

  20. Estimating ammonia and nitrous oxide emissions from dairy farms using milk urea nitrogen

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dairy farms emit ammonia (NH3) from barns, manure storage, and soils, which can be hazardous to human and ecosystem health. Emissions of NH3 also contribute indirectly to emissions of nitrous oxide (N2O), a potent greenhouse gas. Direct N2O emissions occur mostly from soil after application of ferti...

  1. Abatement of ammonia and nitrous oxide emissions from dairy farms using milk urea N (MUN)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Urinary urea N (UUN) excreted by dairy cows is the principal nitrogen (N) source that controls emissions of ammonia (which can be hazardous to human and ecosystem health) and nitrous oxide (the most potent agricultural greenhouse gas) from dairy manure. The objectives of this study were (1) to inves...

  2. Species, Abundance and Function of Ammonia-oxidizing Archaea in Inland Waters across China

    NASA Astrophysics Data System (ADS)

    Zhou, Leiliu; Wang, Shanyun; Zou, Yuxuan; Xia, Chao; Zhu, Guibing

    2015-11-01

    Ammonia oxidation is the first step in nitrification and was thought to be performed solely by specialized bacteria. The discovery of ammonia-oxidizing archaea (AOA) changed this view. We examined the large scale and spatio-temporal occurrence, abundance and role of AOA throughout Chinese inland waters (n = 28). Molecular survey showed that AOA was ubiquitous in inland waters. The existence of AOA in extreme acidic, alkaline, hot, cold, eutrophic and oligotrophic environments expanded the tolerance limits of AOA, especially their known temperature tolerance to -25 °C, and substrate load to 42.04 mM. There were spatio-temporal divergences of AOA community structure in inland waters, and the diversity of AOA in inland water ecosystems was high with 34 observed species-level operational taxonomic units (OTUs; based on a 15% cutoff) distributed widely in group I.1b, I.1a, and I.1a-associated. The abundance of AOA was quite high (8.5 × 104 to 8.5 × 109 copies g-1), and AOA outnumbered ammonia-oxidizing bacteria (AOB) in the inland waters where little human activities were involved. On the whole AOB predominate the ammonia oxidation rate over AOA in inland water ecosystems, and AOA play an indispensable role in global nitrogen cycle considering that AOA occupy a broader habitat range than AOB, especially in extreme environments.

  3. Ammonia-oxidizing archaea use the most energy-efficient aerobic pathway for CO2 fixation.

    PubMed

    Könneke, Martin; Schubert, Daniel M; Brown, Philip C; Hügler, Michael; Standfest, Sonja; Schwander, Thomas; Schada von Borzyskowski, Lennart; Erb, Tobias J; Stahl, David A; Berg, Ivan A

    2014-06-01

    Archaea of the phylum Thaumarchaeota are among the most abundant prokaryotes on Earth and are widely distributed in marine, terrestrial, and geothermal environments. All studied Thaumarchaeota couple the oxidation of ammonia at extremely low concentrations with carbon fixation. As the predominant nitrifiers in the ocean and in various soils, ammonia-oxidizing archaea contribute significantly to the global nitrogen and carbon cycles. Here we provide biochemical evidence that thaumarchaeal ammonia oxidizers assimilate inorganic carbon via a modified version of the autotrophic hydroxypropionate/hydroxybutyrate cycle of Crenarchaeota that is far more energy efficient than any other aerobic autotrophic pathway. The identified genes of this cycle were found in the genomes of all sequenced representatives of the phylum Thaumarchaeota, indicating the environmental significance of this efficient CO2-fixation pathway. Comparative phylogenetic analysis of proteins of this pathway suggests that the hydroxypropionate/hydroxybutyrate cycle emerged independently in Crenarchaeota and Thaumarchaeota, thus supporting the hypothesis of an early evolutionary separation of both archaeal phyla. We conclude that high efficiency of anabolism exemplified by this autotrophic cycle perfectly suits the lifestyle of ammonia-oxidizing archaea, which thrive at a constantly low energy supply, thus offering a biochemical explanation for their ecological success in nutrient-limited environments.

  4. Species, Abundance and Function of Ammonia-oxidizing Archaea in Inland Waters across China.

    PubMed

    Zhou, Leiliu; Wang, Shanyun; Zou, Yuxuan; Xia, Chao; Zhu, Guibing

    2015-01-01

    Ammonia oxidation is the first step in nitrification and was thought to be performed solely by specialized bacteria. The discovery of ammonia-oxidizing archaea (AOA) changed this view. We examined the large scale and spatio-temporal occurrence, abundance and role of AOA throughout Chinese inland waters (n = 28). Molecular survey showed that AOA was ubiquitous in inland waters. The existence of AOA in extreme acidic, alkaline, hot, cold, eutrophic and oligotrophic environments expanded the tolerance limits of AOA, especially their known temperature tolerance to -25 °C, and substrate load to 42.04 mM. There were spatio-temporal divergences of AOA community structure in inland waters, and the diversity of AOA in inland water ecosystems was high with 34 observed species-level operational taxonomic units (OTUs; based on a 15% cutoff) distributed widely in group I.1b, I.1a, and I.1a-associated. The abundance of AOA was quite high (8.5 × 10(4) to 8.5 × 10(9) copies g(-1)), and AOA outnumbered ammonia-oxidizing bacteria (AOB) in the inland waters where little human activities were involved. On the whole AOB predominate the ammonia oxidation rate over AOA in inland water ecosystems, and AOA play an indispensable role in global nitrogen cycle considering that AOA occupy a broader habitat range than AOB, especially in extreme environments. PMID:26522086

  5. Species, Abundance and Function of Ammonia-oxidizing Archaea in Inland Waters across China.

    PubMed

    Zhou, Leiliu; Wang, Shanyun; Zou, Yuxuan; Xia, Chao; Zhu, Guibing

    2015-01-01

    Ammonia oxidation is the first step in nitrification and was thought to be performed solely by specialized bacteria. The discovery of ammonia-oxidizing archaea (AOA) changed this view. We examined the large scale and spatio-temporal occurrence, abundance and role of AOA throughout Chinese inland waters (n = 28). Molecular survey showed that AOA was ubiquitous in inland waters. The existence of AOA in extreme acidic, alkaline, hot, cold, eutrophic and oligotrophic environments expanded the tolerance limits of AOA, especially their known temperature tolerance to -25 °C, and substrate load to 42.04 mM. There were spatio-temporal divergences of AOA community structure in inland waters, and the diversity of AOA in inland water ecosystems was high with 34 observed species-level operational taxonomic units (OTUs; based on a 15% cutoff) distributed widely in group I.1b, I.1a, and I.1a-associated. The abundance of AOA was quite high (8.5 × 10(4) to 8.5 × 10(9) copies g(-1)), and AOA outnumbered ammonia-oxidizing bacteria (AOB) in the inland waters where little human activities were involved. On the whole AOB predominate the ammonia oxidation rate over AOA in inland water ecosystems, and AOA play an indispensable role in global nitrogen cycle considering that AOA occupy a broader habitat range than AOB, especially in extreme environments.

  6. Species, Abundance and Function of Ammonia-oxidizing Archaea in Inland Waters across China

    PubMed Central

    Zhou, Leiliu; Wang, Shanyun; Zou, Yuxuan; Xia, Chao; Zhu, Guibing

    2015-01-01

    Ammonia oxidation is the first step in nitrification and was thought to be performed solely by specialized bacteria. The discovery of ammonia-oxidizing archaea (AOA) changed this view. We examined the large scale and spatio-temporal occurrence, abundance and role of AOA throughout Chinese inland waters (n = 28). Molecular survey showed that AOA was ubiquitous in inland waters. The existence of AOA in extreme acidic, alkaline, hot, cold, eutrophic and oligotrophic environments expanded the tolerance limits of AOA, especially their known temperature tolerance to −25 °C, and substrate load to 42.04 mM. There were spatio-temporal divergences of AOA community structure in inland waters, and the diversity of AOA in inland water ecosystems was high with 34 observed species-level operational taxonomic units (OTUs; based on a 15% cutoff) distributed widely in group I.1b, I.1a, and I.1a-associated. The abundance of AOA was quite high (8.5 × 104 to 8.5 × 109 copies g−1), and AOA outnumbered ammonia-oxidizing bacteria (AOB) in the inland waters where little human activities were involved. On the whole AOB predominate the ammonia oxidation rate over AOA in inland water ecosystems, and AOA play an indispensable role in global nitrogen cycle considering that AOA occupy a broader habitat range than AOB, especially in extreme environments. PMID:26522086

  7. Ammonia-oxidizing bacteria in biofilters removing trihalomethanes are related to Nitrosomonas oligotropha.

    PubMed

    Wahman, David G; Kirisits, Mary Jo; Katz, Lynn E; Speitel, Gerald E

    2011-04-01

    Ammonia-oxidizing bacteria (AOB) in nitrifying biofilters degrading four regulated trihalomethanes-trichloromethane, bromodichloromethane, dibromochloromethane, and tribromomethane-were related to Nitrosomonas oligotropha. N. oligotropha is associated with chloraminated drinking water systems, and its presence in the biofilters might indicate that trihalomethane tolerance is another reason that this bacterium is dominant in chloraminated systems.

  8. AMMONIA REMOVAL AND NITROUS OXIDE PRODUCTION IN GAS-PHASE COMPOST BIOFILTERS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biofiltration technology is widely utilized for treating ammonia gas (NH3), with one of its potential detrimental by-products being nitrous oxide (N2O), a greenhouse gas approximately 300 times more reactive to infrared than CO2. The present work intends to provide the relation between NH3 removal d...

  9. Ammonia-oxidizing archaea use the most energy-efficient aerobic pathway for CO2 fixation.

    PubMed

    Könneke, Martin; Schubert, Daniel M; Brown, Philip C; Hügler, Michael; Standfest, Sonja; Schwander, Thomas; Schada von Borzyskowski, Lennart; Erb, Tobias J; Stahl, David A; Berg, Ivan A

    2014-06-01

    Archaea of the phylum Thaumarchaeota are among the most abundant prokaryotes on Earth and are widely distributed in marine, terrestrial, and geothermal environments. All studied Thaumarchaeota couple the oxidation of ammonia at extremely low concentrations with carbon fixation. As the predominant nitrifiers in the ocean and in various soils, ammonia-oxidizing archaea contribute significantly to the global nitrogen and carbon cycles. Here we provide biochemical evidence that thaumarchaeal ammonia oxidizers assimilate inorganic carbon via a modified version of the autotrophic hydroxypropionate/hydroxybutyrate cycle of Crenarchaeota that is far more energy efficient than any other aerobic autotrophic pathway. The identified genes of this cycle were found in the genomes of all sequenced representatives of the phylum Thaumarchaeota, indicating the environmental significance of this efficient CO2-fixation pathway. Comparative phylogenetic analysis of proteins of this pathway suggests that the hydroxypropionate/hydroxybutyrate cycle emerged independently in Crenarchaeota and Thaumarchaeota, thus supporting the hypothesis of an early evolutionary separation of both archaeal phyla. We conclude that high efficiency of anabolism exemplified by this autotrophic cycle perfectly suits the lifestyle of ammonia-oxidizing archaea, which thrive at a constantly low energy supply, thus offering a biochemical explanation for their ecological success in nutrient-limited environments. PMID:24843170

  10. Adsorption of ammonia on vanadium-antimony mixed oxides

    NASA Astrophysics Data System (ADS)

    Seitz, Hernan; Germán, Estefanía; Juan, Alfredo; Irigoyen, Beatriz

    2012-02-01

    We analyzed the adsorption of ammonia (NH3) on the VSbO4(1 1 0) catalyst surface using density functional theory (DFT) calculations. We followed the evolution of the chemical bonds between different atoms of the resulting NH3/VSbO4 system and the changes in the electronic structure of the catalyst. NH3 preferential adsorption geometries were analyzed through the crystal orbital overlap population (COOP) concept and the density of states (DOS) curves. The VSbO4(1 1 0) surface exhibits Lewis and Brønsted acid sites on which the ammonia molecule can interact. On the Lewis acid site, NH3 adsorption resulted in the interaction between the N and a surface V-isolated cation. On Brønsted acid site, N interacted with a surface H coming from the chemical dissociation of water. The COOP analysis indicate that NH3 interaction on the VSbO4(1 1 0) surface is weak. In addition, the DOS curves show more developed electronic interactions for NH3 adsorption on Lewis acid site than over Brønsted acid site.

  11. Application of a Chemiluminescence Detector for the Measurement of Total Oxides of Nitrogen and Ammonia in the Atmosphere

    NASA Technical Reports Server (NTRS)

    Hodgeson, J. A.; Bell, J. P.; Rehme, K. A.; Krost, K. J.; Stevens, R. K.

    1971-01-01

    By means of the thermal conversion of nitrogen dioxide to the nitric oxide, the chemiluminescent nitric oxide monitor, based on the nitric oxide plus ozone reaction, may be used for monitoring nitrogen dioxide plus nitric oxide (NO(x)). Under conditions previously described, ammonia is also converted to nitric oxide and therefore interferes. A metal surface, gold wool or stainless steel, operated at two different temperatures has been used to convert only nitrogen dioxide or nitrogen dioxide plus ammonia. Quantitative conversion of nitrogen dioxide to nitric oxide has been obtained at temperatures as low as 200 C. Conversion of ammonia is effected at temperatures of 300 C or higher. By the addition of a converter the basic nitric oxide monitor may be used for measuring NO(x) or NO(x) plus ammonia. As an alternate mode, for a fixed high temperature, a specific scrubber is described for removing NH3 without affecting NO2 concentrations.

  12. Physiological plasticity of the thermophilic ammonia oxidizing archaeon Nitrosocaldus yellowstonii in response to a changing environment

    NASA Astrophysics Data System (ADS)

    Jewell, T.; Johnson, A.; Gelsinger, D.; de la Torre, J. R.

    2012-12-01

    Our understanding of nitrogen biogeochemical cycling in high temperature environments underwent a dramatic revision with the discovery of ammonia oxidizing archaea (AOA). The importance of AOA to the global nitrogen cycle came to light when recent studies of marine AOA demonstrated the dominance of these organisms in the ocean microbiome and their role as producers of the greenhouse gas nitrous oxide (N2O). Understanding how AOA respond to fluctuating environments is crucial to fully comprehending their contribution to global biogeochemical cycling and climate change. In this study we use the thermophilic AOA Nitrosocaldus yellowstonii strain HL72 to explore the physiological plasticity of energy metabolism in these organisms. Previous studies have shown that HL72 grows autotrophically by aerobically oxidizing ammonia (NH3) to nitrite (NO2-). Unlike studies of marine AOA, we find that HL72 can grow over a wide ammonia concentration range (0.25 - 10 mM NH4Cl) with comparable generation times when in the presence of 0.25 to 4 mM NH4Cl. However, preliminary data indicate that amoA, the alpha subunit of ammonia monooxygenase (AMO), is upregulated at low ammonia concentrations (<50 μM) compared to growth at 1 mM. Although the ammonia oxidation pathway has not been fully elucidated, we have shown that nitric oxide (NO) appears to be a key intermediate: exponentially growing HL72 produces significant NO and the removal of NO using a scavenger reversibly inhibits growth. In addition to AMO, the HL72 genome also contains sequences for a urease encoded by subunits ureABC and an active urea transporter. Urea ((NH2)2CO) is an organic compound ubiquitous to aquatic and soil habitats that, when hydrolyzed, forms NH3 and CO2. We examined urea as an alternate source of ammonia for the ammonia oxidation pathway. HL72 grows over a wide range of urea concentrations (0.25 - 10 mM) at rates comparable to growth on ammonia. In a substrate competition experiment HL72 preferentially

  13. Reduction of nitrogen oxides with catalytic acid resistant aluminosilicate molecular sieves and ammonia

    DOEpatents

    Pence, Dallas T.; Thomas, Thomas R.

    1980-01-01

    Noxious nitrogen oxides in a waste gas stream such as the stack gas from a fossil-fuel-fired power generation plant or other industrial plant off-gas stream is catalytically reduced to elemental nitrogen and/or innocuous nitrogen oxides employing ammonia as reductant in the presence of a zeolite catalyst in the hydrogen or sodium form having pore openings of about 3 to 10 A.

  14. Continuous measurements of ammonia, nitrous oxide and methane from air scrubbers at pig housing facilities.

    PubMed

    Van der Heyden, C; Brusselman, E; Volcke, E I P; Demeyer, P

    2016-10-01

    Ammonia, largely emitted by agriculture, involves a great risk for eutrophication and acidification leading to biodiversity loss. Air scrubbers are widely applied to reduce ammonia emission from pig and poultry housing facilities, but it is not always clear whether their performance meets the requirements. Besides, there is a growing international concern for the livestock related greenhouse gases methane and nitrous oxide but hardly any data concerning their fate in air scrubbers are available. This contribution presents the results from measurement campaigns conducted at a chemical, a biological and a two-stage biological air scrubber installed at pig housing facilities in Flanders. Ammonia, nitrous oxide and methane at the inlet and outlet of the air scrubbers were monitored on-line during one week using a photoacoustic gas monitor, which allowed to investigate diurnal fluctuations in the removal performance of air scrubbers. Additionally, the homogeneity of the air scrubbers, normally checked by gas detection tubes, was investigated in more detail using the continuous data. The biological air scrubber with extra nitrification tank performed well in terms of ammonia removal (86 ± 6%), while the two-stage air scrubber suffered from nitrifying bacteria inhibition. In the chemical air scrubber the pH was not kept constant, lowering the ammonia removal efficiency. A lower ammonia removal efficiency was found during the day, when the ventilation rate was the highest. Nitrous oxide was produced inside the biological and two-stage scrubber, resulting in an increased outlet concentration of more than 200%. Methane could not be removed in the different air scrubbers because of its low water solubility. PMID:27341376

  15. Continuous measurements of ammonia, nitrous oxide and methane from air scrubbers at pig housing facilities.

    PubMed

    Van der Heyden, C; Brusselman, E; Volcke, E I P; Demeyer, P

    2016-10-01

    Ammonia, largely emitted by agriculture, involves a great risk for eutrophication and acidification leading to biodiversity loss. Air scrubbers are widely applied to reduce ammonia emission from pig and poultry housing facilities, but it is not always clear whether their performance meets the requirements. Besides, there is a growing international concern for the livestock related greenhouse gases methane and nitrous oxide but hardly any data concerning their fate in air scrubbers are available. This contribution presents the results from measurement campaigns conducted at a chemical, a biological and a two-stage biological air scrubber installed at pig housing facilities in Flanders. Ammonia, nitrous oxide and methane at the inlet and outlet of the air scrubbers were monitored on-line during one week using a photoacoustic gas monitor, which allowed to investigate diurnal fluctuations in the removal performance of air scrubbers. Additionally, the homogeneity of the air scrubbers, normally checked by gas detection tubes, was investigated in more detail using the continuous data. The biological air scrubber with extra nitrification tank performed well in terms of ammonia removal (86 ± 6%), while the two-stage air scrubber suffered from nitrifying bacteria inhibition. In the chemical air scrubber the pH was not kept constant, lowering the ammonia removal efficiency. A lower ammonia removal efficiency was found during the day, when the ventilation rate was the highest. Nitrous oxide was produced inside the biological and two-stage scrubber, resulting in an increased outlet concentration of more than 200%. Methane could not be removed in the different air scrubbers because of its low water solubility.

  16. Urease gene-containing Archaea dominate autotrophic ammonia oxidation in two acid soils.

    PubMed

    Lu, Lu; Jia, Zhongjun

    2013-06-01

    The metabolic traits of ammonia-oxidizing archaea (AOA) and bacteria (AOB) interacting with their environment determine the nitrogen cycle at the global scale. Ureolytic metabolism has long been proposed as a mechanism for AOB to cope with substrate paucity in acid soil, but it remains unclear whether urea hydrolysis could afford AOA greater ecological advantages. By combining DNA-based stable isotope probing (SIP) and high-throughput pyrosequencing, here we show that autotrophic ammonia oxidation in two acid soils was predominately driven by AOA that contain ureC genes encoding the alpha subunit of a putative archaeal urease. In urea-amended SIP microcosms of forest soil (pH 5.40) and tea orchard soil (pH 3.75), nitrification activity was stimulated significantly by urea fertilization when compared with water-amended soils in which nitrification resulted solely from the oxidation of ammonia generated through mineralization of soil organic nitrogen. The stimulated activity was paralleled by changes in abundance and composition of archaeal amoA genes. Time-course incubations indicated that archaeal amoA genes were increasingly labelled by (13) CO2 in both microcosms amended with water and urea. Pyrosequencing revealed that archaeal populations were labelled to a much greater extent in soils amended with urea than water. Furthermore, archaeal ureC genes were successfully amplified in the (13) C-DNA, and acetylene inhibition suggests that autotrophic growth of urease-containing AOA depended on energy generation through ammonia oxidation. The sequences of AOB were not detected, and active AOA were affiliated with the marine Group 1.1a-associated lineage. The results suggest that ureolytic N metabolism could afford AOA greater advantages for autotrophic ammonia oxidation in acid soil, but the mechanism of how urea activates AOA cells remains unclear.

  17. Activity, abundance and structure of ammonia-oxidizing microorganisms in plateau soils.

    PubMed

    Dai, Yu; Wu, Zhen; Zhou, Qiheng; Zhao, Qun; Li, Ningning; Xie, Shuguang; Liu, Yong

    2015-10-01

    Both ammonia-oxidizing archaea (AOA) and bacteria (AOB) can be involved in biotransformation of ammonia to nitrite in soil ecosystems. However, the distribution of AOA and AOB in plateau soils and influential factors remain largely unclear. In the present study, the activity, abundance and structure of ammonia oxidizers in different soils on the Yunnan Plateau were assessed using potential nitrification rates (PNRs), quantitative PCR assay and clone library analysis, respectively. Wide variation was found in both AOA and AOB communities in plateau soils. PNRs showed a significant positive correlation with AOB abundance. Both were determined by the ratio of organic carbon to nitrogen (C/N) and total phosphorous (TP). AOB could play a more important role in ammonia oxidation. AOB community diversity was likely affected by soil total nitrogen (TN) and total organic carbon (TOC) and was usually higher than AOA community diversity. Moreover, Nitrososphaera- and Nitrosospira-like organisms, respectively, were the dominant AOA and AOB in plateau soils. AOA community structure was likely shaped by TP and C/N, while AOB community structure was determined by pH.

  18. Biogeochemical controls and isotopic signatures of nitrous oxide production by a marine ammonia-oxidizing bacterium

    NASA Astrophysics Data System (ADS)

    Frame, C. H.; Casciotti, K. L.

    2010-09-01

    Nitrous oxide (N2O) is a trace gas that contributes to the greenhouse effect and stratospheric ozone depletion. The N2O yield from nitrification (moles N2O-N produced per mole ammonium-N consumed) has been used to estimate marine N2O production rates from measured nitrification rates and global estimates of oceanic export production. However, the N2O yield from nitrification is not constant. Previous culture-based measurements indicate that N2O yield increases as oxygen (O2) concentration decreases and as nitrite (NO2-) concentration increases. Here, we have measured yields of N2O from cultures of the marine β-proteobacterium Nitrosomonas marina C-113a as they grew on low-ammonium (50 μM) media. These yields, which were typically between 4 × 10-4 and 7 × 10-4 for cultures with cell densities between 2 × 102 and 2.1 × 104 cells ml-1, were lower than previous reports for ammonia-oxidizing bacteria. The observed impact of O2 concentration on yield was also smaller than previously reported under all conditions except at high starting cell densities (1.5 × 106 cells ml-1), where 160-fold higher yields were observed at 0.5% O2 (5.1 μM dissolved O2) compared with 20% O2 (203 μM dissolved O2). At lower cell densities (2 × 102 and 2.1 × 104 cells ml-1), cultures grown under 0.5% O2 had yields that were only 1.25- to 1.73-fold higher than cultures grown under 20% O2. Thus, previously reported many-fold increases in N2O yield with dropping O2 could be reproduced only at cell densities that far exceeded those of ammonia oxidizers in the ocean. The presence of excess NO2- (up to 1 mM) in the growth medium also increased N2O yields by an average of 70% to 87% depending on O2 concentration. We made stable isotopic measurements on N2O from these cultures to identify the biochemical mechanisms behind variations in N2O yield. Based on measurements of δ15Nbulk, site preference (SP = δ15Nα-δ15Nβ), and δ18O of N2O (δ18O-N2O), we estimate that nitrifier

  19. Selective catalytic reduction of nitric oxide with ammonia over silica-supported vanadium oxide catalyst

    SciTech Connect

    Qajar, J.; Mowla, D.

    2009-07-01

    The selective catalytic reduction (SCR) of nitric oxide with excess ammonia in the presence of oxygen on silica-supported vanadium oxide catalyst was studied in a packed-bed reactor, and a mathematical model was proposed for the processes occurring in the reactor. Experimental data were presented for evaluation of the accuracy of the proposed model. Good agreement was observed between the measured and calculated values of the conversion in the outlet of the reactor. Once the validity of the proposed model was verified, it was used to examine the effects of different parameters such as feed temperature, inlet feed composition, and gas hourly space velocity (GHSV) on the conversion of NO over V{sub 2}O{sub 5}/SiO{sub 2} catalyst for practical application. The results for the employed catalyst showed that high NO conversion occurred at temperatures of 280-300C, GHSV less than 2000h{sup -1} (STP), and O{sub 2} concentration greater than 10% v/v. These results clearly demonstrate the high potential for this catalyst to be applied commercially for the control of NOx emissions from flue gases of different sources.

  20. Ammonia-induced oxidative damage in neurons is prevented by resveratrol and lipoic acid with participation of heme oxygenase 1.

    PubMed

    Bobermin, Larissa Daniele; Wartchow, Krista Minéia; Flores, Marianne Pires; Leite, Marina Concli; Quincozes-Santos, André; Gonçalves, Carlos-Alberto

    2015-07-01

    Ammonia is a metabolite that, at high concentrations, is implicated in neurological disorders, such as hepatic encephalopathy (HE), which is associated with acute or chronic liver failure. Astrocytes are considered the primary target of ammonia toxicity in the central nervous system (CNS) because glutamine synthetase (GS), responsible for ammonia metabolism in CNS, is an astrocytic enzyme. Thus, neuronal dysfunction has been associated as secondary to astrocytic impairment. However, we demonstrated that ammonia can induce direct effects on neuronal cells. The cell viability was decreased by ammonia in SH-SY5Y cells and cerebellar granule neurons. In addition, ammonia induced increased reactive oxygen species (ROS) production and decreased GSH intracellular content, the main antioxidant in CNS. As ammonia neurotoxicity is strongly associated with oxidative stress, we also investigated the potential neuroprotective roles of the antioxidants, resveratrol (RSV) and lipoic acid (LA), against ammonia toxicity in cerebellar granule neurons. RSV and LA were able to prevent the oxidative damage induced by ammonia, maintaining the levels of ROS production and GSH close to basal values. Both antioxidants also decreased ROS production and increased GSH content under basal conditions (in the absence of ammonia). Moreover, we showed that heme oxygenase 1 (HO1), a protein associated with protection against stress conditions, is involved in the beneficial effects of RSV and LA in cerebellar granule neurons. Thus, this study reinforces the neuroprotective effects of RSV and LA. Although more studies in vivo are required, RSV and LA could represent interesting therapeutic strategies for the management of HE.

  1. Enhanced and selective ammonia sensing of reduced graphene oxide based chemo resistive sensor at room temperature

    NASA Astrophysics Data System (ADS)

    Kumar, Ramesh; Kaur, Amarjeet

    2016-05-01

    The reduced graphene oxide thin films were fabricated by using the spin coating method. The reduced graphene oxide samples were characterised by Raman studies to obtain corresponding D and G bands at 1360 and 1590 cm-1 respectively. Fourier transform infra-red (FTIR) spectra consists of peak corresponds to sp2 hybridisation of carbon atoms at 1560 cm-1. The reduced graphene oxide based chemoresistive sensor exhibited a p-type semiconductor behaviour in ambient conditions and showed good sensitivity to different concentration of ammonia from 25 ppm to 500 ppm and excellent selectivity at room temperature. The sensor displays selectivity to several hazardous vapours such as methanol, ethanol, acetone and hydrazine hydrate. The sensor demonstrated a sensitivity of 9.8 at 25 ppm concentration of ammonia with response time of 163 seconds.

  2. Evidence for decoupled electron and proton transfer in the electrochemical oxidation of ammonia on Pt(100)

    DOE PAGESBeta

    Katsounaros, Ioannis; Chen, Ting; Gewirth, Andrew A.; Markovic, Nenad M.; Koper, Marc T. M.

    2016-01-12

    The two traditional mechanisms of the electrochemical ammonia oxidation consider only concerted proton-electron transfer elementary steps and thus they predict that the rate–potential relationship is independent of the pH on the pH-corrected RHE potential scale. In this letter we show that this is not the case: the increase of the solution pH shifts the onset of the NH3-to-N2 oxidation on Pt(100) to lower potentials and also leads to higher surface concentration of formed NOad before the latter is oxidized to nitrite. Therefore, we present a new mechanism for the ammonia oxidation which incorporates a deprotonation step occurring prior to themore » electron transfer. The deprotonation step yields a negatively charged surface-adsorbed species which is discharged in a subsequent electron transfer step before the N–N bond formation. The negatively charged species is thus a precursor for the formation of N2 and NO. The new mechanism should be a future guide for computational studies aiming at the identification of intermediates and corresponding activation barriers for the elementary steps. As a result, ammonia oxidation is a new example of a bond-forming reaction on (100) terraces which involves decoupled proton-electron transfer.« less

  3. Bioaugmentation of Syntrophic Acetate-Oxidizing Culture in Biogas Reactors Exposed to Increasing Levels of Ammonia

    PubMed Central

    Westerholm, Maria; Levén, Lotta

    2012-01-01

    The importance of syntrophic acetate oxidation for process stability in methanogenic systems operating at high ammonia concentrations has previously been emphasized. In this study we investigated bioaugmentation of syntrophic acetate-oxidizing (SAO) cultures as a possible method for decreasing the adaptation period of biogas reactors operating at gradually increased ammonia concentrations (1.5 to 11 g NH4+-N/liter). Whole stillage and cattle manure were codigested semicontinuously for about 460 days in four mesophilic anaerobic laboratory-scale reactors, and a fixed volume of SAO culture was added daily to two of the reactors. Reactor performance was evaluated in terms of biogas productivity, methane content, pH, alkalinity, and volatile fatty acid (VFA) content. The decomposition pathway of acetate was analyzed by isotopic tracer experiments, and population dynamics were monitored by quantitative PCR analyses. A shift in dominance from aceticlastic methanogenesis to SAO occurred simultaneously in all reactors, indicating no influence by bioaugmentation on the prevailing pathway. Higher abundances of Clostridium ultunense and Tepidanaerobacter acetatoxydans were associated with bioaugmentation, but no influence on Syntrophaceticus schinkii or the methanogenic population was distinguished. Overloading or accumulation of VFA did not cause notable dynamic effects on the population. Instead, the ammonia concentration had a substantial impact on the abundance level of the microorganisms surveyed. The addition of SAO culture did not affect process performance or stability against ammonia inhibition, and all four reactors deteriorated at high ammonia concentrations. Consequently, these findings further demonstrate the strong influence of ammonia on the methane-producing consortia and on the representative methanization pathway in mesophilic biogas reactors. PMID:22923397

  4. Screening of electrocatalysts for direct ammonia fuel cell: Ammonia oxidation on PtMe (Me: Ir, Rh, Pd, Ru) and preferentially oriented Pt(1 0 0) nanoparticles

    NASA Astrophysics Data System (ADS)

    Vidal-Iglesias, F. J.; Solla-Gullón, J.; Montiel, V.; Feliu, J. M.; Aldaz, A.

    Ammonia has attracted attention as a possible fuel for direct fuel cells since it is easy to handle and to transport as liquid or as concentrated aqueous solution. However, on noble metal electrodes ammonia oxidation is a sluggish reaction and the electrocatalyst needs to be improved for developing efficient ammonia fuel cells. In this work, ammonia electrooxidation reaction on 3-4-nm bimetallic PtMe (Ir, Rh, Pd, Ru) and on preferentially oriented Pt(1 0 0) nanoparticles is reported. PtMe nanoparticles have been prepared by using water-in-oil microemulsions to obtain a narrow size distribution whereas preferentially oriented Pt nanoparticles have been prepared through colloidal routes. Among all the bimetallic samples tested, only Pt 75Ir 25 and Pt 75Rh 25 nanoparticles show, at the low potential range, an enhancement of the oxidation density current with respect to the behaviour found for pure platinum nanoparticles prepared by the same method. In addition, two Pt(1 0 0) preferentially oriented nanoparticles of different particle size (4 and 9 nm) have been also studied. These oriented nanoparticles show higher current densities than polycrystalline Pt nanoparticles due to the sensitivity of ammonia oxidation toward the presence of surface sites with square symmetry. The reactivity of the different 4-nm nanoparticles parallels well with that expected from bulk PtMe alloys and Pt single crystal electrodes.

  5. Complete genome sequence of Nitrosomonas sp. Is79, an ammonia oxidizing bacterium adapted to low ammonium concentrations

    SciTech Connect

    Bollmann, Annette; Sedlacek, Christopher J; Laanbroek, Hendrikus J; Suwa, Yuichi; Stein, Lisa Y; Klotz, Martin G; Arp, D J; Sayavedra-Soto, LA; Lu, Megan; Bruce, David; Detter, J. Chris; Tapia, Roxanne; Han, James; Woyke, Tanja; Lucas, Susan; Pitluck, Sam; Pennacchio, Len; Nolan, Matt; Land, Miriam L; Huntemann, Marcel; Deshpande, Shweta; Han, Cliff; Chen, Amy; Kyrpides, Nikos C; Mavromatis, K; Markowitz, Victor; Szeto, Ernest; Ivanova, N; Mikhailova, Natalia; Pagani, Ioanna; Pati, Amrita; Peters, Lin; Ovchinnikova, Galina; Goodwin, Lynne A.

    2013-01-01

    Nitrosomonas sp. Is79 is a chemolithoautotrophic ammonia-oxidizing bacterium that belongs to the family Nitrosomonadaceae within the phylum Proteobacteria. Ammonia oxidation is the first step of nitrification, an important process in the global nitrogen cycle ultimately resulting in the production of nitrate. Nitrosomonas sp. Is79 is an ammonia oxidizer of high interest because it is adapted to low ammonium and can be found in freshwater environments around the world. The 3,783,444-bp chromosome with a total of 3,553 protein coding genes and 44 RNA genes was sequenced by the DOE-Joint Genome Institute Program CSP 2006.

  6. Population Dynamics and Community Composition of Ammonia Oxidizers in Salt Marshes after the Deepwater Horizon Oil Spill.

    PubMed

    Bernhard, Anne E; Sheffer, Roberta; Giblin, Anne E; Marton, John M; Roberts, Brian J

    2016-01-01

    The recent oil spill in the Gulf of Mexico had significant effects on microbial communities in the Gulf, but impacts on nitrifying communities in adjacent salt marshes have not been investigated. We studied persistent effects of oil on ammonia-oxidizing archaeal (AOA) and bacterial (AOB) communities and their relationship to nitrification rates and soil properties in Louisiana marshes impacted by the Deepwater Horizon oil spill. Soils were collected at oiled and unoiled sites from Louisiana coastal marshes in July 2012, 2 years after the spill, and analyzed for community differences based on ammonia monooxygenase genes (amoA). Terminal Restriction Fragment Polymorphism and DNA sequence analyses revealed significantly different AOA and AOB communities between the three regions, but few differences were found between oiled and unoiled sites. Community composition of nitrifiers was best explained by differences in soil moisture and nitrogen content. Despite the lack of significant oil effects on overall community composition, we identified differences in correlations of individual populations with potential nitrification rates between oiled and unoiled sites that help explain previously published correlation patterns. Our results suggest that exposure to oil, even 2 years post-spill, led to subtle changes in population dynamics. How, or if, these changes may impact ecosystem function in the marshes, however, remains uncertain. PMID:27375576

  7. Population Dynamics and Community Composition of Ammonia Oxidizers in Salt Marshes after the Deepwater Horizon Oil Spill.

    PubMed

    Bernhard, Anne E; Sheffer, Roberta; Giblin, Anne E; Marton, John M; Roberts, Brian J

    2016-01-01

    The recent oil spill in the Gulf of Mexico had significant effects on microbial communities in the Gulf, but impacts on nitrifying communities in adjacent salt marshes have not been investigated. We studied persistent effects of oil on ammonia-oxidizing archaeal (AOA) and bacterial (AOB) communities and their relationship to nitrification rates and soil properties in Louisiana marshes impacted by the Deepwater Horizon oil spill. Soils were collected at oiled and unoiled sites from Louisiana coastal marshes in July 2012, 2 years after the spill, and analyzed for community differences based on ammonia monooxygenase genes (amoA). Terminal Restriction Fragment Polymorphism and DNA sequence analyses revealed significantly different AOA and AOB communities between the three regions, but few differences were found between oiled and unoiled sites. Community composition of nitrifiers was best explained by differences in soil moisture and nitrogen content. Despite the lack of significant oil effects on overall community composition, we identified differences in correlations of individual populations with potential nitrification rates between oiled and unoiled sites that help explain previously published correlation patterns. Our results suggest that exposure to oil, even 2 years post-spill, led to subtle changes in population dynamics. How, or if, these changes may impact ecosystem function in the marshes, however, remains uncertain.

  8. Population Dynamics and Community Composition of Ammonia Oxidizers in Salt Marshes after the Deepwater Horizon Oil Spill

    PubMed Central

    Bernhard, Anne E.; Sheffer, Roberta; Giblin, Anne E.; Marton, John M.; Roberts, Brian J.

    2016-01-01

    The recent oil spill in the Gulf of Mexico had significant effects on microbial communities in the Gulf, but impacts on nitrifying communities in adjacent salt marshes have not been investigated. We studied persistent effects of oil on ammonia-oxidizing archaeal (AOA) and bacterial (AOB) communities and their relationship to nitrification rates and soil properties in Louisiana marshes impacted by the Deepwater Horizon oil spill. Soils were collected at oiled and unoiled sites from Louisiana coastal marshes in July 2012, 2 years after the spill, and analyzed for community differences based on ammonia monooxygenase genes (amoA). Terminal Restriction Fragment Polymorphism and DNA sequence analyses revealed significantly different AOA and AOB communities between the three regions, but few differences were found between oiled and unoiled sites. Community composition of nitrifiers was best explained by differences in soil moisture and nitrogen content. Despite the lack of significant oil effects on overall community composition, we identified differences in correlations of individual populations with potential nitrification rates between oiled and unoiled sites that help explain previously published correlation patterns. Our results suggest that exposure to oil, even 2 years post-spill, led to subtle changes in population dynamics. How, or if, these changes may impact ecosystem function in the marshes, however, remains uncertain. PMID:27375576

  9. The effect of ammonia upon the electrocatalysis of hydrogen oxidation and oxygen reduction on polycrystalline platinum

    NASA Astrophysics Data System (ADS)

    Verdaguer-Casadevall, Arnau; Hernandez-Fernandez, Patricia; Stephens, Ifan E. L.; Chorkendorff, Ib; Dahl, Søren

    2012-12-01

    The influence of ammonium ions on the catalysis of hydrogen oxidation and oxygen reduction is studied by means of rotating ring-disk electrode experiments on polycrystalline platinum in perchloric acid. While ammonium does not affect the hydrogen oxidation reaction, the oxygen reduction reaction is severely poisoned. Poisoning at the cathode explains the majority of the losses observed in polymer electrolyte membrane fuel cells contaminated with ammonia. Voltammetry in deaerated solution suggest that the poisoning can be attributed to either ammonium oxidation or increased binding to OH species.

  10. Evaluating Primers for Profiling Anaerobic Ammonia Oxidizing Bacteria within Freshwater Environments

    PubMed Central

    Sonthiphand, Puntipar; Neufeld, Josh D.

    2013-01-01

    Anaerobic ammonia oxidizing (anammox) bacteria play an important role in transforming ammonium to nitrogen gas and contribute to fixed nitrogen losses in freshwater environments. Understanding the diversity and abundance of anammox bacteria requires reliable molecular tools, and these are not yet well established for these important Planctomycetes. To help validate PCR primers for the detection of anammox bacteria within freshwater ecosystems, we analyzed representative positive controls and selected samples from Grand River and groundwater sites, both from Ontario, Canada. The objectives of this study were to identify a suitable anammox denaturing gradient gel electrophoresis (DGGE) fingerprint method by using GC-clamp modifications to existing primers, and to verify the specificity of anammox-specific primers used for DGGE, cloning and qPCR methods. Six primer combinations were tested from four published primer sets (i.e. A438f/A684r, Amx368f/Amx820r, An7f/An1388r, and Pla46/1392r) for both direct and nested PCR amplifications. All PCR products were run subsequently on DGGE gels to compare the resulting patterns. Two anammox-specific primer combinations were also used to generate clone libraries and quantify anammox bacterial 16S rRNA genes with qPCR. The primer set A438f/A684r was highly specific to anammox bacteria, provided reliable DGGE fingerprints and generated a high proportion of anammox-related clones. A second primer set (Amx368f/Amx820r) was anammox specific, based on clone library analysis, but PCR products from different candidate species of anammox bacteria resolved poorly using DGGE analysis. Both DGGE and cloning results revealed that Ca. Brocadia and an uncharacterized anammox bacterial cluster represented the majority of anammox bacteria found in Grand River sediment and groundwater samples, respectively. Together, our results demonstrate that although Amx368f/Amx820r was useful for anammox-specific qPCR and clone library analysis, A438f/A684r

  11. Evaluating primers for profiling anaerobic ammonia oxidizing bacteria within freshwater environments.

    PubMed

    Sonthiphand, Puntipar; Neufeld, Josh D

    2013-01-01

    Anaerobic ammonia oxidizing (anammox) bacteria play an important role in transforming ammonium to nitrogen gas and contribute to fixed nitrogen losses in freshwater environments. Understanding the diversity and abundance of anammox bacteria requires reliable molecular tools, and these are not yet well established for these important Planctomycetes. To help validate PCR primers for the detection of anammox bacteria within freshwater ecosystems, we analyzed representative positive controls and selected samples from Grand River and groundwater sites, both from Ontario, Canada. The objectives of this study were to identify a suitable anammox denaturing gradient gel electrophoresis (DGGE) fingerprint method by using GC-clamp modifications to existing primers, and to verify the specificity of anammox-specific primers used for DGGE, cloning and qPCR methods. Six primer combinations were tested from four published primer sets (i.e. A438f/A684r, Amx368f/Amx820r, An7f/An1388r, and Pla46/1392r) for both direct and nested PCR amplifications. All PCR products were run subsequently on DGGE gels to compare the resulting patterns. Two anammox-specific primer combinations were also used to generate clone libraries and quantify anammox bacterial 16S rRNA genes with qPCR. The primer set A438f/A684r was highly specific to anammox bacteria, provided reliable DGGE fingerprints and generated a high proportion of anammox-related clones. A second primer set (Amx368f/Amx820r) was anammox specific, based on clone library analysis, but PCR products from different candidate species of anammox bacteria resolved poorly using DGGE analysis. Both DGGE and cloning results revealed that Ca. Brocadia and an uncharacterized anammox bacterial cluster represented the majority of anammox bacteria found in Grand River sediment and groundwater samples, respectively. Together, our results demonstrate that although Amx368f/Amx820r was useful for anammox-specific qPCR and clone library analysis, A438f/A684r

  12. The catalytic removal of ammonia and nitrogen oxides from spacecabin atmospheres

    NASA Technical Reports Server (NTRS)

    Gully, A. J.; Graham, R. R.; Halligan, J. E.; Bentsen, P. C.

    1973-01-01

    Investigations were made on methods for the removal of ammonia and to a lesser extent nitrogen oxides in low concentrations from air. The catalytic oxidation of ammonia was studied over a temperature range of 250 F to 600 F and a concentration range 20 ppm to 500 ppm. Of the catalysts studied, 0.5 percent ruthenium supported on alumina was found to be superior. This material is active at temperatures as low as 250 F and was found to produce much less nitrous oxide than the other two active catalysts, platinum on alumina and Hopcalite. A quantitative design model was developed which will permit the performance of an oxidizer to be calculated. The ruthenium was found to be relatively insensitive to low concentrations of water and to oxygen concentration between 21 percent and 100 percent. Hydrogen sulfide was found to be a poison when injected in relatively large quantities. The adsorption of ammonia by copper sulfate treated silica gel was investigated at temperatures of 72 F and 100 F. A quantitative model was developed for predicting adsorption bed behavior.

  13. Effects of temperature and fertilizer on activity and community structure of soil ammonia oxidizers.

    PubMed

    Avrahami, Sharon; Liesack, Werner; Conrad, Ralf

    2003-08-01

    We investigated the effect of temperature on the activity of soil ammonia oxidizers caused by changes in the availability of ammonium and in the microbial community structure. Both short (5 days) and long (6.5, 16 and 20 weeks) incubation of an agricultural soil resulted in a decrease in ammonium concentration that was more pronounced at temperatures between 10 and 25 degrees C than at either 4 degrees C or 30-37 degrees C. Consistently, potential nitrification was higher between 10 and 25 degrees C than at either 4 degrees C or 37 degrees C. However, as long as ammonium was not limiting, release rates of N2O increased monotonously between 4 and 37 degrees C after short-term temperature adaptation, with nitrification accounting for about 35-50% of the N2O production between 4 and 25 degrees C. In order to see whether temperature may also affect the community structure of ammonia oxidizers, we studied moist soil during long incubation at low and high concentrations of commercial fertilizer. The soil was also incubated in buffered (pH 7) slurry amended with urea. Communities of ammonia oxidizers were assayed by denaturant gradient gel electrophoresis (DGGE) of the amoA gene coding for the alpha subunit of ammonia monooxygenase. We found that a polymerase chain reaction (PCR) system using a non-degenerated reverse primer (amoAR1) gave the best results. Community shifts occurred in all soil treatments after 16 weeks of incubation. The community shifts were obviously influenced by the different fertilizer treatments, indicating that ammonium was a selective factor for different ammonia oxidizer populations. Temperature was also a selective factor, in particular as community shifts were also observed in the soil slurries, in which ammonium concentrations and pH were better controlled. Cloning and sequencing of selected DGGE bands indicated that amoA sequences belonging to Nitrosospira cluster 1 were dominant at low temperatures (4-10 degrees C), but were absent after

  14. Effects of temperature and fertilizer on activity and community structure of soil ammonia oxidizers.

    PubMed

    Avrahami, Sharon; Liesack, Werner; Conrad, Ralf

    2003-08-01

    We investigated the effect of temperature on the activity of soil ammonia oxidizers caused by changes in the availability of ammonium and in the microbial community structure. Both short (5 days) and long (6.5, 16 and 20 weeks) incubation of an agricultural soil resulted in a decrease in ammonium concentration that was more pronounced at temperatures between 10 and 25 degrees C than at either 4 degrees C or 30-37 degrees C. Consistently, potential nitrification was higher between 10 and 25 degrees C than at either 4 degrees C or 37 degrees C. However, as long as ammonium was not limiting, release rates of N2O increased monotonously between 4 and 37 degrees C after short-term temperature adaptation, with nitrification accounting for about 35-50% of the N2O production between 4 and 25 degrees C. In order to see whether temperature may also affect the community structure of ammonia oxidizers, we studied moist soil during long incubation at low and high concentrations of commercial fertilizer. The soil was also incubated in buffered (pH 7) slurry amended with urea. Communities of ammonia oxidizers were assayed by denaturant gradient gel electrophoresis (DGGE) of the amoA gene coding for the alpha subunit of ammonia monooxygenase. We found that a polymerase chain reaction (PCR) system using a non-degenerated reverse primer (amoAR1) gave the best results. Community shifts occurred in all soil treatments after 16 weeks of incubation. The community shifts were obviously influenced by the different fertilizer treatments, indicating that ammonium was a selective factor for different ammonia oxidizer populations. Temperature was also a selective factor, in particular as community shifts were also observed in the soil slurries, in which ammonium concentrations and pH were better controlled. Cloning and sequencing of selected DGGE bands indicated that amoA sequences belonging to Nitrosospira cluster 1 were dominant at low temperatures (4-10 degrees C), but were absent after

  15. Biases in community structures of ammonia/ammonium-oxidizing microorganisms caused by insufficient DNA extractions from Baijiang soil revealed by comparative analysis of coastal wetland sediment and rice paddy soil.

    PubMed

    Han, Ping; Li, Meng; Gu, Ji-Dong

    2013-10-01

    Repetitive extraction of DNAs from surface sediments of a coastal wetland in Mai Po Nature Reserve (MP) of Hong Kong and surface Baijiang soils from a rice paddy (RP) in Northeast China was conducted to compare the microbial diversity in this study. Community structures of ammonia/ammonium-oxidizing microorganisms in these samples were analyzed by PCR-DGGE technique. The diversity and abundance of ammonia-oxidizing archaea (AOA), ammonia-oxidizing bacteria (AOB), and anaerobic ammonium-oxidizing (anammox) bacteria were also analyzed based on archaeal and bacterial ammonia monooxygenase subunit A encoding (amoA) and anammox bacterial 16S rRNA genes, respectively. DGGE profiles of archaeal and bacterial amoA and anammox bacterial 16S rRNA genes showed a similar pattern among all five repetitively extracted DNA fractions from both MP and RP, except the anammox bacteria in RP, indicating a more diverse anammox community retrieved in the second to the fifth fractions than the first one. Both soil and marine group AOA were detected while soil and coastal group AOB and Scalindua-anammox bacteria were dominant in MP. Soil group AOA and marine group AOB were dominant in RP, while both Scalindua and Kuenenia species were detected in RP. Pearson correlation analysis showed that the abundance of archaeal and bacterial amoA and anammox bacterial 16S rRNA genes was significantly correlated with the DNA concentrations of the five DNA fractions from MP, but not from RP (except the archaeal amoA gene). Results suggest that anammox bacteria diversity may be biased by insufficient DNA extraction of rice paddy soil samples. PMID:23974369

  16. Adsorption of ammonia on graphite oxide/aluminium polycation and graphite oxide/zirconium-aluminium polyoxycation composites.

    PubMed

    Seredych, Mykola; Bandosz, Teresa J

    2008-08-01

    Graphite oxide (GO) synthesized from commercial graphite was modified with aluminium or zirconium-aluminium polyoxycations and then calcined at 350 degrees C. On the samples obtained adsorption of ammonia from moist air was investigated. The surface of materials before and after exposure to ammonia was characterized using adsorption of nitrogen, XRD, SEM, FTIR, TA, CHN analysis, and potentiometric titration. The results showed that in spite of the fact that graphite composites/pillared graphites (PG) have Keggin-like ions located between the layers, that space blocked for nitrogen molecules used to determine the specific surface area. During calcinations, the deflagration of layers occurred as a result of decomposition of epoxy groups. This results in formation of disordered graphitic carbons with some mesoporosity. Even though these materials were not porous, the significant amount of ammonia was retained on the surface. Since ammonia molecule is able to specifically interact with oxygen groups of graphite oxide and Brønsted centers of inorganic pillars, it is likely intercalated between the composite layers. While the best performance was found for GO modified with aluminium-zirconium species, after calcinations the samples containing Keggin Al(13) like cations revealed the high capacity which is linked to the high acidity of incorporated inorganic compounds. PMID:18501918

  17. Adsorption of ammonia on graphite oxide/aluminium polycation and graphite oxide/zirconium-aluminium polyoxycation composites.

    PubMed

    Seredych, Mykola; Bandosz, Teresa J

    2008-08-01

    Graphite oxide (GO) synthesized from commercial graphite was modified with aluminium or zirconium-aluminium polyoxycations and then calcined at 350 degrees C. On the samples obtained adsorption of ammonia from moist air was investigated. The surface of materials before and after exposure to ammonia was characterized using adsorption of nitrogen, XRD, SEM, FTIR, TA, CHN analysis, and potentiometric titration. The results showed that in spite of the fact that graphite composites/pillared graphites (PG) have Keggin-like ions located between the layers, that space blocked for nitrogen molecules used to determine the specific surface area. During calcinations, the deflagration of layers occurred as a result of decomposition of epoxy groups. This results in formation of disordered graphitic carbons with some mesoporosity. Even though these materials were not porous, the significant amount of ammonia was retained on the surface. Since ammonia molecule is able to specifically interact with oxygen groups of graphite oxide and Brønsted centers of inorganic pillars, it is likely intercalated between the composite layers. While the best performance was found for GO modified with aluminium-zirconium species, after calcinations the samples containing Keggin Al(13) like cations revealed the high capacity which is linked to the high acidity of incorporated inorganic compounds.

  18. Ammonia-oxidizing bacteria and archaea in wastewater treatment plant sludge and nearby coastal sediment in an industrial area in China.

    PubMed

    Zhang, Yan; Chen, Lujun; Sun, Renhua; Dai, Tianjiao; Tian, Jinping; Wen, Donghui

    2015-05-01

    Under the increasing pressure of human activities, Hangzhou Bay has become one of the most seriously polluted waters along China's coast. Considering the excessive inorganic nitrogen detected in the bay, in this study, the impact of an effluent from a coastal industrial park on ammonia-oxidizing microorganisms (AOMs) of the receiving area was interpreted for the first time by molecular technologies. Revealed by real-time PCR, the ratio of archaeal amoA/bacterial amoA ranged from 5.68 × 10(-6) to 4.79 × 10(-5) in the activated sludge from two wastewater treatment plants (WWTPs) and 0.54-3.44 in the sediments from the effluent receiving coastal area. Analyzed by clone and pyrosequencing libraries, genus Nitrosomonas was the predominant ammonia-oxidizing bacteria (AOB), but no ammonia-oxidizing archaea (AOA) was abundant enough for sequencing in the activated sludge from the WWTPs; genus Nitrosomonas and Nitrosopumilus were the dominant AOB and AOA, respectively, in the coastal sediments. The different abundance of AOA but similar structure of AOB between the WWTPs and nearby coastal area probably indicated an anthropogenic impact on the microbial ecology in Hangzhou Bay.

  19. Coupling Between and Among Ammonia Oxidizers and Nitrite Oxidizers in Grassland Mesocosms Submitted to Elevated CO2 and Nitrogen Supply.

    PubMed

    Simonin, Marie; Le Roux, Xavier; Poly, Franck; Lerondelle, Catherine; Hungate, Bruce A; Nunan, Naoise; Niboyet, Audrey

    2015-10-01

    Many studies have assessed the responses of soil microbial functional groups to increases in atmospheric CO2 or N deposition alone and more rarely in combination. However, the effects of elevated CO2 and N on the (de)coupling between different microbial functional groups (e.g., different groups of nitrifiers) have been barely studied, despite potential consequences for ecosystem functioning. Here, we investigated the short-term combined effects of elevated CO2 and N supply on the abundances of the four main microbial groups involved in soil nitrification: ammonia-oxidizing archaea (AOA), ammonia-oxidizing bacteria (AOB), and nitrite-oxidizing bacteria (belonging to the genera Nitrobacter and Nitrospira) in grassland mesocosms. AOB and AOA abundances responded differently to the treatments: N addition increased AOB abundance, but did not alter AOA abundance. Nitrobacter and Nitrospira abundances also showed contrasted responses to the treatments: N addition increased Nitrobacter abundance, but decreased Nitrospira abundance. Our results support the idea of a niche differentiation between AOB and AOA, and between Nitrobacter and Nitrospira. AOB and Nitrobacter were both promoted at high N and C conditions (and low soil water content for Nitrobacter), while AOA and Nitrospira were favored at low N and C conditions (and high soil water content for Nitrospira). In addition, Nitrobacter abundance was positively correlated to AOB abundance and Nitrospira abundance to AOA abundance. Our results suggest that the couplings between ammonia and nitrite oxidizers are influenced by soil N availability. Multiple environmental changes may thus elicit rapid and contrasted responses between and among the soil ammonia and nitrite oxidizers due to their different ecological requirements.

  20. Effects of oxygenation on ammonia oxidation potential and microbial diversity in sediment from surface-flow wetland mesocosms.

    PubMed

    Allen, Jennifer G; Beutel, Marc W; Call, Douglas R; Fischer, Allison M

    2010-02-01

    Addition of oxygen to surface-flow wetland mesocosms treating synthetic secondary effluent resulted in a significant increase in ammonia oxidation potential in sediment compared to non-oxygenated controls. Ammonia oxidation potential in oxygenated wetland sediment (1.2-3.5 mg N g dw(-1) d(-1)) was 2-3 orders of magnitude higher than those measured in sediment and soil systems reported in the literature. Phylogenic analysis of sediment from the two treatments revealed substantial differences in microbial diversity including the presence of ammonia-oxidizing bacteria (Nitrosomonas oligotropha) and denitrifying bacteria only in oxygenated sediment, and an increase in the diversity of aerobic phototrophs and methanotrophs in control sediment. These observations supported the contention by Palmer et al. (2009) that oxygenation 'activated' nitrifying bacteria in wetland sediment leading to high rates of biological ammonia oxidation.

  1. Influence of ammonia oxidation rate on thaumarchaeal lipid composition and the TEX86 temperature proxy.

    PubMed

    Hurley, Sarah J; Elling, Felix J; Könneke, Martin; Buchwald, Carolyn; Wankel, Scott D; Santoro, Alyson E; Lipp, Julius Sebastian; Hinrichs, Kai-Uwe; Pearson, Ann

    2016-07-12

    Archaeal membrane lipids known as glycerol dibiphytanyl glycerol tetraethers (GDGTs) are the basis of the TEX86 paleotemperature proxy. Because GDGTs preserved in marine sediments are thought to originate mainly from planktonic, ammonia-oxidizing Thaumarchaeota, the basis of the correlation between TEX86 and sea surface temperature (SST) remains unresolved: How does TEX86 predict surface temperatures, when maximum thaumarchaeal activity occurs below the surface mixed layer and TEX86 does not covary with in situ growth temperatures? Here we used isothermal studies of the model thaumarchaeon Nitrosopumilus maritimus SCM1 to investigate how GDGT composition changes in response to ammonia oxidation rate. We used continuous culture methods to avoid potential confounding variables that can be associated with experiments in batch cultures. The results show that the ring index scales inversely (R(2) = 0.82) with ammonia oxidation rate (ϕ), indicating that GDGT cyclization depends on available reducing power. Correspondingly, the TEX86 ratio decreases by an equivalent of 5.4 °C of calculated temperature over a 5.5 fmol·cell(-1)·d(-1) increase in ϕ. This finding reconciles other recent experiments that have identified growth stage and oxygen availability as variables affecting TEX86 Depth profiles from the marine water column show minimum TEX86 values at the depth of maximum nitrification rates, consistent with our chemostat results. Our findings suggest that the TEX86 signal exported from the water column is influenced by the dynamics of ammonia oxidation. Thus, the global TEX86-SST calibration potentially represents a composite of regional correlations based on nutrient dynamics and global correlations based on archaeal community composition and temperature. PMID:27357675

  2. Hydrogen peroxide detoxification is a key mechanism for growth of ammonia-oxidizing archaea

    PubMed Central

    Kim, Jong-Geol; Park, Soo-Je; Sinninghe Damsté, Jaap S.; Schouten, Stefan; Rijpstra, W. Irene C.; Jung, Man-Young; Kim, So-Jeong; Gwak, Joo-Han; Hong, Heeji; Si, Ok-Ja; Lee, SangHoon; Madsen, Eugene L.; Rhee, Sung-Keun

    2016-01-01

    Ammonia-oxidizing archaea (AOA), that is, members of the Thaumarchaeota phylum, occur ubiquitously in the environment and are of major significance for global nitrogen cycling. However, controls on cell growth and organic carbon assimilation by AOA are poorly understood. We isolated an ammonia-oxidizing archaeon (designated strain DDS1) from seawater and used this organism to study the physiology of ammonia oxidation. These findings were confirmed using four additional Thaumarchaeota strains from both marine and terrestrial habitats. Ammonia oxidation by strain DDS1 was enhanced in coculture with other bacteria, as well as in artificial seawater media supplemented with α-keto acids (e.g., pyruvate, oxaloacetate). α-Keto acid-enhanced activity of AOA has previously been interpreted as evidence of mixotrophy. However, assays for heterotrophic growth indicated that incorporation of pyruvate into archaeal membrane lipids was negligible. Lipid carbon atoms were, instead, derived from dissolved inorganic carbon, indicating strict autotrophic growth. α-Keto acids spontaneously detoxify H2O2 via a nonenzymatic decarboxylation reaction, suggesting a role of α-keto acids as H2O2 scavengers. Indeed, agents that also scavenge H2O2, such as dimethylthiourea and catalase, replaced the α-keto acid requirement, enhancing growth of strain DDS1. In fact, in the absence of α-keto acids, strain DDS1 and other AOA isolates were shown to endogenously produce H2O2 (up to ∼4.5 μM), which was inhibitory to growth. Genomic analyses indicated catalase genes are largely absent in the AOA. Our results indicate that AOA broadly feature strict autotrophic nutrition and implicate H2O2 as an important factor determining the activity, evolution, and community ecology of AOA ecotypes. PMID:27339136

  3. Isotopic signatures of N2O produced by ammonia-oxidizing archaea from soils.

    PubMed

    Jung, Man-Young; Well, Reinhard; Min, Deullae; Giesemann, Anette; Park, Soo-Je; Kim, Jong-Geol; Kim, So-Jeong; Rhee, Sung-Keun

    2014-05-01

    N2O gas is involved in global warming and ozone depletion. The major sources of N2O are soil microbial processes. Anthropogenic inputs into the nitrogen cycle have exacerbated these microbial processes, including nitrification. Ammonia-oxidizing archaea (AOA) are major members of the pool of soil ammonia-oxidizing microorganisms. This study investigated the isotopic signatures of N2O produced by soil AOA and associated N2O production processes. All five AOA strains (I.1a, I.1a-associated and I.1b clades of Thaumarchaeota) from soil produced N2O and their yields were comparable to those of ammonia-oxidizing bacteria (AOB). The levels of site preference (SP), δ(15)N(bulk) and δ(18)O -N2O of soil AOA strains were 13-30%, -13 to -35% and 22-36%, respectively, and strains MY1-3 and other soil AOA strains had distinct isotopic signatures. A (15)N-NH4(+)-labeling experiment indicated that N2O originated from two different production pathways (that is, ammonia oxidation and nitrifier denitrification), which suggests that the isotopic signatures of N2O from AOA may be attributable to the relative contributions of these two processes. The highest N2O production yield and lowest site preference of acidophilic strain CS may be related to enhanced nitrifier denitrification for detoxifying nitrite. Previously, it was not possible to detect N2O from soil AOA because of similarities between its isotopic signatures and those from AOB. Given the predominance of AOA over AOB in most soils, a significant proportion of the total N2O emissions from soil nitrification may be attributable to AOA. PMID:24225887

  4. Marine ammonia-oxidizing archaeal isolates display obligate mixotrophy and wide ecotypic variation

    PubMed Central

    Qin, Wei; Amin, Shady A.; Martens-Habbena, Willm; Walker, Christopher B.; Urakawa, Hidetoshi; Devol, Allan H.; Ingalls, Anitra E.; Moffett, James W.; Armbrust, E. Virginia; Stahl, David A.

    2014-01-01

    Ammonia-oxidizing archaea (AOA) are now implicated in exerting significant control over the form and availability of reactive nitrogen species in marine environments. Detailed studies of specific metabolic traits and physicochemical factors controlling their activities and distribution have not been well constrained in part due to the scarcity of isolated AOA strains. Here, we report the isolation of two new coastal marine AOA, strains PS0 and HCA1. Comparison of the new strains to Nitrosopumilus maritimus strain SCM1, the only marine AOA in pure culture thus far, demonstrated distinct adaptations to pH, salinity, organic carbon, temperature, and light. Strain PS0 sustained nearly 80% of ammonia oxidation activity at a pH as low as 5.9, indicating that coastal strains may be less sensitive to the ongoing reduction in ocean pH. Notably, the two novel isolates are obligate mixotrophs that rely on uptake and assimilation of organic carbon compounds, suggesting a direct coupling between chemolithotrophy and organic matter assimilation in marine food webs. All three isolates showed only minor photoinhibition at 15 µE⋅m−2⋅s−1 and rapid recovery of ammonia oxidation in the dark, consistent with an AOA contribution to the primary nitrite maximum and the plausibility of a diurnal cycle of archaeal ammonia oxidation activity in the euphotic zone. Together, these findings highlight an unexpected adaptive capacity within closely related marine group I Archaea and provide new understanding of the physiological basis of the remarkable ecological success reflected by their generally high abundance in marine environments. PMID:25114236

  5. Hydrogen peroxide detoxification is a key mechanism for growth of ammonia-oxidizing archaea.

    PubMed

    Kim, Jong-Geol; Park, Soo-Je; Sinninghe Damsté, Jaap S; Schouten, Stefan; Rijpstra, W Irene C; Jung, Man-Young; Kim, So-Jeong; Gwak, Joo-Han; Hong, Heeji; Si, Ok-Ja; Lee, SangHoon; Madsen, Eugene L; Rhee, Sung-Keun

    2016-07-12

    Ammonia-oxidizing archaea (AOA), that is, members of the Thaumarchaeota phylum, occur ubiquitously in the environment and are of major significance for global nitrogen cycling. However, controls on cell growth and organic carbon assimilation by AOA are poorly understood. We isolated an ammonia-oxidizing archaeon (designated strain DDS1) from seawater and used this organism to study the physiology of ammonia oxidation. These findings were confirmed using four additional Thaumarchaeota strains from both marine and terrestrial habitats. Ammonia oxidation by strain DDS1 was enhanced in coculture with other bacteria, as well as in artificial seawater media supplemented with α-keto acids (e.g., pyruvate, oxaloacetate). α-Keto acid-enhanced activity of AOA has previously been interpreted as evidence of mixotrophy. However, assays for heterotrophic growth indicated that incorporation of pyruvate into archaeal membrane lipids was negligible. Lipid carbon atoms were, instead, derived from dissolved inorganic carbon, indicating strict autotrophic growth. α-Keto acids spontaneously detoxify H2O2 via a nonenzymatic decarboxylation reaction, suggesting a role of α-keto acids as H2O2 scavengers. Indeed, agents that also scavenge H2O2, such as dimethylthiourea and catalase, replaced the α-keto acid requirement, enhancing growth of strain DDS1. In fact, in the absence of α-keto acids, strain DDS1 and other AOA isolates were shown to endogenously produce H2O2 (up to ∼4.5 μM), which was inhibitory to growth. Genomic analyses indicated catalase genes are largely absent in the AOA. Our results indicate that AOA broadly feature strict autotrophic nutrition and implicate H2O2 as an important factor determining the activity, evolution, and community ecology of AOA ecotypes. PMID:27339136

  6. Correlation analysis of enzyme activities and deconstruction of ammonia-pretreated switchgrass by bacterial-fungal communities.

    PubMed

    Jain, Abhiney; Bediako, Sandra H; Henson, J Michael

    2016-10-01

    The mixed microbial communities that occur naturally on lignocellulosic feedstocks can provide feedstock-specific enzyme mixtures to saccharify lignocelluloses. Bacterial-fungal communities were enriched from switchgrass bales to deconstruct ammonia-pretreated switchgrass (DSG). Correlation analysis was carried out to elucidate the relationship between microbial decomposition of DSG by these communities, enzymatic activities produced and enzymatic saccharification of DSG using these enzyme mixtures. Results of the analysis showed that β-glucosidase and xylosidase activities limited the extent of microbial deconstruction and enzymatic saccharification of DSG. The results also underlined the importance of ligninase activity for the enzymatic saccharification of pretreated lignocellulosic feedstock. The bacterial-fungal communities developed in this research can be used to produce enzyme mixtures to deconstruct DSG, and the results from the correlation analysis can be used to optimize these enzyme mixtures for efficient saccharification of DSG to produce second-generation biofuels.

  7. Correlation analysis of enzyme activities and deconstruction of ammonia-pretreated switchgrass by bacterial-fungal communities.

    PubMed

    Jain, Abhiney; Bediako, Sandra H; Henson, J Michael

    2016-10-01

    The mixed microbial communities that occur naturally on lignocellulosic feedstocks can provide feedstock-specific enzyme mixtures to saccharify lignocelluloses. Bacterial-fungal communities were enriched from switchgrass bales to deconstruct ammonia-pretreated switchgrass (DSG). Correlation analysis was carried out to elucidate the relationship between microbial decomposition of DSG by these communities, enzymatic activities produced and enzymatic saccharification of DSG using these enzyme mixtures. Results of the analysis showed that β-glucosidase and xylosidase activities limited the extent of microbial deconstruction and enzymatic saccharification of DSG. The results also underlined the importance of ligninase activity for the enzymatic saccharification of pretreated lignocellulosic feedstock. The bacterial-fungal communities developed in this research can be used to produce enzyme mixtures to deconstruct DSG, and the results from the correlation analysis can be used to optimize these enzyme mixtures for efficient saccharification of DSG to produce second-generation biofuels. PMID:27469088

  8. Enhanced sulfamethoxazole degradation through ammonia oxidizing bacteria co-metabolism and fate of transformation products.

    PubMed

    Kassotaki, Elissavet; Buttiglieri, Gianluigi; Ferrando-Climent, Laura; Rodriguez-Roda, Ignasi; Pijuan, Maite

    2016-05-01

    The occurrence of the widely-used antibiotic sulfamethoxazole (SFX) in wastewaters and surface waters has been reported in a large number of studies. However, the results obtained up-to-date have pointed out disparities in its removal. This manuscript explores the enhanced biodegradation potential of an enriched culture of Ammonia Oxidizing Bacteria (AOB) towards SFX. Several sets of batch tests were conducted to establish a link between SFX degradation and specific ammonia oxidation rate. The occurrence, degradation and generation of SFX and some of its transformation products (4-Nitro SFX, Desamino-SFX and N(4)-Acetyl-SFX) was also monitored. A clear link between the degradation of SFX and the nitrification rate was found, resulting in an increased SFX removal at higher specific ammonia oxidation rates. Moreover, experiments conducted under the presence of allylthiourea (ATU) did not present any removal of SFX, suggesting a connection between the AMO enzyme and SFX degradation. Long term experiments (up to 10 weeks) were also conducted adding two different concentrations (10 and 100 μg/L) of SFX in the influent of a partial nitrification sequencing batch reactor, resulting in up to 98% removal. Finally, the formation of transformation products during SFX degradation represented up to 32%, being 4-Nitro-SFX the most abundant.

  9. Enhanced sulfamethoxazole degradation through ammonia oxidizing bacteria co-metabolism and fate of transformation products.

    PubMed

    Kassotaki, Elissavet; Buttiglieri, Gianluigi; Ferrando-Climent, Laura; Rodriguez-Roda, Ignasi; Pijuan, Maite

    2016-05-01

    The occurrence of the widely-used antibiotic sulfamethoxazole (SFX) in wastewaters and surface waters has been reported in a large number of studies. However, the results obtained up-to-date have pointed out disparities in its removal. This manuscript explores the enhanced biodegradation potential of an enriched culture of Ammonia Oxidizing Bacteria (AOB) towards SFX. Several sets of batch tests were conducted to establish a link between SFX degradation and specific ammonia oxidation rate. The occurrence, degradation and generation of SFX and some of its transformation products (4-Nitro SFX, Desamino-SFX and N(4)-Acetyl-SFX) was also monitored. A clear link between the degradation of SFX and the nitrification rate was found, resulting in an increased SFX removal at higher specific ammonia oxidation rates. Moreover, experiments conducted under the presence of allylthiourea (ATU) did not present any removal of SFX, suggesting a connection between the AMO enzyme and SFX degradation. Long term experiments (up to 10 weeks) were also conducted adding two different concentrations (10 and 100 μg/L) of SFX in the influent of a partial nitrification sequencing batch reactor, resulting in up to 98% removal. Finally, the formation of transformation products during SFX degradation represented up to 32%, being 4-Nitro-SFX the most abundant. PMID:26938496

  10. Biogeochemical controls and isotopic signatures of nitrous oxide production by a marine ammonia-oxidizing bacterium

    NASA Astrophysics Data System (ADS)

    Frame, C. H.; Casciotti, K. L.

    2010-04-01

    Nitrous oxide (N2O) is a trace gas that contributes to greenhouse warming of the atmosphere and stratospheric ozone depletion. The N2O yield from nitrification (moles N2O-N produced/mole ammonium-N consumed) has been used to estimate marine N2O production rates from measured nitrification rates and global estimates of oceanic export production. However, the N2O yield from nitrification is not constant. Previous culture-based measurements indicate that N2O yield increases as oxygen (O2) concentration decreases and as nitrite (NO2-) concentration increases. These results were obtained in substrate-rich conditions and may not reflect N2O production in the ocean. Here, we have measured yields of N2O from cultures of the marine β-proteobacterium Nitrosomonas marina C-113a as they grew on low-ammonium (50 μM) media. These yields were lower than previous reports, between 4×10-4 and 7×10-4 (moles N/mole N). The observed impact of O2 concentration on yield was also smaller than previously reported under all conditions except at high starting cell densities (1.5×10ammonia oxidizers in the ocean. The presence of excess NO2- (up to 1 mM) in the growth medium also increased N2O yields by an average of 70% to 87% depending on O2 concentration. We made stable isotopic measurements on N2O from these cultures to identify the biochemical mechanisms behind variations in N2O yield. Based on measurements of δ15N, site preference (SP=δ15Nα - δ15Nβ), and δ18O, we estimate that nitrifier-denitrification produced between 11% and 26% of N2O from cultures

  11. Impacts of reduced sulfur components on active and resting ammonia oxidizers.

    PubMed

    Sears, K; Alleman, J E; Barnard, J L; Oleszkiewicz, J A

    2004-09-01

    While there has been significant research on the nature and extent of the impact of inhibitory reduced sulfur with respect to anaerobic (e.g., methanogenic and sulfidogenic) microbial systems, only limited study has yet been conducted on the comparable effects of soluble sulfides which might occur within aerobic wastewater treatment systems. Admittedly, aerobic reactors would not normally be considered conducive to the presence of reduced sulfur constituents, but there do appear to be a number of processing scenarios under which related impacts could develop, particularly for sensitive reactions like nitrification. Indeed, the following scenarios might well involve elevated levels of reduced sulfur within an aerobic reactor environment: (1) mixed liquor recycle back through sulfide-generating anaerobic zones (e.g., in conjunction with biological nutrient removal processes, etc.), (2) high-level side-stream sulfide recycle via sludge digestion, etc., back to aerobic reactors, and (3) high-level influent sulfide inputs to wastewater treatment facilities via specific industrial, septage, etc., streams. The objective of this study was, therefore, to determine the subsequent metabolic impact of soluble sulfide under aerated and unaerated conditions, focusing in particular on ammonia-oxidizing bacteria due to their critical first-step role with nitrification. The obtained results indicated that, under catabolically active conditions, cultures of ammonia oxidizers were extremely sensitive to the presence of sulfide. At total soluble sulfide concentrations of 0.25 mg l(-1) S, active ammonia oxidation was completely inhibited. However, immediately following the removal of this soluble sulfide presence, ammonia oxidation started to recover; and it continued to improve over the next 24 h. Similar sulfide impact tests conducted with inactive ammonia oxidizers exposed during anaerobic conditions, albeit at higher dosage levels, also revealed that their subsequent aerobic

  12. Response of Nitrosospira sp. Strain AF-Like Ammonia Oxidizers to Changes in Temperature, Soil Moisture Content, and Fertilizer Concentration▿

    PubMed Central

    Avrahami, Sharon; Bohannan, Brendan J. M.

    2007-01-01

    Very little is known regarding the ecology of Nitrosospira sp. strain AF-like bacteria, a unique group of ammonia oxidizers within the Betaproteobacteria. We studied the response of Nitrosospira sp. strain AF-like ammonia oxidizers to changing environmental conditions by applying molecular methods and physiological measurements to Californian grassland soil manipulated in the laboratory. This soil is naturally high in Nitrosospira sp. strain AF-like bacteria relative to the much-better-studied Nitrosospira multiformis-like ammonia-oxidizing bacteria. Increases in temperature, soil moisture, and fertilizer interacted to reduce the relative abundance of Nitrosospira sp. strain AF-like bacteria, although they remained numerically dominant. The overall abundance of ammonia-oxidizing bacteria increased with increasing soil moisture and decreased with increasing temperature. Potential nitrification activity was altered by interactions among temperature, soil moisture, and fertilizer, with activity tending to be higher when soil moisture and temperature were increased. The increase in potential nitrification activity with increased temperature was surprising, given that the overall abundance of ammonia-oxidizing bacteria decreased significantly under these conditions. This observation suggests that (i) Nitrosospira sp. strain AF-like bacteria may respond to increased temperature with an increase in activity, despite a decrease in abundance, or (ii) that potential nitrification activity in these soils may be due to organisms other than bacteria (e.g., archaeal ammonia oxidizers), at least under conditions of increased temperature. PMID:17158615

  13. Response of Nitrosospira sp. strain AF-like ammonia oxidizers to changes in temperature, soil moisture content, and fertilizer concentration.

    PubMed

    Avrahami, Sharon; Bohannan, Brendan J M

    2007-02-01

    Very little is known regarding the ecology of Nitrosospira sp. strain AF-like bacteria, a unique group of ammonia oxidizers within the Betaproteobacteria. We studied the response of Nitrosospira sp. strain AF-like ammonia oxidizers to changing environmental conditions by applying molecular methods and physiological measurements to Californian grassland soil manipulated in the laboratory. This soil is naturally high in Nitrosospira sp. strain AF-like bacteria relative to the much-better-studied Nitrosospira multiformis-like ammonia-oxidizing bacteria. Increases in temperature, soil moisture, and fertilizer interacted to reduce the relative abundance of Nitrosospira sp. strain AF-like bacteria, although they remained numerically dominant. The overall abundance of ammonia-oxidizing bacteria increased with increasing soil moisture and decreased with increasing temperature. Potential nitrification activity was altered by interactions among temperature, soil moisture, and fertilizer, with activity tending to be higher when soil moisture and temperature were increased. The increase in potential nitrification activity with increased temperature was surprising, given that the overall abundance of ammonia-oxidizing bacteria decreased significantly under these conditions. This observation suggests that (i) Nitrosospira sp. strain AF-like bacteria may respond to increased temperature with an increase in activity, despite a decrease in abundance, or (ii) that potential nitrification activity in these soils may be due to organisms other than bacteria (e.g., archaeal ammonia oxidizers), at least under conditions of increased temperature.

  14. Enrichment of Thermophilic Ammonia-Oxidizing Archaea from an Alkaline Hot Spring in the Great Basin, USA

    NASA Astrophysics Data System (ADS)

    Zhang, C.; Huang, Z.; Jiang, H.; Wiegel, J.; Li, W.; Dong, H.

    2010-12-01

    One of the major advances in the nitrogen cycle is the recent discovery of ammonia oxidation by archaea. While culture-independent studies have revealed occurrence of ammonia-oxidizing archaea (AOA) in nearly every surface niche on earth, most of these microorganisms have resisted isolation and so far only a few species have been identified. The Great Basin contains numerous hot springs, which are characterized by moderately high temperature (40-65 degree C) and circumneutral or alkaline pH. Unique thermophilic archaea have been identified based on molecular DNA and lipid biomarkers; some of which may be ammonia oxidizers. This study aims to isolate some of these archaea from a California hot spring that has pH around 9.0 and temperature around 42 degree C. Mat material was collected from the spring and transported on ice to the laboratory. A synthetic medium (SCM-5) was inoculated with the mat material and the culture was incubated under varying temperature (35-65 degree C) and pH (7.0-10.0) conditions using antibiotics to suppress bacterial growth. Growth of the culture was monitored by microscopy, decrease in ammonium and increase in nitrite, and increases in Crenarchaeota and AOA abundances over time. Clone libraries were constructed to compare archaeal community structures before and after the enrichment experiment. Temperature and pH profiles indicated that the culture grew optimally at pH 9.0 and temperature 45 degree C, which are consistent with the geochemical conditions of the natural environment. Phylogenetic analysis showed that the final OTU was distantly related to all known hyperthermophilic archaea. Analysis of the amoA genes showed two OTUs in the final culture; one of them was closely related to Candidatus Nitrososphaera gargensis. However, the enrichment culture always contained bacteria and attempts to separate them from archaea have failed. This highlights the difficulty in bringing AOA into pure culture and suggests that some of the AOA may

  15. Formation of manganese oxides by bacterially generated superoxide

    NASA Astrophysics Data System (ADS)

    Learman, D. R.; Voelker, B. M.; Vazquez-Rodriguez, A. I.; Hansel, C. M.

    2011-02-01

    Manganese oxide minerals are among the strongest sorbents and oxidants in the environment. The formation of these minerals controls the fate of contaminants, the degradation of recalcitrant carbon, the cycling of nutrients and the activity of anaerobic-based metabolisms. Oxidation of soluble manganese(II) ions to manganese(III/IV) oxides has been primarily attributed to direct enzymatic oxidation by microorganisms. However, the physiological reason for this process remains unknown. Here we assess the ability of a common species of marine bacteria-Roseobacter sp. AzwK-3b-to oxidize manganese(II) in the presence of chemical and biological inhibitors. We show that Roseobacter AzwK-3b oxidizes manganese(II) by producing the strong and versatile redox reactant superoxide. The oxidation of manganese(II), and concomitant production of manganese oxides, was inhibited in both the light and dark in the presence of enzymes and metals that scavenge superoxide. Oxidation was also inhibited by various proteases, enzymes that break down bacterial proteins, confirming that the superoxide was bacterially generated. We conclude that bacteria can oxidize manganese(II) indirectly, through the enzymatic generation of extracellular superoxide radicals. We suggest that dark bacterial production of superoxide may be a driving force in metal cycling and mineralization in the environment.

  16. Impact of sheep urine deposition and plant species on ammonia-oxidizing bacteria in upland grassland soil.

    PubMed

    Rooney, Deirdre C; Clipson, Nicholas

    2008-09-01

    The effects of different concentrations of synthetic sheep urine and plant species on ammonia-oxidizing bacterial (AOB) communities in an upland grassland soil were investigated using a microcosm approach. Plant species characteristic of unimproved and improved agricultural pastures (Agrostis capillaris and Lolium perenne, respectively) were planted in soil microcosms, and different levels of synthetic sheep urine were applied, with harvests 10 and 50 days following urine application. Shifts in the community structure of the AOB were investigated using terminal restriction fragment length polymorphism of amoA amplicons. Species richness and diversity were significantly altered by synthetic sheep urine addition and time depending on plant species type. Principal coordinate analysis revealed that AOB community structure was largely dependent on interactions between sheep urine deposition, plant species, and time after urine application, while significant changes in AOB structure were also revealed by similarity percentage analysis. The results of this study suggested that high levels of sheep urine, combined with floristic changes that are characteristic of agricultural intensification, can contribute to temporal and spatial changes in the structure of key bacterial communities in upland grassland soil. Changes in AOB community structure could potentially affect important soil processes, such as nitrification, with subsequent implications for nutrient cycling in agricultural systems.

  17. A Mesophilic, Autotrophic, Ammonia-Oxidizing Archaeon of Thaumarchaeal Group I.1a Cultivated from a Deep Oligotrophic Soil Horizon

    PubMed Central

    Jung, Man-Young; Park, Soo-Je; Kim, So-Jeong; Kim, Jong-Geol; Sinninghe Damsté, Jaap S.

    2014-01-01

    Soil nitrification plays an important role in the reduction of soil fertility and in nitrate enrichment of groundwater. Various ammonia-oxidizing archaea (AOA) are considered to be members of the pool of ammonia-oxidizing microorganisms in soil. This study reports the discovery of a chemolithoautotrophic ammonia oxidizer that belongs to a distinct clade of nonmarine thaumarchaeal group I.1a, which is widespread in terrestrial environments. The archaeal strain MY2 was cultivated from a deep oligotrophic soil horizon. The similarity of the 16S rRNA gene sequence of strain MY2 to those of other cultivated group I.1a thaumarchaeota members, i.e., Nitrosopumilus maritimus and “Candidatus Nitrosoarchaeum koreensis,” is 92.9% for both species. Extensive growth assays showed that strain MY2 is chemolithoautotrophic, mesophilic (optimum temperature, 30°C), and neutrophilic (optimum pH, 7 to 7.5). The accumulation of nitrite above 1 mM inhibited ammonia oxidation, while ammonia oxidation itself was not inhibited in the presence of up to 5 mM ammonia. The genome size of strain MY2 was 1.76 Mb, similar to those of N. maritimus and “Ca. Nitrosoarchaeum koreensis,” and the repertoire of genes required for ammonia oxidation and carbon fixation in thaumarchaeal group I.1a was conserved. A high level of representation of conserved orthologous genes for signal transduction and motility in the noncore genome might be implicated in niche adaptation by strain MY2. On the basis of phenotypic, phylogenetic, and genomic characteristics, we propose the name “Candidatus Nitrosotenuis chungbukensis” for the ammonia-oxidizing archaeal strain MY2. PMID:24705324

  18. Ammonia-oxidizing bacteria and archaea grow under contrasting soil nitrogen conditions.

    PubMed

    Di, Hong J; Cameron, Keith C; Shen, Ju-Pei; Winefield, Chris S; O'Callaghan, Maureen; Bowatte, Saman; He, Ji-Zheng

    2010-06-01

    Nitrification is a key process of the nitrogen (N) cycle in soil with major environmental implications. The recent discovery of ammonia-oxidizing archaea (AOA) questions the traditional assumption of the dominant role of ammonia-oxidizing bacteria (AOB) in nitrification. We investigated AOB and AOA growth and nitrification rate in two different layers of three grassland soils treated with animal urine substrate and a nitrification inhibitor [dicyandiamide (DCD)]. We show that AOB were more abundant in the topsoils than in the subsoils, whereas AOA were more abundant in one of the subsoils. AOB grew substantially when supplied with a high dose of urine substrate, whereas AOA only grew in the Controls without the urine-N substrate. AOB growth and the amoA gene transcription activity were significantly inhibited by DCD. Nitrification rates were much higher in the topsoils than in the subsoils and were significantly related to AOB abundance, but not to AOA abundance. These results suggest that AOB and AOA prefer different soil N conditions to grow: AOB under high ammonia (NH(3)) substrate and AOA under low NH(3) substrate conditions.

  19. Nitrogen and phosphorus enrichment alter the composition of ammonia-oxidizing bacteria in salt marsh sediments.

    PubMed

    Lage, Melissa D; Reed, Heather E; Weihe, Claudia; Crain, Caitlin M; Martiny, Jennifer B H

    2010-07-01

    Ammonia oxidation is a central process in the nitrogen cycle. Particularly in marine and estuarine environments, few experiments have been conducted to tease apart the factors influencing their abundance and composition. To investigate the effect of nitrogen and phosphorus availability on ammonia-oxidizing bacteria (AOB), we conducted a nutrient enrichment experiment in a Maine salt marsh and sampled sediment communities in three seasons over 2 years. We assessed community composition using terminal restriction fragment length polymorphism analysis and sequencing of cloned fragments of the ammonia monooxygenase (amoA) gene. Almost all of the amoA sequences fell within the marine and estuarine-specific Nitrosospira-like clade. Applied separately, nitrogen and phosphorus significantly altered AOB composition; however, together the nutrients had an interactive effect, and composition did not change. In contrast, nutrient enrichment did not alter AOB abundance. Furthermore, the response of AOB composition to nutrient enrichment varied over time. We conclude that closely related taxa within the marine/estuarine-specific Nitrosospira-like clade vary in their preference for nutrient concentrations, and this preference may depend on other temporally variable abiotic factors. Finally, AOB composition was highly variable within and across years even in untreated plots. Further studies are needed to test how these different aspects of compositional variability in AOB communities influence nitrogen cycling.

  20. Complete Genome Sequence of the Ammonia-Oxidizing Bacterium and Obligate Chemolithoautotroph Nitrosomonas europaea†

    PubMed Central

    Chain, Patrick; Lamerdin, Jane; Larimer, Frank; Regala, Warren; Lao, Victoria; Land, Miriam; Hauser, Loren; Hooper, Alan; Klotz, Martin; Norton, Jeanette; Sayavedra-Soto, Luis; Arciero, Dave; Hommes, Norman; Whittaker, Mark; Arp, Daniel

    2003-01-01

    Nitrosomonas europaea (ATCC 19718) is a gram-negative obligate chemolithoautotroph that can derive all its energy and reductant for growth from the oxidation of ammonia to nitrite. Nitrosomonas europaea participates in the biogeochemical N cycle in the process of nitrification. Its genome consists of a single circular chromosome of 2,812,094 bp. The GC skew analysis indicates that the genome is divided into two unequal replichores. Genes are distributed evenly around the genome, with ∼47% transcribed from one strand and ∼53% transcribed from the complementary strand. A total of 2,460 protein-encoding genes emerged from the modeling effort, averaging 1,011 bp in length, with intergenic regions averaging 117 bp. Genes necessary for the catabolism of ammonia, energy and reductant generation, biosynthesis, and CO2 and NH3 assimilation were identified. In contrast, genes for catabolism of organic compounds are limited. Genes encoding transporters for inorganic ions were plentiful, whereas genes encoding transporters for organic molecules were scant. Complex repetitive elements constitute ca. 5% of the genome. Among these are 85 predicted insertion sequence elements in eight different families. The strategy of N. europaea to accumulate Fe from the environment involves several classes of Fe receptors with more than 20 genes devoted to these receptors. However, genes for the synthesis of only one siderophore, citrate, were identified in the genome. This genome has provided new insights into the growth and metabolism of ammonia-oxidizing bacteria. PMID:12700255

  1. [Effect of ammonia-oxidizing bacteria (AOB) on chloraminated disinfection attenuation in drinking water distribution system].

    PubMed

    Bai, Xiao-Hui; Cai, Yun-Long; Zhou, Bin-Hui; Zhi, Xing-Hua

    2009-06-15

    The growth of microbe and formation of biofilm in water distribution system were important factors affecting the security of water quality. The number of ammonia-oxidizing bacteria (AOB) in biofilm of a chloraminated drinking water distribution system in Shanghai was detected by MPN-Griess method, and the relations among AOB, nitrification and chloraminated disinfection were analyzed. Meanwhile, the effects of AOB on chloraminated disinfection fastness and attenuation by simulation experiment were studied. The result indicated that the number of ammonia-oxidizing bacteria in pipe biofilm was between 1.0 x 10(2)-4.3 x 10(5) MPN/g dry biofilm. Correlation coefficients of AOB with ammonia, nitrite and nitrate were -0.563, 0.603 and -0.563. Correlation coefficients of AOB with total chlorine and mono-chloramine were -0.659 and -0.571. Fastness of AOB to chloramine was higher than heterotrophic bacteria and AOB can deplete more chloramine than HPC.

  2. Treatment of activated carbon to enhance catalytic activity for reduction of nitric oxide with ammonia

    SciTech Connect

    Ku, B.J.; Rhee, H.K. . Dept. of Chemical Engineering); Lee, J.K.; Park, D. )

    1994-11-01

    Catalytic activity of activated carbon treated with various techniques was examined in a fixed bed reactor for the reduction of nitric oxide with ammonia at 150 C. Activated carbon derived from coconut shell impregnated with an aqueous solution of ammonium sulfate, further treated with sulfuric acid, dried at 120 C, and then heated in an inert gas stream at 400 C, showed the highest catalytic activity within the range of experimental conditions. The enhancement of catalytic activity of modified activated carbon could be attributed to the increase in the amount of oxygen function groups which increased the adsorption site for ammonia. Catalytic activity of activated carbons depended on the surface area and the oxygen content as well.

  3. Quantitative analyses of the composition and abundance of ammonia-oxidizing archaea and ammonia-oxidizing bacteria in eight full-scale biological wastewater treatment plants.

    PubMed

    Gao, Jing-Feng; Luo, Xin; Wu, Gui-Xia; Li, Ting; Peng, Yong-Zhen

    2013-06-01

    This study investigated the diversity and abundance of AOA and AOB amoA genes in eight full-scale wastewater treatment plants (WWTPs). Although the process principles and system operations of the eight WWTPs were different, quantitative real-time PCR measurements showed that AOB amoA genes outnumbered AOA amoA genes with the ratio varying from 2.56 to 2.41×10(3), and ammonia may be partially oxidized by AOA. Phylogenetic analyses based on cloning and sequencing showed that Nitrososphaera cluster was the most dominant AOA species and might be distributed worldwide, and Nitrosopumilis cluster was few. Statistical analysis indicated that there might be versatile AOA ecotypes and some AOA might be not obligate autotrophic. The Nitrosomonas europaea cluster and Nitrosomonas oligotropha cluster were the two most dominant AOB species, and AOB species showed higher diversity than AOA species.

  4. Photooxidation of Ammonia on TiO2 Surfaces as a Source of Nitrogen Oxides in the Troposphere

    NASA Astrophysics Data System (ADS)

    Raff, J.; Kebede, M. A.; Scharko, N. K.; Donaldson, M. C.

    2012-12-01

    Ammonia is an important air pollutant in urban and rural areas alike, whose main fate is dry and wet deposition to surfaces. While reactions with OH radical in the gas phase are slow, our work shows that photochemical uptake of ammonia onto surfaces containing semiconductor minerals such as TiO2 is efficient and yields significant amounts of gas phase NO2, NO, and HONO. A coated wall flow tube coupled to a chemical ionization mass spectrometer (CIMS) and a chemiluminescence analyzer was used to study the product yields of HONO and NOx under atmospherically relevant conditions, while diffuse reflection infrared Fourier transform spectroscopy (DRIFTS) was used to elucidate the mechanism of ammonia photooxidation on anatase surfaces. Our results show that photochemical processing of ammonia is likely a source of reactive oxides of nitrogen in urban areas where surfaces commonly contain TiO2, and in areas impacted by mineral dust and ammonia emissions.

  5. Ammonia- and methane-oxidizing microorganisms in high-altitude wetland sediments and adjacent agricultural soils.

    PubMed

    Yang, Yuyin; Shan, Jingwen; Zhang, Jingxu; Zhang, Xiaoling; Xie, Shuguang; Liu, Yong

    2014-12-01

    Ammonia oxidation is known to be carried out by ammonia-oxidizing bacteria (AOB) and archaea (AOA), while methanotrophs (methane-oxidizing bacteria (MOB)) play an important role in mitigating methane emissions from the environment. However, the difference of AOA, AOB, and MOB distribution in wetland sediment and adjacent upland soil remains unclear. The present study investigated the abundances and community structures of AOA, AOB, and MOB in sediments of a high-altitude freshwater wetland in Yunnan Province (China) and adjacent agricultural soils. Variations of AOA, AOB, and MOB community sizes and structures were found in water lily-vegetated and Acorus calamus-vegetated sediments and agricultural soils (unflooded rice soil, cabbage soil, and garlic soil and flooded rice soil). AOB community size was higher than AOA in agricultural soils and lily-vegetated sediment, but lower in A. calamus-vegetated sediment. MOB showed a much higher abundance than AOA and AOB. Flooded rice soil had the largest AOA, AOB, and MOB community sizes. Principal coordinate analyses and Jackknife Environment Clusters analyses suggested that unflooded and flooded rice soils had relatively similar AOA, AOB, and MOB structures. Cabbage soil and A. calamus-vegetated sediment had relatively similar AOA and AOB structures, but their MOB structures showed a large difference. Nitrososphaera-like microorganisms were the predominant AOA species in garlic soil but were present with a low abundance in unflooded rice soil and cabbage soil. Nitrosospira-like AOB were dominant in wetland sediments and agricultural soils. Type I MOB Methylocaldum and type II MOB Methylocystis were dominant in wetland sediments and agricultural soils. Moreover, Pearson's correlation analysis indicated that AOA Shannon diversity was positively correlated with the ratio of organic carbon to nitrogen (p < 0.05). This work could provide some new insights toward ammonia and methane oxidation in soil and wetland sediment

  6. Vertical Segregation and Phylogenetic Characterization of Ammonia-Oxidizing Bacteria and Archaea in the Sediment of a Freshwater Aquaculture Pond.

    PubMed

    Lu, Shimin; Liu, Xingguo; Ma, Zhuojun; Liu, Qigen; Wu, Zongfan; Zeng, Xianlei; Shi, Xu; Gu, Zhaojun

    2015-01-01

    Pond aquaculture is the major freshwater aquaculture method in China. Ammonia-oxidizing communities inhabiting pond sediments play an important role in controlling culture water quality. However, the distribution and activities of ammonia-oxidizing microbial communities along sediment profiles are poorly understood in this specific environment. Vertical variations in the abundance, transcription, potential ammonia oxidizing rate, and community composition of ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA) in sediment samples (0-50 cm depth) collected from a freshwater aquaculture pond were investigated. The concentrations of the AOA amoA gene were higher than those of the AOB by an order of magnitude, which suggested that AOA, as opposed to AOB, were the numerically predominant ammonia-oxidizing organisms in the surface sediment. This could be attributed to the fact that AOA are more resistant to low levels of dissolved oxygen. However, the concentrations of the AOB amoA mRNA were higher than those of the AOA by 2.5- to 39.9-fold in surface sediments (0-10 cm depth), which suggests that the oxidation of ammonia was mainly performed by AOB in the surface sediments, and by AOA in the deeper sediments, where only AOA could be detected. Clone libraries of AOA and AOB amoA sequences indicated that the diversity of AOA and AOB decreased with increasing depth. The AOB community consisted of two groups: the Nitrosospira and Nitrosomonas clusters, and Nitrosomonas were predominant in the freshwater pond sediment. All AOA amoA gene sequences in the 0-2 cm deep sediment were grouped into the Nitrososphaera cluster, while other AOA sequences in deeper sediments (10-15 and 20-25 cm depths) were grouped into the Nitrosopumilus cluster.

  7. Vertical Segregation and Phylogenetic Characterization of Ammonia-Oxidizing Bacteria and Archaea in the Sediment of a Freshwater Aquaculture Pond.

    PubMed

    Lu, Shimin; Liu, Xingguo; Ma, Zhuojun; Liu, Qigen; Wu, Zongfan; Zeng, Xianlei; Shi, Xu; Gu, Zhaojun

    2015-01-01

    Pond aquaculture is the major freshwater aquaculture method in China. Ammonia-oxidizing communities inhabiting pond sediments play an important role in controlling culture water quality. However, the distribution and activities of ammonia-oxidizing microbial communities along sediment profiles are poorly understood in this specific environment. Vertical variations in the abundance, transcription, potential ammonia oxidizing rate, and community composition of ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA) in sediment samples (0-50 cm depth) collected from a freshwater aquaculture pond were investigated. The concentrations of the AOA amoA gene were higher than those of the AOB by an order of magnitude, which suggested that AOA, as opposed to AOB, were the numerically predominant ammonia-oxidizing organisms in the surface sediment. This could be attributed to the fact that AOA are more resistant to low levels of dissolved oxygen. However, the concentrations of the AOB amoA mRNA were higher than those of the AOA by 2.5- to 39.9-fold in surface sediments (0-10 cm depth), which suggests that the oxidation of ammonia was mainly performed by AOB in the surface sediments, and by AOA in the deeper sediments, where only AOA could be detected. Clone libraries of AOA and AOB amoA sequences indicated that the diversity of AOA and AOB decreased with increasing depth. The AOB community consisted of two groups: the Nitrosospira and Nitrosomonas clusters, and Nitrosomonas were predominant in the freshwater pond sediment. All AOA amoA gene sequences in the 0-2 cm deep sediment were grouped into the Nitrososphaera cluster, while other AOA sequences in deeper sediments (10-15 and 20-25 cm depths) were grouped into the Nitrosopumilus cluster. PMID:26834709

  8. Vertical Segregation and Phylogenetic Characterization of Ammonia-Oxidizing Bacteria and Archaea in the Sediment of a Freshwater Aquaculture Pond

    PubMed Central

    Lu, Shimin; Liu, Xingguo; Ma, Zhuojun; Liu, Qigen; Wu, Zongfan; Zeng, Xianlei; Shi, Xu; Gu, Zhaojun

    2016-01-01

    Pond aquaculture is the major freshwater aquaculture method in China. Ammonia-oxidizing communities inhabiting pond sediments play an important role in controlling culture water quality. However, the distribution and activities of ammonia-oxidizing microbial communities along sediment profiles are poorly understood in this specific environment. Vertical variations in the abundance, transcription, potential ammonia oxidizing rate, and community composition of ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA) in sediment samples (0–50 cm depth) collected from a freshwater aquaculture pond were investigated. The concentrations of the AOA amoA gene were higher than those of the AOB by an order of magnitude, which suggested that AOA, as opposed to AOB, were the numerically predominant ammonia-oxidizing organisms in the surface sediment. This could be attributed to the fact that AOA are more resistant to low levels of dissolved oxygen. However, the concentrations of the AOB amoA mRNA were higher than those of the AOA by 2.5- to 39.9-fold in surface sediments (0–10 cm depth), which suggests that the oxidation of ammonia was mainly performed by AOB in the surface sediments, and by AOA in the deeper sediments, where only AOA could be detected. Clone libraries of AOA and AOB amoA sequences indicated that the diversity of AOA and AOB decreased with increasing depth. The AOB community consisted of two groups: the Nitrosospira and Nitrosomonas clusters, and Nitrosomonas were predominant in the freshwater pond sediment. All AOA amoA gene sequences in the 0–2 cm deep sediment were grouped into the Nitrososphaera cluster, while other AOA sequences in deeper sediments (10–15 and 20–25 cm depths) were grouped into the Nitrosopumilus cluster. PMID:26834709

  9. High-rate, high-yield production of methanol by ammonia-oxidizing bacteria.

    PubMed

    Taher, Edris; Chandran, Kartik

    2013-04-01

    The overall goal of this study was to develop an appropriate biological process for achieving autotrophic conversion of methane (CH(4)) to methanol (CH3OH). In this study, we employed ammonia-oxidizing bacteria (AOB) to selectively and partially oxidize CH(4) to CH(3)OH. In fed-batch reactors using mixed nitrifying enrichment cultures from a continuous bioreactor, up to 59.89 ± 1.12 mg COD/L of CH(3)OH was produced within an incubation time of 7 h, which is approximately ten times the yield obtained previously using pure cultures of Nitrosomonas europaea. The maximum specific rate of CH(4) to CH(3)OH conversion obtained during this study was 0.82 mg CH(3)OH COD/mg AOB biomass COD-d, which is 1.5 times the highest value reported with pure cultures. Notwithstanding these positive results, CH(4) oxidation to CH(3)OH by AOB was inhibited by NH(3) (the primary substrate for the oxidative enzyme, ammonia monooxygenase, AMO) as well as the product, CH(3)OH, itself. Further, oxidation of CH(4) to CH(3)OH by AOB was also limited by reducing equivalents supply, which could be overcome by externally supplying hydroxylamine (NH(2)OH) as an electron donor. Therefore, a potential optimum design for promoting CH(4) to CH(3)OH oxidation by AOB could involve supplying NH(3) (needed to maintain AMO activity) uncoupled from the supply of NH(2)OH and CH(4). Partial oxidation of CH(4)-containing gases to CH3OH by AOB represents an attractive platform for the conversion of a gaseous mixture to an aqueous compound, which could be used as a commodity chemical. Alternately, the nitrate and CH(3) OH thus produced could be channeled to a downstream anoxic zone in a biological nitrogen removal process to effect nitrate reduction to N(2), using an internally produced organic electron donor.

  10. Aromatic inhibitors derived from ammonia-pretreated lignocellulose hinder bacterial ethanologenesis by activating regulatory circuits controlling inhibitor efflux and detoxification

    PubMed Central

    Keating, David H.; Zhang, Yaoping; Ong, Irene M.; McIlwain, Sean; Morales, Eduardo H.; Grass, Jeffrey A.; Tremaine, Mary; Bothfeld, William; Higbee, Alan; Ulbrich, Arne; Balloon, Allison J.; Westphall, Michael S.; Aldrich, Josh; Lipton, Mary S.; Kim, Joonhoon; Moskvin, Oleg V.; Bukhman, Yury V.; Coon, Joshua J.; Kiley, Patricia J.; Bates, Donna M.; Landick, Robert

    2014-01-01

    Efficient microbial conversion of lignocellulosic hydrolysates to biofuels is a key barrier to the economically viable deployment of lignocellulosic biofuels. A chief contributor to this barrier is the impact on microbial processes and energy metabolism of lignocellulose-derived inhibitors, including phenolic carboxylates, phenolic amides (for ammonia-pretreated biomass), phenolic aldehydes, and furfurals. To understand the bacterial pathways induced by inhibitors present in ammonia-pretreated biomass hydrolysates, which are less well studied than acid-pretreated biomass hydrolysates, we developed and exploited synthetic mimics of ammonia-pretreated corn stover hydrolysate (ACSH). To determine regulatory responses to the inhibitors normally present in ACSH, we measured transcript and protein levels in an Escherichia coli ethanologen using RNA-seq and quantitative proteomics during fermentation to ethanol of synthetic hydrolysates containing or lacking the inhibitors. Our study identified four major regulators mediating these responses, the MarA/SoxS/Rob network, AaeR, FrmR, and YqhC. Induction of these regulons was correlated with a reduced rate of ethanol production, buildup of pyruvate, depletion of ATP and NAD(P)H, and an inhibition of xylose conversion. The aromatic aldehyde inhibitor 5-hydroxymethylfurfural appeared to be reduced to its alcohol form by the ethanologen during fermentation, whereas phenolic acid and amide inhibitors were not metabolized. Together, our findings establish that the major regulatory responses to lignocellulose-derived inhibitors are mediated by transcriptional rather than translational regulators, suggest that energy consumed for inhibitor efflux and detoxification may limit biofuel production, and identify a network of regulators for future synthetic biology efforts. PMID:25177315

  11. Bacterial Oxidation of Pyritic Materials in Coal.

    PubMed

    Silverman, M P; Rogoff, M H; Wender, I

    1961-11-01

    Applicability of the manometric method for studying the oxidation of pyritic material in the presence of bacteria has been demonstrated. Resting cells of Ferrobacillus ferrooxidans accelerated the oxidation of coal pyrites and coarsely crystalline marcasite, but were inactive on coarsely crystalline pyrite. Resting cells of Thiobacillus thiooxidans were inactive on all pyrites tested. Oxidation rates in the presence of Ferrobacillus were increased by reducing the particle size of pyritic samples, and, in one case, by removing the CaCO(3) from a calcite-containing sample. PMID:16349610

  12. Bacterial Oxidation of Pyritic Materials in Coal.

    PubMed

    Silverman, M P; Rogoff, M H; Wender, I

    1961-11-01

    Applicability of the manometric method for studying the oxidation of pyritic material in the presence of bacteria has been demonstrated. Resting cells of Ferrobacillus ferrooxidans accelerated the oxidation of coal pyrites and coarsely crystalline marcasite, but were inactive on coarsely crystalline pyrite. Resting cells of Thiobacillus thiooxidans were inactive on all pyrites tested. Oxidation rates in the presence of Ferrobacillus were increased by reducing the particle size of pyritic samples, and, in one case, by removing the CaCO(3) from a calcite-containing sample.

  13. Ammonia, a selective agent for methane production by syntrophic acetate oxidation at mesophilic temperature.

    PubMed

    Schnürer, A; Nordberg, A

    2008-01-01

    In biogas processes, methane production from acetate proceeds by either aceticlastic methanogenesis or through syntrophic acetate oxidation (SAO). In the present study, the pathway for methane production from acetate was analysed; i) during a gradual increase of the ammonia concentration (final concentration 7 g NH(4)(+) -N/L) in a semi-continuous lab-scale anaerobic digester (4.3 L), operating at mesophilic temperature (37 degrees C) or ii) in diluted enrichment cultures (100 ml) experiencing a gradual increase in ammonia, sodium, potassium and propionic acid. The pathway for methane formation was determined by calculating the (14)CO(2)/(14)CH(4) ratio after incubating samples with (14)C-2-acetate. In the anaerobic digester, as well as in the enrichment cultures, the (14)CO(2)/(14)CH4 ratio clearly increased with increasing ammonium-nitrogen concentration, i.e. as the ammonia concentration increased, a shift from the aceticlastic mechanism to the syntrophic pathway occurred. The shift was very distinct and occurred as the NH(4)(+) -N concentration rose above 3 g/l. No shift in pathway was seen during increasing concentrations of sodium, potassium or propionic acid. The shift to SAO in the biogas digester resulted in a twofold decrease in the specific gas and methane yield.

  14. Diversity and abundance of ammonia oxidizing archaea in tropical compost systems

    PubMed Central

    de Gannes, Vidya; Eudoxie, Gaius; Dyer, David H.; Hickey, William J.

    2012-01-01

    Composting is widely used to transform waste materials into valuable agricultural products. In the tropics, large quantities of agricultural wastes could be potentially useful in agriculture after composting. However, while microbiological processes of composts in general are well established, relatively little is known about microbial communities that may be unique to these in tropical systems, particularly nitrifiers. The recent discovery of ammonia oxidizing archaea (AOA) has changed the paradigm of nitrification being initiated solely by ammonia oxidizing bacteria. In the present study, AOA abundance and diversity was examined in composts produced from combinations of plant waste materials common in tropical agriculture (rice straw, sugar cane bagasse, and coffee hulls), which were mixed with either cow- or sheep-manure. The objective was to determine how AOA abundance and diversity varied as a function of compost system and time, the latter being a contrast between the start of the compost process (mesophilic phase) and the finished product (mature phase). The results showed that AOA were relatively abundant in composts of tropical agricultural wastes, and significantly more so than were the ammonia-oxidizing bacteria. Furthermore, while the AOA communities in the composts were predominatly group I.1b, the communities were diverse and exhibited structures that diverged between compost types and phases. These patterns could be taken as indicators of the ecophysiological diversity in the soil AOA (group I.1b), in that significantly different AOA communties developed when exposed to varying physico-chemical environments. Nitrification patterns and levels differed in the composts which, for the mature material, could have significant effects on its performance as a plant growth medium. Thus, it will also be important to determine the association of AOA (and diversity in their communities) with nitrification in these systems. PMID:22787457

  15. Active Ammonia Oxidizers in an Acidic Soil Are Phylogenetically Closely Related to Neutrophilic Archaeon

    PubMed Central

    Wang, Baozhan; Zheng, Yan; Huang, Rong; Zhou, Xue; Wang, Dongmei; He, Yuanqiu

    2014-01-01

    All cultivated ammonia-oxidizing archaea (AOA) within the Nitrososphaera cluster (former soil group 1.1b) are neutrophilic. Molecular surveys also indicate the existence of Nitrososphaera-like phylotypes in acidic soil, but their ecological roles are poorly understood. In this study, we present molecular evidence for the chemolithoautotrophic growth of Nitrososphaera-like AOA in an acidic soil with pH 4.92 using DNA-based stable isotope probing (SIP). Soil microcosm incubations demonstrated that nitrification was stimulated by urea fertilization and accompanied by a significant increase in the abundance of AOA rather than ammonia-oxidizing bacteria (AOB). Real-time PCR analysis of amoA genes as a function of the buoyant density of the DNA gradient following the ultracentrifugation of the total DNA extracted from SIP microcosms indicated a substantial growth of soil AOA during nitrification. Pyrosequencing of the total 16S rRNA genes in the “heavy” DNA fractions suggested that archaeal communities were labeled to a much greater extent than soil AOB. Acetylene inhibition further showed that 13CO2 assimilation by nitrifying communities depended solely on ammonia oxidation activity, suggesting a chemolithoautotrophic lifestyle. Phylogenetic analysis of both 13C-labeled amoA and 16S rRNA genes revealed that most of the active AOA were phylogenetically closely related to the neutrophilic strains Nitrososphaera viennensis EN76 and JG1 within the Nitrososphaera cluster. Our results provide strong evidence for the adaptive growth of Nitrososphaera-like AOA in acidic soil, suggesting a greater metabolic versatility of soil AOA than previously appreciated. PMID:24375137

  16. Active ammonia oxidizers in an acidic soil are phylogenetically closely related to neutrophilic archaeon.

    PubMed

    Wang, Baozhan; Zheng, Yan; Huang, Rong; Zhou, Xue; Wang, Dongmei; He, Yuanqiu; Jia, Zhongjun

    2014-03-01

    All cultivated ammonia-oxidizing archaea (AOA) within the Nitrososphaera cluster (former soil group 1.1b) are neutrophilic. Molecular surveys also indicate the existence of Nitrososphaera-like phylotypes in acidic soil, but their ecological roles are poorly understood. In this study, we present molecular evidence for the chemolithoautotrophic growth of Nitrososphaera-like AOA in an acidic soil with pH 4.92 using DNA-based stable isotope probing (SIP). Soil microcosm incubations demonstrated that nitrification was stimulated by urea fertilization and accompanied by a significant increase in the abundance of AOA rather than ammonia-oxidizing bacteria (AOB). Real-time PCR analysis of amoA genes as a function of the buoyant density of the DNA gradient following the ultracentrifugation of the total DNA extracted from SIP microcosms indicated a substantial growth of soil AOA during nitrification. Pyrosequencing of the total 16S rRNA genes in the "heavy" DNA fractions suggested that archaeal communities were labeled to a much greater extent than soil AOB. Acetylene inhibition further showed that (13)CO2 assimilation by nitrifying communities depended solely on ammonia oxidation activity, suggesting a chemolithoautotrophic lifestyle. Phylogenetic analysis of both (13)C-labeled amoA and 16S rRNA genes revealed that most of the active AOA were phylogenetically closely related to the neutrophilic strains Nitrososphaera viennensis EN76 and JG1 within the Nitrososphaera cluster. Our results provide strong evidence for the adaptive growth of Nitrososphaera-like AOA in acidic soil, suggesting a greater metabolic versatility of soil AOA than previously appreciated.

  17. Role of ammonia-oxidizing bacteria in micropollutant removal from wastewater with aerobic granular sludge.

    PubMed

    Margot, Jonas; Lochmatter, Samuel; Barry, D A; Holliger, Christof

    2016-01-01

    Nitrifying wastewater treatment plants (WWTPs) are more efficient than non-nitrifying WWTPs to remove several micropollutants such as pharmaceuticals and pesticides. This may be related to the activity of nitrifying organisms, such as ammonia-oxidizing bacteria (AOBs), which could possibly co-metabolically oxidize micropollutants with their ammonia monooxygenase (AMO). The role of AOBs in micropollutant removal was investigated with aerobic granular sludge (AGS), a promising technology for municipal WWTPs. Two identical laboratory-scale AGS sequencing batch reactors (AGS-SBRs) were operated with or without nitrification (inhibition of AMOs) to assess their potential for micropollutant removal. Of the 36 micropollutants studied at 1 μg l(-1) in synthetic wastewater, nine were over 80% removed, but 17 were eliminated by less than 20%. Five substances (bisphenol A, naproxen, irgarol, terbutryn and iohexol) were removed better in the reactor with nitrification, probably due to co-oxidation catalysed by AMOs. However, for the removal of all other micropollutants, AOBs did not seem to play a significant role. Many compounds were better removed in aerobic condition, suggesting that aerobic heterotrophic organisms were involved in the degradation. As the AGS-SBRs did not favour the growth of such organisms, their potential for micropollutant removal appeared to be lower than that of conventional nitrifying WWTPs. PMID:26877039

  18. [Ammonia-oxidizing bacteria community composition at the root zones of aquatic plants after ecological restoration].

    PubMed

    Xing, Peng; Kong, Fan-xiang; Chen, Kai-ning; Chen, Mei-jun; Wu, Xiao-dong

    2008-08-01

    To investigate the effects of aquatic plants on ammonia-oxidizing bacteria (AOB) at their root zones, four species of aquatic plants were selected, Phragmites communis, Typha angustifolia L., Potamogeton crispus L., and Limnanthemun nymphoides, which were widely used in ecological restorations. AOB in the samples were enumerated by most-probable-number (MPN) method. Nested polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) procedures were performed with ammonia oxidizer-selective primers. Main DGGE bands were excised from the gel and sequenced for phylogenetic affiliation. Results indicate that AOB densities are always higher at the root zones of emergent plants (Phragmites communis 2.8 x 10(5) cells/g and Typha angustifolia L.4.3 x 10(5) cells/g) than those of submerged and floating-leaved plant (Potamogeton crispus L. 9.3 x 10(4) cells/g and Limnanthemun nymphoides 7.7 x 10(4) cells/g). At the root zones, the oxidation-reduction potential is above zero and NH4+ concentration is lower than it in the bare surface sediment. Fourteen major bands were recovered from the DGGE gel, re-amplified and sequenced. Although the identified bands have their respective similar sequences in GenBank, most of them are related to Nitrosomonas-like. This type of bacteria would play an important role of nitrogen cycle in lake sediment after ecological restoration.

  19. Impact of streambed morphology on the abundance and activity of ammonia-oxidizing bacteria.

    PubMed

    Yanuka-Golub, Keren; Arnon, Shai; Nejidat, Ali

    2014-10-01

    Ammonia oxidizers catalyze the first step of nitrification. Combined microbial nitrification-denitrification activities are essential for the removal of excess nitrogen from water bodies. In sandy streambeds, bed form structures are created by water flow and lead to the creation of heterogeneous microenvironments. The objective of this study, therefore, was to investigate the effect of bed form morphology on the abundance and activity of ammonia-oxidizing bacteria (AOB) within a benthic biofilm. An 8-month-old benthic biofilm was established in a recirculating laboratory flume under controlled flow conditions and frequent amendment with ammonium. The sand bed was arranged into bed form structures. The highest concentrations of chlorophyll a (indicative of algae) were measured on the upstream side of the bed forms. The biofilm was dominated by Nitrosospira species, and amoA gene abundance was higher on the downstream sides of the bed forms with no significant difference in oxygen consumption between the upstream and downstream sections of the bed form. In contrast, potential ammonium oxidation rates were higher on the upstream sides of the bed forms. The results suggest that bed form morphology can affect the spatial distribution and activity of AOB, possibly through the creation of distinct microhabitats. These results contribute to our understanding of nitrogen transformations and removal from streams. PMID:25056670

  20. Interaction of pyridine and ammonia with a sulfate-promoted iron oxide catalyst

    SciTech Connect

    Lee, J.S.; Park, D.S. )

    1989-11-01

    Interactions of sulfate-promoted iron oxide, SO{sup 2{minus}}{sub 4}-Fe{sub 2}O{sub 3}, with pyridine or ammonia were investigated by means of infrared spectroscopy and temperature-programmed desorption/reaction coupled with mass spectrometry. Both molecules reacted with the sulfate group upon adsorption followed by heating to change the structure of the sulfate group and the acid properties of SO{sup 2{minus}}{sub 4}-Fe{sub 2}O{sub 3}. They also promoted the decomposition of the sulfate group and its removal from the surface. These effects were more pronounced for pyridine.

  1. Shifts in the pelagic ammonia-oxidizing microbial communities along the eutrophic estuary of Yong River in Ningbo City, China

    PubMed Central

    Zhang, Qiufang; Tang, Fangyuan; Zhou, Yangjing; Xu, Jirong; Chen, Heping; Wang, Mingkuang; Laanbroek, Hendrikus J.

    2015-01-01

    Aerobic ammonia oxidation plays a key role in the nitrogen cycle, and the diversity of the responsible microorganisms is regulated by environmental factors. Abundance and composition of ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) were investigated in the surface waters along an environmental gradient of the Yong River in Ningbo, East China. Water samples were collected from three pelagic zones: (1) freshwaters in the urban canals of Ningbo, (2) brackish waters in the downstream Yong River, and (3) coastal marine water of Hangzhou Bay. Shifts in activity and diversity of the ammonia-oxidizing microorganisms occurred simultaneously with changes in environmental factors, among which salinity and the availabilities of ammonium and oxygen. The AOA abundance was always higher than that of AOB and was related to the ammonia oxidation activity. The ratios of AOA/AOB in the brackish and marine waters were significantly higher than those found in freshwaters. Both AOA and AOB showed similar community compositions in brackish and marine waters, but only 31 and 35% similarity, respectively, between these waters and the urban inland freshwaters. Most of AOA-amoA sequences from freshwater were affiliated with sequences obtained from terrestrial environments and those collected from brackish and coastal areas were ubiquitous in marine, coastal, and terrestrial ecosystems. All AOB from freshwaters belonged to Nitrosomonas, and the AOB from brackish and marine waters mainly belonged to Nitrosospira. PMID:26579089

  2. Ammonia oxidation is not required for growth of Group 1.1c soil Thaumarchaeota

    PubMed Central

    Weber, Eva B.; Lehtovirta-Morley, Laura E.; Prosser, James I.; Gubry-Rangin, Cécile

    2015-01-01

    Thaumarchaeota are among the most abundant organisms on Earth and are ubiquitous. Within this phylum, all cultivated representatives of Group 1.1a and Group 1.1b Thaumarchaeota are ammonia oxidizers, and play a key role in the nitrogen cycle. While Group 1.1c is phylogenetically closely related to the ammonia-oxidizing Thaumarchaeota and is abundant in acidic forest soils, nothing is known about its physiology or ecosystem function. The goal of this study was to perform in situ physiological characterization of Group 1.1c Thaumarchaeota by determining conditions that favour their growth in soil. Several acidic grassland, birch and pine tree forest soils were sampled and those with the highest Group 1.1c 16S rRNA gene abundance were incubated in microcosms to determine optimal growth temperature, ammonia oxidation and growth on several organic compounds. Growth of Group 1.1c Thaumarchaeota, assessed by qPCR of Group 1.1c 16S rRNA genes, occurred in soil, optimally at 30°C, but was not associated with ammonia oxidation and the functional gene amoA could not be detected. Growth was also stimulated by addition of organic nitrogen compounds (glutamate and casamino acids) but not when supplemented with organic carbon alone. This is the first evidence for non-ammonia oxidation associated growth of Thaumarchaeota in soil. PMID:25764563

  3. Abundance and diversity of ammonia-oxidizing archaea and bacteria in sediments of trophic end members of the Laurentian Great Lakes, Erie and Superior.

    PubMed

    Bollmann, Annette; Bullerjahn, George S; McKay, Robert Michael

    2014-01-01

    Ammonia oxidation is the first step of nitrification carried out by ammonia-oxidizing Archaea (AOA) and Bacteria (AOB). Lake Superior and Erie are part of the Great Lakes system differing in trophic status with Lake Superior being oligotrophic and Lake Erie meso- to eutrophic. Sediment samples were collected from both lakes and used to characterize abundance and diversity of AOA and AOB based on the ammonia monooxygenase (amoA) gene. Diversity was accessed by a pyro-sequencing approach and the obtained sequences were used to determine the phylogeny and alpha and beta diversity of the AOA and AOB populations. In Lake Erie copy numbers of bacterial amoA genes were in the same order of magnitude or even higher than the copy numbers of the archaeal amoA genes, while in Lake Superior up to 4 orders of magnitude more archaeal than bacterial amoA copies were detected. The AOB detected in the samples from Lake Erie belonged to AOB that are frequently detected in freshwater. Differences were detected between the phylogenetic affiliations of the AOA from the two lakes. Most sequences detected in Lake Erie clustered in the Nitrososphaera cluster (Thaumarchaeal soil group I.1b) where as most of the sequences in Lake Superior were found in the Nitrosopumilus cluster (Thaumarchaeal marine group I.1a) and the Nitrosotalea cluster. Pearson correlations and canonical correspondence analysis (CCA) showed that the differences in abundance and diversity of AOA are very likely related to the sampling location and thereby to the different trophic states of the lakes.

  4. Abundance and diversity of ammonia-oxidizing archaea and bacteria on granular activated carbon and their fates during drinking water purification process.

    PubMed

    Niu, Jia; Kasuga, Ikuro; Kurisu, Futoshi; Furumai, Hiroaki; Shigeeda, Takaaki; Takahashi, Kazuhiko

    2016-01-01

    Ammonia is a precursor to trichloramine, which causes an undesirable chlorinous odor. Granular activated carbon (GAC) filtration is used to biologically oxidize ammonia during drinking water purification; however, little information is available regarding the abundance and diversity of ammonia-oxidizing archaea (AOA) and bacteria (AOB) associated with GAC. In addition, their sources and fates in water purification process remain unknown. In this study, six GAC samples were collected from five full-scale drinking water purification plants in Tokyo during summer and winter, and the abundance and community structure of AOA and AOB associated with GAC were studied in these two seasons. In summer, archaeal and bacterial amoA genes on GACs were present at 3.7 × 10(5)-3.9 × 10(8) gene copies/g-dry and 4.5 × 10(6)-4.2 × 10(8) gene copies/g-dry, respectively. In winter, archaeal amoA genes remained at the same level, while bacterial amoA genes decreased significantly for all GACs. No differences were observed in the community diversity of AOA and AOB from summer to winter. Phylogenetic analysis revealed high AOA diversity in group I.1a and group I.1b in raw water. Terminal-restriction fragment length polymorphism analysis of processed water samples revealed that AOA diversity decreased dramatically to only two OTUs in group I.1a after ozonation, which were identical to those detected on GAC. It suggests that ozonation plays an important role in determining AOA diversity on GAC. Further study on the cell-specific activity of AOA and AOB is necessary to understand their contributions to in situ nitrification performance.

  5. Direct electrochemical oxidation of ammonia on graphite as a treatment option for stored source-separated urine.

    PubMed

    Zöllig, Hanspeter; Fritzsche, Cristina; Morgenroth, Eberhard; Udert, Kai M

    2015-02-01

    Electrolysis can be a viable technology for ammonia removal from source-separated urine. Compared to biological nitrogen removal, electrolysis is more robust and is highly amenable to automation, which makes it especially attractive for on-site reactors. In electrolytic wastewater treatment, ammonia is usually removed by indirect oxidation through active chlorine which is produced in-situ at elevated anode potentials. However, the evolution of chlorine can lead to the formation of chlorate, perchlorate, chlorinated organic by-products and chloramines that are toxic. This study focuses on using direct ammonia oxidation on graphite at low anode potentials in order to overcome the formation of toxic by-products. With the aid of cyclic voltammetry, we demonstrated that graphite is active for direct ammonia oxidation without concomitant chlorine formation if the anode potential is between 1.1 and 1.6 V vs. SHE (standard hydrogen electrode). A comparison of potentiostatic bulk electrolysis experiments in synthetic stored urine with and without chloride confirmed that ammonia was removed exclusively by continuous direct oxidation. Direct oxidation required high pH values (pH > 9) because free ammonia was the actual reactant. In real stored urine (pH = 9.0), an ammonia removal rate of 2.9 ± 0.3 gN·m(-2)·d(-1) was achieved and the specific energy demand was 42 Wh·gN(-1) at an anode potential of 1.31 V vs. SHE. The measurements of chlorate and perchlorate as well as selected chlorinated organic by-products confirmed that no chlorinated by-products were formed in real urine. Electrode corrosion through graphite exfoliation was prevented and the surface was not poisoned by intermediate oxidation products. We conclude that direct ammonia oxidation on graphite electrodes is a treatment option for source-separated urine with three major advantages: The formation of chlorinated by-products is prevented, less energy is consumed than in indirect ammonia oxidation and

  6. Dynamics of ultrathin V-oxide layers on Rh(111) in catalytic oxidation of ammonia and CO.

    PubMed

    von Boehn, B; Preiss, A; Imbihl, R

    2016-07-20

    Catalytic oxidation of ammonia and CO has been studied in the 10(-4) mbar range using a catalyst prepared by depositing ultra-thin vanadium oxide layers on Rh(111) (θV ≈ 0.2 MLE). Using photoemission electron microscopy (PEEM) as a spatially resolving method, we observe that upon heating in an atmosphere of NH3 and O2 the spatial homogeneity of the VOx layer is removed at 800 K and a pattern consisting of macroscopic stripes develops; at elevated temperatures this pattern transforms into a pattern of circular VOx islands. Under reaction conditions the neighboring VOx islands become attracted by each other and coalesce. Similar processes of pattern formation and island coalescence are observed in catalytic CO oxidation. Reoxidation of the reduced VOx catalyst proceeds via surface diffusion of oxygen adsorbed onto Rh(111). A pattern consisting of macroscopic circular VOx islands can also be obtained by heating a Rh(111)/VOx catalyst in pure O2.

  7. Responses of ammonia-oxidizing archaeal and betaproteobacterial populations to wastewater salinity in a full-scale municipal wastewater treatment plant.

    PubMed

    Wu, Yi-Ju; Whang, Liang-Ming; Fukushima, Toshikazu; Chang, Shao-Hsiung

    2013-04-01

    The diversity and abundance of ammonia-oxidizing Betaproteobacteria and archaea were investigated in a full-scale municipal wastewater treatment plant where the wastewater conductivity level varied considerably (due to seawater salinity intrusion) during this study between 2004 and 2007. Based on the quantitative polymerase chain reaction of ammonia monooxygenase subunit A (amoA) genes, an increase in the ammonia oxidizing bacteria amoA gene copies occurred with a decrease in the wastewater salinity level. A corresponding decrease in the average ammonia-oxidizing archaea to bacteria ratio, from 1.22 (2004 and 2005), 0.17 (2006), and then to 0.07 (2007), was observed. Phylogenetic analyses on amoA gene sequences indicated that Nitrosomonas marina-like ammonia oxidizing bacteria and Thaumarcheota Ⅰ.1a (marina group) ammonia-oxidizing archaea were dominant when the wastewater salinity level fluctuated at high values with an average of 4.83 practical salinity unit (psu), while Nitrosomonas urea-like ammonia oxidizing bacteria and Thaumarcheota Ⅰ.1b (soil group) ammonia-oxidizing archaea became dominant when the wastewater salinity decreased to a more stable lower level with an average of 1.93 psu. Based on the amoA gene-based terminal restriction fragment length polymorphism analyses, results from this study demonstrated that the observed shift in ammonia oxidizing bacteria and archaea populations is likely caused by a change of the wastewater salinity level. PMID:23232030

  8. Nitrification rates in Arctic soils are associated with functionally distinct populations of ammonia-oxidizing archaea

    PubMed Central

    Alves, Ricardo J Eloy; Wanek, Wolfgang; Zappe, Anna; Richter, Andreas; Svenning, Mette M; Schleper, Christa; Urich, Tim

    2013-01-01

    The functioning of Arctic soil ecosystems is crucially important for global climate, and basic knowledge regarding their biogeochemical processes is lacking. Nitrogen (N) is the major limiting nutrient in these environments, and its availability is strongly dependent on nitrification. However, microbial communities driving this process remain largely uncharacterized in Arctic soils, namely those catalyzing the rate-limiting step of ammonia (NH3) oxidation. Eleven Arctic soils were analyzed through a polyphasic approach, integrating determination of gross nitrification rates, qualitative and quantitative marker gene analyses of ammonia-oxidizing archaea (AOA) and bacteria (AOB) and enrichment of AOA in laboratory cultures. AOA were the only NH3 oxidizers detected in five out of 11 soils and outnumbered AOB in four of the remaining six soils. The AOA identified showed great phylogenetic diversity and a multifactorial association with the soil properties, reflecting an overall distribution associated with tundra type and with several physico-chemical parameters combined. Remarkably, the different gross nitrification rates between soils were associated with five distinct AOA clades, representing the great majority of known AOA diversity in soils, which suggests differences in their nitrifying potential. This was supported by selective enrichment of two of these clades in cultures with different NH3 oxidation rates. In addition, the enrichments provided the first direct evidence for NH3 oxidation by an AOA from an uncharacterized Thaumarchaeota–AOA lineage. Our results indicate that AOA are functionally heterogeneous and that the selection of distinct AOA populations by the environment can be a determinant for nitrification activity and N availability in soils. PMID:23466705

  9. Ammonia-oxidizing Archaea in the Arctic Ocean and Antarctic coastal waters.

    PubMed

    Kalanetra, Karen M; Bano, Nasreen; Hollibaugh, James T

    2009-09-01

    We compared abundance, distributions and phylogenetic composition of Crenarchaeota and ammonia-oxidizing Archaea (AOA) in samples collected from coastal waters west of the Antarctic Peninsula during the summers of 2005 and 2006, with samples from the central Arctic Ocean collected during the summer of 1997. Ammonia-oxidizing Archaea and Crenarchaeota abundances were estimated from quantitative PCR measurements of amoA and 16S rRNA gene abundances. Crenarchaeota and AOA were approximately fivefold more abundant at comparable depths in the Antarctic versus the Arctic Ocean. Crenarchaeota and AOA were essentially absent from the Antarctic Summer Surface Water (SSW) water mass (0-45 m depth). The ratio of Crenarchaeota 16S rRNA to archaeal amoA gene abundance in the Winter Water (WW) water mass (45-105 m depth) of the Southern Ocean was much lower (0.15) than expected and in sharp contrast to the ratio (2.0) in the Circumpolar Deep Water (CDW) water mass (105-3500 m depth) immediately below it. We did not observe comparable segregation of this ratio by depth or water mass in Arctic Ocean samples. A ubiquitous, abundant and polar-specific crenarchaeote was the dominant ribotype in the WW and important in the upper halocline of the Arctic Ocean. Our data suggest that this organism does not contain an ammonia monooxygenase gene. In contrast to other studies where Crenarchaeota populations apparently lacking amoA genes are found in bathypelagic waters, this organism appears to dominate in well-defined, ammonium-rich, near-surface water masses in polar oceans. PMID:19601959

  10. Ammonia-limited conditions cause of Thaumarchaeal dominance in volcanic grassland soil.

    PubMed

    Daebeler, Anne; Bodelier, Paul L E; Hefting, Mariet M; Laanbroek, Hendrikus J

    2015-03-01

    The first step of nitrification is carried out by ammonia-oxidizing bacteria (AOB) and archaea (AOA). It is largely unknown, by which mechanisms these microbes are capable of coexistence and how their respective contribution to ammonia oxidation may differ with varying soil characteristics. To determine how different levels of ammonium availability influence the extent of archaeal and bacterial contributions to ammonia oxidation, microcosm incubations with controlled ammonium levels were conducted. Net nitrification was monitored and ammonia-oxidizer communities were quantified. Additionally, the nitrification inhibitor allylthiourea (ATU) was applied to discriminate between archaeal and bacterial contributions to soil ammonia oxidation. Thaumarchaeota, which were the only ammonia oxidizers detectable at the start of the incubation, grew in all microcosms, but AOB later became detectable in ammonium amended microcosms. Low and high additions of ammonium increasingly stimulated AOB growth, while AOA were only stimulated by the low addition. Treatment with ATU had no effect on net nitrification and sizes of ammonia-oxidizing communities suggesting that the effective concentration of ATU to discriminate between archaeal and bacterial ammonia oxidation is not the same in different soils. Our results support the niche-differentiating potential of ammonium concentration for AOA and AOB, and we conclude that ammonium limitation can be a major reason for absence of detectable AOB in soil.

  11. [Microbial diversity and ammonia-oxidizing microorganism of a soil sample near an acid mine drainage lake].

    PubMed

    Liu, Ying; Wang, Li-Hua; Hao, Chun-Bo; Li, Lu; Li, Si-Yuan; Feng, Chuan-Ping

    2014-06-01

    The main physicochemical parameters of the soil sample which was collected near an acid mine drainage reservoir in Anhui province was analyzed. The microbial diversity and community structure was studied through the construction of bacteria and archaea 16S rRNA gene clone libraries and ammonia monooxygenase gene clone library of archaea. The functional groups which were responsible for the process of ammonia oxidation were also discussed. The results indicated that the soil sample had extreme low pH value (pH < 3) and high ions concentration, which was influenced by the acid mine drainage (AMD). All the 16S rRNA gene sequences of bacteria clone library fell into 11 phyla, and Acidobacteria played the most significant role in the ecosystem followed by Verrucomicrobia. A great number of acidophilic bacteria existed in the soil sample, such as Candidatus Koribacter versatilis and Holophaga sp.. The archaea clone library consisted of 2 phyla (Thaumarchaeota and Euryarchaeota). The abundance of Thaumarchaeota was remarkably higher than Euryarchaeota. The ammonia oxidation in the soil environment was probably driven by ammonia-oxidizing archaea, and new species of ammonia-oxidizing archaea existed in the soil sample.

  12. Nitrosomonas stercoris sp. nov., a Chemoautotrophic Ammonia-Oxidizing Bacterium Tolerant of High Ammonium Isolated from Composted Cattle Manure

    PubMed Central

    Nakagawa, Tatsunori; Takahashi, Reiji

    2015-01-01

    Among ammonia-oxidizing bacteria, Nitrosomonas eutropha-like microbes are distributed in strongly eutrophic environments such as wastewater treatment plants and animal manure. In the present study, we isolated an ammonia-oxidizing bacterium tolerant of high ammonium levels, designated strain KYUHI-ST, from composted cattle manure. Unlike the other known Nitrosomonas species, this isolate grew at 1,000 mM ammonium. Phylogenetic analyses based on 16S rRNA and amoA genes indicated that the isolate belonged to the genus Nitrosomonas and formed a unique cluster with the uncultured ammonia oxidizers found in wastewater systems and animal manure composts, suggesting that these ammonia oxidizers contributed to removing higher concentrations of ammonia in strongly eutrophic environments. Based on the physiological and phylogenetic data presented here, we propose and call for the validation of the provisional taxonomic assignment Nitrosomonas stercoris, with strain KYUHI-S as the type strain (type strain KYUHI-ST = NBRC 110753T = ATCC BAA-2718T). PMID:26156554

  13. Toxicity of profenofos to the springtail, Folsomia candida, and ammonia-oxidizers in two agricultural soils.

    PubMed

    Liu, Yu-Rong; Zheng, Yuan-Ming; He, Ji-Zheng

    2012-05-01

    Extensive use of organophosphorus insecticide profenofos (PFF) for agricultural and house-hold purposes has led to serious environmental pollution, with potential risk to organisms in the ecosystem. This study examined the toxicity of PFF to the soil springtail Folsomia candida and ammonia-oxidizers through a series of toxicity tests conducted on two agricultural soils. It was found that the survival, reproduction, hsp70 gene expression of F. candida and the soil potential nitrification rate (PNR) were sensitive to the PFF, whereas no apparent change was observed in the abundance of ammonia-oxidizers. The reproduction of F. candida was the most sensitive endpoint (mean 0.10 mg/kg of EC(50) value) for PFF, although the test was more time-consuming. The results of the acute toxicity tests suggested that the survival of F. candida could be considered as the most suitable bioindicator for fast screening of PFF toxicity because of its fast and easy test procedure. In addition, the hsp70 gene expression in F. candida and the PNR could be used as important parameters for assessment of PFF toxicity. The threshold concentration based on the obtained endpoints differed in the two soils, and consequently the soil property should be considered in toxicity assessments of contaminated soils. PMID:22362510

  14. Differential contributions of archaeal ammonia oxidizer ecotypes to nitrification in coastal surface waters.

    PubMed

    Smith, Jason M; Casciotti, Karen L; Chavez, Francisco P; Francis, Christopher A

    2014-08-01

    The occurrence of nitrification in the oceanic water column has implications extending from local effects on the structure and activity of phytoplankton communities to broader impacts on the speciation of nitrogenous nutrients and production of nitrous oxide. The ammonia-oxidizing archaea, responsible for carrying out the majority of nitrification in the sea, are present in the marine water column as two taxonomically distinct groups. Water column group A (WCA) organisms are detected at all depths, whereas Water column group B (WCB) are present primarily below the photic zone. An open question in marine biogeochemistry is whether the taxonomic definition of WCA and WCB organisms and their observed distributions correspond to distinct ecological and biogeochemical niches. We used the natural gradients in physicochemical and biological properties that upwelling establishes in surface waters to study their roles in nitrification, and how their activity--ascertained from quantification of ecotype-specific ammonia monooxygenase (amoA) genes and transcripts--varies in response to environmental fluctuations. Our results indicate a role for both ecotypes in nitrification in Monterey Bay surface waters. However, their respective contributions vary, due to their different sensitivities to surface water conditions. WCA organisms exhibited a remarkably consistent level of activity and their contribution to nitrification appears to be related to community size. WCB activity was less consistent and primarily constrained to colder, high nutrient and low chlorophyll waters. Overall, the results of our characterization yielded a strong, potentially predictive, relationship between archaeal amoA gene abundance and the rate of nitrification.

  15. Environmental factors determining ammonia-oxidizing organism distribution and diversity in marine environments.

    PubMed

    Bouskill, Nicholas J; Eveillard, Damien; Chien, Diana; Jayakumar, Amal; Ward, Bess B

    2012-03-01

    Ammonia-oxidizing bacteria (AOB) and archaea (AOA) play a vital role in bridging the input of fixed nitrogen, through N-fixation and remineralization, to its loss by denitrification and anammox. Yet the major environmental factors determining AOB and AOA population dynamics are little understood, despite both groups having a wide environmental distribution. This study examined the relative abundance of both groups of ammonia-oxidizing organisms (AOO) and the diversity of AOA across large-scale gradients in temperature, salinity and substrate concentration and dissolved oxygen. The relative abundance of AOB and AOA varied across environments, with AOB dominating in the freshwater region of the Chesapeake Bay and AOA more abundant in the water column of the coastal and open ocean. The highest abundance of the AOA amoA gene was recorded in the oxygen minimum zones (OMZs) of the Eastern Tropical South Pacific (ETSP) and the Arabian Sea (AS). The ratio of AOA : AOB varied from 0.7 in the Chesapeake Bay to 1600 in the Sargasso Sea. Relative abundance of both groups strongly correlated with ammonium concentrations. AOA diversity, as determined by phylogenetic analysis of clone library sequences and archetype analysis from a functional gene DNA microarray, detected broad phylogenetic differences across the study sites. However, phylogenetic diversity within physicochemically congruent stations was more similar than would be expected by chance. This suggests that the prevailing geochemistry, rather than localized dispersal, is the major driving factor determining OTU distribution.

  16. Sequencing treatment of landfill leachate using ammonia stripping, Fenton oxidation and biological treatment.

    PubMed

    Nurisepehr, Mohammad; Jorfi, Sahand; Rezaei Kalantary, Roshanak; Akbari, Hamideh; Soltani, Reza Darvishi Cheshmeh; Samaei, Mohamad

    2012-09-01

    Landfill leachates contain a wide variety of pollutants such as organic matter, refractory compounds, ammonia, particulate and dissolved solids and hazardous metals requiring application of advanced and well designed treatment processes before release to the environment. The main purpose of this research was to evaluate the efficiency of combined air stripping, Fenton oxidation and biological treatment in treating landfill leachate, especially the elimination of ammonia and refractory organics. The laboratory scale set-up consisted of three sequential but separate steps. The optimum conditions for air stripping and the Fenton oxidation were determined for landfill leachate from Karaj city, Iran. The final step was a moving bed bioreactor with HRTs of 18, 12 and 6 h. The highest NH(3)-N removal was 79% in the air stripping process at pH 10.5. At the optimum conditions for the Fenton reaction at a reaction time of 90 min, pH 3 and a H(2)O(2)/Fe(2+) mass ratio of 20, the COD removal was 61% and improved the BOD/COD ratio from 0.42 to 0.78. The overall COD removal including the final biological reactor with a HRT of 6 h resulted in an effluent COD concentration of less than 100 mg L(-1).

  17. Environmental factors determining ammonia-oxidizing organism distribution and diversity in marine environments.

    PubMed

    Bouskill, Nicholas J; Eveillard, Damien; Chien, Diana; Jayakumar, Amal; Ward, Bess B

    2012-03-01

    Ammonia-oxidizing bacteria (AOB) and archaea (AOA) play a vital role in bridging the input of fixed nitrogen, through N-fixation and remineralization, to its loss by denitrification and anammox. Yet the major environmental factors determining AOB and AOA population dynamics are little understood, despite both groups having a wide environmental distribution. This study examined the relative abundance of both groups of ammonia-oxidizing organisms (AOO) and the diversity of AOA across large-scale gradients in temperature, salinity and substrate concentration and dissolved oxygen. The relative abundance of AOB and AOA varied across environments, with AOB dominating in the freshwater region of the Chesapeake Bay and AOA more abundant in the water column of the coastal and open ocean. The highest abundance of the AOA amoA gene was recorded in the oxygen minimum zones (OMZs) of the Eastern Tropical South Pacific (ETSP) and the Arabian Sea (AS). The ratio of AOA : AOB varied from 0.7 in the Chesapeake Bay to 1600 in the Sargasso Sea. Relative abundance of both groups strongly correlated with ammonium concentrations. AOA diversity, as determined by phylogenetic analysis of clone library sequences and archetype analysis from a functional gene DNA microarray, detected broad phylogenetic differences across the study sites. However, phylogenetic diversity within physicochemically congruent stations was more similar than would be expected by chance. This suggests that the prevailing geochemistry, rather than localized dispersal, is the major driving factor determining OTU distribution. PMID:22050634

  18. Ammonia gas sensors based on chemically reduced graphene oxide sheets self-assembled on Au electrodes.

    PubMed

    Wang, Yanyan; Zhang, Liling; Hu, Nantao; Wang, Ying; Zhang, Yafei; Zhou, Zhihua; Liu, Yanhua; Shen, Su; Peng, Changsi

    2014-01-01

    We present a useful ammonia gas sensor based on chemically reduced graphene oxide (rGO) sheets by self-assembly technique to create conductive networks between parallel Au electrodes. Negative graphene oxide (GO) sheets with large sizes (>10 μm) can be easily electrostatically attracted onto positive Au electrodes modified with cysteamine hydrochloride in aqueous solution. The assembled GO sheets on Au electrodes can be directly reduced into rGO sheets by hydrazine or pyrrole vapor and consequently provide the sensing devices based on self-assembled rGO sheets. Preliminary results, which have been presented on the detection of ammonia (NH3) gas using this facile and scalable fabrication method for practical devices, suggest that pyrrole-vapor-reduced rGO exhibits much better (more than 2.7 times with the concentration of NH3 at 50 ppm) response to NH3 than that of rGO reduced from hydrazine vapor. Furthermore, this novel gas sensor based on rGO reduced from pyrrole shows excellent responsive repeatability to NH3. Overall, the facile electrostatic self-assembly technique in aqueous solution facilitates device fabrication, the resultant self-assembled rGO-based sensing devices, with miniature, low-cost portable characteristics and outstanding sensing performances, which can ensure potential application in gas sensing fields.

  19. Ammonia gas sensors based on chemically reduced graphene oxide sheets self-assembled on Au electrodes.

    PubMed

    Wang, Yanyan; Zhang, Liling; Hu, Nantao; Wang, Ying; Zhang, Yafei; Zhou, Zhihua; Liu, Yanhua; Shen, Su; Peng, Changsi

    2014-01-01

    We present a useful ammonia gas sensor based on chemically reduced graphene oxide (rGO) sheets by self-assembly technique to create conductive networks between parallel Au electrodes. Negative graphene oxide (GO) sheets with large sizes (>10 μm) can be easily electrostatically attracted onto positive Au electrodes modified with cysteamine hydrochloride in aqueous solution. The assembled GO sheets on Au electrodes can be directly reduced into rGO sheets by hydrazine or pyrrole vapor and consequently provide the sensing devices based on self-assembled rGO sheets. Preliminary results, which have been presented on the detection of ammonia (NH3) gas using this facile and scalable fabrication method for practical devices, suggest that pyrrole-vapor-reduced rGO exhibits much better (more than 2.7 times with the concentration of NH3 at 50 ppm) response to NH3 than that of rGO reduced from hydrazine vapor. Furthermore, this novel gas sensor based on rGO reduced from pyrrole shows excellent responsive repeatability to NH3. Overall, the facile electrostatic self-assembly technique in aqueous solution facilitates device fabrication, the resultant self-assembled rGO-based sensing devices, with miniature, low-cost portable characteristics and outstanding sensing performances, which can ensure potential application in gas sensing fields. PMID:24917701

  20. Ammonia gas sensors based on chemically reduced graphene oxide sheets self-assembled on Au electrodes

    NASA Astrophysics Data System (ADS)

    Wang, Yanyan; Zhang, Liling; Hu, Nantao; Wang, Ying; Zhang, Yafei; Zhou, Zhihua; Liu, Yanhua; Shen, Su; Peng, Changsi

    2014-05-01

    We present a useful ammonia gas sensor based on chemically reduced graphene oxide (rGO) sheets by self-assembly technique to create conductive networks between parallel Au electrodes. Negative graphene oxide (GO) sheets with large sizes (>10 μm) can be easily electrostatically attracted onto positive Au electrodes modified with cysteamine hydrochloride in aqueous solution. The assembled GO sheets on Au electrodes can be directly reduced into rGO sheets by hydrazine or pyrrole vapor and consequently provide the sensing devices based on self-assembled rGO sheets. Preliminary results, which have been presented on the detection of ammonia (NH3) gas using this facile and scalable fabrication method for practical devices, suggest that pyrrole-vapor-reduced rGO exhibits much better (more than 2.7 times with the concentration of NH3 at 50 ppm) response to NH3 than that of rGO reduced from hydrazine vapor. Furthermore, this novel gas sensor based on rGO reduced from pyrrole shows excellent responsive repeatability to NH3. Overall, the facile electrostatic self-assembly technique in aqueous solution facilitates device fabrication, the resultant self-assembled rGO-based sensing devices, with miniature, low-cost portable characteristics and outstanding sensing performances, which can ensure potential application in gas sensing fields.

  1. [Characteristics of soil ammonia-oxidation microbial communities in different subtropical forests, China].

    PubMed

    Li, Yong-Chun; Liu, Bu-Rong; Guo, Shuai; Wu, Qi-Feng; Qin, Hua; Wu, Jia-Sen; Xu, Qiu-Fang

    2014-01-01

    To investigate the effects of different forest stands in subtropical China on the communities of soil ammonia-oxidizing microorganisms, we characterized the abundance of ammonia-oxidizing archaea (AOA) and bacteria (AOB), and the community structure of AOA in soils under stands of broad-leaved (BF) , Chinese fir (CF) , Pinus massoniana (PF) and moso bamboo (MB) forests using real-time quantitative PCR and denaturing gradient gel electrophoresis (DGGE). The results showed that the AOA gene copy numbers (1.62 x 10(6)-1.88 x 10(7) per gram of dry soil) were significantly higher than those of AOB genes (2.41 x 10(5)-4.36 x 10(5) per gram of dry soil). Significantly higher soil AOA abundance was detected in the MB than that in the CF (P < 0.05), and the latter was significantly higher than that in the BF and PF soils (P < 0.05). There were no significant differences in the soil AOB abundance among the four forest stands. As indicated by DGGE pattern, soil AOA species varied among the four forest stands. There was a difference in the soil AOA communities between the CF and MB stands. The AOA demonstrated a competitive advantage over the AOB in the soils under these major subtropical forests. Soil pH, concentrations of soil available potassium and organic carbon as well as the forest type were the main factors that influence the variation of AOA community structure and diversity.

  2. Distribution of ammonia-oxidizing archaea and bacteria in plateau soils across different land use types.

    PubMed

    Zhang, Jingxu; Dai, Yu; Wang, Yilin; Wu, Zhen; Xie, Shuguang; Liu, Yong

    2015-08-01

    Ammonia oxidation is known to be performed by both ammonia-oxidizing archaea (AOA) and bacteria (AOB), although their relative significance to nitrification process in soil ecosystems remains controversial. The distribution of AOA and AOB in plateau soils with different land use types and the influential factors remains unclear. The present study investigated the abundance and structure of AOA and AOB communities in upland soils adjacent to Erhai Lake in the Yunnan Plateau (China). Quantitative PCR assays indicated a large variation in the community size of AOA and AOB communities, with the numerical dominance of AOA over AOB in most of soils. Clone library analysis illustrated a marked shift in the structure of soil AOA and AOB communities. A high abundance of Nitrososphaera- and Nitrosotalea-like AOA was observed, while Nitrosospira-like species predominated in AOB. AOA and AOB abundance was positively influenced by total nitrogen and moisture content, respectively. Moreover, moisture content might be a key determinant of AOA community composition, while C/N and nitrate nitrogen played an important role in shaping AOB community composition. However, further efforts will be necessary in order to elucidate the links between soil AOA and AOB and land use.

  3. Enhanced abundance and diversity of ammonia-oxidizing Archaea in the Pearl River estuary

    NASA Astrophysics Data System (ADS)

    Xie, W.; Zhang, C. L.; Wang, P.; Zhou, X.; Guo, W.

    2014-12-01

    Thaumarchaeota are recently recognized as an important group of Archaea that can perform aerobic oxidation of ammonia in a wide range of environments. The goal of this study was to evaluate changes in abundance and diversity of planktonic ammonia-oxidizing Archaea (e.g., Thaumarchaeota) along a salinity gradient from the lower Pearl River to the northern South China Sea. Quantitative PCR and sequencing of total archaeal 16S rRNA gene and the archaeal amoA gene were performed on suspended particulate organic matter collected in different seasons from the freshwater to the ocean water. Total amoA gene copies and relative abundance of Thaumarchaeota all peaked in the estuary where salinity ranged between 4.5‰ and 26.7‰. The diversity of archaeal amoA gene was also highest in the estuary. Seasonality and SiO32- appear to be two major factors affecting the distribution of subclusters of archaeal amoA genes. For example, Nitrosopumilus subcluster 7.1 was most abundant in winter in fresh water, whereas Nitrososphaera were more abundant in summer. Samples collected from the area around Wanshan Island, which is located at the outermost part of the Pearl River estuary, had high abundance of unclassified archaeal amoA genes, suggesting some new groups of Thaumarchaeota might inhabit this water body. Overall, the high abundance and diversity of Thaumarchaeota in the Pearl River estuary may indicate enhanced role of AOA in nitrogen cycle in this dynamic ecosystem.

  4. Nitrification rates in Arctic soils are associated with functionally distinct populations of ammonia-oxidizing archaea

    NASA Astrophysics Data System (ADS)

    Alves, Ricardo J. E.; Wanek, Wolfgang; Zappe, Anna; Richter, Andreas; Svenning, Mette M.; Schleper, Christa; Urich, Tim

    2014-05-01

    The functioning of Arctic soil ecosystems is crucially important for global climate, although basic knowledge regarding their biogeochemical processes is lacking. Nitrogen (N) is the major limiting nutrient in these environments, and therefore it is particularly important to gain a better understanding of the microbial populations catalyzing transformations that influence N bioavailability. However, microbial communities driving this process remain largely uncharacterized in Arctic soils, namely those catalyzing the rate-limiting step of ammonia (NH3) oxidation. Eleven Arctic soils from Svalbard were analyzed through a polyphasic approach, including determination of gross nitrification rates through a 15N pool dilution method, qualitative and quantitative analyses of ammonia-oxidizing archaea (AOA) and bacteria (AOB) populations based on the functional marker gene amoA (encoding the ammonia monooxygenase subunit A), and enrichment of AOA in laboratory cultures. AOA were the only NH3 oxidizers detected in five out of 11 soils, and outnumbered AOB by 1 to 3 orders of magnitude in most others. AOA showed a great overall phylogenetic diversity that was differentially distributed across soil ecosystems, and exhibited an uneven population composition that reflected the dominance of a single AOA phylotype in each population. Moreover, AOA populations showed a multifactorial association with the soil properties, which reflected an overall distribution associated with tundra type and with several physico-chemical parameters combined, namely pH and soil moisture and N contents (i.e., NO3- and dissolved organic N). Remarkably, the different gross in situ and potential nitrification rates between soils were associated with distinct AOA phylogenetic clades, suggesting differences in their nitrifying potential, both under the native NH3 conditions and as a response to higher NH3 availability. This was further supported by the selective enrichment of two AOA clades that exhibited

  5. High abundance of ammonia-oxidizing Archaea in coastal waters, determined using a modified DNA extraction method.

    PubMed

    Urakawa, Hidetoshi; Martens-Habbena, Willm; Stahl, David A

    2010-04-01

    Molecular characterizations of environmental microbial populations based on recovery and analysis of DNA generally assume efficient or unbiased extraction of DNA from different sample matrices and microbial groups. Appropriate controls to verify this basic assumption are rarely included. Here three different DNA extractions, performed with two commercial kits (FastDNA and UltraClean) and a standard phenol-chloroform method, and two alternative filtration methods (Sterivex and 25-mm-diameter polycarbonate filters) were evaluated, using the addition of Nitrosopumilus maritimus cells to track the recovery of DNA from marine Archaea. After the comparison, a simplified phenol-chloroform extraction method was developed and shown to be significantly superior, in terms of both the recovery and the purity of DNA, to other protocols now generally applied to environmental studies. The simplified and optimized method was used to quantify ammonia-oxidizing Archaea at different depth intervals in a fjord (Hood Canal) by quantitative PCR. The numbers of Archaea increased with depth, often constituting as much as 20% of the total bacterial community. PMID:20118363

  6. Spatial Interaction of Archaeal Ammonia-Oxidizers and Nitrite-Oxidizing Bacteria in an Unfertilized Grassland Soil.

    PubMed

    Stempfhuber, Barbara; Richter-Heitmann, Tim; Regan, Kathleen M; Kölbl, Angelika; Wüst, Pia K; Marhan, Sven; Sikorski, Johannes; Overmann, Jörg; Friedrich, Michael W; Kandeler, Ellen; Schloter, Michael

    2015-01-01

    Interrelated successive transformation steps of nitrification are performed by distinct microbial groups - the ammonia-oxidizers, comprising ammonia-oxidizing archaea (AOA) and bacteria (AOB), and nitrite-oxidizers such as Nitrobacter and Nitrospira, which are the dominant genera in the investigated soils. Hence, not only their presence and activity in the investigated habitat is required for nitrification, but also their temporal and spatial interactions. To demonstrate the interdependence of both groups and to address factors promoting putative niche differentiation within each group, temporal and spatial changes in nitrifying organisms were monitored in an unfertilized grassland site over an entire vegetation period at the plot scale of 10 m(2). Nitrifying organisms were assessed by measuring the abundance of marker genes (amoA for AOA and AOB, nxrA for Nitrobacter, 16S rRNA gene for Nitrospira) selected for the respective sub-processes. A positive correlation between numerically dominant AOA and Nitrospira, and their co-occurrence at the same spatial scale in August and October, suggests that the nitrification process is predominantly performed by these groups and is restricted to a limited timeframe. Amongst nitrite-oxidizers, niche differentiation was evident in observed seasonally varying patterns of co-occurrence and spatial separation. While their distributions were most likely driven by substrate concentrations, oxygen availability may also have played a role under substrate-limited conditions. Phylogenetic analysis revealed temporal shifts in Nitrospira community composition with an increasing relative abundance of OTU03 assigned to sublineage V from August onward, indicating its important role in nitrite oxidation. PMID:26834718

  7. Spatial Interaction of Archaeal Ammonia-Oxidizers and Nitrite-Oxidizing Bacteria in an Unfertilized Grassland Soil

    PubMed Central

    Stempfhuber, Barbara; Richter-Heitmann, Tim; Regan, Kathleen M.; Kölbl, Angelika; Wüst, Pia K.; Marhan, Sven; Sikorski, Johannes; Overmann, Jörg; Friedrich, Michael W.; Kandeler, Ellen; Schloter, Michael

    2016-01-01

    Interrelated successive transformation steps of nitrification are performed by distinct microbial groups – the ammonia-oxidizers, comprising ammonia-oxidizing archaea (AOA) and bacteria (AOB), and nitrite-oxidizers such as Nitrobacter and Nitrospira, which are the dominant genera in the investigated soils. Hence, not only their presence and activity in the investigated habitat is required for nitrification, but also their temporal and spatial interactions. To demonstrate the interdependence of both groups and to address factors promoting putative niche differentiation within each group, temporal and spatial changes in nitrifying organisms were monitored in an unfertilized grassland site over an entire vegetation period at the plot scale of 10 m2. Nitrifying organisms were assessed by measuring the abundance of marker genes (amoA for AOA and AOB, nxrA for Nitrobacter, 16S rRNA gene for Nitrospira) selected for the respective sub-processes. A positive correlation between numerically dominant AOA and Nitrospira, and their co-occurrence at the same spatial scale in August and October, suggests that the nitrification process is predominantly performed by these groups and is restricted to a limited timeframe. Amongst nitrite-oxidizers, niche differentiation was evident in observed seasonally varying patterns of co-occurrence and spatial separation. While their distributions were most likely driven by substrate concentrations, oxygen availability may also have played a role under substrate-limited conditions. Phylogenetic analysis revealed temporal shifts in Nitrospira community composition with an increasing relative abundance of OTU03 assigned to sublineage V from August onward, indicating its important role in nitrite oxidation. PMID:26834718

  8. Comparative in silico analysis of PCR primers suited for diagnostics and cloning of ammonia monooxygenase genes from ammonia-oxidizing bacteria.

    PubMed

    Junier, Pilar; Kim, Ok-Sun; Molina, Verónica; Limburg, Petra; Junier, Thomas; Imhoff, Johannes F; Witzel, Karl-Paul

    2008-04-01

    Over recent years, several PCR primers have been described to amplify genes encoding the structural subunits of ammonia monooxygenase (AMO) from ammonia-oxidizing bacteria (AOB). Most of them target amoA, while amoB and amoC have been neglected so far. This study compared the nucleotide sequence of 33 primers that have been used to amplify different regions of the amoCAB operon with alignments of all available sequences in public databases. The advantages and disadvantages of these primers are discussed based on the original description and the spectrum of matching sequences obtained. Additionally, new primers to amplify the almost complete amoCAB operon of AOB belonging to Betaproteobacteria (betaproteobacterial AOB), a primer pair for DGGE analysis of amoA and specific primers for gammaproteobacterial AOB, are also described. The specificity of these new primers was also evaluated using the databases of the sequences created during this study. PMID:18248438

  9. Effects of calcination temperature and acid-base properties on mixed potential ammonia sensors modified by metal oxides.

    PubMed

    Satsuma, Atsushi; Katagiri, Makoto; Kakimoto, Shiro; Sugaya, Satoshi; Shimizu, Kenichi

    2011-01-01

    Mixed potential sensors were fabriated using yttria-stabilized zirconia (YSZ) as a solid electrolyte and a mixture of Au and various metal oxides as a sensing electrode. The effects of calcination temperature ranging from 600 to 1,000 °C and acid-base properties of the metal oxides on the sensing properties were examined. The selective sensing of ammonia was achieved by modification of the sensing electrode using MoO(3), Bi(2)O(3) and V(2)O(5), while the use of WO(3,) Nb(2)O(5) and MgO was not effective. The melting points of the former group were below 820 °C, while those of the latter group were higher than 1,000 °C. Among the former group, the selective sensing of ammonia was strongly dependent on the calcination temperature, which was optimum around melting point of the corresponding metal oxides. The good spreading of the metal oxides on the electrode is suggested to be one of the important factors. In the former group, the relative response of ammonia to propene was in the order of MoO(3) > Bi(2)O(3) > V(2)O(5), which agreed well with the acidity of the metal oxides. The importance of the acidic properties of metal oxides for ammonia sensing was clarified.

  10. Effects of Calcination Temperature and Acid-Base Properties on Mixed Potential Ammonia Sensors Modified by Metal Oxides

    PubMed Central

    Satsuma, Atsushi; Katagiri, Makoto; Kakimoto, Shiro; Sugaya, Satoshi; Shimizu, Kenichi

    2011-01-01

    Mixed potential sensors were fabriated using yttria-stabilized zirconia (YSZ) as a solid electrolyte and a mixture of Au and various metal oxides as a sensing electrode. The effects of calcination temperature ranging from 600 to 1,000 °C and acid-base properties of the metal oxides on the sensing properties were examined. The selective sensing of ammonia was achieved by modification of the sensing electrode using MoO3, Bi2O3 and V2O5, while the use of WO3, Nb2O5 and MgO was not effective. The melting points of the former group were below 820 °C, while those of the latter group were higher than 1,000 °C. Among the former group, the selective sensing of ammonia was strongly dependent on the calcination temperature, which was optimum around melting point of the corresponding metal oxides. The good spreading of the metal oxides on the electrode is suggested to be one of the important factors. In the former group, the relative response of ammonia to propene was in the order of MoO3 > Bi2O3 > V2O5, which agreed well with the acidity of the metal oxides. The importance of the acidic properties of metal oxides for ammonia sensing was clarified. PMID:22319402

  11. A Stability Study of Ni/Yttria-Stabilized Zirconia Anode for Direct Ammonia Solid Oxide Fuel Cells.

    PubMed

    Yang, Jun; Molouk, Ahmed Fathi Salem; Okanishi, Takeou; Muroyama, Hiroki; Matsui, Toshiaki; Eguchi, Koichi

    2015-12-30

    In recent years, solid oxide fuel cells fueled with ammonia have been attracting intensive attention. In this work, ammonia fuel was supplied to the Ni/yttria-stabilized zirconia (YSZ) cermet anode at 600 and 700 °C, and the change of electrochemical performance and microstructure under the open-circuit state was studied in detail. The influence of ammonia exposure on the microstructure of Ni was also investigated by using Ni/YSZ powder and Ni film deposited on a YSZ disk. The obtained results demonstrated that Ni in the cermet anode was partially nitrided under an ammonia atmosphere, which considerably roughened the Ni surface. Moreover, the destruction of the anode support layer was confirmed for the anode-supported cell upon the temperature cycling test between 600 and 700 °C because of the nitriding phenomenon of Ni, resulting in severe performance degradation.

  12. Bacterial contribution to manganese oxidation in a deep coastal sediment

    NASA Astrophysics Data System (ADS)

    Edenborn, H. M.; Paquin, Y.; Chateauneuf, G.

    1985-12-01

    The characteristics of Mn(II) removal from sediment porewater and the potential role of manganese-oxidizing bacteria in this process were examined in sediments from a 335-m deep station in the Laurentian Trough of the St. Lawrence estuary. Manganese-oxidizing bacteria were most abundant in the thin layer of oxidized surface sediment, where Mn(II) removal rates were also fastest. The first-order rate constants for Mn(II) removal decreased from 1·2 × 10 3 day -1 to 6·6 day -1 over the first 30-mm depth. In experimental slurries, sediments removed Mn(II) from reduced zone porewater by a two-step process: a rapid saturation of Mn(II) binding sites was followed by a slower O 2-enhanced removal rate which paralleled the apparent rate of Mn(II) oxidation. Sodium azide and mercuric chloride were tested specifically for their usefulness as bacterial poisons in sediment slurry systems. Sodium azide interfered with Mn(II) removal at low concentrations and was not an effective poison. Mercuric chloride inhibited bacterial activity at concentrations far lower than those at which significant interference of Mn(II) removal occurred. The response of sediment slurries treated with mercuric chloride indicated that the initial oxidation of sorbed Mn(II) was not bacterially-mediated under the experimental conditions tested.

  13. Ammonia-oxidation as an engine to generate nitrous oxide in an intensively managed calcareous Fluvo-aquic soil

    PubMed Central

    Huang, Tao; Gao, Bing; Hu, Xiao-Kang; Lu, Xing; Well, Reinhard; Christie, Peter; Bakken, Lars R.; Ju, Xiao-Tang

    2014-01-01

    We combine field observations, microcosm, stoichiometry, and molecular and stable isotope techniques to quantify N2O generation processes in an intensively managed low carbon calcareous fluvo-aquic soil. All the evidence points to ammonia oxidation and linked nitrifier denitrification (ND) being the major processes generating N2O. When NH4+-based fertilizers are applied the soil will produce high N2O peaks which are inhibited almost completely by adding nitrification inhibitors. During ammonia oxidation with high NH4+ concentrations (>80 mg N kg−1) the soil matrix will actively consume oxygen and accumulate high concentrations of NO2−, leading to suboxic conditions inducing ND. Calculated N2O isotopomer data show that nitrification and ND accounted for 35–53% and 44–58% of total N2O emissions, respectively. We propose that slowing down nitrification and avoiding high ammonium concentrations in the soil matrix are important measures to reduce N2O emissions per unit of NH4+-based N input from this type of intensively managed soil globally. PMID:24492201

  14. [Diversity of ammonia-oxidizing archaea in Tibetan Zoige plateau wetland ].

    PubMed

    Zheng, Youkun; Wang, Xianbin; Gu, Yunfu; Zhang, Xiaoping

    2014-09-01

    [ OBJECTIVE ] Investigation of ammonia-oxidizing archaea (AOA) in nature environments is important to understand the global nitrogen cycling. However, little is known about the AOA community in plateau wetland. Therefore, we studied the composition and diversity of AOA in Zoige plateau wetland swamp soil. [METHODS] Total DNA was extracted from the swamp soil of three typical wetlands including A'xi pastoral area, Maixi pastoral area and Fenqu pastoral area locate in Zoige plateau wetland, and amoA gene was amplified with universally AOA amoA gene primers and then cloned. Then 80 positive clones for each clone library were chosen for further restriction fragment length polymorphism (RFLP) analysis, and the typical RFLP types were selected for sequencing and clustered into operational taxonomic units (OTUs) at 98% cutoff using the Mothur software. The MEGA 5. 0 software was used for the amoA gene phylogeny analysis. [RESULTS] A total of 240 positive clones for all 3 libraries were used for RFLP analysis, and 15 specific amoA sequences were sequenced and clustered into 7 OTUs at 98% cutoff. Among them, OTU6 was detected in all of the 3 libraries and included 27% of the total specific clones. The phylogeny analysis showed that the 15 amoA sequences were grouped into 3 subgroups consisted of Zoige Wetland Clade 1 (4 OTUs), Zoige Wetland Clade 2 (2 OTUs) and Zoige Wetland Clade 3 (1 OTU). BLAST analysis showed that all OTUs were affiliated with the phylum Crenarchaeota. Correlation analysis showed that the Shannon diversity index (H') was significantly correlated with ammonia, nitrate/nitrite (P <0. 05). [ CONCLUSION] AOA in the Zoige plateau wetland swamp soil are all belonged to the Crenarchaeota, and their diversity is significantly correlated with soil ammonia, nitrate/nitrite content. PMID:25522598

  15. Impact of free ammonia on anammox rates (anoxic ammonium oxidation) in a moving bed biofilm reactor.

    PubMed

    Jaroszynski, L W; Cicek, N; Sparling, R; Oleszkiewicz, J A

    2012-06-01

    Using a bench scale moving bed bioreactor (MBBR), the effect of free ammonia (FA, NH(3), the un-ionized form of ammonium NH(4)(+)) concentration on anoxic ammonium oxidation (anammox) was evaluated based on the volumetric nitrogen removal rate (NRR). Although, a detailed microbial analysis was not conducted, the major NRR observed was assumed to be by anammox, based on the nitrogen conversion ratios of nitrite to ammonium and nitrate to ammonium. Since the concentration of free ammonia as a proportion of the total ammonia concentration is pH-dependent, the impact of changing the operating pH from 6.9 to 8.2, was investigated under constant nitrogen loading conditions during continuous reactor operation. Furthermore, the effect of sudden nitrogen load changes was investigated under constant pH conditions. Batch tests were conducted to determine the immediate response of the anammox consortium to shifts in pH and FA concentrations. It was found that FA was inhibiting NRR at concentrations exceeding 2 mg N L(-1). In the pH range 7-8, the decrease in anammox activity was independent of pH and related only to the concentration of FA. Nitrite concentrations of up to 120 mg N L(-1) did not negatively affect NRR for up to 3.5 h. It was concluded that a stable NRR in a moving bed biofilm reactor depended on maintaining FA concentrations below 2 mg N L(-1) when the pH was maintained between 7 and 8.

  16. [Diversity of ammonia-oxidizing archaea in Tibetan Zoige plateau wetland ].

    PubMed

    Zheng, Youkun; Wang, Xianbin; Gu, Yunfu; Zhang, Xiaoping

    2014-09-01

    [ OBJECTIVE ] Investigation of ammonia-oxidizing archaea (AOA) in nature environments is important to understand the global nitrogen cycling. However, little is known about the AOA community in plateau wetland. Therefore, we studied the composition and diversity of AOA in Zoige plateau wetland swamp soil. [METHODS] Total DNA was extracted from the swamp soil of three typical wetlands including A'xi pastoral area, Maixi pastoral area and Fenqu pastoral area locate in Zoige plateau wetland, and amoA gene was amplified with universally AOA amoA gene primers and then cloned. Then 80 positive clones for each clone library were chosen for further restriction fragment length polymorphism (RFLP) analysis, and the typical RFLP types were selected for sequencing and clustered into operational taxonomic units (OTUs) at 98% cutoff using the Mothur software. The MEGA 5. 0 software was used for the amoA gene phylogeny analysis. [RESULTS] A total of 240 positive clones for all 3 libraries were used for RFLP analysis, and 15 specific amoA sequences were sequenced and clustered into 7 OTUs at 98% cutoff. Among them, OTU6 was detected in all of the 3 libraries and included 27% of the total specific clones. The phylogeny analysis showed that the 15 amoA sequences were grouped into 3 subgroups consisted of Zoige Wetland Clade 1 (4 OTUs), Zoige Wetland Clade 2 (2 OTUs) and Zoige Wetland Clade 3 (1 OTU). BLAST analysis showed that all OTUs were affiliated with the phylum Crenarchaeota. Correlation analysis showed that the Shannon diversity index (H') was significantly correlated with ammonia, nitrate/nitrite (P <0. 05). [ CONCLUSION] AOA in the Zoige plateau wetland swamp soil are all belonged to the Crenarchaeota, and their diversity is significantly correlated with soil ammonia, nitrate/nitrite content.

  17. [Inhibition of bacterial lypopolysaccharide-induced inflammation by oxidized lipids].

    PubMed

    Korotaeva, A A; Samokhodskaia, L M; Bochkov, V N

    2007-01-01

    Previous studies demonstrated that oxidized 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphorylcholine inhibits inflammatory effects of the bacterial lipopolisacharide (LPS, endotoxin). In this work we have characterized the anti-endotoxin activity of other classes of oxidized phospholipids with different polar head groups and fatty acid residues. LPS-induced expression of E-selectin on human endothelial cells was inhibited by oxidized phosphatidylcholine, phosphatidylserine, phosphatidylethanolamine, and phosphatidic acids. The anti-endotoxin effect insignificantly depended on the type of polyunsaturated fatty acids. Unoxidized phospholipids did not suppress effects of LPS. Thus, the anti-endotoxin activity of oxidized phospholipids crucially depends on the presence of oxidatively modified fatty acid residue. PMID:17436686

  18. Responses of aerobic and anaerobic ammonia/ammonium-oxidizing microorganisms to anthropogenic pollution in coastal marine environments.

    PubMed

    Cao, Huiluo; Li, Meng; Dang, Hongyue; Gu, Ji-Dong

    2011-01-01

    Up to date, numerous studies have shown that the community structure of aerobic ammonia oxidizers including ammonia-oxidizing Betaproteobacteria (Beta-AOB) and ammonia-oxidizing archaea (AOA) and, more recently, the anaerobic ammonium-oxidizing (anammox) bacteria is responsive to environmental conditions including salinity, pH, selected metal ions, concentrations of inorganic nitrogen, total phosphorus, the ratio of organic carbon and nitrogen, and sedimentological factors such as the sediment median grain size. Identification of these responses to known anthropogenic pollution is of particular interest to better understand the growth dynamics and activities of nitrogen transforming microorganisms in marine environments. This chapter discusses currently available methods including molecular ecological analysis using clone library constructions with specific molecular genetic markers for delineating community changes of Beta-AOB, AOA, and anammox bacteria. Using data on ammonia-oxidizing microbial community structures from Jiaozhou Bay in North China and three marine environments with anthropogenic pollution gradients in South China from coastal Mai Po Nature Reserve of Hong Kong to the South China Sea as examples, statistical analyses packages (DOTUR, UniFrac, and Canoco) are presented as useful tools to illustrate the relationship between changes in nitrogen metabolizing microbial communities and established environmental variables. PMID:21514459

  19. Responses of aerobic and anaerobic ammonia/ammonium-oxidizing microorganisms to anthropogenic pollution in coastal marine environments.

    PubMed

    Cao, Huiluo; Li, Meng; Dang, Hongyue; Gu, Ji-Dong

    2011-01-01

    Up to date, numerous studies have shown that the community structure of aerobic ammonia oxidizers including ammonia-oxidizing Betaproteobacteria (Beta-AOB) and ammonia-oxidizing archaea (AOA) and, more recently, the anaerobic ammonium-oxidizing (anammox) bacteria is responsive to environmental conditions including salinity, pH, selected metal ions, concentrations of inorganic nitrogen, total phosphorus, the ratio of organic carbon and nitrogen, and sedimentological factors such as the sediment median grain size. Identification of these responses to known anthropogenic pollution is of particular interest to better understand the growth dynamics and activities of nitrogen transforming microorganisms in marine environments. This chapter discusses currently available methods including molecular ecological analysis using clone library constructions with specific molecular genetic markers for delineating community changes of Beta-AOB, AOA, and anammox bacteria. Using data on ammonia-oxidizing microbial community structures from Jiaozhou Bay in North China and three marine environments with anthropogenic pollution gradients in South China from coastal Mai Po Nature Reserve of Hong Kong to the South China Sea as examples, statistical analyses packages (DOTUR, UniFrac, and Canoco) are presented as useful tools to illustrate the relationship between changes in nitrogen metabolizing microbial communities and established environmental variables.

  20. Competitive interactions between methane- and ammonia-oxidizing bacteria modulate carbon and nitrogen cycling in paddy soil

    NASA Astrophysics Data System (ADS)

    Zheng, Y.; Huang, R.; Wang, B. Z.; Bodelier, P. L. E.; Jia, Z. J.

    2014-06-01

    Pure culture studies have demonstrated that methanotrophs and ammonia oxidizers can both carry out the oxidation of methane and ammonia. However, the expected interactions resulting from these similarities are poorly understood, especially in complex, natural environments. Using DNA-based stable isotope probing and pyrosequencing of 16S rRNA and functional genes, we report on biogeochemical and molecular evidence for growth stimulation of methanotrophic communities by ammonium fertilization, and that methane modulates nitrogen cycling by competitive inhibition of nitrifying communities in a rice paddy soil. Pairwise comparison between microcosms amended with CH4, CH4+Urea, and Urea indicated that urea fertilization stimulated methane oxidation activity 6-fold during a 19-day incubation period, while ammonia oxidation activity was significantly suppressed in the presence of CH4. Pyrosequencing of the total 16S rRNA genes revealed that urea amendment resulted in rapid growth of Methylosarcina-like MOB, and nitrifying communities appeared to be partially inhibited by methane. High-throughput sequencing of the 13C-labeled DNA further revealed that methane amendment resulted in clear growth of Methylosarcina-related MOB while methane plus urea led to an equal increase in Methylosarcina and Methylobacter-related type Ia MOB, indicating the differential growth requirements of representatives of these genera. An increase in 13C assimilation by microorganisms related to methanol oxidizers clearly indicated carbon transfer from methane oxidation to other soil microbes, which was enhanced by urea addition. The active growth of type Ia methanotrops was significantly stimulated by urea amendment, and the pronounced growth of methanol-oxidizing bacteria occurred in CH4-treated microcosms only upon urea amendment. Methane addition partially inhibited the growth of Nitrosospira and Nitrosomonas in urea-amended microcosms, as well as growth of nitrite-oxidizing bacteria. These

  1. Formation of Graphene Oxide Nanocomposites from Carbon Dioxide Using Ammonia Borane

    PubMed Central

    Zhang, Junshe; Zhao, Yu; Guan, Xudong; Stark, Ruth E.; Akins, Daniel L.; Lee, Jae W.

    2012-01-01

    To efficiently recycle CO2 to economically viable products such as liquid fuels and carbon nanomaterials, the reactivity of CO2 is required to be fully understood. We have investigated the reaction of CO2 with ammonia borane (AB), both molecules being able to function as either an acid or a base, to obtain more insights into the amphoteric activity of CO2. In the present work, we demonstrate that CO2 can be converted to graphene oxide (GO) using AB at moderate conditions. The conversion consists of two consecutive steps: CO2 fixation (CO2 pressure < 3 MPa and temperature < 100 °C) and graphenization (600–750 °C under 0.1 MPa of N2). The first step generates a solid compound that contains methoxy (OCH3), formate (HCOO) and aliphatic groups while the second graphenization is the pyrolysis of the solid compound to produce graphene oxide-boron oxide nanocomposites, which have been confirmed by micro-Raman spectroscopy, solid state 13C and 11B magic angle spinning-nuclear magnetic resonance (MAS-NMR), transmission electron microscopy (TEM), and atomic force microscopy (AFM). Our observations also show that the mass of solid product in CO2 fixation process and raw graphene oxide nanocomposites is twice and 1.2 times that of AB initially charged, respectively. The formation of aliphatic groups without using metal-containing compounds at mild conditions is of great interest to the synthesis of various organic products starting from CO2. PMID:22337562

  2. Sediment Ammonia-Oxidizing Microorganisms in Two Plateau Freshwater Lakes at Different Trophic States.

    PubMed

    Yang, Yuyin; Zhang, Jingxu; Zhao, Qun; Zhou, Qiheng; Li, Ningning; Wang, Yilin; Xie, Shuguang; Liu, Yong

    2016-02-01

    Both ammonia-oxidizing archaea (AOA) and bacteria (AOB) can contribute to ammonia biotransformation in freshwater lake ecosystems. However, the factors shaping the distribution of sediment AOA and AOB in plateau freshwater lake remains unclear. The present study investigated sediment AOA and AOB communities in two freshwater lakes (hypertrophic Dianchi Lake and mesotrophic Erhai Lake) on the Yunnan Plateau (China). A remarkable difference in the abundance, diversity, and composition of sediment AOA and AOB communities was observed between Dianchi Lake and Erhai Lake. AOB usually outnumbered AOA in Dianchi Lake, but AOA showed the dominance in Erhai Lake. Organic matter (OM), total nitrogen (TN), and total phosphorus (TP) might be the key determinants of AOB abundance, while AOA abundance was likely influenced by the ration of OM to TN (C/N). AOA or AOB community structure was found to be relatively similar in the same lake. TN and TP might play important roles in shaping sediment AOA and AOB compositions in Dianchi Lake and Erhai Lake. Moreover, Nitrososphaera-like AOA were detected in Dianchi Lake. Nitrosospira- and Nitrosomonas-like AOB were dominant in Dianchi Lake and Erhai Lake, respectively. Sediment AOA and AOB communities in Dianchi Lake and Erhai Lake were generally regulated by trophic state. PMID:26111964

  3. Influence of Effluent Irrigation on Community Composition and Function of Ammonia-Oxidizing Bacteria in Soil

    PubMed Central

    Oved, Tamar; Shaviv, Avi; Goldrath, Tal; Mandelbaum, Raphi T.; Minz, Dror

    2001-01-01

    The effect of effluent irrigation on community composition and function of ammonia-oxidizing bacteria (AOB) in soil was evaluated, using techniques of molecular biology and analytical soil chemistry. Analyses were conducted on soil sampled from lysimeters and from a grapefruit orchard which had been irrigated with wastewater effluent or fertilizer-amended water (FAW). Specifically, comparisons of AOB community composition were conducted using denaturing gradient gel electrophoresis (DGGE) of PCR-amplified fragments of the gene encoding the α-subunit of the ammonia monooxygenase gene (amoA) recovered from soil samples and subsequent sequencing of relevant bands. A significant and consistent shift in the population composition of AOB was detected in soil irrigated with effluent. This shift was absent in soils irrigated with FAW, despite the fact that the ammonium concentration in the FAW was similar. At the end of the irrigation period, Nitrosospira-like populations were dominant in soils irrigated with FAW, while Nitrosomonas-like populations were dominant in effluent-irrigated soils. Furthermore, DGGE analysis of the amoA gene proved to be a powerful tool in evaluating the soil AOB community population and population shifts therein. PMID:11472914

  4. Atmospheric cycles of nitrogen oxides and ammonia. [source strengths and destruction rates

    NASA Technical Reports Server (NTRS)

    Bottger, A.; Ehhalt, D. H.; Gravenhorst, G.

    1981-01-01

    The atmospheric cycles of nitrogenous trace compounds for the Northern and Southern Hemispheres are discussed. Source strengths and destruction rates for the nitrogen oxides: NO, NO2 and HNO3 -(NOX) and ammonia (NH3) are given as a function of latitude over continents and oceans. The global amounts of NOX-N and NH3-N produced annually in the period 1950 to 1975 (34 + 5 x one trillion g NOx-N/yr and 29 + or - 6 x one trillion g NH3-N/yr) are much less than previously assumed. Globally, natural and anthropogenic emissions are of similar magnitude. The NOx emission from anthropogenic sources is 1.5 times that from natural processes in the Northern Hemisphere, whereas in the Southern Hemisphere, it is a factor of 3 or 4 less. More than 80% of atmospheric ammonia seems to be derived from excrements of domestic animals, mostly by bulk deposition: 24 + or - 9 x one trillion g NO3 -N/yr and 21 + or - 9 x one trillion g NH4+-N/yr. Another fraction may be removed by absorption on vegetation and soils.

  5. Sediment Ammonia-Oxidizing Microorganisms in Two Plateau Freshwater Lakes at Different Trophic States.

    PubMed

    Yang, Yuyin; Zhang, Jingxu; Zhao, Qun; Zhou, Qiheng; Li, Ningning; Wang, Yilin; Xie, Shuguang; Liu, Yong

    2016-02-01

    Both ammonia-oxidizing archaea (AOA) and bacteria (AOB) can contribute to ammonia biotransformation in freshwater lake ecosystems. However, the factors shaping the distribution of sediment AOA and AOB in plateau freshwater lake remains unclear. The present study investigated sediment AOA and AOB communities in two freshwater lakes (hypertrophic Dianchi Lake and mesotrophic Erhai Lake) on the Yunnan Plateau (China). A remarkable difference in the abundance, diversity, and composition of sediment AOA and AOB communities was observed between Dianchi Lake and Erhai Lake. AOB usually outnumbered AOA in Dianchi Lake, but AOA showed the dominance in Erhai Lake. Organic matter (OM), total nitrogen (TN), and total phosphorus (TP) might be the key determinants of AOB abundance, while AOA abundance was likely influenced by the ration of OM to TN (C/N). AOA or AOB community structure was found to be relatively similar in the same lake. TN and TP might play important roles in shaping sediment AOA and AOB compositions in Dianchi Lake and Erhai Lake. Moreover, Nitrososphaera-like AOA were detected in Dianchi Lake. Nitrosospira- and Nitrosomonas-like AOB were dominant in Dianchi Lake and Erhai Lake, respectively. Sediment AOA and AOB communities in Dianchi Lake and Erhai Lake were generally regulated by trophic state.

  6. Competitive interactions between methane- and ammonia-oxidizing bacteria modulate carbon and nitrogen cycling in paddy soil

    NASA Astrophysics Data System (ADS)

    Zheng, Y.; Huang, R.; Wang, B. Z.; Bodelier, P. L. E.; Jia, Z. J.

    2014-03-01

    Pure culture studies have demonstrated that methanotrophs and ammonia oxidizers can both carry out the oxidation of methane and ammonia. However, the expected interactions resulting from these similarities are poorly understood, especially in complex, natural environments. Using DNA-based stable isotope probing and pyrosequencing of 16S rRNA and pmoA genes, we report on biogeochemical and molecular evidence for growth stimulation of methanotrophic communities by ammonium fertilization, and that methane modulates nitrogen cycling by competitive inhibition of nitrifying communities in a rice paddy soil. Pairwise comparison between microcosms amended with CH4, CH4+Urea, and Urea indicated that urea fertilization stimulated methane oxidation activity by 6-fold during a 19 day incubation period, while ammonia oxidation activity was significantly inhibited in the presence of CH4. Pyrosequencing of the total 16S rRNA genes revealed that urea amendment resulted in rapid growth of Methylosarcina-like type Ia MOB, and nitrifying communities appeared to be suppressed by methane. High-throughput sequencing of the 13C-labeled DNA further revealed that methane amendment resulted in clear growth of Methylosarcina-related MOB while methane plus urea led to equal increase in Methylosarcina and Methylobacter-related MOB, indicating the differential growth requirements of representatives of these genera. Strikingly, type Ib MOB did not respond to methane nor to urea. Increase in 13C-assimilation by microorganisms related to methanol oxidizers clearly indicated carbon transfer from methane oxidation to other soil microbes, which was enhanced by urea addition. The active growth of type Ia methanotrops was significantly stimulated by urea amendment, and the pronounced growth of methanol-oxidizing bacteria occurred in CH4-treated microcosms only upon urea amendment. Methane addition inhibited the growth of Nitrosospira and Nitrosomonas in urea-amended microcosms, in addition of nitrite-oxidizing

  7. Archaeal Ammonia Oxidizers Dominate in Numbers, but Bacteria Drive Gross Nitrification in N-amended Grassland Soil.

    PubMed

    Sterngren, Anna E; Hallin, Sara; Bengtson, Per

    2015-01-01

    Both ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) play an important role in nitrification in terrestrial environments. Most often AOA outnumber AOB, but the relative contribution of AOA and AOB to nitrification rates remains unclear. The aim of this experiment was to test the hypotheses that high nitrogen availability would favor AOB and result in high gross nitrification rates, while high carbon availability would result in low nitrogen concentrations that favor the activity of AOA. The hypotheses were tested in a microcosm experiment where sugars, ammonium, or amino acids were added regularly to a grassland soil for a period of 33 days. The abundance of amoA genes from AOB increased markedly in treatments that received nitrogen, suggesting that AOB were the main ammonia oxidizers here. However, AOB could not account for the entire ammonia oxidation activity observed in treatments where the soil was deficient in available nitrogen. The findings suggest that AOA are important drivers of nitrification under nitrogen-poor conditions, but that input of easily available nitrogen results in increased abundance, activity, and relative importance of AOB for gross nitrification in grassland soil.

  8. Biotransformation of pharmaceuticals by ammonia oxidizing bacteria in wastewater treatment processes.

    PubMed

    Xu, Yifeng; Yuan, Zhiguo; Ni, Bing-Jie

    2016-10-01

    Pharmaceutical residues could potentially pose detrimental effects on aquatic ecosystems and human health, with wastewater treatment being one of the major pathways for pharmaceuticals to enter into the environment. Enhanced removal of pharmaceuticals by ammonia oxidizing bacteria (AOB) has been widely observed in wastewater treatment processes. This article reviews the current knowledge on the biotransformation of pharmaceuticals by AOB. The relationship between the pharmaceuticals removal and nitrification process was revealed. The important role of AOB-induced cometabolism on the biotransformation of pharmaceuticals as well as their transformation products and pathways was elucidated. Kinetics and mathematical models describing the biotransformation of pharmaceuticals by AOB were also reviewed. The results highlighted the high degradation capabilities of AOB toward some refractory pharmaceuticals, with their degradations being clearly related to the nitrification rate and their transformation products being identified, which may exhibit similar or higher ecotoxicological impacts compared to the parent compound. PMID:27243932

  9. Complete genome of Nitrosospira briensis C-128, an ammonia-oxidizing bacterium from agricultural soil.

    PubMed

    Rice, Marlen C; Norton, Jeanette M; Valois, Frederica; Bollmann, Annette; Bottomley, Peter J; Klotz, Martin G; Laanbroek, Hendrikus J; Suwa, Yuichi; Stein, Lisa Y; Sayavedra-Soto, Luis; Woyke, Tanja; Shapiro, Nicole; Goodwin, Lynne A; Huntemann, Marcel; Clum, Alicia; Pillay, Manoj; Kyrpides, Nikos; Varghese, Neha; Mikhailova, Natalia; Markowitz, Victor; Palaniappan, Krishna; Ivanova, Natalia; Stamatis, Dimitrios; Reddy, T B K; Ngan, Chew Yee; Daum, Chris

    2016-01-01

    Nitrosospira briensis C-128 is an ammonia-oxidizing bacterium isolated from an acid agricultural soil. N. briensis C-128 was sequenced with PacBio RS technologies at the DOE-Joint Genome Institute through their Community Science Program (2010). The high-quality finished genome contains one chromosome of 3.21 Mb and no plasmids. We identified 3073 gene models, 3018 of which are protein coding. The two-way average nucleotide identity between the chromosomes of Nitrosospira multiformis ATCC 25196 and Nitrosospira briensis C-128 was found to be 77.2 %. Multiple copies of modules encoding chemolithotrophic metabolism were identified in their genomic context. The gene inventory supports chemolithotrophic metabolism with implications for function in soil environments. PMID:27471578

  10. Turnover of bacterial glutamine synthetase: oxidative inactivation precedes proteolysis.

    PubMed

    Levine, R L; Oliver, C N; Fulks, R M; Stadtman, E R

    1981-04-01

    We partially purified a preparation from Escherichia coli that proteolytically degrades the enzyme glutamine synthetase [L-glutamate:ammonia ligase (ADP-forming), EC 6.3.1.2]. The degradation is at least a two-step process. First, the glutamine synthetase undergoes an oxidative modification. This modification leads to loss of catalytic activity and also renders the protein susceptible to proteolytic attack in the second step. The oxidative step displays characteristics of a mixed-function oxidation, requiring both molecular oxygen and a reduced nucleotide. This step can also be catalyzed by a purified, mammalian cytochrome P-450 system, as well as by a model system consisting of ascorbic acid and oxygen. Catalase blocks this oxidative modification step. Thus, the overall process of proteolytic degradation can be observed only if care is taken to remove catalase activity from the extracts. The inactivation reaction is dependent on the state of adenylylation of the glutamine synthetase, suggesting that this a physiologically important reaction. If so, then mixed-function oxidases are now implicated in the process of intracellular protein turnover.

  11. Turnover of bacterial glutamine synthetase: oxidative inactivation precedes proteolysis.

    PubMed Central

    Levine, R L; Oliver, C N; Fulks, R M; Stadtman, E R

    1981-01-01

    We partially purified a preparation from Escherichia coli that proteolytically degrades the enzyme glutamine synthetase [L-glutamate:ammonia ligase (ADP-forming), EC 6.3.1.2]. The degradation is at least a two-step process. First, the glutamine synthetase undergoes an oxidative modification. This modification leads to loss of catalytic activity and also renders the protein susceptible to proteolytic attack in the second step. The oxidative step displays characteristics of a mixed-function oxidation, requiring both molecular oxygen and a reduced nucleotide. This step can also be catalyzed by a purified, mammalian cytochrome P-450 system, as well as by a model system consisting of ascorbic acid and oxygen. Catalase blocks this oxidative modification step. Thus, the overall process of proteolytic degradation can be observed only if care is taken to remove catalase activity from the extracts. The inactivation reaction is dependent on the state of adenylylation of the glutamine synthetase, suggesting that this a physiologically important reaction. If so, then mixed-function oxidases are now implicated in the process of intracellular protein turnover. Images PMID:6113590

  12. Biological Oxidation of Ammonia and Arsenic in Pilot-scale Rapid Sand Filters

    EPA Science Inventory

    The removal of ammonia from source water entering a drinking water distribution system is desirable, as excess levels have been correlated with nitrification, chlorine demand, corrosion, and biological re-growth. Several technologies exist to remove ammonia with recent interest...

  13. Temporal and spatial distributions of ammonia-oxidizing archaea and bacteria and their ratio as an indicator of oligotrophic conditions in natural wetlands.

    PubMed

    Sims, Atreyee; Horton, John; Gajaraj, Shashikanth; McIntosh, Steve; Miles, Randall J; Mueller, Ryan; Reed, Robert; Hu, Zhiqiang

    2012-09-01

    Ammonia-oxidizing organisms play an important role in wetland water purification and nitrogen cycling. We determined soil nitrification rates and investigated the seasonal and spatial distributions of ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) in three freshwater wetlands by using specific primers targeting the amoA genes of AOA and AOB and real-time quantitative polymerase chain reaction (qPCR). The nitrifying potentials of wetland soils ranged from 1.4 to 4.0 μg g(-1) day(-1). The specific rates of ammonia oxidation activity by AOA and AOB at the Bee Hollow wetlands were 1.9 fmol NH(3) cell(-1) day(-1) and 36.8 fmol NH(3) cell(-1) day(-1), respectively. Soil nitrification potential was positively correlated with both archaeal and bacterial amoA abundance. However, the gene copies of AOA amoA were higher than those of AOB amoA by at least an order of magnitude in wetland soils and water in both summer and winter over a three year study period. AOB were more sensitive to low temperature than AOA. The amoA gene copy ratios of AOA to AOB in top soils (0-10 cm) ranged from 19 ± 4 to 100 ± 11 among the wetland sites. In contrast, the ratio of the wetland boundary soil was 10 ± 2, which was significantly lower than that of the wetland soils (P < 0.001). The NH(4)(+)-N concentrations in wetland water were lower than 2 mg/L throughout the study. The results suggest that ammonium concentration is a major factor influencing AOA and AOB population in wetlands, although other factors such as temperature, dissolved oxygen, and soil organic matter are involved. AOA are more persistent and more abundant than AOB in the nutrient-depleted oligotrophic wetlands. Therefore, ratio of AOA amoA gene copies to AOB amoA gene copies may serve as a new biological indicator for wetland condition assessment and wetland restoration applications.

  14. pH regulates ammonia-oxidizing bacteria and archaea in paddy soils in Southern China.

    PubMed

    Li, Hu; Weng, Bo-Sen; Huang, Fu-Yi; Su, Jian-Qiang; Yang, Xiao-Ru

    2015-07-01

    Ammonia-oxidizing archaea (AOA) and bacteria (AOB) play important roles in nitrogen cycling. However, the effects of environmental factors on the activity, abundance, and diversity of AOA and AOB and the relative contributions of these two groups to nitrification in paddy soils are not well explained. In this study, potential nitrification activity (PNA), abundance, and diversity of amoA genes from 12 paddy soils in Southern China were determined by potential nitrification assay, quantitative PCR, and cloning. The results showed that PNA was highly variable between paddy soils, ranging from 4.05 ± 0.21 to 9.81 ± 1.09 mg NOx-N kg(-1) dry soil day(-1), and no significant correlation with soil parameters was found. The abundance of AOA was predominant over AOB, indicating that AOA may be the major members in aerobic ammonia oxidation in these paddy soils. Community compositions of AOA and AOB were highly variable among samples, but the variations were best explained by pH. AOA sequences were affiliated to the Nitrosopumilus cluster and Nitrososphaera cluster, and AOB were classified into the lineages of Nitrosospira and Nitrosomonas, with Nitrosospira being predominant over Nitrosomonas, accounting for 83.6 % of the AOB community. Moreover, the majority of Nitrosomonas was determined in neutral soils. Canonical correspondence analysis (CCA) analysis further demonstrated that AOA and AOB community structures were significantly affected by pH, soil total organic carbon, total nitrogen, and C/N ratio, suggesting that these factors exert strong effects on the distribution of AOB and AOA in paddy soils in Southern China. In conclusion, our results imply that soil pH was a key explanatory variable for both AOA and AOB community structure and nitrification activity.

  15. Differential contributions of archaeal ammonia oxidizer ecotypes to nitrification in coastal surface waters

    PubMed Central

    Smith, Jason M; Casciotti, Karen L; Chavez, Francisco P; Francis, Christopher A

    2014-01-01

    The occurrence of nitrification in the oceanic water column has implications extending from local effects on the structure and activity of phytoplankton communities to broader impacts on the speciation of nitrogenous nutrients and production of nitrous oxide. The ammonia-oxidizing archaea, responsible for carrying out the majority of nitrification in the sea, are present in the marine water column as two taxonomically distinct groups. Water column group A (WCA) organisms are detected at all depths, whereas Water column group B (WCB) are present primarily below the photic zone. An open question in marine biogeochemistry is whether the taxonomic definition of WCA and WCB organisms and their observed distributions correspond to distinct ecological and biogeochemical niches. We used the natural gradients in physicochemical and biological properties that upwelling establishes in surface waters to study their roles in nitrification, and how their activity—ascertained from quantification of ecotype-specific ammonia monooxygenase (amoA) genes and transcripts—varies in response to environmental fluctuations. Our results indicate a role for both ecotypes in nitrification in Monterey Bay surface waters. However, their respective contributions vary, due to their different sensitivities to surface water conditions. WCA organisms exhibited a remarkably consistent level of activity and their contribution to nitrification appears to be related to community size. WCB activity was less consistent and primarily constrained to colder, high nutrient and low chlorophyll waters. Overall, the results of our characterization yielded a strong, potentially predictive, relationship between archaeal amoA gene abundance and the rate of nitrification. PMID:24553472

  16. Temperature and moisture effects on ammonia oxidizer communities in cryoturbated Arctic soils

    NASA Astrophysics Data System (ADS)

    Aiglsdorfer, Stefanie; Alves, Ricardo J. E.; Bárta, Jiří; Kohoutová, Iva; Bošková, Hana; Diáková, Katerina; Čapek, Petr; Schnecker, Jörg; Wild, Birgit; Mooshammer, Maria; Urich, Tim; Gentsch, Norman; Gittel, Antje; Guggenberger, Georg; Mikutta, Robert; Lashchinskiy, Nikolay; Richter, Andreas; Šantrůčková, Hana; Shibistova, Olga; Schleper, Christa

    2014-05-01

    Arctic permafrost-affected soils contain large amounts of soil organic carbon (SOC) and are expected to experience drastic changes in environmental conditions, such as moisture and temperature, due to the high surface temperature increase predicted for these regions. Although the SOC decomposition processes driven by the microbiota are considered to be nitrogen (N) limited, little information about the microbial groups involved in N cycle is currently available, including their reactions to environmental changes. Here, we investigate the presence of ammonia oxidizing archaea (AOA) and bacteria (AOB) in distinct soil horizons from the Taymyr peninsula (Siberia, Russia), and investigate their activities under changing temperature and moisture regimes. These two groups of organisms perform the first step in nitrification, an important and rate limiting process in the global N cycle, which involves the oxidation of ammonia to nitrate via nitrite. The soil samples were separated into different horizons: organic topsoil (O) and subducted organic topsoil (Ajj). The samples were incubated for 18 weeks at 4, 12 and 20° C and 50, 80 and 100 % water holding capacity (WHC). AOA and AOB abundances were quantified by quantitative PCR targeting genes of the key metabolic enzyme, ammonia monooxygenase. AOA diversity was analyzed in-depth by high-throughput amplicon sequencing of the same gene. Additionally, gross and net nitrification and mineralization rates were determined in order to investigate potential relationships between AOA and AOB populations and these processes, in response to the incubation treatments. We found higher abundances of AOA than AOB in the organic topsoil, whereas AOB dominated in the subducted organic topsoil. Increased temperature resulted in higher numbers of both groups at low WHC %, with AOB showing a more pronounced response. However, these effects were not observed under anaerobic conditions (100 % WHC). Deep sequencing of AOA amoA genes revealed

  17. Community structure and abundance of ammonia-oxidizing archaea and bacteria after conversion from soybean to rice paddy in albic soils of Northeast China.

    PubMed

    Wang, Jing; Wang, Weidong; Gu, Ji-Dong

    2014-03-01

    Community composition of ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) in the albic soil grown with soybean and rice for different years was investigated by construction of clone libraries, denaturing gradient gel electrophoresis (DGGE), and quantitative polymerase chain reaction (q-PCR) by PCR amplification of the ammonia monooxygenase subunit A (amoA) gene. Soil samples were collected at two layers (0-5 and 20-25 cm) from a soybean field and four rice paddy fields with 1, 5, 9, and 17 years of continuous rice cultivation. Both the community structures and abundances of AOA and AOB showed detectable changes after conversion from soybean to rice paddy judged by clone library, DGGE, and q-PCR analyses. In general, the archaeal amoA gene abundance increased after conversion to rice cultivation, while bacterial amoA gene abundance decreased. The abundances of both AOA and AOB were higher in the surface layer than the bottom one in the soybean field, but a reverse trend was observed for AOB in all paddy samples regardless of the duration of paddy cultivation. Phylogenetic analysis identified nine subclusters of AOA and seven subclusters of AOB. Community composition of both AOA and AOB was correlated with available ammonium and increased pH value caused by flooding in multiple variance analysis. Community shift of AOB was also observed in different paddy fields, but the two layers did not show any detectable changes in DGGE analysis. Conversion from soybean to rice cultivation changed the community structure and abundance of AOA and AOB in albic agricultural soil, which requires that necessary cultivation practice be followed to manage the N utilization more effectively. PMID:24092004

  18. Abundance and diversity of ammonia-oxidizing bacteria in relation to ammonium in a chinese shallow eutrophic urban lake

    PubMed Central

    Qiu, Shanlian; Chen, Guoyuan; Zhou, Yiyong

    2010-01-01

    The measures of most-probable-number and restriction fragment length polymorphism analysis were used to analyze the abundance and diversity of ammonia-oxidizing bacteria in sediment of a Chinese shallow eutrophic urban lake (Lake Yuehu). Among the 5 sampling sites, ammonia concentration in interstitial water was positively proportional not only to the content of organic matter, but also to ammonia-oxidizing bacteria numbers (at a magnitude of 105 cells g-1 dry weight) in sediment significantly. Furthermore, the diversity of ammonia-oxidizing bacteria were determined by means of PCR primers targeting the amoA gene with five gene libraries created and restriction pattern analysis. The 13 restriction patterns were recorded with 4 ones being common among all sampling sites. The 8 restriction patterns including 4 unique ones were found at the site with the highest NH4+ concentrations in interstitial water, while, there were only common patterns without unique ones at the site with the lowest NH4+ concentrations in interstitial water. Phylogenetic analysis showed that the amoA fragments retrieved belong to Nitrosomonas oligotropha & ureae lineage, N. europaea lineage, N. communis lineage and Nitrosospira lineage, most of which were affiliated with the genus Nitrosomonas. The N. oligotropha & ureae-like bacteria were the dominant species. Thus, the abundance and diversity of sediment AOB is closely linked to ammonium status in eutrophic lakes. PMID:24031484

  19. The ecological dichotomy of ammonia-oxidizing archaea and bacteria in the hyper-arid soils of the Antarctic Dry Valleys

    PubMed Central

    Magalhães, Catarina M.; Machado, Ana; Frank-Fahle, Béatrice; Lee, Charles K.; Cary, S. Craig

    2014-01-01

    The McMurdo Dry Valleys of Antarctica are considered to be one of the most physically and chemically extreme terrestrial environments on the Earth. However, little is known about the organisms involved in nitrogen transformations in these environments. In this study, we investigated the diversity and abundance of ammonia-oxidizing archaea (AOA) and bacteria (AOB) in four McMurdo Dry Valleys with highly variable soil geochemical properties and climatic conditions: Miers Valley, Upper Wright Valley, Beacon Valley and Battleship Promontory. The bacterial communities of these four Dry Valleys have been examined previously, and the results suggested that the extremely localized bacterial diversities are likely driven by the disparate physicochemical conditions associated with these locations. Here we showed that AOB and AOA amoA gene diversity was generally low; only four AOA and three AOB operational taxonomic units (OTUs) were identified from a total of 420 AOA and AOB amoA clones. Quantitative PCR analysis of amoA genes revealed clear differences in the relative abundances of AOA and AOB amoA genes among samples from the four dry valleys. Although AOB amoA gene dominated the ammonia-oxidizing community in soils from Miers Valley and Battleship Promontory, AOA amoA gene were more abundant in samples from Upper Wright and Beacon Valleys, where the environmental conditions are considerably harsher (e.g., extremely low soil C/N ratios and much higher soil electrical conductivity). Correlations between environmental variables and amoA genes copy numbers, as examined by redundancy analysis (RDA), revealed that higher AOA/AOB ratios were closely related to soils with high salts and Cu contents and low pH. Our findings hint at a dichotomized distribution of AOA and AOB within the Dry Valleys, potentially driven by environmental constraints. PMID:25324835

  20. The ecological dichotomy of ammonia-oxidizing archaea and bacteria in the hyper-arid soils of the Antarctic Dry Valleys.

    PubMed

    Magalhães, Catarina M; Machado, Ana; Frank-Fahle, Béatrice; Lee, Charles K; Cary, S Craig

    2014-01-01

    The McMurdo Dry Valleys of Antarctica are considered to be one of the most physically and chemically extreme terrestrial environments on the Earth. However, little is known about the organisms involved in nitrogen transformations in these environments. In this study, we investigated the diversity and abundance of ammonia-oxidizing archaea (AOA) and bacteria (AOB) in four McMurdo Dry Valleys with highly variable soil geochemical properties and climatic conditions: Miers Valley, Upper Wright Valley, Beacon Valley and Battleship Promontory. The bacterial communities of these four Dry Valleys have been examined previously, and the results suggested that the extremely localized bacterial diversities are likely driven by the disparate physicochemical conditions associated with these locations. Here we showed that AOB and AOA amoA gene diversity was generally low; only four AOA and three AOB operational taxonomic units (OTUs) were identified from a total of 420 AOA and AOB amoA clones. Quantitative PCR analysis of amoA genes revealed clear differences in the relative abundances of AOA and AOB amoA genes among samples from the four dry valleys. Although AOB amoA gene dominated the ammonia-oxidizing community in soils from Miers Valley and Battleship Promontory, AOA amoA gene were more abundant in samples from Upper Wright and Beacon Valleys, where the environmental conditions are considerably harsher (e.g., extremely low soil C/N ratios and much higher soil electrical conductivity). Correlations between environmental variables and amoA genes copy numbers, as examined by redundancy analysis (RDA), revealed that higher AOA/AOB ratios were closely related to soils with high salts and Cu contents and low pH. Our findings hint at a dichotomized distribution of AOA and AOB within the Dry Valleys, potentially driven by environmental constraints.

  1. Substrate Type and Free Ammonia Determine Bacterial Community Structure in Full-Scale Mesophilic Anaerobic Digesters Treating Cattle or Swine Manure

    PubMed Central

    Li, Jiabao; Rui, Junpeng; Yao, Minjie; Zhang, Shiheng; Yan, Xuefeng; Wang, Yuanpeng; Yan, Zhiying; Li, Xiangzhen

    2015-01-01

    The microbial-mediated anaerobic digestion (AD) process represents an efficient biological process for the treatment of organic waste along with biogas harvest. Currently, the key factors structuring bacterial communities and the potential core and unique bacterial populations in manure anaerobic digesters are not completely elucidated yet. In this study, we collected sludge samples from 20 full-scale anaerobic digesters treating cattle or swine manure, and investigated the variations of bacterial community compositions using high-throughput 16S rRNA amplicon sequencing. Clustering and correlation analysis suggested that substrate type and free ammonia (FA) play key roles in determining the bacterial community structure. The COD: NH4+-N (C:N) ratio of substrate and FA were the most important available operational parameters correlating to the bacterial communities in cattle and swine manure digesters, respectively. The bacterial populations in all of the digesters were dominated by phylum Firmicutes, followed by Bacteroidetes, Proteobacteria and Chloroflexi. Increased FA content selected Firmicutes, suggesting that they probably play more important roles under high FA content. Syntrophic metabolism by Proteobacteria, Chloroflexi, Synergistetes and Planctomycetes are likely inhibited when FA content is high. Despite the different manure substrates, operational conditions and geographical locations of digesters, core bacterial communities were identified. The core communities were best characterized by phylum Firmicutes, wherein Clostridium predominated overwhelmingly. Substrate-unique and abundant communities may reflect the properties of manure substrate and operational conditions. These findings extend our current understanding of the bacterial assembly in full-scale manure anaerobic digesters. PMID:26648921

  2. Substrate Type and Free Ammonia Determine Bacterial Community Structure in Full-Scale Mesophilic Anaerobic Digesters Treating Cattle or Swine Manure.

    PubMed

    Li, Jiabao; Rui, Junpeng; Yao, Minjie; Zhang, Shiheng; Yan, Xuefeng; Wang, Yuanpeng; Yan, Zhiying; Li, Xiangzhen

    2015-01-01

    The microbial-mediated anaerobic digestion (AD) process represents an efficient biological process for the treatment of organic waste along with biogas harvest. Currently, the key factors structuring bacterial communities and the potential core and unique bacterial populations in manure anaerobic digesters are not completely elucidated yet. In this study, we collected sludge samples from 20 full-scale anaerobic digesters treating cattle or swine manure, and investigated the variations of bacterial community compositions using high-throughput 16S rRNA amplicon sequencing. Clustering and correlation analysis suggested that substrate type and free ammonia (FA) play key roles in determining the bacterial community structure. The COD: [Formula: see text] (C:N) ratio of substrate and FA were the most important available operational parameters correlating to the bacterial communities in cattle and swine manure digesters, respectively. The bacterial populations in all of the digesters were dominated by phylum Firmicutes, followed by Bacteroidetes, Proteobacteria and Chloroflexi. Increased FA content selected Firmicutes, suggesting that they probably play more important roles under high FA content. Syntrophic metabolism by Proteobacteria, Chloroflexi, Synergistetes and Planctomycetes are likely inhibited when FA content is high. Despite the different manure substrates, operational conditions and geographical locations of digesters, core bacterial communities were identified. The core communities were best characterized by phylum Firmicutes, wherein Clostridium predominated overwhelmingly. Substrate-unique and abundant communities may reflect the properties of manure substrate and operational conditions. These findings extend our current understanding of the bacterial assembly in full-scale manure anaerobic digesters.

  3. Dynamics of ultrathin V-oxide layers on Rh(111) in catalytic oxidation of ammonia and CO.

    PubMed

    von Boehn, B; Preiss, A; Imbihl, R

    2016-07-20

    Catalytic oxidation of ammonia and CO has been studied in the 10(-4) mbar range using a catalyst prepared by depositing ultra-thin vanadium oxide layers on Rh(111) (θV ≈ 0.2 MLE). Using photoemission electron microscopy (PEEM) as a spatially resolving method, we observe that upon heating in an atmosphere of NH3 and O2 the spatial homogeneity of the VOx layer is removed at 800 K and a pattern consisting of macroscopic stripes develops; at elevated temperatures this pattern transforms into a pattern of circular VOx islands. Under reaction conditions the neighboring VOx islands become attracted by each other and coalesce. Similar processes of pattern formation and island coalescence are observed in catalytic CO oxidation. Reoxidation of the reduced VOx catalyst proceeds via surface diffusion of oxygen adsorbed onto Rh(111). A pattern consisting of macroscopic circular VOx islands can also be obtained by heating a Rh(111)/VOx catalyst in pure O2. PMID:27380822

  4. The distribution and relative abundance of ammonia-oxidizing bacteria in lakes of the McMurdo Dry Valley, Antarctica

    USGS Publications Warehouse

    Voytek, M.A.; Priscu, J.C.; Ward, B.B.

    1999-01-01

    Marked differences in the concentrations of major ions and cations, macronutrient chemistry and general trophic status exist among the lakes of the McMurdo dry valleys in Antarctica. These differences have been attributed to both variations in stream inputs and in situ lake processes (Priscu, 1995; Lizotte et al., 1996, Spigel and Priscu, 1996). This study examines the role of nitrifying bacteria in nitrogen transformations in these lakes. Applying two polymerase chain reaction (PCR) assays targeting the 16S rRNA genes of ammonia-oxidizing bacteria and the active site of the ammonia monooxygenase gene (amoA), the distribution of ammonia-oxidizers was examined in six Antarctic lakes: Lake Bonney, Lake Hoare, Lake Fryxell and Lake Joyce in the Taylor Valley, Lake Miers in the the Miers Valley and Lake Vanda in the Wright Valley. Using a two stage amplification procedure, ammonia-oxidizers from both the beta and gamma- subclasses of the Proteobacteria were detected and their relative abundances were determined in samples collected from all sites. Ammonia-oxidizers were detected in all lakes sampled. Members of the gamma subclass were only present in the saline lakes. In general, nitrifiers were most abundant at depths above the pycnocline and were usually associated with lower concentrations of NH4 and elevated concentrations of NO3 or NO2. The distribution of nitrifiers suggests that the primary N2O peak observed in most of the lakes was produced via nitrification. Preliminary data on the rate of nitrification (Priscu et al., 1996) support the occurrence of nitrification and the presence of nitrifiers at the depth intervals where nitrifiers were detected. In all lakes, except Lake Miers, the data indicate that nitrifying bacteria have an important role in the vertical distribution of nitrogen compounds in these systems.

  5. Abundance, Composition and Activity of Ammonia Oxidizer and Denitrifier Communities in Metal Polluted Rice Paddies from South China

    PubMed Central

    Liu, Yuan; Liu, Yongzhuo; Ding, Yuanjun; Zheng, Jinwei; Zhou, Tong; Pan, Genxing; Crowley, David; Li, Lianqing; Zheng, Jufeng; Zhang, Xuhui; Yu, Xinyan; Wang, Jiafang

    2014-01-01

    While microbial nitrogen transformations in soils had been known to be affected by heavy metal pollution, changes in abundance and community structure of the mediating microbial populations had been not yet well characterized in polluted rice soils. Here, by using the prevailing molecular fingerprinting and enzyme activity assays and comparisons to adjacent non-polluted soils, we examined changes in the abundance and activity of ammonia oxidizing and denitrifying communities of rice paddies in two sites with different metal accumulation situation under long-term pollution from metal mining and smelter activities. Potential nitrifying activity was significantly reduced in polluted paddies in both sites while potential denitrifying activity reduced only in the soils with high Cu accumulation up to 1300 mg kg−1. Copy numbers of amoA (AOA and AOB genes) were lower in both polluted paddies, following the trend with the enzyme assays, whereas that of nirK was not significantly affected. Analysis of the DGGE profiles revealed a shift in the community structure of AOA, and to a lesser extent, differences in the community structure of AOB and denitrifier between soils from the two sites with different pollution intensity and metal composition. All of the retrieved AOB sequences belonged to the genus Nitrosospira, among which species Cluster 4 appeared more sensitive to metal pollution. In contrast, nirK genes were widely distributed among different bacterial genera that were represented differentially between the polluted and unpolluted paddies. This could suggest either a possible non-specific target of the primers conventionally used in soil study or complex interactions between soil properties and metal contents on the observed community and activity changes, and thus on the N transformation in the polluted rice soils. PMID:25058658

  6. Ammonia, methane, and nitrous oxide emission from pig slurry applied to a pasture in New Zealand.

    PubMed

    Sherlock, Robert R; Sommer, Sven G; Khan, Rehmat Z; Wood, C Wesley; Guertal, Elizabeth A; Freney, John R; Dawson, Christopher O; Cameron, Keith C

    2002-01-01

    Much animal manure is being applied to small land areas close to animal confinements, resulting in environmental degradation. This paper reports a study on the emissions of ammonia (NH3), methane (CH4), and nitrous oxide (N2O) from a pasture during a 90-d period after pig slurry application (60 m3 ha-1) to the soil surface. The pig slurry contained 6.1 kg total N m-3, 4.2 kg of total ammoniacal nitrogen (TAN = NH3 + NH4) m-3, and 22.1 kg C m-3, and had a pH of 8.14. Ammonia was lost at a fast rate immediately after slurry application (4.7 kg N ha-1 h-1), when the pH and TAN concentration of the surface soil were high, but the loss rate declined quickly thereafter. Total NH3 losses from the treated pasture were 57 kg N ha-1 (22.5% of the TAN applied). Methane emission was highest (39.6 g C ha-1 h-1) immediately after application, as dissolved CH4 was released from the slurry. Emissions then continued at a low rate for approximately 7 d, presumably due to metabolism of volatile fatty acids in the anaerobic slurry-treated soil. The net CH4 emission was 1052 g C ha-1 (0.08% of the carbon applied). Nitrous oxide emission was low for the first 14 d after slurry application, then showed emission peaks of 7.5 g N ha-1 h-1 on Day 25 and 15.8 g N ha-1 h-1 on Day 67, and decline depending on rainfall and nitrate (NO3) concentrations. Emission finally reached background levels after approximately 90 d. Nitrous oxide emission was 7.6 kg N ha-1 (2.1% of the N applied). It is apparent that of the two major greenhouse gases measured in this study, N2O is by far the more important tropospheric pollutant.

  7. The Complete Genome Sequence of the Marine, Chemolithoautotrophic, Ammonia-Oxidizing Bacterium Nitrosococcus oceani ATCC19707

    SciTech Connect

    Klotz, M G; Arp, D J; Chain, P S; El-Sheikh, A F; Hauser, L J; Hommes, N G; Larimer, F W; Malfatti, S A; Norton, J M; Poret-Peterson, A T; Vergez, L M; Ward, B B

    2006-08-03

    The Gammaproteobacterium, Nitrosococcus oceani (ATCC 19707), is a Gram-negative obligate chemolithoautotroph capable of extracting energy and reducing power from the oxidation of ammonia to nitrite. Sequencing and annotation of the genome revealed a single circular chromosome (3,481,691 bp; 50.4% G+C) and a plasmid (40,420 bp) that contain 3052 and 41 candidate protein-encoding genes, respectively. The genes encoding proteins necessary for the function of known modes of lithotrophy and autotrophy were identified. In contrast to betaproteobacterial nitrifier genomes, the N. oceani genome contained two complete rrn operons. In contrast, only one copy of the genes needed to synthesize functional ammonia monooxygenase and hydroxylamine oxidoreductase, as well as the proteins that relay the extracted electrons to a terminal electron acceptor were identified. The N. oceani genome contained genes for 13 complete two-component systems. The genome also contained all the genes needed to reconstruct complete central pathways, the tricarboxylic acid cycle and the Embden-Meyerhof-Parnass and pentose phosphate pathways. The N. oceani genome contains the genes required to store and utilize energy from glycogen inclusion bodies and sucrose. Polyphosphate and pyrophosphate appear to be integrated in this bacterium's energy metabolism, stress tolerance and the ability to assimilate carbon via gluconeogenesis. One set of genes for type I RuBisCO was identified, while genes necessary for methanotrophy and for carboxysome formation were not identified. The N. oceani genome contains two copies each of the genes or operons necessary to assemble functional complexes I and IV as well as ATP synthase (one H{sup +}-dependent F{sub 0}F{sub 1}-type, one Na{sup +}-dependent V-type).

  8. Hydrothermally synthesized Copper Oxide (CuO) superstructures for ammonia sensing.

    PubMed

    Bhuvaneshwari, S; Gopalakrishnan, N

    2016-10-15

    According to environmental protection agencies (EPA), the emission threshold of NH3 in air is 1000kg/yr which is now about 20Tg/yr. Hence, there is a rapid increase in need of NH3 sensors to timely detect and control NH3 emissions. Metal oxide nanostructures such as CuO with special features are potential candidates for NH3 sensing. In the present study, morphology controlled 3-dimensional CuO superstructures were synthesized by surfactant-free hydrothermal method for NH3 detection. In addition to conventional hydrothermal method where water as solvent, a modified approach using a mixture of water and ethylene glycol (EG) was used as solvent to control the growth process. Hierarchical superstructures namely, snowflake-like, flower-like, hollow-sphere-like and urchin-like feature with particle dimensions ranging from 0.3 to 1μm were obtained by varying water/EG ratio and reaction temperature. The synthesized nanostructures exhibited morphology dependent luminescence and gas sensing properties. The surface area and pore distribution determined by BET surface analysis also largely influenced by the presence of EG in the reaction system. The average pore diameter enhanced from 6nm to 14nm by the addition of 10ml EG as solvent. The room temperature ammonia sensing behavior of all samples was studied using an indigenous gas sensing set-up. It was found that hollow-sphere like CuO nanostructures showed a maximum sensitivity of 150% towards 600ppm ammonia with a response and recovery time of 6min. The hydrothermal synthesis strategy reported here has the advantage of producing shape controlled hierarchical materials are highly suitable for various technological applications.

  9. Complete Genome Sequence of the Marine, Chemolithoautotrophic, Ammonia-Oxidizing Bacterium Nitrosococcus oceani ATCC 19707†

    PubMed Central

    Klotz, Martin G.; Arp, Daniel J.; Chain, Patrick S. G.; El-Sheikh, Amal F.; Hauser, Loren J.; Hommes, Norman G.; Larimer, Frank W.; Malfatti, Stephanie A.; Norton, Jeanette M.; Poret-Peterson, Amisha T.; Vergez, Lisa M.; Ward, Bess B.

    2006-01-01

    The gammaproteobacterium Nitrosococcus oceani (ATCC 19707) is a gram-negative obligate chemolithoautotroph capable of extracting energy and reducing power from the oxidation of ammonia to nitrite. Sequencing and annotation of the genome revealed a single circular chromosome (3,481,691 bp; G+C content of 50.4%) and a plasmid (40,420 bp) that contain 3,052 and 41 candidate protein-encoding genes, respectively. The genes encoding proteins necessary for the function of known modes of lithotrophy and autotrophy were identified. Contrary to betaproteobacterial nitrifier genomes, the N. oceani genome contained two complete rrn operons. In contrast, only one copy of the genes needed to synthesize functional ammonia monooxygenase and hydroxylamine oxidoreductase, as well as the proteins that relay the extracted electrons to a terminal electron acceptor, were identified. The N. oceani genome contained genes for 13 complete two-component systems. The genome also contained all the genes needed to reconstruct complete central pathways, the tricarboxylic acid cycle, and the Embden-Meyerhof-Parnass and pentose phosphate pathways. The N. oceani genome contains the genes required to store and utilize energy from glycogen inclusion bodies and sucrose. Polyphosphate and pyrophosphate appear to be integrated in this bacterium's energy metabolism, stress tolerance, and ability to assimilate carbon via gluconeogenesis. One set of genes for type I ribulose-1,5-bisphosphate carboxylase/oxygenase was identified, while genes necessary for methanotrophy and for carboxysome formation were not identified. The N. oceani genome contains two copies each of the genes or operons necessary to assemble functional complexes I and IV as well as ATP synthase (one H+-dependent F0F1 type, one Na+-dependent V type). PMID:16957257

  10. Complete Genome Sequence of the Marine, Chemolithoautotrophic, Ammonia-Oxidizing Bacterium Nitrosococcus oceani ATCC 19707

    SciTech Connect

    Klots, Martin G.; Arp, D J; Chain, Patrick S; El-Sheikh, Amal F.; Hauser, Loren John; Hommes, Norman G.; Larimer, Frank W; Malfatti, Stephanie; Norton, Jeanette M.; Poret-Peterson, Amisha T.; Vergez, Lisa; Ward, Bess B.

    2006-01-01

    The gammaproteobacterium Nitrosococcus oceani (ATCC 19707) is a gram-negative obligate chemolithoautotroph capable of extracting energy and reducing power from the oxidation of ammonia to nitrite. Sequencing and annotation of the genome revealed a single circular chromosome (3,481,691 bp; G+C content of 50.4%) and a plasmid (40,420 bp) that contain 3,052 and 41 candidate protein-encoding genes, respectively. The genes encoding proteins necessary for the function of known modes of lithotrophy and autotrophy were identified. Contrary to betaproteobacterial nitrifier genomes, the N. oceani genome contained two complete rrn operons. In contrast, only one copy of the genes needed to synthesize functional ammonia monooxygenase and hydroxylamine oxidoreductase, as well as the proteins that relay the extracted electrons to a terminal electron acceptor, were identified. The N. oceani genome contained genes for 13 complete two-component systems. The genome also contained all the genes needed to reconstruct complete central pathways, the tricarboxylic acid cycle, and the Embden-Meyerhof-Parnass and pentose phosphate pathways. The N. oceani genome contains the genes required to store and utilize energy from glycogen inclusion bodies and sucrose. Polyphosphate and pyrophosphate appear to be integrated in this bacterium's energy metabolism, stress tolerance, and ability to assimilate carbon via gluconeogenesis. One set of genes for type I ribulose-1,5-bisphosphate carboxylase/oxygenase was identified, while genes necessary for methanotrophy and for carboxysome formation were not identified. The N. oceani genome contains two copies each of the genes or operons necessary to assemble functional complexes I and IV as well as ATP synthase (one H+-dependent F0F1 type, one Na+-dependent V type).

  11. Bacterial oxidation of methyl bromide in fumigated agricultural soils

    USGS Publications Warehouse

    Miller, L.G.; Connell, T.L.; Guidetti, J.R.; Oremland, R.S.

    1997-01-01

    The oxidation of [14C]methyl bromide ([14C]MeBr) to 14CO2 was measured in field experiments with soils collected from two strawberry plots fumigated with mixtures of MeBr and chloropicrin (CCI3NO2). Although these fumigants are considered potent biocides, we found that the highest rates of MeBr oxidation occurred 1 to 2 days after injection when the fields were tarped, rather than before or several days after injection. No oxidation of MeBr occurred in heat-killed soils, indicating that microbes were the causative agents of the oxidation. Degradation of MeBr by chemical and/or biological processes accounted for 20 to 50% of the loss of MeBr during fumigation, with evasion to the atmosphere inferred to comprise the remainder. In laboratory incubations, complete removal of [14C]MeBr occurred within a few days, with 47 to 67% of the added MeBr oxidized to 14CO2 and the remainder of counts associated with the solid phase. Chloropicrin inhibited the oxidation of MeBr, implying that use of this substance constrains the extent of microbial degradation of MeBr during fumigation. Oxidation was by direct bacterial attack of MeBr and not of methanol, a product of the chemical hydrolysis of MeBr. Neither nitrifying nor methane-oxidizing bacteria were sufficiently active in these soils to account for the observed oxidation of MeBr, nor could the microbial degradation of MeBr be linked to cooxidation with exogenously supplied electron donors. However, repeated addition of MeBr to live soils resulted in higher rates of its removal, suggesting that soil bacteria used MeBr as an electron donor for growth. To support this interpretation, we isolated a gram-negative, aerobic bacterium from these soils which grew with MeBr as a sole source of carbon and energy.

  12. [Identification of a high ammonia nitrogen tolerant and heterotrophic nitrification-aerobic denitrification bacterial strain TN-14 and its nitrogen removal capabilities].

    PubMed

    Xin, Xin; Yao, Li; Lu, Lei; Leng, Lu; Zhou, Ying-Qin; Guo, Jun-Yuan

    2014-10-01

    A new strain of high ammonia nitrogen tolerant and heterotrophic nitrification-aerobic denitrification bacterium TN-14 was isolated from the environment. Its physiological and biochemical characteristics and molecular identification, performences of heterotrophic nitrification-aerobic, the abilities of resistance to ammonia nitrogen as well as the decontamination abilities were studied, respectively. It was preliminary identified as Acinetobacter sp. according to its physiological and biochemical characteristics and molecular identification results. In heterotrophic nitrification system, the ammonia nitrogen and total nitrogen removal rate of the bacterial strain TN-14 could reach 97.13% and 93.53% within 24 h. In nitrates denitrification system, the nitrate concentration could decline from 94.24 mg · L(-1) to 39.32 mg · L(-1) within 24 h, where the removal rate was 58.28% and the denitrification rate was 2.28 mg · (L · h)(-1); In nitrite denitrification systems, the initial concentration of nitrite could be declined from 97.78 mg · L(-1) to 21.30 mg x L(-1), with a nitrite nitrogen removal rate of 78.22%, and a denitrification rate of 2.55 mg · (L· h)(-1). Meanwhile, strain TN-14 had the capability of flocculant production, and the flocculating rate could reach 94.74% when its fermentation liquid was used to treat 0.4% kaolin suspension. Strain TN-14 could grow at an ammonia nitrogen concentration as high as 1200 mg · L(-1). In the aspect of actual piggery wastewater treatment by strain TN-14, the removal rate of COD, ammonia nitrogen, TN and TP cloud reached 85.30%, 65.72%, 64.86% and 79.41%, respectively. Strain TN-14 has a good application prospect in biological treatment of real high- ammonia wastewater. PMID:25693403

  13. [Identification of a high ammonia nitrogen tolerant and heterotrophic nitrification-aerobic denitrification bacterial strain TN-14 and its nitrogen removal capabilities].

    PubMed

    Xin, Xin; Yao, Li; Lu, Lei; Leng, Lu; Zhou, Ying-Qin; Guo, Jun-Yuan

    2014-10-01

    A new strain of high ammonia nitrogen tolerant and heterotrophic nitrification-aerobic denitrification bacterium TN-14 was isolated from the environment. Its physiological and biochemical characteristics and molecular identification, performences of heterotrophic nitrification-aerobic, the abilities of resistance to ammonia nitrogen as well as the decontamination abilities were studied, respectively. It was preliminary identified as Acinetobacter sp. according to its physiological and biochemical characteristics and molecular identification results. In heterotrophic nitrification system, the ammonia nitrogen and total nitrogen removal rate of the bacterial strain TN-14 could reach 97.13% and 93.53% within 24 h. In nitrates denitrification system, the nitrate concentration could decline from 94.24 mg · L(-1) to 39.32 mg · L(-1) within 24 h, where the removal rate was 58.28% and the denitrification rate was 2.28 mg · (L · h)(-1); In nitrite denitrification systems, the initial concentration of nitrite could be declined from 97.78 mg · L(-1) to 21.30 mg x L(-1), with a nitrite nitrogen removal rate of 78.22%, and a denitrification rate of 2.55 mg · (L· h)(-1). Meanwhile, strain TN-14 had the capability of flocculant production, and the flocculating rate could reach 94.74% when its fermentation liquid was used to treat 0.4% kaolin suspension. Strain TN-14 could grow at an ammonia nitrogen concentration as high as 1200 mg · L(-1). In the aspect of actual piggery wastewater treatment by strain TN-14, the removal rate of COD, ammonia nitrogen, TN and TP cloud reached 85.30%, 65.72%, 64.86% and 79.41%, respectively. Strain TN-14 has a good application prospect in biological treatment of real high- ammonia wastewater.

  14. Community shift of ammonia-oxidizing bacteria along an anthropogenic pollution gradient from the Pearl River Delta to the South China Sea.

    PubMed

    Cao, Huiluo; Hong, Yiguo; Li, Meng; Gu, Ji-Dong

    2012-04-01

    The phylogenetic diversity and abundance of ammonia-oxidizing beta-proteobacteria (beta-AOB) was analyzed along an anthropogenic pollution gradient from the coastal Pearl River Delta to the South China Sea using the ammonia monooxygenase subunit A (amoA) gene. Along the gradient from coastal to the open ocean, the phylogenetic diversity of the dominant genus changed from Nitrosomonas to Nitrosospira, indicating the niche specificity by these two genera as both salinity and anthropogenic influence were major factors involved. The diversity of bacterial amoA gene was also variable along the gradient, with the highest in the deep-sea sediments, followed by the marshes sediments and the lowest in the coastal areas. Within the Nitrosomonas-related clade, four distinct lineages were identified including a putative new one (A5-16) from the different sites over the large geographical area. In the Nitrosospira-related clade, the habitat-specific lineages to the deep-sea and coastal sediments were identified. This study also provides strong support that Nitrosomonas genus, especially Nitrosomonas oligotropha lineage (6a) could be a potential bio-indicator species for pollution or freshwater/wastewater input into coastal environments. A suite of statistical analyses used showed that water depth and temperature were major factors shaping the community structure of beta-AOB in this study area.

  15. Removal of pathogenic bacterial biofilms by combinations of oxidizing compounds.

    PubMed

    Olmedo, Gabriela María; Grillo-Puertas, Mariana; Cerioni, Luciana; Rapisarda, Viviana Andrea; Volentini, Sabrina Inés

    2015-05-01

    Bacterial biofilms are commonly formed on medical devices and food processing surfaces. The antimicrobials used have limited efficacy against the biofilms; therefore, new strategies to prevent and remove these structures are needed. Here, the effectiveness of brief oxidative treatments, based on the combination of sodium hypochlorite (NaClO) and hydrogen peroxide (H2O2) in the presence of copper sulfate (CuSO4), were evaluated against bacterial laboratory strains and clinical isolates, both in planktonic and biofilm states. Simultaneous application of oxidants synergistically inactivated planktonic cells and prevented biofilm formation of laboratory Escherichia coli, Salmonella enterica serovar Typhimurium, Klebsiella pneumoniae, and Staphylococcus aureus strains, as well as clinical isolates of Salmonella enterica subsp. enterica, Klebsiella oxytoca, and uropathogenic E. coli. In addition, preformed biofilms of E. coli C, Salmonella Typhimurium, K. pneumoniae, and Salmonella enterica exposed to treatments were removed by applying 12 mg/L NaClO, 0.1 mmol/L CuSO4, and 350 mmol/L H2O2 for 5 min. Klebsiella oxytoca and Staphylococcus aureus required a 5-fold increase in NaClO concentration, and the E. coli clinical isolate remained unremovable unless treatments were applied on biofilms formed within 24 h instead of 48 h. The application of treatments that last a few minutes using oxidizing compounds at low concentrations represents an interesting disinfection strategy against pathogens associated with medical and industrial settings.

  16. Nanocrystalline todorokite-like manganese oxide produced by bacterial catalysis.

    PubMed

    Kim, Hack-Sung; Pastén, Pablo A; Gaillard, Jean-François; Stair, Peter C

    2003-11-26

    We describe the characterization of an unknown and difficult to identify but geochemically and environmentally significant MnOx structure produced by a freshwater bacterium, Leptothrix discophora SP-6, using combined transmission electron microscopy (TEM), extended X-ray absorption fine structure (EXAFS), and UV Raman spectroscopy. The large surface-to-volume ratio of the needle-shaped nanocrystalline MnO2 formed around the bacterial cells coupled to the porous, zeolite-like structure has the potential to catalyze reactions and oxidize and adsorb metals. PMID:14624570

  17. Acclimatization of communities of ammonia oxidizing bacteria to seasonal changes in optimal conditions in a coke wastewater treatment plant.

    PubMed

    Kim, Young Mo

    2013-11-01

    The goal of this study was to investigate the correlation between optimal conditions of ammonia oxidation rates (AORs) and communities of ammonia oxidizing bacteria (AOB) adapting to seasonal changes in a full-scale wastewater treatment plant (WWTP). The optimal temperature and pH of specific AORs reflected seasonal variation patterns, showing the lowest values during the cold season, while the highest values in the warm season. Throughout the study period, Nitrosomonas europaea/eutropha and Nitrosomonas nitrosa remained the dominant AOB, indicating resistance to the influences of a changing environment. These results show that the optimal conditions for AOR can be adjusted to accommodate changing environmental conditions, relying on the acclimatization of a stable AOB community to given conditions, without any visible shift in the AOB community.

  18. Engineered cerium oxide nanoparticles: Effects on bacterial growth and viability

    SciTech Connect

    Pelletier, Dale A; Suresh, Anil K; Holton, Gregory A; McKeown, Catherine K; Wang, Wei; Gu, Baohua; Mortensen, Ninell P; Allison, David P; Joy, David Charles; Allison, Martin R; Brown, Steven D; Phelps, Tommy Joe; Doktycz, Mitchel John

    2010-01-01

    Interest in engineered nanostructures has risen in recent years due to their use in energy conservation strategies and biomedicine. To ensure prudent development and use of nanomaterials, the fate and effects of such engineered structures on the environment should be understood. Interactions of nanomaterials with environmental microorganisms are inevitable, but the general consequences of such interactions remain unclear. Further, standardized methods for assessing such interactions are lacking. Therefore, we have initiated a multianalytical approach to understand the interactions of synthesized nanoparticles with bacterial systems. These efforts are focused initially on cerium oxide nanoparticles and model bacteria in order to evaluate characterization procedures and the possible fate of such materials in the environment. In this study the effects of cerium oxide nanoparticles on the growth and viability of Gram-negative Escherichia coli and Shewanella oneidensis, a metal-reducing bacteria, and Gram-positive Bacillus subtilis were examined relative to particle size, growth media, pH, and dosage. A hydrothermal based synthesis procedure was used to prepare cerium oxide nanoparticles of defined sizes in order to eliminate complications originating from the use of organic solvents and surfactants. Bactericidal effects were determined by minimum inhibitory concentration, colony forming units, disc diffusion tests and Live/Dead assays. In growth inhibition experiments involving E. coli and B. subtilis, a clear strain and size-dependent inhibition was observed. S. oneidensis appeared to be unaffected by the cerium oxide nanoparticles. Transmission electron microscopy along with microarray-based transcriptional profiling have been used to understand the response mechanism of the bacteria. The use of multiple analytical approaches adds confidence to toxicity assessments while the use of different bacterial systems highlights the potential wide-ranging effects of

  19. Low temperature decreases the phylogenetic diversity of ammonia-oxidizing archaea and bacteria in aquarium biofiltration systems.

    PubMed

    Urakawa, Hidetoshi; Tajima, Yoshiyuki; Numata, Yoshiyuki; Tsuneda, Satoshi

    2008-02-01

    The phylogenetic diversity and species richness of ammonia-oxidizing archaea (AOA) and bacteria (AOB) were examined with aquarium biofiltration systems. Species richness, deduced from rarefaction analysis, and diversity indices indicated that the phylogenetic diversity and species richness of AOA are greater than those of AOB; the diversity of AOA and of AOB is minimized in cold-water aquaria. This finding implies that temperature is a key factor influencing the population structure and diversity of AOA and AOB in aquarium biofiltration systems.

  20. Transformation of bisphenol A and alkylphenols by ammonia-oxidizing bacteria through nitration.

    PubMed

    Sun, Qian; Li, Yan; Chou, Pei-Hsin; Peng, Po-Yi; Yu, Chang-Ping

    2012-04-17

    Transformation of bisphenol A (BPA) by ammonia-oxidizing bacteria (AOB) Nitrosomonas europaea ATCC 19718 was investigated. On the basis of the ultraperformance liquid chromatography (UPLC) coupled to quadrupole time-of-flight mass spectrometry (Q-TOF MS) and nuclear magnetic resonance analysis, we found N. europaea could transform BPA into nitro- and dinitro-BPA, suggesting that abiotic nitration between the biogenic nitrite and BPA played a major role in the transformation of BPA in the batch AOB system. Nitrite concentrations, temperature, and pH values were the major factors to influence the reaction rate. Furthermore, the yeast estrogenic screening assay showed that the formed nitro- and dinitro-BPA had much less estrogenic activity as compared with its parent compound BPA. Similar reactions of abiotic nitration were considered for 4-n-nonylphenol (nNP) and 4-n-octylphenol (nOP) since nitro-nNP and nitro-nOP were detected by UPLC-Q-TOF MS. In addition, results from the local wastewater treatment plant (WWTP) showed the occurrence of nitro-BPA and dinitro-BPA during the biological treatment process and in the effluent, indicating that nitration of BPA is also a pathway for removal of BPA. Results of this study provided implication that AOB in the WWTPs might contribute to removal of selected endocrine-disrupting compounds (EDCs) through abiotic nitritation.

  1. Complete genome sequence of Nitrosospira multiformis, an ammonia-oxidizing bacterium from the soil environment

    SciTech Connect

    Norton, Jeanette M.; Klotz, Martin G; Stein, Lisa Y; Arp, D J; Bottomley, Peter J; Chain, Patrick S. G.; Hauser, Loren John; Land, Miriam L; Larimer, Frank W; Shin, M; Starkenburg, Shawn R

    2008-01-01

    The complete genome of the ammonia-oxidizing bacterium, Nitrosospira multiformis (ATCC 25196T), consists of a circular chromosome and three small plasmids totaling 3,234,309 bp and encoding 2827 putative proteins. Of these, 2026 proteins have predicted functions and 801 are without conserved functional domains, yet 747 of these have similarity to other predicted proteins in databases. Gene homologs from Nitrosomonas europaea and N. eutropha were the best match for 42% of the predicted genes in N. multiformis. The genome contains three nearly identical copies of amo and hao gene clusters as large repeats. Distinguishing features compared to N. europaea include: the presence of gene clusters encoding urease and hydrogenase, a RuBisCO-encoding operon of distinctive structure and phylogeny, and a relatively small complement of genes related to Fe acquisition. Systems for synthesis of a pyoverdine-like siderophore and for acyl-homoserine lactone were unique to N. multiformis among the sequenced AOB genomes. Gene clusters encoding proteins associated with outer membrane and cell envelope functions including transporters, porins, exopolysaccharide synthesis, capsule formation and protein sorting/export were abundant. Numerous sensory transduction and response regulator gene systems directed towards sensing of the extracellular environment are described. Gene clusters for glycogen, polyphosphate and cyanophycin storage and utilization were identified providing mechanisms for meeting energy requirements under substrate-limited conditions. The genome of N. multiformis encodes the core pathways for chemolithoautotrophy along with adaptations for surface growth and survival in soil environments.

  2. Moisture effects on gas-phase biofilter ammonia removal efficiency, nitrous oxide generation, and microbial communities.

    PubMed

    Yang, Liangcheng; Kent, Angela D; Wang, Xinlei; Funk, Ted L; Gates, Richard S; Zhang, Yuanhui

    2014-04-30

    We established a four-biofilter setup to examine the effects of moisture content (MC) on biofilter performance, including NH3 removal and N2O generation. We hypothesized that MC increase can improve NH3 removal, stimulate N2O generation and alter the composition and function of microbial communities. We found that NH3 removal efficiency was greatly improved when MC increased from 35 to 55%, but further increasing MC to 63% did not help much; while N2O concentration was low at 35-55% MC, but dramatically increased at 63% MC. Decreasing MC from 63 to 55% restored N2O concentration. Examination of amoA communities using T-RFLP and real-time qPCR showed that the composition and abundance of ammonia oxidizers were not significantly changed in a "moisture disturbance-disturbance relief" process in which MC was increased from 55 to 63% and then reduced to 55%. This observation supported the changes of NH3 removal efficiency. The composition of nosZ community was altered at 63% MC and then was recovered at 55% MC, which indicates resilience to moisture disturbance. The abundance of nosZ community was negatively correlated with moisture content in this process, and the decreased nosZ abundance at 63% MC explained the observation of increased N2O concentration at that condition.

  3. Influence of soil moisture on linear alkylbenzene sulfonate-induced toxicity in ammonia-oxidizing bacteria.

    PubMed

    Nielsen, Klaus B; Brandt, Kristian K; Jacobsen, Anne-Marie; Mortensen, Gerda K; Sørensen, Jan

    2004-02-01

    Moisture affects bioavailability and fate of pollutants in soil, but very little is known about moisture-induced effects on pollutant toxicity. We here report on a modifying effect of moisture on degradation of linear alkylbenzene sulfonates (LASs) and on their toxicity towards ammonia-oxidizing bacteria (AOB) in agricultural soil. In soil spiked with two LAS levels (250 or 1,000 mg/kg) and incubated at four different moisture levels (9-100% of water-holding capacity), degradation was strongly affected by both soil moisture and initial LAS concentration, resulting in degradation half-lives ranging from 13 to more than 160 d. Toxicity towards AOB assessed by a novel Nitrosomonas europaea luxAB-reporter assay was correlated to total LAS concentration, indicating that LAS remained bioavailable over time without accumulation of toxic intermediates. Toxicity towards indigenous AOB increased with increasing soil moisture. The results indicate that dry soil conditions inhibit LAS degradation and provide protection against toxicity within the indigenous AOB, thus allowing for a rapid recovery of this population when LAS degradation is resumed and completed after rewetting. We propose that the protection of microbial populations against toxicity in dry soil may be a general phenomenon caused primarily by limited diffusion and thus a low bioavailability of the toxicant.

  4. Bacterial adhesion on amorphous and crystalline metal oxide coatings.

    PubMed

    Almaguer-Flores, Argelia; Silva-Bermudez, Phaedra; Galicia, Rey; Rodil, Sandra E

    2015-12-01

    Several studies have demonstrated the influence of surface properties (surface energy, composition and topography) of biocompatible materials on the adhesion of cells/bacteria on solid substrates; however, few have provided information about the effect of the atomic arrangement or crystallinity. Using magnetron sputtering deposition, we produced amorphous and crystalline TiO2 and ZrO2 coatings with controlled micro and nanoscale morphology. The effect of the structure on the physical-chemical surface properties was carefully analyzed. Then, we studied how these parameters affect the adhesion of Escherichia coli and Staphylococcus aureus. Our findings demonstrated that the nano-topography and the surface energy were significantly influenced by the coating structure. Bacterial adhesion at micro-rough (2.6 μm) surfaces was independent of the surface composition and structure, contrary to the observation in sub-micron (0.5 μm) rough surfaces, where the crystalline oxides (TiO2>ZrO2) surfaces exhibited higher numbers of attached bacteria. Particularly, crystalline TiO2, which presented a predominant acidic nature, was more attractive for the adhesion of the negatively charged bacteria. The information provided by this study, where surface modifications are introduced by means of the deposition of amorphous or crystalline oxide coatings, offers a route for the rational design of implant surfaces to control or inhibit bacterial adhesion.

  5. Thaumarchaeotes abundant in refinery nitrifying sludges express amoA but are not obligate autotrophic ammonia oxidizers.

    PubMed

    Mussmann, Marc; Brito, Ivana; Pitcher, Angela; Sinninghe Damsté, Jaap S; Hatzenpichler, Roland; Richter, Andreas; Nielsen, Jeppe L; Nielsen, Per Halkjær; Müller, Anneliese; Daims, Holger; Wagner, Michael; Head, Ian M

    2011-10-01

    Nitrification is a core process in the global nitrogen cycle that is essential for the functioning of many ecosystems. The discovery of autotrophic ammonia-oxidizing archaea (AOA) within the phylum Thaumarchaeota has changed our perception of the microbiology of nitrification, in particular since their numerical dominance over ammonia-oxidizing bacteria (AOB) in many environments has been revealed. These and other data have led to a widely held assumption that all amoA-encoding members of the Thaumarchaeota (AEA) are autotrophic nitrifiers. In this study, 52 municipal and industrial wastewater treatment plants were screened for the presence of AEA and AOB. Thaumarchaeota carrying amoA were detected in high abundance only in four industrial plants. In one plant, thaumarchaeotes closely related to soil group I.1b outnumbered AOB up to 10,000-fold, and their numbers, which can only be explained by active growth in this continuous culture system, were two to three orders of magnitude higher than could be sustained by autotrophic ammonia oxidation. Consistently, (14)CO(2) fixation could only be detected in AOB but not in AEA in actively nitrifying sludge from this plant via FISH combined with microautoradiography. Furthermore, in situ transcription of archaeal amoA, and very weak in situ labeling of crenarchaeol after addition of (13)CO(2), was independent of the addition of ammonium. These data demonstrate that some amoA-carrying group I.1b Thaumarchaeota are not obligate chemolithoautotrophs.

  6. High Concentrations of the Antibiotic Spiramycin in Wastewater Lead to High Abundance of Ammonia-Oxidizing Archaea in Nitrifying Populations.

    PubMed

    Zhang, Yu; Tian, Zhe; Liu, Miaomiao; Shi, Zhou Jason; Hale, Lauren; Zhou, Jizhong; Yang, Min

    2015-08-01

    To evaluate the potential effects of antibiotics on ammonia-oxidizing microbes, multiple tools including quantitative PCR (qPCR), 454-pyrosequencing, and a high-throughput functional gene array (GeoChip) were used to reveal the distribution of ammonia-oxidizing archaea (AOA) and archaeal amoA (Arch-amoA) genes in three wastewater treatment systems receiving spiramycin or oxytetracycline production wastewaters. The qPCR results revealed that the copy number ratios of Arch-amoA to ammonia-oxidizing bacteria (AOB) amoA genes were the highest in the spiramycin full-scale (5.30) and pilot-scale systems (1.49 × 10(-1)), followed by the oxytetracycline system (4.90 × 10(-4)), with no Arch-amoA genes detected in the control systems treating sewage or inosine production wastewater. The pyrosequencing result showed that the relative abundance of AOA affiliated with Thaumarchaeota accounted for 78.5-99.6% of total archaea in the two spiramycin systems, which was in accordance with the qPCR results. Mantel test based on GeoChip data showed that Arch-amoA gene signal intensity correlated with the presence of spiramycin (P < 0.05). Antibiotics explained 25.8% of variations in amoA functional gene structures by variance partitioning analysis. This study revealed the selection of AOA in the presence of high concentrations of spiramycin in activated sludge systems.

  7. Quantitative analysis of ammonia-oxidizing bacteria in a combined system of MBR and worm reactors treating synthetic wastewater.

    PubMed

    Liu, Jia; Tian, Yu; Wang, Dezhen; Lu, Yaobin; Zhang, Jun; Zuo, Wei

    2014-12-01

    The Static Sequencing Batch Worm Reactor (SSBWR) followed by the MBR (S-MBR) is one of the advanced excess sludge treatments. In this paper, the control MBR (C-MBR) and the SSBWR-MBR were operated in parallel to study the changes of NH3-N removal and ammonia oxidizing bacteria (AOB). The results showed that the capacity of NH3-N removal of the S-MBR was improved by the worm reactors along with the operation. The S-MBR was favorable because it selected for the higher activity of the ammonia oxidization and better cells appearance of the sludge. The five species (Nitrosomonas, Betaproteobacteria, Clostridium, Dechloromonas and Bacteria) were found to be significantly correlate with the ammonia oxidization functions and performance of NH3-N removal in the C-MBR and S-MBR. The Nitrosomonas, Betaproteobacteria and Dechloromonas remained and eventually enriched in the S-MBR played a primary role in the NH3-N removal of the S-MBR.

  8. Effects of lignite application on ammonia and nitrous oxide emissions from cattle pens.

    PubMed

    Sun, Jianlei; Bai, Mei; Shen, Jianlin; Griffith, David W T; Denmead, Owen T; Hill, Julian; Lam, Shu Kee; Mosier, Arvin R; Chen, Deli

    2016-09-15

    Beef cattle feedlots are a major source of ammonia (NH3) emissions from livestock industries. We investigated the effects of lignite surface applications on NH3 and nitrous oxide (N2O) emissions from beef cattle feedlot pens. Two rates of lignite, 3 and 6kgm(-2), were tested in the treatment pen. No lignite was applied in the control pen. Twenty-four Black Angus steers were fed identical commercial rations in each pen. We measured NH3 and N2O concentrations continuously from 4th Sep to 13th Nov 2014 using Quantum Cascade Laser (QCL) NH3 analysers and a closed-path Fourier Transform Infrared Spectroscopy analyser (CP-FTIR) in conjunction with the integrated horizontal flux method to calculate NH3 and N2O fluxes. During the feeding period, 16 and 26% of the excreted nitrogen (N) (240gNhead(-1)day(-1)) was lost via NH3 volatilization from the control pen, while lignite application decreased NH3 volatilization to 12 and 18% of the excreted N, for Phase 1 and Phase 2, respectively. Compared to the control pen, lignite application decreased NH3 emissions by approximately 30%. Nitrous oxide emissions from the cattle pens were small, 0.10 and 0.14gN2O-Nhead(-1)day(-1) (<0.1% of excreted N) for the control pen, for Phase 1 and Phase 2, respectively. Lignite application increased direct N2O emissions by 40 and 57%, to 0.14 and 0.22gN2O-Nhead(-1)day(-1), for Phase 1 and Phase 2, respectively. The increase in N2O emissions resulting from lignite application was counteracted by the lower indirect N2O emission due to decreased NH3 volatilization. Using 1% as a default emission factor of deposited NH3 for indirect N2O emissions, the application of lignite decreased total N2O emissions.

  9. Effects of lignite application on ammonia and nitrous oxide emissions from cattle pens.

    PubMed

    Sun, Jianlei; Bai, Mei; Shen, Jianlin; Griffith, David W T; Denmead, Owen T; Hill, Julian; Lam, Shu Kee; Mosier, Arvin R; Chen, Deli

    2016-09-15

    Beef cattle feedlots are a major source of ammonia (NH3) emissions from livestock industries. We investigated the effects of lignite surface applications on NH3 and nitrous oxide (N2O) emissions from beef cattle feedlot pens. Two rates of lignite, 3 and 6kgm(-2), were tested in the treatment pen. No lignite was applied in the control pen. Twenty-four Black Angus steers were fed identical commercial rations in each pen. We measured NH3 and N2O concentrations continuously from 4th Sep to 13th Nov 2014 using Quantum Cascade Laser (QCL) NH3 analysers and a closed-path Fourier Transform Infrared Spectroscopy analyser (CP-FTIR) in conjunction with the integrated horizontal flux method to calculate NH3 and N2O fluxes. During the feeding period, 16 and 26% of the excreted nitrogen (N) (240gNhead(-1)day(-1)) was lost via NH3 volatilization from the control pen, while lignite application decreased NH3 volatilization to 12 and 18% of the excreted N, for Phase 1 and Phase 2, respectively. Compared to the control pen, lignite application decreased NH3 emissions by approximately 30%. Nitrous oxide emissions from the cattle pens were small, 0.10 and 0.14gN2O-Nhead(-1)day(-1) (<0.1% of excreted N) for the control pen, for Phase 1 and Phase 2, respectively. Lignite application increased direct N2O emissions by 40 and 57%, to 0.14 and 0.22gN2O-Nhead(-1)day(-1), for Phase 1 and Phase 2, respectively. The increase in N2O emissions resulting from lignite application was counteracted by the lower indirect N2O emission due to decreased NH3 volatilization. Using 1% as a default emission factor of deposited NH3 for indirect N2O emissions, the application of lignite decreased total N2O emissions. PMID:27161136

  10. Evaluation of autotrophic growth of ammonia-oxidizers associated with granular activated carbon used for drinking water purification by DNA-stable isotope probing.

    PubMed

    Niu, Jia; Kasuga, Ikuro; Kurisu, Futoshi; Furumai, Hiroaki; Shigeeda, Takaaki

    2013-12-01

    Nitrification is an important biological function of granular activated carbon (GAC) used in advanced drinking water purification processes. Newly discovered ammonia-oxidizing archaea (AOA) have challenged the traditional understanding of ammonia oxidation, which considered ammonia-oxidizing bacteria (AOB) as the sole ammonia-oxidizers. Previous studies demonstrated the predominance of AOA on GAC, but the contributions of AOA and AOB to ammonia oxidation remain unclear. In the present study, DNA-stable isotope probing (DNA-SIP) was used to investigate the autotrophic growth of AOA and AOB associated with GAC at two different ammonium concentrations (0.14 mg N/L and 1.4 mg N/L). GAC samples collected from three full-scale drinking water purification plants in Tokyo, Japan, had different abundance of AOA and AOB. These samples were fed continuously with ammonium and (13)C-bicarbonate for 14 days. The DNA-SIP analysis demonstrated that only AOA assimilated (13)C-bicarbonate at low ammonium concentration, whereas AOA and AOB exhibited autotrophic growth at high ammonium concentration. This indicates that a lower ammonium concentration is preferable for AOA growth. Since AOA could not grow without ammonium, their autotrophic growth was coupled with ammonia oxidation. Overall, our results point towards an important role of AOA in nitrification in GAC filters treating low concentration of ammonium.

  11. Influence of season and plant species on the abundance and diversity of sulfate reducing bacteria and ammonia oxidizing bacteria in constructed wetland microcosms.

    PubMed

    Faulwetter, Jennifer L; Burr, Mark D; Parker, Albert E; Stein, Otto R; Camper, Anne K

    2013-01-01

    Constructed wetlands offer an effective means for treatment of wastewater from a variety of sources. An understanding of the microbial ecology controlling nitrogen, carbon and sulfur cycles in constructed wetlands has been identified as the greatest gap for optimizing performance of these promising treatment systems. It is suspected that operational factors such as plant types and hydraulic operation influence the subsurface wetland environment, especially redox, and that the observed variation in effluent quality is due to shifts in the microbial populations and/or their activity. This study investigated the biofilm associated sulfate reducing bacteria and ammonia oxidizing bacteria (using the dsrB and amoA genes, respectively) by examining a variety of surfaces within a model wetland (gravel, thick roots, fine roots, effluent), and the changes in activity (gene abundance) of these functional groups as influenced by plant species and season. Molecular techniques were used including quantitative PCR and denaturing gradient gel electrophoresis (DGGE), both with and without propidium monoazide (PMA) treatment. PMA treatment is a method for excluding from further analysis those cells with compromised membranes. Rigorous statistical analysis showed an interaction between the abundance of these two functional groups with the type of plant and season (p < 0.05). The richness of the sulfate reducing bacterial community, as indicated by DGGE profiles, increased in planted vs. unplanted microcosms. For ammonia oxidizing bacteria, season had the greatest impact on gene abundance and diversity (higher in summer than in winter). Overall, the primary influence of plant presence is believed to be related to root oxygen loss and its effect on rhizosphere redox.

  12. Genome of a Low-Salinity Ammonia-Oxidizing Archaeon Determined by Single-Cell and Metagenomic Analysis

    PubMed Central

    Potanina, Anastasia; Francis, Christopher A.; Quake, Stephen R.

    2011-01-01

    Ammonia-oxidizing archaea (AOA) are thought to be among the most abundant microorganisms on Earth and may significantly impact the global nitrogen and carbon cycles. We sequenced the genome of AOA in an enrichment culture from low-salinity sediments in San Francisco Bay using single-cell and metagenomic genome sequence data. Five single cells were isolated inside an integrated microfluidic device using laser tweezers, the cells' genomic DNA was amplified by multiple displacement amplification (MDA) in 50 nL volumes and then sequenced by high-throughput DNA pyrosequencing. This microscopy-based approach to single-cell genomics minimizes contamination and allows correlation of high-resolution cell images with genomic sequences. Statistical properties of coverage across the five single cells, in combination with the contrasting properties of the metagenomic dataset allowed the assembly of a high-quality draft genome. The genome of this AOA, which we designate Candidatus Nitrosoarchaeum limnia SFB1, is ∼1.77 Mb with >2100 genes and a G+C content of 32%. Across the entire genome, the average nucleotide identity to Nitrosopumilus maritimus, the only AOA in pure culture, is ∼70%, suggesting this AOA represents a new genus of Crenarchaeota. Phylogenetically, the 16S rRNA and ammonia monooxygenase subunit A (amoA) genes of this AOA are most closely related to sequences reported from a wide variety of freshwater ecosystems. Like N. maritimus, the low-salinity AOA genome appears to have an ammonia oxidation pathway distinct from ammonia oxidizing bacteria (AOB). In contrast to other described AOA, these low-salinity AOA appear to be motile, based on the presence of numerous motility- and chemotaxis-associated genes in the genome. This genome data will be used to inform targeted physiological and metabolic studies of this novel group of AOA, which may ultimately advance our understanding of AOA metabolism and their impacts on the global carbon and nitrogen cycles. PMID

  13. Genome of a low-salinity ammonia-oxidizing archaeon determined by single-cell and metagenomic analysis.

    PubMed

    Blainey, Paul C; Mosier, Annika C; Potanina, Anastasia; Francis, Christopher A; Quake, Stephen R

    2011-01-01

    Ammonia-oxidizing archaea (AOA) are thought to be among the most abundant microorganisms on Earth and may significantly impact the global nitrogen and carbon cycles. We sequenced the genome of AOA in an enrichment culture from low-salinity sediments in San Francisco Bay using single-cell and metagenomic genome sequence data. Five single cells were isolated inside an integrated microfluidic device using laser tweezers, the cells' genomic DNA was amplified by multiple displacement amplification (MDA) in 50 nL volumes and then sequenced by high-throughput DNA pyrosequencing. This microscopy-based approach to single-cell genomics minimizes contamination and allows correlation of high-resolution cell images with genomic sequences. Statistical properties of coverage across the five single cells, in combination with the contrasting properties of the metagenomic dataset allowed the assembly of a high-quality draft genome. The genome of this AOA, which we designate Candidatus Nitrosoarchaeum limnia SFB1, is ∼1.77 Mb with >2100 genes and a G+C content of 32%. Across the entire genome, the average nucleotide identity to Nitrosopumilus maritimus, the only AOA in pure culture, is ∼70%, suggesting this AOA represents a new genus of Crenarchaeota. Phylogenetically, the 16S rRNA and ammonia monooxygenase subunit A (amoA) genes of this AOA are most closely related to sequences reported from a wide variety of freshwater ecosystems. Like N. maritimus, the low-salinity AOA genome appears to have an ammonia oxidation pathway distinct from ammonia oxidizing bacteria (AOB). In contrast to other described AOA, these low-salinity AOA appear to be motile, based on the presence of numerous motility- and chemotaxis-associated genes in the genome. This genome data will be used to inform targeted physiological and metabolic studies of this novel group of AOA, which may ultimately advance our understanding of AOA metabolism and their impacts on the global carbon and nitrogen cycles. PMID

  14. [Abundance and Community Composition of Ammonia-Oxidizing Archaea in Two Completely Autotrophic Nitrogen Removal over Nitrite Systems].

    PubMed

    Gao, Jing-feng; Li, Ting; Zhang, Shu-jun; Fan, Xiao-yan; Pan, Kai-ling; Ma, Qian; Yuan, Ya-lin

    2015-08-01

    Ammonia oxidation is the first and rate-limiting step of nitrification, which was thought to be only performed by ammonia-oxidizing bacteria (AOB). In recent years, ammonia-oxidizing archaea (AOA) was also confirmed to take part in ammonia oxidation. The diversity and abundance of AOA have been investigated in various environments, however, little is known regarding the AOA in the completely autotrophic nitrogen removal over nitrite (CANON) wastewater treatment process. In this study, the abundance and diversity of AOA were investigated in the biofilm and flocculent activated sludge collected in a lab-scale (L) CANON system and a pilot-scale (P) CANON systems, respectively. The quantitative real time PCR (qPCR) was applied to investigate the abundance of AOA and the diversity of AOA was determined by polymerase chain reaction (PCR), cloning and sequencing. The qPCR results showed that the average abundance of AOA amoA gene of L and P was 2.42 x 10(6) copies x g(-1) dry sludge and 6.51 x 10(6) copies x g(-1) dry sludge, respectively. The abundance of AOA in biofilm was 10.1-14.1 times higher than that in flocculent activated sludge. For P system, the abundance of AOA in flocculent activated sludge was 1.8 times higher than that in biofilm. The results indicated that the abundance of AOA might be affected by different sludge morphology. The diversity of AOA in P system was extremely limited, only one OTU was observed, which was classified into Nitrosopumilus subcluster 5.2. The diversity of AOA in L system was higher, eight OTUs were observed, which were classified into five genera: Nitrososphaera subcluster 9, subcluster 8.1, subcluster 4.1, subcluster 1.1 and Nitrosopumilus subcluster 5.2. The diversity and abundance of AOA were different in CANON systems with different sludge morphology. AOA may play an important role in ammonia oxidation in CANON system.

  15. The structure-function relationship for alumina supported platinum during the formation of ammonia from nitrogen oxide and hydrogen in the presence of oxygen.

    PubMed

    Adams, Emma Catherine; Merte, Lindsay Richard; Hellman, Anders; Skoglundh, Magnus; Gustafson, Johan; Bendixen, Eva Charlotte; Gabrielsson, Pär; Bertram, Florian; Evertsson, Jonas; Zhang, Chu; Carlson, Stefan; Carlsson, Per-Anders

    2016-04-28

    We study the structure-function relationship of alumina supported platinum during the formation of ammonia from nitrogen oxide and dihydrogen by employing in situ X-ray absorption and Fourier transform infrared spectroscopy. Particular focus has been directed towards the effect of oxygen on the reaction as a model system for emerging technologies for passive selective catalytic reduction of nitrogen oxides. The suppressed formation of ammonia observed as the feed becomes net-oxidizing is accompanied by a considerable increase in the oxidation state of platinum as well as the formation of surface nitrates and the loss of NH-containing surface species. In the presence of (excess) oxygen, the ammonia formation is proposed to be limited by weak interaction between nitrogen oxide and the oxidized platinum surface. This leads to a slow dissociation rate of nitrogen oxide and thus low abundance of the atomic nitrogen surface species that can react with the adsorbed hydrogen species. In this case the consumption of hydrogen through the competing water formation reaction and decomposition/oxidation of ammonia are of less importance for the net ammonia formation. PMID:27039829

  16. Spatial and temporal dynamics of ammonia oxidizers in the sediments of the Gulf of Finland, Baltic Sea.

    PubMed

    Vetterli, Adrien; Hietanen, Susanna; Leskinen, Elina

    2016-02-01

    The diversity and dynamics of ammonia-oxidizing bacteria (AOB) and archaea (AOA) nitrifying communities in the sediments of the eutrophic Gulf of Finland (GoF) were investigated. Using clone libraries of ammonia monooxygenase (amoA) gene fragments and terminal restriction fragment length polymorphism (TRFLP), we found a low richness of both AOB and AOA. The AOB amoA phylogeny matched that of AOB 16S ribosomal genes from the same samples. AOA communities were characterized by strong spatial variation while AOB communities showed notable temporal patterns. At open sea sites, where transient anoxic conditions prevail, richness of both AOA and AOB was lowest and communities were dominated by organisms with gene signatures unique to the GoF. Given the importance of nitrification as a link between the fixation of nitrogen and its removal from aquatic environments, the low diversity of ammonia-oxidizing microbes across the GoF could be of relevance for ecosystem resilience in the face of rapid global environmental changes. PMID:26722795

  17. Controlled growth of conical nickel oxide nanocrystals and their high performance gas sensing devices for ammonia molecule detection.

    PubMed

    Wang, Jian; Yang, Fan; Wei, Xiaowei; Zhang, Yafei; Wei, Liangming; Zhang, Jianjun; Tang, Qifeng; Guo, Biao; Xu, Lei

    2014-08-21

    NiO nanocones with good symmetry and highly ordered structure on NiO foil substrate have been successfully fabricated via a facile wet chemical approach combined with subsequent high temperature oxidation. These organized conical superstructures grow only along a certain direction and be controlled via the self-assembly and oriented attachment of a nucleus, which mainly rely on the similar surface energies and the extent of lattice matching of the oriented attached surfaces. During high temperature oxidation, the electric field created via the Ni(2+) and O(2-) facilitates Ni(2+) diffusion outward along the grain boundaries and O(2-) diffusion inward toward to meet the Ni(2+) ions, forming NiO. The as-grown NiO nanocones are 50-350 nm in diameter and 50-400 nm in height. The tip diameter of the nanocone is about 30 nm and the apex angle of the nanocone is about 40°. Meanwhile, we systematically investigated the gas sensing properties of the sensors based on the as-fabricated NiO foil covered with nanocone arrays for ammonia detection at room temperature. The results show that the gas sensing devices have outstanding sensitivity, reproducibility and selectivity, which are mainly because of the excellent connection between the NiO sensing materials and the Au electrodes, the strong electron donating ability of ammonia and the large active surface of selective physisorption for ammonia.

  18. Spatial and temporal dynamics of ammonia oxidizers in the sediments of the Gulf of Finland, Baltic Sea.

    PubMed

    Vetterli, Adrien; Hietanen, Susanna; Leskinen, Elina

    2016-02-01

    The diversity and dynamics of ammonia-oxidizing bacteria (AOB) and archaea (AOA) nitrifying communities in the sediments of the eutrophic Gulf of Finland (GoF) were investigated. Using clone libraries of ammonia monooxygenase (amoA) gene fragments and terminal restriction fragment length polymorphism (TRFLP), we found a low richness of both AOB and AOA. The AOB amoA phylogeny matched that of AOB 16S ribosomal genes from the same samples. AOA communities were characterized by strong spatial variation while AOB communities showed notable temporal patterns. At open sea sites, where transient anoxic conditions prevail, richness of both AOA and AOB was lowest and communities were dominated by organisms with gene signatures unique to the GoF. Given the importance of nitrification as a link between the fixation of nitrogen and its removal from aquatic environments, the low diversity of ammonia-oxidizing microbes across the GoF could be of relevance for ecosystem resilience in the face of rapid global environmental changes.

  19. Evaluation of revised polymerase chain reaction primers for more inclusive quantification of ammonia-oxidizing archaea and bacteria.

    PubMed

    Meinhardt, Kelley A; Bertagnolli, Anthony; Pannu, Manmeet W; Strand, Stuart E; Brown, Sally L; Stahl, David A

    2015-04-01

    Ammonia-oxidizing archaea (AOA) and bacteria (AOB) fill key roles in the nitrogen cycle. Thus, well-vetted methods for characterizing their distribution are essential for framing studies of their significance in natural and managed systems. Quantification of the gene coding for one subunit of the ammonia monooxygenase (amoA) by polymerase chain reaction is frequently employed to enumerate the two groups. However, variable amplification of sequence variants comprising this conserved genetic marker for ammonia oxidizers potentially compromises within- and between-system comparisons. We compared the performance of newly designed non-degenerate quantitative polymerase chain reaction primer sets to existing primer sets commonly used to quantify the amoA of AOA and AOB using a collection of plasmids and soil DNA samples. The new AOA primer set provided improved quantification of model mixtures of different amoA sequence variants and increased detection of amoA in DNA recovered from soils. Although both primer sets for the AOB provided similar results for many comparisons, the new primers demonstrated increased detection in environmental application. Thus, the new primer sets should provide a useful complement to primers now commonly used to characterize the environmental distribution of AOA and AOB.

  20. Microsite Differentiation Drives the Abundance of Soil Ammonia Oxidizing Bacteria along Aridity Gradients.

    PubMed

    Delgado-Baquerizo, Manuel; Maestre, Fernando T; Eldridge, David J; Singh, Brajesh K

    2016-01-01

    Soil ammonia oxidizing bacteria (AOB) and archaea (AOA) are responsible for nitrification in terrestrial ecosystems, and play important roles in ecosystem functioning by modulating the rates of N losses to ground water and the atmosphere. Vascular plants have been shown to modulate the abundance of AOA and AOB in drylands, the largest biome on Earth. Like plants, biotic and abiotic features such as insect nests and biological soil crusts (biocrusts) have unique biogeochemical attributes (e.g., nutrient availability) that may modify the local abundance of AOA and AOB. However, little is known about how these biotic and abiotic features and their interactions modulate the abundance of AOA and AOB in drylands. Here, we evaluate the abundance of amoA genes from AOB and AOA within six microsites commonly found in drylands (open areas, biocrusts, ant nests, grasses, nitrogen-fixing shrubs, and trees) at 21 sites from eastern Australia, including arid and mesic ecosystems that are threatened by predicted increases in aridity. Our results from structural equation modeling suggest that soil microsite differentiation alters the abundance of AOB (but not AOA) in both arid and mesic ecosystems. While the abundance of AOA sharply increased with increasing aridity in all microsites, the response of AOB abundance was microsite-dependent, with increases (nitrogen-fixing shrubs, ant nests), decreases (open areas) or no changes (grasses, biocrusts, trees) in abundance with increasing aridity. Microsites supporting the highest abundance of AOB were trees, nitrogen-fixing shrubs, and ant nests. These results are linked to particular soil characteristics (e.g., total carbon and ammonium) under these microsites. Our findings advance our understanding of key drivers of functionally important microbial communities and N availability in highly heterogeneous ecosystems such as drylands, which may be obscured when different soil microsites are not explicitly considered.

  1. Microsite Differentiation Drives the Abundance of Soil Ammonia Oxidizing Bacteria along Aridity Gradients

    PubMed Central

    Delgado-Baquerizo, Manuel; Maestre, Fernando T.; Eldridge, David J.; Singh, Brajesh K.

    2016-01-01

    Soil ammonia oxidizing bacteria (AOB) and archaea (AOA) are responsible for nitrification in terrestrial ecosystems, and play important roles in ecosystem functioning by modulating the rates of N losses to ground water and the atmosphere. Vascular plants have been shown to modulate the abundance of AOA and AOB in drylands, the largest biome on Earth. Like plants, biotic and abiotic features such as insect nests and biological soil crusts (biocrusts) have unique biogeochemical attributes (e.g., nutrient availability) that may modify the local abundance of AOA and AOB. However, little is known about how these biotic and abiotic features and their interactions modulate the abundance of AOA and AOB in drylands. Here, we evaluate the abundance of amoA genes from AOB and AOA within six microsites commonly found in drylands (open areas, biocrusts, ant nests, grasses, nitrogen-fixing shrubs, and trees) at 21 sites from eastern Australia, including arid and mesic ecosystems that are threatened by predicted increases in aridity. Our results from structural equation modeling suggest that soil microsite differentiation alters the abundance of AOB (but not AOA) in both arid and mesic ecosystems. While the abundance of AOA sharply increased with increasing aridity in all microsites, the response of AOB abundance was microsite-dependent, with increases (nitrogen-fixing shrubs, ant nests), decreases (open areas) or no changes (grasses, biocrusts, trees) in abundance with increasing aridity. Microsites supporting the highest abundance of AOB were trees, nitrogen-fixing shrubs, and ant nests. These results are linked to particular soil characteristics (e.g., total carbon and ammonium) under these microsites. Our findings advance our understanding of key drivers of functionally important microbial communities and N availability in highly heterogeneous ecosystems such as drylands, which may be obscured when different soil microsites are not explicitly considered. PMID:27148194

  2. Microsite Differentiation Drives the Abundance of Soil Ammonia Oxidizing Bacteria along Aridity Gradients.

    PubMed

    Delgado-Baquerizo, Manuel; Maestre, Fernando T; Eldridge, David J; Singh, Brajesh K

    2016-01-01

    Soil ammonia oxidizing bacteria (AOB) and archaea (AOA) are responsible for nitrification in terrestrial ecosystems, and play important roles in ecosystem functioning by modulating the rates of N losses to ground water and the atmosphere. Vascular plants have been shown to modulate the abundance of AOA and AOB in drylands, the largest biome on Earth. Like plants, biotic and abiotic features such as insect nests and biological soil crusts (biocrusts) have unique biogeochemical attributes (e.g., nutrient availability) that may modify the local abundance of AOA and AOB. However, little is known about how these biotic and abiotic features and their interactions modulate the abundance of AOA and AOB in drylands. Here, we evaluate the abundance of amoA genes from AOB and AOA within six microsites commonly found in drylands (open areas, biocrusts, ant nests, grasses, nitrogen-fixing shrubs, and trees) at 21 sites from eastern Australia, including arid and mesic ecosystems that are threatened by predicted increases in aridity. Our results from structural equation modeling suggest that soil microsite differentiation alters the abundance of AOB (but not AOA) in both arid and mesic ecosystems. While the abundance of AOA sharply increased with increasing aridity in all microsites, the response of AOB abundance was microsite-dependent, with increases (nitrogen-fixing shrubs, ant nests), decreases (open areas) or no changes (grasses, biocrusts, trees) in abundance with increasing aridity. Microsites supporting the highest abundance of AOB were trees, nitrogen-fixing shrubs, and ant nests. These results are linked to particular soil characteristics (e.g., total carbon and ammonium) under these microsites. Our findings advance our understanding of key drivers of functionally important microbial communities and N availability in highly heterogeneous ecosystems such as drylands, which may be obscured when different soil microsites are not explicitly considered. PMID:27148194

  3. Theoretical performance of liquid ammonia, hydrazine and mixture of liquid ammonia and hydrazine as fuels with liquid oxygen biflouride as oxidant for rocket engines : I-mixture of liquid ammonia and hydrazine

    NASA Technical Reports Server (NTRS)

    Huff, Vearl N; Gordon, Sanford

    1952-01-01

    Theoretical performance for mixture of 36.3 percent liquid ammonia and 63.7 percent hydrazine with liquid oxygen bifluoride as rocket propellant was calculated on assumption of equilibrium composition during expansion for a wide range of fuel-oxidant and expansios ratios. Parameters included were specific impulse, combustion-chamber temperature, nozzle exit temperature, composition mean molecular weight, characteristic velocity, coefficient of thrust and ratio of nozzle-exit area to throat area. For chamber pressure of 300 pounds per square inch absolute and expansion to 1 atmosphere, maximum specific impulse was 295.8 pound-seconds per pound. Five percent by weight of water in the hydrazine lowered specific impulse from about one to three units over a wide range of weight-percent fuel.

  4. Structure-based design of bacterial nitric oxide synthase inhibitors.

    PubMed

    Holden, Jeffrey K; Kang, Soosung; Hollingsworth, Scott A; Li, Huiying; Lim, Nathan; Chen, Steven; Huang, He; Xue, Fengtian; Tang, Wei; Silverman, Richard B; Poulos, Thomas L

    2015-01-22

    Inhibition of bacterial nitric oxide synthase (bNOS) has the potential to improve the efficacy of antimicrobials used to treat infections by Gram-positive pathogens Staphylococcus aureus and Bacillus anthracis. However, inhibitor specificity toward bNOS over the mammalian NOS (mNOS) isoforms remains a challenge because of the near identical NOS active sites. One key structural difference between the NOS isoforms is the amino acid composition of the pterin cofactor binding site that is adjacent to the NOS active site. Previously, we demonstrated that a NOS inhibitor targeting both the active and pterin sites was potent and functioned as an antimicrobial ( Holden , , Proc. Natl. Acad. Sci. U.S.A. 2013 , 110 , 18127 ). Here we present additional crystal structures, binding analyses, and bacterial killing studies of inhibitors that target both the active and pterin sites of a bNOS and function as antimicrobials. Together, these data provide a framework for continued development of bNOS inhibitors, as each molecule represents an excellent chemical scaffold for the design of isoform selective bNOS inhibitors.

  5. Structure-Based Design of Bacterial Nitric Oxide Synthase Inhibitors

    PubMed Central

    2015-01-01

    Inhibition of bacterial nitric oxide synthase (bNOS) has the potential to improve the efficacy of antimicrobials used to treat infections by Gram-positive pathogens Staphylococcus aureus and Bacillus anthracis. However, inhibitor specificity toward bNOS over the mammalian NOS (mNOS) isoforms remains a challenge because of the near identical NOS active sites. One key structural difference between the NOS isoforms is the amino acid composition of the pterin cofactor binding site that is adjacent to the NOS active site. Previously, we demonstrated that a NOS inhibitor targeting both the active and pterin sites was potent and functioned as an antimicrobial (Holden, , Proc. Natl. Acad. Sci. U.S.A.2013, 110, 1812724145412). Here we present additional crystal structures, binding analyses, and bacterial killing studies of inhibitors that target both the active and pterin sites of a bNOS and function as antimicrobials. Together, these data provide a framework for continued development of bNOS inhibitors, as each molecule represents an excellent chemical scaffold for the design of isoform selective bNOS inhibitors. PMID:25522110

  6. Determination of surface coverage of catalysts: Temperature programmed experiments on platinum and iridium sponge catalysts after low temperature ammonia oxidation

    SciTech Connect

    Broek, A.C.M. van den; Grondelle, J. van; Santen, R.A. van

    1999-07-25

    The activity of iridium and platinum sponge catalysts was studied in the low temperature gas phase oxidation of ammonia with oxygen. Under the reaction conditions used, iridium was found to be more active and more selective to nitrogen than platinum. Furthermore it was established from activity measurements that both catalysts lose activity as a function of time on stream due to inhibition of the surface by reaction intermediates. The used catalysts were studied by XPS and temperature programmed techniques. It was found that the surface of the catalysts had a high coverage of NH and OH and some additional NH{sub 2}. It seems most likely that the reaction mechanism proceeds through a stepwise dehydrogenation of the ammonia molecule. It appears that the last dehydrogenation step (NH by OH to N and water) is the rate determining step. The high selectivity of iridium to nitrogen can be explained by the higher activity of iridium in dissociating NO.

  7. A nonenzymatic biosensor based on gold electrodes modified with peptide self-assemblies for detecting ammonia and urea oxidation.

    PubMed

    Bianchi, Roberta C; da Silva, Emerson Rodrigo; Dall'Antonia, Luiz H; Ferreira, Fabio Furlan; Alves, Wendel Andrade

    2014-09-30

    We have developed a nonenzymatic biosensor for the detection of ammonia and urea oxidation based on the deposition of peptide microstructures onto thiolated gold electrodes. FF-MNSs/MCP/Au assemblies were obtained by modifying gold substrates with 4-mercaptopyridine (MCP), followed by coating with l,l-diphenylalanine micro/nanostructures (FF-MNSs) grown in the solid-vapor phase. Benzene rings and amide groups with peptide micro/nanostructures interact with synthetic NH4(+) receptors through cation-π and hydrogen bonding. AuOH clusters on the Au surface provided the catalytic sites. The application of a predetermined concentration of analytes at the peptide interfaces activated the catalytic sites. We observed a relationship between the stability of films and the crystal structure of peptides, and we organized the FF-MNSs into an orthorhombic symmetry that was the most suitable assembly for creation of our biosensors. At 0.1 mol L(-1) NaOH, these FF-MNSs/MCP/Au electrodes have electrocatalytic properties regarding ammonia and urea oxidation that are comparable to those of enzyme-based architectures. Under optimal conditions, the electrocatalytic response is proportional to the ammonia and urea concentration in the range 0.1-1.0 mmol L(-1). The sensitivity was calculated as 2.83 and 81.3 μA mmol L(-1) cm(-2) for ammonia and urea, respectively, at +0.40 V (vs SCE). Our detection method is easy to follow, does not require a mediator or enzyme, and has strong potential for detecting urea via nonenzymatic routes.

  8. Nitrogenous fertilizers: Global distribution of consumption and associated emissions of nitrous oxide and ammonia

    SciTech Connect

    Matthews, E.

    1994-12-01

    The global distribution of nitrogen input via application of chemical nitrogenous fertilizers to agricultural ecosystems is presented. The suite of 1{degrees} (latitude/longitude) resolution data bases includes primary data on fertilizer consumption, as well as supporting data sets defining the distribution and intensity of agriculture associated with fertilizer use. The data were developed from a variety of sources and reflect conditions for the mid-1980s. East Asia, where fertilizer use is increasing at {approximately}10%/year, accounted for {approximately}37% of the total, while North America and western Europe, where fertilizer use is leveling off, accounted for 40% of the world`s total in the mid-1980s. While almost every country consumes urea, {approximately}75% of the large East Asian fertilizer use is supplied by this one fertilizer. Ammonium nitrate, used primarily in the former centrally planned economies of Europe, in West Asia, and in Africa, accounted for about one quarter of global consumption. These data were used to estimate distributions of the annual emission of nitrous oxide (N{sub 2}O) and ammonia (NH{sub 3}) associated with the use of fertilizers. Applying published ranges of emission coefficients for fertilizer types in the data base yields a median emission of 0.1 Tg N{sub 2}O-N, with lower and upper values of 0.03 and 2.0 Tg N{sub 2}O-N in 1984. This equals <1% to {approximately}3% of the total nitrogen applied via commercial fertilizers and represents ,=<1% to 15% of the annual emission of N{sub 2}O from terrestrial sources. Assuming that the {approximately}4% annual increase in consumption of nitrogenous fertilizers during the 1980s corresponds to a {approximately}4% rise in the release of N{sub 2}O-N, yearly increases in emissions from fertilizer use are <0.01 to 0.08 Tg N{sub 2}O-N equal to <1% to 3% of the current growth of atmospheric nitrous oxide. 98 refs., 3 figs., 5 tabs.

  9. Density functional theory study of the oxidation of ammonia on the IrO2(110) surface.

    PubMed

    Wang, Chia-Ching; Siao, Shih Syong; Jiang, Jyh-Chiang

    2011-12-01

    In this study, we employed density functional theory (DFT) to investigate the oxidation of ammonia (NH(3)) on the IrO(2)(110) surface. We characterized the possible reaction pathways for the dehydrogenation of NH(x) species (x = 1-3) and for the formation of the oxidation products N(2), N(2)O, NO, NO(2), and H(2)O. The presence of oxygen atoms on coordinatively unsaturated sites (O(cus)) of the oxygen-rich IrO(2)(110) surface promotes the oxidation of NH(3) on the surface. In contrast, NH(3) molecules prefer undergoing desorption over oxidation on the stoichiometric IrO(2)(110) surface. Moreover, the O(cus) atoms are also the major oxidants leading to the formation of oxidation products; none of the oxidations mediated by the bridge oxygen atoms were favorable reactions. The energy barrier for formation of H(2)O as a gaseous oxidation product on the IrO(2)(110) surface is high (from 1.83 to 2.29 eV), potentially leading to the formation of nitrogen-atom-containing products at high temperature. In addition, the selectivity toward the nitrogen-atom-containing products is dominated by the coverage of O(cus) atoms on the surface; for example, a higher coverage of O(cus) atoms results in greater production of nitrogen oxides (NO, NO(2)). PMID:22047008

  10. Dynamics of Nitrification and Denitrification in Root-Oxygenated Sediments and Adaptation of Ammonia-Oxidizing Bacteria to Low-Oxygen or Anoxic Habitats

    PubMed Central

    Bodelier, P.; Libochant, J. A.; Blom, C.; Laanbroek, H. J.

    1996-01-01

    Oxygen-releasing plants may provide aerobic niches in anoxic sediments and soils for ammonia-oxidizing bacteria. The oxygen-releasing, aerenchymatous emergent macrophyte Glyceria maxima had a strong positive effect on numbers and activities of the nitrifying bacteria in its root zone in spring and early summer. The stimulation of the aerobic nitrifying bacteria in the freshwater sediment, ascribed to oxygen release by the roots of G. maxima, disappeared in late summer. Numbers and activities of the nitrifying bacteria were positively correlated, and a positive relationship with denitrification activities also was found. To assess possible adaptations of ammonia-oxidizing bacteria to low-oxygen or anoxic habitats, a comparison was made between the freshwater lake sediment and three soils differing in oxicity profiles. Oxygen kinetics and tolerance to anoxia of the ammonia-oxidizing communities from these habitats were determined. The apparent K(infm) values for oxygen of the ammonia-oxidizing community in the lake sediment were in the range of 5 to 15 (mu)M, which was substantially lower than the range of K(infm) values for oxygen of the ammonia-oxidizing community from a permanently oxic dune location. Upon anoxic incubation, the ammonia-oxidizing communities of dune, chalk grassland, and calcareous grassland soils lost 99, 95, and 92% of their initial nitrifying capacity, respectively. In contrast, the ammonia-oxidizing community in the lake sediment started to nitrify within 1 h upon exposure to oxygen at the level of the initial capacity. It is argued that the conservation of the nitrifying capacity during anoxic periods and the ability to react instantaneously to the presence of oxygen are important traits of nitrifiers in fluctuating oxic-anoxic environments such as the root zone of aerenchymatous plant species. PMID:16535441

  11. Bacterial toxicity of oxide nanoparticles and their effects on bacterial surface biomolecules

    NASA Astrophysics Data System (ADS)

    Jiang, Wei

    Toxicity of nano-scaled Al2O3, SiO2, TiO2 and ZnO to bacteria (Bacillus subtilis, Escherichia coli and Pseudomonas fluorescens) was examined and compared to that of their respective bulk (micro-scaled) counterparts. All nanoparticles (NPs) but TiO2 showed higher toxicity than their bulk counterparts. Toxicity of released metal ions was differentiated from that of the oxide particles. ZnO was the most toxic among the three NPs, causing 100% mortality to the three tested bacteria. TEM images showed attachment of NPs to the bacteria, suggesting that the toxicity was affected by bacterial attachment. The effects of oxide NPs on bacteria cells and bacterial surface biomolecules were studied by FTIR spectroscopy to provide a better understanding of their cytotoxicity. Lipopolysaccharide (LPS) and lipoteichoic acid could bind to oxide NPs through hydrogen bonding and ligand exchange, but the cytotoxicity of NPs seemed largely related to the function-involved or structural changes to proteins and phospholipids. The three NPs decreased the intensity ratio of beta-sheets/alpha-helices, indicating protein structure change, which may affect cell physiological activities. The phosphodiester bond of L-alpha-Phosphatidyl-ethanolamine (PE) was broken by ZnO NPs, forming phosphate monoesters and resulting in the highly disordered alkyl chain. Such damage to phospholipid molecular structure may lead to membrane rupture and cell leaking, which is consistent with the fact that ZnO is the most toxic of the three NPs. LPS and PE are amphiphilic biomolecules that are major constituents of the outer membrane of Gram-negative bacteria. Their micelles and vesicles were studied as model cell membranes to evaluate NP effects on membrane construction. The adsorption of polysaccharides on Al2O3 and TiO 2 NPs dispersed LPS vesicles and micelles. LPS coated Al2O 3 NPs, while it caused the aggregation of TiO2 NPs according to atom force microscopy images. Desorption from the two NPs was slow due

  12. Bacterial Diversity and Spatial Variability Found in a Mn-Fe Oxide Encrusted Microbial Mat From the 5000 Meter-Deep Hydrothermal Vent 'Ula Nui, Hawaii

    NASA Astrophysics Data System (ADS)

    Davis, R. E.; Moyer, C. L.; Curtis, A. C.; Staudigel, H.; Tebo, B. M.

    2007-12-01

    'Ula Nui Vent Field was discovered on the southern flank of Loihi Seamount during the 2006 FeMO Microbial Observatory expedition at over 5000 meters depth. The vent field exhibited abundant low temperature (<2°C above ambient) seeps which were covered with extensive mineral-encrusted microbial mat material. The microbial mats consisted of a 0.5-3 cm thick upper mat which was comprised of laminated layers of manganese oxides and iron oxides which overlayed a flocculent iron oxide mat that could attain depths of over 1 m deep. Bacterial communities from the top and bottom mats were analyzed using SSU rRNA terminal-restriction fragment polymorphisms (T-RFLP) coupled with traditional clone library analysis. T-RFLP chromatograms indicate dominance of the ζ- Proteobacteria in both the top and lower mat. Cluster analysis of the T- RFLP fingerprints show a strong correlation between the bottom mat and iron oxide-encrusted microbial mats found in the hydrothermally active Pele's Pit near the summit of Loihi Seamount. The top mat clusters with iron and manganese oxide encrusted microbial mats found at various sites on Loihi Seamount not associated with measurable active hydrothermal venting. Clone library analysis show that the top mat was dominated by phylotypes related to the δ- γ- and the recently described ζ- Proteobacteria, along with members of the Planctomycete Division. The dominance of ζ- Proteobacteria and Planctomycete phylotypes implies that neutrophilic iron oxidation and anaerobic ammonia oxidation are active metabolisms in the top mat bacterial community. Anaerobic ammonia oxidation coupled with nitrite reduction may also be an integral metabolism in this community since some Planctomycete phylotypes from the top mat cluster within the anammox clade.

  13. Growth, oxidative stress responses, and gene transcription of juvenile bighead carp (Hypophthalmichthys nobilis) under chronic-term exposure of ammonia.

    PubMed

    Sun, Hongjie; Wang, Wenqian; Li, Jiajia; Yang, Zhou

    2014-08-01

    Ammonia toxicity has become a universal problem for aquatic animals, especially fish. The purpose of the present study was to assess the chronic toxicity of ammonia to the juvenile bighead carp (Hypophthalmichthys nobilis). The authors measured the responses of growth performance (specific growth rate, condition factor, body weight, and body length), oxidative stress, and related gene transcription of juvenile bighead carp exposed to solutions with different concentrations of un-ionized ammonia (UIA; 0 mg L(-1) , 0.053 mg L(-1) , 0.106 mg L(-1) , 0.159 mg L(-1) , and 0.212 mg L(-1) ). The results showed that UIA had no effect on growth performance, glutathione content, or glutathione S-transferase gene transcription, but superoxide dismutase (SOD) activity was significantly elevated. In addition, different concentrations of UIA produced different degrees of damage to juvenile bighead carp: compared with control, lower UIA levels significantly decreased gene transcription of catalase (CAT) and increased malondialdehyde (MDA) levels; higher UIA concentration (0.212 mg L(-1) ) significantly increased gene transcription of the antioxidant enzymes CAT and SOD and reduced MDA levels. The data clearly demonstrate that chronic exposure of UIA at lower concentrations can result in some degree of impairment of antioxidative function, and chronic exposure at higher concentrations can enhance damage to juvenile bighead carp by modulating antioxidant enzyme activities and gene transcription.

  14. Growth, oxidative stress responses, and gene transcription of juvenile bighead carp (Hypophthalmichthys nobilis) under chronic-term exposure of ammonia.

    PubMed

    Sun, Hongjie; Wang, Wenqian; Li, Jiajia; Yang, Zhou

    2014-08-01

    Ammonia toxicity has become a universal problem for aquatic animals, especially fish. The purpose of the present study was to assess the chronic toxicity of ammonia to the juvenile bighead carp (Hypophthalmichthys nobilis). The authors measured the responses of growth performance (specific growth rate, condition factor, body weight, and body length), oxidative stress, and related gene transcription of juvenile bighead carp exposed to solutions with different concentrations of un-ionized ammonia (UIA; 0 mg L(-1) , 0.053 mg L(-1) , 0.106 mg L(-1) , 0.159 mg L(-1) , and 0.212 mg L(-1) ). The results showed that UIA had no effect on growth performance, glutathione content, or glutathione S-transferase gene transcription, but superoxide dismutase (SOD) activity was significantly elevated. In addition, different concentrations of UIA produced different degrees of damage to juvenile bighead carp: compared with control, lower UIA levels significantly decreased gene transcription of catalase (CAT) and increased malondialdehyde (MDA) levels; higher UIA concentration (0.212 mg L(-1) ) significantly increased gene transcription of the antioxidant enzymes CAT and SOD and reduced MDA levels. The data clearly demonstrate that chronic exposure of UIA at lower concentrations can result in some degree of impairment of antioxidative function, and chronic exposure at higher concentrations can enhance damage to juvenile bighead carp by modulating antioxidant enzyme activities and gene transcription. PMID:24839064

  15. Phylogenetic diversity and ecological pattern of ammonia-oxidizing archaea in the surface sediments of the western Pacific.

    PubMed

    Cao, Huiluo; Hong, Yiguo; Li, Meng; Gu, Ji-Dong

    2011-11-01

    The phylogenetic diversity of ammonia-oxidizing archaea (AOA) was surveyed in the surface sediments from the northern part of the South China Sea (SCS). The distribution pattern of AOA in the western Pacific was discussed through comparing the SCS with other areas in the western Pacific including Changjiang Estuary and the adjacent East China Sea where high input of anthropogenic nitrogen was evident, the tropical West Pacific Continental Margins close to the Philippines, the deep-sea methane seep sediments in the Okhotsk Sea, the cold deep sea of Northeastern Japan Sea, and the hydrothermal field in the Southern Okinawa Trough. These various environments provide a wide spectrum of physical and chemical conditions for a better understanding of the distribution pattern and diversities of AOA in the western Pacific. Under these different conditions, the distinct community composition between shallow and deep-sea sediments was clearly delineated based on the UniFrac PCoA and Jackknife Environmental Cluster analyses. Phylogenetic analyses showed that a few ammonia-oxidizing archaeal subclades in the marine water column/sediment clade and endemic lineages were indicative phylotypes for some environments. Higher phylogenetic diversity was observed in the Philippines while lower diversity in the hydrothermal vent habitat. Water depth and possibly with other environmental factors could be the main driving forces to shape the phylogenetic diversity of AOA observed, not only in the SCS but also in the whole western Pacific. The multivariate regression tree analysis also supported this observation consistently. Moreover, the functions of current and other climate factors were also discussed in comparison of phylogenetic diversity. The information collectively provides important insights into the ecophysiological requirements of uncultured ammonia-oxidizing archaeal lineages in the western Pacific Ocean. PMID:21748268

  16. Effects of different fertilizers on the abundance and community structure of ammonia oxidizers in a yellow clay soil.

    PubMed

    Yao, Huaiying; Huang, Sha; Qiu, Qiongfen; Li, Yaying; Wu, Lianghuan; Mi, Wenhai; Dai, Feng

    2016-08-01

    Yellow clay paddy soil (Oxisols) is a typical soil with low productivity in southern China. Nitrification inhibitors and slow release fertilizers have been used to improve nitrogen fertilizer utilization and reduce environmental impaction of the paddy soil. However, their effects on ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) in paddy soil have rarely been investigated. In the present work, we compared the influences of several slow release fertilizers and nitrification inhibitors on the community structure and activities of the ammonia oxidizers in yellow clay soil. The abundances and community compositions of AOA and AOB were determined with qPCR, terminal restriction fragment length polymorphism (T-RFLP), and clone library approaches. Our results indicated that the potential nitrification rate (PNR) of the soil was significantly related to the abundances of both AOA and AOB. Nitrogen fertilizer application stimulated the growth of AOA and AOB, and the combinations of nitrapyrin with urea (NPU) and urea-formaldehyde (UF) inhibited the growth of AOA and AOB, respectively. Compared with other treatments, the applications of NPU and UF also led to significant shifts in the community compositions of AOA and AOB, respectively. NPU showed an inhibitory effect on AOA T-RF 166 bp that belonged to Nitrosotalea. UF had a negative effect on AOB T-RF 62 bp that was assigned to Nitrosospira. These results suggested that NPU inhibited PNR and increased nitrogen use efficiency (NUE) by inhibiting the growth of AOA and altering AOA community. UF showed no effect on NUE but decreased AOB abundance and shifted AOB community.

  17. Phylogenetic diversity and ecological pattern of ammonia-oxidizing archaea in the surface sediments of the western Pacific.

    PubMed

    Cao, Huiluo; Hong, Yiguo; Li, Meng; Gu, Ji-Dong

    2011-11-01

    The phylogenetic diversity of ammonia-oxidizing archaea (AOA) was surveyed in the surface sediments from the northern part of the South China Sea (SCS). The distribution pattern of AOA in the western Pacific was discussed through comparing the SCS with other areas in the western Pacific including Changjiang Estuary and the adjacent East China Sea where high input of anthropogenic nitrogen was evident, the tropical West Pacific Continental Margins close to the Philippines, the deep-sea methane seep sediments in the Okhotsk Sea, the cold deep sea of Northeastern Japan Sea, and the hydrothermal field in the Southern Okinawa Trough. These various environments provide a wide spectrum of physical and chemical conditions for a better understanding of the distribution pattern and diversities of AOA in the western Pacific. Under these different conditions, the distinct community composition between shallow and deep-sea sediments was clearly delineated based on the UniFrac PCoA and Jackknife Environmental Cluster analyses. Phylogenetic analyses showed that a few ammonia-oxidizing archaeal subclades in the marine water column/sediment clade and endemic lineages were indicative phylotypes for some environments. Higher phylogenetic diversity was observed in the Philippines while lower diversity in the hydrothermal vent habitat. Water depth and possibly with other environmental factors could be the main driving forces to shape the phylogenetic diversity of AOA observed, not only in the SCS but also in the whole western Pacific. The multivariate regression tree analysis also supported this observation consistently. Moreover, the functions of current and other climate factors were also discussed in comparison of phylogenetic diversity. The information collectively provides important insights into the ecophysiological requirements of uncultured ammonia-oxidizing archaeal lineages in the western Pacific Ocean.

  18. Apparatus for purifying arsine, phosphine, ammonia, and inert gases to remove Lewis acid and oxidant impurities therefrom

    DOEpatents

    Tom, Glenn M.; Brown, Duncan W.

    1991-01-08

    An apparatus for purifying a gaseous mixture comprising arsine, phosphine, ammonia, and/or inert gases, to remove Lewis acid and/or oxidant impurities therefrom, comprising a vessel containing a bed of a scavenger, the scavenger including a support having associated therewith an anion which is effective to remove such impurities, such anion being selected from one or more members of the group consisting of: (i) carbanions whose corresponding protonated compounds have a pK.sub.a value of from about 22 to about 36; and (ii) anions formed by reaction of such carbanions with the primary component of the mixture.

  19. Nitrosomonas communis strain YNSRA, an ammonia-oxidizing bacterium, isolated from the reed rhizoplane in an aquaponics plant.

    PubMed

    Tokuyama, Tatsuaki; Mine, Atsusi; Kamiyama, Kaoru; Yabe, Ryuichi; Satoh, Kazuo; Matsumoto, Hirotoshi; Takahashi, Reiji; Itonaga, Koji

    2004-01-01

    An ammonia-oxidizing bacterium (strain YNSRA) was isolated from the rhizoplane of the reed (Phragmites communis) used in an aquaponics plant which is a wastewater treatment plant. Strain YNSRA was identified as Nitrosomonas communis by taxonomic studies. The hydroxylamine-cytochrome c reductase (HCR) of strain YNSRA was found to have a higher activity (25.60 u/mg) than that of Nitrosomonas europaea ATCC25978T (8.94 u/mg). Ribulose-1,5-bisphosphate carboxylase (RubisCO) activity was detected at very low levels in strain YNSRA, whereas strain ATCC25978T had definite activity.

  20. Nitrosomonas communis strain YNSRA, an ammonia-oxidizing bacterium, isolated from the reed rhizoplane in an aquaponics plant.

    PubMed

    Tokuyama, Tatsuaki; Mine, Atsusi; Kamiyama, Kaoru; Yabe, Ryuichi; Satoh, Kazuo; Matsumoto, Hirotoshi; Takahashi, Reiji; Itonaga, Koji

    2004-01-01

    An ammonia-oxidizing bacterium (strain YNSRA) was isolated from the rhizoplane of the reed (Phragmites communis) used in an aquaponics plant which is a wastewater treatment plant. Strain YNSRA was identified as Nitrosomonas communis by taxonomic studies. The hydroxylamine-cytochrome c reductase (HCR) of strain YNSRA was found to have a higher activity (25.60 u/mg) than that of Nitrosomonas europaea ATCC25978T (8.94 u/mg). Ribulose-1,5-bisphosphate carboxylase (RubisCO) activity was detected at very low levels in strain YNSRA, whereas strain ATCC25978T had definite activity. PMID:16233712

  1. Bacterial oxidation of dibromomethane and methyl bromide in natural waters and enrichment cultures

    USGS Publications Warehouse

    Goodwin, K.D.; Schaefer, J.K.; Oremland, R.S.

    1998-01-01

    Bacterial oxidation of 14CH2Br2 and 14CH3Br was measured in freshwater, estuarine, seawater, and hypersaline-alkaline samples. In general, bacteria from the various sites oxidized similar amounts of 14CH2Br2 and comparatively less 14CH3Br. Bacterial oxidation of 14CH3Br was rapid in freshwater samples compared to bacterial oxidation of 14CH3Br in more saline waters. Freshwater was also the only site in which methyl fluoride-sensitive bacteria (e.g., methanotrophs or nitrifiers) governed brominated methane oxidation. Half-life calculations indicated that bacterial oxidation of CH2Br2 was potentially significant in all of the waters tested. In contrast, only in freshwater was bacterial oxidation of CH3Br as fast as chemical removal. The values calculated for more saline sites suggested that bacterial oxidation of CH3Br was relatively slow compared to chemical and physical loss mechanisms. However, enrichment cultures demonstrated that bacteria in seawater can rapidly oxidize brominated methanes. Two distinct cultures of nonmethanotrophic methylotrophs were recovered; one of these cultures was able to utilize CH2Br2 as a sole carbon source, and the other was able to utilize CH3Br as a sole carbon source.

  2. Diversity and Abundance of Ammonia-Oxidizing Archaeal Nitrite Reductase (nirK) Genes in Estuarine Sediments of San Francisco Bay

    NASA Astrophysics Data System (ADS)

    Reji, L.; Lee, J. A.; Damashek, J.; Francis, C. A.

    2013-12-01

    Nitrification, the microbially-mediated aerobic oxidation of ammonia to nitrate via nitrite, is an integral component of the global biogeochemical nitrogen cycle. The first and rate-limiting step of nitrification, ammonia oxidation, is carried out by two distinct microbial groups: ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA). Molecular ecological studies targeting the amoA gene have revealed the abundance and ubiquity of AOA in terrestrial as well as aquatic environments. In addition to the ammonia oxidation machinery that includes the amoA gene, AOA also encode a gene for copper-containing nitrite reductase (nirK). The distribution patterns and functional role of nirK in AOA remain mostly unknown; proposed functions include the indirect involvement in ammonia oxidation through the production of nitric oxide during nitrite reduction, and (2) nitrite detoxification. In the present study, the diversity and abundance of archaeal nirK genes in estuarine sediments were investigated using quantitative polymerase chain reaction, cloning and sequencing approaches. In sediment samples collected from the San Francisco Bay estuary, two archaeal nirK variants (AnirKa and AnirKb) were amplified using specific primer sets. Overall, AnirKa was observed to be significantly more abundant than AnirKb in the sediment samples, with variation in relative abundance spanning two to three orders of magnitude between sampling sites. Phylogenetic analysis revealed a number of unique archaeal nirK sequence types, as well as many that clustered with sequences from previous estuarine studies and cultured AOA isolates, such as Nitrosopumilus maritimus. This study yielded new insights into the diversity and abundance of archaeal nirK genes in estuarine sediments, and highlights the importance of further investigating the physiological role of this gene in AOA, as well as its suitability as a marker gene for studying AOA in the environment.

  3. Isolated and combined exposure to ammonia and nitrite in giant freshwater pawn (Macrobrachium rosenbergii): effects on the oxidative stress, antioxidant enzymatic activities and apoptosis in haemocytes.

    PubMed

    Zhang, Yufan; Ye, Chaoxia; Wang, Anli; Zhu, Xuan; Chen, Changhong; Xian, Jianan; Sun, Zhenzhu

    2015-10-01

    The residual contaminators such as ammonia and nitrite are widely considered as relevant sources of aquatic environmental pollutants, posing a great threat to shrimp survival. To study the toxicological effects of ammonia and nitrite exposure on the innate immune response in invertebrates, we investigated the oxidative stress and apoptosis in haemocytes of freshwater prawn (Macrobrachium rosenbergii) under isolated and combined exposure to ammonia and nitrite in order to provide useful information about adult prawn immune responses. M. rosenbergii (13.44 ± 2.75 g) were exposed to 0, 5, and 25 mg/L total ammonia-N (TAN) and 0, 5, and 20 mg/L nitrite-N for 24 h. All ammonia concentrations were combined with all nitrite concentrations, making a total of nine treatments studied. Following the exposure treatment, antioxidant enzyme activity, reactive oxygen species (ROS) generation, nitric oxide (NO) generation, and apoptotic cell ratio of haemocytes were measured using flow cytometry. Results indicated that ROS generation was sensitive to the combined effect of ammonia and nitrite, which subsequently affected the Cu-Zn SOD activity. In addition, CAT showed the highest activity at 5 mg/L TAN while GPx decreased at 5 mg/L TAN and returned towards baseline at 25 mg/L. NO generation synchronized with the apoptotic cell ratio in haemocytes, indicating that NO production was closely associated with programmed cell death. Both NO production and apoptotic ratios significantly decreased following 25 mg/L TAN, which may be due to the antagonistic regulation of NO and GPx. We hypothesized that the toxicological effect of nitrite exhibited less change in physiological changes compared to that of ammonia, because of the high tolerance to nitrite exposure in mature M. rosenbergii and/or the competitive effects of chloride ions. Taken together, these results showed that ammonia and nitrite caused a series of combined oxidative stress and apoptosis in M. rosenbergi, but further

  4. Relating the Diversity, Abundance, and Activity of Ammonia-Oxidizing Archaeal Communities to Nitrification Rates in the Coastal Ocean

    NASA Astrophysics Data System (ADS)

    Tolar, B. B.; Smith, J. M.; Chavez, F.; Francis, C.

    2015-12-01

    Ammonia oxidation, the rate-limiting first step of nitrification, is an important link between reduced (ammonia) and oxidized (nitrate) nitrogen, and controls the relative distribution of these forms of inorganic nitrogen. This process is catalyzed via the ammonia monooxygenase enzyme of both ammonia-oxidizing Bacteria (AOB) and Archaea (AOA); the α subunit of this enzyme is encoded by the amoA gene and has been used as the molecular marker to detect this process. In the ocean, AOA are typically 10-1000 times more and are likely more active than AOB, and thus are key players in the marine nitrogen cycle. Monterey Bay is a dynamic site to study nitrification, as seasonal upwelling brings deep water and nutrients into surface waters, which can promote phytoplankton blooms and impact biogeochemical processes such as the nitrogen cycle. We have sampled two sites within Monterey Bay bimonthly for two years as part of the ongoing Monterey Bay Time Series (MBTS) to quantify AOA genes, transcripts, and nitrification rates. Two ecotypes of AOA are routinely found in Monterey Bay - the 'shallow' water column A (WCA) and 'deep' water column B (WCB) clades, which are thought to have distinct physiological properties and can be distinguished based on the amoA gene sequence. Previous work has shown a strong relationship between nitrification rates in Monterey Bay with the abundance of WCA amoA genes and transcripts. Additionally, we found a correlation between the relative abundance of Marine Group I (MGI) Thaumarchaeota 16S rRNA reads (as % of total) and the absolute abundance of AOA amoA genes (determined via qPCR) in Monterey Bay and the California Current System. AOA 16S rRNA gene abundances in turn correlated significantly with changes in nitrification rate with depth, while the relative abundance of genes and transcripts binned to a single AOA (Nitrosopumilus maritimus) was not significantly correlated to nitrification rate. Further analysis of the sequenced AOA

  5. Diversity of oxygenase genes from methane- and ammonia-oxidizing bacteria in the Eastern Snake River Plain aquifer.

    PubMed

    Erwin, Daniel P; Erickson, Issac K; Delwiche, Mark E; Colwell, Frederick S; Strap, Janice L; Crawford, Ronald L

    2005-04-01

    PCR amplification, restriction fragment length polymorphism, and phylogenetic analysis of oxygenase genes were used for the characterization of in situ methane- and ammonia-oxidizing bacteria from free-living and attached communities in the Eastern Snake River Plain aquifer. The following three methane monooxygenase (MMO) PCR primer sets were used: A189-A682, which amplifies an internal region of both the pmoA gene of the MMO particulate form and the amoA gene of ammonia monooxygenase; A189-mb661, which specifically targets the pmoA gene; and mmoXA-mmoXB, which amplifies the mmoX gene of the MMO soluble form (sMMO). Whole-genome amplification (WGA) was used to amplify metagenomic DNA from each community to assess its applicability for generating unbiased metagenomic template DNA. The majority of sequences in each archive were related to oxygenases of type II-like methanotrophs of the genus Methylocystis. A small subset of type I sequences found only in free-living communities possessed oxygenase genes that grouped nearest to Methylobacter and Methylomonas spp. Sequences similar to that of the amoA gene associated with ammonia-oxidizing bacteria (AOB) most closely matched a sequence from the uncultured bacterium BS870 but showed no substantial alignment to known cultured AOB. Based on these functional gene analyses, bacteria related to the type II methanotroph Methylocystis sp. were found to dominate both free-living and attached communities. Metagenomic DNA amplified by WGA showed characteristics similar to those of unamplified samples. Overall, numerous sMMO-like gene sequences that have been previously associated with high rates of trichloroethylene cometabolism were observed in both free-living and attached communities in this basaltic aquifer.

  6. Method for forming ammonia

    DOEpatents

    Kong, Peter C.; Pink, Robert J.; Zuck, Larry D.

    2008-08-19

    A method for forming ammonia is disclosed and which includes the steps of forming a plasma; providing a source of metal particles, and supplying the metal particles to the plasma to form metal nitride particles; and providing a substance, and reacting the metal nitride particles with the substance to produce ammonia, and an oxide byproduct.

  7. Community composition of ammonia-oxidizing archaea from surface and anoxic depths of oceanic oxygen minimum zones.

    PubMed

    Peng, Xuefeng; Jayakumar, Amal; Ward, Bess B

    2013-01-01

    Ammonia-oxidizing archaea (AOA) have been reported at high abundance in much of the global ocean, even in environments, such as pelagic oxygen minimum zones (OMZs), where conditions seem unlikely to support aerobic ammonium oxidation. Due to the lack of information on any potential alternative metabolism of AOA, the AOA community composition might be expected to differ between oxic and anoxic environments. This hypothesis was tested by evaluating AOA community composition using a functional gene microarray that targets the ammonia monooxygenase gene subunit A (amoA). The relationship between environmental parameters and the biogeography of the Arabian Sea and the Eastern Tropical South Pacific (ETSP) AOA assemblages was investigated using principal component analysis (PCA) and redundancy analysis (RDA). In both the Arabian Sea and the ETSP, AOA communities within the core of the OMZ were not significantly different from those inhabiting the oxygenated surface waters above the OMZ. The AOA communities in the Arabian Sea were significantly different from those in the ETSP. In both oceans, the abundance of archaeal amoA gene in the core of the OMZ was higher than that in the surface waters. Our results indicate that AOA communities are distinguished by their geographic origin. RDA suggested that temperature (higher in the Arabian Sea than in the ETSP) was the main factor that correlated with the differences between the AOA communities. Physicochemical properties that characterized the different environments of the OMZ and surface waters played a less important role, than did geography, in shaping the AOA community composition.

  8. Increased electrical output when a bacterial ABTS oxidizer is used in a microbial fuel cell

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Microbial fuel cells (MFCs) are a technology that provides electrical energy from the microbial oxidation of organic compounds. Most MFCs use oxygen as the oxidant in the cathode chamber. The present study examined the formation in culture of an unidentified bacterial oxidant and investigated the ...

  9. Distribution characteristics of ammonia-oxidizing bacteria in the Typha latifolia constructed wetlands using fluorescent in situ hybridization (FISH).

    PubMed

    Yan, Li; Inamori, Ryuhei; Gui, Ping; Xu, Kai-qin; Kong, Hai-nan; Matsumura, Masatoshi; Inamori, Yuhei

    2005-01-01

    A molecular biology method, fluorescent in situ hybridization (FISH), in which the pre-treatment was improved in allusion to the media of the constructed wetlands (CW), e.g. the soil and the grit, was used to investigate the vertical distribution characteristics of ammonia-oxidizing bacteria (AOB) quantity and the relation with oxidation-reduction potential (ORP) in the Typha latifolia constructed wetlands under three different loadings in summer from May to September. Results showed that the quantity of the AOB decreased in the Typha latifolia CW with the increase of vertical depth. However, the AOB quantity was 2-4 times the quantity of the control in the root area. Additionally, ORP in the rhizosphere was found to be higher than other areas, which showed that Typha latifolia CW was in an aerobic state in summer when using simulated non-point sewage at the rural area of Taihu Lake in China and small town combined sewage.

  10. The large-scale distribution of ammonia oxidizers in paddy soils is driven by soil pH, geographic distance, and climatic factors.

    PubMed

    Hu, Hang-Wei; Zhang, Li-Mei; Yuan, Chao-Lei; Zheng, Yong; Wang, Jun-Tao; Chen, Deli; He, Ji-Zheng

    2015-01-01

    Paddy soils distribute widely from temperate to tropical regions, and are characterized by intensive nitrogen fertilization practices in China. Mounting evidence has confirmed the functional importance of ammonia-oxidizing archaea (AOA) and bacteria (AOB) in soil nitrification, but little is known about their biogeographic distribution patterns in paddy ecosystems. Here, we used barcoded pyrosequencing to characterize the effects of climatic, geochemical and spatial factors on the distribution of ammonia oxidizers from 11 representative rice-growing regions (75-1945 km apart) of China. Potential nitrification rates varied greatly by more than three orders of magnitude, and were significantly correlated with the abundances of AOA and AOB. The community composition of ammonia oxidizer was affected by multiple factors, but changes in relative abundances of the major lineages could be best predicted by soil pH. The alpha diversity of AOA and AOB displayed contrasting trends over the gradients of latitude and atmospheric temperature, indicating a possible niche separation between AOA and AOB along the latitude. The Bray-Curtis dissimilarities in ammonia-oxidizing community structure significantly increased with increasing geographical distance, indicating that more geographically distant paddy fields tend to harbor more dissimilar ammonia oxidizers. Variation partitioning analysis revealed that spatial, geochemical and climatic factors could jointly explain majority of the data variation, and were important drivers defining the ecological niches of AOA and AOB. Our findings suggest that both AOA and AOB are of functional importance in paddy soil nitrification, and ammonia oxidizers in paddy ecosystems exhibit large-scale biogeographic patterns shaped by soil pH, geographic distance, and climatic factors.

  11. The large-scale distribution of ammonia oxidizers in paddy soils is driven by soil pH, geographic distance, and climatic factors

    PubMed Central

    Hu, Hang-Wei; Zhang, Li-Mei; Yuan, Chao-Lei; Zheng, Yong; Wang, Jun-Tao; Chen, Deli; He, Ji-Zheng

    2015-01-01

    Paddy soils distribute widely from temperate to tropical regions, and are characterized by intensive nitrogen fertilization practices in China. Mounting evidence has confirmed the functional importance of ammonia-oxidizing archaea (AOA) and bacteria (AOB) in soil nitrification, but little is known about their biogeographic distribution patterns in paddy ecosystems. Here, we used barcoded pyrosequencing to characterize the effects of climatic, geochemical and spatial factors on the distribution of ammonia oxidizers from 11 representative rice-growing regions (75–1945 km apart) of China. Potential nitrification rates varied greatly by more than three orders of magnitude, and were significantly correlated with the abundances of AOA and AOB. The community composition of ammonia oxidizer was affected by multiple factors, but changes in relative abundances of the major lineages could be best predicted by soil pH. The alpha diversity of AOA and AOB displayed contrasting trends over the gradients of latitude and atmospheric temperature, indicating a possible niche separation between AOA and AOB along the latitude. The Bray–Curtis dissimilarities in ammonia-oxidizing community structure significantly increased with increasing geographical distance, indicating that more geographically distant paddy fields tend to harbor more dissimilar ammonia oxidizers. Variation partitioning analysis revealed that spatial, geochemical and climatic factors could jointly explain majority of the data variation, and were important drivers defining the ecological niches of AOA and AOB. Our findings suggest that both AOA and AOB are of functional importance in paddy soil nitrification, and ammonia oxidizers in paddy ecosystems exhibit large-scale biogeographic patterns shaped by soil pH, geographic distance, and climatic factors. PMID:26388866

  12. Gas sensors based on carbon nanoflake/tin oxide composites for ammonia detection.

    PubMed

    Lee, Soo-Keun; Chang, Daeic; Kim, Sang Wook

    2014-03-15

    Carbon nanoflake (CNFL) was obtained from graphite pencil by using the electrochemical method and the CNFL/SnO2 composite material assessed its potential as an ammonia gas sensor. A thin film resistive gas sensor using the composite material was manufactured by the drop casting method, and the sensor was evaluated to test in various ammonia concentrations and operating temperatures. Physical and chemical characteristics of the composite material were assessed using SEM, TEM, SAED, EDS and Raman spectroscopy. The composite material having 10% of SnO2 showed 3 times higher sensor response and better repeatability than the gas sensor using pristine SnO2 nano-particle at the optimal temperature of 350°C.

  13. Gas sensors based on carbon nanoflake/tin oxide composites for ammonia detection.

    PubMed

    Lee, Soo-Keun; Chang, Daeic; Kim, Sang Wook

    2014-03-15

    Carbon nanoflake (CNFL) was obtained from graphite pencil by using the electrochemical method and the CNFL/SnO2 composite material assessed its potential as an ammonia gas sensor. A thin film resistive gas sensor using the composite material was manufactured by the drop casting method, and the sensor was evaluated to test in various ammonia concentrations and operating temperatures. Physical and chemical characteristics of the composite material were assessed using SEM, TEM, SAED, EDS and Raman spectroscopy. The composite material having 10% of SnO2 showed 3 times higher sensor response and better repeatability than the gas sensor using pristine SnO2 nano-particle at the optimal temperature of 350°C. PMID:24473403

  14. Optimization of the tungsten oxide technique for measurement of atmospheric ammonia

    NASA Technical Reports Server (NTRS)

    Brown, Kenneth G.

    1987-01-01

    Hollow tubes coated with tungstic acid have been shown to be of value in the determination of ammonia and nitric acid in ambient air. Practical application of this technique was demonstrated utilizing an automated sampling system for in-flight collection and analysis of atmospheric samples. Due to time constraints these previous measurements were performed on tubes that had not been well characterized in the laboratory. As a result the experimental precision could not be accurately estimated. Since the technique was being compared to other techniques for measuring these compounds, it became necessary to perform laboratory tests which would establish the reliability of the technique. This report is a summary of these laboratory experiments as they are applied to the determination of ambient ammonia concentration.

  15. Nitrogen oxide cycle regulates nitric oxide levels and bacterial cell signaling

    PubMed Central

    Sasaki, Yasuyuki; Oguchi, Haruka; Kobayashi, Takuya; Kusama, Shinichiro; Sugiura, Ryo; Moriya, Kenta; Hirata, Takuya; Yukioka, Yuriya; Takaya, Naoki; Yajima, Shunsuke; Ito, Shinsaku; Okada, Kiyoshi; Ohsawa, Kanju; Ikeda, Haruo; Takano, Hideaki; Ueda, Kenji; Shoun, Hirofumi

    2016-01-01

    Nitric oxide (NO) signaling controls various metabolic pathways in bacteria and higher eukaryotes. Cellular enzymes synthesize and detoxify NO; however, a mechanism that controls its cellular homeostasis has not been identified. Here, we found a nitrogen oxide cycle involving nitrate reductase (Nar) and the NO dioxygenase flavohemoglobin (Fhb), that facilitate inter-conversion of nitrate, nitrite, and NO in the actinobacterium Streptomyces coelicolor. This cycle regulates cellular NO levels, bacterial antibiotic production, and morphological differentiation. NO down-regulates Nar and up-regulates Fhb gene expression via the NO-dependent transcriptional factors DevSR and NsrR, respectively, which are involved in the auto-regulation mechanism of intracellular NO levels. Nitrite generated by the NO cycles induces gene expression in neighboring cells, indicating an additional role of the cycle as a producer of a transmittable inter-cellular communication molecule. PMID:26912114

  16. Modulation of population density and size of silver nanoparticles embedded in bacterial cellulose via ammonia exposure: visual detection of volatile compounds in a piece of plasmonic nanopaper

    NASA Astrophysics Data System (ADS)

    Heli, B.; Morales-Narváez, E.; Golmohammadi, H.; Ajji, A.; Merkoçi, A.

    2016-04-01

    The localized surface plasmon resonance exhibited by noble metal nanoparticles can be sensitively tuned by varying their size and interparticle distances. We report that corrosive vapour (ammonia) exposure dramatically reduces the population density of silver nanoparticles (AgNPs) embedded within bacterial cellulose, leading to a larger distance between the remaining nanoparticles and a decrease in the UV-Vis absorbance associated with the AgNP plasmonic properties. We also found that the size distribution of AgNPs embedded in bacterial cellulose undergoes a reduction in the presence of volatile compounds released during food spoilage, modulating the studied nanoplasmonic properties. In fact, such a plasmonic nanopaper exhibits a change in colour from amber to light amber upon the explored corrosive vapour exposure and from amber to a grey or taupe colour upon fish or meat spoilage exposure. These phenomena are proposed as a simple visual detection of volatile compounds in a flexible, transparent, permeable and stable single-use nanoplasmonic membrane, which opens the way to innovative approaches and capabilities in gas sensing and smart packaging.The localized surface plasmon resonance exhibited by noble metal nanoparticles can be sensitively tuned by varying their size and interparticle distances. We report that corrosive vapour (ammonia) exposure dramatically reduces the population density of silver nanoparticles (AgNPs) embedded within bacterial cellulose, leading to a larger distance between the remaining nanoparticles and a decrease in the UV-Vis absorbance associated with the AgNP plasmonic properties. We also found that the size distribution of AgNPs embedded in bacterial cellulose undergoes a reduction in the presence of volatile compounds released during food spoilage, modulating the studied nanoplasmonic properties. In fact, such a plasmonic nanopaper exhibits a change in colour from amber to light amber upon the explored corrosive vapour exposure and

  17. Degradation of halogenated aliphatic compounds by the ammonia- oxidizing bacterium Nitrosomonas europaea.

    PubMed Central

    Vannelli, T; Logan, M; Arciero, D M; Hooper, A B

    1990-01-01

    Suspensions of Nitrosomonas europaea catalyzed the ammonia-stimulated aerobic transformation of the halogenated aliphatic compounds dichloromethane, dibromomethane, trichloromethane (chloroform), bromoethane, 1,2-dibromoethane (ethylene dibromide), 1,1,2-trichloroethane, 1,1,1-trichloroethane, monochloroethylene (vinyl chloride), gem-dichloroethylene, cis- and trans-dichloroethylene, cis-dibromoethylene, trichloroethylene, and 1,2,3-trichloropropane, Tetrachloromethane (carbon tetrachloride), tetrachloroethylene (perchloroethylene), and trans-dibromoethylene were not degraded. PMID:2339874

  18. Dose-dependent effects of dietary zinc oxide on bacterial communities and metabolic profiles in the ileum of weaned pigs.

    PubMed

    Pieper, R; Vahjen, W; Neumann, K; Van Kessel, A G; Zentek, J

    2012-10-01

    Pharmacological levels of zinc oxide (ZnO) can improve the health of weaning piglets and influence the intestinal microbiota. This experiment aimed at studying the dose-response effect of five dietary concentrations of ZnO on small intestinal bacteria and metabolite profiles. Fifteen piglets, weaned at 25 ± 1 days of age, were allocated into five groups according to body weight and litter. Diets were formulated to contain 50 (basal diet), 150, 250, 1000 and 2500 mg zinc/kg by adding analytical-grade (>98% purity) ZnO to the basal diet and fed ad libitum for 14 days after a 7-day adaptation period on the basal diet. Ileal bacterial community profiles were analysed by denaturing gradient gel electrophoresis and selected bacterial groups quantified by real-time PCR. Concentrations of ileal volatile fatty acids (VFA), D- and L-lactate and ammonia were determined. Species richness, Shannon diversity and evenness were significantly higher at high ZnO levels. Quantitative PCR revealed lowest total bacterial counts in the 50 mg/kg group. Increasing ZnO levels led to an increase (p = 0.017) in enterobacteria from log 4.0 cfu/g digesta (50 mg/kg) to log 6.7 cfu/g digesta (2500 mg/kg). Lactic acid bacteria were not influenced (p = 0.687) and clostridial cluster XIVa declined (p = 0.035) at highest ZnO level. Concentration of total, D- and L-lactate and propionate was not affected (p = 0.736, p = 0.290 and p = 0.630), but concentrations of ileal total VFA, acetate and butyrate increased markedly from 50 to 150 mg/kg and decreased with further increasing zinc levels and reached low levels again at 2500 mg/kg (p = 0.048, p = 0.048 and p = 0.097). Ammonia decreased (p < 0.006) with increasing dietary ZnO level. In conclusion, increasing levels of dietary ZnO had strong and dose-dependent effects on ileal bacterial community composition and activity, suggesting taxonomic variation in metabolic response to ZnO. PMID:21929727

  19. Effects of nitric oxide and nitrogen dioxide on bacterial growth.

    PubMed Central

    Mancinelli, R L; McKay, C P

    1983-01-01

    The effects of low concentrations of nitric oxide (NO) and nitrogen dioxide (NO2) on actively dividing cultures of Staphylococcus aureus, Micrococcus luteus, Micrococcus roseus, Serratia marcescens, Bacillus subtilis, Bacillus circulans, Bacillus megaterium, and Bacillus cereus were studied. Fresh cultures of each organism were incubated for 24 h at 25 degrees C on both nutrient agar and mineral salts glucose agar plates under atmospheres containing various low concentrations of NO in air (0 to 1.9 ppm [0 to 2.0 micrograms/g of air]), NO2 in air (0 to 5.5 ppm [0 to 8.8 micrograms/g of air]), or NO and NO2 in air. Bacteria grown under air only were used as controls. After incubation, the colonies that developed on the plates were counted. None of the bacteria tested was affected by NO or NO2 at the indicated concentrations while growing on nutrient agar. Serratia marcescens, B. circulans, B. subtilis, B. megaterium, and B. cereus grown on mineral salts glucose agar were not significantly affected by NO or NO2. Low concentrations (0 to 1.9 ppm) of NO were bacteriostatic to log-phase cultures of M. roseus, M. luteus, and Staphylococcus aureus grown on mineral salts glucose agar. Bacteriostatic activity over a 24-h interval was maximal at an initial NO concentration of 1 ppm. Appreciable amounts of NO2 were produced in 24 h at initial NO concentrations greater than 1 ppm. These results suggest that NO2 may reduce the bacteriostatic activity of NO. Low concentrations (0 to 5.5 ppm) of NO2 in air did not affect any of the bacteria tested. At these low concentrations, NO affected bacterial growth, although NO2, NO2-, and NO3- did not. In addition, it was determined that the bacteriostatic activity observed in this study was not due to an increase in the acidity of the medium. PMID:6351744

  20. Oxidative stress and antibiotic resistance in bacterial pathogens: state of the art, methodologies, and future trends.

    PubMed

    Marrakchi, Mouna; Liu, Xiaobo; Andreescu, Silvana

    2014-01-01

    Despite the significant advances of modern medicine and the availability of a wide variety of antibiotics for the treatment of microbial infections, there is an alarming increase of multiresistant bacterial pathogens. This chapter discusses the status of bacterial resistance mechanisms and the relationship with oxidative stress and provides an overview of the methods used to assess oxidative conditions and their contribution to the antibiotic resistance. PMID:24952198

  1. Combined Flux Chamber and Genomics Approach Links Nitrous Acid Emissions to Ammonia Oxidizing Bacteria and Archaea in Urban and Agricultural Soil.

    PubMed

    Scharko, Nicole K; Schütte, Ursel M E; Berke, Andrew E; Banina, Lauren; Peel, Hannah R; Donaldson, Melissa A; Hemmerich, Chris; White, Jeffrey R; Raff, Jonathan D

    2015-12-01

    Nitrous acid (HONO) is a photochemical source of hydroxyl radical and nitric oxide in the atmosphere that stems from abiotic and biogenic processes, including the activity of ammonia-oxidizing soil microbes. HONO fluxes were measured from agricultural and urban soil in mesocosm studies aimed at characterizing biogenic sources and linking them to indigenous microbial consortia. Fluxes of HONO from agricultural and urban soil were suppressed by addition of a nitrification inhibitor and enhanced by amendment with ammonium (NH4(+)), with peaks at 19 and 8 ng m(-2) s(-1), respectively. In addition, both agricultural and urban soils were observed to convert (15)NH4(+) to HO(15)NO. Genomic surveys of soil samples revealed that 1.5-6% of total expressed 16S rRNA sequences detected belonged to known ammonia oxidizing bacteria and archaea. Peak fluxes of HONO were directly related to the abundance of ammonia-oxidizer sequences, which in turn depended on soil pH. Peak HONO fluxes under fertilized conditions are comparable in magnitude to fluxes reported during field campaigns. The results suggest that biogenic HONO emissions will be important in soil environments that exhibit high nitrification rates (e.g., agricultural soil) although the widespread occurrence of ammonia oxidizers implies that biogenic HONO emissions are also possible in the urban and remote environment.

  2. Niche segregation of ammonia-oxidizing archaea and anammox bacteria in the Arabian Sea oxygen minimum zone.

    PubMed

    Pitcher, Angela; Villanueva, Laura; Hopmans, Ellen C; Schouten, Stefan; Reichart, Gert-Jan; Sinninghe Damsté, Jaap S

    2011-12-01

    Ammonia-oxidizing archaea (AOA) and anaerobic ammonia-oxidizing (anammox) bacteria have emerged as significant factors in the marine nitrogen cycle and are responsible for the oxidation of ammonium to nitrite and dinitrogen gas, respectively. Potential for an interaction between these groups exists; however, their distributions are rarely determined in tandem. Here we have examined the vertical distribution of AOA and anammox bacteria through the Arabian Sea oxygen minimum zone (OMZ), one of the most intense and vertically exaggerated OMZs in the global ocean, using a unique combination of intact polar lipid (IPL) and gene-based analyses, at both DNA and RNA levels. To screen for AOA-specific IPLs, we developed a high-performance liquid chromatography/mass spectrometry/mass spectrometry method targeting hexose-phosphohexose (HPH) crenarchaeol, a common IPL of cultivated AOA. HPH-crenarchaeol showed highest abundances in the upper OMZ transition zone at oxygen concentrations of ca. 5  μM, coincident with peaks in both thaumarchaeotal 16S rDNA and amoA gene abundances and gene expression. In contrast, concentrations of anammox-specific IPLs peaked within the core of the OMZ at 600  m, where oxygen reached the lowest concentrations, and coincided with peak anammox 16S rDNA and the hydrazine oxidoreductase (hzo) gene abundances and their expression. Taken together, the data reveal a unique depth distribution of abundant AOA and anammox bacteria and the segregation of their respective niches by >400  m, suggesting no direct coupling of their metabolisms at the time and site of sampling in the Arabian Sea OMZ.

  3. Evolution and Functional Characterization of the RH50 Gene from the Ammonia-Oxidizing Bacterium Nitrosomonas europaea▿ †

    PubMed Central

    Cherif-Zahar, Baya; Durand, Anne; Schmidt, Ingo; Hamdaoui, Nabila; Matic, Ivan; Merrick, Mike; Matassi, Giorgio

    2007-01-01

    The family of ammonia and ammonium channel proteins comprises the Amt proteins, which are present in all three domains of life with the notable exception of vertebrates, and the homologous Rh proteins (Rh50 and Rh30) that have been described thus far only in eukaryotes. The existence of an RH50 gene in bacteria was first revealed by the genome sequencing of the ammonia-oxidizing bacterium Nitrosomonas europaea. Here we have used a phylogenetic approach to study the evolution of the N. europaea RH50 gene, and we show that this gene, probably as a component of an integron cassette, has been transferred to the N. europaea genome by horizontal gene transfer. In addition, by functionally characterizing the Rh50Ne protein and the corresponding knockout mutant, we determined that NeRh50 can mediate ammonium uptake. The RH50Ne gene may thus have replaced functionally the AMT gene, which is missing in the genome of N. europaea and may be regarded as a case of nonorthologous gene displacement. PMID:17921289

  4. Communities of sediment ammonia-oxidizing bacteria along a coastal pollution gradient in the East China Sea.

    PubMed

    Hou, Manhua; Xiong, Jinbo; Wang, Kai; Ye, Xiansen; Ye, Ran; Wang, Qiong; Hu, Changju; Zhang, Demin

    2014-09-15

    Anthropogenic nitrogen (N) discharges has caused eutrophication in coastal zones. Ammonia-oxidizing bacteria (AOB) convert ammonia to nitrite and play important roles in N transformation. Here, we used pyrosequencing based on the amoA gene to investigate the response of the sediment AOB community to an N pollution gradient in the East China Sea. The results showed that AOB assemblages were primarily affiliated with Nitrosospira-like lineages, and only 0.4% of those belonged to Nitrosomonas-like lineage. The Nitrosospira-like lineage was separated into four clusters that were most similar to the sediment AOB communities detected in adjacent marine regions. Additionally, one clade was out grouped from the AOB lineages, which shared the high similarities with pmoA gene. The AOB community structures substantially changed along the pollution gradient, which were primarily shaped by NH4(+)-N, NO3(-)-N, SO4(2)(-)-S, TP and Eh. These results demonstrated that coastal pollution could dramatically influence AOB communities, which, in turn, may change ecosystem function.

  5. Modulation of population density and size of silver nanoparticles embedded in bacterial cellulose via ammonia exposure: visual detection of volatile compounds in a piece of plasmonic nanopaper.

    PubMed

    Heli, B; Morales-Narváez, E; Golmohammadi, H; Ajji, A; Merkoçi, A

    2016-04-21

    The localized surface plasmon resonance exhibited by noble metal nanoparticles can be sensitively tuned by varying their size and interparticle distances. We report that corrosive vapour (ammonia) exposure dramatically reduces the population density of silver nanoparticles (AgNPs) embedded within bacterial cellulose, leading to a larger distance between the remaining nanoparticles and a decrease in the UV-Vis absorbance associated with the AgNP plasmonic properties. We also found that the size distribution of AgNPs embedded in bacterial cellulose undergoes a reduction in the presence of volatile compounds released during food spoilage, modulating the studied nanoplasmonic properties. In fact, such a plasmonic nanopaper exhibits a change in colour from amber to light amber upon the explored corrosive vapour exposure and from amber to a grey or taupe colour upon fish or meat spoilage exposure. These phenomena are proposed as a simple visual detection of volatile compounds in a flexible, transparent, permeable and stable single-use nanoplasmonic membrane, which opens the way to innovative approaches and capabilities in gas sensing and smart packaging.

  6. Modulation of population density and size of silver nanoparticles embedded in bacterial cellulose via ammonia exposure: visual detection of volatile compounds in a piece of plasmonic nanopaper.

    PubMed

    Heli, B; Morales-Narváez, E; Golmohammadi, H; Ajji, A; Merkoçi, A

    2016-04-21

    The localized surface plasmon resonance exhibited by noble metal nanoparticles can be sensitively tuned by varying their size and interparticle distances. We report that corrosive vapour (ammonia) exposure dramatically reduces the population density of silver nanoparticles (AgNPs) embedded within bacterial cellulose, leading to a larger distance between the remaining nanoparticles and a decrease in the UV-Vis absorbance associated with the AgNP pl