Sample records for bacterial cell extracts

  1. A reproducible and scalable procedure for preparing bacterial extracts for cell-free protein synthesis.

    PubMed

    Katsura, Kazushige; Matsuda, Takayoshi; Tomabechi, Yuri; Yonemochi, Mayumi; Hanada, Kazuharu; Ohsawa, Noboru; Sakamoto, Kensaku; Takemoto, Chie; Shirouzu, Mikako

    2017-11-01

    Cell-free protein synthesis is a useful method for preparing proteins for functional or structural analyses. However, batch-to-batch variability with regard to protein synthesis activity remains a problem for large-scale production of cell extract in the laboratory. To address this issue, we have developed a novel procedure for large-scale preparation of bacterial cell extract with high protein synthesis activity. The developed procedure comprises cell cultivation using a fermentor, harvesting and washing of cells by tangential flow filtration, cell disruption with high-pressure homogenizer and continuous diafiltration. By optimizing and combining these methods, ∼100 ml of the cell extract was prepared from 150 g of Escherichia coli cells. The protein synthesis activities, defined as the yield of protein per unit of absorbance at 260 nm of the cell extract, were shown to be reproducible, and the average activity of several batches was twice that obtained using a previously reported method. In addition, combinatorial use of the high-pressure homogenizer and diafiltration increased the scalability, indicating that the cell concentration at disruption varies from 0.04 to 1 g/ml. Furthermore, addition of Gam protein and examinations of the N-terminal sequence rendered the extract prepared here useful for rapid screening with linear DNA templates. © The Authors 2017. Published by Oxford University Press on behalf of the Japanese Biochemical Society. All rights reserved.

  2. Enhanced Mucosal Antibody Production and Protection against Respiratory Infections Following an Orally Administered Bacterial Extract

    PubMed Central

    Pasquali, Christian; Salami, Olawale; Taneja, Manisha; Gollwitzer, Eva S.; Trompette, Aurelien; Pattaroni, Céline; Yadava, Koshika; Bauer, Jacques; Marsland, Benjamin J.

    2014-01-01

    Secondary bacterial infections following influenza infection are a pressing problem facing respiratory medicine. Although antibiotic treatment has been highly successful over recent decades, fatalities due to secondary bacterial infections remain one of the leading causes of death associated with influenza. We have assessed whether administration of a bacterial extract alone is sufficient to potentiate immune responses and protect against primary infection with influenza, and secondary infections with either Streptococcus pneumoniae or Klebsiella pneumoniae in mice. We show that oral administration with the bacterial extract, OM-85, leads to a maturation of dendritic cells and B-cells characterized by increases in MHC II, CD86, and CD40, and a reduction in ICOSL. Improved immune responsiveness against influenza virus reduced the threshold of susceptibility to secondary bacterial infections, and thus protected the mice. The protection was associated with enhanced polyclonal B-cell activation and release of antibodies that were effective at neutralizing the virus. Taken together, these data show that oral administration of bacterial extracts provides sufficient mucosal immune stimulation to protect mice against a respiratory tract viral infection and associated sequelae. PMID:25593914

  3. The oral administration of bacterial extracts prevents asthma via the recruitment of regulatory T cells to the airways.

    PubMed

    Navarro, S; Cossalter, G; Chiavaroli, C; Kanda, A; Fleury, S; Lazzari, A; Cazareth, J; Sparwasser, T; Dombrowicz, D; Glaichenhaus, N; Julia, V

    2011-01-01

    The prevalence of asthma has steadily increased during the last decade, probably as the result of changes in the environment, including reduced microbial exposure during infancy. Accordingly, experimental studies have shown that deliberate infections with live pathogens prevent the development of allergic airway diseases in mice. Bacterial extracts are currently used in children suffering from repeated upper respiratory tract infections. In the present study, we have investigated whether bacterial extracts, commercially available as Broncho-Vaxom (BV), could prevent allergic airway disease in mice. Oral treatment with BV suppressed airway inflammation through interleukin-10 (IL-10)-dependent and MyD88 (myeloid differentiation primary response gene (88))-dependent mechanisms and induced the conversion of FoxP3 (forkhead box P3)(-) T cells into FoxP3(+) regulatory T cells. Furthermore, CD4(+) T cells purified from the trachea of BV-treated mice conferred protection against airway inflammation when adoptively transferred into sensitized mice. Therefore, treatment with BV could possibly be a safe and efficient strategy to prevent the development of allergic diseases in children.

  4. Induction of apoptosis in cancer cell lines by the Red Sea brine pool bacterial extracts.

    PubMed

    Sagar, Sunil; Esau, Luke; Holtermann, Karie; Hikmawan, Tyas; Zhang, Guishan; Stingl, Ulrich; Bajic, Vladimir B; Kaur, Mandeep

    2013-12-05

    Marine microorganisms are considered to be an important source of bioactive molecules against various diseases and have great potential to increase the number of lead molecules in clinical trials. Progress in novel microbial culturing techniques as well as greater accessibility to unique oceanic habitats has placed the marine environment as a new frontier in the field of natural product drug discovery. A total of 24 microbial extracts from deep-sea brine pools in the Red Sea have been evaluated for their anticancer potential against three human cancer cell lines. Downstream analysis of these six most potent extracts was done using various biological assays, such as Caspase-3/7 activity, mitochondrial membrane potential (MMP), PARP-1 cleavage and expression of γH2Ax, Caspase-8 and -9 using western blotting. In general, most of the microbial extracts were found to be cytotoxic against one or more cancer cell lines with cell line specific activities. Out of the 13 most active microbial extracts, six extracts were able to induce significantly higher apoptosis (>70%) in cancer cells. Mechanism level studies revealed that extracts from Chromohalobacter salexigens (P3-86A and P3-86B(2)) followed the sequence of events of apoptotic pathway involving MMP disruption, caspase-3/7 activity, caspase-8 cleavage, PARP-1 cleavage and Phosphatidylserine (PS) exposure, whereas another Chromohalobacter salexigens extract (K30) induced caspase-9 mediated apoptosis. The extracts from Halomonas meridiana (P3-37B), Chromohalobacter israelensis (K18) and Idiomarina loihiensis (P3-37C) were unable to induce any change in MMP in HeLa cancer cells, and thus suggested mitochondria-independent apoptosis induction. However, further detection of a PARP-1 cleavage product, and the observed changes in caspase-8 and -9 suggested the involvement of caspase-mediated apoptotic pathways. Altogether, the study offers novel findings regarding the anticancer potential of several halophilic bacterial

  5. Bioactive extracts of red seaweeds Pterocladiella capillacea and Osmundaria obtusiloba (Floridophyceae: Rhodophyta) with antioxidant and bacterial agglutination potential.

    PubMed

    de Alencar, Daniel Barroso; de Carvalho, Fátima Cristiane Teles; Rebouças, Rosa Helena; Dos Santos, Daniel Rodrigues; Dos Santos Pires-Cavalcante, Kelma Maria; de Lima, Rebeca Larangeira; Baracho, Bárbara Mendes; Bezerra, Rayssa Mendes; Viana, Francisco Arnaldo; Dos Fernandes Vieira, Regine Helena Silva; Sampaio, Alexandre Holanda; de Sousa, Oscarina Viana; Saker-Sampaio, Silvana

    2016-04-01

    To evaluate the antioxidant, antibacterial and bacterial cell agglutination activities of the hexane (Hex) and 70% ethanol (70% EtOH) extracts of two species of red seaweeds Pterocladiella capillacea (P. capillacea) and Osmundaria obtusiloba. In vitro antioxidant activity was determined by DPPH radical scavenging assay, ferric-reducing antioxidant power assay, ferrous ion chelating assay, β-carotene bleaching assay and total phenolic content quantification. Antimicrobial activity was tested using the method of disc diffusion on Mueller-Hinton medium. The ability of algal extracts to agglutinate bacterial cells was also tested. The 70% EtOH extract of the two algae showed the highest values of total phenolic content compared to the Hex extract. The results of DPPH for both extracts (Hex, 70% EtOH) of Osmundaria obtusiloba (43.46% and 99.47%) were higher than those of P. capillacea (33.04% and 40.81%) at a concentration of 1000 μg/mL. As for the ferrous ion chelating, there was an opposite behavior, extracts of P. capillacea had a higher activity. The extracts showed a low ferric-reducing antioxidant power, with optical density ranging from 0.054 to 0.180. Antioxidant activities of all extracts evaluated for β-carotene bleaching were above 40%. There was no antibacterial activity against bacterial strains tested. However, the extracts of both species were able to agglutinate bacterial Gram positive cells of Staphylococcus aureus and Gram negative cells of Escherichia coli, multidrug-resistant Salmonella and Vibrio harveyi. This is the first report of the interaction between these algal extracts, rich in natural compounds with antioxidant potential, and Gram positive and Gram negative bacterial cells. Copyright © 2016 Hainan Medical College. Production and hosting by Elsevier B.V. All rights reserved.

  6. Methods for the Measurement of a Bacterial Enzyme Activity in Cell Lysates and Extracts

    PubMed Central

    Mendz, George; Hazell, Stuart

    1998-01-01

    The kinetic characteristics and regulation of aspartate carbamoyltransferase activity were studied in lysates and cell extracts of Helicobacter pylori by three diffirent methods. Nuclear magnetic resonance spectroscopy, radioactive tracer analysis, and spectrophotometry were employed in conjunction to identify the properties of the enzyme activity and to validate the results obtained with each assay. NMR spectroscopy was the most direct method to provide proof of ACTase activity; radioactive tracer analysis was the most sensitive technique and a microtitre-based colorimetric assay was the most cost-and time-efficient for large scale analyses. Freeze-thawing was adopted as the preferred method for cell lysis in studying enzyme activity in situ. This study showed the benefits of employing several different complementary methods to investigate bacterial enzyme activity. PMID:12734591

  7. Estimation of lactic acid bacterial cell number by DNA quantification.

    PubMed

    Ishii, Masaki; Matsumoto, Yasuhiko; Sekimizu, Kazuhisa

    2018-01-01

    Lactic acid bacteria are provided by fermented foods, beverages, medicines, and supplements. Because the beneficial effects of medicines and supplements containing functional lactic acid bacteria are related to the bacterial cell number, it is important to establish a simple method for estimating the total number of lactic acid bacterial cells in the products for quality control. Almost all of the lactic acid bacteria in the products are dead, however, making it difficult to estimate the total number of lactic acid bacterial cells in the products using a standard colony-counting method. Here we estimated the total lactic acid bacterial cell number in samples containing dead bacteria by quantifying the DNA. The number of viable Enterococcus faecalis 0831-07 cells decreased to less than 1 × 10 -8 by 15 min of heat treatment at 80°C. The amount of extracted DNA from heat-treated cells was 78% that of non-heated cells. The number of viable Lactobacillus paraplantarum 11-1 cells decreased to 1 × 10 -4 after 4 days culture. The amount of extracted DNA of the long-cultured cells, however, was maintained at 97%. These results suggest that cell number of lactic acid bacteria killed by heat-treatment or long-term culture can be estimated by DNA quantification.

  8. Note: An automated image analysis method for high-throughput classification of surface-bound bacterial cell motions.

    PubMed

    Shen, Simon; Syal, Karan; Tao, Nongjian; Wang, Shaopeng

    2015-12-01

    We present a Single-Cell Motion Characterization System (SiCMoCS) to automatically extract bacterial cell morphological features from microscope images and use those features to automatically classify cell motion for rod shaped motile bacterial cells. In some imaging based studies, bacteria cells need to be attached to the surface for time-lapse observation of cellular processes such as cell membrane-protein interactions and membrane elasticity. These studies often generate large volumes of images. Extracting accurate bacterial cell morphology features from these images is critical for quantitative assessment. Using SiCMoCS, we demonstrated simultaneous and automated motion tracking and classification of hundreds of individual cells in an image sequence of several hundred frames. This is a significant improvement from traditional manual and semi-automated approaches to segmenting bacterial cells based on empirical thresholds, and a first attempt to automatically classify bacterial motion types for motile rod shaped bacterial cells, which enables rapid and quantitative analysis of various types of bacterial motion.

  9. Immunomodulation with bacterial extracts in respiratory diseases.

    PubMed

    Palma-Carlos, A G; Palma-Carlos, M L

    1990-01-01

    A lyophilized bacterial extract (Broncho-Vaxom) has been studied in a large number of models and found to induce specific and nonspecific responses by oral administration. It stimulates the systemic and local immune response. It activates the macrophages that play a key part in the immune system, modulates the immunoglobulin level, and potentiates the lymphocyte response to phytohemagglutinin (PHA) and other mitogens. The effect of this bacterial extract on T-lymphocyte subpopulations is currently under study.

  10. Bacterial Cell Mechanics.

    PubMed

    Auer, George K; Weibel, Douglas B

    2017-07-25

    Cellular mechanical properties play an integral role in bacterial survival and adaptation. Historically, the bacterial cell wall and, in particular, the layer of polymeric material called the peptidoglycan were the elements to which cell mechanics could be primarily attributed. Disrupting the biochemical machinery that assembles the peptidoglycan (e.g., using the β-lactam family of antibiotics) alters the structure of this material, leads to mechanical defects, and results in cell lysis. Decades after the discovery of peptidoglycan-synthesizing enzymes, the mechanisms that underlie their positioning and regulation are still not entirely understood. In addition, recent evidence suggests a diverse group of other biochemical elements influence bacterial cell mechanics, may be regulated by new cellular mechanisms, and may be triggered in different environmental contexts to enable cell adaptation and survival. This review summarizes the contributions that different biomolecular components of the cell wall (e.g., lipopolysaccharides, wall and lipoteichoic acids, lipid bilayers, peptidoglycan, and proteins) make to Gram-negative and Gram-positive bacterial cell mechanics. We discuss the contribution of individual proteins and macromolecular complexes in cell mechanics and the tools that make it possible to quantitatively decipher the biochemical machinery that contributes to bacterial cell mechanics. Advances in this area may provide insight into new biology and influence the development of antibacterial chemotherapies.

  11. Soybean extracts facilitate bacterial agglutination and prevent biofilm formation on orthodontic wire.

    PubMed

    Lee, Heon-Jin; Kwon, Tae-Yub; Kim, Kyo-Han; Hong, Su-Hyung

    2014-01-01

    Soybean is an essential food ingredient that contains a class of organic compounds known as isoflavones. It is also well known that several plant agglutinins interfere with bacterial adherence to smooth surfaces. However, little is known about the effects of soybean extracts or genistein (a purified isoflavone from soybean) on bacterial biofilm formation. We evaluated the effects of soybean (Glycine max) extracts, including fermented soybean and genistein, on streptococcal agglutination and attachment onto stainless steel orthodontic wire. After cultivating streptococci in biofilm medium containing soybean extracts and orthodontic wire, the viable bacteria attached to the wire were counted. Phase-contrast microscopy and scanning electron microscopy (SEM) analyses were conducted to evaluate bacterial agglutination and attachment. Our study showed that soybean extracts induce agglutination between streptococci, which results in bacterial precipitation. Conversely, viable bacterial counting and SEM image analysis of Streptococcus mutans attached to the orthodontic wire show that bacterial attachment decreases significantly when soybean extracts were added. However, there was no significant change in pre-attached S. mutans biofilm in response to soybean. A possible explanation for these results is that increased agglutination of planktonic streptococci by soybean extracts results in inhibition of bacterial attachment onto the orthodontic wire.

  12. Bacterial cell identification in differential interference contrast microscopy images.

    PubMed

    Obara, Boguslaw; Roberts, Mark A J; Armitage, Judith P; Grau, Vicente

    2013-04-23

    Microscopy image segmentation lays the foundation for shape analysis, motion tracking, and classification of biological objects. Despite its importance, automated segmentation remains challenging for several widely used non-fluorescence, interference-based microscopy imaging modalities. For example in differential interference contrast microscopy which plays an important role in modern bacterial cell biology. Therefore, new revolutions in the field require the development of tools, technologies and work-flows to extract and exploit information from interference-based imaging data so as to achieve new fundamental biological insights and understanding. We have developed and evaluated a high-throughput image analysis and processing approach to detect and characterize bacterial cells and chemotaxis proteins. Its performance was evaluated using differential interference contrast and fluorescence microscopy images of Rhodobacter sphaeroides. Results demonstrate that the proposed approach provides a fast and robust method for detection and analysis of spatial relationship between bacterial cells and their chemotaxis proteins.

  13. A Simple and Rapid Protocol for Producing Yeast Extract from Saccharomyces cerevisiae Suitable for Preparing Bacterial Culture Media

    PubMed Central

    Zarei, Omid; Dastmalchi, Siavoush; Hamzeh-Mivehroud, Maryam

    2016-01-01

    Yeasts, especially Saccharomyces cerevisiae, are one of the oldest organisms with broad spectrum of applications, owing to their unique genetics and physiology. Yeast extract, i.e. the product of yeast cells, is extensively used as nutritional resource in bacterial culture media. The aim of this study was to develop a simple, rapid and cost benefit process to produce the yeast extract. In this procedure mechanical methods such as high temperature and pressure were utilized to produce the yeast extract. The growth of the bacteria feed with the produced yeast extract was monitored in order to assess the quality of the product. The results showed that the quality of the produced yeast extract was very promising concluded from the growth pattern of bacterial cells in media prepared from this product and was comparable with that of the three commercial yeast extracts in terms of bacterial growth properties. One of the main advantages of the current method was that no chemicals and enzymes were used, leading to the reduced production cost. The method is very simple and cost effective, and can be performed in a reasonable time making it suitable for being adopted by research laboratories. Furthermore, it can be scaled up to produce large quantities for industrial applications. PMID:28243289

  14. Phytochemical-rich medicinal plant extracts suppress bacterial antigens-induced inflammation in human tonsil epithelial cells

    PubMed Central

    Wijesundara, Niluni M.; Sekhon-Loodu, Satvir

    2017-01-01

    Background Pharyngitis is an inflammatory condition of the pharynx and associated structures commonly caused by the Group A streptococci (GAS). There is a growing interest in discovering plant-based anti-inflammatory compounds as potential alternatives to conventional drugs. This study evaluated anti-inflammatory activity of phytochemical-rich extracts prepared from 12 herbal plants using human tonsil epithelial cells (HTonEpiC) in vitro. Methods The HTonEpiC were induced by a mixture of lipoteichoic acid (LTA) and peptidoglycan (PGN) (10 µg/mL; bacterial antigens) for 4 h and then exposed to ethanol extracts (EE) or aqueous extracts (AE) for 20 h. The secretion of four pro-inflammatory cytokines was measured using enzyme-linked immunosorbent assays (ELISA). Total phenolic and total flavonoid contents of the extracts were determined using spectrophotometric methods. Results The herbal plant extracts (≤5 µg/mL) were not cytotoxic to HTonEpiC. The extracts exhibited a broad range of reduction (1.2%–92.6%) of secretion of interleukin-8 (IL-8), human beta defensin-2 (hBD-2), epithelial-derived neutrophil activating protein-78 (ENA-78), and granulocyte chemotactic protein-2 (GCP-2). Both EE and AE of clove, ginger, and echinacea flower and EE from danshen root significantly inhibited the pro-inflammatory cytokine production as induced by LTA and PGN in HTonEpiCs at the concentrations of 1 and 5 µg/mL. Discussion Our observations indicate that danshen root, clove, ginger, and echinacea flower extracts exhibit an anti-inflammatory effect in HTonEpiCs. The most efficacious extracts from danshen root, clove, ginger and echinacea flowers have potential to be used as natural sources for developing phytotherapeutic products in the management of painful inflammation due to streptococcal pharyngitis. PMID:28652934

  15. Extract of corn silk (stigma of Zea mays) inhibits the tumour necrosis factor-alpha- and bacterial lipopolysaccharide-induced cell adhesion and ICAM-1 expression.

    PubMed

    Habtemariam, S

    1998-05-01

    Treatment of human endothelial cells with cytokines such as tumour necrosis factor-alpha (TNF) or E. coli lipopolysaccharide (LPS) induces the expression of several adhesion molecules and enhances leukocyte adhesion to endothelial cell surface. Interfering with this leukocyte adhesion or adhesion molecules upregulation is an important therapeutic target for the treatment of bacterial sepsis and various inflammatory diseases. In the course of screening marketed European anti-inflammatory herbal drugs for TNF antagonistic activity, a crude ethanolic extract of corn silk (stigma of Zea mays) exhibited significant activity. The extract at concentrations of 9-250 micrograms/ml effectively inhibited the TNF- and LPS-induced adhesiveness of EAhy 926 endothelial cells to monocytic U937 cells. Similar concentration ranges of corn silk extract did also block the TNF and LPS but not the phorbol 12-myristate 13-acetate-induced ICAM-1 expression on EAhy 926 endothelial cell surface. The extract did not alter the production of TNF by LPS-activated macrophages and failed to inhibit the cytotoxic activity of TNF. It is concluded that corn silk possesses important therapeutic potential for TNF- and LPS-mediated leukocyte adhesion and trafficking.

  16. Antibacterial activity and morphological changes of Pseudomonas aeruginosa cells after exposure to Vernonia cinerea extract.

    PubMed

    Latha, Lachimanan Yoga; Darah, Ibrahim; Kassim, Mohd Jain Noordin Mohd; Sasidharan, Sreenivasan

    2010-08-01

    The antibacterial activity of Vernonia cinerea (L.) extract was investigated using the broth dilution method. The extract showed a favorable antimicrobial activity against Pseudomonas aeruginosa with a minimum inhibition concentration (MIC) value of 3.13 mg/mL. V. cinerea extract at (1/2), 1, or 2 times the MIC significantly inhibited bacterial growth with a noticeable drop in optical density (OD) of the bacterial culture, thus confirming the antibacterial activity of the extract on P. aeruginosa. Imaging using scanning (SEM) and transmission (TEM) electron microscopy was done to determine the major alterations in the microstructure of the extract-treated P. aeruginosa. The main abnormalities noted via SEM and TEM studies were the alteration in morphology of the bacterial cells. The main reason for this destruction was the severe alterations of the cell wall with the formation of holes, invaginations, and morphological disorganization caused by the extract. The authors conclude that the extract may be used as a candidate for the development of antimicrobial agents.

  17. Electrochemical Biosensor for Rapid and Sensitive Detection of Magnetically Extracted Bacterial Pathogens

    PubMed Central

    Setterington, Emma B.; Alocilja, Evangelyn C.

    2012-01-01

    Biological defense and security applications demand rapid, sensitive detection of bacterial pathogens. This work presents a novel qualitative electrochemical detection technique which is applied to two representative bacterial pathogens, Bacillus cereus (as a surrogate for B. anthracis) and Escherichia coli O157:H7, resulting in detection limits of 40 CFU/mL and 6 CFU/mL, respectively, from pure culture. Cyclic voltammetry is combined with immunomagnetic separation in a rapid method requiring approximately 1 h for presumptive positive/negative results. An immunofunctionalized magnetic/polyaniline core/shell nano-particle (c/sNP) is employed to extract target cells from the sample solution and magnetically position them on a screen-printed carbon electrode (SPCE) sensor. The presence of target cells significantly inhibits current flow between the electrically active c/sNPs and SPCE. This method has the potential to be adapted for a wide variety of target organisms and sample matrices, and to become a fully portable system for routine monitoring or emergency detection of bacterial pathogens. PMID:25585629

  18. Anti-bacterial, free radical scavenging activity and cytotoxicity of acetone extracts of Grewia flava.

    PubMed

    Lamola, Stella Makgabo; Dzoyem, Jean Paul; Botha, Francien; van Wyk, Candice

    2017-09-01

    Bacterial infections of the gastrointestinal tract (GIT) cause vomiting, diarrhoea and even systemic disease. There is a need for the development of natural products into alternative and safer medicines. This study evaluated the anti-microbial activity of extracts prepared from berries, leaves, bark and roots of the edible plant Grewia flava . The anti-bacterial activity was evaluated by the broth microdilution method. Anti-oxidant activity of the most active extracts was performed by 2, 2-diphenyl-1-picrylhydrazyl (DPPH) assay. The cytotoxicity of the extracts was determined using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The acetone extracts of the leaves and roots showed the best activity with MIC values as low as 0.03 mg/mL against Staphylococcus aureus and Salmonella typhimurium and 0.07 mg/mL against Bacillus cereus, Escherichia coli and Staphylococcus aureus . Quantitative analysis of the scavenging ability showed that acetone extracts exhibited good free radical scavenging activity in a dose-dependent manner. The berries extract had the highest LC 50 (lowest toxicity) of 551.68 68 µg/mL. Acetone extract of leaves and roots of Grewia flava contain anti-microbial and anti-oxidant compounds and could therefore be used as a natural product with little toxicity to host cells.

  19. Inhibition of bacterial quorum sensing by vanilla extract.

    PubMed

    Choo, J H; Rukayadi, Y; Hwang, J-K

    2006-06-01

    The purpose of this study was to search for a novel quorum sensing inhibitor and analyse its inhibitory activity. Quorum sensing inhibition was monitored using the Tn-5 mutant, Chromobacterium violaceum CV026. Vanilla beans (Vanilla planifolia Andrews) were extracted using 75% (v/v) aqueous methanol and added to C. violaceum CV026 cultures. Inhibitory activity was measured by quantifying violacein production using a spectrophotometer. The results have revealed that vanilla extract significantly reduced violacein production in a concentration-dependent manner, indicating inhibition of quorum sensing. Vanilla, a widely used spice and flavour, can inhibit bacterial quorum sensing. The results suggest that the intake of vanilla-containing food materials might promote human health by inhibiting quorum sensing and preventing bacterial pathogenesis. Further studies are required to isolate specific substances from vanilla extract acting as quorum sensing inhibitors.

  20. Antibacterial activity of Aquilaria crassna leaf extract against Staphylococcus epidermidis by disruption of cell wall

    PubMed Central

    2013-01-01

    Background Aquilaria crassna Pierre ex Lecomte has been traditionally used in Thailand for treatment of infectious diseases such as diarrhoea and skin diseases for a long time. The main objectives of this study were to examine antibacterial activity of the Aquilaria crassna leaf extract against Staphylococcus epidermidis and its underlying mechanism. The antioxidant activity and acute toxicity were studied as well. Methods Antioxidant activities were examined by FRAP, ABTS and DPPH scavenging methods. Antibacterial activity was conducted using disc diffusion assay and the minimum inhibitory concentration (MIC) was determined by dilution method. The minimum bactericidal concentration (MBC) was reported as the lowest concentration producing no growth of microbes in the subcultures. Morphological changes of the microbe were observed by scanning electron microscopy, while an inhibitory effect on biofilm formation was evaluated by phase contrast microscopic analysis. Bacterial cell wall integrity was assessed by transmission electron microscopy. Acute toxicity was conducted in accordance with the OECD for Testing of Chemicals (2001) guidelines. Results The extract exhibited considerable antioxidant activity. Staphylococcus epidermidis was susceptible to the extract with the MIC and MBC of 6 and 12 mg/ml, respectively. The extract caused swelling and distortion of bacterial cells and inhibited bacterial biofilm formation. Rupture of bacterial cell wall occurred after treated with the extract for 24 h. Acute toxicity test in mice showed no sign of toxicity or death at the doses of 2,000 and 15,000 mg/kg body weight. Conclusion The aqueous extract of Aquilaria crassna leaves possesses an in vitro antibacterial activity against Staphylococcus epidermidis, with no sign of acute oral toxicity in mice, probably by interfering with bacterial cell wall synthesis and inhibiting biofilm formation. PMID:23962360

  1. Colon-targeted delivery of live bacterial cell biotherapeutics including microencapsulated live bacterial cells

    PubMed Central

    Prakash, Satya; Malgorzata Urbanska, Aleksandra

    2008-01-01

    There has been an ample interest in delivery of therapeutic molecules using live cells. Oral delivery has been stipulated as best way to deliver live cells to humans for therapy. Colon, in particular, is a part of gastrointestinal (GI) tract that has been proposed to be an oral targeted site. The main objective of these oral therapy procedures is to deliver live cells not only to treat diseases like colorectal cancer, inflammatory bowel disease, and other GI tract diseases like intestinal obstruction and gastritis, but also to deliver therapeutic molecules for overall therapy in various diseases such as renal failure, coronary heart disease, hypertension, and others. This review provides a comprehensive summary of recent advancement in colon targeted live bacterial cell biotherapeutics. Current status of bacterial cell therapy, principles of artificial cells and its potentials in oral delivery of live bacterial cell biotherapeutics for clinical applications as well as biotherapeutic future perspectives are also discussed in our review. PMID:19707368

  2. The effect of temperature and bacterial growth phase on protein extraction by means of electroporation.

    PubMed

    Haberl-Meglič, Saša; Levičnik, Eva; Luengo, Elisa; Raso, Javier; Miklavčič, Damijan

    2016-12-01

    Different chemical and physical methods are used for extraction of proteins from bacteria, which are used in variety of fields. But on a large scale, many methods have severe drawbacks. Recently, extraction by means of electroporation showed a great potential to quickly obtain proteins from bacteria. Since many parameters are affecting the yield of extracted proteins, our aim was to investigate the effect of temperature and bacterial growth phase on the yield of extracted proteins. At the same time bacterial viability was tested. Our results showed that the temperature has a great effect on protein extraction, the best temperature post treatment being 4°C. No effect on bacterial viability was observed for all temperatures tested. Also bacterial growth phase did not affect the yield of extracted proteins or bacterial viability. Nevertheless, further experiments may need to be performed to confirm this observation, since only one incubation temperature (4°C) and one incubation time before and after electroporation (0.5 and 1h) were tested for bacterial growth phase. Based on our results we conclude that temperature is a key element for bacterial membrane to stay in a permeabilized state, so more proteins flow out of bacteria into surrounding media. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Supercritical Fluid Extraction of Bacterial and Archaeal Lipid Biomarkers from Anaerobically Digested Sludge

    PubMed Central

    Hanif, Muhammad; Atsuta, Yoichi; Fujie, Koichi; Daimon, Hiroyuki

    2012-01-01

    Supercritical fluid extraction (SFE) was used in the analysis of bacterial respiratory quinone (RQ), bacterial phospholipid fatty acid (PLFA), and archaeal phospholipid ether lipid (PLEL) from anaerobically digested sludge. Bacterial RQ were determined using ultra performance liquid chromatography (UPLC). Determination of bacterial PLFA and archaeal PLEL was simultaneously performed using gas chromatography-mass spectrometry (GC-MS). The effects of pressure, temperature, and modifier concentration on the total amounts of RQ, PLFA, and PLEL were investigated by 23 experiments with five settings chosen for each variable. The optimal extraction conditions that were obtained through a multiple-response optimization included a pressure of 23.6 MPa, temperature of 77.6 °C, and 10.6% (v/v) of methanol as the modifier. Thirty nine components of microbial lipid biomarkers were identified in the anaerobically digested sludge. Overall, the SFE method proved to be more effective, rapid, and quantitative for simultaneously extracting bacterial and archaeal lipid biomarkers, compared to conventional organic solvent extraction. This work shows the potential application of SFE as a routine method for the comprehensive analysis of microbial community structures in environmental assessments using the lipid biomarkers profile. PMID:22489140

  4. Evaluation of Lysis Methods for the Extraction of Bacterial DNA for Analysis of the Vaginal Microbiota

    PubMed Central

    Gill, Christina; Blow, Frances; Darby, Alistair C.

    2016-01-01

    Background Recent studies on the vaginal microbiota have employed molecular techniques such as 16S rRNA gene sequencing to describe the bacterial community as a whole. These techniques require the lysis of bacterial cells to release DNA before purification and PCR amplification of the 16S rRNA gene. Currently, methods for the lysis of bacterial cells are not standardised and there is potential for introducing bias into the results if some bacterial species are lysed less efficiently than others. This study aimed to compare the results of vaginal microbiota profiling using four different pretreatment methods for the lysis of bacterial samples (30 min of lysis with lysozyme, 16 hours of lysis with lysozyme, 60 min of lysis with a mixture of lysozyme, mutanolysin and lysostaphin and 30 min of lysis with lysozyme followed by bead beating) prior to chemical and enzyme-based DNA extraction with a commercial kit. Results After extraction, DNA yield did not significantly differ between methods with the exception of lysis with lysozyme combined with bead beating which produced significantly lower yields when compared to lysis with the enzyme cocktail or 30 min lysis with lysozyme only. However, this did not result in a statistically significant difference in the observed alpha diversity of samples. The beta diversity (Bray-Curtis dissimilarity) between different lysis methods was statistically significantly different, but this difference was small compared to differences between samples, and did not affect the grouping of samples with similar vaginal bacterial community structure by hierarchical clustering. Conclusions An understanding of how laboratory methods affect the results of microbiota studies is vital in order to accurately interpret the results and make valid comparisons between studies. Our results indicate that the choice of lysis method does not prevent the detection of effects relating to the type of vaginal bacterial community one of the main outcome measures

  5. Evaluation of Lysis Methods for the Extraction of Bacterial DNA for Analysis of the Vaginal Microbiota.

    PubMed

    Gill, Christina; van de Wijgert, Janneke H H M; Blow, Frances; Darby, Alistair C

    2016-01-01

    Recent studies on the vaginal microbiota have employed molecular techniques such as 16S rRNA gene sequencing to describe the bacterial community as a whole. These techniques require the lysis of bacterial cells to release DNA before purification and PCR amplification of the 16S rRNA gene. Currently, methods for the lysis of bacterial cells are not standardised and there is potential for introducing bias into the results if some bacterial species are lysed less efficiently than others. This study aimed to compare the results of vaginal microbiota profiling using four different pretreatment methods for the lysis of bacterial samples (30 min of lysis with lysozyme, 16 hours of lysis with lysozyme, 60 min of lysis with a mixture of lysozyme, mutanolysin and lysostaphin and 30 min of lysis with lysozyme followed by bead beating) prior to chemical and enzyme-based DNA extraction with a commercial kit. After extraction, DNA yield did not significantly differ between methods with the exception of lysis with lysozyme combined with bead beating which produced significantly lower yields when compared to lysis with the enzyme cocktail or 30 min lysis with lysozyme only. However, this did not result in a statistically significant difference in the observed alpha diversity of samples. The beta diversity (Bray-Curtis dissimilarity) between different lysis methods was statistically significantly different, but this difference was small compared to differences between samples, and did not affect the grouping of samples with similar vaginal bacterial community structure by hierarchical clustering. An understanding of how laboratory methods affect the results of microbiota studies is vital in order to accurately interpret the results and make valid comparisons between studies. Our results indicate that the choice of lysis method does not prevent the detection of effects relating to the type of vaginal bacterial community one of the main outcome measures of epidemiological studies

  6. Bacterial consortium for copper extraction from sulphide ore consisting mainly of chalcopyrite

    PubMed Central

    Romo, E.; Weinacker, D.F.; Zepeda, A.B.; Figueroa, C.A.; Chavez-Crooker, P.; Farias, J.G.

    2013-01-01

    The mining industry is looking forward for bacterial consortia for economic extraction of copper from low-grade ores. The main objective was to determine an optimal bacterial consortium from several bacterial strains to obtain copper from the leach of chalcopyrite. The major native bacterial species involved in the bioleaching of sulphide ore (Acidithiobacillus ferrooxidans, Acidithiobacillus thiooxidans, Leptospirillum ferrooxidans and Leptospirillum ferriphilum) were isolated and the assays were performed with individual bacteria and in combination with At. thiooxidans. In conclusion, it was found that the consortium integrated by At. ferrooxidans and At. thiooxidans removed 70% of copper in 35 days from the selected ore, showing significant differences with the other consortia, which removed only 35% of copper in 35 days. To validate the assays was done an escalation in columns, where the bacterial consortium achieved a higher percentage of copper extraction regarding to control. PMID:24294251

  7. Relationship between Milk Microbiota, Bacterial Load, Macronutrients, and Human Cells during Lactation.

    PubMed

    Boix-Amorós, Alba; Collado, Maria C; Mira, Alex

    2016-01-01

    Human breast milk is considered the optimal nutrition for infants, providing essential nutrients and a broad range of bioactive compounds, as well as its own microbiota. However, the interaction among those components and the biological role of milk microorganisms is still uncovered. Thus, our aim was to identify the relationships between milk microbiota composition, bacterial load, macronutrients, and human cells during lactation. Bacterial load was estimated in milk samples from a total of 21 healthy mothers through lactation time by bacteria-specific qPCR targeted to the single-copy gene fusA. Milk microbiome composition and diversity was estimated by 16S-pyrosequencing and the structure of these bacteria in the fluid was studied by flow cytometry, qPCR, and microscopy. Fat, protein, lactose, and dry extract of milk as well as the number of somatic cells were also analyzed. We observed that milk bacterial communities were generally complex, and showed individual-specific profiles. Milk microbiota was dominated by Staphylococcus, Pseudomonas, Streptococcus, and Acinetobacter. Staphylococcus aureus was not detected in any of these samples from healthy mothers. There was high variability in composition and number of bacteria per milliliter among mothers and in some cases even within mothers at different time points. The median bacterial load was 10(6) bacterial cells/ml through time, higher than those numbers reported by 16S gene PCR and culture methods. Furthermore, milk bacteria were present in a free-living, "planktonic" state, but also in equal proportion associated to human immune cells. There was no correlation between bacterial load and the amount of immune cells in milk, strengthening the idea that milk bacteria are not sensed as an infection by the immune system.

  8. Bacterial components are the major contributors to the macrophage stimulating activity exhibited by extracts of common edible mushrooms.

    PubMed

    Tyler, Heather L; Haron, Mona H; Pugh, Nirmal D; Zhang, Jin; Jackson, Colin R; Pasco, David S

    2016-10-12

    Recent studies have indicated that a major contributor to the innate immune enhancing properties of some medicinal plants is derived from the cell wall components of bacteria colonizing these plants. The purpose of the current study was to assess if the bacteria present within edible and medicinal mushrooms substantially contribute to the innate immune stimulating potential of these mushrooms. Whole mushrooms from thirteen types of edible fungi and individual parts from Agaricus bisporus were analyzed for in vitro macrophage activation as well as bacterial lipopolysaccharides (LPS) content, cell load, and community composition. Substantial variation between samples was observed in macrophage activation (over 500-fold), total bacterial load (over 200-fold), and LPS content (over 10 million-fold). Both LPS content (ρ = 0.832, p < 0.0001) and total bacterial load (ρ = 0.701, p < 0.0001) correlated significantly with macrophage activation in the whole mushroom extracts. Extract activity was negated by treatment with NaOH, conditions that inactivate LPS and other bacterial components. Significant correlations between macrophage activation and total bacterial load (ρ = 0.723, p = 0.0001) and LPS content (ρ = 0.951, p < 0.0001) were also observed between different tissues of Agaricus bisporus. Pseudomonas and Flavobacterium were the most prevalent genera identified in the different tissue parts and these taxa were significantly correlated with in vitro macrophage activation (ρ = 0.697, p < 0.0001 and ρ = 0.659, p = 0.0001, respectively). These results indicate that components derived from mushroom associated bacteria contribute substantially to the innate immune enhancing activity exhibited by mushrooms and may result in similar therapeutic actions as reported for ingestion of bacterial preparations such as probiotics.

  9. Prospective bacterial quorum sensing inhibitors from Indian medicinal plant extracts.

    PubMed

    Tiwary, B K; Ghosh, R; Moktan, S; Ranjan, V K; Dey, P; Choudhury, D; Dutta, S; Deb, D; Das, A P; Chakraborty, R

    2017-07-01

    As virulence of many pathogenic bacteria is regulated by the phenomenon of quorum sensing (QS), the present study aimed to find the QS-inhibiting (QS-I) property (if any) in 61 Indian medicinal plants. The presence of QS-I compound in the leaf extract was evaluated by its ability to inhibit production of pigment in Chromobacterium violaceum MTCC 2656 (violacein) and Pseudomonas aeruginosa MTCC 2297 (pyocyanin) or swarming of P. aeruginosa MTCC 2297. Extracts of three plants, Astilbe rivularis, Fragaria nubicola and Osbeckia nepalensis, have shown a dose-dependent inhibition of violacein production with no negative effect on bacterial growth. Inhibition of pyocyanin pigment production and swarming motility in P. aeruginosa MTCC 2297 was also shown. Based on the results obtained by gas chromatography-mass spectroscopy (GC-MS) and thin-layer chromatography-direct bioautography (TLC-DB), it was concluded that triterpenes and flavonoid compounds found in the three plant extracts could have QS-I activity. A novel alternative prospect to prevent bacterial infections without inhibiting the growth is to apply chemicals that inhibit quorum sensing mechanism of the pathogens. Antiquorum property of 61 medicinal plants was evaluated by the ability of their leaf extract(s) to inhibit production of pigment (violacein in Chromobacterium violaceum MTCC 2656, pyocyanin in Pseudomonas aeruginosa MTCC 2297) or swarming in P. aeruginosa MTCC 2297. The most prospective plants (for the development of quorum sensing inhibitor), showing inhibition of violacein production without affecting bacterial growth, were Astilbe rivularis, Fragaria nubicola and Osbeckia nepalensis. © 2017 The Society for Applied Microbiology.

  10. Estimates of Soil Bacterial Ribosome Content and Diversity Are Significantly Affected by the Nucleic Acid Extraction Method Employed

    PubMed Central

    Wüst, Pia K.; Nacke, Heiko; Kaiser, Kristin; Marhan, Sven; Sikorski, Johannes; Kandeler, Ellen; Daniel, Rolf

    2016-01-01

    Modern sequencing technologies allow high-resolution analyses of total and potentially active soil microbial communities based on their DNA and RNA, respectively. In the present study, quantitative PCR and 454 pyrosequencing were used to evaluate the effects of different extraction methods on the abundance and diversity of 16S rRNA genes and transcripts recovered from three different types of soils (leptosol, stagnosol, and gleysol). The quality and yield of nucleic acids varied considerably with respect to both the applied extraction method and the analyzed type of soil. The bacterial ribosome content (calculated as the ratio of 16S rRNA transcripts to 16S rRNA genes) can serve as an indicator of the potential activity of bacterial cells and differed by 2 orders of magnitude between nucleic acid extracts obtained by the various extraction methods. Depending on the extraction method, the relative abundances of dominant soil taxa, in particular Actinobacteria and Proteobacteria, varied by a factor of up to 10. Through this systematic approach, the present study allows guidelines to be deduced for the selection of the appropriate extraction protocol according to the specific soil properties, the nucleic acid of interest, and the target organisms. PMID:26896137

  11. Relationship between Milk Microbiota, Bacterial Load, Macronutrients, and Human Cells during Lactation

    PubMed Central

    Boix-Amorós, Alba; Collado, Maria C.; Mira, Alex

    2016-01-01

    Human breast milk is considered the optimal nutrition for infants, providing essential nutrients and a broad range of bioactive compounds, as well as its own microbiota. However, the interaction among those components and the biological role of milk microorganisms is still uncovered. Thus, our aim was to identify the relationships between milk microbiota composition, bacterial load, macronutrients, and human cells during lactation. Bacterial load was estimated in milk samples from a total of 21 healthy mothers through lactation time by bacteria-specific qPCR targeted to the single-copy gene fusA. Milk microbiome composition and diversity was estimated by 16S-pyrosequencing and the structure of these bacteria in the fluid was studied by flow cytometry, qPCR, and microscopy. Fat, protein, lactose, and dry extract of milk as well as the number of somatic cells were also analyzed. We observed that milk bacterial communities were generally complex, and showed individual-specific profiles. Milk microbiota was dominated by Staphylococcus, Pseudomonas, Streptococcus, and Acinetobacter. Staphylococcus aureus was not detected in any of these samples from healthy mothers. There was high variability in composition and number of bacteria per milliliter among mothers and in some cases even within mothers at different time points. The median bacterial load was 106 bacterial cells/ml through time, higher than those numbers reported by 16S gene PCR and culture methods. Furthermore, milk bacteria were present in a free-living, “planktonic” state, but also in equal proportion associated to human immune cells. There was no correlation between bacterial load and the amount of immune cells in milk, strengthening the idea that milk bacteria are not sensed as an infection by the immune system. PMID:27148183

  12. Effect of Punica granatum L. Flower Water Extract on Five Common Oral Bacteria and Bacterial Biofilm Formation on Orthodontic Wire

    PubMed Central

    VAHID DASTJERDI, Elahe; ABDOLAZIMI, Zahra; GHAZANFARIAN, Marzieh; AMDJADI, Parisa; KAMALINEJAD, Mohammad; MAHBOUBI, Arash

    2014-01-01

    Background: Use of herbal extracts and essences as natural antibacterial compounds has become increasingly popular for the control of oral infectious diseases. Therefore, finding natural antimicrobial products with the lowest side effects seems necessary. The present study sought to assess the effect of Punica granatum L. water extract on five oral bacteria and bacterial biofilm formation on orthodontic wire. Methods: Antibacterial property of P. granatum L. water extract was primarily evaluated in brain heart infusion agar medium using well-plate method. The minimum inhibitory concentration and minimum bactericidal concentration were determined by macro-dilution method. The inhibitory effect on orthodontic wire bacterial biofilm formation was evaluated using viable cell count in biofilm medium. At the final phase, samples were fixed and analyzed by Scanning Electron Microscopy. Results: The growth inhibition zone diameter was proportional to the extract concentration. The water extract demonstrated the maximum antibacterial effect on Streptococcus sanguinis ATCC 10556 with a minimum inhibitory concentration of 6.25 mg/ml and maximum bactericidal effect on S. sanguinis ATCC 10556 and S. sobrinus ATCC 27607 with minimum bactericidal concentration of 25 mg/ml. The water extract decreased bacterial biofilm formation by S. sanguinis, S. sobrinus, S. salivarius, S. mutans ATCC 35608 and E. faecalis CIP 55142 by 93.7–100%, 40.6–99.9%, 85.2–86.5%, 66.4–84.4% and 35.5–56.3% respectively. Conclusion: Punica granatum L. water extract had significant antibacterial properties against 5 oral bacteria and prevented orthodontic wire bacterial biofilm formation. However, further investigations are required to generalize these results to the clinical setting. PMID:26171362

  13. Micro Corona Ionizer as an Ozone Source for Bacterial Cell Lysis

    NASA Astrophysics Data System (ADS)

    Lee, Eun-Hee; Lim, Hyun Jeong; Chua, Beelee; Son, Ahjeong

    2015-04-01

    DNA extraction is a critical process of DNA assays including polymerase chain reaction (PCR), microarrays, molecular cloning, and DNA hybridization which has been well established and can be implemented by commercial kits. DNA extraction involves cell lysis, precipitation, and purification through the combination of physical and chemical processes. Cell lysis is essential to high DNA recovery yield which can be achieved via a variety of physical, chemical, and enzymatic methods. However, these methods were originally developed for bioassays that were labor intensive, time consuming, and vulnerable to contamination and inhibition. Here, we proposed to employ a micro corona ionizer as an ozone source to lyse bacterial cells. Ozone has been well known and used as a disinfectant which allows cell lysis and DNA extraction. Previously, we have shown that a micro corona ionizer is capable of generating a significant amount of ozone. In this study, we employed the micro corona ionizer for the bacterial cell lysis which consists of a 50 μm diameter cantilever wire as the discharge cathode and a 50 μm thick copper foil as anode. Applied voltages varied from 1900 to 2200 V with corresponding corona currents from 16 to 28 μA. The resultant ozone (concentration > 0.14 ppm) generated from the micro corona ionizer was bubbled into the sample via a miniature pump. We demonstrated the cell lysis of Pseudomonas putida as the target bacterium using the micro corona ionizer. At a flow rate of 38 ml/min and applied corona voltage of 2000 V, 98.5 ± 0.2% lysis (normalized to sonication result) was achieved after 10 min. In comparison, untreated and air-treated samples showed normalized % lysis of 11.9 ± 2.4 and 36.1 ± 1.7%, respectively. We also showed that the cell lysis efficiency could be significantly increased by increasing the flow rate and the applied corona voltage. By comparing the experimental results for continuous and pulsed treatment, we verified that the percentage of

  14. Sequential Super-Resolution Imaging of Bacterial Regulatory Proteins: The Nucleoid and the Cell Membrane in Single, Fixed E. coli Cells.

    PubMed

    Spahn, Christoph; Glaesmann, Mathilda; Gao, Yunfeng; Foo, Yong Hwee; Lampe, Marko; Kenney, Linda J; Heilemann, Mike

    2017-01-01

    Despite their small size and the lack of compartmentalization, bacteria exhibit a striking degree of cellular organization, both in time and space. During the last decade, a group of new microscopy techniques emerged, termed super-resolution microscopy or nanoscopy, which facilitate visualizing the organization of proteins in bacteria at the nanoscale. Single-molecule localization microscopy (SMLM) is especially well suited to reveal a wide range of new information regarding protein organization, interaction, and dynamics in single bacterial cells. Recent developments in click chemistry facilitate the visualization of bacterial chromatin with a resolution of ~20 nm, providing valuable information about the ultrastructure of bacterial nucleoids, especially at short generation times. In this chapter, we describe a simple-to-realize protocol that allows determining precise structural information of bacterial nucleoids in fixed cells, using direct stochastic optical reconstruction microscopy (dSTORM). In combination with quantitative photoactivated localization microscopy (PALM), the spatial relationship of proteins with the bacterial chromosome can be studied. The position of a protein of interest with respect to the nucleoids and the cell cylinder can be visualized by super-resolving the membrane using point accumulation for imaging in nanoscale topography (PAINT). The combination of the different SMLM techniques in a sequential workflow maximizes the information that can be extracted from single cells, while maintaining optimal imaging conditions for each technique.

  15. Hydrophobic ionic liquids for quantitative bacterial cell lysis with subsequent DNA quantification.

    PubMed

    Fuchs-Telka, Sabine; Fister, Susanne; Mester, Patrick-Julian; Wagner, Martin; Rossmanith, Peter

    2017-02-01

    DNA is one of the most frequently analyzed molecules in the life sciences. In this article we describe a simple and fast protocol for quantitative DNA isolation from bacteria based on hydrophobic ionic liquid supported cell lysis at elevated temperatures (120-150 °C) for subsequent PCR-based analysis. From a set of five hydrophobic ionic liquids, 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide was identified as the most suitable for quantitative cell lysis and DNA extraction because of limited quantitative PCR inhibition by the aqueous eluate as well as no detectable DNA uptake. The newly developed method was able to efficiently lyse Gram-negative bacterial cells, whereas Gram-positive cells were protected by their thick cell wall. The performance of the final protocol resulted in quantitative DNA extraction efficiencies for Gram-negative bacteria similar to those obtained with a commercial kit, whereas the number of handling steps, and especially the time required, was dramatically reduced. Graphical Abstract After careful evaluation of five hydrophobic ionic liquids, 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide ([BMPyr + ][Ntf 2 - ]) was identified as the most suitable ionic liquid for quantitative cell lysis and DNA extraction. When used for Gram-negative bacteria, the protocol presented is simple and very fast and achieves DNA extraction efficiencies similar to those obtained with a commercial kit. ddH 2 O double-distilled water, qPCR quantitative PCR.

  16. Macroalgal Extracts Induce Bacterial Assemblage Shifts and Sublethal Tissue Stress in Caribbean Corals

    PubMed Central

    Morrow, Kathleen M.; Ritson-Williams, Raphael; Ross, Cliff; Liles, Mark R.; Paul, Valerie J.

    2012-01-01

    Benthic macroalgae can be abundant on present-day coral reefs, especially where rates of herbivory are low and/or dissolved nutrients are high. This study investigated the impact of macroalgal extracts on both coral-associated bacterial assemblages and sublethal stress response of corals. Crude extracts and live algal thalli from common Caribbean macroalgae were applied onto the surface of Montastraea faveolata and Porites astreoides corals on reefs in both Florida and Belize. Denaturing gradient gel electrophoresis (DGGE) of 16S rRNA gene amplicons was used to examine changes in the surface mucus layer (SML) bacteria in both coral species. Some of the extracts and live algae induced detectable shifts in coral-associated bacterial assemblages. However, one aqueous extract caused the bacterial assemblages to shift to an entirely new state (Lobophora variegata), whereas other organic extracts had little to no impact (e.g. Dictyota sp.). Macroalgal extracts more frequently induced sublethal stress responses in M. faveolata than in P. astreoides corals, suggesting that cellular integrity can be negatively impacted in selected corals when comparing co-occurring species. As modern reefs experience phase-shifts to a higher abundance of macroalgae with potent chemical defenses, these macroalgae are likely impacting the composition of microbial assemblages associated with corals and affecting overall reef health in unpredicted and unprecedented ways. PMID:23028648

  17. Macroalgal extracts induce bacterial assemblage shifts and sublethal tissue stress in Caribbean corals.

    PubMed

    Morrow, Kathleen M; Ritson-Williams, Raphael; Ross, Cliff; Liles, Mark R; Paul, Valerie J

    2012-01-01

    Benthic macroalgae can be abundant on present-day coral reefs, especially where rates of herbivory are low and/or dissolved nutrients are high. This study investigated the impact of macroalgal extracts on both coral-associated bacterial assemblages and sublethal stress response of corals. Crude extracts and live algal thalli from common Caribbean macroalgae were applied onto the surface of Montastraea faveolata and Porites astreoides corals on reefs in both Florida and Belize. Denaturing gradient gel electrophoresis (DGGE) of 16S rRNA gene amplicons was used to examine changes in the surface mucus layer (SML) bacteria in both coral species. Some of the extracts and live algae induced detectable shifts in coral-associated bacterial assemblages. However, one aqueous extract caused the bacterial assemblages to shift to an entirely new state (Lobophora variegata), whereas other organic extracts had little to no impact (e.g. Dictyota sp.). Macroalgal extracts more frequently induced sublethal stress responses in M. faveolata than in P. astreoides corals, suggesting that cellular integrity can be negatively impacted in selected corals when comparing co-occurring species. As modern reefs experience phase-shifts to a higher abundance of macroalgae with potent chemical defenses, these macroalgae are likely impacting the composition of microbial assemblages associated with corals and affecting overall reef health in unpredicted and unprecedented ways.

  18. Mechanical influences in bacterial morphogenesis and cell division

    NASA Astrophysics Data System (ADS)

    Sun, Sean

    2010-03-01

    Bacterial cells utilize a ring-like organelle (the Z-ring) to accomplish cell division. The Z-ring actively generates a contractile force and influences cell wall growth. We will discuss a general model of bacterial morphogenesis where mechanical forces are coupled to the growth dynamics of the cell wall. The model suggests a physical mechanism that determines the shapes of bacteria cells. The roles of several bacterial cytoskeletal proteins and the Z-ring are discussed. We will also explore molecular mechanisms of force generation by the Z-ring and how cells can generate mechanical forces without molecular motors.

  19. Can dead bacterial cells be defined and are genes expressed after cell death?

    PubMed

    Trevors, J T

    2012-07-01

    There is a paucity of knowledge on gene expression in dead bacterial cells. Why would this knowledge be useful? The cells are dead. However, the time duration of gene expression following cell death is often unknown, and possibly in the order of minutes. In addition, it is a challenge to determine if bacterial cells are dead, or viable but non-culturable (VBNC), and what is an agreed upon correct definition of dead bacteria. Cells in the bacterial population or community may die at different rates or times and this complicates both the viability and gene expression analysis. In this article, the definition of dead bacterial cells is discussed and its significance in continued gene expression in cells following death. The definition of living and dead has implications for possible, completely, synthetic bacterial cells that may be capable of growth and division. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. Lactic acid bacterial extract as a biogenic mineral growth modifier

    NASA Astrophysics Data System (ADS)

    Borah, Ballav M.; Singh, Atul K.; Ramesh, Aiyagari; Das, Gopal

    2009-04-01

    The formation of minerals and mechanisms by which bacteria could control their formation in natural habitats is now of current interest for material scientists to have an insight of the mechanism of in vivo mineralization, as well as to seek industrial and technological applications. Crystalline uniform structures of calcium and barium minerals formed micron-sized building blocks when synthesized in the presence of an organic matrix consisting of secreted protein extracts from three different lactic acid bacteria (LAB) viz.: Lactobacillus plantarum MTCC 1325, Lactobacillus acidophilus NRRL B4495 and Pediococcus acidilactici CFR K7. LABs are not known to form organic matrix in biological materialization processes. The influence of these bacterial extracts on the crystallization behavior was investigated in details to test the basic coordination behavior of the acidic protein. In this report, varied architecture of the mineral crystals obtained in presence of high molecular weight protein extracts of three different LAB strains has been discussed. The role of native form of high molecular weight bacterial protein extracts in the generation of nucleation centers for crystal growth was clearly established. A model for the formation of organic matrix-cation complex and the subsequent events leading to crystal growth is proposed.

  1. [Rapid and efficient extraction of soluble proteins from gram-negative microorganisms without disruption of cell walls].

    PubMed

    Danilevich, V N; Petrovskaia, L E; Grishin, E V

    2006-01-01

    The ability of buffer solutions containing low concentrations of nonionic detergents (Triton X-100, Tween 20, Brij 58, and Lubrol PX) and the anionic detergent sodium deoxycholate, as well as mixtures of these detergents with chaeotropes (urea and guanidine hydrochloride), to extract intracellular proteins of Gram-negative microorganisms (Escherichia coli and Pseudomonas aeruginosa) was studied. It was established that the solutions containing Triton X-100 and sodium deoxycholate and the mixtures of these detergents with urea are the most effective. It was shown that the extraction of proteins from bacterial cells under the studied conditions is not accompanied by a release of DNA into solution but is associated with extraction of low-molecular RNAs. The level of protein extraction reaches 80%. No disruption of the bacterial cell wall occurs during the extraction, and proteins probably permeate through meshes of the murein network. The efficiencies of our buffer mixtures are close to or higher than that of the commercial reagent CelLytic B (Sigma, United States). The practical uses of the chaeotropic mixtures developed are discussed.

  2. Tiny cells meet big questions: a closer look at bacterial cell biology.

    PubMed

    Goley, Erin D

    2013-04-01

    While studying actin assembly as a graduate student with Matt Welch at the University of California at Berkeley, my interest was piqued by reports of surprising observations in bacteria: the identification of numerous cytoskeletal proteins, actin homologues fulfilling spindle-like functions, and even the presence of membrane-bound organelles. Curiosity about these phenomena drew me to Lucy Shapiro's lab at Stanford University for my postdoctoral research. In the Shapiro lab, and now in my lab at Johns Hopkins, I have focused on investigating the mechanisms of bacterial cytokinesis. Spending time as both a eukaryotic cell biologist and a bacterial cell biologist has convinced me that bacterial cells present the same questions as eukaryotic cells: How are chromosomes organized and accurately segregated? How is force generated for cytokinesis? How is polarity established? How are signals transduced within and between cells? These problems are conceptually similar between eukaryotes and bacteria, although their solutions can differ significantly in specifics. In this Perspective, I provide a broad view of cell biological phenomena in bacteria, the technical challenges facing those of us who peer into bacterial cells, and areas of common ground as research in eukaryotic and bacterial cell biology moves forward.

  3. Isolation of cell-free bacterial inclusion bodies.

    PubMed

    Rodríguez-Carmona, Escarlata; Cano-Garrido, Olivia; Seras-Franzoso, Joaquin; Villaverde, Antonio; García-Fruitós, Elena

    2010-09-17

    Bacterial inclusion bodies are submicron protein clusters usually found in recombinant bacteria that have been traditionally considered as undesirable products from protein production processes. However, being fully biocompatible, they have been recently characterized as nanoparticulate inert materials useful as scaffolds for tissue engineering, with potentially wider applicability in biomedicine and material sciences. Current protocols for inclusion body isolation from Escherichia coli usually offer between 95 to 99% of protein recovery, what in practical terms, might imply extensive bacterial cell contamination, not compatible with the use of inclusion bodies in biological interfaces. Using an appropriate combination of chemical and mechanical cell disruption methods we have established a convenient procedure for the recovery of bacterial inclusion bodies with undetectable levels of viable cell contamination, below 10⁻¹ cfu/ml, keeping the particulate organization of these aggregates regarding size and protein folding features. The application of the developed protocol allows obtaining bacterial free inclusion bodies suitable for use in mammalian cell cultures and other biological interfaces.

  4. Induction of gram-negative bacterial growth by neurochemical containing banana (Musa x paradisiaca) extracts.

    PubMed

    Lyte, M

    1997-09-15

    Bananas contain large quantities of neurochemicals. Extracts from the peel and pulp of bananas in increasing stages of ripening were prepared and evaluated for their ability to modulate the growth of non-pathogenic and pathogenic bacteria. Extracts from the peel, and to a much lesser degree the pulp, increased the growth of Gram-negative bacterial strains Escherichia coli O157:H7, Shigella flexneri, Enterobacter cloacae and Salmonella typhimurium, as well as two non-pathogenic E. coli strains, in direct relation to the content of norepinephrine and dopamine, but not serotonin. The growth of Gram-positive bacteria was not altered by any of the extracts. Supplementation of vehicle and pulp cultures with norepinephrine or dopamine yielded growth equivalent to peel cultures. Total organic analysis of extracts further demonstrated that the differential effects of peel and pulp on bacterial growth was not nutritionally based, but due to norepinephrine and dopamine. These results suggest that neurochemicals contained within foodstuffs may influence the growth of pathogenic and indigenous bacteria through direct neurochemical-bacterial interactions.

  5. Molecular mechanisms of cell-cell spread of intracellular bacterial pathogens.

    PubMed

    Ireton, Keith

    2013-07-17

    Several bacterial pathogens, including Listeria monocytogenes, Shigella flexneri and Rickettsia spp., have evolved mechanisms to actively spread within human tissues. Spreading is initiated by the pathogen-induced recruitment of host filamentous (F)-actin. F-actin forms a tail behind the microbe, propelling it through the cytoplasm. The motile pathogen then encounters the host plasma membrane, forming a bacterium-containing protrusion that is engulfed by an adjacent cell. Over the past two decades, much progress has been made in elucidating mechanisms of F-actin tail formation. Listeria and Shigella produce tails of branched actin filaments by subverting the host Arp2/3 complex. By contrast, Rickettsia forms tails with linear actin filaments through a bacterial mimic of eukaryotic formins. Compared with F-actin tail formation, mechanisms controlling bacterial protrusions are less well understood. However, recent findings have highlighted the importance of pathogen manipulation of host cell-cell junctions in spread. Listeria produces a soluble protein that enhances bacterial protrusions by perturbing tight junctions. Shigella protrusions are engulfed through a clathrin-mediated pathway at 'tricellular junctions'--specialized membrane regions at the intersection of three epithelial cells. This review summarizes key past findings in pathogen spread, and focuses on recent developments in actin-based motility and the formation and internalization of bacterial protrusions.

  6. Effect of DNA extraction and sample preservation method on rumen bacterial population.

    PubMed

    Fliegerova, Katerina; Tapio, Ilma; Bonin, Aurelie; Mrazek, Jakub; Callegari, Maria Luisa; Bani, Paolo; Bayat, Alireza; Vilkki, Johanna; Kopečný, Jan; Shingfield, Kevin J; Boyer, Frederic; Coissac, Eric; Taberlet, Pierre; Wallace, R John

    2014-10-01

    The comparison of the bacterial profile of intracellular (iDNA) and extracellular DNA (eDNA) isolated from cow rumen content stored under different conditions was conducted. The influence of rumen fluid treatment (cheesecloth squeezed, centrifuged, filtered), storage temperature (RT, -80 °C) and cryoprotectants (PBS-glycerol, ethanol) on quality and quantity parameters of extracted DNA was evaluated by bacterial DGGE analysis, real-time PCR quantification and metabarcoding approach using high-throughput sequencing. Samples clustered according to the type of extracted DNA due to considerable differences between iDNA and eDNA bacterial profiles, while storage temperature and cryoprotectants additives had little effect on sample clustering. The numbers of Firmicutes and Bacteroidetes were lower (P < 0.01) in eDNA samples. The qPCR indicated significantly higher amount of Firmicutes in iDNA sample frozen with glycerol (P < 0.01). Deep sequencing analysis of iDNA samples revealed the prevalence of Bacteroidetes and similarity of samples frozen with and without cryoprotectants, which differed from sample stored with ethanol at room temperature. Centrifugation and consequent filtration of rumen fluid subjected to the eDNA isolation procedure considerably changed the ratio of molecular operational taxonomic units (MOTUs) of Bacteroidetes and Firmicutes. Intracellular DNA extraction using bead-beating method from cheesecloth sieved rumen content mixed with PBS-glycerol and stored at -80 °C was found as the optimal method to study ruminal bacterial profile. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Cellulose-ethylenediaminetetraacetic acid conjugates protect mammalian cells from bacterial cells.

    PubMed

    Luo, Jie; Lv, Wei; Deng, Ying; Sun, Yuyu

    2013-04-08

    Cellulose-ethylenediaminetetraacetic acid (EDTA) conjugates were synthesized by the esterification of cellulose with ethylenediaminetetraacetic dianhydride (EDTAD). The new materials provided potent antimicrobial activities against Staphylococcus aureus (S. aureus, Gram-positive bacteria) and Pseudomonas aeruginosa (P. aeruginosa, Gram-negative bacteria), and inhibited the formation of bacterial biofilms. The biocompatibility of the new cellulose-EDTA conjugates was evaluated with mouse skin fibroblasts for up to 14 days. SEM observation and DNA content analysis suggested that the new materials sustained the viability of fibroblast cells. Moreover, in mouse skin fibroblast-bacteria co-culture systems, the new cellulose-EDTA conjugates prevented bacterial biofilm formation and protected the mammalian cells from the bacterial cells for at least one day.

  8. Using Bacterial Extract along with Differential Gene Expression in Acropora millepora Larvae to Decouple the Processes of Attachment and Metamorphosis

    PubMed Central

    Siboni, Nachshon; Abrego, David; Seneca, Francois; Motti, Cherie A.; Andreakis, Nikos; Tebben, Jan; Blackall, Linda L.; Harder, Tilmann

    2012-01-01

    Biofilms of the bacterium Pseudoalteromonas induce metamorphosis of acroporid coral larvae. The bacterial metabolite tetrabromopyrrole (TBP), isolated from an extract of Pseudoalteromonas sp. associated with the crustose coralline alga (CCA) Neogoniolithon fosliei, induced coral larval metamorphosis (100%) with little or no attachment (0–2%). To better understand the molecular events and mechanisms underpinning the induction of Acropora millepora larval metamorphosis, including cell proliferation, apoptosis, differentiation, migration, adhesion and biomineralisation, two novel coral gene expression assays were implemented. These involved the use of reverse-transcriptase quantitative PCR (RT-qPCR) and employed 47 genes of interest (GOI), selected based on putative roles in the processes of settlement and metamorphosis. Substantial differences in transcriptomic responses of GOI were detected following incubation of A. millepora larvae with a threshold concentration and 10-fold elevated concentration of TBP-containing extracts of Pseudoalteromonas sp. The notable and relatively abrupt changes of the larval body structure during metamorphosis correlated, at the molecular level, with significant differences (p<0.05) in gene expression profiles of 24 GOI, 12 hours post exposure. Fourteen of those GOI also presented differences in expression (p<0.05) following exposure to the threshold concentration of bacterial TBP-containing extract. The specificity of the bacterial TBP-containing extract to induce the metamorphic stage in A. millepora larvae without attachment, using a robust, low cost, accurate, ecologically relevant and highly reproducible RT-qPCR assay, allowed partially decoupling of the transcriptomic processes of attachment and metamorphosis. The bacterial TBP-containing extract provided a unique opportunity to monitor the regulation of genes exclusively involved in the process of metamorphosis, contrasting previous gene expression studies that utilized cues

  9. The impact of date palm fruits and their component polyphenols, on gut microbial ecology, bacterial metabolites and colon cancer cell proliferation.

    PubMed

    Eid, Noura; Enani, Sumia; Walton, Gemma; Corona, Giulia; Costabile, Adele; Gibson, Glenn; Rowland, Ian; Spencer, Jeremy P E

    2014-01-01

    The fruit of the date palm (Phoenix dactylifera L.) is a rich source of dietary fibre and polyphenols. We have investigated gut bacterial changes induced by the whole date fruit extract (digested date extract; DDE) and its polyphenol-rich extract (date polyphenol extract; DPE) using faecal, pH-controlled, mixed batch cultures mimicking the distal part of the human large intestine, and utilising an array of microbial group-specific 16S rRNA oligonucleotide probes. Fluorescence microscopic enumeration indicated that there was a significant increase in the growth of bifidobacteria in response to both treatments, whilst whole dates also increased bacteroides at 24 h and the total bacterial counts at later fermentation time points when compared with DPE alone. Bacterial metabolism of whole date fruit led to the production of SCFA, with acetate significantly increasing following bacterial incubation with DDE. In addition, the production of flavonoid aglycones (myricetin, luteolin, quercetin and apigenin) and the anthocyanidin petunidin in less than 1 h was also observed. Lastly, the potential of DDE, DPE and metabolites to inhibit Caco-2 cell growth was investigated, indicating that both were capable of potentially acting as antiproliferative agents in vitro, following a 48 h exposure. This potential to inhibit growth was reduced following fermentation. Together these data suggest that consumption of date fruits may enhance colon health by increasing beneficial bacterial growth and inhibiting the proliferation of colon cancer cells. This is an early suggestion that date intake by humans may aid in the maintenance of bowel health and even the reduction of colorectal cancer development.

  10. Bacterial spread from cell to cell: beyond actin-based motility.

    PubMed

    Kuehl, Carole J; Dragoi, Ana-Maria; Talman, Arthur; Agaisse, Hervé

    2015-09-01

    Several intracellular pathogens display the ability to propagate within host tissues by displaying actin-based motility in the cytosol of infected cells. As motile bacteria reach cell-cell contacts they form plasma membrane protrusions that project into adjacent cells and resolve into vacuoles from which the pathogen escapes, thereby achieving spread from cell to cell. Seminal studies have defined the bacterial and cellular factors that support actin-based motility. By contrast, the mechanisms supporting the formation of protrusions and their resolution into vacuoles have remained elusive. Here, we review recent advances in the field showing that Listeria monocytogenes and Shigella flexneri have evolved pathogen-specific mechanisms of bacterial spread from cell to cell. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Sequence-Specific Affinity Chromatography of Bacterial Small Regulatory RNA-Binding Proteins from Bacterial Cells.

    PubMed

    Gans, Jonathan; Osborne, Jonathan; Cheng, Juliet; Djapgne, Louise; Oglesby-Sherrouse, Amanda G

    2018-01-01

    Bacterial small RNA molecules (sRNAs) are increasingly recognized as central regulators of bacterial stress responses and pathogenesis. In many cases, RNA-binding proteins are critical for the stability and function of sRNAs. Previous studies have adopted strategies to genetically tag an sRNA of interest, allowing isolation of RNA-protein complexes from cells. Here we present a sequence-specific affinity purification protocol that requires no prior genetic manipulation of bacterial cells, allowing isolation of RNA-binding proteins bound to native RNA molecules.

  12. Extractable Bacterial Surface Proteins in Probiotic–Host Interaction

    PubMed Central

    do Carmo, Fillipe L. R.; Rabah, Houem; De Oliveira Carvalho, Rodrigo D.; Gaucher, Floriane; Cordeiro, Barbara F.; da Silva, Sara H.; Le Loir, Yves; Azevedo, Vasco; Jan, Gwénaël

    2018-01-01

    Some Gram-positive bacteria, including probiotic ones, are covered with an external proteinaceous layer called a surface-layer. Described as a paracrystalline layer and formed by the self-assembly of a surface-layer-protein (Slp), this optional structure is peculiar. The surface layer per se is conserved and encountered in many prokaryotes. However, the sequence of the corresponding Slp protein is highly variable among bacterial species, or even among strains of the same species. Other proteins, including surface layer associated proteins (SLAPs), and other non-covalently surface-bound proteins may also be extracted with this surface structure. They can be involved a various functions. In probiotic Gram-positives, they were shown by different authors and experimental approaches to play a role in key interactions with the host. Depending on the species, and sometime on the strain, they can be involved in stress tolerance, in survival within the host digestive tract, in adhesion to host cells or mucus, or in the modulation of intestinal inflammation. Future trends include the valorization of their properties in the formation of nanoparticles, coating and encapsulation, and in the development of new vaccines. PMID:29670603

  13. Analysis of gene expression levels in individual bacterial cells without image segmentation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kwak, In Hae; Son, Minjun; Hagen, Stephen J., E-mail: sjhagen@ufl.edu

    2012-05-11

    Highlights: Black-Right-Pointing-Pointer We present a method for extracting gene expression data from images of bacterial cells. Black-Right-Pointing-Pointer The method does not employ cell segmentation and does not require high magnification. Black-Right-Pointing-Pointer Fluorescence and phase contrast images of the cells are correlated through the physics of phase contrast. Black-Right-Pointing-Pointer We demonstrate the method by characterizing noisy expression of comX in Streptococcus mutans. -- Abstract: Studies of stochasticity in gene expression typically make use of fluorescent protein reporters, which permit the measurement of expression levels within individual cells by fluorescence microscopy. Analysis of such microscopy images is almost invariably based on amore » segmentation algorithm, where the image of a cell or cluster is analyzed mathematically to delineate individual cell boundaries. However segmentation can be ineffective for studying bacterial cells or clusters, especially at lower magnification, where outlines of individual cells are poorly resolved. Here we demonstrate an alternative method for analyzing such images without segmentation. The method employs a comparison between the pixel brightness in phase contrast vs fluorescence microscopy images. By fitting the correlation between phase contrast and fluorescence intensity to a physical model, we obtain well-defined estimates for the different levels of gene expression that are present in the cell or cluster. The method reveals the boundaries of the individual cells, even if the source images lack the resolution to show these boundaries clearly.« less

  14. Intestinal Epithelial Cells Modulate Antigen-Presenting Cell Responses to Bacterial DNA

    PubMed Central

    Campeau, J. L.; Salim, S. Y.; Albert, E. J.; Hotte, N.

    2012-01-01

    Intestinal epithelial cells and antigen-presenting cells orchestrate mucosal innate immunity. This study investigated the role of bacterial DNA in modulating epithelial and bone marrow-derived antigen-presenting cells (BM-APCs) and subsequent T-lymphocyte responses. Murine MODE-K epithelial cells and BM-APCs were treated with DNA from either Bifidobacterium breve or Salmonella enterica serovar Dublin directly and under coculture conditions with CD4+ T cells. Apical stimulation of MODE-K cells with S. Dublin DNA enhanced secretion of cytokines from underlying BM-APCs and induced interleukin-17 (IL-17) and gamma interferon (IFN-γ) secretion from CD4+ T cells. Bacterial DNA isolated from either strain induced maturation and increased cytokine secretion from BM-APCs. Conditioned medium from S. Dublin-treated MODE-K cells elicited an increase in cytokine secretion similar to that seen for S. Dublin DNA. Treatment of conditioned medium from MODE-K cells with RNase and protease prevented the S. Dublin-induced increased cytokine secretion. Oral feeding of mice with B. breve DNA resulted in enhanced levels of colonic IL-10 and transforming growth factor β (TGFβ) compared with what was seen for mice treated with S. Dublin DNA. In contrast, feeding mice with S. Dublin DNA increased levels of colonic IL-17 and IL-12p70. T cells from S. Dublin DNA-treated mice secreted high levels of IL-12 and IFN-γ compared to controls and B. breve DNA-treated mice. These results demonstrate that intestinal epithelial cells are able to modulate subsequent antigen-presenting and T-cell responses to bacterial DNA with pathogenic but not commensal bacterial DNA inducing effector CD4+ T lymphocytes. PMID:22615241

  15. Coupling Bacterial Activity Measurements with Cell Sorting by Flow Cytometry.

    PubMed

    Servais; Courties; Lebaron; Troussellier

    1999-08-01

    > Abstract A new procedure to investigate the relationship between bacterial cell size and activity at the cellular level has been developed; it is based on the coupling of radioactive labeling of bacterial cells and cell sorting by flow cytometry after SYTO 13 staining. Before sorting, bacterial cells were incubated in the presence of tritiated leucine using a procedure similar to that used for measuring bacterial production by leucine incorporation and then stained with SYTO 13. Subpopulations of bacterial cells were sorted according to their average right-angle light scatter (RALS) and fluorescence. Average RALS was shown to be significantly related to the average biovolume. Experiments were performed on samples collected at different times in a Mediterranean seawater mesocosm enriched with nitrogen and phosphorus. At four sampling times, bacteria were sorted in two subpopulations (cells smaller and larger than 0.25 µm(3)). The results indicate that, at each sampling time, the growth rate of larger cells was higher than that of smaller cells. In order to confirm this tendency, cell sorting was performed on six subpopulations differing in average biovolume during the mesocosm follow-up. A clear increase of the bacterial growth rates was observed with increasing cell size for the conditions met in this enriched mesocosm.http://link.springer-ny.com/link/service/journals/00248/bibs/38n2p180.html

  16. PMA-Linked Fluorescence for Rapid Detection of Viable Bacterial Endospores

    NASA Technical Reports Server (NTRS)

    LaDuc, Myron T.; Venkateswaran, Kasthuri; Mohapatra, Bidyut

    2012-01-01

    The most common approach for assessing the abundance of viable bacterial endospores is the culture-based plating method. However, culture-based approaches are heavily biased and oftentimes incompatible with upstream sample processing strategies, which make viable cells/spores uncultivable. This shortcoming highlights the need for rapid molecular diagnostic tools to assess more accurately the abundance of viable spacecraft-associated microbiota, perhaps most importantly bacterial endospores. Propidium monoazide (PMA) has received a great deal of attention due to its ability to differentiate live, viable bacterial cells from dead ones. PMA gains access to the DNA of dead cells through compromised membranes. Once inside the cell, it intercalates and eventually covalently bonds with the double-helix structures upon photoactivation with visible light. The covalently bound DNA is significantly altered, and unavailable to downstream molecular-based manipulations and analyses. Microbiological samples can be treated with appropriate concentrations of PMA and exposed to visible light prior to undergoing total genomic DNA extraction, resulting in an extract comprised solely of DNA arising from viable cells. This ability to extract DNA selectively from living cells is extremely powerful, and bears great relevance to many microbiological arenas.

  17. Enterococcus faecium LKE12 Cell-Free Extract Accelerates Host Plant Growth via Gibberellin and Indole-3-Acetic Acid Secretion.

    PubMed

    Lee, Ko-Eun; Radhakrishnan, Ramalingam; Kang, Sang-Mo; You, Young-Hyun; Joo, Gil-Jae; Lee, In-Jung; Ko, Jae-Hwan; Kim, Jin-Ho

    2015-09-01

    The use of microbial extracts containing plant hormones is a promising technique to improve crop growth. Little is known about the effect of bacterial cell-free extracts on plant growth promotion. This study, based on phytohormonal analyses, aimed at exploring the potential mechanisms by which Enterococcus faecium LKE12 enhances plant growth in oriental melon. A bacterial strain, LKE12, was isolated from soil, and further identified as E. faecium by 16S rDNA sequencing and phylogenetic analysis. The plant growth-promoting ability of an LKE12 bacterial culture was tested in a gibberellin (GA)-deficient rice dwarf mutant (waito-C) and a normal GA biosynthesis rice cultivar (Hwayongbyeo). E. faecium LKE12 significantly improved the length and biomass of rice shoots in both normal and dwarf cultivars through the secretion of an array of gibberellins (GA1, GA3, GA7, GA8, GA9, GA12, GA19, GA20, GA24, and GA53), as well as indole-3-acetic acid (IAA). To the best of our knowledge, this is the first study indicating that E. faecium can produce GAs. Increases in shoot and root lengths, plant fresh weight, and chlorophyll content promoted by E. faecium LKE12 and its cell-free extract inoculated in oriental melon plants revealed a favorable interaction of E. faecium LKE12 with plants. Higher plant growth rates and nutrient contents of magnesium, calcium, sodium, iron, manganese, silicon, zinc, and nitrogen were found in cell-free extract-treated plants than in control plants. The results of the current study suggest that E. faecium LKE12 promotes plant growth by producing GAs and IAA; interestingly, the exogenous application of its cell-free culture extract can be a potential strategy to accelerate plant growth.

  18. Growth mechanics of bacterial cell wall and morphology of bacteria

    NASA Astrophysics Data System (ADS)

    Jiang, Hongyuan; Sun, Sean

    2010-03-01

    The peptidoglycan cell wall of bacteria is responsible for maintaining the cell shape and integrity. During the bacterial life cycle, the growth of the cell wall is affected by mechanical stress and osmotic pressure internal to the cell. We develop a theory to describe cell shape changes under the influence of mechanical forces. We find that the theory predicts a steady state size and shape for bacterial cells ranging from cocci to spirillum. Moreover, the theory suggest a mechanism by which bacterial cytoskeletal proteins such as MreB and crescentin can maintain the shape of the cell. The theory can also explain the several recent experiments on growing bacteria in micro-environments.

  19. Incidence and Predictors of Bacterial infection in Febrile Children with Sickle Cell Disease.

    PubMed

    Morrissey, Benita J; Bycroft, Thomas P; Almossawi, Ofran; Wilkey, Olufunke B; Daniels, Justin G

    2015-01-01

    Children with sickle cell disease are at increased risk of developing bacteremia and other serious bacterial infections. Fever is a common symptom in sickle cell disease and can also occur with sickle cell crises and viral infections. We aimed to evaluate the incidence and predictors of bacteremia and bacterial infection in children with sickle cell disease presenting with fever to a district hospital and sickle cell center in London. A retrospective analysis was performed on all attendances of children (aged under 16 years) with sickle cell disease presenting with a fever of 38.5 °C or higher over a 1-year period. Confirmed bacterial infection was defined as bacteremia, bacterial meningitis, urinary tract infection (UTI), pneumonia, osteomyelitis or other bacterial infection with positive identification of organism. Children were defined as having a suspected bacterial infection if a bacterial infection was suspected clinically, but no organism was identified. Over a 1-year period there were 88 episodes analyzed in 59 children. Bacteremia occurred in 3.4% of episodes and confirmed bacterial infection in 7.0%. Suspected bacterial infection occurred in 33.0%. One death occurred from Salmonella typhirium septicemia. C-reactive protein (CRP) level and white blood cell (WBC) count were both significantly associated with bacterial infection (p = 0.004 and 0.02, respectively.) In conclusion, bacterial infections continue to be a significant problem in children with sickle cell disease. C-reactive protein was significantly associated with bacterial infections, and could be included in clinical risk criteria for febrile children with sickle cell disease.

  20. Poisons, ruffles and rockets: bacterial pathogens and the host cell cytoskeleton.

    PubMed

    Steele-Mortimer, O; Knodler, L A; Finlay, B B

    2000-02-01

    The cytoskeleton of eukaryotic cells is affected by a number of bacterial and viral pathogens. In this review we consider three recurring themes of cytoskeletal involvement in bacterial pathogenesis: 1) the effect of bacterial toxins on actin-regulating small GTP-binding proteins; 2) the invasion of non-phagocytic cells by the bacterial induction of ruffles at the plasma membrane; 3) the formation of actin tails and pedestals by intracellular and extracellular bacteria, respectively. Considerable progress has been made recently in the characterization of these processes. It is becoming clear that bacterial pathogens have developed a variety of sophisticated mechanisms for utilizing the complex cytoskeletal system of host cells. These bacterially-induced processes are now providing unique insights into the regulation of fundamental eukaryotic mechanisms.

  1. Proteomic analysis of the bacterial cell cycle

    PubMed Central

    Grünenfelder, Björn; Rummel, Gabriele; Vohradsky, Jiri; Röder, Daniel; Langen, Hanno; Jenal, Urs

    2001-01-01

    A global approach was used to analyze protein synthesis and stability during the cell cycle of the bacterium Caulobacter crescentus. Approximately one-fourth (979) of the estimated C. crescentus gene products were detected by two-dimensional gel electrophoresis, 144 of which showed differential cell cycle expression patterns. Eighty-one of these proteins were identified by mass spectrometry and were assigned to a wide variety of functional groups. Pattern analysis revealed that coexpression groups were functionally clustered. A total of 48 proteins were rapidly degraded in the course of one cell cycle. More than half of these unstable proteins were also found to be synthesized in a cell cycle-dependent manner, establishing a strong correlation between rapid protein turnover and the periodicity of the bacterial cell cycle. This is, to our knowledge, the first evidence for a global role of proteolysis in bacterial cell cycle control. PMID:11287652

  2. Biosensors for Whole-Cell Bacterial Detection

    PubMed Central

    Rushworth, Jo V.; Hirst, Natalie A.; Millner, Paul A.

    2014-01-01

    SUMMARY Bacterial pathogens are important targets for detection and identification in medicine, food safety, public health, and security. Bacterial infection is a common cause of morbidity and mortality worldwide. In spite of the availability of antibiotics, these infections are often misdiagnosed or there is an unacceptable delay in diagnosis. Current methods of bacterial detection rely upon laboratory-based techniques such as cell culture, microscopic analysis, and biochemical assays. These procedures are time-consuming and costly and require specialist equipment and trained users. Portable stand-alone biosensors can facilitate rapid detection and diagnosis at the point of care. Biosensors will be particularly useful where a clear diagnosis informs treatment, in critical illness (e.g., meningitis) or to prevent further disease spread (e.g., in case of food-borne pathogens or sexually transmitted diseases). Detection of bacteria is also becoming increasingly important in antibioterrorism measures (e.g., anthrax detection). In this review, we discuss recent progress in the use of biosensors for the detection of whole bacterial cells for sensitive and earlier identification of bacteria without the need for sample processing. There is a particular focus on electrochemical biosensors, especially impedance-based systems, as these present key advantages in terms of ease of miniaturization, lack of reagents, sensitivity, and low cost. PMID:24982325

  3. Elucidating Duramycin's Bacterial Selectivity and Mode of Action on the Bacterial Cell Envelope.

    PubMed

    Hasim, Sahar; Allison, David P; Mendez, Berlin; Farmer, Abigail T; Pelletier, Dale A; Retterer, Scott T; Campagna, Shawn R; Reynolds, Todd B; Doktycz, Mitchel J

    2018-01-01

    The use of naturally occurring antimicrobial peptides provides a promising route to selectively target pathogenic agents and to shape microbiome structure. Lantibiotics, such as duramycin, are one class of bacterially produced peptidic natural products that can selectively inhibit the growth of other bacteria. However, despite longstanding characterization efforts, the microbial selectivity and mode of action of duramycin are still obscure. We describe here a suite of biological, chemical, and physical characterizations that shed new light on the selective and mechanistic aspects of duramycin activity. Bacterial screening assays have been performed using duramycin and Populus -derived bacterial isolates to determine species selectivity. Lipidomic profiles of selected resistant and sensitive strains show that the sensitivity of Gram-positive bacteria depends on the presence of phosphatidylethanolamine (PE) in the cell membrane. Further the surface and interface morphology were studied by high resolution atomic force microscopy and showed a progression of cellular changes in the cell envelope after treatment with duramycin for the susceptible bacterial strains. Together, these molecular and cellular level analyses provide insight into duramycin's mode of action and a better understanding of its selectivity.

  4. Extraction of Total Nucleic Acids From Ticks for the Detection of Bacterial and Viral Pathogens

    PubMed Central

    Crowder, Chris D.; Rounds, Megan A.; Phillipson, Curtis A.; Picuri, John M.; Matthews, Heather E.; Halverson, Justina; Schutzer, Steven E.; Ecker, David J.; Eshoo, Mark W.

    2010-01-01

    Ticks harbor numerous bacterial, protozoal, and viral pathogens that can cause serious infections in humans and domestic animals. Active surveillance of the tick vector can provide insight into the frequency and distribution of important pathogens in the environment. Nucleic-acid based detection of tick-borne bacterial, protozoan, and viral pathogens requires the extraction of both DNA and RNA (total nucleic acids) from ticks. Traditional methods for nucleic acid extraction are limited to extraction of either DNA or the RNA from a sample. Here we present a simple bead-beating based protocol for extraction of DNA and RNA from a single tick and show detection of Borrelia burgdorferi and Powassan virus from individual, infected Ixodes scapularis ticks. We determined expected yields for total nucleic acids by this protocol for a variety of adult tick species. The method is applicable to a variety of arthropod vectors, including fleas and mosquitoes, and was partially automated on a liquid handling robot. PMID:20180313

  5. Identification of individual biofilm-forming bacterial cells using Raman tweezers

    NASA Astrophysics Data System (ADS)

    Samek, Ota; Bernatová, Silvie; Ježek, Jan; Šiler, Martin; Šerý, Mojmir; Krzyžánek, Vladislav; Hrubanová, Kamila; Zemánek, Pavel; Holá, Veronika; Růžička, Filip

    2015-05-01

    A method for in vitro identification of individual bacterial cells is presented. The method is based on a combination of optical tweezers for spatial trapping of individual bacterial cells and Raman microspectroscopy for acquisition of spectral "Raman fingerprints" obtained from the trapped cell. Here, Raman spectra were taken from the biofilm-forming cells without the influence of an extracellular matrix and were compared with biofilm-negative cells. Results of principal component analyses of Raman spectra enabled us to distinguish between the two strains of Staphylococcus epidermidis. Thus, we propose that Raman tweezers can become the technique of choice for a clearer understanding of the processes involved in bacterial biofilms which constitute a highly privileged way of life for bacteria, protected from the external environment.

  6. Identification of individual biofilm-forming bacterial cells using Raman tweezers.

    PubMed

    Samek, Ota; Bernatová, Silvie; Ježek, Jan; Šiler, Martin; Šerý, Mojmir; Krzyžánek, Vladislav; Hrubanová, Kamila; Zemánek, Pavel; Holá, Veronika; Růžička, Filip

    2015-05-01

    A method for in vitro identification of individual bacterial cells is presented. The method is based on a combination of optical tweezers for spatial trapping of individual bacterial cells and Raman microspectroscopy for acquisition of spectral “Raman fingerprints” obtained from the trapped cell. Here, Raman spectra were taken from the biofilm-forming cells without the influence of an extracellular matrix and were compared with biofilm-negative cells. Results of principal component analyses of Raman spectra enabled us to distinguish between the two strains of Staphylococcus epidermidis. Thus, we propose that Raman tweezers can become the technique of choice for a clearer understanding of the processes involved in bacterial biofilms which constitute a highly privileged way of life for bacteria, protected from the external environment.

  7. Prevention of Bacterial Biofilms Formation on Urinary Catheter by Selected Plant Extracts.

    PubMed

    Adesina, T D; Nwinyi, O C; Olugbuyiro, J A O

    2015-02-01

    In this study, we investigated the feasibility of using Psidium guajava, Mangifera indica and Ocimum gratissimum leaf extracts in preventing Escherichia coli biofilm formation. The plants extractions were done with methanol under cold extraction. The various concentrations 5.0, 10.0 and 20.0 mg mL(-1) were used to coat 63 catheters under mild heat from water bath. Biofilm formation on the catheter was induced using cultures of E. coli. Biofilm formation was evaluated using aerobic plate count and turbidity at 600 nm. From the obtained results, Psidium guajava, Mangifera indica and Ocimum gratissimum delayed the onset of biofilm formation for a week. Ocimum gratissimum coated catheter had the highest inhibitory effect at 5.0, 10.0 and 20.0 mg mL(-1) with bacterial count ranging from 2.2 x 10(5)-7.0 x 10(4) and 5.7 x 10(5)-3.7 x10(5) for 120 and 128 h, respectively. The Psidium guajava coated catheter had the lowest inhibitory effect at 5.0, 10.0 and 20.0 mg mL(-1), with bacterial count ranging between 4.3 x 10(5)-1.9 x 10(3) and 7.7 x 10(5)-3.8 x 10(5) for 120 and 128 h, respectively. Despite the antimicrobial activities, the differences in the activity of these plant extracts were statistically not significant (p < 0.05).

  8. The bioactivity of plant extracts against representative bacterial pathogens of the lower respiratory tract

    PubMed Central

    Bocanegra-García, Virgilio; del Rayo Camacho-Corona, María; Ramírez-Cabrera, Mónica; Rivera, Gildardo; Garza-González, Elvira

    2009-01-01

    Background Lower respiratory tract infections are a major cause of illness and death. Such infections are common in intensive care units (ICU) and their lethality persists despite advances in diagnosis, treatment and prevention. In Mexico, some plants are used in traditional medicine to treat respiratory diseases or ailments such as cough, bronchitis, tuberculosis and other infections. Medical knowledge derived from traditional societies has motivated searches for new bioactive molecules derived from plants that show potent activity against bacterial pathogens. Therefore, the aim of this study was to evaluate the effect of hexanic, chloroformic (CLO), methanolic (MET) and aqueous extracts from various plants used in Mexican traditional medicine on various microorganisms associated with respiratory disease. Methods thirty-five extracts prepared from nine plants used in Mexican traditional medicine for the treatment of respiratory infections were evaluated against 15 control bacterial species and clinical isolates. Results Both chloroformic (CLO) and methanolic (MET) extracts of Larrea tridentata were active against Methicillin-resistant S. aureus, B. subtilis and L. monocytogenes. A MET extract of L. tridentata was also active against S. aureus, S. pneumoniae, S. maltophilia, E. faecalis and H. influenzae and the CLO extract was active against A. baumannii. An Aqueous extract of M. acumitata and a MET extract of N. officinale were active against S. pneumoniae. CLO and MET extracts of L. tridentata were active against clinical isolates of S. aureus, S. pneumoniae and E. faecalis. Conclusion Overall, our results support the potential use of L. tridentata as a source of antibacterial compounds. PMID:19486533

  9. Laboratory Comparison of the Anti-Bacterial Effects of Spearmint Extract and Hypochlorite Sodium on Enterococcus Faecalis Bacteria.

    PubMed

    S, Hajimaghsoodi; H, Zandi; M, Bahrami; R, Hakimian

    2016-12-01

    It is necessary to use irrigation solutions during cleaning and shaping of root canals to efficiently reduce the number of micro organisms. Sodium hypochlorite is used as an effective antibacterial endodontic irrigants. However, the extract of pennyroyal plant has also shown anti-bacterial characteristics comparable with antibacterial drugs. To compare the anti-bacterial effect of spearmint extract on Enterococcus faecalis bacteria with that of sodium hypochlorite 5.25%. In this experimental study, Muller Hinton medium, including 5% sheep blood was prepared. The two solutions used including sodium hypochlorite 5.25% and spearmint extracts were put adjacent to Enterococcus faecalis bacteria after preparing. Two groups, each containing 10 samples, with the total of 20 samples were used. The disks, including each solution were placed 2 cm apart on a plate containing Muller Hinton medium and the bacteria. The plate was subsequently incubated at 37°C for 48 hours. After incubation, the mean diameter of the halo around each disk, which represents the lack of bacterial growth, was measured and compared using a ruler. Penicillin disk was used for positive control and a sterile blank disk containing physiologic serum was utilized as the negative control. This process was repeated 10 times for each solution. Data were analyzed in SPSS 17 statistical software using t -test. The results showed that the mean diameter of halo in the spearmint extract group was zero and in the sodium hypochlorite group it was 23.7 ± 1.49 mm. There was a significant difference between the mean diameter of the lack of growth halo of the spearmint extract and that of hypochlorite sodium 5.25% on Enterococcus faecalis bacteria ( p ≤ 0.001). Considering the limitations of an experimental study, it seems that spearmint extract does not have any anti-bacterial effect against Enterococcus faecalis bacteria, in contrast to hypochlorite sodium 5.25%.

  10. Circular Dichroism studies on the interactions of antimicrobial peptides with bacterial cells

    NASA Astrophysics Data System (ADS)

    Avitabile, Concetta; D'Andrea, Luca Domenico; Romanelli, Alessandra

    2014-03-01

    Studying how antimicrobial peptides interact with bacterial cells is pivotal to understand their mechanism of action. In this paper we explored the use of Circular Dichroism to detect the secondary structure of two antimicrobial peptides, magainin 2 and cecropin A, with E. coli bacterial cells. The results of our studies allow us to gain two important information in the context of antimicrobial peptides- bacterial cells interactions: peptides fold mainly due to interaction with LPS, which is the main component of the Gram negative bacteria outer membrane and the time required for the folding on the bacterial cells depends on the peptide analyzed.

  11. Antibacterial activity of plant extracts on foodborne bacterial pathogens and food spoilage bacteria

    USDA-ARS?s Scientific Manuscript database

    Bacterial foodborne diseases are caused by consumption of foods contaminated with bacteria and/or their toxins. In this study, we evaluated antibacterial properties of twelve different extracts including turmeric, lemon and different kinds of teas against four major pathogenic foodborne bacteria inc...

  12. Inhibitory activity of a standardized elderberry liquid extract against clinically-relevant human respiratory bacterial pathogens and influenza A and B viruses

    PubMed Central

    2011-01-01

    Background Black elderberries (Sambucus nigra L.) are well known as supportive agents against common cold and influenza. It is further known that bacterial super-infection during an influenza virus (IV) infection can lead to severe pneumonia. We have analyzed a standardized elderberry extract (Rubini, BerryPharma AG) for its antimicrobial and antiviral activity using the microtitre broth micro-dilution assay against three Gram-positive bacteria and one Gram-negative bacteria responsible for infections of the upper respiratory tract, as well as cell culture experiments for two different strains of influenza virus. Methods The antimicrobial activity of the elderberry extract was determined by bacterial growth experiments in liquid cultures using the extract at concentrations of 5%, 10%, 15% and 20%. The inhibitory effects were determined by plating the bacteria on agar plates. In addition, the inhibitory potential of the extract on the propagation of human pathogenic H5N1-type influenza A virus isolated from a patient and an influenza B virus strain was investigated using MTT and focus assays. Results For the first time, it was shown that a standardized elderberry liquid extract possesses antimicrobial activity against both Gram-positive bacteria of Streptococcus pyogenes and group C and G Streptococci, and the Gram-negative bacterium Branhamella catarrhalis in liquid cultures. The liquid extract also displays an inhibitory effect on the propagation of human pathogenic influenza viruses. Conclusion Rubini elderberry liquid extract is active against human pathogenic bacteria as well as influenza viruses. The activities shown suggest that additional and alternative approaches to combat infections might be provided by this natural product. PMID:21352539

  13. Biolistic transformation of tobacco and maize suspension cells using bacterial cells as microprojectiles.

    PubMed

    Rasmussen, J L; Kikkert, J R; Roy, M K; Sanford, J C

    1994-01-01

    We have used both Escherichia coli cells and Agrobacterium tumefaciens cells as microprojectiles to deliver DNA into suspension-cultured tobacco (Nicotiana tabacum L. line NT1) cells using a helium powered biolistic device. In addition, E. coli cells were used as microprojectiles for the transformation of suspension-cultured maize (Zea mays cv. Black Mexican Sweet) cells. Pretreating the bacterial cells with phenol at a concentration of 1.0%, and combining the bacterial cells with tungsten particles increased the rates of transformation. In N. tabacum, we obtained hundreds of transient transformants per bombardment, but were unable to recover any stable transformants. In Z. mays we obtained thousands of transient transformants and an average of six stable transformants per bombardment. This difference is discussed.

  14. Selection of peptidoglycan-specific aptamers for bacterial cells identification.

    PubMed

    Ferreira, Iêda Mendes; de Souza Lacerda, Camila Maria; de Faria, Lígia Santana; Corrêa, Cristiane Rodrigues; de Andrade, Antero Silva Ribeiro

    2014-12-01

    Peptidoglycan is a highly complex and essential macromolecule of bacterial outer cell wall; it is a heteropolymer made up of linear glycan strands cross-linked by peptides. Peptidoglycan has a particular composition which makes it a possible target for specific bacterial recognition. Aptamers are single-stranded DNA or RNA oligonucleotides that bind to target molecules with high affinity and specificity. Aptamers can be labeled with different radioisotopes and possess several properties that make them suitable for molecular imaging. The purpose of this study was to obtain aptamers for use as radiopharmaceutical in bacterial infection diagnosis. Two aptamers (Antibac1 and Antibac2) against peptidoglycan were selected through the Systematic Evolution of Ligands by Exponential Enrichment (SELEX) methodology. The dissociation constant (Kd) for Antibac1 was 0.415 + 0.047 μM and for Antibac2 was 1.261 + 0.280 μM. These aptamers labeled with (32)P showed high affinity for Staphylococcus aureus cells. The binding to S. aureus and Escherichia coli in vitro were significantly higher than for Candida albicans and human fibroblasts, demonstrating their specificity for bacterial cells. These results point Antibac1 and Antibac2 as promising tools for bacterial infections identification.

  15. Comparison of commercial DNA extraction kits for isolation and purification of bacterial and eukaryotic DNA from PAH-contaminated soils.

    PubMed

    Mahmoudi, Nagissa; Slater, Greg F; Fulthorpe, Roberta R

    2011-08-01

    Molecular characterization of the microbial populations of soils and sediments contaminated with polycyclic aromatic hydrocarbons (PAHs) is often a first step in assessing intrinsic biodegradation potential. However, soils are problematic for molecular analysis owing to the presence of organic matter, such as humic acids. Furthermore, the presence of contaminants, such as PAHs, can cause further challenges to DNA extraction, quantification, and amplification. The goal of our study was to compare the effectiveness of four commercial soil DNA extraction kits (UltraClean Soil DNA Isolation kit, PowerSoil DNA Isolation kit, PowerMax Soil DNA Isolation kit, and FastDNA SPIN kit) to extract pure, high-quality bacterial and eukaryotic DNA from PAH-contaminated soils. Six different contaminated soils were used to determine if there were any biases among the kits due to soil properties or level of contamination. Extracted DNA was used as a template for bacterial 16S rDNA and eukaryotic 18S rDNA amplifications, and PCR products were subsequently analyzed using denaturing gel gradient electrophoresis (DGGE). We found that the FastDNA SPIN kit provided significantly higher DNA yields for all soils; however, it also resulted in the highest levels of humic acid contamination. Soil texture and organic carbon content of the soil did not affect the DNA yield of any kit. Moreover, a liquid-liquid extraction of the DNA extracts found no residual PAHs, indicating that all kits were effective at removing contaminants in the extraction process. Although the PowerSoil DNA Isolation kit gave relatively low DNA yields, it provided the highest quality DNA based on successful amplification of both bacterial and eukaryotic DNA for all six soils. DGGE fingerprints among the kits were dramatically different for both bacterial and eukaryotic DNA. The PowerSoil DNA Isolation kit revealed multiple bands for each soil and provided the most consistent DGGE profiles among replicates for both

  16. Antimicrobial activity of endemic Crataegus tanacetifolia (Lam.) Pers and observation of the inhibition effect on bacterial cells.

    PubMed

    Benli, Mehlika; Yiğit, Nazife; Geven, Fatmagül; Güney, Kerim; Bingöl, Umit

    2008-12-01

    Up to now an increasing number of antibiotic-resistant bacteria have been reported and thus new natural therapeutic agents are needed in order to eradicate these pathogens. Through the discovery of plants such as Crataegus tanacetifolia (Lam.) Pers that have antimicrobial activity, it will be possible to discover new natural drugs serving as chemotherapeutic agents for the treatment of nosocomial pathogens and take these antibiotic-resistant bacteria under control. The objective of the present study was to determine antimicrobial activity and the activity mechanism of C. tanacetifolia plant extract. The leaves of C. tanacetifolia, which is an endemic plant, were extracted using methanol and tested against 10 bacterial and 4 yeast strains by using a drop method. It was observed that the plant extract had antibacterial effects on Bacillus subtilis, Shigella, Staphylococcus aureus, and Listeria monocytogenes among the microorganisms that were tested. Minimum inhibitory concentration (MIC) results obtained at the end of an incubation of 24 h were found to be > or =6.16 mg ml(-1) for B. subtilis, < 394 mg ml(-1) for Shigella, and > or =3.08 mg ml(-1) for L. monocytogenes and S. aureus and minimum bactericidal concentration (MBC) were found as > or =24.63 mg ml(-1) for B. subtilis, > or =394 mg ml(-1) for Shigella, > or =6.16 mg ml(-1) for L. monocytogenes, and > or =98.5 mg ml(-1) for S. aureus. According to the MBC results, it was found that the plant extract had bactericidal effects and in order to explain the activity mechanism and cell deformation of bacterial strains treated with plant extract, the scanning electron microscopy (SEM) was used. The results of SEM showed that the treated cells appeared shrunken and there was degradation of the cell walls. This study, in which the antibacterial effect of C. tanacetifolia was demonstrated, will be a base for further investigations on advanced purification and effect mechanism of action of its active compounds.

  17. Solid-state NMR on bacterial cells: selective cell wall signal enhancement and resolution improvement using dynamic nuclear polarization.

    PubMed

    Takahashi, Hiroki; Ayala, Isabel; Bardet, Michel; De Paëpe, Gaël; Simorre, Jean-Pierre; Hediger, Sabine

    2013-04-03

    Dynamic nuclear polarization (DNP) enhanced solid-state nuclear magnetic resonance (NMR) has recently emerged as a powerful technique for the study of material surfaces. In this study, we demonstrate its potential to investigate cell surface in intact cells. Using Bacillus subtilis bacterial cells as an example, it is shown that the polarizing agent 1-(TEMPO-4-oxy)-3-(TEMPO-4-amino)propan-2-ol (TOTAPOL) has a strong binding affinity to cell wall polymers (peptidoglycan). This particular interaction is thoroughly investigated with a systematic study on extracted cell wall materials, disrupted cells, and entire cells, which proved that TOTAPOL is mainly accumulating in the cell wall. This property is used on one hand to selectively enhance or suppress cell wall signals by controlling radical concentrations and on the other hand to improve spectral resolution by means of a difference spectrum. Comparing DNP-enhanced and conventional solid-state NMR, an absolute sensitivity ratio of 24 was obtained on the entire cell sample. This important increase in sensitivity together with the possibility of enhancing specifically cell wall signals and improving resolution really opens new avenues for the use of DNP-enhanced solid-state NMR as an on-cell investigation tool.

  18. Measuring bacterial cells size with AFM

    PubMed Central

    Osiro, Denise; Filho, Rubens Bernardes; Assis, Odilio Benedito Garrido; Jorge, Lúcio André de Castro; Colnago, Luiz Alberto

    2012-01-01

    Atomic Force Microscopy (AFM) can be used to obtain high-resolution topographical images of bacteria revealing surface details and cell integrity. During scanning however, the interactions between the AFM probe and the membrane results in distortion of the images. Such distortions or artifacts are the result of geometrical effects related to bacterial cell height, specimen curvature and the AFM probe geometry. The most common artifact in imaging is surface broadening, what can lead to errors in bacterial sizing. Several methods of correction have been proposed to compensate for these artifacts and in this study we describe a simple geometric model for the interaction between the tip (a pyramidal shaped AFM probe) and the bacterium (Escherichia coli JM-109 strain) to minimize the enlarging effect. Approaches to bacteria immobilization and examples of AFM images analysis are also described. PMID:24031837

  19. Elucidating Duramycin’s Bacterial Selectivity and Mode of Action on the Bacterial Cell Envelope

    DOE PAGES

    Hasim, Sahar; Allison, David P.; Mendez, Berlin; ...

    2018-02-14

    The use of naturally occurring antimicrobial peptides provides a promising route to selectively target pathogenic agents and to shape microbiome structure. Lantibiotics, such as duramycin, are one class of bacterially produced peptidic natural products that can selectively inhibit the growth of other bacteria. However, despite longstanding characterization efforts, the microbial selectivity and mode of action of duramycin are still obscure. We describe here a suite of biological, chemical, and physical characterizations that shed new light on the selective and mechanistic aspects of duramycin activity. Bacterial screening assays have been performed using duramycin and Populus-derived bacterial isolates to determine species selectivity.more » Lipidomic profiles of selected resistant and sensitive strains show that the sensitivity of Gram-positive bacteria depends on the presence of phosphatidylethanolamine (PE) in the cell membrane. Further the surface and interface morphology were studied by high resolution atomic force microscopy and showed a progression of cellular changes in the cell envelope after treatment with duramycin for the susceptible bacterial strains. Together, these molecular and cellular level analyses provide insight into duramycin’s mode of action and a better understanding of its selectivity.« less

  20. Elucidating Duramycin’s Bacterial Selectivity and Mode of Action on the Bacterial Cell Envelope

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hasim, Sahar; Allison, David P.; Mendez, Berlin

    The use of naturally occurring antimicrobial peptides provides a promising route to selectively target pathogenic agents and to shape microbiome structure. Lantibiotics, such as duramycin, are one class of bacterially produced peptidic natural products that can selectively inhibit the growth of other bacteria. However, despite longstanding characterization efforts, the microbial selectivity and mode of action of duramycin are still obscure. We describe here a suite of biological, chemical, and physical characterizations that shed new light on the selective and mechanistic aspects of duramycin activity. Bacterial screening assays have been performed using duramycin and Populus-derived bacterial isolates to determine species selectivity.more » Lipidomic profiles of selected resistant and sensitive strains show that the sensitivity of Gram-positive bacteria depends on the presence of phosphatidylethanolamine (PE) in the cell membrane. Further the surface and interface morphology were studied by high resolution atomic force microscopy and showed a progression of cellular changes in the cell envelope after treatment with duramycin for the susceptible bacterial strains. Together, these molecular and cellular level analyses provide insight into duramycin’s mode of action and a better understanding of its selectivity.« less

  1. Fate study of water-borne gram positive vegetative bacterial cells with Raman microscopy

    NASA Astrophysics Data System (ADS)

    Guicheteau, Jason; Tripathi, Ashish; Minter, Jennifer; Wilcox, Phillip; Christesen, Steven

    2010-04-01

    We present an initial bacterial fate study of Gram positive vegetative cells suspended in water and stored at ambient room temperature via Raman spectroscopy monitoring. Two types of cells were considered for this study: vegetative cells of Bacillus cereus, Bacillus thuringiensis which contain the polyhydroxybutyric acid (PHBA) as an energy storage compound and Bacillus subtlilis cells which do not. The cells were cultured specifically for this project. Immediately following the culturing phase, the bacteria were extracted, cleaned and at the onset of the study were suspended in de-ionized water and stored at room temperature. Aliquots of suspensions were deposited onto aluminum slides at different times and allowed to dry for Raman analysis. Spectra from multiple regions of each dried spot and each deposit time were acquired along with the bright-field and fluorescence images. Results were examined to investigate the effect of suspension time on the spectral signatures as well as the fate behavior of the three types of cells investigated. The cells were monitored daily for over a 14 period during which time the onset of starvation induced sporulation was observed.

  2. Application of bacterial cytological profiling to crude natural product extracts reveals the antibacterial arsenal of Bacillus subtilis.

    PubMed

    Nonejuie, Poochit; Trial, Rachelle M; Newton, Gerald L; Lamsa, Anne; Ranmali Perera, Varahenage; Aguilar, Julieta; Liu, Wei-Ting; Dorrestein, Pieter C; Pogliano, Joe; Pogliano, Kit

    2016-05-01

    Although most clinically used antibiotics are derived from natural products, identifying new antibacterial molecules from natural product extracts is difficult due to the complexity of these extracts and the limited tools to correlate biological activity with specific molecules. Here, we show that bacterial cytological profiling (BCP) provides a rapid method for mechanism of action determination on plates and in complex natural product extracts and for activity-guided purification. We prepared an extract from Bacillus subtilis 3610 that killed the Escherichia coli lptD mutant and used BCP to observe two types of bioactivities in the unfractionated extract: inhibition of translation and permeablization of the cytoplasmic membrane. We used BCP to guide purification of the molecules responsible for each activity, identifying the translation inhibitors bacillaene and bacillaene B (glycosylated bacillaene) and demonstrating that two molecules contribute to cell permeabilitization, the bacteriocin subtilosin and the cyclic peptide sporulation killing factor. Our results suggest that bacillaene mediates translational arrest, and show that bacillaene B has a minimum inhibitory concentration 10 × higher than unmodified bacillaene. Finally, we show that BCP can be used to screen strains on an agar plate without the need for extract preparation, greatly saving time and improving throughput. Thus, BCP simplifies the isolation of novel natural products, by identifying strains, crude extracts and fractions with interesting bioactivities even when multiple activities are present, allowing investigators to focus labor-intensive steps on those with desired activities.

  3. Application of bacterial cytological profiling to crude natural product extracts reveals the antibacterial arsenal of Bacillus subtilis

    PubMed Central

    Nonejuie, Poochit; Trial, Rachelle M.; Newton, Gerald L.; Lamsa, Anne; Perera, Varahenage Ranmali; Aguilar, Julieta; Liu, Wei-Ting; Dorrestein, Pieter C.; Pogliano, Joe; Pogliano, Kit

    2016-01-01

    Although most clinically used antibiotics are derived from natural products, identifying new antibacterial molecules from natural product extracts is difficult due to the complexity of these extracts and the limited tools to correlate biological activity with specific molecules. Here, we show that bacterial cytological profiling (BCP) provides a rapid method for mechanism of action determination on plates and in complex natural product extracts and for activity-guided purification. We prepared an extract from Bacillus subtilis 3610 that killed the Escherichia coli lptD mutant and used BCP to observe two types of bioactivities in the unfractionated extract: inhibition of translation and permeablization of the cytoplasmic membrane. We used BCP to guide purification of the molecules responsible for each activity, identifying the translation inhibitors bacillaene and bacillaene B (glycosylated bacillaene) and demonstrating that two molecules contribute to cell permeabilitization, the bacteriocin subtilosin and the cyclic peptide sporulation killing factor. Our results suggest that bacillaene mediates translational arrest, and show that bacillaene B has a minimum inhibitory concentration 10 × higher than unmodified bacillaene. Finally, we show that BCP can be used to screen strains on an agar plate without the need for extract preparation, greatly saving time and improving throughput. Thus, BCP simplifies the isolation of novel natural products, by identifying strains, crude extracts and fractions with interesting bioactivities even when multiple activities are present, allowing investigators to focus labor-intensive steps on those with desired activities. PMID:26648120

  4. Structure of a bacterial cell surface decaheme electron conduit

    USDA-ARS?s Scientific Manuscript database

    Some bacterial species are able to utilize extracellular mineral forms of iron and manganese as respiratory electron acceptors. In Shewanella oneidensis this involves decaheme cytochromes that are located on the bacterial cell surface at the termini of trans-outer-membrane electron transfer conduits...

  5. The mechanism of action of Russian propolis ethanol extracts against two antibiotic-resistant biofilm-forming bacteria.

    PubMed

    Bryan, J; Redden, P; Traba, C

    2016-02-01

    The interaction between antibiotic-resistant Staphylococcus aureus and antibiotic-sensitive Escherichia coli biofilm-forming bacteria and Russian propolis ethanol extracts was evaluated. In this study, bacterial cell death occurred when the cell membranes of bacteria interacted specifically with the antibacterial compounds found in propolis. In order to understand the Russian propolis ethanol extract mechanism of action, microscopy and bacterial lysis studies were conducted. Results uncovered from these experiments imply that the mechanism of action of Russian propolis ethanol extracts is structural rather than functional. The results obtained throughout this study demonstrate cell membrane damage, resulting in cell lysis and eventually bacterial death. Most strains of bacteria and subsequently biofilms, have evolved and have altered their chemical composition in an attempt to protect themselves from antibiotics. The resistant nature of bacteria stems from the chemical rather than the physical means of inactivation of antibiotics. The results uncovered in this work demonstrate the potential application of Russian propolis ethanol extracts as a very efficient and effective method for bacterial and biofilm inactivation. © 2015 The Society for Applied Microbiology.

  6. A Hybrid DNA Extraction Method for the Qualitative and Quantitative Assessment of Bacterial Communities from Poultry Production Samples

    PubMed Central

    Rothrock, Michael J.; Hiett, Kelli L.; Gamble, John; Caudill, Andrew C.; Cicconi-Hogan, Kellie M.; Caporaso, J. Gregory

    2014-01-01

    The efficacy of DNA extraction protocols can be highly dependent upon both the type of sample being investigated and the types of downstream analyses performed. Considering that the use of new bacterial community analysis techniques (e.g., microbiomics, metagenomics) is becoming more prevalent in the agricultural and environmental sciences and many environmental samples within these disciplines can be physiochemically and microbiologically unique (e.g., fecal and litter/bedding samples from the poultry production spectrum), appropriate and effective DNA extraction methods need to be carefully chosen. Therefore, a novel semi-automated hybrid DNA extraction method was developed specifically for use with environmental poultry production samples. This method is a combination of the two major types of DNA extraction: mechanical and enzymatic. A two-step intense mechanical homogenization step (using bead-beating specifically formulated for environmental samples) was added to the beginning of the “gold standard” enzymatic DNA extraction method for fecal samples to enhance the removal of bacteria and DNA from the sample matrix and improve the recovery of Gram-positive bacterial community members. Once the enzymatic extraction portion of the hybrid method was initiated, the remaining purification process was automated using a robotic workstation to increase sample throughput and decrease sample processing error. In comparison to the strict mechanical and enzymatic DNA extraction methods, this novel hybrid method provided the best overall combined performance when considering quantitative (using 16S rRNA qPCR) and qualitative (using microbiomics) estimates of the total bacterial communities when processing poultry feces and litter samples. PMID:25548939

  7. Effects of the Bacterial Extract OM-85 on Phagocyte Functions and the Stress Response

    PubMed Central

    Baladi, S.; Kantengwa, S.; Donati, Y. R. A.; Polla, B. S.

    1994-01-01

    The effects of the bacterial extract OM-85 on the respiratory burst, intracellular calcium and the stress response have been investigated in human peripheral blood monocytes from normal donors. Activation of the respiratory burst during bacterial phagocytosis has been previously associated with heat shock/stress proteins synthesis. Whereas OM-85 stimulated superoxide production and increased Ca2+ mobilization, it fared to induce synthesis of classical HSPs. The lack of stress protein induction was observed even in the presence of iron which potentiates both oxidative injury and stress protein induction during bacterial phagocytosis. However OM-85 induced a 75–78 kDa protein, which is likely to be a glucose regulated protein (GRP78), and enhanced intracellular expression of interleukin-lβ precursor. PMID:18472933

  8. Comparison of the cytotoxic effect of polystyrene latex nanoparticles on planktonic cells and bacterial biofilms

    NASA Astrophysics Data System (ADS)

    Nomura, Toshiyuki; Fujisawa, Eri; Itoh, Shikibu; Konishi, Yasuhiro

    2016-06-01

    The cytotoxic effect of positively charged polystyrene latex nanoparticles (PSL NPs) was compared between planktonic bacterial cells and bacterial biofilms using confocal laser scanning microscopy, atomic force microscopy, and a colony counting method. Pseudomonas fluorescens, which is commonly used in biofilm studies, was employed as the model bacteria. We found that the negatively charged bacterial surface of the planktonic cells was almost completely covered with positively charged PSL NPs, leading to cell death, as indicated by the NP concentration being greater than that required to achieve single layer coverage. In addition, the relationship between surface coverage and cell viability of P. fluorescens cells correlated well with the findings in other bacterial cells ( Escherichia coli and Lactococcus lactis). However, most of the bacterial cells that formed the biofilm were viable despite the positively charged PSL NPs being highly toxic to planktonic bacterial cells. This indicated that bacterial cells embedded in the biofilm were protected by self-produced extracellular polymeric substances (EPS) that provide resistance to antibacterial agents. In conclusion, mature biofilms covered with EPS exhibit resistance to NP toxicity as well as antibacterial agents.

  9. A duplex PCR-based assay for measuring the amount of bacterial contamination in a nucleic acid extract from a culture of free-living protists.

    PubMed

    Marron, Alan O; Akam, Michael; Walker, Giselle

    2013-01-01

    Cultures of heterotrophic protists often require co-culturing with bacteria to act as a source of nutrition. Such cultures will contain varying levels of intrinsic bacterial contamination that can interfere with molecular research and cause problems with the collection of sufficient material for sequencing. Measuring the levels of bacterial contamination for the purposes of molecular biology research is non-trivial, and can be complicated by the presence of a diverse bacterial flora, or by differences in the relative nucleic acid yield per bacterial or eukaryotic cell. Here we describe a duplex PCR-based assay that can be used to measure the levels of contamination from marine bacteria in a culture of loricate choanoflagellates. By comparison to a standard culture of known target sequence content, the assay can be used to quantify the relative proportions of bacterial and choanoflagellate material in DNA or RNA samples extracted from a culture. We apply the assay to compare methods of purifying choanoflagellate cultures prior to DNA extraction, to determine their effectiveness in reducing bacterial contamination. Together with measurements of the total nucleic acid concentration, the assay can then be used as the basis for determining the absolute amounts of choanoflagellate DNA or RNA present in a sample. The assay protocol we describe here is a simple and relatively inexpensive method of measuring contamination levels in nucleic acid samples. This provides a new way to establish quantification and purification protocols for molecular biology and genomics in novel heterotrophic protist species. Guidelines are provided to develop a similar protocol for use with any protistan culture. This assay method is recommended where qPCR equipment is unavailable, where qPCR is not viable because of the nature of the bacterial contamination or starting material, or where prior sequence information is insufficient to develop qPCR protocols.

  10. Bioleaching of Arsenic-Rich Gold Concentrates by Bacterial Flora before and after Mutation

    PubMed Central

    Xie, Xuehui; Yuan, Xuewu; Liu, Na; Chen, Xiaoguang; Abdelgadir, Awad; Liu, Jianshe

    2013-01-01

    In order to improve the bioleaching efficiency of arsenic-rich gold concentrates, a mixed bacterial flora had been developed, and the mutation breeding method was adopted to conduct the research. The original mixed bacterial flora had been enrichedin acid mine drainage of Dexing copper mine, Jiangxi Province, China. It was induced by UV (ultraviolet), ultrasonic, and microwave, and their combination mutation. The most efficient bacterial flora after mutation was collected for further bioleaching of arsenic-rich gold concentrates. Results indicated that the bacterial flora after mutation by UV 60 s combined with ultrasonic 10 min had the best oxidation rate of ferrous, the biggest density of cells, and the most activity of total protein. During bioleaching of arsenic-rich gold concentrates, the density of the mutant bacterial cells reached to 1.13 × 108 cells/mL at 15 days, more than 10 times compared with that of the original culture. The extraction of iron reached to 95.7% after 15 days, increased by 9.9% compared with that of the original culture. The extraction of arsenic reached to 92.6% after 12 days, which was increased by 46.1%. These results suggested that optimum combined mutation could improve leaching ability of the bacterial flora more significantly. PMID:24381948

  11. Antibacterial activity of tannins isolated from Sapium baccatum extract and use for control of tomato bacterial wilt.

    PubMed

    Vu, Thuy Thu; Kim, Hun; Tran, Vu Khac; Vu, Hoang Dinh; Hoang, Tien Xuan; Han, Jae Woo; Choi, Yong Ho; Jang, Kyoung Soo; Choi, Gyung Ja; Kim, Jin-Cheol

    2017-01-01

    In the search for new antibacterial agents from natural sources, we revealed that a crude methanol extract of Sapium baccatum was highly active against Ralstonia solanacearum, a causal agent of a serious disease called bacterial wilt of tomato. The bioassay-guided fractionation of this extract resulted in the isolation of seven known active compounds, including gallic acid, methyl gallate, corilagin, tercatain, chebulagic acid, chebulinic acid, and quercetin 3-O-α-L-arabinopyranoside. Their chemical structures were determined by electrospray ionization mass spectrometry and nuclear magnetic resonance spectroscopy. An in vitro antibacterial bioassay using a broth microdilution method revealed that, except for quercetin 3-O-α-L-arabinopyranoside (MIC = 250 μg/mL), the isolated compounds exhibited strong antibacterial activity against R. solanacearum (MIC = 26-52 μg/mL). Among the seven compounds, methyl gallate exhibited the strongest broad-spectrum activity against most of the plant pathogenic bacteria tested (MIC = 26-250 μg/mL). In the in vivo experiments, the crude extract of S. baccatum at 2000 and 1000 μg/mL reduced the development of tomato bacterial wilt by 83 and 63%, respectively, under greenhouse conditions after 14 days of infection. The results suggested that the extracts of S. baccatum or isolated tannins could be used as natural bactericides for the control of bacterial wilt of tomato.

  12. Antibacterial activity of tannins isolated from Sapium baccatum extract and use for control of tomato bacterial wilt

    PubMed Central

    Vu, Thuy Thu; Kim, Hun; Tran, Vu Khac; Vu, Hoang Dinh; Hoang, Tien Xuan; Han, Jae Woo; Choi, Yong Ho; Jang, Kyoung Soo; Choi, Gyung Ja

    2017-01-01

    In the search for new antibacterial agents from natural sources, we revealed that a crude methanol extract of Sapium baccatum was highly active against Ralstonia solanacearum, a causal agent of a serious disease called bacterial wilt of tomato. The bioassay-guided fractionation of this extract resulted in the isolation of seven known active compounds, including gallic acid, methyl gallate, corilagin, tercatain, chebulagic acid, chebulinic acid, and quercetin 3-O-α-L-arabinopyranoside. Their chemical structures were determined by electrospray ionization mass spectrometry and nuclear magnetic resonance spectroscopy. An in vitro antibacterial bioassay using a broth microdilution method revealed that, except for quercetin 3-O-α-L-arabinopyranoside (MIC = 250 μg/mL), the isolated compounds exhibited strong antibacterial activity against R. solanacearum (MIC = 26–52 μg/mL). Among the seven compounds, methyl gallate exhibited the strongest broad-spectrum activity against most of the plant pathogenic bacteria tested (MIC = 26–250 μg/mL). In the in vivo experiments, the crude extract of S. baccatum at 2000 and 1000 μg/mL reduced the development of tomato bacterial wilt by 83 and 63%, respectively, under greenhouse conditions after 14 days of infection. The results suggested that the extracts of S. baccatum or isolated tannins could be used as natural bactericides for the control of bacterial wilt of tomato. PMID:28742863

  13. Harnessing cell-to-cell variations to probe bacterial structure and biophysics

    NASA Astrophysics Data System (ADS)

    Cass, Julie A.

    Advances in microscopy and biotechnology have given us novel insights into cellular biology and physics. While bacteria were long considered to be relatively unstructured, the development of fluorescence microscopy techniques, and spatially and temporally resolved high-throughput quantitative studies, have uncovered that the bacterial cell is highly organized, and its structure rigorously maintained. In this thesis I will describe our gateTool software, designed to harness cell-to-cell variations to probe bacterial structure, and discuss two exciting aspects of structure that we have employed gateTool to investigate: (i) chromosome organization and the cellular mechanisms for controlling DNA dynamics, and (ii) the study of cell wall synthesis, and how the genes in the synthesis pathway impact cellular shape. In the first project, we develop a spatial and temporal mapping of cell-cycle-dependent chromosomal organization, and use this quantitative map to discover that chromosomal loci segregate from midcell with universal dynamics. In the second project, I describe preliminary time- lapse and snapshot imaging analysis suggesting phentoypical coherence across peptidoglycan synthesis pathways.

  14. Anti-bacterial and anti-inflammatory effects of ethanol extract from Houttuynia cordata poultice.

    PubMed

    Sekita, Yasuko; Murakami, Keiji; Yumoto, Hiromichi; Mizuguchi, Hiroyuki; Amoh, Takashi; Ogino, Satoshi; Matsuo, Takashi; Miyake, Yoichiro; Fukui, Hiroyuki; Kashiwada, Yoshiki

    2016-06-01

    Houttuynia cordata (HC) has been commonly used as many traditional remedies in local areas of Japan. Although many pharmacological activities of HC have been reported, the mechanism underlying the effect of HC remains unknown. We conducted the interview survey in Japan to verify how HC was actually used. The interview survey revealed that HC poultice (HCP) prepared from smothering fresh leaves of HC was most frequently used for the treatment of purulent skin diseases including furuncle and carbuncle with high effectiveness. Ethanol extract of HCP (eHCP) showed anti-bacterial effects against methicillin-resistant Staphylococcus aureus (MRSA), and showed an anti-biofilm activity against MRSA. eHCP showed dose-dependent inhibition of S. aureus lipoteichoic acid (LTA)-induced interleukin-8 and CCL20 production in human keratinocyte without any cytotoxicity. These results suggest that HCP is effective for skin abscess and its underlying mechanism might be the complicated multiple activities for both bacteria and host cells.

  15. Different binarization processes validated against manual counts of fluorescent bacterial cells.

    PubMed

    Tamminga, Gerrit G; Paulitsch-Fuchs, Astrid H; Jansen, Gijsbert J; Euverink, Gert-Jan W

    2016-09-01

    State of the art software methods (such as fixed value approaches or statistical approaches) to create a binary image of fluorescent bacterial cells are not as accurate and precise as they should be for counting bacteria and measuring their area. To overcome these bottlenecks, we introduce biological significance to obtain a binary image from a greyscale microscopic image. Using our biological significance approach we are able to automatically count about the same number of cells as an individual researcher would do by manual/visual counting. Using the fixed value or statistical approach to obtain a binary image leads to about 20% less cells in automatic counting. In our procedure we included the area measurements of the bacterial cells to determine the right parameters for background subtraction and threshold values. In an iterative process the threshold and background subtraction values were incremented until the number of particles smaller than a typical bacterial cell is less than the number of bacterial cells with a certain area. This research also shows that every image has a specific threshold with respect to the optical system, magnification and staining procedure as well as the exposure time. The biological significance approach shows that automatic counting can be performed with the same accuracy, precision and reproducibility as manual counting. The same approach can be used to count bacterial cells using different optical systems (Leica, Olympus and Navitar), magnification factors (200× and 400×), staining procedures (DNA (Propidium Iodide) and RNA (FISH)) and substrates (polycarbonate filter or glass). Copyright © 2016 Elsevier B.V. All rights reserved.

  16. [Changes of chlorine isotope composition characterize bacterial dehalogenation of dichloromethane].

    PubMed

    Ziakun, A M; Firsova, Iu E; Torgonskaia, M L; Doronina, N V; Trotsenko, Iu A

    2007-01-01

    Fractionation of dichloromethane (DCM) molecules with different chlorine isotopes by aerobic methylobacteria Methylobacterium dichloromethanicum DM4 and Albibacter nethylovorans DM10; cell-free extract of strain DM4; and transconjugant Methylobacterium evtorquens Al1/pME 8220, expressing the dcmA gene for DCM dehalogenase but unable to grow on DCM, was studied. Kinetic indices of DCM isotopomers for chlorine during bacterial dehalogenation and diffusion were compared. A two-step model is proposed, which suggests diffusional DCM transport to bacterial cells.

  17. Modulation of cell surface hydrophobicity and attachment of bacteria to abiotic surfaces and shrimp by Malaysian herb extracts.

    PubMed

    Hui, Yew Woh; Dykes, Gary A

    2012-08-01

    The use of simple crude water extracts of common herbs to reduce bacterial attachment may be a cost-effective way to control bacterial foodborne pathogens, particularly in developing countries. The ability of water extracts of three common Malaysian herbs (Andrographis paniculata, Eurycoma longifolia, and Garcinia atroviridis) to modulate hydrophobicity and attachment to surfaces of five food-related bacterial strains (Bacillus cereus ATCC 14576, Escherichia coli ATCC 25922, Pseudomonas aeruginosa ATCC 10145, Salmonella Enteritidis ATCC 13076, Staphylococcus aureus ATCC 25923) were determined. The bacterial attachment to hydrocarbon assay was used to determine bacterial hydrophobicity. Staining and direct microscopic counts were used to determine attachment of bacteria to glass and stainless steel. Plating on selective media was used to determine attachment of bacteria to shrimp. All extracts were capable of either significantly ( P < 0.05) increasing or decreasing bacterial surface hydrophobicity, depending on the herb extract and bacteria combination. Bacterial attachment to all surfaces was either significantly (P < 0.05) increased or decreased, depending on the herb extract and bacteria combination. Overall, hydrophobicity did not show a significant correlation (P > 0.05) to bacterial attachment. For specific combinations of bacteria, surface material, and plant extract, significant correlations (R > 0.80) between hydrophobicity and attachment were observed. The highest of these was observed for S. aureus attachment to stainless steel and glass after treatment with the E. longifolia extract (R = 0.99, P < 0.01). The crude water herb extracts in this study were shown to have the potential to modulate specific bacterial and surface interactions and may, with further work, be useful for the simple and practical control of foodborne pathogens.

  18. Isolation of biologically active nanomaterial (inclusion bodies) from bacterial cells.

    PubMed

    Peternel, Spela; Komel, Radovan

    2010-09-10

    In recent years bacterial inclusion bodies (IBs) were recognised as highly pure deposits of active proteins inside bacterial cells. Such active nanoparticles are very interesting for further downstream protein isolation, as well as for many other applications in nanomedicine, cosmetic, chemical and pharmaceutical industry.To prepare large quantities of a high quality product, the whole bioprocess has to be optimised. This includes not only the cultivation of the bacterial culture, but also the isolation step itself, which can be of critical importance for the production process.To determine the most appropriate method for the isolation of biologically active nanoparticles, three methods for bacterial cell disruption were analyzed. In this study, enzymatic lysis and two mechanical methods, high-pressure homogenization and sonication, were compared.During enzymatic lysis the enzyme lysozyme was found to attach to the surface of IBs, and it could not be removed by simple washing. As this represents an additional impurity in the engineered nanoparticles, we concluded that enzymatic lysis is not the most suitable method for IBs isolation.During sonication proteins are released (lost) from the surface of IBs and thus the surface of IBs appears more porous when compared to the other two methods. We also found that the acoustic output power needed to isolate the IBs from bacterial cells actually damages proteins structures, thereby causing a reduction in biological activity.High-pressure homogenization also caused some damage to IBs, however the protein loss from the IBs was negligible. Furthermore, homogenization had no side-effects on protein biological activity. The study shows that among the three methods tested, homogenization is the most appropriate method for the isolation of active nanoparticles from bacterial cells.

  19. Detection of Bacterial Pathogens from Broncho-Alveolar Lavage by Next-Generation Sequencing.

    PubMed

    Leo, Stefano; Gaïa, Nadia; Ruppé, Etienne; Emonet, Stephane; Girard, Myriam; Lazarevic, Vladimir; Schrenzel, Jacques

    2017-09-20

    The applications of whole-metagenome shotgun sequencing (WMGS) in routine clinical analysis are still limited. A combination of a DNA extraction procedure, sequencing, and bioinformatics tools is essential for the removal of human DNA and for improving bacterial species identification in a timely manner. We tackled these issues with a broncho-alveolar lavage (BAL) sample from an immunocompromised patient who had developed severe chronic pneumonia. We extracted DNA from the BAL sample with protocols based either on sequential lysis of human and bacterial cells or on the mechanical disruption of all cells. Metagenomic libraries were sequenced on Illumina HiSeq platforms. Microbial community composition was determined by k-mer analysis or by mapping to taxonomic markers. Results were compared to those obtained by conventional clinical culture and molecular methods. Compared to mechanical cell disruption, a sequential lysis protocol resulted in a significantly increased proportion of bacterial DNA over human DNA and higher sequence coverage of Mycobacterium abscessus , Corynebacterium jeikeium and Rothia dentocariosa , the bacteria reported by clinical microbiology tests. In addition, we identified anaerobic bacteria not searched for by the clinical laboratory. Our results further support the implementation of WMGS in clinical routine diagnosis for bacterial identification.

  20. Interactions of Antibiotics and Methanolic Crude Extracts of Afzelia Africana (Smith.) Against Drug Resistance Bacterial Isolates

    PubMed Central

    Aiyegoro, Olayinka; Adewusi, Adekanmi; Oyedemi, Sunday; Akinpelu, David; Okoh, Anthony

    2011-01-01

    Infection due to multidrug resistance pathogens is difficult to manage due to bacterial virulence factors and because of a relatively limited choice of antimicrobial agents. Thus, it is imperative to discover fresh antimicrobials or new practices that are effective for the treatment of infectious diseases caused by drug-resistant microorganisms. The objective of this experiment is to investigate for synergistic outcomes when crude methanolic extract of the stem bark of Afzelia africana and antibiotics were combined against a panel of antibiotic resistant bacterial strains that have been implicated in infections. Standard microbiological protocols were used to determine the minimum inhibitory concentrations (MICs) of the extract and antibiotics, as well as to investigate the effect of combinations of the methanolic extract of A. africana stem bark and selected antibiotics using the time-kill assay method. The extract of Afzelia africana exhibited antibacterial activities against both Gram-negative and Gram-positive bacteria made up of environmental and standard strains at a screening concentration of 5 mg/mL. The MICs of the crude extracts and the antibiotics varied between 1 μg/mL and 5.0 mg/mL. Overall, synergistic response constituted about 63.79% of all manner of combinations of extract and antibiotics against all test organisms; antagonism was not detected among the 176 tests carried out. The extract from A. africana stem bark showed potentials of synergy in combination with antibiotics against strains of pathogenic bacteria. The detection of synergy between the extract and antibiotics demonstrates the potential of this plant as a source of antibiotic resistance modulating compounds. PMID:21845091

  1. Evaluating the Impact of DNA Extraction Method on the Representation of Human Oral Bacterial and Fungal Communities

    PubMed Central

    Biswas, Kristi; Taylor, Michael W.; Gear, Kim

    2017-01-01

    The application of high-throughput, next-generation sequencing technologies has greatly improved our understanding of the human oral microbiome. While deciphering this diverse microbial community using such approaches is more accurate than traditional culture-based methods, experimental bias introduced during critical steps such as DNA extraction may compromise the results obtained. Here, we systematically evaluate four commonly used microbial DNA extraction methods (MoBio PowerSoil® DNA Isolation Kit, QIAamp® DNA Mini Kit, Zymo Bacterial/Fungal DNA Mini PrepTM, phenol:chloroform-based DNA isolation) based on the following criteria: DNA quality and yield, and microbial community structure based on Illumina amplicon sequencing of the V3–V4 region of the 16S rRNA gene of bacteria and the internal transcribed spacer (ITS) 1 region of fungi. Our results indicate that DNA quality and yield varied significantly with DNA extraction method. Representation of bacterial genera in plaque and saliva samples did not significantly differ across DNA extraction methods and DNA extraction method showed no effect on the recovery of fungal genera from plaque. By contrast, fungal diversity from saliva was affected by DNA extraction method, suggesting that not all protocols are suitable to study the salivary mycobiome. PMID:28099455

  2. Sensing the Structural Differences in Cellulose from Apple and Bacterial Cell Wall Materials by Raman and FT-IR Spectroscopy

    PubMed Central

    Szymańska-Chargot, Monika; Cybulska, Justyna; Zdunek, Artur

    2011-01-01

    Raman and Fourier Transform Infrared (FT-IR) spectroscopy was used for assessment of structural differences of celluloses of various origins. Investigated celluloses were: bacterial celluloses cultured in presence of pectin and/or xyloglucan, as well as commercial celluloses and cellulose extracted from apple parenchyma. FT-IR spectra were used to estimate of the Iβ content, whereas Raman spectra were used to evaluate the degree of crystallinity of the cellulose. The crystallinity index (XCRAMAN%) varied from −25% for apple cellulose to 53% for microcrystalline commercial cellulose. Considering bacterial cellulose, addition of xyloglucan has an impact on the percentage content of cellulose Iβ. However, addition of only xyloglucan or only pectins to pure bacterial cellulose both resulted in a slight decrease of crystallinity. However, culturing bacterial cellulose in the presence of mixtures of xyloglucan and pectins results in an increase of crystallinity. The results confirmed that the higher degree of crystallinity, the broader the peak around 913 cm−1. Among all bacterial celluloses the bacterial cellulose cultured in presence of xyloglucan and pectin (BCPX) has the most similar structure to those observed in natural primary cell walls. PMID:22163913

  3. Facile method to stain the bacterial cell surface for super-resolution fluorescence microscopy†

    PubMed Central

    Gunsolus, Ian L.; Hu, Dehong; Mihai, Cosmin; Lohse, Samuel E.; Lee, Chang-soo; Torelli, Marco D.; Hamers, Robert J.; Murhpy, Catherine J.; Orr, Galya

    2015-01-01

    A method to fluorescently stain the surfaces of both Gram-negative and Gram-positive bacterial cells compatible with super-resolution fluorescence microscopy is presented. This method utilizes a commercially-available fluorescent probe to label primary amines at the surface of the cell. We demonstrate eficient staining of two bacterial strains, the Gram-negative Shewanella oneidensis MR-1 and the Gram-positive Bacillus subtilis 168. Using structured illumination microscopy and stochastic optical reconstruction microscopy, which require high quantum yield or specialized dyes, we show that this staining method may be used to resolve the bacterial cell surface with sub-diffraction-limited resolution. We further use this method to identify localization patterns of nanomaterials, specifically cadmium selenide quantum dots, following interaction with bacterial cells. PMID:24816810

  4. Facile method to stain the bacterial cell surface for super-resolution fluorescence microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gunsolus, Ian L.; Hu, Dehong; Mihai, Cosmin

    A method to fluorescently stain the surfaces of both Gram-negative and Gram-positive bacterial cells compatible with super-resolution fluorescence microscopy is presented. This method utilizes a commercially-available fluorescent probe to label primary amines at the surface of the cell. We demonstrate efficient staining of two bacterial strains, the Gram-negative Shewanella oneidensis MR-1 and the Gram-positive Bacillus subtilis 168. Using structured illumination microscopy and stochastic optical reconstruction microscopy, which require high quantum yield or specialized dyes, we show that this staining method may be used to resolve the bacterial cell surface with sub-diffraction-limited resolution. We further use this method to identify localizationmore » patterns of nanomaterials, specifically cadmium selenide quantum dots, following interaction with bacterial cells.« less

  5. Myeloid-Derived Suppressor Cells in Bacterial Infections

    PubMed Central

    Ost, Michael; Singh, Anurag; Peschel, Andreas; Mehling, Roman; Rieber, Nikolaus; Hartl, Dominik

    2016-01-01

    Myeloid-derived suppressor cells (MDSCs) comprise monocytic and granulocytic innate immune cells with the capability of suppressing T- and NK-cell responses. While the role of MDSCs has been studied in depth in malignant diseases, the understanding of their regulation and function in infectious disease conditions has just begun to evolve. Here we summarize and discuss the current view how MDSCs participate in bacterial infections and how this knowledge could be exploited for potential future therapeutics. PMID:27066459

  6. Isolation of biologically active nanomaterial (inclusion bodies) from bacterial cells

    PubMed Central

    2010-01-01

    Background In recent years bacterial inclusion bodies (IBs) were recognised as highly pure deposits of active proteins inside bacterial cells. Such active nanoparticles are very interesting for further downstream protein isolation, as well as for many other applications in nanomedicine, cosmetic, chemical and pharmaceutical industry. To prepare large quantities of a high quality product, the whole bioprocess has to be optimised. This includes not only the cultivation of the bacterial culture, but also the isolation step itself, which can be of critical importance for the production process. To determine the most appropriate method for the isolation of biologically active nanoparticles, three methods for bacterial cell disruption were analyzed. Results In this study, enzymatic lysis and two mechanical methods, high-pressure homogenization and sonication, were compared. During enzymatic lysis the enzyme lysozyme was found to attach to the surface of IBs, and it could not be removed by simple washing. As this represents an additional impurity in the engineered nanoparticles, we concluded that enzymatic lysis is not the most suitable method for IBs isolation. During sonication proteins are released (lost) from the surface of IBs and thus the surface of IBs appears more porous when compared to the other two methods. We also found that the acoustic output power needed to isolate the IBs from bacterial cells actually damages proteins structures, thereby causing a reduction in biological activity. High-pressure homogenization also caused some damage to IBs, however the protein loss from the IBs was negligible. Furthermore, homogenization had no side-effects on protein biological activity. Conclusions The study shows that among the three methods tested, homogenization is the most appropriate method for the isolation of active nanoparticles from bacterial cells. PMID:20831775

  7. A Simple and Rapid Method for Preparing a Cell-Free Bacterial Lysate for Protein Synthesis

    PubMed Central

    Kaduri, Maya; Shainsky-Roitman, Janna; Goldfeder, Mor; Ivanir, Eran; Benhar, Itai; Shoham, Yuval; Schroeder, Avi

    2016-01-01

    Cell-free protein synthesis (CFPS) systems are important laboratory tools that are used for various synthetic biology applications. Here, we present a simple and inexpensive laboratory-scale method for preparing a CFPS system from E. coli. The procedure uses basic lab equipment, a minimal set of reagents, and requires less than one hour to process the bacterial cell mass into a functional S30-T7 extract. BL21(DE3) and MRE600 E. coli strains were used to prepare the S30-T7 extract. The CFPS system was used to produce a set of fluorescent and therapeutic proteins of different molecular weights (up to 66 kDa). This system was able to produce 40–150 μg-protein/ml, with variations depending on the plasmid type, expressed protein and E. coli strain. Interestingly, the BL21-based CFPS exhibited stability and increased activity at 40 and 45°C. To the best of our knowledge, this is the most rapid and affordable lab-scale protocol for preparing a cell-free protein synthesis system, with high thermal stability and efficacy in producing therapeutic proteins. PMID:27768741

  8. Electroporation of Functional Bacterial Effectors into Mammalian Cells

    DOE PAGES

    Sontag, Ryan L.; Mihai, Cosmin; Orr, Galya; ...

    2015-01-19

    Electroporation was used to insert purified bacterial virulence effector proteins directly into living eukaryotic cells. Protein localization was monitored by confocal immunofluorescence microscopy. This method allows for studies on trafficking, function, and protein-protein interactions using active exogenous proteins, avoiding the need for heterologous expression in eukaryotic cells.

  9. Do bacterial cell numbers follow a theoretical Poisson distribution? Comparison of experimentally obtained numbers of single cells with random number generation via computer simulation.

    PubMed

    Koyama, Kento; Hokunan, Hidekazu; Hasegawa, Mayumi; Kawamura, Shuso; Koseki, Shigenobu

    2016-12-01

    We investigated a bacterial sample preparation procedure for single-cell studies. In the present study, we examined whether single bacterial cells obtained via 10-fold dilution followed a theoretical Poisson distribution. Four serotypes of Salmonella enterica, three serotypes of enterohaemorrhagic Escherichia coli and one serotype of Listeria monocytogenes were used as sample bacteria. An inoculum of each serotype was prepared via a 10-fold dilution series to obtain bacterial cell counts with mean values of one or two. To determine whether the experimentally obtained bacterial cell counts follow a theoretical Poisson distribution, a likelihood ratio test between the experimentally obtained cell counts and Poisson distribution which parameter estimated by maximum likelihood estimation (MLE) was conducted. The bacterial cell counts of each serotype sufficiently followed a Poisson distribution. Furthermore, to examine the validity of the parameters of Poisson distribution from experimentally obtained bacterial cell counts, we compared these with the parameters of a Poisson distribution that were estimated using random number generation via computer simulation. The Poisson distribution parameters experimentally obtained from bacterial cell counts were within the range of the parameters estimated using a computer simulation. These results demonstrate that the bacterial cell counts of each serotype obtained via 10-fold dilution followed a Poisson distribution. The fact that the frequency of bacterial cell counts follows a Poisson distribution at low number would be applied to some single-cell studies with a few bacterial cells. In particular, the procedure presented in this study enables us to develop an inactivation model at the single-cell level that can estimate the variability of survival bacterial numbers during the bacterial death process. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Host-induced bacterial cell wall decomposition mediates pattern-triggered immunity in Arabidopsis

    PubMed Central

    Liu, Xiaokun; Grabherr, Heini M; Willmann, Roland; Kolb, Dagmar; Brunner, Frédéric; Bertsche, Ute; Kühner, Daniel; Franz-Wachtel, Mirita; Amin, Bushra; Felix, Georg; Ongena, Marc; Nürnberger, Thorsten; Gust, Andrea A

    2014-01-01

    Peptidoglycans (PGNs) are immunogenic bacterial surface patterns that trigger immune activation in metazoans and plants. It is generally unknown how complex bacterial structures such as PGNs are perceived by plant pattern recognition receptors (PRRs) and whether host hydrolytic activities facilitate decomposition of bacterial matrices and generation of soluble PRR ligands. Here we show that Arabidopsis thaliana, upon bacterial infection or exposure to microbial patterns, produces a metazoan lysozyme-like hydrolase (lysozyme 1, LYS1). LYS1 activity releases soluble PGN fragments from insoluble bacterial cell walls and cleavage products are able to trigger responses typically associated with plant immunity. Importantly, LYS1 mutant genotypes exhibit super-susceptibility to bacterial infections similar to that observed on PGN receptor mutants. We propose that plants employ hydrolytic activities for the decomposition of complex bacterial structures, and that soluble pattern generation might aid PRR-mediated immune activation in cell layers adjacent to infection sites. DOI: http://dx.doi.org/10.7554/eLife.01990.001 PMID:24957336

  11. Biological and antibacterial activities of the natural herb Houttuynia cordata water extract against the intracellular bacterial pathogen salmonella within the RAW 264.7 macrophage.

    PubMed

    Kim, Gon Sup; Kim, Dong Hyeok; Lim, Jeong Ju; Lee, Jin Ju; Han, Dae Yong; Lee, Whi Min; Jung, Won Chul; Min, Won Gi; Won, Chung Gil; Rhee, Man Hee; Lee, Hu Jang; Kim, Suk

    2008-11-01

    Salmonellosis is a major bacterial zoonosis that causes a variety of disease syndromes, from self-limiting enteritis to fatal infection in animals and food-borne infection and typhoid fever in humans. Recently, the emergence of multidrug-resistant strains of Salmonella sp. has caused more serious problems in public health. The present study investigated the antibacterial effects of Houttuynia cordata water extract (HCWE) against murine salmonellosis. In RAW 264.7 cells, there was no detectable cytotoxic effect of HCWE at any concentration between 25 and 100 microg/ml after 8-h incubation. The antibacterial activity of HCWE was then examined in a Salmonella enterica serovar (Salmonella typhimurium), and was found to increase in a dose-dependent manner at concentrations from 25 to 100 microg/ml during 8-h incubation. HCWE also affected RAW 264.7 cells including morphologic change and bacterial uptake, but there was no significant difference in bacterial replication in RAW 264.7 cells. With HCWE alone, nitric oxide (NO) production by RAW 264.7 cells did not increase, but when RAW 264.7 cells were infected by S. typhimurium, with or without HCWE, NO production with HCWE was 2-fold higher than that without HCWE. Treatment with HCWE did not affect inducible NO synthase (iNOS) mRNA expression by RAW 264.7 cells, but when RAW 264.7 cells with HCWE were infected by S. typhimurium, iNOS mRNA expression was increased during 8-h incubation. Furthermore, HCWE showed virulence reduction effects in S. typhimurium-infected BALB/c mice. After a lethal dose of S. typhimurium, the mortality rate in the HCWE untreated group was 100% at 7 d, but the HCWE 25, 50, and 100 microg/ml groups survived until 11, 17, and 23 d, respectively. These data suggest that HCWE is stable and beneficial in the treatment of bacterial infection including intracellularly replicating pathogens and may solve antimicrobial misuse and overuse.

  12. Antibacterial Activity of Indian Borage (Plectranthus amboinicus Benth) Leaf Extracts in Food Systems and
Against Natural Microflora in Chicken Meat

    PubMed Central

    Gupta, Sandeep Kumar

    2016-01-01

    Summary The ability of acetone and ethyl acetate extracts of the leaves of a traditional Indian medicinal plant, Indian borage (Plectranthus amboinicus Benth) to prevent spoilage of artificially inoculated model food systems (cabbage and papaya) and natural microflora of chicken meat was evaluated. These extracts were able to reduce the bacterial counts in all food systems; however, the effective concentration varied with the complexity of the system (cabbageextracts was investigated by analyzing the changes they cause in bacterial cell wall and leakage of nucleic acid from bacterial cells. Both acetone and ethyl acetate extracts at their respective minimum inhibitory concentrations resulted in leakage of cell constituents to an extent of 40 to 80 and 60 to 95%, respectively, compared to the control, and finally leading to disintegration of cell walls. These findings indicate the potential use of ethyl acetate and acetone extracts of Indian borage leaves in food preservation. PMID:27904397

  13. Bacterial effectors target the plant cell nucleus to subvert host transcription.

    PubMed

    Canonne, Joanne; Rivas, Susana

    2012-02-01

    In order to promote virulence, Gram-negative bacteria have evolved the ability to inject so-called type III effector proteins into host cells. The plant cell nucleus appears to be a subcellular compartment repeatedly targeted by bacterial effectors. In agreement with this observation, mounting evidence suggests that manipulation of host transcription is a major strategy developed by bacteria to counteract plant defense responses. It has been suggested that bacterial effectors may adopt at least three alternative, although not mutually exclusive, strategies to subvert host transcription. T3Es may (1) act as transcription factors that directly activate transcription in host cells, (2) affect histone packing and chromatin configuration, and/or (3) target host transcription factor activity. Here, we provide an overview on how all these strategies may lead to host transcriptional re-programming and, as a result, to improved bacterial multiplication inside plant cells.

  14. Headspace sorptive extraction-gas chromatography-mass spectrometry method to measure volatile emissions from human airway cell cultures.

    PubMed

    Yamaguchi, Mei S; McCartney, Mitchell M; Linderholm, Angela L; Ebeler, Susan E; Schivo, Michael; Davis, Cristina E

    2018-05-12

    The human respiratory tract releases volatile metabolites into exhaled breath that can be utilized for noninvasive health diagnostics. To understand the origin of this metabolic process, our group has previously analyzed the headspace above human epithelial cell cultures using solid phase microextraction-gas chromatography-mass spectrometry (SPME-GC-MS). In the present work, we improve our model by employing sorbent-covered magnetic stir bars for headspace sorptive extraction (HSSE). Sorbent-coated stir bar analyte recovery increased by 52 times and captured 97 more compounds than SPME. Our data show that HSSE is preferred over liquid extraction via stir bar sorptive extraction (SBSE), which failed to distinguish volatiles unique to the cell samples compared against media controls. Two different cellular media were also compared, and we found that Opti-MEM® is preferred for volatile analysis. We optimized HSSE analytical parameters such as extraction time (24 h), desorption temperature (300 °C) and desorption time (7 min). Finally, we developed an internal standard for cell culture VOC studies by introducing 842 ng of deuterated decane per 5 mL of cell medium to account for error from extraction, desorption, chromatography and detection. This improved model will serve as a platform for future metabolic cell culture studies to examine changes in epithelial VOCs caused by perturbations such as viral or bacterial infections, opening opportunities for improved, noninvasive pulmonary diagnostics. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Inhibition of bacterial quorum sensing and biofilm formation by extracts of neotropical rainforest plants.

    PubMed

    Ta, Chieu Anh; Freundorfer, Marie; Mah, Thien-Fah; Otárola-Rojas, Marco; Garcia, Mario; Sanchez-Vindas, Pablo; Poveda, Luis; Maschek, J Alan; Baker, Bill J; Adonizio, Allison L; Downum, Kelsey; Durst, Tony; Arnason, John T

    2014-03-01

    Bacterial biofilms are responsible for many persistent infections by many clinically relevant pathogens such as Staphylococcus aureus and Pseudomonas aeruginosa. Biofilms are much more resistant to conventional antibiotics than their planktonic counterparts. Quorum sensing, an intercellular communication system, controls pathogenesis and biofilm formation in most bacterial species. Quorum sensing provides an important pharmacological target since its inhibition does not provide a selective pressure for resistance. In this study, we investigated the quorum sensing and biofilm inhibitory activities of 126 plant extracts from 71 species collected from neotropical rainforests in Costa Rica. Quorum sensing and biofilm interference were assessed using a modified disc diffusion bioassay with Chromobacterium violaceum ATCC 12,472 and a spectrophotometric bioassay with Pseudomonas aeruginosa PA14, respectively. Species with significant anti-quorum sensing and/or anti-biofilm activities belonged to the Meliaceae, Melastomataceae, Lepidobotryaceae, Sapindaceae, and Simaroubaceae families. IC50 values ranged from 45 to 266 µg/mL. Extracts of these active species could lead to future development of botanical treatments for biofilm-associated infections. Georg Thieme Verlag KG Stuttgart · New York.

  16. Stoichiometry of mercury-thiol complexes on bacterial cell envelopes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mishra, Bhoopesh; Shoenfelt, Elizabeth; Yu, Qiang

    We have examined the speciation of Hg(II) complexed with intact cell suspensions (1013 cells L- 1) of Bacillus subtilis, a common gram-positive soil bacterium, Shewanella oneidensis MR-1, a facultative gram-negative aquatic organism, and Geobacter sulfurreducens, a gram-negative anaerobic bacterium capable of Hg-methylation at Hg(II) loadings spanning four orders of magnitude (120 nM to 350 μM) at pH 5.5 (± 0.2). The coordination environments of Hg on bacterial cells were analyzed using synchrotron based X-ray Absorption Near Edge Structure (XANES) and Extended X-ray Absorption Fine Structure (EXAFS) spectroscopy at the Hg LIII edge. The abundance of thiols on intact cells wasmore » determined by a fluorescence-spectroscopy based method using a soluble bromobimane, monobromo(trimethylammonio)bimane (qBBr) to block thiol sites, and potentiometric titrations of biomass with and without qBBr treatment. The chemical forms of S on intact bacterial cells were determined using S k-edge XANES spectroscopy.« less

  17. Selective Enhancement of Systemic Th1 Immunity in Immunologically Immature Rats with an Orally Administered Bacterial Extract

    PubMed Central

    Bowman, L. M.; Holt, P. G.

    2001-01-01

    Infant rats primed during the first week of life with soluble antigen displayed adult-equivalent levels of T-helper 2 (Th2)-dependent immunological memory development as revealed by production of secondary immunoglobulin G1 (IgG1) antibody responses to subsequent challenge, but in contrast to adults failed to prime for Th1-dependent IgG2b responses. We demonstrate that this Th2 bias in immune function can be redressed by oral administration to neonates of a bacterial extract (Broncho-Vaxom OM-85) comprising lyophilized fractions of several common respiratory tract bacterial pathogens. Animals given OM-85 displayed a selective upregulation in primary and secondary IgG2b responses, accompanied by increased gamma interferon and decreased interleukin-4 production (both antigen specific and polyclonal), and increased capacity for development of Th1-dependent delayed hypersensitivity to the challenge antigen. We hypothesize that the bacterial extract functions via enhancement of the process of postnatal maturation of Th1 function, which is normally driven by stimuli from the gastrointestinal commensal microflora. PMID:11349036

  18. Microspectrometric insights on the uptake of antibiotics at the single bacterial cell level

    PubMed Central

    Cinquin, Bertrand; Maigre, Laure; Pinet, Elizabeth; Chevalier, Jacqueline; Stavenger, Robert A.; Mills, Scott; Réfrégiers, Matthieu; Pagès, Jean-Marie

    2015-01-01

    Bacterial multidrug resistance is a significant health issue. A key challenge, particularly in Gram-negative antibacterial research, is to better understand membrane permeation of antibiotics in clinically relevant bacterial pathogens. Passing through the membrane barrier to reach the required concentration inside the bacterium is a pivotal step for most antibacterials. Spectrometric methodology has been developed to detect drugs inside bacteria and recent studies have focused on bacterial cell imaging. Ultimately, we seek to use this method to identify pharmacophoric groups which improve penetration, and therefore accumulation, of small-molecule antibiotics inside bacteria. We developed a method to quantify the time scale of antibiotic accumulation in living bacterial cells. Tunable ultraviolet excitation provided by DISCO beamline (synchrotron Soleil) combined with microscopy allows spectroscopic analysis of the antibiotic signal in individual bacterial cells. Robust controls and measurement of the crosstalk between fluorescence channels can provide real time quantification of drug. This technique represents a new method to assay drug translocation inside the cell and therefore incorporate rational drug design to impact antibiotic uptake. PMID:26656111

  19. Genetic reprogramming of host cells by bacterial pathogens.

    PubMed

    Tran Van Nhieu, Guy; Arbibe, Laurence

    2009-10-29

    During the course of infection, pathogens often induce changes in gene expression in host cells and these changes can be long lasting and global or transient and of limited amplitude. Defining how, when, and why bacterial pathogens reprogram host cells represents an exciting challenge that opens up the opportunity to grasp the essence of pathogenesis and its molecular details.

  20. Bacterial cell wall composition and the influence of antibiotics by cell-wall and whole-cell NMR

    PubMed Central

    Romaniuk, Joseph A. H.; Cegelski, Lynette

    2015-01-01

    The ability to characterize bacterial cell-wall composition and structure is crucial to understanding the function of the bacterial cell wall, determining drug modes of action and developing new-generation therapeutics. Solid-state NMR has emerged as a powerful tool to quantify chemical composition and to map cell-wall architecture in bacteria and plants, even in the context of unperturbed intact whole cells. In this review, we discuss solid-state NMR approaches to define peptidoglycan composition and to characterize the modes of action of old and new antibiotics, focusing on examples in Staphylococcus aureus. We provide perspectives regarding the selected NMR strategies as we describe the exciting and still-developing cell-wall and whole-cell NMR toolkit. We also discuss specific discoveries regarding the modes of action of vancomycin analogues, including oritavancin, and briefly address the reconsideration of the killing action of β-lactam antibiotics. In such chemical genetics approaches, there is still much to be learned from perturbations enacted by cell-wall assembly inhibitors, and solid-state NMR approaches are poised to address questions of cell-wall composition and assembly in S. aureus and other organisms. PMID:26370936

  1. Panax ginseng aqueous extract prevents pneumococcal sepsis in vivo by potentiating cell survival and diminishing inflammation.

    PubMed

    Nguyen, Cuong Thach; Luong, Truc Thanh; Lee, Seung Yeop; Kim, Gyu Lee; Kwon, Hyogyoung; Lee, Hong-Gyun; Park, Chae-Kyu; Rhee, Dong-Kwon

    2015-10-15

    More than 50% of sepsis cases are caused by Streptococcus pneumoniae, and hospital mortality related to sepsis comprises 52% of all hospital deaths. Therefore, sepsis is a medical emergency, and any treatment against the agent that produces it, is welcome. The role of Panax ginseng C.A. Meyer (Araliaceae) aqueous extract in bacterial infection in vivo is not well understood. Here, the protective effect of Korean red ginseng (KRG) extract against pneumococcal infection and sepsis was elucidated. In this study, mice were administrated KRG (25, 50, 100 mg/kg) for 15 days, and then infected with a lethal S. pneumoniae strain. Survival rate, body weight, and colonization were determined. The RAW 264.7 macrophage cells were infected with S. pneumoniae and cell viability was assessed using a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Inflammation was examined using an enzyme-linked immunosorbent assay (ELISA) and hematoxylin and eosin (HE) staining while gene expression was determined using western blotting. KRG-pre-treated mice (100 mg/kg of KRG) had significantly higher survival rates and body weights than those of the non-treated controls; KRG-pre-treated mice had lower bacterial number and morbidity than those of the non-treated controls. 100 mg/kg of KRG administration decreased cytokine levels including tumor necrosis factor (TNF)-α (897 and 623 pg/ml, control and KRG groups, respectively, P < 0.05) and interleukin (IL)-1β (175 and 127 pg/ml, control and KRG groups, respectively, P = 0.051), nitric oxide level (149 and 81 nM, control and KRG groups, respectively, P < 0.05), and neutrophil infiltration 48 h post-infection, in vivo. In pneumococcal infection, KRG pre-treatment downregulated toll-like receptor (TLR) 4 and TNF-ɑ expressions in RAW 264.7 macrophage cells and increased cell survival by activating phosphoinositide 3-kinase (PI3K)/AKT signaling. Taken together, 100 mg/kg of KRG appeared to protect host cells from lethal

  2. Automated DNA extraction from genetically modified maize using aminosilane-modified bacterial magnetic particles.

    PubMed

    Ota, Hiroyuki; Lim, Tae-Kyu; Tanaka, Tsuyoshi; Yoshino, Tomoko; Harada, Manabu; Matsunaga, Tadashi

    2006-09-18

    A novel, automated system, PNE-1080, equipped with eight automated pestle units and a spectrophotometer was developed for genomic DNA extraction from maize using aminosilane-modified bacterial magnetic particles (BMPs). The use of aminosilane-modified BMPs allowed highly accurate DNA recovery. The (A(260)-A(320)):(A(280)-A(320)) ratio of the extracted DNA was 1.9+/-0.1. The DNA quality was sufficiently pure for PCR analysis. The PNE-1080 offered rapid assay completion (30 min) with high accuracy. Furthermore, the results of real-time PCR confirmed that our proposed method permitted the accurate determination of genetically modified DNA composition and correlated well with results obtained by conventional cetyltrimethylammonium bromide (CTAB)-based methods.

  3. Protective Effect of Polygonum orientale L. Extracts against Clavibater michiganense subsp. sepedonicum, the Causal Agent of Bacterial Ring Rot of Potato

    PubMed Central

    Cai, Jin; Xie, Shulian; Feng, Jia; Wang, Feipeng; Xu, Qiufeng

    2013-01-01

    The Polygonum orientale L. extracts were investigated for antibacterial activity against Clavibater michiganense subsp. sepedonicum (Spieckermann & Kotthoff) Davis et al., the causal agent of a serious disease called bacterial ring rot of potato. The results showed that the leaf extracts of P. orientale had significantly (p<0.05) greater antibacterial activity against C. michiganense subsp. sepedonicum than root, stem, flower extracts in vitro. According to the results of single factor experiments and L273(13) orthogonal experiments, optimum extraction conditions were A1B3C1, extraction time 6 h, temperature 80°C, solid to liquid ratio 1∶10 (g:mL). The highest (p<0.05) antibacterial activity was observed when pH was 5, excluding the effect of control. The extracts were stable under ultraviolet (UV). In vivo analysis revealed that 50 mg/mL of P. orientale leaf extracts was effective in controlling decay. Under field conditions, 50 mg/mL of P. orientale leaf extracts also improved growth parameters (whole plant length, shoot length, root length, plant fresh weight, shoot fresh weight, root fresh weight, dry weight, and number of leaves), in the 2010 and 2011 two growing seasons. Further solvent partition assays showed that the most active compounds were in the petroleum ether fractionation. Transmission electron microscopy (TEM) showed drastic ultrastructural changes caused by petroleum ether fractionation, including bacterial deformation, electron-dense particles, formation of vacuoles and lack of cytoplasmic materials. These results indicated that P. orientale extracts have strong antibacterial activity against C. michiganense subsp. sepedonicum and a promising effect in control of bacterial ring rot of potato disease. PMID:23861908

  4. Astragalus Root and Elderberry Fruit Extracts Enhance the IFN-β Stimulatory Effects of Lactobacillus acidophilus in Murine-Derived Dendritic Cells

    PubMed Central

    Frøkiær, Hanne; Henningsen, Louise; Metzdorff, Stine Broeng; Weiss, Gudrun; Roller, Marc; Flanagan, John; Fromentin, Emilie; Ibarra, Alvin

    2012-01-01

    Many foods and food components boost the immune system, but little data are available regarding the mechanisms by which they do. Bacterial strains have disparate effects in stimulating the immune system. Indendritic cells, the gram-negative bacteria Escherichia coli upregulates proinflammatory cytokines, whereas gram-positive Lactobacillus acidophilus induces a robust interferon (IFN)-β response. The immune-modulating effects of astragalus root and elderberry fruit extracts were examined in bone marrow-derived murine dendritic cells that were stimulated with L. acidophilus or E. coli. IFN-β and other cytokines were measured by ELISA and RT-PCR. Endocytosis of fluorescence-labeled dextran and L. acidophilus in the presence of elderberry fruit or astragalus root extract was evaluated in dendritic cells. Our results show that both extracts enhanced L. acidophilus-induced IFN-β production and slightly decreased the proinflammatory response to E. coli. The enhanced IFN-β production was associated with upregulation of toll-like receptor 3 and to a varying degree, the cytokines IL-12, IL-6, IL-1β and TNF-α. Both extracts increased endocytosis in immature dendritic cells, and only slightly influenced the viability of the cells. In conclusion, astragalus root and elderberry fruit extracts increase the IFN-β inducing activity of L. acidophilus in dendritic cells, suggesting that they may exert antiviral and immune-enhancing activity. PMID:23118903

  5. Lipid extraction from isolated single nerve cells

    NASA Technical Reports Server (NTRS)

    Krasnov, I. V.

    1977-01-01

    A method of extracting lipids from single neurons isolated from lyophilized tissue is described. The method permits the simultaneous extraction of lipids from 30-40 nerve cells and for each cell provides equal conditions of solvent removal at the conclusion of extraction.

  6. Disinfection byproduct formation from chlorination of pure bacterial cells and pipeline biofilms.

    PubMed

    Wang, Jun-Jian; Liu, Xin; Ng, Tsz Wai; Xiao, Jie-Wen; Chow, Alex T; Wong, Po Keung

    2013-05-15

    Disinfection byproduct (DBP) formation is commonly attributed to the reaction between natural organic matters and disinfectants, yet few have considered the contribution from disinfecting bacterial materials - the essential process of water disinfection. Here, we explored the DBP formation from chlorination and chloramination of Escherichia coli and found that most selected DBPs were detectable, including trihalomethanes, haloacetonitriles, chloral hydrate, chloropicrin, and 1,1,1-trichloro-2-propanone. A positive correlation (P = 0.08-0.09) between DBP formation and the log reduction of E. coli implied that breaking down of bacterial cells released precursors for DBP formation. As Pseudomonas aeruginosa is a dominant bacterial species in pipeline biofilms, the DBP formation potentials (DBPFPs) from its planktonic cells and biofilms were characterized. Planktonic cells formed 7-11 times greater trihalomethanes per carbon of those from biofilms but significantly lower (P < 0.05) chloral hydrate, highlighting the bacterial phenotype's impact on the bacteria-derived DBPFP. Pipe material appeared to affect the DBPFP of bacteria, with 4-28% lower bromine incorporation factor for biofilms on polyvinyl chloride compared to that on galvanized zinc. This study revealed both the in situ disinfection of bacterial planktonic cells in source water and ex situ reaction between biofilms and residual chlorine in pipeline networks as hitherto unknown DBP sources in drinking water. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Bacterial Cell Enlargement Requires Control of Cell Wall Stiffness Mediated by Peptidoglycan Hydrolases.

    PubMed

    Wheeler, Richard; Turner, Robert D; Bailey, Richard G; Salamaga, Bartłomiej; Mesnage, Stéphane; Mohamad, Sharifah A S; Hayhurst, Emma J; Horsburgh, Malcolm; Hobbs, Jamie K; Foster, Simon J

    2015-07-28

    Most bacterial cells are enclosed in a single macromolecule of the cell wall polymer, peptidoglycan, which is required for shape determination and maintenance of viability, while peptidoglycan biosynthesis is an important antibiotic target. It is hypothesized that cellular enlargement requires regional expansion of the cell wall through coordinated insertion and hydrolysis of peptidoglycan. Here, a group of (apparent glucosaminidase) peptidoglycan hydrolases are identified that are together required for cell enlargement and correct cellular morphology of Staphylococcus aureus, demonstrating the overall importance of this enzyme activity. These are Atl, SagA, ScaH, and SagB. The major advance here is the explanation of the observed morphological defects in terms of the mechanical and biochemical properties of peptidoglycan. It was shown that cells lacking groups of these hydrolases have increased surface stiffness and, in the absence of SagB, substantially increased glycan chain length. This indicates that, beyond their established roles (for example in cell separation), some hydrolases enable cellular enlargement by making peptidoglycan easier to stretch, providing the first direct evidence demonstrating that cellular enlargement occurs via modulation of the mechanical properties of peptidoglycan. Understanding bacterial growth and division is a fundamental problem, and knowledge in this area underlies the treatment of many infectious diseases. Almost all bacteria are surrounded by a macromolecule of peptidoglycan that encloses the cell and maintains shape, and bacterial cells must increase the size of this molecule in order to enlarge themselves. This requires not only the insertion of new peptidoglycan monomers, a process targeted by antibiotics, including penicillin, but also breakage of existing bonds, a potentially hazardous activity for the cell. Using Staphylococcus aureus, we have identified a set of enzymes that are critical for cellular enlargement. We

  8. Bacterial Cell Growth Inhibitors Targeting Undecaprenyl Diphosphate Synthase and Undecaprenyl Diphosphate Phosphatase.

    PubMed

    Wang, Yang; Desai, Janish; Zhang, Yonghui; Malwal, Satish R; Shin, Christopher J; Feng, Xinxin; Sun, Hong; Liu, Guizhi; Guo, Rey-Ting; Oldfield, Eric

    2016-10-19

    We synthesized a series of benzoic acids and phenylphosphonic acids and investigated their effects on the growth of Staphylococcus aureus and Bacillus subtilis. One of the most active compounds, 5-fluoro-2-(3-(octyloxy)benzamido)benzoic acid (7, ED 50 ∼0.15 μg mL -1 ) acted synergistically with seven antibiotics known to target bacterial cell-wall biosynthesis (a fractional inhibitory concentration index (FICI) of ∼0.35, on average) but had indifferent effects in combinations with six non-cell-wall biosynthesis inhibitors (average FICI∼1.45). The most active compounds were found to inhibit two enzymes involved in isoprenoid/bacterial cell-wall biosynthesis: undecaprenyl diphosphate synthase (UPPS) and undecaprenyl diphosphate phosphatase (UPPP), but not farnesyl diphosphate synthase, and there were good correlations between bacterial cell growth inhibition, UPPS inhibition, and UPPP inhibition. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Sonication reduces the attachment of Salmonella Typhimurium ATCC 14028 cells to bacterial cellulose-based plant cell wall models and cut plant material.

    PubMed

    Tan, Michelle S F; Rahman, Sadequr; Dykes, Gary A

    2017-04-01

    This study investigated the removal of bacterial surface structures, particularly flagella, using sonication, and examined its effect on the attachment of Salmonella Typhimurium ATCC 14028 cells to plant cell walls. S. Typhimurium ATCC 14028 cells were subjected to sonication at 20 kHz to remove surface structures without affecting cell viability. Effective removal of flagella was determined by staining flagella of sonicated cells with Ryu's stain and enumerating the flagella remaining by direct microscopic counting. The attachment of sonicated S. Typhimurium cells to bacterial cellulose-based plant cell wall models and cut plant material (potato, apple, lettuce) was then evaluated. Varying concentrations of pectin and/or xyloglucan were used to produce a range of bacterial cellulose-based plant cell wall models. As compared to the non-sonicated controls, sonicated S. Typhimurium cells attached in significantly lower numbers (between 0.5 and 1.0 log CFU/cm 2 ) to all surfaces except to the bacterial cellulose-only composite without pectin and xyloglucan. Since attachment of S. Typhimurium to the bacterial cellulose-only composite was not affected by sonication, this suggests that bacterial surface structures, particularly flagella, could have specific interactions with pectin and xyloglucan. This study indicates that sonication may have potential applications for reducing Salmonella attachment during the processing of fresh produce. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Cytotoxicity of extracts of spices to cultured cells.

    PubMed

    Unnikrishnan, M C; Kuttan, R

    1988-01-01

    The cytotoxicity of the extracts from eight different spices used in the Indian diet was determined using Dalton's lymphoma ascites tumor cells and human lymphocytes in vitro and Chinese Hamster Ovary cells and Vero cells in tissue culture. Alcoholic extracts of the spices were found to be more cytotoxic to these cells than their aqueous extracts. Alcoholic extracts of several spices inhibited cell growth at concentrations of 0.2-1 mg/ml in vitro and 0.12-0.3 mg/ml in tissue culture. Ginger, pippali (native to India; also called dried catkins), pepper, and garlic showed the highest activity followed by asafetida, mustard, and horse-gram (native to India). These extracts also inhibited the thymidine uptake into DNA.

  11. A bacterial extract of OM-85 Broncho-Vaxom prevents allergic rhinitis in mice.

    PubMed

    Han, Ling; Zheng, Chao-Pan; Sun, Yue-Qi; Xu, Geng; Wen, Weiping; Fu, Qing-Ling

    2014-01-01

    According to the hygiene hypothesis, bacterial infections during early life contribute to a reduced incidence of asthma in animals. However, the effects of microbial products at a safe dose and within a rational time course on the prevention of allergic rhinitis (AR) have been inconclusive. This study investigated the immunomodulatory effects of oral administration of a bacterial extract, OM-85 Broncho-Vaxom (BV), with a low dose and general time course, which is currently used for respiratory infections in humans, on AR inflammation in mice. We developed a mouse model of ovalbumin (OVA)-induced AR allergic inflammation in the nose mucosa of mice. Low doses of OM-85 BV were orally administered for 3 months (long term) before sensitization. We evaluated nasal symptoms, pathology in the nose, inflammatory cells, and the levels of T helper 1 (Th1)/Th2 cytokines in the nasal lavage fluids, and the serum levels of specific IgE and IgG1. We also observed enhanced effects of OM-85 BV with 1 month (short term) of treatment. We found that long-term pretreatment with OM-85 BV protected the mice from the majority of allergy-specific symptoms; specifically, OM-85 BV suppressed nasal symptoms, inhibited eosinophil infiltration in the nose, inhibited inflammatory infiltrates and the Th2 response by reducing cytokines (IL-4, IL-5, or IL-13) in the nasal lavage fluids, and reduced IgE and IgG1 levels. Furthermore, short-term treatment with OM-85 BV decreased the levels of Th2 cytokines and IgE. Taken together, our data suggested that OM-85 BV is a low-cost alternative candidate to prevent AR with simple oral administration.

  12. A bacterial extract of OM-85 Broncho-Vaxom prevents allergic rhinitis in mice.

    PubMed

    Han, L; Zheng, C-P; Sun, Y-Q; Xu, G; Wen, W; Fu, Q-L

    2013-12-06

    According to the hygiene hypothesis, bacterial infections during early life contribute to a reduced incidence of asthma in animals. However, the effects of microbial products at a safe dose and within a rational time course on the prevention of allergic rhinitis (AR) have been inconclusive. This study investigated the immunomodulatory effects of oral administration of a bacterial extract, OM-85 Broncho-Vaxom (BV), with a low dose and general time course, which is currently used for respiratory infections in humans, on AR inflammation in mice. We developed a mouse model of ovalbumin (OVA)-induced AR allergic inflammation in the nose mucosa of mice. Low doses of OM-85 BV were orally administered for 3 months (long term) before sensitization. We evaluated nasal symptoms, pathology in the nose, inflammatory cells, and the levels of T helper 1 (Th1)/Th2 cytokines in the nasal lavage fluids, and the serum levels of specific IgE and IgG1. We also observed enhanced effects of OM-85BV with 1 month (short term) of treatment. We found that long-term pretreatment with OM-85 BV protected the mice from the majority of allergy-specific symptoms; specifically, OM-85 BV suppressed nasal symptoms, inhibited eosinophil infiltration in the nose, inhibited inflammatory infiltrates and the Th2 response by reducing cytokines (IL-4, IL-5, or IL-13) in the nasal lavage fluids, and reduced IgE and IgG1 levels. Furthermore, short-term treatment with OM-85 BV decreased the levels of Th2 cytokines and IgE. Taken together, our data suggested that OM-85 BV is a low-cost alternative candidate to prevent AR with simple oral administration.

  13. Antibacterial efficacy of the seed extracts of Melia azedarach against some hospital isolated human pathogenic bacterial strains

    PubMed Central

    Khan, Abdul Viqar; Ahmed, Qamar Uddin; Mir, M Ramzan; Shukla, Indu; Khan, Athar Ali

    2011-01-01

    Objective To investigate the antibacterial potential of the polar and non-polar extracts of the seeds of Melia azedarach (M. azedarach) L. (Meliaceae) against eighteen hospital isolated human pathogenic bacterial strains. Methods Petrol, benzene, ethyl acetate, methanol, and aqueous extracts at five different concentrations (1, 2, 5, 10 and 15 mg/mL) were evaluated. Disk diffusion method was followed to evaluate the antibacterial efficacy. Results All extracts of the seeds demonstrated significant antibacterial activity against tested pathogens. Among all extracts, ethyl acetate extract revealed the highest inhibition comparatively. The present study also favored the traditional uses reported earlier. Conclusions Results of this study strongly confirm that the seed extracts of M. azedarach could be effective antibiotics, both in controlling gram-positive and gram-negative human pathogenic infections. PMID:23569812

  14. The disruptive effect of lysozyme on the bacterial cell wall explored by an in-silico structural outlook.

    PubMed

    Primo, Emiliano D; Otero, Lisandro H; Ruiz, Francisco; Klinke, Sebastián; Giordano, Walter

    2018-01-01

    The bacterial cell wall, a structural unit of peptidoglycan polymer comprised of glycan strands consisting of a repeating disaccharide motif [N-acetylglucosamine (NAG) and N-acetylmuramylpentapeptide (NAM pentapeptide)], encases bacteria and provides structural integrity and protection. Lysozymes are enzymes that break down the bacterial cell wall and disrupt the bacterial life cycle by cleaving the linkage between the NAG and NAM carbohydrates. Lab exercises focused on the effects of lysozyme on the bacterial cell wall are frequently incorporated in biochemistry classes designed for undergraduate students in diverse fields as biology, microbiology, chemistry, agronomy, medicine, and veterinary medicine. Such exercises typically do not include structural data. We describe here a sequence of computer tasks designed to illustrate and reinforce both physiological and structural concepts involved in lysozyme effects on the bacterial cell-wall structure. This lab class usually lasts 3.5 hours. First, the instructor presents introductory concepts of the bacterial cell wall and the effect of lysozyme on its structure. Then, students are taught to use computer modeling to visualize the three-dimensional structure of a lysozyme in complex with bacterial cell-wall fragments. Finally, the lysozyme inhibitory effect on a bacterial culture is optionally proposed as a simple microbiological assay. The computer lab exercises described here give students a realistic understanding of the disruptive effect of lysozymes on the bacterial cell wall, a crucial component in bacterial survival. © 2017 by The International Union of Biochemistry and Molecular Biology, 46(1):83-90, 2018. © 2017 The International Union of Biochemistry and Molecular Biology.

  15. The Extraction and Partial Purification of Bacterial DNA as a Practical Exercise for GCE Advanced Level Students.

    ERIC Educational Resources Information Center

    Falconer, A. C.; Hayes, L. J.

    1986-01-01

    Describes a relatively simple method of extraction and purification of bacterial DNA. This technique permits advanced secondary-level science students to obtain adequate amounts of DNA from very small pellets of bacteria and to observe some of its polymer properties. (ML)

  16. Combined antioxidant effects of Neem extract, bacteria, red blood cells and Lysozyme: possible relation to periodontal disease.

    PubMed

    Heyman, Leali; Houri-Haddad, Yael; Heyman, Samuel N; Ginsburg, Isaac; Gleitman, Yossi; Feuerstein, Osnat

    2017-08-10

    The common usage of chewing sticks prepared from Neem tree (Azadirachta indica) in India suggests its potential efficacy in periodontal diseases. The objective of this study is to explore the antibacterial effects of Neem leaf extract on the periodontophatic bacteria Porphyromonas gingivalis and Fusobacterium nucleatum, and its antioxidant capacities alone and in combination with bacteria and polycationic peptides that may be at the site of inflammation. Neem leaf extract was prepared by ethanol extraction. The growth kinetics of P. gingivalis and F. nucleatum under anaerobic conditions in the presence of Neem leaf extract were measured. Broth microdilution test was used to determine the Minimal Inhibitory Concentration (MIC) of Neem leaf extract against each bacterial strain. The effect of Neem leaf extract on the coaggregation of the bacteria was assessed by a visual semi-quantitative assay. The antioxidant capacities of Neem leaf extract alone and in combination with bacteria, with the addition of red blood cells or the polycationic peptides chlorhexidine and lisozyme, were determined using a chemiluminescence assay. Neem leaf extract showed prominent dose-dependent antibacterial activity against P. gingivalis, however, had no effect on the growth of F. nucleatum nor on the coaggregation of the two bacteria. Yet, it showed intense antioxidant activity, which was amplified following adherence to bacteria and with the addition of red blood cells or the polycationic peptides. Neem leaf extract, containing polyphenols that adhere to oral surfaces, have the potential to provide long-lasting antibacterial as well as synergic antioxidant activities when in complex with bacteria, red blood cells and lisozyme. Thus, it might be especially effective in periodontal diseases.

  17. Bacterial safety of cell-based therapeutic preparations, focusing on haematopoietic progenitor cells.

    PubMed

    Störmer, M; Wood, E M; Schurig, U; Karo, O; Spreitzer, I; McDonald, C P; Montag, T

    2014-05-01

    Bacterial safety of cellular preparations, especially haematopoietic progenitor cells (HPCs), as well as advanced therapy medicinal products (ATMPs) derived from stem cells of various origins, present a challenge for physicians, manufacturers and regulators. The article describes the background and practical issues in this area and illustrates why sterility of these products cannot currently be guaranteed. Advantages and limitations of approaches both for classical sterility testing and for microbiological control using automated culture systems are discussed. The review considers novel approaches for growth-based rapid microbiological control with high sensitivity and faster availability of results, as well as new methods for rapid bacterial detection in cellular preparations enabling meaningful information about product contamination within one to two hours. Generally, however, these direct rapid methods are less sensitive and have greater sampling error compared with the growth-based methods. Opportunities for pyrogen testing of cell therapeutics are also discussed. There is an urgent need for development of novel principles and methods applicable to bacterial safety of cellular therapeutics. We also need a major shift in approach from the traditional view of sterility evaluation (identify anything and everything) to a new thinking about how to find what is clinically relevant within the time frame available for the special clinical circumstances in which these products are used. The review concludes with recommendations for optimization of microbiological control of cellular preparations, focusing on HPCs. © 2013 International Society of Blood Transfusion.

  18. Mechanisms of bacterial morphogenesis: evolutionary cell biology approaches provide new insights.

    PubMed

    Jiang, Chao; Caccamo, Paul D; Brun, Yves V

    2015-04-01

    How Darwin's "endless forms most beautiful" have evolved remains one of the most exciting questions in biology. The significant variety of bacterial shapes is most likely due to the specific advantages they confer with respect to the diverse environments they occupy. While our understanding of the mechanisms generating relatively simple shapes has improved tremendously in the last few years, the molecular mechanisms underlying the generation of complex shapes and the evolution of shape diversity are largely unknown. The emerging field of bacterial evolutionary cell biology provides a novel strategy to answer this question in a comparative phylogenetic framework. This relatively novel approach provides hypotheses and insights into cell biological mechanisms, such as morphogenesis, and their evolution that would have been difficult to obtain by studying only model organisms. We discuss the necessary steps, challenges, and impact of integrating "evolutionary thinking" into bacterial cell biology in the genomic era. © 2015 WILEY Periodicals, Inc.

  19. Biophysical model of bacterial cell interactions with nanopatterned cicada wing surfaces.

    PubMed

    Pogodin, Sergey; Hasan, Jafar; Baulin, Vladimir A; Webb, Hayden K; Truong, Vi Khanh; Phong Nguyen, The Hong; Boshkovikj, Veselin; Fluke, Christopher J; Watson, Gregory S; Watson, Jolanta A; Crawford, Russell J; Ivanova, Elena P

    2013-02-19

    The nanopattern on the surface of Clanger cicada (Psaltoda claripennis) wings represents the first example of a new class of biomaterials that can kill bacteria on contact based solely on their physical surface structure. The wings provide a model for the development of novel functional surfaces that possess an increased resistance to bacterial contamination and infection. We propose a biophysical model of the interactions between bacterial cells and cicada wing surface structures, and show that mechanical properties, in particular cell rigidity, are key factors in determining bacterial resistance/sensitivity to the bactericidal nature of the wing surface. We confirmed this experimentally by decreasing the rigidity of surface-resistant strains through microwave irradiation of the cells, which renders them susceptible to the wing effects. Our findings demonstrate the potential benefits of incorporating cicada wing nanopatterns into the design of antibacterial nanomaterials. Copyright © 2013 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  20. The actin homologue MreB organizes the bacterial cell membrane

    PubMed Central

    Strahl, Henrik; Bürmann, Frank; Hamoen, Leendert W.

    2014-01-01

    The eukaryotic cortical actin cytoskeleton creates specific lipid domains, including lipid rafts, which determine the distribution of many membrane proteins. Here we show that the bacterial actin homologue MreB displays a comparable activity. MreB forms membrane-associated filaments that coordinate bacterial cell wall synthesis. We noticed that the MreB cytoskeleton influences fluorescent staining of the cytoplasmic membrane. Detailed analyses combining an array of mutants, using specific lipid staining techniques and spectroscopic methods, revealed that MreB filaments create specific membrane regions with increased fluidity (RIFs). Interference with these fluid lipid domains (RIFs) perturbs overall lipid homeostasis and affects membrane protein localization. The influence of MreB on membrane organization and fluidity may explain why the active movement of MreB stimulates membrane protein diffusion. These novel MreB activities add additional complexity to bacterial cell membrane organization and have implications for many membrane-associated processes. PMID:24603761

  1. The actin homologue MreB organizes the bacterial cell membrane.

    PubMed

    Strahl, Henrik; Bürmann, Frank; Hamoen, Leendert W

    2014-03-07

    The eukaryotic cortical actin cytoskeleton creates specific lipid domains, including lipid rafts, which determine the distribution of many membrane proteins. Here we show that the bacterial actin homologue MreB displays a comparable activity. MreB forms membrane-associated filaments that coordinate bacterial cell wall synthesis. We noticed that the MreB cytoskeleton influences fluorescent staining of the cytoplasmic membrane. Detailed analyses combining an array of mutants, using specific lipid staining techniques and spectroscopic methods, revealed that MreB filaments create specific membrane regions with increased fluidity (RIFs). Interference with these fluid lipid domains (RIFs) perturbs overall lipid homeostasis and affects membrane protein localization. The influence of MreB on membrane organization and fluidity may explain why the active movement of MreB stimulates membrane protein diffusion. These novel MreB activities add additional complexity to bacterial cell membrane organization and have implications for many membrane-associated processes.

  2. Quantifying Multistate Cytoplasmic Molecular Diffusion in Bacterial Cells via Inverse Transform of Confined Displacement Distribution

    PubMed Central

    2016-01-01

    Single-molecule tracking (SMT) of fluorescently tagged cytoplasmic proteins can provide valuable information on the underlying biological processes in living cells via subsequent analysis of the displacement distributions; however, the confinement effect originated from the small size of a bacterial cell skews the protein’s displacement distribution and complicates the quantification of the intrinsic diffusive behaviors. Using the inverse transformation method, we convert the skewed displacement distribution (for both 2D and 3D imaging conditions) back to that in free space for systems containing one or multiple (non)interconverting Brownian diffusion states, from which we can reliably extract the number of diffusion states as well as their intrinsic diffusion coefficients and respective fractional populations. We further demonstrate a successful application to experimental SMT data of a transcription factor in living E. coli cells. This work allows a direct quantitative connection between cytoplasmic SMT data with diffusion theory for analyzing molecular diffusive behavior in live bacteria. PMID:26491971

  3. Quantifying Multistate Cytoplasmic Molecular Diffusion in Bacterial Cells via Inverse Transform of Confined Displacement Distribution.

    PubMed

    Chen, Tai-Yen; Jung, Won; Santiago, Ace George; Yang, Feng; Krzemiński, Łukasz; Chen, Peng

    2015-11-12

    Single-molecule tracking (SMT) of fluorescently tagged cytoplasmic proteins can provide valuable information on the underlying biological processes in living cells via subsequent analysis of the displacement distributions; however, the confinement effect originated from the small size of a bacterial cell skews the protein's displacement distribution and complicates the quantification of the intrinsic diffusive behaviors. Using the inverse transformation method, we convert the skewed displacement distribution (for both 2D and 3D imaging conditions) back to that in free space for systems containing one or multiple (non)interconverting Brownian diffusion states, from which we can reliably extract the number of diffusion states as well as their intrinsic diffusion coefficients and respective fractional populations. We further demonstrate a successful application to experimental SMT data of a transcription factor in living E. coli cells. This work allows a direct quantitative connection between cytoplasmic SMT data with diffusion theory for analyzing molecular diffusive behavior in live bacteria.

  4. Biological properties of carotenoids extracted from Halobacterium halobium isolated from a Tunisian solar saltern

    PubMed Central

    2013-01-01

    Background Bioactive molecules have received increasing attention due to their nutraceutical attributes and anticancer, antioxidant, antiproliferative and apoptosis-inducing properties. This study aimed to investigate the biological properties of carotenoids extracted from Archaea. Methods Halophilic Archaea strains were isolated from the brine of a local crystallizer pond (TS7) of a solar saltern at Sfax, Tunisia. The most carotenoid-producing strain (M8) was investigated on heptoma cell line (HepG2), and its viability was assessed by the MTT-test. The cells were incubated with different sub-lethal extract rates, with carotenoid concentrations ranging from 0.2 to 1.5 μM. Antioxidant activity was evaluated through exposing the cells to sub-lethal extract concentrations for 24 hours and then to oxidative stress induced by 60 μM arachidonic acid and 50 μM H2O2. Results Compared to non-treated cells, bacterial carotenoid extracts inhibited HepG2 cell viability (50%). A time and dose effect was observed, with cell viability undergoing a significant (P < 0.05) decrease with extract concentration. After exposure to oxidative stress, control cells underwent a significant (P < 0.05) decrease in viability as compared to the non-treated cells. Conclusions The bacterial extracts under investigation were noted to exhibit the strongest free radical scavenging activity with high carotenoid concentrations. The carotenoid extract also showed significant antiproliferative activity against HepG2 human cancer cell lines. PMID:24090008

  5. Process to Selectively Distinguish Viable from Non-Viable Bacterial Cells

    NASA Technical Reports Server (NTRS)

    LaDuc, Myron T.; Bernardini, Jame N.; Stam, Christina N.

    2010-01-01

    The combination of ethidium monoazide (EMA) and post-fragmentation, randomly primed DNA amplification technologies will enhance the analytical capability to discern viable from non-viable bacterial cells in spacecraft-related samples. Intercalating agents have been widely used since the inception of molecular biology to stain and visualize nucleic acids. Only recently, intercalating agents such as EMA have been exploited to selectively distinguish viable from dead bacterial cells. Intercalating dyes can only penetrate the membranes of dead cells. Once through the membrane and actually inside the cell, they intercalate DNA and, upon photolysis with visible light, produce stable DNA monoadducts. Once the DNA is crosslinked, it becomes insoluble and unable to be fragmented for post-fragmentation, randomly primed DNA library formation. Viable organisms DNA remains unaffected by the intercalating agents, allowing for amplification via post-fragmentation, randomly primed technologies. This results in the ability to carry out downstream nucleic acid-based analyses on viable microbes to the exclusion of all non-viable cells.

  6. [Influence of human gastrointestinal tract bacterial pathogens on host cell apoptosis].

    PubMed

    Wronowska, Weronika; Godlewska, Renata; Jagusztyn-Krynicka, Elzbieta Katarzyna

    2005-01-01

    Several pathogenic bacteria are able to trigger apoptosis in the host cell, but the mechanisms by which it occurs differ, and the resulting pathology can take different courses. Induction and/or blockage of programmed cell death upon infection is a result of complex interaction of bacterial proteins with cellular proteins involved in signal transduction and apoptosis. In this review we focus on pro/anti-apoptotic activities exhibited by two enteric pathogens Salmonella enterica, Yersinia spp. and gastric pathogen Helicobacter pylori. We present current knowledge on how interaction between mammalian and bacterial cell relates to the molecular pathways of apoptosis, and what is the role of apoptosis in pathogenesis.

  7. The impact of metabolic state on Cd adsorption onto bacterial cells

    USGS Publications Warehouse

    Johnson, K.J.; Ams, D.A.; Wedel, A.N.; Szymanowski, J.E.S.; Weber, D.L.; Schneegurt, M.A.; Fein, J.B.

    2007-01-01

    This study examines the effect of bacterial metabolism on the adsorption of Cd onto Gram-positive and Gram-negative bacterial cells. Metabolically active Gram-positive cells adsorbed significantly less Cd than non-metabolizing cells. Gram-negative cells, however, showed no systematic difference in Cd adsorption between metabolizing and non-metabolizing cells. The effect of metabolism on Cd adsorption to Gram-positive cells was likely due to an influx of protons in and around the cell wall from the metabolic proton motive force, promoting competition between Cd and protons for adsorption sites on the cell wall. The relative lack of a metabolic effect on Cd adsorption onto Gram-negative compared to Gram-positive cells suggests that Cd binding in Gram-negative cells is focused in a region of the cell wall that is not reached, or is unaffected by this proton flux. Thermodynamic modeling was used to estimate that proton pumping causes the pH in the cell wall of metabolizing Gram-positive bacteria to decrease from the bulk solution value of 7.0 to approximately 5.7. ?? 2007 The Authors.

  8. Strain Library Imaging Protocol for high-throughput, automated single-cell microscopy of large bacterial collections arrayed on multiwell plates.

    PubMed

    Shi, Handuo; Colavin, Alexandre; Lee, Timothy K; Huang, Kerwyn Casey

    2017-02-01

    Single-cell microscopy is a powerful tool for studying gene functions using strain libraries, but it suffers from throughput limitations. Here we describe the Strain Library Imaging Protocol (SLIP), which is a high-throughput, automated microscopy workflow for large strain collections that requires minimal user involvement. SLIP involves transferring arrayed bacterial cultures from multiwell plates onto large agar pads using inexpensive replicator pins and automatically imaging the resulting single cells. The acquired images are subsequently reviewed and analyzed by custom MATLAB scripts that segment single-cell contours and extract quantitative metrics. SLIP yields rich data sets on cell morphology and gene expression that illustrate the function of certain genes and the connections among strains in a library. For a library arrayed on 96-well plates, image acquisition can be completed within 4 min per plate.

  9. Chemically synthesized silver nanoparticles as cell lysis agent for bacterial genomic DNA isolation

    NASA Astrophysics Data System (ADS)

    Goswami, Gunajit; Boruah, Himangshu; Gautom, Trishnamoni; Jyoti Hazarika, Dibya; Barooah, Madhumita; Boro, Robin Chandra

    2017-12-01

    Silver nanoparticles (AgNPs) have seen a recent spurt of use in varied fields of science. In this paper, we showed a novel application of AgNP as a promising microbial cell-lysis agent for genomic DNA isolation. We utilized chemically synthesized AgNPs for lysing bacterial cells to isolate their genomic DNA. The AgNPs efficiently lysed bacterial cells to yield good quality DNA that could be subsequently used for several molecular biology works.

  10. PGE2 suppresses intestinal T cell function in thermal injury: a cause of enhanced bacterial translocation.

    PubMed

    Choudhry, M A; Fazal, N; Namak, S Y; Haque, F; Ravindranath, T; Sayeed, M M

    2001-09-01

    Increased gut bacterial translocation in burn and trauma patients has been demonstrated in a number of previous studies, however, the mechanism for such an increased gut bacterial translocation in injured patients remains poorly understood. Utilizing a rat model of burn injury, in the present study we examined the role of intestinal immune defense by analyzing the T cell functions. We investigated if intestinal T cells dysfunction contributes to bacterial translocation after burn injury. Also our study determined if burn-mediated alterations in intestinal T cell functions are related to enhanced release of PGE2. Finally, we examined whether or not burn-related alterations in intestinal T cell function are due to inappropriate activation of signaling molecule P59fyn, which is required for T cell activation and proliferation. The results presented here showed an increase in gut bacterial accumulation in mesenteric lymph nodes after thermal injury. This was accompanied by a decrease in the intestinal T cell proliferative responses. Furthermore, the treatments of burn-injured animals with PGE2 synthesis blocker (indomethacin or NS398) prevented both the decrease in intestinal T cell proliferation and enhanced bacterial translocation. Finally, our data suggested that the inhibition of intestinal T cell proliferation could result via PGE2-mediated down-regulation of the T cell activation-signaling molecule P59fyn. These findings support a role of T cell-mediated immune defense against bacterial translocation in burn injury.

  11. Tunable Single-Cell Extraction for Molecular Analyses.

    PubMed

    Guillaume-Gentil, Orane; Grindberg, Rashel V; Kooger, Romain; Dorwling-Carter, Livie; Martinez, Vincent; Ossola, Dario; Pilhofer, Martin; Zambelli, Tomaso; Vorholt, Julia A

    2016-07-14

    Because of cellular heterogeneity, the analysis of endogenous molecules from single cells is of significant interest and has major implications. While micromanipulation or cell sorting followed by cell lysis is already used for subsequent molecular examinations, approaches to directly extract the content of living cells remain a challenging but promising alternative to achieving non-destructive sampling and cell-context preservation. Here, we demonstrate the quantitative extraction from single cells with spatiotemporal control using fluidic force microscopy. We further present a comprehensive analysis of the soluble molecules withdrawn from the cytoplasm or the nucleus, including the detection of enzyme activities and transcript abundances. This approach has uncovered the ability of cells to withstand extraction of up to several picoliters and opens opportunities to study cellular dynamics and cell-cell communication under physiological conditions at the single-cell level. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Spatial Patterning of Newly-Inserted Material during Bacterial Cell Growth

    NASA Astrophysics Data System (ADS)

    Ursell, Tristan

    2012-02-01

    In the life cycle of a bacterium, rudimentary microscopy demonstrates that cell growth and elongation are essential characteristics of cellular reproduction. The peptidoglycan cell wall is the main load-bearing structure that determines both cell shape and overall size. However, simple imaging of cellular growth gives no indication of the spatial patterning nor mechanism by which material is being incorporated into the pre-existing cell wall. We employ a combination of high-resolution pulse-chase fluorescence microscopy, 3D computational microscopy, and detailed mechanistic simulations to explore how spatial patterning results in uniform growth and maintenance of cell shape. We show that growth is happening in discrete bursts randomly distributed over the cell surface, with a well-defined mean size and average rate. We further use these techniques to explore the effects of division and cell wall disrupting antibiotics, like cephalexin and A22, respectively, on the patterning of cell wall growth in E. coli. Finally, we explore the spatial correlation between presence of the bacterial actin-like cytoskeletal protein, MreB, and local cell wall growth. Together these techniques form a powerful method for exploring the detailed dynamics and involvement of antibiotics and cell wall-associated proteins in bacterial cell growth.[4pt] In collaboration with Kerwyn Huang, Stanford University.

  13. Conventional CD4+ T cells present bacterial antigens to induce cytotoxic and memory CD8+ T cell responses.

    PubMed

    Cruz-Adalia, Aránzazu; Ramirez-Santiago, Guillermo; Osuna-Pérez, Jesús; Torres-Torresano, Mónica; Zorita, Virgina; Martínez-Riaño, Ana; Boccasavia, Viola; Borroto, Aldo; Martínez Del Hoyo, Gloria; González-Granado, José María; Alarcón, Balbino; Sánchez-Madrid, Francisco; Veiga, Esteban

    2017-11-17

    Bacterial phagocytosis and antigen cross-presentation to activate CD8 + T cells are principal functions of professional antigen presenting cells. However, conventional CD4 + T cells also capture and kill bacteria from infected dendritic cells in a process termed transphagocytosis (also known as transinfection). Here, we show that transphagocytic T cells present bacterial antigens to naive CD8 + T cells, which proliferate and become cytotoxic in response. CD4 + T-cell-mediated antigen presentation also occurs in vivo in the course of infection, and induces the generation of central memory CD8 + T cells with low PD-1 expression. Moreover, transphagocytic CD4 + T cells induce protective anti-tumour immune responses by priming CD8 + T cells, highlighting the potential of CD4 + T cells as a tool for cancer immunotherapy.

  14. Osmotic Pressure, Bacterial Cell Walls, and Penicillin: A Demonstration.

    ERIC Educational Resources Information Center

    Lennox, John E.

    1984-01-01

    An easily constructed apparatus that models the effect of penicillin on the structure of bacterial cells is described. Background information and procedures for using the apparatus during a classroom demonstration are included. (JN)

  15. Evaluation of in vitro anti-inflammatory effects of crude ginger and rosemary extracts obtained through supercritical CO2 extraction on macrophage and tumor cell line: the influence of vehicle type.

    PubMed

    Justo, Oselys Rodriguez; Simioni, Patricia Ucelli; Gabriel, Dirce Lima; Tamashiro, Wirla Maria da Silva Cunha; Rosa, Paulo de Tarso Vieira; Moraes, Ângela Maria

    2015-10-29

    Numerous plants from have been investigated due to their anti-inflammatory activity and, among then, extracts or components of ginger (Zingiber officinale Roscoe) and rosemary (Rosmarinus officinalis L.), sources of polyphenolic compounds. 6-gingerol from ginger rhizome and carnosic acid and carnosol from rosemary leaves present anti-tumor, anti-inflammatory and antioxidant activities. However, the evaluation of the mechanisms of action of these and other plant extracts is limited due to their high hydrophobicity. Dimethylsulfoxide (DMSO) is commonly used as a vehicle of liposoluble materials to mammalian cells in vitro, presenting enhanced cell penetration. Liposomes are also able to efficiently deliver agents to mammalian cells, being capable to incorporate in their structure not only hydrophobic molecules, but also hydrophilic and amphiphilic compounds. Another strategy is based on the use of Pluronic F-68, a biocompatible low-foaming, non-ionic surfactant, to disperse hydrophobic components. Here, these three delivery approaches were compared to analyze their influence on the in vitro anti-inflammatory effects of ginger and rosemary extracts, at different concentrations, on primary mammalian cells and on a tumor cell line. Ginger and rosemary extracts free of organic solvents were obtained by supercritical fluid extraction and dispersed in DMSO, Pluronic F-68 or liposomes, in variable concentrations. Cell viability, production of inflammatory mediators and nitric oxide (NO) release were measured in vitro on J774 cell line and murine macrophages primary culture stimulated with bacterial lipopolysaccharide and interferon-γ after being exposed or not to these extracts. Ginger and rosemary extracts obtained by supercritical CO2 extraction inhibited the production of pro-inflammatory cytokines and the release of NO by peritoneal macrophages and J774 cells. The delivery vehicles influenced the anti-inflammatory effects. Comparatively, the ginger extract showed the

  16. Antibacterial and anticancer PDMS surface for mammalian cell growth using the Chinese herb extract paeonol(4-methoxy-2-hydroxyacetophenone)

    NASA Astrophysics Data System (ADS)

    Jiao, Jiajia; Sun, Lili; Guo, Zaiyu; Hou, Sen; Holyst, Robert; Lu, Yun; Feng, Xizeng

    2016-12-01

    Polydimethylsiloxane (PDMS) is widely used as a cell culture platform to produce micro- and nano-technology based microdevices. However, the native PDMS surface is not suitable for cell adhesion and is always subject to bacterial pollution and cancer cell invasion. Coating the PDMS surface with antibacterial or anticancer materials often causes considerable harm to the non-cancer mammalian cells on it. We have developed a method to fabricate a biocompatible PDMS surface which not only promotes non-cancer mammalian cell growth but also has antibacterial and anticancer activities, by coating the PDMS surface with a Chinese herb extract, paeonol. Coating changes the wettability and the elemental composition of the PDMS surface. Molecular dynamic simulation indicates that the absorption of paeonol onto the PDMS surface is an energy favourable process. The paeonol-coated PDMS surface exhibits good antibacterial activity against both Gram-positive and Gram-negative bacteria. Moreover considerable antibacterial activity is maintained after the coated surface is rinsed or incubated in water. The coated PDMS surface inhibits bacterial growth on the contact surface and promotes non-cancer mammalian cell growth with low cell toxicity; meanwhile the growth of cancer cells is significantly inhibited. Our study will potentially guide PDMS surface modification approaches to produce biomedical devices.

  17. In vitro bacterial cytotoxicity of CNTs: reactive oxygen species mediate cell damage edges over direct physical puncturing.

    PubMed

    Rajavel, Krishnamoorthy; Gomathi, Rajkumar; Manian, Sellamuthu; Rajendra Kumar, Ramasamy Thangavelu

    2014-01-21

    Understanding the bacterial cytotoxicity of CNTs is important for a wide variety of applications in the biomedical, environmental, and health sectors. A majority of the earlier reports attributed the bactericidal cytotoxicity of CNTs to bacterial cell membrane damage by direct physical puncturing. Our results reveal that bacterial cell death via bacterial cell membrane damage is induced by reactive oxygen species (ROS) produced from CNTs and is not due to direct physical puncturing by CNTs. To understand the actual mechanism of bacterial killing, we elucidated the bacterial cytotoxicity of SWCNTs and MWCNTs against Gram-negative human pathogenic bacterial species Escherichia coli, Shigella sonnei, Klebsiella pneumoniae, and Pseudomonas aeruginosa and its amelioration upon functionalizing the CNTs with antioxidant tannic acid (TA). Interestingly, the bacterial cells treated with CNTs exhibited severe cell damage under laboratory (ambient) and sunlight irradiation conditions. However, CNTs showed no cytotoxicity to the bacterial cells when incubated in the dark. The quantitative assessments carried out by us made it explicit that CNTs are effective generators of ROS such as (1)O2, O2(•-), and (•)OH in an aqueous medium under both ambient and sunlight-irradiated conditions. Both naked and TA-functionalized CNTs showed negligible ROS production in the dark. Furthermore, strong correlations were obtained between ROS produced by CNTs and the bacterial cell mortality (with the correlation coefficient varying between 0.7618 and 0.9891) for all four tested pathogens. The absence of bactericidal cytotoxicity in both naked and functionalized CNTs in the dark reveals that the presence of ROS is the major factor responsible for the bactericidal action compared to direct physical puncturing. This understanding of the bactericidal activity of the irradiated CNTs, mediated through the generation of ROS, could be interesting for novel applications such as regulated ROS delivery

  18. Bacterial RNA isolation.

    PubMed

    Ares, Manuel

    2012-09-01

    In this bacterial RNA isolation protocol, an "RNA-protective" treatment is followed by lysozyme digestion of the peptidoglycan component of the cell wall. EDTA promotes the loss of the outer membrane of Gram-negative bacteria and allows the lysozyme better access to the peptidoglycan. Cells begin to lyse during digestion in hypotonic lysozyme buffer and lysis is completed by sodium dodecyl sulfate (SDS) and hot phenol:chloroform:isoamyl alcohol (PCA) extraction. SDS and hot phenol disrupt membranes, denature protein (including RNase), and strip proteins from RNA. The separation of the organic phase from the aqueous phase is achieved using Phase Lock Gel, an inert material with a density intermediate between the organic and aqueous samples. The sample is split into three phases: from bottom to top, these are phenol and chloroform (organic phase), the inert gel with the interface material, and the aqueous phase with the RNA. The gel acts as a physical barrier between the sample and the organic phase plus interface. Following organic extraction, the RNA is concentrated by ethanol precipitation.

  19. Autologous tumor cells engineered to express bacterial antigens.

    PubMed

    Ramiya, Vijayakumar K; Jerald, Maya M; Lawman, Patricia D; Lawman, Michael J P

    2014-01-01

    Cancer immunotherapies are emerging as promising treatment modalities in the management of the disease. As a result, cancer vaccines are considered to be immensely crucial in preventing recurrence, a well-known nemesis in cancer patients because they have the potential to activate memory antitumor immunity. Due to poor antigenicity and self-tolerance, most tumor antigens require interventional vaccine therapies to provide an adequate "danger" signal to the immune system in order to activate a robust, clinically meaningful antitumor immunity. It has been postulated that this requirement may be achieved by providing bacterial and/or viral immunogens to prime this type of immune response. Briefly, we provide here a method of transfecting whole tumor cells with plasmid DNA encoding an immunogenic bacterial protein such as Emm55, which was derived from Streptococcus pyogenes (S. pyogenes). Subsequent inactivation of the transfected cells by irradiation (100 Gray) prevents replication. This type of whole-cell vaccine, e.g., ImmuneFx™, has demonstrated activity in a murine neuroblastoma model, in canine lymphoma patients with naturally occurring disease, and in many cancer types in companion animals. The protocols described in this chapter provide the necessary materials and methodologies to manufacture such a vaccine.

  20. Rumen Bacterial Degradation of Forage Cell Walls Investigated by Electron Microscopy

    PubMed Central

    Akin, Danny E.; Amos, Henry E.

    1975-01-01

    The association of rumen bacteria with specific leaf tissues of the forage grass Kentucky-31 tall fescue (Festuca arundinacea Schreb.) during in vitro degradation was investigated by transmission and scanning electron microscopy. Examination of degraded leaf cross-sections revealed differential rates of tissue degradation in that the cell walls of the mesophyll and pholem were degraded prior to those of the outer bundle sheath and epidermis. Rumen bacteria appeared to degrade the mesophyll, in some cases, and phloem without prior attachment to the plant cell walls. The degradation of bundle sheath and epidermal cell walls appeared to be preceded by attachment of bacteria to the plant cell wall. Ultrastructural features apparently involved in the adhesion of large cocci to plant cells were observed by transmission and scanning electron microscopy. The physical association between plant and rumen bacterial cells during degradation apparently varies with tissue types. Bacterial attachment, by extracellular features in some microorganisms, is required prior to degradation of the more resistant tissues. Images PMID:16350017

  1. Cell-free extract from porcine induced pluripotent stem cells can affect porcine somatic cell nuclear reprogramming.

    PubMed

    No, Jin-Gu; Choi, Mi-Kyung; Kwon, Dae-Jin; Yoo, Jae Gyu; Yang, Byoung-Chul; Park, Jin-Ki; Kim, Dong-Hoon

    2015-01-01

    Pretreatment of somatic cells with undifferentiated cell extracts, such as embryonic stem cells and mammalian oocytes, is an attractive alternative method for reprogramming control. The properties of induced pluripotent stem cells (iPSCs) are similar to those of embryonic stem cells; however, no studies have reported somatic cell nuclear reprogramming using iPSC extracts. Therefore, this study aimed to evaluate the effects of porcine iPSC extracts treatment on porcine ear fibroblasts and early development of porcine cloned embryos produced from porcine ear skin fibroblasts pretreated with the porcine iPSC extracts. The Chariot(TM) reagent system was used to deliver the iPSC extracts into cultured porcine ear skin fibroblasts. The iPSC extracts-treated cells (iPSC-treated cells) were cultured for 3 days and used for analyzing histone modification and somatic cell nuclear transfer. Compared to the results for nontreated cells, the trimethylation status of histone H3 lysine residue 9 (H3K9) in the iPSC-treated cells significantly decreased. The expression of Jmjd2b, the H3K9 trimethylation-specific demethylase gene, significantly increased in the iPSC-treated cells; conversely, the expression of the proapoptotic genes, Bax and p53, significantly decreased. When the iPSC-treated cells were transferred into enucleated porcine oocytes, no differences were observed in blastocyst development and total cell number in blastocysts compared with the results for control cells. However, H3K9 trimethylation of pronuclear-stage-cloned embryos significantly decreased in the iPSC-treated cells. Additionally, Bax and p53 gene expression in the blastocysts was significantly lower in iPSC-treated cells than in control cells. To our knowledge, this study is the first to show that an extracts of porcine iPSCs can affect histone modification and gene expression in porcine ear skin fibroblasts and cloned embryos.

  2. Green synthesis of NiO nanoparticles using Moringa oleifera extract and their biomedical applications: Cytotoxicity effect of nanoparticles against HT-29 cancer cells.

    PubMed

    Ezhilarasi, A Angel; Vijaya, J Judith; Kaviyarasu, K; Maaza, M; Ayeshamariam, A; Kennedy, L John

    2016-11-01

    Green protocols for the synthesis of nickel oxide nanoparticles using Moringa oleifera plant extract has been reported in the present study as they are cost effective and ecofriendly, moreover this paper records that the nickel oxide (NiO) nanoparticles prepared from green method shows better cytotoxicity and antibacterial activity. The NiO nanoparticles were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), High resolution transmission electron microscopy (HRTEM), Energy dispersive X-ray analysis (EDX), and Photoluminescence spectroscopy (PL). The formation of a pure nickel oxide phase was confirmed by XRD and FTIR. The synthesized NiO nanoparticles was single crystalline having face centered cubic phase and has two intense photoluminescence emissions at 305.46nm and 410nm. The formation of nano- and micro-structures was confirmed by HRTEM. The in-vitro cytotoxicity and cell viability of human cancer cell HT-29 (Colon Carcinoma cell lines) and antibacterial studies against various bacterial strains were studied with various concentrations of nickel oxide nanoparticles prepared from Moringa oleifera plant extract. MTT assay measurements on cell viability and morphological studies proved that the synthesized NiO nanoparticles posses cytotoxic activity against human cancer cells and the various zones of inhibition (mm), obtained revealed the effective antibacterial activity of NiO nanoparticles against various Gram positive and Gram negative bacterial pathogens. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Differentiation of epithelial cells to M cells in response to bacterial colonization on the follicle-associated epithelium of Peyer's patch in rat small intestine.

    PubMed

    Chin, Keigi; Onishi, Sachiko; Yuji, Midori; Inamoto, Tetsurou; Qi, Wang-Mei; Warita, Katsuhiko; Yokoyama, Toshifumi; Hoshi, Nobuhiko; Kitagawa, Hiroshi

    2006-10-01

    To clarify the relationship between M cells and intestinal microflora, histoplanimetrical investigation into the bacterial colonization and the differentiation to M cells was carried out in rat Peyer's patch under physiological conditions. The follicle-associated epithelium (FAE), except for the narrow area of apical region, was closely covered with both neighboring intestinal villi and a thick mucous layer, the latter of which also filled the intervillous spaces as well as the space between the FAE and the neighboring intestinal villi. Indigenous bacteria adhered almost constantly to the narrow areas of apical regions of both intestinal villi and the FAE. Bacterial colonies were occasionally located on the basal to middle region of FAE, where M cells also appeared, forming large pockets. When bacterial colonies were located on the basal to middle region of FAE, bacteria with the same morphological characteristics also proliferated in the intervillous spaces neighboring the Peyer's patch. In cases with no bacterial colonies on the basal to middle region of FAE, however, M cells were rare in the FAE. Histoplanimetrical analysis showed the similar distribution pattern of bacterial colonies on the FAE and M cells in the FAE. M cells ultrastructurally engulfed indigenous bacteria, which were then transported to the pockets. These results suggest that indigenous bacterial colonization on the FAE stimulates the differentiation of M cells in the FAE under physiological conditions. The uptake of bacteria by M cells might contribute the regulation of the development of indigenous bacterial colonies in the small intestine.

  4. New Application of Hyperspectral Imaging for Bacterial Cell Classification

    USDA-ARS?s Scientific Manuscript database

    Hyperspectral microscopy has shown potential as a method for rapid detection of foodborne pathogenic bacteria with spectral characteristics from bacterial cells. Hyperspectral microscope images (HMIs) are collected from broiler chicken isolates of Salmonella serotypes Enteritidis, Typhimurium, Infa...

  5. Danshen extract circumvents drug resistance and represses cell growth in human oral cancer cells.

    PubMed

    Yang, Cheng-Yu; Hsieh, Cheng-Chih; Lin, Chih-Kung; Lin, Chun-Shu; Peng, Bo; Lin, Gu-Jiun; Sytwu, Huey-Kang; Chang, Wen-Liang; Chen, Yuan-Wu

    2017-12-29

    Danshen is a common traditional Chinese medicine used to treat neoplastic and chronic inflammatory diseases in China. However, the effects of Danshen on human oral cancer cells remain relatively unknown. This study investigated the antiproliferative effects of a Danshen extract on human oral cancer SAS, SCC25, OEC-M1, and KB drug-resistant cell lines and elucidated the possible underlying mechanism. We investigated the anticancer potential of the Danshen extract in human oral cancer cell lines and an in vivo oral cancer xenograft mouse model. The expression of apoptosis-related molecules was evaluated through Western blotting, and the concentration of in vivo apoptotic markers was measured using immunohistochemical staining. The antitumor effects of 5-fluorouracil and the Danshen extract were compared. Cell proliferation assays revealed that the Danshen extract strongly inhibited oral cancer cell proliferation. Cell morphology studies revealed that the Danshen extract inhibited the growth of SAS, SCC25, and OEC-M1 cells by inducing apoptosis. The Flow cytometric analysis indicated that the Danshen extract induced cell cycle G0/G1 arrest. Immunoblotting analysis for the expression of active caspase-3 and X-linked inhibitor of apoptosis protein indicated that Danshen extract-induced apoptosis in human oral cancer SAS cells was mediated through the caspase pathway. Moreover, the Danshen extract significantly inhibited growth in the SAS xenograft mouse model. Furthermore, the Danshen extract circumvented drug resistance in KB drug-resistant oral cancer cells. The study results suggest that the Danshen extract could be a potential anticancer agent in oral cancer treatment.

  6. Membrane Interaction of Antimicrobial Peptides Using E. coli Lipid Extract as Model Bacterial Cell Membranes and SFG Spectroscopy

    PubMed Central

    Soblosky, Lauren; Ramamoorthy, Ayyalusamy; Chen, Zhan

    2015-01-01

    Supported lipid bilayers are used as a convenient model cell membrane system to study biologically important molecule-lipid interactions in situ. However, the lipid bilayer models are often simple and the acquired results with these models may not provide all pertinent information related to a real cell membrane. In this work, we use sum frequency generation (SFG) vibrational spectroscopy to study molecular-level interactions between the antimicrobial peptides (AMPs) MSI-594, ovispirin-1 G18, magainin 2 and a simple 1,2-dipalmitoyl-d62-sn-glycero-3-phosphoglycerol (dDPPG)-1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoglycerol (POPG) bilayer. We compared such interactions to those between the AMPs and a more complex dDPPG/E. coli polar lipid extract bilayer. We show that to fully understand more complex aspects of peptide-bilayer interaction, such as interaction kinetics, a heterogeneous lipid composition is required, such as the E. coli polar lipid extract. The discrepancy in peptide-bilayer interaction is likely due in part to the difference in bilayer charge between the two systems since highly negative charged lipids can promote more favorable electrostatic interactions between the peptide and lipid bilayer. Results presented in this paper indicate that more complex model bilayers are needed to accurately analyze peptide-cell membrane interactions and demonstrates the importance of using an appropriate lipid composition to study AMP interaction properties. PMID:25707312

  7. Cell shape can mediate the spatial organization of the bacterial cytoskeleton

    NASA Astrophysics Data System (ADS)

    Wang, Siyuan; Wingreen, Ned

    2013-03-01

    The bacterial cytoskeleton guides the synthesis of cell wall and thus regulates cell shape. Since spatial patterning of the bacterial cytoskeleton is critical to the proper control of cell shape, it is important to ask how the cytoskeleton spatially self-organizes in the first place. In this work, we develop a quantitative model to account for the various spatial patterns adopted by bacterial cytoskeletal proteins, especially the orientation and length of cytoskeletal filaments such as FtsZ and MreB in rod-shaped cells. We show that the combined mechanical energy of membrane bending, membrane pinning, and filament bending of a membrane-attached cytoskeletal filament can be sufficient to prescribe orientation, e.g. circumferential for FtsZ or helical for MreB, with the accuracy of orientation increasing with the length of the cytoskeletal filament. Moreover, the mechanical energy can compete with the chemical energy of cytoskeletal polymerization to regulate filament length. Notably, we predict a conformational transition with increasing polymer length from smoothly curved to end-bent polymers. Finally, the mechanical energy also results in a mutual attraction among polymers on the same membrane, which could facilitate tight polymer spacing or bundling. The predictions of the model can be verified through genetic, microscopic, and microfluidic approaches.

  8. Morphology, Growth, and Size Limit of Bacterial Cells

    NASA Astrophysics Data System (ADS)

    Jiang, Hongyuan; Sun, Sean X.

    2010-07-01

    Bacterial cells utilize a living peptidoglycan network (PG) to separate the cell interior from the surroundings. The shape of the cell is controlled by PG synthesis and cytoskeletal proteins that form bundles and filaments underneath the cell wall. The PG layer also resists turgor pressure and protects the cell from osmotic shock. We argue that mechanical influences alter the chemical equilibrium of the reversible PG assembly and determine the cell shape and cell size. Using a mechanochemical approach, we show that the cell shape can be regarded as a steady state of a growing network under the influence of turgor pressure and mechanical stress. Using simple elastic models, we predict the size of common spherical and rodlike bacteria. The influence of cytoskeletal bundles such as crescentin and MreB are discussed within the context of our model.

  9. Diversity in ATP concentrations in a single bacterial cell population revealed by quantitative single-cell imaging

    PubMed Central

    Yaginuma, Hideyuki; Kawai, Shinnosuke; Tabata, Kazuhito V.; Tomiyama, Keisuke; Kakizuka, Akira; Komatsuzaki, Tamiki; Noji, Hiroyuki; Imamura, Hiromi

    2014-01-01

    Recent advances in quantitative single-cell analysis revealed large diversity in gene expression levels between individual cells, which could affect the physiology and/or fate of each cell. In contrast, for most metabolites, the concentrations were only measureable as ensemble averages of many cells. In living cells, adenosine triphosphate (ATP) is a critically important metabolite that powers many intracellular reactions. Quantitative measurement of the absolute ATP concentration in individual cells has not been achieved because of the lack of reliable methods. In this study, we developed a new genetically-encoded ratiometric fluorescent ATP indicator “QUEEN”, which is composed of a single circularly-permuted fluorescent protein and a bacterial ATP binding protein. Unlike previous FRET-based indicators, QUEEN was apparently insensitive to bacteria growth rate changes. Importantly, intracellular ATP concentrations of numbers of bacterial cells calculated from QUEEN fluorescence were almost equal to those from firefly luciferase assay. Thus, QUEEN is suitable for quantifying the absolute ATP concentration inside bacteria cells. Finally, we found that, even for a genetically-identical Escherichia coli cell population, absolute concentrations of intracellular ATP were significantly diverse between individual cells from the same culture, by imaging QUEEN signals from single cells. PMID:25283467

  10. The effect of antibacterial acting extracorporeal shockwaves on bacterial cell integrity.

    PubMed

    Horn, Carsten; Mengele, Karin; Gerdesmeyer, Ludger; Gradinger, Reiner; Gollwitzer, Hans

    2009-12-01

    Antibacterial effects of extracorporeal shockwaves (ESWs) have been demonstrated in vitro against bacteria under static and dynamic growth conditions. This study assessed the effects of ESWs on the cell wall integrity of bacteria. Standardized suspensions of Staphylococcus aureus were exposed to various shockwave impulses (2000-12,000) of different energy flux densities (EFD, 0.38-0.96 mJ/mm(2)). Bacterial suspensions of equal concentration that had been permeabilized (to >99%) with isopropanol were used as positive controls. The bacteria of all groups were stained with Sytox Green nucleic acid stain. The fluorescence of the shockwave-treated, permeabilized, and untreated suspensions was measured and compared for bacterial survival, quantified by colony-forming units after plating. Although ESWs showed a significant energy-dependent antibacterial effect that reduced CFUs in the treated suspensions by between 56% and 99%, only maximum energies (4000 impulses at 0.96 mJ/mm(2) and 12,000 impulses at 0.59 mJ/mm(2)) were followed by a significant increase in fluorescence compared with the untreated control (p<0.05). However, the fluorescence of these treated groups was still far less than that of the alcohol-permeabilized positive control groups (p<0.05). Lower energies and impulse rates did not show increased intracellular uptake of the fluorescent dye (p>0.05). This is the first study to assess bacterial cell wall permeability after ESW treatment. It was found that the permeabilization of bacterial cells after ESW treatment was far less than expected due to the corresponding antibacterial effect. Other mechanisms, such as intracellular effects, might be involved in bacterial killing after ESWs and still must be elucidated.

  11. [Inhibition effects of black rice pericarp extracts on cell proliferation of PC-3 cells].

    PubMed

    Jiang, Weiwei; Yu, Xudong; Ren, Guofeng

    2013-05-01

    To observe the inhibitive effects of black rice pericarp extracts on cell proliferation of human prostate cancer cell PC-3 and to explore its effecting mechanism. The black rice pericarp extract was used to treat the PC-3 cells. The inhibitory effect of black rice pericarp extract on cells proliferation of PC-3 was tested by MTT method. Cell apoptosis rates and cell cycle were measured by flow cytometric assay (FCM). Western blot was used to study the protein expression levels of p38, p-p38, JNK, p-JNK. A dose-dependent and time-dependent proliferation inhibition of black rice pericarp extract was demonstrated in PC-3. The most prominent experiment condition was inhibitory concentration with 300microg/ml and treated for 72 h. The experiment result of flow cytometry analysis demonstrates that the apoptosis rate of PC-3 cells increased along with the increasing of black rice pericarp extract concentration, and a G1-S cell cycle arrest was induced in a dose-dependent manner. After PC-3 cell was treated with black rice pericarp extract for 72 h, the expressions of p-p38, p-JNK protein increased. Black rice pericarp extract could inhibit proliferation, change the cell cycle distributions and induce apoptosis in human prostatic cancer cell PC-3. Its inhibitory effect may be through promoting activation of the JNK, p38 signaling pathway. These results suggest that black rice pericarp extract maybe has an inhibitory effect on prostatic cancer.

  12. Experimental immunization with anti-rheumatic bacterial extract OM-89 induces T cell responses to heat shock protein (hsp)60 and hsp70; modulation of peripheral immunological tolerance as its possible mode of action in the treatment of rheumatoid arthritis (RA)

    PubMed Central

    BLOEMENDAL, A; VAN DER ZEE, R; RUTTEN, V P M G; VAN KOOTEN, P J S; FARINE, J C; VAN EDEN, W

    1997-01-01

    OM-89 is a bacterial (Escherichia coli) extract used for oral administration in the treatment of RA. Given the evidence that immunity to bacterial heat shock antigens plays a critical role in the immunomodulation of arthritis and possibly inflammation in general, the purpose of the present studies was to evaluate the presence and immunogenicity of hsp in OM-89. Furthermore, we studied the effects of OM-89 in an experimental arthritis, where hsp are known to have a critical significance in disease development. In rats immunization with OM-89 was found to lead to proliferative T cell responses to hsp60 and hsp70 of both E. coli and mycobacterial origin. Conversely, immunization with hsp antigens was also found to induce T cell reactivity specific for OM-89. Based on this and the antigen specificity analysis of specific T cell lines, hsp70 (DnaK) turned out to be one of the major immunogenic constituents of OM-89. Parenteral immunization with OM-89 was found to reduce resistance to adjuvant arthritis (AA), whereas oral administration was found to protect against AA. Given the arthritis-inhibitory effect of oral OM-89 in AA, it is possible that peripheral tolerance is induced at the level of regulatory T cells with specificity for hsp. This may also constitute a mode of action for OM-89 as an arthritis-suppressive oral drug. PMID:9353151

  13. Effect of cell physicochemical characteristics and motility on bacterial transport in groundwater

    USGS Publications Warehouse

    Becker, M.W.; Collins, S.A.; Metge, D.W.; Harvey, R.W.; Shapiro, A.M.

    2004-01-01

    The influence of physicochemical characteristics and motility on bacterial transport in groundwater were examined in flow-through columns. Four strains of bacteria isolated from a crystalline rock groundwater system were investigated, with carboxylate-modified and amidine-modified latex microspheres and bromide as reference tracers. The bacterial isolates included a gram-positive rod (ML1), a gram-negative motile rod (ML2), a nonmotile mutant of ML2 (ML2m), and a gram-positive coccoid (ML3). Experiments were repeated at two flow velocities, in a glass column packed with glass beads, and in another packed with iron-oxyhydroxide coated glass beads. Bacteria breakthrough curves were interpreted using a transport equation that incorporates a sorption model from microscopic observation of bacterial deposition in flow-cell experiments. The model predicts that bacterial desorption rate will decrease exponentially with the amount of time the cell is attached to the solid surface. Desorption kinetics appeared to influence transport at the lower flow rate, but were not discernable at the higher flow rate. Iron-oxyhydroxide coatings had a lower-than-expected effect on bacterial breakthrough and no effect on the microsphere recovery in the column experiments. Cell wall type and shape also had minor effects on breakthrough. Motility tended to increase the adsorption rate, and decrease the desorption rate. The transport model predicts that at field scale, desorption rate kinetics may be important to the prediction of bacteria transport rates. ?? 2003 Elsevier B.V. All rights reserved.

  14. Identification of a Supramolecular Functional Architecture of Streptococcus mutans Adhesin P1 on the Bacterial Cell Surface*

    PubMed Central

    Heim, Kyle P.; Sullan, Ruby May A.; Crowley, Paula J.; El-Kirat-Chatel, Sofiane; Beaussart, Audrey; Tang, Wenxing; Besingi, Richard; Dufrene, Yves F.; Brady, L. Jeannine

    2015-01-01

    P1 (antigen I/II) is a sucrose-independent adhesin of Streptococcus mutans whose functional architecture on the cell surface is not fully understood. S. mutans cells subjected to mechanical extraction were significantly diminished in adherence to immobilized salivary agglutinin but remained immunoreactive and were readily aggregated by fluid-phase salivary agglutinin. Bacterial adherence was restored by incubation of postextracted cells with P1 fragments that contain each of the two known adhesive domains. In contrast to untreated cells, glutaraldehyde-treated bacteria gained reactivity with anti-C-terminal monoclonal antibodies (mAbs), whereas epitopes recognized by mAbs against other portions of the molecule were masked. Surface plasmon resonance experiments demonstrated the ability of apical and C-terminal fragments of P1 to interact. Binding of several different anti-P1 mAbs to unfixed cells triggered release of a C-terminal fragment from the bacterial surface, suggesting a novel mechanism of action of certain adherence-inhibiting antibodies. We also used atomic force microscopy-based single molecule force spectroscopy with tips bearing various mAbs to elucidate the spatial organization and orientation of P1 on living bacteria. The similar rupture lengths detected using mAbs against the head and C-terminal regions, which are widely separated in the tertiary structure, suggest a higher order architecture in which these domains are in close proximity on the cell surface. Taken together, our results suggest a supramolecular organization in which additional P1 polypeptides, including the C-terminal segment originally identified as antigen II, associate with covalently attached P1 to form the functional adhesive layer. PMID:25666624

  15. Identification of a supramolecular functional architecture of Streptococcus mutans adhesin P1 on the bacterial cell surface.

    PubMed

    Heim, Kyle P; Sullan, Ruby May A; Crowley, Paula J; El-Kirat-Chatel, Sofiane; Beaussart, Audrey; Tang, Wenxing; Besingi, Richard; Dufrene, Yves F; Brady, L Jeannine

    2015-04-03

    P1 (antigen I/II) is a sucrose-independent adhesin of Streptococcus mutans whose functional architecture on the cell surface is not fully understood. S. mutans cells subjected to mechanical extraction were significantly diminished in adherence to immobilized salivary agglutinin but remained immunoreactive and were readily aggregated by fluid-phase salivary agglutinin. Bacterial adherence was restored by incubation of postextracted cells with P1 fragments that contain each of the two known adhesive domains. In contrast to untreated cells, glutaraldehyde-treated bacteria gained reactivity with anti-C-terminal monoclonal antibodies (mAbs), whereas epitopes recognized by mAbs against other portions of the molecule were masked. Surface plasmon resonance experiments demonstrated the ability of apical and C-terminal fragments of P1 to interact. Binding of several different anti-P1 mAbs to unfixed cells triggered release of a C-terminal fragment from the bacterial surface, suggesting a novel mechanism of action of certain adherence-inhibiting antibodies. We also used atomic force microscopy-based single molecule force spectroscopy with tips bearing various mAbs to elucidate the spatial organization and orientation of P1 on living bacteria. The similar rupture lengths detected using mAbs against the head and C-terminal regions, which are widely separated in the tertiary structure, suggest a higher order architecture in which these domains are in close proximity on the cell surface. Taken together, our results suggest a supramolecular organization in which additional P1 polypeptides, including the C-terminal segment originally identified as antigen II, associate with covalently attached P1 to form the functional adhesive layer. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  16. Evaluation of the sensitivity of bacterial and yeast cells to cold atmospheric plasma jet treatments.

    PubMed

    Sharkey, Michael A; Chebbi, Ahmed; McDonnell, Kevin A; Staunton, Claire; Dowling, Denis P

    2015-06-07

    The focus of this research was first to determine the influence of the atmospheric plasma drive frequency on the generation of atomic oxygen species and its correlation with the reduction of bacterial load after treatment in vitro. The treatments were carried out using a helium-plasma jet source called PlasmaStream™. The susceptibility of multiple microbial cell lines was investigated in order to compare the response of gram-positive and gram-negative bacteria, as well as a yeast cell line to the atmospheric plasma treatment. It was observed for the source evaluated that at a frequency of 160 kHz, increased levels of oxygen-laden active species (i.e., OH, NO) were generated. At this frequency, the maximum level of bacterial inactivation in vitro was also achieved. Ex vivo studies (using freshly excised porcine skin as a human analog) were also carried out to verify the antibacterial effect of the plasma jet treatment at this optimal operational frequency and to investigate the effect of treatment duration on the reduction of bacterial load. The plasma jet treatment was found to yield a 4 log reduction in bacterial load after 6 min of treatment, with no observable adverse effects on the treatment surface. The gram-negative bacterial cell lines were found to be far more susceptible to the atmospheric plasma treatments than the gram-positive bacteria. Flow cytometric analysis of plasma treated bacterial cells (Escherichia coli) was conducted in order to attain a fundamental understanding of the mode of action of the treatment on bacteria at a cellular level. This study showed that after treatment with the plasma jet, E. coli cells progressed through the following steps of cell death; the inactivation of transport systems, followed by depolarization of the cytoplasmic membrane, and finally permeabilization of the cell wall.

  17. Ultrastructure of Bacterial Cells Infected with Bacteriophage PM2, a Lipid-containing Bacterial Virus

    PubMed Central

    Cota-Robles, Eugene; Espejo, Romilio Torres; Haywood, Patricia Williams

    1968-01-01

    The cytological pattern of infection of a host pseudomonad with PM2, a lipid-containing bacterial virus, was investigated by electron microscopy. Normal and infected cells frequently contain a myelin figure, which is found in the nucleoid region or at the periphery of the cell. The most striking finding in this investigation was that completed virions are found in the cell adjacent to or in association with the cytoplasmic membrane. This localization is precise; virions are not found elsewhere in infected cells. The completed virions occasionally appear to be attached to the cytoplasmic membrane. The virus contains a darkly staining core surrounded by a tripartite envelope of a thickness of approximately 70 A, which is identical to the thickness of the cytoplasmic membrane. Lysing cells appear to undergo extensive damage of the cytoplasmic membrane prior to rupture of the L layer of the cell wall. Images PMID:5742028

  18. Incorporation of bacterial extracellular polysaccharide by black fly larvae (Simuliidae)

    USGS Publications Warehouse

    Couch, C.A.; Meyer, J.L.; Hall, R.O.

    1996-01-01

    Black fly larvae (Simulium) assimilated, with high efficiency (80-90%), bacterial extracellular polysaccharide (EPS) extracted from laboratory cultures of a pseudomonad isolated from the Ogeechee River. Incorporation was traced using 13C-labelled EPS offered to larvae as a coating on a mixture of 1-??m latex beads and kaolin particles. These EPS-coated particles were used to simulate natural particles, both living and dead. Solubility, protein, and nitrogen content of the EPS suggested it was a slime rather than a capsular polysaccharide. Glycosyl composition of the EPS was glucose and galactose in ?? and ?? linkages, with pyruvate, succinate, and possibly malonate constituent groups. To evaluate the incorporation of C derived from protein associated with the EPS matrix, feeding experiments were conducted using EPS with and without proteins extracted. Black fly larvae incorporated 7.2 ??g EPS C larva-1 d-1 from EPS that did not have proteins extracted, and 19.5 ??g EPS C larva-1 d-1 from EPS with proteins extracted. Carbon in protein that is typically associated with EPS was not solely or selectively incorporated. EPS incorporation rates are similar to rates of cellular bacterial carbon incorporation previously estimated for Ogeechee River black fly larvae. If EPS is generally available as a food resource, the importance of bacteria in detrital food webs may be underestimated by studies that examine only the consumption of bacterial cells.

  19. Membrane interaction of antimicrobial peptides using E. coli lipid extract as model bacterial cell membranes and SFG spectroscopy.

    PubMed

    Soblosky, Lauren; Ramamoorthy, Ayyalusamy; Chen, Zhan

    2015-04-01

    Supported lipid bilayers are used as a convenient model cell membrane system to study biologically important molecule-lipid interactions in situ. However, the lipid bilayer models are often simple and the acquired results with these models may not provide all pertinent information related to a real cell membrane. In this work, we use sum frequency generation (SFG) vibrational spectroscopy to study molecular-level interactions between the antimicrobial peptides (AMPs) MSI-594, ovispirin-1 G18, magainin 2 and a simple 1,2-dipalmitoyl-d62-sn-glycero-3-phosphoglycerol (dDPPG)/1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoglycerol (POPG) bilayer. We compared such interactions to those between the AMPs and a more complex dDPPG/Escherichia coli (E. coli) polar lipid extract bilayer. We show that to fully understand more complex aspects of peptide-bilayer interaction, such as interaction kinetics, a heterogeneous lipid composition is required, such as the E. coli polar lipid extract. The discrepancy in peptide-bilayer interaction is likely due in part to the difference in bilayer charge between the two systems since highly negative charged lipids can promote more favorable electrostatic interactions between the peptide and lipid bilayer. Results presented in this paper indicate that more complex model bilayers are needed to accurately analyze peptide-cell membrane interactions and demonstrates the importance of using an appropriate lipid composition to study AMP interaction properties. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  20. SuperSegger: robust image segmentation, analysis and lineage tracking of bacterial cells.

    PubMed

    Stylianidou, Stella; Brennan, Connor; Nissen, Silas B; Kuwada, Nathan J; Wiggins, Paul A

    2016-11-01

    Many quantitative cell biology questions require fast yet reliable automated image segmentation to identify and link cells from frame-to-frame, and characterize the cell morphology and fluorescence. We present SuperSegger, an automated MATLAB-based image processing package well-suited to quantitative analysis of high-throughput live-cell fluorescence microscopy of bacterial cells. SuperSegger incorporates machine-learning algorithms to optimize cellular boundaries and automated error resolution to reliably link cells from frame-to-frame. Unlike existing packages, it can reliably segment microcolonies with many cells, facilitating the analysis of cell-cycle dynamics in bacteria as well as cell-contact mediated phenomena. This package has a range of built-in capabilities for characterizing bacterial cells, including the identification of cell division events, mother, daughter and neighbouring cells, and computing statistics on cellular fluorescence, the location and intensity of fluorescent foci. SuperSegger provides a variety of postprocessing data visualization tools for single cell and population level analysis, such as histograms, kymographs, frame mosaics, movies and consensus images. Finally, we demonstrate the power of the package by analyzing lag phase growth with single cell resolution. © 2016 John Wiley & Sons Ltd.

  1. Activation of mouse liver natural killer cells and NK1.1(+) T cells by bacterial superantigen-primed Kupffer cells.

    PubMed

    Dobashi, H; Seki, S; Habu, Y; Ohkawa, T; Takeshita, S; Hiraide, H; Sekine, I

    1999-08-01

    Although bacterial superantigens have been well characterized as potent stimulators of T cells, their role in natural killer (NK)-type cells remains largely unknown. In the present study, we examined the effect of bacterial superantigens on mouse liver NK cells and NK1.1 Ag(+) (NK1(+)) T cells. C57BL/6 mice were intravenously injected with staphylococcal enterotoxin B (SEB) or streptococcal pyrogenic exotoxin A (SPE-A), and mononuclear cells (MNC) of various organs were obtained from mice 4 hours after being injected with superantigen. MNC were cultured for 48 hours, and interferon gamma (IFN-gamma) levels of supernatants were measured. The antitumor cytotoxicities of the liver and spleen MNC were also evaluated 24 hours after the mice were injected with superantigen. Liver MNC produced more IFN-gamma than did splenocytes, and peripheral blood and lung MNC did not produce any detectable IFN-gamma. In addition, liver MNC acquired a potent antitumor cytotoxicity by the SEB injection, and both NK cells and NK1(+)T cells but not cluster of differentiation (CD)8(+) T cells were responsible for the cytotoxicity as demonstrated by either in vivo or in vitro cell depletion experiments, and the NK-type cells were partly responsible for the increased serum IFN-gamma. Activation of liver NK-type cells was also supported by the fact that liver NK cells proportionally increased and NK1(+) T cells augmented their CD11a expressions after SEB injection. The pretreatment of mice with anti-IFN-gamma Ab and/or with anti-interleukin-12 (IL-12) Ab diminished the SEB-induced cytotoxicity of liver MNC. Furthermore, the in vivo depletion of Kupffer cells decreased the SEB-induced cytotoxicity of liver MNC. Consistent with these results, liver MNC stimulated with superantigens in the presence of Kupffer cells in vitro produced a greater amount of IFN-gamma than did the liver MNC without Kupffer cells or splenocytes. Our results suggest that bacterial superantigen-primed Kupffer cells

  2. Bacterial Cell Production from Hexadecane at High Temperatures

    PubMed Central

    Sukatsch, Dieter A.; Johnson, Marvin J.

    1972-01-01

    On mineral medium with hexadecane as the sole carbon source, stable mixed bacterial enrichment cultures were obtained from soil inoculum at 25, 35, 45, 55, and 65 C. Cell yields (grams of dry cells per gram of hexadecane) were determined for each of the enrichment cultures grown at the temperature at which they were enriched, and also for the 55 and 65 C cultures grown at various temperatures. In all cases, cell yields decreased with increasing growth temperature. The highest yield obtained at 65 C was 0.26, and the lowest yield obtained at 25 or 35 C was 1.02. Slower growth was observed at higher temperatures. PMID:5021971

  3. Multiscale modeling of bacterial colonies: how pili mediate the dynamics of single cells and cellular aggregates

    NASA Astrophysics Data System (ADS)

    Pönisch, Wolfram; Weber, Christoph A.; Juckeland, Guido; Biais, Nicolas; Zaburdaev, Vasily

    2017-01-01

    Neisseria gonorrhoeae is the causative agent of one of the most common sexually transmitted diseases, gonorrhea. Over the past two decades there has been an alarming increase of reported gonorrhea cases where the bacteria were resistant to the most commonly used antibiotics thus prompting for alternative antimicrobial treatment strategies. The crucial step in this and many other bacterial infections is the formation of microcolonies, agglomerates consisting of up to several thousands of cells. The attachment and motility of cells on solid substrates as well as the cell-cell interactions are primarily mediated by type IV pili, long polymeric filaments protruding from the surface of cells. While the crucial role of pili in the assembly of microcolonies has been well recognized, the exact mechanisms of how they govern the formation and dynamics of microcolonies are still poorly understood. Here, we present a computational model of individual cells with explicit pili dynamics, force generation and pili-pili interactions. We employ the model to study a wide range of biological processes, such as the motility of individual cells on a surface, the heterogeneous cell motility within the large cell aggregates, and the merging dynamics and the self-assembly of microcolonies. The results of numerical simulations highlight the central role of pili generated forces in the formation of bacterial colonies and are in agreement with the available experimental observations. The model can quantify the behavior of multicellular bacterial colonies on biologically relevant temporal and spatial scales and can be easily adjusted to include the geometry and pili characteristics of various bacterial species. Ultimately, the combination of the microbiological experimental approach with the in silico model of bacterial colonies might provide new qualitative and quantitative insights on the development of bacterial infections and thus pave the way to new antimicrobial treatments.

  4. In situ probing the interior of single bacterial cells at nanometer scale

    NASA Astrophysics Data System (ADS)

    Liu, Boyin; Hemayet Uddin, Md; Ng, Tuck Wah; Paterson, David L.; Velkov, Tony; Li, Jian; Fu, Jing

    2014-10-01

    We report a novel approach to probe the interior of single bacterial cells at nanometre resolution by combining focused ion beam (FIB) and atomic force microscopy (AFM). After removing layers of pre-defined thickness in the order of 100 nm on the target bacterial cells with FIB milling, AFM of different modes can be employed to probe the cellular interior under both ambient and aqueous environments. Our initial investigations focused on the surface topology induced by FIB milling and the hydration effects on AFM measurements, followed by assessment of the sample protocols. With fine-tuning of the process parameters, in situ AFM probing beneath the bacterial cell wall was achieved for the first time. We further demonstrate the proposed method by performing a spatial mapping of intracellular elasticity and chemistry of the multi-drug resistant strain Klebsiella pneumoniae cells prior to and after it was exposed to the ‘last-line’ antibiotic polymyxin B. Our results revealed increased stiffness occurring in both surface and interior regions of the treated cells, suggesting loss of integrity of the outer membrane from polymyxin treatments. In addition, the hydrophobicity measurement using a functionalized AFM tip was able to highlight the evident hydrophobic portion of the cell such as the regions containing cell membrane. We expect that the proposed FIB-AFM platform will help in gaining deeper insights of bacteria-drug interactions to develop potential strategies for combating multi-drug resistance.

  5. In-vitro analysis of APA microcapsules for oral delivery of live bacterial cells.

    PubMed

    Chen, H; Ouyang, W; Jones, M; Haque, T; Lawuyi, B; Prakash, S

    2005-08-01

    Oral administration of microcapsules containing live bacterial cells has potential as an alternative therapy for several diseases. This article evaluates the suitability of the alginate-poly-L-lysine-alginate (APA) microcapsules for oral delivery of live bacterial cells, in-vitro, using a dynamic simulated human gastro-intestinal (GI) model. Results showed that the APA microcapsules were morphologically stable in the simulated stomach conditions, but did not retain their structural integrity after a 3-day exposure in simulated human GI media. The microbial populations of the tested bacterial cells and the activities of the tested enzymes in the simulated human GI suspension were not substantially altered by the presence of the APA microcapsules, suggesting that there were no significant adverse effects of oral administration of the APA microcapsules on the flora of the human gastrointestinal tract. When the APA microcapsules containing Lactobacillus plantarum 80 (LP80) were challenged in the simulated gastric medium (pH = 2.0), 80.0% of the encapsulated cells remained viable after a 5-min incubation; however, the viability decreased considerably (8.3%) after 15 min and dropped to 2.6% after 30 min and lower than 0.2% after 60 min, indicating the limitations of the currently obtainable APA membrane for oral delivery of live bacteria. Further in-vivo studies are required before conclusions can be made concerning the inadequacy of APA microcapsules for oral delivery of live bacterial cells.

  6. Occurrence and distribution of extractable and non-extractable GDGTs in podzols: implications for the reconstruction of mean air temperature

    NASA Astrophysics Data System (ADS)

    Huguet, Arnaud; Fosse, Céline; Metzger, Pierre; Derenne, Sylvie

    2010-05-01

    Glycerol dialkyl glycerol tetraethers (GDGTs) are complex lipids of high molecular weight, present in cell membranes of archaea and some bacteria. Archaeal membranes are formed predominantly by isoprenoid GDGTs with acyclic or ring-containing biphytanyl chains. Another type of GDGTs with branched instead of isoprenoid alkyl chains was recently discovered in soils. Branched tetraethers were suggested to be produced by anaerobic bacteria and can be used to reconstruct past air temperature and soil pH. Lipids preserved in soils can take two broad chemical forms: extractable lipids, recoverable upon solvent extraction, and non-extractable lipids, linked to the organic or mineral matrix of soils. Moreover, within the extractable pool, core (i.e. "free") lipids and intact polar (i.e. "bound") lipids can be distinguished. These three lipid fractions may respond to environmental changes in different ways and the information derived from these three pools may differ. The aim of the present work was therefore to compare the abundance and distribution of the three GDGT pools in two contrasted podzols: a temperate podzol located 40 km north of Paris and a tropical podzol from the upper Amazon Basin. Five samples were collected from the whole profile of the temperate podzol including the litter layer. Five additional samples were obtained from three profiles of the tropical soil sequence, representative of the transition between a latosol and a well-developed podzol. Vertical and/or lateral variations in GDGT content and composition were highlighted. In particular, in the tropical sequence, GDGTs were present at relatively low concentrations in the early stages of podzolisation and were more abundant in the well-developed podzolic horizons, where higher acidity and increased bacterial activity may favour their stabilization. Concerning the temperate podzol, GDGT distribution was shown to vary greatly with depth in the soil profile, the methylation degree of bacterial GDGTs

  7. A cell extraction method for oily sediments

    NASA Astrophysics Data System (ADS)

    Lappé, M.; Kallmeyer, J.

    2012-04-01

    Hydrocarbons can be found in many different habitats and represent an important carbon source for microbes. As fossil fuels, they are an important economical resource and, through natural seepage or accidental release, they can be major pollutants. Oil sands from Alberta, Canada, and samples from the seafloor of the Gulf of Mexico represent typical examples of either natural or anthropogenically affected oily sediments. DNA-specific stains and molecular probes bind to hydrocarbons, causing massive background fluorescence and thereby massively hampering cell enumeration. The cell extraction procedure of Kallmeyer et al. (2008) separates the cells from the sediment matrix, producing a sediment free cell extract that can then be used for subsequent staining and cell enumeration under a fluorescence microscope. In principle, this technique can also be used to separate cells from oily sediments, but it was not originally optimized for this application and does not provide satisfactory results. Here we present a modified extraction method in which the hydrocarbons are removed prior to cell extraction by a solvent treatment. Due to the reduced background fluorescence the microscopic image becomes clearer, making cell identification and enumeration much easier. Consequently, the resulting cell counts from oily samples treated according to our new protocol were significantly higher than those treated according to Kallmeyer et al. (2008). We tested different amounts of a variety of solvents for their ability to remove hydrocarbons and found that n-hexane and - in samples containing more biodegraded oils - methanol, delivered the best results. Because solvents also tend to lyse cells, it was important to find the optimum solvent to sample ratio, at which the positive effect of hydrocarbon extraction overcomes the negative effect of cell lysis. A volumetric ratio of 1:2 to 1:5 between a formalin-fixed sediment slurry and solvent delivered highest cell counts. Extraction

  8. Evaluation of in-situ fatty acid extraction protocols for the analysis of staphylococcal cell membrane associated fatty acids by gas chromatography.

    PubMed

    Crompton, Marcus J; Dunstan, R Hugh

    2018-05-01

    The composition and integrity of the bacterial cytoplasmic membrane is critical to the survival of staphylococci in dynamic environments and it is important to investigate how the cell membrane responds to changes in the environmental conditions. The staphylococcal membrane differs from eukaryotic and many other bacterial cell membranes by having a high abundance of branch fatty acids and relatively few unsaturated fatty acids. The range of available methods for extraction and efficient analyses of staphylococcal fatty acids was initially appraised to identify the best potential procedures for appraisal. Staphylococcus aureus subsp. aureus Rosenbach (ATCC® 29213) was grown under optimal conditions to generate a cell biomass to compare the efficiencies of three approaches to extract and prepare methyl esters of the membrane fatty acids: (1) acidic direct transesterification of lipids, (2) modified basic direct transesterification of membrane lipids with adjusted reaction times and temperatures, and (3) base catalysed hydrolysis followed by acid catalysed esterification in two separate chemical reactions (MIDI process). All methods were able to extract fatty acids from the cell mass effectively where these lipids represented approximately 5% of the cellular dry mass. The acidic transesterification method had the least number of steps, the lowest coefficient of variation at 6.7% and good resistance to tolerating water. Basic transesterification was the least accurate method showing the highest coefficient of variation (26%). The MIDI method showed good recoveries, but had twice the number of steps and a coefficient of variation of 16%. It was also found that there was no need to use an anti-oxidant such as BHT for the protection of polyunsaturated fatty acids when the GC-MS injection liner was clean. It was concluded that the acidic transesterification procedures formed the most efficient and reproducible method for the analyses of staphylococcal membrane fatty acids

  9. Antibacterial and Antiadhesive Activities of Extracts from Edible Plants against Soft Drink Spoilage by Asaia spp.

    PubMed

    Antolak, Hubert; Czyzowska, Agata; Kregiel, Dorota

    2017-01-01

    This study was conducted to investigate the antibacterial and antiadhesive activities of ethanol extracts from five edible plant parts: cinnamon bark ( Cinnamomum zeylanicum ), licorice root ( Glycyrrhiza radix ), nettle leaves ( Urtica dioica ), green tea leaves ( Camellia sinensis ), and elderberry flowers ( Sambucus nigra ). The chemical constituents of the extracts were identified using high-performance liquid chromatography and liquid chromatography plus mass spectrometry. Six strains of Asaia lannensis and Asaia bogorensis bacteria isolated from spoiled commercial fruit-flavored noncarbonated mineral water were used. Bacterial adhesion to polystyrene as an attachment substrate in culture media supplemented with 10% plant extract was evaluated using luminometric measurement of the ATP extracted from adhered cells. The viability of the adhered and planktonic cells was assessed using the plate count method, and the relative adhesion coefficient was calculated. All tested crude extracts contained flavonols (kaempferol, quercetin, and their derivatives), flavanols (catechin and derivatives), flavanones (glabrol, licorice glycoside A, and liquiritin), and phenolic acids (gallic, quinic, chlorogenic, neochlorogenic, caffeic, coumaric, and ferulic). The culture medium with 10% elderberry extract provided the least favorable environment for all tested bacterial strains. Extracts from green tea, cinnamon, and licorice also had significant inhibitory effects on the adhesion of the tested bacterial strains. This research suggests that the addition of selected edible plant extracts could improve the microbial stability of noncarbonated soft drinks.

  10. Host Biomarkers for Distinguishing Bacterial from Non-Bacterial Causes of Acute Febrile Illness: A Comprehensive Review

    PubMed Central

    Kapasi, Anokhi J.; Dittrich, Sabine; González, Iveth J.; Rodwell, Timothy C.

    2016-01-01

    Background In resource limited settings acute febrile illnesses are often treated empirically due to a lack of reliable, rapid point-of-care diagnostics. This contributes to the indiscriminate use of antimicrobial drugs and poor treatment outcomes. The aim of this comprehensive review was to summarize the diagnostic performance of host biomarkers capable of differentiating bacterial from non-bacterial infections to guide the use of antibiotics. Methods Online databases of published literature were searched from January 2010 through April 2015. English language studies that evaluated the performance of one or more host biomarker in differentiating bacterial from non-bacterial infection in patients were included. Key information extracted included author information, study methods, population, pathogens, clinical information, and biomarker performance data. Study quality was assessed using a combination of validated criteria from the QUADAS and Lijmer checklists. Biomarkers were categorized as hematologic factors, inflammatory molecules, cytokines, cell surface or metabolic markers, other host biomarkers, host transcripts, clinical biometrics, and combinations of markers. Findings Of the 193 citations identified, 59 studies that evaluated over 112 host biomarkers were selected. Most studies involved patient populations from high-income countries, while 19% involved populations from low- and middle-income countries. The most frequently evaluated host biomarkers were C-reactive protein (61%), white blood cell count (44%) and procalcitonin (34%). Study quality scores ranged from 23.1% to 92.3%. There were 9 high performance host biomarkers or combinations, with sensitivity and specificity of ≥85% or either sensitivity or specificity was reported to be 100%. Five host biomarkers were considered weak markers as they lacked statistically significant performance in discriminating between bacterial and non-bacterial infections. Discussion This manuscript provides a summary

  11. Procalcitonin as a Biomarker of Bacterial Infection in Sickle Cell Vaso-Occlusive Crisis

    PubMed Central

    Patel, Dilip Kumar; Mohapatra, Manoj Kumar; Thomas, Ancil George; Patel, Siris; Purohit, Prasanta

    2014-01-01

    Sickle cell anaemia (SCA) patients with vaso-occlusive crisis (VOC) have signs of inflammation and it is often difficult to diagnose a bacterial infection in them. This study was undertaken to evaluate the role of serum procalcitonin (PCT) as a biomarker of bacterial infection in acute sickle cell vaso-occlusive crisis. Hundred homozygous SCA patients were studied at Sickle Cell Clinic and Molecular Biology Laboratory, V.S.S. Medical College, Burla, Odisha, India. All the patients were divided into three categories namely category-A (VOC/ACS with SIRS but without evidence of bacterial infection - 66 patients), category-B (VOC/ACS with SIRS and either proven or suspected bacterial infection - 24 patients) and category-C (SCA patients in steady state without VOC/ACS or SIRS - 10 patients). Complete blood count, C-reactive protein (CRP) estimation and PCT measurement were done in all the patients. There was no significant difference in TLC and CRP values between category-A and B. In category-A, the PCT level was <0.5 ng/mL in 83.3% and 0.5–2 ng/mL in 16.7% of cases. In category-B, all the patients had PCT value >0.5 ng/mL with 87.5% of patients having >2 ng/mL. In category-C, PCT value was <0.5 ng/mL. PCT had a high sensitivity (100%) and negative predictive value (100%) for bacterial infection at a cutoff value of 0.5 ng/mL; whereas the specificity is excellent at a cut-off value of 2 ng/mL. SCA patients with VOC/ACS and SIRS having a PCT level of <0.5 ng/mL have a low probability of bacterial infection whereas PCT value of >2 ng/mL is indicative of bacterial infection necessitating early antimicrobial therapy. PMID:24678395

  12. Glycerol Monolaurate Inhibits Lipase Production by Clinical Ocular Isolates Without Affecting Bacterial Cell Viability.

    PubMed

    Flanagan, Judith Louise; Khandekar, Neeta; Zhu, Hua; Watanabe, Keizo; Markoulli, Maria; Flanagan, John Terence; Papas, Eric

    2016-02-01

    We sought to determine the relative lipase production of a range of ocular bacterial isolates and to assess the efficacy of glycerol monolaurate (GML) in inhibiting this lipase production in high lipase-producing bacteria without affecting bacterial cell growth. Staphylococcus aureus,Staphylococcus epidermidis,Propionibacterium acnes, and Corynebacterium spp. were inoculated at a density of 10(6)/mL in varying concentrations of GML up to 25 μg/mL for 24 hours at 37 °C with constant shaking. Bacterial suspensions were centrifuged, bacterial cell density was determined, and production of bacterial lipase was quantified using a commercial lipase assay kit. Staphylococcus spp. produced high levels of lipase activity compared with P. acnes and Corynebacterium spp. GML inhibited lipase production by Staphylococcal spp. in a dose-dependent manner, with S. epidermidis lipase production consistently more sensitive to GML than S. aureus. Glycerol monolaurate showed significant (P < 0.05) lipase inhibition above concentrations of 15 μg/mL in S. aureus and was not cytotoxic up to 25 μg/mL. For S. epidermidis, GML showed significant (P < 0.05) lipase inhibition above 7.5 μg/mL. Lipase activity varied between species and between strains. Staphylococcal spp. produced higher lipase activity compared with P. acnes and Corynebacterium spp. Glycerol monolaurate inhibited lipase production by S. aureus and S. epidermidis at concentrations that did not adversely affect bacterial cell growth. GML can be used to inhibit ocular bacterial lipase production without proving detrimental to commensal bacteria viability.

  13. Contribution of bacterial cells to lacustrine organic matter based on amino sugars and D-amino acids

    NASA Astrophysics Data System (ADS)

    Carstens, Dörte; Köllner, Krista E.; Bürgmann, Helmut; Wehrli, Bernhard; Schubert, Carsten J.

    2012-07-01

    Amino sugars (ASs), D-amino acids (D-AAs), and bacterial cell counts were measured in two Swiss lakes to study the contribution of bacterial cells to organic matter (OM) and the fate of ASs and bacterial amino biomarkers during OM degradation. Concentrations of individual ASs (glucosamine, galactosamine, muramic acid, and mannosamine) in the particulate and total OM pools were analyzed in water-column profiles of Lake Brienz (oligotrophic and oxic throughout the entire water column) and Lake Zug (eutrophic, stratified, and permanently anoxic below 170 m) in spring and in fall. Generally, carbon-normalized AS concentrations decreased with water depth, indicating the preferential decomposition of ASs. For Lake Brienz the relative loss of particulate ASs was higher than in Lake Zug, suggesting enhanced AS turnover in an oligotrophic environment. AS ratio changes in the water column revealed a replacement of plankton biomass with OM from heterotrophic microorganisms with increasing water depth. Similar to the ASs, highest carbon normalized D-AA concentrations were found in the upper water column with decreasing concentrations with depth and an increase close to the sediments. In Lake Zug, an increase in the percentage of D-AAs also showed the involvement of bacteria in OM degradation. Estimations of OM derived from bacterial cells using cell counts and the bacterial biomarkers muramic acid and D-AAs gave similar results. For Lake Brienz 0.2-14% of the organic carbon pool originated from bacterial cells, compared to only 0.1-5% in Lake Zug. Based on our estimates, muramic acid appeared primarily associated with bacterial biomass and not with refractory bacterial necromass. Our study underscores that bacteria are not only important drivers of OM degradation in lacustrine systems, they also represent a significant source of OM themselves, especially in oligotrophic lakes.

  14. Scanning electron microscopic study of Piper betle L. leaves extract effect against Streptococcus mutans ATCC 25175.

    PubMed

    Rahim, Zubaidah Haji Abdul; Thurairajah, Nalina

    2011-04-01

    Previous studies have shown that Piper betle L. leaves extract inhibits the adherence of Streptococcus mutans to glass surface, suggesting its potential role in controlling dental plaque development. In this study, the effect of the Piper betle L. extract towards S. mutans (with/without sucrose) using scanning electron microscopy (SEM) and on partially purified cell-associated glucosyltransferase activity were determined. S. mutans were allowed to adhere to glass beads suspended in 6 different Brain Heart Infusion broths [without sucrose; with sucrose; without sucrose containing the extract (2 mg mL(-1) and 4 mg mL(-1)); with sucrose containing the extract (2 mg mL(-1) and 4 mg mL(-1))]. Positive control was 0.12% chlorhexidine. The glass beads were later processed for SEM viewing. Cell surface area and appearance and, cell population of S. mutans adhering to the glass beads were determined upon viewing using the SEM. The glucosyltransferase activity (with/without extract) was also determined. One- and two-way ANOVA were used accordingly. It was found that sucrose increased adherence and cell surface area of S. mutans (p<0.001). S. mutans adhering to 100 µm² glass surfaces (with/without sucrose) exhibited reduced cell surface area, fluffy extracellular appearance and cell population in the presence of the Piper betle L. leaves extract. It was also found that the extract inhibited glucosyltransferase activity and its inhibition at 2.5 mg mL(-1) corresponded to that of 0.12% chlorhexidine. At 4 mg mL(-1) of the extract, the glucosyltransferase activity was undetectable and despite that, bacterial cells still demonstrated adherence capacity. The SEM analysis confirmed the inhibitory effects of the Piper betle L. leaves extract towards cell adherence, cell growth and extracellular polysaccharide formation of S. mutans visually. In bacterial cell adherence, other factors besides glucosyltransferase are involved.

  15. New method for estimating bacterial cell abundances in natural samples by use of sublimation

    NASA Technical Reports Server (NTRS)

    Glavin, Daniel P.; Cleaves, H. James; Schubert, Michael; Aubrey, Andrew; Bada, Jeffrey L.

    2004-01-01

    We have developed a new method based on the sublimation of adenine from Escherichia coli to estimate bacterial cell counts in natural samples. To demonstrate this technique, several types of natural samples, including beach sand, seawater, deep-sea sediment, and two soil samples from the Atacama Desert, were heated to a temperature of 500 degrees C for several seconds under reduced pressure. The sublimate was collected on a cold finger, and the amount of adenine released from the samples was then determined by high-performance liquid chromatography with UV absorbance detection. Based on the total amount of adenine recovered from DNA and RNA in these samples, we estimated bacterial cell counts ranging from approximately 10(5) to 10(9) E. coli cell equivalents per gram. For most of these samples, the sublimation-based cell counts were in agreement with total bacterial counts obtained by traditional DAPI (4,6-diamidino-2-phenylindole) staining.

  16. Direct mass spectrometric screening of antibiotics from bacterial surfaces using liquid extraction surface analysis.

    PubMed

    Kai, Marco; González, Ignacio; Genilloud, Olga; Singh, Sheo B; Svatoš, Aleš

    2012-10-30

    There is a need to find new antibiotic agents to fight resistant pathogenic bacteria. To search successfully for novel antibiotics from bacteria cultivated under diverse conditions, we need a fast and cost-effective screening method. A combination of Liquid Extraction Surface Analysis (LESA), automated chip-based nanoelectrospray ionization, and high-resolution mass or tandem mass spectrometry using an Orbitrap XL was tested as the screening platform. Actinobacteria, known to produce well-recognized thiazolyl peptide antibiotics, were cultivated on a plate of solid medium and the antibiotics were extracted by organic solvent mixtures from the surface of colonies grown on the plate and analyzed using mass spectrometry (MS). LESA combined with high-resolution MS is a powerful tool with which to extract and detect thiazolyl peptide antibiotics from different Actinobacteria. Known antibiotics were correctly detected with high mass accuracy (<4 ppm) and structurally characterized using tandem mass spectra. Our method is the first step toward the development of a novel high-throughput extraction and identification tool for antibiotics in particular and natural products in general. The method described in this paper is suitable for (1) screening the natural products produced by bacterial colonies on cultivation plates within the first 2 min following extraction and (2) detecting antibiotics at high mass accuracy; the cost is around 2 Euro per sample. Copyright © 2012 John Wiley & Sons, Ltd.

  17. Antibacterial Activity of Ethyl Acetate the Extract of Noni Fruit (Morinda citrifolia L.) Against Bacterial Spoilage in Fish

    NASA Astrophysics Data System (ADS)

    Nugraheni, E. R.; Adriani, G. R.; Munawaroh, H.

    2017-04-01

    Noni fruit (Morinda citrifolia L.) contains compounds that have potential as antibacterial agent. Antibacterial compounds produced noni fruit (M. citrifolia L.) can inhibit bacterial growth. This study was conducted to test the antibacterial activity of ethyl acetate extract of noni fruit (M. citrifolia L.) against spoilage bacterial in fish. Pseudomonas aeruginosa, Bacillus cereus, Escherichia coli, Klebsiella oxytoca, and Enterobacter aerogenes isolates and examine antibacterial phytochemical profile. Extraction of noni compounds was done by maceration, followed by partition with ethyl acetate to obtain the soluble and insoluble ethyl acetate fraction. Previews result show that the ethyl acetate extract had very strong activity. Extraction process continued by separation and isolation used preparative thin layer chromatography method, so that obtained five isolates and mark them as A, B, C, D and E. Antibacterial activity assay performed on isolates A, B, C, D, and E with 20 and 30% concentration. The test results showed that isolates A could not be inhibit the growth of bacteria, isolates B, C, D, and E has antibacterial activity with weak to strong inhibition. Isolate B had the greatest inhibition activity against the B. cereus, whereas isolates E had the greatest inhibition activity against P. aeroginosa. MIC (Minimum Inhibitor Concentration) and MBC (Minimum Bactericidal Concentration) test result showed that MIC and MBC values could not be determined. Analysis of compounds by TLC showed that isolate B suspected contains coumarin or flavonoids compounds that have antibacterial activity.

  18. Seasonal Bacterial Production in a Dimictic Lake as Measured by Increases in Cell Numbers and Thymidine Incorporation

    PubMed Central

    Lovell, Charles R.; Konopka, Allan

    1985-01-01

    Rates of primary and bacterial production in Little Crooked Lake were calculated from the rates of incorporation of H14CO3− and [methyl-3H]thymidine, respectively. Growth rates of bacteria in diluted natural samples were determined for epilimnetic and metalimnetic bacterial populations during the summers of 1982 and 1983. Exponential growth was observed in these diluted samples, with increases in cell numbers of 30 to 250%. No lag was observed in bacterial growth in 14 of 16 experiments. Correlation of bacterial growth rates to corresponding rates of thymidine incorporation by natural samples produced a conversion factor of 2.2 × 1018 cells produced per mole of thymidine incorporated. The mass of the average bacterial cell in the lake was 1.40 × 10−14 ± 0.05 × 10−14 g of C cell−1. Doubling times of natural bacteria calculated from thymidine incorporation rates and in situ cell numbers ranged from 0.35 to 12.00 days (median, 1.50 days). Bacterial production amounted to 66.7 g of C m−2 from April through September, accounting for 29.4% of total (primary plus bacterial) production during this period. The vertical and seasonal distribution of bacterial production in Little Crooked Lake was strongly influenced by the distribution of primary production. From April through September 1983, the depth of maximum bacterial production rates in the water column was related to the depth of high rates of primary production. On a seasonal basis, primary production increased steadily from May through September, and bacterial production increased from May through August and then decreased in September. PMID:16346743

  19. Characterization of Chemically-Induced Bacterial Ghosts (BGs) Using Sodium Hydroxide-Induced Vibrio parahaemolyticus Ghosts (VPGs).

    PubMed

    Park, Hyun Jung; Oh, Sung; Vinod, Nagarajan; Ji, Seongmi; Noh, Han Byul; Koo, Jung Mo; Lee, Su Hyeong; Kim, Sei Chang; Lee, Ki-Sung; Choi, Chang Won

    2016-11-15

    Acellular bacterial ghosts (BGs) are empty non-living bacterial cell envelopes, commonly generated by controlled expression of the cloned lysis gene E of bacteriophage PhiX174. In this study, Vibrio parahaemolyticus ghosts (VPGs) were generated by chemically-induced lysis and the method is based on minimum inhibitory concentration (MIC) of sodium hydroxide (NaOH), acetic acid, boric acid, citric acid, maleic acid, hydrochloric acid, and sulfuric acid. The MIC values of the respective chemicals were 3.125, 6.25, <50.0, 25.0, 6.25, 1.56, and 0.781 mg/mL. Except for boric acid, the lysis efficiency reached more than 99.99% at 5 min after treatment of all chemicals. Among those chemicals, NaOH-induced VPGs appeared completely DNA-free, which was confirmed by quantitative real-time PCR. Besides, lipopolysaccharides (LPS) extracted from the NaOH-induced VPGs showed no distinctive band on SDS-PAGE gel after silver staining. On the other hand, LPS extracted from wild-type bacterial cells, as well as the organic acids-induced VPGs showed triple major bands and LPS extracted from the inorganic acids-induced VPGs showed double bands. It suggests that some surface structures in LPS of the NaOH-induced VPGs may be lost, weakened, or modified by the MIC of NaOH. Nevertheless, Limulus amoebocyte lysate assay revealed that there is no significant difference in endotoxic activity between the NaOH-induced VPGs and wild-type bacterial cells. Macrophages exposed to the NaOH-induced VPGs at 0.5 × 10⁶ CFU/mL showed cell viability of 97.9%, however, the MIC of NaOH did not reduce the cytotoxic effect of wild-type bacterial cells. Like Escherichia coli LPS, the NaOH-induced VPGs are an excellent activator of pro-inflammatory cytokines (IL-1β and iNOS), anti-inflammatory cytokine (IL-10), and dual activities (IL-6) in the stimulated macrophage cells. On the other hand, the induction of TNF-α mRNA was remarkable in the macrophages exposed with wild-type cells. Scanning electron

  20. Vehicles, Replicators, and Intercellular Movement of Genetic Information: Evolutionary Dissection of a Bacterial Cell

    PubMed Central

    Jalasvuori, Matti

    2012-01-01

    Prokaryotic biosphere is vastly diverse in many respects. Any given bacterial cell may harbor in different combinations viruses, plasmids, transposons, and other genetic elements along with their chromosome(s). These agents interact in complex environments in various ways causing multitude of phenotypic effects on their hosting cells. In this discussion I perform a dissection for a bacterial cell in order to simplify the diversity into components that may help approach the ocean of details in evolving microbial worlds. The cell itself is separated from all the genetic replicators that use the cell vehicle for preservation and propagation. I introduce a classification that groups different replicators according to their horizontal movement potential between cells and according to their effects on the fitness of their present host cells. The classification is used to discuss and improve the means by which we approach general evolutionary tendencies in microbial communities. Moreover, the classification is utilized as a tool to help formulating evolutionary hypotheses and to discuss emerging bacterial pathogens as well as to promote understanding on the average phenotypes of different replicators in general. It is also discussed that any given biosphere comprising prokaryotic cell vehicles and genetic replicators may naturally evolve to have horizontally moving replicators of various types. PMID:22567533

  1. Gut microbial translocation corrupts myeloid cell function to control bacterial infection during liver cirrhosis.

    PubMed

    Hackstein, Carl-Philipp; Assmus, Lisa Mareike; Welz, Meike; Klein, Sabine; Schwandt, Timo; Schultze, Joachim; Förster, Irmgard; Gondorf, Fabian; Beyer, Marc; Kroy, Daniela; Kurts, Christian; Trebicka, Jonel; Kastenmüller, Wolfgang; Knolle, Percy A; Abdullah, Zeinab

    2017-03-01

    Patients with liver cirrhosis suffer from increased susceptibility to life-threatening bacterial infections that cause substantial morbidity. Experimental liver fibrosis in mice induced by bile duct ligation or CCl 4 application was used to characterise the mechanisms determining failure of innate immunity to control bacterial infections. In murine liver fibrosis, translocation of gut microbiota induced tonic type I interferon (IFN) expression in the liver. Such tonic IFN expression conditioned liver myeloid cells to produce high concentrations of IFN upon intracellular infection with Listeria that activate cytosolic pattern recognition receptors. Such IFN-receptor signalling caused myeloid cell interleukin (IL)-10 production that corrupted antibacterial immunity, leading to loss of infection-control and to infection-associated mortality. In patients with liver cirrhosis, we also found a prominent liver IFN signature and myeloid cells showed increased IL-10 production after bacterial infection. Thus, myeloid cells are both source and target of IFN-induced and IL-10-mediated immune dysfunction. Antibody-mediated blockade of IFN-receptor or IL-10-receptor signalling reconstituted antibacterial immunity and prevented infection-associated mortality in mice with liver fibrosis. In severe liver fibrosis and cirrhosis, failure to control bacterial infection is caused by augmented IFN and IL-10 expression that incapacitates antibacterial immunity of myeloid cells. Targeted interference with the immune regulatory host factors IL-10 and IFN reconstitutes antibacterial immunity and may be used as therapeutic strategy to control bacterial infections in patients with liver cirrhosis. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  2. [Changes and clinical significance of peripheral blood natural killer cells in neonates with bacterial pneumonia].

    PubMed

    Li, Qiuling; Weng, Kaizhi; Zhu, Ling; Mei, Xuqiao; Xu, Liping; Lin, Jiehua

    2014-10-01

    To detect the percentage of total natural killer (NK) cells and its different populations in the peripheral blood from neonates with bacterial pneumonia and discuss the clinical significance of NK cells in the pathogenesis of bacterial pneumonia. Flow cytometry was performed to detect the percentages of NK cells and its subsets in peripheral blood lymphocytes from 38 cases of neonatal bacterial pneumonias and 18 cases of normal neonates. Patients recruited were divided into two groups according to hospitalization days and numbers of peripheral leukocytes: hospitalization days within 10 days (including 10 days) as group A, and more than 10 days as group B; the number of peripheral blood leukocytes <5.0×10(9)/L or >20.0×10(9)/L as severe infection group, and 5.0×10(9)/L< number of peripheral blood leukocytes <20.0×10(9)/L as mild infection group. The percentages of peripheral blood NK cells and CD3(-)CD56(neg)CD16(bright) subset in the neonates with bacterial pneumonia were significantly lower than those of the normal newborns (P<0.01), but there were no statistically significant differences in CD3(-)CD56(bright)CD16(neg/dim) and CD3(-)CD56(dim)CD16(bright) subsets. The percentage of CD3(-)CD56(neg)CD16(bright) subset in group A was significantly lower than that of the normal newborns (P<0.01), while the percentages of the total NK cells and other subsets had no statistical significance. The neonates with bacterial pneumonia had significantly lower percentages of the total NK cells and CD3(-)CD56(neg)CD16(bright) subset in group B as compared with the normal neonates (P<0.01). And the percentages of the total NK cells and its subsets in group B were also lower than those in group A (P<0.05). The percentages of NK cells and each subset in severe infection group were significantly lower than those in mild infection group (P<0.05). To the neonates who suffer from bacterial pneumonia, the more serious and the longer hospital stay, the lower the percentages of NK

  3. Cytosolic Extract Induces Tir Translocation and Pedestals in EPEC-Infected Red Blood Cells

    PubMed Central

    Swimm, Alyson I; Kalman, Daniel

    2008-01-01

    Enteropathogenic Escherichia coli (EPEC) are deadly contaminants in water and food, and induce protrusion of actin-filled membranous pedestals beneath themselves upon attachment to intestinal epithelia. Pedestal formation requires clustering of Tir and subsequent recruitment of cellular tyrosine kinases including Abl, Arg, and Etk as well as signaling molecules Nck, N-WASP, and Arp2/3 complex. We have developed a cytosolic extract-based cellular system that recapitulates actin pedestal formation in permeabilized red blood cells (RBC) infected with EPEC. RBC support attachment of EPEC and translocation of virulence factors, but not pedestal formation. We show here that extract induces a rapid Ca++-dependent release of Tir from the EPEC Type III secretion system, and that cytoplasmic factor(s) present in the extract facilitate translocation of Tir into the RBC plasma membrane. We show that Abl and related kinases in the extract phosphorylate Tir and that actin polymerization can be reconstituted in infected RBC following addition of cytosolic extract. Reconstitution requires the bacterial virulence factors Tir and intimin, and phosphorylation of Tir on tyrosine residue 474 results in the recruitment of Nck, N-WASP, and Arp2/3 complex beneath attached bacteria at sites of actin polymerization. Together these data describe a biochemical system for dissection of host components that mediate Type III secretion and the mechanisms by which complexes of proteins are recruited to discrete sites within the plasma membrane to initiate localized actin polymerization and morphological changes. PMID:18208322

  4. A uniform bacterial growth potential assay for different water types.

    PubMed

    Farhat, Nadia; Hammes, Frederik; Prest, Emmanuelle; Vrouwenvelder, Johannes

    2018-06-06

    The bacterial growth potential is important to understand and manage bacterial regrowth-related water quality concerns. Bacterial growth potential depends on growth promoting/limiting compounds, therefore, nutrient availability is the key factor governing bacterial growth potential. Selecting proper tools for bacterial growth measurement is essential for routine implementation of the growth potential measurement. This study proposes a growth potential assay that is universal and can be used for different water types and soil extract without restrictions of pure culture or cultivability of the bacterial strain. The proposed assay measures the sample bacterial growth potential by using the indigenous community as inocula. Flow cytometry (FCM) and adenosine tri-phosphate (ATP) were used to evaluate the growth potential of six different microbial communities indigenous to the sample being analyzed, with increasing carbon concentrations. Bottled mineral water, non-chlorinated tap water, seawater, river water, wastewater effluent and a soil organic carbon extract were analyzed. Results showed that indigenous bacterial communities followed normal batch growth kinetics when grown on naturally present organic carbon. Indigenous bacterial growth could detect spiked organic carbon concentrations as low as 10 μg/L. The indigenous community in all samples responded proportionally to the increase in acetate-carbon and proportional growth could be measured with both FCM and ATP. Bacterial growth was proportional to the carbon concentration but not the same proportion factor for the different water samples tested. The effect of inoculating the same water with different indigenous microbial communities on the growth potential was also examined. The FCM results showed that the highest increase in total bacterial cell concentration was obtained with bacteria indigenous to the water sample. The growth potential assay using indigenous bacterial community revealed consistent results

  5. Biosensors of bacterial cells.

    PubMed

    Burlage, Robert S; Tillmann, Joshua

    2017-07-01

    Biosensors are devices which utilize both an electrical component (transducer) and a biological component to study an environment. They are typically used to examine biological structures, organisms and processes. The field of biosensors has now become so large and varied that the technology can often seem impenetrable. Yet the principles which underlie the technology are uncomplicated, even if the details of the mechanisms are elusive. In this review we confine our analysis to relatively current advancements in biosensors for the detection of whole bacterial cells. This includes biosensors which rely on an added labeled component and biosensors which do not have a labeled component and instead detect the binding event or bound structure on the transducer. Methods to concentrate the bacteria prior to biosensor analysis are also described. The variety of biosensor types and their actual and potential uses are described. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Bench-to-bedside review: Quorum sensing and the role of cell-to-cell communication during invasive bacterial infection

    PubMed Central

    Asad, Shadaba; Opal, Steven M

    2008-01-01

    Bacteria communicate extensively with each other and employ a communal approach to facilitate survival in hostile environments. A hierarchy of cell-to-cell signaling pathways regulates bacterial growth, metabolism, biofilm formation, virulence expression, and a myriad of other essential functions in bacterial populations. The notion that bacteria can signal each other and coordinate their assault patterns against susceptible hosts is now well established. These signaling networks represent a previously unrecognized survival strategy by which bacterial pathogens evade antimicrobial defenses and overwhelm the host. These quorum sensing communication signals can transgress species barriers and even kingdom barriers. Quorum sensing molecules can regulate human transcriptional programs to the advantage of the pathogen. Human stress hormones and cytokines can be detected by bacterial quorum sensing systems. By this mechanism, the pathogen can detect the physiologically stressed host, providing an opportunity to invade when the patient is most vulnerable. These rather sophisticated, microbial communication systems may prove to be a liability to pathogens as they make convenient targets for therapeutic intervention in our continuing struggle to control microbial pathogens. PMID:19040778

  7. Potential effect of cationic liposomes on interactions with oral bacterial cells and biofilms.

    PubMed

    Sugano, Marika; Morisaki, Hirobumi; Negishi, Yoichi; Endo-Takahashi, Yoko; Kuwata, Hirotaka; Miyazaki, Takashi; Yamamoto, Matsuo

    2016-01-01

    Although oral infectious diseases have been attributed to bacteria, drug treatments remain ineffective because bacteria and their products exist as biofilms. Cationic liposomes have been suggested to electrostatically interact with the negative charge on the bacterial surface, thereby improving the effects of conventional drug therapies. However, the electrostatic interaction between oral bacteria and cationic liposomes has not yet been examined in detail. The aim of the present study was to examine the behavior of cationic liposomes and Streptococcus mutans in planktonic cells and biofilms. Liposomes with or without cationic lipid were prepared using a reverse-phase evaporation method. The zeta potentials of conventional liposomes (without cationic lipid) and cationic liposomes were -13 and 8 mV, respectively, and both had a mean particle size of approximately 180 nm. We first assessed the interaction between liposomes and planktonic bacterial cells with a flow cytometer. We then used a surface plasmon resonance method to examine the binding of liposomes to biofilms. We confirmed the binding behavior of liposomes with biofilms using confocal laser scanning microscopy. The interactions between cationic liposomes and S. mutans cells and biofilms were stronger than those of conventional liposomes. Microscopic observations revealed that many cationic liposomes interacted with the bacterial mass and penetrated the deep layers of biofilms. In this study, we demonstrated that cationic liposomes had higher affinity not only to oral bacterial cells, but also biofilms than conventional liposomes. This electrostatic interaction may be useful as a potential drug delivery system to biofilms.

  8. Metabolite extraction from adherently growing mammalian cells for metabolomics studies: optimization of harvesting and extraction protocols.

    PubMed

    Dettmer, Katja; Nürnberger, Nadine; Kaspar, Hannelore; Gruber, Michael A; Almstetter, Martin F; Oefner, Peter J

    2011-01-01

    Trypsin/ethylenediaminetetraacetic acid (EDTA) treatment and cell scraping in a buffer solution were compared for harvesting adherently growing mammalian SW480 cells for metabolomics studies. In addition, direct scraping with a solvent was tested. Trypsinated and scraped cell pellets were extracted using seven different extraction protocols including pure methanol, methanol/water, pure acetone, acetone/water, methanol/chloroform/water, methanol/isopropanol/water, and acid-base methanol. The extracts were analyzed by GC-MS after methoximation/silylation and derivatization with propyl chloroformate, respectively. The metabolic fingerprints were compared and 25 selected metabolites including amino acids and intermediates of energy metabolism were quantitatively determined. Moreover, the influence of freeze/thaw cycles, ultrasonication and homogenization using ceramic beads on extraction yield was tested. Pure acetone yielded the lowest extraction efficiency while methanol, methanol/water, methanol/isopropanol/water, and acid-base methanol recovered similar metabolite amounts with good reproducibility. Based on overall performance, methanol/water was chosen as a suitable extraction solvent. Repeated freeze/thaw cycles, ultrasonication and homogenization did not improve overall metabolite yield of the methanol/water extraction. Trypsin/EDTA treatment caused substantial metabolite leakage proving it inadequate for metabolomics studies. Gentle scraping of the cells in a buffer solution and subsequent extraction with methanol/water resulted on average in a sevenfold lower recovery of quantified metabolites compared with direct scraping using methanol/water, making the latter one the method of choice to harvest and extract metabolites from adherently growing mammalian SW480 cells.

  9. Properties of herbal extracts against Propionibacterium acnes for biomedical application

    NASA Astrophysics Data System (ADS)

    Lim, Youn-Mook; Kim, Sung Eun; Kim, Yong Soo; Shin, Young Min; Jeong, Sung In; Jo, Sun-Young; Gwon, Hui-Jeong; Park, Jong-seok; Nho, Young-Chang; Kim, Jong-Cheol; Kim, Seong-Jang; Shin, HeungSoo

    2012-10-01

    Propionibacterium acnes (P. acnes), one of the anaerobic bacterium, causes inflammatory acne. To find a novel medication for treating the inflammation caused by P. acnes, we investigated the anti-bacterial and anti-inflammatory activities of several herbal extracts against P. acnes. The aqueous extracts from five dried herbs, Phellodendron amurense Rupr., Paeonia lactiflora Pallas., Houttuynia cordata Thunb., Agrimonia pilosa Ledeb. and Glycyrrhiza uralensis Fisch., were prepared and mixed. In this experiment, 1 mg/ml of the herbal extract mixture caused a decrease in the growth of P. acnes and reduced the production of pro-inflammatory cytokines, TNF-α, IL-8, IL-1β and IL-6, in human monocytic THP-1 cells treated with heat-killed P. acnes. Therefore, this herbal extract mixture may possess both anti-bacterial and anti-inflammatory activities against P. acnes and can be a novel therapeutic agent for treating inflammatory acne.

  10. Recovery and identification of bacterial DNA from illicit drugs.

    PubMed

    Cho, Kaymann T; Richardson, Michelle M; Kirkbride, K Paul; McNevin, Dennis; Nelson, Michelle; Pianca, Dennis; Roffey, Paul; Gahan, Michelle E

    2014-02-01

    Bacterial infections, including Bacillus anthracis (anthrax), are a common risk associated with illicit drug use, particularly among injecting drug users. There is, therefore, an urgent need to survey illicit drugs used for injection for the presence of bacteria and provide valuable information to health and forensic authorities. The objectives of this study were to develop a method for the extraction of bacterial DNA from illicit drugs and conduct a metagenomic survey of heroin and methamphetamine seized in the Australian Capital Territory during 2002-2011 for the presence of pathogens. Trends or patterns in drug contamination and their health implications for injecting drug users were also investigated. Methods based on the ChargeSwitch(®)gDNA mini kit (Invitrogen), QIAamp DNA extraction mini kit (QIAGEN) with and without bead-beating, and an organic phenol/chloroform extraction with ethanol precipitation were assessed for the recovery efficiency of both free and cellular bacterial DNA. Bacteria were identified using polymerase chain reaction and electrospray ionization-mass spectrometry (PCR/ESI-MS). An isopropanol pre-wash to remove traces of the drug and diluents, followed by a modified ChargeSwitch(®) method, was found to efficiently lyse cells and extract free and cellular DNA from Gram-positive and Gram-negative bacteria in heroin and methamphetamine which could then be identified by PCR/ESI-MS. Analysis of 12 heroin samples revealed the presence of DNA from species of Comamonas, Weissella, Bacillus, Streptococcus and Arthrobacter. No organisms were detected in the nine methamphetamine samples analysed. This study develops a method to extract and identify Gram-positive and Gram-negative bacteria from illicit drugs and demonstrates the presence of a range of bacterial pathogens in seized drug samples. These results will prove valuable for future work investigating trends or patterns in drug contamination and their health implications for injecting drug

  11. Quantification of a bacterial secondary metabolite by SERS combined with SLM extraction for bioprocess monitoring.

    PubMed

    Morelli, Lidia; Andreasen, Sune Zoëga; Jendresen, Christian Bille; Nielsen, Alex Toftgaard; Emnéus, Jenny; Zór, Kinga; Boisen, Anja

    2017-11-20

    During the last few decades, great advances have been reached in high-throughput design and building of genetically engineered microbial strains, leading to a need for fast and reliable screening methods. We developed and optimized a microfluidic supported liquid membrane (SLM) extraction device and combined it with surface enhanced Raman scattering (SERS) sensing for the screening of a biological process, namely for the quantification of a bacterial secondary metabolite, p-coumaric acid (pHCA), produced by Escherichia coli. The microfluidic device proved to be robust and reusable, enabling efficient removal of interfering compounds from the real samples, reaching more than 13-fold up-concentration of the donor at 10 μL min -1 flow rate. With this method, we quantified pHCA directly from the bacterial supernatant, distinguishing between various culture conditions based on the pHCA production yield. The obtained data showed good correlation with HPLC analysis.

  12. Microchip-based cell lysis and DNA extraction from sperm cells for application to forensic analysis.

    PubMed

    Bienvenue, Joan M; Duncalf, Natalie; Marchiarullo, Daniel; Ferrance, Jerome P; Landers, James P

    2006-03-01

    The current backlog of casework is among the most significant challenges facing crime laboratories at this time. While the development of next-generation microchip-based technology for expedited forensic casework analysis offers one solution to this problem, this will require the adaptation of manual, large-volume, benchtop chemistry to small volume microfluidic devices. Analysis of evidentiary materials from rape kits where semen or sperm cells are commonly found represents a unique set of challenges for on-chip cell lysis and DNA extraction that must be addressed for successful application. The work presented here details the development of a microdevice capable of DNA extraction directly from sperm cells for application to the analysis of sexual assault evidence. A variety of chemical lysing agents are assessed for inclusion in the extraction protocol and a method for DNA purification from sperm cells is described. Suitability of the extracted DNA for short tandem repeat (STR) analysis is assessed and genetic profiles shown. Finally, on-chip cell lysis methods are evaluated, with results from fluorescence visualization of cell rupture and DNA extraction from an integrated cell lysis and purification with subsequent STR amplification presented. A method for on-chip cell lysis and DNA purification is described, with considerations toward inclusion in an integrated microdevice capable of both differential cell sorting and DNA extraction. The results of this work demonstrate the feasibility of incorporating microchip-based cell lysis and DNA extraction into forensic casework analysis.

  13. Bioremoval of heavy metals by bacterial biomass.

    PubMed

    Aryal, Mahendra; Liakopoulou-Kyriakides, Maria

    2015-01-01

    Heavy metals are among the most common pollutants found in the environment. Health problems due to the heavy metal pollution become a major concern throughout the world, and therefore, various treatment technologies such as reverse osmosis, ion exchange, solvent extraction, chemical precipitation, and adsorption are adopted to reduce or eliminate their concentration in the environment. Biosorption is a cost-effective and environmental friendly technique, and it can be used for detoxification of heavy metals in industrial effluents as an alternative treatment technology. Biosorption characteristics of various bacterial species are reviewed here with respect to the results reported so far. The role of physical, chemical, and biological modification of bacterial cells for heavy metal removal is presented. The paper evaluates the different kinetic, equilibrium, and thermodynamic models used in bacterial sorption of heavy metals. Biomass characterization and sorption mechanisms as well as elution of metal ions and regeneration of biomass are also discussed.

  14. Aloe vera extract activity on human corneal cells.

    PubMed

    Woźniak, Anna; Paduch, Roman

    2012-02-01

    Ocular diseases are currently an important problem in modern societies. Patients suffer from various ophthalmologic ailments namely, conjunctivitis, dry eye, dacryocystitis or degenerative diseases. Therefore, there is a need to introduce new treatment methods, including medicinal plants usage. Aloe vera [Aloe barbadensis Miller (Liliaceae)] possesses wound-healing properties and shows immunomodulatory, anti-inflammatory or antioxidant activities. NR uptake, MTT, DPPH• reduction, Griess reaction, ELISA and rhodamine-phalloidin staining were used to test toxicity, antiproliferative activity, reactive oxygen species (ROS) reduction, nitric oxide (NO) and cytokine level, and distribution of F-actin in cells, respectively. The present study analyzes the effect of Aloe vera extracts obtained with different solvents on in vitro culture of human 10.014 pRSV-T corneal cells. We found no toxicity of ethanol, ethyl acetate and heptane extracts of Aloe vera on human corneal cells. No ROS reducing activity by heptane extract and trace action by ethanol (only at high concentration 125 µg/ml) extract of Aloe vera was observed. Only ethyl acetate extract expressed distinct free radical scavenging effect. Plant extracts decreased NO production by human corneal cells as compared to untreated controls. The cytokine (IL-1β, IL-6, TNF-α and IL-10) production decreased after the addition of Aloe vera extracts to the culture media. Aloe vera contains multiple pharmacologically active substances which are capable of modulating cellular phenotypes and functions. Aloe vera ethanol and ethyl acetate extracts may be used in eye drops to treat inflammations and other ailments of external parts of the eye such as the cornea.

  15. Toxicity of a polymer-graphene oxide composite against bacterial planktonic cells, biofilms, and mammalian cells

    NASA Astrophysics Data System (ADS)

    Mejías Carpio, Isis E.; Santos, Catherine M.; Wei, Xin; Rodrigues, Debora F.

    2012-07-01

    It is critical to develop highly effective antimicrobial agents that are not harmful to humans and do not present adverse effects on the environment. Although antimicrobial studies of graphene-based nanomaterials are still quite limited, some researchers have paid particular attention to such nanocomposites as promising candidates for the next generation of antimicrobial agents. The polyvinyl-N-carbazole (PVK)-graphene oxide (GO) nanocomposite (PVK-GO), which contains only 3 wt% of GO well-dispersed in a 97 wt% PVK matrix, presents excellent antibacterial properties without significant cytotoxicity to mammalian cells. The high polymer content in this nanocomposite makes future large-scale material manufacturing possible in a high-yield process of adiabatic bulk polymerization. In this study, the toxicity of PVK-GO was assessed with planktonic microbial cells, biofilms, and NIH 3T3 fibroblast cells. The antibacterial effects were evaluated against two Gram-negative bacteria: Escherichia coli and Cupriavidus metallidurans; and two Gram-positive bacteria: Bacillus subtilis and Rhodococcus opacus. The results show that the PVK-GO nanocomposite presents higher antimicrobial effects than the pristine GO. The effectiveness of the PVK-GO in solution was demonstrated as the nanocomposite ``encapsulated'' the bacterial cells, which led to reduced microbial metabolic activity and cell death. The fact that the PVK-GO did not present significant cytotoxicity to fibroblast cells offers a great opportunity for potential applications in important biomedical and industrial fields.It is critical to develop highly effective antimicrobial agents that are not harmful to humans and do not present adverse effects on the environment. Although antimicrobial studies of graphene-based nanomaterials are still quite limited, some researchers have paid particular attention to such nanocomposites as promising candidates for the next generation of antimicrobial agents. The polyvinyl

  16. Dislocation-mediated growth of bacterial cell walls

    PubMed Central

    Amir, Ariel; Nelson, David R.

    2012-01-01

    Recent experiments have illuminated a remarkable growth mechanism of rod-shaped bacteria: proteins associated with cell wall extension move at constant velocity in circles oriented approximately along the cell circumference [Garner EC, et al., (2011) Science 333:222–225], [Domínguez-Escobar J, et al. (2011) Science 333:225–228], [van Teeffelen S, et al. (2011) PNAS 108:15822–15827]. We view these as dislocations in the partially ordered peptidoglycan structure, activated by glycan strand extension machinery, and study theoretically the dynamics of these interacting defects on the surface of a cylinder. Generation and motion of these interacting defects lead to surprising effects arising from the cylindrical geometry, with important implications for growth. We also discuss how long range elastic interactions and turgor pressure affect the dynamics of the fraction of actively moving dislocations in the bacterial cell wall. PMID:22660931

  17. Stem bark extract and fraction of Persea americana (Mill.) exhibits bactericidal activities against strains of bacillus cereus associated with food poisoning.

    PubMed

    Akinpelu, David A; Aiyegoro, Olayinka A; Akinpelu, Oluseun F; Okoh, Anthony I

    2014-12-30

    The study investigates the in vitro antibacterial potentials of stem bark extracts of Persea americana on strains of Bacillus cereus implicated in food poisoning. The crude stem bark extracts and butanolic fraction at a concentration of 25 mg/mL and 10 mg/mL, respectively, exhibited antibacterial activities against test isolates. The zones of inhibition exhibited by the crude extract and the fraction ranged between 10 mm and 26 mm, while the minimum inhibitory concentration values ranged between 0.78 and 5.00 mg/mL. The minimum bactericidal concentrations ranged between 3.12 mg/mL-12.5 mg/mL and 1.25-10 mg/mL for the extract and the fraction, respectively. The butanolic fraction killed 91.49% of the test isolates at a concentration of 2× MIC after 60 min of contact time, while a 100% killing was achieved after the test bacterial cells were exposed to the butanolic fraction at a concentration of 3× MIC after 90 min contact time. Intracellular protein and potassium ion leaked out of the test bacterial cells when exposed to certain concentrations of the fraction; this is an indication of bacterial cell wall disruptions by the extract's butanolic fraction and, thus, caused a biocidal effect on the cells, as evident in the killing rate test results.

  18. Bacterial actin MreB assembles in complex with cell shape protein RodZ.

    PubMed

    van den Ent, Fusinita; Johnson, Christopher M; Persons, Logan; de Boer, Piet; Löwe, Jan

    2010-03-17

    Bacterial actin homologue MreB is required for cell shape maintenance in most non-spherical bacteria, where it assembles into helical structures just underneath the cytoplasmic membrane. Proper assembly of the actin cytoskeleton requires RodZ, a conserved, bitopic membrane protein that colocalises to MreB and is essential for cell shape determination. Here, we present the first crystal structure of bacterial actin engaged with a natural partner and provide a clear functional significance of the interaction. We show that the cytoplasmic helix-turn-helix motif of Thermotoga maritima RodZ directly interacts with monomeric as well as filamentous MreB and present the crystal structure of the complex. In vitro and in vivo analyses of mutant T. maritima and Escherichia coli RodZ validate the structure and reveal the importance of the MreB-RodZ interaction in the ability of cells to propagate as rods. Furthermore, the results elucidate how the bacterial actin cytoskeleton might be anchored to the membrane to help constrain peptidoglycan synthesis in the periplasm.

  19. The interaction of bacterial magnetosomes and human liver cancer cells in vitro

    NASA Astrophysics Data System (ADS)

    Wang, Pingping; Chen, Chuanfang; Chen, Changyou; Li, Yue; Pan, Weidong; Song, Tao

    2017-04-01

    As the biogenic magnetic nanomaterial, bacterial magnetic nanoparticles, namely magnetosomes, provide many advantages for potential biomedical applications. As such, interactions among magnetosomes and target cells should be elucidated to develop their bioapplications and evaluate their biocompatibilities. In this study, the interaction of magnetosomes and human liver cancer HepG2 cells was examined. Prussian blue staining revealed numerous stained particles in or on the cells. Intracellular iron concentrations, measured through inductively coupled plasma optical emission spectroscopy, increased with the increasing concentration of the magnetosomes. Transmission electron microscopy images showed that magnetosomes could be internalized in cells, mainly encapsulated in membrane vesicles, such as endosomes and lysosomes, and partly found as free particles in the cytosol. Some of the magnetosomes on cellular surfaces were encapsulated through cell membrane ruffling, which is the initiating process of endocytosis. Applying low temperature treatment and using specific endocytic inhibitors, we validated that macropinocytosis and clathrin-mediated endocytosis were involved in magnetosome uptake by HepG2 cells. Consequently, we revealed the interaction and intrinsic endocytic mechanisms of magnetosomes and HepG2 cells. This study provides a basis for the further research on bacterial magnetosome applications in liver diseases.

  20. One Bacterial Cell, One Complete Genome

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woyke, Tanja; Tighe, Damon; Mavrommatis, Konstantinos

    2010-04-26

    While the bulk of the finished microbial genomes sequenced to date are derived from cultured bacterial and archaeal representatives, the vast majority of microorganisms elude current culturing attempts, severely limiting the ability to recover complete or even partial genomes from these environmental species. Single cell genomics is a novel culture-independent approach, which enables access to the genetic material of an individual cell. No single cell genome has to our knowledge been closed and finished to date. Here we report the completed genome from an uncultured single cell of Candidatus Sulcia muelleri DMIN. Digital PCR on single symbiont cells isolated frommore » the bacteriome of the green sharpshooter Draeculacephala minerva bacteriome allowed us to assess that this bacteria is polyploid with genome copies ranging from approximately 200?900 per cell, making it a most suitable target for single cell finishing efforts. For single cell shotgun sequencing, an individual Sulcia cell was isolated and whole genome amplified by multiple displacement amplification (MDA). Sanger-based finishing methods allowed us to close the genome. To verify the correctness of our single cell genome and exclude MDA-derived artifacts, we independently shotgun sequenced and assembled the Sulcia genome from pooled bacteriomes using a metagenomic approach, yielding a nearly identical genome. Four variations we detected appear to be genuine biological differences between the two samples. Comparison of the single cell genome with bacteriome metagenomic sequence data detected two single nucleotide polymorphisms (SNPs), indicating extremely low genetic diversity within a Sulcia population. This study demonstrates the power of single cell genomics to generate a complete, high quality, non-composite reference genome within an environmental sample, which can be used for population genetic analyzes.« less

  1. The Disruptive Effect of Lysozyme on the Bacterial Cell Wall Explored by an "In-Silico" Structural Outlook

    ERIC Educational Resources Information Center

    Primo, Emiliano D.; Otero, Lisandro H.; Ruiz, Francisco; Klinke, Sebastián; Giordano, Walter

    2018-01-01

    The bacterial cell wall, a structural unit of peptidoglycan polymer comprised of glycan strands consisting of a repeating disaccharide motif [N-acetylglucosamine (NAG) and N-acetylmuramylpentapeptide (NAM pentapeptide)], encases bacteria and provides structural integrity and protection. Lysozymes are enzymes that break down the bacterial cell wall…

  2. Trafficking and processing of bacterial proteins by mammalian cells: Insights from chondroitinase ABC.

    PubMed

    Muir, Elizabeth; Raza, Mansoor; Ellis, Clare; Burnside, Emily; Love, Fiona; Heller, Simon; Elliot, Matthew; Daniell, Esther; Dasgupta, Debayan; Alves, Nuno; Day, Priscilla; Fawcett, James; Keynes, Roger

    2017-01-01

    There is very little reported in the literature about the relationship between modifications of bacterial proteins and their secretion by mammalian cells that synthesize them. We previously reported that the secretion of the bacterial enzyme Chondroitinase ABC by mammalian cells requires the strategic removal of at least three N-glycosylation sites. The aim of this study was to determine if it is possible to enhance the efficacy of the enzyme as a treatment for spinal cord injury by increasing the quantity of enzyme secreted or by altering its cellular location. To determine if the efficiency of enzyme secretion could be further increased, cells were transfected with constructs encoding the gene for chondroitinase ABC modified for expression by mammalian cells; these contained additional modifications of strategic N-glycosylation sites or alternative signal sequences to direct secretion of the enzyme from the cells. We show that while removal of certain specific N-glycosylation sites enhances enzyme secretion, N-glycosylation of at least two other sites, N-856 and N-773, is essential for both production and secretion of active enzyme. Furthermore, we find that the signal sequence directing secretion also influences the quantity of enzyme secreted, and that this varies widely amongst the cell types tested. Last, we find that replacing the 3'UTR on the cDNA encoding Chondroitinase ABC with that of β-actin is sufficient to target the enzyme to the neuronal growth cone when transfected into neurons. This also enhances neurite outgrowth on an inhibitory substrate. Some intracellular trafficking pathways are adversely affected by cryptic signals present in the bacterial gene sequence, whilst unexpectedly others are required for efficient secretion of the enzyme. Furthermore, targeting chondroitinase to the neuronal growth cone promotes its ability to increase neurite outgrowth on an inhibitory substrate. These findings are timely in view of the renewed prospects for

  3. Human Lung Fibroblasts Present Bacterial Antigens to Autologous Lung Th Cells.

    PubMed

    Hutton, Andrew J; Polak, Marta E; Spalluto, C Mirella; Wallington, Joshua C; Pickard, Chris; Staples, Karl J; Warner, Jane A; Wilkinson, Tom M A

    2017-01-01

    Lung fibroblasts are key structural cells that reside in the submucosa where they are in contact with large numbers of CD4 + Th cells. During severe viral infection and chronic inflammation, the submucosa is susceptible to bacterial invasion by lung microbiota such as nontypeable Haemophilus influenzae (NTHi). Given their proximity in tissue, we hypothesized that human lung fibroblasts play an important role in modulating Th cell responses to NTHi. We demonstrate that fibroblasts express the critical CD4 + T cell Ag-presentation molecule HLA-DR within the human lung, and that this expression can be recapitulated in vitro in response to IFN-γ. Furthermore, we observed that cultured lung fibroblasts could internalize live NTHi. Although unable to express CD80 and CD86 in response to stimulation, fibroblasts expressed the costimulatory molecules 4-1BBL, OX-40L, and CD70, all of which are related to memory T cell activation and maintenance. CD4 + T cells isolated from the lung were predominantly (mean 97.5%) CD45RO + memory cells. Finally, cultured fibroblasts activated IFN-γ and IL-17A cytokine production by autologous, NTHi-specific lung CD4 + T cells, and cytokine production was inhibited by a HLA-DR blocking Ab. These results indicate a novel role for human lung fibroblasts in contributing to responses against bacterial infection through activation of bacteria-specific CD4 + T cells. Copyright © 2016 by The American Association of Immunologists, Inc.

  4. Silver nanoparticles synthesized using aqueous leaf extract of Ziziphus oenoplia (L.) Mill: Characterization and assessment of antibacterial activity.

    PubMed

    Soman, Soumya; Ray, J G

    2016-10-01

    Biological approach to synthesis of metal nanoparticles using aqueous leaf extract is a highly relevant and recent theme in nanotechnological research. Phytosynthesized AgNPs have better inhibitory and antimicrobial effects compared to aqueous leaf extract and silver nitrate. In the present investigation crystalline silver nanoparticles (AgNPs) with size of 10nm have been successfully synthesized using aqueous leaf extract (AQLE) of Ziziphus oenoplia (L.) Mill., which act as both reducing as well as capping agent. The particles were characterized using UV Visible spectroscopy, HRTEM-EDAX, XRD, FT-IR and DLS. An evaluation of the anti bacterial activity was carried out using Agar well diffusion method and MIC determination against four bacterial strains, Klebsiella pneumoniae, Pseudomonas aeruginosa, Escherichia coli and Salmonella typhi; the AgNPs exhibited quite high antibacterial activity. Furthermore, bactericidal studies with TEM at different time intervals after AgNPs treatment showed the presence of AgNPs near cell membrane of bacteria at about 30min exposure and the bacterial-lysis was found completed at 24h. This gave an insight on the mechanism of bacterial-lysis by direct damage to the cell membrane. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Label-free isolation and deposition of single bacterial cells from heterogeneous samples for clonal culturing

    NASA Astrophysics Data System (ADS)

    Riba, J.; Gleichmann, T.; Zimmermann, S.; Zengerle, R.; Koltay, P.

    2016-09-01

    The isolation and analysis of single prokaryotic cells down to 1 μm and less in size poses a special challenge and requires micro-engineered devices to handle volumes in the picoliter to nanoliter range. Here, an advanced Single-Cell Printer (SCP) was applied for automated and label-free isolation and deposition of bacterial cells encapsulated in 35 pl droplets by inkjet-like printing. To achieve this, dispenser chips to generate micro droplets have been fabricated with nozzles 20 μm in size. Further, the magnification of the optical system used for cell detection was increased. Redesign of the optical path allows for collision-free addressing of any flat substrate since no compartment protrudes below the nozzle of the dispenser chip anymore. The improved system allows for deterministic isolation of individual bacterial cells. A single-cell printing efficiency of 93% was obtained as shown by printing fluorescent labeled E. coli. A 96-well plate filled with growth medium is inoculated with single bacteria cells on average within about 8 min. Finally, individual bacterial cells from a heterogeneous sample of E. coli and E. faecalis were isolated for clonal culturing directly on agar plates in user-defined array geometry.

  6. Microinjection of human cell extracts corrects xeroderma pigmentosum defect.

    PubMed Central

    de Jonge, A J; Vermeulen, W; Klein, B; Hoeijmakers, J H

    1983-01-01

    Cultured fibroblasts of patients with the DNA repair syndrome xeroderma pigmentosum (XP) were injected with crude cell extracts from various human cells. Injected fibroblasts were then assayed for unscheduled DNA synthesis (UDS) to see whether the injected extract could complement their deficiency in the removal of u.v.-induced thymidine dimers from their DNA. Microinjection of extracts from repair-proficient cells (such as HeLa, placenta) and from cells belonging to XP complementation group C resulted in a temporary correction of the DNA repair defect in XP-A cells but not in cells from complementation groups C, D or F. Extracts prepared from XP-A cells were unable to correct the XP-A repair defect. The UDS of phenotypically corrected XP-A cells is u.v.-specific and can reach the level of normal cells. The XP-A correcting factor was found to be sensitive to the action of proteinase K, suggesting that it is a protein. It is present in normal cells in high amounts, it is stable on storage and can still be detected in the injected cells 8 h after injection. The microinjection assay described in this paper provides a useful tool for the purification of the XP-A (and possibly other) factor(s) involved in DNA repair. Images Fig. 1. PMID:6357782

  7. Homogenizing bacterial cell factories: Analysis and engineering of phenotypic heterogeneity.

    PubMed

    Binder, Dennis; Drepper, Thomas; Jaeger, Karl-Erich; Delvigne, Frank; Wiechert, Wolfgang; Kohlheyer, Dietrich; Grünberger, Alexander

    2017-07-01

    In natural habitats, microbes form multispecies communities that commonly face rapidly changing and highly competitive environments. Thus, phenotypic heterogeneity has evolved as an innate and important survival strategy to gain an overall fitness advantage over cohabiting competitors. However, in defined artificial environments such as monocultures in small- to large-scale bioreactors, cell-to-cell variations are presumed to cause reduced production yields as well as process instability. Hence, engineering microbial production toward phenotypic homogeneity is a highly promising approach for synthetic biology and bioprocess optimization. In this review, we discuss recent studies that have unraveled the cell-to-cell heterogeneity observed during bacterial gene expression and metabolite production as well as the molecular mechanisms involved. In addition, current single-cell technologies are briefly reviewed with respect to their applicability in exploring cell-to-cell variations. We highlight emerging strategies and tools to reduce phenotypic heterogeneity in biotechnological expression setups. Here, strain or inducer modifications are combined with cell physiology manipulations to achieve the ultimate goal of equalizing bacterial populations. In this way, the majority of cells can be forced into high productivity, thus reducing less productive subpopulations that tend to consume valuable resources during production. Modifications in uptake systems, inducer molecules or nutrients represent valuable tools for diminishing heterogeneity. Finally, we address the challenge of transferring homogeneously responding cells into large-scale bioprocesses. Environmental heterogeneity originating from extrinsic factors such as stirring speed and pH, oxygen, temperature or nutrient distribution can significantly influence cellular physiology. We conclude that engineering microbial populations toward phenotypic homogeneity is an increasingly important task to take biotechnological

  8. Production and purification of anti-bacterial biometabolite from wild-type Lactobacillus, isolated from fermented bamboo shoot: future suggestions and a proposed system for secondary metabolite onsite recovery during continuous fermentation.

    PubMed

    Badwaik, Laxmikant S; Borah, Pallab Kumar; Deka, Sankar C

    2015-02-01

    Wild-type lactobacillus isolated form Khorisa, a fermented bamboo shoot product of Assam, India were evaluated for production anti-bacterial secondary biometabolites, against Staphylococcus aureus. Submerged fermentation technique was used for the production of secondary anti-microbial biometabolite by a single wild-type lactobacillus strain, which tested positive for the release of anti-bacterial factor(s). Crude cell-free supernatant was obtained, followed by extraction in water-immiscible solvents viz., chloroform, hexane, petroleum ether. Chloroform extract of cell-free crude supernatant showed maximum yield (0.054 g/ml) and inhibited all indicator bacterial strains viz., Escherichia coli, Staphylococcus aureus, and Bacillus cereus. Yields of hexane and petroleum ether extract were 0.052 and 0.026 g/ml, respectively. Minimum lethal dose concentration assay of the chloroform extract showed LDmin values at 27, 1.68, and 1.68 mg/ml for E. coli, S. aureus, and B. cereus, respectively. Kill time for all the indicator bacterial strains were less than 12 h. The efficacy of the anti-bacterial substance seemed to depend on the presence of organic acids, particularly lactic acid. Conceptual-based suggestion for the development of an onsite secondary metabolites recovery system during continuous fermentation has also been attempted.

  9. Dysregulated luminal bacterial antigen-specific T-cell responses and antigen-presenting cell function in HLA-B27 transgenic rats with chronic colitis

    PubMed Central

    Qian, Bi-Feng; Tonkonogy, Susan L; Hoentjen, Frank; Dieleman, Levinus A; Sartor, R Balfour

    2005-01-01

    HLA-B27/β2 microglobulin transgenic (TG) rats spontaneously develop T-cell-mediated colitis when colonized with normal commensal bacteria, but remain disease-free under germ-free conditions. We investigated regulation of in vitro T-cell responses to enteric bacterial components. Bacterial lysates prepared from the caecal contents of specific pathogen-free (SPF) rats stimulated interferon-γ (IFN-γ) production by TG but not non-TG mesenteric lymph node (MLN) cells. In contrast, essentially equivalent amounts of interleukin-10 (IL-10) were produced by TG and non-TG cells. However, when cells from MLNs of non-TG rats were cocultured with TG MLN cells, no suppression of IFN-γ production was noted. Both non-TG and TG antigen-presenting cells (APC) pulsed with caecal bacterial lysate were able to induce IFN-γ production by TG CD4+ cells, although non-TG APC were more efficient than TG APC. Interestingly, the addition of exogenous IL-10 inhibited non-TG APC but not TG APC stimulation of IFN-γ production by cocultured TG CD4+ lymphocytes. Conversely, in the presence of exogenous IFN-γ, production of IL-10 was significantly lower in the supernatants of TG compared to non-TG APC cultures. We conclude that commensal luminal bacterial components induce exaggerated in vitro IFN-γ responses in HLA-B27 TG T cells, which may in turn inhibit the production of regulatory molecules, such as IL-10. Alterations in the production of IFN-γ, and in responses to this cytokine, as well as possible resistance of TG cells to suppressive regulation could together contribute to the development of chronic colitis in TG rats. PMID:16108823

  10. Apoptotic induction of skin cancer cell death by plant extracts.

    PubMed

    Thuncharoen, Walairat; Chulasiri, Malin; Nilwarangkoon, Sirinun; Nakamura, Yukio; Watanapokasin, Ramida

    2013-01-01

    The aim of the present study was to investigate the effects of plant extracts on cancer apoptotic induction. Human epidermoid carcinoma A431 cell line, obtained from the American Type Culture Collection (ATCC, Manassas, VA), was maintained in Dulbecco's Modified Eagle Medium (DMEM) supplemented with 10% fetal bovine serum (FBS) at 37 degrees C, 5% carbon dioxide (CO2). Plant extract solutions were obtained from S & J international enterprises public company limited. These plant extracts include 50% hydroglycol extracts from Etlingera elatior (Jack) R.M.Smith (torch ginger; EE), Rosa damascene (damask rose; DR) and Rafflesia kerrii Meijer (bua phut; RM). The cell viability, time and dose dependency were determined by MTT (3-(4, 5-Dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide) assay. A431 cells were treated with the plant extracts and stained with Hoechst 33342 fluorescent staining dye. Cell viability was demonstrated by the inhibitory concentration 50% (IC50). The anti-proliferative effects were shown to be dependent on time and dose. Typical characteristics of apoptosis which are cell morphological changes and chromatin condensation were clearly observed. The plant extracts was shown to be effective for anti-proliferation and induction of apoptosis cell death in skin cancer cells. Therefore, mechanisms underlying the cell death and its potential use for treatment of skin cancer will be further studied.

  11. DNA excision repair in cell extracts from human cell lines exhibiting hypersensitivity to DNA-damaging agents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hansson, J.; Keyse, S.M.; Lindahl, T.

    Whole cell extracts from human lymphoid cell lines can perform in vitro DNA repair synthesis in plasmids damaged by agents including UV or cis-diamminedichloroplatinum(II) (cis-DDP). Extracts from xeroderma pigmentosum (XP) cells are defective in repair synthesis. We have now studied in vitro DNA repair synthesis using extracts from lymphoblastoid cell lines representing four human hereditary syndromes with increased sensitivity to DNA-damaging agents. Extracts of cell lines from individuals with the sunlight-sensitive disorders dysplastic nevus syndrome or Cockayne's syndrome (complementation groups A and B) showed normal DNA repair synthesis in plasmids with UV photoproducts. This is consistent with in vivo measurementsmore » of the overall DNA repair capacity in such cell lines. A number of extracts were prepared from two cell lines representing the variant form of XP (XP-V). Half of the extracts prepared showed normal levels of in vitro DNA repair synthesis in plasmids containing UV lesions, but the remainder of the extracts from the same cell lines showed deficient repair synthesis, suggesting the possibility of an unusually labile excision repair protein in XP-V. Fanconi's anemia (FA) cells show cellular hypersensitivity to cross-linking agents including cis-DDP. Extracts from cell lines belonging to two different complementation groups of FA showed normal DNA repair synthesis in plasmids containing cis-DDP or UV adducts. Thus, there does not appear to be an overall excision repair defect in FA, but the data do not exclude a defect in the repair of interstrand DNA cross-links.« less

  12. Scanning Electron Microscopic study of Piper betle L. leaves extract effect against Streptococcus mutans ATCC 25175

    PubMed Central

    RAHIM, Zubaidah Haji Abdul; THURAIRAJAH, Nalina

    2011-01-01

    Introduction Previous studies have shown that Piper betle L. leaves extract inhibits the adherence of Streptococcus mutans to glass surface, suggesting its potential role in controlling dental plaque development. Objectives: In this study, the effect of the Piper betle L. extract towards S. mutans (with/without sucrose) using scanning electron microscopy (SEM) and on partially purified cell-associated glucosyltransferase activity were determined. Material and Methods S. mutans were allowed to adhere to glass beads suspended in 6 different Brain Heart Infusion broths [without sucrose; with sucrose; without sucrose containing the extract (2 mg mL-1 and 4 mg mL-1); with sucrose containing the extract (2 mg mL-1 and 4 mg mL-1)]. Positive control was 0.12% chlorhexidine. The glass beads were later processed for SEM viewing. Cell surface area and appearance and, cell population of S. mutans adhering to the glass beads were determined upon viewing using the SEM. The glucosyltransferase activity (with/without extract) was also determined. One- and two-way ANOVA were used accordingly. Results It was found that sucrose increased adherence and cell surface area of S. mutans (p<0.001). S. mutans adhering to 100 µm2 glass surfaces (with/without sucrose) exhibited reduced cell surface area, fluffy extracellular appearance and cell population in the presence of the Piper betle L. leaves extract. It was also found that the extract inhibited glucosyltransferase activity and its inhibition at 2.5 mg mL-1 corresponded to that of 0.12% chlorhexidine. At 4 mg mL-1 of the extract, the glucosyltransferase activity was undetectable and despite that, bacterial cells still demonstrated adherence capacity. Conclusion The SEM analysis confirmed the inhibitory effects of the Piper betle L. leaves extract towards cell adherence, cell growth and extracellular polysaccharide formation of S. mutans visually. In bacterial cell adherence, other factors besides glucosyltransferase are involved. PMID

  13. Enhanced Toxic Metal Accumulation in Engineered Bacterial Cells Expressing Arabidopsis thaliana Phytochelatin Synthase

    PubMed Central

    Sauge-Merle, Sandrine; Cuiné, Stéphan; Carrier, Patrick; Lecomte-Pradines, Catherine; Luu, Doan-Trung; Peltier, Gilles

    2003-01-01

    Phytochelatins (PCs) are metal-binding cysteine-rich peptides, enzymatically synthesized in plants and yeasts from glutathione in response to heavy metal stress by PC synthase (EC 2.3.2.15). In an attempt to increase the ability of bacterial cells to accumulate heavy metals, the Arabidopsis thaliana gene encoding PC synthase (AtPCS) was expressed in Escherichia coli. A marked accumulation of PCs was observed in vivo together with a decrease in the glutathione cellular content. When bacterial cells expressing AtPCS were placed in the presence of heavy metals such as cadmium or the metalloid arsenic, cellular metal contents were increased 20- and 50-fold, respectively. We discuss the possibility of using genes of the PC biosynthetic pathway to design bacterial strains or higher plants with increased abilities to accumulate toxic metals, and also arsenic, for use in bioremediation and/or phytoremediation processes. PMID:12514032

  14. Electromembrane extraction using two separate cells: A new design for simultaneous extraction of acidic and basic compounds.

    PubMed

    Nojavan, Saeed; Asadi, Sakine

    2016-02-01

    Simultaneous extraction of acidic and basic analytes from a sample is seen to be a challenging task. In this work, a novel and efficient electromembrane extraction (EME) method based on two separate cells was applied to simultaneously extract and preconcentrate two acidic drugs (naproxen and ibuprofen) along with a basic drug (ketamine). Once both cells were filled with the sample solution, basic drug was extracted from one cell with the other cell used to extract acidic drugs. The employed supported liquid membranes for the extraction of acidic and basic drugs were 2-ethyl hexanol and 1-octanol, respectively. Under an applied potential of 250 V in the course of the extraction process, acidic, and basic drugs were extracted from a 3.0 mL aqueous sample solution into 25 μL acceptor solutions. The pH values of the donor and acceptor solutions in the cathodic cell were 5.0 and 1.5, respectively, the corresponding values in the anodic cell were, however, 8.0 and 12.5, respectively. The rates of recovery obtained within 20 min of extraction time at a stirring rate of 750 rpm ranged from 45 to 54%. With correlation coefficients ranging from 0.990 to 0.996, the proposed EME technique provided good linearity over a concentration range of 20-1000 ng/mL. The LOD for all drugs was found to be 6.7 ng/mL, while reproducibility ranged from 7 to 12% (n = 5). Finally, applying the proposed method to determine and quantify the drugs in urine and wastewater samples, satisfactory results were achieved. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Chemical and Enzymatic Strategies for Bacterial and Mammalian Cell Surface Engineering.

    PubMed

    Bi, Xiaobao; Yin, Juan; Chen Guanbang, Ashley; Liu, Chuan-Fa

    2018-06-07

    The cell surface serves important functions such as the regulation of cell-cell and cell-environment interactions. The understanding and manipulation of the cell surface is important for a wide range of fundamental studies of cellular behavior and for biotechnological and medical applications. With the rapid advance of biology, chemistry and materials science, many strategies have been developed for the functionalization of bacterial and mammalian cell surfaces. Here, we review the recent development of chemical and enzymatic approaches to cell surface engineering with particular emphasis on discussing the advantages and limitations of each of these strategies. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. A simple and novel modification of comet assay for determination of bacteriophage mediated bacterial cell lysis.

    PubMed

    Khairnar, Krishna; Sanmukh, Swapnil; Chandekar, Rajshree; Paunikar, Waman

    2014-07-01

    The comet assay is the widely used method for in vitro toxicity testing which is also an alternative to the use of animal models for in vivo testing. Since, its inception in 1984 by Ostling and Johansson, it is being modified frequently for a wide range of application. In spite of its wide applicability, unfortunately there is no report of its application in bacteriophages research. In this study, a novel application of comet assay for the detection of bacteriophage mediated bacterial cell lysis was described. The conventional methods in bacteriophage research for studying bacterial lysis by bacteriophages are plaque assay method. It is time consuming, laborious and costly. The lytic activity of bacteriophage devours the bacterial cell which results in the release of bacterial genomic material that gets detected by ethidium bromide staining method by the comet assay protocol. The objective of this study was to compare efficacy of comet assay with different assay used to study phage mediated bacterial lysis. The assay was performed on culture isolates (N=80 studies), modified comet assay appear to have relatively higher sensitivity and specificity than other assay. The results of the study showed that the application of comet assay can be an economical, time saving and less laborious alternative to conventional plaque assay for the detection of bacteriophage mediated bacterial cell lysis. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Effects of Psidium guajava leaf extract on secretion systems of Gram-negative enteropathogenic bacteria.

    PubMed

    Nakasone, Noboru; Ogura, Yasunori; Higa, Naomi; Toma, Claudia; Koizumi, Yukiko; Takaesu, Giichi; Suzuki, Toshihiko; Yamashiro, Tetsu

    2018-05-23

    We screened a total of 672 plant-tissue extracts to search for phytochemicals that inhibit the function of the type III secretion system (T3SS) of enteropathogenic Escherichia coli (EPEC) and enterohemorrhagic E. coli (EHEC). Among candidates examined, we found that an extract from the leaves of Psidium guajava (guava) inhibited the secretion of the EspB protein from EPEC and EHEC without affecting bacterial growth. The guava extract (GE) also inhibited EPEC and EHEC from adhering to and injecting EspB protein into HEp-2 cells. GE seemed to block the translocation of EspB from the bacterial cells to the culture medium. In addition to EPEC and EHEC, GE also inhibited the T3SS of Yersinia pseudotuberculosis and Salmonella enterica serovar Typhimurium. After exposure to GE, Y. pseudotuberculosis stopped the secretion of Yop proteins and lost its ability to induce the apoptosis of mouse bone marrow-derived macrophages. S. Typhimurium exposed to GE ceased the secretion of Sip proteins and lost its ability to invade HEp-2 cells. GE inhibited EspC secretion, the type V secretion protein of EPEC, but not Shiga toxin2 from EHEC. Thus, our results suggest that guava leaves contain a novel type of antimicrobial compound that could be used for the therapeutic treatment and prevention of gram-negative enteropathogenic bacterial infections. © 2018 The Societies and John Wiley & Sons Australia, Ltd.

  18. DEGRADATION OF ERGOTHIONEINE BY CELL-FREE EXTRACTS OF ALCALIGENES FAECALIS II.

    PubMed Central

    Booth, James S.; Appleman, Milo D.

    1963-01-01

    Booth, James S. (University of Southern California, Los Angeles) and Milo D. Appleman. Degradation of ergothioneine by cell-free extracts of Alcaligenes faecalis. II. Production of glutamic acid. J. Bacteriol. 85:654–657. 1963.—On the basis of oxidation and paper chromatographic procedures, glutamic acid was identified as the end product of ergothioneine degradation by cell-free extracts of Alcaligenes faecalis. Hydrogen sulfide and ammonia yields were determined. Several differences between the metabolism of whole cells and cell-free extracts were noted. Cleavage of the imidazole ring by cell-free extracts appeared to be hydrolytic rather than oxidative. PMID:14042946

  19. Biological activities of Allium sativum and Zingiber officinale extracts on clinically important bacterial pathogens, their phytochemical and FT-IR spectroscopic analysis.

    PubMed

    Awan, Uzma Azeem; Ali, Shaukat; Shahnawaz, Amna Mir; Shafique, Irsa; Zafar, Atiya; Khan, Muhammad Abdul Rauf; Ghous, Tahseen; Saleem, Azhar; Andleeb, Saiqa

    2017-05-01

    The spread of bacterial infectious diseases is a major public threat. Herbs and spices have offered an excellent, important and useful source of antimicrobial agents against many pathological infections. In the current study, the antimicrobial potency of fresh, naturally and commercial dried Allium sativum and Zingiber officinale extracts had been investigated against seven local clinical bacterial isolates such as Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumonia, Staphylococcus aureus, Streptococcus pyogenes, Staphylococcus epidermidis, and Serratia marcesnces by the agar disc diffusion method. All tested pathogens except P. aeruginosa and E. coli were most susceptible to ethanolic and methanolic extracts of A. sativum. Similarly, chloroform and diethyl ether extracts of Z. officinale showed a greater zone of inhibition of tested pathogens except for P. aeruginosa and E. coli. We found that all extracts of A. sativum and Z. officinale have a strong antibacterial effect compared to recommended standard antibiotics through activity index. All results were evaluated statistically and a significant difference was recorded at P< 0.05. Antioxidant activity of extracts showed that 10 out of 13 extracts have high scavenging potential. Thin layer chromatography profiling of all extracts of A. sativum and Z. officinale proposed the presence of various phytochemicals such as tannins, phenols, alkaloids, steroids and saponins. Retention factor of diverse phytochemicals provides a valuable clue regarding their polarity and the selection of solvents for separation of phytochemicals. Significant inhibition of S. aureus was also observed through TLC-Bioautography. FT-IR Spectrometry was also performed to characterize both natural and commercial extracts of A. sativum and Z. officinale to evaluate bioactive compounds. These findings provide new insights to use A. sativum and Z. officinale as potential plant sources for controlling pathogenic bacteria and potentially

  20. Are Russian propolis ethanol extracts the future for the prevention of medical and biomedical implant contaminations?

    PubMed

    Ambi, Ashwin; Bryan, Julia; Borbon, Katherine; Centeno, Daniel; Liu, Tianchi; Chen, Tung Po; Cattabiani, Thomas; Traba, Christian

    2017-07-01

    Most studies reveal that the mechanism of action of propolis against bacteria is functional rather than structural and is attributed to a synergism between the compounds in the extracts. Propolis is said to inhibit bacterial adherence, division, inhibition of water-insoluble glucan formation, and protein synthesis. However, it has been shown that the mechanism of action of Russian propolis ethanol extracts is structural rather than functional and may be attributed to the metals found in propolis. If the metals found in propolis are removed, cell lysis still occurs and these modified extracts may be used in the prevention of medical and biomedical implant contaminations. The antibacterial activity of metal-free Russian propolis ethanol extracts (MFRPEE) on two biofilm forming bacteria: penicillin-resistant Staphylococcus aureus and Escherichia coli was evaluated using MTT and a Live/Dead staining technique. Toxicity studies were conducted on mouse osteoblast (MC-3T3) cells using the same viability assays. In the MTT assay, biofilms were incubated with MTT at 37°C for 30min. After washing, the purple formazan formed inside the bacterial cells was dissolved by SDS and then measured using a microplate reader by setting the detecting and reference wavelengths at 570nm and 630nm, respectively. Live and dead distributions of cells were studied by confocal laser scanning microscopy. Complete biofilm inactivation was observed when biofilms were treated for 40h with 2µg/ml of MFRPEE. Results indicate that the metals present in propolis possess antibacterial activity, but do not have an essential role in the antibacterial mechanism of action. Additionally, the same concentration of metals found in propolis samples, were toxic to tissue cells. Comparable to samples with metals, metal free samples caused damage to the cell membrane structures of both bacterial species, resulting in cell lysis. Results suggest that the structural mechanism of action of Russian propolis ethanol

  1. Evaluation of the damage of cell wall and cell membrane for various extracellular polymeric substance extractions of activated sludge.

    PubMed

    Guo, Xuesong; Liu, Junxin; Xiao, Benyi

    2014-10-20

    Extracellular polymeric substances (EPS) are susceptible to contamination by intracellular substances released during the extraction of EPS owing to the damage caused to microbial cell structures. The damage to cell walls and cell membranes in nine EPS extraction processes of activated sludge was evaluated in this study. The extraction of EPS (including proteins, carbohydrates and DNA) was the highest using the NaOH extraction method and the lowest using formaldehyde extraction. All nine EPS extraction methods in this study resulted in cell wall and membrane damage. The damage to cell walls, evaluated by 2-keto-3-deoxyoctonate (KDO) and N-acetylglucosamine content changes in extracted EPS, was the most significant in the NaOH extraction process. Formaldehyde extraction showed a similar extent of damage to cell walls to those detected in the control method (centrifugation), while those in the formaldehyde-NaOH and cation exchange resin extractions were slightly higher than those detected in the control. N-acetylglucosamine was more suitable than KDO for the evaluation of cell wall damage in the EPS extraction of activated sludge. The damage to cell membranes was characterized by two fluorochromes (propidium iodide and FITC Annexin V) with flow cytometry (FCM) measurement. The highest proportion of membrane-damaged cells was detected in NaOH extraction (26.54% of total cells) while membrane-damaged cells comprised 8.19% of total cells in the control. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Periodic growth of bacterial colonies

    NASA Astrophysics Data System (ADS)

    Yamazaki, Yoshihiro; Ikeda, Takemasa; Shimada, Hirotoshi; Hiramatsu, Fumiko; Kobayashi, Naoki; Wakita, Jun-ichi; Itoh, Hiroto; Kurosu, Sayuri; Nakatsuchi, Michio; Matsuyama, Tohey; Matsushita, Mitsugu

    2005-06-01

    The formation of concentric ring colonies by bacterial species Bacillus subtilis and Proteus mirabilis has been investigated experimentally, focusing our attention on the dependence of local cell density upon the bacterial motility. It has been confirmed that these concentric ring colonies reflect the periodic change of the bacterial motility between motile cell state and immotile cell state. We conclude that this periodic change is macroscopically determined neither by biological factors (i.e., biological clock) nor by chemical factors (chemotaxis as inhibitor). And our experimental results strongly suggest that the essential factor for the change of the bacterial motility during concentric ring formation is the local cell density.

  3. Cinnamon extract suppresses experimental colitis through modulation of antigen-presenting cells.

    PubMed

    Kwon, Ho-Keun; Hwang, Ji-Sun; Lee, Choong-Gu; So, Jae-Seon; Sahoo, Anupama; Im, Chang-Rok; Jeon, Won Kyung; Ko, Byoung Seob; Lee, Sung Haeng; Park, Zee Yong; Im, Sin-Hyeog

    2011-02-28

    To investigate the anti-inflammatory effects of cinnamon extract and elucidate its mechanisms for targeting the function of antigen presenting cells. Cinnamon extract was used to treat murine macrophage cell line (Raw 264.7), mouse primary antigen-presenting cells (APCs, MHCII(+)) and CD11c(+) dendritic cells to analyze the effects of cinnamon extract on APC function. The mechanisms of action of cinnamon extract on APCs were investigated by analyzing cytokine production, and expression of MHC antigens and co-stimulatory molecules by quantitative real-time PCR and flow cytometry. In addition, the effect of cinnamon extract on antigen presentation capacity and APC-dependent T-cell differentiation were analyzed by [H(3)]-thymidine incorporation and cytokine analysis, respectively. To confirm the anti-inflammatory effects of cinnamon extract in vivo, cinnamon or PBS was orally administered to mice for 20 d followed by induction of experimental colitis with 2,4,6 trinitrobenzenesulfonic acid. The protective effects of cinnamon extract against experimental colitis were measured by checking clinical symptoms, histological analysis and cytokine expression profiles in inflamed tissue. Treatment with cinnamon extract inhibited maturation of MHCII(+) APCs or CD11c(+) dendritic cells (DCs) by suppressing expression of co-stimulatory molecules (B7.1, B7.2, ICOS-L), MHCII and cyclooxygenase (COX)-2. Cinnamon extract induced regulatory DCs (rDCs) that produce low levels of pro-inflammatory cytokines [interleukin (IL)-1β, IL-6, IL-12, interferon (IFN)-γ and tumor necrosis factor (TNF)-α] while expressing high levels of immunoregulatory cytokines (IL-10 and transforming growth factor-β). In addition, rDCs generated by cinnamon extract inhibited APC-dependent T-cell proliferation, and converted CD4(+) T cells into IL-10(high) CD4(+) T cells. Furthermore, oral administration of cinnamon extract inhibited development and progression of intestinal colitis by inhibiting expression

  4. Burkholderia Type VI Secretion Systems Have Distinct Roles in Eukaryotic and Bacterial Cell Interactions

    PubMed Central

    Schwarz, Sandra; West, T. Eoin; Boyer, Frédéric; Chiang, Wen-Chi; Carl, Mike A.; Hood, Rachel D.; Rohmer, Laurence; Tolker-Nielsen, Tim; Skerrett, Shawn J.; Mougous, Joseph D.

    2010-01-01

    Bacteria that live in the environment have evolved pathways specialized to defend against eukaryotic organisms or other bacteria. In this manuscript, we systematically examined the role of the five type VI secretion systems (T6SSs) of Burkholderia thailandensis (B. thai) in eukaryotic and bacterial cell interactions. Consistent with phylogenetic analyses comparing the distribution of the B. thai T6SSs with well-characterized bacterial and eukaryotic cell-targeting T6SSs, we found that T6SS-5 plays a critical role in the virulence of the organism in a murine melioidosis model, while a strain lacking the other four T6SSs remained as virulent as the wild-type. The function of T6SS-5 appeared to be specialized to the host and not related to an in vivo growth defect, as ΔT6SS-5 was fully virulent in mice lacking MyD88. Next we probed the role of the five systems in interbacterial interactions. From a group of 31 diverse bacteria, we identified several organisms that competed less effectively against wild-type B. thai than a strain lacking T6SS-1 function. Inactivation of T6SS-1 renders B. thai greatly more susceptible to cell contact-induced stasis by Pseudomonas putida, Pseudomonas fluorescens and Serratia proteamaculans—leaving it 100- to 1000-fold less fit than the wild-type in competition experiments with these organisms. Flow cell biofilm assays showed that T6S-dependent interbacterial interactions are likely relevant in the environment. B. thai cells lacking T6SS-1 were rapidly displaced in mixed biofilms with P. putida, whereas wild-type cells persisted and overran the competitor. Our data show that T6SSs within a single organism can have distinct functions in eukaryotic versus bacterial cell interactions. These systems are likely to be a decisive factor in the survival of bacterial cells of one species in intimate association with those of another, such as in polymicrobial communities present both in the environment and in many infections. PMID:20865170

  5. The acoustic sensor for rapid analysis of bacterial cells in the conductive suspensions.

    PubMed

    Borodina, I A; Zaitsev, B D; Guliy, O; Teplykh, A A; Shikhabudinov, A M

    2017-11-01

    The possibility of using the acoustic sensor on the basis of a two-channel delay line for rapid analysis of bacterial cells in the conductive suspensions was investigated. The dependencies of change in phase and insertion loss of output signal of the sensor on conductivity of buffer solution with various concentrations of cells due to a specific interaction "bacterial cells - mini-antibodies" for electrically open and electrically shorted channels of delay line were measured. It has been found that these changes have the most values for the electrically open channel. It has been also shown that the sensor rapidly responds to the specific interaction and the time stabilization of the phase and insertion loss of output signal is less than 10min. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Diethylaminoethyl-cellulose-bacterial cell immunoadsorbent columns: preparation of serotype-specific globulin and immunofluorescent conjugates for Streptococcus mutans serotypes a and d.

    PubMed

    McKinney, R M; Thacker, L

    1976-04-01

    Diethylaminoethyl (DEAE)-cellulose was used as a support material for preparing bacterial cell columns. Pretreatment of the bacterial cells with formalin was essential in obtaining satisfactory adherence of the cells to DEAE-cellulose. Cross-reacting antibodies were removed from antibody preparations against strains of Streptococcus mutans serotypes a and d by adsorption on appropriate bacterial cell columns. S. mutans serotype d was further divided into two subtypes on the basis of immunofluorescent staining with conjugates of immunospecifically adsorbed immunoglobulin G. The DEAE-cellulose-bacterial cell columns were regenerated after use by desorbing the cross-reacting antibodies with low-pH buffer and were used repeatedly over and 18-month period with no detectable loss in effectiveness.

  7. Evaluation of DNA extraction methods for PCR-based detection of Listeria monocytogenes from vegetables.

    PubMed

    Vojkovska, H; Kubikova, I; Kralik, P

    2015-03-01

    Epidemiological data indicate that raw vegetables are associated with outbreaks of Listeria monocytogenes. Therefore, there is a demand for the availability of rapid and sensitive methods, such as PCR assays, for the detection and accurate discrimination of L. monocytogenes. However, the efficiency of PCR methods can be negatively affected by inhibitory compounds commonly found in vegetable matrices that may cause false-negative results. Therefore, the sample processing and DNA isolation steps must be carefully evaluated prior to the introduction of such methods into routine practice. In this study, we compared the ability of three column-based and four magnetic bead-based commercial DNA isolation kits to extract DNA of the model micro-organism L. monocytogenes from raw vegetables. The DNA isolation efficiency of all isolation kits was determined using a triplex real-time qPCR assay designed to specifically detect L. monocytogenes. The kit with best performance, the PowerSoil(™) Microbial DNA Isolation Kit, is suitable for the extraction of amplifiable DNA from L. monocytogenes cells in vegetable with efficiencies ranging between 29.6 and 70.3%. Coupled with the triplex real-time qPCR assay, this DNA isolation kit is applicable to the samples with bacterial loads of 10(3) bacterial cells per gram of L. monocytogenes. Several recent outbreaks of Listeria monocytogenes have been associated with the consumption of fruits and vegetables. Real-time PCR assays allow fast detection and accurate quantification of microbes. However, the success of real-time PCR is dependent on the success with which template DNA can be extracted. The results of this study suggest that the PowerSoil(™) Microbial DNA Isolation Kit can be used for the extraction of amplifiable DNA from L. monocytogenes cells in vegetable with efficiencies ranging between 29.6 and 70.3%. This method is applicable to samples with bacterial loads of 10(3) bacterial cells per gram of L. monocytogenes. © 2014

  8. Anti-infective effects of Brazilian Caatinga plants against pathogenic bacterial biofilm formation.

    PubMed

    Silva, Laura Nunes; Trentin, Danielle da Silva; Zimmer, Karine Rigon; Treter, Janine; Brandelli, Clara Lia Costa; Frasson, Amanda Piccoli; Tasca, Tiana; da Silva, Alexandre Gomes; da Silva, Márcia Vanusa; Macedo, Alexandre José

    2015-03-01

    The local communities living in the Brazilian Caatinga biome have a significant body of traditional knowledge on a considerable number of medicinal plants used to heal several maladies. Based on ethnopharmacological data, this study screened 23 aqueous plant extracts against two well-known models of biofilm-forming bacteria: Staphylococcus epidermidis and Pseudomonas aeruginosa. Crystal violet assay and scanning electron microscopy (SEM) were used to evaluate the effect of extracts on biofilm formation and measurements of the absorbance at 600 nm to assess bacterial growth. Selected extracts were investigated regarding the cytotoxicity by MTT assay using mammal cells and the qualitative phytochemical fingerprint by thin layer chromatography. Harpochilus neesianus Mart. ex Nees. (Acanthaceae) leaves, Apuleia leiocarpa Vogel J. F. Macbr. (Fabaceae), and Poincianella microphylla Mart. ex G. Don L. P. Queiroz (Fabaceae) fruits showed non-biocidal antibiofilm action against S. epidermidis with activities of 69, 52, and 63%, respectively. SEM confirmed that biofilm structure was strongly prevented and that extracts promoted overproduction of the matrix and/or bacterial morphology modification. Poincianella microphylla demonstrated toxicity at 4.0 mg/mL and 2.0 mg/mL, A. leiocarpa presented toxicity only at 4.0 mg/mL, whereas H. neesianus presented the absence of toxicity against Vero cell line. Preliminary phytochemical analysis revealed the presence of flavonoids, terpenoids, steroids, amines, and polyphenols. This work provides a scientific basis which may justify the ethnopharmacological use of the plants herein studied, indicating extracts that possess limited mammal cytotoxicity in vitro and a high potential as a source of antibiofilm drugs prototypes.

  9. Necessity of purification during bacterial DNA extraction with environmental soils

    PubMed Central

    Choi, Jung-Hyun

    2017-01-01

    Complexity and heterogeneity of soil samples have often implied the inclusion of purification steps in conventional DNA extraction for polymerase chain reaction (PCR) assays. Unfortunately the purification steps are also time and labor intensive. Therefore the necessity of DNA purification was re-visited and investigated for a variety of environmental soil samples that contained various amounts of PCR inhibitors. Bead beating and centrifugation was used as the baseline (without purification) method for DNA extraction. Its performance was compared with that of conventional DNA extraction kit (with purification). The necessity criteria for DNA purification were established with environmental soil samples. Using lysis conditions at 3000 rpm for 3 minutes with 0.1 mm glass beads, centrifugation time of 10 minutes and 1:10 dilution ratio, the baseline method outperformed conventional DNA extraction on cell seeded sand samples. Further investigation with PCR inhibitors (i.e., humic acids, clay, and magnesium [Mg]) showed that sand samples containing less than 10 μg/g humic acids and 70% clay may not require purifications. Interestingly, the inhibition pattern of Mg ion was different from other inhibitors due to the complexation interaction of Mg ion with DNA fragments. It was concluded that DNA extraction method without purification is suitable for soil samples that have less than 10 μg/g of humic acids, less than 70% clay content and less than 0.01% Mg ion content. PMID:28793754

  10. Cell-to-cell variation and specialization in sugar metabolism in clonal bacterial populations

    PubMed Central

    Schreiber, Frank; Dal Co, Alma; Kiviet, Daniel J.; Littmann, Sten

    2017-01-01

    While we have good understanding of bacterial metabolism at the population level, we know little about the metabolic behavior of individual cells: do single cells in clonal populations sometimes specialize on different metabolic pathways? Such metabolic specialization could be driven by stochastic gene expression and could provide individual cells with growth benefits of specialization. We measured the degree of phenotypic specialization in two parallel metabolic pathways, the assimilation of glucose and arabinose. We grew Escherichia coli in chemostats, and used isotope-labeled sugars in combination with nanometer-scale secondary ion mass spectrometry and mathematical modeling to quantify sugar assimilation at the single-cell level. We found large variation in metabolic activities between single cells, both in absolute assimilation and in the degree to which individual cells specialize in the assimilation of different sugars. Analysis of transcriptional reporters indicated that this variation was at least partially based on cell-to-cell variation in gene expression. Metabolic differences between cells in clonal populations could potentially reduce metabolic incompatibilities between different pathways, and increase the rate at which parallel reactions can be performed. PMID:29253903

  11. Heterologous Expression of Toxins from Bacterial Toxin-Antitoxin Systems in Eukaryotic Cells: Strategies and Applications

    PubMed Central

    Yeo, Chew Chieng; Abu Bakar, Fauziah; Chan, Wai Ting; Espinosa, Manuel; Harikrishna, Jennifer Ann

    2016-01-01

    Toxin-antitoxin (TA) systems are found in nearly all prokaryotic genomes and usually consist of a pair of co-transcribed genes, one of which encodes a stable toxin and the other, its cognate labile antitoxin. Certain environmental and physiological cues trigger the degradation of the antitoxin, causing activation of the toxin, leading either to the death or stasis of the host cell. TA systems have a variety of functions in the bacterial cell, including acting as mediators of programmed cell death, the induction of a dormant state known as persistence and the stable maintenance of plasmids and other mobile genetic elements. Some bacterial TA systems are functional when expressed in eukaryotic cells and this has led to several innovative applications, which are the subject of this review. Here, we look at how bacterial TA systems have been utilized for the genetic manipulation of yeasts and other eukaryotes, for the containment of genetically modified organisms, and for the engineering of high expression eukaryotic cell lines. We also examine how TA systems have been adopted as an important tool in developmental biology research for the ablation of specific cells and the potential for utility of TA systems in antiviral and anticancer gene therapies. PMID:26907343

  12. Lipopolysaccharide structure impacts the entry kinetics of bacterial outer membrane vesicles into host cells

    PubMed Central

    Hadis, Mohammed; Alderwick, Luke

    2017-01-01

    Outer membrane vesicles are nano-sized microvesicles shed from the outer membrane of Gram-negative bacteria and play important roles in immune priming and disease pathogenesis. However, our current mechanistic understanding of vesicle-host cell interactions is limited by a lack of methods to study the rapid kinetics of vesicle entry and cargo delivery to host cells. Here, we describe a highly sensitive method to study the kinetics of vesicle entry into host cells in real-time using a genetically encoded, vesicle-targeted probe. We found that the route of vesicular uptake, and thus entry kinetics and efficiency, are shaped by bacterial cell wall composition. The presence of lipopolysaccharide O antigen enables vesicles to bypass clathrin-mediated endocytosis, which enhances both their entry rate and efficiency into host cells. Collectively, our findings highlight the composition of the bacterial cell wall as a major determinant of secretion-independent delivery of virulence factors during Gram-negative infections. PMID:29186191

  13. Isoprenoid Biosynthesis Inhibitors Targeting Bacterial Cell Growth.

    PubMed

    Desai, Janish; Wang, Yang; Wang, Ke; Malwal, Satish R; Oldfield, Eric

    2016-10-06

    We synthesized potential inhibitors of farnesyl diphosphate synthase (FPPS), undecaprenyl diphosphate synthase (UPPS), or undecaprenyl diphosphate phosphatase (UPPP), and tested them in bacterial cell growth and enzyme inhibition assays. The most active compounds were found to be bisphosphonates with electron-withdrawing aryl-alkyl side chains which inhibited the growth of Gram-negative bacteria (Acinetobacter baumannii, Klebsiella pneumoniae, Escherichia coli, and Pseudomonas aeruginosa) at ∼1-4 μg mL -1 levels. They were found to be potent inhibitors of FPPS; cell growth was partially "rescued" by the addition of farnesol or overexpression of FPPS, and there was synergistic activity with known isoprenoid biosynthesis pathway inhibitors. Lipophilic hydroxyalkyl phosphonic acids inhibited UPPS and UPPP at micromolar levels; they were active (∼2-6 μg mL -1 ) against Gram-positive but not Gram-negative organisms, and again exhibited synergistic activity with cell wall biosynthesis inhibitors, but only indifferent effects with other inhibitors. The results are of interest because they describe novel inhibitors of FPPS, UPPS, and UPPP with cell growth inhibitory activities as low as ∼1-2 μg mL -1 . © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. The physical boundaries of public goods cooperation between surface-attached bacterial cells

    PubMed Central

    Weigert, Michael; Kümmerli, Rolf

    2017-01-01

    Bacteria secrete a variety of compounds important for nutrient scavenging, competition mediation and infection establishment. While there is a general consensus that secreted compounds can be shared and therefore have social consequences for the bacterial collective, we know little about the physical limits of such bacterial social interactions. Here, we address this issue by studying the sharing of iron-scavenging siderophores between surface-attached microcolonies of the bacterium Pseudomonas aeruginosa. Using single-cell fluorescent microscopy, we show that siderophores, secreted by producers, quickly reach non-producers within a range of 100 µm, and significantly boost their fitness. Producers in turn respond to variation in sharing efficiency by adjusting their pyoverdine investment levels. These social effects wane with larger cell-to-cell distances and on hard surfaces. Thus, our findings reveal the boundaries of compound sharing, and show that sharing is particularly relevant between nearby yet physically separated bacteria on soft surfaces, matching realistic natural conditions such as those encountered in soft tissue infections. PMID:28701557

  15. Cellular damage in bacterial meningitis: an interplay of bacterial and host driven toxicity.

    PubMed

    Weber, Joerg R; Tuomanen, Elaine I

    2007-03-01

    Bacterial meningitis is still an important infectious disease causing death and disability. Invasive bacterial infections of the CNS generate some of the most powerful inflammatory responses known in medicine. Although the components of bacterial cell surfaces are now chemically defined in exquisite detail and the interaction with several receptor pathways has been discovered, it is only very recently that studies combining these advanced biochemical and cell biological tools have been done. Additional to the immunological response direct bacterial toxicity has been identified as an important contributor to neuronal damage. A detailed understanding of the complex interaction of bacterial toxicity and host response may generate opportunities for innovative and specific neuroprotective therapies.

  16. Contact-dependent growth inhibition induces high levels of antibiotic-tolerant persister cells in clonal bacterial populations.

    PubMed

    Ghosh, Anirban; Baltekin, Özden; Wäneskog, Marcus; Elkhalifa, Dina; Hammarlöf, Disa L; Elf, Johan; Koskiniemi, Sanna

    2018-05-02

    Bacterial populations can use bet-hedging strategies to cope with rapidly changing environments. One example is non-growing cells in clonal bacterial populations that are able to persist antibiotic treatment. Previous studies suggest that persisters arise in bacterial populations either stochastically through variation in levels of global signalling molecules between individual cells, or in response to various stresses. Here, we show that toxins used in contact-dependent growth inhibition (CDI) create persisters upon direct contact with cells lacking sufficient levels of CdiI immunity protein, which would otherwise bind to and neutralize toxin activity. CDI-mediated persisters form through a feedforward cycle where the toxic activity of the CdiA toxin increases cellular (p)ppGpp levels, which results in Lon-mediated degradation of the immunity protein and more free toxin. Thus, CDI systems mediate a population density-dependent bet-hedging strategy, where the fraction of non-growing cells is increased only when there are many cells of the same genotype. This may be one of the mechanisms of how CDI systems increase the fitness of their hosts. © 2018 The Authors.

  17. Bioefficacy of larvicdial and pupicidal properties of Carica papaya (Caricaceae) leaf extract and bacterial insecticide, spinosad, against chikungunya vector, Aedes aegypti (Diptera: Culicidae).

    PubMed

    Kovendan, Kalimuthu; Murugan, Kadarkarai; Naresh Kumar, Arjunan; Vincent, Savariar; Hwang, Jiang-Shiou

    2012-02-01

    The present study was carried out to establish the properties of Carica papaya leaf extract and bacterial insecticide, spinosad on larvicidal and pupicidal activity against the chikungunya vector, Aedes aegypti. The medicinal plants were collected from the area around Bharathiar University, Coimbatore, India. C. papaya leaf was washed with tap water and shade-dried at room temperature. An electrical blender powdered the dried plant materials (leaves). The powder (500 g) of the leaf was extracted with 1.5 l of organic solvents of methanol for 8 h using a Soxhlet apparatus and then filtered. The crude leaf extracts were evaporated to dryness in a rotary vacuum evaporator. The plant extract showed larvicidal and pupicidal effects after 24 h of exposure; however, the highest larval and pupal mortality was found in the leaf extract of methanol C. papaya against the first- to fourth-instar larvae and pupae of values LC(50) = I instar was 51.76 ppm, II instar was 61.87 ppm, III instar was 74.07 ppm, and IV instar was 82.18 ppm, and pupae was 440.65 ppm, respectively, and bacterial insecticide, spinosad against the first to fourth instar larvae and pupae of values LC(50) = I instar was 51.76 ppm, II instar was 61.87 ppm, III instar was 74.07 ppm, and IV instar was 82.18 ppm, and pupae was 93.44 ppm, respectively. Moreover, combined treatment of values of LC(50) = I instar was 55.77 ppm, II instar was 65.77 ppm, III instar was 76.36 ppm, and IV instar was 92.78 ppm, and pupae was 107.62 ppm, respectively. No mortality was observed in the control. The results that the leaves extract of C. papaya and bacterial insecticide, Spinosad is promising as good larvicidal and pupicidal properties of against chikungunya vector, A. aegypti. This is an ideal eco-friendly approach for the control of chikungunya vector, A. aegypti as target species of vector control programs.

  18. Preparation of cell-free splicing extracts from Saccharomyces cerevisiae.

    PubMed

    Ares, Manuel

    2013-10-01

    Much of our understanding of the mechanism of splicing comes from the analysis of cell extracts able to carry out splicing complex formation and splicing reactions in vitro using exogenously added synthetic model pre-mRNA transcripts. This protocol describes the preparation of whole-cell extracts from the budding yeast Saccharomyces cerevisiae. These extracts can be used to dissect the biochemical steps of the splicing reaction and to determine the macromolecules, cofactors, and substrate features necessary for successful splicing.

  19. Detection of Only Viable Bacterial Spores Using a Live/Dead Indicator in Mixed Populations

    NASA Technical Reports Server (NTRS)

    Behar, Alberto E.; Stam, Christina N.; Smiley, Ronald

    2013-01-01

    This method uses a photoaffinity label that recognizes DNA and can be used to distinguish populations of bacterial cells from bacterial spores without the use of heat shocking during conventional culture, and live from dead bacterial spores using molecular-based methods. Biological validation of commercial sterility using traditional and alternative technologies remains challenging. Recovery of viable spores is cumbersome, as the process requires substantial incubation time, and the extended time to results limits the ability to quickly evaluate the efficacy of existing technologies. Nucleic acid amplification approaches such as PCR (polymerase chain reaction) have shown promise for improving time to detection for a wide range of applications. Recent real-time PCR methods are particularly promising, as these methods can be made at least semi-quantitative by correspondence to a standard curve. Nonetheless, PCR-based methods are rarely used for process validation, largely because the DNA from dead bacterial cells is highly stable and hence, DNA-based amplification methods fail to discriminate between live and inactivated microorganisms. Currently, no published method has been shown to effectively distinguish between live and dead bacterial spores. This technology uses a DNA binding photoaffinity label that can be used to distinguish between live and dead bacterial spores with detection limits ranging from 109 to 102 spores/mL. An environmental sample suspected of containing a mixture of live and dead vegetative cells and bacterial endospores is treated with a photoaffinity label. This step will eliminate any vegetative cells (live or dead) and dead endospores present in the sample. To further determine the bacterial spore viability, DNA is extracted from the spores and total population is quantified by real-time PCR. The current NASA standard assay takes 72 hours for results. Part of this procedure requires a heat shock step at 80 degC for 15 minutes before the

  20. Mangifera indica L. extract protects T cells from activation-induced cell death.

    PubMed

    Hernández, Patricia; Delgado, Rene; Walczak, Henning

    2006-09-01

    The aqueous stem bark extract of Mangifera indica L. (Vimang) has been reported to have antioxidant properties. AIDS is characterized by up-regulation of CD95 ligand (CD95L) expression and enhancement of activation-induced cell death (AICD). Recent studies demonstrate oxidative signals combined with simultaneous calcium (Ca(2+)) influx into the cytosol are required for induction of CD95L expression. In this study we show that M. indica extract attenuated anti-CD3-induced accumulation of reactive oxygen species (ROS) and intracellular free Ca(2+) and consequently, downregulates CD95L mRNA expression and CD95-mediated AICD. In addition, TCR triggering caused an elevation in the antioxidant enzyme manganous superoxide dismutase (Mn-SOD) and the increase in c-Jun N-terminal kinase (JNK) phosphorylation, both effects being prevented by M. indica extract. We provide a number of evidences regarding how M. indica extract enhance T-cell survival by inhibiting AICD, a finding associated with a decrease in oxidative stress generated through the TCR signaling pathway in activated T cells.

  1. Bacterial Signaling Nucleotides Inhibit Yeast Cell Growth by Impacting Mitochondrial and Other Specifically Eukaryotic Functions.

    PubMed

    Hesketh, Andy; Vergnano, Marta; Wan, Chris; Oliver, Stephen G

    2017-07-25

    We have engineered Saccharomyces cerevisiae to inducibly synthesize the prokaryotic signaling nucleotides cyclic di-GMP (cdiGMP), cdiAMP, and ppGpp in order to characterize the range of effects these nucleotides exert on eukaryotic cell function during bacterial pathogenesis. Synthetic genetic array (SGA) and transcriptome analyses indicated that, while these compounds elicit some common reactions in yeast, there are also complex and distinctive responses to each of the three nucleotides. All three are capable of inhibiting eukaryotic cell growth, with the guanine nucleotides exhibiting stronger effects than cdiAMP. Mutations compromising mitochondrial function and chromatin remodeling show negative epistatic interactions with all three nucleotides. In contrast, certain mutations that cause defects in chromatin modification and ribosomal protein function show positive epistasis, alleviating growth inhibition by at least two of the three nucleotides. Uniquely, cdiGMP is lethal both to cells growing by respiration on acetate and to obligately fermentative petite mutants. cdiGMP is also synthetically lethal with the ribonucleotide reductase (RNR) inhibitor hydroxyurea. Heterologous expression of the human ppGpp hydrolase Mesh1p prevented the accumulation of ppGpp in the engineered yeast and restored cell growth. Extensive in vivo interactions between bacterial signaling molecules and eukaryotic gene function occur, resulting in outcomes ranging from growth inhibition to death. cdiGMP functions through a mechanism that must be compensated by unhindered RNR activity or by functionally competent mitochondria. Mesh1p may be required for abrogating the damaging effects of ppGpp in human cells subjected to bacterial infection. IMPORTANCE During infections, pathogenic bacteria can release nucleotides into the cells of their eukaryotic hosts. These nucleotides are recognized as signals that contribute to the initiation of defensive immune responses that help the infected

  2. Bacterial reduction by cell salvage washing and leukocyte depletion filtration.

    PubMed

    Waters, Jonathan H; Tuohy, Marion J; Hobson, Donna F; Procop, Gary

    2003-09-01

    Blood conservation techniques are being increasingly used because of the increased cost and lack of availability of allogeneic blood. Cell salvage offers great blood savings opportunities but is thought to be contraindicated in a number of areas (e.g., blood contaminated with bacteria). Several outcome studies have suggested the safety of this technique in trauma and colorectal surgery, but many practitioners are still hesitant to apply cell salvage in the face of frank bacterial contamination. This study was undertaken to assess the efficacy of bacterial removal when cell salvage was combined with leukocyte depletion filtration. Expired packed erythrocytes were obtained and inoculated with a fixed amount of a stock bacteria (Escherichia coli American Type Culture Collections [ATCC] 25922, Pseudomonas aeruginosa ATCC 27853, Staphylococcus aureus ATCC 29213, or Bacteroides fragilis ATCC 25285) in amounts ranging from 2,000 to 4,000 colony forming units/ml. The blood was processed via a cell salvage machine. The washed blood was then filtered using a leukocyte reduction filter. The results for blood taken during each step of processing were compared using a repeated-measures design. Fifteen units of blood were contaminated with each of the stock bacteria. From the prewash sample to the postfiltration sample, 99.0%, 99.6%, 100%, and 97.6% of E. coli, S. aureus, P. aeruginosa, and B. fragilis were removed, respectively. Significant but not complete removal of contaminating bacteria was seen. An increased level of patient safety may be added to cell salvage by including a leukocyte depletion filter when salvaging blood that might be grossly contaminated with bacteria.

  3. The reducibility of heLa cell viability by Sargassum polycystum extracts

    NASA Astrophysics Data System (ADS)

    Firdaus, M.; Setijawati, D.; Islam, I.; Nursyam, H.; Kartikaningsih, H.; Yufidasari, H. S.; Prihanto, A. A.; Nurdiani, R.; Jaziri, A. A.

    2018-04-01

    Cervical cancer is the second largest cause of death-related cancer in women. The efficacy of cancer drugs is still low. Bioactive of brown seaweed has been studied by in vitro and in vivo as anticancer. The aim of this study was to evaluate the cytotoxicity of Sargassum polycystum extracts on HeLa cell, to recognize bioactive on extract and estimate the interaction between the bioactive and target protein. S. polycystum was found from Talango Island waters and HeLa cell was obtained from Indonesian Science Institute. Sample was extracted by ethanol, ethyl acetate and hexane, concentrated and finally, extracts were assayed on HeLa cell. The viability of this cell was quantified on ELISA-Reader. The bioactive compounds of the extract were elucidated by GC-MS. The interaction between bioactive and target protein was evaluated by using in silico method. The result showed that the lowest viability of HeLa cell on n-hexane extracts treatment. The n-hexane extract of this seaweed contained benzenepropanoic acid. This compound reduced HeLa cell viability by reducing of thrombin concentration. In conclusion, the benzene propanoic acid of S. polycystum was the cytotoxic agent and it is potential agent for anti-cervical cancer.

  4. Measuring masses of single bacterial whole cells with a quadrupole ion trap.

    PubMed

    Peng, Wen-Ping; Yang, Yi-Chang; Kang, Ming-Wei; Lee, Yuan T; Chang, Huan-Cheng

    2004-09-29

    A novel method has been developed to precisely measure the masses of single bacterial whole cells using a quadrupole ion trap as an electrodynamic balance. The bacterial cells were introduced into the ion trap by matrix-assisted laser desorption/ionization, confined in space by audio frequency ac fields, and detected by elastic light scattering. Mass measurement accuracy approaching 0.1% was achieved for Escherichia coli K-12 with a mass distribution of +/-3% from 60 repetitive measurements of the particles and their clusters. This is the first high-precision mass measurement reported for any intact microorganisms with masses greater than 1 x 1010 Da. The method opens new avenues for high-precision mass measurement of single microbial particles and offers an alternative approach for rapid identification of microorganisms by mass spectrometry.

  5. Exploring bacterial infections: theoretical and experimental studies of the bacterial population dynamics and antibiotic treatment

    NASA Astrophysics Data System (ADS)

    Shao, Xinxian

    Bacterial infections are very common in human society. Thus extensive research has been conducted to reveal the molecular mechanisms of the pathogenesis and to evaluate the antibiotics' efficacy against bacteria. Little is known, however, about the population dynamics of bacterial populations and their interactions with the host's immune system. In this dissertation, a stochatic model is developed featuring stochastic phenotypic switching of bacterial individuals to explain the single-variant bottleneck discovered in multi strain bacterial infections. I explored early events in a bacterial infection establishment using classical experiments of Moxon and Murphy on neonatal rats. I showed that the minimal model and its simple variants do not work. I proposed modifications to the model that could explain the data quantitatively. The bacterial infections are also commonly established in physical structures, as biofilms or 3-d colonies. In contrast, most research on antibiotic treatment of bacterial infections has been conducted in well-mixed liquid cultures. I explored the efficacy of antibiotics to treat such bacterial colonies, a broadly applicable method is designed and evaluated where discrete bacterial colonies on 2-d surfaces were exposed to antibiotics. I discuss possible explanations and hypotheses for the experimental results. To verify these hypotheses, we investigated the dynamics of bacterial population as 3-d colonies. We showed that a minimal mathematical model of bacterial colony growth in 3-d was able to account for the experimentally observed presence of a diffusion-limited regime. The model further revealed highly loose packing of the cells in 3-d colonies and smaller cell sizes in colonies than plancktonic cells in corresponding liquid culture. Further experimental tests of the model predictions have revealed that the ratio of the cell size in liquid culture to that in colony cultures was consistent with the model prediction, that the dead cells

  6. Differentiation of human adipose tissue stem cells using extracts of rat cardiomyocytes.

    PubMed

    Gaustad, Kristine G; Boquest, Andrew C; Anderson, Brent E; Gerdes, A Martin; Collas, Philippe

    2004-02-06

    We report the differentiation of human adipose tissue stem cells (ATSCs) to take on cardiomyocyte properties following transient exposure to a rat cardiomyocyte extract. Reversibly permeabilized ATSCs were incubated for 1h in a nuclear and cytoplasmic extract of rat cardiomyocytes, resealed with CaCl(2), and cultured. Three weeks after exposure to extract, ATSCs expressed several cardiomyocyte markers including sarcomeric alpha-actinin, desmin, and cardiac troponin I, and displayed targeted expression of the gap junction protein connexin 43. Formation of binucleated and striated cells, and spontaneous beating in culture were also observed. A low proportion of intact ATSCs exposed to the extract also showed signs of alpha-actinin and connexin 43 expression. Additional evidence of differentiation was provided by induction of expression of nuclear lamin A/C, a marker of terminally differentiated cells, and a remarkable increase in cell cycle length. Together with our previous data, this study suggests that alteration of cell fate using cellular extracts may be applied to multiple cell types. Cell extracts may also prove useful for investigating the molecular mechanisms of stem cell differentiation.

  7. Temperate bacterial viruses as double-edged swords in bacterial warfare.

    PubMed

    Gama, João Alves; Reis, Ana Maria; Domingues, Iolanda; Mendes-Soares, Helena; Matos, Ana Margarida; Dionisio, Francisco

    2013-01-01

    It has been argued that bacterial cells may use their temperate viruses as biological weapons. For instance, a few bacterial cells among a population of lysogenic cells could release the virus and kill susceptible non-lysogenic competitors, while their clone mates would be immune. Because viruses replicate inside their victims upon infection, this process would amplify their number in the arena. Sometimes, however, temperate viruses spare recipient cells from death by establishing themselves in a dormant state inside cells. This phenomenon is called lysogenization and, for some viruses such as the λ virus, the probability of lysogenization increases with the multiplicity of infection. Therefore, the amplification of viruses leads to conflicting predictions about the efficacy of temperate viruses as biological weapons: amplification can increase the relative advantage of clone mates of lysogens but also the likelihood of saving susceptible cells from death, because the probability of lysogenization is higher. To test the usefulness of viruses as biological weapons, we performed competition experiments between lysogenic Escherichia coli cells carrying the λ virus and susceptible λ-free E. coli cells, either in a structured or unstructured habitat. In structured and sometimes in unstructured habitats, the λ virus qualitatively behaved as a "replicating toxin". However, such toxic effect of λ viruses ceased after a few days of competition. This was due to the fact that many of initially susceptible cells became lysogenic. Massive lysogenization of susceptible cells occurred precisely under the conditions where the amplification of the virus was substantial. From then on, these cells and their descendants became immune to the λ virus. In conclusion, if at short term bacterial cells may use temperate viruses as biological weapons, after a few days only the classical view of temperate bacterial viruses as parasitic agents prevails.

  8. Temperate Bacterial Viruses as Double-Edged Swords in Bacterial Warfare

    PubMed Central

    Gama, João Alves; Reis, Ana Maria; Domingues, Iolanda; Mendes-Soares, Helena; Matos, Ana Margarida; Dionisio, Francisco

    2013-01-01

    It has been argued that bacterial cells may use their temperate viruses as biological weapons. For instance, a few bacterial cells among a population of lysogenic cells could release the virus and kill susceptible non-lysogenic competitors, while their clone mates would be immune. Because viruses replicate inside their victims upon infection, this process would amplify their number in the arena. Sometimes, however, temperate viruses spare recipient cells from death by establishing themselves in a dormant state inside cells. This phenomenon is called lysogenization and, for some viruses such as the λ virus, the probability of lysogenization increases with the multiplicity of infection. Therefore, the amplification of viruses leads to conflicting predictions about the efficacy of temperate viruses as biological weapons: amplification can increase the relative advantage of clone mates of lysogens but also the likelihood of saving susceptible cells from death, because the probability of lysogenization is higher. To test the usefulness of viruses as biological weapons, we performed competition experiments between lysogenic Escherichia coli cells carrying the λ virus and susceptible λ-free E. coli cells, either in a structured or unstructured habitat. In structured and sometimes in unstructured habitats, the λ virus qualitatively behaved as a “replicating toxin”. However, such toxic effect of λ viruses ceased after a few days of competition. This was due to the fact that many of initially susceptible cells became lysogenic. Massive lysogenization of susceptible cells occurred precisely under the conditions where the amplification of the virus was substantial. From then on, these cells and their descendants became immune to the λ virus. In conclusion, if at short term bacterial cells may use temperate viruses as biological weapons, after a few days only the classical view of temperate bacterial viruses as parasitic agents prevails. PMID:23536852

  9. Hard clam extracts induce atypical apoptosis in human gastric cancer cells

    PubMed Central

    Song, Eing-Ju; Chan, Michael W.Y.; Shin, Jyh-Wei; Chen, Che-Chun

    2017-01-01

    Hard clams (HCs) are a nutritionally high-quality and popular seafood, and are established to be a potent antitumor food. The aim of the present study was to determine whether HC extracts induce apoptosis in the human gastric cancer cell line, AGS. In contrast with previously reported methods of extraction, crude extracts of HC were obtained by freezing and thawing and by a method free of hot water or organic solvents. The composition, quality and properties of the HC extracts were demonstrated to be stable since the extracts that were evaluated by capillary electrophoresis and HPLC analysis at different timepoints were similar. HC extracts also have an inhibitory effect against the survival of AGS cells. Treatment with HC extracts induced a marked sub-G1 DNA peak and reduced the expression of the anti-apoptotic genes BIRC5 and KPNA2. However, hallmarks of classical apoptosis such as DNA fragmentation and apoptotic body formation were not observed, indicating atypical apoptosis. Furthermore, it was revealed that HC extracts interrupted cell cycle progression in AGS cells through altered expression of six cell cycle-associated genes: CDC20, KPNA2, BIRC5, ANAPC2, CDKN1A and RB1. The present findings suggest that HC may contribute to a novel future anticancer agent. PMID:28810604

  10. Evaluation of bacterial run and tumble motility parameters through trajectory analysis

    NASA Astrophysics Data System (ADS)

    Liang, Xiaomeng; Lu, Nanxi; Chang, Lin-Ching; Nguyen, Thanh H.; Massoudieh, Arash

    2018-04-01

    In this paper, a method for extraction of the behavior parameters of bacterial migration based on the run and tumble conceptual model is described. The methodology is applied to the microscopic images representing the motile movement of flagellated Azotobacter vinelandii. The bacterial cells are considered to change direction during both runs and tumbles as is evident from the movement trajectories. An unsupervised cluster analysis was performed to fractionate each bacterial trajectory into run and tumble segments, and then the distribution of parameters for each mode were extracted by fitting mathematical distributions best representing the data. A Gaussian copula was used to model the autocorrelation in swimming velocity. For both run and tumble modes, Gamma distribution was found to fit the marginal velocity best, and Logistic distribution was found to represent better the deviation angle than other distributions considered. For the transition rate distribution, log-logistic distribution and log-normal distribution, respectively, was found to do a better job than the traditionally agreed exponential distribution. A model was then developed to mimic the motility behavior of bacteria at the presence of flow. The model was applied to evaluate its ability to describe observed patterns of bacterial deposition on surfaces in a micro-model experiment with an approach velocity of 200 μm/s. It was found that the model can qualitatively reproduce the attachment results of the micro-model setting.

  11. Role of Sulfhydryl Sites on Bacterial Cell Walls in the Biosorption, Mobility and Bioavailability of Mercury and Uranium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Myneni, Satish C.; Mishra, Bhoopesh; Fein, Jeremy

    2009-04-01

    The goal of this exploratory study is to provide a quantitative and mechanistic understanding of the impact of bacterial sulfhydryl groups on the bacterial uptake, speciation, methylation and bioavailability of Hg and redox changes of uranium. The relative concentration and reactivity of different functional groups present on bacterial surfaces will be determined, enabling quantitative predictions of the role of biosorption of Hg under the physicochemical conditions found at contaminated DOE sites.The hypotheses we propose to test in this investigation are as follows- 1) Sulfhydryl groups on bacterial cell surfaces modify Hg speciation and solubility, and play an important role, specificallymore » in the sub-micromolar concentration ranges of metals in the natural and contaminated systems. 2) Sulfhydryl binding of Hg on bacterial surfaces significantly influences Hg transport into the cell and the methylation rates by the bacteria. 3) Sulfhydryls on cell membranes can interact with hexavalent uranium and convert to insoluble tetravalent species. 4) Bacterial sulfhydryl surface groups are inducible by the presence of metals during cell growth. Our studies focused on the first hypothesis, and we examined the nature of sulfhydryl sites on three representative bacterial species: Bacillus subtilis, a common gram-positive aerobic soil species; Shewanella oneidensis, a facultative gram-negative surface water species; and Geobacter sulfurreducens, an anaerobic iron-reducing gram-negative species that is capable of Hg methylation; and at a range of Hg concentration (and Hg:bacterial concentration ratio) in which these sites become important. A summary of our findings is as follows- Hg adsorbs more extensively to bacteria than other metals. Hg adsorption also varies strongly with pH and chloride concentration, with maximum adsorption occurring under circumneutral pH conditions for both Cl-bearing and Cl-free systems. Under these conditions, all bacterial species tested

  12. Zanthoxylum fruit extract from Japanese pepper promotes autophagic cell death in cancer cells.

    PubMed

    Nozaki, Reo; Kono, Toru; Bochimoto, Hiroki; Watanabe, Tsuyoshi; Oketani, Kaori; Sakamaki, Yuichi; Okubo, Naoto; Nakagawa, Koji; Takeda, Hiroshi

    2016-10-25

    Zanthoxylum fruit, obtained from the Japanese pepper plant (Zanthoxylum piperitum De Candolle), and its extract (Zanthoxylum fruit extract, ZFE) have multiple physiological activities (e.g., antiviral activity). However, the potential anticancer activity of ZFE has not been fully examined. In this study, we investigated the ability of ZFE to induce autophagic cell death (ACD). ZFE caused remarkable autophagy-like cytoplasmic vacuolization, inhibited cell proliferation, and ultimately induced cell death in the human cancer cell lines DLD-1, HepG2, and Caco-2, but not in A549, MCF-7, or WiDr cells. ZFE increased the level of LC3-II protein, a marker of autophagy. Knockdown of ATG5 using siRNA inhibited ZFE-induced cytoplasmic vacuolization and cell death. Moreover, in cancer cells that could be induced to undergo cell death by ZFE, the extract increased the phosphorylation of c-Jun N-terminal kinase (JNK), and the JNK inhibitor SP600125 attenuated both vacuolization and cell death. Based on morphology and expression of marker proteins, ZFE-induced cell death was neither apoptosis nor necrosis. Normal intestinal cells were not affected by ZFE. Taken together, our findings show that ZFE induces JNK-dependent ACD, which appears to be the main mechanism underlying its anticancer activity, suggesting a promising starting point for anticancer drug development.

  13. Seasonal and spatial distribution of bacterial biomass and the percentage of viable cells in a reservoir of Alabama

    USGS Publications Warehouse

    Tietjen, T.E.; Wetzel, R.G.

    2003-01-01

    Spatial community dynamics of bacterioplankton were evaluated along the length of the former stream channel of Elledge Lake, a small reservoir in western Alabama. The reservoir was strongly stratified from April to October with up to a 10??C temperature difference across the 1 m deep metalimnion. Bacterial biomass was highest during late summer, with a general pattern of increasing abundance from the inflowing river (???10 ??g C l-1) to the dam (???20-30 ??g C l-1). Bacterial numbers also increased following a >10-fold increase in turbidity associated with a major precipitation event, although only ???10% of these cells were viable. The percentage of viable cells generally increased through the stratified period with 50-70% viable cells in late summer. Overall, an average of 38% of bacterial cells were viable, with a range from <20 to 70%. Although these values were similar to those found by others, additional patterns were identified that have not been previously observed: a marked decline in viable cells was found following turbid storm inflows and increases in the percentage of viable cells occurred during spring warming and following autumnal mixing events. Although a modest increase in abundance occurred along the gradient from inflow down-reservoir to the dam, bacterial abundance did not increase near the dam in a pattern coincident with the commonly observed increased algal biomass in the lacustrine portion of reservoir ecosystems. The increases observed in bacterial viability moving from the inflowing rivers towards the dam and later in stratified periods stress the importance of differences in environmental conditions in time and space in regulating bacterial biomass and development, as well as of shifts that would be anticipated accompanying altered hydrological regimes under climatic change.

  14. Laminaria japonica Extract, an Inhibitor of Clavibater michiganense Subsp. Sepedonicum

    PubMed Central

    Cai, Jin; Feng, Jia; Xie, Shulian; Wang, Feipeng; Xu, Qiufeng

    2014-01-01

    Bacterial ring rot of potato is one of the most serious potato plant and tuber diseases. Laminaria japonica extract was investigated for its antimicrobial activity against Clavibater michiganense subsp. sepedonicum (Spieckermann & Kotthoff) Davis et al., the causative agent of bacterial ring rot of potato. The results showed that the optimum extraction conditions of antimicrobial substances from L. japonica were an extraction temperature of 80°C, an extraction time of 12 h, and a solid to liquid ratio of 1∶25. Active compounds of L. japonica were isolated by solvent partition, thin layer chromatography (TLC) and column chromatography. All nineteen fractionations had antimicrobial activities against C. michiganense subsp. sepedonicum, while Fractionation three (Fr.3) had the highest (P<0.05) antimicrobial activity. Chemical composition analysis identified a total of 26 components in Fr.3. The main constituents of Fr.3 were alkanes (80.97%), esters (5.24%), acids (4.87%) and alcohols (2.21%). Antimicrobial activity of Fr.3 against C. michiganense subsp. sepedonicum could be attributed to its ability to damage the cell wall and cell membrane, induce the production of reactive oxygen species (ROS), increase cytosolic Ca2+ concentration, inhibit the glycolytic pathway (EMP) and tricarboxylic acid (TCA) cycle, inhibit protein and nucleic acid synthesis, and disrupt the normal cycle of DNA replication. These findings indicate that L. japonica extracts have potential for inhibiting C. michiganense subsp. sepedonicum. PMID:24714388

  15. Potential applications for Annona squamosa leaf extract in the treatment and prevention of foodborne bacterial disease.

    PubMed

    Dholvitayakhun, Achara; Trachoo, Nathanon; Sakee, Uthai; Cushnie, T P Tim

    2013-03-01

    Foodborne disease is a major public health problem. The present study examined Annona squamosa leaves, which are traditionally used to treat diarrhea and other infections, for their potential to be used in modern food safety or medicine. Active constituents were partially purified by ethanol extraction and column chromatography. MICs of the extract were 62.5 to 125 microg/mL against Bacillus cereus, Listeria monocytogenes and Staphylococcus aureus, and 250 microg/mL against Campylobacter jejuni. In time-kill assays, 500 microg/mL of the extract reduced colony forming unit numbers of C. jejuni almost 10 000-fold within 12 hours. Similar decreases were seen against B. cereus, but over a longer time-frame. LC-MS analysis indicated the presence of reticuline and oxophoebine. Assessment of stability by MIC assay showed activity was heat-labile, with loss of activity greatest following high temperature treatments. Activity was relatively stable at refrigeration temperature. These results indicate A. squamosa has broad-spectrum but heat-labile activity against foodborne bacterial pathogens, and bactericidal activity against B. cereus and C. jejuni. This bactericidal activity is not sufficiently rapid for A. squamosa to be used as a food sanitizer, but the extract could potentially be developed as an additive for refrigerated foods, or a modern treatment for foodborne illness.

  16. Antibacterial Activity of the Isolation Ethyl Acetate-Soluble Extract Noni Fruit (Morindra citrifolia L.) against Meat Bacterial Decay

    NASA Astrophysics Data System (ADS)

    Nugraheni, E. R.; Nurrakhman, M. B. E.; Munawaroh, H.; Saputri, L.

    2017-02-01

    Noni (Morindra citrifolia L.) is native to Indonesia which have medicinal properties. One of them as an antibacterial. This study aims to determine the antibacterial activity of isolates from the ethanol extract noni fruit to bacterial decay meat is Bacillus licheniformis, Klebsiella pneumonia, Bacillus alvei, Acinetobacter calcoaceticus, and Staphylococcus saprophyticus. The extraction process using the maceration method, and then made a partition by centrifugation ethyl acetate. Soluble part partition showed bacterial growth inhibition activity of the strong to very strong. Furthermore, the ethyl acetate soluble partition on preparative thin layer chromatography produced 5 isolates. Isolates obtained antibacterial activity test performed with a concentration of 20% and 30%. The results of antibacterial test against bacteria test isolates, showing isolates A can not inhibit the growth of bacteria, isolates B and C have medium activity and strong, isolates D and E isolates have activity against bacteria that were tested. MIC and MBC test results showed that the isolates B gives an inhibitory effect (bacteriostatic) against all bacteria. Content analysis of compounds by TLC using the reagents cerium (IV) sulfate indicates a phenol group. Isolates B contains a major compound which can be used as an antibacterial candidate in food preservation replace chemical preservatives.

  17. Antibiofilm activity of coconut (Cocos nucifera Linn.) husk fibre extract.

    PubMed

    Viju, N; Satheesh, S; Vincent, S G P

    2013-01-01

    In this study, antibiofilm activity of coconut husk extract (CHE) was tested by various assays in the laboratory. The effects of CHE on extracellular polymeric substance (EPS) production, hydrophobicity and adhesion ability of Pseudomonas sp., Alteromonas sp. and Gallionella sp. and the antimicrobial activity of the extract against these bacteria were assessed. CHE was found to possess antibacterial activity against all the bacterial strains and affected the EPS production. The CHE affected the growth of the biofilm-forming bacteria in a culture medium. The hydrophobicity of the bacterial cells was also changed due to the CHE treatment. The active compound of the CHE was characterised by thin-layer chromatography (TLC), high performance liquid chromatography (HPLC) and fourier transform infrared (FT-IR) analysis. HPLC spectrum showed a single peak and the FT-IR spectrum indicated the presence of an OH-group-containing compound in the extract. In conclusion the CHE could be used as a source for the isolation of antifouling compounds.

  18. Antibiofilm activity of coconut (Cocos nucifera Linn.) husk fibre extract

    PubMed Central

    Viju, N.; Satheesh, S.; Vincent, S.G.P.

    2012-01-01

    In this study, antibiofilm activity of coconut husk extract (CHE) was tested by various assays in the laboratory. The effects of CHE on extracellular polymeric substance (EPS) production, hydrophobicity and adhesion ability of Pseudomonas sp., Alteromonas sp. and Gallionella sp. and the antimicrobial activity of the extract against these bacteria were assessed. CHE was found to possess antibacterial activity against all the bacterial strains and affected the EPS production. The CHE affected the growth of the biofilm-forming bacteria in a culture medium. The hydrophobicity of the bacterial cells was also changed due to the CHE treatment. The active compound of the CHE was characterised by thin-layer chromatography (TLC), high performance liquid chromatography (HPLC) and fourier transform infrared (FT-IR) analysis. HPLC spectrum showed a single peak and the FT-IR spectrum indicated the presence of an OH-group-containing compound in the extract. In conclusion the CHE could be used as a source for the isolation of antifouling compounds. PMID:23961225

  19. Assessing the viability of bacterial species in drinking water by combined cellular and molecular analyses.

    PubMed

    Kahlisch, Leila; Henne, Karsten; Gröbe, Lothar; Brettar, Ingrid; Höfle, Manfred G

    2012-02-01

    The question which bacterial species are present in water and if they are viable is essential for drinking water safety but also of general relevance in aquatic ecology. To approach this question we combined propidium iodide/SYTO9 staining ("live/dead staining" indicating membrane integrity), fluorescence-activated cell sorting (FACS) and community fingerprinting for the analysis of a set of tap water samples. Live/dead staining revealed that about half of the bacteria in the tap water had intact membranes. Molecular analysis using 16S rRNA and 16S rRNA gene-based single-strand conformation polymorphism (SSCP) fingerprints and sequencing of drinking water bacteria before and after FACS sorting revealed: (1) the DNA- and RNA-based overall community structure differed substantially, (2) the community retrieved from RNA and DNA reflected different bacterial species, classified as 53 phylotypes (with only two common phylotypes), (3) the percentage of phylotypes with intact membranes or damaged cells were comparable for RNA- and DNA-based analyses, and (4) the retrieved species were primarily of aquatic origin. The pronounced difference between phylotypes obtained from DNA extracts (dominated by Betaproteobacteria, Bacteroidetes, and Actinobacteria) and from RNA extracts (dominated by Alpha-, Beta-, Gammaproteobacteria, Bacteroidetes, and Cyanobacteria) demonstrate the relevance of concomitant RNA and DNA analyses for drinking water studies. Unexpected was that a comparable fraction (about 21%) of phylotypes with membrane-injured cells was observed for DNA- and RNA-based analyses, contradicting the current understanding that RNA-based analyses represent the actively growing fraction of the bacterial community. Overall, we think that this combined approach provides an interesting tool for a concomitant phylogenetic and viability analysis of bacterial species of drinking water.

  20. Convenient Detection of the Citrus Greening (Huanglongbing) Bacterium ‘Candidatus Liberibacter asiaticus’ by Direct PCR from the Midrib Extract

    PubMed Central

    Fujikawa, Takashi; Miyata, Shin-Ichi; Iwanami, Toru

    2013-01-01

    A phloem-limited bacterium, ‘Candidatus Liberibacter asiaticus’ (Las) is a major pathogen of citrus greening (huanglongbing), one of the most destructive citrus diseases worldwide. The rapid identification and culling of infected trees and budwoods in quarantine are the most important control measures. DNA amplification including conventional polymerase chain reaction (PCR) has commonly been used for rapid detection and identification. However, long and laborious procedures for DNA extraction have greatly reduced the applicability of this method. In this study, we found that the Las bacterial cells in the midribs of infected leaves were extracted rapidly and easily by pulverization and centrifugation with mini homogenization tubes. We also found that the Las bacterial cells in the midrib extract were suitable for highly sensitive direct PCR. The performance of direct PCR using this extraction method was not inferior to that of conventional PCR. Thus, the direct PCR method described herein is characterized by its simplicity, sensitivity, and robustness, and is applicable to quarantine testing. PMID:23437295

  1. Acacia catechu Ethanolic Seed Extract Triggers Apoptosis of SCC-25 Cells.

    PubMed

    Lakshmi, Thangavelu; Ezhilarasan, Devaraj; Nagaich, Upendra; Vijayaragavan, Rajagopal

    2017-10-01

    Acacia catechu Willd ( Fabaceae ), commonly known as catechu, cachou, and black cutch, has been studied for its hepatoprotective, antipyretic, antidiarrheal, hypoglycemic, anti-inflammatory, immunomodulatory, antinociceptive, antimicrobial, free radical scavenging, and antioxidant activities. We evaluated the cytotoxic activity of ethanol extract of A. catechu seed (ACS) against SCC-25 human oral squamous carcinoma cell line. Cytotoxic effect of ACS extract was determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, using concentrations of 0.1-1000 μg/mL for 24 h. A. catechu ethanol seed extract was treated SCC-25 cells with 25 and 50 μg/mL. At the end of treatment period, apoptotic marker gene expressions such as caspase 8, 9, Bcl-2, Bax, and cytochrome c were evaluated by semiquantitative reverse transcription-polymerase chain reaction. Morphological changes of ACS treated SCC-25 cells was evaluated by acridine orange/ethidium bromide (AO/EB) dual staining. Nuclear morphology and DNA fragmentation was evaluated by propidium iodide (PI) staining. A. catechu ethanol seed extract treatment caused cytotoxicity in SCC-25 cells with an IC 50 value of 100 μg/mL. Apoptotic markers caspases 8 and 9, cytochrome c, Bax gene expressions were significantly increased upon ACS extract treatment indicate the apoptosis induction in SCC-25 cells. This treatment also caused significant downregulation of Bcl-2 gene expression. Staining with AO/EB and PI shows membrane blebbing, and nuclear membrane distortion further confirms the apoptosis induction by ACS treatment in SCC-25 cells. The ethanol seed extracts of A. catechu was found to be cytotoxic at lower concentrations and induced apoptosis in human oral squamous carcinoma SCC-25 cells. Acacia catechu ethanolic seed extract contains phytochemicals such as epicatechin, rutin, and quercetin Acacia catechu seed (ACS) extract significantly ( P < 0.001) inhibits the active proliferation of human oral

  2. Function of bacterial cells and their exuded extracellular polymeric substances (EPS) in virus removal by red soils.

    PubMed

    Zhao, Bingzi; Jiang, Yan; Jin, Yan; Zhang, Jiabao

    2014-01-01

    The potential influence of autochthonous microorganisms on virus fate in soil is usually determined through extreme conditions of sterilization vs. nonsterilization; however, the relative importance of microbial cells and their exudates remains unclear. In this study, bacterial cells (cell) were harvested, and their exuded extracellular polymeric substances (EPS) were extracted from three strains of bacteria, namely, Gram-negative bacteria Pseudomonas putida and Pseudomonas aeruginosa as well as Gram-positive bacterium Bacillus subtilis. This study aimed to evaluate virus removal in solutions in the presence of cell, EPS, and their combination (cell/EPS), as well as to investigate how their presence affects virus removal efficiencies by four red soils based on batch experiments. Results showed that virus removal percentage in solutions ranged from 11 to 23 in the presence of cells only and from 12 to 15 in the presence of EPS only. The removal percentage in the combined cell/EPS treatment can be estimated by summing the results achieved by the cell and EPS treatments, separately. Meanwhile, cell presence had a negligible effect on virus removal by red soils. EPS and combined cell/EPS significantly reduced virus removal by 20 to 69% and 16 to 50%, respectively, which indicated that EPS served a dominant function in reducing virus removal. This study clearly demonstrated that the prediction of virus removal by red soils must consider the effect of bacteria, especially those producing large quantities of EPS, which can be responsible for the underestimation of viral load in certain studies.

  3. Does the high nucleic acid content of individual bacterial cells allow us to discriminate between active cells and inactive cells in aquatic systems?

    PubMed

    Lebaron, P; Servais, P; Agogué, H; Courties, C; Joux, F

    2001-04-01

    The nucleic acid contents of individual bacterial cells as determined with three different nucleic acid-specific fluorescent dyes (SYBR I, SYBR II, and SYTO 13) and flow cytometry were compared for different seawater samples. Similar fluorescence patterns were observed, and bacteria with high apparent nucleic acid contents (HNA) could be discriminated from bacteria with low nucleic acid contents (LNA). The best discrimination between HNA and LNA cells was found when cells were stained with SYBR II. Bacteria in different water samples collected from seven freshwater, brackish water, and seawater ecosystems were prelabeled with tritiated leucine and then stained with SYBR II. After labeling and staining, HNA, LNA, and total cells were sorted by flow cytometry, and the specific activity of each cellular category was determined from leucine incorporation rates. The HNA cells were responsible for most of the total bacterial production, and the specific activities of cells in the HNA population varied between samples by a factor of seven. We suggest that nucleic acid content alone can be a better indicator of the fraction of growing cells than total counts and that this approach should be combined with other fluorescent physiological probes to improve detection of the most active cells in aquatic systems.

  4. Does the High Nucleic Acid Content of Individual Bacterial Cells Allow Us To Discriminate between Active Cells and Inactive Cells in Aquatic Systems?

    PubMed Central

    Lebaron, Philippe; Servais, Pierre; Agogué, Helene; Courties, Claude; Joux, Fabien

    2001-01-01

    The nucleic acid contents of individual bacterial cells as determined with three different nucleic acid-specific fluorescent dyes (SYBR I, SYBR II, and SYTO 13) and flow cytometry were compared for different seawater samples. Similar fluorescence patterns were observed, and bacteria with high apparent nucleic acid contents (HNA) could be discriminated from bacteria with low nucleic acid contents (LNA). The best discrimination between HNA and LNA cells was found when cells were stained with SYBR II. Bacteria in different water samples collected from seven freshwater, brackish water, and seawater ecosystems were prelabeled with tritiated leucine and then stained with SYBR II. After labeling and staining, HNA, LNA, and total cells were sorted by flow cytometry, and the specific activity of each cellular category was determined from leucine incorporation rates. The HNA cells were responsible for most of the total bacterial production, and the specific activities of cells in the HNA population varied between samples by a factor of seven. We suggest that nucleic acid content alone can be a better indicator of the fraction of growing cells than total counts and that this approach should be combined with other fluorescent physiological probes to improve detection of the most active cells in aquatic systems. PMID:11282632

  5. Bacterial endophthalmitis after resident-performed cataract surgery.

    PubMed

    Hollander, David A; Vagefi, M Reza; Seiff, Stuart R; Stewart, Jay M

    2006-05-01

    To determine if there is an increased rate of postoperative bacterial endophthalmitis after resident-performed cataract extraction relative to the reported rates of experienced surgeons. Retrospective, observational case series. The operative reports of the resident-performed cataract surgeries at San Francisco General Hospital between 1983 and 2002 were reviewed. Cases of culture-positive bacterial endophthalmitis and vitreous loss were identified. Between 1983 and 2002, three cases (0.11%) of culture-positive bacterial endophthalmitis occurred after 2718 resident-performed cataract extractions. The overall vitreous loss rate was 6.7%. Two endophthalmitis cases were acute (Staphylococcus epidermidis, Streptococcus viridans), presenting within five days of surgeries complicated by vitreous loss, and one case was delayed-onset (Corynebacterium species) after Nd:YAG posterior capsulotomy after uncomplicated cataract extraction. Despite higher rates of vitreous loss, the rate of endophthalmitis following resident-performed cataract surgery remains comparable with the rates of more experienced surgeons.

  6. Inhibitory effects of Agaricus blazei extracts on human myeloid leukemia cells.

    PubMed

    Kim, Chi-Fai; Jiang, Jing-Jing; Leung, Kwok-Nam; Fung, Kwok-Pui; Lau, Clara Bik-San

    2009-03-18

    Agaricus blazei has been used as an adjuvant in cancer chemotherapy and is found to inhibit the growth of various types of tumor cells. Our study has adopted a systematic and bioassay-guided approach to optimize the extraction of Agaricus blazei for anti-leukemic bioactive components. The tumor-selective growth inhibitory activity of the extracts on leukemic cell lines was evaluated in vitro and in vivo using tumor-bearing nude mice. Agaricus blazei extracts were prepared using different methods. MTT and tritiated thymidine incorporation assays were used to evaluate the in vitro anti-leukemic effects. The most potent extract was further investigated using NB-4 cells-bearing nude mice and mechanistic studies using DNA fragmentation assay and cell death detection ELISA. The JAB80E70 extract showed the most potent tumor-selective growth inhibitory activity against human leukemia NB-4 and K-562 cells. This is the first report of anti-leukemic activity of JAB80E70 in athymic nude mice bearing NB-4 cells. Using DNA fragmentation assays and cell death detection ELISA, JAB80E70 was found to induce apoptosis in NB-4 cells. However, the polysaccharide enriched fractions failed to show significant cytotoxicity on NB-4 cells in vitro. The JAB80E70 extract exhibited potent anti-leukemic effect in vitro and in vivo. The effect can be attributed, at least in part, to the induction of apoptosis. Besides, polysaccharides in Agaricus blazei may not possess direct anti-leukemic activity in vitro.

  7. Ultraviolet micro-Raman spectrograph for the detection of small numbers of bacterial cells

    NASA Astrophysics Data System (ADS)

    Chadha, S.; Nelson, W. H.; Sperry, J. F.

    1993-11-01

    The construction of a practical UV micro-Raman spectrograph capable of selective excitation of bacterial cells and other microscopic samples has been described. A reflective objective is used to focus cw laser light on a sample and at the same time collect the scattered light at 180°. With the aid of a quartz lens the image produced is focused on the slits of a spectrograph equipped with a single 2400 grooves/mm grating optimized for 250 nm. Spectra were detected by means of a blue-intensified diode array detector. Resonance Raman spectra of Bacillus subtilis and Flavobacterium capsulatum excited by the 257.2 nm output of a cw laser were recorded in the 900-1800 cm-1 region. Bacterial cells were immobilized on a quartz plate by means of polylysine and were counted visually. Cooling was required to retard sample degradation. Sample sizes ranged from 1 to 50 cells with excitation times varying from 15 to 180 s. Excellent spectra have been obtained from 20 cells in 15 s using a spectrograph having only 3% throughput.

  8. In vitro effects of Italian Lavandula multifida L. leaf extracts on gilthead seabream (Sparus aurata) leucocytes and SAF-1 cells.

    PubMed

    Fazio, Angela; Cerezuela, Rebeca; Panuccio, Maria Rosaria; Cuesta, Alberto; Esteban, Maria Ángeles

    2017-07-01

    Lavandula multifida is very appreciated by pharmaceutical and cosmetic industries. In Italy is only found in Calabria and Sicily and, at present, urge its valorization due to its high extinction and genetic erosion risks. Possible applications of L. multifida extracts as immunostimulant in fish aquaculture were assayed by using gilthead seabream (Sparus aurata) as a marine fish model, due to its importance in fish aquaculture. The in vitro effects of both aqueous and ethanolic leaf extracts obtained from two Italian populations of L. multifida on head kidney leucocyte activities (viability, phagocytosis, respiratory burst and peroxidase content) were assessed. Furthermore, the possible cytotoxic effects of the extracts on SAF-1 cells and their bactericidal effects on three fish pathogenic bacteria (Vibrio harveyi, Vibrio anguillarum, Aeromonas salmonicida) were also evaluated. All the assays were performed in comparison with leaf extracts obtained from a widely-distributed species as L. angustifolia. Results showed that water and ethanolic leaf extracts obtained from L. multifida enhanced innate immune activities of S. aurata HK leucocytes. Furthermore, SAF-1 cell viability was not affected significantly after being incubated with the extracts. These extracts did not exert any bactericidal activity on the pathogenic bacterial strains tested in the present study. Results obtained in the present work suggested the possibility of use such extracts in in vivo studies in order to corroborate the possibility of their use in aquaculture. Their use could prevent to improve fish defense against pathogenic infections through enhancement of the fish immune status. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Anti-bacterial activity of some Brazilian medicinal plants.

    PubMed

    de Lima, Maria Raquel Ferreira; de Souza Luna, Josiane; dos Santos, Aldenir Feitosa; de Andrade, Maria Cristina Caño; Sant'Ana, Antônio Euzébio Goulart; Genet, Jean-Pierre; Marquez, Béatrice; Neuville, Luc; Moreau, Nicole

    2006-04-21

    Extracts from various organs of 25 plants of Brazilian traditional medicine were assayed with respect to their anti-bacterial activities against Escherichia coli, a susceptible strain of Staphylococcus aureus and two resistant strains of Staphylococcus aureus harbouring the efflux pumps NorA and MsrA. Amongst the 49 extracts studied, 14 presented anti-bacterial activity against Staphylococcus aureus, including the ethanolic extracts from the rhizome of Jatropha elliptica, from the stem barks of Schinus terebinthifolius and Erythrina mulungu, from the stems and leaves of Caesalpinia pyramidalis and Serjania lethalis, and from the stem bark and leaves of Lafoensia pacari. The classes of compounds present in the active extracts were determined as a preliminary step towards their bioactivity-guided separation. No extracts were active against Escherichia coli.

  10. Antifilarial and Antibiotic Activities of Methanolic Extracts of Melaleuca cajuputi Flowers

    PubMed Central

    Al-Abd, Nazeh M.; Nor, Zurainee Mohamed; Mansor, Marzida; Hasan, MS; Kassim, Mustafa

    2016-01-01

    We evaluated the activity of methanolic extracts of Melaleuca cajuputi flowers against the filarial worm Brugia pahangi and its bacterial endosymbiont Wolbachia. Anti-Wolbachia activity was measured in worms and in Aedes albopictus Aa23 cells by PCR, electron microscopy, and other biological assays. In particular, microfilarial release, worm motility, and viability were determined. M. cajuputi flower extracts were found to significantly reduce Wolbachia endosymbionts in Aa23 cells, Wolbachia surface protein, and microfilarial release, as well as the viability and motility of adult worms. Anti-Wolbachia activity was further confirmed by observation of degraded and phagocytized Wolbachia in worms treated with the flower extracts. The data provided in vitro and in vivo evidence that M. cajuputi flower extracts inhibit Wolbachia, an activity that may be exploited as an alternative strategy to treat human lymphatic filariasis. PMID:27417081

  11. Nanoparticles of Selaginella doederleinii leaf extract inhibit human lung cancer cells A549

    NASA Astrophysics Data System (ADS)

    Syaefudin; Juniarti, A.; Rosiyana, L.; Setyani, A.; Khodijah, S.

    2016-01-01

    The aim of the present study is to evaluate cytotoxicity effect of nanoparticles of Selaginella doederleinii (S. doederleinii) leaves extract. S. doederleinii was extracted by maceration method using 70%(v/v) ethanol as solvent. Phytochemical content was analyzed qualitatively by using Harborne and Thin Layer Chromatography (TLC) methods. Nanoparticle extract was prepared by ionic gelation using chitosan as encapsulant agent. Anticancer activity was performed by using 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay. The results showed that S. doederleinii contains of flavonoids. Nanoparticle of S. doederleinii leaves extract greatly inhibited A549 cells growth (cancer cells), with IC50 of 3% or 1020 μg/ml. These nanoparticles extract also inhibited the growth of Chang cells (normal cells), with IC50 of 4% or 1442 μg/ml. The effective concentration of nanoparticles extract which inhibits cancer cells without harming the normal cells is 0.5% or 167 μg/ml. Further studies are needed to obtain the concentration of nanoparticles extract which can selectively suppress cancer cells.

  12. Marine Sponge-Derived Streptomyces sp. SBT343 Extract Inhibits Staphylococcal Biofilm Formation

    PubMed Central

    Balasubramanian, Srikkanth; Othman, Eman M.; Kampik, Daniel; Stopper, Helga; Hentschel, Ute; Ziebuhr, Wilma; Oelschlaeger, Tobias A.; Abdelmohsen, Usama R.

    2017-01-01

    Staphylococcus epidermidis and Staphylococcus aureus are opportunistic pathogens that cause nosocomial and chronic biofilm-associated infections. Indwelling medical devices and contact lenses are ideal ecological niches for formation of staphylococcal biofilms. Bacteria within biofilms are known to display reduced susceptibilities to antimicrobials and are protected from the host immune system. High rates of acquired antibiotic resistances in staphylococci and other biofilm-forming bacteria further hamper treatment options and highlight the need for new anti-biofilm strategies. Here, we aimed to evaluate the potential of marine sponge-derived actinomycetes in inhibiting biofilm formation of several strains of S. epidermidis, S. aureus, and Pseudomonas aeruginosa. Results from in vitro biofilm-formation assays, as well as scanning electron and confocal microscopy, revealed that an organic extract derived from the marine sponge-associated bacterium Streptomyces sp. SBT343 significantly inhibited staphylococcal biofilm formation on polystyrene, glass and contact lens surfaces, without affecting bacterial growth. The extract also displayed similar antagonistic effects towards the biofilm formation of other S. epidermidis and S. aureus strains tested but had no inhibitory effects towards Pseudomonas biofilms. Interestingly the extract, at lower effective concentrations, did not exhibit cytotoxic effects on mouse fibroblast, macrophage and human corneal epithelial cell lines. Chemical analysis by High Resolution Fourier Transform Mass Spectrometry (HRMS) of the Streptomyces sp. SBT343 extract proportion revealed its chemical richness and complexity. Preliminary physico-chemical characterization of the extract highlighted the heat-stable and non-proteinaceous nature of the active component(s). The combined data suggest that the Streptomyces sp. SBT343 extract selectively inhibits staphylococcal biofilm formation without interfering with bacterial cell viability. Due to

  13. Acetonic Extract of Buxus sempervirens Induces Cell Cycle Arrest, Apoptosis and Autophagy in Breast Cancer Cells

    PubMed Central

    Ait-Mohamed, Ouardia; Battisti, Valentine; Joliot, Véronique; Fritsch, Lauriane; Pontis, Julien; Medjkane, Souhila; Redeuilh, Catherine; Lamouri, Aazdine; Fahy, Christine; Rholam, Mohamed; Atmani, Djebbar; Ait-Si-Ali, Slimane

    2011-01-01

    Plants are an invaluable source of potential new anti-cancer drugs. Here, we investigated the cytotoxic activity of the acetonic extract of Buxus sempervirens on five breast cancer cell lines, MCF7, MCF10CA1a and T47D, three aggressive triple positive breast cancer cell lines, and BT-20 and MDA-MB-435, which are triple negative breast cancer cell lines. As a control, MCF10A, a spontaneously immortalized but non-tumoral cell line has been used. The acetonic extract of Buxus sempervirens showed cytotoxic activity towards all the five studied breast cancer cell lines with an IC50 ranging from 7.74 µg/ml to 12.5 µg/ml. Most importantly, the plant extract was less toxic towards MCF10A with an IC50 of 19.24 µg/ml. Fluorescence-activated cell sorting (FACS) analysis showed that the plant extract induced cell death and cell cycle arrest in G0/G1 phase in MCF7, T47D, MCF10CA1a and BT-20 cell lines, concomitant to cyclin D1 downregulation. Application of MCF7 and MCF10CA1a respective IC50 did not show such effects on the control cell line MCF10A. Propidium iodide/Annexin V double staining revealed a pre-apoptotic cell population with extract-treated MCF10CA1a, T47D and BT-20 cells. Transmission electron microscopy analyses indicated the occurrence of autophagy in MCF7 and MCF10CA1a cell lines. Immunofluorescence and Western blot assays confirmed the processing of microtubule-associated protein LC3 in the treated cancer cells. Moreover, we have demonstrated the upregulation of Beclin-1 in these cell lines and downregulation of Survivin and p21. Also, Caspase-3 detection in treated BT-20 and T47D confirmed the occurrence of apoptosis in these cells. Our findings indicate that Buxus sempervirens extract exhibit promising anti-cancer activity by triggering both autophagic cell death and apoptosis, suggesting that this plant may contain potential anti-cancer agents for single or combinatory cancer therapy against breast cancer. PMID:21935420

  14. Lipopolysaccharide Clearance, Bacterial Clearance, and Systemic Inflammatory Responses Are Regulated by Cell Type–Specific Functions of TLR4 during Sepsis

    PubMed Central

    Deng, Meihong; Loughran, Patricia; Gibson, Gregory; Sodhi, Chhinder; Watkins, Simon; Hackam, David

    2013-01-01

    The morbidity associated with bacterial sepsis is the result of host immune responses to pathogens, which are dependent on pathogen recognition by pattern recognition receptors, such as TLR4. TLR4 is expressed on a range of cell types, yet the mechanisms by which cell-specific functions of TLR4 lead to an integrated sepsis response are poorly understood. To address this, we generated mice in which TLR4 was specifically deleted from myeloid cells (LysMTLR4KO) or hepatocytes (HCTLR4KO) and then determined survival, bacterial counts, host inflammatory responses, and organ injury in a model of cecal ligation and puncture (CLP), with or without antibiotics. LysM-TLR4 was required for phagocytosis and efficient bacterial clearance in the absence of antibiotics. Survival, the magnitude of the systemic and local inflammatory responses, and liver damage were associated with bacterial levels. HCTLR4 was required for efficient LPS clearance from the circulation, and deletion of HCTLR4 was associated with enhanced macrophage phagocytosis, lower bacterial levels, and improved survival in CLP without antibiotics. Antibiotic administration during CLP revealed an important role for hepatocyte LPS clearance in limiting sepsis-induced inflammation and organ injury. Our work defines cell type–selective roles for TLR4 in coordinating complex immune responses to bacterial sepsis and suggests that future strategies for modulating microbial molecule recognition should account for varying roles of pattern recognition receptors in multiple cell populations. PMID:23562812

  15. Synthetic inhibitors of bacterial cell division targeting the GTP-binding site of FtsZ.

    PubMed

    Ruiz-Avila, Laura B; Huecas, Sonia; Artola, Marta; Vergoñós, Albert; Ramírez-Aportela, Erney; Cercenado, Emilia; Barasoain, Isabel; Vázquez-Villa, Henar; Martín-Fontecha, Mar; Chacón, Pablo; López-Rodríguez, María L; Andreu, José M

    2013-09-20

    Cell division protein FtsZ is the organizer of the cytokinetic Z-ring in most bacteria and a target for new antibiotics. FtsZ assembles with GTP into filaments that hydrolyze the nucleotide at the association interface between monomers and then disassemble. We have replaced FtsZ's GTP with non-nucleotide synthetic inhibitors of bacterial division. We searched for these small molecules among compounds from the literature, from virtual screening (VS), and from our in-house synthetic library (UCM), employing a fluorescence anisotropy primary assay. From these screens we have identified the polyhydroxy aromatic compound UCM05 and its simplified analogue UCM44 that specifically bind to Bacillus subtilis FtsZ monomers with micromolar affinities and perturb normal assembly, as examined with light scattering, polymer sedimentation, and negative stain electron microscopy. On the other hand, these ligands induce the cooperative assembly of nucleotide-devoid archaeal FtsZ into distinct well-ordered polymers, different from GTP-induced filaments. These FtsZ inhibitors impair localization of FtsZ into the Z-ring and inhibit bacterial cell division. The chlorinated analogue UCM53 inhibits the growth of clinical isolates of antibiotic-resistant Staphylococcus aureus and Enterococcus faecalis. We suggest that these interfacial inhibitors recapitulate binding and some assembly-inducing effects of GTP but impair the correct structural dynamics of FtsZ filaments and thus inhibit bacterial division, possibly by binding to a small fraction of the FtsZ molecules in a bacterial cell, which opens a new approach to FtsZ-based antibacterial drug discovery.

  16. Interaction of Bacterial Phenazines with Colistimethate in Bronchial Epithelial Cells.

    PubMed

    Mossine, Valeri V; Chance, Deborah L; Waters, James K; Mawhinney, Thomas P

    2018-05-21

    Multidrug-resistant bacterial infections are being increasingly treated in clinics with polymyxins, a class of antibiotics associated with adverse effects in the kidney, nervous system, or airways of a significant proportion of human and animal patients. Although many of the resistant pathogens display enhanced virulence, a hazard of cytotoxic interactions between polymyxin antibiotics and bacterial virulence factors (VFs) has not been assessed, to date. We report here on testing paired combinations of four Pseudomonas aeruginosa VF phenazine toxins, pyocyanin (PYO), 1-hydroxyphenazine (1-HP), phenazine-1-carboxylic acid (PCA), phenazine-1-carboxamide (PCN), and two commonly prescribed polymyxin drugs, colistimethate (CMS)/colistin and polymyxin B, in three human airway cell lines, BEAS-2B, HBE-1, and CFT-1. Cytotoxicities of individual antibiotics, toxins, and their combinations were evaluated by simultaneous measurement of mitochondrial metabolic, total transcriptional/translational, and the Nrf2 stress response regulator activities in treated cells. Two phenazines, PYO and 1-HP, were cytotoxic at clinically relevant concentrations (100-150 μM) and prompted a significant increase in the oxidative stress-induced transcriptional activity in surviving cells. The polymyxin antibiotics arrested the cell proliferation at clinically achievable (< 1 mM) concentrations, as well, with CMS displaying a surprisingly high cytotoxicity (ED 50 = 180 μM) in BEAS-2B. The dose-response curves were probed by the median-effect analysis which established a synergistically enhanced cytotoxicity of the PYO/CMS combination in all three airway cell lines; a particularly strong effect was observed in the BEAS-2B cells, with the combination index (CI) = 0.27 at ED 50 PCA, PCN, and 1-HP potentiated CMS cytotoxicity to a smaller extent. The cytotoxicity of CMS could be reduced with 10 mM N -acetyl-cysteine. Iron chelators, while ineffective against the polymyxins, could rescue all three

  17. Biological activity and chemical profile of Lavatera thuringiaca L. extracts obtained by different extraction approaches.

    PubMed

    Mašković, Pavle Z; Veličković, Vesna; Đurović, Saša; Zeković, Zoran; Radojković, Marija; Cvetanović, Aleksandra; Švarc-Gajić, Jaroslava; Mitić, Milan; Vujić, Jelena

    2018-01-01

    Lavatera thuringiaca L. is herbaceous perennial plant from Malvaceae family, which is known for its biological activity and richness in polyphenolic compounds. Despite this, the information regarding the biological activity and chemical profile is still insufficient. Aim of this study was to investigate biological potential and chemical profile of Lavatera thuringiaca L., as well as influence of applied extraction technique on them. Two conventional and four non-conventional extraction techniques were applied in order to obtain extracts rich in bioactive compound. Extracts were further tested for total phenolics, flavonoids, condensed tannins, gallotannins and anthocyanins contents using spectrophotometric assays. Polyphenolic profile was established using HPLC-DAD analysis. Biological activity was investigated regarding antioxidant, cytotoxic and antibacterial activities. Four antioxidant assays were applied as well as three different cell lines for cytotoxic and fifteen bacterial strain for antibacterial activity. Results showed that subcritical water extraction (SCW) dominated over the other extraction techniques, where SCW extract exhibited the highest biological activity. Study indicates that plant Lavatera thuringiaca L. may be used as a potential source of biologically compounds. Copyright © 2017 Elsevier GmbH. All rights reserved.

  18. Agnus castus extracts inhibit prolactin secretion of rat pituitary cells.

    PubMed

    Sliutz, G; Speiser, P; Schultz, A M; Spona, J; Zeillinger, R

    1993-05-01

    In our studies on prolactin inhibition by plant extracts we focused on the effects of extracts of Vitex agnus castus and its preparations on rat pituitary cells under basal and stimulated conditions in primary cell culture. Both extracts from Vitex agnus castus as well as synthetic dopamine agonists (Lisuride) significantly inhibit basal as well as TRH-stimulated prolactin secretion of rat pituitary cells in vitro and as a consequence inhibition of prolactin secretion could be blocked by adding a dopamine receptor blocker. Therefore because of its dopaminergic effect Agnus castus could be considered as an efficient alternative phytotherapeutic drug in the treatment of slight hyperprolactinaemia.

  19. Adaptive Calcified Matrix Response of Dental Pulp to Bacterial Invasion Is Associated with Establishment of a Network of Glial Fibrillary Acidic Protein+/Glutamine Synthetase+ Cells

    PubMed Central

    Farahani, Ramin M.; Nguyen, Ky-Anh; Simonian, Mary; Hunter, Neil

    2010-01-01

    We report evidence for anatomical and functional changes of dental pulp in response to bacterial invasion through dentin that parallel responses to noxious stimuli reported in neural crest-derived sensory tissues. Sections of resin-embedded carious adult molar teeth were prepared for immunohistochemistry, in situ hybridization, ultrastructural analysis, and microdissection to extract mRNA for quantitative analyses. In odontoblasts adjacent to the leading edge of bacterial invasion in carious teeth, expression levels of the gene encoding dentin sialo-protein were 16-fold greater than in odontoblasts of healthy teeth, reducing progressively with distance from this site of the carious lesion. In contrast, gene expression for dentin matrix protein-1 by odontoblasts was completely suppressed in carious teeth relative to healthy teeth. These changes in gene expression were related to a gradient of deposited reactionary dentin that displayed a highly modified structure. In carious teeth, interodontoblastic dentin sialo-protein− cells expressing glutamine synthetase (GS) showed up-regulation of glial fibrillary acidic protein (GFAP). These cells extended processes that associated with odontoblasts. Furthermore, connexin 43 established a linkage between adjacent GFAP+/GS+ cells in carious teeth only. These findings indicate an adaptive pulpal response to encroaching caries that includes the deposition of modified, calcified, dentin matrix associated with networks of GFAP+/GS+ interodontoblastic cells. A regulatory role for the networks of GFAP+/GS+ cells is proposed, mediated by the secretion of glutamate to modulate odontoblastic response. PMID:20802180

  20. Surface nanoporosity has a greater influence on osteogenic and bacterial cell adhesion than crystallinity and wettability

    NASA Astrophysics Data System (ADS)

    Rodriguez-Contreras, Alejandra; Guadarrama Bello, Dainelys; Nanci, Antonio

    2018-07-01

    There has been much emphasis on the influence of crystallinity and wettability for modulating cell activity, particularly for bone biomaterials. In this context, we have generated titanium oxide layers with similar mesoporous topography and surface roughness but with amorphous or crystalline oxide layers and differential wettability. We then investigated their influence on the behavior of MC3T3 osteoblastic and bacterial cells. There was no difference in cell adhesion, spreading and growth on amorphous and crystalline surfaces. The number of focal adhesions was similar, however, cells on the amorphous surface exhibited a higher frequency of mature adhesions. The crystallinity of the surface layers also had no bearing on bacterial adhesion. While it cannot be excluded that surface crystallinity, roughness and wettability contribute to some degree to determining cell behavior, our data suggest that physical characteristics of surfaces represent the major determinant.

  1. A Vitex agnus-castus extract inhibits cell growth and induces apoptosis in prostate epithelial cell lines.

    PubMed

    Weisskopf, M; Schaffner, W; Jundt, G; Sulser, T; Wyler, S; Tullberg-Reinert, H

    2005-10-01

    Extracts of Vitex agnus-castus fruits (VACF) are described to have beneficial effects on disorders related to hyperprolactinemia (cycle disorders, premenstrual syndrome). A VACF extract has recently been shown to exhibit antitumor activities in different human cancer cell lines. In the present study, we explored the antiproliferative effects of a VACF extract with a particular focus on apoptosis-inducing and potential cytotoxic effects. Three different human prostate epithelial cell lines (BPH-1, LNCaP, PC-3) representing different disease stages and androgen responsiveness were chosen. The action of VACF on cell viability was assessed using the WST-8-tetrazolium assay. Cell proliferation in cells receiving VACF alone or in combination with a pan-caspase inhibitor (Z-VAD-fmk) was quantified using a Crystal Violet assay. Flow cytometric cell cycle analysis and measurement of DNA fragmentation using an ELISA method were used for studying the induction of apoptosis. Lactate dehydrogenase (LDH) activity was determined as a marker of cytotoxicity. The extract inhibited proliferation of all three cell lines in a concentration-dependent manner with IC (50) values below 10 microg/mL after treatment for 48 h. Cell cycle analysis and DNA fragmentation assays suggest that part of the cells were undergoing apoptosis. The VACF-induced decrease in cell number was partially inhibited by Z-VAD-fmk, indicating a caspase-dependent apoptotic cell death. However, the concentration-dependent LDH activity of VACF treated cells indicated cytotoxic effects as well. These data suggest that VACF contains components that inhibit proliferation and induce apoptosis in human prostate epithelial cell lines. The extract may be useful for the prevention and/or treatment not only of benign prostatic hyperplasia but also of human prostate cancer.

  2. Quantitative and specific detection of the biocontrol agent, Serratia plymuthica, in plant extracts using a real-time TaqMan® assay.

    PubMed

    Czajkowski, Robert; van der Wolf, Jan M

    2012-11-01

    A Serratia plymuthica-specific TaqMan® assay was designed based on the consensus nucleotide sequence from the 3'- end of the luxS gene present in all S. plymuthica strains tested. The specificity of the assay was demonstrated by testing 21 Serratia spp. strains and 30 isolates belonging to various species that can potentially coexist with S. plymuthica in the same environment. Positive reactions in the TaqMan® assay were observed only for S. plymuthica isolates and not for other bacteria. The TaqMan® assay could detect down to 1.95 ng of S. plymuthica DNA, down to 5 bacterial cells per reaction (100 cfu ml(-1)) in vitro, down to 50 bacterial cells per reaction (1,000 cfu ml(-1)) in spiked potato root extracts and down to 5 bacterial cells per reaction (100 cfu ml(-1)) in spiked potato haulm extracts. We used this assay to quantify S. plymuthica A30 cells in potato and tomato haulms and roots grown from S. plymuthica A30-inoculated potato seed tubers and tomato seeds. The results were comparable with the spread-plating of plant extracts on a newly developed S. plymuthica A30 selective medium (CVTR2Arif). The TaqMan® assay can be used to quantify S. plymuthica isolates in different ecosystems and in complex substrates.

  3. Stable Regulation of Cell Cycle Events in Mycobacteria: Insights From Inherently Heterogeneous Bacterial Populations.

    PubMed

    Logsdon, Michelle M; Aldridge, Bree B

    2018-01-01

    Model bacteria, such as E. coli and B. subtilis , tightly regulate cell cycle progression to achieve consistent cell size distributions and replication dynamics. Many of the hallmark features of these model bacteria, including lateral cell wall elongation and symmetric growth and division, do not occur in mycobacteria. Instead, mycobacterial growth is characterized by asymmetric polar growth and division. This innate asymmetry creates unequal birth sizes and growth rates for daughter cells with each division, generating a phenotypically heterogeneous population. Although the asymmetric growth patterns of mycobacteria lead to a larger variation in birth size than typically seen in model bacterial populations, the cell size distribution is stable over time. Here, we review the cellular mechanisms of growth, division, and cell cycle progression in mycobacteria in the face of asymmetry and inherent heterogeneity. These processes coalesce to control cell size. Although Mycobacterium smegmatis and Mycobacterium bovis Bacillus Calmette-Guérin (BCG) utilize a novel model of cell size control, they are similar to previously studied bacteria in that initiation of DNA replication is a key checkpoint for cell division. We compare the regulation of DNA replication initiation and strategies used for cell size homeostasis in mycobacteria and model bacteria. Finally, we review the importance of cellular organization and chromosome segregation relating to the physiology of mycobacteria and consider how new frameworks could be applied across the wide spectrum of bacterial diversity.

  4. Bacterial Cell Enlargement Requires Control of Cell Wall Stiffness Mediated by Peptidoglycan Hydrolases

    PubMed Central

    Wheeler, Richard; Turner, Robert D.; Bailey, Richard G.; Salamaga, Bartłomiej; Mesnage, Stéphane; Mohamad, Sharifah A. S.; Hayhurst, Emma J.; Horsburgh, Malcolm; Hobbs, Jamie K.

    2015-01-01

    ABSTRACT Most bacterial cells are enclosed in a single macromolecule of the cell wall polymer, peptidoglycan, which is required for shape determination and maintenance of viability, while peptidoglycan biosynthesis is an important antibiotic target. It is hypothesized that cellular enlargement requires regional expansion of the cell wall through coordinated insertion and hydrolysis of peptidoglycan. Here, a group of (apparent glucosaminidase) peptidoglycan hydrolases are identified that are together required for cell enlargement and correct cellular morphology of Staphylococcus aureus, demonstrating the overall importance of this enzyme activity. These are Atl, SagA, ScaH, and SagB. The major advance here is the explanation of the observed morphological defects in terms of the mechanical and biochemical properties of peptidoglycan. It was shown that cells lacking groups of these hydrolases have increased surface stiffness and, in the absence of SagB, substantially increased glycan chain length. This indicates that, beyond their established roles (for example in cell separation), some hydrolases enable cellular enlargement by making peptidoglycan easier to stretch, providing the first direct evidence demonstrating that cellular enlargement occurs via modulation of the mechanical properties of peptidoglycan. PMID:26220963

  5. Green tea extract and aged garlic extract inhibit anion transport and sickle cell dehydration in vitro.

    PubMed

    Ohnishi, S T; Ohnishi, T; Ogunmola, G B

    2001-01-01

    Both green tea extract (GTE or tea polyphenols) and aged garlic extract (AGE) effectively inhibited in vitro dehydration of sickle red blood cells induced by K-Cl cotransport or red cell storage. For K-Cl cotransport induced by 500 mM urea, 0.3 mg/ml EGCg (epigallocatechin gallate; a major component in GTE) almost completely inhibited dehydration, and 6 mg/ml AGE inhibited dehydration to 30% of the control level. Both vitamins E and C had no effect at the level of 2 mM. Different tea extracts had different degrees of inhibition, but the inhibitory activity increased when the number of hydroxyl groups in the compounds increased. With storage of sickle cells at 4 degrees C for 6 days, the cells started to undergo spontaneous dehydration when incubated at 37 degrees C. Neither inhibitors for Ca-induced K efflux nor K-Cl cotransport could inhibit cell dehydration of stored sickle cells, but both GTE and AGE effectively inhibited it. Chloride efflux measurements using a chloride electrode demonstrated that both GTE and AGE inhibited anion transport in red blood cells. The inhibitory mechanism of these compounds may be related to anion transport inhibition, although involvement of their antioxidant activities can not yet be ruled out. Copyright 2001 Academic Press.

  6. Anti-bacterial activity and brine shrimp lethality bioassay of methanolic extracts of fourteen different edible vegetables from Bangladesh

    PubMed Central

    Ullah, M. Obayed; Haque, Mahmuda; Urmi, Kaniz Fatima; Zulfiker, Abu Hasanat Md.; Anita, Elichea Synthi; Begum, Momtaj; Hamid, Kaiser

    2013-01-01

    Objective To investigate the antibacterial and cytotoxic activity of fourteen different edible vegetables methanolic extract from Bangladesh. Methods The antibacterial activity was evaluated using disc diffusion assay method against 12 bacteria (both gram positive and gram negative). The plant extracts were also screened for cytotoxic activity using the brine shrimp lethality bioassay method and the lethal concentrations (LC50) were determined at 95% confidence intervals by analyzing the data on a computer loaded with “Finney Programme”. Results All the vegetable extracts showed low to elevated levels of antibacterial activity against most of the tested strains (zone of inhibition=5-28 mm). The most active extract against all bacterial strains was from Xanthium indicum which showed remarkable antibacterial activity having the diameter of growth inhibition zone ranging from 12 to 28 mm followed by Alternanthera sessilis (zone of inhibition=6-21 mm). All extracts exhibited considerable general toxicity towards brine shrimps. The LC50 value of the tested extracts was within the range of 8.447 to 60.323 µg/mL with respect to the positive control (vincristine sulphate) which was 0.91 µg/mL. Among all studied extracts, Xanthium indicum displayed the highest cytotoxic effect with LC50 value of 8.447 µg/mL. Conclusions The results of the present investigation suggest that most of the studied plants are potentially good source of antibacterial and anticancer agents. PMID:23570009

  7. Withania somnifera Root Extract Has Potent Cytotoxic Effect against Human Malignant Melanoma Cells

    PubMed Central

    Halder, Babli; Singh, Shruti; Thakur, Suman S.

    2015-01-01

    In Ayurveda, Withania somnifera is commonly known as Ashwagandha, its roots are specifically used in medicinal and clinical applications. It possesses numerous therapeutic actions which include anti-inflammatory, sedative, hypnotic and narcotic. Extracts from this plant have been reported for its anticancer properties. In this study we evaluated for the first time, the cytotoxic effect of Withania root extract on human malignant melanoma A375 cells. The crude extract of Withania was tested for cytotoxicity against A375 cells by MTT assay. Cell morphology of treated A375 cells was visualized through phase contrast as well as fluorescence microscopy. Agarose gel electrophoresis was used to check DNA fragmentation of the crude extract treated cells. Crude extract of Withania root has the potency to reduce viable cell count in dose as well as time dependent manner. Morphological change of the A375 cells was also observed in treated groups in comparison to untreated or vehicle treated control. Apoptotic body and nuclear blebbing were observed in DAPI stained treated cells under fluorescence microscope. A ladder of fragmented DNA was noticed in treated cells. Thus it might be said that the crude water extract of Withania somnifera has potent cytotoxic effect on human malignant melanoma A375 cells. PMID:26334881

  8. Humidity-dependent bacterial cells functional morphometry investigations using atomic force microscope.

    PubMed

    Nikiyan, Hike; Vasilchenko, Alexey; Deryabin, Dmitry

    2010-01-01

    The effect of a relative humidity (RH) in a range of 93-65% on morphological and elastic properties of Bacillus cereus and Escherichia coli cells was evaluated using atomic force microscopy. It is shown that gradual dehumidification of bacteria environment has no significant effect on cell dimensional features and considerably decreases them only at 65% RH. The increasing of the bacteria cell wall roughness and elasticity occurs at the same time. Observed changes indicate that morphological properties of B. cereus are rather stable in wide range of relative humidity, whereas E. coli are more sensitive to drying, significantly increasing roughness and stiffness parameters at RH cell wall structure of gram-positive and gram-negative bacterial cells.

  9. Humidity-Dependent Bacterial Cells Functional Morphometry Investigations Using Atomic Force Microscope

    PubMed Central

    Nikiyan, Hike; Vasilchenko, Alexey; Deryabin, Dmitry

    2010-01-01

    The effect of a relative humidity (RH) in a range of 93–65% on morphological and elastic properties of Bacillus cereus and Escherichia coli cells was evaluated using atomic force microscopy. It is shown that gradual dehumidification of bacteria environment has no significant effect on cell dimensional features and considerably decreases them only at 65% RH. The increasing of the bacteria cell wall roughness and elasticity occurs at the same time. Observed changes indicate that morphological properties of B. cereus are rather stable in wide range of relative humidity, whereas E. coli are more sensitive to drying, significantly increasing roughness and stiffness parameters at RH ≤ 84% RH. It is discussed the dependence of the response features on differences in cell wall structure of gram-positive and gram-negative bacterial cells. PMID:20652040

  10. Extraction and quantification of adenosine triphosphate in mammalian tissues and cells.

    PubMed

    Chida, Junji; Kido, Hiroshi

    2014-01-01

    Adenosine 5'-triphosphate (ATP) is the "energy currency" of organisms and plays central roles in bioenergetics, whereby its level is used to evaluate cell viability, proliferation, death, and energy transmission. In this chapter, we describe an improved and efficient method for extraction of ATP from tissues and cells using phenol-based reagents. The chaotropic extraction reagents reported so far co-precipitate ATP with insoluble proteins during extraction and with salts during neutralization. In comparison, the phenol-based reagents extract ATP well without the risks of co-precipitation. The extracted ATP can be quantified by the luciferase assay or high-performance liquid chromatography.

  11. Bone marrow-derived cells participate in stromal remodeling of the lung following acute bacterial pneumonia in mice.

    PubMed

    Serikov, Vladimir B; Mikhaylov, Viatcheslav M; Krasnodembskay, Anna D; Matthay, Michael A

    2008-01-01

    Bone marrow-derived cells (BMDC) have been shown to graft injured tissues, differentiate in specialized cells, and participate in repair. The importance of these processes in acute lung bacterial inflammation and development of fibrosis is unknown. The goal of this study was to investigate the temporal sequence and lineage commitment of BMDC in mouse lungs injured by bacterial pneumonia. We transplanted GFP-tagged BMDC into 5-Gy-irradiated C57BL/6 mice. After 3 months of recovery, mice were subjected to LD(50) intratracheal instillation of live E. coli (controls received saline) which produced pneumonia and subsequent areas of fibrosis. Lungs were investigated by immunohistology for up to 6 months. At the peak of lung inflammation, the predominant influx of BMDC were GFP(+) leukocytes. Postinflammatory foci of lung fibrosis were evident after 1-2 months. The fibrotic foci in lung stroma contained clusters of GFP(+) CD45(+) cells, GFP(+) vimentin-positive cells, and GFP(+) collagen I-positive fibroblasts. GFP(+) endothelial or epithelial cells were not identified. These data suggest that following 5-Gy irradiation and acute bacterial pneumonia, BMDC may temporarily participate in lung postinflammatory repair and stromal remodeling without long-term engraftment as specialized endothelial or epithelial cells.

  12. Interferon-γ-Mediated Natural Killer Cell Activation by an Aqueous Panax ginseng Extract

    PubMed Central

    Takeda, Kazuyoshi; Okumura, Ko

    2015-01-01

    Panax ginseng extracts are used in traditional herbal medicines, particularly in eastern Asia, but their effect on natural killer (NK) cell activity is not completely understood. This study aimed to examine the effects of P. ginseng extracts on the cytotoxic activity of NK cells. We orally administered P. ginseng extracts or ginsenosides to wild-type (WT) C57BL/6 (B6) and BALB/c mice and to B6 mice deficient in either recombination activating gene 2 (RAG-2) or interferon-γ (IFN-γ). We then tested the cytotoxic activity of NK cells (of spleen and liver mononuclear cells) against NK-sensitive YAC-1 cells. Oral administration of P. ginseng aqueous extract augmented the cytotoxicity of NK cells in WT B6 and BALB/c mice and in RAG-2-deficient B6 mice, but not in IFN-γ-deficient B6 mice. This effect was only observed with the aqueous extract of P. ginseng. Interestingly, the ginsenosides Rb1 and Rg1 did not augment NK cell cytotoxicity. These results demonstrated that the aqueous P. ginseng extract augmented NK cell activation in vivo via an IFN-γ-dependent pathway. PMID:26649061

  13. Anticancer Effects of Salvia miltiorrhiza Alcohol Extract on Oral Squamous Carcinoma Cells.

    PubMed

    Wang, Wen-Hung; Hsuan, Kuo-Yu; Chu, Ling-Ya; Lee, Chia-Ying; Tyan, Yu-Chang; Chen, Zong-Shiow; Tsai, Wan-Chi

    2017-01-01

    Researchers have reported significant effects from Danshen ( Salvia miltiorrhiza ) in terms of inhibiting tumor cell proliferation and promoting apoptosis in breast cancer, hepatocellular carcinomas, promyelocytic leukemia, and clear cell ovary carcinomas. Here we report our data indicating that Danshen extracts, especially alcohol extract, significantly inhibited the proliferation of the human oral squamous carcinoma (OSCC) cell lines HSC-3 and OC-2. We also observed that Danshen alcohol extract activated the caspase-3 apoptosis executor by impeding members of the inhibitor of apoptosis (IAP) family, but not by regulating the Bcl-2-triggered mitochondrial pathway in OSCC cells. Our data also indicate that the extract exerted promising effects in vivo, with HSC-3 tumor xenograft growth being suppressed by 40% and 69% following treatment with Danshen alcohol extract at 50 and 100 mg/kg, respectively, for 34 days. Combined, our results indicate appreciable anticancer activity and significant potential for Danshen alcohol extract as a natural antioxidant and herbal human oral cancer chemopreventive drug.

  14. An X-ray Absorption Fine Structure study of Au adsorbed onto the non-metabolizing cells of two soil bacterial species

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, Zhen; Kenney, Janice P.L.; Fein, Jeremy B.

    2015-02-09

    Gram-positive and Gram-negative bacterial cells can remove Au from Au(III)-chloride solutions, and the extent of removal is strongly pH dependent. In order to determine the removal mechanisms, X-ray Absorption Fine Structure (XAFS) spectroscopy experiments were conducted on non-metabolizing biomass of Bacillus subtilis and Pseudomonas putida with fixed Au(III) concentrations over a range of bacterial concentrations and pH values. X-ray Absorption Near Edge Structure (XANES) and Extended X-ray Absorption Fine Structure (EXAFS) data on both bacterial species indicate that more than 90% of the Au atoms on the bacterial cell walls were reduced to Au(I). In contrast to what has beenmore » observed for Au(III) interaction with metabolizing bacterial cells, no Au(0) or Au-Au nearest neighbors were observed in our experimental systems. All of the removed Au was present as adsorbed bacterial surface complexes. For both species, the XAFS data suggest that although Au-chloride-hydroxide aqueous complexes dominate the speciation of Au in solution, Au on the bacterial cell wall is characterized predominantly by binding of Au atoms to sulfhydryl functional groups and amine and/or carboxyl functional groups, and the relative importance of the sulfhydryl groups increases with increasing pH and with decreasing Au loading. The XAFS data for both microorganism species suggest that adsorption is the first step in the formation of Au nanoparticles by bacteria, and the results enhance our ability to account for the behavior of Au in bacteria-bearing geologic systems.« less

  15. An X-ray Absorption Fine Structure study of Au adsorbed onto the non-metabolizing cells of two soil bacterial species

    NASA Astrophysics Data System (ADS)

    Song, Zhen; Kenney, Janice P. L.; Fein, Jeremy B.; Bunker, Bruce A.

    2012-06-01

    Gram-positive and Gram-negative bacterial cells can remove Au from Au(III)-chloride solutions, and the extent of removal is strongly pH dependent. In order to determine the removal mechanisms, X-ray Absorption Fine Structure (XAFS) spectroscopy experiments were conducted on non-metabolizing biomass of Bacillus subtilis and Pseudomonas putida with fixed Au(III) concentrations over a range of bacterial concentrations and pH values. X-ray Absorption Near Edge Structure (XANES) and Extended X-ray Absorption Fine Structure (EXAFS) data on both bacterial species indicate that more than 90% of the Au atoms on the bacterial cell walls were reduced to Au(I). In contrast to what has been observed for Au(III) interaction with metabolizing bacterial cells, no Au(0) or Au-Au nearest neighbors were observed in our experimental systems. All of the removed Au was present as adsorbed bacterial surface complexes. For both species, the XAFS data suggest that although Au-chloride-hydroxide aqueous complexes dominate the speciation of Au in solution, Au on the bacterial cell wall is characterized predominantly by binding of Au atoms to sulfhydryl functional groups and amine and/or carboxyl functional groups, and the relative importance of the sulfhydryl groups increases with increasing pH and with decreasing Au loading. The XAFS data for both microorganism species suggest that adsorption is the first step in the formation of Au nanoparticles by bacteria, and the results enhance our ability to account for the behavior of Au in bacteria-bearing geologic systems.

  16. Effect of Micro- and Nanoscale Topography on the Adhesion of Bacterial Cells to Solid Surfaces

    PubMed Central

    Hsu, Lillian C.; Fang, Jean; Borca-Tasciuc, Diana A.; Worobo, Randy W.

    2013-01-01

    Attachment and biofilm formation by bacterial pathogens on surfaces in natural, industrial, and hospital settings lead to infections and illnesses and even death. Minimizing bacterial attachment to surfaces using controlled topography could reduce the spreading of pathogens and, thus, the incidence of illnesses and subsequent human and financial losses. In this context, the attachment of key microorganisms, including Escherichia coli, Listeria innocua, and Pseudomonas fluorescens, to silica and alumina surfaces with micron and nanoscale topography was investigated. The results suggest that orientation of the attached cells occurs preferentially such as to maximize their contact area with the surface. Moreover, the bacterial cells exhibited different morphologies, including different number and size of cellular appendages, depending on the topographical details of the surface to which they attached. This suggests that bacteria may utilize different mechanisms of attachment in response to surface topography. These results are important for the design of novel microbe-repellant materials. PMID:23416997

  17. An experimental study of Au removal from solution by non-metabolizing bacterial cells and their exudates

    NASA Astrophysics Data System (ADS)

    Kenney, Janice P. L.; Song, Zhen; Bunker, Bruce A.; Fein, Jeremy B.

    2012-06-01

    In this study, we examine the initial interactions between aqueous Au(III)-hydroxide-chloride aqueous complexes and bacteria by measuring the effects of non-metabolizing cells on the speciation and distribution of Au. We conducted batch Au(III) removal experiments, measuring the kinetics and pH dependence of Au removal, and tracking valence state transformations and binding environments using XANES spectroscopy. These experiments were conducted using non-metabolizing cells of Bacillus subtilis or Pseudomonas putida suspended in a 5 ppm Au(III)-(hydroxide)-chloride starting solution of 0.1 M NaClO4 to buffer ionic strength. Both bacterial species removed greater than 85% of the Au from solution after 2 h of exposure time below approximately pH 5. Above pH 5, the extent of Au removed from solution decreased with increasing pH, with less than approximately 10% removal of Au from solution above pH 7.5. Kinetics experiments indicated that the Au removal with both bacterial species was rapid at pH 3, and slowed with increasing pH. Reversibility experiments demonstrated that (1) once the Au was removed from solution, adjusting 35 the pH alone did not remobilize the Au into solution and (2) the presence of cysteine in solution in the reversibility experiments caused Au to desorb, suggesting that the Au was not internalized within the bacterial cells. Our results suggest that Au removal occurs as a two-step pH-dependent adsorption reduction process. The speciation of the aqueous Au and the bacterial surface appears to control the rate of Au removal from solution. Under low pH conditions, the cell walls are only weakly negatively charged and aqueous Au complexes adsorb readily and rapidly. With increasing pH, the cell wall becomes more negatively charged, slowing adsorption significantly. The XANES data demonstrate that the reduction of Au(III) by bacterial exudates is slower and less extensive than the reduction observed in the bacteria-bearing systems, and we conclude that

  18. Bacterial interactions in dental biofilm development.

    PubMed

    Hojo, K; Nagaoka, S; Ohshima, T; Maeda, N

    2009-11-01

    Recent analyses with ribosomal RNA-based technologies have revealed the diversity of bacterial populations within dental biofilms, and have highlighted their important contributions to oral health and disease. Dental biofilms are exceedingly complex and multispecies ecosystems, where oral bacteria interact cooperatively or competitively with other members. Bacterial interactions that influence dental biofilm communities include various different mechanisms. During the early stage of biofilm formation, it is known that planktonic bacterial cells directly attach to surfaces of the oral cavity or indirectly bind to other bacterial cells that have already colonized. Adherence through co-aggregation may be critical for the temporary retention of bacteria on dental surfaces, and may facilitate eventual bacterial colonization. It is likely that metabolic communication, genetic exchange, production of inhibitory factors (e.g., bacteriocins, hydrogen peroxide, etc.), and quorum-sensing are pivotal regulatory factors that determine the bacterial composition and/or metabolism. Since each bacterium can easily access a neighboring bacterial cell and its metabolites, genetic exchanges and metabolic communication may occur frequently in dental biofilms. Quorum-sensing is defined as gene regulation in response to cell density, which influences various functions, e.g., virulence and bacteriocin production. In this review, we discuss these important interactions among oral bacteria within the dental biofilm communities.

  19. Ethanolic extract of Ferula gummosa is cytotoxic against cancer cells by inducing apoptosis and cell cycle arrest.

    PubMed

    Gudarzi, Hoda; Salimi, Mona; Irian, Saeed; Amanzadeh, Amir; Mostafapour Kandelous, Hirsa; Azadmanesh, Keyhan; Salimi, Misha

    2015-01-01

    Ferula gummosa Boiss. has medicinal applications in treating a wide range of diseases including cancer. The objective of this study was to evaluate the antiproliferative activities of the seed and gum extracts of F. gummosa as well as to study the effect of the potent extract on the induction of apoptosis and cell cycle arrest. Our results demonstrated that the ethanolic extract had the lowest IC50 value at 72 h (0.001 ± 1.2 mg/mL) in BHY cells. Moreover, flowcytometry and annexin-V analysis revealed that the ethanolic extract induced apoptosis and cell-cycle arrest in BHY cells at G1/S phase. In addition, colorimetric methods exhibited the highest amount of total phenolics and flavonoids in the aqueous and gum extracts (0.12 ± 0.037, 0.01 ± 2.51 mg/g of dry powder). Generally, the results obtained indicate that F. gummosa ethanol extract may contain effective compounds which can be used as a chemotherapeutic agent.

  20. Fruit extract from a Sechium edule hybrid induce apoptosis in leukaemic cell lines but not in normal cells.

    PubMed

    Aguiñiga-Sánchez, Itzen; Soto-Hernández, Marcos; Cadena-Iñiguez, Jorge; Ruíz-Posadas, Lucero del Mar; Cadena-Zamudio, Jorge David; González-Ugarte, Ana Karen; Steider, Benny Weiss; Santiago-Osorio, Edelmiro

    2015-01-01

    The antiproliferative potential of a crude extract from the chayote hybrid H-837-07-GISeM® and its potential for apoptosis induction were assessed in leukaemic cell lines and normal mouse bone marrow mononuclear cells (BM-MNCs). The extract strongly inhibited the proliferation of the P388, J774, and WEHI-3 cell lines (with an IC50 below 1.3 μg·mL(-1)), reduced cell viability, and induced apoptotic body production, phosphatidylserine translocation, and DNA fragmentation. However, the extract had no effect on BM-MNCs. We postulate that these properties make the extract a good candidate for an anti-tumour agent for clinical use.

  1. The Effects of Mineral Matrices and Extraction Method on Quantification of Bacterial Phospholipid Fatty Acids.

    NASA Astrophysics Data System (ADS)

    Ford, S. E.; McKelvie, J. R. M.; Sherwood Lollar, B.; Slater, G. F.

    2017-12-01

    Understanding the distribution, abundances and metabolic activities of microbial life in the subsurface is fundamental to our understanding of biogeochemical cycling on Earth. Given that the most likely environments for life to still exist, or be preserved, on other planets and moons in the solar system are in the subsurface, a better understanding of subsurface life on Earth is also a key factor in our ability to search for life beyond the Earth. While we have made progress in investigating life in the continental subsurface in recent years, significant challenges remain. In particular, the low biomass abundance, heterogeneous distribution of biomass, and the potential for matrix effects during sampling and analysis mean that further development and optimization of methods to study subsurface life are needed. Phospholipid fatty acids (PLFA) are a useful biosignature of extant, viable microbial communities that are applied in a wide range of environments. Here we test the sensitivity of two methods of PLFA analysis (modified Bligh and Dyer, Microwave Assisted Extraction) to detect known numbers of cells doped into two distinct matrices (bentonite, crushed granite). Samples were prepared by adding known cellular concentrations of Basciullus subtilis subtilis (ATCC 6051) to crushed bentonite, or to granite, respectively, to create dilution series. Samples were extracted for PLFA using a dichloromethane-methanol modified Bligh & Dyer (mBD) or Microwave Assisted Extraction (MAE) and then quantified using GC - MS and GC - FID. Pure culture extractions yielded a linearly decreasing trend to the level of the process blank. The ratio of cells to PLFA for this trend was 2.4x104 +/- 1.9x104 cells/pmol at the lower end of the generic range of 2 to 6 x105 cells/pmol. For bentonite the PLFA results were lower than for the pure culture. PLFA results for bentonite followed a linear trend at higher concentrations, but departed from this at low concentrations indicating the

  2. Large scale extraction of poly(3-hydroxybutyrate) from Ralstonia eutropha H16 using sodium hypochlorite

    PubMed Central

    2012-01-01

    Isolation of polyhydroxyalkanoates (PHAs) from bacterial cell matter is a critical step in order to achieve a profitable production of the polymer. Therefore, an extraction method must lead to a high recovery of a pure product at low costs. This study presents a simplified method for large scale poly(3-hydroxybutyrate), poly(3HB), extraction using sodium hypochlorite. Poly(3HB) was extracted from cells of Ralstonia eutropha H16 at almost 96% purity. At different extraction volumes, a maximum recovery rate of 91.32% was obtained. At the largest extraction volume of 50 L, poly(3HB) with an average purity of 93.32% ± 4.62% was extracted with a maximum recovery of 87.03% of the initial poly(3HB) content. This process is easy to handle and requires less efforts than previously described processes. PMID:23164136

  3. Heat Induction of Prophage φ105 in Bacillus subtilis: Replication of the Bacterial and Bacteriophage Genomes

    PubMed Central

    Armentrout, Richard W.; Rutberg, Lars

    1971-01-01

    A temperature-inducible mutant of temperate Bacillus bacteriophage φ105 was isolated and used to lysogenize a thymine-requiring strain of Bacillus subtilis 168. Synthesis of phage and bacterial deoxyribonucleic acid (DNA) was studied by sucrose gradient centrifugation and density equilibrium centrifugation of DNA extracted from induced bacteria. The distribution of DNA in the gradients was measured by differential isotope and density labeling of DNA before and after induction and by measuring the biological activity of the DNA in genetic transformation, in rescue of phage markers, and in infectivity assays. At early times after induction, but after at least one round of replication, phage DNA remains associated with high-molecular-weight DNA, whereas, later in the infection, phage DNA is associated with material of decreasing molecular weight. Genetic linkage between phage and bacterial markers can be demonstrated in replicated DNA from induced cells. Prophage induction is shown to affect replication of the bacterial chromosome. The overall rate of replication of prelabeled bacterial DNA is identical in temperature-induced lysogenics and in “mock-induced” wild-type φ105 lysogenics. The rate of replication of the bacterial marker phe-1 (and also of nia-38), located close to the prophage in direction of the terminus of the bacterial chromosome, is increased in induced cells, however, relative to other bacterial markers tested. In temperature-inducible lysogenics, where the prophage also carries a ts mutation which blocks phage DNA synthesis, replication of both phage and bacterial DNA stops after about 50% of the phage DNA has replicated once. The results of these experiments suggest that the prophage is not initially excised in induced cells, but rather it is specifically replicated in situ together with adjacent parts of the bacterial chromosome. PMID:5002012

  4. Antioxidant and genoprotective effects of spent coffee extracts in human cells.

    PubMed

    Bravo, Jimena; Arbillaga, Leire; de Peña, M Paz; Cid, Concepcion

    2013-10-01

    Spent coffee has been shown as a good source of hydrophilic antioxidant compounds. The ability of two spent coffee extracts rich in caffeoylquinic acids, mainly dicaffeoylquinic acids, and caffeine (Arabica filter and Robusta espresso) to protect against oxidation and DNA damage in human cells (HeLa) was evaluated at short (2 h) and long (24 h) exposure times. Cell viability (MTT) was not affected by spent coffee extracts (>80%) up to 1000 μg/mL after 2 h. Both spent coffee extracts significantly reduced the increase of ROS level and DNA strand breaks (29-73% protection by comet assay) induced by H₂O₂. Pretreatment of cells with robusta spent coffee extract also decreased Ro photosensitizer-induced oxidative DNA damage after 24 h exposure. The higher effectiveness of Robusta spent coffee extract, with less caffeoylquinic acids and melanoidins, might be due to other antioxidant compounds, such as caffeine and other Maillard reaction products. This work evidences the potential antioxidant and genoprotective properties of spent coffee in human cells. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Dissecting Bacterial Cell Wall Entry and Signaling in Eukaryotic Cells: an Actin-Dependent Pathway Parallels Platelet-Activating Factor Receptor-Mediated Endocytosis.

    PubMed

    Loh, Lip Nam; Gao, Geli; Tuomanen, Elaine I

    2017-01-03

    The Gram-positive bacterial cell wall (CW) peptidoglycan-teichoic acid complex is released into the host environment during bacterial metabolism or death. It is a highly inflammatory Toll-like receptor 2 (TLR2) ligand, and previous in vivo studies have demonstrated its ability to recapitulate pathological features of pneumonia and meningitis. We report that an actin-dependent pathway is involved in the internalization of the CW by epithelial and endothelial cells, in addition to the previously described platelet-activating factor receptor (PAFr)-dependent uptake pathway. Unlike the PAFr-dependent pathway, which is mediated by clathrin and dynamin and does not lead to signaling, the alternative pathway is sensitive to 5-(N-ethyl-N-isopropyl) amiloride (EIPA) and engenders Rac1, Cdc42, and phosphatidylinositol 3-kinase (PI3K) signaling. Upon internalization by this macropinocytosis-like pathway, CW is trafficked to lysosomes. Intracellular CW trafficking is more complex than previously recognized and suggests multiple points of interaction with and without innate immune signaling. Streptococcus pneumoniae is a major human pathogen infecting the respiratory tract and brain. It is an established model organism for understanding how infection injures the host. During infection or bacterial growth, bacteria shed their cell wall (CW) into the host environment and trigger inflammation. A previous study has shown that CW enters and crosses cell barriers by interacting with a receptor on the surfaces of host cells, termed platelet-activating factor receptor (PAFr). In the present study, by using cells that are depleted of PAFr, we identified a second pathway with features of macropinocytosis, which is a receptor-independent fluid uptake mechanism by cells. Each pathway contributes approximately the same amount of cell wall trafficking, but the PAFr pathway is silent, while the new pathway appears to contribute to the host inflammatory response to CW insult. Copyright © 2017

  6. Antibacterial mode of action of the hydroethanolic extract of Leonotis nepetifolia (L.) R. Br. involves bacterial membrane perturbations.

    PubMed

    Oliveira, Darley Maria; Melo, Fernanda Germano; Balogun, Sikiru Olaitan; Flach, Adriana; de Souza, Edineide Cristina Alexandre; de Souza, Gilmar Prado; Rocha, Iolanda do Nascimento Araújo; da Costa, Luiz Antonio Mendonça Alves; Soares, Ilsamar Mendes; da Silva, Larissa Irene; Ascêncio, Sérgio Donizeti; de Oliveira Martins, Domingos Tabajara

    2015-08-22

    Leonotis nepetifolia (L) R. Br., Lamiaceae, a pantropical shrub, popularly known in Brazil as "cordão-de-frade", "rubim", is reportedly used in Brazilian ethnomedicine as well as in different countries in the treatments of ailments such as infections, inflammations, wounds, stomach disorders, among others. To evaluate its potential cytotoxicity and antibacterial mode of action of the hydroethanolic extract of L. nepetifolia (HELn) leaves, including phytochemical analysis. The cytotoxicity of HELn was investigated by Alamar blue assay, using CHO-K1 cells. Antibacterial activity of HELn was tested by broth microdilution methods against a panel of bacteria of clinical interest. The mode of action of L. nepetifolia was studied by targeting bacterial membranes. Phytochemical analysis was performed by determining total secondary metabolites with spectrophotometric assays and HPLC. HELn is not cytotoxic in the in vitro evaluation (IC50>200 μg/mL). It demonstrated a good spectrum of antibacterial activity with major activity against Shigella flexneri, Enterococcus faecalis, Staphylococcus aureus and Bacillus subtilis with MIC=6.25 µg/mL, Helicobacter pylori with MIC of 25 µg/mL and Streptococcus pyogenes with MIC of 50 µg/mL. Its mode of action is associated, at least partly, with changes in the permeability of bacterial membranes, as evidenced by the increased entry of hydrophobic antibiotics in Shigella flexneri and intense efflux of K(+) and nucleotide leakage in E. faecalis and Shigella flexneri. In addition, the presence of phenols, flavonoids and carotenoids, described in the literature to possess antibacterial effects, were detected in the composition of HELn, with high phenol content (11.55%), especially the flavonoids (6.47%). The results indicate that HELn has low cytotoxicity and potent antibacterial activity. It is bacteriostatic in nature, possibly acting at the level of bacterial membranes, especially on the cytoplasmic membrane and outer membrane, thus

  7. Cytotoxic effects of Cochlospermum regium (Mart & Schrank) Pilger aqueous root extract on mammalian cells.

    PubMed

    Ceschini, Livônios; Campos, Elida Geralda

    2006-01-16

    We investigated the effect of Cochlospermum regium (Mart & Schrank) Pilger aqueous root extract on Chinese hamster ovarian (CHO)-K1 cells. The extract significantly decreased proliferation of CHO-K1 cells (EC(50)=1.5mg/mL). Apoptosis induction was analysed by fluorescent microscopy. Cell cultures treated with Cochlospermum regium extract for 4h contained 13.6% apoptotic cells after 24h (investigated by fluorescent DNA-microscopy with acridine orange/ethidium bromide staining). Characteristic chromatin condensation and fragmentation, verified by 4',6-diamidino-2-phenylindole (DAPI) staining, was observed in the cells after treatment with Cochlospermum regium extract. The results confirm the toxicity of Cochlospermum regium root extract to immortal, non-tumorigenic mammalian cells in vitro.

  8. Wound healing potential of adipose tissue stem cell extract.

    PubMed

    Na, You Kyung; Ban, Jae-Jun; Lee, Mijung; Im, Wooseok; Kim, Manho

    2017-03-25

    Adipose tissue stem cells (ATSCs) are considered as a promising source in the field of cell therapy and regenerative medicine. In addition to direct cell replacement using stem cells, intercellular molecule exchange by stem cell secretory factors showed beneficial effects by reducing tissue damage and augmentation of endogenous repair. Delayed cutaneous wound healing is implicated in many conditions such as diabetes, aging, stress and alcohol consumption. However, the effects of cell-free extract of ATSCs (ATSC-Ex) containing secretome on wound healing process have not been investigated. In this study, ATSC-Ex was topically applied on the cutaneous wound and healing speed was examined. As a result, wound closure was much faster in the cell-free extract treated wound than control wound at 4, 6, 8 days after application of ATSC-Ex. Dermal fibroblast proliferation, migration and extracellular matrix (ECM) production are critical aspects of wound healing, and the effects of ATSC-Ex on human dermal fibroblast (HDF) was examined. ATSC-Ex augmented HDF proliferation in a dose-dependent manner and migration ability was enhanced by extract treatment. Representative ECM proteins, collagen type I and matrix metalloproteinase-1, are significantly up-regulated by treatment of ATSC-Ex. Our results suggest that the ATSC-Ex have improving effect of wound healing and can be the potential therapeutic candidate for cutaneous wound healing. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Bacterial host and reporter gene optimization for genetically encoded whole cell biosensors.

    PubMed

    Brutesco, Catherine; Prévéral, Sandra; Escoffier, Camille; Descamps, Elodie C T; Prudent, Elsa; Cayron, Julien; Dumas, Louis; Ricquebourg, Manon; Adryanczyk-Perrier, Géraldine; de Groot, Arjan; Garcia, Daniel; Rodrigue, Agnès; Pignol, David; Ginet, Nicolas

    2017-01-01

    Whole-cell biosensors based on reporter genes allow detection of toxic metals in water with high selectivity and sensitivity under laboratory conditions; nevertheless, their transfer to a commercial inline water analyzer requires specific adaptation and optimization to field conditions as well as economical considerations. We focused here on both the influence of the bacterial host and the choice of the reporter gene by following the responses of global toxicity biosensors based on constitutive bacterial promoters as well as arsenite biosensors based on the arsenite-inducible P ars promoter. We observed important variations of the bioluminescence emission levels in five different Escherichia coli strains harboring two different lux-based biosensors, suggesting that the best host strain has to be empirically selected for each new biosensor under construction. We also investigated the bioluminescence reporter gene system transferred into Deinococcus deserti, an environmental, desiccation- and radiation-tolerant bacterium that would reduce the manufacturing costs of bacterial biosensors for commercial water analyzers and open the field of biodetection in radioactive environments. We thus successfully obtained a cell survival biosensor and a metal biosensor able to detect a concentration as low as 100 nM of arsenite in D. deserti. We demonstrated that the arsenite biosensor resisted desiccation and remained functional after 7 days stored in air-dried D. deserti cells. We also report here the use of a new near-infrared (NIR) fluorescent reporter candidate, a bacteriophytochrome from the magnetotactic bacterium Magnetospirillum magneticum AMB-1, which showed a NIR fluorescent signal that remained optimal despite increasing sample turbidity, while in similar conditions, a drastic loss of the lux-based biosensors signal was observed.

  10. The Effect of Sericin from Various Extraction Methods on Cell Viability and Collagen Production

    PubMed Central

    Aramwit, Pornanong; Kanokpanont, Sorada; Nakpheng, Titpawan; Srichana, Teerapol

    2010-01-01

    Silk sericin (SS) can accelerate cell proliferation and attachment; however, SS can be extracted by various methods, which result in SS exhibiting different physical and biological properties. We found that SS produced from various extraction methods has different molecular weights, zeta potential, particle size and amino acid content. The MTT assay indicated that SS from all extraction methods had no toxicity to mouse fibroblast cells at concentrations up to 40 μg/mL after 24 h incubation, but SS obtained from some extraction methods can be toxic at higher concentrations. Heat-degraded SS was the least toxic to cells and activated the highest collagen production, while urea-extracted SS showed the lowest cell viability and collagen production. SS from urea extraction was severely harmful to cells at concentrations higher than 100 μg/mL. SS from all extraction methods could still promote collagen production in a concentration-dependent manner, even at high concentrations that are toxic to cells. PMID:20559510

  11. Interaction of Uranium with Bacterial Cell Surfaces: Inferences from Phosphatase-Mediated Uranium Precipitation.

    PubMed

    Kulkarni, Sayali; Misra, Chitra Seetharam; Gupta, Alka; Ballal, Anand; Apte, Shree Kumar

    2016-08-15

    Deinococcus radiodurans and Escherichia coli expressing either PhoN, a periplasmic acid phosphatase, or PhoK, an extracellular alkaline phosphatase, were evaluated for uranium (U) bioprecipitation under two specific geochemical conditions (GCs): (i) a carbonate-deficient condition at near-neutral pH (GC1), and (ii) a carbonate-abundant condition at alkaline pH (GC2). Transmission electron microscopy revealed that recombinant cells expressing PhoN/PhoK formed cell-associated uranyl phosphate precipitate under GC1, whereas the same cells displayed extracellular precipitation under GC2. These results implied that the cell-bound or extracellular location of the precipitate was governed by the uranyl species prevalent at that particular GC, rather than the location of phosphatase. MINTEQ modeling predicted the formation of predominantly positively charged uranium hydroxide ions under GC1 and negatively charged uranyl carbonate-hydroxide complexes under GC2. Both microbes adsorbed 6- to 10-fold more U under GC1 than under GC2, suggesting that higher biosorption of U to the bacterial cell surface under GC1 may lead to cell-associated U precipitation. In contrast, at alkaline pH and in the presence of excess carbonate under GC2, poor biosorption of negatively charged uranyl carbonate complexes on the cell surface might have resulted in extracellular precipitation. The toxicity of U observed under GC1 being higher than that under GC2 could also be attributed to the preferential adsorption of U on cell surfaces under GC1. This work provides a vivid description of the interaction of U complexes with bacterial cells. The findings have implications for the toxicity of various U species and for developing biological aqueous effluent waste treatment strategies. The present study provides illustrative insights into the interaction of uranium (U) complexes with recombinant bacterial cells overexpressing phosphatases. This work demonstrates the effects of aqueous speciation of U on

  12. Interaction of Uranium with Bacterial Cell Surfaces: Inferences from Phosphatase-Mediated Uranium Precipitation

    PubMed Central

    Kulkarni, Sayali; Misra, Chitra Seetharam; Gupta, Alka; Ballal, Anand

    2016-01-01

    ABSTRACT Deinococcus radiodurans and Escherichia coli expressing either PhoN, a periplasmic acid phosphatase, or PhoK, an extracellular alkaline phosphatase, were evaluated for uranium (U) bioprecipitation under two specific geochemical conditions (GCs): (i) a carbonate-deficient condition at near-neutral pH (GC1), and (ii) a carbonate-abundant condition at alkaline pH (GC2). Transmission electron microscopy revealed that recombinant cells expressing PhoN/PhoK formed cell-associated uranyl phosphate precipitate under GC1, whereas the same cells displayed extracellular precipitation under GC2. These results implied that the cell-bound or extracellular location of the precipitate was governed by the uranyl species prevalent at that particular GC, rather than the location of phosphatase. MINTEQ modeling predicted the formation of predominantly positively charged uranium hydroxide ions under GC1 and negatively charged uranyl carbonate-hydroxide complexes under GC2. Both microbes adsorbed 6- to 10-fold more U under GC1 than under GC2, suggesting that higher biosorption of U to the bacterial cell surface under GC1 may lead to cell-associated U precipitation. In contrast, at alkaline pH and in the presence of excess carbonate under GC2, poor biosorption of negatively charged uranyl carbonate complexes on the cell surface might have resulted in extracellular precipitation. The toxicity of U observed under GC1 being higher than that under GC2 could also be attributed to the preferential adsorption of U on cell surfaces under GC1. This work provides a vivid description of the interaction of U complexes with bacterial cells. The findings have implications for the toxicity of various U species and for developing biological aqueous effluent waste treatment strategies. IMPORTANCE The present study provides illustrative insights into the interaction of uranium (U) complexes with recombinant bacterial cells overexpressing phosphatases. This work demonstrates the effects of aqueous

  13. Improved Proteomic Analysis Following Trichloroacetic Acid Extraction of Bacillus anthracis Spore Proteins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaiser, Brooke LD; Wunschel, David S.; Sydor, Michael A.

    2015-08-07

    Proteomic analysis of bacterial samples provides valuable information about cellular responses and functions under different environmental pressures. Proteomic analysis is dependent upon efficient extraction of proteins from bacterial samples without introducing bias toward extraction of particular protein classes. While no single method can recover 100% of the bacterial proteins, selected protocols can improve overall protein isolation, peptide recovery, or enrich for certain classes of proteins. The method presented here is technically simple and does not require specialized equipment such as a mechanical disrupter. Our data reveal that for particularly challenging samples, such as B. anthracis Sterne spores, trichloroacetic acid extractionmore » improved the number of proteins identified within a sample compared to bead beating (714 vs 660, respectively). Further, TCA extraction enriched for 103 known spore specific proteins whereas bead beating resulted in 49 unique proteins. Analysis of C. botulinum samples grown to 5 days, composed of vegetative biomass and spores, showed a similar trend with improved protein yields and identification using our method compared to bead beating. Interestingly, easily lysed samples, such as B. anthracis vegetative cells, were equally as effectively processed via TCA and bead beating, but TCA extraction remains the easiest and most cost effective option. As with all assays, supplemental methods such as implementation of an alternative preparation method may provide additional insight to the protein biology of the bacteria being studied.« less

  14. Direct reprogramming of human bone marrow stromal cells into functional renal cells using cell-free extracts.

    PubMed

    Papadimou, Evangelia; Morigi, Marina; Iatropoulos, Paraskevas; Xinaris, Christodoulos; Tomasoni, Susanna; Benedetti, Valentina; Longaretti, Lorena; Rota, Cinzia; Todeschini, Marta; Rizzo, Paola; Introna, Martino; Grazia de Simoni, Maria; Remuzzi, Giuseppe; Goligorsky, Michael S; Benigni, Ariela

    2015-04-14

    The application of cell-based therapies in regenerative medicine is gaining recognition. Here, we show that human bone marrow stromal cells (BMSCs), also known as bone-marrow-derived mesenchymal cells, can be reprogrammed into renal proximal tubular-like epithelial cells using cell-free extracts. Streptolysin-O-permeabilized BMSCs exposed to HK2-cell extracts underwent morphological changes-formation of "domes" and tubule-like structures-and acquired epithelial functional properties such as transepithelial-resistance, albumin-binding, and uptake and specific markers E-cadherin and aquaporin-1. Transmission electron microscopy revealed the presence of brush border microvilli and tight intercellular contacts. RNA sequencing showed tubular epithelial transcript abundance and revealed the upregulation of components of the EGFR pathway. Reprogrammed BMSCs integrated into self-forming kidney tissue and formed tubular structures. Reprogrammed BMSCs infused in immunodeficient mice with cisplatin-induced acute kidney injury engrafted into proximal tubuli, reduced renal injury and improved function. Thus, reprogrammed BMSCs are a promising cell resource for future cell therapy. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  15. Impact of ethanolic lamiaceae extracts on herpesvirus infectivity in cell culture.

    PubMed

    Reichling, Jürgen; Nolkemper, Silke; Stintzing, Florian C; Schnitzler, Paul

    2008-12-01

    Extracts of medicinal plants are increasingly of interest as novel drugs for antimicrobial and antiviral agents, since microorganisms might develop resistance to commonly used antimicrobial or antiviral agents. Ethanolic extracts from Lamiaceae plants prunella, peppermint, rosemary and thyme were phytochemically characterised. The inhibitory activity of four 20% ethanolic plant extracts and four 80% ethanolic extracts against herpes simplex virus (HSV) strains was tested in cell culture. Rosmarinic acid, a typical compound in Lamiaceae species, was identified in the extracts except for thyme 20% ethanolic extract. In addition, some other phenolic compounds such as apigenin- and luteolin-derivatives were identified in different amounts. All extracts exhibited high and concentration-dependent levels of antiviral activity against free acyclovir-sensitive and acyclovir-resistant HSV-1 strains with 50% inhibitory concentrations of 0.05-0.82 microg/ml. Mechanistically, exposure of free virions as well as host cells to prunella and peppermint 80% ethanolic extracts at maximum non-cytotoxic concentrations prior to infection reduced plaque formation drastically. Thus, both extracts revealed a dual mode of action similar to aqueous lemon balm extracts. Since infectivity of acyclovir-susceptible and acyclovir-resistant HSV strains was significantly reduced with Lamiaceae extracts, the results obtained indicate that ethanolic plant extracts affected herpesvirus prior to and during adsorption and in a different way than acyclovir. Based on its dual mode of action, e.g. antiviral effect against free virions and blocking virus attachment to host cells, prunella and peppermint 80% ethanolic extracts are promising antiviral agents in recurrent herpes labialis for topical therapeutic applications. 2008 S. Karger AG, Basel.

  16. BT-benzo-29 inhibits bacterial cell proliferation by perturbing FtsZ assembly.

    PubMed

    Ray, Shashikant; Jindal, Bhavya; Kunal, Kishore; Surolia, Avadhesha; Panda, Dulal

    2015-10-01

    We have identified a potent antibacterial agent N-(4-sec-butylphenyl)-2-(thiophen-2-yl)-1H-benzo[d]imidazole-4-carboxamide (BT-benzo-29) from a library of benzimidazole derivatives that stalled bacterial division by inhibiting FtsZ assembly. A short (5 min) exposure of BT-benzo-29 disassembled the cytokinetic Z-ring in Bacillus subtilis cells without affecting the cell length and nucleoids. BT-benzo-29 also perturbed the localization of early and late division proteins such as FtsA, ZapA and SepF at the mid-cell. Further, BT-benzo-29 bound to FtsZ with a dissociation constant of 24 ± 3 μm and inhibited the assembly and GTPase activity of purified FtsZ. A docking analysis suggested that BT-benzo-29 may bind to FtsZ at the C-terminal domain near the T7 loop. BT-benzo-29 displayed significantly weaker inhibitory effects on the assembly and GTPase activity of two mutants (L272A and V275A) of FtsZ supporting the prediction of the docking analysis. Further, BT-benzo-29 did not appear to inhibit DNA duplication and nucleoid segregation and it did not perturb the membrane potential of B. subtilis cells. The results suggested that BT-benzo-29 exerts its potent antibacterial activity by inhibiting FtsZ assembly. Interestingly, BT-benzo-29 did not affect the membrane integrity of mammalian red blood cells. BT-benzo-29 bound to tubulin with a much weaker affinity than FtsZ and exerted significantly weaker effects on mammalian cells than on the bacterial cells indicating that the compound may have a strong antibacterial potential. © 2015 FEBS.

  17. Adsorption and mineralization of REE-lanthanum onto bacterial cell surface.

    PubMed

    Cheng, Yangjian; Zhang, Li; Bian, Xiaojing; Zuo, Hongyang; Dong, Hailiang

    2017-07-11

    A large number of rare earth element mining and application resulted in a series of problems of soil and water pollution. Environmental remediation of these REE-contaminated sites has become a top priority. This paper explores the use of Bacillus licheniformis to adsorb lanthanum and subsequent mineralization process in contaminated water. The maximum adsorption capacity of lanthanum on bacteria was 113.98 mg/g (dry weight) biomass. X-ray diffraction (XRD) and transmission electron microscopy (TEM) data indicated that adsorbed lanthanum on bacterial cell surface occurred in an amorphous form at the initial stage. Scanning electron microscopy with X-ray energy-dispersive spectroscopy (SEM/EDS) results indicated that lanthanum adsorption was correlated with phosphate. The amorphous material was converted into scorpion-like monazite (LaPO 4 nanoparticles) in a month. The above results provide a method of using bacterial surface as adsorption and nucleation sites to treat REE-contaminated water.

  18. Anaerobic Aryl Reductive Dehalogenation of Halobenzoates by Cell Extracts of “Desulfomonile tiedjei”

    PubMed Central

    DeWeerd, Kim A.; Suflita, Joseph M.

    1990-01-01

    We studied the transformation of halogenated benzoates by cell extracts of a dehalogenating anaerobe, “Desulfomonile tiedjei.” We found that cell extracts possessed aryl reductive dehalogenation activity. The activity was heat labile and dependent on the addition of reduced methyl viologen, but not on that of reduced NAD, NADP, flavin mononucleotide, flavin adenine dinucleotide, desulfoviridin, cytochrome c3, or benzyl viologen. Dehalogenation activity in extracts was stimulated by formate, CO, or H2, but not by pyruvate plus coenzyme A or by dithionite. The pH and temperature optima for aryl dehalogenation were 8.2 and 35°C, respectively. The rate of dehalogenation was proportional to the amount of protein in the assay mixture. The substrate specificity of aryl dehalogenation activity for various aromatic compounds in “D. tiedjei” cell extracts was identical to that of whole cells, except differences were observed in the relative rates of halobenzoate transformation. Dehalogenation was 10-fold greater in “D. tiedjei” extracts prepared from cells cultured in the presence of 3-chlorobenzoate, suggesting that the activity was inducible. Aryl reductive dehalogenation in extracts was inhibited by sulfite, sulfide, and thiosulfate, but not sulfate. Experiments with combinations of substrates suggested that cell extracts dehalogenated 3-iodobenzoate more readily than either 3,5-dichlorobenzoate or 3-chlorobenzoate. Dehalogenation activity was found to be membrane associated. This is the first report characterizing aryl dehalogenation activity in cell extracts of an obligate anaerobe. PMID:16348308

  19. Illumination of growth, division and secretion by metabolic labeling of the bacterial cell surface

    PubMed Central

    Siegrist, M. Sloan; Swarts, Benjamin M.; Fox, Douglas M.; Lim, Shion An; Bertozzi, Carolyn R.

    2015-01-01

    The cell surface is the essential interface between a bacterium and its surroundings. Composed primarily of molecules that are not directly genetically encoded, this highly dynamic structure accommodates the basic cellular processes of growth and division as well as the transport of molecules between the cytoplasm and the extracellular milieu. In this review, we describe aspects of bacterial growth, division and secretion that have recently been uncovered by metabolic labeling of the cell envelope. Metabolite derivatives can be used to label a variety of macromolecules, from proteins to non-genetically-encoded glycans and lipids. The embedded metabolite enables precise tracking in time and space, and the versatility of newer chemoselective detection methods offers the ability to execute multiple experiments concurrently. In addition to reviewing the discoveries enabled by metabolic labeling of the bacterial cell envelope, we also discuss the potential of these techniques for translational applications. Finally, we offer some guidelines for implementing this emerging technology. PMID:25725012

  20. RNA Imaging with Dimeric Broccoli in Live Bacterial and Mammalian Cells

    PubMed Central

    Filonov, Grigory S.

    2016-01-01

    RNA spatial dynamics play a crucial role in cell physiology and thus the ability to monitor RNA localization in live cells can provide insight into important biological problems. This article focuses on imaging RNAs using an “RNA mimic of GFP”. This approach relies on a RNA aptamer, called dimeric Broccoli, which binds to and switches on the fluorescence of DFHBI, a small molecule mimicking the fluorophore in GFP. Dimeric Broccoli is tagged to heterologously expressed RNAs and upon DFHBI binding the fluorescent signal of dimeric Broccoli reports the transcript’s localization in cells. This protocol describes the process of validating the fluorescence of dimeric Broccoli-labeled transcripts in vitro and in cells, flow cytometry analysis to determine overall fluorescence levels in cells, and fluorescence imaging in bacterial and mammalian cells. Overall, the current protocol should be useful for researchers seeking to image high abundance RNAs, such as transcribed off the T7 promoter in bacteria or off Pol III-dependent promoters in mammalian cells. PMID:26995352

  1. Spatial organization of transcription machinery and its segregation from the replisome in fast-growing bacterial cells

    PubMed Central

    Cagliero, Cedric; Zhou, Yan Ning; Jin, Ding Jun

    2014-01-01

    In a fast-growing Escherichia coli cell, most RNA polymerase (RNAP) is allocated to rRNA synthesis forming transcription foci at clusters of rrn operons or bacterial nucleolus, and each of the several nascent nucleoids contains multiple pairs of replication forks. The composition of transcription foci has not been determined. In addition, how the transcription machinery is three-dimensionally organized to promote cell growth in concord with replication machinery in the nucleoid remains essentially unknown. Here, we determine the spatial and functional landscapes of transcription and replication machineries in fast-growing E. coli cells using super-resolution-structured illumination microscopy. Co-images of RNAP and DNA reveal spatial compartmentation and duplication of the transcription foci at the surface of the bacterial chromosome, encompassing multiple nascent nucleoids. Transcription foci cluster with NusA and NusB, which are the rrn anti-termination system and are associated with nascent rRNAs. However, transcription foci tend to separate from SeqA and SSB foci, which track DNA replication forks and/or the replisomes, demonstrating that transcription machinery and replisome are mostly located in different chromosomal territories to maintain harmony between the two major cellular functions in fast-growing cells. Our study suggests that bacterial chromosomes are spatially and functionally organized, analogous to eukaryotes. PMID:25416798

  2. Extraction of copper from an oxidized (lateritic) ore using bacterially catalysed reductive dissolution.

    PubMed

    Nancucheo, Ivan; Grail, Barry M; Hilario, Felipe; du Plessis, Chris; Johnson, D Barrie

    2014-01-01

    An oxidized lateritic ore which contained 0.8 % (by weight) copper was bioleached in pH- and temperature-controlled stirred reactors under acidic reducing conditions using pure and mixed cultures of the acidophilic chemolithotrophic bacterium Acidithiobacillus ferrooxidans. Sulfur was provided as the electron donor for the bacteria, and ferric iron present in goethite (the major ferric iron mineral present in the ore) acted as electron acceptor. Significantly more copper was leached by bacterially catalysed reductive dissolution of the laterite than in aerobic cultures or in sterile anoxic reactors, with up to 78 % of the copper present in the ore being extracted. This included copper that was leached from acid-labile minerals (chiefly copper silicates) and that which was associated with ferric iron minerals in the lateritic ore. In the anaerobic bioreactors, soluble iron in the leach liquors was present as iron (II) and copper as copper (I), but both metals were rapidly oxidized (to iron (III) and copper (II)) when the reactors were aerated. The number of bacteria added to the reactors had a critical role in dictating the rate and yield of copper solubilised from the ore. This work has provided further evidence that reductive bioprocessing, a recently described approach for extracting base metals from oxidized deposits, has the potential to greatly extend the range of metal ores that can be biomined.

  3. Atomic Force Microscopy Measurements of the Mechanical Properties of Cell Walls on Living Bacterial Cells

    NASA Astrophysics Data System (ADS)

    Bailey, Richard; Mullin, Nic; Turner, Robert; Foster, Simon; Hobbs, Jamie

    2014-03-01

    Staphylococcus aureus is a major cause of infection in humans, including the Methicillin resistant strain, MRSA. However, very little is known about the mechanical properties of these cells. Our investigations use AFM to examine live S. aureus cells to quantify mechanical properties. These were explored using force spectroscopy with different trigger forces, allowing the properties to be extracted at different indentation depths. A value for the cell wall stiffness has been extracted, along with a second, higher value which is found upon indenting at higher forces. This higher value drops as the cells are exposed to high salt, sugar and detergent concentrations, implying that this measurement contains a contribution from the internal turgor pressure. We have monitored these properties as the cells progress through the cell cycle. Force maps were taken over the cells at different stages of the growth process to identify changes in the mechanics throughout the progression of growth and division. The effect of Oxacillin has also been studied, to better understand its mechanism of action. Finally mutant strains of S. aureus and a second species Bacillus subtilis have been used to link the mechanical properties of the cell walls with the chain lengths and substructures involved.

  4. Flow cytometric bacterial cell counts challenge conventional heterotrophic plate counts for routine microbiological drinking water monitoring.

    PubMed

    Van Nevel, S; Koetzsch, S; Proctor, C R; Besmer, M D; Prest, E I; Vrouwenvelder, J S; Knezev, A; Boon, N; Hammes, F

    2017-04-15

    Drinking water utilities and researchers continue to rely on the century-old heterotrophic plate counts (HPC) method for routine assessment of general microbiological water quality. Bacterial cell counting with flow cytometry (FCM) is one of a number of alternative methods that challenge this status quo and provide an opportunity for improved water quality monitoring. After more than a decade of application in drinking water research, FCM methodology is optimised and established for routine application, supported by a considerable amount of data from multiple full-scale studies. Bacterial cell concentrations obtained by FCM enable quantification of the entire bacterial community instead of the minute fraction of cultivable bacteria detected with HPC (typically < 1% of all bacteria). FCM measurements are reproducible with relative standard deviations below 3% and can be available within 15 min of samples arriving in the laboratory. High throughput sample processing and complete automation are feasible and FCM analysis is arguably less expensive than HPC when measuring more than 15 water samples per day, depending on the laboratory and selected staining procedure(s). Moreover, many studies have shown FCM total (TCC) and intact (ICC) cell concentrations to be reliable and robust process variables, responsive to changes in the bacterial abundance and relevant for characterising and monitoring drinking water treatment and distribution systems. The purpose of this critical review is to initiate a constructive discussion on whether FCM could replace HPC in routine water quality monitoring. We argue that FCM provides a faster, more descriptive and more representative quantification of bacterial abundance in drinking water. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Inhibition of Vascular Smooth Muscle Cell Proliferation by Gentiana lutea Root Extracts

    PubMed Central

    Kesavan, Rushendhiran; Potunuru, Uma Rani; Nastasijević, Branislav; T, Avaneesh; Joksić, Gordana; Dixit, Madhulika

    2013-01-01

    Gentiana lutea belonging to the Gentianaceae family of flowering plants are routinely used in traditional Serbian medicine for their beneficial gastro-intestinal and anti-inflammatory properties. The aim of the study was to determine whether aqueous root extracts of Gentiana lutea consisting of gentiopicroside, gentisin, bellidifolin-8-O-glucoside, demethylbellidifolin-8-O-glucoside, isovitexin, swertiamarin and amarogentin prevents proliferation of aortic smooth muscle cells in response to PDGF-BB. Cell proliferation and cell cycle analysis were performed based on alamar blue assay and propidium iodide labeling respectively. In primary cultures of rat aortic smooth muscle cells (RASMCs), PDGF-BB (20 ng/ml) induced a two-fold increase in cell proliferation which was significantly blocked by the root extract (1 mg/ml). The root extract also prevented the S-phase entry of synchronized cells in response to PDGF. Furthermore, PDGF-BB induced ERK1/2 activation and consequent increase in cellular nitric oxide (NO) levels were also blocked by the extract. These effects of extract were due to blockade of PDGF-BB induced expression of iNOS, cyclin D1 and proliferating cell nuclear antigen (PCNA). Docking analysis of the extract components on MEK1, the upstream ERK1/2 activating kinase using AutoDock4, indicated a likely binding of isovitexin to the inhibitor binding site of MEK1. Experiments performed with purified isovitexin demonstrated that it successfully blocks PDGF-induced ERK1/2 activation and proliferation of RASMCs in cell culture. Thus, Gentiana lutea can provide novel candidates for prevention and treatment of atherosclerosis. PMID:23637826

  6. Inhibition of vascular smooth muscle cell proliferation by Gentiana lutea root extracts.

    PubMed

    Kesavan, Rushendhiran; Potunuru, Uma Rani; Nastasijević, Branislav; T, Avaneesh; Joksić, Gordana; Dixit, Madhulika

    2013-01-01

    Gentiana lutea belonging to the Gentianaceae family of flowering plants are routinely used in traditional Serbian medicine for their beneficial gastro-intestinal and anti-inflammatory properties. The aim of the study was to determine whether aqueous root extracts of Gentiana lutea consisting of gentiopicroside, gentisin, bellidifolin-8-O-glucoside, demethylbellidifolin-8-O-glucoside, isovitexin, swertiamarin and amarogentin prevents proliferation of aortic smooth muscle cells in response to PDGF-BB. Cell proliferation and cell cycle analysis were performed based on alamar blue assay and propidium iodide labeling respectively. In primary cultures of rat aortic smooth muscle cells (RASMCs), PDGF-BB (20 ng/ml) induced a two-fold increase in cell proliferation which was significantly blocked by the root extract (1 mg/ml). The root extract also prevented the S-phase entry of synchronized cells in response to PDGF. Furthermore, PDGF-BB induced ERK1/2 activation and consequent increase in cellular nitric oxide (NO) levels were also blocked by the extract. These effects of extract were due to blockade of PDGF-BB induced expression of iNOS, cyclin D1 and proliferating cell nuclear antigen (PCNA). Docking analysis of the extract components on MEK1, the upstream ERK1/2 activating kinase using AutoDock4, indicated a likely binding of isovitexin to the inhibitor binding site of MEK1. Experiments performed with purified isovitexin demonstrated that it successfully blocks PDGF-induced ERK1/2 activation and proliferation of RASMCs in cell culture. Thus, Gentiana lutea can provide novel candidates for prevention and treatment of atherosclerosis.

  7. Anticancer Effect of Ginger Extract against Pancreatic Cancer Cells Mainly through Reactive Oxygen Species-Mediated Autotic Cell Death

    PubMed Central

    Akimoto, Miho; Iizuka, Mari; Kanematsu, Rie; Yoshida, Masato; Takenaga, Keizo

    2015-01-01

    The extract of ginger (Zingiber officinale Roscoe) and its major pungent components, [6]-shogaol and [6]-gingerol, have been shown to have an anti-proliferative effect on several tumor cell lines. However, the anticancer activity of the ginger extract in pancreatic cancer is poorly understood. Here, we demonstrate that the ethanol-extracted materials of ginger suppressed cell cycle progression and consequently induced the death of human pancreatic cancer cell lines, including Panc-1 cells. The underlying mechanism entailed autosis, a recently characterized form of cell death, but not apoptosis or necroptosis. The extract markedly increased the LC3-II/LC3-I ratio, decreased SQSTM1/p62 protein, and enhanced vacuolization of the cytoplasm in Panc-1 cells. It activated AMPK, a positive regulator of autophagy, and inhibited mTOR, a negative autophagic regulator. The autophagy inhibitors 3-methyladenine and chloroquine partially prevented cell death. Morphologically, however, focal membrane rupture, nuclear shrinkage, focal swelling of the perinuclear space and electron dense mitochondria, which are unique morphological features of autosis, were observed. The extract enhanced reactive oxygen species (ROS) generation, and the antioxidant N-acetylcystein attenuated cell death. Our study revealed that daily intraperitoneal administration of the extract significantly prolonged survival (P = 0.0069) in a peritoneal dissemination model and suppressed tumor growth in an orthotopic model of pancreatic cancer (P < 0.01) without serious adverse effects. Although [6]-shogaol but not [6]-gingerol showed similar effects, chromatographic analyses suggested the presence of other constituent(s) as active substances. Together, these results show that ginger extract has potent anticancer activity against pancreatic cancer cells by inducing ROS-mediated autosis and warrants further investigation in order to develop an efficacious candidate drug. PMID:25961833

  8. Extraction of Blebs in Human Embryonic Stem Cell Videos.

    PubMed

    Guan, Benjamin X; Bhanu, Bir; Talbot, Prue; Weng, Nikki Jo-Hao

    2016-01-01

    Blebbing is an important biological indicator in determining the health of human embryonic stem cells (hESC). Especially, areas of a bleb sequence in a video are often used to distinguish two cell blebbing behaviors in hESC: dynamic and apoptotic blebbings. This paper analyzes various segmentation methods for bleb extraction in hESC videos and introduces a bio-inspired score function to improve the performance in bleb extraction. Full bleb formation consists of bleb expansion and retraction. Blebs change their size and image properties dynamically in both processes and between frames. Therefore, adaptive parameters are needed for each segmentation method. A score function derived from the change of bleb area and orientation between consecutive frames is proposed which provides adaptive parameters for bleb extraction in videos. In comparison to manual analysis, the proposed method provides an automated fast and accurate approach for bleb sequence extraction.

  9. Bacterial Signaling Nucleotides Inhibit Yeast Cell Growth by Impacting Mitochondrial and Other Specifically Eukaryotic Functions

    PubMed Central

    Vergnano, Marta; Wan, Chris

    2017-01-01

    ABSTRACT We have engineered Saccharomyces cerevisiae to inducibly synthesize the prokaryotic signaling nucleotides cyclic di-GMP (cdiGMP), cdiAMP, and ppGpp in order to characterize the range of effects these nucleotides exert on eukaryotic cell function during bacterial pathogenesis. Synthetic genetic array (SGA) and transcriptome analyses indicated that, while these compounds elicit some common reactions in yeast, there are also complex and distinctive responses to each of the three nucleotides. All three are capable of inhibiting eukaryotic cell growth, with the guanine nucleotides exhibiting stronger effects than cdiAMP. Mutations compromising mitochondrial function and chromatin remodeling show negative epistatic interactions with all three nucleotides. In contrast, certain mutations that cause defects in chromatin modification and ribosomal protein function show positive epistasis, alleviating growth inhibition by at least two of the three nucleotides. Uniquely, cdiGMP is lethal both to cells growing by respiration on acetate and to obligately fermentative petite mutants. cdiGMP is also synthetically lethal with the ribonucleotide reductase (RNR) inhibitor hydroxyurea. Heterologous expression of the human ppGpp hydrolase Mesh1p prevented the accumulation of ppGpp in the engineered yeast and restored cell growth. Extensive in vivo interactions between bacterial signaling molecules and eukaryotic gene function occur, resulting in outcomes ranging from growth inhibition to death. cdiGMP functions through a mechanism that must be compensated by unhindered RNR activity or by functionally competent mitochondria. Mesh1p may be required for abrogating the damaging effects of ppGpp in human cells subjected to bacterial infection. PMID:28743817

  10. CD8+ T cells and Risk for Bacterial Pneumonia and All-Cause Mortality Among HIV-infected Women

    PubMed Central

    Gohil, Shruti; Heo, Moonseong; Schoenbaum, Ellie; Celentano, David; Pirofski, Liise-anne

    2012-01-01

    Background Bacterial pneumonia risk is disproportionately high among those infected with Human Immunodeficiency Virus (HIV). This risk is present across all CD4+ T cell levels (TCL), suggesting additional factors govern susceptibility. This study examines CD8+ TCL and risk for HIV-associated bacterial pneumonia and all-cause mortality. Methods Demographic, clinical, and laboratory data were obtained for 885 HIV-infected (HIV+) women enrolled in the HIV Epidemiologic Research Study (HERS). Bacterial pneumonia cases were identified using clinical, microbiologic, and radiographic criteria. CD8+ TCLs were assessed at 6-month intervals. Statistical methods included Cox proportional hazards regression modeling and covariate-adjusted survival estimates. Results Relative to a referent CD8+ TCL 401–800 cells/mm3, risk for bacterial pneumonia was significantly higher when CD8+ TCLs were ≤ 400 (hazard ratio 1.65, p=0.017, 95% CI 1.10–2.49), after adjusting for age, CD4+ TCL, viral load, and antiretroviral use. There was also a significantly higher risk of death when CD8+ TCLs were ≤ 400 cells/mm3 (hazard ratio 1.45, p=0.04, 95% CI 1.02–2.06). Covariate-adjusted survival estimates revealed shorter time to pneumonia and death in this CD8+ TCL category and the overall association of the categorized CD8+TCL with bacterial pneumonia and all-cause mortality were each statistically significant (p=0.017 and p<0.0001, respectively). Conclusions CD8+ TCL ≤ 400 cells/mm3 was associated with increased risk for pneumonia and all-cause mortality in HIV-infected women in the HERS Cohort, suggesting that CD8+ TCL could serve as an adjunctive biomarker of pneumonia risk and mortality in HIV-infected individuals. PMID:22334070

  11. The bacterial actin MreB rotates, and rotation depends on cell-wall assembly

    PubMed Central

    van Teeffelen, Sven; Wang, Siyuan; Furchtgott, Leon; Huang, Kerwyn Casey; Wingreen, Ned S.; Shaevitz, Joshua W.; Gitai, Zemer

    2011-01-01

    Bacterial cells possess multiple cytoskeletal proteins involved in a wide range of cellular processes. These cytoskeletal proteins are dynamic, but the driving forces and cellular functions of these dynamics remain poorly understood. Eukaryotic cytoskeletal dynamics are often driven by motor proteins, but in bacteria no motors that drive cytoskeletal motion have been identified to date. Here, we quantitatively study the dynamics of the Escherichia coli actin homolog MreB, which is essential for the maintenance of rod-like cell shape in bacteria. We find that MreB rotates around the long axis of the cell in a persistent manner. Whereas previous studies have suggested that MreB dynamics are driven by its own polymerization, we show that MreB rotation does not depend on its own polymerization but rather requires the assembly of the peptidoglycan cell wall. The cell-wall synthesis machinery thus either constitutes a novel type of extracellular motor that exerts force on cytoplasmic MreB, or is indirectly required for an as-yet-unidentified motor. Biophysical simulations suggest that one function of MreB rotation is to ensure a uniform distribution of new peptidoglycan insertion sites, a necessary condition to maintain rod shape during growth. These findings both broaden the view of cytoskeletal motors and deepen our understanding of the physical basis of bacterial morphogenesis. PMID:21903929

  12. The bacterial actin MreB rotates, and rotation depends on cell-wall assembly.

    PubMed

    van Teeffelen, Sven; Wang, Siyuan; Furchtgott, Leon; Huang, Kerwyn Casey; Wingreen, Ned S; Shaevitz, Joshua W; Gitai, Zemer

    2011-09-20

    Bacterial cells possess multiple cytoskeletal proteins involved in a wide range of cellular processes. These cytoskeletal proteins are dynamic, but the driving forces and cellular functions of these dynamics remain poorly understood. Eukaryotic cytoskeletal dynamics are often driven by motor proteins, but in bacteria no motors that drive cytoskeletal motion have been identified to date. Here, we quantitatively study the dynamics of the Escherichia coli actin homolog MreB, which is essential for the maintenance of rod-like cell shape in bacteria. We find that MreB rotates around the long axis of the cell in a persistent manner. Whereas previous studies have suggested that MreB dynamics are driven by its own polymerization, we show that MreB rotation does not depend on its own polymerization but rather requires the assembly of the peptidoglycan cell wall. The cell-wall synthesis machinery thus either constitutes a novel type of extracellular motor that exerts force on cytoplasmic MreB, or is indirectly required for an as-yet-unidentified motor. Biophysical simulations suggest that one function of MreB rotation is to ensure a uniform distribution of new peptidoglycan insertion sites, a necessary condition to maintain rod shape during growth. These findings both broaden the view of cytoskeletal motors and deepen our understanding of the physical basis of bacterial morphogenesis.

  13. Extraction of Cell-Wall Polysaccharide Antigen from Streptococci

    PubMed Central

    Slade, Hutton D.

    1965-01-01

    Slade, Hutton D. (Northwestern University Medical School, Chicago, Ill., and Max-Planck Institut für Immunbiologie, Freiburg, Germany). Extraction of cell-wall polysaccharide antigen from streptococci. J. Bacteriol. 90:667–672. 1965.—The carbohydrate grouping antigens in the cell walls of streptococci belonging to groups A, E, G, L, and T were extracted with 5% trichloroacetic acid at 90 C. The antigens were removed also from dry whole cells by extraction with trichloroacetic acid followed by treatment with phenol-water. Details of the methods are presented. The antigens obtained by use of either of these procedures were suitable for studies on immunological specificity and chemical structure. Quantitative enzymatic and chemical analyses of two group E antigens and one group T preparation showed the presence of l-rhamnose (22 to 44%), d-glucose (7 to 22%), d-galactose (T antigen only, 26%), glucosamine (2 to 16%), and galactosamine (T antigen only, 3%). In addition, analyses of A and G antigen preparations are presented. The protein and phosphate content of the A and E antigens were about 1% each. Quantitative precipitin curves of these antigens are presented. PMID:16562065

  14. Evaluation of an in vitro cell assay to select attenuated bacterial mutants of Aeromonas hydrophila and Edwardsiella tarda to channel catfish

    USDA-ARS?s Scientific Manuscript database

    To evaluate the feasibility of using an in vitro cell assay to select attenuated bacterial mutants. Using catfish gill cells G1B, the feasibility of using an in vitro assay instead of in vivo virulence assay using live fish to select attenuated bacterial mutants was evaluated in this study. Pearson ...

  15. Anti-Campylobacter activity of resveratrol and an extract from waste Pinot noir grape skins and seeds, and resistance of Camp. jejuni planktonic and biofilm cells, mediated via the CmeABC efflux pump.

    PubMed

    Klančnik, A; Šikić Pogačar, M; Trošt, K; Tušek Žnidarič, M; Mozetič Vodopivec, B; Smole Možina, S

    2017-01-01

    To define anti-Campylobacter jejuni activity of an extract from waste skins and seeds of Pinot noir grapes (GSS), resveratrol and possible resistance mechanisms, and the influence of these on Camp. jejuni morphology. Using gene-specific knock-out Camp. jejuni mutants and an efflux pump inhibitor, we showed CmeABC as the most active efflux pump for extrusion across the outer membrane of GSS extract and resveratrol. Using polystyrene surface and pig small intestine epithelial (PSI) and human foetal small intestine (H4) cell lines, GSS extract shows an efficient inhibition of adhesion of Camp. jejuni to these abiotic and biotic surfaces. Low doses of GSS extract can inhibit Camp. jejuni adhesion to polystyrene surfaces and to PSI and H4 cells, and can thus modulate Camp. jejuni invasion and intracellular survival. An understanding of the activities of GSS extract and resveratrol as bacterial growth inhibitors and the specific mechanisms of cell accumulation is crucial for our understanding of Camp. jejuni resistance. GSS extract inhibition of Camp. jejuni adhesion to abiotic and biotic surfaces provides a further step towards the application of new innovative strategies to control Campylobacter contamination and infection via the food chain. © 2016 The Society for Applied Microbiology.

  16. Physical impaction injury effects on bacterial cells during spread plating influenced by cell characteristics of the organisms.

    PubMed

    Thomas, P; Mujawar, M M; Sekhar, A C; Upreti, R

    2014-04-01

    To understand the factors that contribute to the variations in colony-forming units (CFU) in different bacteria during spread plating. Employing a mix culture of vegetative cells of ten organisms varying in cell characteristics (Gram reaction, cell shape and cell size), spread plating to the extent of just drying the agar surface (50-60 s) was tested in comparison with the alternate spotting-and-tilt-spreading (SATS) approach where 100 μl inoculum was distributed by mere tilting of plate after spotting as 20-25 microdrops. The former imparted a significant reduction in CFU by 20% over the spreader-independent SATS approach. Extending the testing to single organisms, Gram-negative proteobacteria with relatively larger cells (Escherichia, Enterobacter, Agrobacterium, Ralstonia, Pantoea, Pseudomonas and Sphingomonas spp.) showed significant CFU reduction with spread plating except for slow-growing Methylobacterium sp., while those with small rods (Xenophilus sp.) and cocci (Acinetobacter sp.) were less affected. Among Gram-positive nonspore formers, Staphylococcus epidermidis showed significant CFU reduction while Staphylococcus haemolyticus and actinobacteria (Microbacterium, Cellulosimicrobium and Brachybacterium spp.) with small rods/cocci were unaffected. Vegetative cells of Bacillus pumilus and B. subtilis were generally unaffected while others with larger rods (B. thuringiensis, Brevibacillus, Lysinibacillus and Paenibacillus spp.) were significantly affected. A simulated plating study coupled with live-dead bacterial staining endorsed the chances of cell disruption with spreader impaction in afflicted organisms. Significant reduction in CFU could occur during spread plating due to physical impaction injury to bacterial cells depending on the spreader usage and the variable effects on different organisms are determined by Gram reaction, cell size and cell shape. The inoculum spreader could impart physical disruption of vegetative cells against a hard surface

  17. Cacao extracts suppress tryptophan degradation of mitogen-stimulated peripheral blood mononuclear cells.

    PubMed

    Jenny, M; Santer, E; Klein, A; Ledochowski, M; Schennach, H; Ueberall, F; Fuchs, D

    2009-03-18

    The fruits of Theobroma cacao L. (Sterculiaceae) have been used as food and a remedy for more than 4000 years. Today, about 100 therapeutic applications of cacao are described involving the gastrointestinal, nervous, cardiovascular and immune systems. Pro-inflammatory cytokine interferon-gamma and related biochemical pathways like tryptophan degradation by indoleamine 2,3-dioxygenase and neopterin formation are closely associated with the pathogenesis of such disorders. To determine the anti-inflammatory effect of cacao extracts on interferon-gamma and biochemical consequences in immunocompetent cells. Effects of aqueous or ethanolic extracts of cacao were examined on mitogen-induced human peripheral blood mononuclear cells (PBMC) of healthy donors and on lipopolysaccharide-stimulated myelomonocytic THP-1 cells. Antioxidant activity of extracts was determined by oxygen radical absorption capacity (ORAC) assay. In mitogen-stimulated PBMC, enhanced degradation of tryptophan, formation of neopterin and interferon-gamma were almost completely suppressed by the cacao extracts at doses of > or = 5 microg/mL. Cacao extracts had no effect on tryptophan degradation in lipopolysaccharide-stimulated THP-1 cells. There is a significant suppressive effect of cacao extracts on pro-inflammatory pathways in activated T-cells. Particularly the influence on indoleamine 2,3-dioxygenase could relate to some of the beneficial health effects ascribed to cacao.

  18. Structure of the complex between teicoplanin and a bacterial cell-wall peptide: use of a carrier-protein approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Economou, Nicoleta J.; Zentner, Isaac J.; Lazo, Edwin

    2013-04-01

    Using a carrier-protein strategy, the structure of teicoplanin bound to its bacterial cell-wall target has been determined. The structure reveals the molecular determinants of target recognition, flexibility in the antibiotic backbone and intrinsic radiation sensitivity of teicoplanin. Multidrug-resistant bacterial infections are commonly treated with glycopeptide antibiotics such as teicoplanin. This drug inhibits bacterial cell-wall biosynthesis by binding and sequestering a cell-wall precursor: a d-alanine-containing peptide. A carrier-protein strategy was used to crystallize the complex of teicoplanin and its target peptide by fusing the cell-wall peptide to either MBP or ubiquitin via native chemical ligation and subsequently crystallizing the protein–peptide–antibiotic complex.more » The 2.05 Å resolution MBP–peptide–teicoplanin structure shows that teicoplanin recognizes its ligand through a combination of five hydrogen bonds and multiple van der Waals interactions. Comparison of this teicoplanin structure with that of unliganded teicoplanin reveals a flexibility in the antibiotic peptide backbone that has significant implications for ligand recognition. Diffraction experiments revealed an X-ray-induced dechlorination of the sixth amino acid of the antibiotic; it is shown that teicoplanin is significantly more radiation-sensitive than other similar antibiotics and that ligand binding increases radiosensitivity. Insights derived from this new teicoplanin structure may contribute to the development of next-generation antibacterials designed to overcome bacterial resistance.« less

  19. Quantitative PCR Method for Diagnosis of Citrus Bacterial Canker†

    PubMed Central

    Cubero, J.; Graham, J. H.; Gottwald, T. R.

    2001-01-01

    For diagnosis of citrus bacterial canker by PCR, an internal standard is employed to ensure the quality of the DNA extraction and that proper requisites exist for the amplification reaction. The ratio of PCR products from the internal standard and bacterial target is used to estimate the initial bacterial concentration in citrus tissues with lesions. PMID:11375206

  20. Bacterial bloodstream infections in the allogeneic hematopoietic cell transplant patient: new considerations for a persistent nemesis.

    PubMed

    Dandoy, C E; Ardura, M I; Papanicolaou, G A; Auletta, J J

    2017-08-01

    Bacterial bloodstream infections (BSI) cause significant transplant-related morbidity and mortality following allogeneic hematopoietic cell transplantation (allo-HCT). This manuscript reviews the risk factors for and the bacterial pathogens causing BSIs in allo-HCT recipients in the contemporary transplant period. In addition, it offers insight into emerging resistant pathogens and reviews clinical management considerations to treat and strategies to prevent BSIs in allo-HCT patients.

  1. Randomized clinical trial comparing the efficacy of the vaginal use of metronidazole with a Brazilian pepper tree (Schinus) extract for the treatment of bacterial vaginosis.

    PubMed

    Leite, S R R F; Amorim, M M R; Sereno, P F B; Leite, T N F; Ferreira, J A C; Ximenes, R A A

    2011-03-01

    A 7.4% vaginal extract of the Brazilian pepper tree (Schinus terebinthifolius Raddi) was compared with 0.75% vaginal metronidazole, both manufactured by the Hebron Laboratory, for the treatment of bacterial vaginosis, used at bedtime for 7 nights. The condition was diagnosed using the combined criteria of Amsel and Nugent in two groups of 140 and 137 women, aged between 18 and 40 years. Intention-to-treat analysis was performed. Women were excluded from the study if they presented delayed menstruation, were pregnant, were using or had used any topical or systemic medication, presented any other vaginal infections, presented hymen integrity, or if they reported any history suggestive of acute pelvic inflammatory disease. According to Amsel's criteria separately, 29 patients (21.2%) treated with the extract and 87 (62.1%) treated with metronidazole were considered to be cured (P < 0.001). According to Nugent's score separately, 19 women (13.9%) treated with the extract and 79 (56.4%) treated with metronidazole were considered to be cured (P < 0.001). Using the two criteria together, the so-called total cure was observed in 17 women (12.4%) treated with the extract and in 79 women (56.4%) treated with metronidazole (P < 0.001). In conclusion, the cure rate for bacterial vaginosis using a vaginal gel from a pepper tree extract was lower than the rate obtained with metronidazole gel, while side effects were infrequent and non-severe in both groups.

  2. Contrasting ability to take up leucine and thymidine among freshwater bacterial groups: implications for bacterial production measurements

    PubMed Central

    Pérez, María Teresa; Hörtnagl, Paul; Sommaruga, Ruben

    2010-01-01

    We examined the ability of different freshwater bacterial groups to take up leucine and thymidine in two lakes. Utilization of both substrates by freshwater bacteria was examined at the community level by looking at bulk incorporation rates and at the single-cell level by combining fluorescent in situ hybridization and signal amplification by catalysed reporter deposition with microautoradiography. Our results showed that leucine was taken up by 70–80% of Bacteria-positive cells, whereas only 15–43% of Bacteria-positive cells were able to take up thymidine. When a saturating substrate concentration in combination with a short incubation was used, 80–90% of Betaproteobacteria and 67–79% of Actinobacteria were positive for leucine uptake, whereas thymidine was taken up by < 10% of Betaproteobacteria and by < 1% of the R-BT subgroup that dominated this bacterial group. Bacterial abundance was a good predictor of the relative contribution of bacterial groups to leucine uptake, whereas when thymidine was used Actinobacteria represented the large majority (> 80%) of the cells taking up this substrate. Increasing the substrate concentration to 100 nM did not affect the percentage of R-BT cells taking up leucine (> 90% even at low concentrations), but moderately increased the fraction of thymidine-positive R-BT cells to a maximum of 35% of the hybridized cells. Our results show that even at very high concentrations, thymidine is not taken up by all, otherwise active, bacterial cells. PMID:19725866

  3. Controlled graphene encapsulation: a nanoscale shield for characterising single bacterial cells in liquid.

    PubMed

    Li, Jiayao; Zheng, Changxi; Liu, Boyin; Chou, Tsengming; Kim, Yeonuk; Qiu, Shi; Li, Jian; Yan, Wenyi; Fu, Jing

    2018-06-11

    High-resolution single-cell imaging in their native or near-native state has received considerable interest for decades. In this research, we present an innovative approach that can be employed to study both morphological and nano-mechanical properties of hydrated single bacterial cells. The proposed strategy is to encapsulate wet cells with monolayer graphene with a newly developed water membrane approach, followed by imaging with both electron microscopy (EM) and atomic force microscopy (AFM). A computational framework was developed to provide additional insights, with the detailed nanoindentation process on graphene modeled based on finite element method. The model was first validated by calibration with polymer materials of known properties, and the contribution of graphene was then studied and corrected to determine the actual moduli of the encapsulated hydrated sample. Aapplication of the proposed approach was performed on hydrated bacterial cells (Klebsiella pneumoniae) to correlate the structural and mechanical information. EM and EDS (energy-dispersive X-ray spectroscopy) imaging confirmed that the cells in their near-native stage can be studied inside the miniatured environment enabled with graphene encapsulation. The actual moduli of the encapsulated hydrated cells were determined based on the developed computational model in parallel, with results comparable with those acquired with Wet-AFM. It is expected that the successful establishment of controlled graphene encapsulation offers a new route for probing liquid/live cells with scanning probe microscopy, as well as correlative imaging of hydrated samples for both biological and material sciences. © 2018 IOP Publishing Ltd.

  4. Water Extract from Spent Mushroom Substrate of Hericium erinaceus Suppresses Bacterial Wilt Disease of Tomato

    PubMed Central

    Kwak, A Min; Min, Kyeong Jin; Lee, Sang Yeop

    2015-01-01

    Culture filtrates of six different edible mushroom species were screened for antimicrobial activity against tomato wilt bacteria Ralstonia solanacearum B3. Hericium erinaceus, Lentinula edodes (Sanjo 701), Grifola frondosa, and Hypsizygus marmoreus showed antibacterial activity against the bacteria. Water, n-butanol, and ethyl acetate extracts of spent mushroom substrate (SMS) of H. erinaceus exhibited high antibacterial activity against different phytopathogenic bacteria: Pectobacterium carotovorum subsp. carotovorum, Agrobacterium tumefaciens, R. solanacearum, Xanthomonas oryzae pv. oryzae, X. campestris pv. campestris, X. axonopodis pv. vesicatoria, X. axonopodis pv. citiri, and X. axonopodis pv. glycine. Quantitative real-time PCR revealed that water extracts of SMS (WESMS) of H. erinaceus induced expressions of plant defense genes encoding β-1,3-glucanase (GluA) and pathogenesis-related protein-1a (PR-1a), associated with systemic acquired resistance. Furthermore, WESMS also suppressed tomato wilt disease caused by R. solanacearum by 85% in seedlings and promoted growth (height, leaf number, and fresh weight of the root and shoot) of tomato plants. These findings suggest the WESMS of H. erinaceus has the potential to suppress bacterial wilt disease of tomato through multiple effects including antibacterial activity, plant growth promotion, and defense gene induction. PMID:26539048

  5. Effects of Ligusticum porteri (Osha) Root Extract on Human Promyelocytic Leukemia Cells.

    PubMed

    Nguyen, Khanh; Sparks, Jean; Omoruyi, Felix

    2017-01-01

    Ligusticum porteri roots have been traditionally used in folk medicine, but the scientific basis is unclear. To investigate the cytotoxicity, antioxidant, and immunomodulatory effects of L. porteri root extract on human promyelocytic leukemia (HL-60) cells and H 2 O 2 -induced oxidative damaged HL-60 cells. HL-60 cells were incubated with different concentrations of root extract, and cells were harvested for viability assays on day 3 and 7. Cytokine levels (interferon-gamma [IFN-γ], interleukin-2 [IL-2], and interleukin-10 [IL-10]) and antioxidant indexes (malondialdehyde [MDA], reduced glutathione [GSH], superoxide dismutase [SOD], and catalase [CAT]) in H 2 O 2 -induced-stressed HL-60 were measured after 2 days. The viability of HL-60 challenged with H 2 O 2 declined by 42% compared to unstressed cells. After 7 days of incubation with 200 or 400 μg/mL L. porteri , the viability of HL-60 cells was two-fold higher than the control. Stressed HL-60 cells treated with 100, 200, and 400 μg/mL L. porteri reduced the lipid peroxidation by 12%-13%. We noted an increase in GSH levels, SOD and CAT activities in stressed HL-60 supplemented with 400 μg/mL root extract. Treatment with 400 μg/mL L. porteri significantly ( P < 0.05) increased IFN-γ and IL-2 in H 2 O 2 -challenged cells. Our data do not support the use of the extract as an antiproliferation and differentiation therapy for acute promyelocytic leukemia. The protective function of L. porteri root extract against oxidative stress could occur through increasing GSH and higher expression of antioxidant enzymes. Findings from this study may not support the use of Ligusticum porteri root extract as an antiproliferation and differentiation therapy for acute promyelocytic leukemiaOur data suggest that L. porteri root extract may be a potential antioxidant with protective effect against the oxidation of reduced glutathione (GSH)Treatment with L. porteri root extract may be effective in preventing oxidative damage

  6. Willow Leaves' Extracts Contain Anti-Tumor Agents Effective against Three Cell Types

    PubMed Central

    El-Shemy, Hany A.; Aboul-Enein, Ahmed M.; Aboul-Enein, Khalid Mostafa; Fujita, Kounosuke

    2007-01-01

    Many higher plants contain novel metabolites with antimicrobial, antifungal and antiviral properties. However, in the developed world almost all clinically used chemotherapeutics have been produced by in vitro chemical synthesis. Exceptions, like taxol and vincristine, were structurally complex metabolites that were difficult to synthesize in vitro. Many non-natural, synthetic drugs cause severe side effects that were not acceptable except as treatments of last resort for terminal diseases such as cancer. The metabolites discovered in medicinal plants may avoid the side effect of synthetic drugs, because they must accumulate within living cells. The aim here was to test an aqueous extract from the young developing leaves of willow (Salix safsaf, Salicaceae) trees for activity against human carcinoma cells in vivo and in vitro. In vivo Ehrlich Ascites Carcinoma Cells (EACC) were injected into the intraperitoneal cavity of mice. The willow extract was fed via stomach tube. The (EACC) derived tumor growth was reduced by the willow extract and death was delayed (for 35 days). In vitro the willow extract could kill the majority (75%–80%) of abnormal cells among primary cells harvested from seven patients with acute lymphoblastic leukemia (ALL) and 13 with AML (acute myeloid leukemia). DNA fragmentation patterns within treated cells inferred targeted cell death by apoptosis had occurred. The metabolites within the willow extract may act as tumor inhibitors that promote apoptosis, cause DNA damage, and affect cell membranes and/or denature proteins. PMID:17264881

  7. Targeting the Bacterial Cytoskeleton of the Burkholderia cepacia Complex for Antimicrobial Development: A Cautionary Tale.

    PubMed

    Carnell, Sonya C; Perry, John D; Borthwick, Lee; Vollmer, Daniela; Biboy, Jacob; Facchini, Marcella; Bragonzi, Alessandra; Silipo, Alba; Vergunst, Annette C; Vollmer, Waldemar; Khan, Anjam C M; De Soyza, Anthony

    2018-05-30

    Burkholderia cepacia complex (BCC) bacteria are a group of opportunistic pathogens that cause severe lung infections in cystic fibrosis (CF). Treatment of BCC infections is difficult, due to the inherent and acquired multidrug resistance of BCC. There is a pressing need to find new bacterial targets for antimicrobials. Here, we demonstrate that the novel compound Q22, which is related to the bacterial cytoskeleton destabilising compound A22, can reduce the growth rate and inhibit growth of BCC bacteria. We further analysed the phenotypic effects of Q22 treatment on BCC virulence traits, to assess its feasibility as an antimicrobial. BCC bacteria were grown in the presence of Q22 with a broad phenotypic analysis, including resistance to H₂O₂-induced oxidative stress, changes in the inflammatory potential of cell surface components, and in-vivo drug toxicity studies. The influence of the Q22 treatment on inflammatory potential was measured by monitoring the cytokine responses of BCC whole cell lysates, purified lipopolysaccharide, and purified peptidoglycan extracted from bacterial cultures grown in the presence or absence of Q22 in differentiated THP-1 cells. BCC bacteria grown in the presence of Q22 displayed varying levels of resistance to H₂O₂-induced oxidative stress, with some strains showing increased resistance after treatment. There was strain-to-strain variation in the pro-inflammatory ability of bacterial lysates to elicit TNFα and IL-1β from human myeloid cells. Despite minimal toxicity previously shown in vitro with primary CF cell lines, in-vivo studies demonstrated Q22 toxicity in both zebrafish and mouse infection models. In summary, destabilisation of the bacterial cytoskeleton in BCC, using compounds such as Q22, led to increased virulence-related traits in vitro. These changes appear to vary depending on strain and BCC species. Future development of antimicrobials targeting the BCC bacterial cytoskeleton may be hampered if such effects

  8. Cationic Antimicrobial Peptides Derived from Crocodylus siamensis Leukocyte Extract, Revealing Anticancer Activity and Apoptotic Induction on Human Cervical Cancer Cells.

    PubMed

    Theansungnoen, Tinnakorn; Maijaroen, Surachai; Jangpromma, Nisachon; Yaraksa, Nualyai; Daduang, Sakda; Temsiripong, Theeranan; Daduang, Jureerut; Klaynongsruang, Sompong

    2016-06-01

    Known antimicrobial peptides KT2 and RT2 as well as the novel RP9 derived from the leukocyte extract of the freshwater crocodile (Crocodylus siamensis) were used to evaluate the ability in killing human cervical cancer cells. RP9 in the extract was purified by a combination of anion exchange column and reversed-phase HPLC, and its sequence was analyzed by mass spectrometry. The novel peptide could inhibit Gram-negative Vibrio cholerae (clinical isolation) and Gram-positive Bacillus pumilus TISTR 905, and its MIC values were 61.2 µM. From scanning electron microscopy, the peptide was seen to affect bacterial surfaces directly. KT2 and RT2, which are designed antimicrobial peptides using the C. siamensis Leucrocin I template, as well as RP9 were chemically synthesized for investigation of anticancer activity. By Sulforhodamine B colorimetric assay, these antimicrobial peptides could inhibit both HeLa and CaSki cancer cell lines. The IC50 values of KT2 and RT2 for HeLa and CaSki cells showed 28.7-53.4 and 17.3-30.8 µM, while those of RP9 were 126.2 and 168.3 µM, respectively. Additionally, the best candidate peptides KT2 and RT2 were used to determine the apoptotic induction on cancer cells by human apoptosis array assay. As a result, KT2 and RT2 were observed to induce apoptotic cell death in HeLa cells. Therefore, these results indicate that KT2 and RT2 with antimicrobial activity have a highly potent ability to kill human cervical cancer cells.

  9. Cancer cell specific cytotoxic effect of Rhoeo discolor extracts and solvent fractions.

    PubMed

    García-Varela, Rebeca; Fajardo Ramírez, Oscar Raúl; Serna-Saldivar, Sergio O; Altamirano, Julio; Cardineau, Guy A

    2016-08-22

    Traditional or folk medicine has led to the discovery of important bioactive substances used in several health-related areas. Phytochemicals in Rhoeo discolor (R. discolor) extracts have proven to have important cancer cell specific cytotoxic activity. In the present research, we determined the cytotoxic effect of extracts of R. discolor, a plant commonly used in Mexico for both medicinal and ornamental purposes. We evaluated the cytotoxic effects against three representative human cancer cell lines: HT-29 colon cancer, Hep-G2 liver cancer and PC-3 prostate cancer cell lines, as well as a control fibroblast cell line NIH 3T3. Ten different crude extracts were tested along with fractions derived from the five most bioactive crude extracts. Analytical data, HPLC-MS-TOF, revealed a high content of phenolic compounds such as anthocyanins, ferulic, vanillic, chlorogenic and p-coumaric acid in the extracts. Phenolic compounds have previously been reported as health beneficial with antioxidant and potential cancer specific cytotoxic effects. Studies revealed that low concentrations of these crude bioactive extracts (10µg/ml) and their fractions (50µg/ml) were effective as cancer specific cytotoxic agents, since they caused a significant proliferation inhibition on cancer cell lines (up to 94.2% in HT-29, 92.9% in Hep-G2 and 61.8% in PC-3 of apoptosis induction) with little harm to the control cell line (no higher than 28.3% apoptosis induction), and, importantly, the most effective extracts were mainly water, methanol and ethanol based. These results suggest that a diet containing these compounds may function as a medical aid or chemoprotective. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  10. Extraction of curcumin from Curcuma longa L. using ultrasound assisted supercritical carbon dioxide

    NASA Astrophysics Data System (ADS)

    Kimthet, Chhouk; Wahyudiono, Kanda, Hideki; Goto, Motonobu

    2017-05-01

    Curcumin is one of phenolic compounds, which has been recently shown to have useful pharmacological properties such as anti-inflammatory, anti-bacterial, anti-carcinogenic, antifungal, and antimicrobial activities. The objective of this research is to extract the curcumin from Curcuma longa L. using ultrasound assisted supercritical carbon dioxide extraction (USC-CO2). The extraction was performed at 50°C, 25 MPa, CO2 flow rate of 3 mL/min with 10% cosolvent. The result of extraction, thermogravimetry (TG), Fourier transform infrared spectroscopy (FTIR) and scanning electron microscope (SEM) showed that ultrasound power could disrupt cell wall and release the target compounds from Curcuma longa L. USC-CO2 could provide higher curcumin content in the extracts and faster extraction compared to SC-CO2 extraction without ultrasound.

  11. Changes in bacterial and archaeal communities during the concentration of brine at the graduation towers in Ciechocinek spa (Poland).

    PubMed

    Kalwasińska, Agnieszka; Deja-Sikora, Edyta; Burkowska-But, Aleksandra; Szabó, Attila; Felföldi, Támas; Kosobucki, Przemysław; Krawiec, Arkadiusz; Walczak, Maciej

    2018-03-01

    This study evaluates the changes in bacterial and archaeal community structure during the gradual evaporation of water from the brine (extracted from subsurface Jurassic deposits) in the system of graduation towers located in Ciechocinek spa, Poland. The communities were assessed with 16S rRNA gene sequencing (MiSeq, Illumina) and microscopic methods. The microbial cell density determined by direct cell count was at the order of magnitude of 10 7 cells/mL. It was found that increasing salt concentration was positively correlated with both the cell counts, and species-level diversity of bacterial and archaeal communities. The archaeal community was mostly constituted by members of the phylum Euryarchaeota, class Halobacteria and was dominated by Halorubrum-related sequences. The bacterial community was more diverse, with representatives of the phyla Proteobacteria and Bacteroidetes as the most abundant. The proportion of Proteobacteria decreased with increasing salt concentration, while the proportion of Bacteroidetes increased significantly in the more concentrated samples. Representatives of the genera Idiomarina, Psychroflexus, Roseovarius, and Marinobacter appeared to be tolerant to changes of salinity. During the brine concentration, the relative abundances of Sphingobium and Sphingomonas were significantly decreased and the raised contributions of genera Fabibacter and Fodinibius were observed. The high proportion of novel (not identified at 97% similarity level) bacterial reads (up to 42%) in the 16S rRNA gene sequences indicated that potentially new bacterial taxa inhabit this unique environment.

  12. Jellyfish extract induces apoptotic cell death through the p38 pathway and cell cycle arrest in chronic myelogenous leukemia K562 cells

    PubMed Central

    Kwak, Choong-Hwan; Abekura, Fukushi; Park, Jun-Young; Park, Nam Gyu; Chang, Young-Chae; Lee, Young-Choon; Chung, Tae-Wook; Ha, Ki-Tae; Son, Jong-Keun

    2017-01-01

    Jellyfish species are widely distributed in the world’s oceans, and their population is rapidly increasing. Jellyfish extracts have several biological functions, such as cytotoxic, anti-microbial, and antioxidant activities in cells and organisms. However, the anti-cancer effect of Jellyfish extract has not yet been examined. We used chronic myelogenous leukemia K562 cells to evaluate the mechanisms of anti-cancer activity of hexane extracts from Nomura’s jellyfish in vitro. In this study, jellyfish are subjected to hexane extraction, and the extract is shown to have an anticancer effect on chronic myelogenous leukemia K562 cells. Interestingly, the present results show that jellyfish hexane extract (Jellyfish-HE) induces apoptosis in a dose- and time-dependent manner. To identify the mechanism(s) underlying Jellyfish-HE-induced apoptosis in K562 cells, we examined the effects of Jellyfish-HE on activation of caspase and mitogen-activated protein kinases (MAPKs), which are responsible for cell cycle progression. Induction of apoptosis by Jellyfish-HE occurred through the activation of caspases-3,-8 and -9 and phosphorylation of p38. Jellyfish-HE-induced apoptosis was blocked by a caspase inhibitor, Z-VAD. Moreover, during apoptosis in K562 cells, p38 MAPK was inhibited by pretreatment with SB203580, an inhibitor of p38. SB203580 blocked jellyfish-HE-induced apoptosis. Additionally, Jellyfish-HE markedly arrests the cell cycle in the G0/G1 phase. Therefore, taken together, the results imply that the anti-cancer activity of Jellyfish-HE may be mediated apoptosis by induction of caspases and activation of MAPK, especially phosphorylation of p38, and cell cycle arrest at the Go/G1 phase in K562 cells. PMID:28133573

  13. Hot-Alkaline DNA Extraction Method for Deep-Subseafloor Archaeal Communities

    PubMed Central

    Terada, Takeshi; Hoshino, Tatsuhiko; Inagaki, Fumio

    2014-01-01

    A prerequisite for DNA-based microbial community analysis is even and effective cell disruption for DNA extraction. With a commonly used DNA extraction kit, roughly two-thirds of subseafloor sediment microbial cells remain intact on average (i.e., the cells are not disrupted), indicating that microbial community analyses may be biased at the DNA extraction step, prior to subsequent molecular analyses. To address this issue, we standardized a new DNA extraction method using alkaline treatment and heating. Upon treatment with 1 M NaOH at 98°C for 20 min, over 98% of microbial cells in subseafloor sediment samples collected at different depths were disrupted. However, DNA integrity tests showed that such strong alkaline and heat treatment also cleaved DNA molecules into short fragments that could not be amplified by PCR. Subsequently, we optimized the alkaline and temperature conditions to minimize DNA fragmentation and retain high cell disruption efficiency. The best conditions produced a cell disruption rate of 50 to 80% in subseafloor sediment samples from various depths and retained sufficient DNA integrity for amplification of the complete 16S rRNA gene (i.e., ∼1,500 bp). The optimized method also yielded higher DNA concentrations in all samples tested compared with extractions using a conventional kit-based approach. Comparative molecular analysis using real-time PCR and pyrosequencing of bacterial and archaeal 16S rRNA genes showed that the new method produced an increase in archaeal DNA and its diversity, suggesting that it provides better analytical coverage of subseafloor microbial communities than conventional methods. PMID:24441163

  14. Green chemical approach towards the synthesis of CeO2 doped with seashell and its bacterial applications intermediated with fruit extracts.

    PubMed

    Arasu, Mariadas Valan; Thirumamagal, R; Srinivasan, M P; Al-Dhabi, Naif Abdullah; Ayeshamariam, A; Saravana Kumar, D; Punithavelan, N; Jayachandran, M

    2017-08-01

    Nanomaterials of CeO 2 with A. vera were synthesized by using simple chemical method. Grapes drops are used as an oxidizing agent. Structural and morphological studies of nanomaterials of cerium oxide (CeO 2 ), were studied for combustion method of preparation. The precursor solution was initialized by a hydrothermal reaction. Cerium hydroxyl carbonate precursors which involves cerium (III) nitrate Ce(NO 3 ) 3 . 6 H 2 O with (1.0M) of seashell powder, 3% A. vera, extracts, grapes and pomegranate drops and this complex solution was used to produce the CeO 2 powder particles. We have prepared another sample with 5% of Aloe vera extract and found that 3% Aloe vera extract has lesser grain size and enhanced band gap values, so the article explained the sample analysis of combination with 3% extract of Aloe vera. The product has the rod pattern which was the unusual features appear to originate from the unique crystal chemistry aspects. From the optical absorption spectrum, it has been shown that the CeO 2 rods have 3.847eV of direct band gap energy. The minimum inhibitory concentration (MIC) values of the synthesized compounds exhibited activity towards various microbial pathogens such as B. subtilis (15μg/mL), S. aureus (50μg/mL), S. epidermidis (20μg/mL), E. faecalis (25μg/mL) and towards E. coli (100μg/mL), K. pneumoniae (50μg/mL) and P. aeruginosa (75μg/mL) respectively. The tests on bacterial activities confirmed that the CeO 2 rods are suitable hand for the biological applications. The seashell structure and the phytochemical contents of A. vera might enhance its bacterial activities. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Antimicrobial potential of metabolites extracted from bacterial symbionts associated with marine sponges in coastal area of Gulf of Mannar Biosphere, India.

    PubMed

    Skariyachan, S; G Rao, A; Patil, M R; Saikia, B; Bharadwaj Kn, V; Rao Gs, J

    2014-03-01

    Marine coastal areas of India have vast diversity of sponges which harbours many endosymbiotic bacteria which are the source of many potential antimicrobial metabolites. This study focuses the screening and characterization of drug-producing bacteria symbiotically which are associated with marine sponges collected from Gulf of Mannar, South Coast India. Six different sponges were collected and they were identified on the basis of their morphology. The drug-producing isolates were screened by agar overlay method towards various clinical strains. The secondary metabolites were characterized and were found to be quinones, alkaloids, flavanoids and flavonyl glycosides. The metabolites showed significant inhibitory properties against clinical strains that were further identified as chromophoric and fluorophoric in nature. Ethyl acetate extracts of chromophore and floureophore substances showed significant inhibitory properties against Methicillin resistant Staphylococcus aureus (MRSA) and Salmonella typhi respectively. 16S rRNA gene sequencing of theses isolates revealed that chomophore-producing strain were closely related to Pseudomonas spp. RHLB12, isolated from Callyspongia spp. and floureophore-producing bacteria was related to Bacillus licheniformis T6-1 which was isolated from Haliclona spp. Hence, our study demonstrated that antimicrobial metabolites extracted from symbiotic bacteria associated with marine sponges have high therapeutic potential against many bacterial pathogens including multidrug-resistant strains. This is the first study demonstrating antimicrobial potential of flurophoric and chromophoric metabolites extracted from bacterial biosymbionts associated with marine sponges. Our study has significant scope as Indian coastal area especially harbours vast varieties of sponges with novel secondary metabolites-producing organisms. The natural metabolites extracted from sponge-derived bacteria pave novel therapeutic remedy against various pathogens when

  16. Non-invasive imaging of oxygen extraction fraction in adults with sickle cell anaemia

    PubMed Central

    Gindville, Melissa C.; Scott, Allison O.; Juttukonda, Meher R.; Strother, Megan K.; Kassim, Adetola A.; Chen, Sheau-Chiann; Lu, Hanzhang; Pruthi, Sumit; Shyr, Yu; Donahue, Manus J.

    2016-01-01

    Sickle cell anaemia is a monogenetic disorder with a high incidence of stroke. While stroke screening procedures exist for children with sickle cell anaemia, no accepted screening procedures exist for assessing stroke risk in adults. The purpose of this study is to use novel magnetic resonance imaging methods to evaluate physiological relationships between oxygen extraction fraction, cerebral blood flow, and clinical markers of cerebrovascular impairment in adults with sickle cell anaemia. The specific goal is to determine to what extent elevated oxygen extraction fraction may be uniquely present in patients with higher levels of clinical impairment and therefore may represent a candidate biomarker of stroke risk. Neurological evaluation, structural imaging, and the non-invasive T2-relaxation-under-spin-tagging magnetic resonance imaging method were applied in sickle cell anaemia (n = 34) and healthy race-matched control (n = 11) volunteers without sickle cell trait to assess whole-brain oxygen extraction fraction, cerebral blood flow, degree of vasculopathy, severity of anaemia, and presence of prior infarct; findings were interpreted in the context of physiological models. Cerebral blood flow and oxygen extraction fraction were elevated (P < 0.05) in participants with sickle cell anaemia (n = 27) not receiving monthly blood transfusions (interquartile range cerebral blood flow = 46.2–56.8 ml/100 g/min; oxygen extraction fraction = 0.39–0.50) relative to controls (interquartile range cerebral blood flow = 40.8–46.3 ml/100 g/min; oxygen extraction fraction = 0.33–0.38). Oxygen extraction fraction (P < 0.0001) but not cerebral blood flow was increased in participants with higher levels of clinical impairment. These data provide support for T2-relaxation-under-spin-tagging being able to quickly and non-invasively detect elevated oxygen extraction fraction in individuals with sickle cell anaemia with higher levels of clinical impairment. Our results support

  17. Endosulfan induced alteration in bacterial protein profile and RNA yield of Klebsiella sp. M3, Achromobacter sp. M6, and Rhodococcus sp. M2.

    PubMed

    Singh, Madhu; Singh, Dileep Kumar

    2014-01-30

    Three bacterial strains identified as Klebsiella sp. M3, Achromobacter sp. M6 and Rhodococcus sp. M2 were isolated by soil enrichment with endosulfan followed by shake flask enrichment technique. They were efficiently degrading endosulfan in the NSM (non sulfur medium) broth. Degradation of endosulfan was faster with the cell free extract of bacterial cells grown in the sulfur deficient medium (NSM) supplemented with endosulfan than that of nutrient rich medium (Luria Bertani). In the cell free extract of NSM supplemented with endosulfan as sole sulfur source, a unique band was visualized on SDS-PAGE but not with magnesium sulfate as the sole sulfur source in NSM and LB with endosulfan. Expression of a unique polypeptide band was speculated to be induced by endosulfan under sulfur starved condition. These unique polypeptide bands were identified as OmpK35 protein, sulfate binding protein and outer membrane porin protein, respectively, in Klebsiella sp. M3, Achromobacter sp. M6 and Rhodococcus sp. M2. Endosulfan showed dose dependent negative effect on total RNA yield of bacterial strains in nutrient rich medium. Absence of plasmid DNA indicated the presence of endosulfan metabolizing gene on genomic DNA. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Anticancer activity of Sargassum oligocystum water extract against human cancer cell lines.

    PubMed

    Zandi, K; Ahmadzadeh, S; Tajbakhsh, S; Rastian, Z; Yousefi, F; Farshadpour, F; Sartavi, K

    2010-08-01

    Antitumor drug resistance and side effects of antitumor compounds are the most common problems in medicine. Therefore, finding new antitumor agents with low side effects could be interesting. This study was designed to assay antitumor activity of the extract from brown alga Sargassum oligocystum, gathered from Persian Gulf seashore, against K562 and Daudi human cancer cell lines. The research was performed as an in vitro study. The effect of the alga extract on proliferation of cell lines were measured by two methods: MTT assay and trypan blue exclusion test. The most effective antitumor activity has been shown at concentrations 500 microg/ml and 400 microg/ml of the alga extract against Daudi and K562 cell lines, respectively. The results showed that the extracts of brown alga Sargassum oligocystum have remarkable antitumor activity against K562 and Daudi cell lines. It is justified to be suggested for further research such as algal extract fractionation and purification and in vivo studies in order to formulate natural compounds with antitumor activities.

  19. Nocardia brasiliensis Cell Wall Lipids Modulate Macrophage and Dendritic Responses That Favor Development of Experimental Actinomycetoma in BALB/c Mice

    PubMed Central

    Trevino-Villarreal, J. Humberto; Vera-Cabrera, Lucio; Valero-Guillén, Pedro L.

    2012-01-01

    Nocardia brasiliensis is a Gram-positive facultative intracellular bacterium frequently isolated from human actinomycetoma. However, the pathogenesis of this infection remains unknown. Here, we used a model of bacterial delipidation with benzine to investigate the role of N. brasiliensis cell wall-associated lipids in experimental actinomycetoma. Delipidation of N. brasiliensis with benzine resulted in complete abolition of actinomycetoma without affecting bacterial viability. Chemical analyses revealed that trehalose dimycolate and an unidentified hydrophobic compound were the principal compounds extracted from N. brasiliensis with benzine. By electron microscopy, the extracted lipids were found to be located in the outermost membrane layer of the N. brasiliensis cell wall. They also appeared to confer acid-fastness. In vitro, the extractable lipids from the N. brasiliensis cell wall induced the production of the proinflammatory cytokines interleukin-1β (IL-1β), IL-6, and CCL-2 in macrophages. The N. brasiliensis cell wall extractable lipids inhibited important macrophage microbicidal effects, such as tumor necrosis factor alpha (TNF-α) and nitric oxide (NO) production, phagocytosis, bacterial killing, and major histocompatibility complex class II (MHC-II) expression in response to gamma interferon (IFN-γ). In dendritic cells (DCs), N. brasiliensis cell wall-associated extractable lipids suppressed MHC-II, CD80, and CD40 expression while inducing tumor growth factor β (TGF-β) production. Immunization with delipidated N. brasiliensis induced partial protection preventing actinomycetoma. These findings suggest that N. brasiliensis cell wall-associated lipids are important for actinomycetoma development by inducing inflammation and modulating the responses of macrophages and DCs to N. brasiliensis. PMID:22851755

  20. Cytotoxic and apoptotic activities of black widow spiderling extract against HeLa cells

    PubMed Central

    Peng, Xiaozhen; Dai, Zhipan; Lei, Qian; Liang, Long; Yan, Shuai; Wang, Xianchun

    2017-01-01

    Black widow spiders contain toxic components not only in the venom glands but also in other parts of the spider body, including the legs and abdomen. Additionally, both the eggs and newborn spiderlings of the black widow spider contain venom. It is important to investigate their potential effects on cancer cells. In the present study, the effects of newborn black widow spiderling extract on human HeLa cells were evaluated in vitro. When applied at different concentrations, the total extract decreased HeLa cell viability in a dose-dependent manner, with an IC50 value of 158 µg/ml. Flow cytometry indicated that treatment of HeLa cells with the total extract of the spiderlings induced apoptosis in HeLa cells in a dose-dependent manner and led to cell cycle arrest in the S-phase. Additionally, application of the total extract at different concentrations increased apoptosis-related caspase 3 activity in a dose-dependent manner. HeLa cells treated with the total extract appeared to be morphologically changed, exhibiting membrane blebbing, nuclear fragmentation and condensation of chromatin. Further separation and activity screening demonstrated that the cytotoxic and apoptotic activities of the total extract were attributable mainly to its high molecular mass proteins, one of which was purified and characterized to determine its anti-tumor activities on HeLa cells. The results of the present study therefore have expanded understanding regarding the effect of spider toxins on cancer cells and suggested that components of black widow spiderlings may be developed as a promising novel agent to treat cancer. PMID:28587399

  1. Cytotoxic and apoptotic activities of black widow spiderling extract against HeLa cells.

    PubMed

    Peng, Xiaozhen; Dai, Zhipan; Lei, Qian; Liang, Long; Yan, Shuai; Wang, Xianchun

    2017-06-01

    Black widow spiders contain toxic components not only in the venom glands but also in other parts of the spider body, including the legs and abdomen. Additionally, both the eggs and newborn spiderlings of the black widow spider contain venom. It is important to investigate their potential effects on cancer cells. In the present study, the effects of newborn black widow spiderling extract on human HeLa cells were evaluated in vitro . When applied at different concentrations, the total extract decreased HeLa cell viability in a dose-dependent manner, with an IC 50 value of 158 µg/ml. Flow cytometry indicated that treatment of HeLa cells with the total extract of the spiderlings induced apoptosis in HeLa cells in a dose-dependent manner and led to cell cycle arrest in the S-phase. Additionally, application of the total extract at different concentrations increased apoptosis-related caspase 3 activity in a dose-dependent manner. HeLa cells treated with the total extract appeared to be morphologically changed, exhibiting membrane blebbing, nuclear fragmentation and condensation of chromatin. Further separation and activity screening demonstrated that the cytotoxic and apoptotic activities of the total extract were attributable mainly to its high molecular mass proteins, one of which was purified and characterized to determine its anti-tumor activities on HeLa cells. The results of the present study therefore have expanded understanding regarding the effect of spider toxins on cancer cells and suggested that components of black widow spiderlings may be developed as a promising novel agent to treat cancer.

  2. Growth of Bacterial Colonies

    NASA Astrophysics Data System (ADS)

    Warren, Mya; Hwa, Terence

    2013-03-01

    On hard agar gel, there is insufficient surface hydration for bacteria to swim or swarm. Instead, growth occurs in colonies of close-packed cells, which expand purely due to repulsive interactions: individual bacteria push each other out of the way through the force of their growth. In this way, bacterial colonies represent a new type of ``active'' granular matter. In this study, we investigate the physical, biochemical, and genetic elements that determine the static and dynamic aspects of this mode of bacterial growth for E. coli. We characterize the process of colony expansion empirically, and use discrete and continuum models to examine the extent to which our observations can be explained by the growth characteristics of non-communicating cells, coupled together by physical forces, nutrients, and waste products. Our results challenge the commonly accepted modes of bacterial colony growth and provide insight into sources of growth limitation in crowded bacterial communities.

  3. Toxicity of extracts from disposable chopsticks, toothpicks, and paper cups on L-929 cells.

    PubMed

    Li, Juntao; Chen, Sifan; Li, Wenxue; Yang, Guangyu; Zhu, Wei

    2015-04-01

    To evaluate the toxicity of extracts from disposable chopsticks, toothpicks, and paper cups on L-929 cells. We followed national standards to prepare the extracts from disposable chopsticks, toothpicks, and paper cups used for the cell culture media, and the morphology of L-929 cells was observed with an optical microscope. The loss rate for adherent cells was evaluated with the trypan blue exclusion method, and cell proliferation was determined using the WST-1 assay. Compared with the control group, the cells cultured in media containing the extracts showed signs of apoptosis and necrosis after culturing for 4 or 7 days, and the loss rate for adherent cells was significantly increased (P < 0.05). An obvious decrease in cell viability was also observed (P < 0.05). The extracts from disposable chopsticks, toothpicks, and paper cups can affect the growth and proliferation of L-929 cells and are potentially toxic to humans.

  4. The effect of metal loading on Cd adsorption onto Shewanella oneidensis bacterial cell envelopes: The role of sulfhydryl sites

    NASA Astrophysics Data System (ADS)

    Yu, Qiang; Fein, Jeremy B.

    2015-10-01

    The adsorption and desorption of Cd onto Shewanella oneidensis bacterial cells with and without blocking of sulfhydryl sites was measured in order to determine the effect of metal loading and to understand the role of sulfhydryl sites in the adsorption reactions. The observed adsorption/desorption behaviors display strong dependence on metal loading. Under a high loading of 40 μmol Cd/g bacterial cells, blocking the sulfhydryl sites within the cell envelope by exposure of the biomass to monobromo(trimethylammonio)bimane bromide (qBBr) does not significantly affect the extent of Cd adsorption, and we observed fully reversible adsorption under this condition. In contrast, under a low metal loading of 1.3 μmol Cd/g bacterial cells, the extent of Cd adsorption onto sulfhydryl-blocked S. oneidensis cells was significantly lower than that onto untreated cells, and only approximately 50-60% of the adsorbed Cd desorbed from the cells upon acidification. In conjunction with previous EXAFS results, our findings demonstrate that Cd adsorption onto S. oneidensis under low metal loading conditions is dominated by sulfhydryl binding, and thus is controlled by a distinct adsorption mechanism from the non-sulfhydryl site binding which controls Cd adsorption under high metal loading conditions. We use the data to develop a surface complexation model that constrains the values of the stability constants for individual Cd-sulfhydryl and Cd-non-sulfhydryl bacterial complexes, and we use this approach to account for the Cd adsorption behavior as a function of both pH and metal loading. This approach is crucial in order to predict metal adsorption onto bacteria under environmentally relevant metal loading conditions where sulfhydryl binding sites can dominate the adsorption reaction.

  5. Evaluation of the effect of green tea extract on mouth bacterial activity in the presence of propylene glycol.

    PubMed

    Moghbel, Abdolhossein; Farjzadeh, Ahmad; Aghel, Nasrin; Agheli, Homaun; Raisi, Nafiseh

    2012-01-01

    Compounds present in green tea have proved to inhibit the growth and activity of bacteria associated with infections. To assess the effects of green tea leaves extract in presence of propylene glycol on the aerobic mouth bacteria load. Saliva of 25 volunteer girl students aging 20-25 years were selected and evaluated by a mouthwash sample containing 1% tannin, as the most effective antibacterial complex in green tea. Comparative studies were also conducted between green tea mouthwashes containing 1% tannin and a similar sample with 10% propylene glycol added during extraction. This comparison was applied for a chlorhexidine 0.2% sample as a chemical mouthwash brand, too. There was a meaningful difference between the green tea mouthwashes containing 10% propylene glycol and the simple green tea extract (P < 0.05). Significant difference was also seen between the herbal and chemical mouthwashes (P < 0.05). The extract 1% tannin containing 10% propylene glycol reduced the aerobic mouth bacterial load of the student salvia about 64 percent. The pH monotonousness in different days and temperatures approved the stability of tannin in liquid water medium. Using green tea extract as a herbal mouthwash is safe and harmless specially for children and pregnant women. This result led us to suppose that green tea may prevent plaque formation on teeth, coming over halitosis due to mouth infection, too. These effects need to be approved in an in vivo trial as a second study.

  6. Impact of bacteria and bacterial components on osteogenic and adipogenic differentiation of adipose-derived mesenchymal stem cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fiedler, Tomas, E-mail: tomas.fiedler@med.uni-rostock.de; Salamon, Achim; Adam, Stefanie

    Adult mesenchymal stem cells (MSC) are present in several tissues, e.g. bone marrow, heart muscle, brain and subcutaneous adipose tissue. In invasive infections MSC get in contact with bacteria and bacterial components. Not much is known about how bacterial pathogens interact with MSC and how contact to bacteria influences MSC viability and differentiation potential. In this study we investigated the impact of three different wound infection relevant bacteria, Escherichia coli, Staphylococcus aureus, and Streptococcus pyogenes, and the cell wall components lipopolysaccharide (LPS; Gram-negative bacteria) and lipoteichoic acid (LTA; Gram-positive bacteria) on viability, proliferation, and osteogenic as well as adipogenic differentiationmore » of human adipose tissue-derived mesenchymal stem cells (adMSC). We show that all three tested species were able to attach to and internalize into adMSC. The heat-inactivated Gram-negative E. coli as well as LPS were able to induce proliferation and osteogenic differentiation but reduce adipogenic differentiation of adMSC. Conspicuously, the heat-inactivated Gram-positive species showed the same effects on proliferation and adipogenic differentiation, while its cell wall component LTA exhibited no significant impact on adMSC. Therefore, our data demonstrate that osteogenic and adipogenic differentiation of adMSC is influenced in an oppositional fashion by bacterial antigens and that MSC-governed regeneration is not necessarily reduced under infectious conditions. - Highlights: • Staphylococcus aureus, Streptococcus pyogenes and Escherichia coli bind to and internalize into adMSC. • Heat-inactivated cells of these bacterial species trigger proliferation of adMSC. • Heat-inactivated E. coli and LPS induce osteogenic differentiation of adMSC. • Heat-inactivated E. coli and LPS reduce adipogenic differentiation of adMSC. • LTA does not influence adipogenic or osteogenic differentiation of adMSC.« less

  7. Effect of DNA Extraction Methods on the Apparent Structure of Yak Rumen Microbial Communities as Revealed by 16S rDNA Sequencing.

    PubMed

    Chen, Ya-Bing; Lan, Dao-Liang; Tang, Cheng; Yang, Xiao-Nong; Li, Jian

    2015-01-01

    To more efficiently identify the microbial community of the yak rumen, the standardization of DNA extraction is key to ensure fidelity while studying environmental microbial communities. In this study, we systematically compared the efficiency of several extraction methods based on DNA yield, purity, and 16S rDNA sequencing to determine the optimal DNA extraction methods whose DNA products reflect complete bacterial communities. The results indicate that method 6 (hexadecyltrimethylammomium bromide-lysozyme-physical lysis by bead beating) is recommended for the DNA isolation of the rumen microbial community due to its high yield, operational taxonomic unit, bacterial diversity, and excellent cell-breaking capability. The results also indicate that the bead-beating step is necessary to effectively break down the cell walls of all of the microbes, especially Gram-positive bacteria. Another aim of this study was to preliminarily analyze the bacterial community via 16S rDNA sequencing. The microbial community spanned approximately 21 phyla, 35 classes, 75 families, and 112 genera. A comparative analysis showed some variations in the microbial community between yaks and cattle that may be attributed to diet and environmental differences. Interestingly, numerous uncultured or unclassified bacteria were found in yak rumen, suggesting that further research is required to determine the specific functional and ecological roles of these bacteria in yak rumen. In summary, the investigation of the optimal DNA extraction methods and the preliminary evaluation of the bacterial community composition of yak rumen support further identification of the specificity of the rumen microbial community in yak and the discovery of distinct gene resources.

  8. Efficiency of fluorescence in situ hybridization for bacterial cell identification in temporary river sediments with contrasting water content.

    PubMed

    Fazi, Stefano; Amalfitano, Stefano; Pizzetti, Ilaria; Pernthaler, Jakob

    2007-09-01

    We studied the efficiency of two hybridization techniques for the analysis of benthic bacterial community composition under varying sediment water content. Microcosms were set up with sediments from four European temporary rivers. Wet sediments were dried, and dry sediments were artificially rewetted. The percentage of bacterial cells detected by fluorescence in situ hybridization with fluorescently monolabeled probes (FISH) significantly increased from dry to wet sediments, showing a positive correlation with the community activity measured via incorporation of (3)H leucine. FISH and signal amplification by catalyzed reporter deposition (CARD-FISH) could significantly better detect cells with low activity in dried sediments. Through the application of an optimized cell permeabilization protocol, the percentage of hybridized cells by CARD-FISH showed comparable values in dry and wet conditions. This approach was unrelated to (3)H leucine incorporation rates. Moreover, the optimized protocol allowed a significantly better visualization of Gram-positive Actinobacteria in the studied samples. CARD-FISH is, therefore, proposed as an effective technique to compare bacterial communities residing in sediments with contrasting water content, irrespective of differences in the activity state of target cells. Considering the increasing frequencies of flood and drought cycles in European temporary rivers, our approach may help to better understand the dynamics of microbial communities in such systems.

  9. Aloe vera extract functionalized zinc oxide nanoparticles as nanoantibiotics against multi-drug resistant clinical bacterial isolates.

    PubMed

    Ali, Khursheed; Dwivedi, Sourabh; Azam, Ameer; Saquib, Quaiser; Al-Said, Mansour S; Alkhedhairy, Abdulaziz A; Musarrat, Javed

    2016-06-15

    ZnO nanoparticles (ZnONPs) were synthesised through a simple and efficient biogenic synthesis approach, exploiting the reducing and capping potential of Aloe barbadensis Miller (A. vera) leaf extract (ALE). ALE-capped ZnO nanoparticles (ALE-ZnONPs) were characterized using UV-Vis spectroscopy, X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), and transmission electron microscopy (TEM) analyses. XRD analysis provided the average size of ZnONPs as 15 nm. FTIR spectral analysis suggested the role of phenolic compounds, terpenoids and proteins present in ALE, in nucleation and stability of ZnONPs. Flow cytometry and atomic absorption spectrophotometry (AAS) data analyses revealed the surface binding and internalization of ZnONPs in Gram +ve (Staphylococcus aureus) and Gram -ve (Escherichia coli) cells, respectively. Significant antibacterial activity of ALE-ZnONPs was observed against extended spectrum beta lactamases (ESBL) positive E. coli, Pseudomonas aeruginosa, and methicillin resistant S. aureus (MRSA) clinical isolates exhibiting the MIC and MBC values of 2200, 2400 μg/ml and 2300, 2700 μg/ml, respectively. Substantial inhibitory effects of ALE-ZnONPs on bacterial growth kinetics, exopolysaccharides and biofilm formation, unequivocally suggested the antibiotic and anti-biofilm potential. Overall, the results elucidated a rapid, environmentally benign, cost-effective, and convenient method for ALE-ZnONPs synthesis, for possible applications as nanoantibiotics or drug carriers. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Modeling the cost and benefit of proteome regulation in a growing bacterial cell

    NASA Astrophysics Data System (ADS)

    Sharma, Pooja; Pratim Pandey, Parth; Jain, Sanjay

    2018-07-01

    Escherichia coli cells differentially regulate the production of metabolic and ribosomal proteins in order to stay close to an optimal growth rate in different environments, and exhibit the bacterial growth laws as a consequence. We present a simple mathematical model of a growing-dividing cell in which an internal dynamical mechanism regulates the allocation of proteomic resources between different protein sectors. The model allows an endogenous determination of the growth rate of the cell as a function of cellular and environmental parameters, and reproduces the bacterial growth laws. We use the model and its variants to study the balance between the cost and benefit of regulation. A cost is incurred because cellular resources are diverted to produce the regulatory apparatus. We show that there is a window of environments or a ‘niche’ in which the unregulated cell has a higher fitness than the regulated cell. Outside this niche there is a large space of constant and time varying environments in which regulation is an advantage. A knowledge of the ‘niche boundaries’ allows one to gain an intuitive understanding of the class of environments in which regulation is an advantage for the organism and which would therefore favour the evolution of regulation. The model allows us to determine the ‘niche boundaries’ as a function of cellular parameters such as the size of the burden of the regulatory apparatus. This class of models may be useful in elucidating various tradeoffs in cells and in making in-silico predictions relevant for synthetic biology.

  11. Selectivity of Pinus sylvestris extract and essential oil to estrogen-insensitive breast cancer cells Pinus sylvestris against cancer cells

    PubMed Central

    Hoai, Nguyen Thi; Duc, Ho Viet; Thao, Do Thi; Orav, Anne; Raal, Ain

    2015-01-01

    Background: So far, the anticancer action of pine tree extracts has mainly been shown for the species distributed widely around the Asian countries. Objective: Therefore, this study was performed to examine the potential cytotoxicity of Scots pine (Pinus sylvestris L.) native also to the European region and growing widely in Estonia. Materials and Methods: The cytotoxic activity of methanol extract and essential oil of Scots pine needles was determined by sulforhodamine B assay in different human cancer cell lines. Results: This needle extract was found to suppress the viability of several human cancer cell lines showing some selectivity to estrogen receptor negative breast cancer cells, MDA-MB-231(half maximal inhibitory concentration [IC50] 35 μg/ml) in comparison with estrogen receptor-positive breast cancer cells, MCF-7 (IC50 86 μg/ml). It is the strongest cytotoxic effect at all measured, thus far for the needles and leaves extracts derived from various pine species, and is also the first study comparing the anticancer effects of pine tree extracts on molecularly different human breast cancer cells. The essential oil showed the stronger cytotoxic effect to both negative and positive breast cancer cell lines (both IC50 29 μg/ml) than pine extract (IC50 42 and 80 μg/ml, respectively). Conclusion: The data from this report indicate that Scots pine needles extract and essential oil exhibits some potential as chemopreventive or chemotherapeutic agent for mammary tumors unresponsive to endocrine treatment. PMID:26664017

  12. Selectivity of Pinus sylvestris extract and essential oil to estrogen-insensitive breast cancer cells Pinus sylvestris against cancer cells.

    PubMed

    Hoai, Nguyen Thi; Duc, Ho Viet; Thao, Do Thi; Orav, Anne; Raal, Ain

    2015-10-01

    So far, the anticancer action of pine tree extracts has mainly been shown for the species distributed widely around the Asian countries. Therefore, this study was performed to examine the potential cytotoxicity of Scots pine (Pinus sylvestris L.) native also to the European region and growing widely in Estonia. The cytotoxic activity of methanol extract and essential oil of Scots pine needles was determined by sulforhodamine B assay in different human cancer cell lines. This needle extract was found to suppress the viability of several human cancer cell lines showing some selectivity to estrogen receptor negative breast cancer cells, MDA-MB-231(half maximal inhibitory concentration [IC50] 35 μg/ml) in comparison with estrogen receptor-positive breast cancer cells, MCF-7 (IC50 86 μg/ml). It is the strongest cytotoxic effect at all measured, thus far for the needles and leaves extracts derived from various pine species, and is also the first study comparing the anticancer effects of pine tree extracts on molecularly different human breast cancer cells. The essential oil showed the stronger cytotoxic effect to both negative and positive breast cancer cell lines (both IC50 29 μg/ml) than pine extract (IC50 42 and 80 μg/ml, respectively). The data from this report indicate that Scots pine needles extract and essential oil exhibits some potential as chemopreventive or chemotherapeutic agent for mammary tumors unresponsive to endocrine treatment.

  13. The antibiotic activity and mechanisms of sugarcane (Saccharum officinarum L.) bagasse extract against food-borne pathogens.

    PubMed

    Zhao, Yi; Chen, Mingshun; Zhao, Zhengang; Yu, Shujuan

    2015-10-15

    Sugarcane bagasse contains natural compositions that can significantly inhibit food-borne pathogens growth. In the present study, the phenolic content in sugarcane bagasse was detected as higher than 4 mg/g dry bagasse, with 470 mg quercetin/g polyphenol. The sugarcane bagasse extract showed bacteriostatic activity against the growth of Staphylococcus aureus, Listeria monocytogenes, Escherichia coli and Salomonella typhimurium. Additionally, the sugarcane bagasse extract can increase the electric conductivity of bacterial cell suspensions causing cellular leaking of electrolytes. Results of sodium dodecyl sulfate polyacrylamide gel electrophoresis suggested the antibacterial mechanism was probably due to the damaged cellular proteins by sugarcane bagasse extract. The results of scanning electron microscopy and transmission electron microscopy showed that the sugarcane bagasse extract might change cell morphology and internal structure. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. DBIO Best Thesis Award: Mechanics, Dynamics, and Organization of the Bacterial Cytoskeleton and Cell Wall

    NASA Astrophysics Data System (ADS)

    Wang, Siyuan

    2012-02-01

    Bacteria come in a variety of shapes. While the peptidoglycan (PG) cell wall serves as an exoskeleton that defines the static cell shape, the internal bacterial cytoskeleton mediates cell shape by recruiting PG synthesis machinery and thus defining the pattern of cell-wall synthesis. While much is known about the chemistry and biology of the cytoskeleton and cell wall, much of their biophysics, including essential aspects of the functionality, dynamics, and organization, remain unknown. This dissertation aims to elucidate the detailed biophysical mechanisms of cytoskeleton guided wall synthesis. First, I find that the bacterial cytoskeleton MreB contributes nearly as much to the rigidity of an Escherichia coli cell as the cell wall. This conclusion implies that the cytoskeletal polymer MreB applies meaningful force to the cell wall, an idea favored by theoretical modeling of wall growth, and suggests an evolutionary origin of cytoskeleton-governed cell rigidity. Second, I observe that MreB rotates around the long axis of E. coli, and the motion depends on wall synthesis. This is the first discovery of a cell-wall assembly driven molecular motor in bacteria. Third, I prove that both cell-wall synthesis and the PG network have chiral ordering, which is established by the spatial pattern of MreB. This work links the molecular structure of the cytoskeleton and of the cell wall with organismal-scale behavior. Finally, I develop a mathematical model of cytoskeleton-cell membrane interactions, which explains the preferential orientation of different cytoskeleton components in bacteria.

  15. Rapid Antibiotic Susceptibility Testing of Uropathogenic E. coli by Tracking Submicron Scale Motion of Single Bacterial Cells.

    PubMed

    Syal, Karan; Shen, Simon; Yang, Yunze; Wang, Shaopeng; Haydel, Shelley E; Tao, Nongjian

    2017-08-25

    To combat antibiotic resistance, a rapid antibiotic susceptibility testing (AST) technology that can identify resistant infections at disease onset is required. Current clinical AST technologies take 1-3 days, which is often too slow for accurate treatment. Here we demonstrate a rapid AST method by tracking sub-μm scale bacterial motion with an optical imaging and tracking technique. We apply the method to clinically relevant bacterial pathogens, Escherichia coli O157: H7 and uropathogenic E. coli (UPEC) loosely tethered to a glass surface. By analyzing dose-dependent sub-μm motion changes in a population of bacterial cells, we obtain the minimum bactericidal concentration within 2 h using human urine samples spiked with UPEC. We validate the AST method using the standard culture-based AST methods. In addition to population studies, the method allows single cell analysis, which can identify subpopulations of resistance strains within a sample.

  16. In Vivo Consumption of Cranberry Exerts ex Vivo Antiadhesive Activity against FimH-Dominated Uropathogenic Escherichia coli: A Combined in Vivo, ex Vivo, and in Vitro Study of an Extract from Vaccinium macrocarpon.

    PubMed

    Rafsanjany, Nasli; Senker, Jandirk; Brandt, Simone; Dobrindt, Ulrich; Hensel, Andreas

    2015-10-14

    For investigation of the molecular interaction of cranberry extract with adhesins of uropathogenic Escherichia coli (UPEC), urine from four volunteers consuming standardized cranberry extract (proanthocyanidin content = 1.24%) was analyzed within ex vivo experiments, indicating time-dependent significant inhibition of 40-50% of bacterial adhesion of UPEC strain NU14 to human T24 bladder cells. Under in vitro conditions a dose-dependent increase in bacterial adhesion was observed with proanthocyanidin-enriched cranberry Vaccinium macrocarpon extract (proanthocyanidin content = 21%). Confocal laser scanning microscopy and scanning electron microscopy proved that V.m. extract led to the formation of bacterial clusters on the outer plasma membrane of the host cells without subsequent internalization. This agglomerating activity was not observed when a PAC-depleted extract (V.m. extract(≠PAC)) was used, which showed significant inhibition of bacterial adhesion in cases where type 1 fimbriae dominated and mannose-sensitive UPEC strain NU14 was used. V.m. extract(≠PAC) had no inhibitory activity against P- and F1C-fimbriae dominated strain 2980. Quantitative gene expression analysis indicated that PAC-containing as well as PAC-depleted cranberry extracts increased the fimH expression in NU14 as part of a feedback mechanism after blocking FimH. For strain 2980 the PAC-containing extract led to up-regulation of P- and F1C-fimbriae, whereas the PAC-depleted extract had no influence on gene expression. V.m. and V.m. extract(≠PAC) did not influence biofilm and curli formation in UPEC strains NU14 and 2980. These data lead to the conclusion that also proanthocyanidin-free cranberry extracts exert antiadhesive activity by interaction with mannose-sensitive type 1 fimbriae of UPEC.

  17. A convenient microbiological assay employing cell-free extracts for the rapid characterization of Gram-negative carbapenemase producers.

    PubMed

    Marchiaro, Patricia; Ballerini, Viviana; Spalding, Tamara; Cera, Gabriela; Mussi, María A; Morán-Barrio, Jorgelina; Vila, Alejandro J; Viale, Alejandro M; Limansky, Adriana S

    2008-08-01

    The dissemination of metallo and serine carbapenem-hydrolysing beta-lactamases among Gram-negative nosocomial bacteria represents an acute problem worldwide. Here, we present a rapid and sensitive assay for the characterization of carbapenemase producers to aid in infection control and prevention. The assay involves a rapid disruption of bacterial isolates with silicon dioxide microbeads, followed by the testing in cell-free extracts of hydrolytic activity towards various beta-lactams including two carbapenems (imipenem and meropenem) and a cephalosporin (ceftazidime). A parallel testing of the effects of selective beta-lactamase inhibitors such as EDTA and clavulanic acid allows differentiation of metallo carbapenemases from serine carbapenemases, and also clavulanic-acid-sensitive from -resistant enzymes among the latter. The efficiency of bacterial disruption using silicon dioxide microbeads was identical to that of ultrasonic treatment. The subsequent microbiological assay aimed to evaluate both substrate specificity and inhibitor profile of carbapenem-hydrolysing enzymes present in the extracts and allowed an accurate differentiation of A, B and D types, as judged by the analysis of 24 well-characterized clinical strains that included metallo-beta-lactamase producers (i.e. VIM-, IMP- and SPM-type Pseudomonas producers; an L1 Stenotrophomonas maltophilia producer; and a GOB-18 Elizabethkingia meningoseptica producer) as well as serine carbapenemase producers (i.e. an SME-type Serratia marcescens producer, a GES-2 Pseudomonas aeruginosa producer, Klebsiella pneumoniae and Citrobacter freundii KPC-2 producers and OXA-type Acinetobacter baumannii producers). We have developed a convenient microbiological assay aimed to more accurately and in a short time characterize carbapenem-hydrolysing enzymes produced by Gram-negative bacteria. The assay possesses broad applicability in the clinical setting.

  18. Do cancer cells in human and meristematic cells in plant exhibit similar responses toward plant extracts with cytotoxic activities?

    PubMed

    Khalifa, Noha S; Barakat, Hoda S; Elhallouty, Salwa; Salem, Dina

    2015-01-01

    We examined the effect of water extracts of Persea americana fruit, and of the leaves of Tabernamontana divericata, Nerium oleander and Annona cherimolia (positive control) on Vicia faba root cells. We had confirmed in our previously published data the cytotoxicity of these plant extracts on four human cancer cell lines: liver (HepG-2), lung (A549), colon (HT-29) and breast (MCF-7). Vicia faba roots were soaked in plant extracts at dilutions of 100, 1,250, 2,500, 5,000, 10,000, 20,000 ppm for 4 and 24 h. All treatments resulted in a significant reduction in the mitotic index in a dose dependant manner. Root cells treated with T. divericata, N. oleander and A. cherimolia exhibited a decrease in prophase cell percentage, increase in micronuclei and chromosomal abnormalities as concentration increased. The P. americana treatment showed the highest cytotoxic effect on cancer cells, prophase cell percentage increased linearly with the applied concentration and no micronuclei were detected. This study shows that root tip assay of beans can be used in initial screening for new plant extracts to validate their use as candidates for containing active cytotoxic agents against malignant cells. This will greatly help in exploring new plant extracts as drugs for cancer treatment.

  19. Wound healing potential of Spirulina platensis extracts on human dermal fibroblast cells

    PubMed Central

    Syarina, Pauzi Nur Aimi; Karthivashan, Govindarajan; Abas, Faridah; Arulselvan, Palanisamy; Fakurazi, Sharida

    2015-01-01

    Blue-green alga (Spirulina platensis) is a well renowned nutri-supplement due to its high nutritional and medicinal properties. The aim of this study was to examine the wound healing efficiency of Spirulina platensis at various solvent extracts using in vitro scratch assay on human dermal fibroblast cells (HDF). Various gradient solvent extracts (50 μg/ml of methanolic, ethanolic and aqueous extracts) from Spirulina platensis were treated on HDF cells to acquire its wound healing properties through scratch assay and in this investigation we have used allantoin, as a positive control to compare efficacy among the phytoextracts. Interestingly, aqueous extract were found to stimulate proliferation and migration of HDF cells at given concentrations and enhanced closure rate of wound area within 24 hours after treatment. Methanolic and ethanolic extracts have shown proliferative effect, however these extracts did not aid in the migration and closure of wound area when compared to aqueous extract. Based on phytochemical profile of the plant extracts analyzed by LC-MS/MS, it was shown that compounds supposedly involved in accelerating wound healing are cinnamic acid, narigenin, kaempferol, temsirolimus, phosphatidylserine isomeric derivatives and sulphoquinovosyl diacylglycerol. Our findings concluded that blue-green algae may pose potential biomedical application to treat various chronic wounds especially in diabetes mellitus patients. PMID:27004048

  20. Bacterial extract OM-85 BV protects mice against experimental chronic rhinosinusitis

    PubMed Central

    Tao, Yanli; Yuan, Tiejun; Li, Xuechang; Yang, Shuqin; Zhang, Fanping; Shi, Li

    2015-01-01

    Objectives: To investigate the therapeutic effects of OM-85 BV as an adjunctive treatment on experimental chronic rhinosinusitis (CRS) in mice. Methodology: Female BALB/c mice aged 8-12 weeks were sensitized and administrated by intranasal Aspergillus fumigatis (AF) three times per week for 1 week, 3 weeks, 2 months and 3 months (n = 10 each time point). The mice were randomly and equally assigned to four groups: normal control group, model group, OM-85-BV plus amoxicillin group, and isolated amoxicillin group. Inflammatory changes were determined by hematoxylin-eosin (HE) staining. The expression levels of suppressor of cytokine signaling (SOCS) 1, SOCS3, tumor necrosis factor (TNF)-α, and interferon (IFN)-γ in samples were assessed by using real-time PCR (RT-PCR) and Western blotting. Results: There were significantly inflammatory and structural changes between the model and other groups. Compared to the model group, the mRNA expression levels of SOCS1, SOCS3, TNF-α, and IFN-γ were significantly decreased in OM-85-BV plus amoxicillin group and isolated amoxicillin group, along with the protein levels. Conclusion: The bacterial extract OM-85 BV is a low-cost alternatively adjunctive drug to treat CRS with simple oral administration, good safety, and few side effects. PMID:26261565

  1. Antimicrobial Efficacy of Salvadora persica Extracts on a Monospecies Biofilm on Orthodontic Brackets In Vitro.

    PubMed

    Halawany, Hassan S; Abraham, Nimmi B; Siddiqui, Yunus M; Balto, Hanan A; Jacob, Vimal

    2016-01-01

    The oral cavity is a rich ecosystem with a plethora of microorganisms, and different components of fixed orthodontic appliances may contribute to a shift in the balance of oral ecology. The purpose of this study was to investigate the antimicrobial potential of hexane and ethanol extracts of Salvadora persica on a monospecies biofilm model established on orthodontic brackets in vitro. Streptococcus mutans biofilm was formed on mini diamond orthodontic brackets following three days of anaerobic incubation at 37˚C. The bacterial cell viability of this biofilm was measured after their exposure to saline, hexane extract of S. persica, ethanol extract of S. persica and 0.2% chlorhexidine using 3-(4, 5-dimethylthiazol- 2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulphophenyl)-2H-tetrazolium (MTS) assay. On half of the brackets, the colony forming units (CFU) were counted. Both experiments were performed in triplicate. The absorbance values obtained from the MTS reduction assay after exposure to the different test agents showed a decline in the bacterial cell viability of the S. mutans biofilm as follows: chlorhexidine (+)extract (S. persica, 5 mg/ml)extract (S. persica, 5 mg/ml)extract was slightly more effective than that of the ethanol extract and was nearly as effective as chlorhexidine (+). However, the differences in the absorbance values between the extracts of S. persica and chlorhexidine (+) were not statistically significant (p>0.05). The CFU counts of S. mutans obtained from chlorhexidine exposure were lower than from hexane and ethanol extracts. S. persica extracts were found to have antimicrobial effects on S. mutans biofilm established in vitro on orthodontic brackets suggestive of its potential use as an oral antimicrobial agent for orthodontic patients.

  2. Antimicrobial Activity of a Neem Cake Extract in a Broth Model Meat System

    PubMed Central

    Del Serrone, Paola; Nicoletti, Marcello

    2013-01-01

    This work reports on the antimicrobial activity of an ethyl acetate extract of neem (Azadirachta indica) cake (NCE) against bacteria affecting the quality of retail fresh meat in a broth model meat system. NCE (100 µg) was also tested by the agar disc diffusion method. It inhibited the growth of all tested microorganisms. The NCE growth inhibition zone (IZ) ranged 11.33–22.67 mm while the ciprofloxacin (10 µg) IZ ranged from 23.41–32.67 mm. There was no significant difference (p ≤ 0.05) between the antimicrobial activity of NCE and ciprofloxacin vs. C. jejuni and Leuconostoc spp. The NCE antibacterial activity was moreover determined at lower concentrations (1:10–1:100,000) in micro-assays. The percent growth reduction ranged from 61 ± 2.08–92 ± 3.21. The higher bacterial growth reduction was obtained at 10 µg concentration of NCE. Species-specific PCR and multiplex PCR with the DNA dye propidium monoazide were used to directly detect viable bacterial cells from experimentally contaminated meat samples. The numbers of bacterial cells never significantly (p ≤ 0.05) exceeded the inocula concentration used to experimentally contaminate the NCE treated meat. This report represents a screening methodology to evaluate the antimicrobial capability of a herbal extract to preserve meat. PMID:23917814

  3. Probing Prokaryotic Social Behaviors with Bacterial “Lobster Traps”

    PubMed Central

    Connell, Jodi L.; Wessel, Aimee K.; Parsek, Matthew R.; Ellington, Andrew D.; Whiteley, Marvin; Shear, Jason B.

    2010-01-01

    Bacteria are social organisms that display distinct behaviors/phenotypes when present in groups. These behaviors include the abilities to construct antibiotic-resistant sessile biofilm communities and to communicate with small signaling molecules (quorum sensing [QS]). Our understanding of biofilms and QS arises primarily from in vitro studies of bacterial communities containing large numbers of cells, often greater than 108 bacteria; however, in nature, bacteria often reside in dense clusters (aggregates) consisting of significantly fewer cells. Indeed, bacterial clusters containing 101 to 105 cells are important for transmission of many bacterial pathogens. Here, we describe a versatile strategy for conducting mechanistic studies to interrogate the molecular processes controlling antibiotic resistance and QS-mediated virulence factor production in high-density bacterial clusters. This strategy involves enclosing a single bacterium within three-dimensional picoliter-scale microcavities (referred to as bacterial “lobster traps”) defined by walls that are permeable to nutrients, waste products, and other bioactive small molecules. Within these traps, bacteria divide normally into extremely dense (1012 cells/ml) clonal populations with final population sizes similar to that observed in naturally occurring bacterial clusters. Using these traps, we provide strong evidence that within low-cell-number/high-density bacterial clusters, QS is modulated not only by bacterial density but also by population size and flow rate of the surrounding medium. We also demonstrate that antibiotic resistance develops as cell density increases, with as few as ~150 confined bacteria exhibiting an antibiotic-resistant phenotype similar to biofilm bacteria. Together, these findings provide key insights into clinically relevant phenotypes in low-cell-number/high-density bacterial populations. PMID:21060734

  4. Selective dye-labeling of newly synthesized proteins in bacterial cells.

    PubMed

    Beatty, Kimberly E; Xie, Fang; Wang, Qian; Tirrell, David A

    2005-10-19

    We describe fluorescence labeling of newly synthesized proteins in Escherichia coli cells by means of Cu(I)-catalyzed cycloaddition between alkynyl amino acid side chains and the fluorogenic dye 3-azido-7-hydroxycoumarin. The method involves co-translational labeling of proteins by the non-natural amino acids homopropargylglycine (Hpg) or ethynylphenylalanine (Eth) followed by treatment with the dye. As a demonstration, the model protein barstar was expressed and treated overnight with Cu(I) and 3-azido-7-hydroxycoumarin. Examination of treated cells by confocal microscopy revealed that strong fluorescence enhancement was observed only for alkynyl-barstar treated with Cu(I) and the reactive dye. The cellular fluorescence was punctate, and gel electrophoresis confirmed that labeled barstar was localized in inclusion bodies. Other proteins showed little fluorescence. Examination of treated cells by fluorimetry demonstrated that cultures supplemented with Eth or Hpg showed an 8- to 14-fold enhancement in fluorescence intensity after labeling. Addition of a protein synthesis inhibitor reduced the emission intensity to levels slightly above background, confirming selective labeling of newly synthesized proteins in the bacterial cell.

  5. Wound healing potential of adipose tissue stem cell extract

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Na, You Kyung; Ban, Jae-Jun; Lee, Mijung

    Adipose tissue stem cells (ATSCs) are considered as a promising source in the field of cell therapy and regenerative medicine. In addition to direct cell replacement using stem cells, intercellular molecule exchange by stem cell secretory factors showed beneficial effects by reducing tissue damage and augmentation of endogenous repair. Delayed cutaneous wound healing is implicated in many conditions such as diabetes, aging, stress and alcohol consumption. However, the effects of cell-free extract of ATSCs (ATSC-Ex) containing secretome on wound healing process have not been investigated. In this study, ATSC-Ex was topically applied on the cutaneous wound and healing speed wasmore » examined. As a result, wound closure was much faster in the cell-free extract treated wound than control wound at 4, 6, 8 days after application of ATSC-Ex. Dermal fibroblast proliferation, migration and extracellular matrix (ECM) production are critical aspects of wound healing, and the effects of ATSC-Ex on human dermal fibroblast (HDF) was examined. ATSC-Ex augmented HDF proliferation in a dose-dependent manner and migration ability was enhanced by extract treatment. Representative ECM proteins, collagen type I and matrix metalloproteinase-1, are significantly up-regulated by treatment of ATSC-Ex. Our results suggest that the ATSC-Ex have improving effect of wound healing and can be the potential therapeutic candidate for cutaneous wound healing. - Highlights: • Topical application of ATSC-Ex results in faster wound closure than normal wound in vivo. • ATSC-Ex enhances dermal fibroblast proliferation, migration and extracellular matrix production. • This study suggests that ATSC-Ex is an effective source to augment wound healing.« less

  6. Universal nucleic acids sample preparation method for cells, spores and their mixture

    DOEpatents

    Bavykin, Sergei [Darien, IL

    2011-01-18

    The present invention relates to a method for extracting nucleic acids from biological samples. More specifically the invention relates to a universal method for extracting nucleic acids from unidentified biological samples. An advantage of the presently invented method is its ability to effectively and efficiently extract nucleic acids from a variety of different cell types including but not limited to prokaryotic or eukaryotic cells and/or recalcitrant organisms (i.e. spores). Unlike prior art methods which are focused on extracting nucleic acids from vegetative cell or spores, the present invention effectively extracts nucleic acids from spores, multiple cell types or mixtures thereof using a single method. Important that the invented method has demonstrated an ability to extract nucleic acids from spores and vegetative bacterial cells with similar levels effectiveness. The invented method employs a multi-step protocol which erodes the cell structure of the biological sample, isolates, labels, fragments nucleic acids and purifies labeled samples from the excess of dye.

  7. Comparative Evaluation of Different Cell Lysis and Extraction Methods for Studying Benzo(a)pyrene Metabolism in HT-29 Colon Cancer Cell Cultures

    PubMed Central

    Myers, Jeremy N.; Rekhadevi, Perumalla V.; Ramesh, Aramandla

    2011-01-01

    Lysis and extraction of cells are essential sample processing steps for investigations pertaining to metabolism of xenobiotics in cell culture studies. Of particular importance to these procedures are maintaining high lysis efficiency and analyte integrity as they influence the qualitative and quantitative distribution of drug and toxicant metabolites in the intra- and extracellular milieus. In this study we have compared the efficiency of different procedures viz. homogenization, sonication, bead beating, and molecular grinding resin treatment for disruption of HT-29 colon cells exposed to benzo(a)pyrene (BaP), a polycyclic aromatic hydrocarbon (PAH) compound and a suspected colon carcinogen. Also, we have evaluated the efficiency of various procedures for extracting BaP parent compound/metabolites from colon cells and culture media prior to High Performance Liquid Chromatography (HPLC) analyses. The extraction procedures include solid phase extraction, solid-supported liquid- liquid extraction, liquid-liquid extraction, and homogeneous liquid- liquid extraction. Our findings showed that bead-beating in combination with detergent treatment of cell pellet coupled with liquid-liquid extraction yielded greater concentrations of BaP metabolites compared to the other methods employed. Our method optimization strategy revealed that disruption of HT-29 colon cells by a combination of mechanical and chemical lysis followed by liquid-liquid extraction is efficient and robust enough for analyzing BaP metabolites from cell culture studies. PMID:21865728

  8. Graphene-Iodine Nanocomposites: Highly Potent Bacterial Inhibitors that are Bio-compatible with Human Cells

    PubMed Central

    Some, Surajit; Sohn, Ji Soo; Kim, Junmoo; Lee, Su-Hyun; Lee, Su Chan; Lee, Jungpyo; Shackery, Iman; Kim, Sang Kyum; Kim, So Hyun; Choi, Nakwon; Cho, Il-Joo; Jung, Hyo-Il; Kang, Shinill; Jun, Seong Chan

    2016-01-01

    Graphene-composites, capable of inhibiting bacterial growth which is also bio-compatible with human cells have been highly sought after. Here we report for the first time the preparation of new graphene-iodine nano-composites via electrostatic interactions between positively charged graphene derivatives and triiodide anions. The resulting composites were characterized by X-ray photoemission spectroscopy, UV-spectroscopy, Raman spectroscopy and Scanning electron microscopy. The antibacterial potential of these graphene-iodine composites against Klebsiella pneumonia, Pseudomonas aeruginosa, Proteus mirobilis, Staphylococcus aureus, and E. coli was investigated. In addition, the cytotoxicity of the nanocomposite with human cells [human white blood cells (WBC), HeLa, MDA-MB-231, Fibroblast (primary human keratinocyte) and Keratinocyte (immortalized fibroblast)], was assessed. DGO (Double-oxidizes graphene oxide) was prepared by the additional oxidation of GO (graphene oxide). This generates more oxygen containing functional groups that can readily trap more H+, thus generating a positively charged surface area under highly acidic conditions. This step allowed bonding with a greater number of anionic triiodides and generated the most potent antibacterial agent among graphene-iodine and as-made povidone-iodine (PVP-I) composites also exhibited nontoxic to human cells culture. Thus, these nano-composites can be used to inhibit the growth of various bacterial species. Importantly, they are also very low-cytotoxic to human cells culture. PMID:26843066

  9. Phylogenetic and Metagenomic Analyses of Substrate-Dependent Bacterial Temporal Dynamics in Microbial Fuel Cells

    PubMed Central

    Zhang, Husen; Chen, Xi; Braithwaite, Daniel; He, Zhen

    2014-01-01

    Understanding the microbial community structure and genetic potential of anode biofilms is key to improve extracellular electron transfers in microbial fuel cells. We investigated effect of substrate and temporal dynamics of anodic biofilm communities using phylogenetic and metagenomic approaches in parallel with electrochemical characterizations. The startup non-steady state anodic bacterial structures were compared for a simple substrate, acetate, and for a complex substrate, landfill leachate, using a single-chamber air-cathode microbial fuel cell. Principal coordinate analysis showed that distinct community structures were formed with each substrate type. The bacterial diversity measured as Shannon index decreased with time in acetate cycles, and was restored with the introduction of leachate. The change of diversity was accompanied by an opposite trend in the relative abundance of Geobacter-affiliated phylotypes, which were acclimated to over 40% of total Bacteria at the end of acetate-fed conditions then declined in the leachate cycles. The transition from acetate to leachate caused a decrease in output power density from 243±13 mW/m2 to 140±11 mW/m2, accompanied by a decrease in Coulombic electron recovery from 18±3% to 9±3%. The leachate cycles selected protein-degrading phylotypes within phylum Synergistetes. Metagenomic shotgun sequencing showed that leachate-fed communities had higher cell motility genes including bacterial chemotaxis and flagellar assembly, and increased gene abundance related to metal resistance, antibiotic resistance, and quorum sensing. These differentially represented genes suggested an altered anodic biofilm community in response to additional substrates and stress from the complex landfill leachate. PMID:25202990

  10. Phylogenetic and metagenomic analyses of substrate-dependent bacterial temporal dynamics in microbial fuel cells.

    PubMed

    Zhang, Husen; Chen, Xi; Braithwaite, Daniel; He, Zhen

    2014-01-01

    Understanding the microbial community structure and genetic potential of anode biofilms is key to improve extracellular electron transfers in microbial fuel cells. We investigated effect of substrate and temporal dynamics of anodic biofilm communities using phylogenetic and metagenomic approaches in parallel with electrochemical characterizations. The startup non-steady state anodic bacterial structures were compared for a simple substrate, acetate, and for a complex substrate, landfill leachate, using a single-chamber air-cathode microbial fuel cell. Principal coordinate analysis showed that distinct community structures were formed with each substrate type. The bacterial diversity measured as Shannon index decreased with time in acetate cycles, and was restored with the introduction of leachate. The change of diversity was accompanied by an opposite trend in the relative abundance of Geobacter-affiliated phylotypes, which were acclimated to over 40% of total Bacteria at the end of acetate-fed conditions then declined in the leachate cycles. The transition from acetate to leachate caused a decrease in output power density from 243±13 mW/m2 to 140±11 mW/m2, accompanied by a decrease in Coulombic electron recovery from 18±3% to 9±3%. The leachate cycles selected protein-degrading phylotypes within phylum Synergistetes. Metagenomic shotgun sequencing showed that leachate-fed communities had higher cell motility genes including bacterial chemotaxis and flagellar assembly, and increased gene abundance related to metal resistance, antibiotic resistance, and quorum sensing. These differentially represented genes suggested an altered anodic biofilm community in response to additional substrates and stress from the complex landfill leachate.

  11. Noninvasive Measurement of Bacterial Intracellular pH on a Single-Cell Level with Green Fluorescent Protein and Fluorescence Ratio Imaging Microscopy

    PubMed Central

    Olsen, Katja N.; Budde, Birgitte B.; Siegumfeldt, Henrik; Rechinger, K. Björn; Jakobsen, Mogens; Ingmer, Hanne

    2002-01-01

    We show that a pH-sensitive derivative of the green fluorescent protein, designated ratiometric GFP, can be used to measure intracellular pH (pHi) in both gram-positive and gram-negative bacterial cells. In cells expressing ratiometric GFP, the excitation ratio (fluorescence intensity at 410 and 430 nm) is correlated to the pHi, allowing fast and noninvasive determination of pHi that is ideally suited for direct analysis of individual bacterial cells present in complex environments. PMID:12147523

  12. Intrinsic anticarcinogenic effects of Piper sarmentosum ethanolic extract on a human hepatoma cell line

    PubMed Central

    Zainal Ariffin, Shahrul Hisham; Wan Omar, Wan Haifa Haryani; Zainal Ariffin, Zaidah; Safian, Muhd Fauzi; Senafi, Sahidan; Megat Abdul Wahab, Rohaya

    2009-01-01

    Background Piper sarmentosum, locally known as kaduk is belonging to the family of Piperaceae. It is our interest to evaluate their effect on human hepatoma cell line (HepG2) for the potential of anticarcinogenic activity. Results The anticarcinogenic activity of an ethanolic extract from Piper sarmentosum in HepG2 and non-malignant Chang's liver cell lines has been previously determined using (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl-tetrazolium bromide) (MTT) assays, where the IC50 value was used as a parameter for cytotoxicity. The ethanolic extract that showed anticarcinogenic properties in HepG2 cells had an IC50 of 12.5 μg mL-1, while IC50 values in the non-malignant Chang's liver cell line were greater than 30 μg mL-1. Apoptotic morphological changes in HepG2 cells were observed using an inverted microscope and showed chromatin condensation, cell shrinkage and apoptotic bodies following May-Grunwald-Giemsa's staining. The percentage of apoptotic cells in the overall population (apoptotic index) showed a continuously significant increase (p < 0.05) in 12.5 μg mL-1 ethanolic extract-treated cells at 24, 48 and 72 hours compared to controls (untreated cells). Following acridine orange and ethidium bromide staining, treatment with 10, 12 and 14 μg mL-1 of ethanolic extracts caused typical apoptotic morphological changes in HepG2 cells. Molecular analysis of DNA fragmentation was used to examine intrinsic apoptosis induced by the ethanolic extracts. These results showed a typical intrinsic apoptotic characterisation, which included fragmentation of nuclear DNA in ethanolic extract-treated HepG2 cells. However, the non-malignant Chang's liver cell line produced no DNA fragmentation. In addition, the DNA genome was similarly intact for both the untreated non-malignant Chang's liver and HepG2 cell lines. Conclusion Therefore, our results suggest that the ethanolic extract from P. sarmentosum induced anticarcinogenic activity through an intrinsic apoptosis

  13. OmpA: A Flexible Clamp for Bacterial Cell Wall Attachment.

    PubMed

    Samsudin, Firdaus; Ortiz-Suarez, Maite L; Piggot, Thomas J; Bond, Peter J; Khalid, Syma

    2016-12-06

    The envelope of Gram-negative bacteria is highly complex, containing separate outer and inner membranes and an intervening periplasmic space encompassing a peptidoglycan (PGN) cell wall. The PGN scaffold is anchored non-covalently to the outer membrane via globular OmpA-like domains of various proteins. We report atomically detailed simulations of PGN bound to OmpA in three different states, including the isolated C-terminal domain (CTD), the full-length monomer, or the complete full-length dimeric form. Comparative analysis of dynamics of OmpA CTD from different bacteria helped to identify a conserved PGN-binding mode. The dynamics of full-length OmpA, embedded within a realistic representation of the outer membrane containing full-rough (Ra) lipopolysaccharide, phospholipids, and cardiolipin, suggested how the protein may provide flexible mechanical support to the cell wall. An accurate model of the heterogeneous bacterial cell envelope should facilitate future efforts to develop antibacterial agents. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Non-invasive imaging of oxygen extraction fraction in adults with sickle cell anaemia.

    PubMed

    Jordan, Lori C; Gindville, Melissa C; Scott, Allison O; Juttukonda, Meher R; Strother, Megan K; Kassim, Adetola A; Chen, Sheau-Chiann; Lu, Hanzhang; Pruthi, Sumit; Shyr, Yu; Donahue, Manus J

    2016-03-01

    Sickle cell anaemia is a monogenetic disorder with a high incidence of stroke. While stroke screening procedures exist for children with sickle cell anaemia, no accepted screening procedures exist for assessing stroke risk in adults. The purpose of this study is to use novel magnetic resonance imaging methods to evaluate physiological relationships between oxygen extraction fraction, cerebral blood flow, and clinical markers of cerebrovascular impairment in adults with sickle cell anaemia. The specific goal is to determine to what extent elevated oxygen extraction fraction may be uniquely present in patients with higher levels of clinical impairment and therefore may represent a candidate biomarker of stroke risk. Neurological evaluation, structural imaging, and the non-invasive T2-relaxation-under-spin-tagging magnetic resonance imaging method were applied in sickle cell anaemia (n = 34) and healthy race-matched control (n = 11) volunteers without sickle cell trait to assess whole-brain oxygen extraction fraction, cerebral blood flow, degree of vasculopathy, severity of anaemia, and presence of prior infarct; findings were interpreted in the context of physiological models. Cerebral blood flow and oxygen extraction fraction were elevated (P < 0.05) in participants with sickle cell anaemia (n = 27) not receiving monthly blood transfusions (interquartile range cerebral blood flow = 46.2-56.8 ml/100 g/min; oxygen extraction fraction = 0.39-0.50) relative to controls (interquartile range cerebral blood flow = 40.8-46.3 ml/100 g/min; oxygen extraction fraction = 0.33-0.38). Oxygen extraction fraction (P < 0.0001) but not cerebral blood flow was increased in participants with higher levels of clinical impairment. These data provide support for T2-relaxation-under-spin-tagging being able to quickly and non-invasively detect elevated oxygen extraction fraction in individuals with sickle cell anaemia with higher levels of clinical impairment. Our results support the

  15. Fermentation of aqueous plant seed extracts by lactic acid bacteria

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schafner, D.W.; Beuchat, R.L.

    1986-05-01

    The effects of lactic acid bacterial fermentation on chemical and physical changes in aqueous extracts of cowpea (Vigna unguiculata), peanut (Arachis hypogea), soybean (Glycine max), and sorghum (Sorghum vulgare) were studied. The bacteria investigated were Lactobacillus helveticus, L. delbrueckii, L. casei, L. bulgaricus, L. acidophilus, and Streptococcus thermophilus. Organisms were inoculated individually into all of the seed extracts; L. bulgaricus and S. thermophilus were also evaluated together as inocula for fermenting the legume extracts. During fermentation, bacterial population and changes in titratable acidity, pH, viscosity, and color were measured over a 72 h period at 37 degrees C. Maximum bacterialmore » populations, titratable acidity, pH, and viscosity varied depending upon the type of extract and bacterial strain. The maximum population of each organism was influenced by fermentable carbohydrates, which, in turn, influenced acid production and change in pH. Change in viscosity was correlated with the amount of protein and titratable acidity of products. Color was affected by pasteurization treatment and fermentation as well as the source of extract. In the extracts inoculated simultaneously with L. bulgaricus and S. thermophilus, a synergistic effect resulted in increased bacterial populations, titratable acidity, and viscosity, and decreased pH in all the legume extracts when compared to the extracts fermented with either of these organisms individually. Fermented extracts offer potential as substitutes for cultured dairy products. 24 references.« less

  16. Palladium-bacterial cellulose membranes for fuel cells.

    PubMed

    Evans, Barbara R; O'Neill, Hugh M; Malyvanh, Valerie P; Lee, Ida; Woodward, Jonathan

    2003-07-01

    Bacterial cellulose is a versatile renewable biomaterial that can be used as a hydrophilic matrix for the incorporation of metals into thin, flexible, thermally stable membranes. In contrast to plant cellulose, we found it catalyzed the deposition of metals within its structure to generate a finely divided homogeneous catalyst layer. Experimental data suggested that bacterial cellulose possessed reducing groups capable of initiating the precipitation of palladium, gold, and silver from aqueous solution. Since the bacterial cellulose contained water equivalent to at least 200 times the dry weight of the cellulose, it was dried to a thin membranous structure suitable for the construction of membrane electrode assemblies (MEAs). Results of our study with palladium-cellulose showed that it was capable of catalyzing the generation of hydrogen when incubated with sodium dithionite and generated an electrical current from hydrogen in an MEA containing native cellulose as the polyelectrolyte membrane (PEM). Advantages of using native and metallized bacterial cellulose membranes in an MEA over other PEMs such as Nafion 117 include its higher thermal stability to 130 degrees C and lower gas crossover.

  17. Cancer-suppressive potential of extracts of endemic plant Helichrysum zivojinii: effects on cell migration, invasion and angiogenesis.

    PubMed

    Matić, Ivana Z; Aljancić, Ivana; Vajs, Vlatka; Jadranin, Milka; Gligorijević, Nevenka; Milosavljević, Slobodan; Juranić, Zorica D

    2013-09-01

    Helichrysum zivojinii Cernjavski & Soska is an endemic plant species that grows in the National Park Galicica in Macedonia. Five extracts were isolated as fractions from the aerial parts of the plant: a n-hexane extract (1), a dichloromethane extract (2), an ethyl-acetate extract (3), a n-butanol extract (4) and a methanol extract (5). A dose-dependent cytotoxic activity of the extracts on MDA-MB-231 and EA.hy926 cells was observed. Extracts exhibited more pronounced cytotoxic actions on MDA-MB-231 cells than on EA.hy926 cells. The n-hexane extract (1), at a non-toxic concentration, exhibited an inhibitory effect on the migration as well the invasiveness of MDA-MB-231 cells. The dichloromethane extract (2), at a non-toxic concentration, demonstrated inhibition of MDA-MB-231 cells invasion. Each of the five extracts applied at non-toxic concentrations inhibited migration of EA.hy926 cells. The prominent inhibitory effect of the n-hexane extract on EA.hy926 cells migration was associated with a notable anti-angiogenic action of this extract. The other four tested extracts demonstrated mild anti-angiogenic activity. Our data highlight the prominent anticancer potential of n-hexane (1) and dichloromethane (2) extracts, which could be attributed to their very pronounced and selective cytotoxic activities as well as their anti-invasive and anti-angiogenic properties.

  18. Protein expression of preferred human codon-optimized Gaussia luciferase genes with an artificial open-reading frame in mammalian and bacterial cells.

    PubMed

    Inouye, Satoshi; Suzuki, Takahiro

    2016-12-01

    The protein expressions of three preferred human codon-optimized Gaussia luciferase genes (pGLuc, EpGLuc, and KpGLuc) were characterized in mammalian and bacterial cells by comparing them with those of wild-type Gaussia luciferase gene (wGLuc) and human codon-optimized Gaussia luciferase gene (hGLuc). Two synthetic genes of EpGLuc and KpGLuc containing the complete preferred human codons have an artificial open-reading frame; however, they had the similar protein expression levels to those of pGLuc and hGLuc in mammalian cells. In bacterial cells, the protein expressions of pGLuc, EpGLuc, and KpGLuc with approximately 65% GC content were the same and showed approximately 60% activities of wGLuc and hGLuc. The artificial open-reading frame in EpGLuc and KpGLuc did not affect the protein expression in mammalian and bacterial cells. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Remodeling of ribosomal genes in somatic cells by Xenopus egg extract

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ostrup, Olga, E-mail: osvarcova@gmail.com; Stem Cell Epigenetics Laboratory, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo; Norwegian Center for Stem Cell Research, Oslo

    Highlights: {yields} Xenopus egg extract remodels nuclei and alter cell growth characteristics. {yields} Ribosomal genes are reprogrammed within 6 h after extract exposure. {yields} rDNA reprogramming involves promoter targeting of SNF2H remodeling complex. {yields} Xenopus egg extract does not initiate stress-related response in somatic cells. {yields} Aza-cytidine elicits a stress-induced response in reprogrammed cells. -- Abstract: Extracts from Xenopus eggs can reprogram gene expression in somatic nuclei, however little is known about the earliest processes associated with the switch in the transcriptional program. We show here that an early reprogramming event is the remodeling of ribosomal chromatin and gene expression.more » This occurs within hours of extract treatment and is distinct from a stress response. Egg extract elicits remodeling of the nuclear envelope, chromatin and nucleolus. Nucleolar remodeling involves a rapid and stable decrease in ribosomal gene transcription, and promoter targeting of the nucleolar remodeling complex component SNF2H without affecting occupancy of the transcription factor UBF and the stress silencers SUV39H1 and SIRT1. During this process, nucleolar localization of UBF and SIRT1 is not altered. On contrary, azacytidine pre-treatment has an adverse effect on rDNA remodeling induced by extract and elicits a stress-type nuclear response. Thus, an early event of Xenopus egg extract-mediated nuclear reprogramming is the remodeling of ribosomal genes involving nucleolar remodeling complex. Condition-specific and rapid silencing of ribosomal genes may serve as a sensitive marker for evaluation of various reprogramming methods.« less

  20. Bacterially mediated mineralization of vaterite

    NASA Astrophysics Data System (ADS)

    Rodriguez-Navarro, Carlos; Jimenez-Lopez, Concepcion; Rodriguez-Navarro, Alejandro; Gonzalez-Muñoz, Maria Teresa; Rodriguez-Gallego, Manuel

    2007-03-01

    Myxococcus xanthus, a common soil bacterium, plays an active role in the formation of spheroidal vaterite. Bacterial production of CO 2 and NH 3 and the transformation of the NH 3 to NH4+ and OH -, thus increasing solution pH and carbonate alkalinity, set the physicochemical conditions (high supersaturation) leading to vaterite precipitation in the microenvironment around cells, and directly onto the surface of bacterial cells. In the latter case, fossilization of bacteria occurs. Vaterite crystals formed by aggregation of oriented nanocrystals with c-axis normal to the bacterial cell-wall, or to the core of the spherulite when bacteria were not encapsulated. While preferred orientation of vaterite c-axis appears to be determined by electrostatic affinity (ionotropic effect) between vaterite crystal (0001) planes and the negatively charged functional groups of organic molecules on the bacterium cell-wall or on extracellular polymeric substances (EPS), analysis of the changes in the culture medium chemistry as well as high resolution transmission electron microscopy (HRTEM) observations point to polymorph selection by physicochemical (kinetic) factors (high supersaturation) and stabilization by organics, both connected with bacterial activity. The latter is in agreement with inorganic precipitation of vaterite induced by NH 3 and CO 2 addition in the protein-rich sterile culture medium. Our results as well as recent studies on vaterite precipitation in the presence of different types of bacteria suggest that bacterially mediated vaterite precipitation is not strain-specific, and could be more common than previously thought.

  1. Formation and dissolution of bacterial colonies.

    PubMed

    Weber, Christoph A; Lin, Yen Ting; Biais, Nicolas; Zaburdaev, Vasily

    2015-09-01

    Many organisms form colonies for a transient period of time to withstand environmental pressure. Bacterial biofilms are a prototypical example of such behavior. Despite significant interest across disciplines, physical mechanisms governing the formation and dissolution of bacterial colonies are still poorly understood. Starting from a kinetic description of motile and interacting cells we derive a hydrodynamic equation for their density on a surface, where most of the kinetic coefficients are estimated from experimental data for N. gonorrhoeae bacteria. We use it to describe the formation of multiple colonies with sizes consistent with experimental observations. Finally, we show how the changes in the cell-to-cell interactions lead to the dissolution of the bacterial colonies. The successful application of kinetic theory to a complex far from equilibrium system such as formation and dissolution of living bacterial colonies potentially paves the way for the physical quantification of the initial stages of biofilm formation.

  2. Mycoplasma pneumoniae, an Underutilized Model for Bacterial Cell Biology

    PubMed Central

    2014-01-01

    In recent decades, bacterial cell biology has seen great advances, and numerous model systems have been developed to study a wide variety of cellular processes, including cell division, motility, assembly of macromolecular structures, and biogenesis of cell polarity. Considerable attention has been given to these model organisms, which include Escherichia coli, Bacillus subtilis, Caulobacter crescentus, and Myxococcus xanthus. Studies of these processes in the pathogenic bacterium Mycoplasma pneumoniae and its close relatives have also been carried out on a smaller scale, but this work is often overlooked, in part due to this organism's reputation as minimalistic and simple. In this minireview, I discuss recent work on the role of the M. pneumoniae attachment organelle (AO), a structure required for adherence to host cells, in these processes. The AO is constructed from proteins that generally lack homology to those found in other organisms, and this construction occurs in coordination with cell cycle events. The proteins of the M. pneumoniae AO share compositional features with proteins with related roles in model organisms. Once constructed, the AO becomes activated for its role in a form of gliding motility whose underlying mechanism appears to be distinct from that of other gliding bacteria, including Mycoplasma mobile. Together with the FtsZ cytoskeletal protein, motility participates in the cell division process. My intention is to bring this deceptively complex organism into alignment with the better-known model systems. PMID:25157081

  3. Pumpkin seed extract: Cell growth inhibition of hyperplastic and cancer cells, independent of steroid hormone receptors.

    PubMed

    Medjakovic, Svjetlana; Hobiger, Stefanie; Ardjomand-Woelkart, Karin; Bucar, Franz; Jungbauer, Alois

    2016-04-01

    Pumpkin seeds have been known in folk medicine as remedy for kidney, bladder and prostate disorders since centuries. Nevertheless, pumpkin research provides insufficient data to back up traditional beliefs of ethnomedical practice. The bioactivity of a hydro-ethanolic extract of pumpkin seeds from the Styrian pumpkin, Cucurbita pepo L. subsp. pepo var. styriaca, was investigated. As pumpkin seed extracts are standardized to cucurbitin, this compound was also tested. Transactivational activity was evaluated for human androgen receptor, estrogen receptor and progesterone receptor with in vitro yeast assays. Cell viability tests with prostate cancer cells, breast cancer cells, colorectal adenocarcinoma cells and a hyperplastic cell line from benign prostate hyperplasia tissue were performed. As model for non-hyperplastic cells, effects on cell viability were tested with a human dermal fibroblast cell line (HDF-5). No transactivational activity was found for human androgen receptor, estrogen receptor and progesterone receptor, for both, extract and cucurbitin. A cell growth inhibition of ~40-50% was observed for all cell lines, with the exception of HDF-5, which showed with ~20% much lower cell growth inhibition. Given the receptor status of some cell lines, a steroid-hormone receptor independent growth inhibiting effect can be assumed. The cell growth inhibition for fast growing cells together with the cell growth inhibition of prostate-, breast- and colon cancer cells corroborates the ethnomedical use of pumpkin seeds for a treatment of benign prostate hyperplasia. Moreover, due to the lack of androgenic activity, pumpkin seed applications can be regarded as safe for the prostate. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  4. Inonotus obliquus extract induces apoptosis in the human colorectal carcinoma's HCT-116 cell line.

    PubMed

    Tsai, Cheng-Chih; Li, Yu-Sheng; Lin, Pei-Pei

    2017-12-01

    Because of irregular dietary habits and lifestyle in Taiwan, the incidence and mortality rate of colorectal cancer have been increasing rapidly these years. This study investigated the inhibitory activity against the proliferation of human colorectal cancer HCT-116 cells by Inonotus obliquus extracts obtained from submerged fermentation. Cell viability was measured by the reduction of MTT and cell membrane integrity was determined by lactic dehydrogenase (LDH) release. The mRNA expression of proapoptosis and antiapoptosis mediators was assayed by real-time PCR, and the levels of p53 and NF-κB p65 were assessed using Western blot analysis. Furthermore, the influences of I. obliquus extracts to HCT-116 cells were evaluated by caspase-3 activity. The results can be summarized as, for the mitochondrial apoptotic pathway, quantitative RT-PCR data showed up-regulation of proapoptotic genes (Bax, bad, and caspase-3) and increased Bax/bcl-2 ratio by I. obliquus extracts. Moreover, treating with 20 mg/mL I. obliquus extracts augmented caspase-3 activity in HCT-116 cells. Induction of cell cycle G0/G1 phase arrest: I. obliquus extracts up-regulated the mRNA expression of proapoptotic genes (p53, p21WAF1/CIP1) and down-regulated antiapoptotic gene (CyclinD1), while extracts of I. obliquus mycelia increased the expressions of p53 protein in HCT-116 cells. I. obliquus extracts decreased the expression of NF-κB p65 protein and COX-2 gene in HCT-116 cells. Taking together, I. obliquus extracts may be used as a potentially novel food material for health care to improve the treatment of colorectal cancer. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  5. Bacterial surface adaptation

    NASA Astrophysics Data System (ADS)

    Utada, Andrew

    2014-03-01

    Biofilms are structured multi-cellular communities that are fundamental to the biology and ecology of bacteria. Parasitic bacterial biofilms can cause lethal infections and biofouling, but commensal bacterial biofilms, such as those found in the gut, can break down otherwise indigestible plant polysaccharides and allow us to enjoy vegetables. The first step in biofilm formation, adaptation to life on a surface, requires a working knowledge of low Reynolds number fluid physics, and the coordination of biochemical signaling, polysaccharide production, and molecular motility motors. These crucial early stages of biofilm formation are at present poorly understood. By adapting methods from soft matter physics, we dissect bacterial social behavior at the single cell level for several prototypical bacterial species, including Pseudomonas aeruginosa and Vibrio cholerae.

  6. Office space bacterial abundance and diversity in three metropolitan areas.

    PubMed

    Hewitt, Krissi M; Gerba, Charles P; Maxwell, Sheri L; Kelley, Scott T

    2012-01-01

    People in developed countries spend approximately 90% of their lives indoors, yet we know little about the source and diversity of microbes in built environments. In this study, we combined culture-based cell counting and multiplexed pyrosequencing of environmental ribosomal RNA (rRNA) gene sequences to investigate office space bacterial diversity in three metropolitan areas. Five surfaces common to all offices were sampled using sterile double-tipped swabs, one tip for culturing and one for DNA extraction, in 30 different offices per city (90 offices, 450 total samples). 16S rRNA gene sequences were PCR amplified using bar-coded "universal" bacterial primers from 54 of the surfaces (18 per city) and pooled for pyrosequencing. A three-factorial Analysis of Variance (ANOVA) found significant differences in viable bacterial abundance between offices inhabited by men or women, among the various surface types, and among cities. Multiplex pyrosequencing identified more than 500 bacterial genera from 20 different bacterial divisions. The most abundant of these genera tended to be common inhabitants of human skin, nasal, oral or intestinal cavities. Other commonly occurring genera appeared to have environmental origins (e.g., soils). There were no significant differences in the bacterial diversity between offices inhabited by men or women or among surfaces, but the bacterial community diversity of the Tucson samples was clearly distinguishable from that of New York and San Francisco, which were indistinguishable. Overall, our comprehensive molecular analysis of office building microbial diversity shows the potential of these methods for studying patterns and origins of indoor bacterial contamination. "[H]umans move through a sea of microbial life that is seldom perceived except in the context of potential disease and decay." - Feazel et al. (2009).

  7. Bacterial glycobiology: rhamnose-containing cell wall polysaccharides in Gram-positive bacteria

    PubMed Central

    Mistou, Michel-Yves; Sutcliffe, Iain C.; van Sorge, Nina M.

    2016-01-01

    The composition of the Gram-positive cell wall is typically described as containing peptidoglycan, proteins and essential secondary cell wall structures called teichoic acids, which comprise approximately half of the cell wall mass. The cell walls of many species within the genera Streptococcus, Enterococcus and Lactococcus contain large amounts of the sugar rhamnose, which is incorporated in cell wall-anchored polysaccharides (CWP) that possibly function as homologues of well-studied wall teichoic acids (WTA). The presence and chemical structure of many rhamnose-containing cell wall polysaccharides (RhaCWP) has sometimes been known for decades. In contrast to WTA, insight into the biosynthesis and functional role of RhaCWP has been lacking. Recent studies in human streptococcal and enterococcal pathogens have highlighted critical roles for these complex polysaccharides in bacterial cell wall architecture and pathogenesis. In this review, we provide an overview of the RhaCWP with regards to their biosynthesis, genetics and biological function in species most relevant to human health. We also briefly discuss how increased knowledge in this field can provide interesting leads for new therapeutic compounds and improve biotechnological applications. PMID:26975195

  8. Bacterial glycobiology: rhamnose-containing cell wall polysaccharides in Gram-positive bacteria.

    PubMed

    Mistou, Michel-Yves; Sutcliffe, Iain C; van Sorge, Nina M

    2016-07-01

    The composition of the Gram-positive cell wall is typically described as containing peptidoglycan, proteins and essential secondary cell wall structures called teichoic acids, which comprise approximately half of the cell wall mass. The cell walls of many species within the genera Streptococcus, Enterococcus and Lactococcus contain large amounts of the sugar rhamnose, which is incorporated in cell wall-anchored polysaccharides (CWP) that possibly function as homologues of well-studied wall teichoic acids (WTA). The presence and chemical structure of many rhamnose-containing cell wall polysaccharides (RhaCWP) has sometimes been known for decades. In contrast to WTA, insight into the biosynthesis and functional role of RhaCWP has been lacking. Recent studies in human streptococcal and enterococcal pathogens have highlighted critical roles for these complex polysaccharides in bacterial cell wall architecture and pathogenesis. In this review, we provide an overview of the RhaCWP with regards to their biosynthesis, genetics and biological function in species most relevant to human health. We also briefly discuss how increased knowledge in this field can provide interesting leads for new therapeutic compounds and improve biotechnological applications. © FEMS 2016.

  9. Bacterial computing with engineered populations.

    PubMed

    Amos, Martyn; Axmann, Ilka Maria; Blüthgen, Nils; de la Cruz, Fernando; Jaramillo, Alfonso; Rodriguez-Paton, Alfonso; Simmel, Friedrich

    2015-07-28

    We describe strategies for the construction of bacterial computing platforms by describing a number of results from the recently completed bacterial computing with engineered populations project. In general, the implementation of such systems requires a framework containing various components such as intracellular circuits, single cell input/output and cell-cell interfacing, as well as extensive analysis. In this overview paper, we describe our approach to each of these, and suggest possible areas for future research. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  10. Evaluation of the Effect of Green Tea Extract on Mouth Bacterial Activity in the Presence of Propylene Glycol

    PubMed Central

    Moghbel, Abdolhossein; Farjzadeh, Ahmad; Aghel, Nasrin; Agheli, Homaun; Raisi, Nafiseh

    2012-01-01

    Background Compounds present in green tea have proved to inhibit the growth and activity of bacteria associated with infections. Objectives To assess the effects of green tea leaves extract in presence of propylene glycol on the aerobic mouth bacteria load. Materials and Methods Saliva of 25 volunteer girl students aging 20-25 years were selected and evaluated by a mouthwash sample containing 1% tannin, as the most effective antibacterial complex in green tea. Comparative studies were also conducted between green tea mouthwashes containing 1% tannin and a similar sample with 10% propylene glycol added during extraction. This comparison was applied for a chlorhexidine 0.2% sample as a chemical mouthwash brand, too. Results There was a meaningful difference between the green tea mouthwashes containing 10% propylene glycol and the simple green tea extract (P < 0.05). Significant difference was also seen between the herbal and chemical mouthwashes (P < 0.05). The extract 1% tannin containing 10% propylene glycol reduced the aerobic mouth bacterial load of the student salvia about 64 percent. The pH monotonousness in different days and temperatures approved the stability of tannin in liquid water medium. Conclusions Using green tea extract as a herbal mouthwash is safe and harmless specially for children and pregnant women. This result led us to suppose that green tea may prevent plaque formation on teeth, coming over halitosis due to mouth infection, too. These effects need to be approved in an in vivo trial as a second study. PMID:24624155

  11. Invasion of human cells by a bacterial pathogen.

    PubMed

    Edwards, Andrew M; Massey, Ruth C

    2011-03-21

    Here we will describe how we study the invasion of human endothelial cells by bacterial pathogen Staphylococcus aureus . The general protocol can be applied to the study of cell invasion by virtually any culturable bacterium. The stages at which specific aspects of invasion can be studied, such as the role of actin rearrangement or caveolae, will be highlighted. Host cells are grown in flasks and when ready for use are seeded into 24-well plates containing Thermanox coverslips. Using coverslips allows subsequent removal of the cells from the wells to reduce interference from serum proteins deposited onto the sides of the wells (to which S. aureus would attach). Bacteria are grown to the required density and washed to remove any secreted proteins (e.g. toxins). Coverslips with confluent layers of endothelial cells are transferred to new 24-well plates containing fresh culture medium before the addition of bacteria. Bacteria and cells are then incubated together for the required amount of time in 5% CO(2) at 37°C. For S. aureus this is typically between 15-90 minutes. Thermanox coverslips are removed from each well and dip-washed in PBS to remove unattached bacteria. If total associated bacteria (adherent and internalised) are to be quantified, coverslips are then placed in a fresh well containing 0.5% Triton X-100 in PBS. Gentle pipetting leads to complete cell lysis and bacteria are enumerated by serial dilution and plating onto agar. If the number of bacteria that have invaded the cells is needed, coverslips are added to wells containing 500 μl tissue culture medium supplemented with gentamicin and incubation continued for 1 h, which will kill all external bacteria. Coverslips can then be washed, cells lysed and bacteria enumerated by plating onto agar as described above. If the experiment requires direct visualisation, coverslips can be fixed and stained for light, fluorescence or confocal microscopy or prepared for electron microscopy.

  12. Effect of cholesterol deposition on bacterial adhesion to contact lenses.

    PubMed

    Babaei Omali, Negar; Zhu, Hua; Zhao, Zhenjun; Ozkan, Jerome; Xu, Banglao; Borazjani, Roya; Willcox, Mark D P

    2011-08-01

    To examine the effect of cholesterol on the adhesion of bacteria to silicone hydrogel contact lenses. Contact lenses, collected from subjects wearing Acuvue Oasys or PureVision lenses, were extracted in chloroform:methanol (1:1, v/v) and amount of cholesterol was estimated by thin-layer chromatography. Unworn lenses were soaked in cholesterol, and the numbers of Pseudomonas aeruginosa strains or Staphylococcus aureus strains that adhered to the lenses were measured. Cholesterol was tested for effects on bacterial growth by incubating bacteria in medium containing cholesterol. From ex vivo PureVision lenses, 3.4 ± 0.3 μg/lens cholesterol was recovered, and from Acuvue Oasys lenses, 2.4 ± 0.2 to 1.0 ± 0.1 μg/lens cholesterol was extracted. Cholesterol did not alter the total or viable adhesion of any strain of P. aeruginosa or S. aureus (p > 0.05). However, worn PureVision lenses reduced the numbers of viable cells of P. aeruginosa (5.8 ± 0.4 log units) compared with unworn lenses (6.4 ± 0.2 log units, p = 0.001). Similarly, there were fewer numbers of S. aureus 031 adherent to worn PureVision (3.05 ± 0.8 log units) compared with unworn PureVision (4.6 ± 0.3 log units, p = 0.0001). Worn Acuvue Oasys lenses did not affect bacterial adhesion. Cholesterol showed no effect on the growth of any test strain. Although cholesterol has been shown to adsorb to contact lenses during wear, this lipid does not appear to modulate bacterial adhesion to a lens surface.

  13. Electrically-receptive and thermally-responsive paper-based sensor chip for rapid detection of bacterial cells.

    PubMed

    Khan, Muhammad S; Misra, Santosh K; Dighe, Ketan; Wang, Zhen; Schwartz-Duval, Aaron S; Sar, Dinabandhu; Pan, Dipanjan

    2018-07-01

    Although significant technological advancements have been made in the development of analytical biosensor chips for detecting bacterial strains (E. coli, S. Mutans and B. Subtilis), critical requirements i.e. limit of detection (LOD), fast time of response, ultra-sensitivity with high reproducibility and good shelf-life with robust sensing capability have yet to be met within a single sensor chip. In order to achieve these criteria, we present an electrically-receptive thermally-responsive (ER-TR) sensor chip comprised of simple filter paper used as substrate coated with composite of poly(N-isopropylacrylamide) polymer (PNIPAm) - graphene nanoplatelet (GR) followed by evaporation of Au electrodes for capturing both Gram-positive (S. mutans and B. subtilis) and Gram-negative (E. coli) bacterial cells in real-time. Autoclave water, tap water, lake water and milk samples were tested with ER-TR chip with and without bacterial strains at varying concentration range 10 1 -10 5 cells/mL. The sensor was integrated with in-house built printed circuit board (PCB) to transmit/receive electrical signals. The interaction of E. coli, S. mutans and B. subtilis cells with fibers of PNIPAm-GR resulted in a change of electrical resistance and the readout was monitored wirelessly in real-time using MATLAB algorithm. Finally, prepared ER-TR chip exhibited the reproducibility of 85-97% with shelf-life of up to four weeks after testing with lake water sample. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Toxicity of algicidal extracts from Mangrovimonas yunxiaonensis strain LY01 on a HAB causing Alexandrium tamarense.

    PubMed

    Li, Yi; Zhu, Hong; Zhang, Huajun; Chen, Zhangran; Tian, Yun; Xu, Hong; Zheng, Tianling; Zheng, Wei

    2014-08-15

    Toxicity of algicidal extracts from Mangrovimonas yunxiaonensis strain LY01 on Alexandrium tamarense were measured through studying the algicidal procedure, nuclear damage and transcription of related genes. Medium components were optimized to improve algicidal activity, and characteristics of algicidal extracts were determined. Transmission electron microscope analysis revealed that the cell structure was broken. Cell membrane integrity destruction and nuclear structure degradation were monitored using confocal laser scanning microscope, and the rbcS, hsp and proliferating cell nuclear antigen (PCNA) gene expressions were studied. Results showed that 1.0% tryptone, 0.4% glucose and 0.8% MgCl2 were the optimal nutrient sources. The algicidal extracts were heat and pH stable, non-protein and less than 1kD. Cell membrane and nuclear structure integrity were lost, and the transcription of the rbcS and PCNA genes were significantly inhibited and there was up-regulation of hsp gene expression during the exposure procedure. The algicidal extracts destroyed the cell membrane and nuclear structure integrity, inhibited related gene expression and, eventually, lead to the inhibition of algal growth. All the results may elaborate firstly the cell death process and nuclear damage in A. tamarense which was induced by algicidal extracts, and the algicidal extracts could be potentially used as bacterial control of HABs in future. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Extraction of nucleic acids from yeast cells and plant tissues using ethanol as medium for sample preservation and cell disruption.

    PubMed

    Linke, Bettina; Schröder, Kersten; Arter, Juliane; Gasperazzo, Tatiana; Woehlecke, Holger; Ehwald, Rudolf

    2010-09-01

    Here we report that dehydrated ethanol is an excellent medium for both in situ preservation of nucleic acids and cell disruption of plant and yeast cells. Cell disruption was strongly facilitated by prior dehydration of the ethanol using dehydrated zeolite. Following removal of ethanol, nucleic acids were extracted from the homogenate pellet using denaturing buffers. The method provided DNA and RNA of high yield and integrity. Whereas cell wall disruption was essential for extraction of DNA and large RNA molecules, smaller molecules such as tRNAs could be selectively extracted from undisrupted, ethanol-treated yeast cells. Our results demonstrate the utility of absolute ethanol for sample fixation, cell membrane and cell wall disruption, as well as preservation of nucleic acids during sample storage.

  16. Cardiomyocyte marker expression in a human lymphocyte cell line using mouse cardiomyocyte extract.

    PubMed

    Vojdani, Zahra; Tavakolinejad, Sima; Talaei-Khozani, Tahereh; Esmaeilpour, Tahereh; Rasooli, Manuchehr

    2011-03-01

    Cell transplantation shows potential for the treatment of cardiac diseases. Embryonic stem cells, cord blood and mesenchymal stem cells have been suggested as sources for transplantation therapy. Because of some technical limitations with the use of stem cells, transdifferentiation of fully differentiated cells is a potentially useful alternative. We investigated whether human peripheral blood cells could transdifferentiate into cardiomyocyte. Transdifferentiation was induced in a human B lymphocyte cell line (Raji). Cardiomyocyte extract was prepared from adult mouse cardiomyocytes. The cells were treated with 5-aza-2-deoxycytidine and trichostatin A, permeabilized with streptolysin O, and exposed to the mouse cardiomyocyte extract. They were cultured for 10 days, 3 weeks and 4 weeks. Cardiomyocyte markers were detected with immunohistochemistry and flow cytometry. Immunocytochemistry revealed that some cells expressed myosin heavy chain, α-actinin and cardiac troponin T after 3 and 4 weeks. Flow cytometry confirmed these data. In cells exposed to trichostatin A and 5-aza-2-deoxycytidine and permeabilized in the presence of the cardiomyocyte extract, troponin T expression was seen in 3.53% of the cells and 3.11% of them expressed α-actinin. After exposure to the cardiomyocyte extract, some permeabilized cells adhered to the plate loosely; however, the morphology did not change significantly, and they continued to show a rounded shape after 4 weeks. Our treated lymphocytes expressed cardiomyocyte markers. Our results suggest that lymphocytes may be useful in future research as a source of cells for reprogramming procedures.

  17. The Voltage Boost Enabled by Luminescence Extraction in Solar Cells

    DOE PAGES

    Ganapati, Vidya; Steiner, Myles A.; Yablonovitch, Eli

    2016-07-01

    Over the past few years, the application of the physical principle, i.e., 'luminescence extraction,' has produced record voltages and efficiencies in photovoltaic cells. Luminescence extraction is the use of optical design, such as a back mirror or textured surfaces, to help internal photons escape out of the front surface of a solar cell. The principle of luminescence extraction is exemplified by the mantra 'a good solar cell should also be a good LED.' Basic thermodynamics says that the voltage boost should be related to concentration ratio C of a resource by ΔV = (kT/q) ln{C}. In light trapping (i.e., when the solar cell is textured and has a perfect back mirror), the concentration ratio of photons C = {4n 2}; therefore, one would expect a voltage boost of ΔV = (kT/q) ln{4n 2} over a solar cell with no texture and zero back reflectivity, where n is the refractive index. Nevertheless, there has been ambiguity over the voltage benefit to be expected from perfect luminescence extraction. Do we gain an open-circuit voltage boost of ΔV = (kT/q) ln{n 2}, ΔV = (kT/q) ln{2 n 2}, or ΔV = (kT/q) ln{4 n 2}? What is responsible for this voltage ambiguity ΔV = (kT/q) ln{4}more » $${\\asymp}$$ 36 mV? Finally, we show that different results come about, depending on whether the photovoltaic cell is optically thin or thick to its internal luminescence. In realistic intermediate cases of optical thickness, the voltage boost falls in between: ln{n 2} < (qΔV/kT) < ln{4n 2}.« less

  18. The Voltage Boost Enabled by Luminescence Extraction in Solar Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ganapati, Vidya; Steiner, Myles A.; Yablonovitch, Eli

    Over the past few years, the application of the physical principle, i.e., 'luminescence extraction,' has produced record voltages and efficiencies in photovoltaic cells. Luminescence extraction is the use of optical design, such as a back mirror or textured surfaces, to help internal photons escape out of the front surface of a solar cell. The principle of luminescence extraction is exemplified by the mantra 'a good solar cell should also be a good LED.' Basic thermodynamics says that the voltage boost should be related to concentration ratio C of a resource by ΔV = (kT/q) ln{C}. In light trapping (i.e., when the solar cell is textured and has a perfect back mirror), the concentration ratio of photons C = {4n 2}; therefore, one would expect a voltage boost of ΔV = (kT/q) ln{4n 2} over a solar cell with no texture and zero back reflectivity, where n is the refractive index. Nevertheless, there has been ambiguity over the voltage benefit to be expected from perfect luminescence extraction. Do we gain an open-circuit voltage boost of ΔV = (kT/q) ln{n 2}, ΔV = (kT/q) ln{2 n 2}, or ΔV = (kT/q) ln{4 n 2}? What is responsible for this voltage ambiguity ΔV = (kT/q) ln{4}more » $${\\asymp}$$ 36 mV? Finally, we show that different results come about, depending on whether the photovoltaic cell is optically thin or thick to its internal luminescence. In realistic intermediate cases of optical thickness, the voltage boost falls in between: ln{n 2} < (qΔV/kT) < ln{4n 2}.« less

  19. Bypassing bacterial infection in phage display by sequencing DNA released from phage particles.

    PubMed

    Villequey, Camille; Kong, Xu-Dong; Heinis, Christian

    2017-11-01

    Phage display relies on a bacterial infection step in which the phage particles are replicated to perform multiple affinity selection rounds and to enable the identification of isolated clones by DNA sequencing. While this process is efficient for wild-type phage, the bacterial infection rate of phage with mutant or chemically modified coat proteins can be low. For example, a phage mutant with a disulfide-free p3 coat protein, used for the selection of bicyclic peptides, has a more than 100-fold reduced infection rate compared to the wild-type. A potential strategy for bypassing the bacterial infection step is to directly sequence DNA extracted from phage particles after a single round of phage panning using high-throughput sequencing. In this work, we have quantified the fraction of phage clones that can be identified by directly sequencing DNA from phage particles. The results show that the DNA of essentially all of the phage particles can be 'decoded', and that the sequence coverage for mutants equals that of amplified DNA extracted from cells infected with wild-type phage. This procedure is particularly attractive for selections with phage that have a compromised infection capacity, and it may allow phage display to be performed with particles that are not infective at all. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  20. Anti-adhesion activity of thyme (Thymus vulgaris L.) extract, thyme post-distillation waste, and olive (Olea europea L.) leaf extract against Campylobacter jejuni on polystyrene and intestine epithelial cells.

    PubMed

    Šikić Pogačar, Maja; Klančnik, Anja; Bucar, Franz; Langerholc, Tomaž; Smole Možina, Sonja

    2016-06-01

    In order to survive in food-processing environments and cause disease, Campylobacter jejuni requires specific survival mechanisms, such as biofilms, which contribute to its transmission through the food chain to the human host and present a critical form of resistance to a wide variety of antimicrobials. Phytochemical analysis of thyme ethanolic extract (TE), thyme post-hydrodistillation residue (TE-R), and olive leaf extract (OE) using high-performance liquid chromatography with photodiode array indicates that the major compounds in TE and TE-R are flavone glucuronides and rosmarinic acid derivatives, and in OE verbascoside, luteolin 7-O-glucoside and oleuroside. TE and TE-R reduced C. jejuni adhesion to abiotic surfaces by up to 30% at 0.2-12.5 µg mL(-1) , with TE-R showing a greater effect. OE from 3.125 to 200 µg mL(-1) reduced C. jejuni adhesion to polystyrene by 10-23%. On the other hand, C. jejuni adhesion to PSI cl1 cells was inhibited by almost 30% over a large concentration range of these extracts. Our findings suggest that TE, the agro-food waste material TE-R, and the by-product OE represent sources of bioactive phytochemicals that are effective at low concentrations and can be used as therapeutic agents to prevent bacterial adhesion. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  1. CD4+ T Cells Reactive to Enteric Bacterial Antigens in Spontaneously Colitic C3H/HeJBir Mice: Increased T Helper Cell Type 1 Response and Ability to Transfer Disease

    PubMed Central

    Cong, Yingzi; Brandwein, Steven L.; McCabe, Robert P.; Lazenby, A.; Birkenmeier, Edward H.; Sundberg, John P.; Elson, Charles O.

    1998-01-01

    C3H/HeJBir mice are a new substrain that spontaneously develop colitis early in life. This study was done to determine the T cell reactivity of C3H/HeJBir mice to candidate antigens that might be involved in their disease. C3H/HeJBir CD4+ T cells were strongly reactive to antigens of the enteric bacterial flora, but not to epithelial or food antigens. The stimulatory material in the enteric bacteria was trypsin sensitive and restricted by class II major histocompatibility complex molecules, but did not have the properties of a superantigen. The precursor frequency of interleuken (IL)-2–producing, bacterial-reactive CD4+ T cells in colitic mice was 1 out of 2,000 compared to 1 out of 20,000–25,000 in noncolitic control mice. These T cells produced predominately IL-2 and interferon γ, consistent with a T helper type 1 cell response and were present at 3–4 wk, the age of onset of the colitis. Adoptive transfer of bacterial-antigen–activated CD4+ T cells from colitic C3H/HeJBir but not from control C3H/HeJ mice into C3H/HeSnJ scid/scid recipients induced colitis. These data represent a direct demonstration that T cells reactive with conventional antigens of the enteric bacterial flora can mediate chronic inflammatory bowel disease. PMID:9500788

  2. Antibacterial activity of Artemisia asiatica essential oil against some common respiratory infection causing bacterial strains and its mechanism of action in Haemophilus influenzae.

    PubMed

    Huang, Jiehui; Qian, Chao; Xu, Hongjie; Huang, Yanjie

    2018-01-01

    The main objective of the current study was to investigate the chemical composition of the essential oil of Artemisia asiatica together with investigating the antibacterial effects it exerts on several common respiratory infection causing bacteria including Haemophilus influenzae. Its mechanism of action was studied using various state-of-the-art assays like scanning electron microscopy, DNA, RNA and protein leakage assays, growth curve assays etc. The essential oil was extracted from the leaves of A. asiatica by supercritical CO 2 fluid extraction technology. Chemical composition of essential oils was analyzed by gas chromatography-mass-spectrometry (GC-MS). The antibacterial activity was evaluated against 6 bacteria by the paper disc diffusion method. The minimum inhibitory concentration (MIC) and minimum bactericide concentration (MBC) values of the essential oil were estimated by agar dilution method. The antibacterial mechanism was evaluated by growth curve, the integrity of cell membrane and scanning electronmicroscope (SEM). Gas chromatographic analysis of the A. asiatica essential oil led to the identification of 16 chemical constituents accounting for 97.2% of the total oil composition. The major components were found to be Piperitone, (z)-davanone, p-cymene and 1, 8-cineole. The essential oil showed maximum growth inhibition against Haemophilus influenzae with a zone of inhibition of 24.5 mm and MIC/MBC values of 1.9/4.5 mg/mL respectively. Bacteria treated with the essential oil led to a rapid decrease in the number of viable cells. On adding the essential oil of A. asiatica to the bacterial culture, the constituents of the bacterial cell got released into the medium and this cell constituent release increased with increasing doses of the essential oil. SEM showed that the bacterial cells treated with the essential oil showed damaged cell wall, deformed cell morphology and shrunken cells. Copyright © 2017. Published by Elsevier Ltd.

  3. Achillea millefolium L. hydroethanolic extract inhibits growth of human tumor cell lines by interfering with cell cycle and inducing apoptosis.

    PubMed

    Pereira, Joana M; Peixoto, Vanessa; Teixeira, Alexandra; Sousa, Diana; Barros, Lillian; Ferreira, Isabel C F R; Vasconcelos, M Helena

    2018-06-05

    The cell growth inhibitory activity of the hydroethanolic extract of Achillea millefolium was studied in human tumor cell lines (NCI-H460 and HCT-15) and its mechanism of action was investigated. The GI 50 concentration was determined with the sulforhodamine B assay and cell cycle and apoptosis were analyzed by flow cytometry following incubation with PI or Annexin V FITC/PI, respectively. The expression levels of proteins involved in cell cycle and apoptosis were analyzed by Western blot. The extracts were characterized regarding their phenolic composition by LC-DAD-ESI/MS. 3,5-O-Dicaffeoylquinic acid, followed by 5-O-caffeoylquinic acid, were the main phenolic acids, while, luteolin-O-acetylhexoside and apigenin-O-acetylhexoside were the main flavonoids. This extract decreased the growth of the tested cell lines, being more potent in HCT-15 and then in NCI-H460 cells. Two different concentrations of the extract (75 and 100 μg/mL) caused alterations in cell cycle profile and increased apoptosis levels in HCT-15 and NCI-H460 cells. Moreover, the extract caused an increase in p53 and p21 expression in NCI-H460 cells (which have wt p53), and reduced XIAP levels in HCT-15 cells (with mutant p53). This work enhances the importance of A. millefolium as source of bioactive phenolic compounds, particularly of XIAP inhibitors. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Cr(VI) sorption by free and immobilised chromate-reducing bacterial cells in PVA-alginate matrix: equilibrium isotherms and kinetic studies.

    PubMed

    Rawat, Monica; Rawat, A P; Giri, Krishna; Rai, J P N

    2013-08-01

    Chromate-resistant bacterial strain isolated from the soil of tannery was studied for Cr(VI) bioaccumulation in free and immobilised cells to evaluate its applicability in chromium removal from aqueous solution. Based on the comparative analysis of the 16S rRNA gene, and phenotypic and biochemical characterization, this strain was identified as Paenibacillus xylanilyticus MR12. Mechanism of Cr adsorption was also ascertained by chemical modifications of the bacterial biomass followed by Fourier transform infrared spectroscopy analysis of the cell wall constituents. The equilibrium biosorption analysed using isotherms (Langmuir, Freundlich and Dubinin-Redushkevich) and kinetics models (pseudo-first-order, second-order and Weber-Morris) revealed that the Langmuir model best correlated to experimental data, and Weber-Morris equation well described Cr(VI) biosorption kinetics. Polyvinyl alcohol alginate immobilised cells had the highest Cr(VI) removal efficiency than that of free cells and could also be reused four times for Cr(VI) removal. Complete reduction of chromate in simulated effluent containing Cu(2+), Mg(2+), Mn(2+) and Zn(2+) by immobilised cells, demonstrated potential applications of a novel immobilised bacterial strain MR12, as a vital bioresource in Cr(VI) bioremediation technology.

  5. Axially substituted silicon(IV) phthalocyanine and its quaternized derivative as photosensitizers towards tumor cells and bacterial pathogens.

    PubMed

    Ömeroğlu, İpek; Kaya, Esra Nur; Göksel, Meltem; Kussovski, Vesselin; Mantareva, Vanya; Durmuş, Mahmut

    2017-10-15

    Axially di-(alpha,alpha-diphenyl-4-pyridylmethoxy) silicon(IV) phthalocyanine (3) and its quaternized derivative (3Q) were synthesized and tested as photosensitizers against tumor and bacterial cells. These new phthalocyanines were characterized by elemental analysis, and different spectroscopic methods such as FT-IR, UV-Vis, MALDI-TOF and 1 H NMR. The photophysical properties such as absorption and fluorescence, and the photochemical properties such as singlet oxygen generation of both phthalocyanines were investigated in solutions. The obtained values were compared to the values obtained with unsubstituted silicon(IV) phthalocyanine dichloride (SiPcCl 2 ). The addition of two di-(alpha,alpha-diphenyl-4-pyridylmethanol) groups as axial ligands showed an improvement of the photophysical and photochemical properties and an increasement of the singlet oxygen quantum yield (Φ Δ ) from 0.15 to 0.33 was determined. The photodynamic efficacy of synthesized photosensitizers (3 and 3Q) were evaluated with promising photocytotoxicity (17% cell survival for 3 and 28% for 3Q) against the cervical cancer cell line (HeLa). The photodynamic inactivation of pathogenic bacterial strains Streptococcus mutans, Staphylococcus aureus, and Pseudomonas aeruginosa suggested a high susceptibility with quaternized derivative (3Q). The both Gram-positive bacterial strains were fully photoinactivated with 11μM 3Q and mild light dose 50J.cm -2 . In case of P. aeruginosa the effect was negligible for concentrations up to 22μM 3Q and light dose 100J.cm -2 . The results suggested that the novel axially substituted silicon(IV) phthalocyanines have promising characteristic as photosensitizer towards tumor cells. The quaternized derivative 3Q has high potential for photoinactivation of pathogenic bacterial species. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Acacia catechu ethanolic bark extract induces apoptosis in human oral squamous carcinoma cells.

    PubMed

    Lakshmi, Thangavelu; Ezhilarasan, Devaraj; Vijayaragavan, Rajagopal; Bhullar, Sukhwinder Kaur; Rajendran, Ramasamy

    2017-01-01

    Oral cancer is in approximately 30% of all cancers in India. This study was conducted to evaluate the cytotoxic activity of ethanolic extract of Acacia catechu bark (ACB) against human squamous cell carcinoma cell line-25 (SCC-25). Cytotoxic effect of ACB extract was determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium Bromide assay. A. catechu extract was treated SCC-25 cells with 25 and 50 μg/mL for 24 h. Apoptosis markers such as caspases-8 and 9, bcl-2, bax, and cytochrome c (Cyt-c) were done by RT-PCR. Morphological changes of ACB treated cells were evaluated using acridine orange/ethidium bromide (AO/EB) dual staining. Nuclear morphology and DNA fragmentation were evaluated using propidium iodide (PI) staining. Further, cell cycle analysis was performed using flow cytometry. A. catechu treatment caused cytotoxicity in SCC-25 cells with an IC 50 of 52.09 μg/mL. Apoptotic marker gene expressions were significantly increased on ACB treatment. Staining with AO/EB and PI shows membrane blebbing and nuclear membrane distortion, respectively, and it confirms the apoptosis induction in SCC-25 cells. These results suggest that ACB extract can be used as a modulating agent in oral squamous cell carcinoma.

  7. A bacterial type III secretion-based protein delivery tool for broad applications in cell biology.

    PubMed

    Ittig, Simon J; Schmutz, Christoph; Kasper, Christoph A; Amstutz, Marlise; Schmidt, Alexander; Sauteur, Loïc; Vigano, M Alessandra; Low, Shyan Huey; Affolter, Markus; Cornelis, Guy R; Nigg, Erich A; Arrieumerlou, Cécile

    2015-11-23

    Methods enabling the delivery of proteins into eukaryotic cells are essential to address protein functions. Here we propose broad applications to cell biology for a protein delivery tool based on bacterial type III secretion (T3S). We show that bacterial, viral, and human proteins, fused to the N-terminal fragment of the Yersinia enterocolitica T3S substrate YopE, are effectively delivered into target cells in a fast and controllable manner via the injectisome of extracellular bacteria. This method enables functional interaction studies by the simultaneous injection of multiple proteins and allows the targeting of proteins to different subcellular locations by use of nanobody-fusion proteins. After delivery, proteins can be freed from the YopE fragment by a T3S-translocated viral protease or fusion to ubiquitin and cleavage by endogenous ubiquitin proteases. Finally, we show that this delivery tool is suitable to inject proteins in living animals and combine it with phosphoproteomics to characterize the systems-level impact of proapoptotic human truncated BID on the cellular network. © 2015 Ittig et al.

  8. Bacterial adherence to periurethral epithelial cells in girls prone to urinary-tract infections.

    PubMed

    Källenius, G; Winberg, J

    1978-09-09

    Bacterial adherence to epithelial cells from the periurethral region of 48 healthy girls aged over 2 years and of 76 girls with repeated urinary-tract infections was investigated. The infection-prone girls had a significantly higher mean number of adhering bacteria than the healthy controls ( P less than 0.01). This difference was valid irrespective of whether or not the infection-prone girls had urinary-tract infections at the time of investigation. Furthermore, statistically significantly higher numbers of a pyelonephritic strain of Escherichia coli (075:H-:K-non-typable) were found to adhere to washed periurethral cells from infection-prone girls than to cells from healthy controls. These characteristics of the periurethral epithelial cells may facilitate the primary periurethral colonisation which precedes infection of the urinary tract.

  9. Bacteria Facilitate Enteric Virus Co-infection of Mammalian Cells and Promote Genetic Recombination.

    PubMed

    Erickson, Andrea K; Jesudhasan, Palmy R; Mayer, Melinda J; Narbad, Arjan; Winter, Sebastian E; Pfeiffer, Julie K

    2018-01-10

    RNA viruses exist in genetically diverse populations due to high levels of mutations, many of which reduce viral fitness. Interestingly, intestinal bacteria can promote infection of several mammalian enteric RNA viruses, but the mechanisms and consequences are unclear. We screened a panel of 41 bacterial strains as a platform to determine how different bacteria impact infection of poliovirus, a model enteric virus. Most bacterial strains, including those extracted from cecal contents of mice, bound poliovirus, with each bacterium binding multiple virions. Certain bacterial strains increased viral co-infection of mammalian cells even at a low virus-to-host cell ratio. Bacteria-mediated viral co-infection correlated with bacterial adherence to cells. Importantly, bacterial strains that induced viral co-infection facilitated genetic recombination between two different viruses, thereby removing deleterious mutations and restoring viral fitness. Thus, bacteria-virus interactions may increase viral fitness through viral recombination at initial sites of infection, potentially limiting abortive infections. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. An evaluation of bacterial contamination of barriers used in periapical tissue regeneration: Part 1--Bacterial adherence.

    PubMed

    Sharma, Priya; Mickel, André K; Chogle, Sami; Sharma, Prem Nath; Han, Yiping W; Jones, Jefferson J

    2008-02-01

    To compare the adherence of Prevotella melaninogenica and Enterococcus faecalis to 3 guided tissue regeneration membranes: Atrisorb, Lambone, and OsseoQuest. It was hypothesized that OsseoQuest would show increased bacterial adherence compared to Lambone and Atrisorb. The barriers were suspended in trypticase soy broth containing an inoculum of either P melaninogenica or E faecalis. The samples were incubated under appropriate conditions for 6, 24, and 48 hours. Following incubation, each membrane was mixed in fresh media in a vortex machine to dislodge adherent bacteria. The vortexed media was quantitatively assessed using serial dilutions for viable cell count. E faecalis exhibited higher adherence compared to P melaninogenica with time. Of the membranes tested, Lambone displayed the least bacterial adherence. An analysis of the results indicated that bacterial adherence was time-dependent for all membranes. Membrane structure, chemical configuration, hydrophobicity, and bacterial cell surface structure were suggested as factors contributing to variance in bacterial adherence.

  11. Alpinia katsumadai Extracts Inhibit Adhesion and Invasion of Campylobacter jejuni in Animal and Human Foetal Small Intestine Cell Lines.

    PubMed

    Pogačar, Maja Šikić; Klančnik, Anja; Bucar, Franz; Langerholc, Tomaž; Možina, Sonja Smole

    2015-10-01

    Alpinia katsumadai is used in traditional Chinese medicine for abdominal distention, pain, and diarrhoea. Campylobacter jejuni is the most common cause of bacterial food-borne diarrhoeal illnesses worldwide. Adhesion to gut epithelium is a prerequisite in its pathogenesis. The antimicrobial, cytotoxic, and anti-adhesive activities of a chemically characterised extract (SEE) and its residual material of hydrodistillation (hdSEE-R) from A. katsumadai seeds were evaluated against C. jejuni. Minimal inhibitory concentrations for SEE and hdSEE-R were 0.5 mg/mL and 0.25 mg/mL, respectively, and there was no cytotoxic influence in the anti-adhesion tests, as these were performed at much lower concentrations of these tested plant extracts. Adhesion of C. jejuni to pig (PSI) and human foetal (H4) small-intestine cell lines was significantly decreased at lower concentrations (0.2 to 50 µg/mL). In the same concentration range, the invasiveness of C. jejuni in PSI cells was reduced by 45% to 65% when they were treated with SEE or hdSEE-R. The hdSEE-R represents a bioactive waste with a high phenolic content and an anti-adhesive activity against C. jejuni and thus has the potential for use in pharmaceutical and food products. Copyright © 2015 John Wiley & Sons, Ltd.

  12. Cytotoxic effects of Mangifera indica L. kernel extract on human breast cancer (MCF-7 and MDA-MB-231 cell lines) and bioactive constituents in the crude extract.

    PubMed

    Abdullah, Al-Shwyeh Hussah; Mohammed, Abdulkarim Sabo; Abdullah, Rasedee; Mirghani, Mohamed Elwathig Saeed; Al-Qubaisi, Mothanna

    2014-06-25

    Waterlily Mango (Mangifera indica L.) is thought to be antioxidant-rich, conferred by its functional phytochemicals. The potential anticancer effects of the ethanolic kernel extract on breast cancer cells (MDA-MB-231 and MCF-7) using MTT, anti-proliferation, neutral red (NR) uptake and lactate dehydrogenase (LDH) release assays were evaluated. Cytological studies on the breast cancer cells were also conducted, and phytochemical analyses of the extract were carried out to determine the likely bioactive compounds responsible for such effects. Results showed the extract induced cytotoxicity in MDA-MB-231 cells and MCF-7 cells with IC50 values of 30 and 15 μg/mL, respectively. The extract showed significant toxicity towards both cell lines, with low toxicity to normal breast cells (MCF-10A). The cytotoxic effects on the cells were further confirmed by the NR uptake, antiproliferative and LDH release assays. Bioactive analyses revealed that many bioactives were present in the extract although butylated hydroxytoluene, a potent antioxidant, was the most abundant with 44.65%. M. indica extract appears to be more cytoxic to both estrogen positive and negative breast cancer cell lines than to normal breast cells. Synergistic effects of its antioxidant bioactives could have contributed to the cytotoxic effects of the extract. The extract of M. indica, therefore, has potential anticancer activity against breast cancer cells. This potential is worth studying further, and could have implications on future studies and eventually management of human breast cancers.

  13. Cytosolic Access of Intracellular Bacterial Pathogens: The Shigella Paradigm.

    PubMed

    Mellouk, Nora; Enninga, Jost

    2016-01-01

    Shigella is a Gram-negative bacterial pathogen, which causes bacillary dysentery in humans. A crucial step of Shigella infection is its invasion of epithelial cells. Using a type III secretion system, Shigella injects several bacterial effectors ultimately leading to bacterial internalization within a vacuole. Then, Shigella escapes rapidly from the vacuole, it replicates within the cytosol and spreads from cell-to-cell. The molecular mechanism of vacuolar rupture used by Shigella has been studied in some detail during the recent years and new paradigms are emerging about the underlying molecular events. For decades, bacterial effector proteins were portrayed as main actors inducing vacuolar rupture. This includes the effector/translocators IpaB and IpaC. More recently, this has been challenged and an implication of the host cell in the process of vacuolar rupture has been put forward. This includes the bacterial subversion of host trafficking regulators, such as the Rab GTPase Rab11. The involvement of the host in determining bacterial vacuolar integrity has also been found for other bacterial pathogens, particularly for Salmonella. Here, we will discuss our current view of host factor and pathogen effector implications during Shigella vacuolar rupture and the steps leading to it.

  14. Activity and Phylogenetic Diversity of Bacterial Cells with High and Low Nucleic Acid Content and Electron Transport System Activity in an Upwelling Ecosystem

    PubMed Central

    Longnecker, K.; Sherr, B. F.; Sherr, E. B.

    2005-01-01

    We evaluated whether bacteria with higher cell-specific nucleic acid content (HNA) or an active electron transport system, i.e., positive for reduction of 5-cyano-2,3-ditolyl tetrazolium chloride (CTC), were responsible for the bulk of bacterioplankton metabolic activity. We also examined whether the phylogenetic diversity of HNA and CTC-positive cells differed from the diversity of Bacteria with low nucleic acid content (LNA). Bacterial assemblages were sampled both in eutrophic shelf waters and in mesotrophic offshore waters in the Oregon coastal upwelling region. Cytometrically sorted HNA, LNA, and CTC-positive cells were assayed for their cell-specific [3H]leucine incorporation rates. Phylogenetic diversity in sorted non-radioactively labeled samples was assayed using denaturing gradient gel electrophoresis (DGGE) of PCR-amplified 16S rRNA genes. Cell-specific rates of leucine incorporation of HNA and CTC-positive cells were on average only slightly greater than the cell-specific rates of LNA cells. HNA cells accounted for most bacterioplankton substrate incorporation due to high abundances, while the low abundances of CTC-positive cells resulted in only a small contribution by these cells to total bacterial activity. The proportion of the total bacterial leucine incorporation attributable to LNA cells was higher in offshore regions than in shelf waters. Sequence data obtained from DGGE bands showed broadly similar phylogenetic diversity across HNA, LNA, and CTC-positive cells, with between-sample and between-region variability in the distribution of phylotypes. Our results suggest that LNA bacteria are not substantially different from HNA bacteria in either cell-specific rates of substrate incorporation or phylogenetic composition and that they can be significant contributors to bacterial metabolism in the sea. PMID:16332746

  15. Activity and phylogenetic diversity of bacterial cells with high and low nucleic acid content and electron transport system activity in an upwelling ecosystem.

    PubMed

    Longnecker, K; Sherr, B F; Sherr, E B

    2005-12-01

    We evaluated whether bacteria with higher cell-specific nucleic acid content (HNA) or an active electron transport system, i.e., positive for reduction of 5-cyano-2,3-ditolyl tetrazolium chloride (CTC), were responsible for the bulk of bacterioplankton metabolic activity. We also examined whether the phylogenetic diversity of HNA and CTC-positive cells differed from the diversity of Bacteria with low nucleic acid content (LNA). Bacterial assemblages were sampled both in eutrophic shelf waters and in mesotrophic offshore waters in the Oregon coastal upwelling region. Cytometrically sorted HNA, LNA, and CTC-positive cells were assayed for their cell-specific [3H]leucine incorporation rates. Phylogenetic diversity in sorted non-radioactively labeled samples was assayed using denaturing gradient gel electrophoresis (DGGE) of PCR-amplified 16S rRNA genes. Cell-specific rates of leucine incorporation of HNA and CTC-positive cells were on average only slightly greater than the cell-specific rates of LNA cells. HNA cells accounted for most bacterioplankton substrate incorporation due to high abundances, while the low abundances of CTC-positive cells resulted in only a small contribution by these cells to total bacterial activity. The proportion of the total bacterial leucine incorporation attributable to LNA cells was higher in offshore regions than in shelf waters. Sequence data obtained from DGGE bands showed broadly similar phylogenetic diversity across HNA, LNA, and CTC-positive cells, with between-sample and between-region variability in the distribution of phylotypes. Our results suggest that LNA bacteria are not substantially different from HNA bacteria in either cell-specific rates of substrate incorporation or phylogenetic composition and that they can be significant contributors to bacterial metabolism in the sea.

  16. Simultaneous selection of soil electroactive bacterial communities associated to anode and cathode in a two-chamber Microbial Fuel Cell

    NASA Astrophysics Data System (ADS)

    Chiellini, Carolina; Bacci, Giovanni; Fani, Renato; Mocali, Stefano

    2016-04-01

    Different bacteria have evolved strategies to transfer electrons over their cell surface to (or from) their extracellular environment. This electron transfer enables the use of these bacteria in bioelectrochemical systems (BES) such as Microbial Fuel Cells (MFCs). In MFC research the biological reactions at the cathode have long been a secondary point of interest. However, bacterial biocathodes in MFCs represent a potential advantage compared to traditional cathodes, for both their low costs and their low impact on the environment. The main challenge in biocathode set-up is represented by the selection of a bacterial community able to efficiently accept electrons from the electrode, starting from an environmental matrix. In this work, a constant voltage was supplied on a two-chamber MFC filled up with soil over three weeks in order to simultaneously select an electron donor bacterial biomass on the anode and an electron acceptor biomass on the cathode, starting from the same soil. Next Generation Sequencing (NGS) analysis was performed to characterize the bacterial community of the initial soil, in the anode, in the cathode and in the control chamber not supplied with any voltage. Results highlighted that both the MFC conditions and the voltage supply affected the soil bacterial communities, providing a selection of different bacterial groups preferentially associated to the anode (Betaproteobacteria, Bacilli and Clostridia) and to the cathode (Actinobacteria and Alphaproteobacteria). These results confirmed that several electroactive bacteria are naturally present within a top soil and, moreover, different soil bacterial genera could provide different electrical properties.

  17. Effects of maple (Acer) plant part extracts on proliferation, apoptosis and cell cycle arrest of human tumorigenic and non-tumorigenic colon cells.

    PubMed

    González-Sarrías, Antonio; Li, Liya; Seeram, Navindra P

    2012-07-01

    Phenolic-enriched extracts of maple sap and syrup, obtained from the sugar and red maple species (Acer saccharum Marsh, A. rubrum L., respectively), are reported to show anticancer effects. Despite traditional medicinal uses of various other parts of these plants by Native Americans, they have not been investigated for anticancer activity. Here leaves, stems/twigs, barks and sapwoods of both maple species were evaluated for antiproliferative effects against human colon tumorigenic (HCT-116, HT-29, Caco-2) and non-tumorigenic (CCD-18Co) cells. Extracts were standardized to total phenolic and ginnalin-A (isolated in our laboratory) levels. Overall, the extracts inhibited the growth of the colon cancer more than normal cells (over two-fold), their activities increased with their ginnalin-A levels, with red > sugar maple extracts. The red maple leaf extract, which contained the highest ginnalin-A content, was the most active extract (IC₅₀  = 35 and 16 µg/mL for extract and ginnalin-A, respectively). The extracts were not cytotoxic nor did they induce apoptosis of the colon cancer cells. However, cell cycle analyses revealed that the antiproliferative effects of the extracts were mediated through cell cycle arrest in the S-phase. The results from the current study suggest that these maple plant part extracts may have potential anticolon cancer effects. Copyright © 2011 John Wiley & Sons, Ltd.

  18. Polyphenolic composition of grape stem extracts affects antioxidant activity in endothelial and muscle cells.

    PubMed

    Goutzourelas, Nikolaos; Stagos, Dimitrios; Spanidis, Ypatios; Liosi, Maria; Apostolou, Anna; Priftis, Alexandros; Haroutounian, Serko; Spandidos, Demetrios A; Tsatsakis, Aristidis M; Kouretas, Demetrios

    2015-10-01

    The aim of the present study was the assessment of the antioxidant effects of polyphenolic extracts derived from the stems of three Greek grape varieties (Moshomayro, Mavrotragano and Mandilaria) in endothelial (EA.hy926) and muscle (C2C12) cells. We also investigated the effects of the polyphenolic composition on the antioxidant effects of the grape stem extracts. For this purpose, the endothelial and muscle cells were treated with low non-cytotoxic concentrations of the extracts for 24 h in order to assess the effects of the extracts on cellular redox status using oxidative stress biomarkers. The oxidative stress markers were thiobarbituric acid reactive substances (TBARS), protein carbonyl (CARB) levels, reactive oxygen species (ROS) levels and glutathione (GSH) levels. The results revealed that treatment of the EA.hy926 cells with Mandilaria extract significantly decreased the TBARS levels by 14.8% and the CARB levels by 25.9 %, while it increased the GSH levels by 15.8% compared to the controls. Moreover, treatment of the EA.hy926 cells with Mavrotragano extract significantly increased the GSH levels by 20.2%, while it significantly decreased the TBARS and CARB levels by 12.5% and 16.6%, respectively. Treatment of the C2C12 cells with Mandilaria extract significantly decreased the TBARS levels by 47.3 %, the CARB levels by 39.0 % and the ROS levels by 21.8%, while it increased the GSH levels by 22.6% compared to the controls. Moreover, treatment of the C2C12 cells with Mavrotragano significantly decreased the TBARS, CARB and ROS levels by 36.2%, 35.9% and 16.5%, respectively. In conclusion, to the best of our knowledgel, our results demonstrate for the first time that treatment with grape stem extracts at low concentrations improves the redox status of endothelial and muscle cells. Thus, grape stem extracts may be used for developing antioxidant food supplements or biofunctional foods. However, it was also found that the polyphenolic composition of grape stem

  19. Relationships between soil organic matter, nutrients, bacterial community structure, and the performance of microbial fuel cells.

    PubMed

    Dunaj, Sara J; Vallino, Joseph J; Hines, Mark E; Gay, Marcus; Kobyljanec, Christine; Rooney-Varga, Juliette N

    2012-02-07

    Microbial fuel cells (MFCs) offer the potential for generating electricity, mitigating greenhouse gas emissions, and bioremediating pollutants through utilization of a plentiful renewable resource: soil organic carbon. We analyzed bacterial community structure, MFC performance, and soil characteristics in different microhabitats within MFCs constructed from agricultural or forest soils in order to determine how soil type and bacterial dynamics influence MFC performance. Our results indicated that MFCs constructed from agricultural soil had power output about 17 times that of forest soil-based MFCs and respiration rates about 10 times higher than forest soil MFCs. Agricultural soil MFCs had lower C:N ratios, polyphenol content, and acetate concentrations than forest soil MFCs. Bacterial community profile data indicate that the bacterial communities at the anode of the high power MFCs were less diverse than in low power MFCs and were dominated by Deltaproteobacteria, Geobacter, and to a lesser extent, Clostridia, while low-power MFC anode communities were dominated by Clostridia. These results suggest that the presence of organic carbon substrate (acetate) was not the major limiting factor in selecting for highly electrogenic bacterial communities, while the quality of available organic matter may have played a significant role in supporting high performing bacterial communities.

  20. Cannabidiol rather than Cannabis sativa extracts inhibit cell growth and induce apoptosis in cervical cancer cells.

    PubMed

    Lukhele, Sindiswa T; Motadi, Lesetja R

    2016-09-01

    Cervical cancer remains a global health related issue among females of Sub-Saharan Africa, with over half a million new cases reported each year. Different therapeutic regimens have been suggested in various regions of Africa, however, over a quarter of a million women die of cervical cancer, annually. This makes it the most lethal cancer amongst black women and calls for urgent therapeutic strategies. In this study we compare the anti-proliferative effects of crude extract of Cannabis sativa and its main compound cannabidiol on different cervical cancer cell lines. To achieve our aim, phytochemical screening, MTT assay, cell growth analysis, flow cytometry, morphology analysis, Western blot, caspase 3/7 assay, and ATP measurement assay were conducted. Results obtained indicate that both cannabidiol and Cannabis sativa extracts were able to halt cell proliferation in all cell lines at varying concentrations. They further revealed that apoptosis was induced by cannabidiol as shown by increased subG0/G1 and apoptosis through annexin V. Apoptosis was confirmed by overexpression of p53, caspase 3 and bax. Apoptosis induction was further confirmed by morphological changes, an increase in Caspase 3/7 and a decrease in the ATP levels. In conclusion, these data suggest that cannabidiol rather than Cannabis sativa crude extracts prevent cell growth and induce cell death in cervical cancer cell lines.

  1. Extracting cancer cell line electrochemical parameters at the single cell level using a microfabricated device.

    PubMed

    Alqabandi, Jassim A; Abdel-Motal, Ussama M; Youcef-Toumi, Kamal

    2009-02-01

    Cancer cells have distinctive electrochemical properties. This work sheds light on the system design aspects and key challenges that should be considered when experimentally analyzing and extracting the electrical characteristics of a tumor cell line. In this study, we developed a cellularbased functional microfabricated device using lithography technology. This device was used to investigate the electrochemical parameters of cultured cancer cells at the single-cell level. Using impedance spectroscopy analyses, we determined the average specific capacitance and resistance of the membrane of the cancer cell line B16-F10 to be 1.154 +/- 0.29 microF/cm(2), and 3.9 +/- 1.15 KOmega.cm(2) (mean +/- SEM, n =14 cells), respectively. The consistency of our findings via different trails manifests the legitimacy of our experimental procedure. Furthermore, the data were compared with a proposed constructed analytical-circuit model. The results of this work may greatly assist researchers in defining an optimal procedure while extracting electrical properties of cancer cells. Detecting electrical signals at the single cell level could lead to the development of novel approaches for analysis of malignant cells in human tissues and biopsies.

  2. Analysis of gene expression levels in individual bacterial cells without image segmentation.

    PubMed

    Kwak, In Hae; Son, Minjun; Hagen, Stephen J

    2012-05-11

    Studies of stochasticity in gene expression typically make use of fluorescent protein reporters, which permit the measurement of expression levels within individual cells by fluorescence microscopy. Analysis of such microscopy images is almost invariably based on a segmentation algorithm, where the image of a cell or cluster is analyzed mathematically to delineate individual cell boundaries. However segmentation can be ineffective for studying bacterial cells or clusters, especially at lower magnification, where outlines of individual cells are poorly resolved. Here we demonstrate an alternative method for analyzing such images without segmentation. The method employs a comparison between the pixel brightness in phase contrast vs fluorescence microscopy images. By fitting the correlation between phase contrast and fluorescence intensity to a physical model, we obtain well-defined estimates for the different levels of gene expression that are present in the cell or cluster. The method reveals the boundaries of the individual cells, even if the source images lack the resolution to show these boundaries clearly. Copyright © 2012 Elsevier Inc. All rights reserved.

  3. Cell disruption and lipid extraction for microalgal biorefineries: A review.

    PubMed

    Lee, Soo Youn; Cho, Jun Muk; Chang, Yong Keun; Oh, You-Kwan

    2017-11-01

    The microalgae-based biorefinement process has attracted much attention from academic and industrial researchers attracted to its biofuel, food and nutraceutical applications. In this paper, recent developments in cell-disruption and lipid-extraction methods, focusing on four biotechnologically important microalgal species (namely, Chlamydomonas, Haematococcus, Chlorella, and Nannochloropsis spp.), are reviewed. The structural diversity and rigidity of microalgal cell walls complicate the development of efficient downstream processing methods for cell-disruption and subsequent recovery of intracellular lipid and pigment components. Various mechanical, chemical and biological cell-disruption methods are discussed in detail and compared based on microalgal species and status (wet/dried), scale, energy consumption, efficiency, solvent extraction, and synergistic combinations. The challenges and prospects of the downstream processes for the future development of eco-friendly and economical microalgal biorefineries also are outlined herein. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Fundamental principles in bacterial physiology—history, recent progress, and the future with focus on cell size control: a review

    NASA Astrophysics Data System (ADS)

    Jun, Suckjoon; Si, Fangwei; Pugatch, Rami; Scott, Matthew

    2018-05-01

    Bacterial physiology is a branch of biology that aims to understand overarching principles of cellular reproduction. Many important issues in bacterial physiology are inherently quantitative, and major contributors to the field have often brought together tools and ways of thinking from multiple disciplines. This article presents a comprehensive overview of major ideas and approaches developed since the early 20th century for anyone who is interested in the fundamental problems in bacterial physiology. This article is divided into two parts. In the first part (sections 1–3), we review the first ‘golden era’ of bacterial physiology from the 1940s to early 1970s and provide a complete list of major references from that period. In the second part (sections 4–7), we explain how the pioneering work from the first golden era has influenced various rediscoveries of general quantitative principles and significant further development in modern bacterial physiology. Specifically, section 4 presents the history and current progress of the ‘adder’ principle of cell size homeostasis. Section 5 discusses the implications of coarse-graining the cellular protein composition, and how the coarse-grained proteome ‘sectors’ re-balance under different growth conditions. Section 6 focuses on physiological invariants, and explains how they are the key to understanding the coordination between growth and the cell cycle underlying cell size control in steady-state growth. Section 7 overviews how the temporal organization of all the internal processes enables balanced growth. In the final section 8, we conclude by discussing the remaining challenges for the future in the field.

  5. Chemical Characterization and in Vitro Cytotoxicity on Squamous Cell Carcinoma Cells of Carica papaya Leaf Extracts.

    PubMed

    Nguyen, Thao T; Parat, Marie-Odile; Hodson, Mark P; Pan, Jenny; Shaw, Paul N; Hewavitharana, Amitha K

    2015-12-24

    In traditional medicine, Carica papaya leaf has been used for a wide range of therapeutic applications including skin diseases and cancer. In this study, we investigated the in vitro cytotoxicity of aqueous and ethanolic extracts of Carica papaya leaves on the human oral squamous cell carcinoma SCC25 cell line in parallel with non-cancerous human keratinocyte HaCaT cells. Two out of four extracts showed a significantly selective effect towards the cancer cells and were found to contain high levels of phenolic and flavonoid compounds. The chromatographic and mass spectrometric profiles of the extracts obtained with Ultra High Performance Liquid Chromatography-Quadrupole Time of Flight-Mass Spectrometry were used to tentatively identify the bioactive compounds using comparative analysis. The principal compounds identified were flavonoids or flavonoid glycosides, particularly compounds from the kaempferol and quercetin families, of which several have previously been reported to possess anticancer activities. These results confirm that papaya leaf is a potential source of anticancer compounds and warrant further scientific investigation to validate the traditional use of papaya leaf to treat cancer.

  6. Chemical Characterization and in Vitro Cytotoxicity on Squamous Cell Carcinoma Cells of Carica Papaya Leaf Extracts

    PubMed Central

    Nguyen, Thao T.; Parat, Marie-Odile; Hodson, Mark P.; Pan, Jenny; Shaw, Paul N.; Hewavitharana, Amitha K.

    2015-01-01

    In traditional medicine, Carica papaya leaf has been used for a wide range of therapeutic applications including skin diseases and cancer. In this study, we investigated the in vitro cytotoxicity of aqueous and ethanolic extracts of Carica papaya leaves on the human oral squamous cell carcinoma SCC25 cell line in parallel with non-cancerous human keratinocyte HaCaT cells. Two out of four extracts showed a significantly selective effect towards the cancer cells and were found to contain high levels of phenolic and flavonoid compounds. The chromatographic and mass spectrometric profiles of the extracts obtained with Ultra High Performance Liquid Chromatography-Quadrupole Time of Flight-Mass Spectrometry were used to tentatively identify the bioactive compounds using comparative analysis. The principal compounds identified were flavonoids or flavonoid glycosides, particularly compounds from the kaempferol and quercetin families, of which several have previously been reported to possess anticancer activities. These results confirm that papaya leaf is a potential source of anticancer compounds and warrant further scientific investigation to validate the traditional use of papaya leaf to treat cancer. PMID:26712788

  7. Protective effect of aqueous extract from Spirulina platensis against cell death induced by free radicals.

    PubMed

    Chu, Wan-Loy; Lim, Yen-Wei; Radhakrishnan, Ammu Kutty; Lim, Phaik-Eem

    2010-09-21

    Spirulina is a commercial alga well known to contain various antioxidants, especially phycocyanin. Apart from being sold as a nutraceutical, Spirulina is incorporated as a functional ingredient in food products and beverages. Most of the previous reports on antioxidant activity of Spirulina were based on chemical rather than cell-based assays. The primary objective of this study was to assess the antioxidant activity of aqueous extract from Spirulina based on its protective effect against cell death induced by free radicals. The antioxidant activity of the cold water extract from food-grade Spirulina platensis was assessed using both chemical and cell-based assays. In the cell-based assay, mouse fibroblast cells (3T3) cells were incubated for 1 h in medium containing aqueous extract of Spirulina or vitamin C (positive control) at 25, 125 and 250 μg/mL before the addition of 50 μM 1,1-diphenyl-2-picrylhydrazyl (DPPH) or 3-ethylbenzothiazoline-6-sulfonic acid (ABTS). The cells were incubated for another 24 h before being assessed for cell death due to apoptosis using the Cell Death Detection ELISA Kit. Spectrophotometric assays based on DPPH and ABTS were also used to assess the antioxidant activity of the extract compared to vitamin C and vitamin E (positive controls). Spirulina extract did not cause cytotoxic effect on 3T3 cells within the range of concentrations tested (0 - 250 μg/mL). The extract reduced significantly (p < 0.05) apoptotic cell death due to DPPH and ABTS by 4 to 5-fold although the activity was less than vitamin C. Based on the DPPH assay, the radical scavenging activity of the extract was higher than phycocyanin and was at least 50% of vitamin C and vitamin E. Based on the ABTS assay, the antioxidant activity of the extract at 50 μmug/mL was as good as vitamin C and vitamin E. The results showed that aqueous extract of Spirulina has a protective effect against apoptotic cell death due to free radicals. The potential application of

  8. Protective effect of aqueous extract from Spirulina platensis against cell death induced by free radicals

    PubMed Central

    2010-01-01

    Background Spirulina is a commercial alga well known to contain various antioxidants, especially phycocyanin. Apart from being sold as a nutraceutical, Spirulina is incorporated as a functional ingredient in food products and beverages. Most of the previous reports on antioxidant activity of Spirulina were based on chemical rather than cell-based assays. The primary objective of this study was to assess the antioxidant activity of aqueous extract from Spirulina based on its protective effect against cell death induced by free radicals. Methods The antioxidant activity of the cold water extract from food-grade Spirulina platensis was assessed using both chemical and cell-based assays. In the cell-based assay, mouse fibroblast cells (3T3) cells were incubated for 1 h in medium containing aqueous extract of Spirulina or vitamin C (positive control) at 25, 125 and 250 μg/mL before the addition of 50 μM 1,1-diphenyl-2-picrylhydrazyl (DPPH) or 3-ethylbenzothiazoline-6-sulfonic acid (ABTS). The cells were incubated for another 24 h before being assessed for cell death due to apoptosis using the Cell Death Detection ELISA Kit. Spectrophotometric assays based on DPPH and ABTS were also used to assess the antioxidant activity of the extract compared to vitamin C and vitamin E (positive controls). Results Spirulina extract did not cause cytotoxic effect on 3T3 cells within the range of concentrations tested (0 - 250 μg/mL). The extract reduced significantly (p < 0.05) apoptotic cell death due to DPPH and ABTS by 4 to 5-fold although the activity was less than vitamin C. Based on the DPPH assay, the radical scavenging activity of the extract was higher than phycocyanin and was at least 50% of vitamin C and vitamin E. Based on the ABTS assay, the antioxidant activity of the extract at 50 μmug/mL was as good as vitamin C and vitamin E. Conclusions The results showed that aqueous extract of Spirulina has a protective effect against apoptotic cell death due to free radicals

  9. Arginine Metabolism in Bacterial Pathogenesis and Cancer Therapy

    PubMed Central

    Xiong, Lifeng; Teng, Jade L. L.; Botelho, Michael G.; Lo, Regina C.; Lau, Susanna K. P.; Woo, Patrick C. Y.

    2016-01-01

    Antibacterial resistance to infectious diseases is a significant global concern for health care organizations; along with aging populations and increasing cancer rates, it represents a great burden for government healthcare systems. Therefore, the development of therapies against bacterial infection and cancer is an important strategy for healthcare research. Pathogenic bacteria and cancer have developed a broad range of sophisticated strategies to survive or propagate inside a host and cause infection or spread disease. Bacteria can employ their own metabolism pathways to obtain nutrients from the host cells in order to survive. Similarly, cancer cells can dysregulate normal human cell metabolic pathways so that they can grow and spread. One common feature of the adaption and disruption of metabolic pathways observed in bacterial and cancer cell growth is amino acid pathways; these have recently been targeted as a novel approach to manage bacterial infections and cancer therapy. In particular, arginine metabolism has been illustrated to be important not only for bacterial pathogenesis but also for cancer therapy. Therefore, greater insights into arginine metabolism of pathogenic bacteria and cancer cells would provide possible targets for controlling of bacterial infection and cancer treatment. This review will summarize the recent progress on the relationship of arginine metabolism with bacterial pathogenesis and cancer therapy, with a particular focus on arginase and arginine deiminase pathways of arginine catabolism. PMID:26978353

  10. Bacterial meningitis in hematopoietic stem cell transplant recipients: a population-based prospective study.

    PubMed

    van Veen, K E B; Brouwer, M C; van der Ende, A; van de Beek, D

    2016-11-01

    We performed a nationwide prospective cohort study on the epidemiology and clinical features of community-acquired bacterial meningitis. Patients with a medical history of autologous or allogeneic hematopoietic stem cell transplantation (HSCT) were identified from the cohort performed from March 2006 to October 2014. Fourteen of 1449 episodes (1.0%) of bacterial meningitis occurred in patients with a history of HSCT. The incidence of bacterial meningitis in HSCT recipients was 40.4 per 100 000 patients per year (95% confidence interval (CI) 23.9-62.2), which is 30-fold (95% CI 18-51; P<0.001) higher compared with persons without HSCT. Incidence was higher in allogeneic HSCT compared with autologous HSCT (70.0 vs 15.8 per 100 000 patients per year). Causative organisms were Streptococcus pneumoniae in 11 patients, Neisseria meningitidis in two and Streptococcus mitis in one patient. Mortality was 3 of 14 (21%) and 6 of 11 (55%) survivors had sequelae. Nine of 11 patients (82%) with pneumococcal meningitis were infected with a serotype included in the 23-valent pneumococcal polysaccharide vaccine, of whom four developed meningitis despite vaccination. In conclusion, HSCT recipients have a substantially increased risk compared with the general population of acquiring bacterial meningitis, which is mostly due to S. pneumoniae, and disease is associated with high mortality and morbidity. Vaccination is important to prevent disease although vaccine failures did occur.

  11. Andrographis paniculata extracts and major constituent diterpenoids inhibit growth of intrahepatic cholangiocarcinoma cells by inducing cell cycle arrest and apoptosis.

    PubMed

    Suriyo, Tawit; Pholphana, Nanthanit; Rangkadilok, Nuchanart; Thiantanawat, Apinya; Watcharasit, Piyajit; Satayavivad, Jutamaad

    2014-05-01

    Andrographis paniculata is an important herbal medicine widely used in several Asian countries for the treatment of various diseases due to its broad range of pharmacological activities. The present study reports that A. paniculata extracts potently inhibit the growth of liver (HepG2 and SK-Hep1) and bile duct (HuCCA-1 and RMCCA-1) cancer cells. A. paniculata extracts with different contents of major diterpenoids, including andrographolide, 14-deoxy-11,12-didehydroandrographolide, neoandrographolide, and 14-deoxyandrographolide, exhibited a different potency of growth inhibition. The ethanolic extract of A. paniculata at the first true leaf stage, which contained a high amount of 14-deoxyandrographolide but a low amount of andrographolide, showed a cytotoxic effect to cancer cells about 4 times higher than the water extract of A. paniculata at the mature leaf stage, which contained a high amount of andrographolide but a low amount of 14-deoxyandrographolide. Andrographolide, not 14-deoxy-11,12-didehydroandrographolide, neoandrographolide, or 14-deoxyandrographolide, possessed potent cytotoxic activity against the growth of liver and bile duct cancer cells. The cytotoxic effect of the water extract of A. paniculata at the mature leaf stage could be explained by the present amount of andrographolide, while the cytotoxic effect of the ethanolic extract of A. paniculata at the first true leaf stage could not. HuCCA-1 cells showed more sensitivity to A. paniculata extracts and andrographolide than RMCCA-1 cells. Furthermore, the ethanolic extract of A. paniculata at the first true leaf stage increased cell cycle arrest at the G0/G1 and G2/M phases, and induced apoptosis in both HuCCA-1 and RMCCA-1 cells. The expressions of cyclin-D1, Bcl-2, and the inactive proenzyme form of caspase-3 were reduced by the ethanolic extract of A. paniculata in the first true leaf stage treatment, while a proapoptotic protein Bax was increased. The cleavage of poly (ADP

  12. Insect Gut Symbiont Susceptibility to Host Antimicrobial Peptides Caused by Alteration of the Bacterial Cell Envelope*

    PubMed Central

    Kim, Jiyeun Kate; Son, Dae Woo; Kim, Chan-Hee; Cho, Jae Hyun; Marchetti, Roberta; Silipo, Alba; Sturiale, Luisa; Park, Ha Young; Huh, Ye Rang; Nakayama, Hiroshi; Fukatsu, Takema; Molinaro, Antonio; Lee, Bok Luel

    2015-01-01

    The molecular characterization of symbionts is pivotal for understanding the cross-talk between symbionts and hosts. In addition to valuable knowledge obtained from symbiont genomic studies, the biochemical characterization of symbionts is important to fully understand symbiotic interactions. The bean bug (Riptortus pedestris) has been recognized as a useful experimental insect gut symbiosis model system because of its cultivatable Burkholderia symbionts. This system is greatly advantageous because it allows the acquisition of a large quantity of homogeneous symbionts from the host midgut. Using these naïve gut symbionts, it is possible to directly compare in vivo symbiotic cells with in vitro cultured cells using biochemical approaches. With the goal of understanding molecular changes that occur in Burkholderia cells as they adapt to the Riptortus gut environment, we first elucidated that symbiotic Burkholderia cells are highly susceptible to purified Riptortus antimicrobial peptides. In search of the mechanisms of the increased immunosusceptibility of symbionts, we found striking differences in cell envelope structures between cultured and symbiotic Burkholderia cells. The bacterial lipopolysaccharide O antigen was absent from symbiotic cells examined by gel electrophoretic and mass spectrometric analyses, and their membranes were more sensitive to detergent lysis. These changes in the cell envelope were responsible for the increased susceptibility of the Burkholderia symbionts to host innate immunity. Our results suggest that the symbiotic interactions between the Riptortus host and Burkholderia gut symbionts induce bacterial cell envelope changes to achieve successful gut symbiosis. PMID:26116716

  13. Cordyceps sinensis extract suppresses hypoxia-induced proliferation of rat pulmonary artery smooth muscle cells.

    PubMed

    Gao, Bao-an; Yang, Jun; Huang, Ji; Cui, Xiang-jun; Chen, Shi-xiong; Den, Hong-yan; Xiang, Guang-ming

    2010-09-01

    To investigate the effects of a Chinese herb Cordyceps sinensis (C. sinensis) extract on hypoxia-induced proliferation and the underlying mechanisms involved. This prospective study was carried out at the Central Laboratory of Yichang Central People's Hospital, Yichang, China from March 2008 to April 2010. The C. sinensis was extracted from the Chinese herb C. sinensis using aqueous alcohol extraction techniques. Forty healthy adult male Sprague Dawley rats were used in the study. The proliferation of pulmonary artery smooth muscle cells (PASMCs) was measured using 3-(4,5-dimethylthiazol-2-Yl)-2,5-diphenyltetrazolium bromide (MTT) assay, and cell viability was determined by trypan blue exclusion. Cell cycles were analyzed using FACSort flow cytometric analysis. The expression of proliferating cell nuclear antigen (PCNA), c-jun, and c-fos in rat PASMCs was determined by immunohistochemistry. We found an increased proliferation of PASMCs and increased expression of transcription factors, c-jun and c-fos in PASMCs cultured under hypoxic conditions. The C. sinensis extract significantly inhibited hypoxia-induced cell proliferation in a dose-dependent manner. In addition, C. sinensis extract also significantly inhibited the expression of PCNA, c-jun, and c-fos in these PASMCs. Our results indicated that C. sinensis extract inhibits hypoxia-induced proliferation of rat PASMCs, probably by suppressing the expression of PCNA, c-fos, c-jun, and decreasing the percentage of cells in synthesis phase, second gap phase, and mitotic phase in cell cycle (S+G2/M) phase. Our results therefore, provided novel evidence that C. sinensis extract may be used as a therapeutic reagent in the treatment of hypoxic pulmonary hypertension.

  14. [Anti-proliferation Effect of Taraxacum mongolicum Extract in HepG2 Cells and Its Mechanism].

    PubMed

    Guo, Jun-bin; Ye, Hai-hong; Chen, Jian-feng

    2015-10-01

    To study the anti-proliferation effect of Taraxacum mongolicum extract in HepG2 cells and its mechanism. The total proteins of HepG2 cells treated with Taraxacum mongolicum extract were. extracted and mitochondria-mediated apoptosis-related proteins (Survivin, Mcl-1, BCL-xL, BCL-2, Smac, BAX, Bad, Cytochrome c and Caspase-3/7/9) were detected by Western blot. Taraxacum mongolicum extract obviously inhibited the proliferation of HepG2 cells and the expression of anti-apoptotic proteins (Survivin, BCL-xL and BCL-2), increased the expression of pro-apoptotic proteins (Smac and Caspase-3/7/9), and promoted the release of Cytochrome c from mitochondria to cytoplasm in HepG2 cells. The effects were in a dose-independent mode. Taraxacum mongolicum extract can inhibit the proliferation of HepG2 cells and the anti-proliferation mechanism is related to mitochondria-mediated apoptosis.

  15. Chemopreventive and Anticancer Activities of Allium victorialis var. platyphyllum Extracts

    PubMed Central

    Kim, Hyun-Jeong; Park, Min Jeong; Park, Hee-Juhn; Chung, Won-Yoon; Kim, Ki-Rim; Park, Kwang-Kyun

    2014-01-01

    Background: Allium victorialis var. platyphyllum is an edible perennial herb and has been used as a vegetable or as a Korean traditional medicine. Allium species have received much attention owing to their diverse pharmacological properties, including antioxidative, anti-inflammatory, and anticancer activities. However, A. victorialis var. platyphyllum needs more study. Methods: The chemopreventive potential of A. victorialis var. platyphyllum methanol extracts was examined by measuring 12-O-tetra-decanoylphorbol 13-acetate (TPA)-induced superoxide anion production in the differentiated HL-60 cells, TPA-induced mouse ear edema, and Ames/Salmonella mutagenicity. The apoptosis-inducing capabilities of the extracts were evaluated by the 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide assay, 4’,6-diamidino-2-phenylindole staining, and the DNA fragmentation assay in human colon cancer HT-29 cells. Antimetastatic activities of the extracts were also investigated in an experimental mouse lung metastasis model. Results: The methanol extracts of A. victorialis var. platyphyllum rhizome (AVP-R) and A. victorialis var. platyphyllum stem (AVP-S) dose-dependently inhibited the TPA-induced generation of superoxide anion in HL-60 cells and TPA-induced ear edema in mice, as well as 7,12-dimethylbenz[a]anthracene (DMBA) and tert-butyl hydroperoxide (t-BOOH) -induced bacterial mutagenesis. AVP-R and AVP-S reduced cell viability in a dose-related manner and induced apoptotic morphological changes and internucleosomal DNA fragmentation in HT-29 cells. In the experimental mouse lung metastasis model, the formation of tumor nodules in lung tissue was significantly inhibited by the treatment of the extracts. Conclusions: AVP-R and AVP-S possess antioxidative, anti-inflammatory, antimutagenic, proapoptotic, and antimetastatic activities. Therefore, these extracts can serve as a beneficial supplement for the prevention and treatment of cancer. PMID:25337587

  16. Antiproliferative and apoptotic effects of chamomile extract in various human cancer cells.

    PubMed

    Srivastava, Janmejai K; Gupta, Sanjay

    2007-11-14

    Chamomile (Matricaria chamomilla), a popular herb valued for centuries as a traditional medicine, has been used to treat various human ailments; however, its anticancer activity is unknown. We evaluated the anticancer properties of aqueous and methanolic extracts of chamomile against various human cancer cell lines. Exposure of chamomile extracts caused minimal growth inhibitory responses in normal cells, whereas a significant decrease in cell viability was observed in various human cancer cell lines. Chamomile exposure resulted in differential apoptosis in cancer cells but not in normal cells at similar doses. HPLC analysis of chamomile extract confirmed apigenin 7-O-glucoside as the major constituent of chamomile; some minor glycoside components were also observed. Apigenin glucosides inhibited cancer cell growth but to a lesser extent than the parent aglycone, apigenin. Ex vivo experiments suggest that deconjugation of glycosides occurs in vivo to produce aglycone, especially in the small intestine. This study represents the first reported demonstration of the anticancer effects of chamomile. Further investigations of the mechanism of action of chamomile are warranted in evaluating the potential usefulness of this herbal remedy in the management of cancer patients.

  17. Radiosensitization of biologically active DNA in cellular extracts by oxygen. Evidence that the presence of SH-compounds is not required

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vanhemmen, J.J.; Meuling, W.J.A.; Bleichrodt, J.F.

    1974-01-01

    The radiosensitization by oxygen of biological active bacteriophage DNA in bacterial extracts was studied. The oxygen effect in such a system appeared not to be due or due only to a minor extent to the presence of endogenous sulfhydryl compounds. The components in a cell extract which enable oxygen and other sensitizers to sensitize DNA could not be destroyed by extremely high doses of gamma radiation. (Author) (GRA)

  18. Computer simulation of the processes of inactivation of bacterial cells by dynamic low-coherent speckles

    NASA Astrophysics Data System (ADS)

    Ulianova, Onega V.; Ulyanov, Sergey S.; Sazanova, Elena V.; Zhihong, Zhang; Sibo, Zhou; Luo, Qingming; Zudina, Irina; Bednov, Andrey

    2006-05-01

    Biochemical, biophysical and optical aspects of interaction of low-coherent light with bacterial cells have been discussed. Influence of low-coherent speckles on the colonies grows is investigated. It has been demonstrated that effects of light on the inhibition of cells (Francisella Tularensis) are connected with speckle dynamics. The regimes of illumination of cell suspension with purpose of devitalization of hazard bacteria, caused very dangerous infections, such as tularemia, are found. Mathematical model of interaction of low-coherent laser radiation with bacteria suspension has been proposed. Computer simulations of the processes of laser-cells interaction have been carried out.

  19. Exposure of Bacterial Biofilms to Electrical Current Leads to Cell Death Mediated in Part by Reactive Oxygen Species

    PubMed Central

    Brinkman, Cassandra L.; Schmidt-Malan, Suzannah M.; Karau, Melissa J.; Greenwood-Quaintance, Kerryl; Hassett, Daniel J.; Mandrekar, Jayawant N.

    2016-01-01

    Bacterial biofilms may form on indwelling medical devices such as prosthetic joints, heart valves and catheters, causing challenging-to-treat infections. We have previously described the ‘electricidal effect’, in which bacterial biofilms are decreased following exposure to direct electrical current. Herein, we sought to determine if the decreased bacterial quantities are due to detachment of biofilms or cell death and to investigate the role that reactive oxygen species (ROS) play in the observed effect. Using confocal and electron microscopy and flow cytometry, we found that direct current (DC) leads to cell death and changes in the architecture of biofilms formed by Gram-positive and Gram-negative bacteria. Reactive oxygen species (ROS) appear to play a role in DC-associated cell death, as there was an increase in ROS-production by Staphylococcus aureus and Staphylococcus epidermidis biofilms following exposure to DC. An increase in the production of ROS response enzymes catalase and superoxide dismutase (SOD) was observed for S. aureus, S. epidermidis and Pseudomonas aeruginosa biofilms following exposure to DC. Additionally, biofilms were protected from cell death when supplemented with antioxidants and oxidant scavengers, including catalase, mannitol and Tempol. Knocking out SOD (sodAB) in P. aeruginosa led to an enhanced DC effect. Microarray analysis of P. aeruginosa PAO1 showed transcriptional changes in genes related to the stress response and cell death. In conclusion, the electricidal effect results in death of bacteria in biofilms, mediated, at least in part, by production of ROS. PMID:27992529

  20. Exposure of Bacterial Biofilms to Electrical Current Leads to Cell Death Mediated in Part by Reactive Oxygen Species.

    PubMed

    Brinkman, Cassandra L; Schmidt-Malan, Suzannah M; Karau, Melissa J; Greenwood-Quaintance, Kerryl; Hassett, Daniel J; Mandrekar, Jayawant N; Patel, Robin

    2016-01-01

    Bacterial biofilms may form on indwelling medical devices such as prosthetic joints, heart valves and catheters, causing challenging-to-treat infections. We have previously described the 'electricidal effect', in which bacterial biofilms are decreased following exposure to direct electrical current. Herein, we sought to determine if the decreased bacterial quantities are due to detachment of biofilms or cell death and to investigate the role that reactive oxygen species (ROS) play in the observed effect. Using confocal and electron microscopy and flow cytometry, we found that direct current (DC) leads to cell death and changes in the architecture of biofilms formed by Gram-positive and Gram-negative bacteria. Reactive oxygen species (ROS) appear to play a role in DC-associated cell death, as there was an increase in ROS-production by Staphylococcus aureus and Staphylococcus epidermidis biofilms following exposure to DC. An increase in the production of ROS response enzymes catalase and superoxide dismutase (SOD) was observed for S. aureus, S. epidermidis and Pseudomonas aeruginosa biofilms following exposure to DC. Additionally, biofilms were protected from cell death when supplemented with antioxidants and oxidant scavengers, including catalase, mannitol and Tempol. Knocking out SOD (sodAB) in P. aeruginosa led to an enhanced DC effect. Microarray analysis of P. aeruginosa PAO1 showed transcriptional changes in genes related to the stress response and cell death. In conclusion, the electricidal effect results in death of bacteria in biofilms, mediated, at least in part, by production of ROS.

  1. Extraction of Natural Antioxidants from the Thelephora ganbajun Mushroom by an Ultrasound-Assisted Extraction Technique and Evaluation of Antiproliferative Activity of the Extract against Human Cancer Cells.

    PubMed

    Xu, Dong-Ping; Zheng, Jie; Zhou, Yue; Li, Ya; Li, Sha; Li, Hua-Bin

    2016-10-01

    The Thelephora ganbajun mushroom has been found to be a potential rich source of natural antioxidants. In this study, an ultrasound-assisted extraction (UAE) technique together with GRAS (generally recognized as safe) solvents (ethanol and water) was used to maximize the extraction of antioxidants from Thelephora ganbajun . Five extraction parameters (ethanol concentration, solvent to solid ratio, extraction time, temperature and ultrasound power) were investigated by single-factor experiments, and then a central composite rotatable design was employed to study interaction of three key extraction parameters. The optimum conditions were as follows: 57.38% ethanol, 70.15 mL/g solvent to solid ratio, 10.58 min extraction time, 40 °C extraction temperature and 500 W ultrasound power. Under the optimum conditions, the antioxidant activity obtained was 346.98 ± 12.19 µmol Trolox/g DW, in accordance with the predicted value of 344.67 µmol Trolox/g DW. Comparison of UAE with conventional maceration and Soxhlet extraction, the UAE method showed stronger extract efficiency in a shorter extraction time. These results showed that UAE was an effective technique to extract antioxidants from Thelephora ganbajun . Furthermore, the extracts obtained under the optimized conditions exhibited antiproliferative activities toward human lung (A549), breast (MCF-7), liver (HepG2) and colon (HT-29) cancer cells, especially for liver and lung cancer cells. In addition, rutin, 2-hydrocinnamic acid and epicatechin were identified in the extract, which might contribute to antioxidant and antiproliferative activities.

  2. Extraction of Natural Antioxidants from the Thelephora ganbajun Mushroom by an Ultrasound-Assisted Extraction Technique and Evaluation of Antiproliferative Activity of the Extract against Human Cancer Cells

    PubMed Central

    Xu, Dong-Ping; Zheng, Jie; Zhou, Yue; Li, Ya; Li, Sha; Li, Hua-Bin

    2016-01-01

    The Thelephora ganbajun mushroom has been found to be a potential rich source of natural antioxidants. In this study, an ultrasound-assisted extraction (UAE) technique together with GRAS (generally recognized as safe) solvents (ethanol and water) was used to maximize the extraction of antioxidants from Thelephora ganbajun. Five extraction parameters (ethanol concentration, solvent to solid ratio, extraction time, temperature and ultrasound power) were investigated by single-factor experiments, and then a central composite rotatable design was employed to study interaction of three key extraction parameters. The optimum conditions were as follows: 57.38% ethanol, 70.15 mL/g solvent to solid ratio, 10.58 min extraction time, 40 °C extraction temperature and 500 W ultrasound power. Under the optimum conditions, the antioxidant activity obtained was 346.98 ± 12.19 µmol Trolox/g DW, in accordance with the predicted value of 344.67 µmol Trolox/g DW. Comparison of UAE with conventional maceration and Soxhlet extraction, the UAE method showed stronger extract efficiency in a shorter extraction time. These results showed that UAE was an effective technique to extract antioxidants from Thelephora ganbajun. Furthermore, the extracts obtained under the optimized conditions exhibited antiproliferative activities toward human lung (A549), breast (MCF-7), liver (HepG2) and colon (HT-29) cancer cells, especially for liver and lung cancer cells. In addition, rutin, 2-hydrocinnamic acid and epicatechin were identified in the extract, which might contribute to antioxidant and antiproliferative activities. PMID:27706082

  3. Influenza viral neuraminidase primes bacterial coinfection through TGF-β-mediated expression of host cell receptors.

    PubMed

    Li, Ning; Ren, Aihui; Wang, Xiaoshuang; Fan, Xin; Zhao, Yong; Gao, George F; Cleary, Patrick; Wang, Beinan

    2015-01-06

    Influenza infection predisposes the host to secondary bacterial pneumonia, which is a major cause of mortality during influenza epidemics. The molecular mechanisms underlying the bacterial coinfection remain elusive. Neuraminidase (NA) of influenza A virus (IAV) enhances bacterial adherence and also activates TGF-β. Because TGF-β can up-regulate host adhesion molecules such as fibronectin and integrins for bacterial binding, we hypothesized that activated TGF-β during IAV infection contributes to secondary bacterial infection by up-regulating these host adhesion molecules. Flow cytometric analyses of a human lung epithelial cell line indicated that the expression of fibronectin and α5 integrin was up-regulated after IAV infection or treatment with recombinant NA and was reversed through the inhibition of TGF-β signaling. IAV-promoted adherence of group A Streptococcus (GAS) and other coinfective pathogens that require fibronectin for binding was prevented significantly by the inhibition of TGF-β. However, IAV did not promote the adherence of Lactococcus lactis unless this bacterium expressed the fibronectin-binding protein of GAS. Mouse experiments showed that IAV infection enhanced GAS colonization in the lungs of wild-type animals but not in the lungs of mice deficient in TGF-β signaling. Taken together, these results reveal a previously unrecognized mechanism: IAV NA enhances the expression of cellular adhesins through the activation of TGF-β, leading to increased bacterial loading in the lungs. Our results suggest that TGF-β and cellular adhesins may be potential pharmaceutical targets for the prevention of coinfection.

  4. Cytotoxic effects of Mangifera indica L. kernel extract on human breast cancer (MCF-7 and MDA-MB-231 cell lines) and bioactive constituents in the crude extract

    PubMed Central

    2014-01-01

    Background Waterlily Mango (Mangifera indica L.) is thought to be antioxidant-rich, conferred by its functional phytochemicals. Methods The potential anticancer effects of the ethanolic kernel extract on breast cancer cells (MDA-MB-231 and MCF-7) using MTT, anti-proliferation, neutral red (NR) uptake and lactate dehydrogenase (LDH) release assays were evaluated. Cytological studies on the breast cancer cells were also conducted, and phytochemical analyses of the extract were carried out to determine the likely bioactive compounds responsible for such effects. Results Results showed the extract induced cytotoxicity in MDA-MB-231 cells and MCF-7 cells with IC50 values of 30 and 15 μg/mL, respectively. The extract showed significant toxicity towards both cell lines, with low toxicity to normal breast cells (MCF-10A). The cytotoxic effects on the cells were further confirmed by the NR uptake, antiproliferative and LDH release assays. Bioactive analyses revealed that many bioactives were present in the extract although butylated hydroxytoluene, a potent antioxidant, was the most abundant with 44.65%. Conclusions M. indica extract appears to be more cytoxic to both estrogen positive and negative breast cancer cell lines than to normal breast cells. Synergistic effects of its antioxidant bioactives could have contributed to the cytotoxic effects of the extract. The extract of M. indica, therefore, has potential anticancer activity against breast cancer cells. This potential is worth studying further, and could have implications on future studies and eventually management of human breast cancers. PMID:24962691

  5. Live cell imaging reveals different modes of cytotoxic action of extracts derived from commonly used luting cements.

    PubMed

    Trumpaitė-Vanagienė, Rita; Čebatariūnienė, Alina; Tunaitis, Virginijus; Pūrienė, Alina; Pivoriūnas, Augustas

    2018-02-01

    To compare cytotoxicity of extracts derived from commonly used luting cements: Hoffmann's Zinc Phosphate (ZPC), GC Fuji Plus Resin Modified Glass Ionomer (RMGIC) and 3M ESPE RelyX Unicem Resin Cement (RC) on primary human gingival fibroblasts (HGFs). HGFs were exposed to different concentrations of the ZPC, RMGIC and RC extracts. The cytotoxicity was assessed with the PrestoBlue Cell Viability Reagent and viable cells were counted by a haemocytometer using the trypan blue exclusion test. In order to determine the primary mechanism of the cell death induced by extracts from different luting cements, the real-time monitoring of caspase-3/-7 activity and membrane integrity of cells was employed. The extracts from the RMGIC and ZPC decreased the metabolic activity and numbers of viable cells. Unexpectedly, the extracts from the RC evoked only small effects on the metabolic activity of HGFs with a decreasing number of viable cells in a dose-and time-dependent manner. The live cell imaging revealed that the apoptosis was the primary mechanism of a cell death induced by the extracts derived from the RMGIC, whereas the extracts from the RC and ZPC induced a cell death through a necrotic and caspase-independent pathway. The apoptosis was the primary mechanism of the cell death induced by the extracts derived from the RMGIC, whereas the extracts from the RC and ZPC induced a cell death via a necrotic pathway. We suggest that metabolic assays commonly used to assess the cytotoxicity of luting cements should be validated by alternative methods. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Wild Mushroom Extracts as Inhibitors of Bacterial Biofilm Formation

    PubMed Central

    Alves, Maria José; Ferreira, Isabel C. F. R.; Lourenço, Inês; Costa, Eduardo; Martins, Anabela; Pintado, Manuela

    2014-01-01

    Microorganisms can colonize a wide variety of medical devices, putting patients in risk for local and systemic infectious complications, including local-site infections, catheter-related bloodstream infections, and endocarditis. These microorganisms are able to grow adhered to almost every surface, forming architecturally complex communities termed biofilms. The use of natural products has been extremely successful in the discovery of new medicine, and mushrooms could be a source of natural antimicrobials. The present study reports the capacity of wild mushroom extracts to inhibit in vitro biofilm formation by multi-resistant bacteria. Four Gram-negative bacteria biofilm producers (Escherichia coli, Proteus mirabilis, Pseudomonas aeruginosa, and Acinetobacter baumannii) isolated from urine were used to verify the activity of Russula delica, Fistulina hepatica, Mycena rosea, Leucopaxilus giganteus, and Lepista nuda extracts. The results obtained showed that all tested mushroom extracts presented some extent of inhibition of biofilm production. Pseudomonas aeruginosa was the microorganism with the highest capacity of biofilm production, being also the most susceptible to the extracts inhibition capacity (equal or higher than 50%). Among the five tested extracts against E. coli, Leucopaxillus giganteus (47.8%) and Mycenas rosea (44.8%) presented the highest inhibition of biofilm formation. The extracts exhibiting the highest inhibitory effect upon P. mirabilis biofilm formation were Sarcodon imbricatus (45.4%) and Russula delica (53.1%). Acinetobacter baumannii was the microorganism with the lowest susceptibility to mushroom extracts inhibitory effect on biofilm production (highest inhibition—almost 29%, by Russula delica extract). This is a pioneer study since, as far as we know, there are no reports on the inhibition of biofilm production by the studied mushroom extracts and in particular against multi-resistant clinical isolates; nevertheless, other studies are

  7. Defined plant extracts can protect human cells against combined xenobiotic effects

    PubMed Central

    2011-01-01

    Background Pollutants representative of common environmental contaminants induce intracellular toxicity in human cells, which is generally amplified in combinations. We wanted to test the common pathways of intoxication and detoxification in human embryonic and liver cell lines. We used various pollutants such as Roundup residues, Bisphenol-A and Atrazine, and five precise medicinal plant extracts called Circ1, Dig1, Dig2, Sp1, and Uro1 in order to understand whether specific molecular actions took place or not. Methods Kidney and liver are major detoxification organs. We have studied embryonic kidney and hepatic human cell lines E293 and HepG2. The intoxication was induced on the one hand by a formulation of one of the most common herbicides worldwide, Roundup 450 GT+ (glyphosate and specific adjuvants), and on the other hand by a mixture of Bisphenol-A and Atrazine, all found in surface waters, feed and food. The prevention and curative effects of plant extracts were also measured on mitochondrial succinate dehydrogenase activity, on the entry of radiolabelled glyphosate (in Roundup) in cells, and on cytochromes P450 1A2 and 3A4 as well as glutathione-S-transferase. Results Clear toxicities of pollutants were observed on both cell lines at very low sub-agricultural dilutions. The prevention of such phenomena took place within 48 h with the plant extracts tested, with success rates ranging between 25-34% for the E293 intoxicated by Roundup, and surprisingly up to 71% for the HepG2. By contrast, after intoxication, no plant extract was capable of restoring E293 viability within 48 h, however, two medicinal plant combinations did restore the Bisphenol-A/Atrazine intoxicated HepG2 up to 24-28%. The analysis of underlying mechanisms revealed that plant extracts were not capable of preventing radiolabelled glyphosate from entering cells; however Dig2 did restore the CYP1A2 activity disrupted by Roundup, and had only a mild preventive effect on the CYP3A4, and no effect

  8. Methanolic Extract of Ganoderma lucidum Induces Autophagy of AGS Human Gastric Tumor Cells.

    PubMed

    Reis, Filipa S; Lima, Raquel T; Morales, Patricia; Ferreira, Isabel C F R; Vasconcelos, M Helena

    2015-09-29

    Ganoderma lucidum is one of the most widely studied mushroom species, particularly in what concerns its medicinal properties. Previous studies (including those from some of us) have shown some evidence that the methanolic extract of G. lucidum affects cellular autophagy. However, it was not known if it induces autophagy or decreases the autophagic flux. The treatment of a gastric adenocarcinoma cell line (AGS) with the mushroom extract increased the formation of autophagosomes (vacuoles typical from autophagy). Moreover, the cellular levels of LC3-II were also increased, and the cellular levels of p62 decreased, confirming that the extract affects cellular autophagy. Treating the cells with the extract together with lysossomal protease inhibitors, the cellular levels of LC3-II and p62 increased. The results obtained proved that, in AGS cells, the methanolic extract of G. lucidum causes an induction of autophagy, rather than a reduction in the autophagic flux. To our knowledge, this is the first study proving that statement.

  9. Huaier aqueous extract induces apoptosis of human fibrosarcoma HT1080 cells through the mitochondrial pathway

    PubMed Central

    CUI, YANG; MENG, HONGMEI; LIU, WEIDONG; WANG, HUAN; LIU, QINGPENG

    2015-01-01

    In recent years, aqueous extract of Trametes robiniophila Murr. (Huaier), a traditional Chinese medicine, has been frequently used in China for complementary cancer therapy. However, the mechanisms underlying its anticancer effects have yet to be elucidated. The present study aimed to evaluate the ability of Huaier extract to inhibit proliferation, promote apoptosis and suppress mobility in the fibrosarcoma HT1080 cell line in vitro. The cells were treated with gradient doses of Huaier extract at concentrations of 0, 4, 8 or 16 mg/ml for 24, 48 or 72 h. The cell viability and motility were measured in vitro using MTT, invasive, migration and scratch assays. The distribution of the cell cycle and the extent of cellular apoptosis were analyzed by flow cytometry. The apoptotic pathways were detected using a mitochondrial membrane potential transition assay and western blotting. The results revealed that the cellular viability decreased significantly with increasing concentrations of Huaier extract. In addition, cell invasiveness and migration were also suppressed significantly. It was demonstrated that Huaier extract induced G2 cell-cycle arrest and cellular apoptosis in a time- and dose-dependent manner. The decreased mitochondrial membrane potential, the downregulation of B-cell lymphoma 2 and pro-caspase-3, and upregulation of Bcl-2-associated X protein, cleaved caspase-9 and caspase-3 suggested that Huaier extract induced the apoptosis of HT1080 cells through the mitochondrial pathway. The results of the present study indicate that Huaier extract is a potential complementary agent for the treatment of fibrosarcoma. PMID:25789006

  10. Light scattering on PHA granules protects bacterial cells against the harmful effects of UV radiation.

    PubMed

    Slaninova, Eva; Sedlacek, Petr; Mravec, Filip; Mullerova, Lucie; Samek, Ota; Koller, Martin; Hesko, Ondrej; Kucera, Dan; Marova, Ivana; Obruca, Stanislav

    2018-02-01

    Numerous prokaryotes accumulate polyhydroxyalkanoates (PHA) in the form of intracellular granules. The primary function of PHA is the storage of carbon and energy. Nevertheless, there are numerous reports that the presence of PHA granules in microbial cells enhances their stress resistance and fitness when exposed to various stress factors. In this work, we studied the protective mechanism of PHA granules against UV irradiation employing Cupriavidus necator as a model bacterial strain. The PHA-accumulating wild type strain showed substantially higher UV radiation resistance than the PHA non-accumulating mutant. Furthermore, the differences in UV-Vis radiation interactions with both cell types were studied using various spectroscopic approaches (turbidimetry, absorption spectroscopy, and nephelometry). Our results clearly demonstrate that intracellular PHA granules efficiently scatter UV radiation, which provides a substantial UV-protective effect for bacterial cells and, moreover, decreases the intracellular level of reactive oxygen species in UV-challenged cells. The protective properties of the PHA granules are enhanced by the fact that granules specifically bind to DNA, which in turn provides shield-like protection of DNA as the most UV-sensitive molecule. To conclude, the UV-protective action of PHA granules adds considerable value to their primary storage function, which can be beneficial in numerous environments.

  11. Biological consequences and advantages of asymmetric bacterial growth.

    PubMed

    Kysela, David T; Brown, Pamela J B; Huang, Kerwyn Casey; Brun, Yves V

    2013-01-01

    Asymmetries in cell growth and division occur in eukaryotes and prokaryotes alike. Even seemingly simple and morphologically symmetric cell division processes belie inherent underlying asymmetries in the composition of the resulting daughter cells. We consider the types of asymmetry that arise in various bacterial cell growth and division processes, which include both conditionally activated mechanisms and constitutive, hardwired aspects of bacterial life histories. Although asymmetry disposes some cells to the deleterious effects of aging, it may also benefit populations by efficiently purging accumulated damage and rejuvenating newborn cells. Asymmetries may also generate phenotypic variation required for successful exploitation of variable environments, even when extrinsic changes outpace the capacity of cells to sense and respond to challenges. We propose specific experimental approaches to further develop our understanding of the prevalence and the ultimate importance of asymmetric bacterial growth.

  12. Bacterial adhesion force quantification by fluidic force microscopy

    NASA Astrophysics Data System (ADS)

    Potthoff, Eva; Ossola, Dario; Zambelli, Tomaso; Vorholt, Julia A.

    2015-02-01

    Quantification of detachment forces between bacteria and substrates facilitates the understanding of the bacterial adhesion process that affects cell physiology and survival. Here, we present a method that allows for serial, single bacterial cell force spectroscopy by combining the force control of atomic force microscopy with microfluidics. Reversible bacterial cell immobilization under physiological conditions on the pyramidal tip of a microchanneled cantilever is achieved by underpressure. Using the fluidic force microscopy technology (FluidFM), we achieve immobilization forces greater than those of state-of-the-art cell-cantilever binding as demonstrated by the detachment of Escherichia coli from polydopamine with recorded forces between 4 and 8 nN for many cells. The contact time and setpoint dependence of the adhesion forces of E. coli and Streptococcus pyogenes, as well as the sequential detachment of bacteria out of a chain, are shown, revealing distinct force patterns in the detachment curves. This study demonstrates the potential of the FluidFM technology for quantitative bacterial adhesion measurements of cell-substrate and cell-cell interactions that are relevant in biofilms and infection biology.Quantification of detachment forces between bacteria and substrates facilitates the understanding of the bacterial adhesion process that affects cell physiology and survival. Here, we present a method that allows for serial, single bacterial cell force spectroscopy by combining the force control of atomic force microscopy with microfluidics. Reversible bacterial cell immobilization under physiological conditions on the pyramidal tip of a microchanneled cantilever is achieved by underpressure. Using the fluidic force microscopy technology (FluidFM), we achieve immobilization forces greater than those of state-of-the-art cell-cantilever binding as demonstrated by the detachment of Escherichia coli from polydopamine with recorded forces between 4 and 8 nN for many

  13. Copper effects on bacterial activity of estuarine silty sediments

    NASA Astrophysics Data System (ADS)

    Almeida, Adelaide; Cunha, Ângela; Fernandes, Sandra; Sobral, Paula; Alcântara, Fernanda

    2007-07-01

    Bacteria of silty estuarine sediments were spiked with copper to 200 μg Cu g -1 dry weight sediment in order to assess the impact of copper on bacterial degradation of organic matter and on bacterial biomass production. Bacterial density was determined by direct counting under epifluorescence microscopy and bacterial production by the incorporation of 3H-Leucine. Leucine turnover rate was evaluated by 14C-leucine incorporation and ectoenzymatic activities were estimated as the hydrolysis rate of model substrates for β-glucosidase and leucine-aminopeptidase. The presence of added copper in the microcosms elicited, after 21 days of incubation, generalised anoxia and a decrease in organic matter content. The non-eroded surface of the copper-spiked sediment showed, when compared to the control, a decrease in bacterial abundance and significant lower levels of bacterial production and of leucine turnover rate. Bacterial production and leucine turnover rate decreased to 1.4% and 13% of the control values, respectively. Ectoenzymatic activities were also negatively affected but by smaller factors. After erosion by the water current in laboratory flume conditions, the eroded surface of the control sediment showed a generalised decline in all bacterial activities. The erosion of the copper-spiked sediment showed, however, two types of responses with respect to bacterial activities at the exposed surface: positive responses of bacterial production and leucine turnover rate contrasting with slight negative responses of ectoenzymatic activities. The effects of experimental erosion in the suspended cells were also different in the control and in the copper-spiked sediment. Bacterial cells in the control microcosm exhibited, when compared to the non-eroded sediment cells, decreases in all activities after the 6-h suspension. The response of the average suspended copper-spiked sediment cell differed from the control by a less sharp decrease in ectoenzymatic activities and

  14. Increased electrical output when a bacterial ABTS oxidizer is used in a microbial fuel cell

    USDA-ARS?s Scientific Manuscript database

    Microbial fuel cells (MFCs) are a technology that provides electrical energy from the microbial oxidation of organic compounds. Most MFCs use oxygen as the oxidant in the cathode chamber. The present study examined the formation in culture of an unidentified bacterial oxidant and investigated the ...

  15. Mutations That Alter the Bacterial Cell Envelope Increase Lipid Production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lemmer, Kimberly C.; Zhang, Weiping; Langer, Samantha J.

    ABSTRACT Lipids from microbes offer a promising source of renewable alternatives to petroleum-derived compounds. In particular, oleaginous microbes are of interest because they accumulate a large fraction of their biomass as lipids. In this study, we analyzed genetic changes that alter lipid accumulation inRhodobacter sphaeroides. By screening anR. sphaeroidesTn5mutant library for insertions that increased fatty acid content, we identified 10 high-lipid (HL) mutants for further characterization. These HL mutants exhibited increased sensitivity to drugs that target the bacterial cell envelope and changes in shape, and some had the ability to secrete lipids, with two HL mutants accumulating ~60% of their totalmore » lipids extracellularly. When one of the highest-lipid-secreting strains was grown in a fed-batch bioreactor, its lipid content was comparable to that of oleaginous microbes, with the majority of the lipids secreted into the medium. Based on the properties of these HL mutants, we conclude that alterations of the cell envelope are a previously unreported approach to increase microbial lipid production. We also propose that this approach may be combined with knowledge about biosynthetic pathways, in this or other microbes, to increase production of lipids and other chemicals. IMPORTANCEThis paper reports on experiments to understand how to increase microbial lipid production. Microbial lipids are often cited as one renewable replacement for petroleum-based fuels and chemicals, but strategies to increase the yield of these compounds are needed to achieve this goal. While lipid biosynthesis is often well understood, increasing yields of these compounds to industrially relevant levels is a challenge, especially since genetic, synthetic biology, or engineering approaches are not feasible in many microbes. We show that altering the bacterial cell envelope can be used to increase microbial lipid production. We also find that the utility of some of these

  16. Mutations That Alter the Bacterial Cell Envelope Increase Lipid Production.

    PubMed

    Lemmer, Kimberly C; Zhang, Weiping; Langer, Samantha J; Dohnalkova, Alice C; Hu, Dehong; Lemke, Rachelle A; Piotrowski, Jeff S; Orr, Galya; Noguera, Daniel R; Donohue, Timothy J

    2017-05-23

    Lipids from microbes offer a promising source of renewable alternatives to petroleum-derived compounds. In particular, oleaginous microbes are of interest because they accumulate a large fraction of their biomass as lipids. In this study, we analyzed genetic changes that alter lipid accumulation in Rhodobacter sphaeroides By screening an R. sphaeroides Tn 5 mutant library for insertions that increased fatty acid content, we identified 10 high-lipid (HL) mutants for further characterization. These HL mutants exhibited increased sensitivity to drugs that target the bacterial cell envelope and changes in shape, and some had the ability to secrete lipids, with two HL mutants accumulating ~60% of their total lipids extracellularly. When one of the highest-lipid-secreting strains was grown in a fed-batch bioreactor, its lipid content was comparable to that of oleaginous microbes, with the majority of the lipids secreted into the medium. Based on the properties of these HL mutants, we conclude that alterations of the cell envelope are a previously unreported approach to increase microbial lipid production. We also propose that this approach may be combined with knowledge about biosynthetic pathways, in this or other microbes, to increase production of lipids and other chemicals. IMPORTANCE This paper reports on experiments to understand how to increase microbial lipid production. Microbial lipids are often cited as one renewable replacement for petroleum-based fuels and chemicals, but strategies to increase the yield of these compounds are needed to achieve this goal. While lipid biosynthesis is often well understood, increasing yields of these compounds to industrially relevant levels is a challenge, especially since genetic, synthetic biology, or engineering approaches are not feasible in many microbes. We show that altering the bacterial cell envelope can be used to increase microbial lipid production. We also find that the utility of some of these alterations can be

  17. Mutations That Alter the Bacterial Cell Envelope Increase Lipid Production

    DOE PAGES

    Lemmer, Kimberly C.; Zhang, Weiping; Langer, Samantha J.; ...

    2017-05-23

    ABSTRACT Lipids from microbes offer a promising source of renewable alternatives to petroleum-derived compounds. In particular, oleaginous microbes are of interest because they accumulate a large fraction of their biomass as lipids. In this study, we analyzed genetic changes that alter lipid accumulation inRhodobacter sphaeroides. By screening anR. sphaeroidesTn5mutant library for insertions that increased fatty acid content, we identified 10 high-lipid (HL) mutants for further characterization. These HL mutants exhibited increased sensitivity to drugs that target the bacterial cell envelope and changes in shape, and some had the ability to secrete lipids, with two HL mutants accumulating ~60% of their totalmore » lipids extracellularly. When one of the highest-lipid-secreting strains was grown in a fed-batch bioreactor, its lipid content was comparable to that of oleaginous microbes, with the majority of the lipids secreted into the medium. Based on the properties of these HL mutants, we conclude that alterations of the cell envelope are a previously unreported approach to increase microbial lipid production. We also propose that this approach may be combined with knowledge about biosynthetic pathways, in this or other microbes, to increase production of lipids and other chemicals. IMPORTANCEThis paper reports on experiments to understand how to increase microbial lipid production. Microbial lipids are often cited as one renewable replacement for petroleum-based fuels and chemicals, but strategies to increase the yield of these compounds are needed to achieve this goal. While lipid biosynthesis is often well understood, increasing yields of these compounds to industrially relevant levels is a challenge, especially since genetic, synthetic biology, or engineering approaches are not feasible in many microbes. We show that altering the bacterial cell envelope can be used to increase microbial lipid production. We also find that the utility of some of these

  18. Antioxidant effects of gastrointestinal digested purple carrot extract on the human cells of colonic mucosa.

    PubMed

    Olejnik, Anna; Rychlik, Joanna; Kidoń, Marcin; Czapski, Janusz; Kowalska, Katarzyna; Juzwa, Wojciech; Olkowicz, Mariola; Dembczyński, Radosław; Moyer, Mary Pat

    2016-01-01

    Purple carrot (PC) is a potential dietary constituent, which represents a valuable source of antioxidants and can modulate the reactive oxygen species (ROS) level in the gastrointestinal tract. Antioxidant capacity of a PC extract subjected to digestion process simulated in the artificial alimentary tract, including the stomach, small intestine and colon, was analyzed in normal human cells of colon mucosa. Results indicated that the extract obtained upon passage through the gastrointestinal tract, which could come into contact with the colonic cells in situ, was less potent than the extract, which was not subjected to digestion process. Digested PC extract exhibited intracellular ROS-inhibitory capacity, with 1mg/mL showing the ROS clearance of 18.4%. A 20.7% reduction in oxidative DNA damage due to colon mucosa cells' treatment with digested PC extract was observed. These findings indicate that PC extract is capable of colonic cells' protection against the adverse effects of oxidative stress. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Graphene Oxide Derivatives as Hole- and Electron-Extraction Layers for High-Performance Polymer Solar Cells

    DTIC Science & Technology

    2013-11-20

    Graphene oxide derivatives as hole- and electron- extraction layers for high-performance polymer solar cells Jun Liu,*a Michael Durstockb and Liming...oxide (GO) and its derivatives have been used as a new class of efficient hole- and electron-extraction materials in polymer solar cells (PSCs...new class of efficient hole- and electron-extraction materials in polymer solar cells (PSCs). Highly efficient and stable PSCs have been fabricated

  20. Evaluation of quantitative PCR measurement of bacterial colonization of epithelial cells.

    PubMed

    Schmidt, Marcin T; Olejnik-Schmidt, Agnieszka K; Myszka, Kamila; Borkowska, Monika; Grajek, Włodzimierz

    2010-01-01

    Microbial colonization is an important step in establishing pathogenic or probiotic relations to host cells and in biofilm formation on industrial or medical devices. The aim of this work was to verify the applicability of quantitative PCR (Real-Time PCR) to measure bacterial colonization of epithelial cells. Salmonella enterica and Caco-2 intestinal epithelial cell line was used as a model. To verify sensitivity of the assay a competition of the pathogen cells to probiotic microorganism was tested. The qPCR method was compared to plate count and radiolabel approach, which are well established techniques in this area of research. The three methods returned similar results. The best quantification accuracy had radiolabel method, followed by qPCR. The plate count results showed coefficient of variation two-times higher than this of qPCR. The quantitative PCR proved to be a reliable method for enumeration of microbes in colonization assay. It has several advantages that make it very useful in case of analyzing mixed populations, where several different species or even strains can be monitored at the same time.