Brudzynski, Katrina; Abubaker, Kamal; Wang, Tony
2012-01-01
Exposure of bacterial cells to honey inhibits their growth and may cause cell death. Our previous studies showed a cause-effect relationship between hydroxyl radical generated from honey hydrogen peroxide and growth arrest. Here we explored the role of hydroxyl radicals as inducers of bacterial cells death. The bactericidal effect of ·OH on antibiotic-resistant clinical isolates of MRSA and VRE and standard bacterial strains of E. coli and B. subtiles was examined using a broth microdilution assay supplemented with 3'-(p-aminophenyl) fluorescein (APF) as the ·OH trap, followed by colony enumeration. Bactericidal activities of eight honeys (six varieties of buckwheat, blueberry and manuka honeys) were analyzed. The MBC/MIC ratio ≤4 and the killing curves indicated that honeys exhibited powerful, concentration-dependent bactericidal effect. The extent of killing depended on the ratio of honey concentration to bacterial load, indicating that honey dose was critical for its bactericidal efficacy. The killing rate and potency varied between honeys and ranged from over a 6-log(10) to 4-log(10) CFU/ml reduction of viable cells, equivalent to complete bacterial eradication. The maximal killing was associated with the extensive degradation of bacterial DNA. Honey concentration at which DNA degradation occurred correlated with cell death observed in the concentration-dependent cell-kill on agar plates. There was no quantitative relationship between the ·OH generation by honey and bactericidal effect. At the MBC, where there was no surviving cells and no DNA was visible on agarose gels, the ·OH levels were on average 2-3x lower than at Minimum Inhibitory Concentration (MICs) (p < 0.0001). Pre-treatment of honey with catalase, abolished the bactericidal effect. This raised possibilities that either the abrupt killing prevented accumulation of ·OH (dead cells did not generate ·OH) or that DNA degradation and killing is the actual footprint of ·OH action. In conclusion, honeys of buckwheat origin exhibited powerful, concentration-dependent bactericidal effect. The killing and DNA degradation showed a cause-effect relationship. Hydrogen peroxide was an active part of honey killing mechanism.
Photoexcited quantum dots for killing multidrug-resistant bacteria
NASA Astrophysics Data System (ADS)
Courtney, Colleen M.; Goodman, Samuel M.; McDaniel, Jessica A.; Madinger, Nancy E.; Chatterjee, Anushree; Nagpal, Prashant
2016-05-01
Multidrug-resistant bacterial infections are an ever-growing threat because of the shrinking arsenal of efficacious antibiotics. Metal nanoparticles can induce cell death, yet the toxicity effect is typically nonspecific. Here, we show that photoexcited quantum dots (QDs) can kill a wide range of multidrug-resistant bacterial clinical isolates, including methicillin-resistant Staphylococcus aureus, carbapenem-resistant Escherichia coli, and extended-spectrum β-lactamase-producing Klebsiella pneumoniae and Salmonella typhimurium. The killing effect is independent of material and controlled by the redox potentials of the photogenerated charge carriers, which selectively alter the cellular redox state. We also show that the QDs can be tailored to kill 92% of bacterial cells in a monoculture, and in a co-culture of E. coli and HEK 293T cells, while leaving the mammalian cells intact, or to increase bacterial proliferation. Photoexcited QDs could be used in the study of the effect of redox states on living systems, and lead to clinical phototherapy for the treatment of infections.
Tuo, Y F; Zhang, L W; Yi, H X; Zhang, Y C; Zhang, W Q; Han, X; Du, M; Jiao, Y H; Wang, S M
2010-06-01
In vitro studies, animal models, epidemiology, and human intervention studies provide evidence that some lactic acid bacteria can reduce the risk of certain cancers. In this study, heat-killed bacterial cells, genomic DNA, and cell wall of 7 wild Lactobacillus strains isolated from traditional fermented foods in western China were tested in vitro for cytotoxicity on colonic cancer cell line HT-29 by using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The heat-killed bacterial cells, genomic DNA, and cell wall of the 7 strains exhibited direct antiproliferative activities against HT-29 cells. Among the strains, the cellular components of Lactobacillus coryniformis ssp. torquens T3L exerted marked antiproliferative activities against HT-29 cells. The maximum inhibition rates of HT-29 cells by the heat-killed bacterial cells (1x10(7) cfu/mL), cell wall (20 microg of protein/mL) and genomic DNA (100 microg/mL) of L. coryniformis ssp. torquens T3L were 30, 44.9, and 35.9%, respectively. The results indicate that the heat-killed bacterial cells, cell wall, and genomic DNA of the 7 wild Lactobacillus strains could inhibit the growth of HT-29 cells. 2010 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Blondeau, Joseph M; Shebelski, Shantelle D; Hesje, Christine K
2015-10-01
To determine bactericidal effects of enrofloxacin, florfenicol, tilmicosin, and tulathromycin on clinical isolates of Mannheimia haemolytica at various bacterial densities and drug concentrations. 4 unique isolates of M haemolytica recovered from clinically infected cattle. Minimum inhibitory concentration (MIC) and mutant prevention concentration (MPC) were determined for each drug and isolate. Mannheimia haemolytica suspensions (10(6) to 10(9) CFUs/mL) were exposed to the determined MIC and MPC and preestablished maximum serum and tissue concentrations of each drug. Log10 reduction in viable cells (percentage of cells killed) was measured at various points. Bacterial killing at the MIC was slow and incomplete. After 2 hours of isolate exposure to the MPC and maximum serum and tissue concentrations of the tested drugs, 91% to almost 100% cell killing was achieved with enrofloxacin, compared with 8% growth to 93% cell killing with florfenicol, 199% growth to 63% cell killing with tilmicosin, and 128% growth to 43% cell killing with tulathromycin over the range of inoculum tested. For all drugs, killing of viable organisms was evident at all bacterial densities tested; however, killing was more substantial at the MPC and maximum serum and tissue drug concentrations than at the MIC and increased with duration of drug exposure. Rank order of drugs by killing potency was enrofloxacin, florfenicol, tilmicosin, and tulathromycin. Findings suggested that antimicrobial doses that equaled or exceeded the MPC provided rapid killing of M haemolytica by the tested drugs, decreasing opportunities for antimicrobial-resistant subpopulations of bacteria to develop during drug exposure.
Falcón, Rocío; Martínez, Alba; Albert, Eliseo; Madrid, Silvia; Oltra, Rosa; Giménez, Estela; Soriano, Mario; Vinuesa, Víctor; Gozalbo, Daniel; Gil, María Luisa; Navarro, David
2016-05-01
Vancomycin minimum inhibitory concentrations (MICs) at the upper end of the susceptible range for Staphylococcus aureus have been associated with poor clinical outcomes of bloodstream infections. We tested the hypothesis that high vancomycin MICs in S. aureus bacteraemia isolates are associated with increased cell wall thickness and suboptimal bacterial internalisation or lysis by human phagocytes. In total, 95 isolates were evaluated. Original vancomycin MICs were determined by Etest. The susceptibility of S. aureus isolates to killing by phagocytes was assessed in a human whole blood assay. Internalisation of bacterial cells by phagocytes was investigated by flow cytometry. Cell wall thickness was evaluated by transmission electron microscopy. Genotypic analysis of S. aureus isolates was performed using a DNA microarray system. Vancomycin MICs were significantly higher (P=0.006) in isolates that were killed suboptimally (killing index <60%) compared with those killed efficiently (killing index >70%) and tended to correlate inversely (P=0.08) with the killing indices. Isolates in both killing groups were internalised by human neutrophils and monocytes with comparable efficiency. The cell wall was significantly thicker (P=0.03) in isolates in the low killing group. No genotypic differences were found between the isolates in both killing groups. In summary, high vancomycin MICs in S. aureus bacteraemia isolates were associated with increased cell wall thickness and reduced intracellular killing by phagocytes. Copyright © 2016 Elsevier B.V. and the International Society of Chemotherapy. All rights reserved.
Maslennikova, I L; Kuznetsova, M V; Toplak, N; Nekrasova, I V; Žgur Bertok, D; Starčič Erjavec, M
2018-05-07
The efficiency of the bacteriocin, colicin ColE7, bacterial conjugation-based "kill" - "anti-kill" antimicrobial system, was assessed using real-time PCR, flow cytometry and bioluminescence. The ColE7 antimicrobial system consists of the genetically modified Escherichia coli strain Nissle 1917 harbouring a conjugative plasmid (derivative of the F-plasmid) encoding the "kill" gene (ColE7 activity gene) and a chromosomally encoded "anti-kill" gene (ColE7 immunity gene). On the basis of traJ gene expression in the killer donor cells, our results showed that the efficiency of the here studied antimicrobial system against target E. coli was higher at 4 than at 24 h. Flow cytometry was used to indirectly estimate DNase activity of the antimicrobial system, as lysis of target E. coli cells in the conjugative mixture with the killer donor strain led to reduction in cell cytosol fluorescence. According to a lux assay, E. coli TG1 (pXen lux + Ap r ) with constitutive luminescence were killed already after 2 h of treatment. Target sensor E. coli C600 with DNA damage SOS-inducible luminescence showed significantly lower SOS induction 6 and 24 h following treatment with the killer donor strain. Our results thus showed that bioluminescent techniques are quick and suitable for estimation of the ColE7 bacterial conjugation-based antimicrobial system antibacterial activity. Bacterial antimicrobial resistance is worldwide rising and causing deaths of thousands of patients infected with multi-drug resistant bacterial strains. In addition, there is a lack of efficient alternative antimicrobial agents. The significance of our research is the use of a number of methods (real-time PCR, flow cytometry and bioluminescence-based technique) to assess the antibacterial activity of the bacteriocin, colicin ColE7, bacterial conjugation-based "kill" - "anti-kill" antimicrobial system. Bioluminescent techniques proved to be rapid and suitable for estimation of antibacterial activity of ColE7 bacterial conjugation-based antimicrobial system and possibly other related systems. © 2018 The Society for Applied Microbiology.
Tan, Guoxin; Wang, Shuangying; Zhu, Ye; Zhou, Lei; Yu, Peng; Wang, Xiaolan; He, Tianrui; Chen, Junqi; Mao, Chuanbin; Ning, Chengyun
2016-09-21
Reactive oxygen species (ROS) can be used to kill bacterial cells, and thus the selective generation of ROS from material surfaces is an emerging direction in antibacterial material discovery. We found the polarization of piezoelectric ceramic causes the two sides of the disk to become positively and negatively charged, which translate into cathode and anode surfaces in an aqueous solution. Because of the microelectrolysis of water, ROS are preferentially formed on the cathode surface. Consequently, the bacteria are selectively killed on the cathode surface. However, the cell experiment suggested that the level of ROS is safe for normal mammalian cells.
Mathews, Salima; Hans, Michael
2013-01-01
Bacteria are rapidly killed on copper surfaces, and copper ions released from the surface have been proposed to play a major role in the killing process. However, it has remained unclear whether contact of the bacteria with the copper surface is also an important factor. Using laser interference lithography, we engineered copper surfaces which were covered with a grid of an inert polymer which prevented contact of the bacteria with the surface. Using Enterococcus hirae as a model organism, we showed that the release of ionic copper from these modified surfaces was not significantly reduced. In contrast, killing of bacteria was strongly attenuated. When E. hirae cells were exposed to a solid iron surface, the loss of cell viability was the same as on glass. However, exposing cells to iron in the presence of 4 mM CuSO4 led to complete killing in 100 min. These experiments suggest that contact killing proceeds by a mechanism whereby the metal-bacterial contact damages the cell envelope, which, in turn, makes the cells susceptible to further damage by copper ions. PMID:23396344
Joyce, E; Phull, S S; Lorimer, J P; Mason, T J
2003-10-01
Some species of bacteria produce colonies and spores which agglomerate in spherical clusters (Bacillus subtilis) and this serves as a protection for the organisms inside against biocidal attack. Flocs of fine particles e.g. clay can entrap bacteria which can also protect them against the biocides. It is because of problems such as these that alternative methods of disinfecting water are under active investigation. One such method is the use of power ultrasound, either alone or in combination with other methods. Ultrasound is able to inactivate bacteria and deagglomerate bacterial clusters or flocs through a number of physical, mechanical and chemical effects arising from acoustic cavitation. The aim of this study was to investigate the effect of power ultrasound at different powers and frequencies on Bacillus subtilis. Viable plate count techniques were used as a measure of microbial activity. Results showed a significant increase in percent kill for Bacillus species with increasing duration of exposure and intensity of ultrasound in the low-kilohertz range (20 and 38 kHz). Results obtained at two higher frequencies (512 and 850 kHz) indicated a significant increase in bacteria count suggesting declumping. In assessing the bacterial kill with time under different sonication regimes three types of behaviour were characterized: High power ultrasound (lower frequencies) in low volumes of bacterial suspension results in a continuous reduction in bacterial cell numbers i.e. the kill rate predominates. High power ultrasound (lower frequencies) in larger volumes results in an initial rise in cell numbers suggesting declumping of the bacteria but this initial rise then falls as the declumping finishes and the kill rate becomes more important. Low intensity ultrasound (higher frequencies) gives an initial rise in cell numbers as a result of declumping. The kill rate is low and so there is no significant subsequent decrease in bacterial cell numbers.
Fluoro-luminometric real-time measurement of bacterial viability and killing.
Lehtinen, Janne; Virta, Marko; Lilius, Esa Matti
2003-10-01
The viability and killing of Escherichia coli was measured on a real-time basis using a fluoro-luminometric device, which allows successive measurements of fluorescence and bioluminescence without user intervention. Bacteria were made fluorescent and bioluminescent by expression of gfp and insect luciferase (lucFF) genes. The green fluorescent protein (GFP) is a highly fluorescent, extremely stable protein, which accumulates in cells during growth, and therefore the measured fluorescence signal was proportional to the total number of cells. The luciferase reaction is dependent of ATP produced by living cells, so that the bioluminescence level was a direct measure of the viable cells. In contrast to the bacterial luciferase, the insect luciferase uses a water-soluble and nonvolatile substrate, which makes automated multi-well microplate assay possible. For the validation of the assay, the proportion of living and dead cell populations was experimentally modified by incubating E. coli cells in the presence of various ethanol concentrations. Bacterial viability and killing measured by a fluoro-luminometric assay correlated fairly well with the reference methods: conventional plate counting, optical density measurement and various flow cytometric analyses. The real-time assay described here allows following the changes in bacterial cultures and assessing the bactericidal and other effects of various chemical, immunological and physical agents simultaneously in large numbers of samples.
Antibiotic-induced bacterial killing stimulates tumor necrosis factor-alpha release in whole blood.
Arditi, M; Kabat, W; Yogev, R
1993-01-01
Rapid lysis of gram-negative bacteria is associated with considerable release of free endotoxin. Production of tumor necrosis factor (TNF) from adult whole blood ex vivo in response to bacterial products generated during antibiotic killing of Haemophilus influenzae type b (Hib) was investigated. Heparinized whole blood released TNF in a dose-dependent fashion in response to purified lipooligosaccharide of Hib. Bacteria (10(4)-10(7) cfu/mL) were placed into a Transwell filter insert (0.1 microns) and incubated with whole blood in the presence of various antibiotics. Exposure to ceftriaxone resulted in significantly greater release of TNF during killing of Hib than did exposure to imipenem, despite similar degrees of bacterial killing at 6 h. Polymyxin B inhibited the ceftriaxone-induced TNF release by 97%-99%, indicating that free endotoxin was the predominant stimulus for the increase in TNF release in this system. These observations suggest that ceftriaxone-induced killing of Hib results in bacterial cell wall products that are more proinflammatory than those produced by imipenem.
An, Jincui; Sun, An; Qiao, Yong; Zhang, Peipei; Su, Ming
2015-02-01
Device-related infections have been a big problem for a long time. This paper describes a new method to inhibit bacterial growth on implanted device with tissue-penetrating X-ray radiation, where a thin metallic film deposited on the device is used as a radio-sensitizing film for bacterial inhibition. At a given dose of X-ray, the bacterial viability decreases as the thickness of metal film (bismuth) increases. The bacterial viability decreases with X-ray dose increases. At X-ray dose of 2.5 Gy, 98% of bacteria on 10 nm thick bismuth film are killed; while it is only 25% of bacteria are killed on the bare petri dish. The same dose of X-ray kills 8% fibroblast cells that are within a short distance from bismuth film (4 mm). These results suggest that penetrating X-rays can kill bacteria on bismuth thin film deposited on surface of implant device efficiently.
Shi, Rongjun; Huang, Honghui; Qi, Zhanhui; Hu, Weian; Tian, Ziyang; Dai, Ming
2013-01-01
Four marine bacterial strains P1, P5, N5 and N21 were isolated from the surface water and sediment of Mirs Bay in southern Chinese coast using the liquid infection method with 48-well plates. These bacteria were all shown to have algicidal activities against Skeletonema costatum. Based on morphological observations, biochemical tests and homology comparisons by 16S rDNA sequences, the isolated strains P1, P5, N5 and N21 were identified as Halobacillus sp., Muricauda sp., Kangiella sp. and Roseivirga sp., respectively. Our results showed that bacterial strain P1 killed S. costatum by release of heat labile algicide, while strains P5, N5 and N21 killed them directly. The algicidal processes of four bacterial strains were different. Strains P1, N5 and N21 disrupted the chain structure and S. costatum appeared as single cells, in which the cellular components were aggregated and the individual cells were inflated and finally lysed, while strain P5 decomposed the algal chains directly. We also showed that the algicidal activities of the bacterial strains were concentration-dependent. More specifically, 10 % (v/v) of bacteria in algae showed the strongest algicidal activities, as all S. costatum cells were killed by strains N5 and N21 within 72 h and by strains P1 and P5 within 96 h. 5 % of bacteria in algae also showed significant algicidal activities, as all S. costatum were killed by strains N5, P5 and N21 within 72, 96 and 120 h, respectively, whereas at this concentration, only 73.4 % of S. costatum cells exposed to strain P1 were killed within 120 h. At the concentration of 1 % bacteria in algae, the number of S. costatum cells continued to increase and the growth rate of algae upon exposure to strain N5 was significantly inhibited.
Schalk, Amanda M; Nguyen, Hien-Anh; Rigouin, Coraline; Lavie, Arnon
2014-11-28
The initial observation that guinea pig serum kills lymphoma cells marks the serendipitous discovery of a new class of anti-cancer agents. The serum cell killing factor was shown to be an enzyme with L-asparaginase (ASNase) activity. As a direct result of this observation, several bacterial L-asparaginases were developed and are currently approved by the Food and Drug Administration for the treatment of the subset of hematological malignancies that are dependent on the extracellular pool of the amino acid asparagine. As drugs, these enzymes act to hydrolyze asparagine to aspartate, thereby starving the cancer cells of this amino acid. Prior to the work presented here, the precise identity of this guinea pig enzyme has not been reported in the peer-reviewed literature. We discovered that the guinea pig enzyme annotated as H0W0T5_CAVPO, which we refer to as gpASNase1, has the required low Km property consistent with that possessed by the cell-killing guinea pig serum enzyme. Elucidation of the ligand-free and aspartate complex gpASNase1 crystal structures allows a direct comparison with the bacterial enzymes and serves to explain the lack of L-glutaminase activity in the guinea pig enzyme. The structures were also used to generate a homology model for the human homolog hASNase1 and to help explain its vastly different kinetic properties compared with gpASNase1, despite a 70% sequence identity. Given that the bacterial enzymes frequently present immunogenic and other toxic side effects, this work suggests that gpASNase1 could be a promising alternative to these bacterial enzymes. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.
Macrophage P2X4 receptors augment bacterial killing and protect against sepsis
Csóka, Balázs; Németh, Zoltán H.; Szabó, Ildikó; Davies, Daryl L.; Varga, Zoltán V.; Pálóczi, János; Falzoni, Simonetta; Di Virgilio, Francesco; Muramatsu, Rieko; Pacher, Pál
2018-01-01
The macrophage is a major phagocytic cell type, and its impaired function is a primary cause of immune paralysis, organ injury, and death in sepsis. An incomplete understanding of the endogenous molecules that regulate macrophage bactericidal activity is a major barrier for developing effective therapies for sepsis. Using an in vitro killing assay, we report here that the endogenous purine ATP augments the killing of sepsis-causing bacteria by macrophages through P2X4 receptors (P2X4Rs). Using newly developed transgenic mice expressing a bioluminescent ATP probe on the cell surface, we found that extracellular ATP levels increase during sepsis, indicating that ATP may contribute to bacterial killing in vivo. Studies with P2X4R-deficient mice subjected to sepsis confirm the role of extracellular ATP acting on P2X4Rs in killing bacteria and protecting against organ injury and death. Results with adoptive transfer of macrophages, myeloid-specific P2X4R-deficient mice, and P2rx4 tdTomato reporter mice indicate that macrophages are essential for the antibacterial, antiinflammatory, and organ protective effects of P2X4Rs in sepsis. Pharmacological targeting of P2X4Rs with the allosteric activator ivermectin protects against bacterial dissemination and mortality in sepsis. We propose that P2X4Rs represent a promising target for drug development to control bacterial growth in sepsis and other infections. PMID:29875325
Effect of primycin on growth-arrested cultures and cell integrity of Staphylococcus aureus.
Feiszt, Péter; Schneider, György; Emődy, Levente
2017-06-01
Bactericidal effect against non-dividing bacteria is a very advantageous, but rare characteristic among antimicrobial agents, mostly possessed by those affecting the cell membrane. These kinds of agents can kill bacterial cells without lysis. We assessed these characteristics on primycin, a topical anti-staphylococcal agent highly effective against prevalent multiresistant strains, as it also acts on the cell membrane. In time-kill studies, primycin preserved its bactericidal activity against growth-arrested Staphylococcus aureus cultures. The bactericidal action was slower against growth-arrested cultures compared to the exponentially growing ones to different extents depending on the manner of arrest. The bactericidal effect was less influenced by stringent response and by protein synthesis inhibition, proving that it does not depend on metabolic activity. In contrast, uncoupling of the membrane potential predominantly slowed, and low temperature almost stopped killing of bacteria. In consideration of published data, these facts suggest that the antibacterial action of primycin involves disrupting of the membrane potential, and is predominantly influenced by the membrane fluidity. Optical density measurements and transmission electron microscopy verified that primycin kills bacterial cells without lysis. These results reveal favorable characteristics of primycin and point to, and broaden the knowledge on its membrane-targeted effect.
Copper Reduction and Contact Killing of Bacteria by Iron Surfaces
Mathews, Salima; Kumar, Ranjeet
2015-01-01
The well-established killing of bacteria by copper surfaces, also called contact killing, is currently believed to be a combined effect of bacterial contact with the copper surface and the dissolution of copper, resulting in lethal bacterial damage. Iron can similarly be released in ionic form from iron surfaces and would thus be expected to also exhibit contact killing, although essentially no contact killing is observed by iron surfaces. However, we show here that the exposure of bacteria to iron surfaces in the presence of copper ions results in efficient contact killing. The process involves reduction of Cu2+ to Cu+ by iron; Cu+ has been shown to be considerably more toxic to cells than Cu2+. The specific Cu+ chelator, bicinchoninic acid, suppresses contact killing by chelating the Cu+ ions. These findings underline the importance of Cu+ ions in the contact killing process and infer that iron-based alloys containing copper could provide novel antimicrobial materials. PMID:26150470
Hover, Tal; Maya, Tal; Ron, Sapir; Sandovsky, Hani; Shadkchan, Yana; Kijner, Nitzan; Mitiagin, Yulia; Fichtman, Boris; Harel, Amnon; Shanks, Robert M Q; Bruna, Roberto E; García-Véscovi, Eleonora; Osherov, Nir
2016-05-01
We have found a remarkable capacity for the ubiquitous Gram-negative rod bacterium Serratia marcescens to migrate along and kill the mycelia of zygomycete molds. This migration was restricted to zygomycete molds and several basidiomycete species. No migration was seen on any molds of the phylum Ascomycota. S. marcescens migration did not require fungal viability or surrounding growth medium, as bacteria migrated along aerial hyphae as well.S. marcescens did not exhibit growth tropism toward zygomycete mycelium. Bacterial migration along hyphae proceeded only when the hyphae grew into the bacterial colony. S. marcescens cells initially migrated along the hyphae, forming attached microcolonies that grew and coalesced to generate a biofilm that covered and killed the mycelium. Flagellum-defective strains of S. marcescens were able to migrate along zygomycete hyphae, although they were significantly slower than the wild-type strain and were delayed in fungal killing. Bacterial attachment to the mycelium does not necessitate type 1 fimbrial adhesion, since mutants defective in this adhesin migrated equally well as or faster than the wild-type strain. Killing does not depend on the secretion of S. marcescens chitinases, as mutants in which all three chitinase genes were deleted retained wild-type killing abilities. A better understanding of the mechanisms by which S. marcescens binds to, spreads on, and kills fungal hyphae might serve as an excellent model system for such interactions in general; fungal killing could be employed in agricultural fungal biocontrol. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Hover, Tal; Maya, Tal; Ron, Sapir; Sandovsky, Hani; Shadkchan, Yana; Kijner, Nitzan; Mitiagin, Yulia; Fichtman, Boris; Harel, Amnon; Shanks, Robert M. Q.; Bruna, Roberto E.; García-Véscovi, Eleonora
2016-01-01
We have found a remarkable capacity for the ubiquitous Gram-negative rod bacterium Serratia marcescens to migrate along and kill the mycelia of zygomycete molds. This migration was restricted to zygomycete molds and several basidiomycete species. No migration was seen on any molds of the phylum Ascomycota. S. marcescens migration did not require fungal viability or surrounding growth medium, as bacteria migrated along aerial hyphae as well. S. marcescens did not exhibit growth tropism toward zygomycete mycelium. Bacterial migration along hyphae proceeded only when the hyphae grew into the bacterial colony. S. marcescens cells initially migrated along the hyphae, forming attached microcolonies that grew and coalesced to generate a biofilm that covered and killed the mycelium. Flagellum-defective strains of S. marcescens were able to migrate along zygomycete hyphae, although they were significantly slower than the wild-type strain and were delayed in fungal killing. Bacterial attachment to the mycelium does not necessitate type 1 fimbrial adhesion, since mutants defective in this adhesin migrated equally well as or faster than the wild-type strain. Killing does not depend on the secretion of S. marcescens chitinases, as mutants in which all three chitinase genes were deleted retained wild-type killing abilities. A better understanding of the mechanisms by which S. marcescens binds to, spreads on, and kills fungal hyphae might serve as an excellent model system for such interactions in general; fungal killing could be employed in agricultural fungal biocontrol. PMID:26896140
Uppu, Divakara S. S. M.; Konai, Mohini M.; Sarkar, Paramita; Samaddar, Sandip; Fensterseifer, Isabel C. M.; Farias-Junior, Celio; Krishnamoorthy, Paramanandam; Shome, Bibek R.; Franco, Octávio L.
2017-01-01
Chronic bacterial biofilms place a massive burden on healthcare due to the presence of antibiotic-tolerant dormant bacteria. Some of the conventional antibiotics such as erythromycin, vancomycin, linezolid, rifampicin etc. are inherently ineffective against Gram-negative bacteria, particularly in their biofilms. Here, we report membrane-active macromolecules that kill slow dividing stationary-phase and antibiotic tolerant cells of Gram-negative bacteria. More importantly, these molecules potentiate antibiotics (erythromycin and rifampicin) to biofilms of Gram-negative bacteria. These molecules eliminate planktonic bacteria that are liberated after dispersion of biofilms (dispersed cells). The membrane-active mechanism of these molecules forms the key for potentiating the established antibiotics. Further, we demonstrate that the combination of macromolecules and antibiotics significantly reduces bacterial burden in mouse burn and surgical wound infection models caused by Acinetobacter baumannii and Carbapenemase producing Klebsiella pneumoniae (KPC) clinical isolate respectively. Colistin, a well-known antibiotic targeting the lipopolysaccharide (LPS) of Gram-negative bacteria fails to kill antibiotic tolerant cells and dispersed cells (from biofilms) and bacteria develop resistance to it. On the contrary, these macromolecules prevent or delay the development of bacterial resistance to known antibiotics. Our findings emphasize the potential of targeting the bacterial membrane in antibiotic potentiation for disruption of biofilms and suggest a promising strategy towards developing therapies for topical treatment of Gram-negative infections. PMID:28837596
Thomas, E L
1979-07-01
Exogenous ammonium ions (NH(4) (+)) and amine compounds had a profound influence on the antibacterial activity of the myeloperoxidase-hydrogen peroxide-chloride system against Escherichia coli. The rate of killing increased in the presence of NH(4) (+) and certain guanidino compounds and decreased in the presence of alpha-amino acids, polylysine, taurine, or tris (hydroxymethyl) aminomethane. Myeloperoxidase catalyzed the oxidation of chloride to hypochlorous acid, which reacted either with bacterial amine or amide components or both or with the exogenous compounds to yield chloramine or chloramide derivatives or both. These nitrogen-chlorine derivatives could oxidize bacterial components. Killing was correlated with oxidation of bacterial components. The rate of oxidation of bacterial sulfhydryls increased in the presence of the compounds that increased the rate of killing and decreased in the presence of the other compounds. The reaction of HOCl with NH(4) (+) yielded monochloramine (NH(2)Cl), which could be extracted into organic solvents. The N-Cl derivatives of bacterial components or of polylysine, taurine, or tris(hydroxymethyl)aminomethane could not be extracted. The effect of NH(4) (+) on killing is attributed to the ability of NH(2)Cl to penetrate the hydrophobic cell membrane and thus to oxidize intracellular components. Polylysine, taurine, and tris(hydroxymethyl)aminomethane formed high-molecular-weight, charged, or polar N-Cl derivatives that would be unable to penetrate the cell membrane. These results suggest an important role for leukocyte amine components in myeloperoxidase-catalyzed antimicrobial activity in vivo.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Daniel Molloy
Under this USDOE-NETL contract, the bacterium Pseudomonas fluorescens is being developed as a biocontrol agent for zebra mussels. The specific purpose of the contract is to identify biotic and abiotic factors that affect mussel kill. Ingestion of these bacteria by zebra mussels is required to achieve kill, and tests evaluating factors that relate to mussel feeding are contained in this report. Specifically the impact of the following two factors were investigated: (1) Mussel siphoning behavior--In nature, zebra mussels typically have their two shells spread apart and their inhalant siphon tube extended from between their shells for taking food particles intomore » their mantle cavities (Fig. 1). Our tests indicated that there is a direct correlation between mussel siphoning activity and mussel mortality achieved by a bacterial treatment. Therefore, to encourage mussel feeding on bacteria, future pipe treatments within power plants should be carried out using procedures which minimize disturbance to mussel siphoning. 2. Naturally suspended particle loads--Since bacterial cells are lethal only if ingested by mussels, waters containing very high levels of naturally suspended particles might reduce the mortality that can be achieved by a bacterial treatment. If true, this inhibition might occur as a result of particle exclusion, i.e., there could be reduced ingestion of bacterial cells since they represent a reduced percentage of all particles ingested. Our tests indicated that a range of particle concentrations that might naturally exist in a turbid river did not inhibit mussel kill by the bacterial cells, but that an artificially high load of natural particles was capable of causing a reduction in kill. To be conservative, therefore, future pipe treatments should be timed to occur when intake waters have relatively low quantities of naturally suspended particulate matter.« less
Roger, Thierry; Delaloye, Julie; Chanson, Anne-Laure; Giddey, Marlyse; Le Roy, Didier; Calandra, Thierry
2013-01-15
The cytokine macrophage migration inhibitory factor (MIF) is an important component of the early proinflammatory response of the innate immune system. However, the antimicrobial defense mechanisms mediated by MIF remain fairly mysterious. In the present study, we examined whether MIF controls bacterial uptake and clearance by professional phagocytes, using wild-type and MIF-deficient macrophages. MIF deficiency did not affect bacterial phagocytosis, but it strongly impaired the killing of gram-negative bacteria by macrophages and host defenses against gram-negative bacterial infection, as shown by increased mortality in a Klebsiella pneumonia model. Consistent with MIF's regulatory role of Toll-like 4 expression in macrophages, MIF-deficient cells stimulated with lipopolysaccharide or Escherichia coli exhibited reduced nuclear factor κB activity and tumor necrosis factor (TNF) production. Addition of recombinant MIF or TNF corrected the killing defect of MIF-deficient macrophages. Together, these data show that MIF is a key mediator of host responses against gram-negative bacteria, acting in part via a modulation of bacterial killing by macrophages.
Brand, Alexandra; Barnes, Julia D; Mackenzie, Kevin S; Odds, Frank C; Gow, Neil A R
2008-10-01
The fungus, Candida albicans, and the bacterium, Pseudomonas aeruginosa, are opportunistic human pathogens that have been coisolated from diverse body sites. Pseudomonas aeruginosa suppresses C. albicans proliferation in vitro and potentially in vivo but it is the C. albicans hyphae that are killed while yeast cells are not. We show that hyphal killing involves both contact-mediated and soluble factors. Bacterial culture filtrates contained heat-labile soluble factors that killed C. albicans hyphae. In cocultures, localized points of hyphal lysis were observed, suggesting that adhesion and subsequent bacteria-mediated cell wall lysis is involved in the killing of C. albicans hyphae. The glycosylation status of the C. albicans cell wall affected the rate of contact-dependent killing because mutants with severely truncated O-linked, but not N-linked, glycans were hypersensitive to Pseudomonas-mediated killing. Deletion of HWP1, ALS3 or HYR1, which encode major hypha-associated cell wall proteins, had no effect on fungal susceptibility.
Dotiwala, Farokh; Sen Santara, Sumit; Binker-Cosen, Andres Ariel; Li, Bo; Chandrasekaran, Sriram; Lieberman, Judy
2017-11-16
Human cytotoxic lymphocytes kill intracellular microbes. The cytotoxic granule granzyme proteases released by cytotoxic lymphocytes trigger oxidative bacterial death by disrupting electron transport, generating superoxide anion and inactivating bacterial oxidative defenses. However, they also cause non-oxidative cell death because anaerobic bacteria are also killed. Here, we use differential proteomics to identify granzyme B substrates in three unrelated bacteria: Escherichia coli, Listeria monocytogenes, and Mycobacteria tuberculosis. Granzyme B cleaves a highly conserved set of proteins in all three bacteria, which function in vital biosynthetic and metabolic pathways that are critical for bacterial survival under diverse environmental conditions. Key proteins required for protein synthesis, folding, and degradation are also substrates, including multiple aminoacyl tRNA synthetases, ribosomal proteins, protein chaperones, and the Clp system. Because killer cells use a multipronged strategy to target vital pathways, bacteria may not easily become resistant to killer cell attack. Copyright © 2017 Elsevier Inc. All rights reserved.
Shi, Rong-jun; Huang, Hong-hui; Qi, Zhan-hui; Hu, Wei-an; Tian, Zi-yang; Dai, Ming
2013-05-01
A marine algicidal bacterium N3 was isolated from a HABs area in Mirs Bay, a subtropical bay, in southern China. Algicidal activity and algicidal mode against Phaeodactylum tricornutum, Scrippsiella trochoidea, Prorocentrum micans and Skeletonema costatum were observed by the liquid infection method. The results showed that there were no algicidal activities against P. tricornutum and S. costatum. However, when the bacterial volume fractions were 2% and 10% , S. trochoidea and P. micans could be killed, respectively. S. trochoidea cells which were exposed to strain N3 became irregular in shape and the cellular components lost their integrity and were decomposed. While, the P. micans cells became inflated and the cellular components aggregated, followed by cell lysis. Strain N3 killed S. trochoidea and P. micans directly, and the algicidal activities of the bacterial strain N3 was concentration-dependent. To S. trochoidea, 2% (V/V) of bacteria in algae showed the strongest algicidal activity, all of the S. trochoidea cells were killed within 120 h. But the growth rates of cells, in the 1% and 0. 1% treatment groups, were only slightly lower than that in the control group. In all treatment groups, the densities of strain N3 were in declining trends. While, to P. micans, 10% and 5% of bacteria in algae showed strong algicidal activities, 78% and 70% of the S. trochoidea were killed within 120 h, respectively. However, the number of S. trochoidea after exposure to 1% of bacterial cultures still increased up to 5 incubation days. And in the three treatment groups, the densities of strain N3 experienced a decrease process. The isolated strain N3 was identified as Bacillus sp. by morphological observation, physiological and biochemical characterization, and homology comparisons based on 16S rRNA sequences.
Arnold, Jason W; Koudelka, Gerald B
2014-02-01
Phage-encoded Shiga toxin (Stx) acts as a bacterial defence against the eukaryotic predator Tetrahymena. To function as an effective bacterial anti-predator defence, Stx must kill a broad spectrum of predators. Consistent with that assertion, we show here that bacterially encoded Stx efficiently kills the bacteriovore Acanthamoeba castellanii in co-culture. We also show that, in addition to Stx, the phage-encoded exotoxin, diphtheria toxin (Dtx) expressed by Corynebacterium diphtheriae also can function as part of an anti-predator strategy; it kills Acanthamoeba in co-culture. Interestingly, only exotoxins produced by bacteria internalized by the Acanthamoeba predator are cytolethal; the presence of purified Dtx or Stx in culture medium has no effect on predator viability. This finding is consistent with our results indicating that intoxication of Acanthamoeba by these exotoxins does not require a receptor. Thus bacteria, in the disguise of a food source, function as a 'Trojan Horse', carrying genes encoding an exotoxin into target organisms. This 'Trojan Horse' mechanism of exotoxin delivery into predator cells allows intoxication of predators that lack a cell surface receptor for the particular toxin, allowing bacteria-bearing exotoxins to kill a broader spectrum of predators, increasing the fitness of the otherwise 'defenceless' prey bacteria. © 2013 Society for Applied Microbiology and John Wiley & Sons Ltd.
Uric acid disrupts hypochlorous acid production and the bactericidal activity of HL-60 cells.
Carvalho, Larissa A C; Lopes, João P P B; Kaihami, Gilberto H; Silva, Railmara P; Bruni-Cardoso, Alexandre; Baldini, Regina L; Meotti, Flavia C
2018-06-01
Uric acid is the end product of purine metabolism in humans and is an alternative physiological substrate for myeloperoxidase. Oxidation of uric acid by this enzyme generates uric acid free radical and urate hydroperoxide, a strong oxidant and potentially bactericide agent. In this study, we investigated whether the oxidation of uric acid and production of urate hydroperoxide would affect the killing activity of HL-60 cells differentiated into neutrophil-like cells (dHL-60) against a highly virulent strain (PA14) of the opportunistic pathogen Pseudomonas aeruginosa. While bacterial cell counts decrease due to dHL-60 killing, incubation with uric acid inhibits this activity, also decreasing the release of the inflammatory cytokines interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF- α). In a myeloperoxidase/Cl - /H 2 O 2 cell-free system, uric acid inhibited the production of HOCl and bacterial killing. Fluorescence microscopy showed that uric acid also decreased the levels of HOCl produced by dHL-60 cells, while significantly increased superoxide production. Uric acid did not alter the overall oxidative status of dHL-60 cells as measured by the ratio of reduced (GSH) and oxidized (GSSG) glutathione. Our data show that uric acid impairs the killing activity of dHL-60 cells likely by competing with chloride by myeloperoxidase catalysis, decreasing HOCl production. Despite diminishing HOCl, uric acid probably stimulates the formation of other oxidants, maintaining the overall oxidative status of the cells. Altogether, our results demonstrated that HOCl is, indeed, the main relevant oxidant against bacteria and deviation of myeloperoxidase activity to produce other oxidants hampers dHL-60 killing activity. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.
Pérez-Peinado, Clara; Dias, Susana Almeida; Domingues, Marco M; Benfield, Aurélie H; Freire, João Miguel; Rádis-Baptista, Gandhi; Gaspar, Diana; Castanho, Miguel A R B; Craik, David J; Henriques, Sónia Troeira; Veiga, Ana Salomé; Andreu, David
2018-02-02
Crotalicidin (Ctn), a cathelicidin-related peptide from the venom of a South American rattlesnake, possesses potent antimicrobial, antitumor, and antifungal properties. Previously, we have shown that its C-terminal fragment, Ctn(15-34), retains the antimicrobial and antitumor activities but is less toxic to healthy cells and has improved serum stability. Here, we investigated the mechanisms of action of Ctn and Ctn(15-34) against Gram-negative bacteria. Both peptides were bactericidal, killing ∼90% of Escherichia coli and Pseudomonas aeruginosa cells within 90-120 and 5-30 min, respectively. Studies of ζ potential at the bacterial cell membrane suggested that both peptides accumulate at and neutralize negative charges on the bacterial surface. Flow cytometry experiments confirmed that both peptides permeabilize the bacterial cell membrane but suggested slightly different mechanisms of action. Ctn(15-34) permeabilized the membrane immediately upon addition to the cells, whereas Ctn had a lag phase before inducing membrane damage and exhibited more complex cell-killing activity, probably because of two different modes of membrane permeabilization. Using surface plasmon resonance and leakage assays with model vesicles, we confirmed that Ctn(15-34) binds to and disrupts lipid membranes and also observed that Ctn(15-34) has a preference for vesicles that mimic bacterial or tumor cell membranes. Atomic force microscopy visualized the effect of these peptides on bacterial cells, and confocal microscopy confirmed their localization on the bacterial surface. Our studies shed light onto the antimicrobial mechanisms of Ctn and Ctn(15-34), suggesting Ctn(15-34) as a promising lead for development as an antibacterial/antitumor agent. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.
Tran, Thien B; Wang, Jiping; Doi, Yohei; Velkov, Tony; Bergen, Phillip J; Li, Jian
2018-01-01
Due to limited new antibiotics, polymyxins are increasingly used to treat multidrug-resistant (MDR) Gram-negative bacteria, in particular carbapenem-resistant Acinetobacter baumannii , Pseudomonas aeruginosa , and Klebsiella pneumoniae . Unfortunately, polymyxin monotherapy has led to the emergence of resistance. Polymyxin combination therapy has been demonstrated to improve bacterial killing and prevent the emergence of resistance. From a preliminary screening of an FDA drug library, we identified antineoplastic mitotane as a potential candidate for combination therapy with polymyxin B against polymyxin-resistant Gram-negative bacteria. Here, we demonstrated that the combination of polymyxin B with mitotane enhances the in vitro antimicrobial activity of polymyxin B against 10 strains of A. baumannii , P. aeruginosa , and K. pneumoniae , including polymyxin-resistant MDR clinical isolates. Time-kill studies showed that the combination of polymyxin B (2 mg/L) and mitotane (4 mg/L) provided superior bacterial killing against all strains during the first 6 h of treatment, compared to monotherapies, and prevented regrowth and emergence of polymyxin resistance in the polymyxin-susceptible isolates. Electron microscopy imaging revealed that the combination potentially affected cell division in A. baumannii . The enhanced antimicrobial activity of the combination was confirmed in a mouse burn infection model against a polymyxin-resistant A. baumannii isolate. As mitotane is hydrophobic, it was very likely that the synergistic killing of the combination resulted from that polymyxin B permeabilized the outer membrane of the Gram-negative bacteria and allowed mitotane to enter bacterial cells and exert its antimicrobial effect. These results have important implications for repositioning non-antibiotic drugs for antimicrobial purposes, which may expedite the discovery of novel therapies to combat the rapid emergence of antibiotic resistance.
Buwchitin: a ruminal peptide with antimicrobial potential against Enterococcus faecalis
NASA Astrophysics Data System (ADS)
Oyama, Linda B.; Crochet, Jean-Adrien; Edwards, Joan E.; Girdwood, Susan E.; Cookson, Alan R.; Fernandez-Fuentes, Narcis; Hilpert, Kai; Golyshin, Peter N.; Golyshina, Olga V.; Privé, Florence; Hess, Matthias; Mantovani, Hilario C.; Creevey, Christopher J.; Huws, Sharon A.
2017-07-01
Antimicrobial peptides (AMPs) are gaining popularity as alternatives for treatment of bacterial infections and recent advances in omics technologies provide new platforms for AMP discovery. We sought to determine the antibacterial activity of a novel antimicrobial peptide, buwchitin, against Enterococcus faecalis. Buwchitin was identified from a rumen bacterial metagenome library, cloned, expressed and purified. The antimicrobial activity of the recombinant peptide was assessed using a broth microdilution susceptibility assay to determine the peptide's killing kinetics against selected bacterial strains. The killing mechanism of buwchitin was investigated further by monitoring its ability to cause membrane depolarization (diSC3(5) method) and morphological changes in E. faecalis cells. Transmission electron micrographs of buwchitin treated E. faecalis cells showed intact outer membranes with blebbing, but no major damaging effects and cell morphology changes. Buwchitin had negligible cytotoxicity against defibrinated sheep erythrocytes. Although no significant membrane leakage and depolarization was observed, buwchitin at minimum inhibitory concentration (MIC) was bacteriostatic against E. faecalis cells and inhibited growth in vitro by 70% when compared to untreated cells. These findings suggest that buwchitin, a rumen derived peptide, has potential for antimicrobial activity against E. faecalis.
Synergy and Order Effects of Antibiotics and Phages in Killing Pseudomonas aeruginosa Biofilms
Chaudhry, Waqas Nasir; Concepción-Acevedo, Jeniffer; Park, Taehyun; Andleeb, Saadia; Bull, James J.
2017-01-01
In contrast to planktonic cells, bacteria imbedded biofilms are notoriously refractory to treatment by antibiotics or bacteriophage (phage) used alone. Given that the mechanisms of killing differ profoundly between drugs and phages, an obvious question is whether killing is improved by combining antibiotic and phage therapy. However, this question has only recently begun to be explored. Here, in vitro biofilm populations of Pseudomonas aeruginosa PA14 were treated singly and with combinations of two phages and bactericidal antibiotics of five classes. By themselves, phages and drugs commonly had only modest effects in killing the bacteria. However some phage-drug combinations reduced bacterial densities to well below that of the best single treatment; in some cases, bacterial densities were reduced even below the level expected if both agents killed independently of each other (synergy). Furthermore, there was a profound order effect in some cases: treatment with phages before drugs achieved maximum killing. Combined treatment was particularly effective in killing in Pseudomonas biofilms grown on layers of cultured epithelial cells. Phages were also capable of limiting the extent to which minority populations of bacteria resistant to the treating antibiotic ascend. The potential of combined antibiotic and phage treatment of biofilm infections is discussed as a realistic way to evaluate and establish the use of bacteriophage for the treatment of humans. PMID:28076361
Cytolysin-dependent evasion of lysosomal killing.
Håkansson, Anders; Bentley, Colette Cywes; Shakhnovic, Elizabeth A; Wessels, Michael R
2005-04-05
Local host defenses limit proliferation and systemic spread of pathogenic bacteria from sites of mucosal colonization. For pathogens such as streptococci that fail to grow intracellularly, internalization and killing by epithelial cells contribute to the control of bacterial growth and dissemination. Here, we show that group A Streptococcus (GAS), the agent of streptococcal sore throat and invasive soft tissue infections, evades internalization and intracellular killing by pharyngeal epithelial cells. Production of the cholesterol-binding cytotoxin streptolysin O (SLO) prevented internalization of GAS into lysosomes. In striking contrast, GAS rendered defective in production of SLO were internalized directly or rapidly transported into lysosomes, where they were killed by a pH-dependent mechanism. Because SLO is the prototype of cholesterol-dependent cytolysins produced by many Gram-positive bacteria, cytolysin-mediated evasion of lysosomal killing may be a general mechanism to protect such pathogens from clearance by host epithelial cells.
Akinpelu, David A; Aiyegoro, Olayinka A; Akinpelu, Oluseun F; Okoh, Anthony I
2014-12-30
The study investigates the in vitro antibacterial potentials of stem bark extracts of Persea americana on strains of Bacillus cereus implicated in food poisoning. The crude stem bark extracts and butanolic fraction at a concentration of 25 mg/mL and 10 mg/mL, respectively, exhibited antibacterial activities against test isolates. The zones of inhibition exhibited by the crude extract and the fraction ranged between 10 mm and 26 mm, while the minimum inhibitory concentration values ranged between 0.78 and 5.00 mg/mL. The minimum bactericidal concentrations ranged between 3.12 mg/mL-12.5 mg/mL and 1.25-10 mg/mL for the extract and the fraction, respectively. The butanolic fraction killed 91.49% of the test isolates at a concentration of 2× MIC after 60 min of contact time, while a 100% killing was achieved after the test bacterial cells were exposed to the butanolic fraction at a concentration of 3× MIC after 90 min contact time. Intracellular protein and potassium ion leaked out of the test bacterial cells when exposed to certain concentrations of the fraction; this is an indication of bacterial cell wall disruptions by the extract's butanolic fraction and, thus, caused a biocidal effect on the cells, as evident in the killing rate test results.
Elguindi, Jutta; Moffitt, Stuart; Hasman, Henrik; Andrade, Cassandra; Raghavan, Srini; Rensing, Christopher
2013-01-01
The rapid killing of various bacteria in contact with metallic copper is thought to be influenced by influx of copper ions into the cells but the exact mechanism is not fully understood. This study showed that the kinetics of contact-killing of copper surfaces depended greatly on the amount of moisture present, copper content of alloys, type of medium used, and type of bacteria. We examined antibiotic- and copper-ion resistant strains of Escherichia coli and Enterococcus faecium isolated from pig farms following the use of copper sulfate as feed supplement. The results showed rapid killing of both copper-ion resistant E. coli and E. faecium strains when samples in rich medium were spread in a thin, moist layer on copper alloys with 85% or greater copper content. E. coli strains were rapidly killed under dry conditions while E. faecium strains were less affected. Electroplated copper surface corrosion rates were determined from electro-chemical polarization tests using the Stern-Geary method and revealed decreased corrosion rates with benzotriazole and thermal oxide coating. Copper-ion resistant E. coli and E. faecium cells suspended in 0.8% NaCl showed prolonged survival rates on electroplated copper surfaces with benzotriazole coating and thermal oxide coating compared to surfaces without anti-corrosion treatment. Control of surface corrosion affected the level of copper ion influx into bacterial cells which contributed directly to bacterial killing. PMID:21085951
Unfolding of the bacterial nucleoid both in vivo and in vitro as a result of exposure to camphor.
Harrington, E W; Trun, N J
1997-01-01
Both prokaryotic and eukaryotic cells are sensitive to killing by camphor; however, the mechanism by which camphor kills has not been elucidated. We report here that camphor unfolds the nucleoid of Escherichia coli and that unfolding does not require DNA replication, translation, or cell division. We show that exposure of isolated nucleoids to camphor results in unfolding of the chromosome. PMID:9079934
Wilmes, Miriam; Stockem, Marina; Bierbaum, Gabriele; Schlag, Martin; Götz, Friedrich; Tran, Dat Q.; Schaal, Justin B.; Ouellette, André J.; Selsted, Michael E.; Sahl, Hans-Georg
2014-01-01
θ-Defensins are cyclic antimicrobial peptides expressed in leukocytes of Old world monkeys. To get insight into their antibacterial mode of action, we studied the activity of RTDs (rhesus macaque θ-defensins) against staphylococci. We found that in contrast to other defensins, RTDs do not interfere with peptidoglycan biosynthesis, but rather induce bacterial lysis in staphylococci by interaction with the bacterial membrane and/or release of cell wall lytic enzymes. Potassium efflux experiments and membrane potential measurements revealed that the membrane impairment by RTDs strongly depends on the energization of the membrane. In addition, RTD treatment caused the release of Atl-derived cell wall lytic enzymes probably by interaction with membrane-bound lipoteichoic acid. Thus, the premature and uncontrolled activity of these enzymes contributes strongly to the overall killing by θ-defensins. Interestingly, a similar mode of action has been described for Pep5, an antimicrobial peptide of bacterial origin. PMID:25632351
Bacterial Call to Arms for Warfare at the Infection Site.
Cabral, Vitor; Xavier, Karina B
2018-03-14
Bacterial sensing is important for perceiving environmental cues and activating responses. In this issue of Cell Host & Microbe, Hertzog et al. (2018) show that group A Streptococcus can couple the ability to respond to host cues with autoinduction of a quorum sensing system, leading to killing of bacterial competitors. Copyright © 2018 Elsevier Inc. All rights reserved.
Impact of nest sanitation on the immune system of parents and nestlings in a passerine bird.
Evans, Jessica K; Griffith, Simon C; Klasing, Kirk C; Buchanan, Katherine L
2016-07-01
Bacterial communities are thought to have fundamental effects on the growth and development of nestling birds. The antigen exposure hypothesis suggests that, for both nestlings and adult birds, exposure to a diverse range of bacteria would select for stronger immune defences. However, there are relatively few studies that have tested the immune/bacterial relationships outside of domestic poultry. We therefore sought to examine indices of immunity (microbial killing ability in naive birds, which is a measure of innate immunity, and the antibody response to sheep red blood cells, which measures adaptive immunity) in both adult and nestling zebra finches (Taeniopygia guttata). We did this throughout breeding and between reproductive attempts in nests that were experimentally manipulated to change the intensity of bacterial exposure. Our results suggest that nest sanitation and bacterial load affected measures of the adaptive immune system, but not the innate immune parameters tested. Adult finches breeding in clean nests had a lower primary antibody response to sheep red blood cells, particularly males, and a greater difference between primary and secondary responses. Adult microbial killing of Escherichia coli decreased as parents moved from incubation to nestling rearing for both nest treatments; however, killing of Candida albicans remained consistent throughout. In nestlings, both innate microbial killing and the adaptive antibody response did not differ between nest environments. Together, these results suggest that exposure to microorganisms in the environment affects the adaptive immune system in nesting birds, with exposure upregulating the antibody response in adult birds. © 2016. Published by The Company of Biologists Ltd.
Autophagy Induced by Intracellular Infection of Propionibacterium acnes
Nakamura, Teruko; Furukawa, Asuka; Uchida, Keisuke; Ogawa, Tomohisa; Tamura, Tomoki; Sakonishi, Daisuke; Wada, Yuriko; Suzuki, Yoshimi; Ishige, Yuki; Minami, Junko; Akashi, Takumi
2016-01-01
Background Sarcoidosis is caused by Th1-type immune responses to unknown agents, and is linked to the infectious agent Propionibacterium acnes. Many strains of P. acnes isolated from sarcoid lesions cause intracellular infection and autophagy may contribute to the pathogenesis of sarcoidosis. We examined whether P. acnes induces autophagy. Methods Three cell lines from macrophages (Raw264.7), mesenchymal cells (MEF), and epithelial cells (HeLa) were infected by viable or heat-killed P. acnes (clinical isolate from sarcoid lymph node) at a multiplicity of infection (MOI) of 100 or 1000 for 1 h. Extracellular bacteria were killed by washing and culturing infected cells with antibiotics. Samples were examined by colony assay, electron-microscopy, and fluorescence-microscopy with anti-LC3 and anti-LAMP1 antibodies. Autophagy-deficient (Atg5-/-) MEF cells were also used. Results Small and large (≥5 μm in diameter) LC3-positive vacuoles containing few or many P. acnes cells (LC3-positive P. acnes) were frequently found in the three cell lines when infected by viable P. acnes at MOI 1000. LC3-positive large vacuoles were mostly LAMP1-positive. A few small LC3-positive/LAMP1-negative vacuoles were consistently observed in some infected cells for 24 h postinfection. The number of LC3-positive P. acnes was decreased at MOI 100 and completely abolished when heat-killed P. acnes was used. LC3-positive P. acnes was not found in autophagy-deficient Atg5-/- cells where the rate of infection was 25.3 and 17.6 times greater than that in wild-type Atg5+/+ cells at 48 h postinfection at MOI 100 and 1000, respectively. Electron-microscopic examination revealed bacterial cells surrounded mostly by a single-membrane including the large vacuoles and sometimes a double or multi-layered membrane, with occasional undigested bacterial cells in ruptured late endosomes or in the cytoplasm. Conclusion Autophagy was induced by intracellular P. acnes infection and contributed to intracellular bacterial killing as an additional host defense mechanism to endocytosis or phagocytosis. PMID:27219015
1982-05-01
3,5-DiNA Biosorption studies were conducted with 3-day Standard Methods broth cultures of Azotobacter beijerinckii (ATCC19366), Bacillus cereus... Biosorption studies with heat killed cells were conducted in the same manner except that the original bacterial mixture was held at 1000 C for 15...minutes. In all cases, studies were conducted with triplicate sets of live or heat killed cells. The biosorption partition coefficient (Kp) was
Tetracyclines function as dual-action light-activated antibiotics.
He, Ya; Huang, Ying-Ying; Xi, Liyan; Gelfand, Jeffrey A; Hamblin, Michael R
2018-01-01
Antimicrobial photodynamic inactivation (aPDI) employs photosensitizing dyes activated by visible light to produce reactive oxygen species. aPDI is independent of the antibiotic resistance status of the target cells, and is thought unlikely to produce resistance itself. Among many PS that have been investigated, tetracyclines occupy a unique niche. They are potentially dual-action compounds that can both kill bacteria under illumination, and prevent bacterial regrowth by inhibiting ribosomes. Tetracycline antibiotics are regarded as bacteriostatic rather than bactericidal. Doxycycline (DOTC) is excited best by UVA light (365 nm) while demeclocycline (DMCT) can be efficiently activated by blue light (415 nm) as well as UVA. Both compounds were able to eradicate Gram-positive (methicillin-resistant Staphylococcus aureus) and Gram-negative (Escherichia coli) bacteria (>6 log(10) steps of killing) at concentrations (10-50μM) and fluences (10-20J/cm2). In contrast to methylene blue, MB plus red light, tetracyclines photoinactivated bacteria in rich growth medium. When ~3 logs of bacteria were killed with DMCT/DOTC+light and the surviving cells were added to growth medium, further bacterial killing was observed, while the same experiment with MB allowed complete regrowth. MIC studies were carried out either in the dark or exposed to 0.5mW/cm2 blue light. Up to three extra steps (8-fold) increased antibiotic activity was found with light compared to dark, with MRSA and tetracycline-resistant strains of E. coli. Tetracyclines can accumulate in bacterial ribosomes, where they could be photoactivated with blue/UVA light producing microbial killing via ROS generation.
Inflammasome - activated gasdermin D causes pyroptosis by forming membrane pores
Liu, Xing; Zhang, Zhibin; Ruan, Jianbin; Pan, Youdong; Magupalli, Venkat Giri; Wu, Hao; Lieberman, Judy
2017-01-01
Inflammatory caspases (caspases 1, 4, 5 and 11) are activated in response to microbial infection and danger signals. When activated, they cleave mouse and human gasdermin D (GSDMD) after Asp276 and Asp275, respectively, to generate an N-terminal cleavage product (GSDMD-NT) that triggers inflammatory death (pyroptosis) and release of inflammatory cytokines such as interleukin-1β1,2. Cleavage removes the C-terminal fragment (GSDMD-CT), which is thought to fold back on GSDMD-NT to inhibit its activation. However, how GSDMD-NT causes cell death is unknown. Here we show that GSDMD-NT oligomerizes in membranes to form pores that are visible by electron microscopy. GSDMD-NT binds to phosphatidylinositol phosphates and phosphatidylserine (restricted to the cell membrane inner leaflet) and cardiolipin (present in the inner and outer leaflets of bacterial membranes). Mutation of four evolutionarily conserved basic residues blocks GSDMD-NT oligomerization, membrane binding, pore formation and pyroptosis. Because of its lipid-binding preferences, GSDMD-NT kills from within the cell, but does not harm neighbouring mammalian cells when it is released during pyroptosis. GSDMD-NT also kills cell-free bacteria in vitro and may have a direct bactericidal effect within the cytosol of host cells, but the importance of direct bacterial killing in controlling in vivo infection remains to be determined. PMID:27383986
Inflammasome-activated gasdermin D causes pyroptosis by forming membrane pores.
Liu, Xing; Zhang, Zhibin; Ruan, Jianbin; Pan, Youdong; Magupalli, Venkat Giri; Wu, Hao; Lieberman, Judy
2016-07-07
Inflammatory caspases (caspases 1, 4, 5 and 11) are activated in response to microbial infection and danger signals. When activated, they cleave mouse and human gasdermin D (GSDMD) after Asp276 and Asp275, respectively, to generate an N-terminal cleavage product (GSDMD-NT) that triggers inflammatory death (pyroptosis) and release of inflammatory cytokines such as interleukin-1β. Cleavage removes the C-terminal fragment (GSDMD-CT), which is thought to fold back on GSDMD-NT to inhibit its activation. However, how GSDMD-NT causes cell death is unknown. Here we show that GSDMD-NT oligomerizes in membranes to form pores that are visible by electron microscopy. GSDMD-NT binds to phosphatidylinositol phosphates and phosphatidylserine (restricted to the cell membrane inner leaflet) and cardiolipin (present in the inner and outer leaflets of bacterial membranes). Mutation of four evolutionarily conserved basic residues blocks GSDMD-NT oligomerization, membrane binding, pore formation and pyroptosis. Because of its lipid-binding preferences, GSDMD-NT kills from within the cell, but does not harm neighbouring mammalian cells when it is released during pyroptosis. GSDMD-NT also kills cell-free bacteria in vitro and may have a direct bactericidal effect within the cytosol of host cells, but the importance of direct bacterial killing in controlling in vivo infection remains to be determined.
Alleviating Cancer Drug Toxicity by Inhibiting a Bacterial Enzyme
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wallace, Bret D.; Wang, Hongwei; Lane, Kimberly T.
2011-08-12
The dose-limiting side effect of the common colon cancer chemotherapeutic CPT-11 is severe diarrhea caused by symbiotic bacterial {beta}-glucuronidases that reactivate the drug in the gut. We sought to target these enzymes without killing the commensal bacteria essential for human health. Potent bacterial {beta}-glucuronidase inhibitors were identified by high-throughput screening and shown to have no effect on the orthologous mammalian enzyme. Crystal structures established that selectivity was based on a loop unique to bacterial {beta}-glucuronidases. Inhibitors were highly effective against the enzyme target in living aerobic and anaerobic bacteria, but did not kill the bacteria or harm mammalian cells. Finally,more » oral administration of an inhibitor protected mice from CPT-11-induced toxicity. Thus, drugs may be designed to inhibit undesirable enzyme activities in essential microbial symbiotes to enhance chemotherapeutic efficacy.« less
Alleviating Cancer Drug Toxicity by Inhibiting a Bacterial Enzyme
Wallace, Bret D.; Wang, Hongwei; Lane, Kimberly T.; Scott, John E.; Orans, Jillian; Koo, Ja Seol; Venkatesh, Madhukumar; Jobin, Christian; Yeh, Li-An; Mani, Sridhar; Redinbo, Matthew R.
2011-01-01
The dose-limiting side effect of the common colon cancer chemotherapeutic CPT-11 is severe diarrhea caused by symbiotic bacterial β-glucuronidases that reactivate the drug in the gut. We sought to target these enzymes without killing the commensal bacteria essential for human health. Potent bacterial β-glucuronidase inhibitors were identified by high-throughput screening and shown to have no effect on the orthologous mammalian enzyme. Crystal structures established that selectivity was based on a loop unique to bacterial β-glucuronidases. Inhibitors were highly effective against the enzyme target in living aerobic and anaerobic bacteria, but did not kill the bacteria or harm mammalian cells. Finally, oral administration of an inhibitor protected mice from CPT-11–induced toxicity. Thus, drugs may be designed to inhibit undesirable enzyme activities in essential microbial symbiotes to enhance chemotherapeutic efficacy. PMID:21051639
Alleviating cancer drug toxicity by inhibiting a bacterial enzyme.
Wallace, Bret D; Wang, Hongwei; Lane, Kimberly T; Scott, John E; Orans, Jillian; Koo, Ja Seol; Venkatesh, Madhukumar; Jobin, Christian; Yeh, Li-An; Mani, Sridhar; Redinbo, Matthew R
2010-11-05
The dose-limiting side effect of the common colon cancer chemotherapeutic CPT-11 is severe diarrhea caused by symbiotic bacterial β-glucuronidases that reactivate the drug in the gut. We sought to target these enzymes without killing the commensal bacteria essential for human health. Potent bacterial β-glucuronidase inhibitors were identified by high-throughput screening and shown to have no effect on the orthologous mammalian enzyme. Crystal structures established that selectivity was based on a loop unique to bacterial β-glucuronidases. Inhibitors were highly effective against the enzyme target in living aerobic and anaerobic bacteria, but did not kill the bacteria or harm mammalian cells. Finally, oral administration of an inhibitor protected mice from CPT-11-induced toxicity. Thus, drugs may be designed to inhibit undesirable enzyme activities in essential microbial symbiotes to enhance chemotherapeutic efficacy.
Decontamination of Anthrax spores in critical infrastructure and critical assets.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boucher, Raymond M.; Crown, Kevin K.; Tucker, Mark David
2010-05-01
Decontamination of anthrax spores in critical infrastructure (e.g., subway systems, major airports) and critical assets (e.g., the interior of aircraft) can be challenging because effective decontaminants can damage materials. Current decontamination methods require the use of highly toxic and/or highly corrosive chemical solutions because bacterial spores are very difficult to kill. Bacterial spores such as Bacillus anthracis, the infectious agent of anthrax, are one of the most resistant forms of life and are several orders of magnitude more difficult to kill than their associated vegetative cells. Remediation of facilities and other spaces (e.g., subways, airports, and the interior of aircraft)more » contaminated with anthrax spores currently requires highly toxic and corrosive chemicals such as chlorine dioxide gas, vapor- phase hydrogen peroxide, or high-strength bleach, typically requiring complex deployment methods. We have developed a non-toxic, non-corrosive decontamination method to kill highly resistant bacterial spores in critical infrastructure and critical assets. A chemical solution that triggers the germination process in bacterial spores and causes those spores to rapidly and completely change to much less-resistant vegetative cells that can be easily killed. Vegetative cells are then exposed to mild chemicals (e.g., low concentrations of hydrogen peroxide, quaternary ammonium compounds, alcohols, aldehydes, etc.) or natural elements (e.g., heat, humidity, ultraviolet light, etc.) for complete and rapid kill. Our process employs a novel germination solution consisting of low-cost, non-toxic and non-corrosive chemicals. We are testing both direct surface application and aerosol delivery of the solutions. A key Homeland Security need is to develop the capability to rapidly recover from an attack utilizing biological warfare agents. This project will provide the capability to rapidly and safely decontaminate critical facilities and assets to return them to normal operations as quickly as possible, sparing significant economic damage by re-opening critical facilities more rapidly and safely. Facilities and assets contaminated with Bacillus anthracis (i.e., anthrax) spores can be decontaminated with mild chemicals as compared to the harsh chemicals currently needed. Both the 'germination' solution and the 'kill' solution are constructed of 'off-the-shelf,' inexpensive chemicals. The method can be utilized by directly spraying the solutions onto exposed surfaces or by application of the solutions as aerosols (i.e., small droplets), which can also reach hidden surfaces.« less
Niepa, Tagbo H R; Wang, Hao; Gilbert, Jeremy L; Ren, Dacheng
2017-03-01
Antibiotic resistance is a major challenge to the treatment of bacterial infections associated with medical devices and biomaterials. One important intrinsic mechanism of such resistance is the formation of persister cells that are phenotypic variants of microorganisms and highly tolerant to antibiotics. Recently, we reported a new approach to eradicating persister cells of Pseudomonas aeruginosa using low-level direct electrochemical current (DC) and synergy with the antibiotic tobramycin. To further understand the underlying mechanism and develop this technology toward possible medical applications, we investigated the electricidal activities of non-metallic biomaterial on persister and biofilm cells of P. aeruginosa using graphite-based TGON™ 805 electrodes. We employed both single and dual chamber systems to compare electrochemical factors of TGON and stainless steel 304 electrodes. The results revealed that TGON-based treatments were highly effective against P. aeruginosa persister cells. In the single chamber system, complete eradication of planktonic persister cells (corresponding to a 7-log killing) was achieved with 70μA/cm 2 DC using TGON electrodes within 40min of treatment, while the cell viability in biofilms was reduced by 2 logs within 1h. The killing effects were dose and time dependent with higher current densities requiring less time. Moreover, reduction reactions were found more effective than oxidation reactions, confirming that metal cations are not indispensable, although they may facilitate cell killing. The findings of this study can help develop electrochemical technologies to eradicate persister and biofilm cells for more effective treatment of medical device and biomaterial associated infections. Infections associated with medical devices and biomaterials present a major challenge due to high-level tolerance of microbes to conventional antibiotics. It is well established that such tolerance is due to the formation of dormant persister cells and multicellular structures known as biofilms. Recent studies have demonstrated electrochemical treatment as a promising alternative to eradicate bacterial infections, since the killing mechanism is independent of the growth phase of bacterial cells, but relies on various electrochemical species interplaying during the treatment. The current study investigated major bactericidal properties of the electrochemical currents mediated via TGON, a carbon-based electrode material. Up to total eradication of Pseudomonas aeruginosa persister cells was achieved. The new knowledge of electrochemical properties and the bioactivity of TGON may help develop new methods/devices to eradicate bacterial infections by delivering safe levels of electrochemical currents. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Iwahi, T; Imada, A
1988-01-01
Two type 1 fimbria-producing strains of Escherichia coli, 31-B and K12W1-3, and two type 1 fimbriae-defective mutants derived from 31-B, BH5 and BH9, were compared for their capacity to induce vesical infection in mice undergoing water diuresis and to interact in vitro with murine peritoneal exudate polymorphonuclear leukocytes (PMN). Strains 31-B and BH5 caused rapid bacterial multiplication in the bladder wall after being inoculated intrabladderly; their log-phase cells grown at 37 degrees C, in striking contrast to their stationary-phase or 17 degrees C-grown cells, resisted phagocytic killing by PMN in the presence of normal murine serum. Strains K12W1-3 and BH9 failed to cause vesical infection, and their cells were always susceptible to the opsonophagocytic killing by PMN irrespective of the growth conditions. Nevertheless, the log-phase cells of the three isogenic strains, 31-B, BH5, and BH9, grown at 37 degrees C gave almost the same chemiluminescent response patterns during incubation with PMN in normal serum. The phagocytic resistance in strains 31-B and BH5 was eliminated by briefly treating bacterial cells with EDTA. These results suggest that the two virulent strains may express an antiphagocytic activity during their growth in the bladder and continue to stimulate the oxidative metabolic burst of PMN without being ingested and killed, and that the antiphagocytic activity may be related to a bacterial surface component(s) that is removed by EDTA. PMID:2894364
Reece, Stephen T; Vogelzang, Alexis; Tornack, Julia; Bauer, Wolfgang; Zedler, Ulrike; Schommer-Leitner, Sandra; Stingl, Georg; Melchers, Fritz; Kaufmann, Stefan H E
2018-04-23
Persistence of Mycobacterium tuberculosis within human bone marrow stem cells has been identified as a potential bacterial niche during latent tuberculosis. Using a murine model of tuberculosis, we show here that bone marrow stem and progenitor cells containing M. tuberculosis propagated tuberculosis when transferred to naive mice, given that both transferred cells and recipient mice were unable to express inducible nitric oxide synthase, which mediates killing of intracellular bacteria via nitric oxide. Our findings suggest that bone marrow stem and progenitor cells containing M. tuberculosis propagate hallmarks of disease if nitric oxide-mediated killing of bacteria is defective.
Cruz-Adalia, Aránzazu; Ramirez-Santiago, Guillermo; Osuna-Pérez, Jesús; Torres-Torresano, Mónica; Zorita, Virgina; Martínez-Riaño, Ana; Boccasavia, Viola; Borroto, Aldo; Martínez Del Hoyo, Gloria; González-Granado, José María; Alarcón, Balbino; Sánchez-Madrid, Francisco; Veiga, Esteban
2017-11-17
Bacterial phagocytosis and antigen cross-presentation to activate CD8 + T cells are principal functions of professional antigen presenting cells. However, conventional CD4 + T cells also capture and kill bacteria from infected dendritic cells in a process termed transphagocytosis (also known as transinfection). Here, we show that transphagocytic T cells present bacterial antigens to naive CD8 + T cells, which proliferate and become cytotoxic in response. CD4 + T-cell-mediated antigen presentation also occurs in vivo in the course of infection, and induces the generation of central memory CD8 + T cells with low PD-1 expression. Moreover, transphagocytic CD4 + T cells induce protective anti-tumour immune responses by priming CD8 + T cells, highlighting the potential of CD4 + T cells as a tool for cancer immunotherapy.
Treatment of Oral Biofilms by a D-Enantiomeric Peptide.
Zhang, Tian; Wang, Zhejun; Hancock, Robert E W; de la Fuente-Núñez, César; Haapasalo, Markus
2016-01-01
Almost all dental diseases are caused by biofilms that consist of multispecies communities. DJK-5, which is a short D-enantiomeric, protease-resistant peptide with broad-spectrum anti-biofilm activity, was tested for its effect on oral multispecies biofilms. Peptide DJK-5 at 10 μg/mL effectively prevented the growth of these microbes in culture media in a time-dependent manner. In addition to the prevention of growth, peptide DJK-5 completely killed both Streptococcus mutans and Enterococcus faecalis suspended from biofilms after 30 minutes of incubation in liquid culture media. DJK-5 also led to the effective killing of microbes in plaque biofilm. The proportion of bacterial cells killed by 10 μg/mL of DJK-5 was similar after 1 and 3 days, both exceeding 85%. DJK-5 was able to significantly prevent biofilm formation over 3 days (P = 0.000). After 72 hours of exposure, DJK-5 significantly reduced and almost completely prevented plaque biofilm production by more than 90% of biovolume compared to untreated controls (P = 0.000). The proportion of dead biofilm bacteria at the 10 μg/mL DJK-5 concentration was similar for 1- and 3-day-old biofilms, whereby >86% of the bacteria were killed. DJK-5 was also able to kill >79% and >85% of bacteria, respectively, after one-time and three brief treatments of 3-day-old biofilms. The combination of DJK-5 and chlorhexidine showed the best bacterial killing among all treatments, with ~83% and >88% of bacterial cells killed after 1 and 3 minutes, respectively. No significant difference was found in the percentage of biofilm killing amongst three donor plaque samples after DJK-5 treatment. In particular, DJK-5 showed strong performance in inhibiting biofilm development and eradicating pre-formed oral biofilms compared to L-enantiomeric peptide 1018. DJK-5 was very effective against oral biofilms when used alone or combined with chlorhexidine, and may be a promising agent for use in oral anti-biofilm strategies in the future.
Eckert, Randal; Qi, Fengxia; Yarbrough, Daniel K.; He, Jian; Anderson, Maxwell H.; Shi, Wenyuan
2006-01-01
Currently available antimicrobials exhibit broad killing with regard to bacterial genera and species. Indiscriminate killing of microbes by these conventional antibiotics can disrupt the ecological balance of the indigenous microbial flora, often resulting in negative clinical consequences. Species-specific antimicrobials capable of precisely targeting pathogenic bacteria without damaging benign microorganisms provide a means of avoiding this problem. In this communication, we report the successful creation of the first synthetic, target-specific antimicrobial peptide, G10KHc, via addition of a rationally designed Pseudomonas-specific targeting moiety (KH) to a generally killing peptide (novispirin G10). The resulting chimeric peptide showed enhanced bactericidal activity and faster killing kinetics against Pseudomonas spp. than G10 alone. The enhanced killing activities are due to increased binding and penetration of the outer membrane of Pseudomonas sp. cells. These properties were not observed in tests of untargeted bacterial species, and this specificity allowed G10KHc to selectively eliminate Pseudomonas spp. from mixed cultures. This work lays a foundation for generating target-specific “smart” antimicrobials to complement currently available conventional antibiotics. PMID:16569868
Killing machines: three pore-forming proteins of the immune system
McCormack, Ryan; de Armas, Lesley; Shiratsuchi, Motoaki
2014-01-01
The evolution of early multicellular eukaryotes 400–500 million years ago required a defensive strategy against microbial invasion. Pore-forming proteins containing the membrane-attack-complex-perforin (MACPF) domain were selected as the most efficient means to destroy bacteria or virally infected cells. The mechanism of pore formation by the MACPF domain is distinctive in that pore formation is purely physical and unspecific. The MACPF domain polymerizes, refolds, and inserts itself into bilayer membranes or bacterial outer cell walls. The displacement of surface lipid/carbohydrate molecules by the polymerizing MACPF domain creates clusters of large, water-filled holes that destabilize the barrier function and provide access for additional anti-bacterial or anti-viral effectors to sensitive sites that complete the destruction of the invader via enzymatic or chemical attack. The highly efficient mechanism of anti-microbial defense by a combined physical and chemical strategy using pore-forming MACPF-proteins has been retargeted during evolution of vertebrates and mammals for three purposes: (1) to kill extracellular bacteria C9/polyC9 evolved in conjunction with complement, (2) to kill virus infected and cancer cells perforin-1/polyperforin-1 CTL evolved targeted by NK and CTL, and (3) to kill intracellular bacteria transmembrane perforin-2/putative polyperforin-2 evolved targeted by phagocytic and nonphagocytic cells. Our laboratory has been involved in the discovery and description of each of the three pore-formers that will be reviewed here. PMID:24293008
Two-Phase Bactericidal Mechanism of Silver Nanoparticles against Burkholderia pseudomallei
Hongsing, Nuttaya; Thammawithan, Saengrawee; Daduang, Sakda; Klaynongsruang, Sompong; Tuanyok, Apichai; Patramanon, Rina
2016-01-01
Silver nanoparticles (AgNPs) have a strong antimicrobial activity against a variety of pathogenic bacteria. The killing mechanism of AgNPs involves direct physical membrane destruction and subsequent molecular damage from both AgNPs and released Ag+. Burkholderia pseudomallei is the causative agent of melioidosis, an endemic infectious disease primarily found in northern Australia and Southeast Asia. B. pseudomallei is intrinsically resistant to most common antibiotics. In this study, the antimicrobial activity and mechanism of AgNPs (10–20 nm) against B. pseudomallei were investigated. The MIC and MBC for nine B. pseudomallei strains ranged from 32–48 μg/mL and 96–128 μg/mL, respectively. Concentrations of AgNPs less than 256 μg/mL were not toxic to human red blood cells. AgNPs exhibited a two-phase mechanism: cell death induction and ROS induction. The first phase was a rapid killing step within 5 min, causing the direct damage of the cytoplasmic membrane of the bacterial cells, as observed by a time-kill assay and fluorescence microscopy. During the period of 5–30 min, the cell surface charge was rapidly neutralized from -8.73 and -7.74 to 2.85 and 2.94 mV in two isolates of B. pseudomallei, as revealed by zeta potential measurement. Energy-dispersive X-ray (EDX) spectroscopy showed the silver element deposited on the bacterial membrane, and TEM micrographs of the AgNP-treated B. pseudomallei cells showed severe membrane damage and cytosolic leakage at 1/5 MIC and cell bursting at MBC. During the killing effect the released Ag+ from AgNPs was only 3.9% from the starting AgNPs concentration as observed with ICP-OES experiment. In the second phase, the ROS induction occurred 1–4 hr after the AgNP treatment. Altogether, we provide direct kinetic evidence of the AgNPs killing mechanism, by which cell death is separable from the ROS induction and AgNPs mainly contributes in the killing action. AgNPs may be considered a potential candidate to develop a novel alternative agent for melioidosis treatment with fast action. PMID:27977746
Itzek, Andreas; Chen, Zhiyun; Merritt, Justin; Kreth, Jens
2016-01-01
Salivary agglutination is an important host defense mechanism to aggregate oral commensal bacteria as well as invading pathogens. Saliva flow and subsequent swallowing more easily clear aggregated bacteria compared to single cells. Phagocytic clearance of bacteria through polymorphonuclear neutrophil granulocytes also seems to increase to a certain extent with the size of bacterial aggregates. To determine a connection between salivary agglutination and the host innate immune response by phagocytosis, an in vitro agglutination assay was developed reproducing the average size of salivary bacterial aggregates. Using the oral commensal Streptococcus gordonii as a model organism, the effect of salivary agglutination to the phagocytic clearance through polymorphonuclear neutrophil granulocytes was investigated. Here we describe that salivary aggregates of S. gordonii are readily cleared through phagocytosis, while single bacterial cells showed a significant delay in being phagocytosed and killed. Furthermore, prior to phagocytosis the polymorphonuclear neutrophil granulocytes were able to induce a specific de-aggregation, which was dependent on serine protease activity. The herein presented data suggest that salivary agglutination of bacterial cells leads to an ideal size for recognition by polymorphonuclear neutrophil granulocytes. As a first line of defense, these phagocytic cells are able to recognize the aggregates and de-aggregate them via serine proteases to a more manageable size for efficient phagocytosis and subsequent killing in the phagolysosome. This observed mechanism not only prevents the rapid spreading of oral bacterial cells while entering the bloodstream but would also avoid degranulation of involved polymorphonuclear neutrophil granulocytes thus preventing collateral damage to nearby tissue. PMID:27194631
Itzek, A; Chen, Z; Merritt, J; Kreth, J
2017-06-01
Salivary agglutination is an important host defense mechanism to aggregate oral commensal bacteria as well as invading pathogens. Saliva flow and subsequent swallowing more easily clear aggregated bacteria compared with single cells. Phagocytic clearance of bacteria through polymorphonuclear neutrophil granulocytes also seems to increase to a certain extent with the size of bacterial aggregates. To determine a connection between salivary agglutination and the host innate immune response by phagocytosis, an in vitro agglutination assay was developed reproducing the average size of salivary bacterial aggregates. Using the oral commensal Streptococcus gordonii as a model organism, the effect of salivary agglutination on phagocytic clearance through polymorphonuclear neutrophil granulocytes was investigated. Here we describe how salivary aggregates of S. gordonii are readily cleared through phagocytosis, whereas single bacterial cells showed a significant delay in being phagocytosed and killed. Furthermore, before phagocytosis the polymorphonuclear neutrophil granulocytes were able to induce a specific de-aggregation, which was dependent on serine protease activity. The data presented suggest that salivary agglutination of bacterial cells leads to an ideal size for recognition by polymorphonuclear neutrophil granulocytes. As a first line of defense, these phagocytic cells are able to recognize the aggregates and de-aggregate them via serine proteases to a more manageable size for efficient phagocytosis and subsequent killing in the phagolysosome. This observed mechanism not only prevents the rapid spreading of oral bacterial cells while entering the bloodstream but would also avoid degranulation of involved polymorphonuclear neutrophil granulocytes, so preventing collateral damage to nearby tissue. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Baltrusaitis, Jonas; Powers, Linda S.; Borcherding, Jennifer A.; Caraballo, Juan C.; Mudunkotuwa, Imali; Peate, David W.; Walters, Katherine; Thompson, Jay M.; Grassian, Vicki H.; Gudmundsson, Gunnar; Comellas, Alejandro P.
2013-01-01
Background: On 20 March 2010, the Icelandic volcano Eyjafjallajökull erupted for the first time in 190 years. Despite many epidemiological reports showing effects of volcanic ash on the respiratory system, there are limited data evaluating cellular mechanisms involved in the response to ash. Epidemiological studies have observed an increase in respiratory infections in subjects and populations exposed to volcanic eruptions. Methods: We physicochemically characterized volcanic ash, finding various sizes of particles, as well as the presence of several transition metals, including iron. We examined the effect of Eyjafjallajökull ash on primary rat alveolar epithelial cells and human airway epithelial cells (20–100 µg/cm2), primary rat and human alveolar macrophages (5–20 µg/cm2), and Pseudomonas aeruginosa (PAO1) growth (3 µg/104 bacteria). Results: Volcanic ash had minimal effect on alveolar and airway epithelial cell integrity. In alveolar macrophages, volcanic ash disrupted pathogen-killing and inflammatory responses. In in vitro bacterial growth models, volcanic ash increased bacterial replication and decreased bacterial killing by antimicrobial peptides. Conclusions: These results provide potential biological plausibility for epidemiological data that show an association between air pollution exposure and the development of respiratory infections. These data suggest that volcanic ash exposure, while not seriously compromising lung cell function, may be able to impair innate immunity responses in exposed individuals. PMID:23478268
Monick, Martha M; Baltrusaitis, Jonas; Powers, Linda S; Borcherding, Jennifer A; Caraballo, Juan C; Mudunkotuwa, Imali; Peate, David W; Walters, Katherine; Thompson, Jay M; Grassian, Vicki H; Gudmundsson, Gunnar; Comellas, Alejandro P
2013-06-01
On 20 March 2010, the Icelandic volcano Eyjafjallajökull erupted for the first time in 190 years. Despite many epidemiological reports showing effects of volcanic ash on the respiratory system, there are limited data evaluating cellular mechanisms involved in the response to ash. Epidemiological studies have observed an increase in respiratory infections in subjects and populations exposed to volcanic eruptions. We physicochemically characterized volcanic ash, finding various sizes of particles, as well as the presence of several transition metals, including iron. We examined the effect of Eyjafjallajökull ash on primary rat alveolar epithelial cells and human airway epithelial cells (20-100 µg/cm(2)), primary rat and human alveolar macrophages (5-20 µg/cm(2)), and Pseudomonas aeruginosa (PAO1) growth (3 µg/104 bacteria). Volcanic ash had minimal effect on alveolar and airway epithelial cell integrity. In alveolar macrophages, volcanic ash disrupted pathogen-killing and inflammatory responses. In in vitro bacterial growth models, volcanic ash increased bacterial replication and decreased bacterial killing by antimicrobial peptides. These results provide potential biological plausibility for epidemiological data that show an association between air pollution exposure and the development of respiratory infections. These data suggest that volcanic ash exposure, while not seriously compromising lung cell function, may be able to impair innate immunity responses in exposed individuals.
DeForge, L E; Billeci, K L; Kramer, S M
2000-11-01
Given the increasing incidence of methicillin resistant Staphylococcus aureus (MRSA) and the recent emergence of MRSA with a reduced susceptibility to vancomycin, alternative approaches to the treatment of infection are of increasing relevance. The purpose of these studies was to evaluate the effect of IFN-gamma on the ability of white blood cells to kill S. aureus and to develop a simpler, higher throughput bacterial killing assay. Using a methicillin sensitive clinical isolate of S. aureus, a clinical isolate of MRSA, and a commercially available strain of MRSA, studies were conducted using a killing assay in which the bacteria were added directly into whole blood. The viability of the bacteria in samples harvested at various time points was then evaluated both by the classic CFU assay and by a new assay using alamarBlue. In the latter method, serially diluted samples and a standard curve containing known concentrations of bacteria were placed on 96-well plates, and alamarBlue was added. Fluorescence readings were taken, and the viability of the bacteria in the samples was calculated using the standard curve. The results of these studies demonstrated that the CFU and alamarBlue methods yielded equivalent detection of bacteria diluted in buffer. For samples incubated in whole blood, however, the alamarBlue method tended to yield lower viabilities than the CFU method due to the emergence of a slower growing subpopulation of S. aureus upon incubation in the blood matrix. A significant increase in bacterial killing was observed upon pretreatment of whole blood for 24 h with 5 or 25 ng/ml IFN-gamma. This increase in killing was detected equivalently by the CFU and alamarBlue methods. In summary, these studies describe a method that allows for the higher throughput analysis of the effects of immunomodulators on bacterial killing.
Reece, Stephen T; Vogelzang, Alexis; Tornack, Julia; Bauer, Wolfgang; Zedler, Ulrike; Schommer-Leitner, Sandra; Stingl, Georg; Melchers, Fritz; Kaufmann, Stefan H E
2018-01-01
Abstract Persistence of Mycobacterium tuberculosis within human bone marrow stem cells has been identified as a potential bacterial niche during latent tuberculosis. Using a murine model of tuberculosis, we show here that bone marrow stem and progenitor cells containing M. tuberculosis propagated tuberculosis when transferred to naive mice, given that both transferred cells and recipient mice were unable to express inducible nitric oxide synthase, which mediates killing of intracellular bacteria via nitric oxide. Our findings suggest that bone marrow stem and progenitor cells containing M. tuberculosis propagate hallmarks of disease if nitric oxide-mediated killing of bacteria is defective. PMID:29471332
Chien, Yu-Wen; Klugman, Keith P; Morens, David M
2010-12-01
Most deaths in the 1918 influenza pandemic were caused by secondary bacterial pneumonia. We performed a systematic review and reanalysis of studies of bacterial vaccine efficacy (VE) in preventing pneumonia and mortality among patients with influenza during the 1918 pandemic. A meta-analysis of 6 civilian studies of mixed killed bacterial vaccines containing pneumococci identified significant heterogeneity among studies and estimated VE at 34% (95% confidence interval [CI], 19%-47%) in preventing pneumonia and 42% (95% CI, 18%-59%) in reducing case fatality rates among patients with influenza, using random-effects models. Using fixed-effect models, the pooled VE from 3 military studies was 59% (95% CI, 43%-70%) for pneumonia and 70% (95% CI, 50%-82%) for case fatality. Military studies showed less heterogeneity and may provide more accurate results than civilian studies, given the potential biases in the included studies. Findings of 1 military study using hemolytic streptococci also suggested that there was significant protection. Despite significant methodological problems, the systematic biases in these studies do not exclude the possibilities that whole-cell inactivated pneumococcal vaccines may confer cross-protection to multiple pneumococcal serotypes and that bacterial vaccines may play a role in preventing influenza-associated pneumonia.
Atassi, Fabrice; Servin, Alain L
2010-03-01
The mechanism underlying the killing activity of Lactobacillus strains against bacterial pathogens appears to be multifactorial. Here, we investigate the respective contributions of hydrogen peroxide and lactic acid in killing bacterial pathogens associated with the human vagina, urinary tract or intestine by two hydrogen peroxide-producing strains. In co-culture, the human intestinal strain Lactobacillus johnsonii NCC933 and human vaginal strain Lactobacillus gasseri KS120.1 strains killed enteric Salmonella enterica serovar Typhimurium SL1344, vaginal Gardnerella vaginalis DSM 4944 and urinary tract Escherichia coli CFT073 pathogens. The cell-free culture supernatants (CFCSs) produced the same reduction in SL1344, DSM 4944 and CFT073 viability, whereas isolated bacteria had no effect. The killing activity of CFCSs was heat-stable. In the presence of Dulbecco's modified Eagle's minimum essential medium inhibiting the lactic acid-dependent killing activity, CFCSs were less effective at killing of the pathogens. Catalase-treated CFCSs displayed a strong decreased activity. Tested alone, hydrogen peroxide triggered a concentration-dependent killing activity against all three pathogens. Lactic acid alone developed a killing activity only at concentrations higher than that present in CFCSs. In the presence of lactic acid at a concentration present in Lactobacillus CFCSs, hydrogen peroxide displayed enhanced killing activity. Collectively, these results demonstrate that for hydrogen peroxide-producing Lactobacillus strains, the main metabolites of Lactobacillus, lactic acid and hydrogen peroxide, act co-operatively to kill enteric, vaginosis-associated and uropathogenic pathogens.
Wang, Jiaxing; Li, Jinhua; Qian, Shi; Guo, Geyong; Wang, Qiaojie; Tang, Jin; Shen, Hao; Liu, Xuanyong; Zhang, Xianlong; Chu, Paul K
2016-05-04
Periprosthetic joint infection (PJI) is one of the formidable and recalcitrant complications after orthopedic surgery, and inhibiting biofilm formation on the implant surface is considered crucial to prophylaxis of PJI. However, it has recently been demonstrated that free-floating biofilm-like aggregates in the local body fluid and bacterial colonization on the implant and peri-implant tissues can coexist and are involved in the pathogenesis of PJI. An effective surface with both contact-killing and release-killing antimicrobial capabilities can potentially abate these concerns and minimize PJI caused by adherent/planktonic bacteria. Herein, Ag nanoparticles (NPs) are embedded in titania (TiO2) nanotubes by anodic oxidation and plasma immersion ion implantation (PIII) to form a contact-killing surface. Vancomycin is then incorporated into the nanotubes by vacuum extraction and lyophilization to produce the release-killing effect. A novel clinical PJI model system involving both in vitro and in vivo use of methicillin-resistant Staphylococcus aureus (MRSA) ST239 is established to systematically evaluate the antibacterial properties of the hybrid surface against planktonic and sessile bacteria. The vancomycin-loaded and Ag-implanted TiO2 nanotubular surface exhibits excellent antimicrobial and antibiofilm effects against planktonic/adherent bacteria without appreciable silver ion release. The fibroblasts/bacteria cocultures reveal that the surface can help fibroblasts to combat bacteria. We first utilize the nanoarchitecture of implant surface as a bridge between the inorganic bactericide (Ag NPs) and organic antibacterial agent (vancomycin) to achieve total victory in the battle of PJI. The combination of contact-killing and release-killing together with cell-assisting function also provides a novel and effective strategy to mitigate bacterial infection and biofilm formation on biomaterials and has large potential in orthopedic applications.
San, Kaungmyat; Long, Janet; Michels, Corinne A; Gadura, Nidhi
2015-10-01
This study explores the role of membrane phospholipid peroxidation in the copper alloy mediated contact killing of Bacillus subtilis, a spore-forming gram-positive bacterial species. We found that B. subtilis endospores exhibited significant resistance to copper alloy surface killing but vegetative cells were highly sensitive to copper surface exposure. Cell death and lipid peroxidation occurred in B. subtilis upon copper alloy surface exposure. In a sporulation-defective strain carrying a deletion of almost the entire SpoIIA operon, lipid peroxidation directly correlated with cell death. Moreover, killing and lipid peroxidation initiated immediately and at a constant rate upon exposure to the copper surface without the delay observed previously in E. coli. These findings support the hypothesis that membrane lipid peroxidation is the initiating event causing copper surface induced cell death of B. subtilis vegetative cells. The findings suggest that the observed differences in the kinetics of copper-induced killing compared to E. coli result from differences in cell envelop structure. As demonstrated in E. coli, DNA degradation was shown to be a secondary effect of copper exposure in a B. subtilis sporulation-defective strain. © 2015 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.
San, Kaungmyat; Long, Janet; Michels, Corinne A; Gadura, Nidhi
2015-01-01
This study explores the role of membrane phospholipid peroxidation in the copper alloy mediated contact killing of Bacillus subtilis, a spore-forming gram-positive bacterial species. We found that B. subtilis endospores exhibited significant resistance to copper alloy surface killing but vegetative cells were highly sensitive to copper surface exposure. Cell death and lipid peroxidation occurred in B. subtilis upon copper alloy surface exposure. In a sporulation-defective strain carrying a deletion of almost the entire SpoIIA operon, lipid peroxidation directly correlated with cell death. Moreover, killing and lipid peroxidation initiated immediately and at a constant rate upon exposure to the copper surface without the delay observed previously in E. coli. These findings support the hypothesis that membrane lipid peroxidation is the initiating event causing copper surface induced cell death of B. subtilis vegetative cells. The findings suggest that the observed differences in the kinetics of copper-induced killing compared to E. coli result from differences in cell envelop structure. As demonstrated in E. coli, DNA degradation was shown to be a secondary effect of copper exposure in a B. subtilis sporulation-defective strain. PMID:26185055
Ratzan, Kenneth R.; Musher, Daniel M.; Keusch, Gerald T.; Weinstein, Louis
1972-01-01
Macrophages from mice infected with facultative intracellular organisms such as Listeria monocytogenes and BCG have been shown to resist infection by antigenically unrelated intracellular bacterial parasites. This study compares phagocytosis, bacterial growth inhibition, and oxidation of glucose by macrophages from normal mice, mice infected with listeria or BCG, or mice immunized with killed listeria in incomplete Freund's adjuvant. Macrophages from listeria- and BCG-infected mice ingested more listeria; 67 and 57%, respectively, had three or more cell-associated bacteria versus 22% of controls (P < 0.001). Peritoneal macrophages from listeria- and BCG-infected animals significantly (P < 0.001 covariance analysis) inhibited growth of listeria in suspension, whereas control macrophages had no such inhibitory effect. The rate of oxidation of glucose-1-14C was higher in macrophages from listeria- and BCG-infected mice than from either uninfected animals or those immunized with killed listeria. During phagocytosis of killed or live bacteria, or latex particles, the rate of glucose oxidation was increased (P < 0.01). These data suggest that the cellular immunity after infection by an intracellular organism is associated with an increase in metabolic activity of macrophages, namely, an increase in the rate of glucose oxidation resulting in enhancement of phagocytosis and killing. PMID:4629124
Pathogenesis of Cell Injury by Rickettsia conorii.
1984-06-15
Rocky Mountain spotted fever . Vasculitis...The lesions where similar to other rickettsioses such as typhus fever and Rocky Mountain spotted fever . Vasculitis was more prominent than vascular...pathogenic mechanism of cell injury by R. conorii. The failure of killed rickettsial and bacterial vaccines, e.g., Rocky Mountain spotted fever ,
Osawa, Masaki
2018-01-01
It is difficult to target and kill cancer cells. One possible approach is to mutate bacteria to enhance their binding to cancer cells. In the present study, Gram-negative Escherichia coli and Gram-positive Bacillus subtilis were randomly mutated, and then were positively and negatively selected for binding cancer vs normal cells. With repetitive mutation and selection both bacteria successfully evolved to increase affinity to the pancreatic cancer cell line (Mia PaCa-2) but not normal cells (HPDE: immortalized human pancreatic ductal epithelial cells). The mutant E. coli and B. subtilis strains bound to Mia PaCa-2 cells about 10 and 25 times more than to HPDE cells. The selected E. coli strain had mutations in biofilm-related genes and the regulatory region for a type I pilus gene. Consistent with type I pili involvement, mannose could inhibit the binding to cells. The results suggest that weak but specific binding is involved in the initial step of adhesion. To test their ability to kill Mia PaCa-2 cells, hemolysin was expressed in the mutant strain. The hemolysin released from the mutant strain was active and could kill Mia PaCa-2 cells. In the case of B. subtilis, the initial binding to the cells was a weak interaction of the leading pole of the motile bacteria. The frequency of this interaction to Mia PaCa-2 cells dramatically increased in the evolved mutant strain. This mutant strain could also specifically invade beneath Mia PaCa-2 cells and settle there. This type of mutation/selection strategy may be applicable to other combinations of cancer cells and bacterial species.
Kobayashi, Ichizo
2001-01-01
Restriction–modification (RM) systems are composed of genes that encode a restriction enzyme and a modification methylase. RM systems sometimes behave as discrete units of life, like viruses and transposons. RM complexes attack invading DNA that has not been properly modified and thus may serve as a tool of defense for bacterial cells. However, any threat to their maintenance, such as a challenge by a competing genetic element (an incompatible plasmid or an allelic homologous stretch of DNA, for example) can lead to cell death through restriction breakage in the genome. This post-segregational or post-disturbance cell killing may provide the RM complexes (and any DNA linked with them) with a competitive advantage. There is evidence that they have undergone extensive horizontal transfer between genomes, as inferred from their sequence homology, codon usage bias and GC content difference. They are often linked with mobile genetic elements such as plasmids, viruses, transposons and integrons. The comparison of closely related bacterial genomes also suggests that, at times, RM genes themselves behave as mobile elements and cause genome rearrangements. Indeed some bacterial genomes that survived post-disturbance attack by an RM gene complex in the laboratory have experienced genome rearrangements. The avoidance of some restriction sites by bacterial genomes may result from selection by past restriction attacks. Both bacteriophages and bacteria also appear to use homologous recombination to cope with the selfish behavior of RM systems. RM systems compete with each other in several ways. One is competition for recognition sequences in post-segregational killing. Another is super-infection exclusion, that is, the killing of the cell carrying an RM system when it is infected with another RM system of the same regulatory specificity but of a different sequence specificity. The capacity of RM systems to act as selfish, mobile genetic elements may underlie the structure and function of RM enzymes. PMID:11557807
Kobayashi, I
2001-09-15
Restriction-modification (RM) systems are composed of genes that encode a restriction enzyme and a modification methylase. RM systems sometimes behave as discrete units of life, like viruses and transposons. RM complexes attack invading DNA that has not been properly modified and thus may serve as a tool of defense for bacterial cells. However, any threat to their maintenance, such as a challenge by a competing genetic element (an incompatible plasmid or an allelic homologous stretch of DNA, for example) can lead to cell death through restriction breakage in the genome. This post-segregational or post-disturbance cell killing may provide the RM complexes (and any DNA linked with them) with a competitive advantage. There is evidence that they have undergone extensive horizontal transfer between genomes, as inferred from their sequence homology, codon usage bias and GC content difference. They are often linked with mobile genetic elements such as plasmids, viruses, transposons and integrons. The comparison of closely related bacterial genomes also suggests that, at times, RM genes themselves behave as mobile elements and cause genome rearrangements. Indeed some bacterial genomes that survived post-disturbance attack by an RM gene complex in the laboratory have experienced genome rearrangements. The avoidance of some restriction sites by bacterial genomes may result from selection by past restriction attacks. Both bacteriophages and bacteria also appear to use homologous recombination to cope with the selfish behavior of RM systems. RM systems compete with each other in several ways. One is competition for recognition sequences in post-segregational killing. Another is super-infection exclusion, that is, the killing of the cell carrying an RM system when it is infected with another RM system of the same regulatory specificity but of a different sequence specificity. The capacity of RM systems to act as selfish, mobile genetic elements may underlie the structure and function of RM enzymes.
Shen, Fengge; Tang, Xudong; Cheng, Wei; Wang, Yang; Wang, Chao; Shi, Xiaochen; An, Yanan; Zhang, Qiaoli; Liu, Mingyuan; Liu, Bo; Yu, Lu
2016-01-18
The successful treatment of bacterial infections is the achievement of a synergy between the host's immune defences and antibiotics. Here, we examined whether fosfomycin (FOM) could improve the bactericidal effect of phagocytes, and investigated the potential mechanisms. FOM enhanced the phagocytosis and extra- or intracellular killing of S. aureus by phagocytes. And FOM enhanced the extracellular killing of S. aureus in macrophage (MФ) and in neutrophils mediated by extracellular traps (ETs). ET production was related to NADPH oxidase-dependent reactive oxygen species (ROS). Additionally, FOM increased the intracellular killing of S. aureus in phagocytes, which was mediated by ROS through the oxidative burst process. Our results also showed that FOM alone induced S. aureus producing hydroxyl radicals in order to kill the bacterial cells in vitro. In a mouse peritonitis model, FOM treatment increased the bactericidal extra- and intracellular activity in vivo, and FOM strengthened ROS and ET production from peritoneal lavage fluid ex vivo. An IVIS imaging system assay further verified the observed in vivo bactericidal effect of the FOM treatment. This work may provide a deeper understanding of the role of the host's immune defences and antibiotic interactions in microbial infections.
Shen, Fengge; Tang, Xudong; Cheng, Wei; Wang, Yang; Wang, Chao; Shi, Xiaochen; An, Yanan; Zhang, Qiaoli; Liu, Mingyuan; Liu, Bo; Yu, Lu
2016-01-01
The successful treatment of bacterial infections is the achievement of a synergy between the host’s immune defences and antibiotics. Here, we examined whether fosfomycin (FOM) could improve the bactericidal effect of phagocytes, and investigated the potential mechanisms. FOM enhanced the phagocytosis and extra- or intracellular killing of S. aureus by phagocytes. And FOM enhanced the extracellular killing of S. aureus in macrophage (MФ) and in neutrophils mediated by extracellular traps (ETs). ET production was related to NADPH oxidase-dependent reactive oxygen species (ROS). Additionally, FOM increased the intracellular killing of S. aureus in phagocytes, which was mediated by ROS through the oxidative burst process. Our results also showed that FOM alone induced S. aureus producing hydroxyl radicals in order to kill the bacterial cells in vitro. In a mouse peritonitis model, FOM treatment increased the bactericidal extra- and intracellular activity in vivo, and FOM strengthened ROS and ET production from peritoneal lavage fluid ex vivo. An IVIS imaging system assay further verified the observed in vivo bactericidal effect of the FOM treatment. This work may provide a deeper understanding of the role of the host’s immune defences and antibiotic interactions in microbial infections. PMID:26778774
Treatment of Oral Multispecies Biofilms by an Anti-Biofilm Peptide.
Wang, Zhejun; de la Fuente-Núñez, Cesar; Shen, Ya; Haapasalo, Markus; Hancock, Robert E W
2015-01-01
Human oral biofilms are multispecies microbial communities that exhibit high resistance to antimicrobial agents. Dental plaque gives rise to highly prevalent and costly biofilm-related oral infections, which lead to caries or other types of oral infections. We investigated the ability of the recently identified anti-biofilm peptide 1018 to induce killing of bacterial cells present within oral multispecies biofilms. At 10 μg/ml (6.5 μM), peptide 1018 was able to significantly (p<0.05) prevent biofilm formation over 3 days. The activity of the peptide on preformed biofilms was found to be concentration-dependent since more than 60% of the total plaque biofilm cell population was killed by 10 μg/ml of peptide 1018 in 3 days, while at 5 μg/ml 50% of cells were dead and at 1 μg/ml the peptide triggered cell death in around 30% of the total bacterial population, as revealed by confocal microscopy. The presence of saliva did not affect peptide activity, since no statistically significant difference was found in the ability of peptide 1018 to kill oral biofilms using either saliva coated and non-saliva coated hydroxyapatite surfaces. Scanning electron microscopy experiments indicated that peptide 1018 induced cell lysis in plaque biofilms. Furthermore, combined treatment using peptide 1018 and chlorhexidine (CHX) increased the anti-biofilm activity of each compound compared to when these were used alone, resulting in >50% of the biofilm being killed and >35% being dispersed in only 3 minutes. Peptide 1018 may potentially be used by itself or in combination with CHX as a non-toxic and effective anti-biofilm agent for plaque disinfection in clinical dentistry.
Kim, Wooseong; Conery, Annie L.; Rajamuthiah, Rajmohan; Fuchs, Beth Burgwyn; Ausubel, Frederick M.; Mylonakis, Eleftherios
2015-01-01
Persisters are a subpopulation of normal bacterial cells that show tolerance to conventional antibiotics. Persister cells are responsible for recalcitrant chronic infections and new antibiotics effective against persisters would be a major development in the treatment of these infections. Using the reporter dye SYTOX Green that only stains cells with permeabilized membranes, we developed a fluorescence-based screening assay in a 384-well format for identifying compounds that can kill methicillin-resistant Staphylococcus aureus (MRSA) persisters. The assay proved robust and suitable for high throughput screening (Z`-factor: >0.7). In screening a library of hits from a previous screen, which identified compounds that had the ability to block killing of the nematode Caenorhabditis by MRSA, we discovered that the low molecular weight compound NH125, a bacterial histidine kinase inhibitor, kills MRSA persisters by causing cell membrane permeabilization, and that 5 μg/mL of the compound can kill all cells to the limit of detection in a 108 CFU/mL culture of MRSA persisters within 3h. Furthermore, NH125 disrupts 50% of established MRSA biofilms at 20 μg/mL and completely eradicates biofilms at 160 μg/mL. Our results suggest that the SYTOX Green screening assay is suitable for large-scale projects to identify small molecules effective against MRSA persisters and should be easily adaptable to a broad range of pathogens that form persisters. Since NH125 has strong bactericidal properties against MRSA persisters and high selectivity to bacteria, we believe NH125 is a good anti-MRSA candidate drug that should be further evaluated. PMID:26039584
Biophysical model of bacterial cell interactions with nanopatterned cicada wing surfaces.
Pogodin, Sergey; Hasan, Jafar; Baulin, Vladimir A; Webb, Hayden K; Truong, Vi Khanh; Phong Nguyen, The Hong; Boshkovikj, Veselin; Fluke, Christopher J; Watson, Gregory S; Watson, Jolanta A; Crawford, Russell J; Ivanova, Elena P
2013-02-19
The nanopattern on the surface of Clanger cicada (Psaltoda claripennis) wings represents the first example of a new class of biomaterials that can kill bacteria on contact based solely on their physical surface structure. The wings provide a model for the development of novel functional surfaces that possess an increased resistance to bacterial contamination and infection. We propose a biophysical model of the interactions between bacterial cells and cicada wing surface structures, and show that mechanical properties, in particular cell rigidity, are key factors in determining bacterial resistance/sensitivity to the bactericidal nature of the wing surface. We confirmed this experimentally by decreasing the rigidity of surface-resistant strains through microwave irradiation of the cells, which renders them susceptible to the wing effects. Our findings demonstrate the potential benefits of incorporating cicada wing nanopatterns into the design of antibacterial nanomaterials. Copyright © 2013 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Jurickova, I; Collins, M H; Chalk, C; Seese, A; Bezold, R; Lake, K; Allmen, D; Frischer, J S; Falcone, R A; Trapnell, B C; Denson, L A
2013-01-01
Granulocyte–macrophage colony-stimulating factor (GM-CSF) autoantibodies are associated with stricturing behaviour in Crohn disease (CD). We hypothesized that CD ileal lamina propria mononuclear cells (LPMC) would produce GM-CSF autoantibodies and peripheral blood (PB) samples would contain GM-CSF neutralizing capacity (NC). Paediatric CD and control PBMC and ileal biopsies or LPMC were isolated and cultured and GM-CSF, immunoglobulin (Ig)G and GM-CSF autoantibodies production were measured by enzyme-linked immunosorbent assay (ELISA). Basal and GM-CSF-primed neutrophil bacterial killing and signal transducer and activator of transcription 5 (STAT5) tyrosine phosphorylation (pSTAT5) were measured by flow cytometry. GM-CSF autoantibodies were enriched within total IgG for LPMC isolated from CD ileal strictures and proximal margins compared to control ileum. Neutrophil bacterial killing was reduced in CD patients compared to controls. Within CD, neutrophil GM-CSF-dependent STAT5 activation and bacterial killing were reduced as GM-CSF autoantibodies increased. GM-CSF stimulation of pSTAT5 did not vary between controls and CD patients in washed PB granulocytes in which serum was removed. However, GM-CSF stimulation of pSTAT5 was reduced in whole PB samples from CD patients. These data were used to calculate the GM-CSF NC. CD patients with GM-CSF NC greater than 25% exhibited a fourfold higher rate of stricturing behaviour and surgery. The likelihood ratio (95% confidence interval) for stricturing behaviour for patients with elevation in both GM-CSF autoantibodies and GM-CSF NC was equal to 5 (2, 11). GM-CSF autoantibodies are produced by LPMC isolated from CD ileal resection specimens and are associated with reduced neutrophil bacterial killing. CD peripheral blood contains GM-CSF NC, which is associated with increased rates of stricturing behaviour. PMID:23600834
Susceptibility of Staphylococcus aureus biofilms to reactive discharge gases.
Traba, Christian; Liang, Jun F
2011-08-01
Formation of bacterial biofilms at solid-liquid interfaces creates numerous problems in both industrial and biomedical sciences. In this study, the susceptibility of Staphylococcus aureus biofilms to discharge gas generated from plasma was tested. It was found that despite distinct chemical/physical properties, discharge gases from oxygen, nitrogen, and argon demonstrated very potent and almost the same anti-biofilm activity. The bacterial cells in S. aureus biofilms were killed (>99.9%) by discharge gas within minutes of exposure. Under optimal experimental conditions, no bacteria and biofilm re-growth from discharge gas treated biofilms was found. Further studies revealed that the anti-biofilm activity of the discharge gas occurred by two distinct mechanisms: (1) killing bacteria in biofilms by causing severe cell membrane damage, and (2) damaging the extracellular polymeric matrix in the architecture of the biofilm to release biofilm from the surface of the solid substratum. Information gathered from this study provides an insight into the anti-biofilm mechanisms of plasma and confirms the applications of discharge gas in the treatment of biofilms and biofilm related bacterial infections.
Cuzzi, Bruno; Cescutti, Paola; Furlanis, Linda; Lagatolla, Cristina; Sturiale, Luisa; Garozzo, Domenico; Rizzo, Roberto
2012-08-01
Reactive oxygen species (ROS) are part of the weapons used by the immune system to kill and degrade infecting microorganisms. Bacteria can produce macromolecules, such as polysaccharides, that are able to scavenge ROS. Species belonging to the Burkholderia cepacia complex are involved in serious lung infection in cystic fibrosis patients and produce a characteristic polysaccharide, cepacian. The interaction between ROS and bacterial polysaccharides was first investigated by killing experiments, where bacteria cells were incubated with sodium hypochlorite (NaClO) with and without prior incubation with cepacian. The results showed that the polysaccharide had a protective effect towards bacterial cells. Cepacian was then treated with different concentrations of NaClO and the course of reactions was followed by means of capillary viscometry. The degradation products were characterised by size-exclusion chromatography, NMR and mass spectrometry. The results showed that hypochlorite depolymerised cepacian, removed side chains and O-acetyl groups, but did not cleave the glycosidic bond between glucuronic acid and rhamnose. The structure of some oligomers produced by NaClO oxidation is reported.
The role of antimicrobial peptides in animal defenses
NASA Astrophysics Data System (ADS)
Hancock, Robert E. W.; Scott, Monisha G.
2000-08-01
It is becoming clear that the cationic antimicrobial peptides are an important component of the innate defenses of all species of life. Such peptides can be constitutively expressed or induced by bacteria or their products. The best peptides have good activities vs. a broad range of bacterial strains, including antibiotic-resistant isolates. They kill very rapidly, do not easily select resistant mutants, are synergistic with conventional antibiotics, other peptides, and lysozyme, and are able to kill bacteria in animal models. It is known that bacterial infections, especially when treated with antibiotics, can lead to the release of bacterial products such as lipopolysaccharide (LPS) and lipoteichoic acid, resulting in potentially lethal sepsis. In contrast to antibiotics, the peptides actually prevent cytokine induction by bacterial products in tissue culture and human blood, and they block the onset of sepsis in mouse models of endotoxemia. Consistent with this, transcriptional gene array experiments using a macrophage cell line demonstrated that a model peptide, CEMA, blocks the expression of many genes whose transcription was induced by LPS. The peptides do this in part by blocking LPS interaction with the serum protein LBP. In addition, CEMA itself has a direct effect on macrophage gene expression. Because cationic antimicrobial peptides are induced by LPS and are able to dampen the septic response of animal cells to LPS, we propose that, in addition to their role in direct and lysozyme-assisted killing of microbes, they have a role in feedback regulation of cytokine responses. We are currently developing variant peptides as therapeutics against antibiotic-resistant infections.
Pati, Rashmirekha; Mehta, Ranjit Kumar; Mohanty, Soumitra; Padhi, Avinash; Sengupta, Mitali; Vaseeharan, Baskarlingam; Goswami, Chandan; Sonawane, Avinash
2014-08-01
Here we studied immunological and antibacterial mechanisms of zinc oxide nanoparticles (ZnO-NPs) against human pathogens. ZnO-NPs showed more activity against Staphylococcus aureus and least against Mycobacterium bovis-BCG. However, BCG killing was significantly increased in synergy with antituberculous-drug rifampicin. Antibacterial mechanistic studies showed that ZnO-NPs disrupt bacterial cell membrane integrity, reduce cell surface hydrophobicity and down-regulate the transcription of oxidative stress-resistance genes in bacteria. ZnO-NP treatment also augmented the intracellular bacterial killing by inducing reactive oxygen species production and co-localization with Mycobacterium smegmatis-GFP in macrophages. Moreover, ZnO-NPs disrupted biofilm formation and inhibited hemolysis by hemolysin toxin producing S. aureus. Intradermal administration of ZnO-NPs significantly reduced the skin infection, bacterial load and inflammation in mice, and also improved infected skin architecture. We envision that this study offers novel insights into antimicrobial actions of ZnO-NPs and also demonstrates ZnO-NPs as a novel class of topical anti-infective agent for the treatment of skin infections. This in-depth study demonstrates properties of ZnO nanoparticles in infection prevention and treatment in several skin infection models, dissecting the potential mechanisms of action of these nanoparticles and paving the way to human applications. Copyright © 2014 Elsevier Inc. All rights reserved.
Niepa, Tagbo H R; Wang, Hao; Dabrowiak, James C; Gilbert, Jeremy L; Ren, Dacheng
2016-05-01
We recently demonstrated that the effectiveness of tobramycin (Tob), an aminoglycoside, against antibiotic-tolerant persister cells of Pseudomonas aeruginosa can be enhanced by electrochemical factors generated from direct currents (DC). Supplementation of Ni(II), Cr(III) and Fe(II) during carbon-mediated DC treatment revealed that these metal cations promote killing of persister cells in the presence of tobramycin, which led to our hypothesis that specific interactions between Tob and some metal ions contribute to the synergistic killing of persister cells. In this study, the interactions between selected metal cations and Tob were investigated using (1)H-(13)C HSQC NMR. Increase in the concentration of Cr(III) (in the form of [CrCl2(H2O)4](+)) in solutions containing Tob was found to shift the HSQC NMR peaks of Tob to new positions, suggesting the formation of a Cr(III)-Tob complex. Crystal field effects and electrochemical properties of the complex were further studied using UV-visible spectroscopy and cyclic voltammetry, which led to the finding that the Cr(III)-Tob complex has increased affinity with negatively charged nucleic acids. These findings are helpful for understanding the mechanism of electrochemical control of bacterial cells and for developing more effective antimicrobial therapies based on aminoglycosides and electrochemical species released from various metallic biomaterials. Medical device associated infections present a major challenge to healthcare and the quality of life of affected individuals. This problem is further exacerbated by the emergence of multidrug resistant pathogens. Thus, alternative methods for microbial control are urgently needed. Recently, we reported synergy between tobramycin and low-level electrochemical currents generated using stainless steel electrodes in killing bacterial persister cells, a dormant population with high-level intrinsic tolerance to antibiotics. In this article, we describe how electrically-induced interaction between aminoglycosides and certain metal cations enhance the potency of tobramycin in bacterial killing. The findings will help design new methods for controlling infections through electrochemical disruption of cellular function and associated drug resistance. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Silva-Sánchez, Aarón; Meza-Pérez, Selene; Flores-Langarica, Adriana; Donis-Maturano, Luis; Estrada-García, Iris; Calderón-Amador, Juana; Hernández-Pando, Rogelio; Idoyaga, Juliana; Steinman, Ralph M; Flores-Romo, Leopoldo
2015-01-01
Airways infection with Mycobacterium tuberculosis (Mtb) is contained mostly by T cell responses, however, Mtb has developed evasion mechanisms which affect antigen presenting cell (APC) maturation/recruitment delaying the onset of Ag-specific T cell responses. Hypothetically, bypassing the natural infection routes by delivering antigens directly to APCs may overcome the pathogen's naturally evolved evasion mechanisms, thus facilitating the induction of protective immune responses. We generated a murine monoclonal fusion antibody (α-DEC-ESAT) to deliver Early Secretory Antigen Target (ESAT)-6 directly to DEC205+ APCs and to assess its in vivo effects on protection associated responses (IFN-γ production, in vivo CTL killing, and pulmonary mycobacterial load). Treatment with α-DEC-ESAT alone induced ESAT-6-specific IFN-γ producing CD4+ T cells and prime-boost immunization prior to Mtb infection resulted in early influx (d14 post-infection) and increased IFN-γ+ production by specific T cells in the lungs, compared to scarce IFN-γ production in control mice. In vivo CTL killing was quantified in relevant tissues upon transferring target cells loaded with mycobacterial antigens. During infection, α-DEC-ESAT-treated mice showed increased target cell killing in the lungs, where histology revealed cellular infiltrate and considerably reduced bacterial burden. Targeting the mycobacterial antigen ESAT-6 to DEC205+ APCs before infection expands specific T cell clones responsible for early T cell responses (IFN-γ production and CTL activity) and substantially reduces lung bacterial burden. Delivering mycobacterial antigens directly to APCs provides a unique approach to study in vivo the role of APCs and specific T cell responses to assess their potential anti-mycobacterial functions.
Silva-Sánchez, Aarón; Meza-Pérez, Selene; Flores-Langarica, Adriana; Donis-Maturano, Luis; Estrada-García, Iris; Calderón-Amador, Juana; Hernández-Pando, Rogelio; Idoyaga, Juliana; Flores-Romo, Leopoldo
2015-01-01
Airways infection with Mycobacterium tuberculosis (Mtb) is contained mostly by T cell responses, however, Mtb has developed evasion mechanisms which affect antigen presenting cell (APC) maturation/recruitment delaying the onset of Ag-specific T cell responses. Hypothetically, bypassing the natural infection routes by delivering antigens directly to APCs may overcome the pathogen’s naturally evolved evasion mechanisms, thus facilitating the induction of protective immune responses. We generated a murine monoclonal fusion antibody (α-DEC-ESAT) to deliver Early Secretory Antigen Target (ESAT)-6 directly to DEC205+ APCs and to assess its in vivo effects on protection associated responses (IFN-γ production, in vivo CTL killing, and pulmonary mycobacterial load). Treatment with α-DEC-ESAT alone induced ESAT-6-specific IFN-γ producing CD4+ T cells and prime-boost immunization prior to Mtb infection resulted in early influx (d14 post-infection) and increased IFN-γ+ production by specific T cells in the lungs, compared to scarce IFN-γ production in control mice. In vivo CTL killing was quantified in relevant tissues upon transferring target cells loaded with mycobacterial antigens. During infection, α-DEC-ESAT-treated mice showed increased target cell killing in the lungs, where histology revealed cellular infiltrate and considerably reduced bacterial burden. Targeting the mycobacterial antigen ESAT-6 to DEC205+ APCs before infection expands specific T cell clones responsible for early T cell responses (IFN-γ production and CTL activity) and substantially reduces lung bacterial burden. Delivering mycobacterial antigens directly to APCs provides a unique approach to study in vivo the role of APCs and specific T cell responses to assess their potential anti-mycobacterial functions. PMID:25915045
Emerging interactions between matrix components during biofilm development.
Payne, David E; Boles, Blaise R
2016-02-01
Bacterial cells are most often found in the form of multicellular aggregates commonly referred to as biofilms. Biofilms offer their member cells several benefits, such as resistance to killing by antimicrobials and predation. During biofilm formation there is a production of extracellular substances that, upon assembly, constitute an extracellular matrix. The ability to generate a matrix encasing the microbial cells is a common feature of biofilms, but there is diversity in matrix composition and in interaction between matrix components. The different components of bacterial biofilm extracellular matrixes, known as matrix interactions, and resulting implications are discussed in this review.
Plasma Assisted Decontamination of Bacterial Spores
Kuo, Spencer P
2008-01-01
The efficacy and mechanism of killing bacterial spores by a plasma torch is studied. Bacterial-spore (Bacillus cereus) suspension is inoculated onto glass/paper slide-coupons and desiccated into dry samples, and inoculated into well-microplate as wet sample. The exposure distance of all samples is 4 cm from the nozzle of the torch. In the experiment, paper slide-coupon is inserted inside an envelope. The kill times on spores in three types of samples are measured to be about 3, 9, and 24 seconds. The changes in the morphology and shape of still viable spores in treated wet samples are recorded by scanning electron and atomic force microscopes. The loss of appendages and exosporium in the structure and squashed/flattened cell shape are observed. The emission spectroscopy of the torch indicates that the plasma effluent carries abundant reactive atomic oxygen, which is responsible for the destruction of spores. PMID:19662115
Modic, Martina; McLeod, Neil P; Sutton, J Mark; Walsh, James L
2017-03-01
Mixed-species biofilms reflect the natural environment of many pathogens in clinical settings and are highly resistant to disinfection methods. An indirect cold atmospheric-pressure air-plasma system was evaluated under two different discharge conditions for its ability to kill representative Gram-positive (Staphylococcus aureus) and Gram-negative (Pseudomonas aeruginosa) pathogens. Plasma treatment of individual 24-h-old biofilms and mixed-species biofilms that contained additional species (Enterococcus faecalis and Klebsiella pneumoniae) was considered. Under plasma conditions that favoured the production of reactive nitrogen species (RNS), individual P. aeruginosa biofilms containing ca. 5.0 × 10 6 CFU were killed extremely rapidly, with no bacterial survival detected at 15 s of exposure. Staphylococcus aureus survived longer under these conditions, with no detectable growth after 60 s of exposure. In mixed-species biofilms, P. aeruginosa survived longer but all species were killed with no detectable growth at 60 s. Under plasma conditions that favoured the production of reactive oxygen species (ROS), P. aeruginosa showed increased survival, with the lower limit of detection reached by 120 s, and S. aureus was killed in a similar time frame. In the mixed-species model, bacterial kill was biphasic but all pathogens showed viable cells after 240 s of exposure, with P. aeruginosa showing significant survival (ca. 3.6 ± 0.6 × 10 6 CFU). Overall, this study shows the potential of indirect air plasma treatment to achieve significant bacterial kill, but highlights aspects that might affect performance against key pathogens, especially in real-life settings within mixed populations. Copyright © 2017 Elsevier B.V. and International Society of Chemotherapy. All rights reserved.
Lee, J; Choe, J; Kim, J; Oh, S; Park, S; Kim, S; Kim, Y
2015-12-01
This study examined the effect of feeding heat-killed Lactobacillus cells on the survival of Caenorhabditis elegans nematodes after Salmonella Typhimurium and Yersinia enterocolitica infection. The feeding of heat-killed Lactobacillus plantarum 133 (LP133) and Lactobacillus fermentum 21 (LP21) cells to nematodes was shown to significantly increase the survival rate as well as stimulate the expression of pmk-1 gene that key factor for C. elegans immunity upon infection compared with control nematodes that were only fed Escherichia coli OP50 (OP50) cells. These results suggest that heat-killed LP133 and LF21 cells exert preventive or protective effects against the Gram-negative bacteria Salm. Typhimurium and Y. enterocolitica. To better understand the mechanisms underlying the LF21-mediated and LP133-mediated protection against bacterial infection in nematodes, transcriptional profiling was performed for each experimental group. These experiments showed that genes related to energy generation and ageing, regulators of insulin/IGF-1-like signalling, DAF genes, oxidation and reduction processes, the defence response and/or the innate immune response, and neurological processes were upregulated in nematodes that had been fed heat-killed Lactobacillus cells compared with nematodes that had been fed E. coli cells. In this study, the feeding of heat-killed Lactobacillus bacteria to Caenorhabditis elegans nematodes was shown to decrease infection by Gram-negative bacteria and increase the host lifespan. C. elegans has a small, well-organized genome and is an excellent in vivo model organism; thus, these results will potentially shed light on important Lactobacillus-host interactions. © 2015 The Society for Applied Microbiology.
Kinetics of killing Listeria monocytogenes by macrophages: rapid killing accompanying phagocytosis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davies, W.A.
1983-08-01
The kinetics of bactericidal activity of activated macrophages can be precisely described by a mathematical model in which phagocytosis, killing, digestion, and release of degraded bacterial material are considered to occur continuously. To gain a better understanding of these events, I have determined the period of time between first contact of bacteria with macrophages and the onset of killing. Activated rat peritoneal macrophages were incubated for various times up to 15 min with Listeria monocytogenes previously labeled with /sup 3/H-thymidine and the unassociated bacteria removed by two centrifugations through a density interface. Both cell-associated radioactivity and cell-associated viable bacteria, determinedmore » as colony forming units after sonication of the cell pellet, increased with time of incubation. However, the specific viability of these bacteria, expressed as the ratio of number of viable bacteria per unit radioactivity declined with time, as an approximate inverse exponential, after a lag period of 2.9 +/- 0.8 min. Evidence is given that other possible causes for this decline in specific viability, other than death of the bacteria, such as preferential ingestion of dead Listeria, clumping of bacteria, variations in autolytic activity, or release of Listericidins are unlikely. I conclude therefore that activated macrophages kill Listeria approximately 3 min after the cell and the bacterium first make contact.« less
Cui, Peng; Niu, Hongxia; Shi, Wanliang; Zhang, Shuo; Zhang, Hao; Margolick, Joseph; Zhang, Wenhong; Zhang, Ying
2016-11-01
Persisters are small populations of quiescent bacterial cells that survive exposure to bactericidal antibiotics and are responsible for many persistent infections and posttreatment relapses. However, little is known about how to effectively kill persister bacteria. In the work presented here, we found that colistin, a membrane-active antibiotic, was highly active against Escherichia coli persisters at high concentrations (25 or 50 μg/ml). At a clinically relevant lower concentration (10 μg/ml), colistin alone had no apparent effect on E. coli persisters. In combination with other drugs, this concentration of colistin enhanced the antipersister activity of gentamicin and ofloxacin but not that of ampicillin, nitrofurans, and sulfa drugs in vitro The colistin enhancement effect was most likely due to increased uptake of the other antibiotics, as demonstrated by increased accumulation of fluorescence-labeled gentamicin. Interestingly, colistin significantly enhanced the activity of ofloxacin and nitrofurantoin but not that of gentamicin or sulfa drugs in the murine model of urinary tract infection. Our findings suggest that targeting bacterial membranes is a valuable approach to eradicating persisters and should have implications for more effective treatment of persistent bacterial infections. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Wong, Jonathan P; DiTullio, Paul; Parkinson, Steve
2015-01-01
The global prevalence of antibiotic resistance and the threat posed by drug-resistant superbugs are a leading challenge confronting modern medicine in the 21st century. However, the progress on the development of novel antibiotics to combat this problem is severely lagging. A more concerted effort to develop novel therapeutic agents with robust activity and unique mechanisms of action will be needed to overcome the problem of drug resistance. Furthermore, biofilm forming bacteria are known to be increasingly resistant to the actions of antibiotics and are a leading cause of mortality or morbidity in nosocomial infections. Bisphosphocins (also scientifically known as nubiotics) are novel small protonated deoxynucleotide molecules, and exert their antibacterial activity by depolarization of the bacterial cell membrane, causing bacterial cell death. Bisphosphocins may represent an effective weapon against antibiotic-resistant and biofilm-forming pathogenic bacteria. Preclinical efficacy studies in animals have shown that the compounds are safe and, efficacious against various bacterial infections, including drug-resistant pathogens. In vitro biochemical analysis confirmed that the bactericidal activity of bisphosphocins is mediated by depolarization of the bacterial cell membrane, and these compounds are better able to penetrate through bacterial biofilm and kill the biofilm encased bacteria. This article will cover the structure, mode of action, safety, efficacy and the current state of development of bisphosphocins. Together, the information presented here will present a strong case for bisphosphocins to be considered for use as new weapons to complement the existing arsenal of antimicrobial drugs and as a first line defence against drug-resistant and biofilm-forming bacteria.
Wang, Xiuqing; Junior, José Carlos Bozelli; Mishra, Biswajit; Lushnikova, Tamara; Epand, Richard M; Wang, Guangshun
2017-08-01
Antimicrobial peptides are essential components of the innate immune system of multicellular organisms. Although cationic and hydrophobic amino acids are known determinants of these amphipathic molecules for bacterial killing, it is not clear how lysine-arginine (K-R) positional swaps influence peptide structure and activity. This study addresses this question by investigating two groups of peptides (GF-17 and 17BIPHE2) derived from human cathelicidin LL-37. K-R positional swap showed little effect on minimal inhibitory concentrations of the peptides. However, there are clear differences in bacterial killing kinetics. The membrane permeation patterns vary with peptide and bacterial types, but not changes in fluorescent dyes, salts or pH. In general, the original peptide is more efficient in bacterial killing, but less toxic to human cells, than the K-R swapped peptides, revealing the evolutionary significance of the native sequence for host defense. The characteristic membrane permeation patterns for different bacteria suggest a possible application of these K-R positional-swapped peptides as molecular probes for the type of bacteria. Such differences are related to bacterial membrane compositions: minimal for Gram-positive Staphylococcus aureus with essentially all anionic lipids (cardiolipin and phosphatidylglycerol), but evident for Gram-negative Klebsiella pneumoniae, Pseudomonas aeruginosa and Escherichia coli with a mixture of phosphatidylethanolamine and phosphatidylglycerol. Biophysical characterization found similar structures and binding affinities for these peptides in vesicle systems mimicking E. coli and S. aureus. It seems that interfacial arginines of GF-17 are preferred over lysines in bacterial membrane permeation. Our study sheds new light on the design of cationic amphipathic peptides. Copyright © 2017 Elsevier B.V. All rights reserved.
S1PR3 Signaling Drives Bacterial Killing and Is Required for Survival in Bacterial Sepsis.
Hou, JinChao; Chen, QiXing; Wu, XiaoLiang; Zhao, DongYan; Reuveni, Hadas; Licht, Tamar; Xu, MengLong; Hu, Hu; Hoeft, Andreas; Ben-Sasson, Shmuel A; Shu, Qiang; Fang, XiangMing
2017-12-15
Efficient elimination of pathogenic bacteria is a critical determinant in the outcome of sepsis. Sphingosine-1-phosphate receptor 3 (S1PR3) mediates multiple aspects of the inflammatory response during sepsis, but whether S1PR3 signaling is necessary for eliminating the invading pathogens remains unknown. To investigate the role of S1PR3 in antibacterial immunity during sepsis. Loss- and gain-of-function experiments were performed using cell and murine models. S1PR3 levels were determined in patients with sepsis and healthy volunteers. S1PR3 protein levels were up-regulated in macrophages upon bacterial stimulation. S1pr3 -/- mice showed increased mortality and increased bacterial burden in multiple models of sepsis. The transfer of wild-type bone marrow-derived macrophages rescued S1pr3 -/- mice from lethal sepsis. S1PR3-overexpressing macrophages further ameliorated the mortality rate of sepsis. Loss of S1PR3 led to markedly decreased bacterial killing in macrophages. Enhancing endogenous S1PR3 activity using a peptide agonist potentiated the macrophage bactericidal function and improved survival rates in multiple models of sepsis. Mechanically, the reactive oxygen species levels were decreased and phagosome maturation was delayed in S1pr3 -/- macrophages due to impaired recruitment of vacuolar protein-sorting 34 to the phagosomes. In addition, S1RP3 expression levels were elevated in monocytes from patients with sepsis. Higher levels of monocytic S1PR3 were associated with efficient intracellular bactericidal activity, better immune status, and preferable outcomes. S1PR3 signaling drives bacterial killing and is essential for survival in bacterial sepsis. Interventions targeting S1PR3 signaling could have translational implications for manipulating the innate immune response to combat pathogens.
Estimation of lactic acid bacterial cell number by DNA quantification.
Ishii, Masaki; Matsumoto, Yasuhiko; Sekimizu, Kazuhisa
2018-01-01
Lactic acid bacteria are provided by fermented foods, beverages, medicines, and supplements. Because the beneficial effects of medicines and supplements containing functional lactic acid bacteria are related to the bacterial cell number, it is important to establish a simple method for estimating the total number of lactic acid bacterial cells in the products for quality control. Almost all of the lactic acid bacteria in the products are dead, however, making it difficult to estimate the total number of lactic acid bacterial cells in the products using a standard colony-counting method. Here we estimated the total lactic acid bacterial cell number in samples containing dead bacteria by quantifying the DNA. The number of viable Enterococcus faecalis 0831-07 cells decreased to less than 1 × 10 -8 by 15 min of heat treatment at 80°C. The amount of extracted DNA from heat-treated cells was 78% that of non-heated cells. The number of viable Lactobacillus paraplantarum 11-1 cells decreased to 1 × 10 -4 after 4 days culture. The amount of extracted DNA of the long-cultured cells, however, was maintained at 97%. These results suggest that cell number of lactic acid bacteria killed by heat-treatment or long-term culture can be estimated by DNA quantification.
Influence of reactive oxygen species on the sterilization of microbes
USDA-ARS?s Scientific Manuscript database
The influence of reactive oxygen species on living cells, including various microbes, is discussed. A sterilization experiment with bacterial endospores reveals that an argoneoxygen plasma jet very effectively kills endospores of Bacillus atrophaeus (ATCC 9372), thereby indicating that oxygen radic...
Alcorn, S.; Murray, A.L.; Pascho, R.J.; Varney, J.
2005-01-01
The relative efficacies of 1 commercial and 5 experimental vaccines for bacterial kidney disease (BKD) were compared through a cohabitation waterborne challenge. Groups of juvenile chinook salmon Oncorhynchus tshawytscha were vaccinated with one of the following: (1) killed Renibacterium salmoninarum ATCC 33209 (Rs 33209) cells; (2) killed Rs 33209 cells which had been heated to 37??C for 48 h, a process that destroys the p57 protein; (3) killed R. salmoninarum MT239 (Rs MT239) cells; (4) heated Rs MT239 cells; (5) a recombinant version of the p57 protein (r-p57) emulsified in Freund's incomplete adjuvant (FIA); (6) the commercial BKD vaccine Renogen; (7) phosphate-buffered saline (PBS) emulsified with an equal volume of FIA; or (8) PBS alone. Following injection, each fish was marked with a subcutaneous fluorescent latex tag denoting its treatment group and the vaccinated fish were combined into sham and disease challenge tanks. Two weeks after these fish were vaccinated, separate groups of fish were injected with either PBS or live R. salmoninarum GL64 and were placed inside coated-wire mesh cylinders (liveboxes) in the sham and disease challenge tanks, respectively. Mortalities in both tanks were recorded for 285 d. Any mortalities among the livebox fish were replaced with an appropriate cohort (infected with R. salmoninarum or healthy) fish. None of the bacterins evaluated in this study induced protective immunity against the R. salmoninarum shed from the infected livebox fish. The percentage survival within the test groups in the R. salmoninarum challenge tank ranged from 59% (heated Rs MT239 bacterin) to 81 % (PBS emulsified with FIA). There were no differences in the percentage survival among the PBS-, PBS/FIA-, r-p57-and Renogen-injected groups. There also were no differences in survival among the bacterin groups, regardless of whether the bacterial cells had been heated or left untreated prior to injection. ?? Inter-Research 2005.
Cunningham-Oakes, Edward; Soren, Odel; Moussa, Caroline; Rathor, Getika; Liu, Yingjun; Coates, Anthony; Hu, Yanmin
2015-01-01
Infections caused by methicillin-sensitive Staphylococcus aureus (MSSA) and methicillin-resistant S. aureus (MRSA) are prevalent. MRSA infections are difficult to treat and there are no new classes of antibiotics produced to the market to treat infections caused by the resistant bacteria. Therefore, using antibiotic enhancers to rescue existing classes of antibiotics is an attractive strategy. Nordihydroguaiaretic acid (NDGA) is an antioxidant compound found in extracts from plant Larrea Tridentata. It exhibits antimicrobial activity and may target bacterial cell membrane. Combination efficacies of NDGA with many classes of antibiotics were examined by chequerboard method against 200 clinical isolates of MRSA and MSSA. NDGA in combination with gentamicin, neomycin, and tobramycin was examined by time-kill assays. The synergistic combinations of NDGA and aminoglycosides were tested in vivo using a murine skin infection model. Calculations of the fractional inhibitory concentration index (FICI) showed that NDGA when combined with gentamicin, neomycin, or tobramycin displayed synergistic activities in more than 97% of MSSA and MRSA, respectively. Time kill analysis demonstrated that NDGA significantly augmented the activities of these aminoglycosides against MRSA and MSSA in vitro and in murine skin infection model. The enhanced activity of NDGA resides on its ability to damage bacterial cell membrane leading to accumulation of the antibiotics inside bacterial cells. We demonstrated that NDGA strongly revived the therapeutic potencies of aminoglycosides in vitro and in vivo. This combinational strategy could contribute major clinical implications to treat antibiotic resistant bacterial infections.
Meeker, Daniel G; Jenkins, Samir V; Miller, Emily K; Beenken, Karen E; Loughran, Allister J; Powless, Amy; Muldoon, Timothy J; Galanzha, Ekaterina I; Zharov, Vladimir P; Smeltzer, Mark S; Chen, Jingyi
2016-04-08
Resistance to conventional antibiotics is a growing public health concern that is quickly outpacing the development of new antibiotics. This has led the Infectious Diseases Society of America (IDSA) to designate Enterococcus faecium , Staphylococcus aureus , Klebsiella pneumoniae , Acinetobacter baumannii , Pseudomonas aeruginosa , and Enterobacter species as "ESKAPE pathogens" on the basis of the rapidly decreasing availability of useful antibiotics. This emphasizes the urgent need for alternative therapeutic strategies to combat infections caused by these and other bacterial pathogens. In this study, we used Staphylococcus aureus ( S. aureus ) as a proof-of-principle ESKAPE pathogen to demonstrate that an appropriate antibiotic (daptomycin) can be incorporated into polydopamine-coated gold nanocages (AuNC@PDA) and that daptomycin-loaded AuNC@PDA can be conjugated to antibodies targeting a species-specific surface protein (staphylococcal protein A; Spa) as a means of achieving selective delivery of the nanoconstructs directly to the bacterial cell surface. Targeting specificity was confirmed by demonstrating a lack of binding to mammalian cells, reduced photothermal and antibiotic killing of the Spa-negative species Staphylococcus epidermidis , and reduced killing of S. aureus in the presence of unconjugated anti-Spa antibodies. We demonstrate that laser irradiation at levels within the current safety standard for use in humans can be used to achieve both a lethal photothermal effect and controlled release of the antibiotic, thus resulting in a degree of therapeutic synergy capable of eradicating viable S. aureus cells. The system was validated using planktonic bacterial cultures of both methicillin-sensitive and methicillin-resistant S. aureus strains and subsequently shown to be effective in the context of an established biofilm, thus indicating that this approach could be used to facilitate the effective treatment of intrinsically resistant biofilm infections.
Sivakumar, Balasubramanian; Aswathy, Ravindran Girija; Sreejith, Raveendran; Nagaoka, Yutaka; Iwai, Seiki; Suzuki, Masashi; Fukuda, Takahiro; Hasumura, Takashi; Yoshida, Yasuhiko; Maekawa, Toru; Sakthikumar, Dasappan Nair
2014-06-01
Microbial exopolysaccharides (EPSs) are highly heterogeneous polymers produced by fungi and bacteria that have garnered considerable attention and have remarkable potential in various fields, including biomedical research. The necessity of biocompatible materials to coat and stabilize nanoparticles is highly recommended for successful application of the same in biomedical regime. In our study we have coated magnetic nanoparticles (MNPs) with two bacterial EPS-mauran (MR) and gellan gum (GG). The biocompatibility of EPS coated MNPs was enhanced and we have made it multifunctional by attaching targeting moiety, folate and with encapsulation of a potent anticancerous drug, 5FU. We have conjugated an imaging moiety along with nanocomposite to study the effective uptake of nanoparticles. It was also observed that the dye labeled folate targeted nanoparticles could effectively enter into cancer cells and the fate of nanoparticles was tracked with Lysotracker. The biocompatibility of EPS coated MNPs and synergistic effect of magnetic hyperthermia and drug for enhanced antiproliferation of cancer cells was also evaluated. More than 80% of cancer cells was killed within a period of 60 min when magnetic hyperthermia (MHT) was applied along with drug loaded EPS coated MNPs, thus signifying the combined effect of drug loaded MNPs and MHT. Our results suggests that MR and GG coated MNPs exhibited excellent biocompatibility with low cell cytotoxicity, high therapeutic potential, and superparamagnetic behavior that can be employed as prospective candidates for bacterial EPS based targeted drug delivery, cancer cell imaging and for MHT for killing cancer cells within short period of time.
Gentamicin: effect on E. coli in space
NASA Technical Reports Server (NTRS)
Kacena, M. A.; Todd, P.
1999-01-01
Previous investigations have shown that liquid bacterial cultures grown in space flight were not killed as effectively by antibiotic treatments as were cultures grown on Earth. However, the cause for the decreased antibiotic effectiveness remains unknown. Possible explanations include modified cell proliferation and modified antibiotic transport in the culture medium. Escherichia coli cultures were grown in space flight (STS-69 and STS-73), with and without gentamicin, on a solid agar substrate thus eliminating fluid effects and reducing the unknowns associated with space-flight bacterial cultures in suspension. This research showed that E. coli cultures grown in flight on agar for 24 to 27 hours experienced a heightened growth compared to simultaneous controls. However, addition of gentamicin to the agar killed the bacteria such that both flight and ground control E. coli samples had similar final cell concentrations. Therefore, while the reported existence of a decrease in antibiotic effectiveness in liquid cultures remains unexplained, these data suggest that gentamicin in space flight was at least as effective as, if not more effective than, on Earth, when E. coli cells were grown on agar.
Serine-Aspartate Repeat Protein D Increases Staphylococcus aureus Virulence and Survival in Blood
Uchiyama, Satoshi; Valderrama, J. Andrés; Ajayi, Clement; Sollid, Johanna U. E.; van Sorge, Nina M.; Nizet, Victor; van Strijp, Jos A. G.
2016-01-01
ABSTRACT Staphylococcus aureus expresses a panel of cell wall-anchored adhesins, including proteins belonging to the microbial surface components recognizing adhesive matrix molecule (MSCRAMM) family, exemplified by the serine-aspartate repeat protein D (SdrD), which serve key roles in colonization and infection. Deletion of sdrD from S. aureus subsp. aureus strain NCTC8325-4 attenuated bacterial survival in human whole blood ex vivo, which was associated with increased killing by human neutrophils. Remarkably, SdrD was able to inhibit innate immune-mediated bacterial killing independently of other S. aureus proteins, since addition of recombinant SdrD protein and heterologous expression of SdrD in Lactococcus lactis promoted bacterial survival in human blood. SdrD contributes to bacterial virulence in vivo, since fewer S. aureus subsp. aureus NCTC8325-4 ΔsdrD bacteria than bacteria of the parent strain were recovered from blood and several organs using a murine intravenous infection model. Collectively, our findings reveal a new property of SdrD as an important key contributor to S. aureus survival and the ability to escape the innate immune system in blood. PMID:27795358
Antibacterial Au nanostructured surfaces
NASA Astrophysics Data System (ADS)
Wu, Songmei; Zuber, Flavia; Brugger, Juergen; Maniura-Weber, Katharina; Ren, Qun
2016-01-01
We present here a technological platform for engineering Au nanotopographies by templated electrodeposition on antibacterial surfaces. Three different types of nanostructures were fabricated: nanopillars, nanorings and nanonuggets. The nanopillars are the basic structures and are 50 nm in diameter and 100 nm in height. Particular arrangement of the nanopillars in various geometries formed nanorings and nanonuggets. Flat surfaces, rough substrate surfaces, and various nanostructured surfaces were compared for their abilities to attach and kill bacterial cells. Methicillin-resistant Staphylococcus aureus, a Gram-positive bacterial strain responsible for many infections in health care system, was used as the model bacterial strain. It was found that all the Au nanostructures, regardless their shapes, exhibited similar excellent antibacterial properties. A comparison of live cells attached to nanotopographic surfaces showed that the number of live S. aureus cells was <1% of that from flat and rough reference surfaces. Our micro/nanofabrication process is a scalable approach based on cost-efficient self-organization and provides potential for further developing functional surfaces to study the behavior of microbes on nanoscale topographies.We present here a technological platform for engineering Au nanotopographies by templated electrodeposition on antibacterial surfaces. Three different types of nanostructures were fabricated: nanopillars, nanorings and nanonuggets. The nanopillars are the basic structures and are 50 nm in diameter and 100 nm in height. Particular arrangement of the nanopillars in various geometries formed nanorings and nanonuggets. Flat surfaces, rough substrate surfaces, and various nanostructured surfaces were compared for their abilities to attach and kill bacterial cells. Methicillin-resistant Staphylococcus aureus, a Gram-positive bacterial strain responsible for many infections in health care system, was used as the model bacterial strain. It was found that all the Au nanostructures, regardless their shapes, exhibited similar excellent antibacterial properties. A comparison of live cells attached to nanotopographic surfaces showed that the number of live S. aureus cells was <1% of that from flat and rough reference surfaces. Our micro/nanofabrication process is a scalable approach based on cost-efficient self-organization and provides potential for further developing functional surfaces to study the behavior of microbes on nanoscale topographies. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr06157a
When No Response Is a Good Thing | Center for Cancer Research
Custom-designed therapies that target cell-surface antigens or receptors represent a promising immunological approach in cancer therapy. Antibodies that bind these targets are the starting point. Potent toxins can then be added to them by fusing antibody fragments to powerful bacterial toxins such as Pseudomonas exotoxin (PE). This recombinant immunotoxin combines antibody selectivity with toxin cell-killing potency.
Gautam, Uma S.; Foreman, Taylor W.; Bucsan, Allison N.; Veatch, Ashley V.; Alvarez, Xavier; Adekambi, Toidi; Golden, Nadia A.; Gentry, Kaylee M.; Doyle-Meyers, Lara A.; Didier, Peter J.; Blanchard, James L.; Kousoulas, K. Gus; Lackner, Andrew A.; Kalman, Daniel; Rengarajan, Jyothi; Khader, Shabaana A.; Kaushal, Deepak
2018-01-01
Mycobacterium tuberculosis continues to cause devastating levels of mortality due to tuberculosis (TB). The failure to control TB stems from an incomplete understanding of the highly specialized strategies that M. tuberculosis utilizes to modulate host immunity and thereby persist in host lungs. Here, we show that M. tuberculosis induced the expression of indoleamine 2,3-dioxygenase (IDO), an enzyme involved in tryptophan catabolism, in macrophages and in the lungs of animals (mice and macaque) with active disease. In a macaque model of inhalation TB, suppression of IDO activity reduced bacterial burden, pathology, and clinical signs of TB disease, leading to increased host survival. This increased protection was accompanied by increased lung T cell proliferation, induction of inducible bronchus-associated lymphoid tissue and correlates of bacterial killing, reduced checkpoint signaling, and the relocation of effector T cells to the center of the granulomata. The enhanced killing of M. tuberculosis in macrophages in vivo by CD4+ T cells was also replicated in vitro, in cocultures of macaque macrophages and CD4+ T cells. Collectively, these results suggest that there exists a potential for using IDO inhibition as an effective and clinically relevant host-directed therapy for TB. PMID:29255022
Ronchel, M C; Ramos, J L
2001-06-01
Active biological containment (ABC) systems have been designed to control at will the survival or death of a bacterial population. These systems are based on the use of a killing gene, e.g., a porin-inducing protein such as the one encoded by the Escherichia coli gef gene, and a regulatory circuit that controls expression of the killing gene in response to the presence or absence of environmental signals. An ABC system for recombinant microorganisms that degrade a model pollutant was designed on the basis of the Pseudomonas putida TOL plasmid meta-cleavage regulatory circuit. The system consists of a fusion of the Pm promoter to lacI, whose expression is controlled by XylS with 3-methylbenzoate, and a fusion of a synthetic P(lac) promoter to gef. In the presence of the model pollutant, bacterial cells survived and degraded the target compound, whereas in the absence of the aromatic carboxylic acid cell death was induced. The system had two main drawbacks: (i) the slow death of the bacterial cells in soil versus the fast killing rate in liquid cultures in laboratory assays, and (ii) the appearance of mutants, at a rate of about 10(-8) per cell and generation, that did not die after the pollutant had been exhausted. We reinforced the ABC system by including it in a Deltaasd P. putida background. A P. putida Deltaasd mutant is viable only in complex medium supplemented with diaminopimelic acid, methionine, lysine, and threonine. We constructed a P. putida Deltaasd strain, called MCR7, with a Pm::asd fusion in the host chromosome. This strain was viable in the presence of 3-methylbenzoate because synthesis of the essential metabolites was achieved through XylS-dependent induction. In the P. putida MCR7 strain, an ABC system (Pm::lacI, xylS, P(lac)::gef) was incorporated into the host chromosome to yield strain MCR8. The number of MCR8 mutants that escaped killing was below our detection limit (<10(-9) mutants per cell and generation). The MCR8 strain survived and colonized rhizosphere soil with 3-methylbenzoate at a level similar to that of the wild-type strain. However, it disappeared in less than 20 to 25 days in soils without the pollutant, whereas an asd(+), biologically contained counterpart such as P. putida CMC4 was still detectable in soils after 100 days.
Kill rate of mastitis pathogens by a combination of cefalexin and kanamycin.
Maneke, E; Pridmore, A; Goby, L; Lang, I
2011-01-01
To assess the bacterial killing rate produced by a combination of cefalexin and kanamycin at two different concentration ratios. Time-kill kinetics of cefalexin and kanamycin, individually and in combination, were determined against one strain each of Escherichia coli, Staphylococcus aureus, Streptococcus agalactiae, Streptococcus dysgalactiae and Streptococcus uberis. The combination was tested using two fixed ratios (cefalexin : kanamycin ratios of 1·25 : 1 and 1 : 2·3) and two concentrations of each ratio. Time-kill curves produced with either ratio were quite similar. Against most bacterial species, higher concentrations produced faster kill. In all cases, the combination of cefalexin and kanamycin showed faster and greater kill at lower antibiotic concentrations than those observed with either drug alone. The combination of cefalexin and kanamycin results in a fast initial killing of major mastitis pathogens at both concentration ratios. The combination of cefalexin and kanamycin achieved rapid bacterial kill at concentrations and ratios that can be achieved in vivo following intramammary infusion of a mastitis treatment. © 2010 Boehringer Ingelheim Vetmedica GmbH. Journal of Applied Microbiology © 2010 The Society for Applied Microbiology.
A Common Fold Mediates Vertebrate Defense and Bacterial Attack
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rosado, Carlos J.; Buckle, Ashley M.; Law, Ruby H.P.
2008-10-02
Proteins containing membrane attack complex/perforin (MACPF) domains play important roles in vertebrate immunity, embryonic development, and neural-cell migration. In vertebrates, the ninth component of complement and perforin form oligomeric pores that lyse bacteria and kill virus-infected cells, respectively. However, the mechanism of MACPF function is unknown. We determined the crystal structure of a bacterial MACPF protein, Plu-MACPF from Photorhabdus luminescens, to 2.0 angstrom resolution. The MACPF domain reveals structural similarity with poreforming cholesterol-dependent cytolysins (CDCs) from Gram-positive bacteria. This suggests that lytic MACPF proteins may use a CDC-like mechanism to form pores and disrupt cell membranes. Sequence similarity between bacterialmore » and vertebrate MACPF domains suggests that the fold of the CDCs, a family of proteins important for bacterial pathogenesis, is probably used by vertebrates for defense against infection.« less
Ma, Li; Gao, Yongjun
2015-01-01
ABSTRACT Bacterial resistance to antibiotics is precipitating a medical crisis, and new antibacterial strategies are being sought. Hypothesizing that a growth-restricting strategy could be used to enhance the efficacy of antibiotics, we determined the effect of FDA-approved iron chelators and various antibiotic combinations on invasive and multidrug-resistant extraintestinal pathogenic Escherichia coli (ExPEC), the Gram-negative bacterium most frequently isolated from the bloodstreams of hospitalized patients. We report that certain antibiotics used at sublethal concentrations display enhanced growth inhibition and/or killing when combined with the iron chelator deferiprone (DFP). Inductively coupled plasma optical emission spectrometry reveals abnormally high levels of cell-associated iron under these conditions, a response that correlates with an iron starvation response and supraphysiologic levels of reactive oxygen species (ROS). The high ROS level is reversed upon the addition of antioxidants, which restores bacterial growth, suggesting that the cells are inhibited or killed by excessive free radicals. A model is proposed in which peptidoglycan-targeting antibiotics facilitate the entry of lethal levels of iron-complexed DFP into the bacterial cytoplasm, a process that drives the generation of ROS. This new finding suggests that, in addition to restriction of access to iron as a general growth-restricting strategy, targeting of cellular pathways or networks that selectively disrupt normal iron homeostasis can have potent bactericidal outcomes. IMPORTANCE The prospect that common bacteria will become resistant to all antibiotics is challenging the medical community. In addition to the development of next-generation antibiotics, new bacterial targets that display cytotoxic properties when altered need to be identified. Data presented here demonstrate that combining subinhibitory levels of both iron chelators and certain antibiotics kills pathogenic Escherichia coli. The mechanism of this effect is the production of supraphysiologic levels of reactive oxygen species, likely powered by the excessive import of iron. These findings were consistent for both clinically relevant and no longer clinically used antibiotics and may extend to Staphylococcus aureus as well. PMID:26391205
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tumanian, M.A.; Duplishcheva, A.P.; Sedova, T.S.
1958-01-01
Bacteria of the intestinal group were found to be killed by radiation doses of 400,000 to 600,000 r. When spore forms of bacteria were contained in the material, sterilization was achieved by doses of 1.5 to 2 Mr. Applications of radiosterilization are discussed for the preparation of bacterial-cell vaccines, bacterial antigen complexes. chemical vaccines, and the preparation of vaccines made from bacteria killed by radiation. A study was made of the quality, antigenic and immunogenic properties, liability to retain Vi antigen, and toxicity of vaccines and antigenic complexes prepared from irradiated dysentery and typhoid bacteria. It was found that themore » radio-antigens were less toxic than antigens prepared from formalinized bacteria or from bacteria which had not been killed before the preparation of the antigen. When antigen previously prepared from formalinized bacteria was subjected to radiation, it either did not differ in toxic properties from the unirradiated antigen or was more toxic. Radiovaccines induced antibody formatdon in the same way as ordinary formalinized vaccines. Experimental data are tabulated. It was concluded that gamma irradiation can be used both for the production of intestinal group vaccines and antigens and for the sterilization of corresponding bacterial preparations already prepared. (C.H.)« less
Antibacterial activity and mechanism of berberine against Streptococcus agalactiae
Peng, Lianci; Kang, Shuai; Yin, Zhongqiong; Jia, Renyong; Song, Xu; Li, Li; Li, Zhengwen; Zou, Yuanfeng; Liang, Xiaoxia; Li, Lixia; He, Changliang; Ye, Gang; Yin, Lizi; Shi, Fei; Lv, Cheng; Jing, Bo
2015-01-01
The antibacterial activity and mechanism of berberine against Streptococcus agalactiae were investigated in this study by analyzing the growth, morphology and protein of the S. agalactiae cells treated with berberine. The antibacterial susceptibility test result indicated minimum inhibition concentration (MIC) of berberine against Streptococcus agalactiae was 78 μg/mL and the time-kill curves showed the correlation of concentration-time. After the bacteria was exposed to 78 μg/mL berberine, the fragmentary cell membrane and cells unequal division were observed by the transmission electron microscopy (TEM), indicating the bacterial cells were severely damaged. Sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) study demonstrated that berberine could damage bacterial cells through destroying cellular proteins. Meanwhile, Fluorescence microscope revealed that berberine could affect the synthesis of DNA. In conclusion, these results strongly suggested that berberine may damage the structure of bacterial cell membrane and inhibit synthesis of protein and DNA, which cause Streptococcus agalactiae bacteria to die eventually. PMID:26191220
Antibacterial activity and mechanism of berberine against Streptococcus agalactiae.
Peng, Lianci; Kang, Shuai; Yin, Zhongqiong; Jia, Renyong; Song, Xu; Li, Li; Li, Zhengwen; Zou, Yuanfeng; Liang, Xiaoxia; Li, Lixia; He, Changliang; Ye, Gang; Yin, Lizi; Shi, Fei; Lv, Cheng; Jing, Bo
2015-01-01
The antibacterial activity and mechanism of berberine against Streptococcus agalactiae were investigated in this study by analyzing the growth, morphology and protein of the S. agalactiae cells treated with berberine. The antibacterial susceptibility test result indicated minimum inhibition concentration (MIC) of berberine against Streptococcus agalactiae was 78 μg/mL and the time-kill curves showed the correlation of concentration-time. After the bacteria was exposed to 78 μg/mL berberine, the fragmentary cell membrane and cells unequal division were observed by the transmission electron microscopy (TEM), indicating the bacterial cells were severely damaged. Sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) study demonstrated that berberine could damage bacterial cells through destroying cellular proteins. Meanwhile, Fluorescence microscope revealed that berberine could affect the synthesis of DNA. In conclusion, these results strongly suggested that berberine may damage the structure of bacterial cell membrane and inhibit synthesis of protein and DNA, which cause Streptococcus agalactiae bacteria to die eventually.
Elkins, K; Metcalf, E S
1986-05-01
We are interested in developing in vitro culture systems that will permit immune responses to intact Salmonella typhimurium, since these systems would have certain advantages over in vivo infection models for the characterization of the host's responding cell types. In this report, the in vitro proliferative response of nonimmune murine spleen cells to four different killed preparations of S. typhimurium, strain TML (TML), are examined. These studies show that UV-killed TML, heat-killed TML, glutaraldehyde-killed TML, and acetone-killed and dried TML, all elicit a nonspecific mitogenic spleen cell response in vitro, as does a live, avirulent, temperature-sensitive mutant of TML, TS27. This response reaches a maximum on day 2 after initiation of culture, which is similar to the time course of a conventional lipopolysaccharide (LPS) response. Unlike the LPS response, little 3H-thymidine incorporation is observed in low-density cultures (2 X 10(5) cells/well), which suggests a critical role for accessory cells. The responding cell types include, but are not necessarily limited to, the B-cell population. The response cannot be readily inhibited by polymyxin B, which binds specifically to the lipid A portion of LPS. Thus, the bacterial components required for mitogenicity are not yet definitively identified. A survey of the mitogenic responses of lymphocytes from various inbred mouse strains, including the C3H/HeJ LPS hyporesponsive strain, indicates that all B cells tested are capable of proliferating vigorously in response to intact TML, regardless of the in vivo susceptibility to virulent infection. These results also emphasize the importance of assessing the nonspecific components of the immune response when studying the specific immune response to intact S. typhimurium.
A novel antimicrobial peptide against dental-caries-associated bacteria.
Chen, Long; Jia, Lili; Zhang, Qiang; Zhou, Xirui; Liu, Zhuqing; Li, Bingjie; Zhu, Zhentai; Wang, Fenwei; Yu, Changyuan; Zhang, Qian; Chen, Feng; Luo, Shi-Zhong
2017-10-01
Dental caries, a highly prevalent oral disease, is primarily caused by pathogenic bacteria infection, and most of them are anaerobic. Herein, we investigated the activity of a designed antimicrobial peptide ZXR-2, and found it showed broad-spectrum activity against a variety of Gram-positive and Gram-negative oral bacteria, particularly the caries-related taxa Streptococcus mutans. Time-course killing assays indicated that ZXR-2 killed most bacterial cells within 5 min at 4 × MIC. The mechanism of ZXR-2 involved disruption of cell membranes, as observed by scanning electron microscopy. Moreover, ZXR-2 inhibited the formation of S. mutans biofilm, but showed limited hemolytic effect. Based on its potent antimicrobial activity, rapid killing, and inhibition of S. mutans biofilm formation, ZXR-2 represents a potential therapeutic for the prevention and treatment of dental caries. Copyright © 2017 Elsevier Ltd. All rights reserved.
Chuang, Cheng-Hung; Tsai, Cheng-Chih; Lin, En-Shyh; Huang, Chin-Shiu; Lin, Yun-Yu; Lan, Chuan-Ching; Huang, Chun-Chih
2016-10-31
The aim of the present study was to determine whether Lactobacillus salivarius (LS) and Lactobacillus johnsonii (LJ) prevent alcoholic liver damage in HepG2 cells and rat models of acute alcohol exposure. In this study, heat-killed LS and LJ were screened from 50 Lactobacillus strains induced by 100 mM alcohol in HepG2 cells. The severity of alcoholic liver injury was determined by measuring the levels of aspartate transaminase (AST), alanine transaminase (ALT), gamma-glutamyl transferase (γ-GT), lipid peroxidation, triglyceride (TG) and total cholesterol. Our results indicated that heat-killed LS and LJ reduced AST, ALT, γ-GT and malondialdehyde (MDA) levels and outperformed other bacterial strains in cell line studies. We further evaluated these findings by administering these strains to rats. Only LS was able to reduce serum AST levels, which it did by 26.2%. In addition LS significantly inhibited serum TG levels by 39.2%. However, both strains were unable to inhibit ALT levels. In summary, we demonstrated that heat-killed LS and LJ possess hepatoprotective properties induced by alcohol both in vitro and in vivo.
Tängdén, Thomas; Karvanen, Matti; Friberg, Lena E; Odenholt, Inga; Cars, Otto
2017-07-01
In view of the paucity of clinical evidence, in vitro studies are needed to find antibiotic combinations effective against multidrug-resistant Gram-negative bacteria. Interpretation of in vitro effects is usually based on bacterial growth after 24 h in time-kill and checkerboard experiments. However, the clinical relevance of the effects observed in vitro is not established. In this study we explored alternative output parameters to assess the activities of colistin and meropenem against Pseudomonas aeruginosa and Acinetobacter baumannii. Four strains each of P. aeruginosa and A. baumannii were exposed to colistin and meropenem, alone and in combination, in 8 h dynamic time-kill experiments. Initial (1 h), maximum and 8 h bacterial reductions and the area under the bacterial time-kill curve were evaluated. Checkerboards, interpreted based on fractional inhibitory concentration indices after 24 h, were performed for comparison. In the time-kill experiments, the combination resulted in enhanced 1 h, maximum and 8 h bacterial reductions against 2, 3 and 5 of 8 strains, respectively, as compared to the single drugs. A statistically significant reduction in the area under the time-kill curve was observed for three strains. In contrast, the checkerboards did not identify synergy for any of the strains. Combination effects were frequently found with colistin and meropenem against P. aeruginosa and A. baumannii in time-kill experiments but were not detected with the checkerboard method. We propose that the early dynamics of bacterial killing and growth, which may be of great clinical importance, should be considered in future in vitro combination studies.
Bacterial Imaging and Photodynamic Inactivation Using Zinc(II)-Dipicolylamine BODIPY Conjugates†
Rice, Douglas R.; Gan, Haiying; Smith, Bradley D.
2015-01-01
Targeted imaging and antimicrobial photodynamic inactivation (PDI) are emerging methods for detecting and eradicating pathogenic microorganisms. This study describes two structurally related optical probes that are conjugates of a zinc(II)-dipicolylamine targeting unit and a BODIPY chromophore. One probe is a microbial targeted fluorescent imaging agent, mSeek, and the other is an oxygen photosensitizing analogue, mDestroy. The conjugates exhibited high fluorescence quantum yield and singlet oxygen production, respectively. Fluorescence imaging and detection studies examined four bacterial strains: E. coli, S. aureus, K. pneumonia, and B. thuringiensis vegetative cells and purified spores. The fluorescent probe, mSeek, is not phototoxic and enabled detection of all tested bacteria at concentrations of ~100 CFU/mL for B. thuringiensis spores, ~1000 CFU/mL for S. aureus and ~10,000 CFU/mL for E. coli. The photosensitizer analogue, mDestroy, inactivated 99–99.99% of bacterial samples and selectively killed bacterial cells in the presence of mammalian cells. However, mDestroy was ineffective against B. thuringiensis spores. Together, the results demonstrate a new two-probe strategy to optimize PDI of bacterial infection/contamination. PMID:26063101
NASA Astrophysics Data System (ADS)
Kong, Lingbing; Vijayakrishnan, Balakumar; Kowarik, Michael; Park, Jin; Zakharova, Alexandra N.; Neiwert, Larissa; Faridmoayer, Amirreza; Davis, Benjamin G.
2016-03-01
Certain non-mammalian cell wall sugars are conserved across a variety of pathogenic bacteria. This conservation of structure, combined with their structural differences when compared with mammalian sugars, make them potentially powerful epitopes for immunization. Here, we report the synthesis of a glycoconjugate that displays the so-called ‘inner core’ sugars of Gram-negative bacterial cell walls. We also describe an antibacterial vaccination strategy based on immunization with the glycoconjugate and the subsequent administration of an inhibitor that uncovers the corresponding epitope in pathogenic bacteria. The core tetrasaccharide, Hep2Kdo2, a common motif in bacterial lipopolysaccharides, was synthesized and attached via a chain linker to a diphtheria toxin mutant carrier protein. This glycoconjugate generated titres of antibodies towards the inner core tetrasaccharide of the lipopolysaccharide, which were capable of binding the cell-surface sugars of bacterial pathogenic strains including Neisseria meningitidis, Pseudomonas aeruginosa and Escherichia coli. Exposure of bacterial lipopolysaccharide in in vitro experiments, using an inhibitor of capsular polysaccharide transport, enabled potent bacterial killing with antiserum.
Zhou, Wei; Zeng, Cheng; Liu, RenHua; Chen, Jie; Li, Ru; Wang, XinYan; Bai, WenWen; Liu, XiaoYuan; Xiang, TingTing; Zhang, Lin; Wan, YongJi
2016-05-01
Prodigiosin, the tripyrrole red pigment, is a bacterial secondary metabolite with multiple bioactivities; however, the antiviral activity has not been reported yet. In the present study, we found the antiviral activity of bacterial prodigiosin on Bombyx mori nucleopolyhedrovirus (BmNPV)-infected cells in vitro, with specific modes of action. Prodigiosin at nontoxic concentrations selectively killed virus-infected cells, inhibited viral gene transcription, especially viral early gene ie-1, and prevented virus-mediated membrane fusion. Under prodigiosin treatment, both progeny virus production and viral DNA replication were significantly inhibited. Fluorescent assays showed that prodigiosin predominantly located in cytoplasm which suggested it might interact with cytoplasm factors to inhibit virus replication. In conclusion, the present study clearly indicates that prodigiosin possesses significant antiviral activity against BmNPV.
ω-Hydroxyemodin limits staphylococcus aureus quorum sensing-mediated pathogenesis and inflammation.
Daly, Seth M; Elmore, Bradley O; Kavanaugh, Jeffrey S; Triplett, Kathleen D; Figueroa, Mario; Raja, Huzefa A; El-Elimat, Tamam; Crosby, Heidi A; Femling, Jon K; Cech, Nadja B; Horswill, Alexander R; Oberlies, Nicholas H; Hall, Pamela R
2015-04-01
Antibiotic-resistant pathogens are a global health threat. Small molecules that inhibit bacterial virulence have been suggested as alternatives or adjuncts to conventional antibiotics, as they may limit pathogenesis and increase bacterial susceptibility to host killing. Staphylococcus aureus is a major cause of invasive skin and soft tissue infections (SSTIs) in both the hospital and community settings, and it is also becoming increasingly antibiotic resistant. Quorum sensing (QS) mediated by the accessory gene regulator (agr) controls virulence factor production essential for causing SSTIs. We recently identified ω-hydroxyemodin (OHM), a polyhydroxyanthraquinone isolated from solid-phase cultures of Penicillium restrictum, as a suppressor of QS and a compound sought for the further characterization of the mechanism of action. At concentrations that are nontoxic to eukaryotic cells and subinhibitory to bacterial growth, OHM prevented agr signaling by all four S. aureus agr alleles. OHM inhibited QS by direct binding to AgrA, the response regulator encoded by the agr operon, preventing the interaction of AgrA with the agr P2 promoter. Importantly, OHM was efficacious in a mouse model of S. aureus SSTI. Decreased dermonecrosis with OHM treatment was associated with enhanced bacterial clearance and reductions in inflammatory cytokine transcription and expression at the site of infection. Furthermore, OHM treatment enhanced the immune cell killing of S. aureus in vitro in an agr-dependent manner. These data suggest that bacterial disarmament through the suppression of S. aureus QS may bolster the host innate immune response and limit inflammation. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Serine-Aspartate Repeat Protein D Increases Staphylococcus aureus Virulence and Survival in Blood.
Askarian, Fatemeh; Uchiyama, Satoshi; Valderrama, J Andrés; Ajayi, Clement; Sollid, Johanna U E; van Sorge, Nina M; Nizet, Victor; van Strijp, Jos A G; Johannessen, Mona
2017-01-01
Staphylococcus aureus expresses a panel of cell wall-anchored adhesins, including proteins belonging to the microbial surface components recognizing adhesive matrix molecule (MSCRAMM) family, exemplified by the serine-aspartate repeat protein D (SdrD), which serve key roles in colonization and infection. Deletion of sdrD from S. aureus subsp. aureus strain NCTC8325-4 attenuated bacterial survival in human whole blood ex vivo, which was associated with increased killing by human neutrophils. Remarkably, SdrD was able to inhibit innate immune-mediated bacterial killing independently of other S. aureus proteins, since addition of recombinant SdrD protein and heterologous expression of SdrD in Lactococcus lactis promoted bacterial survival in human blood. SdrD contributes to bacterial virulence in vivo, since fewer S. aureus subsp. aureus NCTC8325-4 ΔsdrD bacteria than bacteria of the parent strain were recovered from blood and several organs using a murine intravenous infection model. Collectively, our findings reveal a new property of SdrD as an important key contributor to S. aureus survival and the ability to escape the innate immune system in blood. Copyright © 2016 Askarian et al.
Anti-leukemia activity of a bacterial toxin with natural specificity for LFA-1 on white blood cells
Kachlany, Scott C.; Schwartz, Amy B.; Balashova, Nataliya V.; Hioe, Catarina E.; Tuen, Michael; Le, Amy; Kaur, Manpreet; Mei, Yongyi; Rao, Jia
2009-01-01
The oral bacterium, Aggregatibacter actinomycetemcomitans, produces a leukotoxin (LtxA) that is specific for white blood cells (WBCs) from humans and Old World primates by interacting with lymphocyte function antigen-1 (LFA-1) on susceptible cells. To determine if LtxA could be used as a therapeutic agent for the treatment of WBC diseases, we tested the in vitro and in vivo anti-leukemia activity of the toxin. LtxA kills human malignant WBC lines and primary leukemia cells from acute myeloid leukemia patients, but healthy peripheral blood mononuclear cells (PBMCs) are relatively resistant to LtxA-mediated cytotoxicity. Levels of LFA-1 on cell lines correlated with killing by LtxA and the toxin preferentially killed cells expressing the activated form of LFA-1. In a SCID mouse model for human leukemia, LtxA had potent therapeutic value resulting in long-term survival in LtxA-treated mice. Intravenous infusion of LtxA into a rhesus macaque resulted in a drop in WBC counts at early times post-infusion; however, red blood cells, platelets, hemoglobin and blood chemistry values remained unaffected. Thus, LtxA may be an effective and safe novel therapeutic agent for the treatment of hematologic malignancies. PMID:19747730
Be'er, Avraham; Florin, E-L; Fisher, Carolyn R; Swinney, Harry L; Payne, Shelley M
2011-01-01
Natural habitats vary in available nutrients and room for bacteria to grow, but successful colonization can lead to overcrowding and stress. Here we show that competing sibling colonies of Paenibacillus dendritiformis bacteria survive overcrowding by switching between two distinct vegetative phenotypes, motile rods and immotile cocci. Growing colonies of the rod-shaped bacteria produce a toxic protein, Slf, which kills cells of encroaching sibling colonies. However, sublethal concentrations of Slf induce some of the rods to switch to Slf-resistant cocci, which have distinct metabolic and resistance profiles, including resistance to cell wall antibiotics. Unlike dormant spores of P. dendritiformis, the cocci replicate. If cocci encounter conditions that favor rods, they secrete a signaling molecule that induces a switch to rods. Thus, in contrast to persister cells, P. dendritiformis bacteria adapt to changing environmental conditions by inducible and reversible phenotypic switching. In favorable environments, species may face space and nutrient limits due to overcrowding. Bacteria provide an excellent model for analyzing principles underlying overcrowding and regulation of density in nature, since their population dynamics can be easily and accurately assessed under controlled conditions. We describe a newly discovered mechanism for survival of a bacterial population during overcrowding. When competing with sibling colonies, Paenibacillus dendritiformis produces a lethal protein (Slf) that kills cells at the interface of encroaching colonies. Slf also induces a small proportion of the cells to switch from motile, rod-shaped cells to nonmotile, Slf-resistant, vegetative cocci. When crowding is reduced and nutrients are no longer limiting, the bacteria produce a signal that induces cocci to switch back to motile rods, allowing the population to spread. Genes encoding components of this phenotypic switching pathway are widespread among bacterial species, suggesting that this survival mechanism is not unique to P. dendritiformis.
Hasan, Jafar; Webb, Hayden K; Truong, Vi Khanh; Pogodin, Sergey; Baulin, Vladimir A; Watson, Gregory S; Watson, Jolanta A; Crawford, Russell J; Ivanova, Elena P
2013-10-01
The nanopattern on the surface of Clanger cicada (Psaltoda claripennis) wings represents the first example of a new class of biomaterials that can kill bacteria on contact based solely on its physical surface structure. As such, they provide a model for the development of novel functional surfaces that possess an increased resistance to bacterial contamination and infection. Their effectiveness against a wide spectrum of bacteria, however, is yet to be established. Here, the bactericidal properties of the wings were tested against several bacterial species, possessing a range of combinations of morphology and cell wall type. The tested species were primarily pathogens, and included Bacillus subtilis, Branhamella catarrhalis, Escherichia coli, Planococcus maritimus, Pseudomonas aeruginosa, Pseudomonas fluorescens, and Staphylococcus aureus. The wings were found to consistently kill Gram-negative cells (i.e., B. catarrhalis, E. coli, P. aeruginosa, and P. fluorescens), while Gram-positive cells (B. subtilis, P. maritimus, and S. aureus) remained resistant. The morphology of the cells did not appear to play any role in determining cell susceptibility. The bactericidal activity of the wing was also found to be quite efficient; 6.1 ± 1.5 × 10(6) P. aeruginosa cells in suspension were inactivated per square centimeter of wing surface after 30-min incubation. These findings demonstrate the potential for the development of selective bactericidal surfaces incorporating cicada wing nanopatterns into the design.
The galvanizing of Mycobacterium tuberculosis: An antimicrobial mechanism
Russell, David G
2011-01-01
Summary Evolving under constant threat from invading microbes, macrophages have acquired multiple means of killing bacteria. In this issue of Cell Host & Microbe, Botella and colleagues describe a novel anti-microbial mechanism based on elevated levels of intraphagosomal Zn2+ and the corresponding induction of bacterial genes to ameliorate this host-derived stress. PMID:21925106
NASA Astrophysics Data System (ADS)
Chen, Zhuo; Zhang, Yaxin; Wang, Dong; Li, Linsen; Zhou, Shanyong; Huang, Joy H.; Chen, Jincan; Hu, Ping; Huang, Mingdong
2016-01-01
Photodynamic antimicrobial chemotherapy (PACT) is an effective method for killing bacterial cells in view of the increasing problem of multiantibiotic resistance. We herein reported the PACT effect on bacteria involved in skin infections using a zinc phthalocyanine derivative, pentalysine β-carbonylphthalocyanine zinc (ZnPc-Lys). Compared with its anionic ZnPc counterpart, ZnPc-Lys showed an enhanced antibacterial efficacy in vitro and in an animal model of localized infection. Meanwhile, ZnPc-Lys was observed to significantly reduce the wound skin blood flow during wound healing, indicating an anti-inflammation activity. This study provides new insight on the mechanisms of PACT in bacterial skin infection.
Preston, Mark A; Pimentel, Belén; Bermejo-Rodríguez, Camino; Dionne, Isabelle; Turnbull, Alice; de la Cueva-Méndez, Guillermo
2016-07-15
Prokaryotes express intracellular toxins that pass unnoticed to carrying cells until coexpressed antitoxin partners are degraded in response to stress. Although not evolved to function in eukaryotes, one of these toxins, Kid, induces apoptosis in mammalian cells, an effect that is neutralized by its cognate antitoxin, Kis. Here we engineered this toxin-antitoxin pair to create a synthetic system that becomes active in human cells suffering a specific oncogenic stress. Inspired by the way Kid becomes active in bacterial cells, we produced a Kis variant that is selectively degraded in human cells expressing oncoprotein E6. The resulting toxin-antitoxin system functions autonomously in human cells, distinguishing those that suffer the oncogenic insult, which are killed by Kid, from those that do not, which remain protected by Kis. Our results provide a framework for developing personalized anticancer strategies avoiding off-target effects, a challenge that has been hardly tractable by other means thus far.
Falkenberg, Shollie M.; Briggs, Robert E.; Tatum, Fred M.; Sacco, Randy E.
2017-01-01
Bovine NK-lysins, which are functionally and structurally similar to human granulysin and porcine NK-lysin, are predominantly found in the granules of cytotoxic T-lymphocytes and NK-cells. Although antimicrobial activity of bovine NK-lysin has been assessed for several bacterial pathogens, not all the important bacterial pathogens that are involved in the bovine respiratory disease complex have been studied. Therefore the objective of the present study was to evaluate the antimicrobial activity of bovine NK-lysin-derived peptides on bovine respiratory pathogen Histophilus somni. Four, 30-mer peptides corresponding to the functional region of NK-lysin helices 2 and 3 were synthesized and assessed for antibacterial activity on four bovine pneumonic H. somni isolates. Although there were some differences in the efficiency of bactericidal activity among the NK-lysin peptides at lower concentrations (2–5 μM), all four peptides effectively killed most H. somni isolates at higher concentrations (10–30 μM) as determined by a bacterial killing assay. Confocal microscopic and flow cytometric analysis of Live/Dead Baclight stained H. somni (which were preincubated with NK-lysin peptides) were consistent with the killing assay findings and suggest NK-lysin peptides are bactericidal for H. somni. Among the four peptides, NK2A-derived peptide consistently showed the highest antimicrobial activity against all four H. somni isolates. Electron microscopic examination of H. somni following incubation with NK-lysin revealed extensive cell membrane damage, protrusions of outer membranes, and cytoplasmic content leakage. Taken together, the findings from this study clearly demonstrate the antimicrobial activity of all four bovine NK-lysin-derived peptides against bovine H. somni isolates. PMID:28827826
Dassanayake, Rohana P; Falkenberg, Shollie M; Briggs, Robert E; Tatum, Fred M; Sacco, Randy E
2017-01-01
Bovine NK-lysins, which are functionally and structurally similar to human granulysin and porcine NK-lysin, are predominantly found in the granules of cytotoxic T-lymphocytes and NK-cells. Although antimicrobial activity of bovine NK-lysin has been assessed for several bacterial pathogens, not all the important bacterial pathogens that are involved in the bovine respiratory disease complex have been studied. Therefore the objective of the present study was to evaluate the antimicrobial activity of bovine NK-lysin-derived peptides on bovine respiratory pathogen Histophilus somni. Four, 30-mer peptides corresponding to the functional region of NK-lysin helices 2 and 3 were synthesized and assessed for antibacterial activity on four bovine pneumonic H. somni isolates. Although there were some differences in the efficiency of bactericidal activity among the NK-lysin peptides at lower concentrations (2-5 μM), all four peptides effectively killed most H. somni isolates at higher concentrations (10-30 μM) as determined by a bacterial killing assay. Confocal microscopic and flow cytometric analysis of Live/Dead Baclight stained H. somni (which were preincubated with NK-lysin peptides) were consistent with the killing assay findings and suggest NK-lysin peptides are bactericidal for H. somni. Among the four peptides, NK2A-derived peptide consistently showed the highest antimicrobial activity against all four H. somni isolates. Electron microscopic examination of H. somni following incubation with NK-lysin revealed extensive cell membrane damage, protrusions of outer membranes, and cytoplasmic content leakage. Taken together, the findings from this study clearly demonstrate the antimicrobial activity of all four bovine NK-lysin-derived peptides against bovine H. somni isolates.
Rajavel, Krishnamoorthy; Gomathi, Rajkumar; Manian, Sellamuthu; Rajendra Kumar, Ramasamy Thangavelu
2014-01-21
Understanding the bacterial cytotoxicity of CNTs is important for a wide variety of applications in the biomedical, environmental, and health sectors. A majority of the earlier reports attributed the bactericidal cytotoxicity of CNTs to bacterial cell membrane damage by direct physical puncturing. Our results reveal that bacterial cell death via bacterial cell membrane damage is induced by reactive oxygen species (ROS) produced from CNTs and is not due to direct physical puncturing by CNTs. To understand the actual mechanism of bacterial killing, we elucidated the bacterial cytotoxicity of SWCNTs and MWCNTs against Gram-negative human pathogenic bacterial species Escherichia coli, Shigella sonnei, Klebsiella pneumoniae, and Pseudomonas aeruginosa and its amelioration upon functionalizing the CNTs with antioxidant tannic acid (TA). Interestingly, the bacterial cells treated with CNTs exhibited severe cell damage under laboratory (ambient) and sunlight irradiation conditions. However, CNTs showed no cytotoxicity to the bacterial cells when incubated in the dark. The quantitative assessments carried out by us made it explicit that CNTs are effective generators of ROS such as (1)O2, O2(•-), and (•)OH in an aqueous medium under both ambient and sunlight-irradiated conditions. Both naked and TA-functionalized CNTs showed negligible ROS production in the dark. Furthermore, strong correlations were obtained between ROS produced by CNTs and the bacterial cell mortality (with the correlation coefficient varying between 0.7618 and 0.9891) for all four tested pathogens. The absence of bactericidal cytotoxicity in both naked and functionalized CNTs in the dark reveals that the presence of ROS is the major factor responsible for the bactericidal action compared to direct physical puncturing. This understanding of the bactericidal activity of the irradiated CNTs, mediated through the generation of ROS, could be interesting for novel applications such as regulated ROS delivery in cancer therapy and the sanitation of potable water supplies.
Neisseria meningitidis: pathogenesis and immunity.
Pizza, Mariagrazia; Rappuoli, Rino
2015-02-01
The recent advances in cellular microbiology, genomics, and immunology has opened new horizons in the understanding of meningococcal pathogenesis and in the definition of new prophylactic intervention. It is now clear that Neissera meningitidis has evolved a number of surface structures to mediate interaction with host cells and a number of mechanisms to subvert the immune system and escape complement-mediated killing. In this review we report the more recent findings on meningococcal adhesion and on the bacteria-complement interaction highlighting the redundancy of these mechanisms. An effective vaccine against meningococcus B, based on multiple antigens with different function, has been recently licensed. The antibodies induced by the 4CMenB vaccine could mediate bacterial killing by activating directly the classical complement pathway or, indirectly, by preventing binding of fH on the bacterial surface and interfering with colonization. Copyright © 2014 The Author. Published by Elsevier Ltd.. All rights reserved.
Sadiq, Muhammad W; Nielsen, Elisabet I; Khachman, Dalia; Conil, Jean-Marie; Georges, Bernard; Houin, Georges; Laffont, Celine M; Karlsson, Mats O; Friberg, Lena E
2017-04-01
The purpose of this study was to develop a whole-body physiologically based pharmacokinetic (WB-PBPK) model for ciprofloxacin for ICU patients, based on only plasma concentration data. In a next step, tissue and organ concentration time profiles in patients were predicted using the developed model. The WB-PBPK model was built using a non-linear mixed effects approach based on data from 102 adult intensive care unit patients. Tissue to plasma distribution coefficients (Kp) were available from the literature and used as informative priors. The developed WB-PBPK model successfully characterized both the typical trends and variability of the available ciprofloxacin plasma concentration data. The WB-PBPK model was thereafter combined with a pharmacokinetic-pharmacodynamic (PKPD) model, developed based on in vitro time-kill data of ciprofloxacin and Escherichia coli to illustrate the potential of this type of approach to predict the time-course of bacterial killing at different sites of infection. The predicted unbound concentration-time profile in extracellular tissue was driving the bacterial killing in the PKPD model and the rate and extent of take-over of mutant bacteria in different tissues were explored. The bacterial killing was predicted to be most efficient in lung and kidney, which correspond well to ciprofloxacin's indications pneumonia and urinary tract infections. Furthermore, a function based on available information on bacterial killing by the immune system in vivo was incorporated. This work demonstrates the development and application of a WB-PBPK-PD model to compare killing of bacteria with different antibiotic susceptibility, of value for drug development and the optimal use of antibiotics .
Bacterial cell wall composition and the influence of antibiotics by cell-wall and whole-cell NMR
Romaniuk, Joseph A. H.; Cegelski, Lynette
2015-01-01
The ability to characterize bacterial cell-wall composition and structure is crucial to understanding the function of the bacterial cell wall, determining drug modes of action and developing new-generation therapeutics. Solid-state NMR has emerged as a powerful tool to quantify chemical composition and to map cell-wall architecture in bacteria and plants, even in the context of unperturbed intact whole cells. In this review, we discuss solid-state NMR approaches to define peptidoglycan composition and to characterize the modes of action of old and new antibiotics, focusing on examples in Staphylococcus aureus. We provide perspectives regarding the selected NMR strategies as we describe the exciting and still-developing cell-wall and whole-cell NMR toolkit. We also discuss specific discoveries regarding the modes of action of vancomycin analogues, including oritavancin, and briefly address the reconsideration of the killing action of β-lactam antibiotics. In such chemical genetics approaches, there is still much to be learned from perturbations enacted by cell-wall assembly inhibitors, and solid-state NMR approaches are poised to address questions of cell-wall composition and assembly in S. aureus and other organisms. PMID:26370936
Balakrishnan, Arjun; Schnare, Markus; Chakravortty, Dipshikha
2016-01-01
Macrophages as immune cells prevent the spreading of pathogens by means of active phagocytosis and killing. We report here the presence of an antimicrobial protein, bactericidal/permeability-increasing protein (BPI) in human macrophages, which actively participates in engulfment and killing of Gram-negative pathogens. Our studies revealed increased expression of BPI in human macrophages during bacterial infection and upon stimulation with various pathogen-associated molecular patterns, viz., LPS and flagellin. Furthermore, during the course of an infection, BPI interacted with Gram-negative bacteria, resulting in enhanced phagocytosis and subsequent control of the bacterial replication. However, it was observed that bacteria which can maintain an active replicating niche (Salmonella Typhimurium) avoid the interaction with BPI during later stages of infection. On the other hand, Salmonella mutants, which cannot maintain a replicating niche, as well as Shigella flexneri, which quit the endosomal vesicle, showed interaction with BPI. These results propose an active role of BPI in Gram-negative bacterial clearance by human macrophages. PMID:27822215
Mushtaq, Naseem; Redpath, Maria B; Luzio, J Paul; Taylor, Peter W
2004-05-01
Escherichia coli is a common cause of meningitis and sepsis in the newborn infant, and the large majority of isolates from these infections produce a polysialic acid (PSA) capsular polysaccharide, the K1 antigen, that protects the bacterial cell from immune attack. We determined whether a capsule-depolymerizing enzyme, by removing this protective barrier, could alter the outcome of systemic infection in an animal model. Bacteriophage-derived endosialidase E (endoE) selectively degrades the PSA capsule on the surface of E. coli K1 strains. Intraperitoneal administration of small quantities of recombinant endoE (20 micro g) to 3-day-old rats, colonized with a virulent strain of K1, prevented bacteremia and death from systemic infection. The enzyme had no effect on the viability of E. coli strains but sensitized strains expressing PSA to killing by the complement system. This study demonstrates the potential therapeutic efficacy of agents that cure infections by modification of the bacterial phenotype rather than by killing or inhibition of growth of the pathogen.
Talekar, Sharmila J; Chochua, Sopio; Nelson, Katie; Klugman, Keith P; Quave, Cassandra L; Vidal, Jorge E
2014-01-01
Streptococcus pneumoniae (pneumococcus) forms organized biofilms to persist in the human nasopharynx. This persistence allows the pneumococcus to produce severe diseases such as pneumonia, otitis media, bacteremia and meningitis that kill nearly a million children every year. While bacteremia and meningitis are mediated by planktonic pneumococci, biofilm structures are present during pneumonia and otitis media. The global emergence of S. pneumoniae strains resistant to most commonly prescribed antibiotics warrants further discovery of alternative therapeutics. The present study assessed the antimicrobial potential of a plant extract, 220D-F2, rich in ellagic acid, and ellagic acid derivatives, against S. pneumoniae planktonic cells and biofilm structures. Our studies first demonstrate that, when inoculated together with planktonic cultures, 220D-F2 inhibited the formation of pneumococcal biofilms in a dose-dependent manner. As measured by bacterial counts and a LIVE/DEAD bacterial viability assay, 100 and 200 µg/ml of 220D-F2 had significant bactericidal activity against pneumococcal planktonic cultures as early as 3 h post-inoculation. Quantitative MIC's, whether quantified by qPCR or dilution and plating, showed that 80 µg/ml of 220D-F2 completely eradicated overnight cultures of planktonic pneumococci, including antibiotic resistant strains. When preformed pneumococcal biofilms were challenged with 220D-F2, it significantly reduced the population of biofilms 3 h post-inoculation. Minimum biofilm inhibitory concentration (MBIC)50 was obtained incubating biofilms with 100 µg/ml of 220D-F2 for 3 h and 6 h of incubation. 220D-F2 also significantly reduced the population of pneumococcal biofilms formed on human pharyngeal cells. Our results demonstrate potential therapeutic applications of 220D-F2 to both kill planktonic pneumococcal cells and disrupt pneumococcal biofilms.
Ribes, Sandra; Ebert, Sandra; Czesnik, Dirk; Regen, Tommy; Zeug, Andre; Bukowski, Stephanie; Mildner, Alexander; Eiffert, Helmut; Hanisch, Uwe-Karsten; Hammerschmidt, Sven; Nau, Roland
2009-01-01
Meningitis and meningoencephalitis caused by Escherichia coli are associated with high rates of mortality. When an infection occurs, Toll-like receptors (TLRs) expressed by microglial cells can recognize pathogen-associated molecular patterns and activate multiple steps in the inflammatory response that coordinate the brain's local defense, such as phagocytosis of invading pathogens. An upregulation of the phagocytic ability of reactive microglia could improve the host defense in immunocompromised patients against pathogens such as E. coli. Here, murine microglial cultures were stimulated with the TLR agonists Pam(3)CSK(4) (TLR1/TLR2), lipopolysaccharide (TLR4), and CpG oligodeoxynucleotide (TLR9) for 24 h. Upon stimulation, levels of tumor necrosis factor alpha and the neutrophil chemoattractant CXCL1 were increased, indicating microglial activation. Phagocytic activity was studied after adding either E. coli DH5alpha or E. coli K1 strains. After 60 and 90 min of bacterial exposure, the number of ingested bacteria was significantly higher in cells prestimulated with TLR agonists than in unstimulated controls (P < 0.01). Addition of cytochalasin D, an inhibitor of actin polymerization, blocked >90% of phagocytosis. We also analyzed the ability of microglia to kill the ingested E. coli strains. Intracellularly surviving bacteria were quantified at different time points (90, 150, 240, and 360 min) after 90 min of phagocytosis. The number of bacteria killed intracellularly after 6 h was higher in cells primed with the different TLR agonists than in unstimulated microglia. Our data suggest that microglial stimulation by the TLR system can increase bacterial phagocytosis and killing. This approach could improve central nervous system resistance to infections in immunocompromised patients.
Targeted nanoparticles for enhanced X-ray radiation killing of multidrug-resistant bacteria.
Luo, Yang; Hossain, Mainul; Wang, Chaoming; Qiao, Yong; An, Jincui; Ma, Liyuan; Su, Ming
2013-01-21
This paper describes a nanoparticle enhanced X-ray irradiation based strategy that can be used to kill multidrug resistant (MDR) bacteria. In the proof-of-concept experiment using MDR Pseudomonas aeruginosa (P. aeruginosa) as an example, polyclonal antibody modified bismuth nanoparticles are introduced into bacterial culture to specifically target P. aeruginosa. After washing off uncombined bismuth nanoparticles, the bacteria are irradiated with X-rays, using a setup that mimics a deeply buried wound in humans. Results show that up to 90% of MDR P. aeruginosa are killed in the presence of 200 μg ml(-1) bismuth nanoparticles, whereas only ∼6% are killed in the absence of bismuth nanoparticles when exposed to 40 kVp X-rays for 10 min. The 200 μg ml(-1) bismuth nanoparticles enhance localized X-ray dose by 35 times higher than the control with no nanoparticles. In addition, no significant harmful effects on human cells (HeLa and MG-63 cells) have been observed with 200 μg ml(-1) bismuth nanoparticles and 10 min 40 kVp X-ray irradiation exposures, rendering the potential for future clinical use. Since X-rays can easily penetrate human tissues, this bactericidal strategy has the potential to be used in effectively killing deeply buried MDR bacteria in vivo.
Park, Sang Rye; Lee, Hyun Wook; Hong, Jin Woo; Lee, Hae June; Kim, Ji Young; Choi, Byul Bo-Ra; Kim, Gyoo Cheon; Jeon, Young Chan
2014-08-08
Recently, non-thermal atmospheric pressure plasma sources have been used for biomedical applications such as sterilization, cancer treatment, blood coagulation, and wound healing. Gold nanoparticles (gNPs) have unique optical properties and are useful for biomedical applications. Although low-temperature plasma has been shown to be effective in killing oral bacteria on agar plates, its bactericidal effect is negligible on the tooth surface. Therefore, we used 30-nm gNPs to enhance the killing effect of low-temperature plasma on human teeth. We tested the sterilizing effect of low-temperature plasma on Streptococcus mutans (S. mutans) strains. The survival rate was assessed by bacterial viability stains and colony-forming unit counts. Low-temperature plasma treatment alone was effective in killing S. mutans on slide glasses, as shown by the 5-log decrease in viability. However, plasma treatment of bacteria spotted onto tooth surface exhibited a 3-log reduction in viability. After gNPs were added to S. mutans, plasma treatment caused a 5-log reduction in viability, while gNPs alone did not show any bactericidal effect. The morphological changes in S. mutans caused by plasma treatment were examined by transmission electron microscopy, which showed that plasma treatment only perforated the cell walls, while the combination treatment with plasma and gold nanoparticles caused significant cell rupture, causing loss of intracellular components from many cells. This study demonstrates that low-temperature plasma treatment is effective in killing S. mutans and that its killing effect is further enhanced when used in combination with gNPs.
Burkholder, Kristin M; Perry, Jeffrey W; Wobus, Christiane E; Donato, Nicholas J; Showalter, Hollis D; Kapuria, Vaibhav; O'Riordan, Mary X D
2011-12-01
Macrophages are key mediators of antimicrobial defense and innate immunity. Innate intracellular defense mechanisms can be rapidly regulated at the posttranslational level by the coordinated addition and removal of ubiquitin by ubiquitin ligases and deubiquitinases (DUBs). While ubiquitin ligases have been extensively studied, the contribution of DUBs to macrophage innate immune function is incompletely defined. We therefore employed a small molecule DUB inhibitor, WP1130, to probe the role of DUBs in the macrophage response to bacterial infection. Treatment of activated bone marrow-derived macrophages (BMM) with WP1130 significantly augmented killing of the intracellular bacterial pathogen Listeria monocytogenes. WP1130 also induced killing of phagosome-restricted bacteria, implicating a bactericidal mechanism associated with the phagosome, such as the inducible nitric oxide synthase (iNOS). WP1130 had a minimal antimicrobial effect in macrophages lacking iNOS, indicating that iNOS is an effector mechanism for WP1130-mediated bacterial killing. Although overall iNOS levels were not notably different, we found that WP1130 significantly increased colocalization of iNOS with the Listeria-containing phagosome during infection. Taken together, our data indicate that the deubiquitinase inhibitor WP1130 increases bacterial killing in macrophages by enhancing iNOS localization to the phagosome and suggest a potential role for ubiquitin regulation in iNOS trafficking.
Temperate bacterial viruses as double-edged swords in bacterial warfare.
Gama, João Alves; Reis, Ana Maria; Domingues, Iolanda; Mendes-Soares, Helena; Matos, Ana Margarida; Dionisio, Francisco
2013-01-01
It has been argued that bacterial cells may use their temperate viruses as biological weapons. For instance, a few bacterial cells among a population of lysogenic cells could release the virus and kill susceptible non-lysogenic competitors, while their clone mates would be immune. Because viruses replicate inside their victims upon infection, this process would amplify their number in the arena. Sometimes, however, temperate viruses spare recipient cells from death by establishing themselves in a dormant state inside cells. This phenomenon is called lysogenization and, for some viruses such as the λ virus, the probability of lysogenization increases with the multiplicity of infection. Therefore, the amplification of viruses leads to conflicting predictions about the efficacy of temperate viruses as biological weapons: amplification can increase the relative advantage of clone mates of lysogens but also the likelihood of saving susceptible cells from death, because the probability of lysogenization is higher. To test the usefulness of viruses as biological weapons, we performed competition experiments between lysogenic Escherichia coli cells carrying the λ virus and susceptible λ-free E. coli cells, either in a structured or unstructured habitat. In structured and sometimes in unstructured habitats, the λ virus qualitatively behaved as a "replicating toxin". However, such toxic effect of λ viruses ceased after a few days of competition. This was due to the fact that many of initially susceptible cells became lysogenic. Massive lysogenization of susceptible cells occurred precisely under the conditions where the amplification of the virus was substantial. From then on, these cells and their descendants became immune to the λ virus. In conclusion, if at short term bacterial cells may use temperate viruses as biological weapons, after a few days only the classical view of temperate bacterial viruses as parasitic agents prevails.
Temperate Bacterial Viruses as Double-Edged Swords in Bacterial Warfare
Gama, João Alves; Reis, Ana Maria; Domingues, Iolanda; Mendes-Soares, Helena; Matos, Ana Margarida; Dionisio, Francisco
2013-01-01
It has been argued that bacterial cells may use their temperate viruses as biological weapons. For instance, a few bacterial cells among a population of lysogenic cells could release the virus and kill susceptible non-lysogenic competitors, while their clone mates would be immune. Because viruses replicate inside their victims upon infection, this process would amplify their number in the arena. Sometimes, however, temperate viruses spare recipient cells from death by establishing themselves in a dormant state inside cells. This phenomenon is called lysogenization and, for some viruses such as the λ virus, the probability of lysogenization increases with the multiplicity of infection. Therefore, the amplification of viruses leads to conflicting predictions about the efficacy of temperate viruses as biological weapons: amplification can increase the relative advantage of clone mates of lysogens but also the likelihood of saving susceptible cells from death, because the probability of lysogenization is higher. To test the usefulness of viruses as biological weapons, we performed competition experiments between lysogenic Escherichia coli cells carrying the λ virus and susceptible λ-free E. coli cells, either in a structured or unstructured habitat. In structured and sometimes in unstructured habitats, the λ virus qualitatively behaved as a “replicating toxin”. However, such toxic effect of λ viruses ceased after a few days of competition. This was due to the fact that many of initially susceptible cells became lysogenic. Massive lysogenization of susceptible cells occurred precisely under the conditions where the amplification of the virus was substantial. From then on, these cells and their descendants became immune to the λ virus. In conclusion, if at short term bacterial cells may use temperate viruses as biological weapons, after a few days only the classical view of temperate bacterial viruses as parasitic agents prevails. PMID:23536852
Persister eradication: lessons from the world of natural products.
Keren, Iris; Mulcahy, Lawrence R; Lewis, Kim
2012-01-01
Persisters are specialized survivor cells that protect bacterial populations from killing by antibiotics. Persisters are dormant phenotypic variants of regular cells rather than mutants. Bactericidal antibiotics kill by corrupting their targets into producing toxic products; tolerance to antibiotics follows when targets are inactive. Transcriptome analysis of isolated persisters points to toxin/antitoxin modules as a principle component of persister formation. Mechanisms of persister formation are redundant, making it difficult to eradicate these cells. In Escherichia coli, toxins RelE and MazF cause dormancy by degrading mRNA; HipA inhibits translation by phosphorylating Ef-Tu; and TisB forms an anion channel in the membrane, leading to a decrease in pmf and ATP levels. Prolonged treatment of chronic infections with antibiotics selects for hip mutants that produce more persister cells. Eradication of tolerant persisters is a serious challenge. Some of the existing antibiotics are capable of killing persisters, pointing to ways of developing therapeutics to treat chronic infections. Mitomycin is a prodrug which is converted into a reactive compound forming adducts with DNA upon entering the cell. Prolonged treatment with aminoglycosides that cause mistranslation leading to misfolded peptides can sterilize a stationary culture of Pseudomonas aeruginosa, a pathogen responsible for chronic, highly tolerant infections of cystic fibrosis patients. Finally, one of the best bactericidal agents is rifampin, an inhibitor of RNA polymerase, and we suggest that it "kills" by preventing persister resuscitation. Copyright © 2012 Elsevier Inc. All rights reserved.
Thanabalasuriar, Ajitha; Surewaard, Bas Gj; Willson, Michelle E; Neupane, Arpan S; Stover, Charles K; Warrener, Paul; Wilson, George; Keller, Ashley E; Sellman, Bret R; DiGiandomenico, Antonio; Kubes, Paul
2017-06-01
Pseudomonas aeruginosa is a major cause of severe infections that lead to bacteremia and high patient mortality. P. aeruginosa has evolved numerous evasion and subversion mechanisms that work in concert to overcome immune recognition and effector functions in hospitalized and immunosuppressed individuals. Here, we have used multilaser spinning-disk intravital microscopy to monitor the blood-borne stage in a murine bacteremic model of P. aeruginosa infection. P. aeruginosa adhered avidly to lung vasculature, where patrolling neutrophils and other immune cells were virtually blind to the pathogen's presence. This cloaking phenomenon was attributed to expression of Psl exopolysaccharide. Although an anti-Psl mAb activated complement and enhanced neutrophil recognition of P. aeruginosa, neutrophil-mediated clearance of the pathogen was suboptimal owing to a second subversion mechanism, namely the type 3 secretion (T3S) injectisome. Indeed, T3S prevented phagosome acidification and resisted killing inside these compartments. Antibody-mediated inhibition of the T3S protein PcrV did not enhance bacterial phagocytosis but did enhance killing of the few bacteria ingested by neutrophils. A bispecific mAb targeting both Psl and PcrV enhanced neutrophil uptake of P. aeruginosa and also greatly increased inhibition of T3S function, allowing for phagosome acidification and bacterial killing. These data highlight the need to block multiple evasion and subversion mechanisms in tandem to kill P. aeruginosa.
Malachowa, Natalia; Kohler, Petra L; Schlievert, Patrick M; Chuang, Olivia N; Dunny, Gary M; Kobayashi, Scott D; Miedzobrodzki, Jacek; Bohach, Gregory A; Seo, Keun Seok
2011-01-01
Staphylococcus aureus is a prominent human pathogen and a leading cause of community- and hospital-acquired bacterial infections worldwide. Herein, we describe the identification and characterization of the S. aureus 67.6-kDa hypothetical protein, named for the surface factor promoting resistance to oxidative killing (SOK) in this study. Sequence analysis showed that the SOK gene is conserved in all sequenced S. aureus strains and homologous to the myosin cross-reactive antigen of Streptococcus pyogenes. Immunoblotting and immunofluorescence analysis showed that SOK was copurified with membrane fractions and was exposed on the surface of S. aureus Newman and RN4220. Comparative analysis of wild-type S. aureus and an isogenic deletion strain indicated that SOK contributes to both resistance to killing by human neutrophils and to oxidative stress. In addition, the S. aureus sok deletion strain showed dramatically reduced aortic valve vegetation and bacterial cell number in a rabbit endocarditis model. These results, plus the suspected role of the streptococcal homologue in certain diseases such as acute rheumatic fever, suggest that SOK plays an important role in cardiovascular and other staphylococcal infections.
Kanthawong, Sakawrat; Puknun, Aekkalak; Bolscher, Jan G M; Nazmi, Kamran; van Marle, Jan; de Soet, Johannes J; Veerman, Enno C I; Wongratanacheewin, Surasakdi; Taweechaisupapong, Suwimol
2014-10-01
LFchimera, a construct combining two antimicrobial domains of bovine lactoferrin, lactoferrampin265-284 and lactoferricin17-30, possesses strong bactericidal activity. As yet, no experimental evidence was presented to evaluate the mechanisms of LFchimera against Burkholderia isolates. In this study we analyzed the killing activity of LFchimera on the category B pathogen Burkholderia pseudomallei in comparison to the lesser virulent Burkholderia thailandensis often used as a model for the highly virulent B. pseudomallei. Killing kinetics showed that B. thailandensis E264 was more susceptible for LFchimera than B. pseudomallei 1026b. Interestingly the bactericidal activity of LFchimera appeared highly pH dependent; B. thailandensis killing was completely abolished at and below pH 6.4. FITC-labeled LFchimera caused a rapid accumulation within 15 min in the cytoplasm of both bacterial species. Moreover, freeze-fracture electron microscopy demonstrated extreme effects on the membrane morphology of both bacterial species within 1 h of incubation, accompanied by altered membrane permeability monitored as leakage of nucleotides. These data indicate that the mechanism of action of LFchimera is similar for both species and encompasses disruption of the plasma membrane and subsequently leakage of intracellular nucleotides leading to cell dead.
T lymphocyte-mediated protection against Pseudomonas aeruginosa infection in granulocytopenic mice.
Powderly, W G; Pier, G B; Markham, R B
1986-01-01
BALB/c mice immunized with Pseudomonas aeruginosa immunotype 1 polysaccharide develop protective T cell immunity to bacterial challenge. In vitro, T cells from immunized mice kill P. aeruginosa by production of a bactericidal lymphokine. The present study demonstrates that adoptive transfer of T cells from immunized BALB/c mice to granulocytopenic mice resulted in 97% survival on challenge with P. aeruginosa, compared with 17% survival with adoptive transfer of T cells from nonimmune BALB/c mice. This protection is specifically elicited by reexposure to the original immunizing antigen; adoptive recipients cannot withstand challenge with immunotype 3 P. aeruginosa. However, the adoptive recipients do survive simultaneous infection with both P. aeruginosa immunotypes 1 and 3. Adoptive transfer of T cells from the congenic CB.20 mice, which are unable to kill P. aeruginosa in vitro, provides only 20% protection to granulocytopenic mice. These studies indicate that transfer of specific immune T lymphocytes can significantly enhance the resistance to P. aeruginosa infection in granulocytopenic mice. PMID:2426306
The Effects of Vaccination and Immunity on Bacterial Infection Dynamics In Vivo
Coward, Chris; Restif, Olivier; Dybowski, Richard; Grant, Andrew J.; Maskell, Duncan J.; Mastroeni, Pietro
2014-01-01
Salmonella enterica infections are a significant global health issue, and development of vaccines against these bacteria requires an improved understanding of how vaccination affects the growth and spread of the bacteria within the host. We have combined in vivo tracking of molecularly tagged bacterial subpopulations with mathematical modelling to gain a novel insight into how different classes of vaccines and branches of the immune response protect against secondary Salmonella enterica infections of the mouse. We have found that a live Salmonella vaccine significantly reduced bacteraemia during a secondary challenge and restrained inter-organ spread of the bacteria in the systemic organs. Further, fitting mechanistic models to the data indicated that live vaccine immunisation enhanced both the bacterial killing in the very early stages of the infection and bacteriostatic control over the first day post-challenge. T-cell immunity induced by this vaccine is not necessary for the enhanced bacteriostasis but is required for subsequent bactericidal clearance of Salmonella in the blood and tissues. Conversely, a non-living vaccine while able to enhance initial blood clearance and killing of virulent secondary challenge bacteria, was unable to alter the subsequent bacterial growth rate in the systemic organs, did not prevent the resurgence of extensive bacteraemia and failed to control the spread of the bacteria in the body. PMID:25233077
Photoinactivation of mcr-1 positive Escherichia coli
NASA Astrophysics Data System (ADS)
Caires, C. S. A.; Leal, C. R. B.; Rodrigues, A. C. S.; Lima, A. R.; Silva, C. M.; Ramos, C. A. N.; Chang, M. R.; Arruda, E. J.; Oliveira, S. L.; Nascimento, V. A.; Caires, A. R. L.
2018-01-01
The emergence of plasmid-mediated colistin resistance in Enterobacteriaceae, mostly in Escherichia coli due to the mcr-1 gene, has revealed the need to develop alternative approaches in treating mcr-1 positive bacterial infections. This is because colistin is a broad-spectrum antibiotic and one of the ‘last-resort’ antibiotics for multidrug resistant bacteria. The present study evaluated for the first time, to the best of our knowledge, the efficacy of photoinactivation processes to kill a known mcr-1 positive E. coli strain. Eosin methylene-blue (EMB) was investigated as a photoantimicrobial agent for inhibiting the growth of a mcr-1 positive E. coli strain obtained from a patient with a diabetic foot infection. The photoantimicrobial activity of EMB was also tested in a non-multidrug resistant E. coli strain. The photoinactivation process was tested using light doses in the 30-45 J cm-2 range provided by a LED device emitting at 625 nm. Our findings demonstrate that a mcr-1 positive E. coli strain is susceptible to photoinactivation. The results show that the EMB was successfully photoactivated, regardless of the bacterial multidrug resistance; inactivating the bacterial growth by oxidizing the cells in accordance with the generation of the oxygen reactive species. Our results suggest that bacterial photoinactivation is an alternative and effective approach to kill mcr-1 positive bacteria.
Imaging the antimicrobial mechanism(s) of cathelicidin-2
Schneider, Viktoria A. F.; Coorens, Maarten; Ordonez, Soledad R.; Tjeerdsma-van Bokhoven, Johanna L. M.; Posthuma, George; van Dijk, Albert; Haagsman, Henk P.; Veldhuizen, Edwin J. A.
2016-01-01
Host defence peptides (HDPs) have the potential to become alternatives to conventional antibiotics in human and veterinary medicine. The HDP chicken cathelicidin-2 (CATH-2) has immunomodulatory and direct killing activities at micromolar concentrations. In this study the mechanism of action of CATH-2 against Escherichia coli (E. coli) was investigated in great detail using a unique combination of imaging and biophysical techniques. Live-imaging with confocal fluorescence microscopy demonstrated that FITC-labelled CATH-2 mainly localized at the membrane of E. coli. Upon binding, the bacterial membrane was readily permeabilized as was shown by propidium iodide influx into the cell. Concentration- and time-dependent effects of the peptide on E. coli cells were examined by transmission electron microscopy (TEM). CATH-2 treatment was found to induce dose-dependent morphological changes in E. coli. At sub-minimal inhibitory concentrations (sub-MIC), intracellular granulation, enhanced vesicle release and wrinkled membranes were observed, while membrane breakage and cell lysis occurred at MIC values. These effects were visible within 1–5 minute of peptide exposure. Immuno-gold TEM showed CATH-2 binding to bacterial membranes. At sub-MIC values the peptide rapidly localized intracellularly without visible membrane permeabilization. It is concluded that CATH-2 has detrimental effects on E. coli at concentrations that do not immediately kill the bacteria. PMID:27624595
Lynnes, Ty; Horne, S M; Prüß, B M
2014-01-01
Bacterial infection by Escherichia coli O157:H7 through the consumption of beef meat or meat products is an ongoing problem, in part because bacteria develop resistances towards chemicals aimed at killing them. In an approach that uses bacterial nutrients to manipulate bacteria into behaviors or cellular phenotypes less harmful to humans, we screened a library of 95 carbon and 95 nitrogen sources for their effect on E. coli growth, cell division, and biofilm formation. In the initial screening experiment using the Phenotype MicroArray(TM) technology from BioLog (Hayward, CA), we narrowed the 190 starting nutrients down to eight which were consecutively tested as supplements in liquid beef broth medium. Acetoacetic acid (AAA) and ß-phenylethylamine (PEA) performed best in this experiment. On beef meat pieces, PEA reduced the bacterial cell count by 90% after incubation of the PEA treated and E. coli contaminated meat pieces at 10°C for one week. © 2013.
Bacterial toxin-antitoxin systems: more than selfish entities?
Van Melderen, Laurence; Saavedra De Bast, Manuel
2009-03-01
Bacterial toxin-antitoxin (TA) systems are diverse and widespread in the prokaryotic kingdom. They are composed of closely linked genes encoding a stable toxin that can harm the host cell and its cognate labile antitoxin, which protects the host from the toxin's deleterious effect. TA systems are thought to invade bacterial genomes through horizontal gene transfer. Some TA systems might behave as selfish elements and favour their own maintenance at the expense of their host. As a consequence, they may contribute to the maintenance of plasmids or genomic islands, such as super-integrons, by post-segregational killing of the cell that loses these genes and so suffers the stable toxin's destructive effect. The function of the chromosomally encoded TA systems is less clear and still open to debate. This Review discusses current hypotheses regarding the biological roles of these evolutionarily successful small operons. We consider the various selective forces that could drive the maintenance of TA systems in bacterial genomes.
Bacterial Toxin–Antitoxin Systems: More Than Selfish Entities?
Van Melderen, Laurence; Saavedra De Bast, Manuel
2009-01-01
Bacterial toxin–antitoxin (TA) systems are diverse and widespread in the prokaryotic kingdom. They are composed of closely linked genes encoding a stable toxin that can harm the host cell and its cognate labile antitoxin, which protects the host from the toxin's deleterious effect. TA systems are thought to invade bacterial genomes through horizontal gene transfer. Some TA systems might behave as selfish elements and favour their own maintenance at the expense of their host. As a consequence, they may contribute to the maintenance of plasmids or genomic islands, such as super-integrons, by post-segregational killing of the cell that loses these genes and so suffers the stable toxin's destructive effect. The function of the chromosomally encoded TA systems is less clear and still open to debate. This Review discusses current hypotheses regarding the biological roles of these evolutionarily successful small operons. We consider the various selective forces that could drive the maintenance of TA systems in bacterial genomes. PMID:19325885
Neethu, Sahadevan; Midhun, Sebastian Jose; Sunil, M A; Soumya, Soman; Radhakrishnan, E K; Jyothis, Mathew
2018-03-01
The green synthesis of silver nanoparticles (AgNPs) using biological systems such as fungi has evolved to become an important area of nanobiotechnology. Herein, we report for the first time the light-induced extracellular synthesis of silver nanoparticles using algicolous endophytic fungus Penicillium polonicum ARA 10, isolated from the marine green alga Chetomorpha antennina. Parametric optimization, including the concentration of AgNO 3 , fungal biomass, ratio of cell filtrate and AgNO 3 , pH, reaction time and presence of light, was done for rapid AgNPs production. The obtained silver nanoparticles (AgNPs) were characterized by UV-Visible spectroscopy, Fourier transform infrared (FTIR) spectroscopy, Raman spectroscopy and Transmission electron microscopy (HRTEM-EDAX). The AgNPs showed a characteristic UV-visible peak at 430 nm with an average size of 10-15 nm. The NH stretches in FTIR indicate the presence of protein molecules. The Raman vibrational bands suggest that the molecules responsible for the reduction and stability of AgNPs were extracellular proteins produced by P.polonicum. Antibacterial evaluation of AgNPs against the major foodborne bacterial pathogen Salmonella enterica serovar Typhimurium MTCC 1251, was assessed by well diffusion, Minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) assay. Killing kinetic studies revealed complete killing of the bacterial cells within 4 h and the bactericidal nature of synthesized nanoparticles was confirmed by fluorescent microscopy and scanning electron microscopy. Furthermore, the bactericidal studies with Transmission electron microscopy (TEM) at different time intervals explored the presence of AgNPs in the cell wall of S.Typhimurium at about 30 min and the complete bacterial lysis was found at 24 h. The current research opens an insight into the green synthesis of AgNPs and the mechanism of bacterial lysis by direct damage to the cell wall. Copyright © 2018 Elsevier B.V. All rights reserved.
Antibacterial Au nanostructured surfaces.
Wu, Songmei; Zuber, Flavia; Brugger, Juergen; Maniura-Weber, Katharina; Ren, Qun
2016-02-07
We present here a technological platform for engineering Au nanotopographies by templated electrodeposition on antibacterial surfaces. Three different types of nanostructures were fabricated: nanopillars, nanorings and nanonuggets. The nanopillars are the basic structures and are 50 nm in diameter and 100 nm in height. Particular arrangement of the nanopillars in various geometries formed nanorings and nanonuggets. Flat surfaces, rough substrate surfaces, and various nanostructured surfaces were compared for their abilities to attach and kill bacterial cells. Methicillin-resistant Staphylococcus aureus, a Gram-positive bacterial strain responsible for many infections in health care system, was used as the model bacterial strain. It was found that all the Au nanostructures, regardless their shapes, exhibited similar excellent antibacterial properties. A comparison of live cells attached to nanotopographic surfaces showed that the number of live S. aureus cells was <1% of that from flat and rough reference surfaces. Our micro/nanofabrication process is a scalable approach based on cost-efficient self-organization and provides potential for further developing functional surfaces to study the behavior of microbes on nanoscale topographies.
Hakim, Rahely
2009-01-01
Full-length antibodies and antibodies that ferry a cargo to target cells are desired biopharmaceuticals. We describe the production of full-length IgGs and IgG-toxin fusion proteins in E. coli. In the presented examples of anti CD30 and anti EGF-receptor antibodies, the antibody heavy and light chains or toxin fusions thereof were expressed in separate bacterial cultures, where they accumulated as insoluble inclusion bodies. Following refolding and purification, high yields (up to 50 mg/L of shake flask culture) of highly purified (>90%) full-length antibodies and antibody-toxin fusions were obtained. The bacterially produced antibodies, named “Inclonals,” equaled the performance of the same IgGs that were produced using conventional mammalian cell culture in binding properties as well as in cell killing potency. The rapid and cost effective IgG production process and the high quality of the resultant product may make the bacterial production of full-length IgG and IgG-drug fusion proteins an attractive option for antibody production and a significant contribution to recombinant antibody technology. PMID:20065645
Dynamic metabolic exchange governs a marine algal-bacterial interaction.
Segev, Einat; Wyche, Thomas P; Kim, Ki Hyun; Petersen, Jörn; Ellebrandt, Claire; Vlamakis, Hera; Barteneva, Natasha; Paulson, Joseph N; Chai, Liraz; Clardy, Jon; Kolter, Roberto
2016-11-18
Emiliania huxleyi is a model coccolithophore micro-alga that generates vast blooms in the ocean. Bacteria are not considered among the major factors influencing coccolithophore physiology. Here we show through a laboratory model system that the bacterium Phaeobacter inhibens , a well-studied member of the Roseobacter group, intimately interacts with E. huxleyi. While attached to the algal cell, bacteria initially promote algal growth but ultimately kill their algal host. Both algal growth enhancement and algal death are driven by the bacterially-produced phytohormone indole-3-acetic acid. Bacterial production of indole-3-acetic acid and attachment to algae are significantly increased by tryptophan, which is exuded from the algal cell. Algal death triggered by bacteria involves activation of pathways unique to oxidative stress response and programmed cell death. Our observations suggest that bacteria greatly influence the physiology and metabolism of E. huxleyi. Coccolithophore-bacteria interactions should be further studied in the environment to determine whether they impact micro-algal population dynamics on a global scale.
Combination Therapy Strategies Against Multiple-Resistant Streptococcus Suis.
Yu, Yang; Fang, Jin-Tao; Zheng, Mei; Zhang, Qing; Walsh, Timothy R; Liao, Xiao-Ping; Sun, Jian; Liu, Ya-Hong
2018-01-01
Streptococcus suis is a major swine pathogen, an emerging zoonotic agent responsible for meningitis, endocarditis and septicaemia followed by deafness in humans. The development of antimicrobial resistance in S. suis increases the risk for therapeutic failure in both animals and humans. In this study, we report the synergism of combination therapy against multi-resistant S. suis isolates from swine. Twelve antibiotic profiles were determined against 11 S. suis strains. To investigate their synergistic/antagonistic activity, checkerboard assay was performed for all the possible combinations. In-vitro killing curves and in-vivo treatment trials were used to confirm the synergistic activity of special combinations against S. suis dominant clones. In this study, 11 S. suis isolates were highly resistant to erythromycin, clindamycin, trimethoprim/sulfamethoxazole, and tetracycline with ratios of 80-100%, and the resistance percentages to enrofloxacin, florfenicol, and spectinomycin were ~50%. The checkerboard data identified two combination regimens, ampicillin plus apramycin and tiamulin plus spectinomycin which gave the greatest level of synergism against the S. suis strains. In-vitro kill-curves showed a bacterial reduction of over 3-logCFU with the use of combination treatments, whilst the application of mono-therapies achieve less than a 2-logCFU cell killing. In-vivo models confirm that administration of these two combinations significantly reduced the number of bacterial cells after 24 h of treatment. In conclusions, the combinations of ampicillin plus apramycin and tiamulin plus spectinomycin showed the greatest synergism and may be potential strategies for treatment of multi-resistant S. suis in animal.
A Safe Bacterial Microsyringe for In Vivo Antigen Delivery and Immunotherapy
Le Gouëllec, Audrey; Chauchet, Xavier; Laurin, David; Aspord, Caroline; Verove, Julien; Wang, Yan; Genestet, Charlotte; Trocme, Candice; Ahmadi, Mitra; Martin, Sandrine; Broisat, Alexis; Cretin, François; Ghezzi, Catherine; Polack, Benoit; Plumas, Joël; Toussaint, Bertrand
2013-01-01
The industrial development of active immunotherapy based on live-attenuated bacterial vectors has matured. We developed a microsyringe for antigen delivery based on the type III secretion system (T3SS) of P. aeruginosa. We applied the “killed but metabolically active” (KBMA) attenuation strategy to make this bacterial vector suitable for human use. We demonstrate that attenuated P. aeruginosa has the potential to deliver antigens to human antigen-presenting cells in vitro via T3SS with considerable attenuated cytotoxicity as compared with the wild-type vector. In a mouse model of cancer, we demonstrate that this KBMA strain, which cannot replicate in its host, efficiently disseminates into lymphoid organs and delivers its heterologous antigen. The attenuated strain effectively induces a cellular immune response to the cancerous cells while lowering the systemic inflammatory response. Hence, a KBMA P. aeruginosa microsyringe is an efficient and safe tool for in vivo antigen delivery. PMID:23531551
Bacterial cheating limits antibiotic resistance
NASA Astrophysics Data System (ADS)
Xiao Chao, Hui; Yurtsev, Eugene; Datta, Manoshi; Artemova, Tanya; Gore, Jeff
2012-02-01
The widespread use of antibiotics has led to the evolution of resistance in bacteria. Bacteria can gain resistance to the antibiotic ampicillin by acquiring a plasmid carrying the gene beta-lactamase, which inactivates the antibiotic. This inactivation may represent a cooperative behavior, as the entire bacterial population benefits from removing the antibiotic. The cooperative nature of this growth suggests that a cheater strain---which does not contribute to breaking down the antibiotic---may be able to take advantage of cells cooperatively inactivating the antibiotic. Here we find experimentally that a ``sensitive'' bacterial strain lacking the plasmid conferring resistance can invade a population of resistant bacteria, even in antibiotic concentrations that should kill the sensitive strain. We observe stable coexistence between the two strains and find that a simple model successfully explains the behavior as a function of antibiotic concentration and cell density. We anticipate that our results will provide insight into the evolutionary origin of phenotypic diversity and cooperative behaviors.
Bacterial Cheating Limits the Evolution of Antibiotic Resistance
NASA Astrophysics Data System (ADS)
Yurtsev, Eugene; Xiao Chao, Hui; Datta, Manoshi; Artemova, Tatiana; Gore, Jeff
2012-02-01
The emergence of antibiotic resistance in bacteria is a significant health concern. Bacteria can gain resistance to the antibiotic ampicillin by acquiring a plasmid carrying the gene beta-lactamase, which inactivates the antibiotic. This inactivation may represent a cooperative behavior, as the entire bacterial population benefits from removal of the antibiotic. The presence of a cooperative mechanism of resistance suggests that a cheater strain - which does not contribute to breaking down the antibiotic - may be able to take advantage of resistant cells. We find experimentally that a ``sensitive'' bacterial strain lacking the plasmid conferring resistance can invade a population of resistant bacteria, even in antibiotic concentrations that should kill the sensitive strain. We use a simple model in conjunction with difference equations to explain the observed population dynamics as a function of cell density and antibiotic concentration. Our experimental difference equations resemble the logistic map, raising the possibility of oscillations or even chaotic dynamics.
USDA-ARS?s Scientific Manuscript database
Yersinia ruckeri is a well-established bacterial pathogen for many salmonid species, against which a formalin-killed bacterin vaccine has been effective in reducing disease outbreaks. Previous studies have reported conflicting results about the protective value of the circulating humoral response to...
Hu, Yanmin; Shamaei-Tousi, Alireza; Liu, Yingjun; Coates, Anthony
2010-01-01
In a clinical infection, multiplying and non-multiplying bacteria co-exist. Antibiotics kill multiplying bacteria, but they are very inefficient at killing non-multipliers which leads to slow or partial death of the total target population of microbes in an infected tissue. This prolongs the duration of therapy, increases the emergence of resistance and so contributes to the short life span of antibiotics after they reach the market. Targeting non-multiplying bacteria from the onset of an antibiotic development program is a new concept. This paper describes the proof of principle for this concept, which has resulted in the development of the first antibiotic using this approach. The antibiotic, called HT61, is a small quinolone-derived compound with a molecular mass of about 400 Daltons, and is active against non-multiplying bacteria, including methicillin sensitive and resistant, as well as Panton-Valentine leukocidin-carrying Staphylococcus aureus. It also kills mupirocin resistant MRSA. The mechanism of action of the drug is depolarisation of the cell membrane and destruction of the cell wall. The speed of kill is within two hours. In comparison to the conventional antibiotics, HT61 kills non-multiplying cells more effectively, 6 logs versus less than one log for major marketed antibiotics. HT61 kills methicillin sensitive and resistant S. aureus in the murine skin bacterial colonization and infection models. No resistant phenotype was produced during 50 serial cultures over a one year period. The antibiotic caused no adverse affects after application to the skin of minipigs. Targeting non-multiplying bacteria using this method should be able to yield many new classes of antibiotic. These antibiotics may be able to reduce the rate of emergence of resistance, shorten the duration of therapy, and reduce relapse rates. PMID:20676403
Morita, Chisato; Sumioka, Ryuichi; Nakata, Masanobu; Okahashi, Nobuo; Wada, Satoshi; Yamashiro, Takashi; Hayashi, Mikako; Hamada, Shigeyuki; Sumitomo, Tomoko; Kawabata, Shigetada
2014-01-01
Streptococcus sanguinis, a member of the commensal mitis group of streptococci, is a primary colonizer of the tooth surface, and has been implicated in infectious complications including bacteremia and infective endocarditis. During disease progression, S. sanguinis may utilize various cell surface molecules to evade the host immune system to survive in blood. In the present study, we discovered a novel cell surface nuclease with a cell-wall anchor domain, termed SWAN (streptococcal wall-anchored nuclease), and investigated its contribution to bacterial resistance against the bacteriocidal activity of neutrophil extracellular traps (NETs). Recombinant SWAN protein (rSWAN) digested multiple forms of DNA including NET DNA and human RNA, which required both Mg(2+) and Ca(2+) for optimum activity. Furthermore, DNase activity of S. sanguinis was detected around growing colonies on agar plates containing DNA. In-frame deletion of the swan gene mostly reduced that activity. These findings indicated that SWAN is a major nuclease displayed on the surface, which was further confirmed by immuno-detection of SWAN in the cell wall fraction. The sensitivity of S. sanguinis to NET killing was reduced by swan gene deletion. Moreover, heterologous expression of the swan gene rendered a Lactococcus lactis strain more resistant to NET killing. Our results suggest that the SWAN nuclease on the bacterial surface contributes to survival in the potential situation of S. sanguinis encountering NETs during the course of disease progression.
Nakata, Masanobu; Okahashi, Nobuo; Wada, Satoshi; Yamashiro, Takashi; Hayashi, Mikako; Hamada, Shigeyuki; Sumitomo, Tomoko; Kawabata, Shigetada
2014-01-01
Streptococcus sanguinis, a member of the commensal mitis group of streptococci, is a primary colonizer of the tooth surface, and has been implicated in infectious complications including bacteremia and infective endocarditis. During disease progression, S. sanguinis may utilize various cell surface molecules to evade the host immune system to survive in blood. In the present study, we discovered a novel cell surface nuclease with a cell-wall anchor domain, termed SWAN (streptococcal wall-anchored nuclease), and investigated its contribution to bacterial resistance against the bacteriocidal activity of neutrophil extracellular traps (NETs). Recombinant SWAN protein (rSWAN) digested multiple forms of DNA including NET DNA and human RNA, which required both Mg2+ and Ca2+ for optimum activity. Furthermore, DNase activity of S. sanguinis was detected around growing colonies on agar plates containing DNA. In-frame deletion of the swan gene mostly reduced that activity. These findings indicated that SWAN is a major nuclease displayed on the surface, which was further confirmed by immuno-detection of SWAN in the cell wall fraction. The sensitivity of S. sanguinis to NET killing was reduced by swan gene deletion. Moreover, heterologous expression of the swan gene rendered a Lactococcus lactis strain more resistant to NET killing. Our results suggest that the SWAN nuclease on the bacterial surface contributes to survival in the potential situation of S. sanguinis encountering NETs during the course of disease progression. PMID:25084357
Persister formation in Staphylococcus aureus is associated with ATP depletion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Conlon, Brian P.; Rowe, Sarah E.; Gandt, Autumn Brown
Persisters are dormant phenotypic variants of bacterial cells that are tolerant to killing by antibiotics1. Persisters are associated with chronic bacterial infection and antibiotic treatment failure. In Escherichia coli, toxin/antitoxin (TA) modules are responsible for persister formation. The mechanism of persister formation in Gram positive bacteria is unknown. Staphylococcus aureus is a major human pathogen, responsible for a variety of chronic and relapsing infections such as osteomyelitis, endocarditis and infections of implanted devices. Deleting TA modules in S. aureus did not affect the level of persisters. Here we show that S. aureus persisters are produced due to a stochastic entrancemore » to stationary phase accompanied by a drop in intracellular ATP. Cells expressing stationary state markers are present throughout the growth phase, increasing in frequency with cell density. Cell sorting revealed that expression of stationary markers was associated with a 100-1000 fold increased likelihood of survival to antibiotic challenge. We find that the antibiotic tolerance of these cells is due to a drop in intracellular ATP. The ATP level of the cell is predictive of bactericidal antibiotic efficacy and explains bacterial tolerance to antibiotic treatment.« less
NASA Astrophysics Data System (ADS)
Shen, Ya; Zhao, Jia; de La Fuente-Núñez, César; Wang, Zhejun; Hancock, Robert E. W.; Roberts, Clive R.; Ma, Jingzhi; Li, Jun; Haapasalo, Markus; Wang, Qi
2016-06-01
We investigate recovery of multispecies oral biofilms following chlorhexidine gluconate (CHX) and CHX with surface modifiers (CHX-Plus) treatment. Specifically, we examine the percentage of viable bacteria in the biofilms following their exposure to CHX and CHX-Plus for 1, 3, and 10 minutes, respectively. Before antimicrobial treatment, the biofilms are allowed to grow for three weeks. We find that (a). CHX-Plus kills bacteria in biofilms more effectively than the regular 2% CHX does, (b). cell continues to be killed for up to one week after exposure to the CHX solutions, (c). the biofilms start to recover after two weeks, the percentage of the viable bacteria recovers in the 1 and 3 minutes treatment groups but not in the 10 minutes treatment group after five weeks, and the biofilms fully return to the pretreatment levels after eight weeks. To understand the mechanism, a mathematical model for multiple bacterial phenotypes is developed, adopting the notion that bacterial persisters exist in the biofilms together with regulatory quorum sensing molecules and growth factor proteins. The model reveals the crucial role played by the persisters, quorum sensing molecules, and growth factors in biofilm recovery, accurately predicting the viable bacterial population after CHX treatment.
Bactericidal behavior of Cu-containing stainless steel surfaces
NASA Astrophysics Data System (ADS)
Zhang, Xiangyu; Huang, Xiaobo; Ma, Yong; Lin, Naiming; Fan, Ailan; Tang, Bin
2012-10-01
Stainless steels are one of the most common materials used in health care environments. However, the lack of antibacterial advantage has limited their use in practical application. In this paper, antibacterial stainless steel surfaces with different Cu contents have been prepared by plasma surface alloying technology (PSAT). The steel surface with Cu content 90 wt.% (Cu-SS) exhibits strong bactericidal activity against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) within 3 h. Although the Cu-containing surface with Cu content 2.5 wt.% (CuNi-SS) can also kill all tested bacteria, this process needs 12 h. SEM observation of the bacterial morphology and an agarose gel electrophoresis were performed to study the antibacterial mechanism of Cu-containing stainless steel surfaces against E. coli. The results indicated that Cu ions are released when the Cu-containing surfaces are in contact with bacterial and disrupt the cell membranes, killing the bacteria. The toxicity of Cu-alloyed surfaces does not cause damage to the bacterial DNA. These results provide a scientific explanation for the antimicrobial applications of Cu-containing stainless steel. The surfaces with different antibacterial abilities could be used as hygienic surfaces in healthcare-associated settings according to the diverse requirement of bactericidal activities.
Scandorieiro, Sara; de Camargo, Larissa C.; Lancheros, Cesar A. C.; Yamada-Ogatta, Sueli F.; Nakamura, Celso V.; de Oliveira, Admilton G.; Andrade, Célia G. T. J.; Duran, Nelson; Nakazato, Gerson; Kobayashi, Renata K. T.
2016-01-01
Bacterial resistance to conventional antibiotics has become a clinical and public health problem, making therapeutic decisions more challenging. Plant compounds and nanodrugs have been proposed as potential antimicrobial alternatives. Studies have shown that oregano (Origanum vulgare) essential oil (OEO) and silver nanoparticles have potent antibacterial activity, also against multidrug-resistant strains; however, the strong organoleptic characteristics of OEO and the development of resistance to these metal nanoparticles can limit their use. This study evaluated the antibacterial effect of a two-drug combination of biologically synthesized silver nanoparticles (bio-AgNP), produced by Fusarium oxysporum, and OEO against Gram-positive and Gram-negative bacteria, including multidrug-resistant strains. OEO and bio-AgNP showed bactericidal effects against all 17 strains tested, with minimal inhibitory concentrations (MIC) ranging from 0.298 to 1.193 mg/mL and 62.5 to 250 μM, respectively. Time-kill curves indicated that OEO acted rapidly (within 10 min), while the metallic nanoparticles took 4 h to kill Gram-negative bacteria and 24 h to kill Gram-positive bacteria. The combination of the two compounds resulted in a synergistic or additive effect, reducing their MIC values and reducing the time of action compared to bio-AgNP used alone, i.e., 20 min for Gram-negative bacteria and 7 h for Gram-positive bacteria. Scanning electron microscopy (SEM) revealed similar morphological alterations in Staphylococcus aureus (non-methicillin-resistant S. aureus, non-MRSA) cells exposed to three different treatments (OEO, bio-AgNP and combination of the two), which appeared cell surface blebbing. Individual and combined treatments showed reduction in cell density and decrease in exopolysaccharide matrix compared to untreated bacterial cells. It indicated that this composition have an antimicrobial activity against S. aureus by disrupting cells. Both compounds showed very low hemolytic activity, especially at MIC levels. This study describes for the first time the synergistic and additive interaction between OEO and bio-AgNP produced by F. oxysporum against multidrug-resistant bacteria, such as MRSA, and β-lactamase- and carbapenemase-producing Escherichia coli and Acinetobacter baumannii strains. These results indicated that this combination can be an alternative in the control of infections with few or no treatment options. PMID:27242772
Scandorieiro, Sara; de Camargo, Larissa C; Lancheros, Cesar A C; Yamada-Ogatta, Sueli F; Nakamura, Celso V; de Oliveira, Admilton G; Andrade, Célia G T J; Duran, Nelson; Nakazato, Gerson; Kobayashi, Renata K T
2016-01-01
Bacterial resistance to conventional antibiotics has become a clinical and public health problem, making therapeutic decisions more challenging. Plant compounds and nanodrugs have been proposed as potential antimicrobial alternatives. Studies have shown that oregano (Origanum vulgare) essential oil (OEO) and silver nanoparticles have potent antibacterial activity, also against multidrug-resistant strains; however, the strong organoleptic characteristics of OEO and the development of resistance to these metal nanoparticles can limit their use. This study evaluated the antibacterial effect of a two-drug combination of biologically synthesized silver nanoparticles (bio-AgNP), produced by Fusarium oxysporum, and OEO against Gram-positive and Gram-negative bacteria, including multidrug-resistant strains. OEO and bio-AgNP showed bactericidal effects against all 17 strains tested, with minimal inhibitory concentrations (MIC) ranging from 0.298 to 1.193 mg/mL and 62.5 to 250 μM, respectively. Time-kill curves indicated that OEO acted rapidly (within 10 min), while the metallic nanoparticles took 4 h to kill Gram-negative bacteria and 24 h to kill Gram-positive bacteria. The combination of the two compounds resulted in a synergistic or additive effect, reducing their MIC values and reducing the time of action compared to bio-AgNP used alone, i.e., 20 min for Gram-negative bacteria and 7 h for Gram-positive bacteria. Scanning electron microscopy (SEM) revealed similar morphological alterations in Staphylococcus aureus (non-methicillin-resistant S. aureus, non-MRSA) cells exposed to three different treatments (OEO, bio-AgNP and combination of the two), which appeared cell surface blebbing. Individual and combined treatments showed reduction in cell density and decrease in exopolysaccharide matrix compared to untreated bacterial cells. It indicated that this composition have an antimicrobial activity against S. aureus by disrupting cells. Both compounds showed very low hemolytic activity, especially at MIC levels. This study describes for the first time the synergistic and additive interaction between OEO and bio-AgNP produced by F. oxysporum against multidrug-resistant bacteria, such as MRSA, and β-lactamase- and carbapenemase-producing Escherichia coli and Acinetobacter baumannii strains. These results indicated that this combination can be an alternative in the control of infections with few or no treatment options.
Antibacterial Properties and Mechanism of Activity of a Novel Silver-Stabilized Hydrogen Peroxide
Martin, Nancy L.; Bass, Paul; Liss, Steven N.
2015-01-01
Huwa-San peroxide (hydrogen peroxide; HSP) is a NSF Standard 60 (maximum 8mg/L-1) new generation peroxide stabilized with ionic silver suitable for continuous disinfection of potable water. Experiments were undertaken to examine the mechanism of HSP against planktonic and biofilm cultures of indicator bacterial strains. Contact/kill time (CT) relationships that achieve effective control were explored to determine the potential utility in primary disinfection. Inhibitory assays were conducted using both nutrient rich media and a medium based on synthetic wastewater. Assays were compared for exposures to three disinfectants (HSP, laboratory grade hydrogen peroxide (HP) and sodium hypochlorite) at concentrations of 20 ppm (therefore at 2.5 and 5 times the NSF limit for HP and sodium hypochlorite, respectively) and at pH 7.0 and 8.5 in dechlorinated tap water. HSP was found to be more or equally effective as hypochlorite or HP. Results from CT assays comparing HSP and HP at different bacterial concentrations with neutralization of residual peroxide with catalase suggested that at a high bacterial concentration HSP, but not HP, was protected from catalase degradation possibly through sequestration by bacterial cells. Consistent with this hypothesis, at a low bacterial cell density residual HSP was more effectively neutralized as less HSP was associated with bacteria and therefore accessible to catalase. Silver in HSP may facilitate this association through electrostatic interactions at the cell surface. This was supported by experiments where the addition of mono (K+) and divalent (Ca+2) cations (0.005-0.05M) reduced the killing efficacy of HSP but not HP. Experiments designed to distinguish any inhibitory effect of silver from that of peroxide in HSP were carried out by monitoring the metabolic activity of established P. aeruginosa PAO1 biofilms. Concentrations of 70-500 ppm HSP had a pronounced effect on metabolic activity while the equivalent concentrations of ionic silver (50- 375 ppb) had a negligible effect, demonstrating that the microbiocidal activity of HSP was due to peroxide rather than silver. Overall, it was found that the antimicrobial activity of HSP is enhanced over that of hydrogen peroxide; the presence of the ionic silver enhances interactions of HSP with the bacterial cell surface rather than acting directly as a biocide at the tested concentrations. PMID:26154263
NASA Astrophysics Data System (ADS)
Roest, Steven; van der Mei, Henny C.; Loontjens, Ton J. A.; Busscher, Henk J.
2015-11-01
Coatings of immobilized-quaternary-ammonium-ions (QUAT) uniquely kill adhering bacteria upon contact. QUAT-coatings require a minimal cationic-charge surface density for effective contact-killing of adhering bacteria of around 1014 cm-2. Quaternization of nitrogen is generally achieved through alkylation. Here, we investigate the contribution of additional alkylation with methyl-iodide to the cationic-charge density of hexyl-bromide alkylated, hyperbranched polyurea-polyethyleneimine coatings measuring charge density with fluorescein staining. X-ray-photoelectron-spectroscopy was used to determine the at.% alkylated-nitrogen. Also streaming potentials, water contact-angles and bacterial contact-killing were measured. Cationic-charge density increased with methyl-iodide alkylation times up to 18 h, accompanied by an increase in the at.% alkylated-nitrogen. Zeta-potentials became more negative upon alkylation as a result of shielding of cationiccharges by hydrophobic alkyl-chains. Contact-killing of Gram-positive Staphylococci only occurred when the cationic-charge density exceeded 1016 cm-2 and was carried by alkylated-nitrogen (electron-binding energy 401.3 eV). Gram-negative Escherichia coli was not killed upon contact with the coatings. There with this study reveals that cationic-charge density is neither appropriate nor sufficient to determine the ability of QUAT-coatings to kill adhering bacteria. Alternatively, the at.% of alkylated-nitrogen at 401.3 eV is proposed, as it reflects both cationic-charge and its carrier. The at.% N401.3 eV should be above 0.45 at.% for Gram-positive bacterial contact-killing.
Proline-rich antimicrobial peptides: converging to a non-lytic mechanism of action.
Scocchi, Marco; Tossi, Alessandro; Gennaro, Renato
2011-07-01
Proline-rich antimicrobial peptides are a group of cationic host defense peptides of vertebrates and invertebrates characterized by a high content of proline residues, often associated with arginine residues in repeated motifs. Those isolated from some mammalian and insect species, although not evolutionarily related, use a similar mechanism to selectively kill Gram-negative bacteria, with a low toxicity to animals. Unlike other types of antimicrobial peptides, their mode of action does not involve the lysis of bacterial membranes but entails penetration into susceptible cells, where they then act intracellularly. Some aspects of the transport system and cytoplasmic targets have been elucidated. These features make them attractive both as anti-infective lead compounds and as a new class of potential cell-penetrating peptides capable of internalising membrane-impermeant drugs into both bacterial and eukaryotic cells.
Copper isotope fractionation during surface adsorption and intracellular incorporation by bacteria
Navarrete, Jesica U.; Borrok, David M.; Viveros, Marian; Ellzey, Joanne T.
2011-01-01
Copper isotopes may prove to be a useful tool for investigating bacteria–metal interactions recorded in natural waters, soils, and rocks. However, experimental data which attempt to constrain Cu isotope fractionation in biologic systems are limited and unclear. In this study, we utilized Cu isotopes (δ65Cu) to investigate Cu–bacteria interactions, including surface adsorption and intracellular incorporation. Experiments were conducted with individual representative species of Gram-positive (Bacillus subtilis) and Gram-negative (Escherichia coli) bacteria, as well as with wild-type consortia of microorganisms from several natural environments. Ph-dependent adsorption experiments were conducted with live and dead cells over the pH range 2.5–6. Surface adsorption experiments of Cu onto live bacterial cells resulted in apparent separation factors (Δ65Cusolution–solid = δ65Cusolution – δ65Cusolid) ranging from +0.3‰ to +1.4‰ for B. subtilis and +0.2‰ to +2.6‰ for E. coli. However, because heat-killed bacterial cells did not exhibit this behavior, the preference of the lighter Cu isotope by the cells is probably not related to reversible surface adsorption, but instead is a metabolically-driven phenomenon. Adsorption experiments with heat-killed cells yielded apparent separation factors ranging from +0.3‰ to –0.69‰ which likely reflects fractionation from complexation with organic acid surface functional group sites. For intracellular incorporation experiments the lab strains and natural consortia preferentially incorporated the lighter Cu isotope with an apparent Δ65Cusolution–solid ranging from ~+1.0‰ to +4.4‰. Our results indicate that live bacterial cells preferentially sequester the lighter Cu isotope regardless of the experimental conditions. The fractionation mechanisms involved are likely related to active cellular transport and regulation, including the reduction of Cu(II) to Cu(I). Because similar intracellular Cu machinery is shared by fungi, plants, and higher organisms, the influence of biological processes on the δ65Cu of natural waters and soils is probably considerable. PMID:21785492
Dalia, Ankur B.; Weiser, Jeffrey N.
2011-01-01
SUMMARY The complement system, which functions by lysing pathogens directly or by promoting their uptake by phagocytes, is critical for controlling many microbial infections. Here we show that in Streptococcus pneumoniae, increasing bacterial chain length sensitizes this pathogen to complement deposition and subsequent uptake by human neutrophils. Consistent with this, we show that minimizing chain length provides wild-type bacteria with a competitive advantage in vivo in a model of systemic infection. Investigating how the host overcomes this virulence strategy, we find that antibody promotes complement-dependent opsonophagocytic killing of Streptococcus pneumoniae and lysis of Haemophilus influenzae independent of Fc-mediated effector functions. Consistent with the agglutinating effect of antibody, F(ab′)2 but not Fab could promote this effect. Therefore, increasing pathogen size, whether by natural changes in cellular morphology or via antibody-mediated agglutination, promotes complement-dependent killing. These observations have broad implications for how cell size and morphology can affect virulence among pathogenic microbes. PMID:22100164
Marini, F C; Cannon, J P; Belmont, J W; Shillitoe, E J; Lapeyre, J N
1995-09-01
We evaluated the ability of a replication-deficient, recombinant adenoviral vector to transfer the bifunctional gene GAL-TEK, which expresses a marking/therapeutic gene product, to naturally occurring cat fibrosarcomas in situ. GAL-TEK contains an in-frame fusion of the bacterial LacZ gene for histochemical marking of tumors with beta-galactosidase (beta-Gal) and the HSV tk gene for enzyme-prodrug activation of the prodrug ganciclovir (GCV) to induce selective tumor cell killing. GAL-TEK bifunctional marking and cell killing activities were tested in vitro after adenoviral vector infection of HT1080 human fibrosarcoma cells. The tk activity of GAL-TEK is shown to be almost as potent as HSV tk to catalyze conversion of GCV to GCV nucleotides and promote selective cell killing. Using 8 cats with recurring 2.5-cm2 fibrosarcomas that either arose spontaneously or were induced by vaccine, we determined experimentally the administration routes and times required for optimum GAL-TEK gene transfer by beta-Gal histological staining and reverse transcriptase polymerase chain reaction to the multiple compartments of the growing fibrosarcomas consonant with minimizing collateral infection of neighboring tissues and other unwanted side effects.
The type VI secretion system of Vibrio cholerae fosters horizontal gene transfer.
Borgeaud, Sandrine; Metzger, Lisa C; Scrignari, Tiziana; Blokesch, Melanie
2015-01-02
Natural competence for transformation is a common mode of horizontal gene transfer and contributes to bacterial evolution. Transformation occurs through the uptake of external DNA and its integration into the genome. Here we show that the type VI secretion system (T6SS), which serves as a predatory killing device, is part of the competence regulon in the naturally transformable pathogen Vibrio cholerae. The T6SS-encoding gene cluster is under the positive control of the competence regulators TfoX and QstR and is induced by growth on chitinous surfaces. Live-cell imaging revealed that deliberate killing of nonimmune cells via competence-mediated induction of T6SS releases DNA and makes it accessible for horizontal gene transfer in V. cholerae. Copyright © 2015, American Association for the Advancement of Science.
Endotoxin activity of Moraxella osloensis against the grey garden slug, Deroceras reticulatum.
Tan, Li; Grewal, Parwinder S
2002-08-01
Moraxella osloensis is a gram-negative bacterium associated with Phasmarhabditis hermaphrodita, a slug-parasitic nematode that has prospects for biological control of mollusk pests, especially the grey garden slug, Deroceras reticulatum. This bacterium-feeding nematode acts as a vector that transports M. osloensis into the shell cavity of the slug, and the bacterium is the killing agent in the nematode-bacterium complex. We discovered that M. osloensis produces an endotoxin(s), which is tolerant to heat and protease treatments and kills the slug after injection into the shell cavity. Washed or broken cells treated with penicillin and streptomycin from 3-day M. osloensis cultures were more pathogenic than similar cells from 2-day M. osloensis cultures. However, heat and protease treatments and 2 days of storage at 22 degrees C increased the endotoxin activity of the young broken cells but not the endotoxin activity of the young washed cells treated with the antibiotics. This suggests that there may be a proteinaceous substance(s) that is structurally associated with the endotoxin(s) and masks its toxicity in the young bacterial cells. Moreover, 2 days of storage of the young washed bacterial cells at 22 degrees C enhanced their endotoxin activity if they were not treated with the antibiotics. Furthermore, purified lipopolysaccharide (LPS) from the 3-day M. osloensis cultures was toxic to slugs, with an estimated 50% lethal dose of 48 microg per slug, thus demonstrating that the LPS of M. osloensis is an endotoxin that is active against D. reticulatum. This appears to be the first report of a biological toxin that is active against mollusks.
Deng, Qiuchan; Sun, Mingxia; Yang, Kun; Zhu, Min; Chen, Kang; Yuan, Jin; Wu, Minhao; Huang, Xi
2013-01-01
Purpose. We explored the role of myeloid-related protein 8 and 14 (MRP8/14) in Pseudomonas aeruginosa (PA) keratitis. Methods. MRP8/14 mRNA levels in human corneal scrapes and mouse corneas infected by PA were tested using real-time PCR. MRP8/14 protein expression in C57BL/6 (B6) corneas was confirmed using Western blot assay and immunohistochemistry. B6 mice were injected subconjunctivally with siRNA for MRP8/14, and then infected with PA. Bacterial plate counts and myeloperoxidase assays were used to determine the bacterial load and polymorphonuclear neutrophil (PMN) infiltration in infected B6 corneas. Pro-inflammatory cytokine levels in vivo and in vitro were examined with PCR and ELISA. In murine macrophage-like RAW264.7 cells, phagocytosis and bacterial killing were assessed using plate count assays, and reactive oxygen species (ROS) and nitric oxide (NO) levels were tested with flow cytometry and Griess assay, respectively. Results. MRP8/14 expression levels were increased significantly in human corneal scrapes and B6 corneas after PA infection. Silencing of MRP8/14 in B6 corneas significantly reduced the severity of corneal disease, bacterial clearance, PMN infiltration, and pro-inflammatory cytokine expression after PA infection. In vitro studies demonstrated further that silencing of MRP8/14 suppressed pro-inflammatory cytokine production, bacterial killing, and ROS production, but not phagocytosis or NO production. Conclusions. Our study demonstrated a dual role for MRP8/14 in bacterial keratitis. Although MRP8/14 promotes bacterial clearance by enhancing ROS production, it functions more importantly as an inflammatory amplifier at the ocular surface by enhancing pro-inflammatory cytokine expression, thus contributing to the corneal susceptibility. PMID:23299480
Antibiotic efficacy is linked to bacterial cellular respiration
Lobritz, Michael A.; Belenky, Peter; Porter, Caroline B. M.; Gutierrez, Arnaud; Yang, Jason H.; Schwarz, Eric G.; Dwyer, Daniel J.; Khalil, Ahmad S.; Collins, James J.
2015-01-01
Bacteriostatic and bactericidal antibiotic treatments result in two fundamentally different phenotypic outcomes—the inhibition of bacterial growth or, alternatively, cell death. Most antibiotics inhibit processes that are major consumers of cellular energy output, suggesting that antibiotic treatment may have important downstream consequences on bacterial metabolism. We hypothesized that the specific metabolic effects of bacteriostatic and bactericidal antibiotics contribute to their overall efficacy. We leveraged the opposing phenotypes of bacteriostatic and bactericidal drugs in combination to investigate their activity. Growth inhibition from bacteriostatic antibiotics was associated with suppressed cellular respiration whereas cell death from most bactericidal antibiotics was associated with accelerated respiration. In combination, suppression of cellular respiration by the bacteriostatic antibiotic was the dominant effect, blocking bactericidal killing. Global metabolic profiling of bacteriostatic antibiotic treatment revealed that accumulation of metabolites involved in specific drug target activity was linked to the buildup of energy metabolites that feed the electron transport chain. Inhibition of cellular respiration by knockout of the cytochrome oxidases was sufficient to attenuate bactericidal lethality whereas acceleration of basal respiration by genetically uncoupling ATP synthesis from electron transport resulted in potentiation of the killing effect of bactericidal antibiotics. This work identifies a link between antibiotic-induced cellular respiration and bactericidal lethality and demonstrates that bactericidal activity can be arrested by attenuated respiration and potentiated by accelerated respiration. Our data collectively show that antibiotics perturb the metabolic state of bacteria and that the metabolic state of bacteria impacts antibiotic efficacy. PMID:26100898
Lee, Michelle W.; Chakraborty, Saswata; Schmidt, Nathan W.; Murgai, Rajan; Gellman, Samuel H.; Wong, Gerard C.L.
2015-01-01
Novel synthetic mimics of antimicrobial peptides have been developed to exhibit structural properties and antimicrobial activity similar to those of natural antimicrobial peptides (AMPs) of the innate immune system. These molecules have a number of potential advantages over conventional antibiotics, including reduced bacterial resistance, cost-effective preparation, and customizable designs. In this study, we investigate a family of nylon-3 polymer-based antimicrobials. By combining vesicle dye leakage, bacterial permeation, and bactericidal assays with small-angle X-ray scattering (SAXS), we find that these polymers are capable of two interdependent mechanisms of action: permeation of bacterial membranes and binding to intracellular targets such as DNA, with the latter necessarily dependent on the former. We systemically examine polymer-induced membrane deformation modes across a range of lipid compositions that mimic both bacteria and mammalian cell membranes. The results show that the polymers' ability to generate negative Gaussian curvature (NGC), a topological requirement for membrane permeation and cellular entry, in model Escherichia coli membranes correlates with their ability to permeate membranes without complete membrane disruption and kill E. coli cells. Our findings suggest that these polymers operate with a concentration dependent mechanism of action: at low concentrations permeation and DNA binding occur without membrane disruption, while at high concentrations complete disruption of the membrane occurs. This article is part of a Special Issue entitled: Interfacially Active Peptides and Proteins. PMID:24743021
Ozone disinfection of home nebulizers effectively kills common cystic fibrosis bacterial pathogens.
Towle, Dana; Baker, Vanisha; Schramm, Craig; O'Brien, Matthew; Collins, Melanie S; Feinn, Richard; Murray, Thomas S
2018-05-01
The Cystic Fibrosis Foundation (CFF) recommends routine nebulizer disinfection for patients but compliance is challenging due to the heavy burden of home care. SoClean® is a user friendly ozone based home disinfection device currently for home respiratory equipment. The objective of this study was to determine whether SoClean® has potential as a disinfection device for families with CF by killing CF associated bacteria without altering nebulizer output. Ozone based disinfection effectively kills bacterial pathogens inoculated to home nebulizer equipment without gross changes in nebulizer function. Common bacterial pathogens associated with CF were inoculated onto the PariLC® jet nebulizer and bacterial recovery compared with or without varied ozone exposure. In separate experiments, nebulizer output was estimated after repeated ozone exposure by weighing the nebulizer. Ozone disinfection was time dependent with a 5 min infusion time and 120 min dwell time effectively killing >99.99% bacteria tested including Pseudomonas aeruginosa and Staphylococcus aureus. Over 250 h of repeat ozone exposure did not alter nebulizer output. This suggests SoClean® has potential as a user-friendly disinfection technique for home respiratory equipment. © 2018 Wiley Periodicals, Inc.
The galvanizing of Mycobacterium tuberculosis: an antimicrobial mechanism.
Russell, David G
2011-09-15
Evolving under constant threat from invading microbes, macrophages have acquired multiple means of killing bacteria. In this issue of Cell Host & Microbe, Botella and colleagues (Botella et al., 2011) describe a novel antimicrobial mechanism based on elevated levels of intraphagosomal Zn(2+) and the corresponding induction of bacterial genes to ameliorate this host-derived stress. Copyright © 2011 Elsevier Inc. All rights reserved.
Biocontrol of Ralstonia solanacearum by Treatment with Lytic Bacteriophages ▿ †
Fujiwara, Akiko; Fujisawa, Mariko; Hamasaki, Ryosuke; Kawasaki, Takeru; Fujie, Makoto; Yamada, Takashi
2011-01-01
Ralstonia solanacearum is a Gram-negative bacterium and the causative agent of bacterial wilt in many important crops. We treated R. solanacearum with three lytic phages: φRSA1, φRSB1, and φRSL1. Infection with φRSA1 and φRSB1, either alone or in combination with the other phages, resulted in a rapid decrease in the host bacterial cell density. Cells that were resistant to infection by these phages became evident approximately 30 h after phage addition to the culture. On the other hand, cells infected solely with φRSL1 in a batch culture were maintained at a lower cell density (1/3 of control) over a long period. Pretreatment of tomato seedlings with φRSL1 drastically limited penetration, growth, and movement of root-inoculated bacterial cells. All φRSL1-treated tomato plants showed no symptoms of wilting during the experimental period, whereas all untreated plants had wilted by 18 days postinfection. φRSL1 was shown to be relatively stable in soil, especially at higher temperatures (37 to 50°C). Active φRSL1 particles were recovered from the roots of treated plants and from soil 4 months postinfection. Based on these observations, we propose an alternative biocontrol method using a unique phage, such as φRSL1, instead of a phage cocktail with highly virulent phages. Using this method, φRSL1 killed some but not all bacterial cells. The coexistence of bacterial cells and the phage resulted in effective prevention of wilting. PMID:21498752
van der Maten, Erika; de Jonge, Marien I; de Groot, Ronald; van der Flier, Michiel; Langereis, Jeroen D
2017-02-08
Most bacteria entering the bloodstream will be eliminated through complement activation on the bacterial surface and opsonophagocytosis. However, when these protective innate immune systems do not work optimally, or when bacteria are equipped with immune evasion mechanisms that prevent killing, this can lead to serious infections such as bacteremia and meningitis, which is associated with high morbidity and mortality. In order to study the complement evasion mechanisms of bacteria and the capacity of human blood to opsonize and kill bacteria, we developed a versatile whole blood killing assay wherein both phagocyte function and complement activity can easily be monitored and modulated. In this assay we use a selective thrombin inhibitor hirudin to fully preserve complement activity of whole blood. This assay allows controlled analysis of the requirements for active complement by replacing or heat-inactivating plasma, phagocyte function and bacterial immune evasion mechanisms that contribute to survival in human blood.
van der Maten, Erika; de Jonge, Marien I.; de Groot, Ronald; van der Flier, Michiel; Langereis, Jeroen D.
2017-01-01
Most bacteria entering the bloodstream will be eliminated through complement activation on the bacterial surface and opsonophagocytosis. However, when these protective innate immune systems do not work optimally, or when bacteria are equipped with immune evasion mechanisms that prevent killing, this can lead to serious infections such as bacteremia and meningitis, which is associated with high morbidity and mortality. In order to study the complement evasion mechanisms of bacteria and the capacity of human blood to opsonize and kill bacteria, we developed a versatile whole blood killing assay wherein both phagocyte function and complement activity can easily be monitored and modulated. In this assay we use a selective thrombin inhibitor hirudin to fully preserve complement activity of whole blood. This assay allows controlled analysis of the requirements for active complement by replacing or heat-inactivating plasma, phagocyte function and bacterial immune evasion mechanisms that contribute to survival in human blood. PMID:28176849
Junge, Karen; Eicken, Hajo; Swanson, Brian D; Deming, Jody W
2006-06-01
Direct evidence for metabolism in a variety of frozen environments has pushed temperature limits for bacterial activity to increasingly lower temperatures, so far to -20 degrees C. To date, the metabolic activities of marine psychrophilic bacteria, important components of sea-ice communities, have not been studied in laboratory culture, not in ice and not below -12 degrees C. We measured [3H]-leucine incorporation into macromolecules (further fractionated biochemically) by the marine psychrophilic bacterium Colwellia psychrerythraea strain 34H over a range of anticipated activity-permissive temperatures, from +13 to -20 degrees C, including expected negative controls at -80 and -196 degrees C. For incubation temperatures below -1 degrees C, the cell suspensions [all in artificial seawater (ASW)] were first quick-frozen in liquid nitrogen. We also examined the effect of added extracellular polymeric substances (EPS) on [3H]-leucine incorporation. Results showed that live cells of strain 34H incorporated substantial amounts of [3H]-leucine into TCA-precipitable material (primarily protein) down to -20 degrees C. At temperatures from -1 to -20 degrees C, rates were enhanced by EPS. No activity was detected in the killed controls for strain 34H (or in Escherichia coli controls), which included TCA-killed, heat-killed, and sodium azide- and chloramphenicol-treated samples. Surprisingly, evidence for low but significant rates of intracellular incorporation of [3H]-leucine into protein was observed for both ASW-only and EPS-amended (and live only) samples incubated at -80 and -196 degrees C. Mechanisms that could explain the latter results require further study, but the process of vitrification promoted by rapid freezing and the presence of salts and organic polymers may be relevant. Overall, distinguishing between intracellular and extracellular aspects of bacterial activity appears important to understanding behavior at sub-freezing temperatures.
Liu, Jiabin; Behrens, Timothy W.; Kearney, John F.
2014-01-01
Marginal Zone (MZ) B cells play an important role in the clearance of blood-borne bacterial infections via rapid T-independent IgM responses. We have previously demonstrated that MZ B cells respond rapidly and robustly to bacterial particulates. To determine the MZ-specific genes that are expressed to allow for this response, MZ and Follicular (FO) B cells were sort-purified and analyzed via DNA microarray analysis. We identified 181 genes that were significantly different between the two B cell populations. 99 genes were more highly expressed in MZ B cells while 82 genes were more highly expressed in FO B cells. To further understand the molecular mechanisms by which MZ B cells respond so rapidly to bacterial challenge, idiotype positive and negative MZ B cells were sort-purified before (0 hour) or after (1 hour) i.v. immunization with heat killed Streptococcus pneumoniae, R36A, and analyzed via DNA microarray analysis. We identified genes specifically up regulated or down regulated at 1 hour following immunization in the idiotype positive MZ B cells. These results give insight into the gene expression pattern in resting MZ vs. FO B cells and the specific regulation of gene expression in antigen-specific MZ B cells following interaction with antigen. PMID:18453586
A nanovehicle developed for treating deep-seated bacteria using low-dose X-ray.
Pan, Chien-Lin; Chen, Ming-Hong; Tung, Fu-I; Liu, Tse-Ying
2017-01-01
Many non-antibiotic strategies, such as photocatalysis and photodynamic therapy, have been proposed to inhibit and/or kill bacteria. However, these approaches still have drawbacks such as insufficient bacterial specificity and the limited penetration depth of ultraviolet and near-infrared light. To overcome these limitations, we developed a bacteria-specific anti-bacterial technique via using low-dose X-ray. Graphene oxide quantum dots (GQDs, a multifunctional vehicle) conjugated with vancomycin (Van, a bacteria-targeting ligand) were assembled with Protoporphyrin IX (PpIX, a photo/radiation sensitizer) to yield a novel Van-GQDs/PpIX complex that specifically attached to Escherichia coli and efficiently generated intracellular reactive oxygen species following X-ray activation. Delivery using GQDs increased the PpIX/Van ratio in the target bacterial cell, damaged bacterial cell wall, and enhanced X-ray-induced PpIX activation. Hence, this approach allowed for the use of a low-dose X-ray to efficiently activate the Van-GQDs/PpIX complex to exert its bactericidal effects on Escherichia coli without damaging normal cells. Furthermore, the E. coli did not develop resistance to the proposed approach for at least 7 rounds of repeated administration during one week. Thus, this proposed vehicle exhibiting bacteria-specific X-ray-triggered toxicity is a promising alternative to antibiotics for treating serious bacterial infections occurring in deep-seated tissues/organs (e.g., osteomyelitis and peritonitis). Administration of antibiotics is the most common treatment modality for bacterial infections. However, in some cases, patient attributes such as age, health, tolerance to antibiotics do not allow for the use of high-dose antibiotics. In addition, some bacteria develop resistance to antibiotics because of improper and long-term use of these agents. Therefore, non-antibiotic strategies to treat deeply situated bacterial infections, such as osteomyelitis, are urgently needed for avoiding amputation. To date, several non-antibiotic approaches, such as Ag nanoparticles, graphene-based materials, photocatalysis, and photodynamic therapy have been proposed to inhibit and/or kill bacteria. However, the major challenges of photochemical strategies, specificity and limited penetration depth of light source, still remain for treating the deep-seated bacteria. To overcome these problems, we developed a novel nanovehicle that exerted toxic effects specifically on bacteria following activation by a deeply penetrative low-dose X-ray, without damaging normal cells. As such, it realizes a deeply photochemical route for treating the deep-seated bacteria. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Listeria monocytogenes infection of HD11, chicken macrophage-like cells.
Jarvis, N A; Donaldson, J R; O'Bryan, C A; Ricke, S C; Crandall, P G
2017-04-01
Listeria monocytogenes can be carried by and infect poultry, although the clinical disease in birds is rare. Escape from macrophage phagocytosis is a key step in pathogenesis for L. monocytogenes. Therefore, we investigated the infection of the chicken macrophage-like cell line HD11 with 2 strains of L. monocytogenes EGD-e and Scott A. After infection, L. monocytogenes was quantified by spread plating and HD11 was quantified with trypan blue exclusion stain before enumeration. The standard macrophage killing protocols require washing the cell monolayers 3 times with PBS, which was found to negatively influence HD11 monolayers. Maximum bacterial densities within macrophages were not different between the 2 Listeria strains. HD11 required more than 11 h to effectively reduce intracellular L. monocytogenes Scott A, and Scott A was more susceptible to HD11 killing than EGD-e. It appears that Listeria infection initially causes attenuation of HD11 growth, and infected HD11 cells do not begin to lyse until at least 11 h post infection. These results suggest that there are subtle strain to strain differences in response to HD11 macrophage phagocytosis. The long lead-time required for HD11 to kill L. monocytogenes cells means that there is sufficient time available for chicken macrophages to circulate in the blood and transfer the intracellular Listeria to multiple tissues. © 2016 Poultry Science Association Inc.
Genes Critical for Developing Periodontitis: Lessons from Mouse Models.
de Vries, Teun J; Andreotta, Stefano; Loos, Bruno G; Nicu, Elena A
2017-01-01
Since the etiology of periodontitis in humans is not fully understood, genetic mouse models may pinpoint indispensable genes for optimal immunological protection of the periodontium against tissue destruction. This review describes the current knowledge of genes that are involved for a proper maintenance of a healthy periodontium in mice. Null mutations of genes required for leukocyte cell-cell recognition and extravasation (e.g., Icam-1, P-selectin, Beta2-integrin/Cd18 ), for pathogen recognition and killing (e.g., Tlr2, Tlr4, Lamp-2 ), immune modulatory molecules (e.g., Cxcr2, Ccr4, IL-10, Opg, IL1RA, Tnf- α receptor, IL-17 receptor, Socs3, Foxo1 ), and proteolytic enzymes (e.g., Mmp8, Plasmin ) cause periodontitis, most likely due to an inefficient clearance of bacteria and bacterial products. Several mechanisms resulting in periodontitis can be recognized: (1) inefficient bacterial control by the polymorphonuclear neutrophils (defective migration, killing), (2) inadequate antigen presentation by dendritic cells, or (3) exaggerated production of pro-inflammatory cytokines. In all these cases, the local immune reaction is skewed toward a Th1/Th17 (and insufficient activation of the Th2/Treg) with subsequent osteoclast activation. Finally, genotypes are described that protect the mice from periodontitis: the SCID mouse, and mice lacking Tlr2/Tlr4 , the Ccr1/Ccr5 , the Tnf- α receptor p55 , and Cathepsin K by attenuating the inflammatory reaction and the osteoclastogenic response.
Streptococcus suis Serotype 2 Biofilms Inhibit the Formation of Neutrophil Extracellular Traps.
Ma, Fang; Yi, Li; Yu, Ningwei; Wang, Guangyu; Ma, Zhe; Lin, Huixing; Fan, Hongjie
2017-01-01
Invasive infections caused by Streptococcus suis serotype 2 (SS2) has emerged as a clinical problem in recent years. Neutrophil extracellular traps (NETs) are an important mechanism for the trapping and killing of pathogens that are resistant to phagocytosis. Biofilm formation can protect bacteria from being killed by phagocytes. Until now, there have only been a few studies that focused on the interactions between bacterial biofilms and NETs. SS2 in both a biofilm state and a planktonic cell state were incubated with phagocytes and NETs, and bacterial survival was assessed. DNase I and cytochalasin B were used to degrade NET DNA or suppress phagocytosis, respectively. Extracellular DNA was stained with impermeable fluorescent dye to quantify NET formation. Biofilm formation increased up to 6-fold in the presence of neutrophils, and biofilms were identified in murine tissue. Both planktonic and biofilm cells induced neutrophils chemotaxis to the infection site, with neutrophils increasing by 85.1 and 73.8%, respectively. The bacteria in biofilms were not phagocytized. The bactericidal efficacy of NETs on the biofilms and planktonic cells were equal; however, the biofilm extracellular matrix can inhibit NET release. Although biofilms inhibit NETs release, NETs appear to be an important mechanism to eliminate SS2 biofilms. This knowledge advances the understanding of biofilms and may aid in the development of treatments for persistent infections with a biofilm component.
Molecular Determinants in Phagocyte-Bacteria Interactions.
Kaufmann, Stefan H E; Dorhoi, Anca
2016-03-15
Phagocytes are crucial for host defense against bacterial pathogens. As first demonstrated by Metchnikoff, neutrophils and mononuclear phagocytes share the capacity to engulf, kill, and digest microbial invaders. Generally, neutrophils focus on extracellular, and mononuclear phagocytes on intracellular, pathogens. Reciprocally, extracellular pathogens often capitalize on hindering phagocytosis and killing of phagocytes, whereas intracellular bacteria frequently allow their engulfment and then block intracellular killing. As foreseen by Metchnikoff, phagocytes become highly versatile by acquiring diverse phenotypes, but still retaining some plasticity. Further, phagocytes engage in active crosstalk with parenchymal and immune cells to promote adjunctive reactions, including inflammation, tissue healing, and remodeling. This dynamic network allows the host to cope with different types of microbial invaders. Here we present an update of molecular and cellular mechanisms underlying phagocyte functions in antibacterial defense. We focus on four exemplary bacteria ranging from an opportunistic extracellular to a persistent intracellular pathogen. Copyright © 2016 Elsevier Inc. All rights reserved.
Enhanced biomimic bactericidal surfaces by coating with positively-charged ZIF nano-dagger arrays.
Yuan, Yuan; Zhang, Yugen
2017-10-01
Cicada wing surfaces are covered with dense patterns of nano-pillar structure that prevent bacterial growth by rupturing adhered microbial cells. To mimic the natural nano-pillar structure, we developed a general and simple method to grow metal organic framework (MOF) nano-dagger arrays on a wide range of surfaces. These nano-daggers possess high bactericidal activity, with log reduction >7 for Escherichia coli and Staphylococcus aureus. It was hypothesized that the positively-charged ZIF-L nano-dagger surfaces enhance bacterial cell adhesion, facilitating selective and efficient bacteria killing by the rigid and sharp nano-dagger tips. This research provides a safe and clean antimicrobial surface technology which does not require external chemicals and will not cause drug resistance. Copyright © 2017 Elsevier Inc. All rights reserved.
Esteban, Patricia Perez; Jenkins, A Toby A; Arnot, Tom C
2016-03-01
In earlier work we have demonstrated the effect that nano-emulsions have on bacterial growth, and most importantly the enhanced bacteriophage infectivity against Staphylococcus aureus in planktonic culture when phage are carried in nano-emulsions. However, the mechanisms of enhancement of the bacteriophage killing effect are not specifically understood. This work focuses on the investigation of the possible interactions between emulsion droplets and bacterial cells, between emulsion droplets and bacteriophages, and finally interactions between all three components: nano-emulsion droplets, bacteria, and bacteriophages. The first approach consists of simple calculations to determine the spatial distribution of the components, based on measurements of particle size. It was found that nano-emulsion droplets are much more numerous than bacteria or bacteriophage, and due to their size and surface area they must be covering the surface of both cells and bacteriophage particles. Stabilisation of bacteriophages due to electrostatic forces and interaction with nano-emulsion droplets is suspected, since bacteriophages may be protected against inactivation due to 'charge shielding'. Zeta potential was measured for the individual components in the system, and for all of them combined. It was concluded that the presence of nano-emulsions could be reducing electrostatic repulsion between bacterial cells and bacteriophage, both of which are very negatively 'charged'. Moreover, nano-emulsions lead to more favourable interaction between bacteriophages and bacteria, enhancing the anti-microbial or killing effect. These findings are relevant since the physicochemical properties of nano-emulsions (i.e. particle size distribution and zeta potential) are key in determining the efficacy of the formulation against infection in the context of responsive burn wound dressings-which is the main target for this work. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.
Townes, Claire L; Ali, Ased; Gross, Naomi; Pal, Deepali; Williamson, Stuart; Heer, Rakesh; Robson, Craig N; Pickard, Robert S; Hall, Judith
2013-10-01
This study investigated whether the increase in serum prostate specific antigen (PSA) typically seen during male urinary tract infection (UTI) is incidental or reflects an innate defence mechanism of the prostate. The protective roles of the whey-acid-motif-4-disulphide core (WFDC) proteins, secretory leukoproteinase inhibitor (SLPI) and WFDC2, in the prostate were also examined. UTI recurrence was assessed retrospectively in men following initial UTI by patient interview. PSA, SLPI, and WFDC2 gene expression were assessed using biopsy samples. LNCaP and DU145 in vitro prostate cell models were utilized to assess the effects of an Escherichia coli challenge on PSA and WFDC gene expression, and bacterial invasion of the prostate epithelium. The effects of PSA on WFDC antimicrobial properties were studied using recombinant peptides and time-kill assays. Men presenting with PSA >4 ng/ml at initial UTI were less likely to have recurrent (r) UTI than those with PSA <4 ng/ml [2/15 (13%) vs. 7/10 (70%), P < 0.01]. Genes encoding PSA, SLPI and WFDC2, were expressed in prostatic epithelium, and the PSA and SLPI proteins co-localized in vivo. Challenging LNCaP (PSA-positive) cells with E. coli increased PSA, SLPI, and WFDC2 gene expression (P < 0.05), and PSA synthesis (P < 0.05), and reduced bacterial invasion. Pre-incubation of DU145 (PSA-negative) cells with PSA also decreased bacterial invasion. In vitro incubation of recombinant SLPI and WFDC2 with PSA resulted in peptide proteolysis and increased E. coli killing. Increased PSA during UTI appears protective against rUTI and in vitro is linked to proteolysis of WFDC proteins supporting enhanced prostate innate defences. Copyright © 2013 Wiley Periodicals, Inc.
Dando, Samantha J.; Ipe, Deepak S.; Batzloff, Michael; Sullivan, Matthew J.; Crossman, David K.; Crowley, Michael; Strong, Emily; Kyan, Stephanie; Leclercq, Sophie Y.; Ekberg, Jenny A. K.; St. John, James
2016-01-01
Melioidosis, caused by the bacterium Burkholderia pseudomallei, is an often severe infection that regularly involves respiratory disease following inhalation exposure. Intranasal (i.n.) inoculation of mice represents an experimental approach used to study the contributions of bacterial capsular polysaccharide I (CPS I) to virulence during acute disease. We used aerosol delivery of B. pseudomallei to establish respiratory infection in mice and studied CPS I in the context of innate immune responses. CPS I improved B. pseudomallei survival in vivo and triggered multiple cytokine responses, neutrophil infiltration, and acute inflammatory histopathology in the spleen, liver, nasal-associated lymphoid tissue, and olfactory mucosa (OM). To further explore the role of the OM response to B. pseudomallei infection, we infected human olfactory ensheathing cells (OECs) in vitro and measured bacterial invasion and the cytokine responses induced following infection. Human OECs killed >90% of the B. pseudomallei in a CPS I-independent manner and exhibited an antibacterial cytokine response comprising granulocyte colony-stimulating factor, tumor necrosis factor alpha, and several regulatory cytokines. In-depth genome-wide transcriptomic profiling of the OEC response by RNA-Seq revealed a network of signaling pathways activated in OECs following infection involving a novel group of 378 genes that encode biological pathways controlling cellular movement, inflammation, immunological disease, and molecular transport. This represents the first antimicrobial program to be described in human OECs and establishes the extensive transcriptional defense network accessible in these cells. Collectively, these findings show a role for CPS I in B. pseudomallei survival in vivo following inhalation infection and the antibacterial signaling network that exists in human OM and OECs. PMID:27091931
Vega-Carrascal, Isabel; Bergin, David A.; McElvaney, Oliver J.; McCarthy, Cormac; Banville, Nessa; Pohl, Kerstin; Hirashima, Mitsuomi; Kuchroo, Vijay K.; Reeves, Emer P.; McElvaney, Noel G.
2016-01-01
The T cell Ig and mucin domain–containing molecule (TIM) family of receptors have emerged as potential therapeutic targets to correct abnormal immune function in chronic inflammatory conditions. TIM-3 serves as a functional receptor in structural cells of the airways and via the ligand galectin-9 (Gal-9) can modulate the inflammatory response. The aim of this study was to investigate TIM-3 expression and function in neutrophils, focusing on its potential role in cystic fibrosis (CF) lung disease. Results revealed that TIM-3 mRNA and protein expression values of circulating neutrophils were equal between healthy controls (n = 20) and people with CF (n = 26). TIM-3 was detected on resting neutrophil membranes by FACS analysis, and expression levels significantly increased post IL-8 or TNF-α exposure (p < 0.05). Our data suggest a novel role for TIM-3/Gal-9 signaling involving modulation of cytosolic calcium levels. Via TIM-3 interaction, Gal-9 induced neutrophil degranulation and primed the cell for enhanced NADPH oxidase activity. Killing of Pseudomonas aeruginosa was significantly increased upon bacterial opsonization with Gal-9 (p < 0.05), an effect abrogated by blockade of TIM-3 receptors. This mechanism appeared to be Gram-negative bacteria specific and mediated via Gal-9/ LPS binding. Additionally, we have demonstrated that neutrophil TIM-3/Gal-9 signaling is perturbed in the CF airways due to proteolytic degradation of the receptor. In conclusion, results suggest a novel neutrophil defect potentially contributing to the defective bacterial clearance observed in the CF airways and suggest that manipulation of the TIM-3 signaling pathway may be of therapeutic value in CF, preferably in conjunction with antiprotease treatment. PMID:24477913
Probing the substrate specificity of the bacterial Pnkp/Hen1 RNA repair system using synthetic RNAs
Zhang, Can; Chan, Chio Mui; Wang, Pei; Huang, Raven H.
2012-01-01
Ribotoxins cleave essential RNAs involved in protein synthesis as a strategy for cell killing. RNA repair systems exist in nature to counteract the lethal actions of ribotoxins, as first demonstrated by the RNA repair system from bacteriophage T4 25 yr ago. Recently, we found that two bacterial proteins, named Pnkp and Hen1, form a stable complex and are able to repair ribotoxin-cleaved tRNAs in vitro. However, unlike the well-studied T4 RNA repair system, the natural RNA substrates of the bacterial Pnkp/Hen1 RNA repair system are unknown. Here we present comprehensive RNA repair assays with the recombinant Pnkp/Hen1 proteins from Anabaena variabilis using a total of 33 different RNAs as substrates that might mimic various damaged forms of RNAs present in living cells. We found that unlike the RNA repair system from bacteriophage T4, the bacterial Pnkp/Hen1 RNA repair system exhibits broad substrate specificity. Based on the experimental data presented here, a model of preferred RNA substrates of the Pnkp/Hen1 repair system is proposed. PMID:22190744
A Mycobacterium tuberculosis cytochrome bd oxidase mutant is hypersensitive to bedaquiline.
Berney, Michael; Hartman, Travis E; Jacobs, William R
2014-07-15
The new medicinal compound bedaquiline (BDQ) kills Mycobacterium tuberculosis by inhibiting F1Fo-ATP synthase. BDQ is bacteriostatic for 4 to 7 days and kills relatively slowly compared to other frontline tuberculosis (TB) drugs. Here we show that killing with BDQ can be improved significantly by inhibiting cytochrome bd oxidase, a non-proton-pumping terminal oxidase. BDQ was instantly bactericidal against a cytochrome bd oxidase null mutant of M. tuberculosis, and the rate of killing was increased by more than 50%. We propose that this exclusively bacterial enzyme should be a high-priority target for new drug discovery. Importance: A major drawback of current TB chemotherapy is its long duration. New drug regimens with rapid killing kinetics are desperately needed. Our study demonstrates that inhibition of a nonessential bacterial enzyme greatly improves the efficacy of the latest TB drug bedaquiline and emphasizes that screening for compounds with synergistic killing mechanisms is a promising strategy. Copyright © 2014 Berney et al.
Ishii, Kenichi; Adachi, Tatsuo; Hamamoto, Hiroshi; Sekimizu, Kazuhisa
2014-01-01
Injection of a culture supernatant of Serratia marcescens into the bloodstream of the silkworm Bombyx mori increased the number of freely circulating immunosurveillance cells (hemocytes). Using a bioassay with live silkworms, serralysin metalloprotease was purified from the culture supernatant and identified as the factor responsible for this activity. Serralysin inhibited the in vitro attachment of both silkworm hemocytes and murine peritoneal macrophages. Incubation of silkworm hemocytes or murine macrophages with serralysin resulted in degradation of the cellular immune factor BmSPH-1 or calreticulin, respectively. Furthermore, serralysin suppressed in vitro phagocytosis of bacteria by hemocytes and in vivo bacterial clearance in silkworms. Disruption of the ser gene in S. marcescens attenuated its host killing ability in silkworms and mice. These findings suggest that serralysin metalloprotease secreted by S. marcescens suppresses cellular immunity by decreasing the adhesive properties of immunosurveillance cells, thereby contributing to bacterial pathogenesis. PMID:24398686
Ishii, Kenichi; Adachi, Tatsuo; Hamamoto, Hiroshi; Sekimizu, Kazuhisa
2014-02-28
Injection of a culture supernatant of Serratia marcescens into the bloodstream of the silkworm Bombyx mori increased the number of freely circulating immunosurveillance cells (hemocytes). Using a bioassay with live silkworms, serralysin metalloprotease was purified from the culture supernatant and identified as the factor responsible for this activity. Serralysin inhibited the in vitro attachment of both silkworm hemocytes and murine peritoneal macrophages. Incubation of silkworm hemocytes or murine macrophages with serralysin resulted in degradation of the cellular immune factor BmSPH-1 or calreticulin, respectively. Furthermore, serralysin suppressed in vitro phagocytosis of bacteria by hemocytes and in vivo bacterial clearance in silkworms. Disruption of the ser gene in S. marcescens attenuated its host killing ability in silkworms and mice. These findings suggest that serralysin metalloprotease secreted by S. marcescens suppresses cellular immunity by decreasing the adhesive properties of immunosurveillance cells, thereby contributing to bacterial pathogenesis.
Naito, Y; Naito, T; Kobayashi, I
1998-01-01
Previous work from this laboratory demonstrated that plasmids carrying a type II restriction-modification gene complex are not easily lost from their bacterial host because plasmid-free segregant cells are killed through chromosome cleavage. Here, we have followed the course of events that takes place when an Escherichia coli rec BC sbcA strain carrying a plasmid coding for the PaeR7I restriction-modification (R/M) gene complex is transformed by a plasmid with an identical origin of replication. The number of transformants that appeared was far fewer than with the restriction-minus (r-) control. Most of the transformants were very small. After prolonged incubation, the number and the size of the colonies increased, but this increase never attained the level of the r- control. Most of the transformed colonies retained the drug-resistance of the resident, r+ m+ plasmid. These results indicate that post-segregational host killing occurs when a plasmid bearing an R/M gene complex is displaced by an incompatible plasmid. Such cell killing eliminates the competitor plasmid along with the host and, thus, would allow persistence of the R/M plasmid in the neighboring, clonal host cells in nature. This phenomenon is reminiscent of mammalian apoptosis and other forms of altruistic cell death strategy against infection. This type of resistance to displacement was also studied in a wild type Escherichia coli strain that was normal for homologous recombination (rec+). A number of differences between the recBC sbcA strain and the rec+ strain were observed and these will be discussed.
Dynamic metabolic exchange governs a marine algal-bacterial interaction
Segev, Einat; Wyche, Thomas P; Kim, Ki Hyun; Petersen, Jörn; Ellebrandt, Claire; Vlamakis, Hera; Barteneva, Natasha; Paulson, Joseph N; Chai, Liraz; Clardy, Jon; Kolter, Roberto
2016-01-01
Emiliania huxleyi is a model coccolithophore micro-alga that generates vast blooms in the ocean. Bacteria are not considered among the major factors influencing coccolithophore physiology. Here we show through a laboratory model system that the bacterium Phaeobacter inhibens, a well-studied member of the Roseobacter group, intimately interacts with E. huxleyi. While attached to the algal cell, bacteria initially promote algal growth but ultimately kill their algal host. Both algal growth enhancement and algal death are driven by the bacterially-produced phytohormone indole-3-acetic acid. Bacterial production of indole-3-acetic acid and attachment to algae are significantly increased by tryptophan, which is exuded from the algal cell. Algal death triggered by bacteria involves activation of pathways unique to oxidative stress response and programmed cell death. Our observations suggest that bacteria greatly influence the physiology and metabolism of E. huxleyi. Coccolithophore-bacteria interactions should be further studied in the environment to determine whether they impact micro-algal population dynamics on a global scale. DOI: http://dx.doi.org/10.7554/eLife.17473.001 PMID:27855786
Dufour, Nicolas; Delattre, Raphaëlle; Ricard, Jean-Damien; Debarbieux, Laurent
2017-06-01
Other than numerous experimental data assessing phage therapy efficacy, questions regarding safety of this approach are not sufficiently addressed. In particular, as phages can kill bacterial cells within <10 minutes, the associated endotoxin release (ER) in severe infections caused by gram-negative bacteria could be a matter of concern. Two therapeutic virulent phages and 4 reference antibiotics were studied in vitro for their ability to kill 2 pathogenic strains of Escherichia coli and generate an ER. The early interaction (first 3 hours) between these actors was assessed over time by studying the instantaneous cell viability, the colony-forming unit count, the concentration of free endotoxin released, and the cell morphology under light microscope. While β-lactams have a relatively slow effect, both tested phages, as well as amikacin, were able to rapidly abolish the bacterial growth. Even when considering the fastest phage (cell lysis in 9 minutes), the concentrations of phage-induced ER never reached the highest values, which were recorded with antibiotic treatments. Cumulative concentrations of endotoxin over time in phage-treated conditions were lower than those observed with β-lactams and close to those observed with amikacin. Whereas β-lactams were responsible for strong cell morphology changes (spheroplast with imipenem, filamentous cells with cefoxitin and ceftriaxone), amikacin and phages did not modify cell shape but produced intracellular inclusion bodies. This work provides important and comforting data regarding the safety of phage therapy. Therapeutically relevant phages, with their low endotoxin release profile and fast bactericidal effect, are not inferior to β-lactams. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America.
Polyhexamethyl biguanide can eliminate contaminant yeasts from fuel-ethanol fermentation process.
Elsztein, Carolina; de Menezes, João Assis Scavuzzi; de Morais, Marcos Antonio
2008-09-01
Industrial ethanol fermentation is a non-sterile process and contaminant microorganisms can lead to a decrease in industrial productivity and significant economic loss. Nowadays, some distilleries in Northeastern Brazil deal with bacterial contamination by decreasing must pH and adding bactericides. Alternatively, contamination can be challenged by adding a pure batch of Saccharomyces cerevisiae-a time-consuming and costly process. A better strategy might involve the development of a fungicide that kills contaminant yeasts while preserving S. cerevisiae cells. Here, we show that polyhexamethyl biguanide (PHMB) inhibits and kills the most important contaminant yeasts detected in the distilleries of Northeastern Brazil without affecting the cell viability and fermentation capacity of S. cerevisiae. Moreover, some physiological data suggest that PHMB acts through interaction with the yeast membrane. These results support the development of a new strategy for controlling contaminant yeast population whilst keeping industrial yields high.
Badwaik, Laxmikant S; Borah, Pallab Kumar; Deka, Sankar C
2015-02-01
Wild-type lactobacillus isolated form Khorisa, a fermented bamboo shoot product of Assam, India were evaluated for production anti-bacterial secondary biometabolites, against Staphylococcus aureus. Submerged fermentation technique was used for the production of secondary anti-microbial biometabolite by a single wild-type lactobacillus strain, which tested positive for the release of anti-bacterial factor(s). Crude cell-free supernatant was obtained, followed by extraction in water-immiscible solvents viz., chloroform, hexane, petroleum ether. Chloroform extract of cell-free crude supernatant showed maximum yield (0.054 g/ml) and inhibited all indicator bacterial strains viz., Escherichia coli, Staphylococcus aureus, and Bacillus cereus. Yields of hexane and petroleum ether extract were 0.052 and 0.026 g/ml, respectively. Minimum lethal dose concentration assay of the chloroform extract showed LDmin values at 27, 1.68, and 1.68 mg/ml for E. coli, S. aureus, and B. cereus, respectively. Kill time for all the indicator bacterial strains were less than 12 h. The efficacy of the anti-bacterial substance seemed to depend on the presence of organic acids, particularly lactic acid. Conceptual-based suggestion for the development of an onsite secondary metabolites recovery system during continuous fermentation has also been attempted.
Breser, María L; Felipe, Verónica; Bohl, Luciana P; Orellano, María S; Isaac, Paula; Conesa, Agustín; Rivero, Virginia E; Correa, Silvia G; Bianco, Ismael D; Porporatto, Carina
2018-03-23
Bovine mastitis affects the health of dairy cows and the profitability of herds worldwide. Coagulase-negative staphylococci (CNS) are the most frequently isolated pathogens in bovine intramammary infection. Based on the wide range of antimicrobial, mucoadhesive and immunostimulant properties demonstrated by chitosan, we have evaluated therapy efficiency of chitosan incorporation to cloxacillin antibiotic as well as its effect against different bacterial lifestyles of seven CNS isolates from chronic intramammary infections. The therapeutic effects of combinations were evaluated on planktonic cultures, bacterial biofilms and intracellular growth in mammary epithelial cells. We found that biofilms and intracellular growth forms offered a strong protection against antibiotic therapy. On the other hand, we found that chitosan addition to cloxacillin efficiently reduced the antibiotic concentration necessary for bacterial killing in different lifestyle. Remarkably, the combined treatment was not only able to inhibit bacterial biofilm establishment and increase preformed biofilm eradication, but it also reduced intracellular bacterial viability while it increased IL-6 secretion by infected epithelial cells. These findings provide a new approach to prophylactic drying therapy that could help to improve conventional antimicrobial treatment against different forms of bacterial growth in an efficient, safer and greener manner reducing multiresistant bacteria generation and spread.
Hashim, Ramadhan; Khatib, Ahmed M; Enwere, Godwin; Park, Jin Kyung; Reyburn, Rita; Ali, Mohammad; Chang, Na Yoon; Kim, Deok Ryun; Ley, Benedikt; Thriemer, Kamala; Lopez, Anna Lena; Clemens, John D; Deen, Jacqueline L; Shin, Sunheang; Schaetti, Christian; Hutubessy, Raymond; Aguado, Maria Teresa; Kieny, Marie Paule; Sack, David; Obaro, Stephen; Shaame, Attiye J; Ali, Said M; Saleh, Abdul A; von Seidlein, Lorenz; Jiddawi, Mohamed S
2012-01-01
Mass vaccinations are a main strategy in the deployment of oral cholera vaccines. Campaigns avoid giving vaccine to pregnant women because of the absence of safety data of the killed whole-cell oral cholera (rBS-WC) vaccine. Balancing this concern is the known higher risk of cholera and of complications of pregnancy should cholera occur in these women, as well as the lack of expected adverse events from a killed oral bacterial vaccine. From January to February 2009, a mass rBS-WC vaccination campaign of persons over two years of age was conducted in an urban and a rural area (population 51,151) in Zanzibar. Pregnant women were advised not to participate in the campaign. More than nine months after the last dose of the vaccine was administered, we visited all women between 15 and 50 years of age living in the study area. The outcome of pregnancies that were inadvertently exposed to at least one oral cholera vaccine dose and those that were not exposed was evaluated. 13,736 (94%) of the target women in the study site were interviewed. 1,151 (79%) of the 1,453 deliveries in 2009 occurred during the period when foetal exposure to the vaccine could have occurred. 955 (83%) out of these 1,151 mothers had not been vaccinated; the remaining 196 (17%) mothers had received at least one dose of the oral cholera vaccine. There were no statistically significant differences in the odds ratios for birth outcomes among the exposed and unexposed pregnancies. We found no statistically significant evidence of a harmful effect of gestational exposure to the rBS-WC vaccine. These findings, along with the absence of a rational basis for expecting a risk from this killed oral bacterial vaccine, are reassuring but the study had insufficient power to detect infrequent events. ClinicalTrials.gov NCT00709410.
Natural Killer (NK) Cells in Antibacterial Innate Immunity: Angels or Devils?
Souza-Fonseca-Guimaraes, Fernando; Adib-Conquy, Minou; Cavaillon, Jean-Marc
2012-01-01
Natural killer (NK) cells were first described as immune leukocytes that could kill tumor cells and soon after were reported to kill virus-infected cells. In the mid-1980s, 10 years after their discovery, NK cells were also demonstrated to contribute to the fight against bacterial infection, particularly because of crosstalk with other leukocytes. A wide variety of immune cells are now recognized to interact with NK cells through the production of cytokines such as interleukin (IL)-2, IL-12, IL-15 and IL-18, which boost NK cell activities. The recent demonstration that NK cells express pattern recognition receptors, namely Toll-like and nucleotide oligomerization domain (NOD)-like receptors, led to the understanding that these cells are not only under the control of accessory cells, but can be directly involved in the antibacterial response thanks to their capacity to recognize pathogen-associated molecular patterns. Interferon (IFN)-γ is the predominant cytokine produced by activated NK cells. IFN-γ is a key contributor to antibacterial immune defense. However, in synergy with other inflammatory cytokines, IFN-γ can also lead to deleterious effects similar to those observed during sepsis. Accordingly, as the main source of IFN-γ in the early phase of infection, NK cells display both beneficial and deleterious effects, depending on the circumstances. PMID:22105606
1965-01-01
Rainbow trout were fed a pelleted diet containing killed cells of the etiologic agent of a bacterial disease, redmouth. These fish in addition to appropriate controls were subsequently challenged with virulent homologous organisms. Ninety per cent of the redmouth immunized fish survived the basic challenge using virulent organisms in contrast to 20% survival for the controls. Multiple challenge doses at increased levels also are discussed.
NASA Astrophysics Data System (ADS)
Liu, Rui; Memarzadeh, Kaveh; Chang, Bei; Zhang, Yumei; Ma, Zheng; Allaker, Robert P.; Ren, Ling; Yang, Ke
2016-07-01
Formation of bacterial biofilms on dental implant material surfaces (titanium) may lead to the development of peri-implant diseases influencing the long term success of dental implants. In this study, a novel Cu-bearing titanium alloy (Ti-Cu) was designed and fabricated in order to efficiently kill bacteria and discourage formation of biofilms, and then inhibit bacterial infection and prevent implant failure, in comparison with pure Ti. Results from biofilm based gene expression studies, biofilm growth observation, bacterial viability measurements and morphological examination of bacteria, revealed antimicrobial/antibiofilm activities of Ti-Cu alloy against the oral specific bacterial species, Streptococcus mutans and Porphyromonas gingivalis. Proliferation and adhesion assays with mesenchymal stem cells, and measurement of the mean daily amount of Cu ion release demonstrated Ti-Cu alloy to be biocompatible. In conclusion, Ti-Cu alloy is a promising dental implant material with antimicrobial/antibiofilm activities and acceptable biocompatibility.
RIG-I detects infection with live Listeria by sensing secreted bacterial nucleic acids
Abdullah, Zeinab; Schlee, Martin; Roth, Susanne; Mraheil, Mobarak Abu; Barchet, Winfried; Böttcher, Jan; Hain, Torsten; Geiger, Sergej; Hayakawa, Yoshihiro; Fritz, Jörg H; Civril, Filiz; Hopfner, Karl-Peter; Kurts, Christian; Ruland, Jürgen; Hartmann, Gunther; Chakraborty, Trinad; Knolle, Percy A
2012-01-01
Immunity against infection with Listeria monocytogenes is not achieved from innate immune stimulation by contact with killed but requires viable Listeria gaining access to the cytosol of infected cells. It has remained ill-defined how such immune sensing of live Listeria occurs. Here, we report that efficient cytosolic immune sensing requires access of nucleic acids derived from live Listeria to the cytoplasm of infected cells. We found that Listeria released nucleic acids and that such secreted bacterial RNA/DNA was recognized by the cytosolic sensors RIG-I, MDA5 and STING thereby triggering interferon β production. Secreted Listeria nucleic acids also caused RIG-I-dependent IL-1β-production and inflammasome activation. The signalling molecule CARD9 contributed to IL-1β production in response to secreted nucleic acids. In conclusion, cytosolic recognition of secreted bacterial nucleic acids by RIG-I provides a mechanistic explanation for efficient induction of immunity by live bacteria. PMID:23064150
Bacterial cheating limits the evolution of antibiotic resistance
NASA Astrophysics Data System (ADS)
Chao, Hui Xiao; Datta, Manoshi; Yurtsev, Eugene; Gore, Jeff
2011-03-01
The widespread use of antibiotics has led to the evolution of resistance in bacteria. Bacteria can gain resistance to the antibiotic ampicillin by acquiring a plasmid carrying the gene beta-lactamase, which inactivates the antibiotic. This inactivation may represent a cooperative behavior, as the entire bacterial population benefits from removing the antibiotic. The cooperative nature of this growth suggests that a cheater strain--which does not contribute to breaking down the antibiotic--may be able to take advantage of cells cooperatively inactivating the antibiotic. Here we experimentally find that a ``sensitive'' bacterial strain lacking the plasmid conferring resistance can invade a population of resistant bacteria, even in antibiotic concentrations that should kill the sensitive strain. We observe stable coexistence between the two strains and find that a simple model successfully explains the behavior as a function of antibiotic concentration and cell density. We anticipate that our results will provide insight into the evolutionary origin of phenotypic diversity and cooperative behaviors found in nature.
Lai, Chieh-Hsien; Wu, Sih-Rong; Pang, Jen-Chieh; Ramireddy, Latha; Chiang, Yu-Cheng; Lin, Chien-Ku; Tsen, Hau-Yang
2017-07-01
The purpose of this study is to evaluate the efficiency of using propidium monoazide (PMA) real-time quantitative polymerase chain reaction (qPCR) to count the viable cells of Lactobacillus gasseri and Lactobacillus salivarius in probiotic products. Based on the internal transcription spacer and 23S rRNA genes, two primer sets specific for these two Lactobacillus species were designed. For a probiotic product, the total deMan Rogosa Sharpe plate count was 8.65±0.69 log CFU/g, while for qPCR, the cell counts of L. gasseri and L. salivarius were 8.39±0.14 log CFU/g and 8.57±0.24 log CFU/g, respectively. Under the same conditions, for its heat-killed product, qPCR counts for L. gasseri and L. salivarius were 6.70±0.16 log cells/g and 7.67±0.20 log cells/g, while PMA-qPCR counts were 5.33±0.18 log cells/g and 5.05±0.23 log cells/g, respectively. For cell dilutions with a viable cell count of 8.5 log CFU/mL for L. gasseri and L. salivarius, after heat killing, the PMA-qPCR count for both Lactobacillus species was near 5.5 log cells/mL. When the PMA-qPCR counts of these cell dilutions were compared before and after heat killing, although some DNA might be lost during the heat killing, significant qPCR signals from dead cells, i.e., about 4-5 log cells/mL, could not be reduced by PMA treatment. Increasing PMA concentrations from 100 μM to 200 μM or light exposure time from 5 minutes to 15 minutes had no or, if any, only minor effect on the reduction of qPCR signals from their dead cells. Thus, to differentiate viable lactic acid bacterial cells from dead cells using the PMA-qPCR method, the efficiency of PMA to reduce the qPCR signals from dead cells should be notable. Copyright © 2016. Published by Elsevier B.V.
Selestino Neta, Maria Cipriano; Vittorazzi, Catia; Guimarães, Aline Cristina; Martins, João Damasceno Lopes; Fronza, Marcio; Endringer, Denise Coutinho; Scherer, Rodrigo
2017-12-01
Orange Jessamine [Murraya paniculata L. (Rutaceae)] has been used worldwide in folk medicine as an anti-inflammatory, antibiotic and analgesic. The objective of this study is to investigate the in vitro antioxidant, cytotoxic, antibacterial and antifungal activity and the time-kill curve studies of orange jessamine essential oil and β-caryophyllene, as well as the chemical composition of the essential oil. The cytotoxic activity of M. paniculata and β-caryophyllene (7.8-500 μg/mL) was evaluated using the MTT assay on normal fibroblasts and hepatoma cells. The minimal inhibitory concentration and time-kill curves (24 h) were evaluated against those of Staphylococcus aureus, Escherichia coli, Salmonella typhimurium, Enterococcus faecallis, Aspergillus (niger, fumigates and parasiticum) and F. solani by the broth microdilution method. The antioxidant activity was measured by the DPPH and ABTS assays. Chemical composition was evaluated by GC/MS analyses. GC/MS analyses identified 13 compounds, with β-caryophyllene as the major compound. The oil exhibited moderate antibacterial activity (MIC <1.0 mg/mL) and strong antifungal activity. Time-kill curve studies showed that either the essential oil or β-caryophyllene presented rapid bacterial killing (4 h for S. aureus) and fungicidal effect (2-4 h for F. solani); however, both displayed weak free radical scavenger capacity. The cytotoxic activity exhibited a prominent selective effect against hepatoma cancer cells (IC 50 value =63.7 μg/mL) compared with normal fibroblasts (IC 50 value =195.0 μg/mL), whereas the β-caryophyllene showed low cytotoxicity. The experimental data suggest that the activities of M. paniculata essential oil are due to the synergistic action among its components.
Du, Tianfeng; Shi, Qi; Shen, Ya; Cao, Yingguang; Ma, Jingzhi; Lu, Xinpei; Xiong, Zilan; Haapasalo, Markus
2013-11-01
Nonequilibrium plasma has been reported to effectively kill Enterococcus faecalis in endodontic biofilm compared with chlorhexidine digluconate (CHX). The purpose of this study was to evaluate the antimicrobial in vitro activity of modified nonequilibrium plasma with CHX against E. faecalis and multispecies biofilms on bovine dentin discs. Sterile bovine dentin discs were incubated with E. faecalis or a mixture of bacteria from human dental root canal infections to form 1- and 3-week-old biofilms. The specimens were subjected to nonequilibrium plasma, modified nonequilibrium plasma with CHX, and 2% CHX for 2- and 5-minute exposure. After treatment, the biofilms were stained with viability dyes and examined by confocal laser scanning microscopy and 3-dimensional reconstruction analysis. The proportions of bacterial cells killed by the treatments were calculated. The 3-dimensional reconstruction images showed that 1- and 3-week-old biofilms adhered to bovine dentin discs. The proportions of dead cells increased significantly with the longer exposure in each treatment group (P < .05). Modified nonequilibrium plasma was the most effective in killing bacteria in E. faecalis and multispecies biofilms at both 2 and 5 minutes (P < .05). No significant difference was detected between nonequilibrium plasma and CHX groups (P > .05). Significantly more cells were killed in 1-week-old biofilms than in 3-week-old biofilms in all groups (P < .05). The modified nonequilibrium plasma killed more bacteria than conventional nonequilibrium plasma and 2% CHX in E. faecalis and multispecies endodontic biofilms in vitro and thus shows promise as an additional tool in infection control during endodontic treatment. Copyright © 2013 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
Shen, Ya; Zhao, Jia; de la Fuente-Núñez, César; Wang, Zhejun; Hancock, Robert E. W.; Roberts, Clive R.; Ma, Jingzhi; Li, Jun; Haapasalo, Markus; Wang, Qi
2016-01-01
We investigate recovery of multispecies oral biofilms following chlorhexidine gluconate (CHX) and CHX with surface modifiers (CHX-Plus) treatment. Specifically, we examine the percentage of viable bacteria in the biofilms following their exposure to CHX and CHX-Plus for 1, 3, and 10 minutes, respectively. Before antimicrobial treatment, the biofilms are allowed to grow for three weeks. We find that (a). CHX-Plus kills bacteria in biofilms more effectively than the regular 2% CHX does, (b). cell continues to be killed for up to one week after exposure to the CHX solutions, (c). the biofilms start to recover after two weeks, the percentage of the viable bacteria recovers in the 1 and 3 minutes treatment groups but not in the 10 minutes treatment group after five weeks, and the biofilms fully return to the pretreatment levels after eight weeks. To understand the mechanism, a mathematical model for multiple bacterial phenotypes is developed, adopting the notion that bacterial persisters exist in the biofilms together with regulatory quorum sensing molecules and growth factor proteins. The model reveals the crucial role played by the persisters, quorum sensing molecules, and growth factors in biofilm recovery, accurately predicting the viable bacterial population after CHX treatment. PMID:27325010
Release of nitric oxide during the T cell-independent pathway of macrophage activation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beckerman, K.P.; Rogers, H.W.; Corbett, J.A.
1993-02-01
Immunodeficient mice are remarkably resistant to Listeria monocytogenes (LM) infection. The authors examined the role that nitric oxide (NO) plays in the CB-17/lcr SCID (SCID) response to LM. SCID spleen cells produced large quantities of NO (as measured by nitrite formation) when incubated in the presence of heat-killed LM. NO produced large quantities of nitrite in response to LM, but only in the presence of IFN-[gamma]. The production of NO induced by LM was not affected by neutralizing antibodies to TNF or IL-1. The production of NO was inhibited by addition of either of two inhibitors of NO synthase, N[supmore » G]-monomethyl arginine, or aminoguanidine. In a different situation, NK cells that were stimulated by TNF and Listeria products to release IFN-[gamma] did not produce NO. Macrophages cultured with IFN-[gamma] killed live LM. This increased killing of LM was significantly inhibited by amino-guanidine. In vivo, administration of aminoguanidine resulted in a marked increase in the mortality and spleen bacterial loads of LM-infected SCID or immunocompetent control mice. It is concluded that NO is a critical effector molecule of T cell-independent natural resistence of LM as studied in the SCID mouse, and that the NO-mediated response is essential for both SCID and immunocompetent host to survive after LM infection. 37 refs., 7 figs.« less
Ferrari, Eleonora; Monzani, Romina; Villella, Valeria R; Esposito, Speranza; Saluzzo, Francesca; Rossin, Federica; D'Eletto, Manuela; Tosco, Antonella; De Gregorio, Fabiola; Izzo, Valentina; Maiuri, Maria C; Kroemer, Guido; Raia, Valeria; Maiuri, Luigi
2017-01-12
Cystic fibrosis (CF), the most common lethal monogenic disease in Caucasians, is characterized by recurrent bacterial infections and colonization, mainly by Pseudomonas aeruginosa, resulting in unresolved airway inflammation. CF is caused by mutations in the gene coding for the cystic fibrosis transmembrane conductance regulator (CFTR) protein, which functions as a chloride channel in epithelial cells, macrophages, and other cell types. Impaired bacterial handling by macrophages is a feature of CF airways, although it is still debated how defective CFTR impairs bacterial killing. Recent evidence indicates that a defective autophagy in CF macrophages leads to alterations of bacterial clearance upon infection. Here we use bone marrow-derived macrophages from transgenic mice to provide the genetic proof that defective CFTR compromises both uptake and clearance of internalized Pseudomonas aeruginosa. We demonstrate that the proteostasis regulator cysteamine, which rescues the function of the most common F508del-CFTR mutant and hence reduces lung inflammation in CF patients, can also repair the defects of CF macrophages, thus restoring both bacterial internalization and clearance through a process that involves upregulation of the pro-autophagic protein Beclin 1 and re-establishment of the autophagic pathway. Altogether these results indicate that cysteamine restores the function of several distinct cell types, including that of macrophages, which might contribute to its beneficial effects on CF.
Ferrari, Eleonora; Monzani, Romina; Villella, Valeria R; Esposito, Speranza; Saluzzo, Francesca; Rossin, Federica; D'Eletto, Manuela; Tosco, Antonella; De Gregorio, Fabiola; Izzo, Valentina; Maiuri, Maria C; Kroemer, Guido; Raia, Valeria; Maiuri, Luigi
2017-01-01
Cystic fibrosis (CF), the most common lethal monogenic disease in Caucasians, is characterized by recurrent bacterial infections and colonization, mainly by Pseudomonas aeruginosa, resulting in unresolved airway inflammation. CF is caused by mutations in the gene coding for the cystic fibrosis transmembrane conductance regulator (CFTR) protein, which functions as a chloride channel in epithelial cells, macrophages, and other cell types. Impaired bacterial handling by macrophages is a feature of CF airways, although it is still debated how defective CFTR impairs bacterial killing. Recent evidence indicates that a defective autophagy in CF macrophages leads to alterations of bacterial clearance upon infection. Here we use bone marrow-derived macrophages from transgenic mice to provide the genetic proof that defective CFTR compromises both uptake and clearance of internalized Pseudomonas aeruginosa. We demonstrate that the proteostasis regulator cysteamine, which rescues the function of the most common F508del-CFTR mutant and hence reduces lung inflammation in CF patients, can also repair the defects of CF macrophages, thus restoring both bacterial internalization and clearance through a process that involves upregulation of the pro-autophagic protein Beclin 1 and re-establishment of the autophagic pathway. Altogether these results indicate that cysteamine restores the function of several distinct cell types, including that of macrophages, which might contribute to its beneficial effects on CF. PMID:28079883
Endotoxin Activity of Moraxella osloensis against the Grey Garden Slug, Deroceras reticulatum
Tan, Li; Grewal, Parwinder S.
2002-01-01
Moraxella osloensis is a gram-negative bacterium associated with Phasmarhabditis hermaphrodita, a slug-parasitic nematode that has prospects for biological control of mollusk pests, especially the grey garden slug, Deroceras reticulatum. This bacterium-feeding nematode acts as a vector that transports M. osloensis into the shell cavity of the slug, and the bacterium is the killing agent in the nematode-bacterium complex. We discovered that M. osloensis produces an endotoxin(s), which is tolerant to heat and protease treatments and kills the slug after injection into the shell cavity. Washed or broken cells treated with penicillin and streptomycin from 3-day M. osloensis cultures were more pathogenic than similar cells from 2-day M. osloensis cultures. However, heat and protease treatments and 2 days of storage at 22°C increased the endotoxin activity of the young broken cells but not the endotoxin activity of the young washed cells treated with the antibiotics. This suggests that there may be a proteinaceous substance(s) that is structurally associated with the endotoxin(s) and masks its toxicity in the young bacterial cells. Moreover, 2 days of storage of the young washed bacterial cells at 22°C enhanced their endotoxin activity if they were not treated with the antibiotics. Furthermore, purified lipopolysaccharide (LPS) from the 3-day M. osloensis cultures was toxic to slugs, with an estimated 50% lethal dose of 48 μg per slug, thus demonstrating that the LPS of M. osloensis is an endotoxin that is active against D. reticulatum. This appears to be the first report of a biological toxin that is active against mollusks. PMID:12147494
Hoe, Nancy P; Ireland, Robin M; DeLeo, Frank R; Gowen, Brian B; Dorward, David W; Voyich, Jovanka M; Liu, Mengyao; Burns, Eugene H; Culnan, Derek M; Bretscher, Anthony; Musser, James M
2002-05-28
Streptococcal inhibitor of complement (Sic) is a secreted protein made predominantly by serotype M1 Group A Streptococcus (GAS), which contributes to persistence in the mammalian upper respiratory tract and epidemics of human disease. Unexpectedly, an isogenic sic-negative mutant adhered to human epithelial cells significantly better than the wild-type parental strain. Purified Sic inhibited the adherence of a sic negative serotype M1 mutant and of non-Sic-producing GAS strains to human epithelial cells. Sic was rapidly internalized by human epithelial cells, inducing cell flattening and loss of microvilli. Ezrin and moesin, human proteins that functionally link the cytoskeleton to the plasma membrane, were identified as Sic-binding proteins by affinity chromatography and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry analysis. Sic colocalized with ezrin inside epithelial cells and bound to the F-actin-binding site region located in the carboxyl terminus of ezrin and moesin. Synthetic peptides corresponding to two regions of Sic had GAS adherence-inhibitory activity equivalent to mature Sic and inhibited binding of Sic to ezrin. In addition, the sic mutant was phagocytosed and killed by human polymorphonuclear leukocytes significantly better than the wild-type strain, and Sic colocalized with ezrin in discrete regions of polymorphonuclear leukocytes. The data suggest that binding of Sic to ezrin alters cellular processes critical for efficient GAS contact, internalization, and killing. Sic enhances bacterial survival by enabling the pathogen to avoid the intracellular environment. This process contributes to the abundance of M1 GAS in human infections and their ability to cause epidemics.
Wu, Xia; Paskaleva, Elena E.; Mehta, Krunal K.; Dordick, Jonathan S.; Kane, Ravi S.
2016-01-01
Bacterial lysins are potent antibacterial enzymes with potential applications in the treatment of bacterial infections. Some lysins lose activity in the growth media of target bacteria, and the underlying mechanism remains unclear. Here we use CD11, an autolysin of Clostridium difficile, as a model lysin to demonstrate that the inability of this enzyme to kill C. difficile in growth medium is not associated with inhibition of the enzyme activity by medium, or the modification of the cell wall peptidoglycan. Rather, wall teichoic acids (WTAs) appear to prevent the enzyme from binding to the cells and cleaving the cell wall peptidoglycan. By partially blocking the biosynthetic pathway of WTAs with tunicamycin, cell binding improved and the lytic efficacy of CD11 was significantly enhanced. This is the first report of the mechanism of lysin inactivation in growth medium, and provides insights into understanding the behavior of lysins in complex environments, including the gastrointestinal tract. PMID:27759081
Engineering a nanostructured "super surface" with superhydrophobic and superkilling properties.
Hasan, Jafar; Raj, Shammy; Yadav, Lavendra; Chatterjee, Kaushik
2015-05-12
We present a nanostructured "super surface" fabricated using a simple recipe based on deep reactive ion etching of a silicon wafer. The topography of the surface is inspired by the surface topographical features of dragonfly wings. The super surface is comprised of nanopillars 4 μm in height and 220 nm in diameter with random inter-pillar spacing. The surface exhibited superhydrophobicity with a static water contact angle of 154.0° and contact angle hysteresis of 8.3°. Bacterial studies revealed the bactericidal property of the surface against both gram negative ( Escherichia coli ) and gram positive ( Staphylococcus aureus ) strains through mechanical rupture of the cells by the sharp nanopillars. The cell viability on these nanostructured surfaces was nearly six-fold lower than on the unmodified silicon wafer. The nanostructured surface also killed mammalian cells (mouse osteoblasts) through mechanical rupture of the cell membrane. Thus, such nanostructured super surfaces could find applications for designing self-cleaning and anti-bacterial surfaces in diverse applications such as microfluidics, surgical instruments, pipelines and food packaging.
Bewley, Martin A; Naughton, Michael; Preston, Julie; Mitchell, Andrea; Holmes, Ashleigh; Marriott, Helen M; Read, Robert C; Mitchell, Timothy J; Whyte, Moira K B; Dockrell, David H
2014-10-07
Intracellular killing of Streptococcus pneumoniae is complemented by induction of macrophage apoptosis. Here, we show that the toxin pneumolysin (PLY) contributes both to lysosomal/phagolysosomal membrane permeabilization (LMP), an upstream event programing susceptibility to apoptosis, and to apoptosis execution via a mitochondrial pathway, through distinct mechanisms. PLY is necessary but not sufficient for the maximal induction of LMP and apoptosis. PLY's ability to induce both LMP and apoptosis is independent of its ability to form cytolytic pores and requires only the first three domains of PLY. LMP involves TLR (Toll-like receptor) but not NLRP3/ASC (nucleotide-binding oligomerization domain [Nod]-like receptor family, pyrin domain-containing protein 3/apoptosis-associated speck-like protein containing a caspase recruitment domain) signaling and is part of a PLY-dependent but phagocytosis-independent host response that includes the production of cytokines, including interleukin-1 beta (IL-1β). LMP involves progressive and selective permeability to 40-kDa but not to 250-kDa fluorescein isothiocyanate (FITC)-labeled dextran, as PLY accumulates in the cytoplasm. In contrast, the PLY-dependent execution of apoptosis requires phagocytosis and is part of a host response to intracellular bacteria that also includes NO generation. In cells challenged with PLY-deficient bacteria, reconstitution of LMP using the lysomotrophic detergent LeuLeuOMe favored cell necrosis whereas PLY reconstituted apoptosis. The results suggest that PLY contributes to macrophage activation and cytokine production but also engages LMP. Following bacterial phagocytosis, PLY triggers apoptosis and prevents macrophage necrosis as a component of a broad-based antimicrobial strategy. This illustrates how a key virulence factor can become the focus of a multilayered and coordinated innate response by macrophages, optimizing pathogen clearance and limiting inflammation. Importance: Streptococcus pneumoniae, the commonest cause of bacterial pneumonia, expresses the toxin pneumolysin, which can make holes in cell surfaces, causing tissue damage. Macrophages, resident immune cells essential for responses to bacteria in tissues, activate a program of cell suicide called apoptosis, maximizing bacterial clearance and limiting harmful inflammation. We examined pneumolysin's role in activating this response. We demonstrate that pneumolysin did not directly form holes in cells to trigger apoptosis and show that pneumolysin has two distinct roles which require only part of the molecule. Pneumolysin and other bacterial factors released by bacteria that have not been eaten by macrophages activate macrophages to release inflammatory factors but also make the cell compartment containing ingested bacteria leaky. Once inside the cell, pneumolysin ensures that the bacteria activate macrophage apoptosis, rather than necrosis, enhancing bacterial killing and limiting inflammation. This dual response to pneumolysin is critical for an effective immune response to S. pneumoniae. Copyright © 2014 Bewley et al.
Mancuso, Peter; Curtis, Jeffrey L; Freeman, Christine M; Peters-Golden, Marc; Weinberg, Jason B; Myers, Martin G
2018-03-22
Leptin is a pleiotropic hormone produced by white adipose tissue that regulates appetite and many physiologic functions including the immune response to infection. Genetic leptin deficiency in humans and mice impairs host defenses against respiratory tract infections. Since leptin deficiency is associated with obesity and other metabolic abnormalities, we generated mice that lack the leptin receptor (LepRb) in cells of the myeloid linage (LysM-LepRb-KO) to evaluate its impact in lean metabolically normal mice in a murine model of pneumococcal pneumonia. We observed higher lung and spleen bacterial burdens in LysM-LepRb-KO mice following an intratracheal challenge with S. pneumoniae. Although numbers of leukocytes recovered from bronchoalveolar lavage fluid did not differ between groups, we did observe higher levels of pulmonary IL-13 and TNFα in LysM-LepRb-KO mice 48 h post-infection. Phagocytosis and killing of ingested S. pneumoniae were also impaired in alveolar macrophages (AM)s from LysM-LepRb-KO mice in vitro, and was associated with reduced LTB4 and enhanced PGE2 synthesis in vitro. Pretreatment of AMs with LTB4 and the cyclooxygenase inhibitor, indomethacin, restored phagocytosis but not bacterial killing in vitro. These results, confirm our previous observations in leptin-deficient (ob/ob) and fasted mice, and demonstrate that decreased leptin action, as opposed to metabolic irregularities associated with obesity or starvation, are responsible for the defective host defense against pneumococcal pneumonia. They also provide novel targets for therapeutic intervention in humans with bacterial pneumonia.
Prophages and Growth Dynamics Confound Experimental Results with Antibiotic-Tolerant Persister Cells
Fino, Cinzia; Sørensen, Michael A.; Semsey, Szabolcs
2017-01-01
ABSTRACT Bacterial persisters are phenotypic variants that survive antibiotic treatment in a dormant state and can be formed by multiple pathways. We recently proposed that the second messenger (p)ppGpp drives Escherichia coli persister formation through protease Lon and activation of toxin-antitoxin (TA) modules. This model found considerable support among researchers studying persisters but also generated controversy as part of recent debates in the field. In this study, we therefore used our previous work as a model to critically examine common experimental procedures to understand and overcome the inconsistencies often observed between results of different laboratories. Our results show that seemingly simple antibiotic killing assays are very sensitive to variations in culture conditions and bacterial growth phase. Additionally, we found that some assay conditions cause the killing of antibiotic-tolerant persisters via induction of cryptic prophages. Similarly, the inadvertent infection of mutant strains with bacteriophage ϕ80, a notorious laboratory contaminant, apparently caused several of the phenotypes that we reported in our previous studies. We therefore reconstructed all infected mutants and probed the validity of our model of persister formation in a refined assay setup that uses robust culture conditions and unravels the dynamics of persister cells through all bacterial growth stages. Our results confirm the importance of (p)ppGpp and Lon but no longer support a role of TA modules in E. coli persister formation under unstressed conditions. We anticipate that the results and approaches reported in our study will lay the ground for future work in the field. PMID:29233898
Lee, Michelle W; Chakraborty, Saswata; Schmidt, Nathan W; Murgai, Rajan; Gellman, Samuel H; Wong, Gerard C L
2014-09-01
Novel synthetic mimics of antimicrobial peptides have been developed to exhibit structural properties and antimicrobial activity similar to those of natural antimicrobial peptides (AMPs) of the innate immune system. These molecules have a number of potential advantages over conventional antibiotics, including reduced bacterial resistance, cost-effective preparation, and customizable designs. In this study, we investigate a family of nylon-3 polymer-based antimicrobials. By combining vesicle dye leakage, bacterial permeation, and bactericidal assays with small-angle X-ray scattering (SAXS), we find that these polymers are capable of two interdependent mechanisms of action: permeation of bacterial membranes and binding to intracellular targets such as DNA, with the latter necessarily dependent on the former. We systemically examine polymer-induced membrane deformation modes across a range of lipid compositions that mimic both bacteria and mammalian cell membranes. The results show that the polymers' ability to generate negative Gaussian curvature (NGC), a topological requirement for membrane permeation and cellular entry, in model Escherichia coli membranes correlates with their ability to permeate membranes without complete membrane disruption and kill E. coli cells. Our findings suggest that these polymers operate with a concentration-dependent mechanism of action: at low concentrations permeation and DNA binding occur without membrane disruption, while at high concentrations complete disruption of the membrane occurs. This article is part of a Special Issue entitled: Interfacially Active Peptides and Proteins. Guest Editors: William C. Wimley and Kalina Hristova. Copyright © 2014 Elsevier B.V. All rights reserved.
IMPACT OF FIVE TREATMENT FACTORS ON MUSSEL MORTALITY
DOE Office of Scientific and Technical Information (OSTI.GOV)
Daniel P. Molloy
2003-12-08
Under this USDOE-NETL contract, the bacterium Pseudomonas fluorescens is being developed as a biocontrol agent for zebra mussels. The specific purpose of the contract is to identify factors that affect mussel kill. Test results reported herein indicate that mussel kill should not be affected by: (1) air bubbles being carried by currents through power plant pipes; (2) pipe orientation (e.g., vertical or horizontal); (3) whether the bacterial cell concentration during a treatment is constant or slightly varying; (4) whether a treatment is between 3 hr and 12 hr in duration, given that the total quantity of bacteria being applied tomore » the pipe is a constant; and (5) whether the water temperature is between 13 C and 23 C.« less
Role of nanomaterial physicochemical properties on fate and toxicity in bacteria and plants
NASA Astrophysics Data System (ADS)
Slomberg, Danielle
Nanomaterials, defined as those having at least one dimension <100 nm, are ubiquitous in nature. However, engineered nanomaterials have gained increasing attention for use in drug-delivery applications and consumer goods. Examination of nanomaterial toxicity, both beneficial (e.g., drug delivery to bacterial pathogens) and detrimental (e.g., death of terrestrial plants), thus warranted. Herein, I present the evaluation of nitric oxide-releasing nanomaterial toxicity to bacteria and silica particle toxicity to plants as a function of nanomaterial physicochemical properties. Nanomaterial toxicity toward planktonic (i.e., free-floating) Pseudomonas aeruginosa and Staphylococcus aureus bacteria was evaluated as a function of scaffold size, shape, and exterior functionality using nitric oxide-releasing (NO) silica particles, dendrimers, and chitosan oligosaccharides. Improved bactericidal efficacy was observed for silica particles with decreased size and increased aspect ratio (i.e., rod-like) due to improved particle-cell interactions. Likewise, better nanomaterial-bacteria association and biocidal action was noted for more hydrophobic NO-releasing dendrimers and chitosan oligosaccharides. Planktonic bacterial killing was not dependent on chitosan molecular weight due to rapid association between the cationic scaffolds and negatively-charged bacterial cell membranes. Given the importance of nanomaterial physicochemical properties in planktonic bacterial killing, the NO-releasing scaffolds were also evaluated against clinically-relevant bacterial biofilms. Similar to planktonic studies, smaller particle sizes proved more efficient in delivering NO throughout the biofilm. Particles with rod-like shape also eradicated biofilms more effectively. The role of NO-releasing dendrimer and chitosan oligosaccharide hydrophobicity was prominent in scaffold diffusion through the biofilm and subsequent NO delivery, with hydrophobic functionalities generally exhibiting better bacterial association. Lastly, biofilm eradication was more effective for NO-releasing dendrimers exhibiting sustained NO-release compared to delivery of NO via an intial burst. Phytotoxicity and uptake of silica nanoparticles was evaluated for the plant, Arabidopsis thaliana, as a function of particle size, surface composition, and shape (i.e., spherical versus rod-like particles). Overall, the silica nanoparticles examined were found to be relatively non-toxic to A. thaliana plants when pH effects were mitigated. Size-dependent uptake of the silica particles was observed; however no shape-dependent uptake was noted at the low exposure concentration examined.
Complement evasion by Bordetella pertussis: implications for improving current vaccines.
Jongerius, Ilse; Schuijt, Tim J; Mooi, Frits R; Pinelli, Elena
2015-04-01
Bordetella pertussis causes whooping cough or pertussis, a highly contagious disease of the respiratory tract. Despite high vaccination coverage, reported cases of pertussis are rising worldwide and it has become clear that the current vaccines must be improved. In addition to the well-known protective role of antibodies and T cells during B. pertussis infection, innate immune responses such as the complement system play an essential role in B. pertussis killing. In order to evade this complement activation and colonize the human host, B. pertussis expresses several molecules that inhibit complement activation. Interestingly, one of the known complement evasion proteins, autotransporter Vag8, is highly expressed in the recently emerged B. pertussis isolates. Here, we describe the current knowledge on how B. pertussis evades complement-mediated killing. In addition, we compare this to complement evasion strategies used by other bacterial species. Finally, we discuss the consequences of complement evasion by B. pertussis on adaptive immunity and how identification of the bacterial molecules and the mechanisms involved in complement evasion might help improve pertussis vaccines.
Apoptin towards safe and efficient anticancer therapies.
Backendorf, Claude; Noteborn, Mathieu H M
2014-01-01
The chicken anemia virus derived protein apoptin harbors cancer-selective cell killing characteristics, essentially based on phosphorylation-mediated nuclear transfer in cancer cells and efficient cytoplasmic degradation in normal cells. Here, we describe a growing set of preclinical experiments underlying the promises of the anti-cancer potential of apoptin. Various non-replicative oncolytic viral vector systems have revealed the safety and efficacy of apoptin. In addition, apoptin enhanced the oncolytic potential of adenovirus, parvovirus and Newcastle disease virus vectors. Intratumoral injection of attenuated Salmonella typhimurium bacterial strains and plasmid-based systems expressing apoptin resulted in significant tumor regression. In-vitro and in-vivo experiments showed that recombinant membrane-transferring PTD4- or TAT-apoptin proteins have potential as a future anticancer therapeutics. In xenografted hepatoma and melanoma mouse models PTD4-apoptin protein entered both cancer and normal cells, but only killed cancer cells. Combinatorial treatment of PTD4-apoptin with various (chemo)therapeutic compounds revealed an additive or even synergistic effect, reducing the side effects of the single (chemo)therapeutic treatment. Degradable polymeric nanocapsules harboring MBP-apoptin fusion-protein induced tumor-selective cell killing in-vitro and in-vivo and revealed the potential of polymer-apoptin protein vehicles as an anticancer agent.Besides its direct use as an anticancer therapeutic, apoptin research has also generated novel possibilities for drug design. The nuclear location domains of apoptin are attractive tools for targeting therapeutic compounds into the nucleus of cancer cells. Identification of cancer-related processes targeted by apoptin can potentially generate novel drug targets. Recent breakthroughs important for clinical applications are reported inferring apoptin-based clinical trials as a feasible reality.
NASA Astrophysics Data System (ADS)
Gajda, Iwona; Greenman, John; Melhuish, Chris; Ieropoulos, Ioannis A.
2016-05-01
This study presents a simple and sustainable Microbial Fuel Cell as a standalone, self-powered reactor for in situ wastewater electrolysis, recovering nitrogen from wastewater. A process is proposed whereby the MFC electrical performance drives the electrolysis of wastewater towards the self-generation of catholyte within the same reactor. The MFCs were designed to harvest the generated catholyte in the internal chamber, which showed that liquid production rates are largely proportional to electrical current generation. The catholyte demonstrated bactericidal properties, compared to the control (open-circuit) diffusate, and reduced observable biofilm formation on the cathode electrode. Killing effects were confirmed using bacterial kill curves constructed by exposing a bioluminescent Escherichia coli target, as a surrogate coliform, to catholyte where a rapid kill rate was observed. Therefore, MFCs could serve as a water recovery system, a disinfectant/cleaner generator that limits undesired biofilm formation and as a washing agent in waterless urinals to improve sanitation. This simple and ready to implement MFC system can convert organic waste directly into electricity and self-driven nitrogen along with water recovery. This could lead to the development of energy positive bioprocesses for sustainable wastewater treatment.
Gajda, Iwona; Greenman, John; Melhuish, Chris; Ieropoulos, Ioannis A.
2016-01-01
This study presents a simple and sustainable Microbial Fuel Cell as a standalone, self-powered reactor for in situ wastewater electrolysis, recovering nitrogen from wastewater. A process is proposed whereby the MFC electrical performance drives the electrolysis of wastewater towards the self-generation of catholyte within the same reactor. The MFCs were designed to harvest the generated catholyte in the internal chamber, which showed that liquid production rates are largely proportional to electrical current generation. The catholyte demonstrated bactericidal properties, compared to the control (open-circuit) diffusate, and reduced observable biofilm formation on the cathode electrode. Killing effects were confirmed using bacterial kill curves constructed by exposing a bioluminescent Escherichia coli target, as a surrogate coliform, to catholyte where a rapid kill rate was observed. Therefore, MFCs could serve as a water recovery system, a disinfectant/cleaner generator that limits undesired biofilm formation and as a washing agent in waterless urinals to improve sanitation. This simple and ready to implement MFC system can convert organic waste directly into electricity and self-driven nitrogen along with water recovery. This could lead to the development of energy positive bioprocesses for sustainable wastewater treatment. PMID:27172836
Low Levels of IGF-1 Contribute to Alveolar Macrophage Dysfunction in Cystic Fibrosis1
Bessich, Jamie L.; Nymon, Amanda B.; Moulton, Lisa A; Dorman, Dana; Ashare, Alix
2013-01-01
Alveolar macrophages are major contributors to lung innate immunity. Although alveolar macrophages from CFTR−/− mice have impaired function, no study has investigated primary alveolar macrophages in adults with cystic fibrosis (CF). CF patients have low levels of insulin-like growth factor 1 (IGF-1), and our prior studies demonstrate a relationship between IGF-1 and macrophage function. We hypothesize that reduced IGF-1 in CF leads to impaired alveolar macrophage function and chronic infections. Serum and bronchoalveolar lavage (BAL) samples were obtained from 8 CF subjects and 8 healthy subjects. Macrophages were isolated from BAL fluid. We measured the ability of alveolar macrophages to kill Pseudomonas aeruginosa. Subsequently, macrophages were incubated with IGF-1 prior to inoculation with bacteria to determine the effect of IGF-1 on bacterial killing. We found a significant decrease in bacterial killing by CF alveolar macrophages compared to controls. CF subjects had lower serum and BAL IGF-1 levels compared to healthy controls. Exposure to IGF-1 enhanced alveolar macrophage macrophages in both groups. Finally, exposing healthy alveolar macrophages to CF BAL fluid decreased bacterial killing, and this was reversed by the addition of IGF-1, while IGF-1 blockade worsened bacterial killing. Our studies demonstrate that alveolar macrophage function is impaired in patients with CF. Reductions in IGF-1 levels in CF contribute to the impaired alveolar macrophage function. Exposure to IGF-1 ex vivo, results in improved function of CF alveolar macrophages. Further studies are needed to determine whether alveolar macrophage function can be enhanced in vivo with IGF-1 treatment. PMID:23698746
Sprong, Tom; Brandtzaeg, Petter; Fung, Michael; Pharo, Anne M; Høiby, E Arne; Michaelsen, Terje E; Aase, Audun; van der Meer, Jos W M; van Deuren, Marcel; Mollnes, Tom E
2003-11-15
The complement system plays an important role in the initial defense against Neisseria meningitidis. In contrast, uncontrolled activation in meningococcal sepsis contributes to the development of tissue damage and shock. In a novel human whole blood model of meningococcal sepsis, we studied the effect of complement inhibition on inflammation and bacterial killing. Monoclonal antibodies (mAbs) blocking lectin and alternative pathways inhibited complement activation by N meningitidis and oxidative burst induced in granulocytes and monocytes. Oxidative burst was critically dependent on CD11b/CD18 (CR3) expression but not on Fc gamma-receptors. Specific inhibition of C5a using mAb 137-26 binding the C5a moiety of C5 before cleavage prohibited CR3 up-regulation, phagocytosis, and oxidative burst but had no effect on C5b-9 (TCC) formation, lysis, and bacterial killing. An mAb-blocking cleavage of C5, preventing C5a and TCC formation, showed the same effect on CR3, phagocytosis, and oxidative burst as the anti-C5a mAb but additionally inhibited TCC formation, lysis, and bacterial killing, consistent with a C5b-9-dependent killing mechanism. In conclusion, the anti-C5a mAb 137-26 inhibits the potentially harmful effects of N meningitidis-induced C5a formation while preserving complement-mediated bacterial killing. We suggest that this may be an attractive approach for the treatment of meningococcal sepsis.
Raz, Assaf; Tanasescu, Ana-Maria; Zhao, Anna M.; Serrano, Anna; Alston, Tricia; Sol, Asaf; Bachrach, Gilad; Fischetti, Vincent A.
2015-01-01
Cell wall anchored virulence factors are critical for infection and colonization of the host by Gram-positive bacteria. Such proteins have an N-terminal leader sequence and a C-terminal sorting signal, composed of an LPXTG motif, a hydrophobic stretch, and a few positively charged amino acids. The sorting signal halts translocation across the membrane, allowing sortase to cleave the LPXTG motif, leading to surface anchoring. Deletion of sortase prevents the anchoring of virulence factors to the wall; the effects on bacterial physiology however, have not been thoroughly characterized. Here we show that deletion of Streptococcus pyogenes sortase A leads to accumulation of sorting intermediates, particularly at the septum, altering cellular morphology and physiology, and compromising membrane integrity. Such cells are highly sensitive to cathelicidin, and are rapidly killed in blood and plasma. These phenomena are not a loss-of-function effect caused by the absence of anchored surface proteins, but specifically result from the accumulation of sorting intermediates. Reduction in the level of sorting intermediates leads to a return of the sortase mutant to normal morphology, while expression of M protein with an altered LPXTG motif in wild type cells leads to toxicity in the host environment, similar to that observed in the sortase mutant. These unanticipated effects suggest that inhibition of sortase by small-molecule inhibitors could similarly lead to the rapid elimination of pathogens from an infected host, making such inhibitors much better anti-bacterial agents than previously believed. PMID:26484774
Young, Robert L.; Malcolm, Kenneth C.; Kret, Jennifer E.; Caceres, Silvia M.; Poch, Katie R.; Nichols, David P.; Taylor-Cousar, Jennifer L.; Saavedra, Milene T.; Randell, Scott H.; Vasil, Michael L.; Burns, Jane L.; Moskowitz, Samuel M.; Nick, Jerry A.
2011-01-01
The inability of neutrophils to eradicate Pseudomonas aeruginosa within the cystic fibrosis (CF) airway eventually results in chronic infection by the bacteria in nearly 80 percent of patients. Phagocytic killing of P. aeruginosa by CF neutrophils is impaired due to decreased cystic fibrosis transmembrane conductance regulator (CFTR) function and virulence factors acquired by the bacteria. Recently, neutrophil extracellular traps (NETs), extracellular structures composed of neutrophil chromatin complexed with granule contents, were identified as an alternative mechanism of pathogen killing. The hypothesis that NET-mediated killing of P. aeruginosa is impaired in the context of the CF airway was tested. P. aeruginosa induced NET formation by neutrophils from healthy donors in a bacterial density dependent fashion. When maintained in suspension through continuous rotation, P. aeruginosa became physically associated with NETs. Under these conditions, NETs were the predominant mechanism of killing, across a wide range of bacterial densities. Peripheral blood neutrophils isolated from CF patients demonstrated no impairment in NET formation or function against P. aeruginosa. However, isogenic clinical isolates of P. aeruginosa obtained from CF patients early and later in the course of infection demonstrated an acquired capacity to withstand NET-mediated killing in 8 of 9 isolates tested. This resistance correlated with development of the mucoid phenotype, but was not a direct result of the excess alginate production that is characteristic of mucoidy. Together, these results demonstrate that neutrophils can kill P. aeruginosa via NETs, and in vitro this response is most effective under non-stationary conditions with a low ratio of bacteria to neutrophils. NET-mediated killing is independent of CFTR function or bacterial opsonization. Failure of this response in the context of the CF airway may occur, in part, due to an acquired resistance against NET-mediated killing by CF strains of P. aeruginosa. PMID:21909403
Chukwudi, Chinwe Uzoma; Good, Liam
2018-01-01
The hok/sok locus has been shown to enhance the growth of bacteria in adverse growth conditions such as high temperature, low starting-culture densities and antibiotic treatment. This is in addition to their well-established plasmid-stabilization effect via post-segregational killing of plasmid-free daughter cells. It delays the onset of growth by prolonging the lag phase of bacterial culture, and increases the rate of exponential growth when growth eventually begins. This enables the cells adapt to the prevailing growth conditions and enhance their survival in stressful conditions. These effects functionally complement defective SOS response mechanism, and appear analogous to the growth effects of FtsZ in the SOS pathway. In this study, the role of FtsZ in the hok/sok-induced changes in bacterial growth and cell division was investigated. Morphologic studies of early growth-phase cultures and cells growing under temperature stress showed elongated cells typical of FtsZ inhibition/deficiency. Both ftsZ silencing and over-expression produced comparable growth effects in control cells, and altered the growth changes observed otherwise in the hok/sok + cells. These changes were diminished in SOS-deficient strain containing mutant FtsZ. The involvement of FtsZ in the hok/sok-induced growth changes may be exploited as drug target in host bacteria, which often propagate antibiotic resistance elements. Copyright © 2017 Elsevier Ltd. All rights reserved.
Ag/AgBr-loaded mesoporous silica for rapid sterilization and promotion of wound healing.
Jin, Chen; Liu, Xiangmei; Tan, Lei; Cui, Zhenduo; Yang, Xianjin; Zheng, Yufeng; Yeung, Kelvin Wai Kwok; Chu, Paul K; Wu, Shuilin
2018-06-25
Bacterial infection is a major concern during the wound healing process. Herein, Ag/AgBr-loaded mesoporous silica nanoparticles (Ag/AgBr/MSNs) are designed to harvest visible light for rapid sterilization and acceleration of wound healing. The Ag/AgBr nanostructure has remarkable photocatalysis ability due to the critical factor that it can generate electron-hole pairs easily after light absorption. This remarkable photocatalytic effect enhances the antibacterial activity by producing reactive oxygen species (ROS). The bacterial killing efficiency of Ag/AgBr/MSNs is 95.62% and 99.99% against Staphylococcus aureus and Escherichia coli, respectively, within 15 min under simulated solar light irradiation due to the generation of ROS. Furthermore, the composites can arrest the bacterial growth and damage the bacterial membrane through electrostatic interaction. The gradual release of Ag+ not only prevents bacterial infection with good long-term effectiveness but also stimulates the immune function to produce a large number of white blood cells and neutrophils, which favors the promotion of the wound healing process. This platform provides an effective strategy to prevent bacterial infection during wound healing.
Teasdale, Margaret E; Donovan, Kellye A; Forschner-Dancause, Stephanie R; Rowley, David C
2011-08-01
Inhibitors of bacterial quorum sensing have been proposed as potentially novel therapeutics for the treatment of certain bacterial diseases. We recently reported a marine Halobacillus salinus isolate that secretes secondary metabolites capable of quenching quorum sensing phenotypes in several Gram-negative reporter strains. To investigate how widespread the production of such compounds may be in the marine bacterial environment, 332 Gram-positive isolates from diverse habitats were tested for their ability to interfere with Vibrio harveyi bioluminescence, a cell signaling-regulated phenotype. Rapid assay methods were employed where environmental isolates were propagated alongside the reporter strain. "Actives" were defined as bacteria that interfered with bioluminescence without visible cell-killing effects (antibiotic activity). A total of 49 bacterial isolates interfered with bioluminescence production in the assays. Metabolite extracts were generated from cultures of the active isolates, and 28 reproduced the bioluminescence inhibition against V. harveyi. Of those 28, five extracts additionally inhibited violacein production by Chromobacterium violaceum. Chemical investigations revealed that phenethylamides and a cyclic dipeptide are two types of secondary metabolites responsible for the observed activities. The active bacterial isolates belonged primarily to either the genus Bacillus or Halobacillus. The results suggest that Gram-positive marine bacteria are worthy of further investigation for the discovery of quorum sensing antagonists.
Bacterial Acclimation Inside an Aqueous Battery.
Dong, Dexian; Chen, Baoling; Chen, P
2015-01-01
Specific environmental stresses may lead to induced genomic instability in bacteria, generating beneficial mutants and potentially accelerating the breeding of industrial microorganisms. The environmental stresses inside the aqueous battery may be derived from such conditions as ion shuttle, pH gradient, free radical reaction and electric field. In most industrial and medical applications, electric fields and direct currents are used to kill bacteria and yeast. However, the present study focused on increasing bacterial survival inside an operating battery. Using a bacterial acclimation strategy, both Escherichia coli and Bacillus subtilis were acclimated for 10 battery operation cycles and survived in the battery for over 3 days. The acclimated bacteria changed in cell shape, growth rate and colony color. Further analysis indicated that electrolyte concentration could be one of the major factors determining bacterial survival inside an aqueous battery. The acclimation process significantly improved the viability of both bacteria E. coli and B. subtilis. The viability of acclimated strains was not affected under battery cycle conditions of 0.18-0.80 mA cm(-2) and 1.4-2.1 V. Bacterial addition within 1.0×10(10) cells mL(-1) did not significantly affect battery performance. Because the environmental stress inside the aqueous battery is specific, the use of this battery acclimation strategy may be of great potential for the breeding of industrial microorganisms.
Wu, Gongqing; Xu, Li; Yi, Yunhong
2016-06-01
Larvae of Galleria mellonella are useful models for studying the innate immunity of invertebrates or for evaluating the virulence of microbial pathogens. In this work, we demonstrated that prior exposure of G. mellonella larvae to high doses (1×10(4), 1×10(5) or 1×10(6) cells/larva) of heat-killed Photorhabdus luminescens TT01 increases the resistance of larvae to a lethal dose (50 cells/larva) of viable P. luminescens TT01 infection administered 48h later. We also found that the changes in immune protection level were highly correlated to the changes in levels of cellular and humoral immune parameters when priming the larvae with different doses of heat-killed P. luminescens TT01. Priming the larvae with high doses of heat-killed P. luminescens TT01 resulted in significant increases in the hemocytes activities of phagocytosis and encapsulation. High doses of heat-killed P. luminescens TT01 also induced an increase in total hemocyte count and a reduction in bacterial density within the larval hemocoel. Quantitative real-time PCR analysis showed that genes coding for cecropin and gallerimycin and galiomycin increased in expression after priming G. mellonella with heat-killed P. luminescens TT01. All the immune parameters changed in a dose-dependent manner. These results indicate that the insect immune system is capable of sensing the extent of priming agent and mounting a proportionate immune response. Copyright © 2016 European Federation of Immunological Societies. Published by Elsevier B.V. All rights reserved.
Lethal photosensitization of periodontal pathogens by a red-filtered Xenon lamp in vitro.
Matevski, Donco; Weersink, Robert; Tenenbaum, Howard C; Wilson, Brian; Ellen, Richard P; Lépine, Guylaine
2003-08-01
The ability of Helium-Neon (He-Ne) laser irradiation of a photosensitizer to induce localized phototoxic effects that kill periodontal pathogens is well documented and is termed photodynamic therapy (PDT). We investigated the potential of a conventional light source (red-filtered Xenon lamp) to activate toluidine blue O (TBO) in vitro and determined in vitro model parameters that may be used in future in vivo trials. Porphyromonas gingivalis 381 was used as the primary test bacterium. Treatment with a 2.2 J/cm2 light dose and 50 micro g/ml TBO concentration resulted in a bacterial kill of 2.43 +/- 0.39 logs with the He-Ne laser control and 3.34 +/- 0.24 logs with the lamp, a near 10-fold increase (p = 0.028). Increases in light intensity produced significantly higher killing (p = 0.012) that plateaued at 25 mW/cm2. There was a linear relationship between light dose and bacterial killing (r2 = 0.916); as light dose was increased bacterial survival decreased. No such relationship was found for the drug concentrations tested. Addition of serum or blood at 50% v/v to the P. gingivalis suspension prior to irradiation diminished killing from approximately 5 logs to 3 logs at 10 J/cm2. When serum was washed off, killing returned to 5 logs for all species tested except Bacteroides forsythus (3.92 +/- 0.68 logs kill). The data indicate that PDT utilizing a conventional light source is at least as effective as laser-induced treatment in vitro. Furthermore, PDT achieves significant bactericidal activity in the presence of serum and blood when used with the set parameters of 10 J/cm2, 100 mW/cm2 and 12.5 micro g/ml TBO.
Okada, Y; Klein, N J; Pierro, A
1999-02-01
Studies have shown that total parenteral nutrition (TPN) in infancy is associated with impaired immunity. The causes of this acquired immunodeficiency are poorly understood. Bacterial infection is a major complication of TPN suggesting neutrophils may be affected by this feeding modality. The aim of this study was to test the hypothesis that TPN-related impaired bactericidal activity is related to impairment of neutrophil function, particularly intracellular killing. Studies were performed in five infants (age <2 months) who received long-term TPN (>10 days), five control infants who received a normal enteral diet, and five healthy adults. Patients on long-term TPN were clinically stable with no evidence of sepsis. The experimental study used an in vitro whole-blood model of septicaemia. Coagulase-negative staphylococci were the bacterial challenge. Whole-blood killing of coagulase-negative staphylococci was measured after 45 minutes using the Miles-Misra technique. Neutrophils were separated from whole blood after 15, 30, 45, and 60 minutes of bacterial challenge. The survival rate of the bacteria within the neutrophils was analysed by flow cytometry and the percentage of the bacteria killed by neutrophil intracellular killing assessed at each time-point. Whole-blood killing was significantly lower (P = .05) in infants who received long-term TPN (33.3%) compared with control infants (69.7%) and adults (67.7%). In all subjects studied, neutrophil intracellular killing increased with incubation time. At each time point the intracellular killing in infants on long-term TPN was significantly lower (P < .05) than in normal control infants and adults. Future strategies to prevent TPN-related infection should aim to minimise this acquired neutrophil dysfunction.
Martin, Jennifer; Chong, Trisha; Ferree, Patrick M.
2013-01-01
Male killing bacteria such as Spiroplasma are widespread pathogens of numerous arthropods including Drosophila melanogaster. These maternally transmitted bacteria can bias host sex ratios toward the female sex in order to ‘selfishly’ enhance bacterial transmission. However, little is known about the specific means by which these pathogens disrupt host development in order to kill males. Here we show that a male-killing Spiroplasma strain severely disrupts nervous tissue development in male but not female D. melanogaster embryos. The neuroblasts, or neuron progenitors, form properly and their daughter cells differentiate into neurons of the ventral nerve chord. However, the neurons fail to pack together properly and they produce highly abnormal axons. In contrast, non-neural tissue, such as mesoderm, and body segmentation appear normal during this time, although the entire male embryo becomes highly abnormal during later stages. Finally, we found that Spiroplasma is altogether absent from the neural tissue but localizes within the gut and the epithelium immediately surrounding the neural tissue, suggesting that the bacterium secretes a toxin that affects neural tissue development across tissue boundaries. Together these findings demonstrate the unique ability of this insect pathogen to preferentially affect development of a specific embryonic tissue to induce male killing. PMID:24236124
Antibiofilm Activity of an Exopolysaccharide from Marine Bacterium Vibrio sp. QY101
Han, Feng; Duan, Gaofei; Lu, Xinzhi; Gu, Yuchao; Yu, Wengong
2011-01-01
Bacterial exopolysaccharides have always been suggested to play crucial roles in the bacterial initial adhesion and the development of complex architecture in the later stages of bacterial biofilm formation. However, Escherichia coli group II capsular polysaccharide was characterized to exert broad-spectrum biofilm inhibition activity. In this study, we firstly reported that a bacterial exopolysaccharide (A101) not only inhibits biofilm formation of many bacteria but also disrupts established biofilm of some strains. A101 with an average molecular weight of up to 546 KDa, was isolated and purified from the culture supernatant of the marine bacterium Vibrio sp. QY101 by ethanol precipitation, iron-exchange chromatography and gel filtration chromatography. High performance liquid chromatography traces of the hydrolyzed polysaccharides showed that A101 is primarily consisted of galacturonic acid, glucuronic acid, rhamnose and glucosamine. A101 was demonstrated to inhibit biofilm formation by a wide range of Gram-negative and Gram-positive bacteria without antibacterial activity. Furthermore, A101 displayed a significant disruption on the established biofilm produced by Pseudomonas aeruginosa, but not by Staphylococcus aureus. Importantly, A101 increased the aminoglycosides antibiotics' capability of killing P. aeruginosa biofilm. Cell primary attachment to surfaces and intercellular aggregates assays suggested that A101 inhibited cell aggregates of both P. aeruginosa and S. aureus, while the cell-surface interactions inhibition only occurred in S. aureus, and the pre-formed cell aggregates dispersion induced by A101 only occurred in P. aeruginosa. Taken together, these data identify the antibiofilm activity of A101, which may make it potential in the design of new therapeutic strategies for bacterial biofilm-associated infections and limiting biofilm formation on medical indwelling devices. The found of A101 antibiofilm activity may also promote a new recognition about the functions of bacterial exopolysaccharides. PMID:21490923
The effect of antibacterial acting extracorporeal shockwaves on bacterial cell integrity.
Horn, Carsten; Mengele, Karin; Gerdesmeyer, Ludger; Gradinger, Reiner; Gollwitzer, Hans
2009-12-01
Antibacterial effects of extracorporeal shockwaves (ESWs) have been demonstrated in vitro against bacteria under static and dynamic growth conditions. This study assessed the effects of ESWs on the cell wall integrity of bacteria. Standardized suspensions of Staphylococcus aureus were exposed to various shockwave impulses (2000-12,000) of different energy flux densities (EFD, 0.38-0.96 mJ/mm(2)). Bacterial suspensions of equal concentration that had been permeabilized (to >99%) with isopropanol were used as positive controls. The bacteria of all groups were stained with Sytox Green nucleic acid stain. The fluorescence of the shockwave-treated, permeabilized, and untreated suspensions was measured and compared for bacterial survival, quantified by colony-forming units after plating. Although ESWs showed a significant energy-dependent antibacterial effect that reduced CFUs in the treated suspensions by between 56% and 99%, only maximum energies (4000 impulses at 0.96 mJ/mm(2) and 12,000 impulses at 0.59 mJ/mm(2)) were followed by a significant increase in fluorescence compared with the untreated control (p<0.05). However, the fluorescence of these treated groups was still far less than that of the alcohol-permeabilized positive control groups (p<0.05). Lower energies and impulse rates did not show increased intracellular uptake of the fluorescent dye (p>0.05). This is the first study to assess bacterial cell wall permeability after ESW treatment. It was found that the permeabilization of bacterial cells after ESW treatment was far less than expected due to the corresponding antibacterial effect. Other mechanisms, such as intracellular effects, might be involved in bacterial killing after ESWs and still must be elucidated.
Mendes, João J; Leandro, Clara; Mottola, Carla; Barbosa, Raquel; Silva, Filipa A; Oliveira, Manuela; Vilela, Cristina L; Melo-Cristino, José; Górski, Andrzej; Pimentel, Madalena; São-José, Carlos; Cavaco-Silva, Patrícia; Garcia, Miguel
2014-08-01
In patients with diabetes mellitus, foot infections pose a significant risk. These are complex infections commonly caused by Staphylococcus aureus, Pseudomonas aeruginosa and Acinetobacter baumannii, all of which are potentially susceptible to bacteriophages. Here, we characterized five bacteriophages that we had determined previously to have antimicrobial and wound-healing potential in chronic S. aureus, P. aeruginosa and A. baumannii infections. Morphological and genetic features indicated that the bacteriophages were lytic members of the family Myoviridae or Podoviridae and did not harbour any known bacterial virulence genes. Combinations of the bacteriophages had broad host ranges for the different target bacterial species. The activity of the bacteriophages against planktonic cells revealed effective, early killing at 4 h, followed by bacterial regrowth to pre-treatment levels by 24 h. Using metabolic activity as a measure of cell viability within established biofilms, we found significant cell impairment following bacteriophage exposure. Repeated treatment every 4 h caused a further decrease in cell activity. The greatest effects on both planktonic and biofilm cells occurred at a bacteriophage : bacterium input multiplicity of 10. These studies on both planktonic cells and established biofilms allowed us to better evaluate the effects of a high input multiplicity and a multiple-dose treatment protocol, and the findings support further clinical development of bacteriophage therapy. © 2014 The Authors.
Interferon α-Enhanced Clearance of Group A Streptococcus Despite Neutropenia.
Uchiyama, Satoshi; Keller, Nadia; Schlaepfer, Erika; Grube, Christina; Schuepbach, Reto A; Speck, Roberto F; Zinkernagel, Annelies S
2016-07-15
Neutrophils and monocytes are crucial for controlling bacterial infections. More-frequent bacterial infections are accordingly encountered in neutropenic patients undergoing chemotherapy. This is not the case for pegylated interferon α (IFN-α)-induced neutropenia. We hypothesized that IFN-α induces a compensatory innate antibacterial state that prevents bacterial infections despite the neutropenia. To investigate whether patients with hepatitis C virus infection treated with IFN-α killed group A Streptococcus (GAS) better than before initiating therapy, whole blood was used to perform ex vivo GAS killing assays before, during, and after IFN-α therapy. We found that IFN-α therapy enhanced GAS killing in whole blood ex vivo despite the decreased neutrophil and monocyte numbers during IFN-α therapy. IFN-α also boosted neutrophil- and monocyte-mediated GAS killing in vitro. Underlying mechanisms included increased production of the antibacterial properdin, a regulator of the complement activation, as well as reactive oxygen species. These findings help to explain the rather discrepant facts of neutropenia but preserved antibacterial immune defenses in patients treated with IFN-α. © The Author 2016. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail journals.permissions@oup.com.
Plasma needle: treatment of living cells and tissues
NASA Astrophysics Data System (ADS)
Stoffels, Eva
2003-10-01
Non-thermal plasmas are capable of refined treatment of heat sensitive surfaces. Recently, many non-thermal sources working under atmospheric pressure have been constructed. Their main applications are various surface treatments: cleaning, etching, changing the wettability/adhesion, and bacterial decontamination. A new research at the Eindhoven University of Technology focuses on in vivo treatment by means of a novel non-thermal plasma source (the plasma needle). At present, a fundamental study has been undertaken to identify all possible responses of living objects exposed to the plasma. Plasma treatment does not lead to cell death (necrosis), which is a cause of inflammation. On the contrary, we observe various sophisticated reactions of mammalian cells, e.g. cell detachment (loss of cell contact) and programmed cell death (apoptosis). Moreover, under certain conditions the plasma is capable of killing bacteria, while eukaryotic cells remain unharmed. These findings may result in development of new techniques, like bacterial sterilization of infected (living) tissues or removal of cells without inflammatory response, and on a longer time scale to new methods in the health care. Possible applications include treatment of skin ailments, aiding wound healing and sterilization of dental cavities.
Could Killing Bacterial Subpopulations Hit Tuberculosis out of the Park?
Baranowski, Catherine; Rubin, Eric J
2016-07-14
One hurdle to treating tuberculosis could be that it is so difficult to kill nonreplicating subpopulations of the causative pathogens. This work describes two new cephalosporin derivatives that specifically target this population of Mycobacterium tuberculosis.
Itoh, Hiroshi; Matsuo, Hidemasa; Kitamura, Naoko; Yamamoto, Sho; Higuchi, Takeshi; Takematsu, Hiromu; Kamikubo, Yasuhiko; Kondo, Tadakazu; Yamashita, Kouhei; Sasada, Masataka; Takaori-Kondo, Akifumi; Adachi, Souichi
2015-07-01
Autophagy occurs in human neutrophils after the phagocytosis of multidrug-resistant bacteria and drug-sensitive strains, including Escherichia coli and Pseudomonas aeruginosa. The present study detected autophagy by immunoblot analysis of LC3B conversion, by confocal scanning microscopic examination of LC3B aggregate formation and by transmission electron microscopic examination of bacteria-containing autophagosomes. Patients with severe bacterial infections are often treated with IVIG alongside antimicrobial agents. Here, we showed that IVIG induced neutrophil-mediated phagocytosis of multidrug-resistant strains. Compared with untreated neutrophils, neutrophils exposed to IVIG showed increased levels of bacterial cell killing, phagocytosis, O(2)(-) release, MPO release, and NET formation. IVIG also increased autophagy in these cells. Inhibiting the late phase of autophagy (fusion of lysosomes with autophagosomes) with bafilomycin A1-reduced, neutrophil-mediated bactericidal activity. These findings indicate that autophagy plays a critical role in the bactericidal activity mediated by human neutrophils. Furthermore, the autophagosomes within the neutrophils contained bacteria only and their organelles only, or both bacteria and their organelles, a previously undocumented observation. Taken together, these results suggest that the contents of neutrophil autophagosomes may be derived from specific autophagic systems, which provide the neutrophil with an advantage. Thus, IVIG promotes the neutrophil-mediated killing of multidrug-resistant bacteria as well as drug-sensitive strains. © Society for Leukocyte Biology.
Itoh, Hiroshi; Matsuo, Hidemasa; Kitamura, Naoko; Yamamoto, Sho; Higuchi, Takeshi; Takematsu, Hiromu; Kamikubo, Yasuhiko; Kondo, Tadakazu; Yamashita, Kouhei; Sasada, Masataka; Takaori-Kondo, Akifumi; Adachi, Souichi
2015-01-01
Autophagy occurs in human neutrophils after the phagocytosis of multidrug-resistant bacteria and drug-sensitive strains, including Escherichia coli and Pseudomonas aeruginosa. The present study detected autophagy by immunoblot analysis of LC3B conversion, by confocal scanning microscopic examination of LC3B aggregate formation and by transmission electron microscopic examination of bacteria-containing autophagosomes. Patients with severe bacterial infections are often treated with IVIG alongside antimicrobial agents. Here, we showed that IVIG induced neutrophil-mediated phagocytosis of multidrug-resistant strains. Compared with untreated neutrophils, neutrophils exposed to IVIG showed increased levels of bacterial cell killing, phagocytosis, O2− release, MPO release, and NET formation. IVIG also increased autophagy in these cells. Inhibiting the late phase of autophagy (fusion of lysosomes with autophagosomes) with bafilomycin A1-reduced, neutrophil-mediated bactericidal activity. These findings indicate that autophagy plays a critical role in the bactericidal activity mediated by human neutrophils. Furthermore, the autophagosomes within the neutrophils contained bacteria only and their organelles only, or both bacteria and their organelles, a previously undocumented observation. Taken together, these results suggest that the contents of neutrophil autophagosomes may be derived from specific autophagic systems, which provide the neutrophil with an advantage. Thus, IVIG promotes the neutrophil-mediated killing of multidrug-resistant bacteria as well as drug-sensitive strains. PMID:25908735
Lavigne, J-P; Bourg, G; Combescure, C; Botto, H; Sotto, A
2008-04-01
This study evaluated the antibacterial efficacy of the consumption of cranberry capsules vs. placebo in the urine of healthy volunteers. A first double-blind, randomised, crossover trial involved eight volunteers who had followed three regimens, with or without cranberry, with a wash-out period of at least 6 days between each regimen. Twelve hours after consumption of cranberry or placebo hard capsules, the first urine of the morning was collected. Different Escherichia coli strains were cultured in the urine samples. Urinary antibacterial adhesion activity was measured in vitro using the human T24 epithelial cell-line, and in vivo using the Caenorhabditis elegans killing model. With the in-vitro model, 108 mg of cranberry induced a significant reduction in bacterial adherence to T24 cells as compared with placebo (p <0.001). A significant dose-dependent decrease in bacterial adherence in vitro was noted after the consumption of 108 and 36 mg of cranberry (p <0.001). The in-vivo model confirmed that E. coli strains had a reduced ability to kill C. elegans after growth in the urine of patients who consumed cranberry capsules. Overall, these in-vivo and in-vitro studies suggested that consumption of cranberry juice represents an interesting new strategy to prevent recurrent urinary tract infection.
Lavigne, Jean-Philippe; Bourg, Gisèle; Combescure, Christophe; Botto, Henri; Sotto, Albert
2008-01-01
This study evaluated the antibacterial efficacy of the consumption of cranberry capsules vs. placebo in the urine of healthy volunteers. A first double-blind, randomised, crossover trial involved eight volunteers who had followed three regimens, with or without cranberry, with a wash-out period of at least 6 days between each regimen. Twelve hours after consumption of cranberry or placebo hard capsules, the first urine of the morning was collected. Different Escherichia coli strains were cultured in the urine samples. Urinary antibacterial adhesion activity was measured in vitro using the human T24 epithelial cell-line, and in vivo using the Caenorhabditis elegans killing model. With the in-vitro model, 108 mg of cranberry induced a significant reduction in bacterial adherence to T24 cells as compared with placebo (p <0.001). A significant dose-dependent decrease in bacterial adherence in vitro was noted after the consumption of 108 and 36 mg of cranberry (p <0.001). The in-vivo model confirmed that E. coli strains had a reduced ability to kill C. elegans after growth in the urine of patients who consumed cranberry capsules. Overall, these in-vivo and in-vitro studies suggested that consumption of cranberry juice represents an interesting new strategy to prevent recurrent urinary tract infection. PMID:18190583
Li, R C
1996-01-01
Antibiotic-bacterium interactions are complex in nature. In many cases, bacterial killing does not commence immediately after the addition of an antibiotic, and a lag period is observed. Antibiotic permeation and/or the intermediate steps that exist between antibiotic-receptor binding and expression of cell death are two major possible causes for such lag period. This study was primarily designed to determine the relationship, if any, between antibiotic concentrations and the lag periods by a modeling approach. Short-term time-kill studies were conducted for amoxicillin, ampicillin, penicillin-G, oxacillin, and dicloxacillin against Escherichia coli. In conjunction with the use of a saturable rate model to describe the concentration-dependent killing process, a first-order induction (initiation) rate constant was used to characterize the delay in bacterial killing during the lag period. For all of the beta-lactams tested, parameters describing the bactericidal effect suggest that amoxicillin and ampicillin were much more potent than oxacillin and dicloxacillin. The induction rate constant estimates for both ampicillin and amoxicillin were found to relate linearly to concentrations. Nevertheless, these induction rate constant estimates were lower for penicillin-G, oxacillin, and dicloxacillin and increased nonlinearly with concentrations until an apparent plateau was observed. These findings support the hypothesis that the permeation process is potentially a rate-limiting step for the rapid bactericidal beta-lactams such as ampicillin and amoxicillin. However, as suggested by previous observations of the various morphological changes induced by beta-lactams, the contribution of the steps following antibiotic-receptor complex formation to the lag period might be significant for the less bactericidal antibiotics such as oxacillin and dicloxacillin. Findings from the present modeling approach can potentially be used to guide future bench experimentation. PMID:8891135
Sterilization of bacterial endospores by an atmospheric-pressure argon plasma jet
DOE Office of Scientific and Technical Information (OSTI.GOV)
Uhm, Han S.; Lim, Jin P.; Li, Shou Z.
2007-06-25
Argon plasma jets penetrate deep into ambient air and create a path for oxygen radicals to sterilize microbes. A sterilization experiment with bacterial endospores indicates that an argon-oxygen plasma jet very effectively kills endospores of Bacillus atrophaeus (ATCC 9372), thereby demonstrating its capability to clean surfaces and its usefulness for reinstating contaminated equipment as free from toxic biological warfare agents. However, the spore-killing efficiency of the atmospheric-pressure argon-oxygen jet depends very sensitively on the oxygen concentration in the argon gas.
Garrison, Aaron T; Abouelhassan, Yasmeen; Kallifidas, Dimitris; Bai, Fang; Ukhanova, Maria; Mai, Volker; Jin, Shouguang; Luesch, Hendrik; Huigens, Robert W
2015-12-01
Conventional antibiotics are ineffective against non-replicating bacteria (for example, bacteria within biofilms). We report a series of halogenated phenazines (HP), inspired by marine antibiotic 1, that targets persistent bacteria. HP 14 demonstrated the most potent biofilm eradication activities to date against MRSA, MRSE, and VRE biofilms (MBEC = 0.2-12.5 μM), as well as the effective killing of MRSA persister cells in non-biofilm cultures. Frontline MRSA treatments, vancomycin and daptomycin, were unable to eradicate MRSA biofilms or non-biofilm persisters alongside 14. HP 13 displayed potent antibacterial activity against slow-growing M. tuberculosis (MIC = 3.13 μM), the leading cause of death by bacterial infection around the world. HP analogues effectively target persistent bacteria through a mechanism that is non-toxic to mammalian cells and could have a significant impact on treatments for chronic bacterial infections. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Huang, Xiaofei; Bao, Xiaojiong; Liu, Yalan; Wang, Zhengke; Hu, Qiaoling
2017-05-12
In this study, silver nanoparticles (Ag NPs) coated with catechol-conjugated chitosan (CSS) were prepared using green methods. Interestingly, we uncovered that CSS-coated Ag NPs (CSS-Ag NPs) exhibited a higher toxicity against gram-negative Escherichia coli (E. coli) bacteria than against gram-positive Staphylococcus aureus (S. aureus) bacteria. The differences revealed that the CSS-Ag NPs killed gram bacteria with distinct, species-specific mechanisms. The aim of this study is to further investigate these underlying mechanisms through a series of analyses. The ultrastructure and morphology of the bacteria before and after treatment with CSS-Ag NPs were observed. The results demonstrated the CSS-Ag NPs killed gram-positive bacteria through a disorganization of the cell wall and leakage of cytoplasmic content. In contrast, the primary mechanism of action on gram-negative bacteria was a change in membrane permeability, induced by adsorption of CSS-Ag NPs. The species-specific mechanisms are caused by structural differences in the cell walls of gram bacteria. Gram-positive bacteria are protected from CSS-Ag NPs by a thicker cell wall, while gram-negatives are more easily killed due to an interaction between a special outer membrane and the nanoparticles. Our study offers an in-depth understanding of the antibacterial behaviors of CSS-Ag NPs and provides insights into ultimately optimizing the design of Ag NPs for treatment of bacterial infections.
Aulik, Nicole A.; Hellenbrand, Katrina M.; Klos, Heather; Czuprynski, Charles J.
2010-01-01
Mannheimia haemolytica is an important member of the bovine respiratory disease complex, which is characterized by abundant neutrophil infiltration into the alveoli and fibrin deposition. Recently several authors have reported that human neutrophils release neutrophil extracellular traps (NETs), which are protein-studded DNA matrices capable of trapping and killing pathogens. Here, we demonstrate that the leukotoxin (LKT) of M. haemolytica causes NET formation by bovine neutrophils in a CD18-dependent manner. Using an unacylated, noncytotoxic pro-LKT produced by an ΔlktC mutant of M. haemolytica, we show that binding of unacylated pro-LKT stimulates NET formation despite a lack of cytotoxicity. Inhibition of LKT binding to the CD18 chain of lymphocyte function-associated antigen 1 (LFA-1) on bovine neutrophils reduced NET formation in response to LKT or M. haemolytica cells. Further investigation revealed that NETs formed in response to M. haemolytica are capable of trapping and killing a portion of the bacterial cells. NET formation was confirmed by confocal microscopy and by scanning and transmission electron microscopy. Prior exposure of bovine neutrophils to LKT enhanced subsequent trapping and killing of M. haemolytica cells in bovine NETs. Understanding NET formation in response to M. haemolytica and its LKT provides a new perspective on how neutrophils contribute to the pathogenesis of bovine respiratory disease. PMID:20823211
Antimicrobial peptides interact with peptidoglycan
NASA Astrophysics Data System (ADS)
Neelay, Om P.; Peterson, Christian A.; Snavely, Mary E.; Brown, Taylor C.; TecleMariam, Ariam F.; Campbell, Jennifer A.; Blake, Allison M.; Schneider, Sydney C.; Cremeens, Matthew E.
2017-10-01
Traditional therapeutics are losing effectiveness as bacterial resistance increases, and antimicrobial peptides (AMPs) can serve as an alternative source for antimicrobial agents. Their mode of action is commonly hypothesized to involve pore formation in the lipid membrane, thereby leading to cell death. However, bacterial cell walls are much more complex than just the lipid membrane. A large portion of the wall is comprised of peptidoglycan, yet we did not find any report of AMP-peptidoglycan interactions. Consequently, this work evaluated AMP-peptidoglycan and AMP-phospholipid (multilamellar vesicles) interactions through tryptophan fluorescence. Given that peptidoglycan is insoluble and vesicles are large particles, we took advantage of the unique properties of Trp-fluorescence to use one technique for two very different systems. Interestingly, melittin and cecropin A interacted with peptidoglycan to a degree similar to vancomycin, a positive control. Whether these AMP-peptidoglycan interactions relate to a killing mode of action requires further study.
Ryan, Michael P; Armshaw, Patricia; Pembroke, J Tony
2016-01-01
Integrative conjugative elements (ICEs) are a class of bacterial mobile elements that have the ability to mediate their own integration, excision, and transfer from one host genome to another by a mechanism of site-specific recombination, self-circularisation, and conjugative transfer. Members of the SXT/R391 ICE family of enterobacterial mobile genetic elements display an unusual UV-inducible sensitization function which results in stress induced killing of bacterial cells harboring the ICE. This sensitization has been shown to be associated with a stress induced overexpression of a mobile element encoded conjugative transfer gene, orf43, a traV homolog. This results in cell lysis and release of a circular form of the ICE. Induction of this novel system may allow transfer of an ICE, enhancing its survival potential under conditions not conducive to conjugative transfer.
Bacterial killing in macrophages and amoeba: do they all use a brass dagger?
German, Nadezhda; Doyscher, Dominik; Rensing, Christopher
2013-10-01
Macrophages are immune cells that are known to engulf pathogens and destroy them by employing several mechanisms, including oxidative burst, induction of Fe(II) and Mn(II) efflux, and through elevation of Cu(I) and Zn(II) concentrations in the phagosome ('brass dagger'). The importance of the latter mechanism is supported by the presence of multiple counteracting efflux systems in bacteria, responsible for the efflux of toxic metals. We hypothesize that similar bacteria-killing mechanisms are found in predatory protozoa/amoeba species. Here, we present a brief summary of soft metal-related mechanisms used by macrophages, and perhaps amoeba, to inactivate and destroy bacteria. Based on this, we think it is likely that copper resistance is also selected for by protozoan grazing in the environment.
The Effect of Bacteriophage Preparations on Intracellular Killing of Bacteria by Phagocytes
Jończyk-Matysiak, Ewa; Łusiak-Szelachowska, Marzanna; Kłak, Marlena; Bubak, Barbara; Międzybrodzki, Ryszard; Weber-Dąbrowska, Beata; Żaczek, Maciej; Fortuna, Wojciech; Rogóż, Paweł; Letkiewicz, Sławomir; Szufnarowski, Krzysztof; Górski, Andrzej
2015-01-01
Intracellular killing of bacteria is one of the fundamental mechanisms against invading pathogens. Impaired intracellular killing of bacteria by phagocytes may be the reason of chronic infections and may be caused by antibiotics or substances that can be produced by some bacteria. Therefore, it was of great practical importance to examine whether phage preparations may influence the process of phagocyte intracellular killing of bacteria. It may be important especially in the case of patients qualified for experimental phage therapy (approximately half of the patients with chronic bacterial infections have their immunity impaired). Our analysis included 51 patients with chronic Gram-negative and Gram-positive bacterial infections treated with phage preparations at the Phage Therapy Unit in Wroclaw. The aim of the study was to investigate the effect of experimental phage therapy on intracellular killing of bacteria by patients' peripheral blood monocytes and polymorphonuclear neutrophils. We observed that phage therapy does not reduce patients' phagocytes' ability to kill bacteria, and it does not affect the activity of phagocytes in patients with initially reduced ability to kill bacteria intracellularly. Our results suggest that experimental phage therapy has no significant adverse effects on the bactericidal properties of phagocytes, which confirms the safety of the therapy. PMID:26783541
Price, Katherine E.; Orazi, Giulia; Ruoff, Kathryn L.; Hebert, Wesley P.; O’Toole, George A.; Mastoridis, Paul
2015-01-01
Cystic Fibrosis (CF) is a human genetic disease that results in the accumulation of thick, sticky mucus in the airways, which results in chronic, life-long bacterial biofilm infections that are difficult to clear with antibiotics. Pseudomonas aeruginosa lung infection is correlated with worsening lung disease and P. aeruginosa transitions to an antibiotic tolerant state during chronic infections. Tobramycin is an aminoglycoside currently used to combat lung infections in individuals with CF. While tobramycin is effective at eradicating P. aeruginosa in the airways of young patients, it is unable to completely clear the chronic P. aeruginosa infections in older patients. A recent report showed that co-addition of tobramycin and mannitol enhanced killing of P. aeruginosa grown in vitro as a biofilm on an abiotic surface. Here we employed a model system of bacterial biofilms formed on the surface of CF-derived airway cells to determine if mannitol would enhance the antibacterial activity of tobramycin against P. aeruginosa grown on a more clinically relevant surface. Using this model system, which allows the growth of robust biofilms with high-level antibiotic tolerance analogous to in vivo biofilms, we were unable to find evidence for enhanced antibacterial activity of tobramycin with the addition of mannitol, supporting the observation that this type of co-treatment failed to reduce the P. aeruginosa bacterial load in a clinical setting. PMID:26506004
Coorens, Maarten; Banaschewski, Brandon J. H.; Baer, Brandon J.; Yamashita, Cory; van Dijk, Albert; Veldhuizen, Ruud A. W.; Veldhuizen, Edwin J. A.
2017-01-01
ABSTRACT The development of antibiotic resistance by Pseudomonas aeruginosa is a major concern in the treatment of bacterial pneumonia. In the search for novel anti-infective therapies, the chicken-derived peptide cathelicidin-2 (CATH-2) has emerged as a potential candidate, with strong broad-spectrum antimicrobial activity and the ability to limit inflammation by inhibiting Toll-like receptor 2 (TLR2) and TLR4 activation. However, as it is unknown how CATH-2 affects inflammation in vivo, we investigated how CATH-2-mediated killing of P. aeruginosa affects lung inflammation in a murine model. First, murine macrophages were used to determine whether CATH-2-mediated killing of P. aeruginosa reduced proinflammatory cytokine production in vitro. Next, a murine lung model was used to analyze how CATH-2-mediated killing of P. aeruginosa affects neutrophil and macrophage recruitment as well as cytokine/chemokine production in the lung. Our results show that CATH-2 kills P. aeruginosa in an immunogenically silent manner both in vitro and in vivo. Treatment with CATH-2-killed P. aeruginosa showed reduced neutrophil recruitment to the lung as well as inhibition of cytokine and chemokine production, compared to treatment with heat- or gentamicin-killed bacteria. Together, these results show the potential for CATH-2 as a dual-activity antibiotic in bacterial pneumonia, which can both kill P. aeruginosa and prevent excessive inflammation. PMID:28947647
Tareb, Raouf; Bernardeau, Marion; Gueguen, Marielle; Vernoux, Jean-Paul
2013-04-01
Bacterial aggregation and/or adhesion are key factors for colonization of the digestive ecosystem and the ability of probiotic strains to exclude pathogens. In the present study, two probiotic strains, Lactobacillus rhamnosus CNCM-I-3698 and Lactobacillus farciminis CNCM-I-3699, were evaluated as viable or heat-killed forms and compared with probiotic reference Lactobacillus strains (Lb. rhamnosus GG and Lb. farciminis CIP 103136). The autoaggregation potential of both forms was higher than that of reference strains and twice that of pathogenic strains. The coaggregation potential of these two beneficial micro-organisms was evaluated against several pathogenic agents that threaten the global safety of the feed/food chain: Escherichia coli, Salmonella spp., Campylobacter spp. and Listeria monocytogenes. The strongest coaggregative interactions were demonstrated with Campylobacter spp. by a coaggregation test, confirmed by electron microscopic examination for the two forms. Viable forms were investigated for the nature of the bacterial cell-surface molecules involved, by sugar reversal tests and chemical and enzymic pretreatments. The results suggest that the coaggregation between both probiotic strains and C. jejuni CIP 70.2(T) is mediated by a carbohydrate-lectin interaction. The autoaggregation potential of the two probiotics decreased upon exposure to proteinase, SDS or LiCl, showing that proteinaceous components on the surface of the two lactobacilli play an important role in this interaction. Adhesion abilities of both Lactobacillus strains were also demonstrated at significant levels on Caco-2 cells, mucin and extracellular matrix material. Both viable and heat-killed forms of the two probiotic lactobacilli inhibited the attachment of C. jejuni CIP 70.2(T) to mucin. In conclusion, in vitro assays showed that Lb. rhamnosus CNCM-I-3698 and Lb. farciminis CNCM-I-3699, as viable or heat-killed forms, are adherent to different intestinal matrix models and are highly aggregative in vitro with pathogens, especially Campylobacter spp., the most commonly reported zoonotic agent in the European Union. This study supports the need for further in vivo investigations to demonstrate the potential food safety benefits of Lb. rhamnosus CNCM-I-3698 and Lb. farciminis CNCM-I-3699, live or heat-killed, in the global feed/food chain.
Harrison, Freya
2013-02-01
Individual bacterial cells can communicate via quorum sensing, cooperate to harvest nutrients from their environment, form multicellular biofilms, compete over resources and even kill one another. When the environment that bacteria inhabit is an animal host, these social behaviours mediate virulence. Over the last decade, much attention has focussed on the ecology, evolution and pathology of bacterial cooperation, and the possibility that it could be exploited or destabilised to treat infections. But how far can we really extrapolate from theoretical predictions and laboratory experiments to make inferences about 'cooperative' behaviours in hosts and reservoirs? To determine the likely importance and evolution of cooperation 'in the wild', several questions must be addressed. A recent paper that reports the dynamics of bacterial cooperation and virulence in a field experiment provides an excellent nucleus for bringing together key empirical and theoretical results which help us to frame - if not completely to answer - these questions. Copyright © 2013 WILEY Periodicals, Inc.
Song, Yu-Rim; Choi, Min-Seon; Choi, Geun-Won; Park, Il-Kwon; Oh, Chang-Sik
2016-01-01
Pseudomonas syringae pv. actinidiae (Psa) causes bacterial canker disease in kiwifruit. Antibacterial activity of plant essential oils (PEOs) originating from 49 plant species were tested against Psa by a vapor diffusion and a liquid culture assays. The five PEOs from Pimenta racemosa, P. dioica, Melaleuca linariifolia, M. cajuputii, and Cinnamomum cassia efficiently inhibited Psa growth by either assays. Among their major components, estragole, eugenol, and methyl eugenol showed significant antibacterial activity by only the liquid culture assay, while cinnamaldehyde exhibited antibacterial activity by both assays. The minimum inhibitory concentrations (MICs) of estragole and cinnamaldehyde by the liquid culture assay were 1,250 and 2,500 ppm, respectively. The MIC of cinnamaldehyde by the vapor diffusion assay was 5,000 ppm. Based on the formation of clear zones or the decrease of optical density caused by these compounds, they might kill the bacterial cells and this feature might be useful for managing the bacterial canker disease in kiwifruit. PMID:27493612
Chua, Song Lin; Yam, Joey Kuok Hoong; Hao, Piliang; Adav, Sunil S.; Salido, May Margarette; Liu, Yang; Givskov, Michael; Sze, Siu Kwan; Tolker-Nielsen, Tim; Yang, Liang
2016-01-01
Drug resistance and tolerance greatly diminish the therapeutic potential of antibiotics against pathogens. Antibiotic tolerance by bacterial biofilms often leads to persistent infections, but its mechanisms are unclear. Here we use a proteomics approach, pulsed stable isotope labelling with amino acids (pulsed-SILAC), to quantify newly expressed proteins in colistin-tolerant subpopulations of Pseudomonas aeruginosa biofilms (colistin is a ‘last-resort' antibiotic against multidrug-resistant Gram-negative pathogens). Migration is essential for the formation of colistin-tolerant biofilm subpopulations, with colistin-tolerant cells using type IV pili to migrate onto the top of the colistin-killed biofilm. The colistin-tolerant cells employ quorum sensing (QS) to initiate the formation of new colistin-tolerant subpopulations, highlighting multicellular behaviour in antibiotic tolerance development. The macrolide erythromycin, which has been previously shown to inhibit the motility and QS of P. aeruginosa, boosts biofilm eradication by colistin. Our work provides insights on the mechanisms underlying the formation of antibiotic-tolerant populations in bacterial biofilms and indicates research avenues for designing more efficient treatments against biofilm-associated infections. PMID:26892159
Chua, Song Lin; Yam, Joey Kuok Hoong; Hao, Piliang; Adav, Sunil S; Salido, May Margarette; Liu, Yang; Givskov, Michael; Sze, Siu Kwan; Tolker-Nielsen, Tim; Yang, Liang
2016-02-19
Drug resistance and tolerance greatly diminish the therapeutic potential of antibiotics against pathogens. Antibiotic tolerance by bacterial biofilms often leads to persistent infections, but its mechanisms are unclear. Here we use a proteomics approach, pulsed stable isotope labelling with amino acids (pulsed-SILAC), to quantify newly expressed proteins in colistin-tolerant subpopulations of Pseudomonas aeruginosa biofilms (colistin is a 'last-resort' antibiotic against multidrug-resistant Gram-negative pathogens). Migration is essential for the formation of colistin-tolerant biofilm subpopulations, with colistin-tolerant cells using type IV pili to migrate onto the top of the colistin-killed biofilm. The colistin-tolerant cells employ quorum sensing (QS) to initiate the formation of new colistin-tolerant subpopulations, highlighting multicellular behaviour in antibiotic tolerance development. The macrolide erythromycin, which has been previously shown to inhibit the motility and QS of P. aeruginosa, boosts biofilm eradication by colistin. Our work provides insights on the mechanisms underlying the formation of antibiotic-tolerant populations in bacterial biofilms and indicates research avenues for designing more efficient treatments against biofilm-associated infections.
Schiebler, Mark; Brown, Karen; Hegyi, Krisztina; Newton, Sandra M; Renna, Maurizio; Hepburn, Lucy; Klapholz, Catherine; Coulter, Sarah; Obregón-Henao, Andres; Henao Tamayo, Marcela; Basaraba, Randall; Kampmann, Beate; Henry, Katherine M; Burgon, Joseph; Renshaw, Stephen A; Fleming, Angeleen; Kay, Robert R; Anderson, Karen E; Hawkins, Phillip T; Ordway, Diane J; Rubinsztein, David C; Floto, Rodrigo Andres
2015-01-01
Mycobacterium tuberculosis (MTB) remains a major challenge to global health made worse by the spread of multidrug resistance. We therefore examined whether stimulating intracellular killing of mycobacteria through pharmacological enhancement of macroautophagy might provide a novel therapeutic strategy. Despite the resistance of MTB to killing by basal autophagy, cell-based screening of FDA-approved drugs revealed two anticonvulsants, carbamazepine and valproic acid, that were able to stimulate autophagic killing of intracellular M. tuberculosis within primary human macrophages at concentrations achievable in humans. Using a zebrafish model, we show that carbamazepine can stimulate autophagy in vivo and enhance clearance of M. marinum, while in mice infected with a highly virulent multidrug-resistant MTB strain, carbamazepine treatment reduced bacterial burden, improved lung pathology and stimulated adaptive immunity. We show that carbamazepine induces antimicrobial autophagy through a novel, evolutionarily conserved, mTOR-independent pathway controlled by cellular depletion of myo-inositol. While strain-specific differences in susceptibility to in vivo carbamazepine treatment may exist, autophagy enhancement by repurposed drugs provides an easily implementable potential therapy for the treatment of multidrug-resistant mycobacterial infection. PMID:25535254
Schiebler, Mark; Brown, Karen; Hegyi, Krisztina; Newton, Sandra M; Renna, Maurizio; Hepburn, Lucy; Klapholz, Catherine; Coulter, Sarah; Obregón-Henao, Andres; Henao Tamayo, Marcela; Basaraba, Randall; Kampmann, Beate; Henry, Katherine M; Burgon, Joseph; Renshaw, Stephen A; Fleming, Angeleen; Kay, Robert R; Anderson, Karen E; Hawkins, Phillip T; Ordway, Diane J; Rubinsztein, David C; Floto, Rodrigo Andres
2015-02-01
Mycobacterium tuberculosis (MTB) remains a major challenge to global health made worse by the spread of multidrug resistance. We therefore examined whether stimulating intracellular killing of mycobacteria through pharmacological enhancement of macroautophagy might provide a novel therapeutic strategy. Despite the resistance of MTB to killing by basal autophagy, cell-based screening of FDA-approved drugs revealed two anticonvulsants, carbamazepine and valproic acid, that were able to stimulate autophagic killing of intracellular M. tuberculosis within primary human macrophages at concentrations achievable in humans. Using a zebrafish model, we show that carbamazepine can stimulate autophagy in vivo and enhance clearance of M. marinum, while in mice infected with a highly virulent multidrug-resistant MTB strain, carbamazepine treatment reduced bacterial burden, improved lung pathology and stimulated adaptive immunity. We show that carbamazepine induces antimicrobial autophagy through a novel, evolutionarily conserved, mTOR-independent pathway controlled by cellular depletion of myo-inositol. While strain-specific differences in susceptibility to in vivo carbamazepine treatment may exist, autophagy enhancement by repurposed drugs provides an easily implementable potential therapy for the treatment of multidrug-resistant mycobacterial infection. © 2014 The Authors. Published under the terms of the CC BY 4.0 license.
Exploiting CRISPR-Cas nucleases to produce sequence-specific antimicrobials.
Bikard, David; Euler, Chad W; Jiang, Wenyan; Nussenzweig, Philip M; Goldberg, Gregory W; Duportet, Xavier; Fischetti, Vincent A; Marraffini, Luciano A
2014-11-01
Antibiotics target conserved bacterial cellular pathways or growth functions and therefore cannot selectively kill specific members of a complex microbial population. Here, we develop programmable, sequence-specific antimicrobials using the RNA-guided nuclease Cas9 (refs.1,2) delivered by a bacteriophage. We show that Cas9, reprogrammed to target virulence genes, kills virulent, but not avirulent, Staphylococcus aureus. Reprogramming the nuclease to target antibiotic resistance genes destroys staphylococcal plasmids that harbor antibiotic resistance genes and immunizes avirulent staphylococci to prevent the spread of plasmid-borne resistance genes. We also show that CRISPR-Cas9 antimicrobials function in vivo to kill S. aureus in a mouse skin colonization model. This technology creates opportunities to manipulate complex bacterial populations in a sequence-specific manner.
Zharov, Vladimir P.; Mercer, Kelly E.; Galitovskaya, Elena N.; Smeltzer, Mark S.
2006-01-01
We describe a new method for selective laser killing of bacteria targeted with light-absorbing gold nanoparticles conjugated with specific antibodies. The multifunctional photothermal (PT) microscope/spectrometer provides a real-time assessment of this new therapeutic intervention. In this integrated system, strong laser-induced overheating effects accompanied by the bubble-formation phenomena around clustered gold nanoparticles are the main cause of bacterial damage. PT imaging and time-resolved monitoring of the integrated PT responses assessed these effects. Specifically, we used this technology for selective killing of the Gram-positive bacterium Staphylococcus aureus by targeting the bacterial surface using 10-, 20-, and 40-nm gold particles conjugated with anti-protein A antibodies. Labeled bacteria were irradiated with focused laser pulses (420–570 nm, 12 ns, 0.1–5 J/cm2, 100 pulses), and laser-induced bacterial damage observed at different laser fluences and nanoparticle sizes was verified by optical transmission, electron microscopy, and conventional viability testing. PMID:16239330
Di Grazia, Antonio; Luca, Vincenzo; Segev-Zarko, Li-av T.; Shai, Yechiel
2014-01-01
The growing number of microbial pathogens resistant to available antibiotics is a serious threat to human life. Among them is the bacterium Staphylococcus aureus, which colonizes keratinocytes, the most abundant cell type in the epidermis. Its intracellular accumulation complicates treatments against resulting infections, mainly due to the limited diffusion of conventional drugs into the cells. Temporins A (Ta) and B (Tb) are short frog skin antimicrobial peptides (AMPs). Despite extensive studies regarding their antimicrobial activity, very little is known about their activity on infected cells or involvement in various immunomodulatory functions. Here we show that Tb kills both ATCC-derived and multidrug-resistant clinical isolates of S. aureus within infected HaCaT keratinocytes (80% and 40% bacterial mortality, respectively) at a nontoxic concentration, i.e., 16 μM, whereas a weaker effect is displayed by Ta. Furthermore, the peptides prevent killing of keratinocytes by the invading bacteria. Further studies revealed that both temporins promote wound healing in a monolayer of HaCaT cells, with front speed migrations of 19 μm/h and 12 μm/h for Ta and Tb, respectively. Migration is inhibited by mitomycin C and involves the epidermal growth factor receptor (EGFR) signaling pathway. Finally, confocal fluorescence microscopy indicated that the peptides diffuse into the cells. By combining antibacterial and wound-healing activities, Ta and Tb may act as multifunctional mediators of innate immunity in humans. Particularly, their nonendogenous origin may reduce microbial resistance to them as well as the risk of autoimmune diseases in mammals. PMID:24514087
Structure-function characterization and optimization of a plant-derived antibacterial peptide.
Suarez, Mougli; Haenni, Marisa; Canarelli, Stéphane; Fisch, Florian; Chodanowski, Pierre; Servis, Catherine; Michielin, Olivier; Freitag, Ruth; Moreillon, Philippe; Mermod, Nicolas
2005-09-01
Crushed seeds of the Moringa oleifera tree have been used traditionally as natural flocculants to clarify drinking water. We previously showed that one of the seed peptides mediates both the sedimentation of suspended particles such as bacterial cells and a direct bactericidal activity, raising the possibility that the two activities might be related. In this study, the conformational modeling of the peptide was coupled to a functional analysis of synthetic derivatives. This indicated that partly overlapping structural determinants mediate the sedimentation and antibacterial activities. Sedimentation requires a positively charged, glutamine-rich portion of the peptide that aggregates bacterial cells. The bactericidal activity was localized to a sequence prone to form a helix-loop-helix structural motif. Amino acid substitution showed that the bactericidal activity requires hydrophobic proline residues within the protruding loop. Vital dye staining indicated that treatment with peptides containing this motif results in bacterial membrane damage. Assembly of multiple copies of this structural motif into a branched peptide enhanced antibacterial activity, since low concentrations effectively kill bacteria such as Pseudomonas aeruginosa and Streptococcus pyogenes without displaying a toxic effect on human red blood cells. This study thus identifies a synthetic peptide with potent antibacterial activity against specific human pathogens. It also suggests partly distinct molecular mechanisms for each activity. Sedimentation may result from coupled flocculation and coagulation effects, while the bactericidal activity would require bacterial membrane destabilization by a hydrophobic loop.
Structure-Function Characterization and Optimization of a Plant-Derived Antibacterial Peptide
Suarez, Mougli; Haenni, Marisa; Canarelli, Stéphane; Fisch, Florian; Chodanowski, Pierre; Servis, Catherine; Michielin, Olivier; Freitag, Ruth; Moreillon, Philippe; Mermod, Nicolas
2005-01-01
Crushed seeds of the Moringa oleifera tree have been used traditionally as natural flocculants to clarify drinking water. We previously showed that one of the seed peptides mediates both the sedimentation of suspended particles such as bacterial cells and a direct bactericidal activity, raising the possibility that the two activities might be related. In this study, the conformational modeling of the peptide was coupled to a functional analysis of synthetic derivatives. This indicated that partly overlapping structural determinants mediate the sedimentation and antibacterial activities. Sedimentation requires a positively charged, glutamine-rich portion of the peptide that aggregates bacterial cells. The bactericidal activity was localized to a sequence prone to form a helix-loop-helix structural motif. Amino acid substitution showed that the bactericidal activity requires hydrophobic proline residues within the protruding loop. Vital dye staining indicated that treatment with peptides containing this motif results in bacterial membrane damage. Assembly of multiple copies of this structural motif into a branched peptide enhanced antibacterial activity, since low concentrations effectively kill bacteria such as Pseudomonas aeruginosa and Streptococcus pyogenes without displaying a toxic effect on human red blood cells. This study thus identifies a synthetic peptide with potent antibacterial activity against specific human pathogens. It also suggests partly distinct molecular mechanisms for each activity. Sedimentation may result from coupled flocculation and coagulation effects, while the bactericidal activity would require bacterial membrane destabilization by a hydrophobic loop. PMID:16127062
A teleost CD46 is involved in the regulation of complement activation and pathogen infection.
Li, Mo-Fei; Sui, Zhi-Hai; Sun, Li
2017-11-03
In mammals, CD46 is involved in the inactivation of complement by factor I (FI). In teleost, study on the function of CD46 is very limited. In this study, we examined the immunological property of a CD46 molecule (CsCD46) from tongue sole, a teleost species with important economic value. We found that recombinant CsCD46 (rCsCD46) interacted with FI and inhibited complement activation in an FI-dependent manner. rCsCD46 also interacted with bacterial pathogens via a different mechanism to that responsible for the FI interaction, involving different rCsCD46 sites. Cellular study showed that CsCD46 was expressed on peripheral blood leukocytes (PBL) and protected the cells against the killing effect of complement. When the CsCD46 on PBL was blocked by antibody before incubation of the cells with bacterial pathogens, cellular infection was significantly reduced. Consistently, when tongue sole were infected with bacterial pathogens in the presence of rCsCD46, tissue dissemination and survival of the pathogens were significantly inhibited. These results provide the first evidence to indicate that CD46 in teleosts negatively regulates complement activation via FI and protects host cells from complement-induced damage, and that CD46 is required for optimal bacterial infection probably by serving as a receptor for the bacteria.
Antimicrobial design of titanium surface that kill sessile bacteria but support stem cells adhesion
NASA Astrophysics Data System (ADS)
Zhu, Chen; Bao, Ni-Rong; Chen, Shuo; Zhao, Jian-Ning
2016-12-01
Implant-related bacterial infection is one of the most severe postoperative complications in orthopedic or dental surgery. In this context, from the perspective of surface modification, increasing efforts have been made to enhance the antibacterial capability of titanium surface. In this work, a hierarchical hybrid surface architecture was firstly constructed on titanium surface by two-step strategy of acid etching and H2O2 aging. Then silver nanoparticles were firmly immobilized on the hierarchical surface by ion implantation, showing no detectable release of silver ions from surface. The designed titanium surface showed good bioactivity. More importantly, this elaborately designed titanium surface can effectively inactivate the adherent S. aureus on surface by virtue of a contact-killing mode. Meanwhile, the designed titanium surface can significantly facilitate the initial adhesion and spreading behaviors of bone marrow mesenchymal stem cells (MSCs) on titanium. The results suggested that, the elaborately designed titanium surface might own a cell-favoring ability that can help mammalian cells win the initial adhesion race against bacteria. We hope the present study can provide a new insight for the better understanding and designing of antimicrobial titanium surface, and pave the way to satisfying clinical requirements.
Chauchet, Xavier; Hannani, Dalil; Djebali, Sophia; Laurin, David; Polack, Benoit; Marvel, Jacqueline; Buffat, Laurent; Toussaint, Bertrand; Le Gouëllec, Audrey
2016-01-01
Live-attenuated bacterial vectors for antigens delivery have aroused growing interest in the field of cancer immunotherapy. Their potency to stimulate innate immunity and to promote intracellular antigen delivery into antigen-presenting cells could be exploited to elicit a strong and specific cellular immune response against tumor cells. We previously described genetically-modified and attenuated Pseudomonas aeruginosa vectors able to deliver in vivo protein antigens into antigen-presenting cells, through Type 3 secretion system of the bacteria. Using this approach, we managed to protect immunized mice against aggressive B16 melanoma development in both a prophylactic and therapeutic setting. In this study, we further investigated the antigen-specific CD8+ T cell response, in terms of phenotypic and functional aspects, obtained after immunizations with a killed but metabolically active P. aeruginosa attenuated vector. We demonstrated that P. aeruginosa vaccine induces a highly functional pool of antigen-specific CD8+ T cell able to infiltrate the tumor. Furthermore, multiple immunizations allowed the development of a long-lasting immune response, represented by a pool of predominantly effector memory cells which protected mice against late tumor challenge. Overall, killed but metabolically active P. aeruginosa vector is a safe and promising approach for active and specific antitumor immunotherapy. PMID:28035332
Fritsch, Maximilian J.; Trunk, Katharina; Diniz, Juliana Alcoforado; Guo, Manman; Trost, Matthias; Coulthurst, Sarah J.
2013-01-01
It has recently become apparent that the Type VI secretion system (T6SS) is a complex macromolecular machine used by many bacterial species to inject effector proteins into eukaryotic or bacterial cells, with significant implications for virulence and interbacterial competition. “Antibacterial” T6SSs, such as the one elaborated by the opportunistic human pathogen, Serratia marcescens, confer on the secreting bacterium the ability to rapidly and efficiently kill rival bacteria. Identification of secreted substrates of the T6SS is critical to understanding its role and ability to kill other cells, but only a limited number of effectors have been reported so far. Here we report the successful use of label-free quantitative mass spectrometry to identify at least eleven substrates of the S. marcescens T6SS, including four novel effector proteins which are distinct from other T6SS-secreted proteins reported to date. These new effectors were confirmed as antibacterial toxins and self-protecting immunity proteins able to neutralize their cognate toxins were identified. The global secretomic study also unexpectedly revealed that protein phosphorylation-based post-translational regulation of the S. marcescens T6SS differs from that of the paradigm, H1-T6SS of Pseudomonas aeruginosa. Combined phosphoproteomic and genetic analyses demonstrated that conserved PpkA-dependent threonine phosphorylation of the T6SS structural component Fha is required for T6SS activation in S. marcescens and that the phosphatase PppA can reverse this modification. However, the signal and mechanism of PpkA activation is distinct from that observed previously and does not appear to require cell–cell contact. Hence this study has not only demonstrated that new and species-specific portfolios of antibacterial effectors are secreted by the T6SS, but also shown for the first time that PpkA-dependent post-translational regulation of the T6SS is tailored to fit the needs of different bacterial species. PMID:23842002
Escajadillo, Tamara; Olson, Joshua; Luk, Brian T.; Zhang, Liangfang; Nizet, Victor
2017-01-01
Group A Streptococcus (GAS), an important human-specific Gram-positive bacterial pathogen, is associated with a broad spectrum of disease, ranging from mild superficial infections such as pharyngitis and impetigo, to serious invasive infections including necrotizing fasciitis and streptococcal toxic shock syndrome. The GAS pore-forming streptolysin O (SLO) is a well characterized virulence factor produced by nearly all GAS clinical isolates. High level expression of SLO is epidemiologically linked to intercontinental dissemination of hypervirulent clonotypes and poor clinical outcomes. SLO can trigger macrophage and neutrophil cell death and/or the inactivation of immune cell functions, and promotes tissue injury and bacterial survival in animal models of infection. In the present work, we describe how the pharmacological presentation of red blood cell (RBC) derived biomimetic nanoparticles (“nanosponges”) can sequester SLO and block the ability of GAS to damage host cells, thereby preserving innate immune function and increasing bacterial clearance in vitro and in vivo. Nanosponge administration protected human neutrophils, macrophages, and keratinocytes against SLO-mediated cytotoxicity. This therapeutic intervention prevented SLO-induced macrophage apoptosis and increased neutrophil extracellular trap formation, allowing increased GAS killing by the respective phagocytic cell types. In a murine model of GAS necrotizing skin infection, local administration of the biomimetic nanosponges was associated with decreased lesion size and reduced bacterial colony-forming unit recovery. Utilization of a toxin decoy and capture platform that inactivates the secreted SLO before it contacts the host cell membrane, presents a novel virulence factor targeted strategy that could be a powerful adjunctive therapy in severe GAS infections where morbidity and mortality are high despite antibiotic treatment. PMID:28769806
Targeting intracellular Staphylococcus aureus to lower recurrence of orthopaedic infection.
Dusane, Devendra H; Kyrouac, Douglas; Petersen, Iris; Bushrow, Luke; Calhoun, Jason H; Granger, Jeffrey F; Phieffer, Laura S; Stoodley, Paul
2018-04-01
Staphylococcus aureus is often found in orthopaedic infections and may be protected from commonly prescribed antibiotics by forming biofilms or growing intracellularly within osteoblasts. To investigate the effect of non-antibiotic compounds in conjunction with antibiotics to clear intracellular and biofilm forming S. aureus causing osteomyelitis. SAOS-2 osteoblast-like cell lines were infected with S. aureus BB1279. Antibiotics (vancomycin, VAN; and dicloxacillin, DICLOX), bacterial efflux pump inhibitors (piperine, PIP; carbonyl cyanide m-chlorophenyl hydrazone, CCCP), and bone morphogenetic protein (BMP-2) were evaluated individually and in combination to kill intracellular bacteria. We present direct evidence that after gentamicin killed extracellular planktonic bacteria and antibiotics had been stopped, seeding from the infected osteoblasts grew as biofilms. VAN was ineffective in treating the intracellular bacteria even at 10× MIC; however in presence of PIP or CCCP the intracellular S. aureus was significantly reduced. Bacterial efflux pump inhibitors (PIP and CCCP) were effective in enhancing permeability of antibiotics within the osteoblasts and facilitated killing of intracellular S. aureus. Confocal laser scanning microscopy (CLSM) showed increased uptake of propidium iodide within osteoblasts in presence of PIP and CCCP. BMP-2 had no effect on growth of S. aureus either alone or in combination with antibiotics. Combined application of antibiotics and natural agents could help in the treatment of osteoblast infected intracellular bacteria and biofilms associated with osteomyelitis. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:1086-1092, 2018. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.
Gao, Lizeng; Liu, Yuan; Kim, Dongyeop; Li, Yong; Hwang, Geelsu; Naha, Pratap C; Cormode, David P; Koo, Hyun
2016-09-01
Dental biofilms (known as plaque) are notoriously difficult to remove or treat because the bacteria can be enmeshed in a protective extracellular matrix. It can also create highly acidic microenvironments that cause acid-dissolution of enamel-apatite on teeth, leading to the onset of dental caries. Current antimicrobial agents are incapable of disrupting the matrix and thereby fail to efficiently kill the microbes within plaque-biofilms. Here, we report a novel strategy to control plaque-biofilms using catalytic nanoparticles (CAT-NP) with peroxidase-like activity that trigger extracellular matrix degradation and cause bacterial death within acidic niches of caries-causing biofilm. CAT-NP containing biocompatible Fe3O4 were developed to catalyze H2O2 to generate free-radicals in situ that simultaneously degrade the biofilm matrix and rapidly kill the embedded bacteria with exceptional efficacy (>5-log reduction of cell-viability). Moreover, it displays an additional property of reducing apatite demineralization in acidic conditions. Using 1-min topical daily treatments akin to a clinical situation, we demonstrate that CAT-NP in combination with H2O2 effectively suppress the onset and severity of dental caries while sparing normal tissues in vivo. Our results reveal the potential to exploit nanocatalysts with enzyme-like activity as a potent alternative approach for treatment of a prevalent biofilm-associated oral disease. Copyright © 2016 Elsevier Ltd. All rights reserved.
Joo, Hyun-Min; Hyun, Yang-Jin; Myoung, Kil-Sun; Ahn, Young-Tae; Lee, Jung-Hee; Huh, Chul-Sung; Han, Myung Joo; Kim, Dong-Hyun
2011-11-01
Hydrogen peroxide-producing lactic acid bacteria (LAB) were isolated from women's vaginas and their anti-inflammatory effects against Gardnerella vaginalis-induced vaginosis were examined in β-estradiol-immunosuppressed mice. Oral and intravaginal treatment with five LABs significantly decreased viable G. vaginalis numbers in vaginal cavities and myeloperoxidase activity in mouse vaginal tissues. Of the LABs examined, Lactobacillus johnsonii HY7042 (LJ) most potently inhibited G. vaginalis-induced vaginosis. This LAB also inhibited the expressions of IL-1β, IL-6, TNF-α, COX-2, and iNOS, and the activation of NF-κB in vaginal tissues, but increased IL-10 expression. Orally administered LJ (0.2×10(8) CFU/mouse) also inhibited the expression of TNF-α by 91.7% in β-estradiol-immunosuppressed mice intraperitoneally injected with LPS. However, it increased IL-10 expression by 63.3% in these mice. Furthermore, LJ inhibited the expressions of the pro-inflammatory cytokines, TNF-α and IL-1β, and the activation of NF-κB in lipopolysaccharide-stimulated peritoneal macrophages. LJ also killed G. vaginalis attached with and without HeLa cells. These findings suggest that LJ inhibits bacterial vaginosis by inhibiting the expressions of COX-2, iNOS, IL-1β, and TNF-α by regulating NF-κB activation and by killing G. vaginalis, and that LJ could ameliorate bacterial vaginosis. Copyright © 2011 Elsevier B.V. All rights reserved.
Human Antimicrobial Peptides and Proteins
Wang, Guangshun
2014-01-01
As the key components of innate immunity, human host defense antimicrobial peptides and proteins (AMPs) play a critical role in warding off invading microbial pathogens. In addition, AMPs can possess other biological functions such as apoptosis, wound healing, and immune modulation. This article provides an overview on the identification, activity, 3D structure, and mechanism of action of human AMPs selected from the antimicrobial peptide database. Over 100 such peptides have been identified from a variety of tissues and epithelial surfaces, including skin, eyes, ears, mouths, gut, immune, nervous and urinary systems. These peptides vary from 10 to 150 amino acids with a net charge between −3 and +20 and a hydrophobic content below 60%. The sequence diversity enables human AMPs to adopt various 3D structures and to attack pathogens by different mechanisms. While α-defensin HD-6 can self-assemble on the bacterial surface into nanonets to entangle bacteria, both HNP-1 and β-defensin hBD-3 are able to block cell wall biosynthesis by binding to lipid II. Lysozyme is well-characterized to cleave bacterial cell wall polysaccharides but can also kill bacteria by a non-catalytic mechanism. The two hydrophobic domains in the long amphipathic α-helix of human cathelicidin LL-37 lays the basis for binding and disrupting the curved anionic bacterial membrane surfaces by forming pores or via the carpet model. Furthermore, dermcidin may serve as ion channel by forming a long helix-bundle structure. In addition, the C-type lectin RegIIIα can initially recognize bacterial peptidoglycans followed by pore formation in the membrane. Finally, histatin 5 and GAPDH(2-32) can enter microbial cells to exert their effects. It appears that granulysin enters cells and kills intracellular pathogens with the aid of pore-forming perforin. This arsenal of human defense proteins not only keeps us healthy but also inspires the development of a new generation of personalized medicine to combat drug-resistant superbugs, fungi, viruses, parasites, or cancer. Alternatively, multiple factors (e.g., albumin, arginine, butyrate, calcium, cyclic AMP, isoleucine, short-chain fatty acids, UV B light, vitamin D, and zinc) are able to induce the expression of antimicrobial peptides, opening new avenues to the development of anti-infectious drugs. PMID:24828484
Gordya, Natalia; Yakovlev, Andrey; Kruglikova, Anastasia; Tulin, Dmitry; Potolitsina, Evdokia; Suborova, Tatyana; Bordo, Domenico; Rosano, Camillo; Chernysh, Sergey
2017-01-01
Biofilms, sedimented microbial communities embedded in a biopolymer matrix cause vast majority of human bacterial infections and many severe complications such as chronic inflammatory diseases and cancer. Biofilms’ resistance to the host immunity and antibiotics makes this kind of infection particularly intractable. Antimicrobial peptides (AMPs) are a ubiquitous facet of innate immunity in animals. However, AMPs activity was studied mainly on planktonic bacteria and little is known about their effects on biofilms. We studied structure and anti-biofilm activity of AMP complex produced by the maggots of blowfly Calliphora vicina living in environments extremely contaminated by biofilm-forming germs. The complex exhibits strong cell killing and matrix destroying activity against human pathogenic antibiotic resistant Escherichia coli, Staphylococcus aureus and Acinetobacter baumannii biofilms as well as non-toxicity to human immune cells. The complex was found to contain AMPs from defensin, cecropin, diptericin and proline-rich peptide families simultaneously expressed in response to bacterial infection and encoded by hundreds mRNA isoforms. All the families combine cell killing and matrix destruction mechanisms, but the ratio of these effects and antibacterial activity spectrum are specific to each family. These molecules dramatically extend the list of known anti-biofilm AMPs. However, pharmacological development of the complex as a whole can provide significant advantages compared with a conventional one-component approach. In particular, a similar level of activity against biofilm and planktonic bacteria (MBEC/MIC ratio) provides the complex advantage over conventional antibiotics. Available methods of the complex in situ and in vitro biosynthesis make this idea practicable. PMID:28278280
Gordya, Natalia; Yakovlev, Andrey; Kruglikova, Anastasia; Tulin, Dmitry; Potolitsina, Evdokia; Suborova, Tatyana; Bordo, Domenico; Rosano, Camillo; Chernysh, Sergey
2017-01-01
Biofilms, sedimented microbial communities embedded in a biopolymer matrix cause vast majority of human bacterial infections and many severe complications such as chronic inflammatory diseases and cancer. Biofilms' resistance to the host immunity and antibiotics makes this kind of infection particularly intractable. Antimicrobial peptides (AMPs) are a ubiquitous facet of innate immunity in animals. However, AMPs activity was studied mainly on planktonic bacteria and little is known about their effects on biofilms. We studied structure and anti-biofilm activity of AMP complex produced by the maggots of blowfly Calliphora vicina living in environments extremely contaminated by biofilm-forming germs. The complex exhibits strong cell killing and matrix destroying activity against human pathogenic antibiotic resistant Escherichia coli, Staphylococcus aureus and Acinetobacter baumannii biofilms as well as non-toxicity to human immune cells. The complex was found to contain AMPs from defensin, cecropin, diptericin and proline-rich peptide families simultaneously expressed in response to bacterial infection and encoded by hundreds mRNA isoforms. All the families combine cell killing and matrix destruction mechanisms, but the ratio of these effects and antibacterial activity spectrum are specific to each family. These molecules dramatically extend the list of known anti-biofilm AMPs. However, pharmacological development of the complex as a whole can provide significant advantages compared with a conventional one-component approach. In particular, a similar level of activity against biofilm and planktonic bacteria (MBEC/MIC ratio) provides the complex advantage over conventional antibiotics. Available methods of the complex in situ and in vitro biosynthesis make this idea practicable.
NASA Astrophysics Data System (ADS)
Nitzan, Yeshayahu; Malik, Zvi; Kauffman, Merav; Ehrenberg, Benjamin
1997-12-01
(delta) -aminolevulinic acid (ALA) induces the production of very high amounts of porphyrins in Gram-positive and Gram- negative bacteria. Accumulation of the porphyrins in the bacterial cell is a consequence of the high porphyrin production but most of the porphyrins are excreted from the cells into the medium. By fluorescence, measurements of the endogenic and of the exogenic content of the produced porphyrins can be determined. Bacteria loaded by their own accumulated porphyrins can undergo photoinactivation by various light sources. Killing of S. aureus cells by its endogenic porphyrins can be achieved by illumination with intense blue lights or by HeNe laser. E. coli cells loaded with endogenic porphyrins can be photoinactivated by intense blue and red light.
The Anti-CRISPR Story: A Battle for Survival.
Maxwell, Karen L
2017-10-05
The last decade has seen the fields of molecular biology and genetics transformed by the development of CRISPR-based gene editing technologies. These technologies were derived from bacterial defense systems that protect against viral invasion. Elegant studies focused on the evolutionary battle between CRISPR-encoding bacteria and the viruses that infect and kill them revealed the next step in this arms race, the anti-CRISPR proteins. Investigation of these proteins has provided important new insight into how CRISPR-Cas systems work and how bacterial genomes evolve. They have also led to the development of important biotechnological tools that can be used for genetic engineering, including off switches for CRISPR-Cas9 genome editing in human cells. Copyright © 2017 Elsevier Inc. All rights reserved.
Control of Cryptococcus neoformans in nature by biotic factors.
Ruiz, A; Neilson, J B; Bulmer, G S
1982-03-01
Two bacterial species (Pseudomonas aeruginosa and Bacillus subtilis) isolated from pigeon droppings, displayed anti Cryptococcus neoformans activity on 4 of 6 media and sterilized pigeon droppings. Acanthamoeba palestinensis trophozoites isolated from pigeon droppings ingested and killed 99.9% of C neoformans cells after 7 days of incubation. Mites and sow bugs (Metoponorthus pruinosus) isolated from pigeon droppings appear to be fungivorous. These findings suggest that many organisms that occur in pigeon droppings influence C. neoformans persistence, reproduction, morphology and distribution in nature.
Born, Yannick; Fieseler, Lars; Thöny, Valentin; Leimer, Nadja; Duffy, Brion; Loessner, Martin J
2017-06-15
Erwinia amylovora is the causative agent of fire blight, a devastating plant disease affecting members of the Rosaceae Alternatives to antibiotics for control of fire blight symptoms and outbreaks are highly desirable, due to increasing drug resistance and tight regulatory restrictions. Moreover, the available diagnostic methods either lack sensitivity, lack speed, or are unable to discriminate between live and dead bacteria. Owing to their extreme biological specificity, bacteriophages are promising alternatives for both aims. In this study, the virulent broad-host-range E. amylovora virus Y2 was engineered to enhance its killing activity and for use as a luciferase reporter phage, respectively. Toward these aims, a depolymerase gene of E. amylovora virus L1 ( dpoL1-C ) or a bacterial luxAB fusion was introduced into the genome of Y2 by homologous recombination. The genes were placed downstream of the major capsid protein orf68 , under the control of the native promoter. The modifications did not affect viability of infectivity of the recombinant viruses. Phage Y2:: dpoL1-C demonstrated synergistic activity between the depolymerase degrading the exopolysaccharide capsule and phage infection, which greatly enhanced bacterial killing. It also significantly reduced the ability of E. amylovora to colonize the surface of detached flowers. The reporter phage Y2:: luxAB transduced bacterial luciferase into host cells and induced synthesis of large amounts of a LuxAB luciferase fusion. After the addition of aldehyde substrate, bioluminescence could be readily monitored, and this enabled rapid and specific detection of low numbers of viable bacteria, without enrichment, both in vitro and in plant material. IMPORTANCE Fire blight, caused by Erwinia amylovora , is the major threat to global pome fruit production, with high economic losses every year. Bacteriophages represent promising alternatives to not only control the disease, but also for rapid diagnostics. To enhance biocontrol efficacy, we combined the desired properties of two phages, Y2 (broad host range) and L1 (depolymerase for capsule degradation) in a single recombinant phage. This phage showed enhanced biocontrol and could reduce E. amylovora on flowers. Phage Y2 was also genetically engineered into a luciferase reporter phage, which transduces bacterial bioluminescence into infected cells and allows detection of low numbers of viable target bacteria. The combination of speed, sensitivity, and specificity is superior to previously used diagnostic methods. In conclusion, genetic engineering could improve the properties of phage Y2 toward better killing efficacy and sensitive detection of E. amylovora cells. Copyright © 2017 American Society for Microbiology.
Born, Yannick; Fieseler, Lars; Thöny, Valentin; Leimer, Nadja; Duffy, Brion
2017-01-01
ABSTRACT Erwinia amylovora is the causative agent of fire blight, a devastating plant disease affecting members of the Rosaceae. Alternatives to antibiotics for control of fire blight symptoms and outbreaks are highly desirable, due to increasing drug resistance and tight regulatory restrictions. Moreover, the available diagnostic methods either lack sensitivity, lack speed, or are unable to discriminate between live and dead bacteria. Owing to their extreme biological specificity, bacteriophages are promising alternatives for both aims. In this study, the virulent broad-host-range E. amylovora virus Y2 was engineered to enhance its killing activity and for use as a luciferase reporter phage, respectively. Toward these aims, a depolymerase gene of E. amylovora virus L1 (dpoL1-C) or a bacterial luxAB fusion was introduced into the genome of Y2 by homologous recombination. The genes were placed downstream of the major capsid protein orf68, under the control of the native promoter. The modifications did not affect viability of infectivity of the recombinant viruses. Phage Y2::dpoL1-C demonstrated synergistic activity between the depolymerase degrading the exopolysaccharide capsule and phage infection, which greatly enhanced bacterial killing. It also significantly reduced the ability of E. amylovora to colonize the surface of detached flowers. The reporter phage Y2::luxAB transduced bacterial luciferase into host cells and induced synthesis of large amounts of a LuxAB luciferase fusion. After the addition of aldehyde substrate, bioluminescence could be readily monitored, and this enabled rapid and specific detection of low numbers of viable bacteria, without enrichment, both in vitro and in plant material. IMPORTANCE Fire blight, caused by Erwinia amylovora, is the major threat to global pome fruit production, with high economic losses every year. Bacteriophages represent promising alternatives to not only control the disease, but also for rapid diagnostics. To enhance biocontrol efficacy, we combined the desired properties of two phages, Y2 (broad host range) and L1 (depolymerase for capsule degradation) in a single recombinant phage. This phage showed enhanced biocontrol and could reduce E. amylovora on flowers. Phage Y2 was also genetically engineered into a luciferase reporter phage, which transduces bacterial bioluminescence into infected cells and allows detection of low numbers of viable target bacteria. The combination of speed, sensitivity, and specificity is superior to previously used diagnostic methods. In conclusion, genetic engineering could improve the properties of phage Y2 toward better killing efficacy and sensitive detection of E. amylovora cells. PMID:28389547
Poerio, Noemi; Bugli, Francesca; Taus, Francesco; Santucci, Marilina B; Rodolfo, Carlo; Cecconi, Francesco; Torelli, Riccardo; Varone, Francesco; Inchingolo, Riccardo; Majo, Fabio; Lucidi, Vincenzina; Mariotti, Sabrina; Nisini, Roberto; Sanguinetti, Maurizio; Fraziano, Maurizio
2017-03-27
Phagocytosis is a key mechanism of innate immunity, and promotion of phagosome maturation may represent a therapeutic target to enhance antibacterial host response. Phagosome maturation is favored by the timely and coordinated intervention of lipids and may be altered in infections. Here we used apoptotic body-like liposomes (ABL) to selectively deliver bioactive lipids to innate cells, and then tested their function in models of pathogen-inhibited and host-impaired phagosome maturation. Stimulation of macrophages with ABLs carrying phosphatidic acid (PA), phosphatidylinositol 3-phosphate (PI3P) or PI5P increased intracellular killing of BCG, by inducing phagosome acidification and ROS generation. Moreover, ABLs carrying PA or PI5P enhanced ROS-mediated intracellular killing of Pseudomonas aeruginosa, in macrophages expressing a pharmacologically-inhibited or a naturally-mutated cystic fibrosis transmembrane conductance regulator. Finally, we show that bronchoalveolar lavage cells from patients with drug-resistant pulmonary infections increased significantly their capacity to kill in vivo acquired bacterial pathogens when ex vivo stimulated with PA- or PI5P-loaded ABLs. Altogether, these results provide the proof of concept of the efficacy of bioactive lipids delivered by ABL to enhance phagosome maturation dependent antimicrobial response, as an additional host-directed strategy aimed at the control of chronic, recurrent or drug-resistant infections.
Potassium Iodide Potentiates Broad-Spectrum Antimicrobial Photodynamic Inactivation Using Photofrin.
Huang, Liyi; Szewczyk, Grzegorz; Sarna, Tadeusz; Hamblin, Michael R
2017-04-14
It is known that noncationic porphyrins such as Photofrin (PF) are effective in mediating antimicrobial photodynamic inactivation (aPDI) of Gram-positive bacteria or fungi. However, the aPDI activity of PF against Gram-negative bacteria is accepted to be extremely low. Here we report that the nontoxic inorganic salt potassium iodide (KI) at a concentration of 100 mM when added to microbial cells (10 8 /mL) + PF (10 μM hematoporphyrin equivalent) + 415 nm light (10 J/cm 2 ) can eradicate (>6 log killing) five different Gram-negative species (Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumoniae, Proteus mirabilis, and Acinetobacter baumannii), whereas no killing was obtained without KI. The mechanism of action appears to be the generation of microbicidal molecular iodine (I 2 /I 3 - ) as shown by comparable bacterial killing when cells were added to the mixture after completion of illumination and light-dependent generation of iodine as detected by the formation of the starch complex. Gram-positive methicillin-resistant Staphylococcus aureus is much more sensitive to aPDI (200-500 nM PF), and in this case potentiation by KI may be mediated mainly by short-lived iodine reactive species. The fungal yeast Candida albicans displayed intermediate sensitivity to PF-aPDI, and killing was also potentiated by KI. The reaction mechanism occurs via singlet oxygen ( 1 O 2 ). KI quenched 1 O 2 luminescence (1270 nm) at a rate constant of 9.2 × 10 5 M -1 s -1 . Oxygen consumption was increased when PF was illuminated in the presence of KI. Hydrogen peroxide but not superoxide was generated from illuminated PF in the presence of KI. Sodium azide completely inhibited the killing of E. coli with PF/blue light + KI.
Bacterial Acclimation Inside an Aqueous Battery
Dong, Dexian; Chen, Baoling; Chen, P.
2015-01-01
Specific environmental stresses may lead to induced genomic instability in bacteria, generating beneficial mutants and potentially accelerating the breeding of industrial microorganisms. The environmental stresses inside the aqueous battery may be derived from such conditions as ion shuttle, pH gradient, free radical reaction and electric field. In most industrial and medical applications, electric fields and direct currents are used to kill bacteria and yeast. However, the present study focused on increasing bacterial survival inside an operating battery. Using a bacterial acclimation strategy, both Escherichia coli and Bacillus subtilis were acclimated for 10 battery operation cycles and survived in the battery for over 3 days. The acclimated bacteria changed in cell shape, growth rate and colony color. Further analysis indicated that electrolyte concentration could be one of the major factors determining bacterial survival inside an aqueous battery. The acclimation process significantly improved the viability of both bacteria E. coli and B. subtilis. The viability of acclimated strains was not affected under battery cycle conditions of 0.18-0.80 mA cm-2 and 1.4-2.1 V. Bacterial addition within 1.0×1010 cells mL-1 did not significantly affect battery performance. Because the environmental stress inside the aqueous battery is specific, the use of this battery acclimation strategy may be of great potential for the breeding of industrial microorganisms. PMID:26070088
Spinola, Stanley M; Li, Wei; Fortney, Kate R; Janowicz, Diane M; Zwickl, Beth; Katz, Barry P; Munson, Robert S
2012-02-01
Sialylated glycoconjugates on the surfaces of mammalian cells play important roles in intercellular communication and self-recognition. The sialic acid preferentially expressed in human tissues is N-acetylneuraminic acid (Neu5Ac). In a process called molecular mimicry, many bacterial pathogens decorate their cell surface glycolipids with Neu5Ac. Incorporation of Neu5Ac into bacterial glycolipids promotes bacterial interactions with host cell receptors called Siglecs. These interactions affect bacterial adherence, resistance to serum killing and phagocytosis, and innate immune responses. Haemophilus ducreyi, the etiologic agent of chancroid, expresses lipooligosaccharides (LOS) that are highly sialylated. However, an H. ducreyi sialyltransferase (lst) mutant, whose LOS contain reduced levels of Neu5Ac, is fully virulent in human volunteers. Recently, a second sialyltransferase gene (Hd0053) was discovered in H. ducreyi, raising the possibility that Hd0053 compensated for the loss of lst during human infection. CMP-Neu5Ac is the obligate nucleotide sugar donor for all bacterial sialyltransferases; LOS derived from an H. ducreyi CMP-Neu5Ac synthetase (neuA) mutant has no detectable Neu5Ac. Here, we compared an H. ducreyi neuA mutant to its wild-type parent in several models of pathogenesis. In human inoculation experiments, the neuA mutant formed papules and pustules at rates that were no different than those of its parent. When grown in media with and without Neu5Ac supplementation, the neuA mutant and its parent had similar phenotypes in bactericidal, macrophage uptake, and dendritic cell activation assays. Although we cannot preclude a contribution of LOS sialylation to ulcerative disease, these data strongly suggest that sialylation of LOS is dispensable for H. ducreyi pathogenesis in humans.
Huebinger, Ryan M.; Keen, Emma
2018-01-01
As the development of new classes of antibiotics slows, bacterial resistance to existing antibiotics is becoming an increasing problem. A potential solution is to develop treatment strategies with an alternative mode of action. We consider one such strategy: anti-adhesion therapy. Whereas antibiotics act directly upon bacteria, either killing them or inhibiting their growth, anti-adhesion therapy impedes the binding of bacteria to host cells. This prevents bacteria from deploying their arsenal of virulence mechanisms, while simultaneously rendering them more susceptible to natural and artificial clearance. In this paper, we consider a particular form of anti-adhesion therapy, involving biomimetic multivalent adhesion molecule 7 coupled polystyrene microbeads, which competitively inhibit the binding of bacteria to host cells. We develop a mathematical model, formulated as a system of ordinary differential equations, to describe inhibitor treatment of a Pseudomonas aeruginosa burn wound infection in the rat. Benchmarking our model against in vivo data from an ongoing experimental programme, we use the model to explain bacteria population dynamics and to predict the efficacy of a range of treatment strategies, with the aim of improving treatment outcome. The model consists of two physical compartments: the host cells and the exudate. It is found that, when effective in reducing the bacterial burden, inhibitor treatment operates both by preventing bacteria from binding to the host cells and by reducing the flux of daughter cells from the host cells into the exudate. Our model predicts that inhibitor treatment cannot eliminate the bacterial burden when used in isolation; however, when combined with regular or continuous debridement of the exudate, elimination is theoretically possible. Lastly, we present ways to improve therapeutic efficacy, as predicted by our mathematical model. PMID:29723210
SEM Analysis of Surface Impact on Biofilm Antibiotic Treatment.
Gomes, Luciana Calheiros; Mergulhão, Filipe José
2017-01-01
The aim of this work was to use scanning electron microscopy (SEM) to investigate the effect of ampicillin treatment on Escherichia coli biofilms formed on two surface materials with different properties, silicone (SIL) and glass (GLA). Epifluorescence microscopy (EM) was initially used to assess biofilm formation and killing efficiency on both surfaces. This technique showed that higher bacterial colonization was obtained in the hydrophobic SIL than in the hydrophilic GLA. It has also shown that higher biofilm inactivation was attained for GLA after the antibiotic treatment (7-log reduction versus 1-log reduction for SIL). Due to its high resolution and magnification, SEM enabled a more detailed analysis of the antibiotic effect on biofilm cells, complementing the killing efficiency information obtained by EM. SEM micrographs revealed that ampicillin-treated cells have an elongated form when compared to untreated cells. Additionally, it has shown that different materials induced different levels of elongation on cells exposed to antibiotic. Biofilms formed on GLA showed a 37% higher elongation than those formed on SIL. Importantly, cell elongation was related to viability since ampicillin had a higher bactericidal effect on GLA-formed biofilms. These findings raise the possibility of using SEM for understanding the efficacy of antimicrobial treatments by observation of biofilm morphology.
Chairatana, Phoom; Zheng, Tengfei
2015-01-01
New antibiotics are required to treat bacterial infections and counteract the emergence of antibiotic resistance. Pathogen-specific antibiotics have several advantages over broad-spectrum drugs, which include minimal perturbation to the commensal microbiota. We present a strategy for targeting antibiotics to bacterial pathogens that utilises the salmochelin-mediated iron uptake machinery of Gram-negative Escherichia coli. Salmochelins are C-glucosylated derivatives of the siderophore enterobactin. The biosynthesis and utilisation of salmochelins are important for virulence because these siderophores allow pathogens to acquire iron and evade the enterobactin-scavenging host-defense protein lipocalin-2. Inspired by the salmochelins, we report the design and chemoenzymatic preparation of glucosylated enterobactin–β-lactam conjugates that harbour the antibiotics ampicillin (Amp) and amoxicillin (Amx), hereafter GlcEnt–Amp/Amx. The GlcEnt scaffolds are based on mono- and diglucosylated Ent where one catechol moiety is functionalized at the C5 position for antibiotic attachment. We demonstrate that GlcEnt–Amp/Amx provide up to 1000-fold enhanced antimicrobial activity against uropathogenic E. coli relative to the parent β-lactams. Moreover, GlcEnt–Amp/Amx based on a diglucosylated Ent (DGE) platform selectively kill uropathogenic E. coli that express the salmochelin receptor IroN in the presence of non-pathogenic E. coli and other bacterial strains that include the commensal microbe Lactobacillus rhamnosus GG. Moreover, GlcEnt–Amp/Amx evade the host-defense protein lipocalin-2, and exhibit low toxicity to mammalian cells. Our work establishes that siderophore–antibiotic conjugates provide a strategy for targeting virulence, narrowing the activity spectrum of antibiotics in clinical use, and achieving selective delivery of antibacterial cargos to pathogenic bacteria on the basis of siderophore receptor expression. PMID:28717471
Kim, Jua; Gilbert, Jeremy L
2018-04-10
Osteosarcoma is a malignant bone cancer that occurs mostly in children and young adults. This study investigated the cytotoxicity of Mg and Mg-Ti microparticles to human osteosarcoma cells. Osteosarcoma cells were killed in a dosage-dependent manner when cells, with a cell seeding density of 30,000 cells/cm 2 , were cultured with 0 to 2500 µg/mL of Mg or Mg-Ti in cell culture media for 24-72 h. Mg-Ti killed cells more effectively, where 1250 µg/mL of Mg-Ti killed cells completely by 24 h, while 2500 µg/mL of Mg killed nearly all cells, but not all. Killing due to particle corrosion occurred mostly during the first 24 h, and so the percent cell viability between 24 and 72 h showed not much variability. However, the measurement of live and dead cell numbers, over the timeframe of 24-72 h, showed more insight, such as cell recovery. If particle concentrations were low, the number of live cells increased after 24 h, indicating cell proliferation. If particle concentrations were high, the number of live cells either remained steady or decreased, indicating cell quiescence or continued killing, respectively. Increase in the number of dead cells also indicated killing, while plateau meant discontinued killing. In addition, repeated killing of recovered cells exhibited the same dose-dependent killing profile as the initial experiment, implying little development of cell resistance to treatment. These results, together, show that osteosarcoma cells are susceptible to killing by way of exposure to corroding particles, showing highly effective killing using the galvanic couple of Mg-Ti. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2018. © 2018 Wiley Periodicals, Inc.
Predicting mutant selection in competition experiments with ciprofloxacin-exposed Escherichia coli.
Khan, David D; Lagerbäck, Pernilla; Malmberg, Christer; Kristoffersson, Anders N; Wistrand-Yuen, Erik; Sha, Cao; Cars, Otto; Andersson, Dan I; Hughes, Diarmaid; Nielsen, Elisabet I; Friberg, Lena E
2018-03-01
Predicting competition between antibiotic-susceptible wild-type (WT) and less susceptible mutant (MT) bacteria is valuable for understanding how drug concentrations influence the emergence of resistance. Pharmacokinetic/pharmacodynamic (PK/PD) models predicting the rate and extent of takeover of resistant bacteria during different antibiotic pressures can thus be a valuable tool in improving treatment regimens. The aim of this study was to evaluate a previously developed mechanism-based PK/PD model for its ability to predict in vitro mixed-population experiments with competition between Escherichia coli (E. coli) WT and three well-defined E. coli resistant MTs when exposed to ciprofloxacin. Model predictions for each bacterial strain and ciprofloxacin concentration were made for in vitro static and dynamic time-kill experiments measuring CFU (colony forming units)/mL up to 24 h with concentrations close to or below the minimum inhibitory concentration (MIC), as well as for serial passage experiments with concentrations well below the MIC measuring ratios between the two strains with flow cytometry. The model was found to reasonably well predict the initial bacterial growth and killing of most static and dynamic time-kill competition experiments without need for parameter re-estimation. With parameter re-estimation of growth rates, an adequate fit was also obtained for the 6-day serial passage competition experiments. No bacterial interaction in growth was observed. This study demonstrates the predictive capacity of a PK/PD model and further supports the application of PK/PD modelling for prediction of bacterial kill in different settings, including resistance selection. Copyright © 2017 Elsevier B.V. and International Society of Chemotherapy. All rights reserved.
Trevino-Villarreal, J. Humberto; Vera-Cabrera, Lucio; Valero-Guillén, Pedro L.
2012-01-01
Nocardia brasiliensis is a Gram-positive facultative intracellular bacterium frequently isolated from human actinomycetoma. However, the pathogenesis of this infection remains unknown. Here, we used a model of bacterial delipidation with benzine to investigate the role of N. brasiliensis cell wall-associated lipids in experimental actinomycetoma. Delipidation of N. brasiliensis with benzine resulted in complete abolition of actinomycetoma without affecting bacterial viability. Chemical analyses revealed that trehalose dimycolate and an unidentified hydrophobic compound were the principal compounds extracted from N. brasiliensis with benzine. By electron microscopy, the extracted lipids were found to be located in the outermost membrane layer of the N. brasiliensis cell wall. They also appeared to confer acid-fastness. In vitro, the extractable lipids from the N. brasiliensis cell wall induced the production of the proinflammatory cytokines interleukin-1β (IL-1β), IL-6, and CCL-2 in macrophages. The N. brasiliensis cell wall extractable lipids inhibited important macrophage microbicidal effects, such as tumor necrosis factor alpha (TNF-α) and nitric oxide (NO) production, phagocytosis, bacterial killing, and major histocompatibility complex class II (MHC-II) expression in response to gamma interferon (IFN-γ). In dendritic cells (DCs), N. brasiliensis cell wall-associated extractable lipids suppressed MHC-II, CD80, and CD40 expression while inducing tumor growth factor β (TGF-β) production. Immunization with delipidated N. brasiliensis induced partial protection preventing actinomycetoma. These findings suggest that N. brasiliensis cell wall-associated lipids are important for actinomycetoma development by inducing inflammation and modulating the responses of macrophages and DCs to N. brasiliensis. PMID:22851755
Antimicrobial activity and mechanism of PDC213, an endogenous peptide from human milk
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, Yazhou; Nanjing Maternal and Child Health Medical Institute, Nanjing Maternal and Child Health Hospital, Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing; Zhou, Yahui
Human milk has always been considered an ideal source of elemental nutrients to both preterm and full term infants in order to optimally develop the infant's tissues and organs. Recently, hundreds of endogenous milk peptides were identified in human milk. These peptides exhibited angiotensin-converting enzyme inhibition, immunomodulation, or antimicrobial activity. Here, we report the antimicrobial activity and mechanism of a novel type of human antimicrobial peptide (AMP), termed PDC213 (peptide derived from β-Casein 213-226 aa). PDC213 is an endogenous peptide and is present at higher levels in preterm milk than in full term milk. The inhibitory concentration curve and diskmore » diffusion tests showed that PDC213 had obvious antimicrobial against S. aureus and Y. enterocolitica, the common nosocomial pathogens in neonatal intensive care units (NICUs). Fluorescent dye methods, electron microscopy experiments and DNA-binding activity assays further indicated that PDC213 can permeabilize bacterial membranes and cell walls rather than bind intracellular DNA to kill bacteria. Together, our results suggest that PDC213 is a novel type of AMP that warrants further investigation. - Highlights: • PDC213 is an endogenous peptide presenting higher levels in preterm milk. • PDC213 showed obvious antimicrobial against S. aereus and Y. enterocolitica. • PDC213 can permeabilize bacterial membranes and cell walls to kill bacterias. • PDC213 is a novel type of antimicrobial peptides worthy further investigation.« less
Genes Critical for Developing Periodontitis: Lessons from Mouse Models
de Vries, Teun J.; Andreotta, Stefano; Loos, Bruno G.; Nicu, Elena A.
2017-01-01
Since the etiology of periodontitis in humans is not fully understood, genetic mouse models may pinpoint indispensable genes for optimal immunological protection of the periodontium against tissue destruction. This review describes the current knowledge of genes that are involved for a proper maintenance of a healthy periodontium in mice. Null mutations of genes required for leukocyte cell–cell recognition and extravasation (e.g., Icam-1, P-selectin, Beta2-integrin/Cd18), for pathogen recognition and killing (e.g., Tlr2, Tlr4, Lamp-2), immune modulatory molecules (e.g., Cxcr2, Ccr4, IL-10, Opg, IL1RA, Tnf-α receptor, IL-17 receptor, Socs3, Foxo1), and proteolytic enzymes (e.g., Mmp8, Plasmin) cause periodontitis, most likely due to an inefficient clearance of bacteria and bacterial products. Several mechanisms resulting in periodontitis can be recognized: (1) inefficient bacterial control by the polymorphonuclear neutrophils (defective migration, killing), (2) inadequate antigen presentation by dendritic cells, or (3) exaggerated production of pro-inflammatory cytokines. In all these cases, the local immune reaction is skewed toward a Th1/Th17 (and insufficient activation of the Th2/Treg) with subsequent osteoclast activation. Finally, genotypes are described that protect the mice from periodontitis: the SCID mouse, and mice lacking Tlr2/Tlr4, the Ccr1/Ccr5, the Tnf-α receptor p55, and Cathepsin K by attenuating the inflammatory reaction and the osteoclastogenic response. PMID:29163477
Imaging burst kinetics and spatial coordination during serial killing by single natural killer cells
Choi, Paul J.; Mitchison, Timothy J.
2013-01-01
Cytotoxic lymphocytes eliminate virus-infected and cancerous cells by immune recognition and killing through the perforin-granzyme pathway. Traditional killing assays measure average target cell lysis at fixed times and high effector:target ratios. Such assays obscure kinetic details that might reveal novel physiology. We engineered target cells to report on granzyme activity, used very low effector:target ratios to observe potential serial killing, and performed low magnification time-lapse imaging to reveal time-dependent statistics of natural killer (NK) killing at the single-cell level. Most kills occurred during serial killing, and a single NK cell killed up to 10 targets over a 6-h assay. The first kill was slower than subsequent kills, especially on poor targets, or when NK signaling pathways were partially inhibited. Spatial analysis showed that sequential kills were usually adjacent. We propose that NK cells integrate signals from the previous and current target, possibly by simultaneous contact. The resulting burst kinetics and spatial coordination may control the activity of NK cells in tissues. PMID:23576740
Light and dark-activated biocidal activity of conjugated polyelectrolytes.
Ji, Eunkyung; Corbitt, Thomas S; Parthasarathy, Anand; Schanze, Kirk S; Whitten, David G
2011-08-01
This Spotlight on Applications provides an overview of a research program that has focused on the development and mechanistic study of cationic conjugated polyelectrolytes (CPEs) that function as light- and dark-active biocidal agents. Investigation has centered on poly-(phenylene ethynylene) (PPE) type conjugated polymers that are functionalized with cationic quaternary ammonium solubilizing groups. These polymers are found to interact strongly with Gram-positive and Gram-negative bacteria, and upon illumination with near-UV and visible light act to rapidly kill the bacteria. Mechanistic studies suggest that the cationic PPE-type polymers efficiently sensitize singlet oxygen ((1)O(2)), and this cytotoxic agent is responsible for initiating the sequence of events that lead to light-activated bacterial killing. Specific CPEs also exhibit dark-active antimicrobial activity, and this is believed to arise due to interactions between the cationic/lipophilic polymers and the negatively charged outer membrane characteristic of Gram-negative bacteria. Specific results are shown where a cationic CPE with a degree of polymerization of 49 exhibits pronounced light-activated killing of E. coli when present in the cell suspension at a concentration of 1 μg mL(-1).
Distinct single-cell morphological dynamics under beta-lactam antibiotics
Yao, Zhizhong; Kahne, Daniel; Kishony, Roy
2012-01-01
Summary The bacterial cell wall is conserved in prokaryotes, stabilizing cells against osmotic stress. Beta-lactams inhibit cell wall synthesis and induce lysis through a bulge-mediated mechanism; however, little is known about the formation dynamics and stability of these bulges. To capture processes of different timescales, we developed an imaging platform combining automated image analysis with live cell microscopy at high time resolution. Beta-lactam killing of Escherichia coli cells proceeded through four stages: elongation, bulge formation, bulge stagnation and lysis. Both the cell wall and outer membrane (OM) affect the observed dynamics; damaging the cell wall with different beta-lactams and compromising OM integrity cause different modes and rates of lysis. Our results show that the bulge formation dynamics is determined by how the cell wall is perturbed. The OM plays an independent role in stabilizing the bulge once it is formed. The stabilized bulge delays lysis, and allows recovery upon drug removal. PMID:23103254
Cheng, Qi; Nelson, Daniel; Zhu, Shiwei; Fischetti, Vincent A.
2005-01-01
Group B streptococci (GBS) are the leading cause of neonatal meningitis and sepsis worldwide. The current treatment strategy is limited to intrapartum antibiotic prophylaxis in pregnant women to prevent early-onset neonatal diseases, but considering the potential for antibiotic resistance, the risk of losing control over the disease is high. To approach this problem, we have developed a bacteriophage (phage) lytic enzyme to remove colonizing GBS. Bacteriophage muralytic enzymes, termed lysins, are highly evolved molecules designed to degrade the cell wall of host bacteria to release phage particles from the bacterial cytoplasm. Several different lysins have been developed to specifically kill bacterial pathogens both on mucosal surfaces and in blood and represent a novel approach to control infection. A lysin cloned from a phage infecting GBS was found to contain two putative catalytic domains and one putative binding domain, which is similar to the domain organization of some staphylococcal phage lysins. The lysin (named PlyGBS) was recombinantly expressed in Escherichia coli, and purified PlyGBS efficiently killed all tested GBS serotypes in vitro. In a mouse model, a single dose of PlyGBS significantly reduced bacterial colonization in both the vagina and oropharynx. As an alternative strategy for intrapartum antibiotic prophylaxis, this approach may be used to reduce vaginal GBS colonization in pregnant women before delivery or to decontaminate newborns, thus reducing the incidence of GBS-associated neonatal meningitis and sepsis. PMID:15616283
Deslouches, Berthony; Islam, Kazi; Craigo, Jodi K; Paranjape, Shruti M; Montelaro, Ronald C; Mietzner, Timothy A
2005-08-01
Cationic amphipathic peptides have been extensively investigated as a potential source of new antimicrobials that can complement current antibiotic regimens in the face of emerging drug-resistant bacteria. However, the suppression of antimicrobial activity under certain biologically relevant conditions (e.g., serum and physiological salt concentrations) has hampered efforts to develop safe and effective antimicrobial peptides for clinical use. We have analyzed the activity and selectivity of the human peptide LL37 and the de novo engineered antimicrobial peptide WLBU2 in several biologically relevant conditions. The host-derived synthetic peptide LL37 displayed high activity against Pseudomonas aeruginosa but demonstrated staphylococcus-specific sensitivity to NaCl concentrations varying from 50 to 300 mM. Moreover, LL37 potency was variably suppressed in the presence of 1 to 6 mM Mg(2+) and Ca(2+) ions. In contrast, WLBU2 maintained its activity in NaCl and physiologic serum concentrations of Mg(2+) and Ca(2+). WLBU2 is able to kill P. aeruginosa (10(6) CFU/ml) in human serum, with a minimum bactericidal concentration of <9 microM. Conversely, LL37 is inactive in the presence of human serum. Bacterial killing kinetic assays in serum revealed that WLBU2 achieved complete bacterial killing in 20 min. Consistent with these results was the ability of WLBU2 (15 to 20 microM) to eradicate bacteria from ex vivo samples of whole blood. The selectivity of WLBU2 was further demonstrated by its ability to specifically eliminate P. aeruginosa in coculture with human monocytes or skin fibroblasts without detectable adverse effects to the host cells. Finally, WLBU2 displayed potent efficacy against P. aeruginosa in an intraperitoneal infection model using female Swiss Webster mice. These results establish a potential application of WLBU2 in the treatment of bacterial sepsis.
Deslouches, Berthony; Islam, Kazi; Craigo, Jodi K.; Paranjape, Shruti M.; Montelaro, Ronald C.; Mietzner, Timothy A.
2005-01-01
Cationic amphipathic peptides have been extensively investigated as a potential source of new antimicrobials that can complement current antibiotic regimens in the face of emerging drug-resistant bacteria. However, the suppression of antimicrobial activity under certain biologically relevant conditions (e.g., serum and physiological salt concentrations) has hampered efforts to develop safe and effective antimicrobial peptides for clinical use. We have analyzed the activity and selectivity of the human peptide LL37 and the de novo engineered antimicrobial peptide WLBU2 in several biologically relevant conditions. The host-derived synthetic peptide LL37 displayed high activity against Pseudomonas aeruginosa but demonstrated staphylococcus-specific sensitivity to NaCl concentrations varying from 50 to 300 mM. Moreover, LL37 potency was variably suppressed in the presence of 1 to 6 mM Mg2+ and Ca2+ ions. In contrast, WLBU2 maintained its activity in NaCl and physiologic serum concentrations of Mg2+ and Ca2+. WLBU2 is able to kill P. aeruginosa (106 CFU/ml) in human serum, with a minimum bactericidal concentration of <9 μM. Conversely, LL37 is inactive in the presence of human serum. Bacterial killing kinetic assays in serum revealed that WLBU2 achieved complete bacterial killing in 20 min. Consistent with these results was the ability of WLBU2 (15 to 20 μM) to eradicate bacteria from ex vivo samples of whole blood. The selectivity of WLBU2 was further demonstrated by its ability to specifically eliminate P. aeruginosa in coculture with human monocytes or skin fibroblasts without detectable adverse effects to the host cells. Finally, WLBU2 displayed potent efficacy against P. aeruginosa in an intraperitoneal infection model using female Swiss Webster mice. These results establish a potential application of WLBU2 in the treatment of bacterial sepsis. PMID:16048927
Kristian, Sascha A; Hwang, John H; Hall, Bradley; Leire, Emma; Iacomini, John; Old, Robert; Galili, Uri; Roberts, Charles; Mullis, Kary B; Westby, Mike; Nizet, Victor
2015-06-01
The ever-increasing threat of multi-drug resistant bacterial infections has spurred renewed interest in alternative approaches to classical antibiotic therapy. In contrast to other mammals, humans do not express the galactose-α-1,3-galactosyl-β-1,4-N-acetyl-glucosamine (α-Gal) epitope. As a result of exposure of humans to α-Gal in the environment, a large proportion of circulating antibodies are specific for the trisaccharide. In this study, we examine whether these anti-Gal antibodies can be recruited and redirected to exert anti-bacterial activity. We show that a specific DNA aptamer conjugated to an α-Gal epitope at its 5' end, herein termed an alphamer, can bind to group A Streptococcus (GAS) bacteria by recognition of a conserved region of the surface-anchored M protein. The anti-GAS alphamer was shown to recruit anti-Gal antibodies to the streptococcal surface in an α-Gal-specific manner, elicit uptake and killing of the bacteria by human phagocytes, and slow growth of invasive GAS in human whole blood. These studies provide a first in vitro proof of concept that alphamers have the potential to redirect pre-existing antibodies to bacteria in a specific manner and trigger an immediate antibacterial immune response. Further validation of this novel therapeutic approach of applying α-Gal technology in in vivo models of bacterial infection is warranted. . α-Gal-tagged aptamers lead to GAS opsonization with anti-Gal antibodies. . α-Gal-tagged aptamers confer phagocytosis and killing of GAS cells by human phagocytes. . α-Gal-tagged aptamers reduces replication of GAS in human blood. . α-Gal-tagged aptamers may have the potential to be used as novel passive immunization drugs.
In-Vitro Induced Immunosuppression in a Rotary Cell Culture System
NASA Technical Reports Server (NTRS)
Grimm, Elizabeth A.
1998-01-01
The function of the innate immune system is to provide a first-line of defense against infectious organisms, via control of bacterial and viral growth using antigen nonspecific means. These nonspecific immune effectors include macrophages and Natural Killing (NK) cells, and certain cytokines elicited in response to "super antigens" on the infectious agents. This innate system usually keeps most infectious agents from rapidly growing while the adaptive immune system is generating a specific response complete with immunologic memory. Compelling evidence suggests that space flight results in various immunosuppressive effects, including reduced innate and adaptive immune responses. We were particularly concerned with reduced NK activity at landing, and have asked whether the microgravity component of space flight could be responsible for the previously observed NK defect. We have conclusively demonstrated that simulated microgravity as provided by the Synthecon bioreactors does not inhibit the NK function nor the IL-2 activation of lymphokine-activated killing (LAK). Interleukin-2 is the key cytokine responsible for activation of NK cells to express LAK, as well as to support differentiation of lymphocytes during adaptive immune responses. Therefore, we have disproved our original hypothesis based on poor NK in many of the astronauts upon landing.
Killing mediated spatial structure in V. Cholerae biofilms
NASA Astrophysics Data System (ADS)
Yanni, David
Most bacteria live in biofilms, which are implicated in 60 - 80 % of microbial infections in the body. The spatial structure of a biofilm confers advantages to its member-cells, such as antibiotic resistance, and is strongly affected by competition between strains and taxa. However, A complete picture of how competition affects the self-organized structure of these complex, far-from-equilibrium systems, is yet to emerge. To that end, we investigate phase separation dynamics driven by T6SS-facilitated bacterial warfare in a system composed of two strains of mutually antagonistic V. cholerae. T6SS is a contact mediated killing mechanism present in 25 % of all gram negative bacteria, and has been shown by recent work to play a major role in the spatial assortment of biofilms. T6SS events induce lysis, causing variations in local mechanical pressure, and acting as thermalizing events. We study cells immobilized in biofilms at the air-solid interface, so our experimental system represents a different type active matter, wherein activity is due to cell death and reproduction, not mobility. Here, we show how that activity imposes a constraint of minimal curvature on strain-strain interfaces; an effective Laplace pressure is characterized which governs interfacial dynamics.
Pathogen boosted adoptive cell transfer immunotherapy to treat solid tumors.
Xin, Gang; Schauder, David M; Jing, Weiqing; Jiang, Aimin; Joshi, Nikhil S; Johnson, Bryon; Cui, Weiguo
2017-01-24
Because of insufficient migration and antitumor function of transferred T cells, especially inside the immunosuppressive tumor microenvironment (TME), the efficacy of adoptive cell transfer (ACT) is much curtailed in treating solid tumors. To overcome these challenges, we sought to reenergize ACT (ReACT) with a pathogen-based cancer vaccine. To bridge ACT with a pathogen, we genetically engineered tumor-specific CD8 T cells in vitro with a second T-cell receptor (TCR) that recognizes a bacterial antigen. We then transferred these dual-specific T cells in combination with intratumoral bacteria injection to treat solid tumors in mice. The dual-specific CD8 T cells expanded vigorously, migrated to tumor sites, and robustly eradicated primary tumors. The mice cured from ReACT also developed immunological memory against tumor rechallenge. Mechanistically, we have found that this combined approach reverts the immunosuppressive TME and recruits CD8 T cells with an increased number and killing ability to the tumors.
Green, Michael R; Sambrook, Joseph
2017-10-03
A plaque of bacteriophage M13 derives from infection of a single bacterium by a single virus particle. The progeny particles infect neighboring bacteria, which, in turn, release another generation of daughter virus particles. If the bacteria are growing in semisolid medium (e.g., containing agar or agarose), then the diffusion of the progeny particles is limited. Cells infected with bacteriophage M13 are not killed, but have a longer generation time than uninfected Escherichia coli In consequence, plaques appear as areas of slower-growing cells on a faster-growing lawn of bacterial cells. This protocol describes plating of bacteriophage M13 stocks. Plaques are readily detectable on top agar after 4-8 h of incubation at 37°C. © 2017 Cold Spring Harbor Laboratory Press.
A tetrazolium dye reduction assay was used to study factors governing killing of bacteria by oyster hemocytes. In vitro tests were performed on bacterial strains by using hemocytes from oysters collected from the same location in winter and summer. Vibrio parahaemolyticus strains...
An assay was developed to assess the ability of oyster, Crassostrea virginica, hemocytes to kill the human pathogenic bacterium, Vibrio parahaemolyticus (ATCC 17802). Bacterial killing was estimated colorimetrically by the enzymatic reduction of a tetrazolium dye, 3-(4,5-dimethyl...
Inhibitors of bacterial multidrug efflux pumps potentiate antimicrobial photoinactivation.
Tegos, George P; Masago, Kayo; Aziz, Fatima; Higginbotham, Andrew; Stermitz, Frank R; Hamblin, Michael R
2008-09-01
Antimicrobial photodynamic inactivation (APDI) combines a nontoxic photoactivatable dye or photosensitizer (PS) with harmless visible light to generate singlet oxygen and reactive oxygen species that kill microbial cells. Cationic phenothiazinium dyes, such as toluidine blue O (TBO), are the only PS used clinically for APDI, and we recently reported that this class of PS are substrates of multidrug efflux pumps in both gram-positive and gram-negative bacteria. We now report that APDI can be significantly potentiated by combining the PS with an efflux pump inhibitor (EPI). Killing of Staphylococcus aureus mediated by TBO and red light is greatly increased by coincubation with known inhibitors of the major facilitator pump (NorA): the diphenyl urea INF271, reserpine, 5'-methoxyhydnocarpin, and the polyacylated neohesperidoside, ADH7. The potentiation effect is greatest in the case of S. aureus mutants that overexpress NorA and least in NorA null cells. Addition of the EPI before TBO has a bigger effect than addition of the EPI after TBO. Cellular uptake of TBO is increased by EPI. EPI increased photodynamic inactivation killing mediated by other phenothiazinium dyes, such as methylene blue and dimethylmethylene blue, but not that mediated by nonphenothiazinium PS, such as Rose Bengal and benzoporphyrin derivative. Killing of Pseudomonas aeruginosa mediated by TBO and light was also potentiated by the resistance nodulation division pump (MexAB-OprM) inhibitor phenylalanine-arginine beta-naphthylamide but to a lesser extent than for S. aureus. These data suggest that EPI could be used in combination with phenothiazinium salts and light to enhance their antimicrobial effect against localized infections.
Winslow, C.-E. A.; Falk, I. S.; Caulfield, M. F.
1923-01-01
1. We have confirmed the results of earlier workers particularly of Northrop and De Kruif in regard to the following points: (a) the general tendency of the bacterial cell when suspended in distilled water near the zone of neutrality to move toward the anode of an electrical field; (b) the fact that the migration of bacterial cells in the electrical field is a function of the reaction of the menstruum. The curve obtained by plotting velocity of migration against pH passes through an isoelectric point at about pH 3.0, at greater acidity the direction of migration becomes reversed (toward the cathode) and in still more acid solution (pH = 1.0) again disappears; while at reactions less acid than pH 3.0 the velocity is toward the anode and increases with increasing alkalinity; (c) the fact that neutral salts depress the velocity of migration, calcium salts being much more effective than sodium salts of the same concentration. 2. We further find: (a) that on the extreme alkaline side of the curve of velocity of migration plotted against pH a maximum value is reached at about pH 10 with a fall at about pH 12.0 which in many experiments reaches an isopotential point; (b) that the depressing effect of salts is accompanied by a general shifting of the curve of migration velocity so that a maximum velocity (of course absolutely less than that manifest in the absence of salts) appears at about pH 7.0 and an abolition of velocity at pH 9.0 to 10.0; (c) that an apparent "antagonistic" effect is indicated between CaCl2 and NaCl, the presence of a certain concentration of the latter salt diminishing to a slight but definite degree the depressing effect produced by the former; (d) that heat-killed bacterial cells exhibit essentially the same curve of migration velocity as that of the living cells; (e) that bacterial spores exhibit the same general curve of migration velocity as vegetative cells, although the actual velocity is apparently slightly less. 3. All of the observed phenomena appear to be in accord with the assumption that marked differences in dielectric constants did not appear under the conditions studied and if this assumption be granted the results are in accord with the fundamental postulates of the Donnan equilibrium as applied to the explanation of the origin of potential difference between a bacterial cell and its enveloping menstruum. It is possible but not at all certain that the phenomenon of antagonism may require the introduction of additional assumptions for its explanation. Professor Donnan and other investigators have clearly understood the importance of applying the concept of membrane equilibria in the elucidation of physiological phenomena. Our findings add to the numerous vindications favoring this view and emphasize the importance of further study of membrane equilibria in bacterial suspensions. We have pointed out that certain potential differences between bacteria and their menstrua are apparently associated with some of the phenomena of viability. Viability and potential differences may, however, under certain conditions vary quite independently as evidenced by the fact that normal rates of migration are demonstrable after the cells have been killed by heat. Thus, considerable caution must be exercised in relating the existence of these charges to the metabolism of the cell. PMID:19872061
Liou, Je-Wen; Chang, Hsin-Hou
2012-08-01
This review focuses on the antibacterial activities of visible light-responsive titanium dioxide (TiO(2)) photocatalysts. These photocatalysts have a range of applications including disinfection, air and water cleaning, deodorization, and pollution and environmental control. Titanium dioxide is a chemically stable and inert material, and can continuously exert antimicrobial effects when illuminated. The energy source could be solar light; therefore, TiO(2) photocatalysts are also useful in remote areas where electricity is insufficient. However, because of its large band gap for excitation, only biohazardous ultraviolet (UV) light irradiation can excite TiO(2), which limits its application in the living environment. To extend its application, impurity doping, through metal coating and controlled calcination, has successfully modified the substrates of TiO(2) to expand its absorption wavelengths to the visible light region. Previous studies have investigated the antibacterial abilities of visible light-responsive photocatalysts using the model bacteria Escherichia coli and human pathogens. The modified TiO(2) photocatalysts significantly reduced the numbers of surviving bacterial cells in response to visible light illumination. They also significantly reduced the activity of bacterial endospores; reducing their toxicity while retaining their germinating abilities. It is suggested that the photocatalytic killing mechanism initially damages the surfaces weak points of the bacterial cells, before totally breakage of the cell membranes. The internal bacterial components then leak from the cells through the damaged sites. Finally, the photocatalytic reaction oxidizes the cell debris. In summary, visible light-responsive TiO(2) photocatalysts are more convenient than the traditional UV light-responsive TiO(2) photocatalysts because they do not require harmful UV light irradiation to function. These photocatalysts, thus, provide a promising and feasible approach for disinfection of pathogenic bacteria; facilitating the prevention of infectious diseases.
Karlsson, Jenny; Carlsson, Göran; Larne, Olivia; Andersson, Mats; Pütsep, Katrin
2008-11-01
The innate immune system produces a number of effector molecules that are important for protection against bacterial infections. Neutrophils and antimicrobial peptides are major components of innate defense with the capacity of rapid bacterial killing. Patients with severe congenital neutropenia (SCN) experience recurrent and chronic infections despite recombinant G-CSF-mobilized neutrophils. We have shown previously that these neutrophils are deficient in that they lack the antimicrobial peptide LL-37. Here, we show that pro-LL-37 mRNA is not expressed in neutrophil precursors from patients with SCN, although the gene and promoter region for pro-LL-37, CAMP, does not display any mutations. The hormonal form of vitamin D3 [1,25(OH)2D3] induced the expression of pro-LL-37 in isolated neutrophil progenitors and in EBV-transformed B cells from patients with SCN, whereas all-trans retinoic acid only induced expression in transformed B cells. These results demonstrate that myeloid cells of patients with SCN can produce pro-LL-37, suggesting that other pathways are impaired.
Factors that mediate colonization of the human stomach by Helicobacter pylori.
Dunne, Ciara; Dolan, Brendan; Clyne, Marguerite
2014-05-21
Helicobacter pylori (H. pylori) colonizes the stomach of humans and causes chronic infection. The majority of bacteria live in the mucus layer overlying the gastric epithelial cells and only a small proportion of bacteria are found interacting with the epithelial cells. The bacteria living in the gastric mucus may act as a reservoir of infection for the underlying cells which is essential for the development of disease. Colonization of gastric mucus is likely to be key to the establishment of chronic infection. How H. pylori manages to colonise and survive in the hostile environment of the human stomach and avoid removal by mucus flow and killing by gastric acid is the subject of this review. We also discuss how bacterial and host factors may together go some way to explaining the susceptibility to colonization and the outcome of infection in different individuals. H. pylori infection of the gastric mucosa has become a paradigm for chronic infection. Understanding of why H. pylori is such a successful pathogen may help us understand how other bacterial species colonise mucosal surfaces and cause disease.
Factors that mediate colonization of the human stomach by Helicobacter pylori
Dunne, Ciara; Dolan, Brendan; Clyne, Marguerite
2014-01-01
Helicobacter pylori (H. pylori) colonizes the stomach of humans and causes chronic infection. The majority of bacteria live in the mucus layer overlying the gastric epithelial cells and only a small proportion of bacteria are found interacting with the epithelial cells. The bacteria living in the gastric mucus may act as a reservoir of infection for the underlying cells which is essential for the development of disease. Colonization of gastric mucus is likely to be key to the establishment of chronic infection. How H. pylori manages to colonise and survive in the hostile environment of the human stomach and avoid removal by mucus flow and killing by gastric acid is the subject of this review. We also discuss how bacterial and host factors may together go some way to explaining the susceptibility to colonization and the outcome of infection in different individuals. H. pylori infection of the gastric mucosa has become a paradigm for chronic infection. Understanding of why H. pylori is such a successful pathogen may help us understand how other bacterial species colonise mucosal surfaces and cause disease. PMID:24914320
Wulkersdorfer, Beatrix; Jaros, David; Eberl, Sabine; Poschner, Stefan; Jäger, Walter; Cosentini, Enrico; Zeitlinger, Markus; Schwameis, Richard
2017-08-01
It has been known from previous studies that body fluids, such as cerebrospinal fluid, lung surfactant, and urine, have a strong impact on the bacterial killing of many anti-infective agents. However, the influence of human bile on the antimicrobial activity of antibiotics is widely unknown. Human bile was obtained and pooled from 11 patients undergoing cholecystectomy. After sterilization of the bile fluid by gamma irradiation, its effect on bacterial killing was investigated for linezolid (LZD) and tigecycline (TGC) against Enterococcus faecalis ATCC 29212. Further, ciprofloxacin (CIP), meropenem (MEM), and TGC were tested against Escherichia coli ATCC 25922. Time-kill curves were performed in pooled human bile and Mueller-Hinton broth (MHB) over 24 h. Bacterial counts (in CFU per milliliter after 24 h) of bile growth controls were approximately equal to MHB growth controls for E. coli and approximately 2-fold greater for E. faecalis , indicating a promotion of bacterial growth by bile for the latter strain. Bile reduced the antimicrobial activity of CIP, MEM, and TGC against E. coli as well as the activity of LZD and TGC against E. faecalis This effect was strongest for TGC against the two strains. Degradation of TGC in bile was identified as the most likely explanation. These findings may have important implications for the treatment of bacterial infections of the gallbladder and biliary tract and should be explored in more detail. Copyright © 2017 American Society for Microbiology.
Brundin, Malin; Figdor, David; Roth, Chrissie; Davies, John K; Sundqvist, Göran; Sjögren, Ulf
2010-12-01
The fate of DNA from bacteria that do not survive in the root canal is uncertain, yet DNA longevity may confound recovery of authentic etiologic participants in the disease process. This study assessed the recovery of PCR-detectable DNA in ex vivo human root canals and some environmental factors on the decay of microbial DNA. Heat-killed Enterococcus faecalis cells were inoculated into instrumented human root canals ex vivo, and samples were taken at intervals over 2 years and analyzed by polymerase chain reaction. In an in vitro assay, heat-killed E. faecalis cells and extracted E. faecalis DNA were inoculated into various media, DNase, and culture of a DNase-producing species, Prevotella intermedia. Recovery of DNA was assessed by gel electrophoresis. In ex vivo human teeth, amplifiable DNA was recovered after 1 and 2 years (in 14/15 and 21/25 teeth, respectively). In vitro experiments showed that extracted DNA incubated in different media (water, 10%-50% sera, and DNase) progressively decomposed to levels below the detection limit. In corresponding assays, cell-bound DNA was more resistant to decay. Amplifiable DNA is preserved after cell death, but the critical determinant is the form of DNA. Free DNA undergoes spontaneous and enzymatic decomposition, whereas cell-bound E. faecalis DNA persists for long periods. Copyright © 2010 Mosby, Inc. All rights reserved.
Forrest, Osric A; Ingersoll, Sarah A; Preininger, Marcela K; Laval, Julie; Limoli, Dominique H; Brown, Milton R; Lee, Frances E; Bedi, Brahmchetna; Sadikot, Ruxana T; Goldberg, Joanna B; Tangpricha, Vin; Gaggar, Amit; Tirouvanziam, Rabindra
2018-05-09
Recruitment of neutrophils to the airways, and their pathological conditioning therein, drive tissue damage and coincide with the loss of lung function in patients with cystic fibrosis (CF). So far, these key processes have not been adequately recapitulated in models, hampering drug development. Here, we hypothesized that the migration of naïve blood neutrophils into CF airway fluid in vitro would induce similar functional adaptation to that observed in vivo, and provide a model to identify new therapies. We used multiple platforms (flow cytometry, bacteria-killing, and metabolic assays) to characterize functional properties of blood neutrophils recruited in a transepithelial migration model using airway milieu from CF subjects as an apical chemoattractant. Similarly to neutrophils recruited to CF airways in vivo, neutrophils migrated into CF airway milieu in vitro display depressed phagocytic receptor expression and bacterial killing, but enhanced granule release, immunoregulatory function (arginase-1 activation), and metabolic activities, including high Glut1 expression, glycolysis, and oxidant production. We also identify enhanced pinocytic activity as a novel feature of these cells. In vitro treatment with the leukotriene pathway inhibitor acebilustat reduces the number of transmigrating neutrophils, while the metabolic modulator metformin decreases metabolism and oxidant production, but fails to restore bacterial killing. Interestingly, we describe similar pathological conditioning of neutrophils in other inflammatory airway diseases. We successfully tested the hypothesis that recruitment of neutrophils into airway milieu from patients with CF in vitro induces similar pathological conditioning to that observed in vivo, opening new avenues for targeted therapeutic intervention. ©2018 Society for Leukocyte Biology.
Schneider, Viktoria A. F.; Coorens, Maarten; Tjeerdsma-van Bokhoven, Johanna L. M.; Posthuma, George; van Dijk, Albert; Veldhuizen, Edwin J. A.
2017-01-01
ABSTRACT Chicken cathelicidin-2 (CATH-2) is a broad-spectrum antimicrobial host defense peptide (HDP) that may serve as a paradigm for the development of new antimicrobial agents. While previous studies have elucidated the mechanism by which CATH-2 kills Escherichia coli, its mode of action against Gram-positive bacteria remains to be determined. In this study, we explored the underlying antibacterial mechanism of CATH-2 against a methicillin-resistant strain of Staphylococcus aureus and the effect of CATH-2-mediated S. aureus killing on immune activation. Visualization of the antimicrobial activity of CATH-2 against S. aureus with live-imaging confocal microscopy demonstrated that CATH-2 directly binds the bacteria, which is followed by membrane permeabilization and cell shrinkage. Transmission electron microscopy (TEM) studies further showed that CATH-2 initiated pronounced morphological changes of the membrane (mesosome formation) and ribosomal structures (clustering) in a dose-dependent manner. Immunolabeling of these sections demonstrated that CATH-2 binds and passes the bacterial membrane at subminimal bactericidal concentrations (sub-MBCs). Furthermore, competition assays and isothermal titration calorimetry (ITC) analysis provided evidence that CATH-2 directly interacts with lipoteichoic acid and cardiolipin. Finally, stimulation of macrophages with S. aureus and CATH-2 showed that CATH-2 not only kills S. aureus but also has the potential to limit S. aureus-induced inflammation at or above the MBC. Taken together, it is concluded that at sub-MBCs, CATH-2 perturbs the bacterial membrane and subsequently enters the cell and binds intracellular S. aureus components, while at or above the MBC, CATH-2 causes disruption of membrane integrity and inhibits S. aureus-induced macrophage activation. IMPORTANCE Due to the high use of antibiotics in both human and veterinary settings, many bacteria have become resistant to those antibiotics that we so heavily rely on. Methicillin-resistant S. aureus (MRSA) is one of these difficult-to-treat resistant pathogens for which novel antimicrobial therapies will be required in the near future. One novel approach could be the utilization of naturally occurring antimicrobial peptides, such as chicken CATH-2, which have been show to act against a wide variety of bacteria. However, before these peptides can be used clinically, more knowledge of their functions and mechanisms of action is required. In this study, we used live imaging and electron microscopy to visualize in detail how CATH-2 kills S. aureus, and we investigated how CATH-2 affects immune activation by S. aureus. Together, these results give a better understanding of how CATH-2 kills S. aureus and what the potential immunological consequences of this killing can be. PMID:29104934
Schneider, Viktoria A F; Coorens, Maarten; Tjeerdsma-van Bokhoven, Johanna L M; Posthuma, George; van Dijk, Albert; Veldhuizen, Edwin J A; Haagsman, Henk P
2017-01-01
Chicken cathelicidin-2 (CATH-2) is a broad-spectrum antimicrobial host defense peptide (HDP) that may serve as a paradigm for the development of new antimicrobial agents. While previous studies have elucidated the mechanism by which CATH-2 kills Escherichia coli , its mode of action against Gram-positive bacteria remains to be determined. In this study, we explored the underlying antibacterial mechanism of CATH-2 against a methicillin-resistant strain of Staphylococcus aureus and the effect of CATH-2-mediated S. aureus killing on immune activation. Visualization of the antimicrobial activity of CATH-2 against S. aureus with live-imaging confocal microscopy demonstrated that CATH-2 directly binds the bacteria, which is followed by membrane permeabilization and cell shrinkage. Transmission electron microscopy (TEM) studies further showed that CATH-2 initiated pronounced morphological changes of the membrane (mesosome formation) and ribosomal structures (clustering) in a dose-dependent manner. Immunolabeling of these sections demonstrated that CATH-2 binds and passes the bacterial membrane at subminimal bactericidal concentrations (sub-MBCs). Furthermore, competition assays and isothermal titration calorimetry (ITC) analysis provided evidence that CATH-2 directly interacts with lipoteichoic acid and cardiolipin. Finally, stimulation of macrophages with S. aureus and CATH-2 showed that CATH-2 not only kills S. aureus but also has the potential to limit S. aureus -induced inflammation at or above the MBC. Taken together, it is concluded that at sub-MBCs, CATH-2 perturbs the bacterial membrane and subsequently enters the cell and binds intracellular S. aureus components, while at or above the MBC, CATH-2 causes disruption of membrane integrity and inhibits S. aureus -induced macrophage activation. IMPORTANCE Due to the high use of antibiotics in both human and veterinary settings, many bacteria have become resistant to those antibiotics that we so heavily rely on. Methicillin-resistant S. aureus (MRSA) is one of these difficult-to-treat resistant pathogens for which novel antimicrobial therapies will be required in the near future. One novel approach could be the utilization of naturally occurring antimicrobial peptides, such as chicken CATH-2, which have been show to act against a wide variety of bacteria. However, before these peptides can be used clinically, more knowledge of their functions and mechanisms of action is required. In this study, we used live imaging and electron microscopy to visualize in detail how CATH-2 kills S. aureus , and we investigated how CATH-2 affects immune activation by S. aureus . Together, these results give a better understanding of how CATH-2 kills S. aureus and what the potential immunological consequences of this killing can be.
Epithelial cell pro-inflammatory cytokine response differs across dental plaque bacterial species.
Stathopoulou, Panagiota G; Benakanakere, Manjunatha R; Galicia, Johnah C; Kinane, Denis F
2010-01-01
The dental plaque is comprised of numerous bacterial species, which may or may not be pathogenic. Human gingival epithelial cells (HGECs) respond to perturbation by various bacteria of the dental plaque by production of different levels of inflammatory cytokines, which is a putative reflection of their virulence. The aim of the current study was to determine responses in terms of interleukin (IL)-1beta, IL-6, IL-8 and IL-10 secretion induced by Porphyromonas gingivalis, Aggregatibacter actinomycetemcomitans, Fusobacterium nucleatum and Streptococcus gordonii in order to gauge their virulence potential. HGECs were challenged with the four bacterial species, live or heat killed, at various multiplicity of infections and the elicited IL-1beta, IL-6, IL-8 and IL-10 responses were assayed by enzyme-linked immunosorbent assay. Primary HGECs challenged with live P. gingivalis produced high levels of IL-1beta, while challenge with live A. actinomycetemcomitans gave high levels of IL-8. The opportunistic pathogen F. nucleatum induces the highest levels of pro-inflammatory cytokines, while the commensal S. gordonii is the least stimulatory. We conclude that various dental plaque biofilm bacteria induce different cytokine response profiles in primary HGECs that may reflect their individual virulence or commensal status.
Noore, Jabeen; Noore, Adly
2013-01-01
The increasing resistance of bacteria to conventional antibiotics and the challenges posed by intracellular bacteria, which may be responsible for chronic and recurrent infections, have driven the need for advanced antimicrobial drugs for effective elimination of both extra- and intracellular pathogens. The purpose of this study was to determine the killing efficacy of cationic antimicrobial peptide LL-37 compared to conventional antibiotics against extra- and intracellular Staphylococcus aureus. Bacterial killing assays and an infection model of osteoblasts and S. aureus were studied to determine the bacterial killing efficacy of LL-37 and conventional antibiotics against extra- and intracellular S. aureus. We found that LL-37 was effective in killing extracellular S. aureus at nanomolar concentrations, while lactoferricin B was effective at micromolar concentrations and doxycycline and cefazolin at millimolar concentrations. LL-37 was surprisingly more effective in killing the clinical strain than in killing an ATCC strain of S. aureus. Moreover, LL-37 was superior to conventional antibiotics in eliminating intracellular S. aureus. The kinetic studies further revealed that LL-37 was fast in eliminating both extra- and intracellular S. aureus. Therefore, LL-37 was shown to be very potent and prompt in eliminating both extra- and intracellular S. aureus and was more effective in killing extra- and intracellular S. aureus than commonly used conventional antibiotics. LL-37 could potentially be used to treat chronic and recurrent infections due to its effectiveness in eliminating not only extracellular but also intracellular pathogens. PMID:23274662
Abhinayaa, R; Jeevitha, G; Mangalaraj, D; Ponpandian, N; Vidhya, Kalieswaran; Angayarkanni, Jayaraman
2018-05-19
Cytotoxic effects of iron oxide (Fe 3 O 4 ) nanoparticles and Halloysite nanotube/iron oxide (HNT/Fe 3 O 4 ) nanocomposite are compared based on their interaction with Gram-negative bacteria Escherichia coli and Gram-positive bacteria Bacillus subtilis. Similarly, the action of these two nanomaterials on non-cancerous Vero cell lines and human lung cancerous (A-549) cell lines are compared. The cytotoxicity studies on Fe 3 O 4 nanoparticles and HNT/Fe 3 O 4 nanocomposite showed difference in the rate of killing of bacterial cells. This is reflected in differential cell growth, cell membrane integrity loss, lactate dehydrogenase (LDH) release and reactive oxygen species (ROS) production. These factors are measured over a range of concentrations of Fe 3 O 4 nanoparticles and HNT/Fe 3 O 4 nanocomposite and at specified time intervals, to test if there is any statistically significant difference between the toxicity of the two nanomaterials. Between the two nanomaterials, HNT/Fe 3 O 4 nanocomposite is found to be less toxic to bacterial cells than Fe 3 O 4 nanoparticles. HNT, when attached to the Fe 3 O 4 nanoparticles, changes their surface characteristics and suppresses their inherent toxicity on bacteria. In the study on the effect on cell lines, Fe 3 O 4 nanoparticles and HNT/Fe 3 O 4 nanocomposite are both seen to be biocompatible with Vero cell lines. However, HNT/Fe 3 O 4 nanocomposite showed more cytotoxicity than Fe 3 O 4 nanoparticles on A-549 cell lines. Copyright © 2018 Elsevier B.V. All rights reserved.
Roberts, Jane L; Tavallai, Mehrad; Nourbakhsh, Aida; Fidanza, Abigail; Cruz-Luna, Tanya; Smith, Elizabeth; Siembida, Paul; Plamondon, Pascale; Cycon, Kelly A; Doern, Christopher D; Booth, Laurence; Dent, Paul
2015-10-01
Prior tumor cell studies have shown that the drugs sorafenib (Nexavar) and regorafenib (Stivarga) reduce expression of the chaperone GRP78. Sorafenib/regorafenib and the multi-kinase inhibitor pazopanib (Votrient) interacted with sildenafil (Viagra) to further rapidly reduce GRP78 levels in eukaryotes and as single agents to reduce Dna K levels in prokaryotes. Similar data were obtained in tumor cells in vitro and in drug-treated mice for: HSP70, mitochondrial HSP70, HSP60, HSP56, HSP40, HSP10, and cyclophilin A. Prolonged 'rafenib/sildenafil treatment killed tumor cells and also rapidly decreased the expression of: the drug efflux pumps ABCB1 and ABCG2; and NPC1 and NTCP, receptors for Ebola/Hepatitis A and B viruses, respectively. Pre-treatment with the 'Rafenib/sildenafil combination reduced expression of the Coxsackie and Adenovirus receptor in parallel with it also reducing the ability of a serotype 5 Adenovirus or Coxsackie virus B4 to infect and to reproduce. Sorafenib/pazopanib and sildenafil was much more potent than sorafenib/pazopanib as single agents at preventing Adenovirus, Mumps, Chikungunya, Dengue, Rabies, West Nile, Yellow Fever, and Enterovirus 71 infection and reproduction. 'Rafenib drugs/pazopanib as single agents killed laboratory generated antibiotic resistant E. coli which was associated with reduced Dna K and Rec A expression. Marginally toxic doses of 'Rafenib drugs/pazopanib restored antibiotic sensitivity in pan-antibiotic resistant bacteria including multiple strains of blakpc Klebsiella pneumoniae. Thus, Dna K is an antibiotic target for sorafenib, and inhibition of GRP78/Dna K has therapeutic utility for cancer and for bacterial and viral infections. © 2015 Wiley Periodicals, Inc.
Ordway, Diane; Hohmann, Judit; Viveiros, Miguel; Viveiros, Antonio; Molnar, Joseph; Leandro, Clara; Arroz, Maria Jorge; Gracio, Maria Amelia; Amaral, Leonard
2003-05-01
Although alkaloids from the family Aizoaceae have anticancer activity, species of this family have received little attention. Because these alkaloids also exhibit properties normally associated with compounds that have activity at the level of the plasma membrane, a methanol extract of Carpobrotus edulis, a common plant found along the Portuguese coast, was studied for properties normally associated with plasma membrane active compounds. The results of this study show that the extract is non-toxic at concentrations that inhibit a verapamil sensitive efflux pump of L5178 mouse T cell lymphoma cell line thereby rendering these multi-drug resistant cells susceptible to anticancer drugs. These non-toxic concentrations also prime THP-1 human monocyte-derived macrophages to kill ingested Staphylococcus aureus and to promote the release of lymphokines associated with cellular immune functions. The extract also induces the proliferation of THP-1 cells within 1 day of exposure to quantities normally associated with phytohaemagglutinin. The potential role of the compound(s) isolated from this plant in cancer biology is intriguing and is currently under investigation. It is supposed that the resistance modifier and immunomodulatory effect of this plant extract can be exploited in the experimental chemotherapy of cancer and bacterial or viral infections. Copyright 2003 John Wiley & Sons, Ltd.
Tsai, Sheng-Hui; Lai, Hsin-Chih
2015-01-01
Subinhibitory doses of antibiotics have been shown to cause changes in bacterial morphology, adherence ability, and resistance to antibiotics. In this study, the effects of subinhibitory doses of aminoglycoside antibiotics on Mycobacterium abscessus were investigated. The treatment of M. abscessus cells with subinhibitory doses of amikacin was found to change their colony from a smooth to a rough morphotype and increase their ability to adhere to a polyvinylchloride plate, aggregate in culture, and resist phagocytosis and killing by macrophages. M. abscessus cells treated with a subinhibitory dose of amikacin also became more potent in Toll-like receptor 2 (TLR-2) stimulation, leading to increased tumor necrosis factor alpha (TNF-α) production by macrophages. The MAB_3508c gene was shown to play a role in mediating these phenotypic changes, as its expression in M. abscessus cells was increased when they were treated with a subinhibitory dose of amikacin. In addition, overexpression of MAB_3508c in M. abscessus cells caused changes similar to those induced by subinhibitory doses of amikacin, including a switch from smooth to rough colony morphology, increased ability to aggregate in liquid culture, decreased motility, and increased resistance to killing by macrophages. These findings suggest the importance of using sufficient doses of antibiotics for the treatment of M. abscessus infections. PMID:26195529
Factors influencing bacterial adhesion to contact lenses.
Dutta, Debarun; Cole, Nerida; Willcox, Mark
2012-01-01
The process of any contact lens related keratitis generally starts with the adhesion of opportunistic pathogens to contact lens surface. This article focuses on identifying the factors which have been reported to affect bacterial adhesion to contact lenses. Adhesion to lenses differs between various genera/species/strains of bacteria. Pseudomonas aeruginosa, which is the predominant causative organism, adheres in the highest numbers to both hydrogel and silicone hydrogel lenses in vitro. The adhesion of this strain reaches maximum numbers within 1h in most in vitro studies and a biofilm has generally formed within 24 h of cells adhering to the lens surface. Physical and chemical properties of contact lens material affect bacterial adhesion. The water content of hydroxyethylmethacrylate (HEMA)-based lenses and their iconicity affect the ability of bacteria to adhere. The higher hydrophobicity of silicone hydrogel lenses compared to HEMA-based lenses has been implicated in the higher numbers of bacteria that can adhere to their surfaces. Lens wear has different effects on bacterial adhesion, partly due to differences between wearers, responses of bacterial strains and the ability of certain tear film proteins when bound to a lens surface to kill certain types of bacteria.
Factors influencing bacterial adhesion to contact lenses
Dutta, Debarun; Willcox, Mark
2012-01-01
The process of any contact lens related keratitis generally starts with the adhesion of opportunistic pathogens to contact lens surface. This article focuses on identifying the factors which have been reported to affect bacterial adhesion to contact lenses. Adhesion to lenses differs between various genera/species/strains of bacteria. Pseudomonas aeruginosa, which is the predominant causative organism, adheres in the highest numbers to both hydrogel and silicone hydrogel lenses in vitro. The adhesion of this strain reaches maximum numbers within 1h in most in vitro studies and a biofilm has generally formed within 24 h of cells adhering to the lens surface. Physical and chemical properties of contact lens material affect bacterial adhesion. The water content of hydroxyethylmethacrylate (HEMA)-based lenses and their iconicity affect the ability of bacteria to adhere. The higher hydrophobicity of silicone hydrogel lenses compared to HEMA-based lenses has been implicated in the higher numbers of bacteria that can adhere to their surfaces. Lens wear has different effects on bacterial adhesion, partly due to differences between wearers, responses of bacterial strains and the ability of certain tear film proteins when bound to a lens surface to kill certain types of bacteria. PMID:22259220
Photodynamic inactivation of the models Mycobacterium phlei and Mycobacterium smegmatis in vitro
NASA Astrophysics Data System (ADS)
Bruce-Micah, R.; Gamm, U.; Hüttenberger, D.; Cullum, J.; Foth, H.-J.
2009-07-01
Photodynamic inactivation (PDI) of bacterial strains presents an attractive potential alternative to antibiotic therapies. Success is dependent on the effective accumulation in bacterial cells of photochemical substances called photosensitizers, which are usually porphyrins or their derivatives. The kinetics of porphyrin synthesis after treatment with the precursor ALA and the accumulation of the Chlorin e6 and the following illumination were studied. The goal was to estimate effectivity of the destructive power of these PS in vitro in respect of the physiological states of Mycobacteria. So the present results examine the cell destruction by PDI using ALA-induced Porphyrins and Chlorin e6 accumulated in Mycobacterium phlei and Mycobacterium smegmatis, which serve as models for the important pathogens Mycobacterium tuberculosis, Mycobacterium leprae and Mycobacterium bovis. We could show that both Mycobacterium after ALA and Chlorin e6 application were killed by illumination with light of about 662 nm. A reduction of about 97% could be reached by using a lightdose of 70 mW/cm2.
Reconstitution and structure of a bacterial Pnkp1RnlHen1 RNA repair complex
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Pei; Selvadurai, Kiruthika; Huang, Raven H.
Ribotoxins cleave essential RNAs for cell killing, and RNA repair neutralizes the damage inflicted by ribotoxins for cell survival. We report a new bacterial RNA repair complex that performs RNA repair linked to immunity. This new RNA repair complex is a 270-kDa heterohexamer composed of three proteins—Pnkp1, Rnl and Hen1—that are required to repair ribotoxin-cleaved RNA in vitro. The crystal structure of the complex reveals the molecular architecture of the heterohexamer as two rhomboid-shaped ring structures of Pnkp1–Rnl–Hen1 heterotrimer fused at the Pnkp1 dimer interface. The four active sites required for RNA repair are located on the inner rim ofmore » each ring. Furthermore, the architecture and the locations of the active sites of the Pnkp1–Rnl–Hen1 heterohexamer suggest an ordered series of repair reactions at the broken RNA ends that confer immunity to recurrent damage.« less
Joshi, Suresh G; Paff, Michelle; Friedman, Gary; Fridman, Greg; Fridman, Alexander; Brooks, Ari D
2010-05-01
Bacterial contamination of surfaces with methicillin-resistant Staphylococcus aureus (MRSA) is a serious problem in the hospital environment and is responsible for significant nosocomial infections. The pathogenic contaminants form biofilms, which are difficult to treat with routine biocides. Thus, a continuous search for novel disinfection methods is essential for effective infection control measures. This demonstration of a novel technique for the control of virulent pathogens in planktonic form as well as in established biofilms may provide a progressive alternative to standard methodology. We evaluated a novel technique of normal atmospheric nonthermal plasma known as floating-electrode dielectric-barrier discharge (FE-DBD) plasma against a control of planktonic and biofilm forms of Escherichia coli, S aureus, multidrug-resistant methicillin-resistant S aureus (MRSA) -95 (clinical isolate), -USA300, and -USA400, using widely accepted techniques such as colony count assay, LIVE/DEAD BacLight Bacterial Viability assay, and XTT (2,3-Bis(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide) assay. Exposure of free living planktonic forms of E coli, S aureus, and MRSA were rapidly inactivated by DBD plasma. Approximately 10(7) bacterial cells were completely (100%) killed, whereas 10(8) and 10(9) were reduced by approximately 90% to 95% and 40% to 45%, respectively, in less than 60 seconds (7.8 J/cm(2)) and completely disinfected in < or =120 seconds. In established biofilms, the susceptibility of MRSA USA400 was comparable with USA300 but less susceptible than MRSA95 (clinical isolate), S aureus, and E coli (P < .05) to FE-DBD plasma, and plasma was able to kill MRSA more than 60% within 15 seconds (1.95 J/cm(2)). The killing responses were plasma exposure-time dependent, and cell density dependent. The plasma was able disinfect surfaces in a less than 120 seconds. Application of DBD plasma can be a valuable decontamination technique for the removal of planktonic and biofilm-embedded bacteria such as MRSA -USA 300, -USA 400, methicillin-sensitive S aureus (MSSA), and E coli, the more common hospital contaminants. Of interest, E coli was more resistant than S aureus phenotypes. Copyright (c) 2010 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Mosby, Inc. All rights reserved.
cea-kil operon of the ColE1 plasmid.
Sabik, J F; Suit, J L; Luria, S E
1983-01-01
We isolated a series of Tn5 transposon insertion mutants and chemically induced mutants with mutations in the region of the ColE1 plasmid that includes the cea (colicin) and imm (immunity) genes. Bacterial cells harboring each of the mutant plasmids were tested for their response to the colicin-inducing agent mitomycin C. All insertion mutations within the cea gene failed to bring about cell killing after mitomycin C treatment. A cea- amber mutation exerted a polar effect on killing by mitomycin C. Two insertions beyond the cea gene but within or near the imm gene also prevented the lethal response to mitomycin C. These findings suggest the presence in the ColE1 plasmid of an operon containing the cea and kil genes whose product is needed for mitomycin C-induced lethality. Bacteria carrying ColE1 plasmids with Tn5 inserted within the cea gene produced serologically cross-reacting fragments of the colicin E1 molecule, the lengths of which were proportional to the distance between the insertion and the promoter end of the cea gene. Images PMID:6298187
Wang, Kai; Jin, Xiao-Lu; Shen, Xiao-Ge; Sun, Li-Ping; Wu, Li-Ming; Wei, Jiang-Qin; Marcucci, Maria Cristina; Hu, Fu-Liang; Liu, Jian-Xin
2016-01-01
Chinese propolis (CP), an important hive product, can alleviate inflammatory responses. However, little is known regarding the potential of propolis treatment for mastitis control. To investigate the anti-inflammatory effects of CP on bovine mammary epithelial cells (MAC-T), we used a range of pathogens to induce cellular inflammatory damage. Cell viability was determined and expressions of inflammatory/antioxidant genes were measured. Using a cell-based reporter assay system, we evaluated CP and its primary constituents on the NF-κB and Nrf2-ARE transcription activation. MAC-T cells treated with bacterial endotoxin (lipopolysaccharide, LPS), heat-inactivated Escherichia coli, and Staphylococcus aureus exhibited significant decreases in cell viability while TNF-α and lipoteichoic acid (LTA) did not. Pretreatment with CP prevented losses in cell viability associated with the addition of killed bacteria or bacterial endotoxins. There were also corresponding decreases in expressions of proinflammatory IL-6 and TNF-α mRNA. Compared with the mastitis challenged cells, enhanced expressions of antioxidant genes HO-1, Txnrd-1, and GCLM were observed in CP-treated cells. CP and its polyphenolic active components (primarily caffeic acid phenethyl ester and quercetin) had strong inhibitive effects against NF-κB activation and increased the transcriptional activity of Nrf2-ARE. These findings suggest that propolis may be valuable in the control of bovine mastitis.
Jin, Xiao-Lu; Shen, Xiao-Ge; Sun, Li-Ping; Wu, Li-Ming; Wei, Jiang-Qin; Marcucci, Maria Cristina; Hu, Fu-Liang; Liu, Jian-Xin
2016-01-01
Chinese propolis (CP), an important hive product, can alleviate inflammatory responses. However, little is known regarding the potential of propolis treatment for mastitis control. To investigate the anti-inflammatory effects of CP on bovine mammary epithelial cells (MAC-T), we used a range of pathogens to induce cellular inflammatory damage. Cell viability was determined and expressions of inflammatory/antioxidant genes were measured. Using a cell-based reporter assay system, we evaluated CP and its primary constituents on the NF-κB and Nrf2-ARE transcription activation. MAC-T cells treated with bacterial endotoxin (lipopolysaccharide, LPS), heat-inactivated Escherichia coli, and Staphylococcus aureus exhibited significant decreases in cell viability while TNF-α and lipoteichoic acid (LTA) did not. Pretreatment with CP prevented losses in cell viability associated with the addition of killed bacteria or bacterial endotoxins. There were also corresponding decreases in expressions of proinflammatory IL-6 and TNF-α mRNA. Compared with the mastitis challenged cells, enhanced expressions of antioxidant genes HO-1, Txnrd-1, and GCLM were observed in CP-treated cells. CP and its polyphenolic active components (primarily caffeic acid phenethyl ester and quercetin) had strong inhibitive effects against NF-κB activation and increased the transcriptional activity of Nrf2-ARE. These findings suggest that propolis may be valuable in the control of bovine mastitis. PMID:27433029
Genetic study of the functional organization of the colicin E1 molecule.
Suit, J L; Fan, M L; Kayalar, C; Luria, S E
1985-01-01
Colicin E1 fragments obtained by genetic manipulations of the ColE1 plasmid were tested for bactericidal activity, binding to bacterial cells, and reactions with a series of anticolicin monoclonal antibodies. Two of the fragments were also tested for ability to form channels in liposomal vesicles. The results are in agreement with studies from chemically and enzymatically derived colicin fragments, assigning the receptor binding activity to the central part of the molecule and the killing activity to a region near the carboxyl terminus. PMID:2579061
Pieper, Robert; Janczyk, Pawel; Zeyner, Annette; Smidt, Hauke; Guiard, Volker; Souffrant, Wolfgang Bernhard
2008-10-01
Weaning of the pig is generally regarded as a stressful event which could lead to clinical implications because of the changes in the intestinal ecosystem. The functional properties of microbiota inhabiting the pig's small intestine (SI), including lactobacilli which are assumed to exert health-promoting properties, are yet poorly described. Thus, we determined the ecophysiology of bacterial groups and within genus Lactobacillus in the SI of weaning piglets and the impact of dietary changes. The SI contents of 20 piglets, 4 killed at weaning (only sow milk and no creep feed) and 4 killed at 1, 2, 5, and 11 days post weaning (pw; cereal-based diet) were examined for bacterial cell count and bacterial metabolites by fluorescence in situ hybridization (FISH). Lactobacilli were the predominant group in the SI except at 1 day pw because of a marked reduction in their number. On day 11 pw, bifidobacteria and E. coli were not detected, and Enterobacteriaceae and members of the Clostridium coccoides/Eubacterium rectale cluster were only found occasionally. L. sobrius/L. amylovorus became dominant species whereas the abundance of L. salivarius and L. gasseri/johnsonii declined. Concentration of lactic acid increased pw whereas pH, volatile fatty acids, and ammonia decreased. Carbohydrate utilization of 76 Lactobacillus spp. isolates was studied revealing a shift from lactose and galactose to starch, cellobiose, and xylose, suggesting that the bacteria colonizing the SI of piglets adapt to the newly introduced nutrients during the early weaning period. Identification of isolates based on partial 16S rRNA gene sequence data and comparison with fermentation data furthermore suggested adaptation processes below the species level. The results of our study will help to understand intestinal bacterial ecophysiology and to develop nutritional regimes to prevent or counteract complications during the weaning transition.
Costa, M A S; Cerri, B C; Ceccato-Antonini, S R
2018-01-01
Fermentation is one of the most critical steps of the fuel ethanol production and it is directly influenced by the fermentation system, selected yeast, and bacterial contamination, especially from the genus Lactobacillus. To control the contamination, the industry applies antibiotics and biocides; however, these substances can result in an increased cost and environmental problems. The use of the acid treatment of cells (water-diluted sulphuric acid, adjusted to pH 2·0-2·5) between the fermentation cycles is not always effective to combat the bacterial contamination. In this context, this study aimed to evaluate the effect of ethanol addition to the acid treatment to control the bacterial growth in a fed-batch system with cell recycling, using the industrial yeast strain Saccharomyces cerevisiae PE-2. When only the acid treatment was used, the population of Lactobacillus fermentum had a 3-log reduction at the end of the sixth fermentation cycle; however, when 5% of ethanol was added to the acid solution, the viability of the bacterium was completely lost even after the first round of cell treatment. The acid treatment +5% ethanol was able to kill L. fermentum cells without affecting the ethanol yield and with a low residual sugar concentration in the fermented must. In Brazilian ethanol-producing industry, water-diluted sulphuric acid is used to treat the cell mass at low pH (2·0) between the fermentative cycles. This procedure reduces the number of Lactobacillus fermentum from 10 7 to 10 4 CFU per ml. However, the addition of 5% ethanol to the acid treatment causes the complete loss of bacterial cell viability in fed-batch fermentation with six cell recycles. The ethanol yield and yeast cell viability are not affected. These data indicate the feasibility of adding ethanol to the acid solution replacing the antibiotic use, offering a low cost and a low amount of residue in the biomass. © 2017 The Society for Applied Microbiology.
Song, Bo; Rong, Yan-Jun; Zhao, Ming-Xin; Chi, Zhen-Ming
2013-08-01
The bacterium Bacillus amyloliquefaciens anti-CA isolated from mangrove system was found to be able to actively kill Candida albicans isolated from clinic. The bacterial strain anti-CA could produce high level of bioactive substance, amylase and protease in the cheap medium containing 2.0 % soybean meal, 2.0 % wheat flour, pH 6.5 within 26 h. After purification, the main bioactive substance was confirmed to be a cyclic lipopeptide containing a heptapeptide, L-Asp→L-Leu→L-Leu→L-Val→L-Val→L-Glu→L-Leu and a 3-OH fatty acid (15 carbons). In addition to C. albicans, the purified lipopeptide can also kill many yeast strains including Metschnikowia bicuspidata, Candida tropicalis, Yarrowia lipolytica and Saccharomyces cerevisiae. After treated by the purified lipopeptide, both the whole cells and protoplasts of C. albicans were destroyed.
A human pathogenic bacterial infection model using the two-spotted cricket, Gryllus bimaculatus.
Kochi, Yuto; Miyashita, Atsushi; Tsuchiya, Kohsuke; Mitsuyama, Masao; Sekimizu, Kazuhisa; Kaito, Chikara
2016-08-01
Invertebrate animal species that can withstand temperatures as high as 37°C, the human body temperature, are limited. In the present study, we utilized the two-spotted cricket, Gryllus bimaculatus, which lives in tropical and subtropical regions, as an animal model of human pathogenic bacterial infection. Injection of Pseudomonas aeruginosa or Staphylococcus aureus into the hemolymph killed crickets. Injected P. aeruginosa or S. aureus proliferated in the hemolymph until the cricket died. The ability of these pathogenic bacteria to kill the crickets was blocked by the administration of antibiotics. S. aureus gene-knockout mutants of virulence factors, including cvfA, agr and srtA, exhibited decreased killing ability compared with the parent strain. The dose at which 50% of crickets were killed by P. aeruginosa or S. aureus was not decreased at 37°C compared with that at 27°C. Injection of Listeria monocytogenes, which upregulates toxin expression at 37°C, killed crickets, and the dose at which 50% of crickets were killed was decreased at 37°C compared with that at 27°C. These findings suggest that the two-spotted cricket is a useful model animal for evaluating the virulence properties of various human pathogenic bacteria at variable temperature including 37°C. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Salih, H R; Husfeld, L; Adam, D
2000-05-01
Polymorphonuclear leukocytes (PMN) play a central role in the elimination of most extracellular pathogens, and an impairment of their functions predisposes an individual towards local and systemic bacterial and fungal infections. Here we describe a rapid and easy-to-perform cytofluorometric assay for investigation of PMN activity using Candida albicans and Staphylococcus aureus as target organisms. Phagocytes were stained with anti-CD13-RPE antibody, and microorganisms were stained with calcein-AM. Oxidative burst production was measured by oxidation of dihydroethidium. The percentage of killed target organisms after ingestion was determined by staining with ethidium-homodimer-1 after lysis of human cells. The dyes and procedures used in this method were chosen after comparison of different stains and cell preparation techniques described in previous assays. Concerning phagocytosis, the percentages of active phagocytes and of ingested microorganisms were determined. Furthermore, the method allowed measurement of the resulting percentage of PMNs producing respiratory burst, and of the percentage of killed microorganisms. We minimized artifactual changes, which might have been the reason for the difficulties and conflicting results of other cytofluorometric methods. The described method provides a new whole blood cytofluorometric assay, which combines rapid and simple handling with high reproducibility of results obtained by investigation of PMN activity using Candida albicans and Staphylococcus aureus as target organisms.
Mussalem, Juliana Sekeres; Squaiella-Baptistão, Carla Cristina; Teixeira, Daniela; Yendo, Tatiana Mina; Thies, Felipe Garutti; Popi, Ana Flavia; Mariano, Mario; Longo-Maugéri, Ieda
2012-01-01
B-1 lymphocytes are the predominant cells in mouse peritoneal cavity. They express macrophage and lymphocyte markers and are divided into B-1a, B-1b and B-1c subtypes. The role of B-1 cells is not completely clear, but they are responsible for natural IgM production and seem to play a regulatory role. An enriched B-1b cell population can be obtained from non-adherent peritoneal cell cultures, and we have previously demonstrated that these cells undergo differentiation to acquire a mononuclear phagocyte phenotype upon attachment to the substrate in vitro. Nevertheless, the B-1 cell response to antigens or adjuvants has been poorly investigated. Because killed Propionibacterium acnes exhibits immunomodulatory effects on both macrophages and B-2 lymphocytes, we analyzed whether a killed bacterial suspension or its soluble polysaccharide (PS) could modulate the absolute number of peritoneal B-1 cells in BALB/c mice, the activation status of these cells and their ability to differentiate into phagocytes in vitro. In vivo, P. acnes treatment elevated the absolute number of all B-1 subsets, whereas PS only increased B-1c. Moreover, the bacterium increased the number of B-1b cells that were positive for MHC II, TLR2, TLR4, TLR9, IL-4, IL-5 and IL-12, in addition to up-regulating TLR9, CD80 and CD86 expression. PS increased B-1b cell expression of TLR4, TLR9, CD40 and CD86, as well as IL-10 and IL-12 synthesis. Both of the treatments decreased the absolute number of B-1b cells in vitro, suggesting their early differentiation into B-1 cell-derived phagocytes (B-1CDP). We also observed a higher phagocytic activity from the phagocytes that were derived from B-1b cells after P. acnes and PS treatment. The adjuvant effect that P. acnes has on B-1 cells, mainly the B-1b subtype, reinforces the importance of B-1 cells in the innate and adaptive immune responses. PMID:22448280
Mussalem, Juliana Sekeres; Squaiella-Baptistão, Carla Cristina; Teixeira, Daniela; Yendo, Tatiana Mina; Thies, Felipe Garutti; Popi, Ana Flavia; Mariano, Mario; Longo-Maugéri, Ieda
2012-01-01
B-1 lymphocytes are the predominant cells in mouse peritoneal cavity. They express macrophage and lymphocyte markers and are divided into B-1a, B-1b and B-1c subtypes. The role of B-1 cells is not completely clear, but they are responsible for natural IgM production and seem to play a regulatory role. An enriched B-1b cell population can be obtained from non-adherent peritoneal cell cultures, and we have previously demonstrated that these cells undergo differentiation to acquire a mononuclear phagocyte phenotype upon attachment to the substrate in vitro. Nevertheless, the B-1 cell response to antigens or adjuvants has been poorly investigated. Because killed Propionibacterium acnes exhibits immunomodulatory effects on both macrophages and B-2 lymphocytes, we analyzed whether a killed bacterial suspension or its soluble polysaccharide (PS) could modulate the absolute number of peritoneal B-1 cells in BALB/c mice, the activation status of these cells and their ability to differentiate into phagocytes in vitro. In vivo, P. acnes treatment elevated the absolute number of all B-1 subsets, whereas PS only increased B-1c. Moreover, the bacterium increased the number of B-1b cells that were positive for MHC II, TLR2, TLR4, TLR9, IL-4, IL-5 and IL-12, in addition to up-regulating TLR9, CD80 and CD86 expression. PS increased B-1b cell expression of TLR4, TLR9, CD40 and CD86, as well as IL-10 and IL-12 synthesis. Both of the treatments decreased the absolute number of B-1b cells in vitro, suggesting their early differentiation into B-1 cell-derived phagocytes (B-1CDP). We also observed a higher phagocytic activity from the phagocytes that were derived from B-1b cells after P. acnes and PS treatment. The adjuvant effect that P. acnes has on B-1 cells, mainly the B-1b subtype, reinforces the importance of B-1 cells in the innate and adaptive immune responses.
Cuyàs, Elisabet; Martin-Castillo, Begoña; Corominas-Faja, Bruna; Massaguer, Anna; Bosch-Barrera, Joaquim; Menendez, Javier A
2015-01-01
Key players in translational regulation such as ribosomes might represent powerful, but hitherto largely unexplored, targets to eliminate drug-refractory cancer stem cells (CSCs). A recent study by the Lisanti group has documented how puromycin, an old antibiotic derived from Streptomyces alboniger that inhibits ribosomal protein translation, can efficiently suppress CSC states in tumorspheres and monolayer cultures. We have used a closely related approach based on Biolog Phenotype Microarrays (PM), which contain tens of lyophilized antimicrobial drugs, to assess the chemosensitivity profiles of breast cancer cell lines enriched for stem cell-like properties. Antibiotics directly targeting active sites of the ribosome including emetine, puromycin and cycloheximide, inhibitors of ribosome biogenesis such as dactinomycin, ribotoxic stress agents such as daunorubicin, and indirect inhibitors of protein synthesis such as acriflavine, had the largest cytotoxic impact against claudin-low and basal-like breast cancer cells. Thus, biologically aggressive, treatment-resistant breast cancer subtypes enriched for stem cell-like properties exhibit exacerbated chemosensitivities to anti-protozoal and anti-bacterial antibiotics targeting protein synthesis. These results suggest that old/existing microbicides might be repurposed not only as new cancer therapeutics, but also might provide the tools and molecular understanding needed to develop second-generation inhibitors of ribosomal translation to eradicate CSC traits in tumor tissues.
Cuyàs, Elisabet; Martin-Castillo, Begoña; Corominas-Faja, Bruna; Massaguer, Anna; Bosch-Barrera, Joaquim; Menendez, Javier A
2015-01-01
Key players in translational regulation such as ribosomes might represent powerful, but hitherto largely unexplored, targets to eliminate drug-refractory cancer stem cells (CSCs). A recent study by the Lisanti group has documented how puromycin, an old antibiotic derived from Streptomyces alboniger that inhibits ribosomal protein translation, can efficiently suppress CSC states in tumorspheres and monolayer cultures. We have used a closely related approach based on Biolog Phenotype Microarrays (PM), which contain tens of lyophilized antimicrobial drugs, to assess the chemosensitivity profiles of breast cancer cell lines enriched for stem cell-like properties. Antibiotics directly targeting active sites of the ribosome including emetine, puromycin and cycloheximide, inhibitors of ribosome biogenesis such as dactinomycin, ribotoxic stress agents such as daunorubicin, and indirect inhibitors of protein synthesis such as acriflavine, had the largest cytotoxic impact against claudin-low and basal-like breast cancer cells. Thus, biologically aggressive, treatment-resistant breast cancer subtypes enriched for stem cell-like properties exhibit exacerbated chemosensitivities to anti-protozoal and anti-bacterial antibiotics targeting protein synthesis. These results suggest that old/existing microbicides might be repurposed not only as new cancer therapeutics, but also might provide the tools and molecular understanding needed to develop second-generation inhibitors of ribosomal translation to eradicate CSC traits in tumor tissues. PMID:25970790
USDA-ARS?s Scientific Manuscript database
Insect guts harbor diverse microbial assemblages that can be influenced by multiple factors, including gut physiology and interactions by the host with its environment. The Asian longhorned beetle (ALB; Anoplophora glabripennis) is an invasive tree–killing insect, which harbors a diverse consortium ...
A new class of synthetic retinoid antibiotics effective against bacterial persisters.
Kim, Wooseong; Zhu, Wenpeng; Hendricks, Gabriel Lambert; Van Tyne, Daria; Steele, Andrew D; Keohane, Colleen E; Fricke, Nico; Conery, Annie L; Shen, Steven; Pan, Wen; Lee, Kiho; Rajamuthiah, Rajmohan; Fuchs, Beth Burgwyn; Vlahovska, Petia M; Wuest, William M; Gilmore, Michael S; Gao, Huajian; Ausubel, Frederick M; Mylonakis, Eleftherios
2018-04-05
A challenge in the treatment of Staphylococcus aureus infections is the high prevalence of methicillin-resistant S. aureus (MRSA) strains and the formation of non-growing, dormant 'persister' subpopulations that exhibit high levels of tolerance to antibiotics and have a role in chronic or recurrent infections. As conventional antibiotics are not effective in the treatment of infections caused by such bacteria, novel antibacterial therapeutics are urgently required. Here we used a Caenorhabditis elegans-MRSA infection screen to identify two synthetic retinoids, CD437 and CD1530, which kill both growing and persister MRSA cells by disrupting lipid bilayers. CD437 and CD1530 exhibit high killing rates, synergism with gentamicin, and a low probability of resistance selection. All-atom molecular dynamics simulations demonstrated that the ability of retinoids to penetrate and embed in lipid bilayers correlates with their bactericidal ability. An analogue of CD437 was found to retain anti-persister activity and show an improved cytotoxicity profile. Both CD437 and this analogue, alone or in combination with gentamicin, exhibit considerable efficacy in a mouse model of chronic MRSA infection. With further development and optimization, synthetic retinoids have the potential to become a new class of antimicrobials for the treatment of Gram-positive bacterial infections that are currently difficult to cure.
A new class of synthetic retinoid antibiotics effective against bacterial persisters
NASA Astrophysics Data System (ADS)
Kim, Wooseong; Zhu, Wenpeng; Hendricks, Gabriel Lambert; van Tyne, Daria; Steele, Andrew D.; Keohane, Colleen E.; Fricke, Nico; Conery, Annie L.; Shen, Steven; Pan, Wen; Lee, Kiho; Rajamuthiah, Rajmohan; Fuchs, Beth Burgwyn; Vlahovska, Petia M.; Wuest, William M.; Gilmore, Michael S.; Gao, Huajian; Ausubel, Frederick M.; Mylonakis, Eleftherios
2018-04-01
A challenge in the treatment of Staphylococcus aureus infections is the high prevalence of methicillin-resistant S. aureus (MRSA) strains and the formation of non-growing, dormant ‘persister’ subpopulations that exhibit high levels of tolerance to antibiotics and have a role in chronic or recurrent infections. As conventional antibiotics are not effective in the treatment of infections caused by such bacteria, novel antibacterial therapeutics are urgently required. Here we used a Caenorhabditis elegans–MRSA infection screen to identify two synthetic retinoids, CD437 and CD1530, which kill both growing and persister MRSA cells by disrupting lipid bilayers. CD437 and CD1530 exhibit high killing rates, synergism with gentamicin, and a low probability of resistance selection. All-atom molecular dynamics simulations demonstrated that the ability of retinoids to penetrate and embed in lipid bilayers correlates with their bactericidal ability. An analogue of CD437 was found to retain anti-persister activity and show an improved cytotoxicity profile. Both CD437 and this analogue, alone or in combination with gentamicin, exhibit considerable efficacy in a mouse model of chronic MRSA infection. With further development and optimization, synthetic retinoids have the potential to become a new class of antimicrobials for the treatment of Gram-positive bacterial infections that are currently difficult to cure.
Molecular mechanisms of CRISPR-mediated microbial immunity.
Gasiunas, Giedrius; Sinkunas, Tomas; Siksnys, Virginijus
2014-02-01
Bacteriophages (phages) infect bacteria in order to replicate and burst out of the host, killing the cell, when reproduction is completed. Thus, from a bacterial perspective, phages pose a persistent lethal threat to bacterial populations. Not surprisingly, bacteria evolved multiple defense barriers to interfere with nearly every step of phage life cycles. Phages respond to this selection pressure by counter-evolving their genomes to evade bacterial resistance. The antagonistic interaction between bacteria and rapidly diversifying viruses promotes the evolution and dissemination of bacteriophage-resistance mechanisms in bacteria. Recently, an adaptive microbial immune system, named clustered regularly interspaced short palindromic repeats (CRISPR) and which provides acquired immunity against viruses and plasmids, has been identified. Unlike the restriction–modification anti-phage barrier that subjects to cleavage any foreign DNA lacking a protective methyl-tag in the target site, the CRISPR–Cas systems are invader-specific, adaptive, and heritable. In this review, we focus on the molecular mechanisms of interference/immunity provided by different CRISPR–Cas systems.
Thomsen, K.; Christophersen, L.; Bjarnsholt, T.; Jensen, P. Ø.; Moser, C.
2015-01-01
Polymorphonuclear neutrophils (PMNs) are essential cellular constituents in the innate host response, and their recruitment to the lungs and subsequent ubiquitous phagocytosis controls primary respiratory infection. Cystic fibrosis pulmonary disease is characterized by progressive pulmonary decline governed by a persistent, exaggerated inflammatory response dominated by PMNs. The principal contributor is chronic Pseudomonas aeruginosa biofilm infection, which attracts and activates PMNs and thereby is responsible for the continuing inflammation. Strategies to prevent initial airway colonization with P. aeruginosa by augmenting the phagocytic competence of PMNs may postpone the deteriorating chronic biofilm infection. Anti-P. aeruginosa IgY antibodies significantly increase the PMN-mediated respiratory burst and subsequent bacterial killing of P. aeruginosa in vitro. The mode of action is attributed to IgY-facilitated formation of immobilized bacteria in aggregates, as visualized by fluorescence microscopy and the induction of increased bacterial hydrophobicity. Thus, the present study demonstrates that avian egg yolk immunoglobulins (IgY) targeting P. aeruginosa modify bacterial fitness, which enhances bacterial killing by PMN-mediated phagocytosis and thereby may facilitate a rapid bacterial clearance in airways of people with cystic fibrosis. PMID:25895968
DOE Office of Scientific and Technical Information (OSTI.GOV)
Winkelman, J.W.; Clark, D.P.
A positive selection procedure was devised for bacterial mutants incapable of producing acid from sugars by fermentation. The method relied on the production of elemental bromine from a mixture of bromide and bromate under acidic conditions. When wild-type Escherichia coli cells were plated on media containing a fermentable sugar and an equimolar mixture of bromide and bromate, most of the cells were killed but a variety of mutants unable to produce acid from the sugar survived. Among these mutants were those defective in (i) sugar uptake, (ii) the glycolytic pathway, and (iii) the excretion. There were also novel mutants withmore » some presumed regulatory defects affecting fermentation.« less
Gowdy, K M; Madenspacher, J H; Azzam, K M; Gabor, K A; Janardhan, K S; Aloor, J J; Fessler, M B
2015-05-01
Scavenger receptor B-I (SR-BI) is a multirecognition receptor that regulates cholesterol trafficking and cardiovascular inflammation. Although it is expressed by neutrophils (PMNs) and lung-resident cells, no role for SR-BI has been defined in pulmonary immunity. Herein, we report that, compared with SR-BI(+/+) counterparts, SR-BI(-/-) mice suffer markedly increased mortality during bacterial pneumonia associated with higher bacterial burden in the lung and blood, deficient induction of the stress glucocorticoid corticosterone, higher serum cytokines, and increased organ injury. SR-BI(-/-) mice had significantly increased PMN recruitment and cytokine production in the infected airspace. This was associated with defective hematopoietic cell-dependent clearance of lipopolysaccharide from the airspace and increased cytokine production by SR-BI(-/-) macrophages. Corticosterone replacement normalized alveolar neutrophilia but not alveolar cytokines, bacterial burden, or mortality, suggesting that adrenal insufficiency derepresses PMN trafficking to the SR-BI(-/-) airway in a cytokine-independent manner. Despite enhanced alveolar neutrophilia, SR-BI(-/-) mice displayed impaired phagocytic killing. Bone marrow chimeras revealed this defect to be independent of the dyslipidemia and adrenal insufficiency of SR-BI(-/-) mice. During infection, SR-BI(-/-) PMNs displayed deficient oxidant production and CD11b externalization, and increased surface L-selectin, suggesting defective activation. Taken together, SR-BI coordinates several steps in the integrated neutrophilic host defense response to pneumonia.
Goh, Yun Shan; Armour, Kathryn L; Clark, Michael R; Grant, Andrew J; Mastroeni, Pietro
2016-01-01
Invasive non-typhoidal Salmonella are a common cause of invasive disease in immuno-compromised individuals and in children. Multi-drug resistance poses challenges to disease control, with a critical need for effective vaccines. Flagellin is an attractive vaccine candidate due to surface exposure and high epitope copy number, but its potential as a target for opsonophacytic antibodies is unclear. We examined the effect of targeting flagella with different classes of IgG on the interaction between Salmonella Typhimurium and a human phagocyte-like cell line, THP-1. We tagged the FliC flagellar protein with a foreign CD52 mimotope (TSSPSAD) and bacteria were opsonized with a panel of humanised CD52 antibodies with the same antigen-binding V-region, but different constant regions. We found that IgG binding to flagella increases bacterial phagocytosis and reduces viable intracellular bacterial numbers. Opsonisation with IgG3, followed by IgG1, IgG4, and IgG2, resulted in the highest level of bacterial uptake and in the highest reduction in the intracellular load of viable bacteria. Taken together, our data provide proof-of-principle evidence that targeting flagella with antibodies can increase the antibacterial function of host cells, with IgG3 being the most potent subclass. These data will assist the rational design of urgently needed, optimised vaccines against iNTS disease. PMID:27366588
Tanaka, Masamitsu; Kinoshita, Manabu; Yoshihara, Yasuo; Shinomiya, Nariyoshi; Seki, Shuhji; Nemoto, Koichi; Hamblin, Michael R.; Morimoto, Yuji
2011-01-01
Background and Objective Bacterial arthritis does not respond well to antibiotics and moreover multidrug resistance is spreading. We previously tested photodynamic therapy (PDT) mediated by systemic Photofrin® in a mouse model of methicillin-resistant Staphylococcus aureus (MRSA) arthritis, but found that neutrophils were killed by PDT and therefore the infection was potentiated. Study Design/Materials and Methods The present study used an intra-articular injection of Photofrin® and optimized the light dosimetry in order to maximize bacterial killing and minimize killing of host neutrophils. MRSA (5 × 107 CFU) was injected into the mouse knee followed 3 days later by 1 μg of Photofrin® and 635-nm diode laser illumination with a range of fluences within 5 minutes. Synovial fluid was sampled 6 hours or 1–3, 5, and 7 days after PDT to determine MRSA colony-forming units (CFU), neutrophil numbers, and levels of cytokines. Results A biphasic light dose response was observed with the greatest reduction of MRSA CFU seen with a fluence of 20 J cm−2, whereas lower antibacterial efficacy was observed with fluences that were either lower or higher. Consistent with these results, a significantly higher concentration of macrophage inflammatory protein-2, a CXC chemokine, and greater accumulation of neutrophils were seen in the infected knee joint after PDT with a fluence of 20 J cm−2 compared to fluences of 5 or 70 J cm−2. Conclusion PDT for murine MRSA arthritis requires appropriate light dosimetry to simultaneously maximize bacterial killing and neutrophil accumulation into the infected site, while too little light does not kill sufficient bacteria and too much light kills neutrophils and damages host tissue as well as bacteria and allows bacteria to grow unimpeded by host defense. PMID:21412806
Horizontal DNA Transfer Mechanisms of Bacteria as Weapons of Intragenomic Conflict
Croucher, Nicholas J.; Mostowy, Rafal; Wymant, Christopher; Turner, Paul; Bentley, Stephen D.; Fraser, Christophe
2016-01-01
Horizontal DNA transfer (HDT) is a pervasive mechanism of diversification in many microbial species, but its primary evolutionary role remains controversial. Much recent research has emphasised the adaptive benefit of acquiring novel DNA, but here we argue instead that intragenomic conflict provides a coherent framework for understanding the evolutionary origins of HDT. To test this hypothesis, we developed a mathematical model of a clonally descended bacterial population undergoing HDT through transmission of mobile genetic elements (MGEs) and genetic transformation. Including the known bias of transformation toward the acquisition of shorter alleles into the model suggested it could be an effective means of counteracting the spread of MGEs. Both constitutive and transient competence for transformation were found to provide an effective defence against parasitic MGEs; transient competence could also be effective at permitting the selective spread of MGEs conferring a benefit on their host bacterium. The coordination of transient competence with cell–cell killing, observed in multiple species, was found to result in synergistic blocking of MGE transmission through releasing genomic DNA for homologous recombination while simultaneously reducing horizontal MGE spread by lowering the local cell density. To evaluate the feasibility of the functions suggested by the modelling analysis, we analysed genomic data from longitudinal sampling of individuals carrying Streptococcus pneumoniae. This revealed the frequent within-host coexistence of clonally descended cells that differed in their MGE infection status, a necessary condition for the proposed mechanism to operate. Additionally, we found multiple examples of MGEs inhibiting transformation through integrative disruption of genes encoding the competence machinery across many species, providing evidence of an ongoing “arms race.” Reduced rates of transformation have also been observed in cells infected by MGEs that reduce the concentration of extracellular DNA through secretion of DNases. Simulations predicted that either mechanism of limiting transformation would benefit individual MGEs, but also that this tactic’s effectiveness was limited by competition with other MGEs coinfecting the same cell. A further observed behaviour we hypothesised to reduce elimination by transformation was MGE activation when cells become competent. Our model predicted that this response was effective at counteracting transformation independently of competing MGEs. Therefore, this framework is able to explain both common properties of MGEs, and the seemingly paradoxical bacterial behaviours of transformation and cell–cell killing within clonally related populations, as the consequences of intragenomic conflict between self-replicating chromosomes and parasitic MGEs. The antagonistic nature of the different mechanisms of HDT over short timescales means their contribution to bacterial evolution is likely to be substantially greater than previously appreciated. PMID:26934590
Artificial activation of toxin-antitoxin systems as an antibacterial strategy.
Williams, Julia J; Hergenrother, Paul J
2012-06-01
Toxin-antitoxin (TA) systems are unique modules that effect plasmid stabilization via post-segregational killing of the bacterial host. The genes encoding TA systems also exist on bacterial chromosomes, and it has been speculated that these are involved in a variety of cellular processes. Interest in TA systems has increased dramatically over the past 5 years as the ubiquitous nature of TA genes on bacterial genomes has been revealed. The exploitation of TA systems as an antibacterial strategy via artificial activation of the toxin has been proposed and has considerable potential; however, efforts in this area remain in the early stages and several major questions remain. This review investigates the tractability of targeting TA systems to kill bacteria, including fundamental requirements for success, recent advances, and challenges associated with artificial toxin activation. Copyright © 2012 Elsevier Ltd. All rights reserved.
Potassium Channels Mediate Killing by Human Natural Killer Cells
NASA Astrophysics Data System (ADS)
Schlichter, Lyanne; Sidell, Neil; Hagiwara, Susumu
1986-01-01
Human natural killer (NK) cells in peripheral blood spontaneously recognize and kill a wide variety of target cells. It has been suggested that ion channels are involved in the killing process because there is a Ca-dependent stage and because killing by presensitized cytotoxic T lymphocytes, which in many respects resembles NK killing, is associated with changes in K and Na transport in the target cell. However, no direct evidence exists for ion channels in NK cells or in their target cells. Using the whole-cell variation of the patch-clamp technique, we found a voltage-dependent potassium (K+) current in NK cells. The K+ current was reduced in a dose-dependent manner by the K-channel blockers 4-aminopyridine and quinidine and by the traditional Ca-channel blockers verapamil and Cd2+. We tested the effects of ion-channel blockers on killing of two commonly used target cell lines: K562, which is derived from a human myeloid leukemia, and U937, which is derived from a human histiocytic leukemia. Killing of K562 target cells, determined in a standard 51Cr-release assay, was inhibited in a dose-dependent manner by verapamil, quinidine, Cd2+, and 4-aminopyridine at concentrations comparable to those that blocked the K+ current in NK cells. In K562 target cells only a voltage-dependent Na+ current was found and it was blocked by concentrations of tetrodotoxin that had no effect on killing. Killing of U937 target cells was also inhibited by the two ion-channel blockers tested, quinidine and verapamil. In this cell line only a small K+ current was found that was similar to the one in NK cells. We could not find any evidence of a Ca2+ current in target cells or in NK cells; therefore, our results cannot explain the Ca dependence of killing. Our findings show that there are K channels in NK cells and that these channels play a necessary role in the killing process. In contrast, the endogenous channel type in the target cell is probably not a factor in determining target cell sensitivity to natural killing.
BLAKE, J B
1965-01-01
In 1961 a controlled field trial of anti-typhoid vaccines was carried out in 25 regions in Poland. Four types of vaccine were studied: (1) bacterial acetone-killed and -dried vaccine (two kinds), (2) bacterial formol-killed phenol-preserved vaccine, (3) Westphal's endotoxin adsorbed on aluminium hydroxide, and (4) Grasset's vaccine (autolysate of typhoid bacilli adsorbed on aluminium hydroxide). The control vaccine was tetanus toxoid. A total of 690 655 persons received two inoculations. Prior to the field trial, laboratory tests were carried out on the vaccines, postvaccinal reactions were studied, and a serological examination was made of randomly selected blood samples. The vaccination was followed by a two-year survey of cases of typhoid and other diseases. Among children aged 5-14 years, the formol-killed phenol-preserved vaccine was found to be the most effective and Grasset's vaccine the least. Among adults aged 15-60 years, no conclusive evidence for the effectiveness of the vaccines could be obtained owing to the small number of cases. This may be due to the maintenance of immunity through repeated annual vaccination with bacterial vaccines.
Diao, Jingyu; Bouwman, Catrien; Yan, Donghong; Kang, Jing; Katakam, Anand K; Liu, Peter; Pantua, Homer; Abbas, Alexander R; Nickerson, Nicholas N; Austin, Cary; Reichelt, Mike; Sandoval, Wendy; Xu, Min; Whitfield, Chris; Kapadia, Sharookh B
2017-05-23
Murein lipoprotein (Lpp) and peptidoglycan-associated lipoprotein (Pal) are major outer membrane lipoproteins in Escherichia coli Their roles in cell-envelope integrity have been documented in E. coli laboratory strains, and while Lpp has been linked to serum resistance in vitro , the underlying mechanism has not been established. Here, lpp and pal mutants of uropathogenic E. coli strain CFT073 showed reduced survival in a mouse bacteremia model, but only the lpp mutant was sensitive to serum killing in vitro The peptidoglycan-bound Lpp form was specifically required for preventing complement-mediated bacterial lysis in vitro and complement-mediated clearance in vivo Compared to the wild-type strain, the lpp mutant had impaired K2 capsular polysaccharide production and was unable to respond to exposure to serum by elevating capsular polysaccharide amounts. These properties correlated with altered cellular distribution of KpsD, the predicted outer membrane translocon for "group 2" capsular polysaccharides. We identified a novel Lpp-dependent association between functional KpsD and peptidoglycan, highlighting important interplay between cell envelope components required for resistance to complement-mediated lysis in uropathogenic E. coli isolates. IMPORTANCE Uropathogenic E. coli (UPEC) isolates represent a significant cause of nosocomial urinary tract and bloodstream infections. Many UPEC isolates are resistant to serum killing. Here, we show that a major cell-envelope lipoprotein (murein lipoprotein) is required for serum resistance in vitro and for complement-mediated bacterial clearance in vivo This is mediated, in part, through a novel mechanism by which murein lipoprotein affects the proper assembly of a key component of the machinery involved in production of "group 2" capsules. The absence of murein lipoprotein results in impaired production of the capsule layer, a known participant in complement resistance. These results demonstrate an important role for murein lipoprotein in complex interactions between different outer membrane biogenesis pathways and further highlight the importance of lipoprotein assembly and transport in bacterial pathogenesis. Copyright © 2017 Diao et al.
Garrison, Mark W
2003-09-01
Levofloxacin has good coverage against both Gram-positive and Gram-negative pathogens. Recent reports demonstrate enhanced activity associated with a higher 750 mg dosage of levofloxacin. The objective of this study was to comparatively evaluate the activity of common regimens of levofloxacin (500 mg) and ciprofloxacin (500 mg), and a higher 750 mg levofloxacin regimen against penicillin susceptible and non-susceptible strains of S. pneumoniae. An in vitro pharmacodynamic modelling apparatus (PDMA) characterized specific bacterial kill profiles for simulated regimens of levofloxacin and ciprofloxacin against four strains of S. pneumoniae. Total log reduction, time for 3-log reduction and AUC/MIC were determined. Ciprofloxacin was less effective than the levofloxacin regimens against all four study isolates. Ciprofloxacin produced 3-log reduction in only one isolate compared with all four isolates with the levofloxacin regimens. Bacterial regrowth did not occur over 12 h with levofloxacin; however, three of four isolates demonstrated bacterial regrowth with ciprofloxacin. None of the isolates were cleared from the PDMA by ciprofloxacin. The 500 mg levofloxacin regimen cleared two of four isolates and the 750 mg dose of levofloxacin cleared all study isolates. Respective AUC/MIC values for levofloxacin (500 and 750 mg) and ciprofloxacin were 44-89, 63-126 and < or =13, which correlated well with bacterial kill data. Both levofloxacin regimens were more effective than ciprofloxacin against the study isolates tested. The 750 mg levofloxacin regimen generated more favourable bacterial killing compared with the 500 mg levofloxacin regimen. In addition to using the 750 mg levofloxacin dose for nosocomial infections, this dose may also prove useful for the management of resistant pneumococcal infections.
Xu, Wei; Zhu, Xin; Tan, Tingting; Li, Weizhong; Shan, Anshan
2014-01-01
Antimicrobial peptides have attracted considerable attention because of their broad-spectrum antimicrobial activity and their low prognostic to induce antibiotic resistance which is the most common source of failure in bacterial infection treatment along with biofilms. The method to design hybrid peptide integrating different functional domains of peptides has many advantages. In this study, we designed an embedded-hybrid peptide R-FV-I16 by replacing a functional defective sequence RR7 with the anti-biofilm sequence FV7 embedded in the middle position of peptide RI16. The results demonstrated that the synthetic hybrid the peptide R-FV-I16 had potent antimicrobial activity over a wide range of Gram-negative and Gram-positive bacteria, as well as anti-biofilm activity. More importantly, R-FV-I16 showed lower hemolytic activity and cytotoxicity. Fluorescent assays demonstrated that R-FV-I16 depolarized the outer and the inner bacterial membranes, while scanning electron microscopy and transmission electron microscopy further indicated that this peptide killed bacterial cells by disrupting the cell membrane, thereby damaging membrane integrity. Results from SEM also provided evidence that R-FV-I16 inherited anti-biofilm activity from the functional peptide sequence FV7. Embedded-hybrid peptides could provide a new pattern for combining different functional domains and showing an effective avenue to screen for novel antimicrobial agents. PMID:24945359
Osman, Shariff; Peeters, Zan; La Duc, Myron T.; Mancinelli, Rocco; Ehrenfreund, Pascale; Venkateswaran, Kasthuri
2008-01-01
Spacecraft-associated spores and four non-spore-forming bacterial isolates were prepared in Atacama Desert soil suspensions and tested both in solution and in a desiccated state to elucidate the shadowing effect of soil particulates on bacterial survival under simulated Martian atmospheric and UV irradiation conditions. All non-spore-forming cells that were prepared in nutrient-depleted, 0.2-μm-filtered desert soil (DSE) microcosms and desiccated for 75 days on aluminum died, whereas cells prepared similarly in 60-μm-filtered desert soil (DS) microcosms survived such conditions. Among the bacterial cells tested, Microbacterium schleiferi and Arthrobacter sp. exhibited elevated resistance to 254-nm UV irradiation (low-pressure Hg lamp), and their survival indices were comparable to those of DS- and DSE-associated Bacillus pumilus spores. Desiccated DSE-associated spores survived exposure to full Martian UV irradiation (200 to 400 nm) for 5 min and were only slightly affected by Martian atmospheric conditions in the absence of UV irradiation. Although prolonged UV irradiation (5 min to 12 h) killed substantial portions of the spores in DSE microcosms (∼5- to 6-log reduction with Martian UV irradiation), dramatic survival of spores was apparent in DS-spore microcosms. The survival of soil-associated wild-type spores under Martian conditions could have repercussions for forward contamination of extraterrestrial environments, especially Mars. PMID:18083857
Macrophage arginase-1 controls bacterial growth and pathology in hypoxic tuberculosis granulomas
Duque-Correa, María A.; Kühl, Anja A.; Rodriguez, Paulo C.; Zedler, Ulrike; Schommer-Leitner, Sandra; Rao, Martin; Weiner, January; Hurwitz, Robert; Qualls, Joseph E.; Kosmiadi, George A.; Murray, Peter J.; Kaufmann, Stefan H. E.; Reece, Stephen T.
2014-01-01
Lung granulomas develop upon Mycobacterium tuberculosis (Mtb) infection as a hallmark of human tuberculosis (TB). They are structured aggregates consisting mainly of Mtb-infected and -uninfected macrophages and Mtb-specific T cells. The production of NO by granuloma macrophages expressing nitric oxide synthase-2 (NOS2) via l-arginine and oxygen is a key protective mechanism against mycobacteria. Despite this protection, TB granulomas are often hypoxic, and bacterial killing via NOS2 in these conditions is likely suboptimal. Arginase-1 (Arg1) also metabolizes l-arginine but does not require oxygen as a substrate and has been shown to regulate NOS2 via substrate competition. However, in other infectious diseases in which granulomas occur, such as leishmaniasis and schistosomiasis, Arg1 plays additional roles such as T-cell regulation and tissue repair that are independent of NOS2 suppression. To address whether Arg1 could perform similar functions in hypoxic regions of TB granulomas, we used a TB murine granuloma model in which NOS2 is absent. Abrogation of Arg1 expression in macrophages in this setting resulted in exacerbated lung granuloma pathology and bacterial burden. Arg1 expression in hypoxic granuloma regions correlated with decreased T-cell proliferation, suggesting that Arg1 regulation of T-cell immunity is involved in disease control. Our data argue that Arg1 plays a central role in the control of TB when NOS2 is rendered ineffective by hypoxia. PMID:25201986
Kao, Jun-Kai; Wang, Shih-Chung; Ho, Li-Wei; Huang, Shi-Wei; Chang, Shu-Hao; Yang, Rei-Cheng; Ke, Yu-Yuan; Wu, Chun-Ying; Wang, Jiu-Yao; Shieh, Jeng-Jer
2016-01-01
Iron is essential for living organisms and the disturbance of iron homeostasis is associated with altered immune function. Additionally, bacterial infections can cause major complications in instances of chronic iron overload, such as patients with transfusion-dependent thalassemia. Monocytes and macrophages play important roles in maintaining systemic iron homoeostasis and in defense against invading pathogens. However, the effect of iron overload on the function of monocytes and macrophages is unclear. We elucidated the effects of chronic iron overload on human monocytic cell line (THP-1) and THP-1 derived macrophages (TDM) by continuously exposing them to high levels of iron (100 μM) to create I-THP-1 and I-TDM, respectively. Our results show that iron overload did not affect morphology or granularity of I-THP-1, but increased the granularity of I-TDM. Bactericidal assays for non-pathogenic E. coli DH5α, JM109 and pathogenic P. aeruginosa all revealed decreased efficiency with increasing iron concentration in I-TDM. The impaired P. aeruginosa killing ability of human primary monocyte derived macrophages (hMDM) was also found when cells are cultured in iron contained medium. Further studies on the bactericidal activity of I-TDM revealed lysosomal dysfunction associated with the inhibition of lysosomal acidification resulting in increasing lysosomal pH, the impairment of post-translational processing of cathepsins (especially cathepsin D), and decreased autophagic flux. These findings may explain the impaired innate immunity of thalassemic patients with chronic iron overload, suggesting the manipulation of lysosomal function as a novel therapeutic approach. PMID:27244448
Nontoxic, Hydrophilic Cationic Polymers-Identified as Class of Antimicrobial Polymers.
Strassburg, Arne; Kracke, Frauke; Wenners, Julia; Jemeljanova, Anna; Kuepper, Jannis; Petersen, Hanne; Tiller, Joerg C
2015-12-01
Amphiphilic polycations are an alternative to biocides but also toxic to mammalian cells. Antimicrobially active hydrophilic polycations based on 1,4-dibromo-2-butene and tetramethyl-1,3-propanediamine named PBI are not hemotoxic for porcine red blood cells with a hemocytotoxicity (HC50) of more than 40,000 μg · mL(-1). They are quickly killing bacterial cells at their MIC (minimal inhibitory concentration). The highest found selectivity HC50 /MIC is more than 20,000 for S. epidermidis. Investigations on sequentially prepared PBIs with defined molecular weight Mn and tailored end groups revealed that there is a dependence of antimicrobial activity and selectivity on Mn and nature of the end groups. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Role of natural killer cells in antibacterial immunity.
Schmidt, Stanislaw; Ullrich, Evelyn; Bochennek, Konrad; Zimmermann, Stefanie-Yvonne; Lehrnbecher, Thomas
2016-12-01
Bacteria are a significant cause of infectious complications, in particular in immunocompromised patients. There is an increasing understanding that Natural Killer (NK) cells not only exhibit direct activity against bacteria, but also exert indirect antibacterial activity through interaction with other immune cells via cytokines and interferons. Areas covered: This review seeks to give a global overview of in vitro and in vivo data how NK cells interact with bacteria. In this regard, the review describes how NK cells directly damage and kill bacteria by soluble factors such as perforin, the impact of NK cells on other arms of the immune system, as well as how bacteria may inhibit NK cell activities. Expert commentary: A better characterization of the antibacterial effects of NK cells is urgently needed. With a better understanding of the interaction of NK cells and bacteria, NK cells may become a promising tool to prevent or to combat bacterial infections, e.g. by adoptively transferring NK cells to immunocompromised patients.
Xu, Lulu; He, Chen; Hui, Liwei; Xie, Yuntao; Li, Jia-Min; He, Wei-Dong; Yang, Lihua
2015-12-23
Net cationicity of membrane-disruptive antimicrobials is necessary for their activity but may elicit immune attack when administered intravenously. By cloaking a dendritic polycation (G2) with poly(caprolactone-b-ethylene glycol) (PCL-b-PEG), we obtain a nanoparticle antimicrobial, G2-g-(PCL-b-PEG), which exhibits neutral surface charge but kills >99.9% of inoculated bacterial cells at ≤8 μg/mL. The observed activity may be attributed PCL's responsive degradation by bacterial lipase and the consequent exposure of the membrane-disruptive, bactericidal G2 core. Moreover, G2-g-(PCL-b-PEG) exhibits good colloidal stability in the presence of serum and insignificant hemolytic toxicity even at ≥2048 μg/mL. suggesting good blood compatibility required for intravenous administration.
DNA Is an Antimicrobial Component of Neutrophil Extracellular Traps
Halverson, Tyler W.R.; Wilton, Mike; Poon, Karen K. H.; Petri, Björn; Lewenza, Shawn
2015-01-01
Neutrophil extracellular traps (NETs) comprise an ejected lattice of chromatin enmeshed with granular and nuclear proteins that are capable of capturing and killing microbial invaders. Although widely employed to combat infection, the antimicrobial mechanism of NETs remains enigmatic. Efforts to elucidate the bactericidal component of NETs have focused on the role of NET-bound proteins including histones, calprotectin and cathepsin G protease; however, exogenous and microbial derived deoxyribonuclease (DNase) remains the most potent inhibitor of NET function. DNA possesses a rapid bactericidal activity due to its ability to sequester surface bound cations, disrupt membrane integrity and lyse bacterial cells. Here we demonstrate that direct contact and the phosphodiester backbone are required for the cation chelating, antimicrobial property of DNA. By treating NETs with excess cations or phosphatase enzyme, the antimicrobial activity of NETs is neutralized, but NET structure, including the localization and function of NET-bound proteins, is maintained. Using intravital microscopy, we visualized NET-like structures in the skin of a mouse during infection with Pseudomonas aeruginosa. Relative to other bacteria, P. aeruginosa is a weak inducer of NETosis and is more resistant to NETs. During NET exposure, we demonstrate that P. aeruginosa responds by inducing the expression of surface modifications to defend against DNA-induced membrane destabilization and NET-mediated killing. Further, we show induction of this bacterial response to NETs is largely due to the bacterial detection of DNA. Therefore, we conclude that the DNA backbone contributes both to the antibacterial nature of NETs and as a signal perceived by microbes to elicit host-resistance strategies. PMID:25590621
Photocatalytic TiO2 nanoparticles enhanced polymer antimicrobial coating
NASA Astrophysics Data System (ADS)
Wei, Xiaojin; Yang, Zhendi; Tay, See Leng; Gao, Wei
2014-01-01
Copper (Cu) containing coatings can provide sustainable protection against microbial contamination. However, metallic Cu coatings have not been widely used due to the relatively high cost, poor corrosion resistance, and low compatibility with non-metal substrates. Titanium dioxide (TiO2) possesses antibacterial functions by its photocatalytic properties which can destroy bacteria or suppress their reproduction. TiO2 also has the function of improving the mechanical properties through particle dispersion strengthening. We have recently developed an innovative polymer based coating system containing fine particles of Cu and TiO2 nanoparticles. These polymer based coatings simultaneously display excellent antimicrobial and good mechanical properties. The results showed that the addition of TiO2 has improved the antimicrobial property under sunlight, which provides extended applications in outdoor environment. The elimination of 106 bacterial by contacting the coatings without TiO2 needs 5 h, while contacting with the Cu/TiO2- 1 wt.% TiO2 took only 2 h to kill the same amount of bacteria. The coatings also presented enhanced hardness and wear resistance after adding TiO2. The width of wear track decreased from 270 μm of the Cu-polymer coating to 206 μm of Cu/TiO2-polymer coatings with 10 wt.% TiO2. Synchrotron Infrared Microscopy was used to in-situ and in-vivo study the bacteria killing process at the molecular level. The real-time chemical images of bacterial activities showed that the bacterial cell membranes were damaged by the Cu and TiO2 containing coatings
The role of bacteria in the nutrient exchange between sediment and water in a flow-through system.
Kairesalo, T; Tuominen, L; Hartikainen, H; Rankinen, K
1995-03-01
The contribution of bacteria to phosphorus (P) and nitrogen (N ) release from, or retention in, sediment was studied in a flow-through system. "Live" and formaldehyde-"killed" sediment communities were incubated in 25-liter bottles with a continuous flow of P- or P + N-enriched water. Sediment bacteria in the killed communities were inhibited by adding formaldehyde (final concentration 0.04% v/v) to the sediment before the start of the experiment. Bacterial activity in the live sediments measured with [(3)H]thymidine and [(14)C]leucine incorporation techniques did not change essentially during the experiment period (7-8 days). Chemical mechanisms were found to be of principal importance in PO4-P retention in the sediment. In the live samples, the net retention of PO4-P was lower than in the killed samples, which was likely due to the reduced O2 conditions in the sediment as a consequence of bacterial mineralization. In total P exchange, however, bacteria increased the retention rate by recycling dissolved organic P in the sediment. In the live communities the retention of N was very efficient, and all the introduced NH4 -N and NO3-N was immobilized by sediment bacteria. Nitrogen enrichment, however, did not alter the P exchange rates. The gradual emergence of bacterial activity (and grazing) in the killed communities, subsequent to the dilution of formaldehyde concentration, enhanced the release of PO4-P and NH4-N from sediment.
2006-11-01
spores of B. stearothermophilus . For all of the test organisms, conditions were found that effected sterilization (6-log kill of contaminating...kill 106 E. coli, L. monocytogenes, S. aureus, and bacterial spores of B. atrophaeus and B. stearothermophilus and to sterilize high-grade...Portable Chemical Sterilizer for Microbial Decontamination of
2010-01-01
Background Endosymbionts that manipulate the reproduction of their hosts have been reported widely in invertebrates. One such group of endosymbionts is the male-killers. To date all male-killers reported are bacterial in nature, but comprise a diverse group. Ladybirds have been described as a model system for the study of male-killing, which has been reported in multiple species from widespread geographic locations. Whilst criteria of low egg hatch-rate and female-biased progenic sex ratio have been used to identify female hosts of male-killers, variation in vertical transmission efficiency and host genetic factors may result in variation in these phenotypic indicators of male-killer presence. Molecular identification of bacteria and screening for bacterial presence provide us with a more accurate method than breeding data alone to link the presence of the bacteria to the male-killing phenotype. In addition, by identifying the bacteria responsible we may find evidence for horizontal transfer between endosymbiont hosts and can gain insight into the evolutionary origins of male-killing. Phylogenetic placement of male-killing bacteria will allow us to address the question of whether male-killing is a potential strategy for only some, or all, maternally inherited bacteria. Together, phenotypic and molecular characterisation of male-killers will allow a deeper insight into the interactions between host and endosymbiont, which ultimately may lead to an understanding of how male-killers identify and kill male-hosts. Results A male-killer was detected in the Japanese coccinellid, Propylea japonica (Thunberg) a species not previously known to harbour male-killers. Families produced by female P. japonica showed significantly female-biased sex ratios. One female produced only daughters. This male-killer trait was maternally inherited and antibiotic treatment produced a full, heritable cure. Molecular analysis identified Rickettsia to be associated with the trait in this species of ladybird. Conclusion We conclude that P. japonica is host to a bacterial male-killer that is vertically inherited with variable transmission efficiency. Rickettsia presence correlates with the male-killing trait, but there is some variation in the phenotypic expression of the trait due to interaction with host factors. Phylogenetic analysis using the 16S rRNA and 17 kDa antigen genes suggests there may have been horizontal transfer of Rickettsial male-killers between different ladybird hosts. PMID:20149223
Deriy, Ludmila V.; Gomez, Erwin A.; Zhang, Guangping; Beacham, Daniel W.; Hopson, Jessika A.; Gallan, Alexander J.; Shevchenko, Pavel D.; Bindokas, Vytautas P.; Nelson, Deborah J.
2009-01-01
Alveolar macrophages (AMs) play a major role in host defense against microbial infections in the lung. To perform this function, these cells must ingest and destroy pathogens, generally in phagosomes, as well as secrete a number of products that signal other immune cells to respond. Recently, we demonstrated that murine alveolar macrophages employ the cystic fibrosis transmembrane conductance regulator (CFTR) Cl− channel as a determinant in lysosomal acidification (Di, A., Brown, M. E., Deriy, L. V., Li, C., Szeto, F. L., Chen, Y., Huang, P., Tong, J., Naren, A. P., Bindokas, V., Palfrey, H. C., and Nelson, D. J. (2006) Nat. Cell Biol. 8, 933–944). Lysosomes and phagosomes in murine cftr−/− AMs failed to acidify, and the cells were deficient in bacterial killing compared with wild type controls. Cystic fibrosis is caused by mutations in CFTR and is characterized by chronic lung infections. The information about relationships between the CFTR genotype and the disease phenotype is scarce both on the organismal and cellular level. The most common disease-causing mutation, ΔF508, is found in 70% of patients with cystic fibrosis. The mutant protein fails to fold properly and is targeted for proteosomal degradation. G551D, the second most common mutation, causes loss of function of the protein at the plasma membrane. In this study, we have investigated the impact of CFTR ΔF508 and G551D on a set of core intracellular functions, including organellar acidification, granule secretion, and microbicidal activity in the AM. Utilizing primary AMs from wild type, cftr−/−, as well as mutant mice, we show a tight correlation between CFTR genotype and levels of lysosomal acidification, bacterial killing, and agonist-induced secretory responses, all of which would be expected to contribute to a significant impact on microbial clearance in the lung. PMID:19837664
Bacteria survival probability in bactericidal filter paper.
Mansur-Azzam, Nura; Hosseinidoust, Zeinab; Woo, Su Gyeong; Vyhnalkova, Renata; Eisenberg, Adi; van de Ven, Theo G M
2014-05-01
Bactericidal filter papers offer the simplicity of gravity filtration to simultaneously eradicate microbial contaminants and particulates. We previously detailed the development of biocidal block copolymer micelles that could be immobilized on a filter paper to actively eradicate bacteria. Despite the many advantages offered by this system, its widespread use is hindered by its unknown mechanism of action which can result in non-reproducible outcomes. In this work, we sought to investigate the mechanism by which a certain percentage of Escherichia coli cells survived when passing through the bactericidal filter paper. Through the process of elimination, the possibility that the bacterial survival probability was controlled by the initial bacterial load or the existence of resistant sub-populations of E. coli was dismissed. It was observed that increasing the thickness or the number of layers of the filter significantly decreased bacterial survival probability for the biocidal filter paper but did not affect the efficiency of the blank filter paper (no biocide). The survival probability of bacteria passing through the antibacterial filter paper appeared to depend strongly on the number of collision between each bacterium and the biocide-loaded micelles. It was thus hypothesized that during each collision a certain number of biocide molecules were directly transferred from the hydrophobic core of the micelle to the bacterial lipid bilayer membrane. Therefore, each bacterium must encounter a certain number of collisions to take up enough biocide to kill the cell and cells that do not undergo the threshold number of collisions are expected to survive. Copyright © 2014 Elsevier B.V. All rights reserved.
Wang, Jun; Zhou, Hong; Zheng, Jiang; Cheng, Juan; Liu, Wei; Ding, Guofu; Wang, Liangxi; Luo, Ping; Lu, Yongling; Cao, Hongwei; Yu, Shuangjiang; Li, Bin; Zhang, Lezhi
2006-01-01
In the present study artemisinin (ART) was found to have potent anti-inflammatory effects in animal models of sepsis induced by CpG-containing oligodeoxy-nucleotides (CpG ODN), lipopolysaccharide (LPS), heat-killed Escherichia coli 35218 or live E. coli. Furthermore, we found that ART protected mice from a lethal challenge by CpG ODN, LPS, or heat-killed E. coli in a dose-dependent manner and that the protection was related to a reduction in serum tumor necrosis factor alpha (TNF-α). More significantly, the administration of ART together with ampicillin or unasyn (a complex of ampicillin and sulbactam) decreased mortality from 100 to 66.7% or 33.3%, respectively, in mice subjected to a lethal live E. coli challenge. Together with the observation that ART alone does not inhibit bacterial growth, this result suggests that ART protection is achieved as a result of its anti-inflammatory activity rather than an antimicrobial effect. In RAW264.7 cells, pretreatment with ART potently inhibited TNF-α and interleukin-6 release induced by CpG ODN, LPS, or heat-killed E. coli in a dose- and time-dependent manner. Experiments utilizing affinity sensor technology revealed no direct binding of ART with CpG ODN or LPS. Flow cytometry further showed that ART did not alter binding of CpG ODN to cell surfaces or the internalization of CpG ODN. In addition, upregulated levels of TLR9 and TLR4 mRNA were not attenuated by ART treatment. ART treatment did, however, block the NF-κB activation induced by CpG ODN, LPS, or heat-killed E. coli. These findings provide compelling evidence that ART may be an important potential drug for sepsis treatment. PMID:16801421
A Mycobacterium tuberculosis Cytochrome bd Oxidase Mutant Is Hypersensitive to Bedaquiline
Hartman, Travis E.
2014-01-01
ABSTRACT The new medicinal compound bedaquiline (BDQ) kills Mycobacterium tuberculosis by inhibiting F1Fo-ATP synthase. BDQ is bacteriostatic for 4 to 7 days and kills relatively slowly compared to other frontline tuberculosis (TB) drugs. Here we show that killing with BDQ can be improved significantly by inhibiting cytochrome bd oxidase, a non-proton-pumping terminal oxidase. BDQ was instantly bactericidal against a cytochrome bd oxidase null mutant of M. tuberculosis, and the rate of killing was increased by more than 50%. We propose that this exclusively bacterial enzyme should be a high-priority target for new drug discovery. PMID:25028424
Effect of Laser Irradiation on Cell Function and Its Implications in Raman Spectroscopy.
Yuan, Xiaofei; Song, Yanqing; Song, Yizhi; Xu, Jiabao; Wu, Yinhu; Glidle, Andrew; Cusack, Maggie; Ijaz, Umer Z; Cooper, Jonathan M; Huang, Wei E; Yin, Huabing
2018-04-15
Lasers are instrumental in advanced bioimaging and Raman spectroscopy. However, they are also well known for their destructive effects on living organisms, leading to concerns about the adverse effects of laser technologies. To implement Raman spectroscopy for cell analysis and manipulation, such as Raman-activated cell sorting, it is crucial to identify nondestructive conditions for living cells. Here, we evaluated quantitatively the effect of 532-nm laser irradiation on bacterial cell fate and growth at the single-cell level. Using a purpose-built microfluidic platform, we were able to quantify the growth characteristics, i.e., specific growth rates and lag times of individual cells, as well as the survival rate of a population in conjunction with Raman spectroscopy. Representative Gram-negative and Gram-positive species show similar trends in response to a laser irradiation dose. Laser irradiation could compromise the physiological function of cells, and the degree of destruction is both dose and strain dependent, ranging from reduced cell growth to a complete loss of cell metabolic activity and finally to physical disintegration. Gram-positive bacterial cells are more susceptible than Gram-negative bacterial strains to irradiation-induced damage. By directly correlating Raman acquisition with single-cell growth characteristics, we provide evidence of nondestructive characteristics of Raman spectroscopy on individual bacterial cells. However, while strong Raman signals can be obtained without causing cell death, the variety of responses from different strains and from individual cells justifies careful evaluation of Raman acquisition conditions if cell viability is critical. IMPORTANCE In Raman spectroscopy, the use of powerful monochromatic light in laser-based systems facilitates the detection of inherently weak signals. This allows environmentally and clinically relevant microorganisms to be measured at the single-cell level. The significance of being able to perform Raman measurement is that, unlike label-based fluorescence techniques, it provides a "fingerprint" that is specific to the identity and state of any (unlabeled) sample. Thus, it has emerged as a powerful method for studying living cells under physiological and environmental conditions. However, the laser's high power also has the potential to kill bacteria, which leads to concerns. The research presented here is a quantitative evaluation that provides a generic platform and methodology to evaluate the effects of laser irradiation on individual bacterial cells. Furthermore, it illustrates this by determining the conditions required to nondestructively measure the spectra of representative bacteria from several different groups. Copyright © 2018 Yuan et al.
Liu, Jia; Sun, Luping; Liu, Wei; Guo, Lihong; Liu, Zhaohui; Wei, Xi; Ling, Junqi
2017-01-01
Streptococcus mutans is the primary etiologic agent of dental caries and occasionally infective endocarditis, with the ability to form biofilms and disperse cells into distal sites to exacerbate and spread infection. In this study, we identified a nuclease (DeoC) as a S. mutans biofilm dispersal modulating factor through microarray analysis. In vitro assays revealed a dispersal defect of a deoC deletion mutant, and functional studies with purified protein were indicative of the biofilm dispersal activity of DeoC. Neutrophils are a key host response factor restraining bacterial spreading through the formation of neutrophil extracellular traps (NETs), which consist of a nuclear DNA backbone associated with antimicrobial peptides. Therefore, we hypothesized that the dispersed S. mutans might utilize DeoC to degrade NETs and escape killing by the immune system. It was found that S. mutans induced NET formation upon contact with neutrophils, while the presence of NETs in turn enhanced the deoC expression of S. mutans. Fluorescence microscopy inspection showed that deoC deletion resulted in a decreased NET degradation ability of S. mutans and enhanced susceptibility to neutrophil killing. Data obtained from this study assigned two important roles for DeoC in S. mutans: contributing to the spread of infection through mediating biofilm dispersal, and facilitating the escape of S. mutans from neutrophil killing through NET degradation. PMID:28401067
Liu, Jia; Sun, Luping; Liu, Wei; Guo, Lihong; Liu, Zhaohui; Wei, Xi; Ling, Junqi
2017-01-01
Streptococcus mutans is the primary etiologic agent of dental caries and occasionally infective endocarditis, with the ability to form biofilms and disperse cells into distal sites to exacerbate and spread infection. In this study, we identified a nuclease (DeoC) as a S. mutans biofilm dispersal modulating factor through microarray analysis. In vitro assays revealed a dispersal defect of a deoC deletion mutant, and functional studies with purified protein were indicative of the biofilm dispersal activity of DeoC. Neutrophils are a key host response factor restraining bacterial spreading through the formation of neutrophil extracellular traps (NETs), which consist of a nuclear DNA backbone associated with antimicrobial peptides. Therefore, we hypothesized that the dispersed S. mutans might utilize DeoC to degrade NETs and escape killing by the immune system. It was found that S. mutans induced NET formation upon contact with neutrophils, while the presence of NETs in turn enhanced the deoC expression of S. mutans . Fluorescence microscopy inspection showed that deoC deletion resulted in a decreased NET degradation ability of S. mutans and enhanced susceptibility to neutrophil killing. Data obtained from this study assigned two important roles for DeoC in S. mutans : contributing to the spread of infection through mediating biofilm dispersal, and facilitating the escape of S. mutans from neutrophil killing through NET degradation.
Aijaz, Iqbal; Koudelka, Gerald B
2018-04-19
Temperate phage encoded Shiga toxin (Stx) kills the bacterivorous predator, Tetrahymena thermophila, providing Stx + Escherichia coli with a survival advantage over Stx - cells. Although bacterial death accompanies Stx release, since bacteria grow clonally the fitness benefits of predator killing accrue to the kin of the sacrificed organism, meaning Stx-mediated protist killing is a form of self-destructive cooperation. We show here that the fitness benefits of Stx production are not restricted to the kin of the phage-encoding bacteria. Instead, nearby "free loading" bacteria, irrespective of their genotype, also reap the benefit of Stx-mediated predator killing. This finding indicates that the phage-borne Stx exotoxin behaves as a public good. Stx is encoded by a mobile phage. We find that Stx-encoding phage can use susceptible bacteria in the population as surrogates to enhance toxin and phage production. Moreover, our findings also demonstrate that engulfment and concentration of Stx-encoding and susceptible Stx - bacteria in the Tetrahymena phagosome enhances the transfer of Stx-encoding temperate phage from the host to the susceptible bacteria. This transfer increases the population of cooperating bacteria within the community. Since these bacteria now encode Stx, the predation-stimulated increase in phage transfer increases the population of toxin encoding bacteria in the environment. © 2018 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.
Gottlieb, Caroline Trebbien; Thomsen, Line Elnif; Ingmer, Hanne; Mygind, Per Holse; Kristensen, Hans-Henrik; Gram, Lone
2008-11-26
Host defense peptides (HDPs), or antimicrobial peptides (AMPs), are important components of the innate immune system that bacterial pathogens must overcome to establish an infection and HDPs have been suggested as novel antimicrobial therapeutics in treatment of infectious diseases. Hence it is important to determine the natural variation in susceptibility to HDPs to ensure a successful use in clinical treatment regimes. Strains of two human bacterial pathogens, Listeria monocytogenes and Staphylococcus aureus, were selected to cover a wide range of origin, sub-type, and phenotypic behavior. Strains within each species were equally sensitive to HDPs and oxidative stress representing important components of the innate immune defense system. Four non-human peptides (protamine, plectasin, novicidin, and novispirin G10) were similar in activity profile (MIC value spectrum) to the human beta-defensin 3 (HBD-3). All strains were inhibited by concentrations of hydrogen peroxide between 0.1% - 1.0%. Sub-selections of both species differed in expression of several virulence-related factors and in their ability to survive in human whole blood and kill the nematode virulence model Caenorhabditis elegans. For L. monocytogenes, proliferation in whole blood was paralleled by high invasion in Caco-2 cells and fast killing of C. elegans, however, no such pattern in phenotypic behavior was observed for S. aureus and none of the phenotypic differences were correlated to sensitivity to HDPs. Strains of L. monocytogenes and S. aureus were within each species equally sensitive to a range of HDPs despite variations in subtype, origin, and phenotypic behavior. Our results suggest that therapeutic use of HDPs will not be hampered by occurrence of naturally tolerant strains of the two species investigated in the present study.
Nance, William C.; Dowd, Scot E.; Samarian, Derek; Chludzinski, Jeffrey; Delli, Joseph; Battista, John; Rickard, Alexander H.
2013-01-01
Objectives Few model systems are amenable to developing multi-species biofilms in parallel under environmentally germane conditions. This is a problem when evaluating the potential real-world effectiveness of antimicrobials in the laboratory. One such antimicrobial is cetylpyridinium chloride (CPC), which is used in numerous over-the-counter oral healthcare products. The aim of this work was to develop a high-throughput microfluidic system that is combined with a confocal laser scanning microscope (CLSM) to quantitatively evaluate the effectiveness of CPC against oral multi-species biofilms grown in human saliva. Methods Twenty-four-channel BioFlux microfluidic plates were inoculated with pooled human saliva and fed filter-sterilized saliva for 20 h at 37°C. The bacterial diversity of the biofilms was evaluated by bacterial tag-encoded FLX amplicon pyrosequencing (bTEFAP). The antimicrobial/anti-biofilm effect of CPC (0.5%–0.001% w/v) was examined using Live/Dead stain, CLSM and 3D imaging software. Results The analysis of biofilms by bTEFAP demonstrated that they contained genera typically found in human dental plaque. These included Aggregatibacter, Fusobacterium, Neisseria, Porphyromonas, Streptococcus and Veillonella. Using Live/Dead stain, clear gradations in killing were observed when the biofilms were treated with CPC between 0.5% and 0.001% w/v. At 0.5% (w/v) CPC, 90% of the total signal was from dead/damaged cells. Below this concentration range, less killing was observed. In the 0.5%–0.05% (w/v) range CPC penetration/killing was greatest and biofilm thickness was significantly reduced. Conclusions This work demonstrates the utility of a high-throughput microfluidic–CLSM system to grow multi-species oral biofilms, which are compositionally similar to naturally occurring biofilms, to assess the effectiveness of antimicrobials. PMID:23800904
Methods to Evaluate Cytotoxicity and Immunosuppression of Combustible Tobacco Product Preparations
Arimilli, Subhashini; Damratoski, Brad E.; G.L., Prasad
2015-01-01
Among other pathophysiological changes, chronic exposure to cigarette smoke causes inflammation and immune suppression, which have been linked to increased susceptibility of smokers to microbial infections and tumor incidence. Ex vivo suppression of receptor-mediated immune responses in human peripheral blood mononuclear cells (PBMCs) treated with smoke constituents is an attractive approach to study mechanisms and evaluate the likely long-term effects of exposure to tobacco products. Here, we optimized methods to perform ex vivo assays using PBMCs stimulated by bacterial lipopolysaccharide, a Toll-like receptor-4 ligand. The effects of whole smoke-conditioned medium (WS-CM), a combustible tobacco product preparation (TPP), and nicotine were investigated on cytokine secretion and target cell killing by PBMCs in the ex vivo assays. We show that secreted cytokines IFN-γ, TNF, IL-10, IL-6, and IL-8 and intracellular cytokines IFN-γ, TNF-α, and MIP-1α were suppressed in WS-CM-exposed PBMCs. The cytolytic function of effector PBMCs, as determined by a K562 target cell killing assay was also reduced by exposure to WS-CM; nicotine was minimally effective in these assays. In summary, we present a set of improved assays to evaluate the effects of TPPs in ex vivo assays, and these methods could be readily adapted for testing other products of interest. PMID:25650834
Methods to evaluate cytotoxicity and immunosuppression of combustible tobacco product preparations.
Arimilli, Subhashini; Damratoski, Brad E; G L, Prasad
2015-01-10
Among other pathophysiological changes, chronic exposure to cigarette smoke causes inflammation and immune suppression, which have been linked to increased susceptibility of smokers to microbial infections and tumor incidence. Ex vivo suppression of receptor-mediated immune responses in human peripheral blood mononuclear cells (PBMCs) treated with smoke constituents is an attractive approach to study mechanisms and evaluate the likely long-term effects of exposure to tobacco products. Here, we optimized methods to perform ex vivo assays using PBMCs stimulated by bacterial lipopolysaccharide, a Toll-like receptor-4 ligand. The effects of whole smoke-conditioned medium (WS-CM), a combustible tobacco product preparation (TPP), and nicotine were investigated on cytokine secretion and target cell killing by PBMCs in the ex vivo assays. We show that secreted cytokines IFN-γ, TNF, IL-10, IL-6, and IL-8 and intracellular cytokines IFN-γ, TNF-α, and MIP-1α were suppressed in WS-CM-exposed PBMCs. The cytolytic function of effector PBMCs, as determined by a K562 target cell killing assay was also reduced by exposure to WS-CM; nicotine was minimally effective in these assays. In summary, we present a set of improved assays to evaluate the effects of TPPs in ex vivo assays, and these methods could be readily adapted for testing other products of interest.
Immotile Active Matter: Activity from Death and Reproduction.
Kalziqi, Arben; Yanni, David; Thomas, Jacob; Ng, Siu Lung; Vivek, Skanda; Hammer, Brian K; Yunker, Peter J
2018-01-05
Unlike equilibrium atomic solids, biofilms-soft solids composed of bacterial cells-do not experience significant thermal fluctuations at the constituent level. However, living cells stochastically reproduce and die, provoking a mechanical response. We investigate the mechanical consequences of cellular death and reproduction by measuring surface-height fluctuations of biofilms containing two mutually antagonistic strains of Vibrio cholerae that kill one another on contact via the type VI secretion system. While studies of active matter typically focus on activity via constituent mobility, here, activity is mediated by reproduction and death events in otherwise immobilized cells. Biofilm surface topography is measured in the nearly homeostatic limit via white light interferometry. Although biofilms are far from equilibrium systems, measured surface-height fluctuation spectra resemble the spectra of thermal permeable membranes but with an activity-mediated effective temperature, as predicted by Risler, Peilloux, and Prost [Phys. Rev. Lett. 115, 258104 (2015)PRLTAO0031-900710.1103/PhysRevLett.115.258104]. By comparing the activity of killer strains of V. cholerae with that of genetically modified strains that cannot kill each other and validating with individual-based simulations, we demonstrate that extracted effective temperatures increase with the amount of death and reproduction and that death and reproduction can fluidize biofilms. Together, these observations demonstrate the unique physical consequences of activity mediated by death and reproduction events.
Immunology of Yersinia pestis Infection.
Bi, Yujing
2016-01-01
As a pathogen of plague, Yersinia pestis caused three massive pandemics in history that killed hundreds of millions of people. Yersinia pestis is highly invasive, causing severe septicemia which, if untreated, is usually fatal to its host. To survive in the host and maintain a persistent infection, Yersinia pestis uses several stratagems to evade the innate and the adaptive immune responses. For example, infections with this organism are biphasic, involving an initial "noninflammatory" phase where bacterial replication occurs initially with little inflammation and following by extensive phagocyte influx, inflammatory cytokine production, and considerable tissue destruction, which is called "proinflammatory" phase. In contrast, the host also utilizes its immune system to eliminate the invading bacteria. Neutrophil and macrophage are the first defense against Yersinia pestis invading through phagocytosis and killing. Other innate immune cells also play different roles, such as dendritic cells which help to generate more T helper cells. After several days post infection, the adaptive immune response begins to provide organism-specific protection and has a long-lasting immunological memory. Thus, with the cooperation and collaboration of innate and acquired immunity, the bacterium may be eliminated from the host. The research of Yersinia pestis and host immune systems provides an important topic to understand pathogen-host interaction and consequently develop effective countermeasures.
Chakotiya, Ankita Singh; Tanwar, Ankit; Narula, Alka; Sharma, Rakesh Kumar
2017-06-01
Biofilm formation, low membrane permeability and efflux activity developed by Pseudomonas aeruginosa, play an important role in the mechanism of infection and antimicrobial resistance. In the present study we evaluate the antibacterial effect of Zingiber officinale against multi-drug resistant strain of P. aeruginosa. The study explores antibacterial efficacy and time-kill study concomitantly the effect of herbal extract on bacterial cell physiology with the use of flow cytometry and inhibition of biofilm formation. Z. officinale was found to inhibit the growth of P. aeruginosa, significantly. A major decline in the Colony Forming Units was observed with 3 log 10 at 12 h of treatment. Also it is found to affect the membrane integrity of the pathogen, as 70.06 ± 2.009% cells were found to stain with Propidium iodide. In case of efflux activity 86.9 ± 2.08% cells were found in Ethidium bromide positive region. Biofilm formation inhibition ability was found in the range of 68.13 ± 4.11% to 84.86 ± 2.02%. Z.officinale is effective for killing Multi-Drug Resistant P. aeruginosa clinical isolate by affecting the cellular physiology and inhibiting the biofilm formation. Copyright © 2017 Elsevier Ltd. All rights reserved.
Atropine and glycopyrrolate do not support bacterial growth-safety and economic considerations.
Ittzes, Balazs; Weiling, Zsolt; Batai, Istvan Zoard; Kerenyi, Monika; Batai, Istvan
2016-12-01
Evaluation of bacterial growth in atropine and glycopyrrolate. Laboratory investigation. Standard microbiological methods were used to evaluate the impact of atropine and glycopyrrolate on the growth of Acinetobacter baumannii, Pseudomonas aeruginosa, Staphylococcus aureus, and Escherichia coli. Bacterial count was checked at 0, 1, 2, 3, 4, 6, and 24 hours. Atropine or glycopyrrolate did not support the growth of the above bacteria at any examined time at room temperature. Glycopyrrolate killed all of the examined strains (P < .05), whereas in atropine, only the clinical isolates of Staphylococcus and Acinetobacter were killed (P < .05). Drawing up atropine or glycopyrrolate at the beginning of the operating list and use within 24 hours if needed are a safe practice and do not pose infection hazard. We can also reduce hospital costs if we do not throw away these unused syringes following each case. Copyright © 2016 Elsevier Inc. All rights reserved.
Yang, Li-Chiu; Hu, Suh-Woan; Yan, Min; Yang, Jaw-Ji; Tsou, Sing-Hua; Lin, Yuh-Yih
2015-02-01
In addition to releasing a pool of growth factors during activation, platelets have many features that indicate their role in the anti-infective host defense. The antimicrobial activities of platelet-rich plasma (PRP) and related plasma preparations against periodontal disease-associated bacteria were evaluated. Four distinct plasma fractions were extracted in the formulation used commonly in dentistry and were tested for their antibacterial properties against three periodontal bacteria: Porphyromonas gingivalis, Aggregatibacter actinomycetemcomitans, and Fusobacterium nucleatum. The minimum inhibitory concentration of each plasma preparation was determined, and in vitro time-kill assays were used to detect their abilities to inhibit bacterial growth. Bacterial adhesion interference and the susceptibility of bacterial adherence by these plasma preparations were also conducted. All plasma preparations can inhibit bacterial growth, with PRP showing the superior activity. Bacterial growth inhibition by PRP occurred in the first 24 hours after application in the time-kill assay. PRP interfered with P. gingivalis and A. actinomycetemcomitans attachment and enhanced exfoliation of attached P. gingivalis but had no influences on F. nucleatum bacterial adherence. PRP expressed antibacterial properties, which may be attributed to platelets possessing additional antimicrobial molecules. The application of PRP on periodontal surgical sites is advisable because of its regenerative potential and its antibacterial effects.
Clemens, Regina A; Lenox, Laurie E; Kambayashi, Taku; Bezman, Natalie; Maltzman, Jonathan S; Nichols, Kim E; Koretzky, Gary A
2007-04-01
The Src homology 2 domain-containing leukocyte phosphoprotein of 76 kDa (SLP-76) is an adaptor molecule critical for immunoreceptor and integrin signaling in multiple hemopoietic lineages. We showed previously that SLP-76 is required for neutrophil function in vitro, including integrin-induced adhesion and production of reactive oxygen intermediates, and to a lesser extent, FcgammaR-induced calcium flux and reactive oxygen intermediate production. It has been difficult to determine whether SLP-76 regulates neutrophil responses in vivo, because Slp-76(-/-) mice exhibit marked defects in thymocyte and vascular development, as well as platelet and mast cell function. To circumvent these issues, we generated mice with targeted loss of SLP-76 expression within myeloid cells. Neutrophils obtained from these animals failed to respond to integrin activation in vitro, similar to Slp-76(-/-) cells. Despite these abnormalities, SLP-76-deficient neutrophils migrated normally in vivo in response to Staphylococcus aureus infection and efficiently cleared micro-organisms. Interestingly, SLP-76-deficient neutrophils did not induce a robust inflammatory response in the localized Shwartzman reaction. Collectively, these data suggest that disruption of integrin signaling via loss of SLP-76 expression differentially impairs neutrophil functions in vivo, with preservation of migration and killing of S. aureus but reduction in LPS-induced tissue damage and vascular injury.
Historical links between toxinology and immunology.
Cavaillon, Jean-Marc
2018-04-01
Research on bacterial toxins is closely linked to the birth of immunology. Our understanding of the interaction of bacterial protein toxins with immune cells has helped to decipher immunopathology, develop preventive and curative treatments for infections, and propose anti-cancer immunotherapies. The link started when Behring and Kitasato demonstrated that serotherapy was effective against 'the strangling angel', namely diphtheria, and its dreadful toxin discovered by Roux and Yersin. The antitoxin treatment helped to save thousands of children. Glenny demonstrated the efficacy of the secondary immune response compared to the primary one. Ramon described anatoxins that allowed the elaboration of effective vaccines and discovered the use of adjuvant to boost the antibody response. Similar approaches were later made for the tetanus toxin. Studying antitoxin antibodies Ehrlich demonstrated, for the first time, the transfer of immunity from mother to newborns. In 1989 Marrack and Kappler coined the concept of 'superantigens' to characterize protein toxins that induce T-lymphocyte proliferation, and cytokine release by both T-lymphocytes and antigen presenting cells. More recently, immunotoxins have been designed to kill cancer cells targeted by either specific antibodies or cytokines. Finally, the action of IgE antibodies against toxins may explain their persistence through evolution despite their side effect in allergy.
Babii, C; Bahrin, L G; Neagu, A-N; Gostin, I; Mihasan, M; Birsa, L M; Stefan, M
2016-03-01
This study reports on the inhibitory and bactericidal properties of a new synthetized flavonoid. Tricyclic flavonoid 1 has been synthesized through a two-step reaction sequence. The antimicrobial effects were tested using the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) assays. Also DNA fragmentation assay, fluorescence microscopy and SEM were used to study the mechanism of action. Our tested flavonoid displayed a strong antimicrobial activity with MIC and MBC values as low as 0·24 μg ml(-1) against Staphylococcus aureus and 3·9 μg ml(-1) against Escherichia coli. Flavonoid 1 displayed antimicrobial properties, causing not only the inhibition of bacterial growth, but also killing bacterial cells. The mechanism of action is related to the impairment of the cell membrane integrity and to cell agglutination. Tricyclic flavonoid 1 was found to have a stronger antibacterial effect at lower concentrations than those described in the earlier reports. Based on the strong antimicrobial activity observed, this new tricyclic flavonoid has a good potential for the design of new antimicrobial agents. © 2016 The Society for Applied Microbiology.
Perugini Biasi-Garbin, Renata; Saori Otaguiri, Eliane; Fernandes da Silva, Mayara; Belotto Morguette, Ana Elisa; Armando Contreras Lancheros, César; Kian, Danielle; Perugini, Márcia Regina Eches; Durán, Nelson; Nakamura, Celso Vataru; Yamauchi, Lucy Megumi; Yamada-Ogatta, Sueli Fumie
2015-01-01
Streptococcus agalactiae (group B streptococci (GBS)) is an important infections agent in newborns associated with maternal vaginal colonization. Intrapartum antibiotic prophylaxis in GBS-colonized pregnant women has led to a significant reduction in the incidence of early neonatal infection in various geographic regions. However, this strategy may lead to resistance selecting among GBS, indicating the need for new alternatives to prevent bacterial transmission and even to treat GBS infections. This study reported for the first time the effect of eugenol on GBS isolated from colonized women, alone and in combination with silver nanoparticles produced by Fusarium oxysporum (AgNPbio). Eugenol showed a bactericidal effect against planktonic cells of all GBS strains, and this effect appeared to be time-dependent as judged by the time-kill curves and viability analysis. Combination of eugenol with AgNPbio resulted in a strong synergistic activity, significantly reducing the minimum inhibitory concentration values of both compounds. Scanning and transmission electron microscopy revealed fragmented cells and changes in bacterial morphology after incubation with eugenol. In addition, eugenol inhibited the viability of sessile cells during biofilm formation and in mature biofilms. These results indicate the potential of eugenol as an alternative for controlling GBS infections. PMID:25945115
Mani, Nagraj; Gross, Christian H; Parsons, Jonathan D; Hanzelka, Brian; Müh, Ute; Mullin, Steve; Liao, Yusheng; Grillot, Anne-Laure; Stamos, Dean; Charifson, Paul S; Grossman, Trudy H
2006-04-01
Antibiotics with novel mechanisms of action are becoming increasingly important in the battle against bacterial resistance to all currently used classes of antibiotics. Bacterial DNA gyrase and topoisomerase IV (topoIV) are the familiar targets of fluoroquinolone and coumarin antibiotics. Here we present the characterization of two members of a new class of synthetic bacterial topoII ATPase inhibitors: VRT-125853 and VRT-752586. These aminobenzimidazole compounds were potent inhibitors of both DNA gyrase and topoIV and had excellent antibacterial activities against a wide spectrum of problematic pathogens responsible for both nosocomial and community-acquired infections, including staphylococci, streptococci, enterococci, and mycobacteria. Consistent with the novelty of their structures and mechanisms of action, antibacterial potency was unaffected by commonly encountered resistance phenotypes, including fluoroquinolone resistance. In time-kill assays, VRT-125853 and VRT-752586 were bactericidal against Staphylococcus aureus, Streptococcus pneumoniae, Enterococcus faecalis, and Haemophilus influenzae, causing 3-log reductions in viable cells within 24 h. Finally, similar to the fluoroquinolones, relatively low frequencies of spontaneous resistance to VRT-125853 and VRT-752586 were found, a property consistent with their in vitro dual-targeting activities.
Mani, Nagraj; Gross, Christian H.; Parsons, Jonathan D.; Hanzelka, Brian; Müh, Ute; Mullin, Steve; Liao, Yusheng; Grillot, Anne-Laure; Stamos, Dean; Charifson, Paul S.; Grossman, Trudy H.
2006-01-01
Antibiotics with novel mechanisms of action are becoming increasingly important in the battle against bacterial resistance to all currently used classes of antibiotics. Bacterial DNA gyrase and topoisomerase IV (topoIV) are the familiar targets of fluoroquinolone and coumarin antibiotics. Here we present the characterization of two members of a new class of synthetic bacterial topoII ATPase inhibitors: VRT-125853 and VRT-752586. These aminobenzimidazole compounds were potent inhibitors of both DNA gyrase and topoIV and had excellent antibacterial activities against a wide spectrum of problematic pathogens responsible for both nosocomial and community-acquired infections, including staphylococci, streptococci, enterococci, and mycobacteria. Consistent with the novelty of their structures and mechanisms of action, antibacterial potency was unaffected by commonly encountered resistance phenotypes, including fluoroquinolone resistance. In time-kill assays, VRT-125853 and VRT-752586 were bactericidal against Staphylococcus aureus, Streptococcus pneumoniae, Enterococcus faecalis, and Haemophilus influenzae, causing 3-log reductions in viable cells within 24 h. Finally, similar to the fluoroquinolones, relatively low frequencies of spontaneous resistance to VRT-125853 and VRT-752586 were found, a property consistent with their in vitro dual-targeting activities. PMID:16569833
Pathogen boosted adoptive cell transfer immunotherapy to treat solid tumors
Xin, Gang; Schauder, David M.; Jing, Weiqing; Jiang, Aimin; Joshi, Nikhil S.; Johnson, Bryon; Cui, Weiguo
2017-01-01
Because of insufficient migration and antitumor function of transferred T cells, especially inside the immunosuppressive tumor microenvironment (TME), the efficacy of adoptive cell transfer (ACT) is much curtailed in treating solid tumors. To overcome these challenges, we sought to reenergize ACT (ReACT) with a pathogen-based cancer vaccine. To bridge ACT with a pathogen, we genetically engineered tumor-specific CD8 T cells in vitro with a second T-cell receptor (TCR) that recognizes a bacterial antigen. We then transferred these dual-specific T cells in combination with intratumoral bacteria injection to treat solid tumors in mice. The dual-specific CD8 T cells expanded vigorously, migrated to tumor sites, and robustly eradicated primary tumors. The mice cured from ReACT also developed immunological memory against tumor rechallenge. Mechanistically, we have found that this combined approach reverts the immunosuppressive TME and recruits CD8 T cells with an increased number and killing ability to the tumors. PMID:28069963
Tran, Phat L; Hamood, Abdul N; de Souza, Anselm; Schultz, Gregory; Liesenfeld, Bernd; Mehta, Dilip; Reid, Ted W
2015-01-01
Bacterial infection of acute and chronic wounds impedes wound healing significantly. Part of this impediment is the ability of bacterial pathogens to grow in wound dressings. In this study, we examined the effectiveness of a polyurethane (PU) foam wound dressings coated with poly diallyl-dimethylammonium chloride (pDADMAC-PU) to inhibit the growth and biofilm development by three main wound pathogens, Staphylococcus aureus, Pseudomonas aeruginosa, and Acinetobacter baumannii, within the wound dressing. pDADMAC-PU inhibited the growth of all three pathogens. Time-kill curves were conducted both with and without serum to determine the killing kinetic of pDADMAC-PU. pDADMAC-PU killed S. aureus, A. baumannii, and P. aeruginosa. The effect of pDADMAC-PU on biofilm development was analyzed quantitatively and qualitatively. Quantitative analysis, colony-forming unit assay, revealed that pDADMAC-PU dressing produced more than eight log reduction in biofilm formation by each pathogen. Visualization of the biofilms by either confocal laser scanning microscopy or scanning electron microscopy confirmed these findings. In addition, it was found that the pDADMAC-PU-treated foam totally inhibited migration of bacteria through the foam for all three bacterial strains. These results suggest that pDADMAC-PU is an effective wound dressing that inhibits the growth of wound pathogens both within the wound and in the wound dressing. © 2014 by the Wound Healing Society.
Tran, Tuan Minh; MacIntyre, April; Hawes, Martha; Allen, Caitilyn
2016-01-01
Plant root border cells have been recently recognized as an important physical defense against soil-borne pathogens. Root border cells produce an extracellular matrix of protein, polysaccharide and DNA that functions like animal neutrophil extracellular traps to immobilize pathogens. Exposing pea root border cells to the root-infecting bacterial wilt pathogen Ralstonia solanacearum triggered release of DNA-containing extracellular traps in a flagellin-dependent manner. These traps rapidly immobilized the pathogen and killed some cells, but most of the entangled bacteria eventually escaped. The R. solanacearum genome encodes two putative extracellular DNases (exDNases) that are expressed during pathogenesis, suggesting that these exDNases contribute to bacterial virulence by enabling the bacterium to degrade and escape root border cell traps. We tested this hypothesis with R. solanacearum deletion mutants lacking one or both of these nucleases, named NucA and NucB. Functional studies with purified proteins revealed that NucA and NucB are non-specific endonucleases and that NucA is membrane-associated and cation-dependent. Single ΔnucA and ΔnucB mutants and the ΔnucA/B double mutant all had reduced virulence on wilt-susceptible tomato plants in a naturalistic soil-soak inoculation assay. The ΔnucA/B mutant was out-competed by the wild-type strain in planta and was less able to stunt root growth or colonize plant stems. Further, the double nuclease mutant could not escape from root border cells in vitro and was defective in attachment to pea roots. Taken together, these results demonstrate that extracellular DNases are novel virulence factors that help R. solanacearum successfully overcome plant defenses to infect plant roots and cause bacterial wilt disease. PMID:27336156
Louie, Arnold; VanScoy, Brian D; Brown, David L; Kulawy, Robert W; Heine, Henry S; Drusano, George L
2012-03-01
Bacillus anthracis, the bacterium that causes anthrax, is an agent of bioterrorism. The most effective antimicrobial therapy for B. anthracis infections is unknown. An in vitro pharmacodynamic model of B. anthracis was used to compare the efficacies of simulated clinically prescribed regimens of moxifloxacin, linezolid, and meropenem with the "gold standards," doxycycline and ciprofloxacin. Treatment outcomes for isogenic spore-forming and non-spore-forming strains of B. anthracis were compared. Against spore-forming B. anthracis, ciprofloxacin, moxifloxacin, linezolid, and meropenem reduced the B. anthracis population by 4 log(10) CFU/ml over 10 days. Doxycycline reduced the population of this B. anthracis strain by 5 log(10) CFU/ml (analysis of variance [ANOVA] P = 0.01 versus other drugs). Against an isogenic non-spore-forming strain, meropenem killed the vegetative B. anthracis the fastest, followed by moxifloxacin and ciprofloxacin and then doxycycline. Linezolid offered the lowest bacterial kill rate. Heat shock studies using the spore-producing B. anthracis strain showed that with moxifloxacin, ciprofloxacin, and meropenem therapies the total population was mostly spores, while the population was primarily vegetative bacteria with linezolid and doxycycline therapies. Spores have a profound impact on the rate and extent of killing of B. anthracis. Against spore-forming B. anthracis, the five antibiotics killed the total (spore and vegetative) bacterial population at similar rates (within 1 log(10) CFU/ml of each other). However, bactericidal antibiotics killed vegetative B. anthracis faster than bacteriostatic drugs. Since only vegetative-phase B. anthracis produces the toxins that may kill the infected host, the rate and mechanism of killing of an antibiotic may determine its overall in vivo efficacy. Further studies are needed to examine this important observation.
VanScoy, Brian D.; Brown, David L.; Kulawy, Robert W.; Heine, Henry S.; Drusano, George L.
2012-01-01
Bacillus anthracis, the bacterium that causes anthrax, is an agent of bioterrorism. The most effective antimicrobial therapy for B. anthracis infections is unknown. An in vitro pharmacodynamic model of B. anthracis was used to compare the efficacies of simulated clinically prescribed regimens of moxifloxacin, linezolid, and meropenem with the “gold standards,” doxycycline and ciprofloxacin. Treatment outcomes for isogenic spore-forming and non-spore-forming strains of B. anthracis were compared. Against spore-forming B. anthracis, ciprofloxacin, moxifloxacin, linezolid, and meropenem reduced the B. anthracis population by 4 log10 CFU/ml over 10 days. Doxycycline reduced the population of this B. anthracis strain by 5 log10 CFU/ml (analysis of variance [ANOVA] P = 0.01 versus other drugs). Against an isogenic non-spore-forming strain, meropenem killed the vegetative B. anthracis the fastest, followed by moxifloxacin and ciprofloxacin and then doxycycline. Linezolid offered the lowest bacterial kill rate. Heat shock studies using the spore-producing B. anthracis strain showed that with moxifloxacin, ciprofloxacin, and meropenem therapies the total population was mostly spores, while the population was primarily vegetative bacteria with linezolid and doxycycline therapies. Spores have a profound impact on the rate and extent of killing of B. anthracis. Against spore-forming B. anthracis, the five antibiotics killed the total (spore and vegetative) bacterial population at similar rates (within 1 log10 CFU/ml of each other). However, bactericidal antibiotics killed vegetative B. anthracis faster than bacteriostatic drugs. Since only vegetative-phase B. anthracis produces the toxins that may kill the infected host, the rate and mechanism of killing of an antibiotic may determine its overall in vivo efficacy. Further studies are needed to examine this important observation. PMID:22155821
Wollenberg, Amanda C.; Slough, Greg; Hoinville, Megan E.
2016-01-01
ABSTRACT Insect larvae killed by entomopathogenic nematodes are thought to contain bacterial communities dominated by a single bacterial genus, that of the nematode's bacterial symbiont. In this study, we used next-generation sequencing to profile bacterial community dynamics in greater wax moth (Galleria mellonella) larvae cadavers killed by Heterorhabditis nematodes and their Photorhabdus symbionts. We found that, although Photorhabdus strains did initially displace an Enterococcus-dominated community present in uninfected G. mellonella insect larvae, the cadaver community was not static. Twelve days postinfection, Photorhabdus shared the cadaver with Stenotrophomonas species. Consistent with this result, Stenotrophomonas strains isolated from infected cadavers were resistant to Photorhabdus-mediated toxicity in solid coculture assays. We isolated and characterized a Photorhabdus-produced antibiotic from G. mellonella cadavers, produced it synthetically, and demonstrated that both the natural and synthetic compounds decreased G. mellonella-associated Enterococcus growth, but not Stenotrophomonas growth, in vitro. Finally, we showed that the Stenotrophomonas strains described here negatively affected Photorhabdus growth in vitro. Our results add an important dimension to a broader understanding of Heterorhabditis-Photorhabdus biology and also demonstrate that interspecific bacterial competition likely characterizes even a theoretically monoxenic environment, such as a Heterorhabditis-Photorhabdus-parasitized insect cadaver. IMPORTANCE Understanding, and eventually manipulating, both human and environmental health depends on a complete accounting of the forces that act on and shape microbial communities. One of these underlying forces is hypothesized to be resource competition. A resource that has received little attention in the general microbiological literature, but likely has ecological and evolutionary importance, is dead/decaying multicellular organisms. Metazoan cadavers, including those of insects, are ephemeral and nutrient-rich environments, where resource competition might shape interspecific macrobiotic and microbiotic interactions. This study is the first to use a next-generation sequencing approach to study the community dynamics of bacteria within a model insect cadaver system: insect larvae parasitized by entomopathogenic nematodes and their bacterial symbionts. By integrating bioinformatic, biochemical, and classic in vitro microbiological approaches, we have provided mechanistic insight into how antibiotic-mediated bacterial interactions may shape community dynamics within insect cadavers. PMID:27451445
Bacterial persistence by RNA endonucleases
Maisonneuve, Etienne; Shakespeare, Lana J.; Jørgensen, Mikkel Girke; Gerdes, Kenn
2011-01-01
Bacteria form persisters, individual cells that are highly tolerant to different types of antibiotics. Persister cells are genetically identical to nontolerant kin but have entered a dormant state in which they are recalcitrant to the killing activity of the antibiotics. The molecular mechanisms underlying bacterial persistence are unknown. Here, we show that the ubiquitous Lon (Long Form Filament) protease and mRNA endonucleases (mRNases) encoded by toxin-antitoxin (TA) loci are required for persistence in Escherichia coli. Successive deletion of the 10 mRNase-encoding TA loci of E. coli progressively reduced the level of persisters, showing that persistence is a phenotype common to TA loci. In all cases tested, the antitoxins, which control the activities of the mRNases, are Lon substrates. Consistently, cells lacking lon generated a highly reduced level of persisters. Moreover, Lon overproduction dramatically increased the levels of persisters in wild-type cells but not in cells lacking the 10 mRNases. These results support a simple model according to which mRNases encoded by TA loci are activated in a small fraction of growing cells by Lon-mediated degradation of the antitoxins. Activation of the mRNases, in turn, inhibits global cellular translation, and thereby induces dormancy and persistence. Many pathogenic bacteria known to enter dormant states have a plethora of TA genes. Therefore, in the future, the discoveries described here may lead to a mechanistic understanding of the persistence phenomenon in pathogenic bacteria. PMID:21788497
Arjomandzadegan, Mohammad; Emami, Navid; Habibi, Ghasem; Farazi, Ali Asghar; Kahbazi, Manijeh; Sarmadian, Hossein; Jabbari, Mansooreh; Hosseini, Hossein; Ramezani, Mona
2016-12-01
Resistances to herbal medicines are still not defined and finding natural remedies against drug resistant Mycobacterium tuberculosis (MTB) has research priority. The antimycobacterial susceptibility method for herbal extracts is unclearly defined and there is no standard method for assessment of the materials against bacteria. In the present study, time kill of three medicinal plants was determined against MTB. The clinical isolate of MTB from a patient who harbored confirmed tuberculosis was used in the study. Aqueous extracts of Aloe vera leaves, mint, and Hypericum perforatum were prepared using reflux distillation. Disk diffusion methods were conducted in Petri dishes and McCartney bottles containing Löwenstein-Jensen medium to measure the sensitivity of plant extracts in serial concentrations of 0.25-8mg/mL. A pour plate method was performed by mixing 0.7mL of each concentration of extract in 5mL Löwenstein-Jensen medium followed by surface culturing of MTB fresh cells. The time kill method was conducted by bacterial suspension in equal amounts of the extract and viable evaluation in fresh culture at the beginning, and at 24-h, 48-h, 72-h, and 1-week intervals. All cultures were incubated at 37°C for 4weeks. Inoculum concentrations were considered as a variable. The zones of inhibition of A. vera, H. perforatum, and mint extracts in the disk diffusion method in McCartney bottles were 60mm, 41mm, and zero, respectively, but Petri dishes did not have repeatable results. In the pour plate method, an extract concentration up to 1mg/mL could inhibit cell growth. In mint extract, colony forming was four times more than the others at 0.5mg/mL. Time kill of 95% of cells occurred when exposed to extracts of A. vera and H. perforatum separately, but was 50% in 24 h and 20% in 10 min. The time kill for mint was 95% in 1week. The results give some scientific basis to the use of plant extracts for growth control of MTB cells. Clinical trials are recommended for assessment of the extract as complementary medicine, as well as for antisepsis. Copyright © 2016.
Wu, Kaiyu; Conly, John; Surette, Michael; Sibley, Christopher; Elsayed, Sameer; Zhang, Kunyan
2012-11-23
Staphylococcus aureus strains with distinct genetic backgrounds have shown different virulence in animal models as well as associations with different clinical outcomes, such as causing infection in the hospital or the community. With S. aureus strains carrying diverse genetic backgrounds that have been demonstrated by gene typing and genomic sequences, it is difficult to compare these strains using mammalian models. Invertebrate host models provide a useful alternative approach for studying bacterial pathogenesis in mammals since they have conserved innate immune systems of biological defense. Here, we employed Drosophila melanogaster as a host model for studying the virulence of S. aureus strains. Community-associated methicillin-resistant S. aureus (CA-MRSA) strains USA300, USA400 and CMRSA2 were more virulent than a hospital-associated (HA)-MRSA strain (CMRSA6) and a colonization strain (M92) in the D. melanogaster model. These results correlate with bacterial virulence in the Caenorhabditis elegans host model as well as human clinical data. Moreover, MRSA killing activities in the D. melanogaster model are associated with bacterial replication within the flies. Different MRSA strains induced similar host responses in D. melanogaster, but demonstrated differential expression of common bacterial virulence factors, which may account for the different killing activities in the model. In addition, hemolysin α, an important virulence factor produced by S. aureus in human infections is postulated to play a role in the fly killing. Our results demonstrate that the D. melanogaster model is potentially useful for studying S. aureus pathogenicity. Different MRSA strains demonstrated diverse virulence in the D. melanogaster model, which may be the result of differing expression of bacterial virulence factors in vivo.
Pyrazole derived ultra-short antimicrobial peptidomimetics with potent anti-biofilm activity.
Ahn, Mija; Gunasekaran, Pethaiah; Rajasekaran, Ganesan; Kim, Eun Young; Lee, Soo-Jae; Bang, Geul; Cho, Kun; Hyun, Jae-Kyung; Lee, Hyun-Ju; Jeon, Young Ho; Kim, Nam-Hyung; Ryu, Eun Kyoung; Shin, Song Yub; Bang, Jeong Kyu
2017-01-05
In this study, we report on the first chemical synthesis of ultra-short pyrazole-arginine based antimicrobial peptidomimetics derived from the newly synthesized N-alkyl/aryl pyrazole amino acids. Through the systematic tuning of hydrophobicity, charge, and peptide length, we identified the shortest peptide Py11 with the most potent antimicrobial activity. Py11 displayed greater antimicrobial activity against antibiotic-resistant bacteria, including MRSA, MDRPA, and VREF, which was approximately 2-4 times higher than that of melittin. Besides its higher selectivity (therapeutic index) toward bacterial cells than LL-37, Py11 showed highly increased proteolytic stability against trypsin digestion and maintained its antimicrobial activity in the presence of physiological salts. Interestingly, Py11 exhibited higher anti-biofilm activity against MDRPA compared to LL-37. The results from fluorescence spectroscopy and transmission electron microscopy (TEM) suggested that Py11 kills bacterial cells possibly by integrity disruption damaging the cell membrane, leading to the cytosol leakage and eventual cell lysis. Furthermore, Py11 displayed significant anti-inflammatory (endotoxin-neutralizing) activity by inhibiting LPS-induced production of nitric oxide (NO) and TNF-α. Collectively, our results suggest that Py11 may serve as a model compound for the design of antimicrobial and antisepsis agents. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
Kasuga, Eriko; Kawakami, Yoshiyuki; Matsumoto, Takehisa; Hidaka, Eiko; Oana, Kozue; Ogiwara, Naoko; Yamaki, Dai; Sakurada, Tsukasa; Honda, Takayuki
2011-01-01
Background Bacteria from the hospital environment, including linens and curtains, are often responsible for hospital-associated infections. The aim of the present study was to evaluate the bactericidal effects of fabrics coated with the hydroxyapatite-binding silver/titanium dioxide ceramic nanocomposite “Earth-plus”. Methods Bactericidal activities of woven and nonwoven fabrics coated with Earth-plus were investigated by the time-kill curve method using nine bacterial strains, including three Staphylococcus aureus, three Escherichia coli, and three Pseudomonas aeruginosa strains. Results The numbers of viable S. aureus and E. coli cells on both fabrics coated with Earth-plus decreased to below 2 log10 colony-forming units/mL in six hours and reached the detection limit in 18 hours. Viable cell counts of P. aeruginosa on both fabrics coated with Earth-plus could not be detected after 3–6 hours. Viable cells on woven fabrics showed a more rapid decline than those on nonwoven fabrics. Bacterial cell counts of the nine strains on fabrics without Earth-plus failed to decrease even after 18 hours. Conclusion Woven cotton and nonwoven polypropylene fabrics were shown to have excellent antibacterial potential. The woven fabric was more bactericidal than the nonwoven fabric. PMID:21931489
Xu, Jian-Guo; Liu, Ting; Hu, Qing-Ping; Cao, Xin-Ming
2016-09-08
The essential oil of clove has a wide range of pharmacological and biological activities and is widely used in the medicine, fragrance and flavoring industries. In this work, 22 components of the essential oil obtained from clove buds were identified. Eugenol was the major component (76.23%). The essential oil exhibited strong antibacterial activity against Staphylococcus aureus ATCC 25923 with a minimum inhibitory concentration (MIC) of 0.625 mg/mL, and the antibacterial effects depended on its concentration and action time. Kill-time assays also confirmed the essential oil had a significant effect on the growth rate of surviving S. aureus. We hypothesized that the essential oil may interact with the cell wall and membrane first. On the one hand it destroys cell wall and membranes, next causing the losses of vital intracellular materials, which finally result in the bacterial death. Besides, essential oil penetrates to the cytoplasmic membrane or enters inside the cell after destruction of cell structure, and then inhibits the normal synthesis of DNA and proteins that are required for bacterial growth. These results suggested that the effects of the clove essential oil on the growth inhibition of S. aureus may be at the molecular level rather than only physical damage.
The Role of Bitter and Sweet Taste Receptors in Upper Airway Immunity
Workman, Alan D.; Palmer, James N.; Adappa, Nithin D.
2016-01-01
Over the past several years, taste receptors have emerged as key players in the regulation of innate immune defenses in the mammalian respiratory tract. Several cell types in the airway, including ciliated epithelial cells, solitary chemosensory cells, and bronchial smooth muscle cells, all display chemoresponsive properties that utilize taste receptors. A variety of bitter products secreted by microbes are detected with resultant downstream inflammation, increased mucous clearance, antimicrobial peptide secretion, and direct bacterial killing. Genetic variation of bitter taste receptors also appears to play a role in the susceptibility to infection in respiratory disease states, including that of chronic rhinosinusitis. Ongoing taste receptor research may yield new therapeutics that harness innate immune defenses in the respiratory tract and may offer alternatives to antibiotic treatment. The present review discusses taste receptor-protective responses and analyzes the role these receptors play in mediating airway immune function. PMID:26492878
Cytotoxic effect of galvanically coupled magnesium-titanium particles.
Kim, Jua; Gilbert, Jeremy L
2016-01-01
Recent work has shown that reduction reactions at metallic biomaterial surfaces can induce significant killing of cells in proximity to the surface. To exploit this phenomenon for therapeutic purposes, for example, for cancer tumor killing or antibacterial effects (amongst other applications), magnesium metal particles, galvanically coupled to titanium by sputtering, have been evaluated for their cell-killing capability (i.e. cytotoxicity). Magnesium (Mg) particles large enough to prevent particle phagocytosis were investigated, so that only electrochemical reactions, and not particle toxicity per se, caused cytotoxic effects. Titanium (Ti) coated magnesium particles, as well as magnesium-only particles were introduced into MC3T3-E1 mouse pre-osteoblast cell cultures over a range of particle concentrations, and cells were observed to die in a dosage-dependent manner. Ti-coated magnesium particles killed more cells at lower particle concentration than magnesium alone (P<0.05), although the pH measured for magnesium and magnesium-titanium had no significant difference at similar particle concentrations. Complete cell killing occurred at 750μg/ml and 1500μg/ml for Mg-Ti and Mg, respectively. Thus, this work demonstrates that galvanically coupled Mg-Ti particles have a significant cell killing capability greater than Mg alone. In addition, when the pH associated with complete killing with particles was created using NaOH only (no particles), then the percentage of cells killed was significantly less (P<0.05). Together, these findings show that pH is not the sole factor associated with cell killing and that the electrochemical reactions, including the reduction reactions, play an important role. Reduction reactions on galvanically coupled Mg-Ti and Mg particles may generate reactive oxygen intermediates that are able to kill cells in close proximity to the particles and this approach may lead to potential therapies for infection and cancer. This paper demonstrates that during active corrosion of both Mg and Mg-Ti particles cells cultured with the particles are killed in a dose-dependent particle concentration fashion. Additionally, galvanically-coupled magnesium-titanium microparticles kill cells more effectively than magnesium particles alone. The killing effect was shown to not be due to pH shifts since no differences were seen for different particle types and pH adjusted medium without particles did not exhibit the same level of killing. The significance of this work is the recognition of this killing effect with Mg particles and the potential therapeutic applications in infection control and cancer treatment that this process may provide. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Bisland, S. K.; Dadani, F. N.; Chien, C.; Wilson, B. C.
2007-02-01
Photodynamic therapy (PDT) entails the combination of photosensitizer and light to generate cytotoxic molecules that derive from molecular oxygen (O II). The presence of sufficient O II within the target tissues is critical to the efficiency of PDT. This study investigates the use of hyperbaric oxygen therapy in combination with PDT (HOTPDT) to augment the photodynamic action of methylene blue (MB) or 5-aminolevulinic acid (ALA) against gram positive and gram negative bacterial strains in vitro. Staphylococcus aureus or Pseudomonas aeruginosa were grown in trypticase soy broth as planktonic cultures (~10 8/mL) or as established biofilms in 48 well plates (3 days old) at 32°C. Dark toxicity and PDT response in the presence or absence of HOT (2 atmospheres, 100% O II for 30, 60 or 120 min) was established for both MB (0-0.1 mM) and ALA (0- 1 mM) for a range of incubation times. The number of surviving colonies (CFU/mL) was plotted for each treatment groups. Light treatments (5, 10, 20 or 30 J/cm2) were conducted using an array of halogen bulbs with a red filter providing 90% transmittance over 600-800 nm at 21 mW/cm2. HOT increased the dark toxicity of MB (30 min, 0.1 mM) from < 0.2 log cell kill to 0.5 log cell kill. Dark toxicity of ALA (4 hr, 1 mM) was negligible and did not increase with HOT. For non-dark toxic concentrations of MB or ALA, (0.05 mM and 1 mM respectively) HOT-PDT enhanced the antimicrobial effect of MB against Staphylococcus aureus in culture by >1 and >2 logs of cell kill (CFU/mL) at 5 and 10 J/cm2 light dose respectively as compared to PDT alone. HOT-PDT also increased the anti-microbial effects of MB against Staphylococcus aureus biofilms compared to PDT, albeit less so (> 2 logs) following 10 J/cm2 light dose. Anti-microbial effects of PDT using ALA were not significant for either strain with or without HOT. These data suggest that HOTPDT may be useful for improving the PDT treatment of bacterial infections.
CAR-T cells are serial killers
Davenport, Alexander J; Jenkins, Misty R; Ritchie, David S; Prince, H Miles; Trapani, Joseph A; Kershaw, Michael H; Darcy, Phillip K; Neeson, Paul J
2015-01-01
Chimeric antigen receptor (CAR) T cells have enjoyed unprecedented clinical success against haematological malignancies in recent years. However, several aspects of CAR T cell biology remain unknown. We recently compared CAR and T cell receptor (TCR)-based killing in the same effector cell and showed that CAR T cells can not only efficiently kill single tumor targets, they can also kill multiple tumor targets in a sequential manner. Single and serial killing events were not sustained long term due to CAR down-regulation after 20 hours. PMID:26587330
CAR-T cells are serial killers.
Davenport, Alexander J; Jenkins, Misty R; Ritchie, David S; Prince, H Miles; Trapani, Joseph A; Kershaw, Michael H; Darcy, Phillip K; Neeson, Paul J
2015-12-01
Chimeric antigen receptor (CAR) T cells have enjoyed unprecedented clinical success against haematological malignancies in recent years. However, several aspects of CAR T cell biology remain unknown. We recently compared CAR and T cell receptor (TCR)-based killing in the same effector cell and showed that CAR T cells can not only efficiently kill single tumor targets, they can also kill multiple tumor targets in a sequential manner. Single and serial killing events were not sustained long term due to CAR down-regulation after 20 hours.
Makioka, Yuko; Tsukahara, Takamitsu; Ijichi, Tetsuo; Inoue, Ryo
2018-03-20
Effect on cecal microbiota and gene expression of various cytokines in ileal Peyer's patches and cecal tissues were compared between viable and heat-killed Bifidobacterium longum strain BR-108 (BR-108) using a mouse model. Irrespectively of viability, oral supplementation of BR-108 altered the cecal microbiota and stimulated gene expression of cytokines such as IL-6 and IL-10 in ileal Peyer's patches and cecal tissue of mice. In addition, BR-108 supplementation significantly affected the relative abundance of bacterial genera and family, Oscillospira, Bacteroides and S24-7. The abundance of these bacterial genera and family strongly correlated with gene expression induced by BR-108. This study demonstrated that the effect of heat-killed BR-108 on the mouse cecal microbiota is similar to that of viable BR-108, most likely due to stimulation of the gut immune system by both heat-killed and viable BR-108 is also similar.
Mardirossian, Mario; Grzela, Renata; Giglione, Carmela; Meinnel, Thierry; Gennaro, Renato; Mergaert, Peter; Scocchi, Marco
2014-12-18
Antimicrobial peptides (AMPs) are molecules from innate immunity with high potential as novel anti-infective agents. Most of them inactivate bacteria through pore formation or membrane barrier disruption, but others cross the membrane without damages and act inside the cells, affecting vital processes. However, little is known about their intracellular bacterial targets. Here we report that Bac71-35, a proline-rich AMP belonging to the cathelicidin family, can reach high concentrations (up to 340 μM) inside the E. coli cytoplasm. The peptide specifically and completely inhibits in vitro translation in the micromolar concentration range. Experiments of incorporation of radioactive precursors in macromolecules with E. coli cells confirmed that Bac71-35 affects specifically protein synthesis. Ribosome coprecipitation and crosslinking assays showed that the peptide interacts with ribosomes, binding to a limited subset of ribosomal proteins. Overall, these results indicate that the killing mechanism of Bac71-35 is based on a specific block of protein synthesis. Copyright © 2014 Elsevier Ltd. All rights reserved.
Halle, Stephan; Keyser, Kirsten Anja; Stahl, Felix Rolf; Busche, Andreas; Marquardt, Anja; Zheng, Xiang; Galla, Melanie; Heissmeyer, Vigo; Heller, Katrin; Boelter, Jasmin; Wagner, Karen; Bischoff, Yvonne; Martens, Rieke; Braun, Asolina; Werth, Kathrin; Uvarovskii, Alexey; Kempf, Harald; Meyer-Hermann, Michael; Arens, Ramon; Kremer, Melanie; Sutter, Gerd; Messerle, Martin; Förster, Reinhold
2016-01-01
Summary According to in vitro assays, T cells are thought to kill rapidly and efficiently, but the efficacy and dynamics of cytotoxic T lymphocyte (CTL)-mediated killing of virus-infected cells in vivo remains elusive. We used two-photon microscopy to quantify CTL-mediated killing in mice infected with herpesviruses or poxviruses. On average, one CTL killed 2–16 virus-infected cells per day as determined by real-time imaging and by mathematical modeling. In contrast, upon virus-induced MHC class I downmodulation, CTLs failed to destroy their targets. During killing, CTLs remained migratory and formed motile kinapses rather than static synapses with targets. Viruses encoding the calcium sensor GCaMP6s revealed strong heterogeneity in individual CTL functional capacity. Furthermore, the probability of death of infected cells increased for those contacted by more than two CTLs, indicative of CTL cooperation. Thus, direct visualization of CTLs during killing of virus-infected cells reveals crucial parameters of CD8+ T cell immunity. PMID:26872694
Properties of herbal extracts against Propionibacterium acnes for biomedical application
NASA Astrophysics Data System (ADS)
Lim, Youn-Mook; Kim, Sung Eun; Kim, Yong Soo; Shin, Young Min; Jeong, Sung In; Jo, Sun-Young; Gwon, Hui-Jeong; Park, Jong-seok; Nho, Young-Chang; Kim, Jong-Cheol; Kim, Seong-Jang; Shin, HeungSoo
2012-10-01
Propionibacterium acnes (P. acnes), one of the anaerobic bacterium, causes inflammatory acne. To find a novel medication for treating the inflammation caused by P. acnes, we investigated the anti-bacterial and anti-inflammatory activities of several herbal extracts against P. acnes. The aqueous extracts from five dried herbs, Phellodendron amurense Rupr., Paeonia lactiflora Pallas., Houttuynia cordata Thunb., Agrimonia pilosa Ledeb. and Glycyrrhiza uralensis Fisch., were prepared and mixed. In this experiment, 1 mg/ml of the herbal extract mixture caused a decrease in the growth of P. acnes and reduced the production of pro-inflammatory cytokines, TNF-α, IL-8, IL-1β and IL-6, in human monocytic THP-1 cells treated with heat-killed P. acnes. Therefore, this herbal extract mixture may possess both anti-bacterial and anti-inflammatory activities against P. acnes and can be a novel therapeutic agent for treating inflammatory acne.
Tseng, Ching Wen; Kyme, Pierre A.; Arruda, Andrea; Ramanujan, V. Krishnan; Tawackoli, Wafa; Liu, George Y.
2012-01-01
Elderly humans show increased susceptibility to invasive staphylococcal disease after skin and soft tissue infection. However, it is not understood how host immunity changes with aging, and how that predisposes to invasive disease. In a model of severe skin infection, we showed that aged mice (16- to 20-month-old) exhibit dramatic bacterial dissemination compared with young adult mice (2-month-old). Bacterial dissemination was associated with significant reductions of CXCL1 (KC), polymorphonuclear cells (PMNs), and extracellular DNA traps (NETs) at the infection site. PMNs and primary skin fibroblasts isolated from aged mice showed decreased secretion of CXCL2 (MIP-2) and KC in response to MRSA, and in vitro analyses of mitochondrial functions revealed that the mitochondrial electron transport chain complex I plays a significant role in induction of chemokines in the cells isolated from young but not old mice. Additionally, PMNs isolated from aged mice have reduced ability to form NETs and to kill MRSA. Expression of nuclease by S. aureus led to increased bacterial systemic dissemination in young but not old mice, suggesting that defective NETs formation in elderly mice permitted nuclease and non-nuclease expressing S. aureus to disseminate equally well. Overall, these findings suggest that gross impairment of both skin barrier function and innate immunity contributes to the propensity for MRSA to disseminate in aged mice. Furthermore, the study indicates that contribution of bacterial factors to pathogenicity may vary with host age. PMID:22844481
Rao, Gauri G; Ly, Neang S; Haas, Curtis E; Garonzik, Samira; Forrest, Alan; Bulitta, Jurgen B; Kelchlin, Pamela A; Holden, Patricia N; Nation, Roger L; Li, Jian; Tsuji, Brian T
2014-01-01
Increasing evidence suggests that colistin monotherapy is suboptimal at currently recommended doses. We hypothesized that front-loading provides an improved dosing strategy for polymyxin antibiotics to maximize killing and minimize total exposure. Here, we utilized an in vitro pharmacodynamic model to examine the impact of front-loaded colistin regimens against a high bacterial density (10(8) CFU/ml) of Pseudomonas aeruginosa. The pharmacokinetics were simulated for patients with hepatic (half-life [t1/2] of 3.2 h) or renal (t1/2 of 14.8 h) disease. Front-loaded regimens (n=5) demonstrated improvement in bacterial killing, with reduced overall free drug areas under the concentration-time curve (fAUC) compared to those with traditional dosing regimens (n=14) with various dosing frequencies (every 12 h [q12h] and q24h). In the renal failure simulations, front-loaded regimens at lower exposures (fAUC of 143 mg · h/liter) obtained killing activity similar to that of traditional regimens (fAUC of 268 mg · h/liter), with an ∼97% reduction in the area under the viable count curve over 48 h. In hepatic failure simulations, front-loaded regimens yielded rapid initial killing by up to 7 log10 within 2 h, but considerable regrowth occurred for both front-loaded and traditional regimens. No regimen eradicated the high bacterial inoculum of P. aeruginosa. The current study, which utilizes an in vitro pharmacodynamic infection model, demonstrates the potential benefits of front-loading strategies for polymyxins simulating differential pharmacokinetics in patients with hepatic and renal failure at a range of doses. Our findings may have important clinical implications, as front-loading polymyxins as a part of a combination regimen may be a viable strategy for aggressive treatment of high-bacterial-burden infections.
Trogocytosis by Entamoeba histolytica contributes to cell killing and tissue invasion
Ralston, Katherine S.; Solga, Michael D.; Mackey-Lawrence, Nicole M.; Somlata; Bhattacharya, Alok; Petri, William A.
2014-01-01
Summary paragraph Entamoeba histolytica is the causative agent of amoebiasis, a potentially fatal diarrheal disease in the developing world. The parasite was named “histolytica” for its ability to destroy host tissues, which is most likely driven by direct killing of human cells. The mechanism of human cell killing has been unclear, though the accepted model was that the parasites use secreted toxic effectors to kill cells prior to ingestion1. Here we report the surprising discovery that amoebae kill by biting off and ingesting distinct pieces of living human cells, resulting in intracellular calcium elevation and eventual cell death. After cell killing, amoebae detach and cease ingestion. Ingestion of bites is required for cell killing, and also contributes to invasion of intestinal tissue. The internalization of bites of living human cells is reminiscent of trogocytosis (Greek trogo–, nibble) observed between immune cells2–6, but amoebic trogocytosis differs since it results in death. The ingestion of live cell material and the rejection of corpses illuminate a stark contrast to the established model of dead cell clearance in multicellular organisms7. These findings change the paradigm for tissue destruction in amoebiasis and suggest an ancient origin of trogocytosis as a form of intercellular exchange. PMID:24717428
Prokaryotic RNA Associated to Bacterial Viability Induces Polymorphonuclear Neutrophil Activation.
Rodriguez-Rodrigues, Nahuel; Castillo, Luis A; Landoni, Verónica I; Martire-Greco, Daiana; Milillo, M Ayelén; Barrionuevo, Paula; Fernández, Gabriela C
2017-01-01
Polymorphonuclear neutrophils (PMN) are the first cellular line of antibacterial host defense. They sense pathogens through recognition of pathogen-associated molecular patterns (PAMPs) by innate pattern recognition receptors, such as Toll-like receptors (TLR). The aim of this study was to investigate whether PMN sense bacterial viability and explore which viability factor could be involved in this phenomenon. For this purpose, different functions were evaluated in isolated human PMN using live Escherichia coli (Ec) and heat-killed Ec (HK-Ec). We found that bacterial viability was indispensable to induce PMN activation, as measured by forward-scatter (FSC) increase, CD11b surface expression, chemotaxis, reactive oxygen species (ROS) generation and neutrophil extracellular trap (NET) formation. As uncapped non-polyadenylated prokaryotic mRNA has been recognized as a PAMP associated to bacterial viability by macrophages and dendritic cells, total prokaryotic RNA (pRNA) from live Ec was purified and used as a stimulus for PMN. pRNA triggered similar responses to those observed with live bacteria. No RNA could be isolated from HK-Ec, explaining the lack of effect of dead bacteria. Moreover, the supernatant of dead bacteria was able to induce PMN activation, and this was associated with the presence of pRNA in this supernatant, which is released in the killing process. The induction of bactericidal functions (ROS and NETosis) by pRNA were abolished when the supernatant of dead bacteria or isolated pRNA were treated with RNAse. Moreover, endocytosis was necessary for pRNA-induced ROS generation and NETosis, and priming was required for the induction of pRNA-induced ROS in whole blood. However, responses related to movement and degranulation (FSC increase, CD11b up-regulation, and chemotaxis) were still triggered when pRNA was digested with RNase, and were not dependent on pRNA endocytosis or PMN priming. In conclusion, our results indicate that PMN sense live bacteria through recognition of pRNA, and this sensing triggers potent bactericidal mechanisms.
Prokaryotic RNA Associated to Bacterial Viability Induces Polymorphonuclear Neutrophil Activation
Rodriguez-Rodrigues, Nahuel; Castillo, Luis A.; Landoni, Verónica I.; Martire-Greco, Daiana; Milillo, M. Ayelén; Barrionuevo, Paula; Fernández, Gabriela C.
2017-01-01
Polymorphonuclear neutrophils (PMN) are the first cellular line of antibacterial host defense. They sense pathogens through recognition of pathogen-associated molecular patterns (PAMPs) by innate pattern recognition receptors, such as Toll-like receptors (TLR). The aim of this study was to investigate whether PMN sense bacterial viability and explore which viability factor could be involved in this phenomenon. For this purpose, different functions were evaluated in isolated human PMN using live Escherichia coli (Ec) and heat-killed Ec (HK-Ec). We found that bacterial viability was indispensable to induce PMN activation, as measured by forward-scatter (FSC) increase, CD11b surface expression, chemotaxis, reactive oxygen species (ROS) generation and neutrophil extracellular trap (NET) formation. As uncapped non-polyadenylated prokaryotic mRNA has been recognized as a PAMP associated to bacterial viability by macrophages and dendritic cells, total prokaryotic RNA (pRNA) from live Ec was purified and used as a stimulus for PMN. pRNA triggered similar responses to those observed with live bacteria. No RNA could be isolated from HK-Ec, explaining the lack of effect of dead bacteria. Moreover, the supernatant of dead bacteria was able to induce PMN activation, and this was associated with the presence of pRNA in this supernatant, which is released in the killing process. The induction of bactericidal functions (ROS and NETosis) by pRNA were abolished when the supernatant of dead bacteria or isolated pRNA were treated with RNAse. Moreover, endocytosis was necessary for pRNA-induced ROS generation and NETosis, and priming was required for the induction of pRNA-induced ROS in whole blood. However, responses related to movement and degranulation (FSC increase, CD11b up-regulation, and chemotaxis) were still triggered when pRNA was digested with RNase, and were not dependent on pRNA endocytosis or PMN priming. In conclusion, our results indicate that PMN sense live bacteria through recognition of pRNA, and this sensing triggers potent bactericidal mechanisms. PMID:28730145
Gonzalez-Escobedo, Roman; Briones-Roblero, Carlos I; Pineda-Mendoza, Rosa M; Rivera-Orduña, Flor N; Zúñiga, Gerardo
2018-01-01
Symbioses between plants and microorganims have been fundamental in the evolution of both groups. The endophytic bacteria associated with conifers have been poorly studied in terms of diversity, ecology, and function. Coniferous trees of the genera Larix , Pseudotsugae , Picea and mainly Pinus , are hosts of many insects, including bark beetles and especially the Dendroctonus species. These insects colonize and kill these trees during their life cycle. Several bacteria detected in the gut and cuticle of these insects have been identified as endophytes in conifers. In this study, we characterized and compared the endophytic bacterial diversity in roots, phloem and bark of non-attacked saplings of Pinus arizonica and P. durangensis using 16S rRNA gene pyrosequencing. In addition, we evaluated the degree of taxonomic relatedness, and the association of metabolic function profiles of communities of endophytic bacteria and previously reported gut bacterial communities of D. rhizophagus ; a specialized bark beetle that colonizes and kills saplings of these pine species. Our results showed that both pine species share a similar endophytic community. A total of seven bacterial phyla, 14 classes, 26 orders, 43 families, and 51 genera were identified. Enterobacteriaceae was the most abundant family across all samples, followed by Acetobacteraceae and Acidobacteriaceae, which agree with previous studies performed in other pines and conifers. Endophytic communities and that of the insect gut were significantly different, however, the taxonomic relatedness of certain bacterial genera of pines and insect assemblages suggested that some bacteria from pine tissues might be the same as those in the insect gut. Lastly, the metabolic profile using PICRUSt showed there to be a positive association between communities of both pines and insect gut. This study represents the baseline into the knowledge of the endophytic bacterial communities of two of the major hosts affected by D. rhizophagus .
Killing of targets by effector CD8 T cells in the mouse spleen follows the law of mass action
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ganusov, Vitaly V
2009-01-01
In contrast with antibody-based vaccines, it has been difficult to measure the efficacy of T cell-based vaccines and to correlate the efficacy of CD8 T cell responses with protection again viral infections. In part, this difficulty is due to poor understanding of the in vivo efficacy of CD8 T cells produced by vaccination. Using a: recently developed experimental method of in vivo cytotoxicity we have investigated quantitative aspects of killing of peptide-pulsed targets by effector and memory CD8 T cells, specific to three epitopes of lymphocytic choriomeningitis virus (LCMV), in the mouse spleen. By analyzing data on killing of targetsmore » with varying number of epitope-specific effector and memory CD8 T cells, we find that killing of targets by effectors follows the law of mass-action, that is the death rate of peptide-pulsed targets is proportional to the frequency of CTLs in the spleen. In contrast, killing of targets by memory CD8 T cells does not follow the mass action law because the death rate of targets saturates at high frequencies of memory CD8 T cells. For both effector and memory cells, we also find little support for the killing term that includes the decrease of the death rate of targets with target cell density. Interestingly, our analysis suggests that at low CD8 T cell frequencies, memory CD8 T cells on the per capita basis are more efficient at killing peptide-pulsed targets than effectors, but at high frequencies, effectors are more efficient killers than memory T cells. Comparison of the estimated killing efficacy of effector T cells with the value that is predicted from theoretical physics and based on motility of T cells in lymphoid tissues, suggests that limiting step in the killing of peptide-pulsed targets is delivering the lethal hit and not finding the target. Our results thus form a basis for quantitative understanding of the process of killing of virus-infected cells by T cell responses in tissues and can be used to correlate the phenotype of vaccine-induced memory CD8 T cells with their killing efficacy in vivo.« less
Hassan, Zubaida; Mustafa, Shuhaimi; Rahim, Raha Abdul; Isa, Nurulfiza Mat
2016-03-01
Development of tumour that is resistant to chemotherapeutics and synthetic drugs, coupled with their life-threatening side effects and the adverse effects of surgery and hormone therapies, led to increased research on probiotics' anticancer potentials. The current study investigated the potential of live, heat-killed cells (HKC) and the cytoplasmic fractions (CF) of Enterococcus faecalis and Staphylococcus hominis as anti-breast cancer agents. MCF-7 cell line was treated with 25, 50, 100 and 200 μg/mL each of live, HKC and CF of the bacteria; and cytotoxicity was evaluated for 24, 48 and 72 h using MTT assay. The morphological features of the treated cells were examined by fluorescence microscopy. The stage of cell cycle arrest and apoptosis were quantified by flow cytometry. The bacterial effect on non-malignant breast epithelial cell line, MCF-10A, was assessed using MTT assay for 24, 48 and 72 h. All the three forms of the bacteria caused a significant decrease in MCF-7 (up to 33.29%) cell proliferation in concentration- and time-dependent manner. Morphological features of apoptosis like cell death, cell shrinkage and membrane blebbing were observed. Flow cytometry analyses suggested that about 34.60% of treated MCF-7 was undergoing apoptosis. A strong anti-proliferative activity was efficiently induced through sub-G1 accumulation (up to 83.17%) in treated MCF-7 and decreased number in the G0/G1 phase (74.39%). MCF-10A cells treated with both bacteria showed no significant difference with the untreated (>90% viability). These bacteria can be used as good alternative nutraceutical with promising therapeutic indexes for breast cancer because of their non-cytotoxic effects to normal cells.
Bergsbaken, Tessa; Cookson, Brad T
2009-11-01
Yersinia pestis, the etiological agent of plague, is one of the most deadly pathogens on our planet. This organism shares important attributes with its ancestral progenitor, Yersinia pseudotuberculosis, including a 70-kb virulence plasmid, lymphotropism during growth in the mammalian host, and killing of host macrophages. Infections with both organisms are biphasic, where bacterial replication occurs initially with little inflammation, followed by phagocyte influx, inflammatory cytokine production, and tissue necrosis. During infection, plasmid-encoded attributes facilitate bacterial-induced macrophage death, which results from two distinct processes and corresponds to the inflammatory crescendo observed in vivo: Naïve cells die by apoptosis (noninflammatory), and later in infection, activated macrophages die by pyroptosis (inflammatory). The significance of this redirected cell death for the host is underscored by the importance of phagocyte activation for immunity to Yersinia and the protective role of pyroptosis during host responses to anthrax lethal toxin and infections with Francisella, Legionella, Pseudomonas, and Salmonella. The similarities of Y. pestis and Y. pseudotuberculosis, including conserved, plasmid-encoded functions inducing at least two distinct mechanisms of cell death, indicate that comparative studies are revealing about their critical pathogenic mechanism(s) and host innate immune responses during infection. Validation of this idea and evidence of similar interactions with the host immune system are provided by Y. pseudotuberculosis-priming, cross-protective immunity against Y. pestis. Despite these insights, additional studies indicate much remains to be understood concerning effective host responses against Yersinia, including chromosomally encoded attributes that also contribute to bacterial evasion and modulation of innate and adaptive immune responses.
Antibacterial effect and proposed mechanism of action of a topical surgical adhesive.
Prince, Daniel; Solanki, Zankhna; Varughese, Remy; Mastej, Jozef; Prince, Derek
2018-01-01
Medical adhesives effectively hold closed approximated skin edges of wounds from surgical incisions, including punctures from minimally invasive surgery. In addition, they have been reported to be antibacterial against gram-positive bacteria. Using membrane filtration to capture all organisms after contact with 2-octyl cyanoacrylate product for 3 minutes, we quantified the number of survivors. Controls were performed to rule out that the noted level of kill was caused by carryover product in the test system. We found that the product kills >7 logs of gram-positive and gram-negative bacteria. The mechanism of action for the antibacterial effect is described as a function of very low water content. As an antibacterial agent, the risk of nosocomial infection is greatly diminished, and an uneventful clinical result is facilitated. Bacterial growth cannot occur in the formulation and on contact death rapidly ensues as cellular water diffuses from the cell into the product. Copyright © 2018 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserved.
Detection of bacterial-reactive natural IgM antibodies in desert bighorn sheep populations
Palmer, Amy L.; Zielke, Ryszard A.; Sikora, Aleksandra E.; Beechler, Brianna R.; Jolles, Anna E.; Epps, Clinton W.
2017-01-01
Ecoimmunology is a burgeoning field of ecology which studies immune responses in wildlife by utilizing general immune assays such as the detection of natural antibody. Unlike adaptive antibodies, natural antibodies are important in innate immune responses and often recognized conserved epitopes present in pathogens. Here, we describe a procedure for measuring natural antibodies reactive to bacterial antigens that may be applicable to a variety of organisms. IgM from desert bighorn sheep plasma samples was tested for reactivity to outer membrane proteins from Vibrio coralliilyticus, a marine bacterium to which sheep would have not been exposed. Immunoblotting demonstrated bighorn sheep IgM could bind to a variety of bacterial cell envelope proteins while ELISA analysis allowed for rapid determination of natural antibody levels in hundreds of individual animals. Natural antibody levels were correlated with the ability of plasma to kill laboratory strains of E. coli bacteria. Finally, we demonstrate that natural antibody levels varied in two distinct populations of desert bighorn sheep. These data demonstrate a novel and specific measure of natural antibody function and show that this varies in ecologically relevant ways. PMID:28662203
ZAHID, M. Shamim Hasan; AWASTHI, Sharda Prasad; HINENOYA, Atsushi; YAMASAKI, Shinji
2015-01-01
To search natural compounds having inhibitory effect on bacterial growth is important, particularly in view of growing multidrug resistant (MDR) strains of bacterial pathogens. Like other bacterial pathogens, MDR Vibrio cholerae, the causative agent of diarrheal disease cholera, is becoming a great concern. As an approach of searching new antimicrobial agents, here, we show that anethole, a well-studied natural component of sweet fennel and star anise seeds, could potentially inhibit the growth of MDR O1 El Tor biotype, the ongoing 7th cholera pandemic variant strains of toxigenic V. cholerae. The minimum inhibitory concentration (MIC) of anethole against diverse O1 El Tor biotype strains is evaluated as 200 µg/ml. Moreover, the effect of anethole is bactericidal and exerts rapid-killing action on V. cholerae cells. This study is the first report which demonstrates that anethole, purified from natural compound, is a potent inhibitor of growth of toxigenic V. cholerae. Our data suggest that anethole could be a potential antimicrobial drug candidate, particularly against MDR V. cholerae mediated infections. PMID:25648987
Zahid, M Shamim Hasan; Awasthi, Sharda Prasad; Hinenoya, Atsushi; Yamasaki, Shinji
2015-05-01
To search natural compounds having inhibitory effect on bacterial growth is important, particularly in view of growing multidrug resistant (MDR) strains of bacterial pathogens. Like other bacterial pathogens, MDR Vibrio cholerae, the causative agent of diarrheal disease cholera, is becoming a great concern. As an approach of searching new antimicrobial agents, here, we show that anethole, a well-studied natural component of sweet fennel and star anise seeds, could potentially inhibit the growth of MDR O1 El Tor biotype, the ongoing 7th cholera pandemic variant strains of toxigenic V. cholerae. The minimum inhibitory concentration (MIC) of anethole against diverse O1 El Tor biotype strains is evaluated as 200 µg/ml. Moreover, the effect of anethole is bactericidal and exerts rapid-killing action on V. cholerae cells. This study is the first report which demonstrates that anethole, purified from natural compound, is a potent inhibitor of growth of toxigenic V. cholerae. Our data suggest that anethole could be a potential antimicrobial drug candidate, particularly against MDR V. cholerae mediated infections.
Programming stress-induced altruistic death in engineered bacteria
Tanouchi, Yu; Pai, Anand; Buchler, Nicolas E; You, Lingchong
2012-01-01
Programmed death is often associated with a bacterial stress response. This behavior appears paradoxical, as it offers no benefit to the individual. This paradox can be explained if the death is ‘altruistic': the killing of some cells can benefit the survivors through release of ‘public goods'. However, the conditions where bacterial programmed death becomes advantageous have not been unambiguously demonstrated experimentally. Here, we determined such conditions by engineering tunable, stress-induced altruistic death in the bacterium Escherichia coli. Using a mathematical model, we predicted the existence of an optimal programmed death rate that maximizes population growth under stress. We further predicted that altruistic death could generate the ‘Eagle effect', a counter-intuitive phenomenon where bacteria appear to grow better when treated with higher antibiotic concentrations. In support of these modeling insights, we experimentally demonstrated both the optimality in programmed death rate and the Eagle effect using our engineered system. Our findings fill a critical conceptual gap in the analysis of the evolution of bacterial programmed death, and have implications for a design of antibiotic treatment. PMID:23169002
Role of innate and adaptive immunity in the pathogenesis of keratitis.
Hazlett, Linda D
2005-01-01
Pseudomonas aeruginosa is a common organism associated with bacterial keratitis primarily resulting from contact lens usage. Advances in our understanding of host innate and adaptive immune responses to experimental infection have been achieved using animal models, including inbred mouse models that are classed as resistant (cornea heals) vs. susceptible (cornea perforates). Evidence has shown that sustained IL-12-driven IFN-gamma production in dominant Th1 responder strains such as C57BL/6 (B6) contributes to corneal destruction and perforation. In contrast, in Th2-responder BALB/c mice, IL-18-driven IFN-gamma production regulates bacterial killing with less corneal destruction. IL-1 and chemotactic cytokines (e.g., MIP-2) recruit PMN to the cornea. The critical role of these cells in the innate immune response and their regulation after bacterial infection has been established. The studies provide a better understanding of the regulatory mechanisms that operate in the cornea after P. aeruginosa challenge, determining susceptibility vs. resistance to disease, and are consistent with long-term goals of providing targets for better treatment of disease.
Liu, Chengcheng; Hu, Min; Ma, Dandan; Lei, Jin'e; Xu, Jiru
2016-02-01
The worldwide increase in bacterial antibiotic resistance has led to a search for alternative antibacterial therapies. A promising approach to killing antibiotic-resistant bacteria is photodynamic antimicrobial chemotherapy, which uses light in combination with a photosensitizer to induce a phototoxic reaction. We evaluated the photodynamic inactivation (PDI) efficiency of hematoporphyrin monomethyl ether (HMME) on antibiotic-resistant bacteria and biofilms. HMME exhibited no significant dark toxicity and provided dose-dependent inactivation of antibiotic-resistant bacteria and biofilms. After incubation with 100-μM HMME and irradiation with 72-J cm(-2) white light, 4.19-7.59 log10 reductions in survival were achieved in planktonic suspension. Antibiotic-resistant strains were as susceptible to PDI in biofilms as in planktonic suspensions, but the inactivation of bacterial cells in biofilms was attenuated. In addition, gram-positive bacterial strains and biofilms were more susceptible than gram-negative strains and biofilms to the PDI effect of HMME. Thus, HMME is a promising photosensitizer for the treatment of infectious diseases caused by antibiotic-resistant bacteria, especially gram-positive bacteria.
Okumura, Cheryl Y M; Hollands, Andrew; Tran, Dan N; Olson, Joshua; Dahesh, Samira; von Köckritz-Blickwede, Maren; Thienphrapa, Wdee; Corle, Courtney; Jeung, Seung Nam; Kotsakis, Anna; Shalwitz, Robert A; Johnson, Randall S; Nizet, Victor
2012-09-01
Hypoxia inducible factor-1 (HIF-1) is a transcription factor that is a major regulator of energy homeostasis and cellular adaptation to low oxygen stress. HIF-1 is also activated in response to bacterial pathogens and supports the innate immune response of both phagocytes and keratinocytes. In this work, we show that a new pharmacological compound AKB-4924 increases HIF-1 levels and enhances the antibacterial activity of phagocytes and keratinocytes against both methicillin-sensitive and methicillin-resistant strains of Staphylococcus aureus in vitro. AKB-4924 is also effective in stimulating the killing capacity of keratinocytes against the important opportunistic skin pathogens Pseudomonas aeruginosa and Acinetobacter baumanii. The effect of AKB-4924 is mediated through the activity of host cells, as the compound exerts no direct antimicrobial activity. Administered locally as a single agent, AKB-4924 limits S. aureus proliferation and lesion formation in a mouse skin abscess model. This approach to pharmacologically boost the innate immune response via HIF-1 stabilization may serve as a useful adjunctive treatment for antibiotic-resistant bacterial infections.
Okumura, Cheryl Y.M.; Hollands, Andrew; Tran, Dan N.; Olson, Joshua; Dahesh, Samira; von Köckritz-Blickwede, Maren; Thienphrapa, Wdee; Corle, Courtney; Jeung, Seung Nam; Kotsakis, Anna; Shalwitz, Robert A.; Johnson, Randall S.; Nizet, Victor
2013-01-01
Hypoxia inducible factor-1 (HIF-1) is a transcription factor that is a major regulator of energy homeostasis and cellular adaptation to low oxygen stress. HIF-1 is also activated in response to bacterial pathogens and supports the innate immune response of both phagocytes and keratinocytes. In this work, we show that a new pharmacological compound AKB-4924 (Akebia Therapeutics) increases HIF-1α levels and enhances the antibacterial activity of phagocytes and keratinocytes against both methicillin-sensitive and -resistant strains of Staphylococcus aureus in vitro. AKB-4924 is also effective in stimulating the killing capacity of keratinocytes against the important opportunistic skin pathogens Pseudomonas aeruginosa and Acinitobacter baumanii. The effect of AKB-4924 is mediated through the activity of host cells, as the compound exerts no direct antimicrobial activity. Administered locally as a single agent, AKB-4924 limits S. aureus proliferation and lesion formation in a mouse skin abscess model. This approach to pharmacologically boost the innate immune response via HIF-1 stabilization may serve as a useful adjunctive treatment for antibiotic-resistant bacterial infections. PMID:22371073
Nakazawa, Tsutomu; Nakamura, Mitsutoshi; Park, Young Soo; Motoyama, Yasushi; Hironaka, Yasuo; Nishimura, Fumihiko; Nakagawa, Ichiro; Yamada, Shuichi; Matsuda, Ryosuke; Tamura, Kentaro; Sugimoto, Tadashi; Takeshima, Yasuhiro; Marutani, Akiko; Tsujimura, Takahiro; Ouji, Noriko; Ouji, Yukiteru; Yoshikawa, Masahide; Nakase, Hiroyuki
2014-01-01
Glioblastoma (GBM) is a highly aggressive brain tumor for which novel therapeutic approaches, such as immunotherapy, are urgently needed. Zoledronate (ZOL), an inhibitor of osteoclastic activity, is known to stimulate peripheral blood-derived γδT cells and sensitize tumors to γδT cell-mediated killing. To investigate the feasibility of γδT cell-based immunotherapy for patients with GBM, we focused on the killing of GBM cell lines by γδT cells and the molecular mechanisms involved in these cell-cell interactions. Peripheral blood mononuclear cells were expanded in ZOL and interleukin (IL)-2 for 14 days, and γδT cells were enriched in the expanded cells by the immunomagnetic depletion of αβT cells. Gliomas are resistant to NK cells but susceptible to lymphokine-activated killer cells and some cytotoxic T lymphocytes. When the γδT cell-mediated killing of three GBM cell lines (U87MG, U138MG and A172 cells) and an NK-sensitive leukemia cell line (K562 cells) were tested, 32% U87MG, 15% U138MG, 1% A172, and 50% K562 cells were killed at an effector:target ratio of 5:1. The γδT cell-mediated killing of all three GBM cell lines was significantly enhanced by ZOL and this ZOL-enhanced killing was blocked by an anti-T cell receptor (TcR) antibody. These results indicated that TcR γδ is crucial for the recognition of ZOL-treated GBM cells by γδT cells. Since the low level killing of GBM cells by the γδT cells was enhanced by ZOL, γδT cell-targeting therapy in combination with ZOL treatment could be effective for patients with GBM.
Photodynamic therapy of otitis media in-vitro and in-vivo using gerbil
NASA Astrophysics Data System (ADS)
Rhee, Chung-Ku; Kwon, Pil Seung; Ahn, Jin Chul; Chung, Phil Sang; Ge, Ruifeng
2008-02-01
The aim of this study was to evaluate antibacterial effects of PDT on common bacteria causing otitis media with effusion (OME). In vitro study was carried out using a hematoporphyrin derivative sensitizer (photogem) and 632 nm diode laser on H. influenzae, M. catarrhalis, and S. pneumoniae. One ml of each bacterial suspension was incubated for 3 hours and various concentrations of photogem were administered into the suspension. The suspensions were irradiated with 632 diode laser (15 J/cm2). The presence of colony forming units of the bacteria was examined, microscopic structures of bacteria were examined by TEM, and cytometry of bacteria was performed. The PDT was effective in killing all 3 kinds of bacteria. TEM showed damaged bacterial cell membrane and cytoplasmic structures and the flow cytometry showed lower number of viable bacteria in PDT group comparing to the control group. In vivo PDT study was performed using gerbil. S. pneumoniae or H. influenzae was injected into bullae. Photogem was injected into bullae in 2 days by when OME was developed and transcanal irradiation of 632 nm diode laser (90 J) was performed with a fiber perforated through an ear drum into a middle ear cavity and bulla. Four days after PDT, middle ear and bulla were washed with DPBS and the washed DPBS was cultured. The presence of bacterial colonies was examined. PDT was effective in killing S. pneumoniae in 87 % of the infected bullae with OME while it was effective to eradicate H. influenzae in 50 % of the infected bullae with OME. The results of these studies demonstrated that PDT may be effective to treat otitis media. It may have clinical implication to treat otitis media that is resistant to antibiotic therapy.
NASA Astrophysics Data System (ADS)
Kilany, Mona
2017-11-01
The potentially deleterious effects of methylene blue (MB) on human health drove the interest in its removal promptly. Bioremediation is an effective and eco friendly for removing MB. Soil bacteria were isolated and examined for their potential to remove MB. The most potent bacterial candidate was characterized and identified using 16S rRNA sequence technique. The evolutionary history of the isolate was conducted by maximum likelihood method. Some physiochemical parameters were optimized for maximum decolorization. Decolorization mechanism and microbial toxicity study of MB (100 mg/l) and by-products were investigated. Participation of heat killed bacteria in color adsorption have been investigated too. The bacterial isolate was identified as Stenotrophomonas maltophilia strain Kilany_MB 16S ribosomal RNA gene with 99% sequence similarity. The sequence was submitted to NCBI (Accession number = KU533726). Phylogeny depicted the phylogenetic relationships between 16S ribosomal RNA gene, partial sequence (1442 bp), of the isolated strain and other strains related to Stenotrophomonas maltophilia in the GenBank database. The optimal conditions were investigated to be pH 5 at 30 °C, after 24 h using 5 mg/l MB showing optimum decolorization percentage (61.3%). Microbial toxicity study demonstrated relative reduction in the toxicity of MB decolorized products on test bacteria. Mechanism of color removal was proved by both biosorption and biodegradation, where heat-killed and live cells showed 43 and 52% of decolorization, respectively, as a maximum value after 24-h incubation. It was demonstrated that the mechanism of color removal is by adsorption. Therefore, good performance of S maltophilia in MB color removal reinforces the exploitation of these bacteria in environmental clean-up and restoration of the ecosystem.
Murdoch, Sarah L.; Trunk, Katharina; English, Grant; Fritsch, Maximilian J.; Pourkarimi, Ehsan; Coulthurst, Sarah J.
2011-01-01
The type VI secretion system (T6SS) is the most recently described and least understood of the protein secretion systems of Gram-negative bacteria. It is widely distributed and has been implicated in the virulence of various pathogens, but its mechanism and exact mode of action remain to be defined. Additionally there have been several very recent reports that some T6SSs can target bacteria rather than eukaryotic cells. Serratia marcescens is an opportunistic enteric pathogen, a class of bacteria responsible for a significant proportion of hospital-acquired infections. We describe the identification of a functional T6SS in S. marcescens strain Db10, the first report of type VI secretion by an opportunist enteric bacterium. The T6SS of S. marcescens Db10 is active, with secretion of Hcp to the culture medium readily detected, and is expressed constitutively under normal growth conditions from a large transcriptional unit. Expression of the T6SS genes did not appear to be dependent on the integrity of the T6SS. The S. marcescens Db10 T6SS is not required for virulence in three nonmammalian virulence models. It does, however, exhibit dramatic antibacterial killing activity against several other bacterial species and is required for S. marcescens to persist in a mixed culture with another opportunist pathogen, Enterobacter cloacae. Importantly, this antibacterial killing activity is highly strain specific, with the S. marcescens Db10 T6SS being highly effective against another strain of S. marcescens with a very similar and active T6SS. We conclude that type VI secretion plays a crucial role in the competitiveness, and thus indirectly the virulence, of S. marcescens and other opportunistic bacterial pathogens. PMID:21890705
Selenium Supplementation Restores Innate and Humoral Immune Responses in Footrot-Affected Sheep
Hall, Jean A.; Vorachek, William R.; Stewart, Whitney C.; Gorman, M. Elena; Mosher, Wayne D.; Pirelli, Gene J.; Bobe, Gerd
2013-01-01
Dietary selenium (Se) alters whole-blood Se concentrations in sheep, dependent upon Se source and dosage administered, but little is known about effects on immune function. We used footrot (FR) as a disease model to test the effects of supranutritional Se supplementation on immune function. To determine the effect of Se-source (organic Se-yeast, inorganic Na-selenite or Na-selenate) and Se-dosage (1, 3, 5 times FDA-permitted level) on FR severity, 120 ewes with and 120 ewes without FR were drenched weekly for 62 weeks with different Se sources and dosages (30 ewes/treatment group). Innate immunity was evaluated after 62 weeks of supplementation by measuring neutrophil bacterial killing ability. Adaptive immune function was evaluated by immunizing sheep with keyhole limpet hemocyanin (KLH). The antibody titer and delayed-type hypersensitivity skin test to KLH were used to assess humoral immunity and cell-mediated immunity, respectively. At baseline, FR-affected ewes had lower whole-blood and serum-Se concentrations; this difference was not observed after Se supplementation. Se supplementation increased neutrophil bacterial killing percentages in FR-affected sheep to percentages observed in supplemented and non-supplemented healthy sheep. Similarly, Se supplementation increased KLH antibody titers in FR-affected sheep to titers observed in healthy sheep. FR-affected sheep demonstrated suppressed cell-mediated immunity at 24 hours after intradermal KLH challenge, although there was no improvement with Se supplementation. We did not consistently prevent nor improve recovery from FR over the 62 week Se-treatment period. In conclusion, Se supplementation does not prevent FR, but does restore innate and humoral immune functions negatively affected by FR. PMID:24340044
Inaba, Masato; Matsuda, Naoyuki; Banno, Hirotsugu; Jin, Wanchun; Wachino, Jun-Ichi; Yamada, Keiko; Kimura, Kouji; Arakawa, Yoshichika
2016-12-01
The host stress hormone norepinephrine (NE), also called noradrenaline, is reported to augment bacterial growth and pathogenicity, but few studies have focused on the effect of NE on the activity of antimicrobials. The aim of this study was to clarify whether NE affects antimicrobial activity against multidrug-resistant Acinetobacter baumannii (MDR-AB). Time-kill studies of tigecycline (TIG) and colistin (COL) against MDR-AB as well as assays for factors contributing to antibiotic resistance were performed using MDR-AB clinical strains both in the presence and absence of 10 µM NE. In addition, expression of three efflux pump genes (adeB, adeJ and adeG) in the presence and absence of NE was analysed by quantitative reverse transcription PCR. Viable bacterial cell counts in TIG-supplemented medium containing NE were significantly increased compared with those in medium without NE. In contrast, NE had little influence on viable bacterial cell counts in the presence of COL. NE-supplemented medium resulted in an ca. 2 log increase in growth and in bacterial cell numbers adhering on polyurethane, silicone and polyvinylchloride surfaces. Amounts of biofilm in the presence of NE were ca. 3-fold higher than without NE. Expression of the adeG gene was upregulated 4-6-fold in the presence of NE. In conclusion, NE augmented factors contributing to antibiotic resistance and markedly reduced the in vitro antibacterial activity of TIG against MDR-AB. These findings suggest that NE treatment may contribute to the failure of TIG therapy in patients with MDR-AB infections. Copyright © 2016 Elsevier B.V. and International Society of Chemotherapy. All rights reserved.
Antibacterial activity and mode of action of ε-polylysine against Escherichia coli O157:H7.
Zhang, Xiaowei; Shi, Ce; Liu, Zuojia; Pan, Fengguang; Meng, Rizeng; Bu, Xiujuan; Xing, Heqin; Deng, Yanhong; Guo, Na; Yu, Lu
2018-04-10
Gram-negative Escherichia coli O157:H7 were chosen as model bacteria to evaluate the antimicrobial mechanism of ε-polylysine (ε-PL). The antibacterial activity of ε-PL was detected by measuring the minimum inhibitory concentration values as well as the time-kill curve. The membrane integrity was determined by ultraviolet (UV) absorption, membrane potential (MP) assay and flow cytometry (FCM) experiments. The permeability of the inner membrane was detected by β-galactosidase activity assay. Furthermore, electron microscopy [scanning electron microscopy (SEM) and transmission electron microscopy (TEM)] was utilized to observe bacterial morphology. These results demonstrated that ε-PL showed its antibacterial activity by changing the integrity and permeability of cell membranes, leading to rapid cell death. The electron microscopy analysis (SEM and TEM) results indicated that the bacterial cell morphology, membrane integrity and permeability were spoiled when the E. coli O157:H7 cells were exposed to minimum inhibitory concentrations of ε-PL (16 µg ml -1 ). In addition, the bacterial membrane was damaged more severely when the concentration of ε-PL was increased. The present study investigated the antimicrobial mechanism of ε-PL by measuring the content of cytoplasmic β-galactosidase, proteins and DNA. In addition, SEM and TEM were carried out to assess the mechanism. These results show that ε-PL has the ability to decrease the content of large molecules, cellular soluble proteins and nucleic acids associated with increasing the content of cytoplasmic β-galactosidase in supernatant by causing damage to the cell membranes. Consequently, the use of ε-PL as a natural antimicrobial agent should eventually become an appealing method in the field of food preservation.
Surface modification for interaction study with bacteria and preosteoblast cells
NASA Astrophysics Data System (ADS)
Song, Qing
Surface modification plays a pivotal role in bioengineering. Polymer coatings can provide biocompatibility and biofunctionalities to biomaterials through surface modification. In this dissertation, initiated chemical vapor deposition (iCVD) was utilized to coat two-dimensional (2D) and three-dimensional (3D) substrates with differently charged polyelectrolytes in order to generate antimicrobial and osteocompatible biomaterials. ICVD is a modified CVD technique that enables surface modification in an all-dry condition without substrate damage and solvent contamination. The free-radical polymerization allows the vinyl polymers to conformally coat on various micro- and nano-structured substrates and maintains the delicate structure of the functional groups. The vapor deposition of polycations provided antimicrobial activity to planar and porous substrates through destroying the negatively charged bacterial membrane and brought about high contact-killing efficiency (99.99%) against Gram-positive Bacillus subtilis and Gram-negative Escherichia coli. Additionally, the polyampholytes synthesized by iCVD exhibited excellent antifouling performance against the adhesion of Gram-positive Listeria innocua and Gram-negative E. coli in phosphate buffered saline (PBS). Their antifouling activities were attributed to the electrostatic interaction and hydration layers that served as physical and energetic barriers to prevent bacterial adhesion. The contact-killing and antifouling polymers synthesized by iCVD can be applied to surface modification of food processing equipment and medical devices with the aim of reducing foodborne diseases and medical infections. Moreover, the charged polyelectrolyte modified 2D polystyrene surfaces displayed good osteocompatibility and enhanced osteogenesis of preosteoblast cells than the un-modified polystyrene surface. In order to promote osteoinduction of hydroxyapatite (HA) scaffolds, bioinspired polymer-controlled mineralization was conducted on the polyelectrolyte modified HA scaffolds. The mineralized scaffolds stimulated osteogenesis of preosteoblast cells compared with the control HA scaffolds. Therefore, the surface modification through vapor deposition of polyelectrolytes and polymer-controlled mineralization can improve osteoinduction of bone materials. In summary, the iCVD-mediated surface modification is a simple and promising approach to biofunctionalizing various structured substrates and generating antimicrobial and biocompatible biomaterials.
Verstraeten, Natalie; Fauvart, Maarten
2016-01-01
Health care-associated infections present a major threat to modern medical care. Six worrisome nosocomial pathogens—Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter spp.—are collectively referred to as the “ESKAPE bugs.” They are notorious for extensive multidrug resistance, yet persistence, or the phenotypic tolerance displayed by a variant subpopulation, remains underappreciated in these pathogens. Importantly, persistence can prevent eradication of antibiotic-sensitive bacterial populations and is thought to act as a catalyst for the development of genetic resistance. Concentration- and time-dependent aminoglycoside killing experiments were used to investigate persistence in the ESKAPE pathogens. Additionally, a recently developed method for the experimental evolution of persistence was employed to investigate adaptation to high-dose, extended-interval aminoglycoside therapy in vitro. We show that ESKAPE pathogens exhibit biphasic killing kinetics, indicative of persister formation. In vitro cycling between aminoglycoside killing and persister cell regrowth, evocative of clinical high-dose extended-interval therapy, caused a 37- to 213-fold increase in persistence without the emergence of resistance. Increased persistence also manifested in biofilms and provided cross-tolerance to different clinically important antibiotics. Together, our results highlight a possible drawback of intermittent, high-dose antibiotic therapy and suggest that clinical diagnostics might benefit from taking into account persistence. PMID:27185802
Frieling, J T; Mulder, J A; Hendriks, T; Curfs, J H; van der Linden, C J; Sauerwein, R W
1997-07-01
The in vitro production of interleukin-1beta (IL-1beta), IL-6, and the IL-1 receptor antagonist (IL-1ra) in whole blood upon stimulation with different bacterial strains was measured to study the possible relationship between disease severity and the cytokine-inducing capacities of these strains. Escherichia coli, Neisseria meningitidis, Neisseria gonorrhoeae, Bacteroides fragilis, Capnocytophaga canimorsus, Staphylococcus aureus, Enterococcus faecalis, Streptococcus pneumoniae, and Streptococcus pyogenes induced the cytokines IL-1beta, IL-6, and IL-1ra. Gram-negative bacteria induced significantly higher levels of proinflammatory cytokine production than gram-positive bacteria. These differences were less pronounced for the anti-inflammatory cytokine IL-1ra. In addition, blood was stimulated with E. coli killed by different antibiotics to study the effect of the antibiotics on the cytokine-inducing capacity of the bacterial culture. E. coli treated with cefuroxime and gentamicin induced higher levels of IL-1beta and IL-6 production but levels of IL-1ra production similar to that of heat-killed E. coli. In contrast, ciprofloxacin- and imipenem-cilastatin-mediated killing showed a decreased or similar level of induction of cytokine production as compared to that by heat-killed E. coli; polymyxin B decreased the level of production of the cytokines.
Özcan, E; Eldeniz, A U; Arı, H
2011-12-01
To evaluate the ability of two root canal sealers (Epoxy resin-based AH Plus or polydimethylsiloxane-based GuttaFlow) and five root filling techniques (continuous wave of condensation, Thermafil, lateral condensation, matched taper single gutta-percha point, laterally condensed-matched taper gutta-percha point) to kill bacteria in experimentally infected dentinal tubules. An infected dentine block model was used. One hundred and twenty extracted, single-rooted human teeth were randomly divided into 10 test (n = 10) and 2 control (n = 10) groups. The roots, except negative controls, were infected with Enterococcus faecalis for 21 days. The root canals were then filled using the test materials and methods. Positive controls were not filled. Sterile roots were used as negative controls. Dentine powder was obtained from all root canals using gates glidden drills using a standard method. The dentine powder was diluted and inoculated into bacterial growth media. Total colony-forming units (CFU) were calculated for each sample. Statistical analysis was performed using the Kruskal-Wallis and Mann-Whitney U test. The epoxy resin-based sealer was effective in killing E. faecalis except when using Thermafil (P < 0.05), but the polydimethylsiloxane-based sealer was not effective in killing this microorganism except in the continuous wave group (P < 0.05). In the test model, AH Plus killed bacteria in infected dentine more effectively than GuttaFlow. The filling method was less important than the sealer material. © 2011 International Endodontic Journal.
Liadi, Ivan; Singh, Harjeet; Romain, Gabrielle; Rey-Villamizar, Nicolas; Merouane, Amine; Adolacion, Jay R T.; Kebriaei, Partow; Huls, Helen; Qiu, Peng; Roysam, Badrinath; Cooper, Laurence J.N.; Varadarajan, Navin
2015-01-01
T cells genetically modified to express a CD19-specific chimeric antigen receptor (CAR) for the investigational treatment of B-cell malignancies comprise a heterogeneous population, and their ability to persist and participate in serial killing of tumor cells is a predictor of therapeutic success. We implemented Timelapse Imaging Microscopy In Nanowell Grids (TIMING) to provide direct evidence that CD4+CAR+ T cells (CAR4 cells) can engage in multi-killing via simultaneous conjugation to multiple tumor cells. Comparisons of the CAR4 cells and CD8+CAR+ T cells (CAR8 cells) demonstrate that while CAR4 cells can participate in killing and multi-killing, they do so at slower rates, likely due to the lower Granzyme B content. Significantly, in both sets of T cells, a minor sub-population of individual T cells identified by their high motility, demonstrated efficient killing of single tumor cells. By comparing both the multi-killer and single killer CAR+ T cells it appears that the propensity and kinetics of T-cell apoptosis was modulated by the number of functional conjugations. T cells underwent rapid apoptosis, and at higher frequencies, when conjugated to single tumor cells in isolation and this effect was more pronounced on CAR8 cells. Our results suggest that the ability of CAR+ T cells to participate in multi-killing should be evaluated in the context of their ability to resist activation induced cell death (AICD). We anticipate that TIMING may be utilized to rapidly determine the potency of T-cell populations and may facilitate the design and manufacture of next-generation CAR+ T cells with improved efficacy. PMID:25711538
NASA Technical Reports Server (NTRS)
Nguyen, Hal X.; Tidball, James G.
2003-01-01
Current evidence indicates that the physiological functions of inflammatory cells are highly sensitive to their microenvironment, which is partially determined by the inflammatory cells and their potential targets. In the present investigation, interactions between neutrophils, macrophages and muscle cells that may influence muscle cell death are examined. Findings show that in the absence of macrophages, neutrophils kill muscle cells in vitro by superoxide-dependent mechanisms, and that low concentrations of nitric oxide (NO) protect against neutrophil-mediated killing. In the absence of neutrophils, macrophages kill muscle cells through a NO-dependent mechanism, and the presence of target muscle cells causes a three-fold increase in NO production by macrophages, with no change in the concentration of inducible nitric oxide synthase. Muscle cells that are co-cultured with both neutrophils and macrophages in proportions that are observed in injured muscle show cytotoxicity through a NO-dependent, superoxide-independent mechanism. Furthermore, the concentration of myeloid cells that is necessary for muscle killing is greatly reduced in assays that use mixed myeloid cell populations, rather than uniform populations of neutrophils or macrophages. These findings collectively show that the magnitude and mechanism of muscle cell killing by myeloid cells are modified by interactions between muscle cells and neutrophils, between muscle cells and macrophages and between macrophages and neutrophils.
Woodman, Michael E.; Worth, Randall G.; Wooten, R. Mark
2012-01-01
Burkholderia pseudomallei is the causative agent of melioidosis and is a major mediator of sepsis in its endemic areas. Because of the low LD50 via aerosols and resistance to multiple antibiotics, it is considered a Tier 1 select agent by the CDC and APHIS. B. pseudomallei is an encapsulated bacterium that can infect, multiply, and persist within a variety of host cell types. In vivo studies suggest that macrophages and neutrophils are important for controlling B. pseudomallei infections, however few details are known regarding how neutrophils respond to these bacteria. Our goal is to describe the capacity of human neutrophils to control highly virulent B. pseudomallei compared to the relatively avirulent, acapsular B. thailandensis using in vitro analyses. B. thailandensis was more readily phagocytosed than B. pseudomallei, but both displayed similar rates of persistence within neutrophils, indicating they possess similar inherent abilities to escape neutrophil clearance. Serum opsonization studies showed that both were resistant to direct killing by complement, although B. thailandensis acquired significantly more C3 on its surface than B. pseudomallei, whose polysaccharide capsule significantly decreased the levels of complement deposition on the bacterial surface. Both Burkholderia species showed significantly enhanced uptake and killing by neutrophils after critical levels of C3 were deposited. Serum-opsonized Burkholderia induced a significant respiratory burst by neutrophils compared to unopsonized bacteria, and neutrophil killing was prevented by inhibiting NADPH-oxidase. In summary, neutrophils can efficiently kill B. pseudomallei and B. thailandensis that possess a critical threshold of complement deposition, and the relative differences in their ability to resist surface opsonization may contribute to the distinct virulence phenotypes observed in vivo. PMID:23251706
Theansungnoen, Tinnakorn; Maijaroen, Surachai; Jangpromma, Nisachon; Yaraksa, Nualyai; Daduang, Sakda; Temsiripong, Theeranan; Daduang, Jureerut; Klaynongsruang, Sompong
2016-06-01
Known antimicrobial peptides KT2 and RT2 as well as the novel RP9 derived from the leukocyte extract of the freshwater crocodile (Crocodylus siamensis) were used to evaluate the ability in killing human cervical cancer cells. RP9 in the extract was purified by a combination of anion exchange column and reversed-phase HPLC, and its sequence was analyzed by mass spectrometry. The novel peptide could inhibit Gram-negative Vibrio cholerae (clinical isolation) and Gram-positive Bacillus pumilus TISTR 905, and its MIC values were 61.2 µM. From scanning electron microscopy, the peptide was seen to affect bacterial surfaces directly. KT2 and RT2, which are designed antimicrobial peptides using the C. siamensis Leucrocin I template, as well as RP9 were chemically synthesized for investigation of anticancer activity. By Sulforhodamine B colorimetric assay, these antimicrobial peptides could inhibit both HeLa and CaSki cancer cell lines. The IC50 values of KT2 and RT2 for HeLa and CaSki cells showed 28.7-53.4 and 17.3-30.8 µM, while those of RP9 were 126.2 and 168.3 µM, respectively. Additionally, the best candidate peptides KT2 and RT2 were used to determine the apoptotic induction on cancer cells by human apoptosis array assay. As a result, KT2 and RT2 were observed to induce apoptotic cell death in HeLa cells. Therefore, these results indicate that KT2 and RT2 with antimicrobial activity have a highly potent ability to kill human cervical cancer cells.
Ruchaud-Sparagano, Marie-Hélène; Mills, Ross; Scott, Jonathan; Simpson, A John
2014-10-01
Monophosphoryl lipid A (MPLA) is a lipopolysaccharides (LPS) derivative associated with neutrophil-dependent anti-inflammatory outcomes in animal models of sepsis. Little is known about the effect of MPLA on neutrophil function. This study sought to test the hypothesis that MPLA would reduce release of cytotoxic mediators from neutrophils without impairing bacterial clearance. Neutrophils were isolated from whole blood of healthy volunteers. The effects of MPLA and LPS on autologous serum-opsonised Pseudomonas aeruginosa killing by neutrophils and phagocytosis of autologous serum-opsonised zymosan were examined. Neutrophil oxidative burst, chemotaxis, enzyme and cytokine release as well as Toll-like receptor 4 (TLR4) expression were assessed following exposure to LPS or MPLA. LPS, but not MPLA, induced significant release of superoxide and myeloperoxidase from neutrophils. However, MPLA did not impair neutrophil capacity to ingest microbial particles and kill P. aeruginosa efficiently. MPLA was directly chemotactic for neutrophils, involving TLR4, p38 mitogen-activated protein kinase and tyrosine and alkaline phosphatases. LPS, but not MPLA, impaired N-formyl-methionyl-leucyl phenylalanine-directed migration of neutrophils, increased surface expression of TLR4, increased interleukin-8 release and strongly activated the myeloid differentiation primary response 88 pathway. Phosphoinositide 3-kinase inhibition significantly augmented IL-8 release from MPLA-treated neutrophils. The addition of MPLA to LPS-preincubated neutrophils led to a significant reduction in LPS-mediated superoxide release and TLR4 surface expression. Collectively, these findings suggest that MPLA directs efficient chemotaxis and bacterial killing in human neutrophils without inducing extracellular release of cytotoxic mediators and suggest that MPLA warrants further attention as a potential therapeutic in human sepsis.
Bilal, Hajira; Peleg, Anton Y; McIntosh, Michelle P; Styles, Ian K; Hirsch, Elizabeth B; Landersdorfer, Cornelia B; Bergen, Phillip J
2018-06-01
To identify the fosfomycin pharmacokinetic (PK)/pharmacodynamic (PD) index (fT>MIC, fAUC/MIC or fCmax/MIC) most closely correlated with activity against Pseudomonas aeruginosa and determine the PK/PD target associated with various extents of bacterial killing and the prevention of emergence of resistance. Dose fractionation was conducted over 24 h in a dynamic one-compartment in vitro PK/PD model utilizing P. aeruginosa ATCC 27853 and two MDR clinical isolates (CR 1005 and CW 7). In total, 35 different dosing regimens were examined across the three strains. Microbiological response was examined by log changes and population analysis profiles. A Hill-type Emax model was fitted to the killing effect data (expressed as the log10 ratio of the area under the cfu/mL curve for treated regimens versus controls). Bacterial killing of no more than ∼3 log10 cfu/mL was achieved irrespective of regimen. The fAUC/MIC was the PK/PD index most closely correlated with efficacy (R2 = 0.80). The fAUC/MIC targets required to achieve 1 and 2 log10 reductions in the area under the cfu/mL curve relative to growth control were 489 and 1024, respectively. No regimen was able to suppress the emergence of resistance, and near-complete replacement of susceptible with resistant subpopulations occurred with virtually all regimens. Bacterial killing for fosfomycin against P. aeruginosa was most closely associated with the fAUC/MIC. Suppression of fosfomycin-resistant subpopulations could not be achieved even with fosfomycin exposures well above those that can be safely achieved clinically.
Histophilus somni causes extracellular trap formation by bovine neutrophils and macrophages.
Hellenbrand, Katrina M; Forsythe, Katelyn M; Rivera-Rivas, Jose J; Czuprynski, Charles J; Aulik, Nicole A
2013-01-01
Histophilus somni (formerly Haemophilus somnus) is a Gram-negative pleomorphic coccobacillus that causes respiratory, reproductive, cardiac and neuronal diseases in cattle. H. somni is a member of the bovine respiratory disease complex that causes severe bronchopneumonia in cattle. Previously, it has been reported that bovine neutrophils and macrophages have limited ability to phagocytose and kill H. somni. Recently, it was discovered that bovine neutrophils and macrophages produce extracellular traps in response to Mannheimia haemolytica, another member of the bovine respiratory disease complex. In this study, we demonstrate that H. somni also causes extracellular trap production by bovine neutrophils in a dose- and time-dependent manner, which did not coincide with the release of lactate dehydrogenase, a marker for necrosis. Neutrophil extracellular traps were produced in response to outer membrane vesicles, but not lipooligosacchride alone. Using scanning electron microscopy and confocal microscopy, we observed H. somni cells trapped within a web-like structure. Further analyses demonstrated that bovine neutrophils trapped and killed H. somni in a DNA-dependent manner. Treatment of DNA extracellular traps with DNase I freed H. somni cells and diminished bacterial death. Treatment of bovine monocyte-derived macrophages with H. somni cells also caused macrophage extracellular trap formation. These findings suggest that extracellular traps may play a role in the host response to H. somni infection in cattle. Copyright © 2012 Elsevier Ltd. All rights reserved.
Loughlin, R; Gilmore, B F; McCarron, P A; Tunney, M M
2008-04-01
The aim of this study was to compare both the antimicrobial activity of terpinen-4-ol and tea tree oil (TTO) against clinical skin isolates of meticillin-resistant Staphylococcus aureus (MRSA) and coagulase-negative staphylococci (CoNS) and their toxicity against human fibroblast cells. Antimicrobial activity was compared by using broth microdilution and quantitative in vitro time-kill test methods. Terpinen-4-ol exhibited significantly greater bacteriostatic and bactericidal activity, as measured by minimum inhibitory and bactericidal concentrations, respectively, than TTO against both MRSA and CoNS isolates. Although not statistically significant, time-kill studies also clearly showed that terpinen-4-ol exhibited greater antimicrobial activity than TTO. Comparison of the toxicity of terpinen-4-ol and TTO against human fibroblasts revealed that neither agent, at the concentrations tested, were toxic over the 24-h test period. Terpinen-4-ol is a more potent antibacterial agent against MRSA and CoNS isolates than TTO with neither agent exhibiting toxicity to fibroblast cells at the concentrations tested. Terpinen-4-ol should be considered for inclusion as a single agent in products formulated for topical treatment of MRSA infection. However, further work would initially be required to ensure that resistance would not develop with the use of terpinen-4-ol as a single agent.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ilgu, Muslum
A detailed study was done of the neomycin-B RNA aptamer for determining its selectivity and binding ability to both neomycin– and kanamycin-class aminoglycosides. A novel method to increase drug concentrations in cells for more efficiently killing is described. To test the method, a bacterial model system was adopted and several small RNA molecules interacting with aminoglycosides were cloned downstream of T7 RNA polymerase promoter in an expression vector. Then, the growth analysis of E. coli expressing aptamers was observed for 12-hour period. Our analysis indicated that aptamers helped to increase the intracellular concentration of aminoglycosides thereby increasing their efficacy.
DNA extracellular traps are part of the immune repertoire of Periplaneta americana.
Nascimento, M T C; Silva, K P; Garcia, M C F; Medeiros, M N; Machado, E A; Nascimento, S B; Saraiva, E M
2018-07-01
Extracellular traps (ETs), web-like structures composed of DNA and histones, are released by innate immune cells in a wide range of organisms. ETs capture microorganisms, thereby avoiding their spread, and also concentrate antimicrobial molecules, which helps to kill microbes. Although vertebrate innate immune systems share homology with the insect immune system, ETosis have yet to be characterized in insects. Here, we report that the hemocytes of the hemimetabolous insect Periplaneta americana release ETs upon in vitro stimulation. We further discuss the relationship between ETs and nodulation and in controlling bacterial spread in vivo. Copyright © 2018 Elsevier Ltd. All rights reserved.
Xu, Qingwen; Li, Xi; Jin, Yingying; Sun, Lin; Ding, Xiaoxu; Liang, Lin; Wang, Lei; Nan, Kaihui; Ji, Jian; Chen, Hao; Wang, Bailiang
2017-12-14
Implant-associated bacterial infections pose serious medical and financial issues due to the colonization and proliferation of pathogens on the surface of the implant. The as-prepared traditional antibacterial surfaces can neither resist bacterial adhesion nor inhibit the development of biofilm over the long term. Herein, novel (montmorillonite/poly-l-lysine-gentamicin sulfate) 8 ((MMT/PLL-GS) 8 ) organic-inorganic hybrid multilayer films were developed to combine enzymatic degradation PLL for on-demand self-defense antibiotics release. Small molecule GS was loaded into the multilayer films during self-assembly and the multilayer films showed pH-dependent and linear growth behavior. The chymotrypsin- (CMS) and bacterial infections-responsive film degradation led to the peeling of the films and GS release. Enzyme-responsive GS release exhibited CMS concentration dependence as measured by the size of the inhibition zone and SEM images. Notably, the obtained antibacterial films showed highly efficient bactericidal activity which killed more than 99.9% of S. aureus in 12 h. Even after 3 d of incubation in S. aureus, E. coli or S. epidermidis solutions, the multilayer films exhibited inhibition zones of more than 1.5 mm in size. Both in vitro and in vivo antibacterial tests indicated good cell compatibility, and anti-inflammatory, and long-term bacterial anti-adhesion and biofilm inhibition properties.
A Sequential Model of Host Cell Killing and Phagocytosis by Entamoeba histolytica
Sateriale, Adam; Huston, Christopher D.
2011-01-01
The protozoan parasite Entamoeba histolytica is responsible for invasive intestinal and extraintestinal amebiasis. The virulence of Entamoeba histolytica is strongly correlated with the parasite's capacity to effectively kill and phagocytose host cells. The process by which host cells are killed and phagocytosed follows a sequential model of adherence, cell killing, initiation of phagocytosis, and engulfment. This paper presents recent advances in the cytolytic and phagocytic processes of Entamoeba histolytica in context of the sequential model. PMID:21331284
Pandya, Kalgi D; Palomo-Caturla, Isabel; Walker, Justin A; K Sandilya, Vijay; Zhong, Zhijiu; Alugupalli, Kishore R
2018-06-15
T cell-dependent B cell responses typically develop in germinal centers. Abs generated during such responses are isotype switched and have a high affinity to the Ag because of somatic hypermutation of Ab genes. B cell responses to purified polysaccharides are T cell independent and do not result in the formation of bona fide germinal centers, and the dominant Ab isotype produced during such responses is IgM with very few or no somatic mutations. Activation-induced cytidine deaminase (AID) is required for both somatic hypermutation and Ig isotype switching in humans and mice. To test the extent to which unmutated polysaccharide-specific IgM confers protective immunity, we immunized wildtype and AID -/- mice with either heat-killed Salmonella enterica serovar Typhi ( S. Typhi) or purified Vi polysaccharide (ViPS). We found that wildtype and AID -/- mice immunized with heat-killed S. Typhi generated similar anti-ViPS IgM responses. As expected, wildtype, but not AID -/- mice generated ViPS-specific IgG. However, the differences in the Ab-dependent killing of S. Typhi mediated by the classical pathway of complement activation were not statistically significant. In ViPS-immunized wildtype and AID -/- mice, the ViPS-specific IgM levels and S. Typhi bactericidal Ab titers at 7 but not at 28 d postimmunization were also comparable. To test the protective immunity conferred by these immunizations, mice were challenged with a chimeric S. Typhimurium strain expressing ViPS. Compared with their naive counterparts, immunized wildtype and AID -/- mice exhibited significantly reduced bacterial burden regardless of the route of infection. These data indicate that an unmutated IgM response to ViPS contributes to protective immunity to S. Typhi. Copyright © 2018 by The American Association of Immunologists, Inc.
Bacterial adhesion forces to Ag-impregnated contact lens cases and transmission to contact lenses.
Qu, Wenwen; Busscher, Henk J; van der Mei, Henny C; Hooymans, Johanna M M
2013-03-01
To measure adhesion forces of Pseudomonas aeruginosa, Staphylococcus aureus, and Serratia marcescens to a rigid contact lens (CL), standard polypropylene, and Ag-impregnated lens cases using atomic force microscopy and determine bacterial transmission from lens case to CL. Adhesion forces of bacterial strains to Ag-impregnated and polypropylene lens cases and a rigid CL were measured using atomic force microscopy. Adhesion forces were used to calculate Weibull distributions, from which transmission probabilities from lens case to CL were derived. Transmission probabilities were compared with actual transmission of viable bacteria from a lens case to the CL in 0.9% NaCl and in an antimicrobial lens care solution. Bacterial transmission probabilities from polypropylene lens cases based on force analysis coincided well for all strains with actual transmission in 0.9% NaCl. Bacterial adhesion forces on Ag-impregnated lens cases were much smaller than that on polypropylene and CLs, yielding a high probability of transmission. Comparison with actual bacterial transmission indicated bacterial killing due to Ag ions during colony-forming unit transmission from an Ag-impregnated lens case, especially for P. aeruginosa. Transmission of viable bacteria from Ag-impregnated lens cases could be further decreased by use of an antimicrobial lens care solution instead of 0.9% NaCl. Bacterial transmission probabilities are higher from Ag-impregnated lens cases than from polypropylene lens cases because of small adhesion forces, but this is compensated for by enhanced bacterial killing due to Ag impregnation, especially when in combination with an antimicrobial lens care solution. This calls for a balanced combination of antimicrobial lens care solutions and surface properties of a lens case and CL.
DNA-crosslinker cisplatin eradicates bacterial persister cells.
Chowdhury, Nityananda; Wood, Thammajun L; Martínez-Vázquez, Mariano; García-Contreras, Rodolfo; Wood, Thomas K
2016-09-01
For all bacteria, nearly every antimicrobial fails since a subpopulation of the bacteria enter a dormant state known as persistence, in which the antimicrobials are rendered ineffective due to the lack of metabolism. This tolerance to antibiotics makes microbial infections the leading cause of death worldwide and makes treating chronic infections, including those of wounds problematic. Here, we show that the FDA-approved anti-cancer drug cisplatin [cis-diamminodichloroplatinum(II)], which mainly forms intra-strand DNA crosslinks, eradicates Escherichia coli K-12 persister cells through a growth-independent mechanism. Additionally, cisplatin is more effective at killing Pseudomonas aeruginosa persister cells than mitomycin C, which forms inter-strand DNA crosslinks, and cisplatin eradicates the persister cells of several pathogens including enterohemorrhagic E. coli, Staphylococcus aureus, and P. aeruginosa. Cisplatin was also highly effective against clinical isolates of S. aureus and P. aeruginosa. Therefore, cisplatin has broad spectrum activity against persister cells. Biotechnol. Bioeng. 2016;113: 1984-1992. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Lim, Tze-Peng; Ledesma, Kimberly R.; Chang, Kai-Tai; Hou, Jing-Guo; Kwa, Andrea L.; Nikolaou, Michael; Quinn, John P.; Prince, Randall A.; Tam, Vincent H.
2008-01-01
Treatment of multidrug-resistant bacterial infections poses a therapeutic challenge to clinicians; combination therapy is often the only viable option for multidrug-resistant infections. A quantitative method was developed to assess the combined killing abilities of antimicrobial agents. Time-kill studies (TKS) were performed using a multidrug-resistant clinical isolate of Acinetobacter baumannii with escalating concentrations of cefepime (0 to 512 mg/liter), amikacin (0 to 256 mg/liter), and levofloxacin (0 to 64 mg/liter). The bacterial burden data in single and combined (two of the three agents with clinically achievable concentrations in serum) TKS at 24 h were mathematically modeled to provide an objective basis for comparing various antimicrobial agent combinations. Synergy and antagonism were defined as interaction indices of <1 and >1, respectively. A hollow-fiber infection model (HFIM) simulating various clinical (fluctuating concentrations over time) dosing exposures was used to selectively validate our quantitative assessment of the combined killing effect. Model fits in all single-agent TKS were satisfactory (r2 > 0.97). An enhanced combined overall killing effect was seen in the cefepime-amikacin combination (interactive index, 0.698; 95% confidence interval [CI], 0.675 to 0.722) and the cefepime-levofloxacin combination (interactive index, 0.929; 95% CI, 0.903 to 0.956), but no significant difference in the combined overall killing effect for the levofloxacin-amikacin combination was observed (interactive index, 0.994; 95% CI, 0.982 to 1.005). These assessments were consistent with observations in HFIM validation studies. Our method could be used to objectively rank the combined killing activities of two antimicrobial agents when used together against a multidrug-resistant A. baumannii isolate. It may offer better insights into the effectiveness of various antimicrobial combinations and warrants further investigations. PMID:18505848
Peacock, J. H.; Stephens, T. C.
1978-01-01
The influence of anaesthetics on the in vivo response of B16 melanoma to melphalan was studied using an in vitro cell-survival assay. Three anaesthetics were used, Saffan (Althesin) Sagatal (Nembutal) and Hypnorm. When Saffan was administered to tumour-bearing animals before melphalan there was a significant increase in tumour-cell kill. This effect was not observed with Sagatal or Hypnorm. Maximum increase in tumour-cell kill was achieved when Saffan was administered about 1 h before melphalan, and was dependent on Saffan dose. Clonogenic tumour-cell repopulation after melphalan was rapid (TD - 1 day) and the rate was similar from 2 levels of cell kill. When Saffan was combined with melphalan the repopulation rate was the same as with melphalan alone, and the increased cell kill was reflected in increased growth delay. The in vitro response of B16 melanoma cells to melphalan was unaltered by pretreatment with, or simultaneous exposure to Saffan. The results suggest that the mechanism of the enhanced cell kill in vivo is probably due to an indirect systemic effect, rather than a direct effect on the tumour cells. PMID:743490
Al-Adham, Ibrahim S I; Ashour, Hana; Al-Kaissi, Elham; Khalil, Enam; Kierans, Martin; Collier, Phillip J
2013-09-15
Microemulsions are physically stable oil/water clear dispersions, spontaneously formed and thermodynamically stable. They are composed in most cases of water, oil, surfactant and cosurfactant. Microemulsions are stable, self-preserving antimicrobial agents in their own right. The observed levels of antimicrobial activity associated with microemulsions may be due to the direct effect of the microemulsions themselves on the bacterial cytoplasmic membrane. The aim of this work is to study the growth behaviour of different microbes in presence of certain prepared physically stable microemulsion formulae over extended periods of time. An experiment was designed to study the kinetics of killing of a microemulsion preparation (17.3% Tween-80, 8.5% n-pentanol, 5% isopropyl myristate and 69.2% sterile distilled water) against selected test microorganisms (Candida albicans, Aspergillus niger, Schizosaccharomyces pombe and Rhodotorula spp.). Secondly, an experiment was designed to study the effects of the microemulsion preparation on the cytoplasmic membrane structure and function of selected fungal species by observation of 260 nm component leakage. Finally, the effects of the microemulsion on the fungal membrane structure and function using S. pombe were studied using transmission electron microscopy. The results showed that the prepared microemulsions are stable, effective antimicrobial systems with effective killing rates against C. albicans, A. niger, S. pombe and Rhodotorula spp. The results indicate a proposed mechanism of action of significant anti-membrane activity, resulting in the gross disturbance and dysfunction of the cytoplasmic membrane structure which is followed by cell wall modifications, cytoplasmic coagulation, disruption of intracellular metabolism and cell death. Copyright © 2013 Elsevier B.V. All rights reserved.
Yang, Hai-Fei; Pan, Ai-Jun; Hu, Li-Fen; Liu, Yan-Yan; Cheng, Jun; Ye, Ying; Li, Jia-Bin
2017-02-01
Enterobacter cloacae is a well-recognized nosocomial pathogen. Use of a rapid, in vivo infection model for E. cloacae that can determine the efficacy of antibiotic therapies could help facilitate screening for new treatments. Nonmammalian model systems of infection, such as Galleria mellonella, have significant logistical and ethical advantages over mammalian models. We utilized G. mellonella larvae to determine the utility of this infection model to study antibacterial efficacy. G. mellonella killing with heat-killed or live clinical isolates (E. cloacae GN1059 and GN0791) was tested. We also investigated the effect of postinoculation incubation temperature on the survival of infected larvae. The protection of administration of antibiotics to infected larvae was investigated. Finally, we determined the G. mellonella hemolymph burden of E. cloacae after administration of different antibiotics. With live bacterial inocula, G. mellonella killing was significantly dependent on the number of E. cloacae cells injected in a dose-dependent manner. Further, we observed that survival was reduced with increasing the postinoculation temperature. Treatment of a lethal E. cloacae infection with antibiotics that had in vitro activity significantly prolonged the survival of larvae compared with treatment with antibiotics to which the bacteria were resistant. The therapeutic benefit arising from administration of antibiotic correlated with a reduced burden of E. cloacae cells in the hemolymph. The G. mellonella infection model has the potential to be used to facilitate the in vivo study of host-pathogen interactions in E. cloacae and the efficacy of antibacterial agents. Copyright © 2014. Published by Elsevier B.V.
Nontypeable Haemophilus influenzae initiates formation of neutrophil extracellular traps.
Juneau, Richard A; Pang, Bing; Weimer, Kristin E D; Armbruster, Chelsie E; Swords, W Edward
2011-01-01
Nontypeable Haemophilus influenzae (NTHI) is a leading cause of otitis media infections, which are often chronic and/or recurrent in nature. NTHI and other bacterial species persist in vivo within biofilms during otitis media and other persistent infections. These biofilms have a significant host component that includes neutrophil extracellular traps (NETs). These NETs do not mediate clearance of NTHI, which survives within NET structures by means of specific subpopulations of lipooligosaccharides on the bacterial surface that are determinants of biofilm formation in vitro. In this study, the ability of NTHI and NTHI components to initiate NET formation was examined using an in vitro model system. Both viable and nonviable NTHI strains were shown to promote NET formation, as did preparations of bacterial DNA, outer membrane proteins, and lipooligosaccharide (endotoxin). However, only endotoxin from a parental strain of NTHI exhibited equivalent potency in NET formation to that of NTHI. Additional studies showed that NTHI entrapped within NET structures is resistant to both extracellular killing within NETs and phagocytic killing by incoming neutrophils, due to oligosaccharide moieties within the lipooligosaccharides. Thus, we concluded that NTHI elicits NET formation by means of multiple pathogen-associated molecular patterns (most notably endotoxin) and is highly resistant to killing within NET structures. These data support the conclusion that, for NTHI, formation of NET structures may be a persistence determinant by providing a niche within the middle-ear chamber.
Gram-Negative Bacterial Wound Infections
2016-07-01
coli, K. pneumoniae and P. aeruginosa, it showed antibacterial activity against all A. baumannii tested strains, including MRSN and non-MRSN isolates...models showed that Ga-PPIX has significant antibacterial activity by inhibiting the metabolism of iron A. baumannii could scavenge from host’s...concentration significantly reduced bacterial viability, while 40 µg/ml killed all bacteria after 24-h incubation. The antibacterial activity of Ga-PPIX
Brüssow, Harald
2007-08-01
Bacteriophages and protists are major causes of bacterial mortality. Genomics suggests that phages evolved well before eukaryotic protists. Bacteria were thus initially only confronted with phage predators. When protists evolved, bacteria were caught between two types of predators. One successful antigrazing strategy of bacteria was the elaboration of toxins that would kill the grazer. The released cell content would feed bystander bacteria. I suggest here that, to fight grazing protists, bacteria teamed up with those phage predators that concluded at least a temporary truce with them in the form of lysogeny. Lysogeny was perhaps initially a resource management strategy of phages that could not maintain infection chains. Subsequently, lysogeny might have evolved into a bacterium-prophage coalition attacking protists, which became a food source for them. When protists evolved into multicellular animals, the lysogenic bacteria tracked their evolving food source. This hypothesis could explain why a frequent scheme of bacterial pathogenicity is the survival in phagocytes, why a significant fraction of bacterial pathogens have prophage-encoded virulence genes, and why some virulence factors of animal pathogens are active against unicellular eukaryotes. Bacterial pathogenicity might thus be one playing option of the stone-scissor-paper game played between phages-bacteria-protists, with humans getting into the crossfire.
Hu, Xuefeng; Neoh, Koon-Gee; Shi, Zhilong; Kang, En-Tang; Poh, Chyekhoon; Wang, Wilson
2010-12-01
The long-term success of orthopedic implants may be compromised by defective osseointegration and bacterial infection. An effective approach to minimize implant failure would be to modify the surface of the implant to make it habitable for bone-forming cells and anti-infective at the same time. In this in vitro study, the surfaces of titanium (Ti) substrates were functionalized by first covalently grafting either dopamine followed by carboxymethyl chitosan (CMCS) or hyaluronic acid-catechol (HAC). Vascular endothelial growth factor (VEGF) was then conjugated to the polysaccharide-grafted surface. Antibacterial assay with Staphylococcus aureus (S. aureus) showed that the polysaccharide-modified substrates significantly decrease bacterial adhesion. The CMCS-functionalized Ti demonstrated better antibacterial property than the HAC-functionalized Ti since CMCS is bactericidal while HA only inhibits the adhesion of bacteria without killing them. Osteoblast attachment, as well as alkaline phosphatase (ALP) activity and calcium deposition were enhanced by the immobilized VEGF on the polysaccharide-grafted Ti. Thus, Ti substrates modified with polysaccharides conjugated with VEGF can promote osteoblast functions and concurrently reduce bacterial adhesion. Since VEGF is also known to enhance angiogenesis, the VEGF-polysaccharide functionalized substrates will have promising applications in the orthopedic field. Copyright © 2010 Elsevier Ltd. All rights reserved.
Population cycles and species diversity in dynamic Kill-the-Winner model of microbial ecosystems
NASA Astrophysics Data System (ADS)
Maslov, Sergei; Sneppen, Kim
2017-01-01
Determinants of species diversity in microbial ecosystems remain poorly understood. Bacteriophages are believed to increase the diversity by the virtue of Kill-the-Winner infection bias preventing the fastest growing organism from taking over the community. Phage-bacterial ecosystems are traditionally described in terms of the static equilibrium state of Lotka-Volterra equations in which bacterial growth is exactly balanced by losses due to phage predation. Here we consider a more dynamic scenario in which phage infections give rise to abrupt and severe collapses of bacterial populations whenever they become sufficiently large. As a consequence, each bacterial population in our model follows cyclic dynamics of exponential growth interrupted by sudden declines. The total population of all species fluctuates around the carrying capacity of the environment, making these cycles cryptic. While a subset of the slowest growing species in our model is always driven towards extinction, in general the overall ecosystem diversity remains high. The number of surviving species is inversely proportional to the variation in their growth rates but increases with the frequency and severity of phage-induced collapses. Thus counter-intuitively we predict that microbial communities exposed to more violent perturbations should have higher diversity.
Population cycles and species diversity in dynamic Kill-the-Winner model of microbial ecosystems
Maslov, Sergei; Sneppen, Kim
2017-01-01
Determinants of species diversity in microbial ecosystems remain poorly understood. Bacteriophages are believed to increase the diversity by the virtue of Kill-the-Winner infection bias preventing the fastest growing organism from taking over the community. Phage-bacterial ecosystems are traditionally described in terms of the static equilibrium state of Lotka-Volterra equations in which bacterial growth is exactly balanced by losses due to phage predation. Here we consider a more dynamic scenario in which phage infections give rise to abrupt and severe collapses of bacterial populations whenever they become sufficiently large. As a consequence, each bacterial population in our model follows cyclic dynamics of exponential growth interrupted by sudden declines. The total population of all species fluctuates around the carrying capacity of the environment, making these cycles cryptic. While a subset of the slowest growing species in our model is always driven towards extinction, in general the overall ecosystem diversity remains high. The number of surviving species is inversely proportional to the variation in their growth rates but increases with the frequency and severity of phage-induced collapses. Thus counter-intuitively we predict that microbial communities exposed to more violent perturbations should have higher diversity. PMID:28051127
A network-based approach for resistance transmission in bacterial populations.
Gehring, Ronette; Schumm, Phillip; Youssef, Mina; Scoglio, Caterina
2010-01-07
Horizontal transfer of mobile genetic elements (conjugation) is an important mechanism whereby resistance is spread through bacterial populations. The aim of our work is to develop a mathematical model that quantitatively describes this process, and to use this model to optimize antimicrobial dosage regimens to minimize resistance development. The bacterial population is conceptualized as a compartmental mathematical model to describe changes in susceptible, resistant, and transconjugant bacteria over time. This model is combined with a compartmental pharmacokinetic model to explore the effect of different plasma drug concentration profiles. An agent-based simulation tool is used to account for resistance transfer occurring when two bacteria are adjacent or in close proximity. In addition, a non-linear programming optimal control problem is introduced to minimize bacterial populations as well as the drug dose. Simulation and optimization results suggest that the rapid death of susceptible individuals in the population is pivotal in minimizing the number of transconjugants in a population. This supports the use of potent antimicrobials that rapidly kill susceptible individuals and development of dosage regimens that maintain effective antimicrobial drug concentrations for as long as needed to kill off the susceptible population. Suggestions are made for experiments to test the hypotheses generated by these simulations.
In vitro antibacterial action of Tetraclean, MTAD and five experimental irrigation solutions.
Pappen, F G; Shen, Y; Qian, W; Leonardo, M R; Giardino, L; Haapasalo, M
2010-06-01
To investigate the antibacterial effect of Tetraclean, MTAD and five experimental irrigants using both direct exposure test with planktonic cultures and mixed-species in vitro biofilm model. Tetraclean, MTAD and five experimental solutions that were modifications of existing formulae including MTAD + 0.01% cetrimide (CTR), MTAD + 0.1% CTR, MTAC-1 (Tween 80 replaced by 0.01% CTR in MTAD), MTAC-2 (Tween 80 replaced by 0.1% CTR) and MTAD-D (MTAD without the Tween 80 and no CTR added) were used as disinfectants in the experiments. In the direct exposure test, a suspension of Enterococcus faecalis was mixed with each of the solutions. After 0.5, 1, 3 and 10 min, an inactivator was added and the number of surviving bacteria was calculated. A mixed-species biofilm from subgingival plaque bacteria was grown in brain heart infusion broth in anaerobic conditions on synthetic hydroxyapatite discs. Two-week-old biofilms were exposed to the solutions for 0.5, 1 and 3 min. The samples were observed by confocal laser scanning microscopy after bacterial viability staining. The scans were quantitatively analysed, and the volume of killed cells of all cells was calculated for each medicament. Tetraclean and MTAC-2 (0.1% CTR) killed planktonic E. faecalis in <30 s. Complete killing of bacteria required 1 min by MTAC-1, 3 min by MTAD + 0.1% CTR and 10 min by MTAD, MTAD-D and MTAD + 0.01% CTR. In the biofilm test, there were significant differences in microbial killing between the different solutions and times of exposure (P < 0.005). MTAC-2 showed the best performance, killing 71% of the biofilm bacteria in 3 min, followed by MTAC-1 and Tetraclean. MTAD and the three MTAD modifications demonstrated the lowest antibacterial activity. Tetraclean was more effective than MTAD against E. faecalis in planktonic culture and in mixed-species in vitro biofilm. CTR improved the antimicrobial properties of the solutions, whereas Tween 80 seemed to have a neutral or negative impact on their antimicrobial effectiveness.
Ebert, D; Weisser, W W
1997-01-01
Many viral, bacterial and protozoan parasites of invertebrates first propagate inside their host without releasing any transmission stages and then kill their host to release all transmission stages at once. Life history and the evolution of virulence of these obligately killing parasites are modelled, assuming that within-host growth is density dependent. We find that the parasite should kill the host when its per capita growth rate falls to the level of the host mortality rate. The parasite should kill its host later when the carrying capacity, K, is higher, but should kill it earlier when the parasite-independent host mortality increases or when the parasite has a higher birth rate. When K(t), for parasite growth, is not constant over the duration of an infection, but increases with time, the parasite should kill the host around the stage when the growth rate of the carrying capacity decelerates strongly. In case that K(t) relates to host body size, this deceleration in growth is around host maturation. PMID:9263465
NASA Astrophysics Data System (ADS)
Han, Soo; Ji, Seungmuk; Abdullah, Abdullah; Kim, Duckil; Lim, Hyuneui; Lee, Donghyun
2018-01-01
Bacterial biofilm formation on optical devices such as contact lenses, optical glasses, endoscopic devices, and microscopic slides and lenses are major concerns in the field of medicine and biomedical engineering. To solve these problems, here we present the first report of superhydrophilic transparent nanopillar-structured surfaces with bactericidal properties. To construct bactericidal surfaces, we imitated a topological mechanism found in nature in which nanopillar-structured surfaces cause a mechanical disruption of the outer cell membranes of bacteria, resulting in bacterial cell death. We used nanosphere lithography to fabricate nanopillars with various sharpnesses and heights on a quartz substrate. Water contact angle and light reflectance measurements revealed superhydrophilic, antifogging and antireflective properties, which are important for use in optical devices. To determine bactericidal efficiency, the fabricated surfaces were incubated and tested against two Gram-negative bacteria associated with biofilm formation and various diseases in humans, Pseudomonas aeruginosa and Escherichia coli. The highest bactericidal activity was achieved with nanopillars that measured 300 nm in height and 10 nm in apex diameter. Quartz substrates patterned with such nanopillars killed ∼38,000 P. aeruginosa and ∼27,000 E. coli cells cm-2 min-1, respectively. Thus, the newly designed nanopillar-structured bactericidal surfaces are suitable for use in the development of superhydrophilic and transparent optical devices.
Abdelbaqi, Suha; Deslouches, Berthony; Steckbeck, Jonathan; Montelaro, Ronald; Reed, Douglas S
2016-02-01
Broad-spectrum antimicrobials are needed to effectively treat patients infected in the event of a pandemic or intentional release of a pathogen prior to confirmation of the pathogen's identity. Engineered cationic antimicrobial peptides (eCAPs) display activity against a number of bacterial pathogens including multi-drug-resistant strains. Two lead eCAPs, WLBU2 and WR12, were compared with human cathelicidin (LL-37) against three highly pathogenic bacteria: Francisella tularensis, Yersinia pestis and Burkholderia pseudomallei. Both WLBU2 and WR12 demonstrated bactericidal activity greater than that of LL-37, particularly against F. tularensis and Y. pestis. Only WLBU2 had bactericidal activity against B. pseudomallei. WLBU2, WR12 and LL-37 were all able to inhibit the growth of the three bacteria in vitro. Because these bacteria can be facultative intracellular pathogens, preferentially infecting macrophages and dendritic cells, we evaluated the activity of WLBU2 against F. tularensis in an ex vivo infection model with J774 cells, a mouse macrophage cell line. In that model WLBU2 was able to achieve greater than 50% killing of F. tularensis at a concentration of 12.5 μM. These data show the therapeutic potential of eCAPs, particularly WLBU2, as a broad-spectrum antimicrobial for treating highly pathogenic bacterial infections.
Lee, Wee Xian; Basri, Dayang Fredalina; Ghazali, Ahmad Rohi
2017-03-17
The antibacterial activity of pterostilbene in combination with gentamicin against six strains of Gram-positive and Gram-negative bacteria were investigated. The minimum inhibitory concentration and minimum bactericidal concentration of pterostilbene were determined using microdilution technique whereas the synergistic antibacterial activities of pterostilbene in combination with gentamicin were assessed using checkerboard assay and time-kill kinetic study. Results of the present study showed that the combination effects of pterostilbene with gentamicin were synergistic (FIC index < 0.5) against three susceptible bacteria strains: Staphylococcus aureus ATCC 25923 , Escherichia coli O157 and Pseudomonas aeruginosa 15442 . However, the time-kill study showed that the interaction was indifference which did not significantly differ from the gentamicin treatment. Furthermore, time-kill study showed that the growth of the tested bacteria was completely attenuated with 2 to 8 h treatment with 0.5 × MIC of pterostilbene and gentamicin. The identified combinations could be of effective therapeutic value against bacterial infections. These findings have potential implications in delaying the development of bacterial resistance as the antibacterial effect was achieved with the lower concentrations of antibacterial agents.
Omar, Ghada S; Wilson, Michael; Nair, Sean P
2008-07-01
The increase in resistance to antibiotics among disease-causing bacteria necessitates the development of alternative antimicrobial approaches such as the use of light-activated antimicrobial agents (LAAAs). Light of an appropriate wavelength activates the LAAA to produce cytotoxic species which can then cause bacterial cell death via loss of membrane integrity, lipid peroxidation, the inactivation of essential enzymes, and/or exertion of mutagenic effects due to DNA modification. In this study, the effect of the LAAA indocyanine green excited with high or low intensity light (808 nm) from a near-infrared laser (NIR) on the viability of Staphylococcus aureus, Streptococcus pyogenes and Pseudomonas aeruginosa was investigated. All species were susceptible to killing by the LAAA, the bactericidal effect being dependent on both the concentration of indocyanine green and the light dose. Indocyanine green photosensitization using both high (1.37 W cm(-2)) and low (0.048 W cm(-2)) intensity NIR laser light was able to achieve reductions of 5.6 log10 (>99.99%) and 6.8 log10 (>99.99%) in the viable counts of Staph. aureus and Strep. pyogenes (using starting concentrations of 106-107 CFU ml(-1)). Kills of 99.99% were obtained for P. aeruginosa (initial concentration 108-109 CFU ml(-1)) photosensitized by the high intensity light (1.37 W cm(-2)); while a kill of 80% was achieved using low intensity irradiation (0.07 W cm(-2)). The effects of L-tryptophan (a singlet oxygen scavenger) and deuterium oxide (as an enhancer of the life span of singlet oxygen) on the survival of Staph. aureus was also studied. L-tryptophan reduced the proportion of Staph. aureus killed; whereas deuterium oxide increased the proportion killed suggesting that singlet oxygen was involved in the killing of the bacteria. These findings imply that indocyanine green in combination with light from a near-infrared laser may be an effective means of eradicating bacteria from wounds and burns.
Development of sequence-specific antimicrobials based on programmable CRISPR-Cas nucleases
Bikard, David; Euler, Chad; Jiang, Wenyan; Nussenzweig, Philip M.; Goldberg, Gregory W.; Duportet, Xavier; Fischetti, Vincent A.; Marraffini, Luciano A.
2014-01-01
Antibiotics target conserved bacterial cellular pathways or growth functions and therefore cannot selectively kill specific members of a complex microbial population. Here, we develop programmable, sequence-specific antimicrobials using the RNA-guided nuclease Cas91, 2 delivered by a bacteriophage. We show that Cas9 re-programmed to target virulence genes kills virulent, but not avirulent, Staphylococcus aureus. Re-programming the nuclease to target antibiotic resistance genes destroys staphylococcal plasmids that harbor antibiotic resistance genes3, 4 and immunizes avirulent staphylococci to prevent the spread of plasmid-borne resistance genes. We also demonstrate the approach in vivo, showing its efficacy against S. aureus in a mouse skin colonization model. This new technology creates opportunities to manipulate complex bacterial populations in a sequence-specific manner. PMID:25282355
Effects of hyperbaric oxygen on Pseudomonas aeruginosa susceptibility to imipenem and macrophages.
Lima, Flavia Luna; Joazeiro, Paulo Pinto; Lancellotti, Marcelo; de Hollanda, Luciana Maria; de Araújo Lima, Bruna; Linares, Edlaine; Augusto, Ohara; Brocchi, Marcelo; Giorgio, Selma
2015-01-01
The seriousness to treat burn wounds infected with Pseudomonas aeruginosa led us to examine whether the effect of the carbapenem antibiotic imipenem is enhanced by hyperbaric oxygen (HBO). The effects of HBO (100% O2, 3 ATA, 5 h) in combination with imipenen on bacterial counts of six isolates of P. aeruginosa and bacterial ultrastructure were investigated. Infected macrophages were exposed to HBO (100% O2, 3 ATA, 90 min) and the production of reactive oxygen species monitored. HBO enhanced the effects of imipenen. HBO increased superoxide anion production by macrophages and likely kills bacteria by oxidative mechanisms. HBO in combination with imipenem can be used to kill P. aeruginosa in vitro and such treatment may be beneficial for the patients with injuries containing the P. aeruginosa.
NASA Astrophysics Data System (ADS)
Liu, Shijie; Qiao, Shenglin; Li, Lili; Qi, Guobin; Lin, Yaoxin; Qiao, Zengying; Wang, Hao; Shao, Chen
2015-12-01
Urinary tract infections are typical bacterial infections which result in a number of economic burdens. With increasing antibiotic resistance, it is urgent that new approaches are explored that can eliminate pathogenic bacteria without inducing drug resistance. Antimicrobial photodynamic therapy (PDT) is a new promising tactic. It is a gentle in situ photochemical reaction in which a photosensitizer (PS) generates reactive oxygen species (ROS) under laser irradiation. In this work, we have demonstrated Chlorin e6 (Ce6) encapsulated charge-conversion polymeric nanoparticles (NPs) for efficiently targeting and killing pathogenic bacteria in a weakly acidic urinary tract infection environment. Owing to the surface charge conversion of NPs in an acidic environment, the NPs exhibited enhanced recognition for Gram-positive (ex. S. aureus) and Gram-negative (ex. E. coli) bacteria due to the charge interaction. Also, those NPs showed significant antibacterial efficacy in vitro with low cytotoxicity. The MIC value of NPs to E. coli is 17.91 μg ml-1, compared with the free Ce6 value of 29.85 μg ml-1. Finally, a mouse acute cystitis model was used to assess the photodynamic therapy effects in urinary tract infections. A significant decline (P < 0.05) in bacterial cells between NPs and free Ce6 occurred in urine after photodynamic therapy treatment. And the plated counting results revealed a remarkable bacterial cells drop (P < 0.05) in the sacrificed bladder tissue. Above all, this nanotechnology strategy opens a new door for the treatment of urinary tract infections with minimal side effects.
Phytoplankton and bacterial community structures and their interaction during red-tide phenomena
NASA Astrophysics Data System (ADS)
Ismail, Mona Mohamed; Ibrahim, Hassan Abd Allah
2017-09-01
Phytoplankton and bacteria diversity were studied before, during and after red tide phenomena during spring season 2015 in the Eastern Harbour (E.H.) of Alexandria, Egypt. Fifty five species of phytoplankton were identified and represented different distinct classes "Bacillariophyceae; Dinophyceae, Chlorophyceae, Cyanophyceae and Eugelenophyceae". Also, Diatom formed the most dominant group. The average number of the phytoplankton density varied from 4.8 × 104 to 1.1 × 106 cell l-1 during the study period and Skeletonema costatum was the agent causing the red tide. The existence percentages of bacteria ranged from 2.6 to 17.9% on all media tested. The bacterial isolates on the nutrient agar medium represented the highest existence with a total percentage of 43.6%, followed by MSA medium (25.7%), while the lowest percentage was for the AA medium at 7.8%. However, twelve isolates were selected as representative for bacterial community during study interval. Based on the morphological, biochemical, physiological and enzymatic characteristics, the bacterial strains were described. Depending on the 16S rDNA gene sequence, three common antagonists were aligned as: Vibrio toranzoniae strain Vb 10.8, Ruegeria pelagia strain NBRC 102038 and Psychrobacter adeliensis strain DSM 15333. The interaction between these bacteria and S. costatum was studied. The growth of S. costatum was significantly lower whenever each bacterium was present as compared to axenic culture. More specifically, 30% (v/v) of the all tested bacteria showed the strongest algicidal activities, as all S. costatum cells were killed after two days. 10% of R. pelagia and P. adeliensis also showed significant algicidal activities within six days.
Liu, Shijie; Qiao, Shenglin; Li, Lili; Qi, Guobin; Lin, Yaoxin; Qiao, Zengying; Wang, Hao; Shao, Chen
2015-12-11
Urinary tract infections are typical bacterial infections which result in a number of economic burdens. With increasing antibiotic resistance, it is urgent that new approaches are explored that can eliminate pathogenic bacteria without inducing drug resistance. Antimicrobial photodynamic therapy (PDT) is a new promising tactic. It is a gentle in situ photochemical reaction in which a photosensitizer (PS) generates reactive oxygen species (ROS) under laser irradiation. In this work, we have demonstrated Chlorin e6 (Ce6) encapsulated charge-conversion polymeric nanoparticles (NPs) for efficiently targeting and killing pathogenic bacteria in a weakly acidic urinary tract infection environment. Owing to the surface charge conversion of NPs in an acidic environment, the NPs exhibited enhanced recognition for Gram-positive (ex. S. aureus) and Gram-negative (ex. E. coli) bacteria due to the charge interaction. Also, those NPs showed significant antibacterial efficacy in vitro with low cytotoxicity. The MIC value of NPs to E. coli is 17.91 μg ml(-1), compared with the free Ce6 value of 29.85 μg ml(-1). Finally, a mouse acute cystitis model was used to assess the photodynamic therapy effects in urinary tract infections. A significant decline (P < 0.05) in bacterial cells between NPs and free Ce6 occurred in urine after photodynamic therapy treatment. And the plated counting results revealed a remarkable bacterial cells drop (P < 0.05) in the sacrificed bladder tissue. Above all, this nanotechnology strategy opens a new door for the treatment of urinary tract infections with minimal side effects.
Hiding in plain sight: immune evasion by the staphylococcal protein SdrE.
Herr, Andrew B; Thorman, Alexander W
2017-05-10
The human immune system is responsible for identification and destruction of invader cells, such as the bacterial pathogen Staphylococcus aureus In response, S. aureus brings to the fight a large number of virulence factors, including several that allow it to evade the host immune response. The staphylococcal surface protein SdrE was recently reported to bind to complement Factor H, an important regulator of complement activation. Factor H attaches to the surface of host cells to inhibit complement activation and amplification, preventing the destruction of the host cell. SdrE binding to Factor H allows S. aureus to mimic a host cell and reduces bacterial killing by granulocytes. In a new study published in Biochemical Journal , Zhang et al. describe crystal structures of SdrE and its complex with the C-terminal portion of Factor H. The structure of SdrE and its interaction with the Factor H peptide closely resemble a family of surface proteins that recognize extracellular matrix components such as fibrinogen. However, unbound SdrE forms a novel 'Closed' conformation with an occluded peptide-binding groove. These structures reveal a fascinating mechanism for immune evasion and provide a potential avenue for the development of novel antimicrobial agents to target SdrE. © 2017 The Author(s); published by Portland Press Limited on behalf of the Biochemical Society.
Watson, Christa Y; Molina, Ramon M; Louzada, Andressa; Murdaugh, Kimberly M; Donaghey, Thomas C; Brain, Joseph D
2015-01-01
Background Zinc oxide engineered nanoparticles (ZnO ENPs) have potential as nanomedicines due to their inherent properties. Studies have described their pulmonary impact, but less is known about the consequences of ZnO ENP interactions with the liver. This study was designed to describe the effects of ZnO ENPs on the liver and Kupffer cells after intravenous (IV) administration. Materials and methods First, pharmacokinetic studies were conducted to determine the tissue distribution of neutron-activated 65ZnO ENPs post-IV injection in Wistar Han rats. Then, a noninvasive in vivo method to assess Kupffer cell phagosomal motility was employed using ferromagnetic iron particles and magnetometry. We also examined whether prior IV injection of ZnO ENPs altered Kupffer cell bactericidal activity on circulating Pseudomonas aeruginosa. Serum and liver tissues were collected to assess liver-injury biomarkers and histological changes, respectively. Results We found that the liver was the major site of initial uptake of 65ZnO ENPs. There was a time-dependent decrease in tissue levels of 65Zn in all organs examined, refecting particle dissolution. In vivo magnetometry showed a time-dependent and transient reduction in Kupffer cell phagosomal motility. Animals challenged with P. aeruginosa 24 hours post-ZnO ENP injection showed an initial (30 minutes) delay in vascular bacterial clearance. However, by 4 hours, IV-injected bacteria were cleared from the blood, liver, spleen, lungs, and kidneys. Seven days post-ZnO ENP injection, creatine phosphokinase and aspartate aminotransferase levels in serum were significantly increased. Histological evidence of hepatocyte damage and marginated neutrophils were observed in the liver. Conclusion Administration of ZnO ENPs transiently inhibited Kupffer cell phagosomal motility and later induced hepatocyte injury, but did not alter bacterial clearance from the blood or killing in the liver, spleen, lungs, or kidneys. Our data show that diminished Kupffer cell organelle motion correlated with ZnO ENP-induced liver injury. PMID:26170657
Withaferin A Induces Oxidative Stress-Mediated Apoptosis and DNA Damage in Oral Cancer Cells.
Chang, Hsueh-Wei; Li, Ruei-Nian; Wang, Hui-Ru; Liu, Jing-Ru; Tang, Jen-Yang; Huang, Hurng-Wern; Chan, Yu-Hsuan; Yen, Ching-Yu
2017-01-01
Withaferin A (WFA) is one of the most active steroidal lactones with reactive oxygen species (ROS) modulating effects against several types of cancer. ROS regulation involves selective killing. However, the anticancer and selective killing effects of WFA against oral cancer cells remain unclear. We evaluated whether the killing ability of WFA is selective, and we explored its mechanism against oral cancer cells. An MTS tetrazolium cell proliferation assay confirmed that WFA selectively killed two oral cancer cells (Ca9-22 and CAL 27) rather than normal oral cells (HGF-1). WFA also induced apoptosis of Ca9-22 cells, which was measured by flow cytometry for subG1 percentage, annexin V expression, and pan-caspase activity, as well as western blotting for caspases 1, 8, and 9 activations. Flow cytometry analysis shows that WFA-treated Ca9-22 oral cancer cells induced G2/M cell cycle arrest, ROS production, mitochondrial membrane depolarization, and phosphorylated histone H2A.X (γH2AX)-based DNA damage. Moreover, pretreating Ca9-22 cells with N -acetylcysteine (NAC) rescued WFA-induced selective killing, apoptosis, G2/M arrest, oxidative stress, and DNA damage. We conclude that WFA induced oxidative stress-mediated selective killing of oral cancer cells.
Withaferin A Induces Oxidative Stress-Mediated Apoptosis and DNA Damage in Oral Cancer Cells
Chang, Hsueh-Wei; Li, Ruei-Nian; Wang, Hui-Ru; Liu, Jing-Ru; Tang, Jen-Yang; Huang, Hurng-Wern; Chan, Yu-Hsuan; Yen, Ching-Yu
2017-01-01
Withaferin A (WFA) is one of the most active steroidal lactones with reactive oxygen species (ROS) modulating effects against several types of cancer. ROS regulation involves selective killing. However, the anticancer and selective killing effects of WFA against oral cancer cells remain unclear. We evaluated whether the killing ability of WFA is selective, and we explored its mechanism against oral cancer cells. An MTS tetrazolium cell proliferation assay confirmed that WFA selectively killed two oral cancer cells (Ca9-22 and CAL 27) rather than normal oral cells (HGF-1). WFA also induced apoptosis of Ca9-22 cells, which was measured by flow cytometry for subG1 percentage, annexin V expression, and pan-caspase activity, as well as western blotting for caspases 1, 8, and 9 activations. Flow cytometry analysis shows that WFA-treated Ca9-22 oral cancer cells induced G2/M cell cycle arrest, ROS production, mitochondrial membrane depolarization, and phosphorylated histone H2A.X (γH2AX)-based DNA damage. Moreover, pretreating Ca9-22 cells with N-acetylcysteine (NAC) rescued WFA-induced selective killing, apoptosis, G2/M arrest, oxidative stress, and DNA damage. We conclude that WFA induced oxidative stress-mediated selective killing of oral cancer cells. PMID:28936177
Kumar, Sunil; Park, Jiyeong; Kim, Eunseong; Na, Jahyun; Chun, Yong Shik; Kwon, Hyeok; Kim, Wook; Kim, Yonggyun
2015-10-01
A novel fumigant, chlorine dioxide (ClO2) is a commercial bleaching and disinfection agent. Recent study indicates its insecticidal activity. However, its mode of action to kill insects is yet to be understood. This study set up a hypothesis that an oxidative stress induced by ClO2 is a main factor to kill insects. The Indian meal moth, Plodia interpunctella, is a lepidopteran insect pest infesting various stored grains. Larvae of P. interpunctella were highly susceptible to ClO2 gas, which exhibited an acute toxicity. Physiological damages by ClO2 were observed in hemocytes. At high doses, the larvae of P. interpunctella suffered significant reduction of total hemocytes. At low doses, ClO2 impaired hemocyte behaviors. The cytotoxicity of ClO2 was further analyzed using two insect cell lines, where Sf9 cells were more susceptible to ClO2 than High Five cells. The cells treated with ClO2 produced reactive oxygen species (ROS). The produced ROS amounts increased with an increase of the treated ClO2 amount. However, the addition of an antioxidant, vitamin E, significantly attenuated the cytotoxicity of ClO2 in a dose-dependent manner. To support the oxidative stress induced by ClO2, two antioxidant genes (superoxide dismutase (SOD) and thioredoxin-peroxidase (Tpx)) were identified from P. interpunctella EST library using ortholog sequences of Bombyx mori. Both SOD and Tpx were expressed in larvae of P. interpunctella especially under oxidative stress induced by bacterial challenge. Exposure to ClO2 gas significantly induced the gene expression of both SOD and Tpx. RNA interference of SOD or Tpx using specific double stranded RNAs significantly enhanced the lethality of P. interpunctella to ClO2 gas treatment as well as to the bacterial challenge. These results suggest that ClO2 induces the production of insecticidal ROS, which results in a fatal oxidative stress in P. interpunctella. Copyright © 2015 Elsevier Inc. All rights reserved.
Glasner, Ariella; Oiknine-Djian, Esther; Weisblum, Yiska; Diab, Mohammad; Panet, Amos; Wolf, Dana G; Mandelboim, Ofer
2017-11-15
NK cells are innate lymphocytes that participate in many immune processes encompassing cancer, bacterial and fungal infection, autoimmunity, and even pregnancy and that specialize in antiviral defense. NK cells express inhibitory and activating receptors and kill their targets when activating signals overpower inhibitory signals. The NK cell inhibitory receptors include a uniquely diverse array of proteins named killer cell immunoglobulin-like receptors (KIRs), the CD94 family, and the leukocyte immunoglobulin-like receptor (LIR) family. The NK cell inhibitory receptors recognize mostly major histocompatibility complex (MHC) class I (MHC-I) proteins. Zika virus has recently emerged as a major threat due to its association with birth defects and its pandemic potential. How Zika virus interacts with the immune system, and especially with NK cells, is unclear. Here we show that Zika virus infection is barely sensed by NK cells, since little or no increase in the expression of activating NK cell ligands was observed following Zika infection. In contrast, we demonstrate that Zika virus infection leads to the upregulation of MHC class I proteins and consequently to the inhibition of NK cell killing. Mechanistically, we show that MHC class I proteins are upregulated via the RIGI-IRF3 pathway and that this upregulation is mediated via beta interferon (IFN-β). Potentially, countering MHC class I upregulation during Zika virus infection could be used as a prophylactic treatment against Zika virus. IMPORTANCE NK cells are innate lymphocytes that recognize and eliminate various pathogens and are known mostly for their role in controlling viral infections. NK cells express inhibitory and activating receptors, and they kill or spare their targets based on the integration of inhibitory and activating signals. Zika virus has recently emerged as a major threat to humans due to its pandemic potential and its association with birth defects. The role of NK cells in Zika virus infection is largely unknown. Here we demonstrate that Zika virus infection is almost undetected by NK cells, as evidenced by the fact that the expression of activating ligands for NK cells is not induced following Zika infection. We identified a mechanism whereby Zika virus sensing via the RIGI-IRF3 pathway resulted in IFN-β-mediated upregulation of MHC-I molecules and inhibition of NK cell activity. Countering MHC class I upregulation and boosting NK cell activity may be employed as prophylactic measures to combat Zika virus infection. Copyright © 2017 American Society for Microbiology.
Glasner, Ariella; Oiknine-Djian, Esther; Weisblum, Yiska; Diab, Mohammad; Panet, Amos; Wolf, Dana G.
2017-01-01
ABSTRACT NK cells are innate lymphocytes that participate in many immune processes encompassing cancer, bacterial and fungal infection, autoimmunity, and even pregnancy and that specialize in antiviral defense. NK cells express inhibitory and activating receptors and kill their targets when activating signals overpower inhibitory signals. The NK cell inhibitory receptors include a uniquely diverse array of proteins named killer cell immunoglobulin-like receptors (KIRs), the CD94 family, and the leukocyte immunoglobulin-like receptor (LIR) family. The NK cell inhibitory receptors recognize mostly major histocompatibility complex (MHC) class I (MHC-I) proteins. Zika virus has recently emerged as a major threat due to its association with birth defects and its pandemic potential. How Zika virus interacts with the immune system, and especially with NK cells, is unclear. Here we show that Zika virus infection is barely sensed by NK cells, since little or no increase in the expression of activating NK cell ligands was observed following Zika infection. In contrast, we demonstrate that Zika virus infection leads to the upregulation of MHC class I proteins and consequently to the inhibition of NK cell killing. Mechanistically, we show that MHC class I proteins are upregulated via the RIGI-IRF3 pathway and that this upregulation is mediated via beta interferon (IFN-β). Potentially, countering MHC class I upregulation during Zika virus infection could be used as a prophylactic treatment against Zika virus. IMPORTANCE NK cells are innate lymphocytes that recognize and eliminate various pathogens and are known mostly for their role in controlling viral infections. NK cells express inhibitory and activating receptors, and they kill or spare their targets based on the integration of inhibitory and activating signals. Zika virus has recently emerged as a major threat to humans due to its pandemic potential and its association with birth defects. The role of NK cells in Zika virus infection is largely unknown. Here we demonstrate that Zika virus infection is almost undetected by NK cells, as evidenced by the fact that the expression of activating ligands for NK cells is not induced following Zika infection. We identified a mechanism whereby Zika virus sensing via the RIGI-IRF3 pathway resulted in IFN-β-mediated upregulation of MHC-I molecules and inhibition of NK cell activity. Countering MHC class I upregulation and boosting NK cell activity may be employed as prophylactic measures to combat Zika virus infection. PMID:28878071