Sample records for bacterial clone libraries

  1. Bacterial community composition in different sediments from the Eastern Mediterranean Sea: a comparison of four 16S ribosomal DNA clone libraries.

    PubMed

    Polymenakou, Paraskevi N; Bertilsson, Stefan; Tselepides, Anastasios; Stephanou, Euripides G

    2005-10-01

    The regional variability of sediment bacterial community composition and diversity was studied by comparative analysis of four large 16S ribosomal DNA (rDNA) clone libraries from sediments in different regions of the Eastern Mediterranean Sea (Thermaikos Gulf, Cretan Sea, and South lonian Sea). Amplified rDNA restriction analysis of 664 clones from the libraries indicate that the rDNA richness and evenness was high: for example, a near-1:1 relationship among screened clones and number of unique restriction patterns when up to 190 clones were screened for each library. Phylogenetic analysis of 207 bacterial 16S rDNA sequences from the sediment libraries demonstrated that Gamma-, Delta-, and Alphaproteobacteria, Holophaga/Acidobacteria, Planctomycetales, Actinobacteria, Bacteroidetes, and Verrucomicrobia were represented in all four libraries. A few clones also grouped with the Betaproteobacteria, Nitrospirae, Spirochaetales, Chlamydiae, Firmicutes, and candidate division OPl 1. The abundance of sequences affiliated with Gammaproteobacteria was higher in libraries from shallow sediments in the Thermaikos Gulf (30 m) and the Cretan Sea (100 m) compared to the deeper South Ionian station (2790 m). Most sequences in the four sediment libraries clustered with uncultured 16S rDNA phylotypes from marine habitats, and many of the closest matches were clones from hydrocarbon seeps, benzene-mineralizing consortia, sulfate reducers, sulk oxidizers, and ammonia oxidizers. LIBSHUFF statistics of 16S rDNA gene sequences from the four libraries revealed major differences, indicating either a very high richness in the sediment bacterial communities or considerable variability in bacterial community composition among regions, or both.

  2. Bacterial Artificial Chromosome Libraries for Mouse Sequencing and Functional Analysis

    PubMed Central

    Osoegawa, Kazutoyo; Tateno, Minako; Woon, Peng Yeong; Frengen, Eirik; Mammoser, Aaron G.; Catanese, Joseph J.; Hayashizaki, Yoshihide; de Jong, Pieter J.

    2000-01-01

    Bacterial artificial chromosome (BAC) and P1-derived artificial chromosome (PAC) libraries providing a combined 33-fold representation of the murine genome have been constructed using two different restriction enzymes for genomic digestion. A large-insert PAC library was prepared from the 129S6/SvEvTac strain in a bacterial/mammalian shuttle vector to facilitate functional gene studies. For genome mapping and sequencing, we prepared BAC libraries from the 129S6/SvEvTac and the C57BL/6J strains. The average insert sizes for the three libraries range between 130 kb and 200 kb. Based on the numbers of clones and the observed average insert sizes, we estimate each library to have slightly in excess of 10-fold genome representation. The average number of clones found after hybridization screening with 28 probes was in the range of 9–14 clones per marker. To explore the fidelity of the genomic representation in the three libraries, we analyzed three contigs, each established after screening with a single unique marker. New markers were established from the end sequences and screened against all the contig members to determine if any of the BACs and PACs are chimeric or rearranged. Only one chimeric clone and six potential deletions have been observed after extensive analysis of 113 PAC and BAC clones. Seventy-one of the 113 clones were conclusively nonchimeric because both end markers or sequences were mapped to the other confirmed contig members. We could not exclude chimerism for the remaining 41 clones because one or both of the insert termini did not contain unique sequence to design markers. The low rate of chimerism, ∼1%, and the low level of detected rearrangements support the anticipated usefulness of the BAC libraries for genome research. [The sequence data described in this paper have been submitted to the GenBank data library under accession numbers AQ797173–AQ797398.] PMID:10645956

  3. Synthesis and cell-free cloning of DNA libraries using programmable microfluidics

    PubMed Central

    Yehezkel, Tuval Ben; Rival, Arnaud; Raz, Ofir; Cohen, Rafael; Marx, Zipora; Camara, Miguel; Dubern, Jean-Frédéric; Koch, Birgit; Heeb, Stephan; Krasnogor, Natalio; Delattre, Cyril; Shapiro, Ehud

    2016-01-01

    Microfluidics may revolutionize our ability to write synthetic DNA by addressing several fundamental limitations associated with generating novel genetic constructs. Here we report the first de novo synthesis and cell-free cloning of custom DNA libraries in sub-microliter reaction droplets using programmable digital microfluidics. Specifically, we developed Programmable Order Polymerization (POP), Microfluidic Combinatorial Assembly of DNA (M-CAD) and Microfluidic In-vitro Cloning (MIC) and applied them to de novo synthesis, combinatorial assembly and cell-free cloning of genes, respectively. Proof-of-concept for these methods was demonstrated by programming an autonomous microfluidic system to construct and clone libraries of yeast ribosome binding sites and bacterial Azurine, which were then retrieved in individual droplets and validated. The ability to rapidly and robustly generate designer DNA molecules in an autonomous manner should have wide application in biological research and development. PMID:26481354

  4. 16S rRNA Gene Sequence Analysis of Drinking Water Using RNA and DNA Extracts as Targets for Clone Library Development

    EPA Science Inventory

    The bacterial composition of chlorinated drinking water was analyzed using 16S rRNA gene clone libraries derived from DNA extracts of 12 samples and compared to clone libraries previously generated using RNA extracts from the same samples. Phylogenetic analysis of 761 DNA-based ...

  5. Construction of a BAC library and mapping BAC clones to the linkage map of Barramundi, Lates calcarifer.

    PubMed

    Wang, Chun Ming; Lo, Loong Chueng; Feng, Felicia; Gong, Ping; Li, Jian; Zhu, Ze Yuan; Lin, Grace; Yue, Gen Hua

    2008-03-25

    Barramundi (Lates calcarifer) is an important farmed marine food fish species. Its first generation linkage map has been applied to map QTL for growth traits. To identify genes located in QTL responsible for specific traits, genomic large insert libraries are of crucial importance. We reported herein a bacterial artificial chromosome (BAC) library and the mapping of BAC clones to the linkage map. This BAC library consisted of 49,152 clones with an average insert size of 98 kb, representing 6.9-fold haploid genome coverage. Screening the library with 24 microsatellites and 15 ESTs/genes demonstrated that the library had good genome coverage. In addition, 62 novel microsatellites each isolated from 62 BAC clones were mapped onto the first generation linkage map. A total of 86 BAC clones were anchored on the linkage map with at least one BAC clone on each linkage group. We have constructed the first BAC library for L. calcarifer and mapped 86 BAC clones to the first generation linkage map. This BAC library and the improved linkage map with 302 DNA markers not only supply an indispensable tool to the integration of physical and linkage maps, the fine mapping of QTL and map based cloning genes located in QTL of commercial importance, but also contribute to comparative genomic studies and eventually whole genome sequencing.

  6. Identification of causative pathogens in mouse eyes with bacterial keratitis by sequence analysis of 16S rDNA libraries

    PubMed Central

    Song, Hong-Yan; Qiu, Bao-Feng; Liu, Chun; Zhu, Shun-Xing; Wang, Sheng-Cun; Miao, Jin; Jing, Jing; Shao, Yi-Xiang

    2014-01-01

    The clone library method using PCR amplification of the 16S ribosomal RNA (rRNA) gene was used to identify pathogens from corneal scrapings of C57BL/6-corneal opacity (B6-Co) mice with bacterial keratitis. All 10 samples from the eyes with bacterial keratitis showed positive PCR results. All 10 samples from the normal cornea showed negative PCR results. In all 10 PCR-positive samples, the predominant and second most predominant species accounted for 20.9 to 40.6% and 14.7 to 26.1%, respectively, of each clone library. The predominant species were Staphylococcus lentus, Pseudomonas aeruginosa, and Staphylococcus epidermidis. The microbiota analysis detected a diverse group of microbiota in the eyes of B6-Co mice with bacterial keratitis and showed that the causative pathogens could be determined based on percentages of bacterial species in the clone libraries. The bacterial species detected in this study were mostly in accordance with results of studies on clinical bacterial keratitis in human eyes. Based on the results of our previous studies and this study, the B6-Co mouse should be considered a favorable model for studying bacterial keratitis. PMID:25312507

  7. The development and characterisation of a bacterial artificial chromosome library for Fragaria vesca

    PubMed Central

    Bonet, Julio; Girona, Elena Lopez; Sargent, Daniel J; Muñoz-Torres, Monica C; Monfort, Amparo; Abbott, Albert G; Arús, Pere; Simpson, David W; Davik, Jahn

    2009-01-01

    Background The cultivated strawberry Fragaria ×ananassa is one of the most economically-important soft-fruit species. Few structural genomic resources have been reported for Fragaria and there exists an urgent need for the development of physical mapping resources for the genus. The first stage in the development of a physical map for Fragaria is the construction and characterisation of a high molecular weight bacterial artificial chromosome (BAC) library. Methods A BAC library, consisting of 18,432 clones was constructed from Fragaria vesca f. semperflorens accession 'Ali Baba'. BAC DNA from individual library clones was pooled to create a PCR-based screening assay for the library, whereby individual clones could be identified with just 34 PCR reactions. These pools were used to screen the BAC library and anchor individual clones to the diploid Fragaria reference map (FV×FN). Findings Clones from the BAC library developed contained an average insert size of 85 kb, representing over seven genome equivalents. The pools and superpools developed were used to identify a set of BAC clones containing 70 molecular markers previously mapped to the diploid Fragaria FV×FN reference map. The number of positive colonies identified for each marker suggests the library represents between 4× and 10× coverage of the diploid Fragaria genome, which is in accordance with the estimate of library coverage based on average insert size. Conclusion This BAC library will be used for the construction of a physical map for F. vesca and the superpools will permit physical anchoring of molecular markers using PCR. PMID:19772672

  8. Differential distribution and abundance of diazotrophic bacterial communities across different soil niches using a gene-targeted clone library approach.

    PubMed

    Yousuf, Basit; Kumar, Raghawendra; Mishra, Avinash; Jha, Bhavanath

    2014-11-01

    Diazotrophs are key players of the globally important biogeochemical nitrogen cycle, having a significant role in maintaining ecosystem sustainability. Saline soils are pristine and unexplored habitats representing intriguing ecosystems expected to harbour potential diazotrophs capable of adapting in extreme conditions, and these implicated organisms are largely obscure. Differential occurrence of diazotrophs was studied by the nifH gene-targeted clone library approach. Four nifH gene clone libraries were constructed from different soil niches, that is saline soils (low and high salinity; EC 3.8 and 7.1 ds m(-1) ), and agricultural and rhizosphere soil. Additionally, the abundance of diazotrophic community members was assessed using quantitative PCR. Results showed environment-dependent metabolic versatility and the presence of nitrogen-fixing bacteria affiliated with a range of taxa, encompassing members of the Alphaproteobacteria, Betaproteobacteria, Deltaproteobacteria, Gammaproteobacteria, Cyanobacteria and Firmicutes. The analyses unveiled the dominance of Alphaproteobacteria and Gammaproteobacteria (Pseudomonas, Halorhodospira, Ectothiorhodospira, Bradyrhizobium, Agrobacterium, Amorphomonas) as nitrogen fixers in coastal-saline soil ecosystems, and Alphaproteobacteria and Betaproteobacteria (Bradyrhizobium, Azohydromonas, Azospirillum, Ideonella) in agricultural/rhizosphere ecosystems. The results revealed a repertoire of novel nitrogen-fixing bacterial guilds particularly in saline soil ecosystems. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  9. Preparation and screening of an arrayed human genomic library generated with the P1 cloning system.

    PubMed Central

    Shepherd, N S; Pfrogner, B D; Coulby, J N; Ackerman, S L; Vaidyanathan, G; Sauer, R H; Balkenhol, T C; Sternberg, N

    1994-01-01

    We describe here the construction and initial characterization of a 3-fold coverage genomic library of the human haploid genome that was prepared using the bacteriophage P1 cloning system. The cloned DNA inserts were produced by size fractionation of a Sau3AI partial digest of high molecular weight genomic DNA isolated from primary cells of human foreskin fibroblasts. The inserts were cloned into the pAd10sacBII vector and packaged in vitro into P1 phage. These were used to generate recombinant bacterial clones, each of which was picked robotically from an agar plate into a well of a 96-well microtiter dish, grown overnight, and stored at -70 degrees C. The resulting library, designated DMPC-HFF#1 series A, consists of approximately 130,000-140,000 recombinant clones that were stored in 1500 microtiter dishes. To screen the library, clones were combined in a pooling strategy and specific loci were identified by PCR analysis. On average, the library contains two or three different clones for each locus screened. To date we have identified a total of 17 clones containing the hypoxanthine-guanine phosphoribosyltransferase, human serum albumin-human alpha-fetoprotein, p53, cyclooxygenase I, human apurinic endonuclease, beta-polymerase, and DNA ligase I genes. The cloned inserts average 80 kb in size and range from 70 to 95 kb, with one 49-kb insert and one 62-kb insert. Images PMID:8146166

  10. Construction and characterization of a bacterial artificial chromosome library for hexaploid wheat line 92R137

    USDA-ARS?s Scientific Manuscript database

    For map-based cloning of genes conferring important traits in the hexaploid wheat line 92R137, a bacterial artificial chromosome (BAC) library, including two sub libraries, was constructed using the genomic DNA of 92R137 digested with restriction enzymes HindIII and BamHI. The BAC library was compos...

  11. Changes in the Composition of Drinking Water Bacterial Clone Libraries Introduced by Using Two Different 16S rRna Gene PCR Primers

    EPA Science Inventory

    Sequence analysis of 16S rRNA gene clone libraries is a popular tool used to describe the composition of natural microbial communities. Commonly, clone libraries are developed by direct cloning of 16S rRNA gene PCR products. Different primers are often employed in the initial amp...

  12. Changes in the Composition of Drinking Water Bacterial Clone Libraries Introduced by Using Two Different 16S rRNA Gene PCR Primers

    EPA Science Inventory

    Sequence analysis of 16S rRNA gene clone libraries is a popular tool used to describe the composition of natural microbial communities. Commonly, clone libraries are developed by direct cloning of 16S rRNA gene PCR products. Different primers are often employed in the initial amp...

  13. Hybrid sequencing approach applied to human fecal metagenomic clone libraries revealed clones with potential biotechnological applications.

    PubMed

    Džunková, Mária; D'Auria, Giuseppe; Pérez-Villarroya, David; Moya, Andrés

    2012-01-01

    Natural environments represent an incredible source of microbial genetic diversity. Discovery of novel biomolecules involves biotechnological methods that often require the design and implementation of biochemical assays to screen clone libraries. However, when an assay is applied to thousands of clones, one may eventually end up with very few positive clones which, in most of the cases, have to be "domesticated" for downstream characterization and application, and this makes screening both laborious and expensive. The negative clones, which are not considered by the selected assay, may also have biotechnological potential; however, unfortunately they would remain unexplored. Knowledge of the clone sequences provides important clues about potential biotechnological application of the clones in the library; however, the sequencing of clones one-by-one would be very time-consuming and expensive. In this study, we characterized the first metagenomic clone library from the feces of a healthy human volunteer, using a method based on 454 pyrosequencing coupled with a clone-by-clone Sanger end-sequencing. Instead of whole individual clone sequencing, we sequenced 358 clones in a pool. The medium-large insert (7-15 kb) cloning strategy allowed us to assemble these clones correctly, and to assign the clone ends to maintain the link between the position of a living clone in the library and the annotated contig from the 454 assembly. Finally, we found several open reading frames (ORFs) with previously described potential medical application. The proposed approach allows planning ad-hoc biochemical assays for the clones of interest, and the appropriate sub-cloning strategy for gene expression in suitable vectors/hosts.

  14. Structure and dynamics of the bacterial communities in fermentation of the traditional Chinese post-fermented pu-erh tea revealed by 16S rRNA gene clone library.

    PubMed

    Zhao, Ming; Xiao, Wei; Ma, Yan; Sun, Tingting; Yuan, Wenxia; Tang, Na; Zhang, Donglian; Wang, Yongxia; Li, Yali; Zhou, Hongjie; Cui, Xiaolong

    2013-10-01

    Microbes are thought to have key roles in the development of the special properties of post-fermented pu-erh tea (pu-erh shucha), a well-known traditional Chinese tea; however, little is known about the bacteria during the fermentation. In this work, the structure and dynamics of the bacterial community involved in the production of pu-erh shucha were investigated using 16S rRNA gene clone libraries constructed from samples collected on days zero (LD-0), 5 (LD-5), 10 (LD-10), 15 (LD-15) and 20 (LD-20) of the fermentation. A total of 747 sequences with individual clone library containing 115-174 sequences and 4-20 unique operational taxonomic units (OTUs) were obtained. These OTUs were grouped into four phyla (Actinobacteria, Bacteroidetes, Firmicutes and Proteobacteria) and further identified as members of 10 families, such as Alcaligenaceae, Bacillaceae, Enterobacteriaceae, etc. The dominant bacteria were Enterobacteriaceae in the raw material (LD-0) and in the initial stages of fermentation (LD-5 and LD-10), which changed to Bacillaceae at the last stages of fermentation (LD-15 and LD-20) at a temperature of 40-60 °C. It is interesting that the dominant OTUs in libraries LD-15 and LD-20 were very closely related to Bacillus coagulans, which is a safe thermoduric probiotic. Together the bacterial diversity and dynamics during a fermentation of pu-erh shucha were demonstrated, and a worthy clue for artificial inoculation of B. coagulans to improve the health benefits of pu-erh shucha or produce probiotic pu-erh tea were provided.

  15. Construction and Analysis of Siberian Tiger Bacterial Artificial Chromosome Library with Approximately 6.5-Fold Genome Equivalent Coverage

    PubMed Central

    Liu, Changqing; Bai, Chunyu; Guo, Yu; Liu, Dan; Lu, Taofeng; Li, Xiangchen; Ma, Jianzhang; Ma, Yuehui; Guan, Weijun

    2014-01-01

    Bacterial artificial chromosome (BAC) libraries are extremely valuable for the genome-wide genetic dissection of complex organisms. The Siberian tiger, one of the most well-known wild primitive carnivores in China, is an endangered animal. In order to promote research on its genome, a high-redundancy BAC library of the Siberian tiger was constructed and characterized. The library is divided into two sub-libraries prepared from blood cells and two sub-libraries prepared from fibroblasts. This BAC library contains 153,600 individually archived clones; for PCR-based screening of the library, BACs were placed into 40 superpools of 10 × 384-deep well microplates. The average insert size of BAC clones was estimated to be 116.5 kb, representing approximately 6.46 genome equivalents of the haploid genome and affording a 98.86% statistical probability of obtaining at least one clone containing a unique DNA sequence. Screening the library with 19 microsatellite markers and a SRY sequence revealed that each of these markers were present in the library; the average number of positive clones per marker was 6.74 (range 2 to 12), consistent with 6.46 coverage of the tiger genome. Additionally, we identified 72 microsatellite markers that could potentially be used as genetic markers. This BAC library will serve as a valuable resource for physical mapping, comparative genomic study and large-scale genome sequencing in the tiger. PMID:24608928

  16. Efficient preparation of shuffled DNA libraries through recombination (Gateway) cloning.

    PubMed

    Lehtonen, Soili I; Taskinen, Barbara; Ojala, Elina; Kukkurainen, Sampo; Rahikainen, Rolle; Riihimäki, Tiina A; Laitinen, Olli H; Kulomaa, Markku S; Hytönen, Vesa P

    2015-01-01

    Efficient and robust subcloning is essential for the construction of high-diversity DNA libraries in the field of directed evolution. We have developed a more efficient method for the subcloning of DNA-shuffled libraries by employing recombination cloning (Gateway). The Gateway cloning procedure was performed directly after the gene reassembly reaction, without additional purification and amplification steps, thus simplifying the conventional DNA shuffling protocols. Recombination-based cloning, directly from the heterologous reassembly reaction, conserved the high quality of the library and reduced the time required for the library construction. The described method is generally compatible for the construction of DNA-shuffled gene libraries. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  17. Assessing genetic structure and diversity of airborne bacterial communities by DNA fingerprinting and 16S rDNA clone library

    NASA Astrophysics Data System (ADS)

    Maron, Pierre-Alain; Lejon, David P. H.; Carvalho, Esmeralda; Bizet, Karine; Lemanceau, Philippe; Ranjard, Lionel; Mougel, Christophe

    The density, genetic structure and diversity of airborne bacterial communities were assessed in the outdoor atmosphere. Two air samples were collected on the same location (north of France) at two dates (March 2003 (sample1) and May 2003 (sample 2)). Molecular culture -independent methods were used to characterise airborne bacterial communities regardless of the cell culturability. The automated-ribosomal intergenic spacer analysis (A-RISA) was performed to characterise the community structure in each sample. For both sampling dates, complex A-RISA patterns were observed suggesting a highly diverse community structure, comparable to those found in soil, water or sediment environments. Furthermore, differences in the genetic structure of airborne bacterial communities were observed between samples 1 and 2 suggesting an important variability in time. A clone library of 16S rDNA directly amplified from air DNA of sample 1 was constructed and sequenced to analyse the community composition and diversity. The Proteobacteria group had the greatest representation (60%), with bacteria belonging to the different subdivisions α- (19%), β-(21%), γ-(12%) and δ-(8%). Firmicute and Actinobacteria were also well represented with 14% and 12%, respectively. Most of the identified bacteria are known to be commonly associated with soil or plant environments suggesting that the atmosphere is mainly colonised transiently by microorganisms from local sources, depending on air fluxes.

  18. IDENTIFICATION OF ACTIVE BACTERIAL COMMUNITIES IN A MODEL DRINKING WATER BIOFILM SYSTEM USING 16S RRNA-BASED CLONE LIBRARIES

    EPA Science Inventory

    Recent phylogenetic studies have used DNA as the target molecule for the development of environmental 16S rDNA clone libraries. As DNA may persist in the environment, DNA-based libraries cannot be used to identify metabolically active bacteria in water systems. In this study, a...

  19. Feasibility of physical map construction from fingerprinted bacterial artificial chromosome libraries of polyploid plant species

    PubMed Central

    2010-01-01

    Background The presence of closely related genomes in polyploid species makes the assembly of total genomic sequence from shotgun sequence reads produced by the current sequencing platforms exceedingly difficult, if not impossible. Genomes of polyploid species could be sequenced following the ordered-clone sequencing approach employing contigs of bacterial artificial chromosome (BAC) clones and BAC-based physical maps. Although BAC contigs can currently be constructed for virtually any diploid organism with the SNaPshot high-information-content-fingerprinting (HICF) technology, it is currently unknown if this is also true for polyploid species. It is possible that BAC clones from orthologous regions of homoeologous chromosomes would share numerous restriction fragments and be therefore included into common contigs. Because of this and other concerns, physical mapping utilizing the SNaPshot HICF of BAC libraries of polyploid species has not been pursued and the possibility of doing so has not been assessed. The sole exception has been in common wheat, an allohexaploid in which it is possible to construct single-chromosome or single-chromosome-arm BAC libraries from DNA of flow-sorted chromosomes and bypass the obstacles created by polyploidy. Results The potential of the SNaPshot HICF technology for physical mapping of polyploid plants utilizing global BAC libraries was evaluated by assembling contigs of fingerprinted clones in an in silico merged BAC library composed of single-chromosome libraries of two wheat homoeologous chromosome arms, 3AS and 3DS, and complete chromosome 3B. Because the chromosome arm origin of each clone was known, it was possible to estimate the fidelity of contig assembly. On average 97.78% or more clones, depending on the library, were from a single chromosome arm. A large portion of the remaining clones was shown to be library contamination from other chromosomes, a feature that is unavoidable during the construction of single

  20. 16S rRNA Gene Sequence Analysis of Drinking Water Using RNA and DNA Extracts as Targets for Clone Library Development

    EPA Science Inventory

    We examined the bacterial composition of chlorinated drinking water using 16S rRNA gene clone libraries derived from RNA and DNA extracted from twelve water samples collected in three different months (June, August, and September of 2007). Phylogenetic analysis of 1234 and 1117 ...

  1. Effects of field-grown genetically modified Zoysia grass on bacterial community structure.

    PubMed

    Lee, Yong-Eok; Yang, Sang-Hwan; Bae, Tae-Woong; Kang, Hong-Gyu; Lim, Pyung-Ok; Lee, Hyo-Yeon

    2011-04-01

    Herbicide-tolerant Zoysia grass has been previously developed through Agrobacterium-mediated transformation. We investigated the effects of genetically modified (GM) Zoysia grass and the associated herbicide application on bacterial community structure by using culture-independent approaches. To assess the possible horizontal gene transfer (HGT) of transgenic DNA to soil microorganisms, total soil DNAs were amplified by PCR with two primer sets for the bar and hpt genes, which were introduced into the GM Zoysia grass by a callus-type transformation. The transgenic genes were not detected from the total genomic DNAs extracted from 1.5 g of each rhizosphere soils of GM and non-GM Zoysia grasses. The structures and diversities of the bacterial communities in rhizosphere soils of GM and non-GM Zoysia grasses were investigated by constructing 16S rDNA clone libraries. Classifier, provided in the RDP II, assigned 100 clones in the 16S rRNA gene sequences library into 11 bacterial phyla. The most abundant phyla in both clone libraries were Acidobacteria and Proteobacteria. The bacterial diversity of the GM clone library was lower than that of the non- GM library. The former contained four phyla, whereas the latter had seven phyla. Phylogenetic trees were constructed to confirm these results. Phylogenetic analyses of the two clone libraries revealed considerable difference from each other. The significance of difference between clone libraries was examined with LIBSHUFF statistics. LIBSHUFF analysis revealed that the two clone libraries differed significantly (P〈0.025), suggesting alterations in the composition of the microbial community associated with GM Zoysia grass.

  2. 16S rRNA Gene Sequence Analysis of Drinking Water Using RNA and DNA Extracts as Targets for Clone Library Development - Poster

    EPA Science Inventory

    We examined the bacterial composition of chlorinated drinking water using 16S rRNA gene clone libraries derived from RNA and DNA extracted from twelve water samples collected in three different months (June, August, and September of 2007). Phylogenetic analysis of 1234 and 1117 ...

  3. Construction of BAC Libraries from Flow-Sorted Chromosomes.

    PubMed

    Šafář, Jan; Šimková, Hana; Doležel, Jaroslav

    2016-01-01

    Cloned DNA libraries in bacterial artificial chromosome (BAC) are the most widely used form of large-insert DNA libraries. BAC libraries are typically represented by ordered clones derived from genomic DNA of a particular organism. In the case of large eukaryotic genomes, whole-genome libraries consist of a hundred thousand to a million clones, which make their handling and screening a daunting task. The labor and cost of working with whole-genome libraries can be greatly reduced by constructing a library derived from a smaller part of the genome. Here we describe construction of BAC libraries from mitotic chromosomes purified by flow cytometric sorting. Chromosome-specific BAC libraries facilitate positional gene cloning, physical mapping, and sequencing in complex plant genomes.

  4. A highly functional synthetic phage display library containing over 40 billion human antibody clones.

    PubMed

    Weber, Marcel; Bujak, Emil; Putelli, Alessia; Villa, Alessandra; Matasci, Mattia; Gualandi, Laura; Hemmerle, Teresa; Wulhfard, Sarah; Neri, Dario

    2014-01-01

    Several synthetic antibody phage display libraries have been created and used for the isolation of human monoclonal antibodies. The performance of antibody libraries, which is usually measured in terms of their ability to yield high-affinity binding specificities against target proteins of interest, depends both on technical aspects (such as library size and quality of cloning) and on design features (which influence the percentage of functional clones in the library and their ability to be used for practical applications). Here, we describe the design, construction and characterization of a combinatorial phage display library, comprising over 40 billion human antibody clones in single-chain fragment variable (scFv) format. The library was designed with the aim to obtain highly stable antibody clones, which can be affinity-purified on protein A supports, even when used in scFv format. The library was found to be highly functional, as >90% of randomly selected clones expressed the corresponding antibody. When selected against more than 15 antigens from various sources, the library always yielded specific and potent binders, at a higher frequency compared to previous antibody libraries. To demonstrate library performance in practical biomedical research projects, we isolated the human antibody G5, which reacts both against human and murine forms of the alternatively spliced BCD segment of tenascin-C, an extracellular matrix component frequently over-expressed in cancer and in chronic inflammation. The new library represents a useful source of binding specificities, both for academic research and for the development of antibody-based therapeutics.

  5. A Highly Functional Synthetic Phage Display Library Containing over 40 Billion Human Antibody Clones

    PubMed Central

    Weber, Marcel; Bujak, Emil; Putelli, Alessia; Villa, Alessandra; Matasci, Mattia; Gualandi, Laura; Hemmerle, Teresa; Wulhfard, Sarah; Neri, Dario

    2014-01-01

    Several synthetic antibody phage display libraries have been created and used for the isolation of human monoclonal antibodies. The performance of antibody libraries, which is usually measured in terms of their ability to yield high-affinity binding specificities against target proteins of interest, depends both on technical aspects (such as library size and quality of cloning) and on design features (which influence the percentage of functional clones in the library and their ability to be used for practical applications). Here, we describe the design, construction and characterization of a combinatorial phage display library, comprising over 40 billion human antibody clones in single-chain fragment variable (scFv) format. The library was designed with the aim to obtain highly stable antibody clones, which can be affinity-purified on protein A supports, even when used in scFv format. The library was found to be highly functional, as >90% of randomly selected clones expressed the corresponding antibody. When selected against more than 15 antigens from various sources, the library always yielded specific and potent binders, at a higher frequency compared to previous antibody libraries. To demonstrate library performance in practical biomedical research projects, we isolated the human antibody G5, which reacts both against human and murine forms of the alternatively spliced BCD segment of tenascin-C, an extracellular matrix component frequently over-expressed in cancer and in chronic inflammation. The new library represents a useful source of binding specificities, both for academic research and for the development of antibody-based therapeutics. PMID:24950200

  6. Characterization of Three Maize Bacterial Artificial Chromosome Libraries toward Anchoring of the Physical Map to the Genetic Map Using High-Density Bacterial Artificial Chromosome Filter Hybridization1

    PubMed Central

    Yim, Young-Sun; Davis, Georgia L.; Duru, Ngozi A.; Musket, Theresa A.; Linton, Eric W.; Messing, Joachim W.; McMullen, Michael D.; Soderlund, Carol A.; Polacco, Mary L.; Gardiner, Jack M.; Coe, Edward H.

    2002-01-01

    Three maize (Zea mays) bacterial artificial chromosome (BAC) libraries were constructed from inbred line B73. High-density filter sets from all three libraries, made using different restriction enzymes (HindIII, EcoRI, and MboI, respectively), were evaluated with a set of complex probes including the185-bp knob repeat, ribosomal DNA, two telomere-associated repeat sequences, four centromere repeats, the mitochondrial genome, a multifragment chloroplast DNA probe, and bacteriophage λ. The results indicate that the libraries are of high quality with low contamination by organellar and λ-sequences. The use of libraries from multiple enzymes increased the chance of recovering each region of the genome. Ninety maize restriction fragment-length polymorphism core markers were hybridized to filters of the HindIII library, representing 6× coverage of the genome, to initiate development of a framework for anchoring BAC contigs to the intermated B73 × Mo17 genetic map and to mark the bin boundaries on the physical map. All of the clones used as hybridization probes detected at least three BACs. Twenty-two single-copy number core markers identified an average of 7.4 ± 3.3 positive clones, consistent with the expectation of six clones. This information is integrated into fingerprinting data generated by the Arizona Genomics Institute to assemble the BAC contigs using fingerprint contig and contributed to the process of physical map construction. PMID:12481051

  7. Phylogenetic characterization of a biogas plant microbial community integrating clone library 16S-rDNA sequences and metagenome sequence data obtained by 454-pyrosequencing.

    PubMed

    Kröber, Magdalena; Bekel, Thomas; Diaz, Naryttza N; Goesmann, Alexander; Jaenicke, Sebastian; Krause, Lutz; Miller, Dimitri; Runte, Kai J; Viehöver, Prisca; Pühler, Alfred; Schlüter, Andreas

    2009-06-01

    The phylogenetic structure of the microbial community residing in a fermentation sample from a production-scale biogas plant fed with maize silage, green rye and liquid manure was analysed by an integrated approach using clone library sequences and metagenome sequence data obtained by 454-pyrosequencing. Sequencing of 109 clones from a bacterial and an archaeal 16S-rDNA amplicon library revealed that the obtained nucleotide sequences are similar but not identical to 16S-rDNA database sequences derived from different anaerobic environments including digestors and bioreactors. Most of the bacterial 16S-rDNA sequences could be assigned to the phylum Firmicutes with the most abundant class Clostridia and to the class Bacteroidetes, whereas most archaeal 16S-rDNA sequences cluster close to the methanogen Methanoculleus bourgensis. Further sequences of the archaeal library most probably represent so far non-characterised species within the genus Methanoculleus. A similar result derived from phylogenetic analysis of mcrA clone sequences. The mcrA gene product encodes the alpha-subunit of methyl-coenzyme-M reductase involved in the final step of methanogenesis. BLASTn analysis applying stringent settings resulted in assignment of 16S-rDNA metagenome sequence reads to 62 16S-rDNA amplicon sequences thus enabling frequency of abundance estimations for 16S-rDNA clone library sequences. Ribosomal Database Project (RDP) Classifier processing of metagenome 16S-rDNA reads revealed abundance of the phyla Firmicutes, Bacteroidetes and Euryarchaeota and the orders Clostridiales, Bacteroidales and Methanomicrobiales. Moreover, a large fraction of 16S-rDNA metagenome reads could not be assigned to lower taxonomic ranks, demonstrating that numerous microorganisms in the analysed fermentation sample of the biogas plant are still unclassified or unknown.

  8. Strong spurious transcription likely contributes to DNA insert bias in typical metagenomic clone libraries.

    PubMed

    Lam, Kathy N; Charles, Trevor C

    2015-01-01

    Clone libraries provide researchers with a powerful resource to study nucleic acid from diverse sources. Metagenomic clone libraries in particular have aided in studies of microbial biodiversity and function, and allowed the mining of novel enzymes. Libraries are often constructed by cloning large inserts into cosmid or fosmid vectors. Recently, there have been reports of GC bias in fosmid metagenomic libraries, and it was speculated to be a result of fragmentation and loss of AT-rich sequences during cloning. However, evidence in the literature suggests that transcriptional activity or gene product toxicity may play a role. To explore possible mechanisms responsible for sequence bias in clone libraries, we constructed a cosmid library from a human microbiome sample and sequenced DNA from different steps during library construction: crude extract DNA, size-selected DNA, and cosmid library DNA. We confirmed a GC bias in the final cosmid library, and we provide evidence that the bias is not due to fragmentation and loss of AT-rich sequences but is likely occurring after DNA is introduced into Escherichia coli. To investigate the influence of strong constitutive transcription, we searched the sequence data for promoters and found that rpoD/σ(70) promoter sequences were underrepresented in the cosmid library. Furthermore, when we examined the genomes of taxa that were differentially abundant in the cosmid library relative to the original sample, we found the bias to be more correlated with the number of rpoD/σ(70) consensus sequences in the genome than with simple GC content. The GC bias of metagenomic libraries does not appear to be due to DNA fragmentation. Rather, analysis of promoter sequences provides support for the hypothesis that strong constitutive transcription from sequences recognized as rpoD/σ(70) consensus-like in E. coli may lead to instability, causing loss of the plasmid or loss of the insert DNA that gives rise to the transcription. Despite

  9. Systematic cloning of human minisatellites from ordered array charomid libraries.

    PubMed

    Armour, J A; Povey, S; Jeremiah, S; Jeffreys, A J

    1990-11-01

    We present a rapid and efficient method for the isolation of minisatellite loci from human DNA. The method combines cloning a size-selected fraction of human MboI DNA fragments in a charomid vector with hybridization screening of the library in ordered array. Size-selection of large MboI fragments enriches for the longer, more variable minisatellites and reduces the size of the library required. The library was screened with a series of multi-locus probes known to detect a large number of hypervariable loci in human DNA. The gridded library allowed both the rapid processing of positive clones and the comparative evaluation of the different multi-locus probes used, in terms of both the relative success in detecting hypervariable loci and the degree of overlap between the sets of loci detected. We report 23 new human minisatellite loci isolated by this method, which map to 14 autosomes and the sex chromosomes.

  10. Sex Chromosome Evolution in Amniotes: Applications for Bacterial Artificial Chromosome Libraries

    PubMed Central

    Janes, Daniel E.; Valenzuela, Nicole; Ezaz, Tariq; Amemiya, Chris; Edwards, Scott V.

    2011-01-01

    Variability among sex chromosome pairs in amniotes denotes a dynamic history. Since amniotes diverged from a common ancestor, their sex chromosome pairs and, more broadly, sex-determining mechanisms have changed reversibly and frequently. These changes have been studied and characterized through the use of many tools and experimental approaches but perhaps most effectively through applications for bacterial artificial chromosome (BAC) libraries. Individual BAC clones carry 100–200 kb of sequence from one individual of a target species that can be isolated by screening, mapped onto karyotypes, and sequenced. With these techniques, researchers have identified differences and similarities in sex chromosome content and organization across amniotes and have addressed hypotheses regarding the frequency and direction of past changes. Here, we review studies of sex chromosome evolution in amniotes and the ways in which the field of research has been affected by the advent of BAC libraries. PMID:20981143

  11. Corruption of phage-display libraries by target-unrelated clones: Diagnosis and countermeasures

    PubMed Central

    Thomas, William D.; Golomb, Miriam; Smith, George P.

    2010-01-01

    Phage display is used to discover peptides or proteins with a desired target property—most often, affinity for a target selector molecule. Libraries of phage clones displaying diverse surface peptides are subject to a selection process designed to enrich for the target behavior, and subsequently propagated to restore phage numbers. A recurrent problem is enrichment of clones, called target-unrelated phage (TUPs), that lack the target behavior. Many TUPs are propagation-related; they have mutations conferring a growth advantage, and are enriched during the propagations accompanying selection. Unlike other filamentous phage libraries, fd-tet-based libraries are relatively resistant to propagation-related TUP corruption. Their minus strand origin is disrupted by a large cassette that simultaneously confers resistance to tetracycline and imposes a rate-limiting growth defect that cannot be bypassed with simple mutations. Nonetheless, a new type of propagation-related TUP emerged in the output of in vivo selections from an fd-tet library. The founding clone had a complex rearrangement that restored the minus strand origin while retaining tetracycline resistance. The rearrangement involved two recombination events, one with a contaminant having a wild-type minus strand origin. The founder’s infectivity advantage spread by simple recombination to clones displaying different peptides. We propose measures for minimizing TUP corruption. PMID:20692225

  12. Characterization of Microbial Community Structure in Gulf of Mexico Gas Hydrates: Comparative Analysis of DNA- and RNA-Derived Clone Libraries

    PubMed Central

    Mills, Heath J.; Martinez, Robert J.; Story, Sandra; Sobecky, Patricia A.

    2005-01-01

    The characterization of microbial assemblages within solid gas hydrate, especially those that may be physiologically active under in situ hydrate conditions, is essential to gain a better understanding of the effects and contributions of microbial activities in Gulf of Mexico (GoM) hydrate ecosystems. In this study, the composition of the Bacteria and Archaea communities was determined by 16S rRNA phylogenetic analyses of clone libraries derived from RNA and DNA extracted from sediment-entrained hydrate (SEH) and interior hydrate (IH). The hydrate was recovered from an exposed mound located in the northern GoM continental slope with a hydrate chipper designed for use on the manned-submersible Johnson Sea Link (water depth, 550 m). Previous geochemical analyses indicated that there was increased metabolic activity in the SEH compared to the IH layer (B. N. Orcutt, A. Boetius, S. K. Lugo, I. R. Macdonald, V. A. Samarkin, and S. Joye, Chem. Geol. 205:239-251). Phylogenetic analysis of RNA- and DNA-derived clones indicated that there was greater diversity in the SEH libraries than in the IH libraries. A majority of the clones obtained from the metabolically active fraction of the microbial community were most closely related to putative sulfate-reducing bacteria and anaerobic methane-oxidizing archaea. Several novel bacterial and archaeal phylotypes for which there were no previously identified closely related cultured isolates were detected in the RNA- and DNA-derived clone libraries. This study was the first phylogenetic analysis of the metabolically active fraction of the microbial community extant in the distinct SEH and IH layers of GoM gas hydrate. PMID:15933026

  13. Construction of a Llama Bacterial Artificial Chromosome Library with Approximately 9-Fold Genome Equivalent Coverage

    PubMed Central

    Airmet, K. W.; Hinckley, J. D.; Tree, L. T.; Moss, M.; Blumell, S.; Ulicny, K.; Gustafson, A. K.; Weed, M.; Theodosis, R.; Lehnardt, M.; Genho, J.; Stevens, M. R.; Kooyman, D. L.

    2012-01-01

    The Ilama is an important agricultural livestock in much of South America. The llama is increasing in popularity in the United States as a companion animal. Little work has been done to improve llama production using modern technology. A paucity of information is available regarding the llama genome. We report the construction of a llama bacterial artificial chromosome (BAC) library of about 196,224 clones in the vector pECBAC1. Using flow cytometry and bovine, human, mouse, and chicken as controls, we determined the llama genome size to be 2.4 × 109 bp. The average insert size of the library is 137.8 kb corresponding to approximately 9-fold genome coverage. Further studies are needed to further characterize the library and llama genome. We anticipate that this new library will help facilitate future genomic studies in the llama. PMID:22811594

  14. High-Density 16S Microarray and Clone Library-Based Microbial Community Composition of the Phoenix Spacecraft Assembly Clean Room

    NASA Astrophysics Data System (ADS)

    Vaishampayan, Parag; Osman, Shariff; Andersen, Gary; Venkateswaran, Kasthuri

    2010-06-01

    The bacterial diversity and comparative community structure of a clean room used for assembling the Phoenix spacecraft was characterized throughout the spacecraft assembly process by using 16S rRNA gene cloning/sequencing and DNA microarray (PhyloChip) technologies. Samples were collected from several locations of the clean room at three time points: before Phoenix's arrival (PHX-B), during hardware assembly (PHX-D), and after the spacecraft was removed for launch (PHX-A). Bacterial diversity comprised of all major bacterial phyla of PHX-B was found to be statistically different from PHX-D and PHX-A samples. Due to stringent cleaning and decontamination protocols during assembly, PHX-D bacterial diversity was dramatically reduced when compared to PHX-B and PHX-A samples. Comparative community analysis based on PhyloChip results revealed similar overall trends as were seen in clone libraries, but the high-density phylogenetic microarray detected larger diversity in all sampling events. The decrease in community complexity in PHX-D compared to PHX-B, and the subsequent recurrence of these organisms in PHX-A, speaks to the effectiveness of NASA cleaning protocols. However, the persistence of a subset of bacterial signatures throughout all spacecraft assembly phases underscores the need for continued refinement of sterilization technologies and the implementation of safeguards that monitor and inventory microbial contaminants.

  15. High-density 16S microarray and clone library-based microbial community composition of the Phoenix spacecraft assembly clean room.

    PubMed

    Vaishampayan, Parag; Osman, Shariff; Andersen, Gary; Venkateswaran, Kasthuri

    2010-06-01

    The bacterial diversity and comparative community structure of a clean room used for assembling the Phoenix spacecraft was characterized throughout the spacecraft assembly process by using 16S rRNA gene cloning/sequencing and DNA microarray (PhyloChip) technologies. Samples were collected from several locations of the clean room at three time points: before Phoenix's arrival (PHX-B), during hardware assembly (PHX-D), and after the spacecraft was removed for launch (PHX-A). Bacterial diversity comprised of all major bacterial phyla of PHX-B was found to be statistically different from PHX-D and PHX-A samples. Due to stringent cleaning and decontamination protocols during assembly, PHX-D bacterial diversity was dramatically reduced when compared to PHX-B and PHX-A samples. Comparative community analysis based on PhyloChip results revealed similar overall trends as were seen in clone libraries, but the high-density phylogenetic microarray detected larger diversity in all sampling events. The decrease in community complexity in PHX-D compared to PHX-B, and the subsequent recurrence of these organisms in PHX-A, speaks to the effectiveness of NASA cleaning protocols. However, the persistence of a subset of bacterial signatures throughout all spacecraft assembly phases underscores the need for continued refinement of sterilization technologies and the implementation of safeguards that monitor and inventory microbial contaminants.

  16. Corruption of phage display libraries by target-unrelated clones: diagnosis and countermeasures.

    PubMed

    Thomas, William D; Golomb, Miriam; Smith, George P

    2010-12-15

    Phage display is used to discover peptides or proteins with a desired target property-most often, affinity for a target selector molecule. Libraries of phage clones displaying diverse surface peptides are subject to a selection process designed to enrich for the target behavior and subsequently propagated to restore phage numbers. A recurrent problem is enrichment of clones, called target-unrelated phages or peptides (TUPs), that lack the target behavior. Many TUPs are propagation related; they have mutations conferring a growth advantage and are enriched during the propagations accompanying selection. Unlike other filamentous phage libraries, fd-tet-based libraries are relatively resistant to propagation-related TUP corruption. Their minus-strand origin is disrupted by a large cassette that simultaneously confers resistance to tetracycline and imposes a rate-limiting growth defect that cannot be bypassed with simple mutations. Nonetheless, a new type of propagation-related TUP emerged in the output of in vivo selections from an fd-tet library. The founding clone had a complex rearrangement that restored the minus-strand origin while retaining tetracycline resistance. The rearrangement involved two recombination events, one with a contaminant having a wild-type minus-strand origin. The founder's infectivity advantage spread by simple recombination to clones displaying different peptides. We propose measures for minimizing TUP corruption. Copyright © 2010 Elsevier Inc. All rights reserved.

  17. BAC Libraries from Wheat Chromosome 7D – Efficient Tool for Positional Cloning of Aphid Resistance Genes

    USDA-ARS?s Scientific Manuscript database

    Positional cloning in bread wheat is a tedious task due to its huge genome size (~17 Gbp) and polyploid character. BAC libraries represent an essential tool for positional cloning. However, wheat BAC libraries comprise more than million clones, which make their screening very laborious. Here we pres...

  18. Construction of a nurse shark (Ginglymostoma cirratum) bacterial artificial chromosome (BAC) library and a preliminary genome survey.

    PubMed

    Luo, Meizhong; Kim, Hyeran; Kudrna, Dave; Sisneros, Nicholas B; Lee, So-Jeong; Mueller, Christopher; Collura, Kristi; Zuccolo, Andrea; Buckingham, E Bryan; Grim, Suzanne M; Yanagiya, Kazuyo; Inoko, Hidetoshi; Shiina, Takashi; Flajnik, Martin F; Wing, Rod A; Ohta, Yuko

    2006-05-03

    Sharks are members of the taxonomic class Chondrichthyes, the oldest living jawed vertebrates. Genomic studies of this group, in comparison to representative species in other vertebrate taxa, will allow us to theorize about the fundamental genetic, developmental, and functional characteristics in the common ancestor of all jawed vertebrates. In order to obtain mapping and sequencing data for comparative genomics, we constructed a bacterial artificial chromosome (BAC) library for the nurse shark, Ginglymostoma cirratum. The BAC library consists of 313,344 clones with an average insert size of 144 kb, covering ~4.5 x 1010 bp and thus providing an 11-fold coverage of the haploid genome. BAC end sequence analyses revealed, in addition to LINEs and SINEs commonly found in other animal and plant genomes, two new groups of nurse shark-specific repetitive elements, NSRE1 and NSRE2 that seem to be major components of the nurse shark genome. Screening the library with single-copy or multi-copy gene probes showed 6-28 primary positive clones per probe of which 50-90% were true positives, demonstrating that the BAC library is representative of the different regions of the nurse shark genome. Furthermore, some BAC clones contained multiple genes, making physical mapping feasible. We have constructed a deep-coverage, high-quality, large insert, and publicly available BAC library for a cartilaginous fish. It will be very useful to the scientific community interested in shark genomic structure, comparative genomics, and functional studies. We found two new groups of repetitive elements specific to the nurse shark genome, which may contribute to the architecture and evolution of the nurse shark genome.

  19. Investigation of bacterial and archaeal communities: novel protocols using modern sequencing by Illumina MiSeq and traditional DGGE-cloning.

    PubMed

    Kraková, Lucia; Šoltys, Katarína; Budiš, Jaroslav; Grivalský, Tomáš; Ďuriš, František; Pangallo, Domenico; Szemes, Tomáš

    2016-09-01

    Different protocols based on Illumina high-throughput DNA sequencing and denaturing gradient gel electrophoresis (DGGE)-cloning were developed and applied for investigating hot spring related samples. The study was focused on three target genes: archaeal and bacterial 16S rRNA and mcrA of methanogenic microflora. Shorter read lengths of the currently most popular technology of sequencing by Illumina do not allow analysis of the complete 16S rRNA region, or of longer gene fragments, as was the case of Sanger sequencing. Here, we demonstrate that there is no need for special indexed or tailed primer sets dedicated to short variable regions of 16S rRNA since the presented approach allows the analysis of complete bacterial 16S rRNA amplicons (V1-V9) and longer archaeal 16S rRNA and mcrA sequences. Sample augmented with transposon is represented by a set of approximately 300 bp long fragments that can be easily sequenced by Illumina MiSeq. Furthermore, a low proportion of chimeric sequences was observed. DGGE-cloning based strategies were performed combining semi-nested PCR, DGGE and clone library construction. Comparing both investigation methods, a certain degree of complementarity was observed confirming that the DGGE-cloning approach is not obsolete. Novel protocols were created for several types of laboratories, utilizing the traditional DGGE technique or using the most modern Illumina sequencing.

  20. Toward functional genomics in bacteria: Analysis of gene expression in Escherichia coli from a bacterial artificial chromosome library of Bacillus cereus

    PubMed Central

    Rondon, Michelle R.; Raffel, Sandra J.; Goodman, Robert M.; Handelsman, Jo

    1999-01-01

    As the study of microbes moves into the era of functional genomics, there is an increasing need for molecular tools for analysis of a wide diversity of microorganisms. Currently, biological study of many prokaryotes of agricultural, medical, and fundamental scientific interest is limited by the lack of adequate genetic tools. We report the application of the bacterial artificial chromosome (BAC) vector to prokaryotic biology as a powerful approach to address this need. We constructed a BAC library in Escherichia coli from genomic DNA of the Gram-positive bacterium Bacillus cereus. This library provides 5.75-fold coverage of the B. cereus genome, with an average insert size of 98 kb. To determine the extent of heterologous expression of B. cereus genes in the library, we screened it for expression of several B. cereus activities in the E. coli host. Clones expressing 6 of 10 activities tested were identified in the library, namely, ampicillin resistance, zwittermicin A resistance, esculin hydrolysis, hemolysis, orange pigment production, and lecithinase activity. We analyzed selected BAC clones genetically to identify rapidly specific B. cereus loci. These results suggest that BAC libraries will provide a powerful approach for studying gene expression from diverse prokaryotes. PMID:10339608

  1. Recombination walking: genetic selection of clones from pooled libraries of yeast artificial chromosomes by homologous recombination.

    PubMed Central

    Miller, A M; Savinelli, E A; Couture, S M; Hannigan, G M; Han, Z; Selden, R F; Treco, D A

    1993-01-01

    Recombination walking is based on the genetic selection of specific human clones from a yeast artificial chromosome (YAC) library by homologous recombination. The desired clone is selected from a pooled (unordered) YAC library, eliminating labor-intensive steps typically used in organizing and maintaining ordered YAC libraries. Recombination walking represents an efficient approach to library screening and is well suited for chromosome-walking approaches to the isolation of genes associated with common diseases. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 PMID:8367472

  2. Bacterial diversity analysis of Huanglongbing pathogen-infected citrus, using PhyloChip and 16S rRNA gene clone library sequencing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shankar Sagaram, U.; DeAngelis, K.M.; Trivedi, P.

    The bacterial diversity associated with citrus leaf midribs was characterized 1 from citrus groves that contained the Huanglongbing (HLB) pathogen, which has yet to be cultivated in vitro. We employed a combination of high-density phylogenetic 16S rDNA microarray and 16S rDNA clone library sequencing to determine the microbial community composition of symptomatic and asymptomatic citrus midribs. Our results revealed that citrus leaf midribs can support a diversity of microbes. PhyloChip analysis indicated that 47 orders of bacteria from 15 phyla were present in the citrus leaf midribs while 20 orders from phyla were observed with the cloning and sequencing method.more » PhyloChip arrays indicated that nine taxa were significantly more abundant in symptomatic midribs compared to asymptomatic midribs. Candidatus Liberibacter asiaticus (Las) was detected at a very low level in asymptomatic plants, but was over 200 times more abundant in symptomatic plants. The PhyloChip analysis was further verified by sequencing 16S rDNA clone libraries, which indicated the dominance of Las in symptomatic leaves. These data implicate Las as the pathogen responsible for HLB disease. Citrus is the most important commercial fruit crop in Florida. In recent years, citrus Huanglongbing (HLB), also called citrus greening, has severely affected Florida's citrus production and hence has drawn an enormous amount of attention. HLB is one of the most devastating diseases of citrus (6,13), characterized by blotchy mottling with green islands on leaves, as well as stunting, fruit decline, and small, lopsided fruits with poor coloration. The disease tends to be associated with a phloem-limited fastidious {alpha}-proteobacterium given a provisional Candidatus status (Candidatus Liberobacter spp. later changed to Candidatus Liberibacter spp.) in nomenclature (18,25,34). Previous studies indicate that HLB infection causes disorder in the phloem and severely impairs the translocation of assimilates

  3. Combined Use of 16S Ribosomal DNA and 16S rRNA To Study the Bacterial Community of Polychlorinated Biphenyl-Polluted Soil

    PubMed Central

    Nogales, Balbina; Moore, Edward R. B.; Llobet-Brossa, Enrique; Rossello-Mora, Ramon; Amann, Rudolf; Timmis, Kenneth N.

    2001-01-01

    The bacterial diversity assessed from clone libraries prepared from rRNA (two libraries) and ribosomal DNA (rDNA) (one library) from polychlorinated biphenyl (PCB)-polluted soil has been analyzed. A good correspondence of the community composition found in the two types of library was observed. Nearly 29% of the cloned sequences in the rDNA library were identical to sequences in the rRNA libraries. More than 60% of the total cloned sequence types analyzed were grouped in phylogenetic groups (a clone group with sequence similarity higher than 97% [98% for Burkholderia and Pseudomonas-type clones]) represented in both types of libraries. Some of those phylogenetic groups, mostly represented by a single (or pair) of cloned sequence type(s), were observed in only one of the types of library. An important difference between the libraries was the lack of clones representative of the Actinobacteria in the rDNA library. The PCB-polluted soil exhibited a high bacterial diversity which included representatives of two novel lineages. The apparent abundance of bacteria affiliated to the beta-subclass of the Proteobacteria, and to the genus Burkholderia in particular, was confirmed by fluorescence in situ hybridization analysis. The possible influence on apparent diversity of low template concentrations was assessed by dilution of the RNA template prior to amplification by reverse transcription-PCR. Although differences in the composition of the two rRNA libraries obtained from high and low RNA concentrations were observed, the main components of the bacterial community were represented in both libraries, and therefore their detection was not compromised by the lower concentrations of template used in this study. PMID:11282645

  4. T-cell libraries allow simple parallel generation of multiple peptide-specific human T-cell clones.

    PubMed

    Theaker, Sarah M; Rius, Cristina; Greenshields-Watson, Alexander; Lloyd, Angharad; Trimby, Andrew; Fuller, Anna; Miles, John J; Cole, David K; Peakman, Mark; Sewell, Andrew K; Dolton, Garry

    2016-03-01

    Isolation of peptide-specific T-cell clones is highly desirable for determining the role of T-cells in human disease, as well as for the development of therapies and diagnostics. However, generation of monoclonal T-cells with the required specificity is challenging and time-consuming. Here we describe a library-based strategy for the simple parallel detection and isolation of multiple peptide-specific human T-cell clones from CD8(+) or CD4(+) polyclonal T-cell populations. T-cells were first amplified by CD3/CD28 microbeads in a 96U-well library format, prior to screening for desired peptide recognition. T-cells from peptide-reactive wells were then subjected to cytokine-mediated enrichment followed by single-cell cloning, with the entire process from sample to validated clone taking as little as 6 weeks. Overall, T-cell libraries represent an efficient and relatively rapid tool for the generation of peptide-specific T-cell clones, with applications shown here in infectious disease (Epstein-Barr virus, influenza A, and Ebola virus), autoimmunity (type 1 diabetes) and cancer. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  5. Intracellular screen to identify metagenomic clones that induce or inhibit a quorum-sensing biosensor.

    PubMed

    Williamson, Lynn L; Borlee, Bradley R; Schloss, Patrick D; Guan, Changhui; Allen, Heather K; Handelsman, Jo

    2005-10-01

    The goal of this study was to design and evaluate a rapid screen to identify metagenomic clones that produce biologically active small molecules. We built metagenomic libraries with DNA from soil on the floodplain of the Tanana River in Alaska. We extracted DNA directly from the soil and cloned it into fosmid and bacterial artificial chromosome vectors, constructing eight metagenomic libraries that contain 53,000 clones with inserts ranging from 1 to 190 kb. To identify clones of interest, we designed a high throughput "intracellular" screen, designated METREX, in which metagenomic DNA is in a host cell containing a biosensor for compounds that induce bacterial quorum sensing. If the metagenomic clone produces a quorum-sensing inducer, the cell produces green fluorescent protein (GFP) and can be identified by fluorescence microscopy or captured by fluorescence-activated cell sorting. Our initial screen identified 11 clones that induce and two that inhibit expression of GFP. The intracellular screen detected quorum-sensing inducers among metagenomic clones that a traditional overlay screen would not. One inducing clone carries a LuxI homologue that directs the synthesis of an N-acyl homoserine lactone quorum-sensing signal molecule. The LuxI homologue has 62% amino acid sequence identity to its closest match in GenBank, AmfI from Pseudomonas fluorescens, and is on a 78-kb insert that contains 67 open reading frames. Another inducing clone carries a gene with homology to homocitrate synthase. Our results demonstrate the power of an intracellular screen to identify functionally active clones and biologically active small molecules in metagenomic libraries.

  6. Microbial community in persistent apical periodontitis: a 16S rRNA gene clone library analysis.

    PubMed

    Zakaria, M N; Takeshita, T; Shibata, Y; Maeda, H; Wada, N; Akamine, A; Yamashita, Y

    2015-08-01

    To characterize the microbial composition of persistent periapical lesions of root filled teeth using a molecular genetics approach. Apical lesion samples were collected from 12 patients (23-80 years old) who visited the Kyushu University Hospital for apicectomy with persistent periapical lesions associated with root filled teeth. DNA was directly extracted from each sample and the microbial composition was comprehensively analysed using clone library analysis of the 16S rRNA gene. Enterococcus faecalis, Candida albicans and specific fimA genotypes of Porphyromonas gingivalis were confirmed using polymerase chain reaction (PCR) analysis with specific primers. Bacteria were detected in all samples, and the dominant findings were P. gingivalis (19.9%), Fusobacterium nucleatum (11.2%) and Propionibacterium acnes (9%). Bacterial diversity was greater in symptomatic lesions than in asymptomatic ones. In addition, the following bacteria or bacterial combinations were characteristic to symptomatic lesions: Prevotella spp., Treponema spp., Peptostreptococcaceae sp. HOT-113, Olsenella uli, Slackia exigua, Selemonas infelix, P. gingivalis with type IV fimA, and a combination of P. gingivalis, F. nucleatum, and Peptostreptococcaceae sp. HOT-113 and predominance of Streptococcus spp. On the other hand, neither Enterococcus faecalis nor C. albicans were detected in any of the samples. Whilst a diverse bacterial species were observed in the persistent apical lesions, some characteristic patterns of bacterial community were found in the symptomatic lesions. The diverse variation of community indicates that bacterial combinations as a community may cause persistent inflammation in periapical tissues rather than specific bacterial species. © 2014 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  7. Bacterial Community Composition Associated with Chironomid Egg Masses

    PubMed Central

    Senderovich, Yigal; Halpern, Malka

    2012-01-01

    Chironomids (Diptera: Chironomidae) are the most widely distributed and often the most abundant insect in freshwater. They undergo a complete metamorphosis of four life stages, of which the egg, larva, and pupae are aquatic and the adult is terrestrial. Chironomid egg masses were found to be natural reservoirs of Vibrio cholerae and Aeromonas species. To expand the knowledge of the endogenous bacterial community associated with chironomid egg masses, denaturing gradient gel electrophoresis and clone analysis of 16S rRNA gene libraries were used in this study. Bacterial community composition associated with chironomid egg masses was found to be stable among different sampling periods. Cloned libraries of egg masses revealed that about 40% of the clones were related to bacteria known to degrade various toxicants. These findings were further supported when bacterial species that showed resistance to different toxic metals were isolated from egg masses and larval samples. Chironomids are found under a wide range of water conditions and are able to survive pollutants. However, little is known about their protective mechanisms under these conditions. Chironomid egg masses are inhabited by a stable endogenous bacterial community, which may potentially play a role in protecting chironomids from toxicants in polluted environments. Further study is needed to support this hypothesis. PMID:23461272

  8. Creating libraries for commercial yeast strains through miniaturization of cloning and transformations using the BioRAPTR FRD Microfluidic workstation

    USDA-ARS?s Scientific Manuscript database

    The ability to miniaturize molecular reactions can lead to significant cost savings when creating libraries of thousands of clones. For this application Beckman Coulter partnered with the USDA to provide a low-volume automated solution for library cloning for use in the development of yeast strains...

  9. Phylogenetic screening of a bacterial, metagenomic library using homing endonuclease restriction and marker insertion

    PubMed Central

    Yung, Pui Yi; Burke, Catherine; Lewis, Matt; Egan, Suhelen; Kjelleberg, Staffan; Thomas, Torsten

    2009-01-01

    Metagenomics provides access to the uncultured majority of the microbial world. The approaches employed in this field have, however, had limited success in linking functional genes to the taxonomic or phylogenetic origin of the organism they belong to. Here we present an efficient strategy to recover environmental DNA fragments that contain phylogenetic marker genes from metagenomic libraries. Our method involves the cleavage of 23S ribsosmal RNA (rRNA) genes within pooled library clones by the homing endonuclease I-CeuI followed by the insertion and selection of an antibiotic resistance cassette. This approach was applied to screen a library of 6500 fosmid clones derived from the microbial community associated with the sponge Cymbastela concentrica. Several fosmid clones were recovered after the screen and detailed phylogenetic and taxonomic assignment based on the rRNA gene showed that they belong to previously unknown organisms. In addition, compositional features of these fosmid clones were used to classify and taxonomically assign a dataset of environmental shotgun sequences. Our approach represents a valuable tool for the analysis of rapidly increasing, environmental DNA sequencing information. PMID:19767618

  10. Bacterial diversity associated with the rotifer Brachionus plicatilis sp. complex determined by culture-dependent and -independent methods.

    PubMed

    Ishino, Ryota; Iehata, Shunpei; Nakano, Miyo; Tanaka, Reiji; Yoshimatsu, Takao; Maeda, Hiroto

    2012-03-01

    The bacterial communities associated with rotifers (Brachionus plicatilis sp. complex) and their culture water were determined using culture-dependent and -independent methods (16S rRNA gene clone library). The bacterial communities determined by the culture-independent method were more diverse than those determined by the culture-dependent method. Although the culture-dependent method indicated the bacterial community of rotifers was relatively similar to that of the culture water, 16S rRNA gene clone library analyses revealed a great difference between the two microbiotas. Our results suggest that most bacteria associated with rotifers are not easily cultured using conventional methods, and that the microbiota of rotifers do not correspond with that of the culture water completely.

  11. Clone DB: an integrated NCBI resource for clone-associated data

    PubMed Central

    Schneider, Valerie A.; Chen, Hsiu-Chuan; Clausen, Cliff; Meric, Peter A.; Zhou, Zhigang; Bouk, Nathan; Husain, Nora; Maglott, Donna R.; Church, Deanna M.

    2013-01-01

    The National Center for Biotechnology Information (NCBI) Clone DB (http://www.ncbi.nlm.nih.gov/clone/) is an integrated resource providing information about and facilitating access to clones, which serve as valuable research reagents in many fields, including genome sequencing and variation analysis. Clone DB represents an expansion and replacement of the former NCBI Clone Registry and has records for genomic and cell-based libraries and clones representing more than 100 different eukaryotic taxa. Records provide details of library construction, associated sequences, map positions and information about resource distribution. Clone DB is indexed in the NCBI Entrez system and can be queried by fields that include organism, clone name, gene name and sequence identifier. Whenever possible, genomic clones are mapped to reference assemblies and their map positions provided in clone records. Clones mapping to specific genomic regions can also be searched for using the NCBI Clone Finder tool, which accepts queries based on sequence coordinates or features such as gene or transcript names. Clone DB makes reports of library, clone and placement data on its FTP site available for download. With Clone DB, users now have available to them a centralized resource that provides them with the tools they will need to make use of these important research reagents. PMID:23193260

  12. Species richness in soil bacterial communities: a proposed approach to overcome sample size bias.

    PubMed

    Youssef, Noha H; Elshahed, Mostafa S

    2008-09-01

    Estimates of species richness based on 16S rRNA gene clone libraries are increasingly utilized to gauge the level of bacterial diversity within various ecosystems. However, previous studies have indicated that regardless of the utilized approach, species richness estimates obtained are dependent on the size of the analyzed clone libraries. We here propose an approach to overcome sample size bias in species richness estimates in complex microbial communities. Parametric (Maximum likelihood-based and rarefaction curve-based) and non-parametric approaches were used to estimate species richness in a library of 13,001 near full-length 16S rRNA clones derived from soil, as well as in multiple subsets of the original library. Species richness estimates obtained increased with the increase in library size. To obtain a sample size-unbiased estimate of species richness, we calculated the theoretical clone library sizes required to encounter the estimated species richness at various clone library sizes, used curve fitting to determine the theoretical clone library size required to encounter the "true" species richness, and subsequently determined the corresponding sample size-unbiased species richness value. Using this approach, sample size-unbiased estimates of 17,230, 15,571, and 33,912 were obtained for the ML-based, rarefaction curve-based, and ACE-1 estimators, respectively, compared to bias-uncorrected values of 15,009, 11,913, and 20,909.

  13. [Cloning, expression and characterization of a novel esterase from marine sediment microbial metagenomic library].

    PubMed

    Xu, Shiqing; Hu, Yongfei; Yuan, Aihua; Zhu, Baoli

    2010-07-01

    To clone, express and characterize a novel esterase from marine sediment microbial metagenomic library. Using esterase segregation agar containing tributyrin, we obtained esterase positive fosmid clone FL10 from marine sediment microbial metagenomic library. This fosmid was partially digested with Sau3A I to construct the sublibrary, from which the esterase positive subclone pFLS10 was obtained. The full length of the esterase gene was amplified and cloned into the expressing vector pET28a, and the recombinant plasmid was transformed into E. coli BL21 cells. We analyse the enzyme activity and study the characterization of the esterase after its expression and purification. An ORF (Open Reading Frame) of 924 bp was identified from the subclone pFLS10. Sequence analysis indicated that it showed 71% amino acid identity to esterase (ADA70030) from a marine sediment metagenomic library. The esterase is a novel low-temperature-active esterase and had highest lipolytic activity to the substrate of 4-nitrophenyl butyrate (C4). The optimum temperature of the esterase was 20 degrees C, the optimum pH was 7.5. The esterase in this study had good thermostability at 20 degrees C and good pH stability at pH8 -10. Significant increase in lipolytic activity was observed with addition of K+ and Mg2+, while decrease with Mn2+ etc. We obtained the novel esterase gene fls10 from the marine sediment microbial metagenomic library. The esterase had good thermostability and high lipolytic activity at low temperature and under basic conditions, which laid a basis for industrial application.

  14. A comprehensive survey of soil acidobacterial diversity using pyrosequencing and clone library analyses

    PubMed Central

    Jones, Ryan T; Robeson, Michael S; Lauber, Christian L; Hamady, Micah; Knight, Rob; Fierer, Noah

    2010-01-01

    Acidobacteria are ubiquitous and abundant members of soil bacterial communities. However, an ecological understanding of this important phylum has remained elusive because its members have been difficult to culture and few molecular investigations have focused exclusively on this group. We generated an unprecedented number of acidobacterial DNA sequence data using pyrosequencing and clone libraries (39 707 and 1787 sequences, respectively) to characterize the relative abundance, diversity and composition of acidobacterial communities across a range of soil types. To gain insight into the ecological characteristics of acidobacterial taxa, we investigated the large-scale biogeographic patterns exhibited by acidobacterial communities, and related soil and site characteristics to acidobacterial community assemblage patterns. The 87 soils analyzed by pyrosequencing contained more than 8600 unique acidobacterial phylotypes (at the 97% sequence similarity level). One phylotype belonging to Acidobacteria subgroup 1, but not closely related to any cultured representatives, was particularly abundant, accounting for 7.4% of bacterial sequences and 17.6% of acidobacterial sequences, on average, across the soils. The abundance of Acidobacteria relative to other bacterial taxa was highly variable across the soils examined, but correlated strongly with soil pH (R = −0.80, P<0.001). Soil pH was also the best predictor of acidobacterial community composition, regardless of how the communities were characterized, and the relative abundances of the dominant Acidobacteria subgroups were readily predictable. Acidobacterial communities were more phylogenetically clustered as soil pH departed from neutrality, suggesting that pH is an effective habitat filter, restricting community membership to progressively more narrowly defined lineages as pH deviates from neutrality. PMID:19129864

  15. Characterization of bacterial diversity associated with deep sea ferromanganese nodules from the South China Sea.

    PubMed

    Zhang, De-Chao; Liu, Yan-Xia; Li, Xin-Zheng

    2015-09-01

    Deep sea ferromanganese (FeMn) nodules contain metallic mineral resources and have great economic potential. In this study, a combination of culture-dependent and culture-independent (16S rRNA genes clone library and pyrosequencing) methods was used to investigate the bacterial diversity in FeMn nodules from Jiaolong Seamount, the South China Sea. Eleven bacterial strains including some moderate thermophiles were isolated. The majority of strains belonged to the phylum Proteobacteria; one isolate belonged to the phylum Firmicutes. A total of 259 near full-length bacterial 16S rRNA gene sequences in a clone library and 67,079 valid reads obtained using pyrosequencing indicated that members of the Gammaproteobacteria dominated, with the most abundant bacterial genera being Pseudomonas and Alteromonas. Sequence analysis indicated the presence of many organisms whose closest relatives are known manganese oxidizers, iron reducers, hydrogen-oxidizing bacteria and methylotrophs. This is the first reported investigation of bacterial diversity associated with deep sea FeMn nodules from the South China Sea.

  16. Identification and characterization of mutant clones with enhanced propagation rates from phage-displayed peptide libraries.

    PubMed

    Nguyen, Kieu T H; Adamkiewicz, Marta A; Hebert, Lauren E; Zygiel, Emily M; Boyle, Holly R; Martone, Christina M; Meléndez-Ríos, Carola B; Noren, Karen A; Noren, Christopher J; Hall, Marilena Fitzsimons

    2014-10-01

    A target-unrelated peptide (TUP) can arise in phage display selection experiments as a result of a propagation advantage exhibited by the phage clone displaying the peptide. We previously characterized HAIYPRH, from the M13-based Ph.D.-7 phage display library, as a propagation-related TUP resulting from a G→A mutation in the Shine-Dalgarno sequence of gene II. This mutant was shown to propagate in Escherichia coli at a dramatically faster rate than phage bearing the wild-type Shine-Dalgarno sequence. We now report 27 additional fast-propagating clones displaying 24 different peptides and carrying 14 unique mutations. Most of these mutations are found either in or upstream of the gene II Shine-Dalgarno sequence, but still within the mRNA transcript of gene II. All 27 clones propagate at significantly higher rates than normal library phage, most within experimental error of wild-type M13 propagation, suggesting that mutations arise to compensate for the reduced virulence caused by the insertion of a lacZα cassette proximal to the replication origin of the phage used to construct the library. We also describe an efficient and convenient assay to diagnose propagation-related TUPS among peptide sequences selected by phage display. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  17. Molecular comparison of bacterial communities within iron-containing flocculent mats associated with submarine volcanoes along the Kermadec Arc.

    PubMed

    Hodges, Tyler W; Olson, Julie B

    2009-03-01

    Iron oxide sheaths and filaments are commonly found in hydrothermal environments and have been shown to have a biogenic origin. These structures were seen in the flocculent material associated with two submarine volcanoes along the Kermadec Arc north of New Zealand. Molecular characterization of the bacterial communities associated with the flocculent samples indicated that no known Fe-oxidizing bacteria dominated the recovered clone libraries. However, clones related to the recently described Fe-oxidizing bacterium Mariprofundus ferrooxydans were obtained from both the iron-containing flocculent (Fe-floc) and sediment samples, and peaks corresponding to Mariprofundus ferrooxydans, as well as the related clones, were observed in several of our terminal restriction fragment length polymorphism profiles. A large group of epsilonproteobacterial sequences, for which there is no cultured representative, dominated clones from the Fe-floc libraries and were less prevalent in the sediment sample. Phylogenetic analyses indicated that several operational taxonomic units appeared to be site specific, and statistical analyses of the clone libraries found that all samples were significantly different from each other. Thus, the bacterial communities in the Fe-floc samples were not more closely related to each other than to the sediment communities.

  18. Screening a wide host-range, waste-water metagenomic library in tryptophan auxotrophs of Rhizobium leguminosarum and of Escherichia coli reveals different classes of cloned trp genes.

    PubMed

    Li, Youguo; Wexler, Margaret; Richardson, David J; Bond, Philip L; Johnston, Andrew W B

    2005-12-01

    A metagenomic cosmid library was constructed, in which the insert DNA was derived from bacteria in a waste-water treatment plant and the vector was the wide host-range cosmid pLAFR3. The library was screened for clones that could correct defined tryptophan auxotrophs of the alpha-proteobacterium Rhizobium leguminosarum and of Escherichia coli. A total of 26 different cosmids that corrected at least one trp mutant in one or both of these species were obtained. Several cosmids corrected the auxotrophy of one or more R. leguminosarum trp mutants, but not the corresponding mutants in E. coli. Conversely, one cosmid corrected trpA, B, C, D and E mutants of E. coli but none of the trp mutants of R. leguminosarum. Two of the Trp+ cosmids were examined in more detail. One contained a trp operon that resembled that of the pathogen Chlamydophila caviae, containing the unusual kynU gene, which specifies kynureninase. The other, whose trp genes functioned in R. leguminosarum but not in E. coli, contained trpDCFBA in an operon that is likely co-transcribed with five other genes, most of which had no known link with tryptophan synthesis. The sequences of these TRP proteins, and the products of nine other genes encoded by this cosmid, failed to affiliate them with any known bacterial lineage. For one metagenomic cosmid, lac reporter fusions confirmed that its cloned trp genes were transcribed in R. leguminosarum, but not in E. coli. Thus, rhizobia, with their many sigma-factors, may be well-suited hosts for metagenomic libraries, cloned in wide host-range vectors.

  19. Recovery of infectious virus from full-length cowpox virus (CPXV) DNA cloned as a bacterial artificial chromosome (BAC)

    PubMed Central

    2011-01-01

    Transmission from pet rats and cats to humans as well as severe infection in felids and other animal species have recently drawn increasing attention to cowpox virus (CPXV). We report the cloning of the entire genome of cowpox virus strain Brighton Red (BR) as a bacterial artificial chromosome (BAC) in Escherichia coli and the recovery of infectious virus from cloned DNA. Generation of a full-length CPXV DNA clone was achieved by first introducing a mini-F vector, which allows maintenance of large circular DNA in E. coli, into the thymidine kinase locus of CPXV by homologous recombination. Circular replication intermediates were then electroporated into E. coli DH10B cells. Upon successful establishment of the infectious BR clone, we modified the full-length clone such that recombination-mediated excision of bacterial sequences can occur upon transfection in eukaryotic cells. This self-excision of the bacterial replicon is made possible by a sequence duplication within mini-F sequences and allows recovery of recombinant virus progeny without remaining marker or vector sequences. The in vitro growth properties of viruses derived from both BAC clones were determined and found to be virtually indistinguishable from those of parental, wild-type BR. Finally, the complete genomic sequence of the infectious clone was determined and the cloned viral genome was shown to be identical to that of the parental virus. In summary, the generated infectious clone will greatly facilitate studies on individual genes and pathogenesis of CPXV. Moreover, the vector potential of CPXV can now be more systematically explored using this newly generated tool. PMID:21314965

  20. Combining yeast display and competitive FACS to select rare hapten-specific clones from recombinant antibody libraries

    DOE PAGES

    Sun, Yue; Ban, Bhupal; Bradbury, Andrew; ...

    2016-08-29

    The development of antibodies to low molecular weight haptens remains challenging due to both the low immunogenicity of many haptens and the cross-reactivity of the protein carriers used to generate the immune response. Recombinant antibodies and novel display technologies have greatly advanced antibody development; however, new techniques are still required to select rare hapten-specific antibodies from large recombinant libraries. In the present study, we used a combination of phage and yeast display to screen an immune antibody library (size, 4.4 × 10 6 ) against hapten markers for petroleum contamination (phenanthrene and methylphenanthrenes). Selection via phage display was used firstmore » to enrich the library between 20- and 100- fold for clones that bound to phenanthrene-protein conjugates. The enriched libraries were subsequently transferred to a yeast display system and a newly developed competitive FACS procedure was employed to select rare hapten-specific clones. Competitive FACS increased the frequency of hapten-specific scFvs in our yeast-displayed scFvs from 0.025 to 0.005% in the original library to between 13 and 35% in selected pools. The presence of hapten-specific scFvs was confirmed by competitive ELISA using periplasmic protein. Three distinct antibody clones that recognize phenanthrene and methylphenanthrenes were selected, and their distinctive binding properties were characterized. To our knowledge, these are first antibodies that can distinguish between methylated (petrogenic) versus unmethylated (pyrogenic) phenanthrenes; such antibodies will be useful in detecting the sources of environmental contamination. Furthermore, this selection method could be generally adopted in the selection of other hapten-specific recombinant antibodies.« less

  1. Combining yeast display and competitive FACS to select rare hapten-specific clones from recombinant antibody libraries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Yue; Ban, Bhupal; Bradbury, Andrew

    The development of antibodies to low molecular weight haptens remains challenging due to both the low immunogenicity of many haptens and the cross-reactivity of the protein carriers used to generate the immune response. Recombinant antibodies and novel display technologies have greatly advanced antibody development; however, new techniques are still required to select rare hapten-specific antibodies from large recombinant libraries. In the present study, we used a combination of phage and yeast display to screen an immune antibody library (size, 4.4 × 10 6 ) against hapten markers for petroleum contamination (phenanthrene and methylphenanthrenes). Selection via phage display was used firstmore » to enrich the library between 20- and 100- fold for clones that bound to phenanthrene-protein conjugates. The enriched libraries were subsequently transferred to a yeast display system and a newly developed competitive FACS procedure was employed to select rare hapten-specific clones. Competitive FACS increased the frequency of hapten-specific scFvs in our yeast-displayed scFvs from 0.025 to 0.005% in the original library to between 13 and 35% in selected pools. The presence of hapten-specific scFvs was confirmed by competitive ELISA using periplasmic protein. Three distinct antibody clones that recognize phenanthrene and methylphenanthrenes were selected, and their distinctive binding properties were characterized. To our knowledge, these are first antibodies that can distinguish between methylated (petrogenic) versus unmethylated (pyrogenic) phenanthrenes; such antibodies will be useful in detecting the sources of environmental contamination. Furthermore, this selection method could be generally adopted in the selection of other hapten-specific recombinant antibodies.« less

  2. An accurate bacterial DNA quantification assay for HTS library preparation of human biological samples.

    PubMed

    Seashols-Williams, Sarah; Green, Raquel; Wohlfahrt, Denise; Brand, Angela; Tan-Torres, Antonio Limjuco; Nogales, Francy; Brooks, J Paul; Singh, Baneshwar

    2018-05-17

    Sequencing and classification of microbial taxa within forensically relevant biological fluids has the potential for applications in the forensic science and biomedical fields. The quantity of bacterial DNA from human samples is currently estimated based on quantity of total DNA isolated. This method can miscalculate bacterial DNA quantity due to the mixed nature of the sample, and consequently library preparation is often unreliable. We developed an assay that can accurately and specifically quantify bacterial DNA within a mixed sample for reliable 16S ribosomal DNA (16S rDNA) library preparation and high throughput sequencing (HTS). A qPCR method was optimized using universal 16S rDNA primers, and a commercially available bacterial community DNA standard was used to develop a precise standard curve. Following qPCR optimization, 16S rDNA libraries from saliva, vaginal and menstrual secretions, urine, and fecal matter were amplified and evaluated at various DNA concentrations; successful HTS data were generated with as low as 20 pg of bacterial DNA. Changes in bacterial DNA quantity did not impact observed relative abundances of major bacterial taxa, but relative abundance changes of minor taxa were observed. Accurate quantification of microbial DNA resulted in consistent, successful library preparations for HTS analysis. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Analysis of a diverse assemblage of diazotrophic bacteria from Spartina alterniflora using DGGE and clone library screening.

    PubMed

    Lovell, Charles R; Decker, Peter V; Bagwell, Christopher E; Thompson, Shelly; Matsui, George Y

    2008-05-01

    Methods to assess the diversity of the diazotroph assemblage in the rhizosphere of the salt marsh cordgrass, Spartina alterniflora were examined. The effectiveness of nifH PCR-denaturing gradient gel electrophoresis (DGGE) was compared to that of nifH clone library analysis. Seventeen DGGE gel bands were sequenced and yielded 58 nonidentical nifH sequences from a total of 67 sequences determined. A clone library constructed using the GC-clamp nifH primers that were employed in the PCR-DGGE (designated the GC-Library) yielded 83 nonidentical sequences from a total of 257 nifH sequences. A second library constructed using an alternate set of nifH primers (N-Library) yielded 83 nonidentical sequences from a total of 138 nifH sequences. Rarefaction curves for the libraries did not reach saturation, although the GC-Library curve was substantially dampened and appeared to be closer to saturation than the N-Library curve. Phylogenetic analyses showed that DGGE gel band sequencing recovered nifH sequences that were frequently sampled in the GC-Library, as well as sequences that were infrequently sampled, and provided a species composition assessment that was robust, efficient, and relatively inexpensive to obtain. Further, the DGGE method permits a large number of samples to be examined for differences in banding patterns, after which bands of interest can be sampled for sequence determination.

  4. Influence of menstruation on the microbiota of healthy women's labia minora as analyzed using a 16S rRNA gene-based clone library method.

    PubMed

    Shiraishi, Tsukasa; Fukuda, Kazumasa; Morotomi, Nobuo; Imamura, Yuri; Mishima, Junko; Imai, Shigeo; Miyazawa, Kiyoshi; Taniguchi, Hatsumi

    2011-01-01

    The aim of this study was to determine the influence of menstruation on the bacterial population of healthy Japanese women's vulvas, especially the labia minora. Labia minora swabs were obtained from 10 premenopausal, nonpregnant Japanese women at premenstruation and on day 2 of menstruation. Vaginal swabs were also obtained from 3 out of the 10 women. No significant difference was found in the average bacterial cell count between the menstruation and premenstruation samples. Molecular analysis using a 16S rRNA gene-based clone library method detected 22 genera from the labia minora swabs (total 20), with the genus Lactobacillus being predominant at both premenstruation and during menstruation in 7 out of the 10 women. Of the other 3 women, 2 showed various kinds of bacterial species, including oral and fecal bacteria, with Atopobium vaginae and Gardnerella vaginalis predominating in the remaining woman's vulva in both conditions. In total, 6 out of 10 cases (60%) showed significantly different microbiota of the labia minora between the two conditions. These results imply that menstruation may promote a distortion of the bacterial flora around the vulva, although it causes no significant increase of the bacterial count.

  5. Final progress report, Construction of a genome-wide highly characterized clone resource for genome sequencing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nierman, William C.

    At TIGR, the human Bacterial Artificial Chromosome (BAC) end sequencing and trimming were with an overall sequencing success rate of 65%. CalTech human BAC libraries A, B, C and D as well as Roswell Park Cancer Institute's library RPCI-11 were used. To date, we have generated >300,000 end sequences from >186,000 human BAC clones with an average read length {approx}460 bp for a total of 141 Mb covering {approx}4.7% of the genome. Over sixty percent of the clones have BAC end sequences (BESs) from both ends representing over five-fold coverage of the genome by the paired-end clones. The average phredmore » Q20 length is {approx}400 bp. This high accuracy makes our BESs match the human finished sequences with an average identity of 99% and a match length of 450 bp, and a frequency of one match per 12.8 kb contig sequence. Our sample tracking has ensured a clone tracking accuracy of >90%, which gives researchers a high confidence in (1) retrieving the right clone from the BA C libraries based on the sequence matches; and (2) building a minimum tiling path of sequence-ready clones across the genome and genome assembly scaffolds.« less

  6. Towards Spectral Library-free MALDI-TOF MS Bacterial Identification.

    PubMed

    Cheng, Ding; Qiao, Liang; Horvatovich, Péter

    2018-05-11

    Bacterial identification is of great importance in clinical diagnosis, environmental monitoring and food safety control. Among various strategies, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) has drawn significant interests, and has been clinically used. Nevertheless, current bioinformatics solutions use spectral libraries for the identification of bacterial strains. Spectral library generation requires acquisition of MALDI-TOF spectra from monoculture bacterial colonies, which is time-consuming and not possible for many species and strains. We propose a strategy for bacterial typing by MALDI-TOF using protein sequences from public database, i.e. UniProt. Ten genes were identified to encode proteins most often observed by MALD-TOF from bacteria through 500 times repeated a 10-fold double cross-validation procedure, using 403 MALDI-TOF spectra corresponding to 14 genera, 81 species and 403 strains, and the protein sequences of 1276 species in UniProt. The 10 genes were then used to annotate peaks on MALDI-TOF spectra of bacteria for bacterial identification. With the approach, bacteria can be identified at the genus level by searching against a database containing the protein sequences of 42 genera of bacteria from UniProt. Our approach identified 84.1% of the 403 spectra correctly at the genus level. Source code of the algorithm is available at https://github.com/dipcarbon/BacteriaMSLF.

  7. Construction of random sheared fosmid library from Chinese cabbage and its use for Brassica rapa genome sequencing project.

    PubMed

    Park, Tae-Ho; Park, Beom-Seok; Kim, Jin-A; Hong, Joon Ki; Jin, Mina; Seol, Young-Joo; Mun, Jeong-Hwan

    2011-01-01

    As a part of the Multinational Genome Sequencing Project of Brassica rapa, linkage group R9 and R3 were sequenced using a bacterial artificial chromosome (BAC) by BAC strategy. The current physical contigs are expected to cover approximately 90% euchromatins of both chromosomes. As the project progresses, BAC selection for sequence extension becomes more limited because BAC libraries are restriction enzyme-specific. To support the project, a random sheared fosmid library was constructed. The library consists of 97536 clones with average insert size of approximately 40 kb corresponding to seven genome equivalents, assuming a Chinese cabbage genome size of 550 Mb. The library was screened with primers designed at the end of sequences of nine points of scaffold gaps where BAC clones cannot be selected to extend the physical contigs. The selected positive clones were end-sequenced to check the overlap between the fosmid clones and the adjacent BAC clones. Nine fosmid clones were selected and fully sequenced. The sequences revealed two completed gap filling and seven sequence extensions, which can be used for further selection of BAC clones confirming that the fosmid library will facilitate the sequence completion of B. rapa. Copyright © 2011. Published by Elsevier Ltd.

  8. Bacterial Artificial Chromosome Clones of Viruses Comprising the Towne Cytomegalovirus Vaccine

    PubMed Central

    Cui, Xiaohong; Adler, Stuart P.; Davison, Andrew J.; Smith, Larry; Habib, EL-Sayed E.; McVoy, Michael A.

    2012-01-01

    Bacterial artificial chromosome (BAC) clones have proven invaluable for genetic manipulation of herpesvirus genomes. BAC cloning can also be useful for capturing representative genomes that comprise a viral stock or mixture. The Towne live attenuated cytomegalovirus vaccine was developed in the 1970s by serial passage in cultured fibroblasts. Although its safety, immunogenicity, and efficacy have been evaluated in nearly a thousand human subjects, the vaccine itself has been little studied. Instead, genetic composition and in vitro growth properties have been inferred from studies of laboratory stocks that may not always accurately represent the viruses that comprise the vaccine. Here we describe the use of BAC cloning to define the genotypic and phenotypic properties of viruses from the Towne vaccine. Given the extensive safety history of the Towne vaccine, these BACs provide a logical starting point for the development of next-generation rationally engineered cytomegalovirus vaccines. PMID:22187535

  9. Bacterial artificial chromosome clones of viruses comprising the towne cytomegalovirus vaccine.

    PubMed

    Cui, Xiaohong; Adler, Stuart P; Davison, Andrew J; Smith, Larry; Habib, El-Sayed E; McVoy, Michael A

    2012-01-01

    Bacterial artificial chromosome (BAC) clones have proven invaluable for genetic manipulation of herpesvirus genomes. BAC cloning can also be useful for capturing representative genomes that comprise a viral stock or mixture. The Towne live attenuated cytomegalovirus vaccine was developed in the 1970s by serial passage in cultured fibroblasts. Although its safety, immunogenicity, and efficacy have been evaluated in nearly a thousand human subjects, the vaccine itself has been little studied. Instead, genetic composition and in vitro growth properties have been inferred from studies of laboratory stocks that may not always accurately represent the viruses that comprise the vaccine. Here we describe the use of BAC cloning to define the genotypic and phenotypic properties of viruses from the Towne vaccine. Given the extensive safety history of the Towne vaccine, these BACs provide a logical starting point for the development of next-generation rationally engineered cytomegalovirus vaccines.

  10. Bacterial diversity of Taxus rhizosphere: culture-independent and culture-dependent approaches.

    PubMed

    Hao, Da Cheng; Ge, Guang Bo; Yang, Ling

    2008-07-01

    The regional variability of Taxus rhizosphere bacterial community composition and diversity was studied by comparative analysis of three large 16S rRNA gene clone libraries from the Taxus rhizosphere in different regions of China (subtropical and temperate regions). One hundred and forty-six clones were screened for three libraries. Phylogenetic analysis of 16S rRNA gene sequences demonstrated that the abundance of sequences affiliated with Gammaproteobacteria, Betaproteobacteria, and Actinobacteria was higher in the library from the T. xmedia rhizosphere of the temperate region compared with the subtropical Taxus mairei rhizosphere. On the other hand, Acidobacteria was more abundant in libraries from the subtropical Taxus mairei rhizosphere. Richness estimates and diversity indices of three libraries revealed major differences, indicating a higher richness in the Taxus rhizosphere bacterial communities of the subtropical region and considerable variability in the bacterial community composition within this region. By enrichment culture, a novel Actinobacteria strain DICP16 was isolated from the T. xmedia rhizosphere of the temperate region and was identified as Leifsonia shinshuensis sp. via 16S rRNA gene and gyrase B sequence analyses. DICP16 was able to remove the xylosyl group from 7-xylosyl-10-deacetylbaccatin III and 7-xylosyl-10-deacetylpaclitaxel, thereby making the xylosyltaxanes available as sources of 10-deacetylbaccatin III and the anticancer drug paclitaxel. Taken together, the present studies provide, for the first time, the knowledge of the biodiversity of microorganisms populating Taxus rhizospheres.

  11. Activity and bacterial diversity of snow around Russian Antarctic stations.

    PubMed

    Lopatina, Anna; Krylenkov, Vjacheslav; Severinov, Konstantin

    2013-11-01

    The diversity and temporal dynamics of bacterial communities in pristine snow around two Russian Antarctic stations was investigated. Taxonomic analysis of rDNA libraries revealed that snow communities were dominated by bacteria from a small number of operational taxonomic units (OTUs) that underwent dramatic swings in abundance between the 54th (2008-2009) and 55th (2009-2010) Russian Antarctic expeditions. Moreover, analysis of the 55th expedition samples indicated that there was very little, if any, correspondence in abundance of clones belonging to the same OTU present in rDNA and rRNA libraries. The latter result suggests that most rDNA clones originate from bacteria that are not alive and/or active and may have been deposited on the snow surface from the atmosphere. In contrast, clones most abundant in rRNA libraries (mostly belonging to Variovorax, Janthinobacterium, Pseudomonas, and Sphingomonas genera) may be considered as endogenous Antarctic snow inhabitants. Copyright © 2013 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  12. Definition of agonists and design of antagonists for alloreactive T cell clones using synthetic peptide libraries.

    PubMed

    de Koster, H S; Vermeulen, C J; Hiemstra, H S; Amons, R; Drijfhout, J W; Koning, F

    1999-04-01

    Alloreactive T cells form an important barrier for organ transplantation. To reduce the risk of rejection patients are given immunosuppressive drugs, which increase the chance of infection and the incidence of malignancies. It has been shown that a large proportion of alloreactive T cells specifically recognize peptides present in the groove of the allogeneic MHC molecule. This implies that it might be possible to modulate the alloresponse by peptides with antagonistic properties, thus preventing rejection without the side effects of general immunosuppression. Peptide antagonists can be designed on the basis of the original agonist, yet for alloreactive T cells these agonists are usually unknown. In this study we have used a dedicated synthetic peptide library to identify agonists for HLA-DR3-specific alloreactive T cell clones. Based on these agonists, altered peptide ligands (APL) were designed. Three APL could antagonize an alloreactive T cell clone in its response against the library-derived agonist as well as in its response against the original allodeterminant, HLA-DR3. This demonstrates that peptide libraries can be used to design antagonists for alloreactive T cells without knowledge about the nature of the actual allostimulatory peptide. Since the most potent agonists are selected, this strategy permits detection of potent antagonists. The results, however, also suggest that the degree of peptide dependency of alloreactive T cell clones may dictate whether a peptide antagonist can be found for such clones. Whether peptide antagonists will be valuable in the development of donor-patient-specific immunosuppression may therefore depend on the specificity of the in vivo-generated alloreactive T cells.

  13. Pilot Screening to Determine Antimicrobial Synergies in a Multidrug-Resistant Bacterial Strain Library

    PubMed Central

    Kim, Si-Hyun; Park, Chulmin; Chun, Hye-Sun; Choi, Jae-Ki; Lee, Hyo-Jin; Cho, Sung-Yeon; Park, Sun Hee; Choi, Su-Mi; Choi, Jung-Hyun; Yoo, Jin-Hong

    2016-01-01

    With the rise in multidrug-resistant (MDR) bacterial infections, there has been increasing interest in combinations of ≥2 antimicrobial agents with synergistic effects. We established an MDR bacterial strain library to screen for in vitro antimicrobial synergy by using a broth microdilution checkerboard method and high-throughput luciferase-based bacterial cell viability assay. In total, 39 MDR bacterial strains, including 23 carbapenem-resistant gram-negative bacteria, 9 vancomycin-intermediate Staphylococcus aureus, and 7 vancomycin-resistant Enterococcus faecalis, were used to screen for potential antimicrobial synergies. Synergies were more frequently identified with combinations of imipenem plus trimethoprim–sulfamethoxazole for carbapenem-resistant Acinetobacter baumannii in the library. To verify this finding, we tested 34 A. baumannii clinical isolates resistant to both imipenem and trimethoprim–sulfamethoxazole by the checkerboard method. The imipenem plus trimethoprim–sulfamethoxazole combination showed synergy in the treatment of 21 (62%) of the clinical isolates. The results indicate that pilot screening for antimicrobial synergy in the MDR bacterial strain library could be valuable in the selection of combination therapeutic regimens to treat MDR bacterial infections. Further studies are warranted to determine whether this screening system can be useful to screen for the combined effects of conventional antimicrobials and new-generation antimicrobials or nonantimicrobials. PMID:26974861

  14. Application of clone library analysis and real-time PCR for comparison of microbial communities in a low-grade copper sulfide ore bioheap leachate.

    PubMed

    Bowei, Chen; Xingyu, Liu; Wenyan, Liu; Jiankang, Wen

    2009-11-01

    The microbial communities of leachate from a bioleaching heap located in China were analyzed using the 16S rRNA gene clone library and real-time quantitative PCR. Both methods showed that Leptospirillum spp. were the dominant bacteria, and Ferroplasma acidiphilum were the only archaea detected in the leachate. Clone library results indicated that nine operational taxonomic units (OTUs) were obtained, which fell into four divisions, the Nitrospirae (74%), the gamma-Proteobacteria (14%), the Actinobacteria (6%) and the Euryarchaeota (6%). The results obtained by real-time PCR in some ways were the same as clone library analysis. Furthermore, Sulfobacillus spp., detected only by real-time PCR, suggests that real-time PCR was a reliable technology to study the microbial communities in bioleaching environments. It is a useful tool to assist clone library analysis, to further understand microbial consortia and to have comprehensive and exact microbiological information about bioleaching environments. Finally, the interactions among the microorganisms detected in the leachate were summarized according to the characteristics of these species.

  15. Bacterial diversity in water injection systems of Brazilian offshore oil platforms.

    PubMed

    Korenblum, Elisa; Valoni, Erika; Penna, Mônica; Seldin, Lucy

    2010-01-01

    Biogenic souring and microbial-influenced corrosion is a common scenario in water-flooded petroleum reservoirs. Water injection systems are continuously treated to control bacterial contamination, but some bacteria that cause souring and corrosion can persist even after different treatments have been applied. Our aim was to increase our knowledge of the bacterial communities that persist in the water injection systems of three offshore oil platforms in Brazil. To achieve this goal, we used a culture-independent molecular approach (16S ribosomal RNA gene clone libraries) to analyze seawater samples that had been subjected to different treatments. Phylogenetic analyses revealed that the bacterial communities from the different platforms were taxonomically different. A predominance of bacterial clones affiliated with Gammaproteobacteria, mostly belonging to the genus Marinobacter (60.7%), were observed in the platform A samples. Clones from platform B were mainly related to the genera Colwellia (37.9%) and Achromobacter (24.6%), whereas clones obtained from platform C were all related to unclassified bacteria. Canonical correspondence analyses showed that different treatments such as chlorination, deoxygenation, and biocide addition did not significantly influence the bacterial diversity in the platforms studied. Our results demonstrated that the injection water used in secondary oil recovery procedures contained potentially hazardous bacteria, which may ultimately cause souring and corrosion.

  16. The gut bacterial communities associated with lab-raised and field-collected ants of Camponotus fragilis (Formicidae: Formicinae).

    PubMed

    He, Hong; Wei, Cong; Wheeler, Diana E

    2014-09-01

    Camponotus is the second largest ant genus and known to harbor the primary endosymbiotic bacteria of the genus Blochmannia. However, little is known about the effect of diet and environment changes on the gut bacterial communities of these ants. We investigated the intestinal bacterial communities in the lab-raised and field-collected ants of Camponotus fragilis which is found in the southwestern United States and northern reaches of Mexico. We determined the difference of gut bacterial composition and distribution among the crop, midgut, and hindgut of the two types of colonies. Number of bacterial species varied with the methods of detection and the source of the ants. Lab-raised ants yielded 12 and 11 species using classical microbial culture methods and small-subunit rRNA genes (16S rRNAs) polymerase chain reaction-restriction fragment-length polymorphism analysis, respectively. Field-collected ants yielded just 4 and 1-3 species using the same methods. Most gut bacterial species from the lab-raised ants were unevenly distributed among the crop, midgut, and hindgut, and each section had its own dominant bacterial species. Acetobacter was the prominent bacteria group in crop, accounting for about 55 % of the crop clone library. Blochmannia was the dominant species in midgut, nearly reaching 90 % of the midgut clone library. Pseudomonas aeruginosa dominated the hindgut, accounting for over 98 % of the hindgut clone library. P. aeruginosa was the only species common to all three sections. A comparison between lab-raised and field-collected ants, and comparison with other species, shows that gut bacterial communities vary with local environment and diet. The bacterial species identified here were most likely commensals with little effect on their hosts or mild pathogens deleterious to colony health.

  17. A Blumeria graminisf.sp. hordei BAC library--contig building and microsynteny studies.

    PubMed

    Pedersen, Carsten; Wu, Boqian; Giese, Henriette

    2002-11-01

    A bacterial artificial chromosome (BAC) library of Blumeria graminis f.sp. hordei, containing 12,000 clones with an average insert size of 41 kb, was constructed. The library represents about three genome equivalents and BAC-end sequencing showed a high content of repetitive sequences, making contig-building difficult. To identify overlapping clones, several strategies were used: colony hybridisation, PCR screening, fingerprinting techniques and the use of single-copy expressed sequence tags. The latter proved to be the most efficient method for identification of overlapping clones. Two contigs, at or close to avirulence loci, were constructed. Single nucleotide polymorphism (SNP) markers were developed from BAC-end sequences to link the contigs to the genetic maps. Two other BAC contigs were used to study microsynteny between B. graminis and two other ascomycetes, Neurospora crassa and Aspergillus fumigatus. The library provides an invaluable tool for the isolation of avirulence genes from B. graminis and for the study of gene synteny between this fungus and other fungi.

  18. [Investigation of bacterial diversity in the biological desulfurization reactor for treating high salinity wastewater by the 16S rDNA cloning method].

    PubMed

    Liu, Wei-Guo; Liang, Cun-Zhen; Yang, Jin-Sheng; Wang, Gui-Ping; Liu, Miao-Miao

    2013-02-01

    The bacterial diversity in the biological desulfurization reactor operated continuously for 1 year was studied by the 16S rDNA cloning and sequencing method. Forty clones were randomly selected and their partial 16S rDNA genes (ca. 1,400 bp) were sequenced and blasted. The results indicated that there were dominant bacterias in the biological desulfurization reactor, where 33 clones belonged to 3 different published phyla, while 1 clone belonged to unknown phylum. The dominant bacterial community in the system was Proteobacteria, which accounted for 85.3%. The bacterial community succession was as follows: the gamma-Proteobacteria(55.9%), beta-Proteobacteria(17.6%), Actinobacteridae (8.8%), delta-Proteobacteria (5.9%) , alpha-Proteobacteria(5.9%), and Sphingobacteria (2.9%). Halothiobacillus sp. ST15 and Thiobacillus sp. UAM-I were the major desulfurization strains.

  19. PrecisePrimer: an easy-to-use web server for designing PCR primers for DNA library cloning and DNA shuffling.

    PubMed

    Pauthenier, Cyrille; Faulon, Jean-Loup

    2014-07-01

    PrecisePrimer is a web-based primer design software made to assist experimentalists in any repetitive primer design task such as preparing, cloning and shuffling DNA libraries. Unlike other popular primer design tools, it is conceived to generate primer libraries with popular PCR polymerase buffers proposed as pre-set options. PrecisePrimer is also meant to design primers in batches, such as for DNA libraries creation of DNA shuffling experiments and to have the simplest interface possible. It integrates the most up-to-date melting temperature algorithms validated with experimental data, and cross validated with other computational tools. We generated a library of primers for the extraction and cloning of 61 genes from yeast DNA genomic extract using default parameters. All primer pairs efficiently amplified their target without any optimization of the PCR conditions. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  20. Assessing the impact of fungicide enostroburin application on bacterial community in wheat phyllosphere.

    PubMed

    Gu, Likun; Bai, Zhihui; Jin, Bo; Hu, Qing; Wang, Huili; Zhuang, Guoqiang; Zhang, Hongxun

    2010-01-01

    Fungicides have been used extensively for controlling fungal pathogens of plants. However, little is known regarding the effects that fungicides upon the indigenous bacterial communities within the plant phyllosphere. The aims of this study were to assess the impact of fungicide enostroburin upon bacterial communities in wheat phyllosphere. Culture-independent methodologies of 16S rDNA clone library and 16S rDNA directed polymerase chain reaction with denaturing gradient gel electrophoresis (PCR-DGGE) were used for monitoring the change of bacterial community. The 16S rDNA clone library and PCR-DGGE analysis both confirmed the microbial community of wheat plant phyllosphere were predominantly of the gamma-Proteobacteria phyla. Results from PCR-DGGE analysis indicated a significant change in bacterial community structure within the phyllosphere following fungicide enostroburin application. Bands sequenced within control cultures were predominantly of Pseudomonas genus, but those bands sequenced in the treated samples were predominantly strains of Pantoea genus and Pseudomonas genus. Of interest was the appearance of two DGGE bands following fungicide treatment, one of which had sequence similarities (98%) to Pantoea sp. which might be a competitor of plant pathogens. This study revealed the wheat phyllosphere bacterial community composition and a shift in the bacterial community following fungicide enostroburin application.

  1. A Polymerase Chain Reaction-Based Method for Isolating Clones from a Complimentary DNA Library in Sheep

    PubMed Central

    Friis, Thor Einar; Stephenson, Sally; Xiao, Yin; Whitehead, Jon

    2014-01-01

    The sheep (Ovis aries) is favored by many musculoskeletal tissue engineering groups as a large animal model because of its docile temperament and ease of husbandry. The size and weight of sheep are comparable to humans, which allows for the use of implants and fixation devices used in human clinical practice. The construction of a complimentary DNA (cDNA) library can capture the expression of genes in both a tissue- and time-specific manner. cDNA libraries have been a consistent source of gene discovery ever since the technology became commonplace more than three decades ago. Here, we describe the construction of a cDNA library using cells derived from sheep bones based on the pBluescript cDNA kit. Thirty clones were picked at random and sequenced. This led to the identification of a novel gene, C12orf29, which our initial experiments indicate is involved in skeletal biology. We also describe a polymerase chain reaction-based cDNA clone isolation method that allows the isolation of genes of interest from a cDNA library pool. The techniques outlined here can be applied in-house by smaller tissue engineering groups to generate tools for biomolecular research for large preclinical animal studies and highlights the power of standard cDNA library protocols to uncover novel genes. PMID:24447069

  2. Bacterial Community Response to Petroleum Hydrocarbon Amendments in Freshwater, Marine, and Hypersaline Water-Containing Microcosms

    PubMed Central

    Jurelevicius, Diogo; Alvarez, Vanessa Marques; Marques, Joana Montezano; de Sousa Lima, Laryssa Ribeiro Fonseca; Dias, Felipe de Almeida

    2013-01-01

    Hydrocarbon-degrading bacterial communities from freshwater, marine, and hypersaline Brazilian aquatic ecosystems (with water salinities corresponding to 0.2%, 4%, and 5%, respectively) were enriched with different hydrocarbons (heptadecane, naphthalene, or crude oil). Changes within the different microcosms of bacterial communities were analyzed using cultivation approaches and molecular methods (DNA and RNA extraction, followed by genetic fingerprinting and analyses of clone libraries based on the 16S rRNA-coding gene). A redundancy analysis (RDA) of the genetic fingerprint data and a principal component analysis (PCA) of the clone libraries revealed hydrocarbon-enriched bacterial communities specific for each ecosystem studied. However, within the same ecosystem, different bacterial communities were selected according to the petroleum hydrocarbon used. In general, the results demonstrated that Acinetobacter and Cloacibacterium were the dominant genera in freshwater microcosms; the Oceanospirillales order and the Marinobacter, Pseudomonas, and Cycloclasticus genera predominated in marine microcosms; and the Oceanospirillales order and the Marinobacter genus were selected in the different hydrocarbon-containing microcosms in hypersaline water. Determination of total petroleum hydrocarbons (TPHs) in all microcosms after 32 days of incubation showed a decrease in the hydrocarbon concentration compared to that for the controls. A total of 50 (41.3%) isolates from the different hydrocarbon-contaminated microcosms were associated with the dominant operational taxonomic units (OTUs) obtained from the clone libraries, and their growth in the hydrocarbon contaminating the microcosm from which they were isolated as the sole carbon source was observed. These data provide insight into the general response of bacterial communities from freshwater, marine, and hypersaline aquatic ecosystems to petroleum hydrocarbon contamination. PMID:23872573

  3. Bacterial communities in Great Barrier Reef calcareous sediments: Contrasting 16S rDNA libraries from nearshore and outer shelf reefs

    NASA Astrophysics Data System (ADS)

    Uthicke, S.; McGuire, K.

    2007-03-01

    Bacterial communities in eight 16S rDNA clone libraries from calcareous sediments were investigated to provide an assessment of the bacterial diversity on sediments of the Great Barrier Reef (GBR) and to investigate differences due to decreased water quality. Sample effort was spread across two locations on each of four coral reefs, with two reefs located nearshore and two reefs on the outer shelf to allow robust statistical comparison of nearshore reefs (subjected to enhanced runoff) and outer shelf reefs (pristine conditions). Out of 221 non-chimeric sequences, 189 (85.5%) were unique and only one sequence occurred in more than one library. Rarefaction analyses and coverage calculations indicated that only a small fraction of the diversity was sampled. Cluster analyses and comparison to published sequences indicated that sequences retrieved belonged to the α, γ and δ subdivision of the Proteobacteria (6.8, 29.4 and 13.6% of the total, respectively), Cytophaga-Flavobacteria-Bacteroidetes (CFB) group (20.4%), Cyanobacteria (5.4%), Planctomycetaceae (7.7%), Verrucomicrobiaceae (6.8%), Acidobacteriaceae (2.7%). Analysis of Similarity (ANOSIM, based on grouping all retrieved sequences into 9 phylogenetic groups) indicated that subtle differences do exist in the community composition between nearshore and outer shelf reefs. Similarity percentage analysis (SIMPER) indicated that Acidobacteriaceae and Cyanobacteriaceae were the main contributors to the dissimilarity. A significant difference between bacteria on nearshore and outer shelf reefs also existed on the molecular level ( FST = 0.008, p = 0.007 for all samples, 0.006, p = 0.022 when repeated sequences within libraries were removed). Thus, bacterial communities on carbonate sediments investigated were highly diverse and differences in community composition may provide important leads for the search for indicator species or communities for water quality differences.

  4. Characterization of bacterial diversity in pulque, a traditional Mexican alcoholic fermented beverage, as determined by 16S rDNA analysis.

    PubMed

    Escalante, Adelfo; Rodríguez, María Elena; Martínez, Alfredo; López-Munguía, Agustín; Bolívar, Francisco; Gosset, Guillermo

    2004-06-15

    The bacterial diversity in pulque, a traditional Mexican alcoholic fermented beverage, was studied in 16S rDNA clone libraries from three pulque samples. Sequenced clones identified as Lactobacillus acidophilus, Lactobacillus strain ASF360, L. kefir, L. acetotolerans, L. hilgardii, L. plantarum, Leuconostoc pseudomesenteroides, Microbacterium arborescens, Flavobacterium johnsoniae, Acetobacter pomorium, Gluconobacter oxydans, and Hafnia alvei, were detected for the first time in pulque. Identity of 16S rDNA sequenced clones showed that bacterial diversity present among pulque samples is dominated by Lactobacillus species (80.97%). Seventy-eight clones exhibited less than 95% of relatedness to NCBI database sequences, which may indicate the presence of new species in pulque samples.

  5. Construction, Characterization, and Preliminary BAC-End Sequence Analysis of a Bacterial Artificial Chromosome Library of the Tea Plant (Camellia sinensis)

    PubMed Central

    Lin, Jinke; Kudrna, Dave; Wing, Rod A.

    2011-01-01

    We describe the construction and characterization of a publicly available BAC library for the tea plant, Camellia sinensis. Using modified methods, the library was constructed with the aim of developing public molecular resources to advance tea plant genomics research. The library consists of a total of 401,280 clones with an average insert size of 135 kb, providing an approximate coverage of 13.5 haploid genome equivalents. No empty vector clones were observed in a random sampling of 576 BAC clones. Further analysis of 182 BAC-end sequences from randomly selected clones revealed a GC content of 40.35% and low chloroplast and mitochondrial contamination. Repetitive sequence analyses indicated that LTR retrotransposons were the most predominant sequence class (86.93%–87.24%), followed by DNA retrotransposons (11.16%–11.69%). Additionally, we found 25 simple sequence repeats (SSRs) that could potentially be used as genetic markers. PMID:21234344

  6. Identification of human antibody fragment clones specific for tetanus toxoid in a bacteriophage. lambda. immunoexpression library

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mullinax, R.L.; Gross, E.A.; Amberg, J.R.

    1990-10-01

    The authors have applied a molecular biology approach to the identification of human monoclonal antibodies. Human peripheral blood lymphocyte mRNA was converted to cDNA and a select subset was amplified by the polymerase chain reaction. These products, containing coding sequences for numerous immunoglobulin heavy- and {kappa} light-chain variable and constant region domains, were inserted into modified bacteriophase {lambda} expression vectors and introduced into Escherichia coli by infection to yield a combinatorial immunoexpression library. Clones with binding activity to tetanus toxoid were identified by filter hybridization with radiolabeled antigen and appeared at a frequency of 0.2{percent} in the library. These humanmore » antigen binding fragments, consisting of a heavy-chain fragment covalently linked to a light chain, displayed high affinity of binding to tetanus toxoid with equilibrium constants in the nanomolar range but did not cross-react with other proteins tested. They estimate that this human immunoexpression library contains 20,000 clones with high affinity and specificity to our chosen antigen.« less

  7. Construction of the BAC Library of Small Abalone (Haliotis diversicolor) for Gene Screening and Genome Characterization.

    PubMed

    Jiang, Likun; You, Weiwei; Zhang, Xiaojun; Xu, Jian; Jiang, Yanliang; Wang, Kai; Zhao, Zixia; Chen, Baohua; Zhao, Yunfeng; Mahboob, Shahid; Al-Ghanim, Khalid A; Ke, Caihuan; Xu, Peng

    2016-02-01

    The small abalone (Haliotis diversicolor) is one of the most important aquaculture species in East Asia. To facilitate gene cloning and characterization, genome analysis, and genetic breeding of it, we constructed a large-insert bacterial artificial chromosome (BAC) library, which is an important genetic tool for advanced genetics and genomics research. The small abalone BAC library includes 92,610 clones with an average insert size of 120 Kb, equivalent to approximately 7.6× of the small abalone genome. We set up three-dimensional pools and super pools of 18,432 BAC clones for target gene screening using PCR method. To assess the approach, we screened 12 target genes in these 18,432 BAC clones and identified 16 positive BAC clones. Eight positive BAC clones were then sequenced and assembled with the next generation sequencing platform. The assembled contigs representing these 8 BAC clones spanned 928 Kb of the small abalone genome, providing the first batch of genome sequences for genome evaluation and characterization. The average GC content of small abalone genome was estimated as 40.33%. A total of 21 protein-coding genes, including 7 target genes, were annotated into the 8 BACs, which proved the feasibility of PCR screening approach with three-dimensional pools in small abalone BAC library. One hundred fifty microsatellite loci were also identified from the sequences for marker development in the future. The BAC library and clone pools provided valuable resources and tools for genetic breeding and conservation of H. diversicolor.

  8. Clonality of bacterial consortia in root canals and subjacent gingival crevices.

    PubMed

    Parahitiyawa, Nipuna B; Chu, Frederick C S; Leung, Wai K; Yam, Wing C; Jin, Li Jian; Samaranayake, Lakshman P

    2015-02-01

    No oral niche can be considered to be segregated from the subjacent milieu because of the complex community behavior and nature of the oral biofilms. The aim of this study was to address the paucity of information on how these species are clonally related to the subjacent gingival crevice bacteria. We utilized a metagenomic approach of amplifying 16S rDNA from genomic DNA, cloning, sequencing and analysis using LIBSHUFF software to assess the genetic homogeneity of the bacterial species from two infected root canals and subjacent gingival crevices. The four niches studied yielded 186 clones representing 54 phylotypes. Clone library comparisons using LIBSHUFF software indicated that each niche was inhabited by a unique flora. Further, 42% of the clones were of hitherto unknown phylotypes indicating the extent of bacterial diversity, especially in infected root canals and subjacent gingival crevices. We believe data generated through this novel analytical tool shed new light on understanding oral microbial ecosystems. © 2014 Wiley Publishing Asia Pty Ltd.

  9. [Bacterial diversity within different sections of summer sea-ice samples from the Prydz Bay, Antarctica].

    PubMed

    Ma, Jifei; Du, Zongjun; Luo, Wei; Yu, Yong; Zeng, Yixin; Chen, Bo; Li, Huirong

    2013-02-04

    In order to assess bacterial abundance and diversity within three different sections of summer sea-ice samples collected from the Prydz Bay, Antarctica. Fluorescence in situ hybridization was applied to determine the proportions of Bacteria in sea-ice. Bacterial community composition within sea ice was analyzed by 16S rRNA gene clone library construction. Correlation analysis was performed between the physicochemical parameters and the bacterial diversity and abundance within sea ice. The result of fluorescence in situ hybridization shows that bacteria were abundant in the bottom section, and the concentration of total organic carbon, total organic nitrogen and phosphate may be the main factors for bacterial abundance. In bacterial 16S rRNA gene libraries of sea-ice, nearly complete 16S rRNA gene sequences were grouped into three distinct lineages of Bacteria (gamma-Proteobacteria, alpha-Proteobacteria and Bacteroidetes). Most clone sequences were related to cultured bacterial isolates from the marine environment, arctic and Antarctic sea-ice with high similarity. The member of Bacteroidetes was not detected in the bottom section of sea-ice. The bacterial communities within sea-ice were little heterogeneous at the genus-level between different sections, and the concentration of NH4+ may cause this distribution. The number of bacteria was abundant in the bottom section of sea-ice. Gamma-proteobacteria was the dominant bacterial lineage in sea-ice.

  10. Screening of a Brassica napus bacterial artificial chromosome library using highly parallel single nucleotide polymorphism assays

    PubMed Central

    2013-01-01

    Background Efficient screening of bacterial artificial chromosome (BAC) libraries with polymerase chain reaction (PCR)-based markers is feasible provided that a multidimensional pooling strategy is implemented. Single nucleotide polymorphisms (SNPs) can be screened in multiplexed format, therefore this marker type lends itself particularly well for medium- to high-throughput applications. Combining the power of multiplex-PCR assays with a multidimensional pooling system may prove to be especially challenging in a polyploid genome. In polyploid genomes two classes of SNPs need to be distinguished, polymorphisms between accessions (intragenomic SNPs) and those differentiating between homoeologous genomes (intergenomic SNPs). We have assessed whether the highly parallel Illumina GoldenGate® Genotyping Assay is suitable for the screening of a BAC library of the polyploid Brassica napus genome. Results A multidimensional screening platform was developed for a Brassica napus BAC library which is composed of almost 83,000 clones. Intragenomic and intergenomic SNPs were included in Illumina’s GoldenGate® Genotyping Assay and both SNP classes were used successfully for screening of the multidimensional BAC pools of the Brassica napus library. An optimized scoring method is proposed which is especially valuable for SNP calling of intergenomic SNPs. Validation of the genotyping results by independent methods revealed a success of approximately 80% for the multiplex PCR-based screening regardless of whether intra- or intergenomic SNPs were evaluated. Conclusions Illumina’s GoldenGate® Genotyping Assay can be efficiently used for screening of multidimensional Brassica napus BAC pools. SNP calling was specifically tailored for the evaluation of BAC pool screening data. The developed scoring method can be implemented independently of plant reference samples. It is demonstrated that intergenomic SNPs represent a powerful tool for BAC library screening of a polyploid genome

  11. Molecular diversity of bacterial communities from subseafloor rock samples in a deep-water production basin in Brazil.

    PubMed

    von der Weid, Irene; Korenblum, Elisa; Jurelevicius, Diogo; Rosado, Alexandre Soares; Dino, Rodolfo; Sebastian, Gina Vasquez; Seldin, Lucy

    2008-01-01

    The deep subseafloor rock in oil reservoirs represents a unique environment in which a high oilcontamination and very low biomass can be observed. Sampling this environment has been a challenge owing to the techniques used for drilling and coring. In this study, the facilities developed by the Brazilian oil company PETROBRAS for accessing deep subsurface oil reservoirs were used to obtain rock samples at 2,822-2,828 m below the ocean floor surface from a virgin field located in the Atlantic Ocean, Rio de Janeiro. To address the bacterial diversity of these rock samples, PCR amplicons were obtained using the DNA from four core sections and universal primers for 16S rRNA and for APS reductase (aps) genes. Clone libraries were generated from these PCR fragments and 87 clones were sequenced. The phylogenetic analyses of the 16S rDNA clone libraries showed a wide distribution of types in the domain bacteria in the four core samples, and the majority of the clones were identified as belonging to Betaproteobacteria. The sulfate-reducing bacteria community could only be amplified by PCR in one sample, and all clones were identified as belonging to Gammaproteobacteria. For the first time, the bacterial community was assessed in such deep subsurface environment.

  12. Persistence of bacterial and archaeal communities in sea ice through an Arctic winter

    PubMed Central

    Collins, R Eric; Rocap, Gabrielle; Deming, Jody W

    2010-01-01

    The structure of bacterial communities in first-year spring and summer sea ice differs from that in source seawaters, suggesting selection during ice formation in autumn or taxon-specific mortality in the ice during winter. We tested these hypotheses by weekly sampling (January–March 2004) of first-year winter sea ice (Franklin Bay, Western Arctic) that experienced temperatures from −9°C to −26°C, generating community fingerprints and clone libraries for Bacteria and Archaea. Despite severe conditions and significant decreases in microbial abundance, no significant changes in richness or community structure were detected in the ice. Communities of Bacteria and Archaea in the ice, as in under-ice seawater, were dominated by SAR11 clade Alphaproteobacteria and Marine Group I Crenarchaeota, neither of which is known from later season sea ice. The bacterial ice library contained clones of Gammaproteobacteria from oligotrophic seawater clades (e.g. OM60, OM182) but no clones from gammaproteobacterial genera commonly detected in later season sea ice by similar methods (e.g. Colwellia, Psychrobacter). The only common sea ice bacterial genus detected in winter ice was Polaribacter. Overall, selection during ice formation and mortality during winter appear to play minor roles in the process of microbial succession that leads to distinctive spring and summer sea ice communities. PMID:20192970

  13. Relationships between bacterial diversity and environmental variables in a tropical marine environment, Rio de Janeiro.

    PubMed

    Vieira, Ricardo P; Gonzalez, Alessandra M; Cardoso, Alexander M; Oliveira, Denise N; Albano, Rodolpho M; Clementino, Maysa M; Martins, Orlando B; Paranhos, Rodolfo

    2008-01-01

    This study is the first to apply a comparative analysis of environmental chemistry, microbiological parameters and bacterioplankton 16S rRNA clone libraries from different areas of a 50 km transect along a trophic gradient in the tropical Guanabara Bay ecosystem. Higher bacterial diversity was found in the coastal area, whereas lower richness was observed in the more polluted inner bay water. The significance of differences between clone libraries was examined with LIBSHUFF statistics. Paired reciprocal comparisons indicated that each of the libraries differs significantly from the others, and this is in agreement with direct interpretation of the phylogenetic tree. Furthermore, correspondence analyses showed that some taxa are related to specific abiotic, trophic and microbiological parameters in Guanabara Bay estuarine system.

  14. Genomic clones for human cholinesterase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kott, M.; Venta, P.J.; Larsen, J.

    1987-05-01

    A human genomic library was prepared from peripheral white blood cells from a single donor by inserting an MboI partial digest into BamHI poly-linker sites of EMBL3. This library was screened using an oligolabeled human cholinesterase cDNA probe over 700 bp long. The latter probe was obtained from a human basal ganglia cDNA library. Of approximately 2 million clones screened with high stringency conditions several positive clones were identified; two have been plaque purified. One of these clones has been partially mapped using restriction enzymes known to cut within the coded region of the cDNA for human serum cholinesterase. Hybridizationmore » of the fragments and their sizes are as expected if the genomic clone is cholinesterase. Sequencing of the DNA fragments in M13 is in progress to verify the identify of the clone and the location of introns.« less

  15. Toward a Molecular Cytogenetic Map for Cultivated Sunflower (Helianthus annuus L.) by Landed BAC/BIBAC Clones

    PubMed Central

    Feng, Jiuhuan; Liu, Zhao; Cai, Xiwen; Jan, Chao-Chien

    2013-01-01

    Conventional karyotypes and various genetic linkage maps have been established in sunflower (Helianthus annuus L., 2n = 34). However, the relationship between linkage groups and individual chromosomes of sunflower remains unknown and has considerable relevance for the sunflower research community. Recently, a set of linkage group-specific bacterial /binary bacterial artificial chromosome (BAC/BIBAC) clones was identified from two complementary BAC and BIBAC libraries constructed for cultivated sunflower cv. HA89. In the present study, we used these linkage group-specific clones (∼100 kb in size) as probes to in situ hybridize to HA89 mitotic chromosomes at metaphase using the BAC- fluorescence in situ hybridization (FISH) technique. Because a characteristic of the sunflower genome is the abundance of repetitive DNA sequences, a high ratio of blocking DNA to probe DNA was applied to hybridization reactions to minimize the background noise. As a result, all sunflower chromosomes were anchored by one or two BAC/BIBAC clones with specific FISH signals. FISH analysis based on tandem repetitive sequences, such as rRNA genes, has been previously reported; however, the BAC-FISH technique developed here using restriction fragment length polymorphism (RFLP)−derived BAC/BIBAC clones as probes to apply genome-wide analysis is new for sunflower. As chromosome-specific cytogenetic markers, the selected BAC/BIBAC clones that encompass the 17 linkage groups provide a valuable tool for identifying sunflower cytogenetic stocks (such as trisomics) and tracking alien chromosomes in interspecific crosses. This work also demonstrates the potential of using a large-insert DNA library for the development of molecular cytogenetic resources. PMID:23316437

  16. Seasonal changes in bacterial communities associated with healthy and diseased Porites coral in southern Taiwan.

    PubMed

    Lin, Chorng-Horng; Chuang, Chih-Hsiang; Twan, Wen-Hung; Chiou, Shu-Fen; Wong, Tit-Yee; Liu, Jong-Kang; Kao, Chyuan-Yao; Kuo, Jimmy

    2016-12-01

    We compared the bacterial communities associated with healthy scleractinian coral Porites sp. with those associated with coral infected with pink spot syndrome harvested during summer and winter from waters off the coast of southern Taiwan. Members of the bacterial community associated with the coral were characterized by means of denaturing gradient gel electrophoresis (DGGE) of a short region of the 16S rRNA gene and clone library analysis. Of 5 different areas of the 16S rRNA gene, we demonstrated that the V3 hypervariable region is most suited to represent the coral-associated bacterial community. The DNA sequences of 26 distinct bands extracted from DGGE gels and 269 sequences of the 16S rRNA gene from clone libraries were determined. We found that the communities present in diseased coral were more heterogeneous than the bacterial communities of uninfected coral. In addition, bacterial communities associated with coral harvested in the summer were more diverse than those associated with coral collected in winter, regardless of the health status of the coral. Our study suggested that the compositions of coral-associated bacteria communities are complex, and the population of bacteria varies greatly between seasons and in coral of differing health status.

  17. Active bacterial community structure along vertical redox gradients in Baltic Sea sediment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jansson, Janet; Edlund, Anna; Hardeman, Fredrik

    Community structures of active bacterial populations were investigated along a vertical redox profile in coastal Baltic Sea sediments by terminal-restriction fragment length polymorphism (T-RFLP) and clone library analysis. According to correspondence analysis of T-RFLP results and sequencing of cloned 16S rRNA genes, the microbial community structures at three redox depths (179 mV, -64 mV and -337 mV) differed significantly. The bacterial communities in the community DNA differed from those in bromodeoxyuridine (BrdU)-labeled DNA, indicating that the growing members of the community that incorporated BrdU were not necessarily the most dominant members. The structures of the actively growing bacterial communities weremore » most strongly correlated to organic carbon followed by total nitrogen and redox potentials. Bacterial identification by sequencing of 16S rRNA genes from clones of BrdU-labeled DNA and DNA from reverse transcription PCR (rt-PCR) showed that bacterial taxa involved in nitrogen and sulfur cycling were metabolically active along the redox profiles. Several sequences had low similarities to previously detected sequences indicating that novel lineages of bacteria are present in Baltic Sea sediments. Also, a high number of different 16S rRNA gene sequences representing different phyla were detected at all sampling depths.« less

  18. Bacterial taxa abundance pattern in an industrial wastewater treatment system determined by the full rRNA cycle approach.

    PubMed

    Figuerola, Eva L M; Erijman, Leonardo

    2007-07-01

    The description of the diversity and structure of microbial communities through quantification of the constituent populations is one of the major objectives in environmental microbiology. The implications of models for community assembly are practical as well as theoretical, because the extent of biodiversity is thought to influence the function of ecosystems. Current attempts to predict species diversity in different environments derive the numbers of individuals for each operational taxonomic unit (OTU) from the frequency of clones in 16S rDNA gene libraries, which are subjected to a number of inherent biases and artefacts. We show that diversity of the bacterial community present in a complex microbial ensemble can be estimated by fitting the data of the full-cycle rRNA approach to a model of species abundance distribution. Sequences from a 16S rDNA gene library from activated sludge were reliably assigned to OTUs at a genetic distance of 0.04. A group of 17 newly designed rRNA-targeted oligonucleotide probes were used to quantify by fluorescence in situ hybridization, OTUs represented with more than three clones in the 16S rDNA clone library. Cell abundance distribution was best described by a geometric series, after the goodness of fit was evaluated by the Kolmogorov-Smirnov test. Although a complete mechanistic understanding of all the ecological processes involved is still not feasible, describing the distribution pattern of a complex bacterial assemblage model can shed light on the way bacterial communities operate.

  19. Comprehensive census of bacteria in clean rooms by using DNA microarray and cloning methods.

    PubMed

    La Duc, Myron T; Osman, Shariff; Vaishampayan, Parag; Piceno, Yvette; Andersen, Gary; Spry, J A; Venkateswaran, Kasthuri

    2009-10-01

    A census of clean room surface-associated bacterial populations was derived from the results of both the cloning and sequencing of 16S rRNA genes and DNA microarray (PhyloChip) analyses. Samples from the Lockheed Martin Aeronautics Multiple Testing Facility (LMA-MTF), the Kennedy Space Center Payload Hazard and Servicing Facility (KSC-PHSF), and the Jet Propulsion Laboratory Spacecraft Assembly Facility (JPL-SAF) clean rooms were collected during the various assembly phases of the Phoenix and Mars Science Laboratory (MSL) spacecraft. Clone library-derived analyses detected a larger bacterial diversity prior to the arrival of spacecraft hardware in these clean room facilities. PhyloChip results were in agreement with this trend but also unveiled the presence of anywhere from 9- to 70-fold more bacterial taxa than cloning approaches. Among the facilities sampled, the JPL-SAF (MSL mission) housed a significantly less diverse bacterial population than either the LMA-MTF or KSC-PHSF (Phoenix mission). Bacterial taxa known to thrive in arid conditions were frequently detected in MSL-associated JPL-SAF samples, whereas proteobacterial lineages dominated Phoenix-associated KSC-PHSF samples. Comprehensive bacterial censuses, such as that reported here, will help space-faring nations preemptively identify contaminant biomatter that may compromise extraterrestrial life detection experiments. The robust nature and high sensitivity of DNA microarray technologies should prove beneficial to a wide range of scientific, electronic, homeland security, medical, and pharmaceutical applications and to any other ventures with a vested interest in monitoring and controlling contamination in exceptionally clean environments.

  20. Bacterial diversity in permanently cold and alkaline ikaite columns from Greenland.

    PubMed

    Schmidt, Mariane; Priemé, Anders; Stougaard, Peter

    2006-12-01

    Bacterial diversity in alkaline (pH 10.4) and permanently cold (4 degrees C) ikaite tufa columns from the Ikka Fjord, SW Greenland, was investigated using growth characterization of cultured bacterial isolates with Terminal-restriction fragment length polymorphism (T-RFLP) and sequence analysis of bacterial 16S rRNA gene fragments. More than 200 bacterial isolates were characterized with respect to pH and temperature tolerance, and it was shown that the majority were cold-active alkaliphiles. T-RFLP analysis revealed distinct bacterial communities in different fractions of three ikaite columns, and, along with sequence analysis, it showed the presence of rich and diverse bacterial communities. Rarefaction analysis showed that the 109 sequenced clones in the 16S rRNA gene library represented between 25 and 65% of the predicted species richness in the three ikaite columns investigated. Phylogenetic analysis of the 16S rRNA gene sequences revealed many sequences with similarity to alkaliphilic or psychrophilic bacteria, and showed that 33% of the cloned sequences and 33% of the cultured bacteria showed less than 97% sequence identity to known sequences in databases, and may therefore represent yet unknown species.

  1. Quantifying and resolving multiple vector transformants in S. cerevisiae plasmid libraries.

    PubMed

    Scanlon, Thomas C; Gray, Elizabeth C; Griswold, Karl E

    2009-11-20

    In addition to providing the molecular machinery for transcription and translation, recombinant microbial expression hosts maintain the critical genotype-phenotype link that is essential for high throughput screening and recovery of proteins encoded by plasmid libraries. It is known that Escherichia coli cells can be simultaneously transformed with multiple unique plasmids and thusly complicate recombinant library screening experiments. As a result of their potential to yield misleading results, bacterial multiple vector transformants have been thoroughly characterized in previous model studies. In contrast to bacterial systems, there is little quantitative information available regarding multiple vector transformants in yeast. Saccharomyces cerevisiae is the most widely used eukaryotic platform for cell surface display, combinatorial protein engineering, and other recombinant library screens. In order to characterize the extent and nature of multiple vector transformants in this important host, plasmid-born gene libraries constructed by yeast homologous recombination were analyzed by DNA sequencing. It was found that up to 90% of clones in yeast homologous recombination libraries may be multiple vector transformants, that on average these clones bear four or more unique mutant genes, and that these multiple vector cells persist as a significant proportion of library populations for greater than 24 hours during liquid outgrowth. Both vector concentration and vector to insert ratio influenced the library proportion of multiple vector transformants, but their population frequency was independent of transformation efficiency. Interestingly, the average number of plasmids born by multiple vector transformants did not vary with their library population proportion. These results highlight the potential for multiple vector transformants to dominate yeast libraries constructed by homologous recombination. The previously unrecognized prevalence and persistence of multiply

  2. Clone and genomic repositories at the American Type Culture Collection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maglott, D.R.; Nierman, W.C.

    1990-01-01

    The American Type Culture Collection (ATCC) has a long history of characterizing, preserving, and distributing biological resource materials for the scientific community. Starting in 1925 as a repository for standard bacterial and fungal strains, its collections have diversified with technologic advances and in response to the requirements of its users. To serve the needs of the human genetics community, the National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), established an international Repository of Human DNA Probes and Libraries at the ATCC in 1985. This repository expanded the existing collections of recombinant clones and librariesmore » at the ATCC, with the specific purposes of (1) obtaining, amplifying, and distribution probes detecting restriction fragment length polymorphisms (RFLPs); (2) obtaining, amplifying, and distributing genomic and cDNA clones from known genes independent of RFLP detection; (3) distributing the chromosome-specific libraries generated by the National Laboratory Gene Library Project at the Lawrence Livermore and Los Alamos National Laboratories and (4) maintaining a public, online database describing the repository materials. Because it was recognized that animal models and comparative mapping can be crucial to genomic characterization, the scope of the repository was broadened in February 1989 to include probes from the mouse genome.« less

  3. Comprehensive Census of Bacteria in Clean Rooms by Using DNA Microarray and Cloning Methods▿ †

    PubMed Central

    La Duc, Myron T.; Osman, Shariff; Vaishampayan, Parag; Piceno, Yvette; Andersen, Gary; Spry, J. A.; Venkateswaran, Kasthuri

    2009-01-01

    A census of clean room surface-associated bacterial populations was derived from the results of both the cloning and sequencing of 16S rRNA genes and DNA microarray (PhyloChip) analyses. Samples from the Lockheed Martin Aeronautics Multiple Testing Facility (LMA-MTF), the Kennedy Space Center Payload Hazard and Servicing Facility (KSC-PHSF), and the Jet Propulsion Laboratory Spacecraft Assembly Facility (JPL-SAF) clean rooms were collected during the various assembly phases of the Phoenix and Mars Science Laboratory (MSL) spacecraft. Clone library-derived analyses detected a larger bacterial diversity prior to the arrival of spacecraft hardware in these clean room facilities. PhyloChip results were in agreement with this trend but also unveiled the presence of anywhere from 9- to 70-fold more bacterial taxa than cloning approaches. Among the facilities sampled, the JPL-SAF (MSL mission) housed a significantly less diverse bacterial population than either the LMA-MTF or KSC-PHSF (Phoenix mission). Bacterial taxa known to thrive in arid conditions were frequently detected in MSL-associated JPL-SAF samples, whereas proteobacterial lineages dominated Phoenix-associated KSC-PHSF samples. Comprehensive bacterial censuses, such as that reported here, will help space-faring nations preemptively identify contaminant biomatter that may compromise extraterrestrial life detection experiments. The robust nature and high sensitivity of DNA microarray technologies should prove beneficial to a wide range of scientific, electronic, homeland security, medical, and pharmaceutical applications and to any other ventures with a vested interest in monitoring and controlling contamination in exceptionally clean environments. PMID:19700540

  4. A novel lignin degradation bacterial consortium for efficient pulping.

    PubMed

    Wang, Yanxia; Liu, Quan; Yan, Lei; Gao, Yamei; Wang, Yanjie; Wang, Weidong

    2013-07-01

    A lignin degradation bacterial consortium named LDC was screened from the sludge of a reeds pond by a restricted subculture. It could break down 60.9% lignin in reeds at 30°C under conditions of static culture within 15 days. In order to analyze the diversity of LDC, plate isolation, 16S rDNA clone library and ARDRA (Amplified Ribosomal DNA Restriction Analysis) were performed. Six bacterial strains were isolated from LDC and eighteen DNA phylotypes were identified from 230 bacterial analyzed clones. They were classified into Clostridiales(9.1%), Geovibrio thiophilus (5.1%), Desulfomicrobium (10.9%), Pseudomonas sp. (25.2%), Azoarcus sp. (5.1%), Thauera (5.1%), Paenibacillus sp. (5.1%), Cohnella sp. (2.2%), Acinetobacter sp. (3.1%), Microbacterium (7.8%), and uncultured bacterium (21.3%). In addition, physical characteristics of paper hand-sheets between biological pretreatment and chemical pretreatment were compared. The results showed that LDC had the capability of lignin degradation and was efficient for pulping, which would provide a new choice for biopulping. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Bacterial diversity and reductive dehalogenase redundancy in a 1,2-dichloroethane-degrading bacterial consortium enriched from a contaminated aquifer

    PubMed Central

    2010-01-01

    Background Bacteria possess a reservoir of metabolic functionalities ready to be exploited for multiple purposes. The use of microorganisms to clean up xenobiotics from polluted ecosystems (e.g. soil and water) represents an eco-sustainable and powerful alternative to traditional remediation processes. Recent developments in molecular-biology-based techniques have led to rapid and accurate strategies for monitoring and identification of bacteria and catabolic genes involved in the degradation of xenobiotics, key processes to follow up the activities in situ. Results We report the characterization of the response of an enriched bacterial community of a 1,2-dichloroethane (1,2-DCA) contaminated aquifer to the spiking with 5 mM lactate as electron donor in microcosm studies. After 15 days of incubation, the microbial community structure was analyzed. The bacterial 16S rRNA gene clone library showed that the most represented phylogenetic group within the consortium was affiliated with the phylum Firmicutes. Among them, known degraders of chlorinated compounds were identified. A reductive dehalogenase genes clone library showed that the community held four phylogenetically-distinct catalytic enzymes, all conserving signature residues previously shown to be linked to 1,2-DCA dehalogenation. Conclusions The overall data indicate that the enriched bacterial consortium shares the metabolic functionality between different members of the microbial community and is characterized by a high functional redundancy. These are fundamental features for the maintenance of the community's functionality, especially under stress conditions and suggest the feasibility of a bioremediation treatment with a potential prompt dehalogenation and a process stability over time. PMID:20170484

  6. Bacterial diversity of the rock-water interface in an East Antarctic freshwater ecosystem, Lake Tawani(P)†

    PubMed Central

    2013-01-01

    Schirmacher Oasis is one of the few ice-free plateaus in East Antarctica that maintains a unique distribution of over 120 microbial-rich, dynamic freshwater lakes, most of which are unexplored. In this study, we describe the bacterial diversity of the rock-water interface in Lake Tawani(P) using culture-independent Bacterial Tag Encoded FLX Amplicon Pyrosequencing (bTEFAP), clone library construction, and culture-based analysis targeting the eubacterial 16S rRNA gene. Lake Tawani(P)was formed in a fossil valley by the accumulation of snow and glacial melt through surface channels into a low-catchment depression. Overall this lake exhibited thirteen bacterial phyla and one-hundred and twelve genera. The Qiime bioinformatics analysis on the bTEFAP alone exhibited higher coverage of the bacterial composition in Lake Tawani(P) than the clone library construction or culture-based methodology. Particularly due to the higher sensitivity of the bTEFAP approach, we detected and differentiated members of the phyla: Chloroflexi, Gemmatimonadetes, Planctomycetes, Nitrospira, and Candidate Division TM7 that other methods were unable to reveal. Nevertheless we found that the use of multiple approaches identified a more complete bacterial community than by using any single approach. Investigating the bacterial diversity of the Schirmacher Oasis lakes, especially those connected through surface channels and encompassed by valleys, will help unravel the dynamic nature of these unique seasonal, freshwater lakes, which potentially harbors highly adapted bacterial taxa with defined ecological functions. PMID:23369372

  7. Bacterial diversity characterization in petroleum samples from Brazilian reservoirs

    PubMed Central

    de Oliveira, Valéria Maia; Sette, Lara Durães; Simioni, Karen Christina Marques; dos Santos Neto, Eugênio Vaz

    2008-01-01

    This study aimed at evaluating potential differences among the bacterial communities from formation water and oil samples originated from biodegraded and non-biodegraded Brazilian petroleum reservoirs by using a PCR-DGGE based approach. Environmental DNA was isolated and used in PCR reactions with bacterial primers, followed by separation of 16S rDNA fragments in the DGGE. PCR products were also cloned and sequenced, aiming at the taxonomic affiliation of the community members. The fingerprints obtained allowed the direct comparison among the bacterial communities from oil samples presenting distinct degrees of biodegradation, as well as between the communities of formation water and oil sample from the non-biodegraded reservoir. Very similar DGGE band profiles were observed for all samples, and the diversity of the predominant bacterial phylotypes was shown to be low. Cloning and sequencing results revealed major differences between formation water and oil samples from the non-biodegraded reservoir. Bacillus sp. and Halanaerobium sp. were shown to be the predominant components of the bacterial community from the formation water sample, whereas the oil sample also included Alicyclobacillus acidoterrestris, Rhodococcus sp., Streptomyces sp. and Acidithiobacillus ferrooxidans. The PCR-DGGE technique, combined with cloning and sequencing of PCR products, revealed the presence of taxonomic groups not found previously in these samples when using cultivation-based methods and 16S rRNA gene library assembly, confirming the need of a polyphasic study in order to improve the knowledge of the extent of microbial diversity in such extreme environments. PMID:24031244

  8. Isolation and characterization of anti-SEB peptides using magnetic sorting and bacterial peptide display library technology

    NASA Astrophysics Data System (ADS)

    Pennington, Joseph M.; Kogot, Joshua M.; Sarkes, Deborah A.; Pellegrino, Paul M.; Stratis-Cullum, Dimitra N.

    2012-06-01

    Peptide display libraries offer an alternative method to existing antibody development methods enabling rapid isolation of highly stable reagents for detection of new and emerging biological threats. Bacterial display libraries are used to isolate new peptide reagents within 1 week, which is simpler and timelier than using competing display library technology based on phage or yeast. Using magnetic sorting methods, we have isolated peptide reagents with high affinity and specificity to staphylococcal enterotoxin B (SEB), a suspected food pathogen. Flow cytometry methods were used for on-cell characterization and the binding affinity (Kd) of this new peptide reagent was determined to be 56 nm with minimal cross-reactivity to other proteins. These results demonstrated that magnetic sorting for new reagents using bacterial display libraries is a rapid and effective method and has the potential for current and new and emerging food pathogen targets.

  9. Biogeographical distribution and diversity of bacterial communities in surface sediments of the South China Sea.

    PubMed

    Li, Tao; Wang, Peng

    2013-05-01

    This paper aims at an investigation of the features of bacterial communities in surface sediments of the South China Sea (SCS). In particular, biogeographical distribution patterns and the phylogenetic diversity of bacteria found in sediments collected from a coral reef platform, a continental slope, and a deep-sea basin were determined. Bacterial diversity was measured by an observation of 16S rRNA genes, and 18 phylogenetic groups were identified in the bacterial clone library. Planctomycetes, Deltaproteobacteria, candidate division OP11, and Alphaproteobacteria made up the majority of the bacteria in the samples, with their mean bacterial clones being 16%, 15%, 12%, and 9%, respectively. By comparison, the bacterial communities found in the SCS surface sediments were significantly different from other previously observed deep-sea bacterial communities. This research also emphasizes the fact that geographical factors have an impact on the biogeographical distribution patterns of bacterial communities. For instance, canonical correspondence analyses illustrated that the percentage of sand weight and water depth are important factors affecting the bacterial community composition. Therefore, this study highlights the importance of adequately determining the relationship between geographical factors and the distribution of bacteria in the world's seas and oceans.

  10. A MEQ Deleted Marek's Disease Virus Cloned as a Bacterial Artificial Chromosome is a Highly Efficacious Vaccine

    USDA-ARS?s Scientific Manuscript database

    The Marek’s disease virus (MDV) MEQ gene is essential for the T-cell lymphocytic infiltration of nerves and other organs seen in chickens with Marek’s disease (MD). In an earlier study, researchers used an overlapping cosmid clone library of MDV and demonstrated that deleting MEQ resulted in an exce...

  11. Bacterial Artificial Chromosome Libraries of Pulse Crops: Characteristics and Applications

    PubMed Central

    Yu, Kangfu

    2012-01-01

    Pulse crops are considered minor on a global scale despite their nutritional value for human consumption. Therefore, they are relatively less extensively studied in comparison with the major crops. The need to improve pulse crop production and quality will increase with the increasing global demand for food security and people's awareness of nutritious food. The improvement of pulse crops will require fully utilizing all their genetic resources. Bacterial artificial chromosome (BAC) libraries of pulse crops are essential genomic resources that have the potential to accelerate gene discovery and enhance molecular breeding in these crops. Here, we review the availability, characteristics, applications, and potential applications of the BAC libraries of pulse crops. PMID:21811383

  12. Preparation of fosmid libraries and functional metagenomic analysis of microbial community DNA.

    PubMed

    Martínez, Asunción; Osburne, Marcia S

    2013-01-01

    One of the most important challenges in contemporary microbial ecology is to assign a functional role to the large number of novel genes discovered through large-scale sequencing of natural microbial communities that lack similarity to genes of known function. Functional screening of metagenomic libraries, that is, screening environmental DNA clones for the ability to confer an activity of interest to a heterologous bacterial host, is a promising approach for bridging the gap between metagenomic DNA sequencing and functional characterization. Here, we describe methods for isolating environmental DNA and constructing metagenomic fosmid libraries, as well as methods for designing and implementing successful functional screens of such libraries. © 2013 Elsevier Inc. All rights reserved.

  13. Diversity rankings among bacterial lineages in soil.

    PubMed

    Youssef, Noha H; Elshahed, Mostafa S

    2009-03-01

    We used rarefaction curve analysis and diversity ordering-based approaches to rank the 11 most frequently encountered bacterial lineages in soil according to diversity in 5 previously reported 16S rRNA gene clone libraries derived from agricultural, undisturbed tall grass prairie and forest soils (n=26,140, 28 328, 31 818, 13 001 and 53 533). The Planctomycetes, Firmicutes and the delta-Proteobacteria were consistently ranked among the most diverse lineages in all data sets, whereas the Verrucomicrobia, Gemmatimonadetes and beta-Proteobacteria were consistently ranked among the least diverse. On the other hand, the rankings of alpha-Proteobacteria, Acidobacteria, Actinobacteria, Bacteroidetes and Chloroflexi varied widely in different soil clone libraries. In general, lineages exhibiting largest differences in diversity rankings also exhibited the largest difference in relative abundance in the data sets examined. Within these lineages, a positive correlation between relative abundance and diversity was observed within the Acidobacteria, Actinobacteria and Chloroflexi, and a negative diversity-abundance correlation was observed within the Bacteroidetes. The ecological and evolutionary implications of these results are discussed.

  14. Molecular bacterial community analysis of clean rooms where spacecraft are assembled.

    PubMed

    Moissl, Christine; Osman, Shariff; La Duc, Myron T; Dekas, Anne; Brodie, Eoin; DeSantis, Todd; Desantis, Tadd; Venkateswaran, Kasthuri

    2007-09-01

    Molecular bacterial community composition was characterized from three geographically distinct spacecraft-associated clean rooms to determine whether such populations are influenced by the surrounding environment or the maintenance of the clean rooms. Samples were collected from facilities at the Jet Propulsion Laboratory (JPL), Kennedy Space Flight Center (KSC), and Johnson Space Center (JSC). Nine clone libraries representing different surfaces within the spacecraft facilities and three libraries from the surrounding air were created. Despite the highly desiccated, nutrient-bare conditions within these clean rooms, a broad diversity of bacteria was detected, covering all the main bacterial phyla. Furthermore, the bacterial communities were significantly different from each other, revealing only a small subset of microorganisms common to all locations (e.g. Sphingomonas, Staphylococcus). Samples from JSC assembly room surfaces showed the greatest diversity of bacteria, particularly within the Alpha- and Gammaproteobacteria and Actinobacteria. The bacterial community structure of KSC assembly surfaces revealed a high presence of proteobacterial groups, whereas the surface samples collected from the JPL assembly facility showed a predominance of Firmicutes. Our study presents the first extended molecular survey and comparison of NASA spacecraft assembly facilities, and provides new insights into the bacterial diversity of clean room environments .

  15. A Novel Dual Expression Platform for High Throughput Functional Screening of Phage Libraries in Product like Format.

    PubMed

    Xiao, Xiaodong; Chen, Yan; Mugabe, Sheila; Gao, Changshou; Tkaczyk, Christine; Mazor, Yariv; Pavlik, Peter; Wu, Herren; Dall'Acqua, William; Chowdhury, Partha Sarathi

    2015-01-01

    High throughput screenings of single chain Fv (scFv) antibody phage display libraries are currently done as soluble scFvs produced in E.coli. Due to endotoxin contaminations from bacterial cells these preparations cannot be reliably used in mammalian cell based assays. The monovalent nature and lack of Fc in soluble scFvs prevent functional assays that are dependent on target cross linking and/or Fc functions. A convenient approach is to convert scFvs into scFv.Fc fusion proteins and express them in mammalian cell lines for screening. This approach is low throughput and is only taken after primary screening of monovalent scFvs that are expressed in bacteria. There is no platform at present that combines the benefits of both bacterial and mammalian expression system for screening phage library output. We have, therefore, developed a novel dual expression vector, called pSplice, which can be used to express scFv.Fc fusion proteins both in E.coli and mammalian cell lines. The hallmark of the vector is an engineered intron which houses the bacterial promoter and signal peptide for expression and secretion of scFv.Fc in E.coli. When the vector is transfected into a mammalian cell line, the intron is efficiently spliced out resulting in a functional operon for expression and secretion of the scFv.Fc fusion protein into the culture medium. By applying basic knowledge of mammalian introns and splisosome, we designed this vector to enable screening of phage libraries in a product like format. Like IgG, the scFv.Fc fusion protein is bi-valent for the antigen and possesses Fc effector functions. Expression in E.coli maintains the speed of the bacterial expression platform and is used to triage clones based on binding and other assays that are not sensitive to endotoxin. Triaged clones are then expressed in a mammalian cell line without the need for any additional cloning steps. Conditioned media from the mammalian cell line containing the fusion proteins are then used for

  16. Nutrient-enhanced n-alkanes biodegradation and succession of bacterial communities

    NASA Astrophysics Data System (ADS)

    Sun, Yanyu; Wang, Hui; Li, Junde; Wang, Bin; Qi, Cancan; Hu, Xiaoke

    2017-11-01

    Bioremediation, is an effective and environment-friendly method of cleaning up crude oil pollution after an oil spill. However, the in situ bioremediation of crude oil is usually inhibited by deficiency of inorganic nutrients. To understand the effects of nutrient addition on the bioremediation of crude oil and the succession of bacterial communities during process of bioremediation, microcosms containing oil-contaminated sediments were constructed and biodegradation of crude oil was assessed based on the depletion of different ingredients. We used two culture-independent methods, denaturing gradient gel electrophoresis and a 16S rRNA gene based clone library, to analyze the succession of bacterial communities. The results suggested n-alkanes were degraded after 30 days and that nutrient amendments significantly improved the efficiency of their biodegradation. Moreover, oil contamination and nutrient amendments could dramatically change bacterial community structures. Lower diversity was detected after being contaminated with oil. For instance, bacterial clones affiliated with the phylum Armatimonadetes, Firmicutes, Gemmatimonadetes, and Planctomycetes and the class Deltaproteobacteria and Epsilonproteobacteria could not be identified after 30 days of incubation with crude oil. However, "professional hydrocarbonocastic bacteria" became abundant in samples treated with oil during the bioremediation period, while these clones were almost completely absent from the control plots. Interestingly, bioinformatics analysis showed that even when dramatic differences in oil biodegradation efficiency were observed, bacterial communities in the plots with nutrient amendments were not significantly different from those in plots treated with oil alone. These findings indicated that nutrient amendments could stimulate the process of biodegradation but had less impact on bacterial communities. Overall, nutrient amendments might be able to stimulate the growth of n-alkane degrading

  17. Persistence of Clones of Coagulase-Negative Staphylococci among Premature Neonates in Neonatal Intensive Care Units: Two-Center Study of Bacterial Genotyping and Patient Risk Factors

    PubMed Central

    Vermont, Clementien L.; Hartwig, Nico G.; Fleer, André; de Man, Peter; Verbrugh, Henri; van den Anker, John; de Groot, Ronald; van Belkum, Alex

    1998-01-01

    From 1 January 1995 until 1 January 1996, we studied the molecular epidemiology of blood isolates of coagulase-negative staphylococci (CoNS) in the Neonatal Intensive Care Units (NICUs) of the Sophia Children’s Hospital (SCH; Rotterdam, The Netherlands) and the Wilhelmina Children’s Hospital (WCH; Utrecht, The Netherlands). The main goal of the present study was to detect putatively endemic clones of CoNS persisting in these NICUs. Pulsed-field gel electrophoresis was used to detect the possible presence of endemic clones of clinical significance. In addition, clinical data of patients in the SCH were analyzed retrospectively to identify risk factors for the acquisition of positive blood cultures. In both centers, endemic CoNS clones were persistently present. Thirty-three percent of the bacterial isolates derived from blood cultures in the SCH belonged to a single genotype. In the WCH, 45% of all bacterial strains belonged to a single clone. These clones were clearly different from each other, which implies that site specificity is involved. Interestingly, we observe that the clonal type in the SCH differed significantly from the incidentally occurring strains with respect to both the average pH and partial CO2 pressure of the patient’s blood at the time of bacterial culture. We found that the use of intravascular catheters, low gestational age, and a long hospital stay were important risk factors for the development of a putative CoNS infection. When the antibiotic susceptibility of the bacterial isolates was assessed, a clear correlation between the nature of the antibiotics most frequently used as a first line of defense versus the resistance profile was observed. We conclude that the intensive use of antibiotics in an NICU setting with highly susceptible patients causes selection of multiresistant clones of CoNS which subsequently become endemic. PMID:9705379

  18. PhD7Faster: predicting clones propagating faster from the Ph.D.-7 phage display peptide library.

    PubMed

    Ru, Beibei; 't Hoen, Peter A C; Nie, Fulei; Lin, Hao; Guo, Feng-Biao; Huang, Jian

    2014-02-01

    Phage display can rapidly discover peptides binding to any given target; thus, it has been widely used in basic and applied research. Each round of panning consists of two basic processes: Selection and amplification. However, recent studies have showed that the amplification step would decrease the diversity of phage display libraries due to different propagation capacity of phage clones. This may induce phages with growth advantage rather than specific affinity to appear in the final experimental results. The peptides displayed by such phages are termed as propagation-related target-unrelated peptides (PrTUPs). They would mislead further analysis and research if not removed. In this paper, we describe PhD7Faster, an ensemble predictor based on support vector machine (SVM) for predicting clones with growth advantage from the Ph.D.-7 phage display peptide library. By using reduced dipeptide composition (ReDPC) as features, an accuracy (Acc) of 79.67% and a Matthews correlation coefficient (MCC) of 0.595 were achieved in 5-fold cross-validation. In addition, the SVM-based model was demonstrated to perform better than several representative machine learning algorithms. We anticipate that PhD7Faster can assist biologists to exclude potential PrTUPs and accelerate the finding of specific binders from the popular Ph.D.-7 library. The web server of PhD7Faster can be freely accessed at http://immunet.cn/sarotup/cgi-bin/PhD7Faster.pl.

  19. Composition and variation of sediment bacterial and nirS-harboring bacterial communities at representative sites of the Bohai Gulf coastal zone, China.

    PubMed

    Guan, Xiangyu; Zhu, Lingling; Li, Youxun; Xie, Yuxuan; Zhao, Mingzhang; Luo, Ximing

    2014-04-01

    With rapid urbanization, anthropogenic activities are increasingly influencing the natural environment of the Bohai Bay. In this study, the composition and variation of bacterial and nirS-harboring bacterial communities in the coastal zone sediments of the Bohai Gulf were analyzed using PCR-based clone libraries. A total of 95 genera were detected in the bacterial communities, with Proteobacteria (72.1 %), Acidobacteria (10.5 %), Firmicutes (1.7 %), Bacteroidetes (1.4 %), Chloroflexi (0.7 %) and Planctomycetes (0.7 %) being the dominated phyla. The NirS sequences were divided into nine Clusters (A-I). Canonical correlation analysis showed that the bacterial or denitrifying communities were correlated with different environmental factors, such as total organic carbon, total nitrogen, ammonium, sulfate, etc. Furthermore, bacterial communities' composition and diversity are influenced by oil exploration, sewage discharge and other anthropogenic activities in the coastal area of the Bohai Sea. Thus, this study provided useful information on further research on regional or global environmental control and restore.

  20. Comparison of Bacterial Diversity in Azorean and Hawai’ian Lava Cave Microbial Mats

    PubMed Central

    MARSHALL HATHAWAY, JENNIFER J.; GARCIA, MATTHEW G.; BALASCH, MONICA MOYA; SPILDE, MICHAEL N.; STONE, FRED D.; DAPKEVICIUS, MARIA DE LURDES N. E.; AMORIM, ISABEL R.; GABRIEL, ROSALINA; BORGES, PAULO A. V.; NORTHUP, DIANA E.

    2015-01-01

    Worldwide, lava caves host colorful microbial mats. However, little is known about the diversity of these microorganisms, or what role they may play in the subsurface ecosystem. White and yellow microbial mats were collected from four lava caves each on the Azorean island of Terceira and the Big Island of Hawai’i, to compare the bacterial diversity found in lava caves from two widely separated archipelagos in two different oceans at different latitudes. Scanning electron microscopy of mat samples showed striking similarities between Terceira and Hawai’ian microbial morphologies. 16S rRNA gene clone libraries were constructed to determine the diversity within these lava caves. Fifteen bacterial phyla were found across the samples, with more Actinobacteria clones in Hawai’ian communities and greater numbers of Acidobacteria clones in Terceira communities. Bacterial diversity in the subsurface was correlated with a set of factors. Geographical location was the major contributor to differences in community composition (at the OTU level), together with differences in the amounts of organic carbon, nitrogen and copper available in the lava rock that forms the cave. These results reveal, for the first time, the similarity among the extensive bacterial diversity found in lava caves in two geographically separate locations and contribute to the current debate on the nature of microbial biogeography. PMID:26924866

  1. Cloning of a very virulent plus, 686 strain of Marek’s disease virus as a bacterial artificial chromosome

    USDA-ARS?s Scientific Manuscript database

    Bacterial artificial chromosome (BAC) vectors were first developed to facilitate propagation and manipulation of large DNA fragments. This technology was later used to clone full-length genomes of large DNA viruses to study viral gene function. Marek’s disease virus (MDV) is a highly oncogenic herpe...

  2. Construction of a genomic DNA library with a TA vector and its application in cloning of the phytoene synthase gene from the cyanobacterium Spirulina platensis M-135

    NASA Astrophysics Data System (ADS)

    Yoshikazu, Kawata; Shin-Ichi, Yano; Hiroyuki, Kojima

    1998-03-01

    An efficient and simple method for constructing a genomic DNA library using a TA cloning vector is presented. It is based on the sonicative cleavage of genomic DNA and modification of fragment ends with Taq DNA polymerase, followed by ligation using a TA vector. This method was applied for cloning of the phytoene synthase gene crt B from Spirulina platensis. This method is useful when genomic DNA cannot be efficiently digested with restriction enzymes, a problem often encountered during the construction of a genomic DNA library of cyanobacteria.

  3. Characterization of the bacterial communities associated with the bald sea urchin disease of the echinoid Paracentrotus lividus.

    PubMed

    Becker, Pierre T; Egea, Emilie; Eeckhaut, Igor

    2008-06-01

    The microbial communities involved in the bald sea urchin disease of the echinoid Paracentrotus lividus are investigated using culture-independent techniques. Lesions of diseased specimens from two locations in France, La Ciotat (Mediterranean Sea) and Morgat (Atlantic Ocean), are examined by Scanning Electron Microscopy (SEM) and the diversity of their microbiota is analysed by Denaturing Gradient Gel Electrophoresis (DGGE) and 16S rRNA gene clones libraries construction. Microscopic observations demonstrated that only the central area of the lesions is invaded by bacteria but not the peripheral zone and the surrounding healthy tissues. Molecular analysis identified at least 24 bacterial genomospecies in bald sea urchin lesions: 5 are Alphaproteobacteria, 10 are Gammaproteobacteria, 8 are CFB bacteria and 1 is a Fusobacteria. Out of them, 4 are observed in both locations while 10 occur only in the Atlantic Ocean and 10 only in the Mediterranean Sea. Gammaproteobacteria are the most represented in clones libraries from both locations, with respectively 65% and 43% of the total clones. CFB and Alphaproteobacteria accounted for the majority of the remaining clones and were detected by DGGE in virtually all samples from both stations. Our results demonstrate that bacterial communities observed on diseased individuals of the same echinoid species but originating from distinct locations are not similar and thus support the hypothesis that bacteria involved in the worldwide echinoid disease commonly called the bald sea urchin disease are opportunistic and not specific.

  4. Bacterial and archaeal diversity in two hot spring microbial mats from the geothermal region of Tengchong, China.

    PubMed

    Pagaling, Eulyn; Grant, William D; Cowan, Don A; Jones, Brian E; Ma, Yanhe; Ventosa, Antonio; Heaphy, Shaun

    2012-07-01

    We investigated the bacterial and archaeal diversity in two hot spring microbial mats from the geothermal region of Tengchong in the Yunnan Province, China, using direct molecular analyses. The Langpu (LP) laminated mat was found by the side of a boiling pool with temperature of 60-65 °C and a pH of 8.5, while the Tengchong (TC) streamer mat consisted of white streamers in a slightly acidic (pH 6.5) hot pool outflow with a temperature of 72 °C. Four 16S rRNA gene clone libraries were constructed and restriction enzyme analysis of the inserts was used to identify unique sequences and clone frequencies. From almost 200 clones screened, 55 unique sequences were retrieved. Phylogenetic analysis showed that the LP mat consisted of a diverse bacterial population [Cyanobacteria, Chloroflexi, Chlorobia, Nitrospirae, 'Deinococcus-Thermus', Proteobacteria (alpha, beta and delta subdivisions), Firmicutes, Bacteroidetes and Actinobacteria], while the archaeal population was dominated by methanogenic Euryarchaeota and Crenarchaeota. In contrast, the TC streamer mat consisted of a bacterial population dominated by Aquificae, while the archaeal population also contained Korarchaeota as well as Crenarchaeota and methanogenic Euryarchaeota. These mats harboured clone sequences affiliated to unidentified lineages, suggesting that they are a potential source for discovering novel bacteria and archaea.

  5. Mining the metagenome of activated biomass of an industrial wastewater treatment plant by a novel method.

    PubMed

    Sharma, Nandita; Tanksale, Himgouri; Kapley, Atya; Purohit, Hemant J

    2012-12-01

    Metagenomic libraries herald the era of magnifying the microbial world, tapping into the vast metabolic potential of uncultivated microbes, and enhancing the rate of discovery of novel genes and pathways. In this paper, we describe a method that facilitates the extraction of metagenomic DNA from activated sludge of an industrial wastewater treatment plant and its use in mining the metagenome via library construction. The efficiency of this method was demonstrated by the large representation of the bacterial genome in the constructed metagenomic libraries and by the functional clones obtained. The BAC library represented 95.6 times the bacterial genome, while, the pUC library represented 41.7 times the bacterial genome. Twelve clones in the BAC library demonstrated lipolytic activity, while four clones demonstrated dioxygenase activity. Four clones in pUC library tested positive for cellulase activity. This method, using FTA cards, not only can be used for library construction, but can also store the metagenome at room temperature.

  6. Molecular Analysis of Bacterial Communities in Biofilms of a Drinking Water Clearwell

    PubMed Central

    Zhang, Minglu; Liu, Wenjun; Nie, Xuebiao; Li, Cuiping; Gu, Junnong; Zhang, Can

    2012-01-01

    Microbial community structures in biofilms of a clearwell in a drinking water supply system in Beijing, China were examined by clone library, terminal restriction fragment length polymorphism (T-RFLP) and 454 pyrosequencing of the amplified 16S rRNA gene. Six biofilm samples (designated R1–R6) collected from six locations (upper and lower sites of the inlet, middle and outlet) of the clearwell revealed similar bacterial patterns by T-RFLP analysis. With respect to the dominant groups, the phylotypes detected by clone library and T-RFLP generally matched each other. A total of 9,543 reads were obtained from samples located at the lower inlet and the lower outlet sites by pyrosequencing. The bacterial diversity of the two samples was compared at phylum and genus levels. Alphaproteobacteria dominated the communities in both samples and the genus of Sphingomonas constituted 75.1%–99.6% of this phylum. A high level of Sphingomonas sp. was first observed in the drinking water biofilms with 0.6–1.0 mg L−1 of chlorine residual. Disinfectant-resistant microorganisms deserve special attention in drinking water management. This study provides novel insights into the microbial populations in drinking water systems and highlights the important role of Sphingomonas species in biofilm formation. PMID:23059725

  7. Characterization of bovine ruminal epithelial bacterial communities using 16S rRNA sequencing, PCR-DGGE, and qRT-PCR analysis.

    PubMed

    Li, Meiju; Zhou, Mi; Adamowicz, Elizabeth; Basarab, John A; Guan, Le Luo

    2012-02-24

    Currently, knowledge regarding the ecology and function of bacteria attached to the epithelial tissue of the rumen wall is limited. In this study, the diversity of the bacterial community attached to the rumen epithelial tissue was compared to the rumen content bacterial community using 16S rRNA gene sequencing, PCR-DGGE, and qRT-PCR analysis. Sequence analysis of 2785 randomly selected clones from six 16S rDNA (∼1.4kb) libraries showed that the community structures of three rumen content libraries clustered together and were separated from the rumen tissue libraries. The diversity index of each library revealed that ruminal content bacterial communities (4.12/4.42/4.88) were higher than ruminal tissue communities (2.90/2.73/3.23), based on 97% similarity. The phylum Firmicutes was predominant in the ruminal tissue communities, while the phylum Bacteroidetes was predominant in the ruminal content communities. The phyla Fibrobacteres, Planctomycetes, and Verrucomicrobia were only detected in the ruminal content communities. PCR-DGGE analysis of the bacterial profiles of the rumen content and ruminal epithelial tissue samples from 22 steers further confirmed that there is a distinct bacterial community that inhibits the rumen epithelium. The distinctive epimural bacterial communities suggest that Firmicutes, together with other epithelial-specific species, may have additional functions other than food digestion. Copyright © 2011 Elsevier B.V. All rights reserved.

  8. Novel division level bacterial diversity in a Yellowstone hot spring.

    PubMed

    Hugenholtz, P; Pitulle, C; Hershberger, K L; Pace, N R

    1998-01-01

    A culture-independent molecular phylogenetic survey was carried out for the bacterial community in Obsidian Pool (OP), a Yellowstone National Park hot spring previously shown to contain remarkable archaeal diversity (S. M. Barns, R. E. Fundyga, M. W. Jeffries, and N. R. Page, Proc. Natl. Acad. Sci. USA 91:1609-1613, 1994). Small-subunit rRNA genes (rDNA) were amplified directly from OP sediment DNA by PCR with universally conserved or Bacteria-specific rDNA primers and cloned. Unique rDNA types among > 300 clones were identified by restriction fragment length polymorphism, and 122 representative rDNA sequences were determined. These were found to represent 54 distinct bacterial sequence types or clusters (> or = 98% identity) of sequences. A majority (70%) of the sequence types were affiliated with 14 previously recognized bacterial divisions (main phyla; kingdoms); 30% were unaffiliated with recognized bacterial divisions. The unaffiliated sequence types (represented by 38 sequences) nominally comprise 12 novel, division level lineages termed candidate divisions. Several OP sequences were nearly identical to those of cultivated chemolithotrophic thermophiles, including the hydrogen-oxidizing Calderobacterium and the sulfate reducers Thermodesulfovibrio and Thermodesulfobacterium, or belonged to monophyletic assemblages recognized for a particular type of metabolism, such as the hydrogen-oxidizing Aquificales and the sulfate-reducing delta-Proteobacteria. The occurrence of such organisms is consistent with the chemical composition of OP (high in reduced iron and sulfur) and suggests a lithotrophic base for primary productivity in this hot spring, through hydrogen oxidation and sulfate reduction. Unexpectedly, no archaeal sequences were encountered in OP clone libraries made with universal primers. Hybridization analysis of amplified OP DNA with domain-specific probes confirmed that the analyzed community rDNA from OP sediment was predominantly bacterial. These

  9. Microbial community analysis of a coastal hot spring in Kagoshima, Japan, using molecular- and culture-based approaches.

    PubMed

    Nishiyama, Minako; Yamamoto, Shuichi; Kurosawa, Norio

    2013-08-01

    Ibusuki hot spring is located on the coastline of Kagoshima Bay, Japan. The hot spring water is characterized by high salinity, high temperature, and neutral pH. The hot spring is covered by the sea during high tide, which leads to severe fluctuations in several environmental variables. A combination of molecular- and culture-based techniques was used to determine the bacterial and archaeal diversity of the hot spring. A total of 48 thermophilic bacterial strains were isolated from two sites (Site 1: 55.6°C; Site 2: 83.1°C) and they were categorized into six groups based on their 16S rRNA gene sequence similarity. Two groups (including 32 isolates) demonstrated low sequence similarity with published species, suggesting that they might represent novel taxa. The 148 clones from the Site 1 bacterial library included 76 operational taxonomy units (OTUs; 97% threshold), while 132 clones from the Site 2 bacterial library included 31 OTUs. Proteobacteria, Bacteroidetes, and Firmicutes were frequently detected in both clone libraries. The clones were related to thermophilic, mesophilic and psychrophilic bacteria. Approximately half of the sequences in bacterial clone libraries shared <92% sequence similarity with their closest sequences in a public database, suggesting that the Ibusuki hot spring may harbor a unique and novel bacterial community. By contrast, 77 clones from the Site 2 archaeal library contained only three OTUs, most of which were affiliated with Thaumarchaeota.

  10. Bacterial succession during curing process of a skate (Dipturus batis) and isolation of novel strains.

    PubMed

    Reynisson, E; Thornór Marteinsson, V; Jónsdóttir, R; Magnússon, S H; Hreggvidsson, G O

    2012-08-01

    To study the succession of cultivated and uncultivated microbes during the traditional curing process of skate. The microbial diversity was evaluated by sequencing 16Sr RNA clone libraries and cultivation in variety of media from skate samples taken periodically during a 9-day curing process. A pH shift was observed (pH 6·64-9·27) with increasing trimethylamine (2·6 up to 75·6 mg N per 100 g) and total volatile nitrogen (TVN) (from 58·5 to 705·8 mg N per 100 g) but with relatively slow bacterial growth. Uncured skate was dominated by Oceanisphaera and Pseudoalteromonas genera but was substituted after curing by Photobacterium and Aliivibrio in the flesh and Pseudomonas on the skin. Almost 50% of the clone library is derived from putative undiscovered species. Cultivation and enrichment strategies resulted in isolation of putatively new species belonging to the genera Idiomarina, Rheinheimera, Oceanisphaera, Providencia and Pseudomonas. The most abundant genera able to hydrolyse urea to ammonia were Oceanisphaera, Psychrobacter, Pseudoalteromonas and isolates within the Pseudomonas genus. The curing process of skate is controlled and achieved by a dynamic bacterial community where the key players belong to Oceanisphaera, Pseudoalteromonas, Photobacterium, Aliivibrio and Pseudomonas. For the first time, the bacterial population developments in the curing process of skate are presented and demonstrate a reservoir of many yet undiscovered bacterial species. No Claim to Norwegian Government works Journal of Applied Microbiology © 2012 The Society for Applied Microbiology.

  11. Seasonal and regional diversity of maple sap microbiota revealed using community PCR fingerprinting and 16S rRNA gene clone libraries.

    PubMed

    Filteau, Marie; Lagacé, Luc; LaPointe, Gisèle; Roy, Denis

    2010-04-01

    An arbitrary primed community PCR fingerprinting technique based on capillary electrophoresis was developed to study maple sap microbial community characteristics among 19 production sites in Québec over the tapping season. Presumptive fragment identification was made with corresponding fingerprint profiles of bacterial isolate cultures. Maple sap microbial communities were subsequently compared using a representative subset of 13 16S rRNA gene clone libraries followed by gene sequence analysis. Results from both methods indicated that all maple sap production sites and flow periods shared common microbiota members, but distinctive features also existed. Changes over the season in relative abundance of predominant populations showed evidence of a common pattern. Pseudomonas (64%) and Rahnella (8%) were the most abundantly and frequently represented genera of the 2239 sequences analyzed. Janthinobacterium, Leuconostoc, Lactococcus, Weissella, Epilithonimonas and Sphingomonas were revealed as occasional contaminants in maple sap. Maple sap microbiota showed a low level of deep diversity along with a high variation of similar 16S rRNA gene sequences within the Pseudomonas genus. Predominance of Pseudomonas is suggested as a typical feature of maple sap microbiota across geographical regions, production sites, and sap flow periods.

  12. Response of bacterial community structure to seasonal fluctuation and anthropogenic pollution on coastal water of Alang-Sosiya ship breaking yard, Bhavnagar, India.

    PubMed

    Patel, Vilas; Munot, Hitendra; Shouche, Yogesh S; Madamwar, Datta

    2014-06-01

    Bacterial community structure was analyzed from coastal water of Alang-Sosiya ship breaking yard (ASSBY), world's largest ship breaking yard, near Bhavnagar, using 16S rRNA gene sequencing (cultured dependent and culture independent). In clone libraries, total 2324 clones were retrieved from seven samples (coastal water of ASSBY for three seasons along with one pristine coastal water) which were grouped in 525 operational taxonomic units. Proteobacteria was found to be dominant in all samples. In pristine samples, Gammaproteobacteria was found to be dominant, whereas in polluted samples dominancy of Gammaproteobacteria has shifted to Betaproteobacteria and Epsilonproteobacteria. Richness and diversity indices also indicated that bacterial community in pristine sample was the most diverse followed by summer, monsoon and winter samples. To the best of knowledge, this is the first study describing bacterial community structure from coastal water of ASSBY, and it suggests that seasonal fluctuation and anthropogenic pollutions alters the bacterial community structure. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Bacterial communities associated with healthy and Acropora white syndrome-affected corals from American Samoa

    USGS Publications Warehouse

    Wilson, Bryan; Aeby, Greta S.; Work, Thierry M.; Bourne, David G.

    2012-01-01

    Acropora white syndrome (AWS) is characterized by rapid tissue loss revealing the white underlying skeleton and affects corals worldwide; however, reports of causal agents are conflicting. Samples were collected from healthy and diseased corals and seawater around American Samoa and bacteria associated with AWS characterized using both culture-dependent and culture-independent methods, from coral mucus and tissue slurries, respectively. Bacterial 16S rRNA gene clone libraries derived from coral tissue were dominated by the Gammaproteobacteria, and Jaccard's distances calculated between the clone libraries showed that those from diseased corals were more similar to each other than to those from healthy corals. 16S rRNA genes from 78 culturable coral mucus isolates also revealed a distinct partitioning of bacterial genera into healthy and diseased corals. Isolates identified as Vibrionaceae were further characterized by multilocus sequence typing, revealing that whilst several Vibrio spp. were found to be associated with AWS lesions, a recently described species, Vibrio owensii, was prevalent amongst cultured Vibrio isolates. Unaffected tissues from corals with AWS had a different microbiota than normal Acropora as found by others. Determining whether a microbial shift occurs prior to disease outbreaks will be a useful avenue of pursuit and could be helpful in detecting prodromal signs of coral disease prior to manifestation of lesions.

  14. High-throughput cloning and expression library creation for functional proteomics.

    PubMed

    Festa, Fernanda; Steel, Jason; Bian, Xiaofang; Labaer, Joshua

    2013-05-01

    The study of protein function usually requires the use of a cloned version of the gene for protein expression and functional assays. This strategy is particularly important when the information available regarding function is limited. The functional characterization of the thousands of newly identified proteins revealed by genomics requires faster methods than traditional single-gene experiments, creating the need for fast, flexible, and reliable cloning systems. These collections of ORF clones can be coupled with high-throughput proteomics platforms, such as protein microarrays and cell-based assays, to answer biological questions. In this tutorial, we provide the background for DNA cloning, discuss the major high-throughput cloning systems (Gateway® Technology, Flexi® Vector Systems, and Creator(TM) DNA Cloning System) and compare them side-by-side. We also report an example of high-throughput cloning study and its application in functional proteomics. This tutorial is part of the International Proteomics Tutorial Programme (IPTP12). © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Bacterial Community Structure Shifted by Geosmin in Granular Activated Carbon System of Water Treatment Plants.

    PubMed

    Pham, Ngoc Dung; Lee, Eun-Hee; Chae, Seon-Ha; Cho, Yongdeok; Shin, Hyejin; Son, Ahjeong

    2016-01-01

    We investigated the relation between the presence of geosmin in water and the bacterial community structure within the granular activated carbon (GAC) system of water treatment plants in South Korea. GAC samples were collected in May and August of 2014 at three water treatment plants (Sungnam, Koyang, and Yeoncho in Korea). Dissolved organic carbon and geosmin were analyzed before and after GAC treatment. Geosmin was found in raw water from Sungnam and Koyang water treatment plants but not in that from Yeoncho water treatment plant. Interestingly, but not surprisingly, the 16S rRNA clone library indicated that the bacterial communities from the Sungnam and Koyang GAC systems were closely related to geosmin-degrading bacteria. Based on the phylogenetic tree and multidimensional scaling plot, bacterial clones from GAC under the influence of geosmin were clustered with Variovorax paradoxus strain DB 9b and Comamonas sp. DB mg. In other words, the presence of geosmin in water might have inevitably contributed to the growth of geosmin degraders within the respective GAC system.

  16. Characterization of bacterial community structure in a drinking water distribution system during an occurrence of red water.

    PubMed

    Li, Dong; Li, Zheng; Yu, Jianwei; Cao, Nan; Liu, Ruyin; Yang, Min

    2010-11-01

    The role of bacteria in the occasional emergence of red water, which has been documented worldwide, has yet to be determined. To better understand the mechanisms that drive occurrences of red water, the bacterial community composition and the relative abundance of several functional bacterial groups in a water distribution system of Beijing during a large-scale red water event were determined using several molecular methods. Individual clone libraries of the 16S rRNA gene were constructed for three red water samples and one sample of normal water. Beta-, Alpha-, and Gammaproteobacteria comprised the major bacterial communities in both red water and normal water samples, in agreement with previous reports. A high percentage of red water clones (25.2 to 57.1%) were affiliated with or closely related to a diverse array of iron-oxidizing bacteria, including the neutrophilic microaerobic genera Gallionella and Sideroxydans, the acidophilic species Acidothiobacillus ferrooxidans, and the anaerobic denitrifying Thermomonas bacteria. The genus Gallionella comprised 18.7 to 28.6% of all clones in the three red water libraries. Quantitative real-time PCR analysis showed that the 16S rRNA gene copy concentration of Gallionella spp. was between (4.1 ± 0.9) × 10⁷ (mean ± standard deviation) and (1.6 ± 0.3) × 10⁸ per liter in red water, accounting for 13.1% ± 2.9% to 17.2% ± 3.6% of the total Bacteria spp. in these samples. By comparison, the percentages of Gallionella spp. in the normal water samples were 0.1% or lower (below the limit of detection), suggesting an important role of Gallionella spp. in the formation of red water.

  17. High-Throughput Cloning and Expression Library Creation for Functional Proteomics

    PubMed Central

    Festa, Fernanda; Steel, Jason; Bian, Xiaofang; Labaer, Joshua

    2013-01-01

    The study of protein function usually requires the use of a cloned version of the gene for protein expression and functional assays. This strategy is particular important when the information available regarding function is limited. The functional characterization of the thousands of newly identified proteins revealed by genomics requires faster methods than traditional single gene experiments, creating the need for fast, flexible and reliable cloning systems. These collections of open reading frame (ORF) clones can be coupled with high-throughput proteomics platforms, such as protein microarrays and cell-based assays, to answer biological questions. In this tutorial we provide the background for DNA cloning, discuss the major high-throughput cloning systems (Gateway® Technology, Flexi® Vector Systems, and Creator™ DNA Cloning System) and compare them side-by-side. We also report an example of high-throughput cloning study and its application in functional proteomics. This Tutorial is part of the International Proteomics Tutorial Programme (IPTP12). Details can be found at http://www.proteomicstutorials.org. PMID:23457047

  18. Dynamic Succession of Soil Bacterial Community during Continuous Cropping of Peanut (Arachis hypogaea L.)

    PubMed Central

    Chen, Mingna; Li, Xiao; Yang, Qingli; Chi, Xiaoyuan; Pan, Lijuan; Chen, Na; Yang, Zhen; Wang, Tong; Wang, Mian; Yu, Shanlin

    2014-01-01

    Plant health and soil fertility are affected by plant–microbial interactions in soils. Peanut is an important oil crop worldwide and shows considerable adaptability, but growth and yield are negatively affected by continuous cropping. In this study, 16S rRNA gene clone library analyses were used to study the succession of soil bacterial communities under continuous peanut cultivation. Six libraries were constructed for peanut over three continuous cropping cycles and during its seedling and pod-maturing growth stages. Cluster analyses indicated that soil bacterial assemblages obtained from the same peanut cropping cycle were similar, regardless of growth period. The diversity of bacterial sequences identified in each growth stage library of the three peanut cropping cycles was high and these sequences were affiliated with 21 bacterial groups. Eight phyla: Acidobacteria, Actinobacteria, Bacteroidetes, Chloroflexi, Gemmatimonadetes, Planctomycetes, Proteobacteria and Verrucomicrobia were dominant. The related bacterial phylotypes dynamic changed during continuous cropping progress of peanut. This study demonstrated that the bacterial populations especially the beneficial populations were positively selected. The simplification of the beneficial microbial communities such as the phylotypes of Alteromonadales, Burkholderiales, Flavobacteriales, Pseudomonadales, Rhizobiales and Rhodospirillales could be important factors contributing to the decline in peanut yield under continuous cropping. The microbial phylotypes that did not successively changed with continuous cropping, such as populations related to Rhizobiales and Rhodospirillales, could potentially resist stress due to continuous cropping and deserve attention. In addition, some phylotypes, such as Acidobacteriales, Chromatiales and Gemmatimonadales, showed a contrary tendency, their abundance or diversity increased with continuous peanut cropping progress. Some bacterial phylotypes including Acidobacteriales

  19. A phage display vector optimized for the generation of human antibody combinatorial libraries and the molecular cloning of monoclonal antibody fragments.

    PubMed

    Solforosi, Laura; Mancini, Nicasio; Canducci, Filippo; Clementi, Nicola; Sautto, Giuseppe Andrea; Diotti, Roberta Antonia; Clementi, Massimo; Burioni, Roberto

    2012-07-01

    A novel phagemid vector, named pCM, was optimized for the cloning and display of antibody fragment (Fab) libraries on the surface of filamentous phage. This vector contains two long DNA "stuffer" fragments for easier differentiation of the correctly cut forms of the vector. Moreover, in pCM the fragment at the heavy-chain cloning site contains an acid phosphatase-encoding gene allowing an easy distinction of the Escherichia coli cells containing the unmodified form of the phagemid versus the heavy-chain fragment coding cDNA. In pCM transcription of heavy-chain Fd/gene III and light chain is driven by a single lacZ promoter. The light chain is directed to the periplasm by the ompA signal peptide, whereas the heavy-chain Fd/coat protein III is trafficked by the pelB signal peptide. The phagemid pCM was used to generate a human combinatorial phage display antibody library that allowed the selection of a monoclonal Fab fragment antibody directed against the nucleoprotein (NP) of Influenza A virus.

  20. Identifying the bacterial community on the surface of Intralox belting in a meat boning room by culture-dependent and culture-independent 16S rDNA sequence analysis.

    PubMed

    Brightwell, Gale; Boerema, Jackie; Mills, John; Mowat, Eilidh; Pulford, David

    2006-05-25

    We examined the bacterial community present on an Intralox conveyor belt system in an operating lamb boning room by sequencing the 16S ribosomal DNA (rDNA) of bacteria extracted in the presence or absence of cultivation. RFLP patterns for 16S rDNA clone library and cultures were generated using HaeIII and MspI restriction endonucleases. 16S rDNA amplicons produced 8 distinct RFLP pattern groups. RFLP groups I-IV were represented in the clone library and RFLP groups I and V-VIII were represented amongst the cultured isolates. Partial DNA sequences from each RFLP group revealed that all group I, II and VIII representatives were Pseudomonas spp., group III were Sphingomonas spp., group IV clones were most similar to an uncultured alpha proteobacterium, group V was similar to a Serratia spp., group VI with an Alcaligenes spp., and group VII with Microbacterium spp. Sphingomonads were numerically dominant in the culture-independent clone library and along with the group IV alpha proteobacterium were not represented amongst the cultured isolates. Serratia, Alcaligenes and Microbacterium spp. were only represented with cultured isolates. Pseudomonads were detected by both culture-dependent (84% of isolates) and culture-independent (12.5% of clones) methods and their presence at high frequency does pose the risk of product spoilage if transferred onto meat stored under aerobic conditions. The detection of sphingomonads in large numbers by the culture-independent method demands further analysis because sphingomonads may represent a new source of meat spoilage that has not been previously recognised in the meat processing environment. The 16S rDNA collections generated by both methods were important at representing the diversity of the bacterial population associated with an Intralox conveyor belt system.

  1. Construction of an 800-kb contig in the near-centromeric region of the rice blast resistance gene Pi-ta2 using a highly representative rice BAC library.

    PubMed

    Nakamura, S; Asakawa, S; Ohmido, N; Fukui, K; Shimizu, N; Kawasaki, S

    1997-05-01

    We constructed a rice Bacterial Artificial Chromosome (BAC) library from green leaf protoplasts of the cultivar Shimokita harboring the rice blast resistance gene Pi-ta. The average insert size of 155 kb and the library size of seven genome equivalents make it one of the most comprehensive BAC libraries available, and larger than many plant YAC libraries. The library clones were plated on seven high density membranes of microplate size, enabling efficient colony identification in colony hybridization experiments. Seven percent of clones carried chloroplast DNA. By probing with markers close to the blast resistance genes Pi-ta2(closely linked to Pi-ta) and Pi-b, respectively located in the centromeric region of chromosome 12 and near the telomeric end of chromosome 2, on average 2.2 +/- 1.3 and 8.0 +/- 2.6 BAC clones/marker were isolated. Differences in chromosomal structures may contribute to this wide variation in yield. A contig of about 800 kb, consisting of 19 clones, was constructed in the Pi-ta2 region. This region had a high frequency of repetitive sequences. To circumvent this difficulty, we devised a "two-step walking" method. The contig spanned a 300 kb region between markers located at 0 cM and 0.3 cM from Pi-ta. The ratio of physical to genetic distances (> 1,000 kb/cM) was more than three times larger than the average of rice (300 kb/cM). The low recombination rate and high frequency of repetitive sequences may also be related to the near centromeric character of this region. Fluorescent in situ hybridization (FISH) with a BAC clone from the Pi-b region yielded very clear signals on the long arm of chromosome 2, while a clone from the Pi-ta2 region showed various cross-hybridizing signals near the centromeric regions of all chromosomes.

  2. Bacterial succession within an ephemeral hypereutrophic Mojave Desert playa Lake.

    PubMed

    Navarro, Jason B; Moser, Duane P; Flores, Andrea; Ross, Christian; Rosen, Michael R; Dong, Hailiang; Zhang, Gengxin; Hedlund, Brian P

    2009-02-01

    Ephemerally wet playas are conspicuous features of arid landscapes worldwide; however, they have not been well studied as habitats for microorganisms. We tracked the geochemistry and microbial community in Silver Lake playa, California, over one flooding/desiccation cycle following the unusually wet winter of 2004-2005. Over the course of the study, total dissolved solids increased by approximately 10-fold and pH increased by nearly one unit. As the lake contracted and temperatures increased over the summer, a moderately dense planktonic population of approximately 1x10(6) cells ml(-1) of culturable heterotrophs was replaced by a dense population of more than 1x10(9) cells ml(-1), which appears to be the highest concentration of culturable planktonic heterotrophs reported in any natural aquatic ecosystem. This correlated with a dramatic depletion of nitrate as well as changes in the microbial community, as assessed by small subunit ribosomal RNA gene sequencing of bacterial isolates and uncultivated clones. Isolates from the early-phase flooded playa were primarily Actinobacteria, Firmicutes, and Bacteroidetes, yet clone libraries were dominated by Betaproteobacteria and yet uncultivated Actinobacteria. Isolates from the late-flooded phase ecosystem were predominantly Proteobacteria, particularly alkalitolerant isolates of Rhodobaca, Porphyrobacter, Hydrogenophaga, Alishwenella, and relatives of Thauera; however, clone libraries were composed almost entirely of Synechococcus (Cyanobacteria). A sample taken after the playa surface was completely desiccated contained diverse culturable Actinobacteria typically isolated from soils. In total, 205 isolates and 166 clones represented 82 and 44 species-level groups, respectively, including a wide diversity of Proteobacteria, Bacteroidetes, Actinobacteria, Firmicutes, Gemmatimonadetes, Acidobacteria, and Cyanobacteria.

  3. Bacterial succession within an ephemeral hypereutrophic mojave desert playa lake

    USGS Publications Warehouse

    Navarro, J.B.; Moser, D.P.; Flores, A.; Ross, C.; Rosen, Michael R.; Dong, H.; Zhang, G.; Hedlund, B.P.

    2009-01-01

    Ephemerally wet playas are conspicuous features of arid landscapes worldwide; however, they have not been well studied as habitats for microorganisms. We tracked the geochemistry and microbial community in Silver Lake playa, California, over one flooding/desiccation cycle following the unusually wet winter of 2004-2005. Over the course of the study, total dissolved solids increased by 10-fold and pH increased by nearly one unit. As the lake contracted and temperatures increased over the summer, a moderately dense planktonic population of 1 ?????106 cells ml-1 of culturable heterotrophs was replaced by a dense population of more than 1????????109 cells ml-1, which appears to be the highest concentration of culturable planktonic heterotrophs reported in any natural aquatic ecosystem. This correlated with a dramatic depletion of nitrate as well as changes in the microbial community, as assessed by small subunit ribosomal RNA gene sequencing of bacterial isolates and uncultivated clones. Isolates from the early-phase flooded playa were primarily Actinobacteria, Firmicutes, and Bacteroidetes, yet clone libraries were dominated by Betaproteobacteria and yet uncultivated Actinobacteria. Isolates from the late-flooded phase ecosystem were predominantly Proteobacteria, particularly alkalitolerant isolates of Rhodobaca, Porphyrobacter, Hydrogenophaga, Alishwenella, and relatives of Thauera; however, clone libraries were composed almost entirely of Synechococcus (Cyanobacteria). A sample taken after the playa surface was completely desiccated contained diverse culturable Actinobacteria typically isolated from soils. In total, 205 isolates and 166 clones represented 82 and 44 species-level groups, respectively, including a wide diversity of Proteobacteria, Bacteroidetes, Actinobacteria, Firmicutes, Gemmatimonadetes, Acidobacteria, and Cyanobacteria. ?? 2008 Springer Science+Business Media, LLC.

  4. Peripheral infrastructure vectors and an extended set of plant parts for the Modular Cloning system

    PubMed Central

    Kretschmer, Carola; Gruetzner, Ramona; Löfke, Christian; Dagdas, Yasin; Bürstenbinder, Katharina; Marillonnet, Sylvestre

    2018-01-01

    Standardized DNA assembly strategies facilitate the generation of multigene constructs from collections of building blocks in plant synthetic biology. A common syntax for hierarchical DNA assembly following the Golden Gate principle employing Type IIs restriction endonucleases was recently developed, and underlies the Modular Cloning and GoldenBraid systems. In these systems, transcriptional units and/or multigene constructs are assembled from libraries of standardized building blocks, also referred to as phytobricks, in several hierarchical levels and by iterative Golden Gate reactions. Here, a toolkit containing further modules for the novel DNA assembly standards was developed. Intended for use with Modular Cloning, most modules are also compatible with GoldenBraid. Firstly, a collection of approximately 80 additional phytobricks is provided, comprising e.g. modules for inducible expression systems, promoters or epitope tags. Furthermore, DNA modules were developed for connecting Modular Cloning and Gateway cloning, either for toggling between systems or for standardized Gateway destination vector assembly. Finally, first instances of a “peripheral infrastructure” around Modular Cloning are presented: While available toolkits are designed for the assembly of plant transformation constructs, vectors were created to also use coding sequence-containing phytobricks directly in yeast two hybrid interaction or bacterial infection assays. The presented material will further enhance versatility of hierarchical DNA assembly strategies. PMID:29847550

  5. Identification of Genes and Pathways Related to Phenol Degradation in Metagenomic Libraries from Petroleum Refinery Wastewater

    PubMed Central

    Silva, Cynthia C.; Hayden, Helen; Sawbridge, Tim; Mele, Pauline; De Paula, Sérgio O.; Silva, Lívia C. F.; Vidigal, Pedro M. P.; Vicentini, Renato; Sousa, Maíra P.; Torres, Ana Paula R.; Santiago, Vânia M. J.; Oliveira, Valéria M.

    2013-01-01

    Two fosmid libraries, totaling 13,200 clones, were obtained from bioreactor sludge of petroleum refinery wastewater treatment system. The library screening based on PCR and biological activity assays revealed more than 400 positive clones for phenol degradation. From these, 100 clones were randomly selected for pyrosequencing in order to evaluate the genetic potential of the microorganisms present in wastewater treatment plant for biodegradation, focusing mainly on novel genes and pathways of phenol and aromatic compound degradation. The sequence analysis of selected clones yielded 129,635 reads at an estimated 17-fold coverage. The phylogenetic analysis showed Burkholderiales and Rhodocyclales as the most abundant orders among the selected fosmid clones. The MG-RAST analysis revealed a broad metabolic profile with important functions for wastewater treatment, including metabolism of aromatic compounds, nitrogen, sulphur and phosphorus. The predicted 2,276 proteins included phenol hydroxylases and cathecol 2,3- dioxygenases, involved in the catabolism of aromatic compounds, such as phenol, byphenol, benzoate and phenylpropanoid. The sequencing of one fosmid insert of 33 kb unraveled the gene that permitted the host, Escherichia coli EPI300, to grow in the presence of aromatic compounds. Additionally, the comparison of the whole fosmid sequence against bacterial genomes deposited in GenBank showed that about 90% of sequence showed no identity to known sequences of Proteobacteria deposited in the NCBI database. This study surveyed the functional potential of fosmid clones for aromatic compound degradation and contributed to our knowledge of the biodegradative capacity and pathways of microbial assemblages present in refinery wastewater treatment system. PMID:23637911

  6. [Identification of proteins interacting with the circadian clock protein PER1 in tumors using bacterial two-hybrid system technique].

    PubMed

    Zhang, Yu; Yao, Youlin; Jiang, Siyuan; Lu, Yilu; Liu, Yunqiang; Tao, Dachang; Zhang, Sizhong; Ma, Yongxin

    2015-04-01

    To identify protein-protein interaction partners of PER1 (period circadian protein homolog 1), key component of the molecular oscillation system of the circadian rhythm in tumors using bacterial two-hybrid system technique. Human cervical carcinoma cell Hela library was adopted. Recombinant bait plasmid pBT-PER1 and pTRG cDNA plasmid library were cotransformed into the two-hybrid system reporter strain cultured in a special selective medium. Target clones were screened. After isolating the positive clones, the target clones were sequenced and analyzed. Fourteen protein coding genes were identified, 4 of which were found to contain whole coding regions of genes, which included optic atrophy 3 protein (OPA3) associated with mitochondrial dynamics and homo sapiens cutA divalent cation tolerance homolog of E. coli (CUTA) associated with copper metabolism. There were also cellular events related proteins and proteins which are involved in biochemical reaction and signal transduction-related proteins. Identification of potential interacting proteins with PER1 in tumors may provide us new insights into the functions of the circadian clock protein PER1 during tumorigenesis.

  7. Impact of protists on a hydrocarbon-degrading bacterial community from deep-sea Gulf of Mexico sediments: A microcosm study

    NASA Astrophysics Data System (ADS)

    Beaudoin, David J.; Carmichael, Catherine A.; Nelson, Robert K.; Reddy, Christopher M.; Teske, Andreas P.; Edgcomb, Virginia P.

    2016-07-01

    In spite of significant advancements towards understanding the dynamics of petroleum hydrocarbon degrading microbial consortia, the impacts (direct or indirect via grazing activities) of bacterivorous protists remain largely unknown. Microcosm experiments were used to examine whether protistan grazing affects the petroleum hydrocarbon degradation capacity of a deep-sea sediment microbial community from an active Gulf of Mexico cold seep. Differences in n-alkane content between native sediment microcosms and those treated with inhibitors of eukaryotes were assessed by comprehensive two-dimensional gas chromatography following 30-90 day incubations and analysis of shifts in microbial community composition using small subunit ribosomal RNA gene clone libraries. More biodegradation was observed in microcosms supplemented with eukaryotic inhibitors. SSU rRNA gene clone libraries from oil-amended treatments revealed an increase in the number of proteobacterial clones (particularly γ-proteobacteria) after spiking sediments with diesel oil. Bacterial community composition shifted, and degradation rates increased, in treatments where protists were inhibited, suggesting protists affect the hydrocarbon degrading capacity of microbial communities in sediments collected at this Gulf of Mexico site.

  8. Microvariation Artifacts Introduced by PCR and Cloning of Closely Related 16S rRNA Gene Sequences†

    PubMed Central

    Speksnijder, Arjen G. C. L.; Kowalchuk, George A.; De Jong, Sander; Kline, Elizabeth; Stephen, John R.; Laanbroek, Hendrikus J.

    2001-01-01

    A defined template mixture of seven closely related 16S-rDNA clones was used in a PCR-cloning experiment to assess and track sources of artifactual sequence variation in 16S rDNA clone libraries. At least 14% of the recovered clones contained aberrations. Artifact sources were polymerase errors, a mutational hot spot, and cloning of heteroduplexes and chimeras. These data may partially explain the high degree of microheterogeneity typical of sequence clusters detected in environmental clone libraries. PMID:11133483

  9. CHANGES IN BACTERIAL COMPOSITION OF BIOFILM IN A ...

    EPA Pesticide Factsheets

    This study examined the development of bacterial biofilms within a metropolitan distribution system. The distribution system is fed with different source water (i.e., groundwater, GW and surface water, SW) and undergoes different treatment processes in separate facilities. The biofilm community was characterized using 16S rRNA gene clone libraries and functional potential analysis, generated from total DNA extracted from coupons in biofilm annular reactors fed with onsite drinking water for up to eighteen months. Significant differences in the bacterial community structure were observed between GW and SW. Representatives that explained the dissimilarity between service areas were associated with Betaproteobacteria, Alphaproteobacteria, Actinobacteria, Gammaproteobacteria, and Firmicutes. After nine months the biofilm bacterial community from both areas were dominated by Mycobacterium species. The distribution of the dominant OTU (Mycobacterium) positively correlated with the drinking water distribution system (DWDS) temperature, but no clear relationship was seen with free chlorine residual, pH, turbidity or total organic carbon (TOC). The results suggest that biofilm microbial communities harbor distinct and diverse bacterial communities, and that source water, treatment processes and environmental conditions may play an important role in shaping the bacterial community in the distribution system. On the other hand, several bacterial groups were present i

  10. Cloning and study of the pectate lyase gene of Erwinia carotovora

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bukanov, N.O.; Fonshtein, M.Yu.; Evtushenkov, A.N.

    1986-04-01

    The cloning of the gene of a secretable protein of Erwinia carotovora, pectate lyase, in Escherichia coli was described. Primary cloning was conducted using the phage vector lambda 47.1. In the gene library of E. carotovora obtained, eight phages carrying the gene sought were identified according to the appearance of enzymatic activity of the gene product, pectate lyase, in situ. The BamHI fragment of DNA, common to all these phages, was recloned on the plasmid pUC19. It was shown that the cloned pectate lyase gene is represented on the E. carotovora chromosome in one copy. Methods of production of representativemore » gene libraries on phage vectors from no less than 1 ..mu..g of cloned DNA even for the genomes of eukaryotes have now been developed. Vectors have been created, for example, lambda 47.1, permitting the selection only of hybrid molecules. A number of methods have been developed for the search for a required gene in the library, depending on whether the cloned gene can be expressed or not, and if it can, what properties it will impart to the hybrid clone containing it.« less

  11. Bacterial communities associated with the rhizosphere of pioneer plants (Bahia xylopoda and Viguiera linearis) growing on heavy metals-contaminated soils.

    PubMed

    Navarro-Noya, Yendi E; Jan-Roblero, Janet; González-Chávez, Maria del Carmen; Hernández-Gama, Regina; Hernández-Rodríguez, César

    2010-05-01

    In this study, the bacterial communities associated with the rhizospheres of pioneer plants Bahia xylopoda and Viguiera linearis were explored. These plants grow on silver mine tailings with high concentration of heavy metals in Zacatecas, Mexico. Metagenomic DNAs from rhizosphere and bulk soil were extracted to perform a denaturing gradient gel electrophoresis analysis (DGGE) and to construct 16S rRNA gene libraries. A moderate bacterial diversity and twelve major phylogenetic groups including Proteobacteria, Acidobacteria, Bacteroidetes, Gemmatimonadetes, Chloroflexi, Firmicutes, Verrucomicrobia, Nitrospirae and Actinobacteria phyla, and divisions TM7, OP10 and OD1 were recognized in the rhizospheres. Only 25.5% from the phylotypes were common in the rhizosphere libraries and the most abundant groups were members of the phyla Acidobacteria and Betaproteobacteria (Thiobacillus spp., Nitrosomonadaceae). The most abundant groups in bulk soil library were Acidobacteria and Actinobacteria, and no common phylotypes were shared with the rhizosphere libraries. Many of the clones detected were related with chemolithotrophic and sulfur-oxidizing bacteria, characteristic of an environment with a high concentration of heavy metal-sulfur complexes, and lacking carbon and organic energy sources.

  12. Development of genomic resources for the narrow-leafed lupin (Lupinus angustifolius): construction of a bacterial artificial chromosome (BAC) library and BAC-end sequencing

    PubMed Central

    2011-01-01

    Background Lupinus angustifolius L, also known as narrow-leafed lupin (NLL), is becoming an important grain legume crop that is valuable for sustainable farming and is becoming recognised as a potential human health food. Recent interest is being directed at NLL to improve grain production, disease and pest management and health benefits of the grain. However, studies have been hindered by a lack of extensive genomic resources for the species. Results A NLL BAC library was constructed consisting of 111,360 clones with an average insert size of 99.7 Kbp from cv Tanjil. The library has approximately 12 × genome coverage. Both ends of 9600 randomly selected BAC clones were sequenced to generate 13985 BAC end-sequences (BESs), covering approximately 1% of the NLL genome. These BESs permitted a preliminary characterisation of the NLL genome such as organisation and composition, with the BESs having approximately 39% G:C content, 16.6% repetitive DNA and 5.4% putative gene-encoding regions. From the BESs 9966 simple sequence repeat (SSR) motifs were identified and some of these are shown to be potential markers. Conclusions The NLL BAC library and BAC-end sequences are powerful resources for genetic and genomic research on lupin. These resources will provide a robust platform for future high-resolution mapping, map-based cloning, comparative genomics and assembly of whole-genome sequencing data for the species. PMID:22014081

  13. Changing bacterial profile of Sundarbans, the world heritage mangrove: impact of anthropogenic interventions.

    PubMed

    Chakraborty, Arpita; Bera, Amit; Mukherjee, Arghya; Basak, Pijush; Khan, Imroze; Mondal, Arindam; Roy, Arunava; Bhattacharyya, Anish; SenGupta, Sohan; Roy, Debojyoti; Nag, Sudip; Ghosh, Abhrajyoti; Chattopadhyay, Dhrubajyoti; Bhattacharyya, Maitree

    2015-04-01

    Mangrove microbial communities and their associated activities have profound impact on biogeochemical cycles. Although microbial composition and structure are known to be influenced by biotic and abiotic factors in the mangrove sediments, finding direct correlations between them remains a challenge. In this study we have explored sediment bacterial diversity of the Sundarbans, a world heritage site using a culture-independent molecular approach. Bacterial diversity was analyzed from three different locations with a history of exposure to differential anthropogenic activities. 16S rRNA gene libraries were constructed and partial sequencing of the clones was performed to identify the microbial strains. We identified bacterial strains known to be involved in a variety of biodegradation/biotransformation processes including hydrocarbon degradation, and heavy metal resistance. Canonical Correspondence Analysis of the environmental and exploratory datasets revealed correlations between the ecological indices associated with pollutant levels and bacterial diversity across the sites. Our results indicate that sites with similar exposure of anthropogenic intervention reflect similar patterns of microbial diversity besides spatial commonalities.

  14. Functional Screening of Antibiotic Resistance Genes from a Representative Metagenomic Library of Food Fermenting Microbiota

    PubMed Central

    Devirgiliis, Chiara; Barile, Simona; Perozzi, Giuditta

    2014-01-01

    Lactic acid bacteria (LAB) represent the predominant microbiota in fermented foods. Foodborne LAB have received increasing attention as potential reservoir of antibiotic resistance (AR) determinants, which may be horizontally transferred to opportunistic pathogens. We have previously reported isolation of AR LAB from the raw ingredients of a fermented cheese, while AR genes could be detected in the final, marketed product only by PCR amplification, thus pointing at the need for more sensitive microbial isolation techniques. We turned therefore to construction of a metagenomic library containing microbial DNA extracted directly from the food matrix. To maximize yield and purity and to ensure that genomic complexity of the library was representative of the original bacterial population, we defined a suitable protocol for total DNA extraction from cheese which can also be applied to other lipid-rich foods. Functional library screening on different antibiotics allowed recovery of ampicillin and kanamycin resistant clones originating from Streptococcus salivarius subsp. thermophilus and Lactobacillus helveticus genomes. We report molecular characterization of the cloned inserts, which were fully sequenced and shown to confer AR phenotype to recipient bacteria. We also show that metagenomics can be applied to food microbiota to identify underrepresented species carrying specific genes of interest. PMID:25243126

  15. Construction and characterization of two BAC libraries representing a deep-coverage of the genome of chicory (Cichorium intybus L., Asteraceae)

    PubMed Central

    2010-01-01

    Background The Asteraceae represents an important plant family with respect to the numbers of species present in the wild and used by man. Nonetheless, genomic resources for Asteraceae species are relatively underdeveloped, hampering within species genetic studies as well as comparative genomics studies at the family level. So far, six BAC libraries have been described for the main crops of the family, i.e. lettuce and sunflower. Here we present the characterization of BAC libraries of chicory (Cichorium intybus L.) constructed from two genotypes differing in traits related to sexual and vegetative reproduction. Resolving the molecular mechanisms underlying traits controlling the reproductive system of chicory is a key determinant for hybrid development, and more generally will provide new insights into these traits, which are poorly investigated so far at the molecular level in Asteraceae. Findings Two bacterial artificial chromosome (BAC) libraries, CinS2S2 and CinS1S4, were constructed from HindIII-digested high molecular weight DNA of the contrasting genotypes C15 and C30.01, respectively. C15 was hermaphrodite, non-embryogenic, and S2S2 for the S-locus implicated in self-incompatibility, whereas C30.01 was male sterile, embryogenic, and S1S4. The CinS2S2 and CinS1S4 libraries contain 89,088 and 81,408 clones. Mean insert sizes of the CinS2S2 and CinS1S4 clones are 90 and 120 kb, respectively, and provide together a coverage of 12.3 haploid genome equivalents. Contamination with mitochondrial and chloroplast DNA sequences was evaluated with four mitochondrial and four chloroplast specific probes, and was estimated to be 0.024% and 1.00% for the CinS2S2 library, and 0.028% and 2.35% for the CinS1S4 library. Using two single copy genes putatively implicated in somatic embryogenesis, screening of both libraries resulted in detection of 12 and 13 positive clones for each gene, in accordance with expected numbers. Conclusions This indicated that both BAC libraries

  16. Construction and characterization of two BAC libraries representing a deep-coverage of the genome of chicory (Cichorium intybus L., Asteraceae).

    PubMed

    Gonthier, Lucy; Bellec, Arnaud; Blassiau, Christelle; Prat, Elisa; Helmstetter, Nicolas; Rambaud, Caroline; Huss, Brigitte; Hendriks, Theo; Bergès, Hélène; Quillet, Marie-Christine

    2010-08-11

    The Asteraceae represents an important plant family with respect to the numbers of species present in the wild and used by man. Nonetheless, genomic resources for Asteraceae species are relatively underdeveloped, hampering within species genetic studies as well as comparative genomics studies at the family level. So far, six BAC libraries have been described for the main crops of the family, i.e. lettuce and sunflower. Here we present the characterization of BAC libraries of chicory (Cichorium intybus L.) constructed from two genotypes differing in traits related to sexual and vegetative reproduction. Resolving the molecular mechanisms underlying traits controlling the reproductive system of chicory is a key determinant for hybrid development, and more generally will provide new insights into these traits, which are poorly investigated so far at the molecular level in Asteraceae. Two bacterial artificial chromosome (BAC) libraries, CinS2S2 and CinS1S4, were constructed from HindIII-digested high molecular weight DNA of the contrasting genotypes C15 and C30.01, respectively. C15 was hermaphrodite, non-embryogenic, and S2S2 for the S-locus implicated in self-incompatibility, whereas C30.01 was male sterile, embryogenic, and S1S4. The CinS2S2 and CinS1S4 libraries contain 89,088 and 81,408 clones. Mean insert sizes of the CinS2S2 and CinS1S4 clones are 90 and 120 kb, respectively, and provide together a coverage of 12.3 haploid genome equivalents. Contamination with mitochondrial and chloroplast DNA sequences was evaluated with four mitochondrial and four chloroplast specific probes, and was estimated to be 0.024% and 1.00% for the CinS2S2 library, and 0.028% and 2.35% for the CinS1S4 library. Using two single copy genes putatively implicated in somatic embryogenesis, screening of both libraries resulted in detection of 12 and 13 positive clones for each gene, in accordance with expected numbers. This indicated that both BAC libraries are valuable tools for molecular

  17. Genetic Diversity of Bacterial Communities and Gene Transfer Agents in Northern South China Sea

    PubMed Central

    Sun, Fu-Lin; Wang, You-Shao; Wu, Mei-Lin; Jiang, Zhao-Yu; Sun, Cui-Ci; Cheng, Hao

    2014-01-01

    Pyrosequencing of the 16S ribosomal RNA gene (rDNA) amplicons was performed to investigate the unique distribution of bacterial communities in northern South China Sea (nSCS) and evaluate community structure and spatial differences of bacterial diversity. Cyanobacteria, Proteobacteria, Actinobacteria, and Bacteroidetes constitute the majority of bacteria. The taxonomic description of bacterial communities revealed that more Chroococcales, SAR11 clade, Acidimicrobiales, Rhodobacterales, and Flavobacteriales are present in the nSCS waters than other bacterial groups. Rhodobacterales were less abundant in tropical water (nSCS) than in temperate and cold waters. Furthermore, the diversity of Rhodobacterales based on the gene transfer agent (GTA) major capsid gene (g5) was investigated. Four g5 gene clone libraries were constructed from samples representing different regions and yielded diverse sequences. Fourteen g5 clusters could be identified among 197 nSCS clones. These clusters were also related to known g5 sequences derived from genome-sequenced Rhodobacterales. The composition of g5 sequences in surface water varied with the g5 sequences in the sampling sites; this result indicated that the Rhodobacterales population could be highly diverse in nSCS. Phylogenetic tree analysis result indicated distinguishable diversity patterns among tropical (nSCS), temperate, and cold waters, thereby supporting the niche adaptation of specific Rhodobacterales members in unique environments. PMID:25364820

  18. Polybacterial community analysis in human conjunctiva through 16S rRNA gene libraries.

    PubMed

    Deepthi, KrishnanNair Geetha; Jayasudha, Rajagopalaboopathi; Girish, Rameshan Nair; Manikandan, Palanisamy; Ram, Rammohan; Narendran, Venkatapathy; Prabagaran, Solai Ramatchandirane

    2018-05-14

    The conjunctival sac of healthy human harbours a variety of microorganisms. When the eye is compromised, an occasional inadvertent spread happens to the adjacent tissue, resulting in bacterial ocular infections. Microbiological investigation of the conjunctival swab is one of the broadly used modality to study the aetiological agent of conjunctiva. However, most of the time such methods yield unsatisfactory results. Hence, the present study intends to identify the bacterial community in human conjunctiva of pre-operative subjects through 16S rRNA gene libraries. Out of 45 samples collected from preoperative patients undergoing cataract surgery, 36 libraries were constructed with bacterial nested-PCR-positive samples. The representative clones with unique restriction pattern were generated through Amplified Ribosomal DNA Restriction Analysis (ARDRA) which were sequenced for phylogenetic affiliation. A total of 211 representative clones were obtained which were distributed in phyla Actinobacteria, Firmicutes, α-Proteobacteria, β-Proteobacteria, γ-Proteobacteria, Bacteroidetes, and Deinococcus-Thermus. Findings revealed the presence of polybacterial community, especially in some cases even though no bacterium or a single bacterium alone was identified through cultivable method. Remarkably, we identified 17 species which have never been reported in any ocular infections. The sequencing data reported 6 unidentified bacteria suggesting the possibility of novel organisms in the sample. Since, polybacterial community has been identified consisting of both gram positive and gram negative bacteria, a broad spectrum antibiotic therapy is advisable to the patients who are undergoing cataract surgery. Consolidated effort would significantly improve a clear understanding of the nature of microbial community in the human conjunctiva which will promote administration of appropriate antibiotic regimen and also help in the development of oligonucleotide probes to screen the

  19. Changes in bacterial community of anthracene bioremediation in municipal solid waste composting soil*

    PubMed Central

    Zhang, Shu-ying; Wang, Qing-feng; Wan, Rui; Xie, Shu-guang

    2011-01-01

    Polycyclic aromatic hydrocarbons (PAHs) are common contaminants in a municipal solid waste (MSW) composting site. Knowledge of changes in microbial structure is useful to identify particular PAH degraders. However, the microbial community in the MSW composting soil and its change associated with prolonged exposure to PAHs and subsequent biodegradation remain largely unknown. In this study, anthracene was selected as a model compound. The bacterial community structure was investigated using terminal restriction fragment length polymorphism (TRFLP) and 16S rRNA gene clone library analysis. The two bimolecular tools revealed a large shift of bacterial community structure after anthracene amendment and subsequent biodegradation. Genera Methylophilus, Mesorhizobium, and Terrimonas had potential links to anthracene biodegradation, suggesting a consortium playing an active role. PMID:21887852

  20. Library Resources for Bac End Sequencing. Final Technical Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pieter J. de Jong

    2000-10-01

    Studies directed towards the specific aims outlined for this research award are summarized. The RPCI II Human Bac Library has been expanded by the addition of 6.9-fold genomic coverage. This segment has been generated from a MBOI partial digest of the same anonymous donor DNA used for the rest of the library. A new cloning vector, pTARBAC1, has been constructed and used in the construction of RPCI-II segment 5. This new cloning vector provides a new strategy in identifying targeted genomic regions and will greatly facilitate a large-scale analysis for positional cloning. A new maleCS7BC/6J mouse BAC library has beenmore » constructed. RPCI-23 contain 576 plates (approx 210,000 clones) and represents approximately 11-fold coverage of the mouse genome.« less

  1. A strategy for rapid production and screening of yeast artificial chromosome libraries.

    PubMed

    Strauss, W M; Jaenisch, E; Jaenisch, R

    1992-01-01

    We describe methods for rapid production and screening of yeast artificial chromosome (YAC) libraries. Utilizing complete restriction digests of mouse genomic DNA for ligations in agarose, a 32,000-clone library was produced and screened in seven weeks. Screening was accomplished by subdividing primary transformation plates into pools of approximately 100 clones which were transferred into a master glycerol stock. These master stocks were used to inoculate liquid cultures to produce culture "pools," and ten pools of 100 clones were then combined to yield superpools of 1,000 clones. Both pool and superpool DNA was screened by polymerase chain reaction (PCR) and positive pools representing 100 clones were then plated on selective medium and screened by in situ hybridization. Screening by the two tiered PCR assay and by in situ hybridization was completed in 4-5 days. Utilizing this methodology we have isolated a 150 kb clone spanning the alpha 1(I) collagen (Col1a1) gene as well as 40 kb clones from the Hox-2 locus. To characterize the representation of the YAC library, the size distribution of genomic Sal I fragments was compared to that of clones picked at random from the library. The results demonstrate significant biasing of the cloned fragment distribution, resulting in a loss of representation for larger fragments.

  2. Characterization of the bacterial community in a biotrickling filter treating high loads of H(2)S by molecular biology tools.

    PubMed

    Maestre, Juan P; Rovira, Roger; Gamisans, Xavier; Kinney, Kerry A; Kirisits, Mary Jo; Lafuente, Javier; Gabriel, David

    2009-01-01

    The diversity and spatial distribution of bacteria in a lab-scale biotrickling filter treating high loads of hydrogen sulfide (H(2)S) were investigated. Diversity and community structure were studied by terminal-restriction fragment length polymorphism (T-RFLP). A 16S rRNA gene clone library was established. Near Full-length 16S rRNA gene sequences were obtained, and clones were clustered into 24 operational taxonomic units (OTUs). Nearly 74% and 26% of the clones were affiliated with the phyla Proteobacteria and Bacteroidetes, respectively. Beta-, epsilon- and gamma-proteobacteria accounted for 15, 9 and 48%, respectively. Around 45% of the sequences retrieved were affiliated to bacteria of the sulfur cycle including Thiothrix spp., Thiobacillus spp. and Sulfurimonas denitrificans. Sequences related to Thiothrix lacustris accounted for a 38%. Rarefaction curve demonstrated that clone library constructed can be sufficient to describe the vast majority of the bacterial diversity of this reactor operating under strict conditions (2,000 ppm(v) of H(2)S). A spatial distribution of bacteria was found along the length of the reactor by means of the T-RFLP technique. Although aerobic species were predominant along the reactor, facultative anaerobes had a major relative abundance in the inlet part of the reactor, where the sulfide to oxygen ratio is higher.

  3. Construction of High-Quality Camel Immune Antibody Libraries.

    PubMed

    Romão, Ema; Poignavent, Vianney; Vincke, Cécile; Ritzenthaler, Christophe; Muyldermans, Serge; Monsion, Baptiste

    2018-01-01

    Single-domain antibodies libraries of heavy-chain only immunoglobulins from camelids or shark are enriched for high-affinity antigen-specific binders by a short in vivo immunization. Thus, potent binders are readily retrieved from relatively small-sized libraries of 10 7 -10 8 individual transformants, mostly after phage display and panning on a purified target. However, the remaining drawback of this strategy arises from the need to generate a dedicated library, for nearly every envisaged target. Therefore, all the procedures that shorten and facilitate the construction of an immune library of best possible quality are definitely a step forward. In this chapter, we provide the protocol to generate a high-quality immune VHH library using the Golden Gate Cloning strategy employing an adapted phage display vector where a lethal ccdB gene has to be substituted by the VHH gene. With this procedure, the construction of the library can be shortened to less than a week starting from bleeding the animal. Our libraries exceed 10 8 individual transformants and close to 100% of the clones harbor a phage display vector having an insert with the length of a VHH gene. These libraries are also more economic to make than previous standard approaches using classical restriction enzymes and ligations. The quality of the Nanobodies that are retrieved from immune libraries obtained by Golden Gate Cloning is identical to those from immune libraries made according to the classical procedure.

  4. Single-step colony assay for screening antibody libraries.

    PubMed

    Kato, Mieko; Hanyu, Yoshiro

    2017-08-10

    We describe a method, single-step colony assay, for simple and rapid screening of single-chain Fv fragment (scFv) libraries. Colonies of Escherichia coli expressing the scFv library are formed on a hydrophilic filter that is positioned in contact with a membrane coated with an antigen. scFv expression is triggered upon treatment of colonies with an induction reagent, following which scFvs are secreted from the cells and diffused to the antigen-coated membrane. scFvs that exhibit binding affinity for the antigen are captured by the membrane-immobilized antigen. Lastly, detection of scFv binding of the antigen on the membrane allows identification of the clones on the filter that express antigen-specific scFvs. We tested this methodology by using an anti-rabbit IgG scFv, scFv(A10B), and a rat immune scFv library. Experiments conducted using scFv(A10B) revealed that this method improves scFv expression during the colony assay. By using our method to screen an immune library of 3×10 3 scFv clones, we established several clones exhibiting affinity for the antigen. Moreover, we tested 7 other antigens, including peptides, and successfully identified positive clones. We believe that this simple procedure and controlled scFv expression of the single-step colony assay could make the antibody screening both rapid and reliable and lead to successful isolation of positive clones from antibody libraries. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. [Cosmid libraries containing DNA from human chromosome 13].

    PubMed

    Kapanadze, B I; Brodianskiĭ, V M; Baranova, A V; Sevat'ianov, S Iu; Fedorova, N D; Kurskov, M M; Kostina, M A; Mironov, A A; Sineokiĭ, S P; Zakhar'ev, V M; Grafodatskiĭ, A S; Modianov, N N; Iankovskiĭ, N K

    1996-03-01

    We characterized two cosmid libraries constructed from flow-sorted chromosome 13 at the Imperial Cancer Research Fund (ICRF), UK (13,000 clones) and Los Alamos National Laboratory (LANL), USA (17,000 clones). After storage for two years, clones showed high viability (95%) and structural stability. EcoR I and Hind III restriction patterns were studied in more than 500 ICRF and 200 LANL cosmids. The average size of inserts was shown to be 35-37 kb in both the libraries. Most cosmids (83% and 93% of ICRF and LANL libraries, respectively) exceed the lower size limit of DNA fragments that can be packaged and represent a good source for physical mapping of chromosome 13. Total length of inserts is four and five genome equivalents in the ICRF and LANL libraries, respectively. ICRF cosmids showed hybridization to 22 of 24 unique probes tested, which corresponds to a 90% probability of having any DNA fragment represented in the library. More than 1 Mb of chromosome 13 is overlapped by 90 cosmids of 22 groups revealed. A chromosomal region of more than 150 kb, containing the ATP1AL1 gene for alpha-1 peptide of Na+, K(+)-ATPase, is covered by 12 cosmids forming a contig. The results of restriction and hybridization analyses are stored in a CLONE database. These data and all the cosmids described are publicly available.

  6. A novel esterase gene cloned from a metagenomic library from neritic sediments of the South China Sea

    PubMed Central

    2011-01-01

    Background Marine microbes are a large and diverse group, which are exposed to a wide variety of pressure, temperature, salinity, nutrient availability and other environmental conditions. They provide a huge potential source of novel enzymes with unique properties that may be useful in industry and biotechnology. To explore the lipolytic genetic resources in the South China Sea, 23 sediment samples were collected in the depth < 100 m marine areas. Results A metagenomic library of South China Sea sediments assemblage in plasmid vector containing about 194 Mb of community DNA was prepared. Screening of a part of the unamplified library resulted in isolation of 15 unique lipolytic clones with the ability to hydrolyze tributyrin. A positive recombinant clone (pNLE1), containing a novel esterase (Est_p1), was successfully expressed in E. coli and purified. In a series of assays, Est_p1 displayed maximal activity at pH 8.57, 40°C, with ρ-Nitrophenyl butyrate (C4) as substrate. Compared to other metagenomic esterases, Est_p1 played a notable role in specificity for substrate C4 (kcat/Km value 11,500 S-1m M-1) and showed no inhibited by phenylmethylsulfonyl fluoride, suggested that the substrate binding pocket was suitable for substrate C4 and the serine active-site residue was buried at the bottom of substrate binding pocket which sheltered by a lid structure. Conclusions Esterase, which specificity towards short chain fatty acids, especially butanoic acid, is commercially available as potent flavoring tools. According the outstanding activity and specificity for substrate C4, Est_p1 has potential application in flavor industries requiring hydrolysis of short chain esters. PMID:22067554

  7. In silico Analysis of 2085 Clones from a Normalized Rat Vestibular Periphery 3′ cDNA Library

    PubMed Central

    Roche, Joseph P.; Cioffi, Joseph A.; Kwitek, Anne E.; Erbe, Christy B.; Popper, Paul

    2005-01-01

    The inserts from 2400 cDNA clones isolated from a normalized Rattus norvegicus vestibular periphery cDNA library were sequenced and characterized. The Wackym-Soares vestibular 3′ cDNA library was constructed from the saccular and utricular maculae, the ampullae of all three semicircular canals and Scarpa's ganglia containing the somata of the primary afferent neurons, microdissected from 104 male and female rats. The inserts from 2400 randomly selected clones were sequenced from the 5′ end. Each sequence was analyzed using the BLAST algorithm compared to the Genbank nonredundant, rat genome, mouse genome and human genome databases to search for high homology alignments. Of the initial 2400 clones, 315 (13%) were found to be of poor quality and did not yield useful information, and therefore were eliminated from the analysis. Of the remaining 2085 sequences, 918 (44%) were found to represent 758 unique genes having useful annotations that were identified in databases within the public domain or in the published literature; these sequences were designated as known characterized sequences. 1141 sequences (55%) aligned with 1011 unique sequences had no useful annotations and were designated as known but uncharacterized sequences. Of the remaining 26 sequences (1%), 24 aligned with rat genomic sequences, but none matched previously described rat expressed sequence tags or mRNAs. No significant alignment to the rat or human genomic sequences could be found for the remaining 2 sequences. Of the 2085 sequences analyzed, 86% were singletons. The known, characterized sequences were analyzed with the FatiGO online data-mining tool (http://fatigo.bioinfo.cnio.es/) to identify level 5 biological process gene ontology (GO) terms for each alignment and to group alignments with similar or identical GO terms. Numerous genes were identified that have not been previously shown to be expressed in the vestibular system. Further characterization of the novel cDNA sequences may lead

  8. [cDNA library construction from panicle meristem of finger millet].

    PubMed

    Radchuk, V; Pirko, Ia V; Isaenkov, S V; Emets, A I; Blium, Ia B

    2014-01-01

    The protocol for production of full-size cDNA using SuperScript Full-Length cDNA Library Construction Kit II (Invitrogen) was tested and high quality cDNA library from meristematic tissue of finger millet panicle (Eleusine coracana (L.) Gaertn) was created. The titer of obtained cDNA library comprised 3.01 x 10(5) CFU/ml in avarage. In average the length of cDNA insertion consisted about 1070 base pairs, the effectivity of cDNA fragment insertions--99.5%. The selective sequencing of cDNA clones from created library was performed. The sequences of cDNA clones were identified with usage of BLAST-search. The results of cDNA library analysis and selective sequencing represents prove good functionality and full length character of inserted cDNA clones. Obtained cDNA library from meristematic tissue of finger millet panicle represents good and valuable source for isolation and identification of key genes regulating metabolism and meristematic development and for mining of new molecular markers to conduct out high quality genetic investigations and molecular breeding as well.

  9. Evaluation of vector-primed cDNA library production from microgram quantities of total RNA.

    PubMed

    Kuo, Jonathan; Inman, Jason; Brownstein, Michael; Usdin, Ted B

    2004-12-15

    cDNA sequences are important for defining the coding region of genes, and full-length cDNA clones have proven to be useful for investigation of the function of gene products. We produced cDNA libraries containing 3.5-5 x 10(5) primary transformants, starting with 5 mug of total RNA prepared from mouse pituitary, adrenal, thymus, and pineal tissue, using a vector-primed cDNA synthesis method. Of approximately 1000 clones sequenced, approximately 20% contained the full open reading frames (ORFs) of known transcripts, based on the presence of the initiating methionine residue codon. The libraries were complex, with 94, 91, 83 and 55% of the clones from the thymus, adrenal, pineal and pituitary libraries, respectively, represented only once. Twenty-five full-length clones, not yet represented in the Mammalian Gene Collection, were identified. Thus, we have produced useful cDNA libraries for the isolation of full-length cDNA clones that are not yet available in the public domain, and demonstrated the utility of a simple method for making high-quality libraries from small amounts of starting material.

  10. Wide screening of phage-displayed libraries identifies immune targets in planta.

    PubMed

    Rioja, Cristina; Van Wees, Saskia C; Charlton, Keith A; Pieterse, Corné M J; Lorenzo, Oscar; García-Sánchez, Susana

    2013-01-01

    Microbe-Associated Molecular Patterns and virulence effectors are recognized by plants as a first step to mount a defence response against potential pathogens. This recognition involves a large family of extracellular membrane receptors and other immune proteins located in different sub-cellular compartments. We have used phage-display technology to express and select for Arabidopsis proteins able to bind bacterial pathogens. To rapidly identify microbe-bound phage, we developed a monitoring method based on microarrays. This combined strategy allowed for a genome-wide screening of plant proteins involved in pathogen perception. Two phage libraries for high-throughput selection were constructed from cDNA of plants infected with Pseudomonas aeruginosa PA14, or from combined samples of the virulent isolate DC3000 of Pseudomonas syringae pv. tomato and its avirulent variant avrRpt2. These three pathosystems represent different degrees in the specificity of plant-microbe interactions. Libraries cover up to 2 × 10(7) different plant transcripts that can be displayed as functional proteins on the surface of T7 bacteriophage. A number of these were selected in a bio-panning assay for binding to Pseudomonas cells. Among the selected clones we isolated the ethylene response factor ATERF-1, which was able to bind the three bacterial strains in competition assays. ATERF-1 was rapidly exported from the nucleus upon infiltration of either alive or heat-killed Pseudomonas. Moreover, aterf-1 mutants exhibited enhanced susceptibility to infection. These findings suggest that ATERF-1 contains a microbe-recognition domain with a role in plant defence. To identify other putative pathogen-binding proteins on a genome-wide scale, the copy number of selected-vs.-total clones was compared by hybridizing phage cDNAs with Arabidopsis microarrays. Microarray analysis revealed a set of 472 candidates with significant fold change. Within this set defence-related genes, including well

  11. Harvesting of novel polyhydroxyalkanaote (PHA) synthase encoding genes from a soil metagenome library using phenotypic screening.

    PubMed

    Schallmey, Marcus; Ly, Anh; Wang, Chunxia; Meglei, Gabriela; Voget, Sonja; Streit, Wolfgang R; Driscoll, Brian T; Charles, Trevor C

    2011-08-01

    We previously reported the construction of metagenomic libraries in the IncP cosmid vector pRK7813, enabling heterologous expression of these broad-host-range libraries in multiple bacterial hosts. Expressing these libraries in Sinorhizobium meliloti, we have successfully complemented associated phenotypes of polyhydroxyalkanoate synthesis mutants. DNA sequence analysis of three clones indicates that the complementing genes are homologous to, but substantially different from, known polyhydroxyalkanaote synthase-encoding genes. Thus we have demonstrated the ability to isolate diverse genes for polyhydroxyalkanaote synthesis by functional complementation of defined mutants. Such genes might be of use in the engineering of more efficient systems for the industrial production of bioplastics. The use of functional complementation will also provide a vehicle to probe the genetics of polyhydroxyalkanaote metabolism and its relation to carbon availability in complex microbial assemblages. 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  12. Emergence of a bacterial clone with enhanced virulence by acquisition of a phage encoding a secreted phospholipase A2.

    PubMed

    Sitkiewicz, Izabela; Nagiec, Michal J; Sumby, Paul; Butler, Stephanie D; Cywes-Bentley, Colette; Musser, James M

    2006-10-24

    The molecular basis of pathogen clone emergence is relatively poorly understood. Acquisition of a bacteriophage encoding a previously unknown secreted phospholipase A(2) (designated SlaA) has been implicated in the rapid emergence in the mid-1980s of a new hypervirulent clone of serotype M3 group A Streptococcus. Although several lines of circumstantial evidence suggest that SlaA is a virulence factor, this issue has not been addressed experimentally. We found that an isogenic DeltaslaA mutant strain was significantly impaired in ability to adhere to and kill human epithelial cells compared with the wild-type parental strain. The mutant strain was less virulent for mice than the wild-type strain, and immunization with purified SlaA significantly protected mice from invasive disease. Importantly, the mutant strain was significantly attenuated for colonization in a monkey model of pharyngitis. We conclude that transductional acquisition of the ability of a GAS strain to produce SlaA enhanced the spread and virulence of the serotype M3 precursor strain. Hence, these studies identified a crucial molecular event underlying the evolution, rapid emergence, and widespread dissemination of unusually severe human infections caused by a distinct bacterial clone.

  13. Molecular cloning and characterization of ADP-glucose pyrophosphorylase cDNA clones isolated from pea cotyledons.

    PubMed

    Burgess, D; Penton, A; Dunsmuir, P; Dooner, H

    1997-02-01

    Three ADP-glucose pyrophosphorylase (ADPG-PPase) cDNA clones have been isolated and characterized from a pea cotyledon cDNA library. Two of these clones (Psagps1 and Psagps2) encode the small subunit of ADPG-PPase. The deduced amino acid sequences for these two clones are 95% identical. Expression of these two genes differs in that the Psagps2 gene shows comparatively higher expression in seeds relative to its expression in other tissues. Psagps2 expression also peaks midway through seed development at a time in which Psagps1 transcripts are still accumulating. The third cDNA isolated (Psagp11) encodes the large subunit of ADPG-PPase. It shows greater selectivity in expression than either of the small subunit clones. It is highly expressed in sink organs (seed, pod, and seed coat) and undetectable in leaves.

  14. Invasive lionfish harbor a different external bacterial community than native Bahamian fishes

    NASA Astrophysics Data System (ADS)

    Stevens, J. L.; Olson, J. B.

    2013-12-01

    The introduction and subsequent spread of lionfish into the Atlantic Ocean and Caribbean Sea has become a worldwide conservation issue. These highly successful invaders may also be capable of introducing non-native microorganisms to the invaded regions. This study compared the bacterial communities associated with lionfish external tissue to those of native Bahamian fishes and ambient water. Terminal restriction fragment length polymorphism analyses demonstrated that lionfish bacterial communities were significantly different than those associated with three native Bahamian fishes. Additionally, all fishes harbored distinct bacterial communities from the ambient bacterioplankton. Analysis of bacterial clone libraries from invasive lionfish and native squirrelfish indicated that lionfish communities were more diverse than those associated with squirrelfish, yet did not contain known fish pathogens. Using microscopy and molecular genetic approaches, lionfish eggs were examined for the presence of bacteria to evaluate the capacity for vertical transmission. Eggs removed from the ovaries of gravid females were free of bacteria, suggesting that lionfish likely acquire bacteria from the environment. This study was the first examination of bacterial communities associated with the invasive lionfish and indicated that they support different communities of environmentally derived bacteria than Caribbean reef fishes.

  15. Molecular cloning and physical mapping of the genome of fish lymphocystis disease virus.

    PubMed

    Darai, G; Delius, H; Clarke, J; Apfel, H; Schnitzler, P; Flügel, R M

    1985-10-30

    A defined and complete gene library of the fish lymphocystis disease virus (FLDV) genome was established. FLDV DNA was cleaved with EcoRI, BamHI, EcoRI/BamHI and EcoRI/HindIII and the resulting fragments were inserted into the corresponding sites of the pACYC184 or pAT153 plasmid vectors using T4 DNA ligase. Since FLDV DNA is highly methylated at CpG sequences (Darai et al., 1983; Wagner et al., 1985), an Escherichia coli GC-3 strain was required to amplify the recombinant plasmids harboring the FLDV DNA fragments. Bacterial colonies harboring recombinant plasmids were selected. All cloned fragments were individually identified by digestion of the recombinant plasmid DNA with different restriction enzymes and screened by hybridization of recombinant plasmid DNA to viral DNA. This analysis revealed that sequences representing 100% of the viral genome were cloned. Using these recombinant plasmids, the physical maps of the genome were constructed for BamHI, EcoRI, BestEII, and PstI restriction endonucleases. Although the FLDV genome is linear, due to circular permutation the restriction maps are circular.

  16. [Construction of fetal mesenchymal stem cell cDNA subtractive library].

    PubMed

    Yang, Li; Wang, Dong-Mei; Li, Liang; Bai, Ci-Xian; Cao, Hua; Li, Ting-Yu; Pei, Xue-Tao

    2002-04-01

    To identify differentially expressed genes between fetal mesenchymal stem cell (MSC) and adult MSC, especially specified genes expressed in fetal MSC, a cDNA subtractive library of fetal MSC was constructed using suppression subtractive hybridization (SSH) technique. At first, total RNA was isolated from fetal and adult MSC. Using SMART PCR synthesis method, single-strand and double-strand cDNAs were synthesized. After Rsa I digestion, fetal MSC cDNAs were divided into two groups and ligated to adaptor 1 and adaptor 2 respectively. Results showed that the amplified library contains 890 clones. Analysis of 890 clones with PCR demonstrated that 768 clones were positive. The positive rate is 86.3%. The size of inserted fragments in these positive clones was between 0.2 - 1 kb, with an average of 400 - 600 bp. SSH is a convenient and effective method for screening differentially expressed genes. The constructed cDNA subtractive library of fetal MSC cDNA lays solid foundation for screening and cloning new and specific function related genes of fetal MSC.

  17. Isolation of mini- and microsatellite loci from chromosome 19 library

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prosnyak, M.I.; Belajeva, O.V.; Polukarova, L.G.

    Mini- and microsatellite sequences are abundant in the human genome and are very useful as genetic markers. We report the isolation of a panel of clones containing marker sequences from chromosome 19. We screened 10,000 clones from the chromosome 19 cosmid library for the presence of di-(CA)n, tri-(TCC)n, (CAC)n microsatellites and M13-like minisatellite sequences. For this we have used synthetic oligonucleotides and polynucleotides, including micro- (CA, TCC, CAC) and minisatellite (M13 core) sequences. Preliminary results indicated that the chromosome 19 cosmid library contained both human and hamster clones. In order to identify human sequences from this library we have developedmore » the technique of colony and blot hybridization with Alu-PCR, L1-PCR and B1-PCR probes. Dozens of clones have been selected, some of which were analyzed by conventional Southern blot analysis and non-radioactive in situ hybridization of chromosomes. Highly informative markers derived from these clones will be used for physical and genetic mapping of chromosome 19.« less

  18. A new set of ESTs and cDNA clones from full-length and normalized libraries for gene discovery and functional characterization in citrus

    PubMed Central

    Marques, M Carmen; Alonso-Cantabrana, Hugo; Forment, Javier; Arribas, Raquel; Alamar, Santiago; Conejero, Vicente; Perez-Amador, Miguel A

    2009-01-01

    Background Interpretation of ever-increasing raw sequence information generated by modern genome sequencing technologies faces multiple challenges, such as gene function analysis and genome annotation. Indeed, nearly 40% of genes in plants encode proteins of unknown function. Functional characterization of these genes is one of the main challenges in modern biology. In this regard, the availability of full-length cDNA clones may fill in the gap created between sequence information and biological knowledge. Full-length cDNA clones facilitate functional analysis of the corresponding genes enabling manipulation of their expression in heterologous systems and the generation of a variety of tagged versions of the native protein. In addition, the development of full-length cDNA sequences has the power to improve the quality of genome annotation. Results We developed an integrated method to generate a new normalized EST collection enriched in full-length and rare transcripts of different citrus species from multiple tissues and developmental stages. We constructed a total of 15 cDNA libraries, from which we isolated 10,898 high-quality ESTs representing 6142 different genes. Percentages of redundancy and proportion of full-length clones range from 8 to 33, and 67 to 85, respectively, indicating good efficiency of the approach employed. The new EST collection adds 2113 new citrus ESTs, representing 1831 unigenes, to the collection of citrus genes available in the public databases. To facilitate functional analysis, cDNAs were introduced in a Gateway-based cloning vector for high-throughput functional analysis of genes in planta. Herein, we describe the technical methods used in the library construction, sequence analysis of clones and the overexpression of CitrSEP, a citrus homolog to the Arabidopsis SEP3 gene, in Arabidopsis as an example of a practical application of the engineered Gateway vector for functional analysis. Conclusion The new EST collection denotes an

  19. Bacterial Diversity in Bentonites, Engineered Barrier for Deep Geological Disposal of Radioactive Wastes.

    PubMed

    Lopez-Fernandez, Margarita; Cherkouk, Andrea; Vilchez-Vargas, Ramiro; Jauregui, Ruy; Pieper, Dietmar; Boon, Nico; Sanchez-Castro, Ivan; Merroun, Mohamed L

    2015-11-01

    The long-term disposal of radioactive wastes in a deep geological repository is the accepted international solution for the treatment and management of these special residues. The microbial community of the selected host rocks and engineered barriers for the deep geological repository may affect the performance and the safety of the radioactive waste disposal. In this work, the bacterial population of bentonite formations of Almeria (Spain), selected as a reference material for bentonite-engineered barriers in the disposal of radioactive wastes, was studied. 16S ribosomal RNA (rRNA) gene-based approaches were used to study the bacterial community of the bentonite samples by traditional clone libraries and Illumina sequencing. Using both techniques, the bacterial diversity analysis revealed similar results, with phylotypes belonging to 14 different bacterial phyla: Acidobacteria, Actinobacteria, Armatimonadetes, Bacteroidetes, Chloroflexi, Cyanobacteria, Deinococcus-Thermus, Firmicutes, Gemmatimonadetes, Planctomycetes, Proteobacteria, Nitrospirae, Verrucomicrobia and an unknown phylum. The dominant groups of the community were represented by Proteobacteria and Bacteroidetes. A high diversity was found in three of the studied samples. However, two samples were less diverse and dominated by Betaproteobacteria.

  20. Ruminal metagenomic libraries as a source of relevant hemicellulolytic enzymes for biofuel production.

    PubMed

    Duque, Estrella; Daddaoua, Abdelali; Cordero, Baldo F; Udaondo, Zulema; Molina-Santiago, Carlos; Roca, Amalia; Solano, Jennifer; Molina-Alcaide, Eduarda; Segura, Ana; Ramos, Juan-Luis

    2018-04-17

    The success of second-generation (2G) ethanol technology relies on the efficient transformation of hemicellulose into monosaccharides and, particularly, on the full conversion of xylans into xylose for over 18% of fermentable sugars. We sought new hemicellulases using ruminal liquid, after enrichment of microbes with industrial lignocellulosic substrates and preparation of metagenomic libraries. Among 150 000 fosmid clones tested, we identified 22 clones with endoxylanase activity and 125 with β-xylosidase activity. These positive clones were sequenced en masse, and the analysis revealed open reading frames with a low degree of similarity with known glycosyl hydrolases families. Among them, we searched for enzymes that were thermostable (activity at > 50°C) and that operate at high rate at pH around 5. Upon a wide series of assays, the clones exhibiting the highest endoxylanase and β-xylosidase activities were identified. The fosmids were sequenced, and the corresponding genes cloned, expressed and proteins purified. We found that the activity of the most active β-xylosidase was at least 10-fold higher than that in commercial enzymatic fungal cocktails. Endoxylanase activity was in the range of fungal enzymes. Fungal enzymatic cocktails supplemented with the bacterial hemicellulases exhibited enhanced release of sugars from pretreated sugar cane straw, a relevant agricultural residue. © 2018 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  1. Aquatic bacterial assemblage structure in Pozas Azules, Cuatro Cienegas Basin, Mexico: Deterministic vs. stochastic processes.

    PubMed

    Espinosa-Asuar, Laura; Escalante, Ana Elena; Gasca-Pineda, Jaime; Blaz, Jazmín; Peña, Lorena; Eguiarte, Luis E; Souza, Valeria

    2015-06-01

    The aim of this study was to determine the contributions of stochastic vs. deterministic processes in the distribution of microbial diversity in four ponds (Pozas Azules) within a temporally stable aquatic system in the Cuatro Cienegas Basin, State of Coahuila, Mexico. A sampling strategy for sites that were geographically delimited and had low environmental variation was applied to avoid obscuring distance effects. Aquatic bacterial diversity was characterized following a culture-independent approach (16S sequencing of clone libraries). The results showed a correlation between bacterial beta diversity (1-Sorensen) and geographic distance (distance decay of similarity), which indicated the influence of stochastic processes related to dispersion in the assembly of the ponds' bacterial communities. Our findings are the first to show the influence of dispersal limitation in the prokaryotic diversity distribution of Cuatro Cienegas Basin. Copyright© by the Spanish Society for Microbiology and Institute for Catalan Studies.

  2. ILG1 : a new integrase-like gene that is a marker of bacterial contamination by the laboratory Escherichia coli strain TOP10F'.

    PubMed Central

    Tian, Wenzhi; Chua, Kevin; Strober, Warren; Chu, Charles C.

    2002-01-01

    BACKGROUND: Identification of differentially expressed genes between normal and diseased states is an area of intense current medical research that can lead to the discovery of new therapeutic targets. However, isolation of differentially expressed genes by subtraction often suffers from unreported contamination of the resulting subtraction library with clones containing DNA sequences not from the original RNA samples. MATERIALS AND METHODS: Subtraction using cDNA representational difference analysis (RDA) was performed on human B cells from normal or common variable immunodeficiency patients. The material remaining after the subtraction was cloned and individual clones were sequenced. The sequence of one clone with similarity to integrases (ILG1, integrase-like gene-1) was used to obtain the full length cDNA sequence and as a probe for the presence of this sequence in RNA or genomic DNA samples. RESULTS: After five rounds of cDNA RDA, 23.3% of the clones from the resulting subtraction library contained Escherichia coli DNA. In addition, three clones contained the sequence of a new integrase, ILG1. The full length cDNA sequence of ILG1 exhibits prokaryotic, but not eukaryotic, features. At the DNA level, ILG1 is not similar to any known gene. At the protein level, ILG1 has 58% similarity to integrases from the cryptic P4 bacteriophage family (S clade). The catalytic domain of ILG1 contains the conserved features found in site-specific recombinases. The critical residues that form the catalytic active site pocket are conserved, including the highly conserved R-H-R-Y hallmark of these recombinases. Interestingly, ILG1 was not present in the original B cell populations. By probing genomic DNA, ILG1 could only be detected in the E. coli TOP10F' strain used in our laboratory for molecular cloning, but not in any of its precursor strains, including TOP10. Furthermore, bacteria cultured from the mouth of the laboratory worker who performed cDNA RDA were also positive for

  3. Common bacterial responses in six ecosystems exposed to 10 years of elevated atmospheric carbon dioxide.

    PubMed

    Dunbar, John; Eichorst, Stephanie A; Gallegos-Graves, La Verne; Silva, Shannon; Xie, Gary; Hengartner, N W; Evans, R David; Hungate, Bruce A; Jackson, Robert B; Megonigal, J Patrick; Schadt, Christopher W; Vilgalys, Rytas; Zak, Donald R; Kuske, Cheryl R

    2012-05-01

    Six terrestrial ecosystems in the USA were exposed to elevated atmospheric CO(2) in single or multifactorial experiments for more than a decade to assess potential impacts. We retrospectively assessed soil bacterial community responses in all six-field experiments and found ecosystem-specific and common patterns of soil bacterial community response to elevated CO(2) . Soil bacterial composition differed greatly across the six ecosystems. No common effect of elevated atmospheric CO(2) on bacterial biomass, richness and community composition across all of the ecosystems was identified, although significant responses were detected in individual ecosystems. The most striking common trend across the sites was a decrease of up to 3.5-fold in the relative abundance of Acidobacteria Group 1 bacteria in soils exposed to elevated CO(2) or other climate factors. The Acidobacteria Group 1 response observed in exploratory 16S rRNA gene clone library surveys was validated in one ecosystem by 100-fold deeper sequencing and semi-quantitative PCR assays. Collectively, the 16S rRNA gene sequencing approach revealed influences of elevated CO(2) on multiple ecosystems. Although few common trends across the ecosystems were detected in the small surveys, the trends may be harbingers of more substantive changes in less abundant, more sensitive taxa that can only be detected by deeper surveys. Representative bacterial 16S rRNA gene clone sequences were deposited in GenBank with Accession No. JQ366086–JQ387568. Published 2012. This article is a U.S. Government work and is in the public domain in the USA.

  4. Strain Library Imaging Protocol for high-throughput, automated single-cell microscopy of large bacterial collections arrayed on multiwell plates.

    PubMed

    Shi, Handuo; Colavin, Alexandre; Lee, Timothy K; Huang, Kerwyn Casey

    2017-02-01

    Single-cell microscopy is a powerful tool for studying gene functions using strain libraries, but it suffers from throughput limitations. Here we describe the Strain Library Imaging Protocol (SLIP), which is a high-throughput, automated microscopy workflow for large strain collections that requires minimal user involvement. SLIP involves transferring arrayed bacterial cultures from multiwell plates onto large agar pads using inexpensive replicator pins and automatically imaging the resulting single cells. The acquired images are subsequently reviewed and analyzed by custom MATLAB scripts that segment single-cell contours and extract quantitative metrics. SLIP yields rich data sets on cell morphology and gene expression that illustrate the function of certain genes and the connections among strains in a library. For a library arrayed on 96-well plates, image acquisition can be completed within 4 min per plate.

  5. Seasonal variation in detection of bacterial DNA in arthritic stifle joints of dogs with cranial cruciate ligament rupture using PCR amplification of the 16S rRNA gene.

    PubMed

    Muir, Peter; Fox, Robin; Wu, Qiang; Baker, Theresa A; Zitzer, Nina C; Hudson, Alan P; Manley, Paul A; Schaefer, Susan L; Hao, Zhengling

    2010-02-24

    An underappreciated cause and effect relationship between environmental bacteria and arthritis may exist. Previously, we found that stifle arthritis in dogs was associated with the presence of environmental bacteria within synovium. Cranial cruciate ligament rupture (CCLR) is often associated with stifle arthritis in dogs. We now wished to determine whether seasonal variation in detection of bacterial material may exist in affected dogs, and to also conduct analyses of both synovium and synovial fluid. We also wished to analyze a larger clone library of the 16S rRNA gene to further understanding of the microbial population in the canine stifle. Synovial biopsies were obtained from 117 affected dogs from January to December 2006. Using PCR, synovium and synovial fluid were tested for Borrelia burgdorferi and Stenotrophomonas maltophilia DNA. Broad-ranging 16S rRNA primers were also used and PCR products were cloned and sequenced for bacterial identification. Overall, 41% of arthritic canine stifle joints contained bacterial DNA. Detection of bacterial DNA in synovial fluid samples was increased, when compared with synovium (p<0.01). Detection rates were highest in the winter and spring and lowest in the summer period, suggesting environmental factors influence the risk of translocation to the stifle. Organisms detected were predominately Gram's negative Proteobacteria, particularly the orders Rhizobiales (32.8% of clones) and Burkholderiales (20.0% of clones), usually as part of a polymicrobial population. PCR-positivity was inversely correlated with severity of arthritis assessed radiographically and with dog age. Bacterial translocation to the canine stifle may be associated with changes to the indoor environment. Copyright 2009 Elsevier B.V. All rights reserved.

  6. Complementary DNA libraries: an overview.

    PubMed

    Ying, Shao-Yao

    2004-07-01

    The generation of complete and full-length cDNA libraries for potential functional assays of specific gene sequences is essential for most molecules in biotechnology and biomedical research. The field of cDNA library generation has changed rapidly in the past 10 yr. This review presents an overview of the method available for the basic information of generating cDNA libraries, including the definition of the cDNA library, different kinds of cDNA libraries, difference between methods for cDNA library generation using conventional approaches and a novel strategy, and the quality of cDNA libraries. It is anticipated that the high-quality cDNA libraries so generated would facilitate studies involving genechips and the microarray, differential display, subtractive hybridization, gene cloning, and peptide library generation.

  7. Cloning and characterization of a novel α-amylase from a fecal microbial metagenome.

    PubMed

    Xu, Bo; Yang, Fuya; Xiong, Caiyun; Li, Junjun; Tang, Xianghua; Zhou, Junpei; Xie, Zhenrong; Ding, Junmei; Yang, Yunjuan; Huang, Zunxi

    2014-04-01

    To isolate novel and useful microbial enzymes from uncultured gastrointestinal microorganisms, a fecal microbial metagenomic library of the pygmy loris was constructed. The library was screened for amylolytic activity, and 8 of 50,000 recombinant clones showed amylolytic activity. Subcloning and sequence analysis of a positive clone led to the identification a novel gene (amyPL) coding for α-amylase. AmyPL was expressed in Escherichia coli BL21 (DE3) and the purified AmyPL was enzymatically characterized. This study is the first to report the molecular and biochemical characterization of a novel α-amylase from a gastrointestinal metagenomic library.

  8. Horse cDNA clones encoding two MHC class I genes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barbis, D.P.; Maher, J.K.; Stanek, J.

    1994-12-31

    Two full-length clones encoding MHC class I genes were isolated by screening a horse cDNA library, using a probe encoding in human HLA-A2.2Y allele. The library was made in the pcDNA1 vector (Invitrogen, San Diego, CA), using mRNA from peripheral blood lymphocytes obtained from a Thoroughbred stallion (No. 0834) homozygous for a common horse MHC haplotype (ELA-A2, -B2, -D2; Antczak et al. 1984; Donaldson et al. 1988). The clones were sequenced, using SP6 and T7 universal primers and horse-specific oligonucleotides designed to extend previously determined sequences.

  9. Endophytic bacteria in plant tissue culture: differences between easy- and difficult-to-propagate Prunus avium genotypes.

    PubMed

    Quambusch, Mona; Pirttilä, Anna Maria; Tejesvi, Mysore V; Winkelmann, Traud; Bartsch, Melanie

    2014-05-01

    The endophytic bacterial communities of six Prunus avium L. genotypes differing in their growth patterns during in vitro propagation were identified by culture-dependent and culture-independent methods. Five morphologically distinct isolates from tissue culture material were identified by 16S rDNA sequence analysis. To detect and analyze the uncultivable fraction of endophytic bacteria, a clone library was established from the amplified 16S rDNA of total plant extract. Bacterial diversity within the clone libraries was analyzed by amplified ribosomal rDNA restriction analysis and by sequencing a clone for each identified operational taxonomic unit. The most abundant bacterial group was Mycobacterium sp., which was identified in the clone libraries of all analyzed Prunus genotypes. Other dominant bacterial genera identified in the easy-to-propagate genotypes were Rhodopseudomonas sp. and Microbacterium sp. Thus, the community structures in the easy- and difficult-to-propagate cherry genotypes differed significantly. The bacterial genera, which were previously reported to have plant growth-promoting effects, were detected only in genotypes with high propagation success, indicating a possible positive impact of these bacteria on in vitro propagation of P. avium, which was proven in an inoculation experiment. © The Author 2014. Published by Oxford University Press. All rights reserved.

  10. Molecular cloning, sequence analysis and phylogeny of first caudata g-type lysozyme in axolotl (Ambystoma mexicanum).

    PubMed

    Yu, Haining; Gao, Jiuxiang; Lu, Yiling; Guang, Huijuan; Cai, Shasha; Zhang, Songyan; Wang, Yipeng

    2013-11-01

    Lysozymes are key proteins that play important roles in innate immune defense in many animal phyla by breaking down the bacterial cell-walls. In this study, we report the molecular cloning, sequence analysis and phylogeny of the first caudate amphibian g-lysozyme: a full-length spleen cDNA library from axolotl (Ambystoma mexicanum). A goose-type (g-lysozyme) EST was identified and the full-length cDNA was obtained using RACE-PCR. The axolotl g-lysozyme sequence represents an open reading frame for a putative signal peptide and the mature protein composed of 184 amino acids. The calculated molecular mass and the theoretical isoelectric point (pl) of this mature protein are 21523.0 Da and 4.37, respectively. Expression of g-lysozyme mRNA is predominantly found in skin, with lower levels in spleen, liver, muscle, and lung. Phylogenetic analysis revealed that caudate amphibian g-lysozyme had distinct evolution pattern for being juxtaposed with not only anura amphibian, but also with the fish, bird and mammal. Although the first complete cDNA sequence for caudate amphibian g-lysozyme is reported in the present study, clones encoding axolotl's other functional immune molecules in the full-length cDNA library will have to be further sequenced to gain insight into the fundamental aspects of antibacterial mechanisms in caudate.

  11. Molecular cloning and functional characterization of borneol dehydrogenase from the glandular trichomes of Lavandula x intermedia.

    PubMed

    Sarker, Lukman S; Galata, Mariana; Demissie, Zerihun A; Mahmoud, Soheil S

    2012-12-15

    Several varieties of Lavandula x intermedia (lavandins) are cultivated for their essential oils (EOs) for use in cosmetic, hygiene and personal care products. These EOs are mainly constituted of monoterpenes including camphor, which contributes an off odor reducing the olfactory appeal of the oil. We have recently constructed a cDNA library from the glandular trichomes (the sites of EO synthesis) of L. x intermedia plants. Here, we describe the cloning of a borneol dehydrogenase cDNA (LiBDH) from this library. The 780 bp open reading frame of the cDNA encoded a 259 amino acid short chain alcohol dehydrogenase with a predicted molecular mass of ca. 27.5 kDa. The recombinant LiBDH was expressed in Escherichia coli, purified by Ni-NTA agarose affinity chromatography, and functionally characterized in vitro. The bacterially produced enzyme specifically converted borneol to camphor as the only product with K(m) and k(cat) values of 53 μM and 4.0 × 10(-4) s(-1), respectively. The LiBDH transcripts were specifically expressed in glandular trichomes of mature flowers indicating that like other Lavandula monoterpene synthases the expression of this gene is regulated in a tissue-specific manner. The cloning of LiBDH has far reaching implications in improving the quality of Lavandula EOs through metabolic engineering. Copyright © 2012 Elsevier Inc. All rights reserved.

  12. Construction of a plant-transformation-competent BIBAC library and genome sequence analysis of polyploid Upland cotton (Gossypium hirsutum L.)

    PubMed Central

    2013-01-01

    Background Cotton, one of the world’s leading crops, is important to the world’s textile and energy industries, and is a model species for studies of plant polyploidization, cellulose biosynthesis and cell wall biogenesis. Here, we report the construction of a plant-transformation-competent binary bacterial artificial chromosome (BIBAC) library and comparative genome sequence analysis of polyploid Upland cotton (Gossypium hirsutum L.) with one of its diploid putative progenitor species, G. raimondii Ulbr. Results We constructed the cotton BIBAC library in a vector competent for high-molecular-weight DNA transformation in different plant species through either Agrobacterium or particle bombardment. The library contains 76,800 clones with an average insert size of 135 kb, providing an approximate 99% probability of obtaining at least one positive clone from the library using a single-copy probe. The quality and utility of the library were verified by identifying BIBACs containing genes important for fiber development, fiber cellulose biosynthesis, seed fatty acid metabolism, cotton-nematode interaction, and bacterial blight resistance. In order to gain an insight into the Upland cotton genome and its relationship with G. raimondii, we sequenced nearly 10,000 BIBAC ends (BESs) randomly selected from the library, generating approximately one BES for every 250 kb along the Upland cotton genome. The retroelement Gypsy/DIRS1 family predominates in the Upland cotton genome, accounting for over 77% of all transposable elements. From the BESs, we identified 1,269 simple sequence repeats (SSRs), of which 1,006 were new, thus providing additional markers for cotton genome research. Surprisingly, comparative sequence analysis showed that Upland cotton is much more diverged from G. raimondii at the genomic sequence level than expected. There seems to be no significant difference between the relationships of the Upland cotton D- and A-subgenomes with the G. raimondii genome

  13. High yield of functional metagenomic library from mangroves constructed in fosmid vector.

    PubMed

    Gonçalves, A C S; dos Santos, A C F; dos Santos, T F; Pessoa, T B A; Dias, J C T; Rezende, R P

    2015-10-02

    In the present study, metagenomic technique and fosmid vectors were used to construct a library of clones for exploring the biotechnological potential of mangrove soils by isolation of functional genes encoding hydrolytic enzymes. The library was built with genomic DNA from the soil samples of mangrove sediments and the functional screening of 1824 clones (~64 Mbp) was performed to detect the hydrolytic activity specific for cellulases, amylases (at acidic, neutral and basic pH), lipases/esterases, proteases, and nitrilases. Significant numbers of clones, positive for the tested enzyme activities were obtained. Our results indicate the importance and biotechnological potential of mangrove soils especially when compared to those obtained using other soil metagenomic libraries.

  14. Screening of Peptide Libraries against Protective Antigen of Bacillus anthracis in a Disposable Microfluidic Cartridge

    PubMed Central

    Kogot, Joshua M.; Zhang, Yanting; Moore, Stephen J.; Pagano, Paul; Stratis-Cullum, Dimitra N.; Chang-Yen, David; Turewicz, Marek; Pellegrino, Paul M.; de Fusco, Andre; Soh, H. Tom; Stagliano, Nancy E.

    2011-01-01

    Bacterial surface peptide display has gained popularity as a method of affinity reagent generation for a wide variety of applications ranging from drug discovery to pathogen detection. In order to isolate the bacterial clones that express peptides with high affinities to the target molecule, multiple rounds of manual magnetic activated cell sorting (MACS) followed by multiple rounds of fluorescence activated cell sorting (FACS) are conventionally used. Although such manual methods are effective, alternative means of library screening which improve the reproducibility, reduce the cost, reduce cross contamination, and minimize exposure to hazardous target materials are highly desired for practical application. Toward this end, we report the first semi-automated system demonstrating the potential for screening bacterially displayed peptides using disposable microfluidic cartridges. The Micro-Magnetic Separation platform (MMS) is capable of screening a bacterial library containing 3×1010 members in 15 minutes and requires minimal operator training. Using this system, we report the isolation of twenty-four distinct peptide ligands that bind to the protective antigen (PA) of Bacilus anthracis in three rounds of selection. A consensus motif WXCFTC was found using the MMS and was also found in one of the PA binders isolated by the conventional MACS/FACS approach. We compared MMS and MACS rare cell recovery over cell populations ranging from 0.1% to 0.0000001% and found that both magnetic sorting methods could recover cells down to 0.0000001% initial cell population, with the MMS having overall lower standard deviation of cell recovery. We believe the MMS system offers a compelling approach towards highly efficient, semi-automated screening of molecular libraries that is at least equal to manual magnetic sorting methods and produced, for the first time, 15-mer peptide binders to PA protein that exhibit better affinity and specificity than peptides isolated using

  15. Molecular characterization of soil bacterial community in a perhumid, low mountain forest.

    PubMed

    Lin, Yu-Te; Whitman, William B; Coleman, David C; Chih-Yu, Chiu

    2011-01-01

    Forest disturbance often results in changes in soil properties and microbial communities. In the present study, we characterized a soil bacterial community subjected to disturbance using 16S rRNA gene clone libraries. The community was from a disturbed broad-leaved, low mountain forest ecosystem at Huoshaoliao (HSL) located in northern Taiwan. This locality receives more than 4,000 mm annual precipitation, one of the highest precipitations in Taiwan. Based on the Shannon diversity index, Chao1 estimator, richness and rarefaction curve analysis, the bacterial community in HSL forest soils was more diverse than those previously investigated in natural and disturbed forest soils with colder or less humid weather conditions. Analysis of molecular variance also revealed that the bacterial community in disturbed soils significantly differed from natural forest soils. Most of the abundant operational taxonomic units (OTUs) in the disturbed soil community at HSL were less abundant or absent in other soils. The disturbances influenced the composition of bacterial communities in natural and disturbed forests and increased the diversity of the disturbed forest soil community. Furthermore, the warmer and humid weather conditions could also increase community diversity in HSL soils.

  16. Methods for Selecting Phage Display Antibody Libraries.

    PubMed

    Jara-Acevedo, Ricardo; Diez, Paula; Gonzalez-Gonzalez, Maria; Degano, Rosa Maria; Ibarrola, Nieves; Gongora, Rafael; Orfao, Alberto; Fuentes, Manuel

    2016-01-01

    The selection process aims sequential enrichment of phage antibody display library in clones that recognize the target of interest or antigen as the library undergoes successive rounds of selection. In this review, selection methods most commonly used for phage display antibody libraries have been comprehensively described. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  17. Microplastics as a vector for the transport of the bacterial fish pathogen species Aeromonas salmonicida.

    PubMed

    Viršek, Manca Kovač; Lovšin, Marija Nika; Koren, Špela; Kržan, Andrej; Peterlin, Monika

    2017-12-15

    Microplastics is widespread in the marine environment where it can cause numerous negative effects. It can provide space for the growth of organisms and serves as a vector for the long distance transfer of marine microorganisms. In this study, we examined the sea surface concentrations of microplastics in the North Adriatic and characterized bacterial communities living on the microplastics. DNA from microplastics particles was isolated by three different methods, followed by PCR amplification of 16S rDNA, clone libraries preparation and phylogenetic analysis. 28 bacterial species were identified on the microplastics particles including Aeromonas spp. and hydrocarbon-degrading bacterial species. Based on the 16S rDNA sequences the pathogenic fish bacteria Aeromonas salmonicida was identified for the first time on microplastics. Because A. salmonicida is responsible for illnesses in fish, it is crucial to get answers if and how microplastics pollution is responsible for spreading of diseases. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. A universal phage display system for the seamless construction of Fab libraries.

    PubMed

    Nelson, Renae S; Valadon, Philippe

    2017-11-01

    The construction of Fab phage libraries requires the cloning of domains from both the light and the heavy chain of antibodies. Despite the advent of powerful strategies such as splicing-by-overlap extension PCR, obtaining high quality libraries with excellent coverage remains challenging. Here, we explored the use of type IIS restriction enzymes for the seamless cloning of Fab libraries. We analyzed human, murine and rabbit germline antibody repertoires and identified combinations of restriction enzymes that exhibit very few or no recognition sites in the antibody sequences. We describe three phagemid vectors, pUP-22Hb, pUP-22Mc and pUP-22Rc, which were employed for cloning the Fab repertoire of these hosts using BsmBI and SapI (human) or SapI alone (mouse and rabbit). Using human serum albumin as a model immunization, we built a mouse/human chimeric Fab library and a mouse Fab library in a single step ligation and successfully panned multiple cognate antibodies. The overall process is highly scalable and faster than PCR-based techniques, with a Fab insertion success rate of around 80%. By using carefully chosen overhangs on each end of the antibody domains, this approach paves the way to the universal, sequence- and vector-independent cloning and reformatting of antibody libraries. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. High Bacterial Diversity in Permanently Cold Marine Sediments

    PubMed Central

    Ravenschlag, Katrin; Sahm, Kerstin; Pernthaler, Jakob; Amann, Rudolf

    1999-01-01

    A 16S ribosomal DNA (rDNA) clone library from permanently cold marine sediments was established. Screening 353 clones by dot blot hybridization with group-specific oligonucleotide probes suggested a predominance of sequences related to bacteria of the sulfur cycle (43.4% potential sulfate reducers). Within this fraction, the major cluster (19.0%) was affiliated with Desulfotalea sp. and other closely related psychrophilic sulfate reducers isolated from the same habitat. The cloned sequences showed between 93 and 100% similarity to these bacteria. Two additional groups were frequently encountered: 13% of the clones were related to Desulfuromonas palmitatis, and a second group was affiliated with Myxobacteria spp. and Bdellovibrio spp. Many clones (18.1%) belonged to the γ subclass of the class Proteobacteria and were closest to symbiotic or free-living sulfur oxidizers. Probe target groups were further characterized by amplified rDNA restriction analysis to determine diversity within the groups and within the clone library. Rarefaction analysis suggested that the total diversity assessed by 16S rDNA analysis was very high in these permanently cold sediments and was only partially revealed by screening of 353 clones. PMID:10473405

  20. Bacterial communities in sediment of a Mediterranean marine protected area.

    PubMed

    Catania, Valentina; Sarà, Gianluca; Settanni, Luca; Quatrini, Paola

    2017-04-01

    Biodiversity is crucial in preservation of ecosystems, and bacterial communities play an indispensable role for the functioning of marine ecosystems. The Mediterranean marine protected area (MPA) "Capo Gallo-Isola delle Femmine" was instituted to preserve marine biodiversity. The bacterial diversity associated with MPA sediment was compared with that from sediment of an adjacent harbour exposed to intense nautical traffic. The MPA sediment showed higher diversity with respect to the impacted site. A 16S rDNA clone library of the MPA sediment allowed the identification of 7 phyla: Proteobacteria (78%), Firmicutes (11%), Acidobacteria (3%), Actinobacteria (3%), Bacteroidetes (2%), Planctomycetes (2%), and Cyanobacteria (1%). Analysis of the hydrocarbon (HC)-degrading bacteria was performed using enrichment cultures. Most of the MPA sediment isolates were affiliated with Gram-positive G+C rich bacteria, whereas the majority of taxa in the harbour sediment clustered with Alpha- and Gammaproteobacteria; no Gram-positive HC degraders were isolated from the harbour sediment. Our results show that protection probably has an influence on bacterial diversity, and suggest the importance of monitoring the effects of protection at microbial level as well. This study creates a baseline of data that can be used to assess changes over time in bacterial communities associated with a Mediterranean MPA.

  1. Jellyfish modulate bacterial dynamic and community structure.

    PubMed

    Tinta, Tinkara; Kogovšek, Tjaša; Malej, Alenka; Turk, Valentina

    2012-01-01

    Jellyfish blooms have increased in coastal areas around the world and the outbreaks have become longer and more frequent over the past few decades. The Mediterranean Sea is among the heavily affected regions and the common bloom-forming taxa are scyphozoans Aurelia aurita s.l., Pelagia noctiluca, and Rhizostoma pulmo. Jellyfish have few natural predators, therefore their carcasses at the termination of a bloom represent an organic-rich substrate that supports rapid bacterial growth, and may have a large impact on the surrounding environment. The focus of this study was to explore whether jellyfish substrate have an impact on bacterial community phylotype selection. We conducted in situ jellyfish-enrichment experiment with three different jellyfish species. Bacterial dynamic together with nutrients were monitored to assess decaying jellyfish-bacteria dynamics. Our results show that jellyfish biomass is characterized by protein rich organic matter, which is highly bioavailable to 'jellyfish-associated' and 'free-living' bacteria, and triggers rapid shifts in bacterial population dynamics and composition. Based on 16S rRNA clone libraries and denaturing gradient gel electrophoresis (DGGE) analysis, we observed a rapid shift in community composition from unculturable Alphaproteobacteria to culturable species of Gammaproteobacteria and Flavobacteria. The results of sequence analyses of bacterial isolates and of total bacterial community determined by culture independent genetic analysis showed the dominance of the Pseudoalteromonadaceae and the Vibrionaceae families. Elevated levels of dissolved proteins, dissolved organic and inorganic nutrient release, bacterial abundance and carbon production as well as ammonium concentrations characterized the degradation process. The biochemical composition of jellyfish species may influence changes in the amount of accumulated dissolved organic and inorganic nutrients. Our results can contribute insights into possible changes in

  2. Uniform amplification of phage display libraries in monodisperse emulsions.

    PubMed

    Matochko, Wadim L; Ng, Simon; Jafari, Mohammad R; Romaniuk, Joseph; Tang, Sindy K Y; Derda, Ratmir

    2012-09-01

    In this paper, we describe a complete experimental setup for the uniform amplification of libraries of phage. Uniform amplification, which multiplies every phage clone by the same amount irrespective of the growth rate of the clone is essential for phage-display screening. Amplification of phage libraries in a common solution is often non-uniform: it favors fast-growing clones and eliminates those that grow slower. This competition leads to elimination of many useful binding clones, and it is a major barrier to identification of ligands for targets with multiple binding sites such as cells, tissues, or mixtures of proteins. Uniform amplification is achieved by encapsulating individual phage clones into isolated compartments (droplets) of identical volume. Each droplet contains culture medium and an excess of host (Escherichia coli). Here, we describe microfluidics devices that generate mono-disperse droplet-based compartments, and optimal conditions for amplification of libraries of different size. We also describe the detailed synthesis of a perfluoro surfactant, which gives droplets exceptional stability. Droplets stabilized by this compound do not coalesce after many hours in shaking culture. We identified a commercially available compound (Krytox), which destabilizes these droplets to recover the amplified libraries. Overall, uniform amplification is a sequence of three simple steps: (1) encapsulation of mixture of phage and bacteria in droplets using microfluidics; (2) incubation of droplets in a shaking culture; (3) destabilization of droplets to harvest the amplified phage. We anticipate that this procedure can be easily adapted in any academic or industrial laboratory that uses phage display. Copyright © 2012 Elsevier Inc. All rights reserved.

  3. (New hosts and vectors for genome cloning)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    The main goal of our project remains the development of new bacterial hosts and vectors for the stable propagation of human DNA clones in E. coli. During the past six months of our current budget period, we have (1) continued to develop new hosts that permit the stable maintenance of unstable features of human DNA, and (2) developed a series of vectors for (a) cloning large DNA inserts, (b) assessing the frequency of human sequences that are lethal to the growth of E. coli, and (c) assessing the stability of human sequences cloned in M13 for large-scale sequencing projects.

  4. An in vivo library-versus-library selection of optimized protein-protein interactions.

    PubMed

    Pelletier, J N; Arndt, K M; Plückthun, A; Michnick, S W

    1999-07-01

    We describe a rapid and efficient in vivo library-versus-library screening strategy for identifying optimally interacting pairs of heterodimerizing polypeptides. Two leucine zipper libraries, semi-randomized at the positions adjacent to the hydrophobic core, were genetically fused to either one of two designed fragments of the enzyme murine dihydrofolate reductase (mDHFR), and cotransformed into Escherichia coli. Interaction between the library polypeptides reconstituted enzymatic activity of mDHFR, allowing bacterial growth. Analysis of the resulting colonies revealed important biases in the zipper sequences relative to the original libraries, which are consistent with selection for stable, heterodimerizing pairs. Using more weakly associating mDHFR fragments, we increased the stringency of selection. We enriched the best-performing leucine zipper pairs by multiple passaging of the pooled, selected colonies in liquid culture, as the best pairs allowed for better bacterial propagation. This competitive growth allowed small differences among the pairs to be amplified, and different sequence positions were enriched at different rates. We applied these selection processes to a library-versus-library sample of 2.0 x 10(6) combinations and selected a novel leucine zipper pair that may be appropriate for use in further in vivo heterodimerization strategies.

  5. Characterization of the Prokaryotic Diversity in Cold Saline Perennial Springs of the Canadian High Arctic▿

    PubMed Central

    Perreault, Nancy N.; Andersen, Dale T.; Pollard, Wayne H.; Greer, Charles W.; Whyte, Lyle G.

    2007-01-01

    The springs at Gypsum Hill and Colour Peak on Axel Heiberg Island in the Canadian Arctic originate from deep salt aquifers and are among the few known examples of cold springs in thick permafrost on Earth. The springs discharge cold anoxic brines (7.5 to 15.8% salts), with a mean oxidoreduction potential of −325 mV, and contain high concentrations of sulfate and sulfide. We surveyed the microbial diversity in the sediments of seven springs by denaturing gradient gel electrophoresis (DGGE) and analyzing clone libraries of 16S rRNA genes amplified with Bacteria and Archaea-specific primers. Dendrogram analysis of the DGGE banding patterns divided the springs into two clusters based on their geographic origin. Bacterial 16S rRNA clone sequences from the Gypsum Hill library (spring GH-4) were classified into seven phyla (Actinobacteria, Bacteroidetes, Firmicutes, Gemmatimonadetes, Proteobacteria, Spirochaetes, and Verrucomicrobia); Deltaproteobacteria and Gammaproteobacteria sequences represented half of the clone library. Sequences related to Proteobacteria (82%), Firmicutes (9%), and Bacteroidetes (6%) constituted 97% of the bacterial clone library from Colour Peak (spring CP-1). Most GH-4 archaeal clone sequences (79%) were related to the Crenarchaeota while half of the CP-1 sequences were related to orders Halobacteriales and Methanosarcinales of the Euryarchaeota. Sequences related to the sulfur-oxidizing bacterium Thiomicrospira psychrophila dominated both the GH-4 (19%) and CP-1 (45%) bacterial libraries, and 56 to 76% of the bacterial sequences were from potential sulfur-metabolizing bacteria. These results suggest that the utilization and cycling of sulfur compounds may play a major role in the energy production and maintenance of microbial communities in these unique, cold environments. PMID:17220254

  6. Use of BAC clones as standardized reagents for Marek’s disease virus research

    USDA-ARS?s Scientific Manuscript database

    The cloning of the Marek’s disease virus (MDV) genome as an infectious bacterial artificial chromosome (BAC) clone have led to major advances through our ability to study individual gene function by making precise insertions and deletions in the viral genome. We believe that MDV BAC clones will repl...

  7. Endophytic bacterial diversity in grapevine (Vitis vinifera L.) leaves described by 16S rRNA gene sequence analysis and length heterogeneity-PCR.

    PubMed

    Bulgari, Daniela; Casati, Paola; Brusetti, Lorenzo; Quaglino, Fabio; Brasca, Milena; Daffonchio, Daniele; Bianco, Piero Attilio

    2009-08-01

    Diversity of bacterial endophytes associated with grapevine leaf tissues was analyzed by cultivation and cultivation-independent methods. In order to identify bacterial endophytes directly from metagenome, a protocol for bacteria enrichment and DNA extraction was optimized. Sequence analysis of 16S rRNA gene libraries underscored five diverse Operational Taxonomic Units (OTUs), showing best sequence matches with gamma-Proteobacteria, family Enterobacteriaceae, with a dominance of the genus Pantoea. Bacteria isolation through cultivation revealed the presence of six OTUs, showing best sequence matches with Actinobacteria, genus Curtobacterium, and with Firmicutes genera Bacillus and Enterococcus. Length Heterogeneity-PCR (LH-PCR) electrophoretic peaks from single bacterial clones were used to setup a database representing the bacterial endophytes identified in association with grapevine tissues. Analysis of healthy and phytoplasma-infected grapevine plants showed that LH-PCR could be a useful complementary tool for examining the diversity of bacterial endophytes especially for diversity survey on a large number of samples.

  8. Vertical Distribution of Bacterial Communities in the Indian Ocean as Revealed by Analyses of 16S rRNA and nasA Genes.

    PubMed

    Jiang, Xuexia; Jiao, Nianzhi

    2016-09-01

    Bacteria play an important role in the marine biogeochemical cycles. However, research on the bacterial community structure of the Indian Ocean is scarce, particularly within the vertical dimension. In this study, we investigated the bacterial diversity of the pelagic, mesopelagic and bathypelagic zones of the southwestern Indian Ocean (50.46°E, 37.71°S). The clone libraries constructed by 16S rRNA gene sequence revealed that most phylotypes retrieved from the Indian Ocean were highly divergent from those retrieved from other oceans. Vertical differences were observed based on the analysis of natural bacterial community populations derived from the 16S rRNA gene sequences. Based on the analysis of the nasA gene sequences from GenBank database, a pair of general primers was developed and used to amplify the bacterial nitrate-assimilating populations. Environmental factors play an important role in mediating the bacterial communities in the Indian Ocean revealed by canonical correlation analysis.

  9. Bacterial Microcolonies in Gel Beads for High-Throughput Screening of Libraries in Synthetic Biology.

    PubMed

    Duarte, José M; Barbier, Içvara; Schaerli, Yolanda

    2017-11-17

    Synthetic biologists increasingly rely on directed evolution to optimize engineered biological systems. Applying an appropriate screening or selection method for identifying the potentially rare library members with the desired properties is a crucial step for success in these experiments. Special challenges include substantial cell-to-cell variability and the requirement to check multiple states (e.g., being ON or OFF depending on the input). Here, we present a high-throughput screening method that addresses these challenges. First, we encapsulate single bacteria into microfluidic agarose gel beads. After incubation, they harbor monoclonal bacterial microcolonies (e.g., expressing a synthetic construct) and can be sorted according their fluorescence by fluorescence activated cell sorting (FACS). We determine enrichment rates and demonstrate that we can measure the average fluorescent signals of microcolonies containing phenotypically heterogeneous cells, obviating the problem of cell-to-cell variability. Finally, we apply this method to sort a pBAD promoter library at ON and OFF states.

  10. Monitoring the bacterial community dynamics in a petroleum refinery wastewater membrane bioreactor fed with a high phenolic load.

    PubMed

    Silva, Cynthia C; Viero, Aline F; Dias, Ana Carolina F; Andreote, Fernando D; Jesus, Ederson C; De Paula, Sergio O; Torres, Ana Paula R; Santiago, Vania M J; Oliveira, Valeria M

    2010-01-01

    The phenolic compounds are a major contaminant class often found in industrial wastewaters and the biological treatment is an alternative tool commonly employed for their removal. In this sense, monitoring microbial community dynamics is crucial for a successful wastewater treatment. This work aimed to monitor the structure and activity of the bacterial community during the operation of a laboratory-scale continuous submerged membrane bioreactor (SMBR), using PCR and RT-PCR followed by Denaturing Gradient Gel Electrophoresis (DGGE) and 16S rRNA libraries. Multivariate analyses carried out using DGGE profiles showed significant changes in the total and metabolically active dominant community members during the 4-week treatment period, explained mainly by phenol and ammonium input. Gene libraries were assembled using 16S rDNA and 16S rRNA PCR products from the fourth week of treatment. Sequencing and phylogenetic analyses of clones from 16S rDNA library revealed a high diversity of taxa for the total bacterial community, with predominance of Thauera genus (ca. 50%). On the other hand, a lower diversity was found for metabolically active bacteria, which were mostly represented by members of Betaproteobacteria (Thauera and Comamonas), suggesting that these groups have a relevant role in the phenol degradation during the final phase of the SMBR operation.

  11. A binary plasmid system for shuffling combinatorial antibody libraries.

    PubMed

    Collet, T A; Roben, P; O'Kennedy, R; Barbas, C F; Burton, D R; Lerner, R A

    1992-11-01

    We have used a binary system of replicon-compatible plasmids to test the potential for promiscuous recombination of heavy and light chains within sets of human Fab fragments isolated from combinatorial antibody libraries. Antibody molecules showed a surprising amount of promiscuity in that a particular heavy chain could recombine with multiple light chains with retention of binding to a protein antigen. The degree to which a given heavy chain productively paired with any light chain to bind antigen varied from 43% to 100% and depended strongly on the heavy-chain sequence. Such productive crosses resulted in a set of Fab fragments of similar apparent binding constants, which seemed to differ mainly in the amount of active Fab fragment produced in the bacterial cell. The dominance of the heavy chain in the antibody-antigen interaction was further explored in a set of directed crosses, in which heavy and light chains derived from antigen-specific clones were crossed with nonrelated heavy and light chains. In these crosses, an Fab fragment retained antigen binding only if it contained a heavy chain from an antigen-specific clone. In no case did the light chain confer detectable affinity when paired with indifferent heavy chains. The surprising promiscuity of heavy chains has ramifications for the evaluation of the diversity of combinatorial libraries made against protein antigens and should allow the combination of one such promiscuous heavy chain with an engineered light chain to form an Fab fragment carrying synthetic cofactors to assist in antibody catalysis.

  12. A binary plasmid system for shuffling combinatorial antibody libraries.

    PubMed Central

    Collet, T A; Roben, P; O'Kennedy, R; Barbas, C F; Burton, D R; Lerner, R A

    1992-01-01

    We have used a binary system of replicon-compatible plasmids to test the potential for promiscuous recombination of heavy and light chains within sets of human Fab fragments isolated from combinatorial antibody libraries. Antibody molecules showed a surprising amount of promiscuity in that a particular heavy chain could recombine with multiple light chains with retention of binding to a protein antigen. The degree to which a given heavy chain productively paired with any light chain to bind antigen varied from 43% to 100% and depended strongly on the heavy-chain sequence. Such productive crosses resulted in a set of Fab fragments of similar apparent binding constants, which seemed to differ mainly in the amount of active Fab fragment produced in the bacterial cell. The dominance of the heavy chain in the antibody-antigen interaction was further explored in a set of directed crosses, in which heavy and light chains derived from antigen-specific clones were crossed with nonrelated heavy and light chains. In these crosses, an Fab fragment retained antigen binding only if it contained a heavy chain from an antigen-specific clone. In no case did the light chain confer detectable affinity when paired with indifferent heavy chains. The surprising promiscuity of heavy chains has ramifications for the evaluation of the diversity of combinatorial libraries made against protein antigens and should allow the combination of one such promiscuous heavy chain with an engineered light chain to form an Fab fragment carrying synthetic cofactors to assist in antibody catalysis. Images PMID:1438192

  13. Libraries of Synthetic TALE-Activated Promoters: Methods and Applications.

    PubMed

    Schreiber, T; Tissier, A

    2016-01-01

    The discovery of proteins with programmable DNA-binding specificities triggered a whole array of applications in synthetic biology, including genome editing, regulation of transcription, and epigenetic modifications. Among those, transcription activator-like effectors (TALEs) due to their natural function as transcription regulators, are especially well-suited for the development of orthogonal systems for the control of gene expression. We describe here the construction and testing of libraries of synthetic TALE-activated promoters which are under the control of a single TALE with a given DNA-binding specificity. These libraries consist of a fixed DNA-binding element for the TALE, a TATA box, and variable sequences of 19 bases upstream and 43 bases downstream of the DNA-binding element. These libraries were cloned using a Golden Gate cloning strategy making them usable as standard parts in a modular cloning system. The broad range of promoter activities detected and the versatility of these promoter libraries make them valuable tools for applications in the fine-tuning of expression in metabolic engineering projects or in the design and implementation of regulatory circuits. © 2016 Elsevier Inc. All rights reserved.

  14. Distinct Bacterial Communities in Surficial Seafloor Sediments Following the 2010 Deepwater Horizon Blowout.

    PubMed

    Yang, Tingting; Speare, Kelly; McKay, Luke; MacGregor, Barbara J; Joye, Samantha B; Teske, Andreas

    2016-01-01

    A major fraction of the petroleum hydrocarbons discharged during the 2010 Macondo oil spill became associated with and sank to the seafloor as marine snow flocs. This sedimentation pulse induced the development of distinct bacterial communities. Between May 2010 and July 2011, full-length 16S rRNA gene clone libraries demonstrated bacterial community succession in oil-polluted sediment samples near the wellhead area. Libraries from early May 2010, before the sedimentation event, served as the baseline control. Freshly deposited oil-derived marine snow was collected on the surface of sediment cores in September 2010, and was characterized by abundantly detected members of the marine Roseobacter cluster within the Alphaproteobacteria. Samples collected in mid-October 2010 closest to the wellhead contained members of the sulfate-reducing, anaerobic bacterial families Desulfobacteraceae and Desulfobulbaceae within the Deltaproteobacteria, suggesting that the oil-derived sedimentation pulse triggered bacterial oxygen consumption and created patchy anaerobic microniches that favored sulfate-reducing bacteria. Phylotypes of the polycyclic aromatic hydrocarbon-degrading genus Cycloclasticus, previously found both in surface oil slicks and the deep hydrocarbon plume, were also found in oil-derived marine snow flocs sedimenting on the seafloor in September 2010, and in surficial sediments collected in October and November 2010, but not in any of the control samples. Due to the relative recalcitrance and stability of polycyclic aromatic compounds, Cycloclasticus represents the most persistent microbial marker of seafloor hydrocarbon deposition that we could identify in this dataset. The bacterial imprint of the DWH oil spill had diminished in late November 2010, when the bacterial communities in oil-impacted sediment samples collected near the Macondo wellhead began to resemble their pre-spill counterparts and spatial controls. Samples collected in summer of 2011 did not show

  15. Distinct Bacterial Communities in Surficial Seafloor Sediments Following the 2010 Deepwater Horizon Blowout

    PubMed Central

    Yang, Tingting; Speare, Kelly; McKay, Luke; MacGregor, Barbara J.; Joye, Samantha B.; Teske, Andreas

    2016-01-01

    A major fraction of the petroleum hydrocarbons discharged during the 2010 Macondo oil spill became associated with and sank to the seafloor as marine snow flocs. This sedimentation pulse induced the development of distinct bacterial communities. Between May 2010 and July 2011, full-length 16S rRNA gene clone libraries demonstrated bacterial community succession in oil-polluted sediment samples near the wellhead area. Libraries from early May 2010, before the sedimentation event, served as the baseline control. Freshly deposited oil-derived marine snow was collected on the surface of sediment cores in September 2010, and was characterized by abundantly detected members of the marine Roseobacter cluster within the Alphaproteobacteria. Samples collected in mid-October 2010 closest to the wellhead contained members of the sulfate-reducing, anaerobic bacterial families Desulfobacteraceae and Desulfobulbaceae within the Deltaproteobacteria, suggesting that the oil-derived sedimentation pulse triggered bacterial oxygen consumption and created patchy anaerobic microniches that favored sulfate-reducing bacteria. Phylotypes of the polycyclic aromatic hydrocarbon-degrading genus Cycloclasticus, previously found both in surface oil slicks and the deep hydrocarbon plume, were also found in oil-derived marine snow flocs sedimenting on the seafloor in September 2010, and in surficial sediments collected in October and November 2010, but not in any of the control samples. Due to the relative recalcitrance and stability of polycyclic aromatic compounds, Cycloclasticus represents the most persistent microbial marker of seafloor hydrocarbon deposition that we could identify in this dataset. The bacterial imprint of the DWH oil spill had diminished in late November 2010, when the bacterial communities in oil-impacted sediment samples collected near the Macondo wellhead began to resemble their pre-spill counterparts and spatial controls. Samples collected in summer of 2011 did not show

  16. Comparative molecular analysis of chemolithoautotrophic bacterial diversity and community structure from coastal saline soils, Gujarat, India

    PubMed Central

    2012-01-01

    Background Soils harbour high diversity of obligate as well as facultative chemolithoautotrophic bacteria that contribute significantly to CO2 dynamics in soil. In this study, we used culture dependent and independent methods to assess the community structure and diversity of chemolithoautotrophs in agricultural and coastal barren saline soils (low and high salinity). We studied the composition and distribution of chemolithoautotrophs by means of functional marker gene cbbL encoding large subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase and a phylogenetic marker 16S rRNA gene. The cbbL form IA and IC genes associated with carbon fixation were analyzed to gain insight into metabolic potential of chemolithoautotrophs in three soil types of coastal ecosystems which had a very different salt load and sulphur content. Results In cbbL libraries, the cbbL form IA was retrieved only from high saline soil whereas form IC was found in all three soil types. The form IC cbbL was also amplified from bacterial isolates obtained from all soil types. A number of novel monophyletic lineages affiliated with form IA and IC phylogenetic trees were found. These were distantly related to the known cbbL sequences from agroecosystem, volcanic ashes and marine environments. In 16S rRNA clone libraries, the agricultural soil was dominated by chemolithoautotrophs (Betaproteobacteria) whereas photoautotrophic Chloroflexi and sulphide oxidizers dominated saline ecosystems. Environmental specificity was apparently visible at both higher taxonomic levels (phylum) and lower taxonomic levels (genus and species). The differentiation in community structure and diversity in three soil ecosystems was supported by LIBSHUFF (P = 0.001) and UniFrac. Conclusion This study may provide fundamentally new insights into the role of chemolithoautotrophic and photoautotrophic bacterial diversity in biochemical carbon cycling in barren saline soils. The bacterial communities varied greatly among the

  17. Analysis of early bacterial communities on volcanic deposits on the island of Miyake (Miyake-jima), Japan: a 6-year study at a fixed site.

    PubMed

    Fujimura, Reiko; Sato, Yoshinori; Nishizawa, Tomoyasu; Nanba, Kenji; Oshima, Kenshiro; Hattori, Masahira; Kamijo, Takashi; Ohta, Hiroyuki

    2012-01-01

    Microbial colonization on new terrestrial substrates represents the initiation of new soil ecosystem formation. In this study, we analyzed early bacterial communities growing on volcanic ash deposits derived from the 2000 Mount Oyama eruption on the island of Miyake (Miyake-jima), Japan. A site was established in an unvegetated area near the summit and investigated over a 6-year period from 2003 to 2009. Collected samples were acidic (pH 3.0-3.6), did not utilize any organic substrates in ECO microplate assays (Biolog), and harbored around 106 cells (g dry weight)(-1) of autotrophic Fe(II) oxidizers by most-probable-number (MPN) counts. Acidithiobacillus ferrooxidans, Acidithiobacillus ferrivorans, and the Leptospirillum groups I, II and III were found to be abundant in the deposits by clone library analysis of bacterial 16S rRNA genes. The numerical dominance of Acidithiobacillus ferrooxidans was also supported by analysis of the gene coding for the large subunit of the form I ribulose 1,5-bisphosphate carboxylase/oxygenase (RubisCO). Comparing the 16S rRNA gene clone libraries from samples differing in age, shifts in Fe(II)-oxidizing populations seemed to occur with deposit aging. The detection of known 16S rRNA gene sequences from Fe(III)-reducing acidophiles promoted us to propose the acidity-driven iron cycle for the early microbial ecosystem on the deposit.

  18. Analysis of Early Bacterial Communities on Volcanic Deposits on the Island of Miyake (Miyake-jima), Japan: a 6-year Study at a Fixed Site

    PubMed Central

    Fujimura, Reiko; Sato, Yoshinori; Nishizawa, Tomoyasu; Nanba, Kenji; Oshima, Kenshiro; Hattori, Masahira; Kamijo, Takashi; Ohta, Hiroyuki

    2012-01-01

    Microbial colonization on new terrestrial substrates represents the initiation of new soil ecosystem formation. In this study, we analyzed early bacterial communities growing on volcanic ash deposits derived from the 2000 Mount Oyama eruption on the island of Miyake (Miyake-jima), Japan. A site was established in an unvegetated area near the summit and investigated over a 6-year period from 2003 to 2009. Collected samples were acidic (pH 3.0–3.6), did not utilize any organic substrates in ECO microplate assays (Biolog), and harbored around 106 cells (g dry weight)−1 of autotrophic Fe(II) oxidizers by most-probable-number (MPN) counts. Acidithiobacillus ferrooxidans, Acidithiobacillus ferrivorans, and the Leptospirillum groups I, II and III were found to be abundant in the deposits by clone library analysis of bacterial 16S rRNA genes. The numerical dominance of Acidithiobacillus ferrooxidans was also supported by analysis of the gene coding for the large subunit of the form I ribulose 1,5-bisphosphate carboxylase/oxygenase (RubisCO). Comparing the 16S rRNA gene clone libraries from samples differing in age, shifts in Fe(II)-oxidizing populations seemed to occur with deposit aging. The detection of known 16S rRNA gene sequences from Fe(III)-reducing acidophiles promoted us to propose the acidity-driven iron cycle for the early microbial ecosystem on the deposit. PMID:22075623

  19. Creation of BAC genomic resources for cocoa ( Theobroma cacao L.) for physical mapping of RGA containing BAC clones.

    PubMed

    Clément, D; Lanaud, C; Sabau, X; Fouet, O; Le Cunff, L; Ruiz, E; Risterucci, A M; Glaszmann, J C; Piffanelli, P

    2004-05-01

    We have constructed and validated the first cocoa ( Theobroma cacao L.) BAC library, with the aim of developing molecular resources to study the structure and evolution of the genome of this perennial crop. This library contains 36,864 clones with an average insert size of 120 kb, representing approximately ten haploid genome equivalents. It was constructed from the genotype Scavina-6 (Sca-6), a Forastero clone highly resistant to cocoa pathogens and a parent of existing mapping populations. Validation of the BAC library was carried out with a set of 13 genetically-anchored single copy and one duplicated markers. An average of nine BAC clones per probe was identified, giving an initial experimental estimation of the genome coverage represented in the library. Screening of the library with a set of resistance gene analogues (RGAs), previously mapped in cocoa and co-localizing with QTL for resistance to Phytophthora traits, confirmed at the physical level the tight clustering of RGAs in the cocoa genome and provided the first insights into the relationships between genetic and physical distances in the cocoa genome. This library represents an available BAC resource for structural genomic studies or map-based cloning of genes corresponding to important QTLs for agronomic traits such as resistance genes to major cocoa pathogens like Phytophthora spp ( palmivora and megakarya), Crinipellis perniciosa and Moniliophthora roreri.

  20. Taxonomic and functional assignment of cloned sequences from high Andean forest soil metagenome.

    PubMed

    Montaña, José Salvador; Jiménez, Diego Javier; Hernández, Mónica; Angel, Tatiana; Baena, Sandra

    2012-02-01

    Total metagenomic DNA was isolated from high Andean forest soil and subjected to taxonomical and functional composition analyses by means of clone library generation and sequencing. The obtained yield of 1.7 μg of DNA/g of soil was used to construct a metagenomic library of approximately 20,000 clones (in the plasmid p-Bluescript II SK+) with an average insert size of 4 Kb, covering 80 Mb of the total metagenomic DNA. Metagenomic sequences near the plasmid cloning site were sequenced and them trimmed and assembled, obtaining 299 reads and 31 contigs (0.3 Mb). Taxonomic assignment of total sequences was performed by BLASTX, resulting in 68.8, 44.8 and 24.5% classification into taxonomic groups using the metagenomic RAST server v2.0, WebCARMA v1.0 online system and MetaGenome Analyzer v3.8 software, respectively. Most clone sequences were classified as Bacteria belonging to phlya Actinobacteria, Proteobacteria and Acidobacteria. Among the most represented orders were Actinomycetales (34% average), Rhizobiales, Burkholderiales and Myxococcales and with a greater number of sequences in the genus Mycobacterium (7% average), Frankia, Streptomyces and Bradyrhizobium. The vast majority of sequences were associated with the metabolism of carbohydrates, proteins, lipids and catalytic functions, such as phosphatases, glycosyltransferases, dehydrogenases, methyltransferases, dehydratases and epoxide hydrolases. In this study we compared different methods of taxonomic and functional assignment of metagenomic clone sequences to evaluate microbial diversity in an unexplored soil ecosystem, searching for putative enzymes of biotechnological interest and generating important information for further functional screening of clone libraries.

  1. Construction of an infectious clone of canine herpesvirus genome as a bacterial artificial chromosome.

    PubMed

    Arii, Jun; Hushur, Orkash; Kato, Kentaro; Kawaguchi, Yasushi; Tohya, Yukinobu; Akashi, Hiroomi

    2006-04-01

    Canine herpesvirus (CHV) is an attractive candidate not only for use as a recombinant vaccine to protect dogs from a variety of canine pathogens but also as a viral vector for gene therapy in domestic animals. However, developments in this area have been impeded by the complicated techniques used for eukaryotic homologous recombination. To overcome these problems, we used bacterial artificial chromosomes (BACs) to generate infectious BACs. Our findings may be summarized as follows: (i) the CHV genome (pCHV/BAC), in which a BAC flanked by loxP sites was inserted into the thymidine kinase gene, was maintained in Escherichia coli; (ii) transfection of pCHV/BAC into A-72 cells resulted in the production of infectious virus; (iii) the BAC vector sequence was almost perfectly excisable from the genome of the reconstituted virus CHV/BAC by co-infection with CHV/BAC and a recombinant adenovirus that expressed the Cre recombinase; and (iv) a recombinant virus in which the glycoprotein C gene was deleted was generated by lambda recombination followed by Flp recombination, which resulted in a reduction in viral titer compared with that of the wild-type virus. The infectious clone pCHV/BAC is useful for the modification of the CHV genome using bacterial genetics, and CHV/BAC should have multiple applications in the rapid generation of genetically engineered CHV recombinants and the development of CHV vectors for vaccination and gene therapy in domestic animals.

  2. Development of high-throughput phenotyping of metagenomic clones from the human gut microbiome for modulation of eukaryotic cell growth.

    PubMed

    Gloux, Karine; Leclerc, Marion; Iliozer, Harout; L'Haridon, René; Manichanh, Chaysavanh; Corthier, Gérard; Nalin, Renaud; Blottière, Hervé M; Doré, Joël

    2007-06-01

    Metagenomic libraries derived from human intestinal microbiota (20,725 clones) were screened for epithelial cell growth modulation. Modulatory clones belonging to the four phyla represented among the metagenomic libraries were identified (hit rate, 0.04 to 8.7% depending on the screening cutoff). Several candidate loci were identified by transposon mutagenesis and subcloning.

  3. Comparison of bacterial and fungal communities between natural and planted pine forests in subtropical China.

    PubMed

    Nie, Ming; Meng, Han; Li, Ke; Wan, Jia-Rong; Quan, Zhe-Xue; Fang, Chang-Ming; Chen, Jia-Kuan; Li, Bo

    2012-01-01

    To improve our understanding of the changes in bacterial and fungal diversity in natural pine and planted forests in subtropical region of China, we examined bacterial and fungal communities from a native and a nearby planted pine forest of the Mt. Lushan by constructing clone libraries of 16S and 18S rRNA genes. For bacterial communities, Proteobacteria and Acidobacteria were dominant bacterial taxa in both two types of forest soils. The Shannon-Wiener diversity index, rarefaction curve analysis, and LibShuff analysis suggest that these two forests contained similar diversity of bacterial communities. Low soil acidity (pH ≈ 4) of our study forests might be one of the most important selection factors determining growth of acidophilic Acidobacteria and Proteobacteria. However, the natural forest harbored greater level of fungal diversity than the planted forest according to the Shannon-Wiener diversity index and rarefaction curve analysis. Basidiomycota and Ascomycota were dominant fungal taxa in the soils of natural and planted forests, respectively. Our results suggest that fungal community was more sensitive than the bacterial community in characterizing the differences in plant cover impacts on the microbial flora in the natural and planted forests. The natural and planted forests may function differently due to the differences in soil fungal diversity and relative abundance.

  4. Construction of Rabbit Immune Antibody Libraries.

    PubMed

    Nguyen, Thi Thu Ha; Lee, Jong Seo; Shim, Hyunbo

    2018-01-01

    Rabbits have distinct advantages over mice as a source of target-specific antibodies. They produce higher affinity antibodies than mice, and may elicit strong immune response against antigens or epitopes that are poorly immunogenic or tolerated in mice. However, a great majority of currently available monoclonal antibodies are of murine origin because of the wider availability of murine fusion partner cell lines and well-established tools and protocols for fusion and cloning of mouse hybridoma. Phage-display selection of antibody libraries is an alternative method to hybridoma technology for the generation of target-specific monoclonal antibodies. High-affinity monoclonal antibodies from nonmurine species can readily be obtained by constructing immune antibody libraries from B cells of the immunized animal and screening the library by phage display. In this article, we describe the construction of a rabbit immune Fab library for the facile isolation of rabbit monoclonal antibodies. After immunization, B-cell cDNA is obtained from the spleen of the animal, from which antibody variable domain repertoires are amplified and assembled into a Fab repertoire by PCR. The Fab genes are then cloned into a phagemid vector and transformed to E. coli, from which a phage-displayed immune Fab library is rescued. Such a library can be biopanned against the immunization antigen for rapid identification of high-affinity, target-specific rabbit monoclonal antibodies.

  5. Direct Cloning of Yeast Genes from an Ordered Set of Lambda Clones in Saccharomyces Cerevisiae by Recombination in Vivo

    PubMed Central

    Erickson, J. R.; Johnston, M.

    1993-01-01

    We describe a technique that facilitates the isolation of yeast genes that are difficult to clone. This technique utilizes a plasmid vector that rescues lambda clones as yeast centromere plasmids. The source of these lambda clones is a set of clones whose location in the yeast genome has been determined by L. Riles et al. in 1993. The Esherichia coli-yeast shuttle plasmid carries URA3, ARS4 and CEN6, and contains DNA fragments from the lambda vector that flank the cloned yeast insert. When yeast is cotransformed with linearized plasmid and lambda clone DNA, Ura(+) transformants are obtained by a recombination event between the lambda clone and the plasmid vector that generates an autonomously replicating plasmid containing the cloned yeast DNA sequences. Genes whose genetic map positions are known can easily be identified and recovered in this plasmid by testing only those lambda clones that map to the relevant region of the yeast genome for their ability to complement the mutant phenotype. This technique facilitates the isolation of yeast genes that resist cloning either because (1) they are underrepresented in yeast genomic libraries amplified in E. coli, (2) they provide phenotypes that are too marginal to allow selection of the gene by genetic complementation or (3) they provide phenotypes that are laborious to score. We demonstrate the utility of this technique by isolating three genes, GAL83, SSN2 and MAK7, each of which presents one of these problems for cloning. PMID:8514124

  6. Exploitation of rolling circle amplification for the construction of large phage-display antibody libraries.

    PubMed

    Shahsavarian, Melody A; Le Minoux, Damien; Matti, Kalyankumar M; Kaveri, Srini; Lacroix-Desmazes, Sébastien; Boquet, Didier; Friboulet, Alain; Avalle, Bérangère; Padiolleau-Lefèvre, Séverine

    2014-05-01

    Phage display antibody libraries have proven to have a significant role in the discovery of therapeutic antibodies and polypeptides with desired biological and physicochemical properties. Obtaining a large and diverse phage display antibody library, however, is always a challenging task. Various steps of this technique can still undergo optimization in order to obtain an efficient library. In the construction of a single chain fragment variable (scFv) phage display library, the cloning of the scFv fragments into a phagemid vector is of crucial importance. An efficient restriction enzyme digestion of the scFv DNA leads to its proper ligation with the phagemid followed by its successful cloning and expression. Here, we are reporting a different approach to enhance the efficiency of the restriction enzyme digestion step. We have exploited rolling circle amplification (RCA) to produce a long strand of DNA with tandem repeats of scFv sequences, which is found to be highly susceptible to restriction digestion. With this important modification, we are able to construct a large phage display antibody library of naive SJL/J mice. The size of the library is estimated as ~10(8) clones. The number of clones containing a scFv fragment is estimated at 90%. Hence, the present results could considerably aid the utilization of the phage-display technique in order to get an efficiently large antibody library. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Chapter 7. Cloning and analysis of natural product pathways.

    PubMed

    Gust, Bertolt

    2009-01-01

    The identification of gene clusters of natural products has lead to an enormous wealth of information about their biosynthesis and its regulation, and about self-resistance mechanisms. Well-established routine techniques are now available for the cloning and sequencing of gene clusters. The subsequent functional analysis of the complex biosynthetic machinery requires efficient genetic tools for manipulation. Until recently, techniques for the introduction of defined changes into Streptomyces chromosomes were very time-consuming. In particular, manipulation of large DNA fragments has been challenging due to the absence of suitable restriction sites for restriction- and ligation-based techniques. The homologous recombination approach called recombineering (referred to as Red/ET-mediated recombination in this chapter) has greatly facilitated targeted genetic modifications of complex biosynthetic pathways from actinomycetes by eliminating many of the time-consuming and labor-intensive steps. This chapter describes techniques for the cloning and identification of biosynthetic gene clusters, for the generation of gene replacements within such clusters, for the construction of integrative library clones and their expression in heterologous hosts, and for the assembly of entire biosynthetic gene clusters from the inserts of individual library clones. A systematic approach toward insertional mutation of a complete Streptomyces genome is shown by the use of an in vitro transposon mutagenesis procedure.

  8. Development of two bacterial artificial chromosome shuttle vectors for a recombination-based cloning and regulated expression of large genes in mammalian cells.

    PubMed

    Hong, Y K; Kim, D H; Beletskii, A; Lee, C; Memili, E; Strauss, W M

    2001-04-01

    Most conditional expression vectors designed for mammalian cells have been valuable systems for studying genes of interest by regulating their expressions. The available vectors, however, are reliable for the short-length cDNA clones and not optimal for relatively long fragments of genomic DNA or long cDNAs. Here, we report the construction of two bacterial artificial chromosome (BAC) vectors, capable of harboring large inserts and shuttling among Escherichia coli, yeast, and mammalian cells. These two vectors, pEYMT and pEYMI, contain conditional expression systems which are designed to be regulated by tetracycline and mouse interferons, respectively. To test the properties of the vectors, we cloned in both vectors the green fluorescence protein (GFP) through an in vitro ligation reaction and the 17.8-kb-long X-inactive-specific transcript (Xist) cDNA through homologous recombination in yeast. Subsequently, we characterized their regulated expression properties using real-time quantitative RT-PCR (TaqMan) and RNA-fluorescent in situ hybridization (FISH). We demonstrate that these two BAC vectors are good systems for recombination-based cloning and regulated expression of large genes in mammalian cells. Copyright 2001 Academic Press.

  9. [Construction of human phage antibody library and screening for human monoclonal antibodies of amylin].

    PubMed

    Gong, Qian; Li, Chang-ying; Chang, Ji-wu; Zhu, Tie-hong

    2012-06-01

    To screen monoclonal antibodies to amylin from a constructed human phage antibody library and identify their antigenic specificity and combining activities. The heavy chain Fd fragment and light chain of human immunoglobulin genes were amplified from peripheral blood lymphocytes of healthy donors using RT-PCR, and then inserted into phagemid pComb3XSS to generate a human phage antibody library. The insertion of light chain or heavy chain Fd genes were identified by PCR after the digestion of Sac I, Xba I, Xho Iand Spe I. One of positive clones was analyzed by DNA sequencing. The specific anti-amylin clones were screened from antibody library against human amylin antigens and then the positive clones were determined by Phage-ELISA analysis. A Fab phage antibody library with 0.8×10(8); members was constructed with the efficacy of about 70%. DNA sequence analysis indicated V(H); gene belonged to V(H);3 gene family and V(λ); gene belonged to the V(λ); gene family. Using human amylin as panning antigen, specific anti-amylin Fab antibodies were enriched by screening the library for three times. Phage-ELISA assay showed the positive clones had very good specificity to amylin antigen. The successful construction of a phage antibody library and the identification of anti-amylin Fab antibodies provide a basis for further study and preparation of human anti-amylin antibodies.

  10. cDNA library construction of two human Demodexspecies.

    PubMed

    Niu, DongLing; Wang, RuiLing; Zhao, YaE; Yang, Rui; Hu, Li; Lei, YuYang; Dan, WeiChao

    2017-06-01

    The research of Demodex, a type of pathogen causing various dermatoses in animals and human beings, is lacking at RNA level. This study aims at extracting RNA and constructing cDNA library for Demodex. First, P. cuniculiand D. farinaewere mixed to establish homogenization method for RNA extraction. Second, D. folliculorumand D. breviswere collected and preserved in Trizol, which were mixed with D. farinaerespectively to extract RNA. Finally, cDNA library was constructed and its quality was assessed. The results indicated that for D. folliculorum& D. farinae, the recombination rate of cDNA library was 90.67% and the library titer was 7.50 × 104 pfu/ml. 17 of the 59 positive clones were predicted to be of D. folliculorum; For D. brevis& D. farinae, the recombination rate was 90.96% and the library titer was 7.85 x104 pfu/ml. 40 of the 59 positive clones were predicted to be of D. brevis. Further detection by specific primers demonstrated that mtDNA cox1, cox3and ATP6 detected from cDNA libraries had 96.52%-99.73% identities with the corresponding sequences in GenBank. In conclusion, the cDNA libraries constructed for Demodexmixed with D. farinaewere successful and could satisfy the requirements for functional genes detection.

  11. Primer sets for cloning the human repertoire of T cell Receptor Variable regions.

    PubMed

    Boria, Ilenia; Cotella, Diego; Dianzani, Irma; Santoro, Claudio; Sblattero, Daniele

    2008-08-29

    Amplification and cloning of naïve T cell Receptor (TR) repertoires or antigen-specific TR is crucial to shape immune response and to develop immuno-based therapies. TR variable (V) regions are encoded by several genes that recombine during T cell development. The cloning of expressed genes as large diverse libraries from natural sources relies upon the availability of primers able to amplify as many V genes as possible. Here, we present a list of primers computationally designed on all functional TR V and J genes listed in the IMGT, the ImMunoGeneTics information system. The list consists of unambiguous or degenerate primers suitable to theoretically amplify and clone the entire TR repertoire. We show that it is possible to selectively amplify and clone expressed TR V genes in one single RT-PCR step and from as little as 1000 cells. This new primer set will facilitate the creation of more diverse TR libraries than has been possible using currently available primer sets.

  12. Bacterial diversity in the oral cavity of ten healthy individuals

    PubMed Central

    Bik, Elisabeth M.; Long, Clara Davis; Armitage, Gary C.; Loomer, Peter; Emerson, Joanne; Mongodin, Emmanuel F.; Nelson, Karen E.; Gill, Steven R.; Fraser-Liggett, Claire M.; Relman, David A.

    2010-01-01

    The composition of the oral microbiota from 10 individuals with healthy oral tissues was determined using culture-independent techniques. From each individual, 26 specimens, each from different oral sites at a single point in time, were collected and pooled. An eleventh pool was constructed using portions of the subgingival specimens from all 10 individuals. The 16S rRNA gene was amplified using broad-range bacterial primers, and clone libraries from the individual and subgingival pools were constructed. From a total of 11 368 high-quality, non-chimeric, near full-length sequences, 247 species-level phylotypes (using a 99% sequence identity threshold) and 9 bacteria phyla were identified. At least 15 bacterial genera were conserved among all 10 individuals, with significant interindividual differences at the species and strain level. Comparisons of these oral bacterial sequences to near full-length sequences found previously in the large intestines and feces of other healthy individuals suggest that the mouth and intestinal tract harbor distinct sets of bacteria. Co-occurrence analysis demonstrated significant segregation of taxa when community membership was examined at the level of genus, but not at the level of species, suggesting that ecologically-significant, competitive interactions are more apparent at a broader taxonomic level than species. This study is one of the more comprehensive, high-resolution analyses of bacterial diversity within the healthy human mouth to date, and highlights the value of tools from macroecology for enhancing our understanding of bacterial ecology in human health. PMID:20336157

  13. Bacterial communities in soil samples from the Mingyong Glacier of southwestern China.

    PubMed

    Li, Haoyu; Taj, Muhammad Kamran; Ji, Xiuling; Zhang, Qi; Lin, Liangbing; Zhou, Zhimei; Wei, Yunlin

    2017-05-01

    The present study was an effort to determine the bacterial diversity of soils in Mingyong Glacier located at the Meili Snow Mountains of southwestern China. Mingyong Glacier has different climatic zones within a very narrow area, and bacterial community diversity in this low temperature area remains largely unknown. In this study, soil samples were collected from four different climatic zones: M11A (dry warm valley), M14 (forest), M15 (grass land), and M16 (glacier zones). Phylogenetic analysis based on 16S rRNA gene V6 hypervariable region showed high bacterial abundance in the glacier. The number of Operational Taxonomic Units ranged from 2.24×10 3 to 5.56×10 3 in soil samples. Statistical analysis of 16S rRNA gene clone libraries results showed that bacterial diversity in zones M11A,M14 and M16 are higher than in zone M15. The bacterial community structures are clearly distinguishable, and phylogenetic analysis showed that the predominant phyla were Proteobacteria, Deinococcus-Thermus, Firmicutes, Actinobacteria, and Nitrospirae in Mingyong Glacier. Seventy-nine different orders from four zones have been isolated. Bacterial diversity and distribution of bacterial communities related to the anthropogenic perturbations in zone (M15) were confirmed by diversity index analysis, and the diversity index of other three zones was satisfactory through this analysis software. The results suggest that bacterial diversity and distribution analyses using bacterial 16S rRNA gene V6 hypervariable region were successful, and bacterial communities in this area not only had the same bacterial phyla compared to other glaciers but also had their own rare species.

  14. The Pacific Northwest National Laboratory library of bacterial and archaeal proteomic biodiversity

    DOE PAGES

    Payne, Samuel H.; Monroe, Matthew E.; Overall, Christopher C.; ...

    2015-08-18

    This dataset deposition announces the submission to public repositories of the PNNL Biodiversity Library, a large collection of global proteomics data for 112 bacterial and archaeal organisms. The data comprises 35,162 tandem mass spectrometry (MS/MS) datasets from ~10 years of research. All data has been searched, annotated and organized in a consistent manner to promote reuse by the community. Protein identifications were cross-referenced with KEGG functional annotations which allows for pathway oriented investigation. We present the data as a freely available community resource. A variety of data re-use options are described for computational modeling, proteomics assay design and bioengineering. Instrumentmore » data and analysis files are available at ProteomeXchange via the MassIVE partner repository under the identifiers PXD001860 and MSV000079053.« less

  15. The Pacific Northwest National Laboratory library of bacterial and archaeal proteomic biodiversity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Payne, Samuel H.; Monroe, Matthew E.; Overall, Christopher C.

    This dataset deposition announces the submission to public repositories of the PNNL Biodiversity Library, a large collection of global proteomics data for 112 bacterial and archaeal organisms. The data comprises 35,162 tandem mass spectrometry (MS/MS) datasets from ~10 years of research. All data has been searched, annotated and organized in a consistent manner to promote reuse by the community. Protein identifications were cross-referenced with KEGG functional annotations which allows for pathway oriented investigation. We present the data as a freely available community resource. A variety of data re-use options are described for computational modeling, proteomics assay design and bioengineering. Instrumentmore » data and analysis files are available at ProteomeXchange via the MassIVE partner repository under the identifiers PXD001860 and MSV000079053.« less

  16. Microbial consortia of gorgonian corals from the Aleutian islands

    USGS Publications Warehouse

    Gray, Michael A.; Stone, R.P.; McLaughlin, M.R.; Kellogg, C.A.

    2011-01-01

    Gorgonians make up the majority of corals in the Aleutian archipelago and provide critical fish habitat in areas of economically important fisheries. The microbial ecology of the deep-sea gorgonian corals Paragorgea arborea, Plumarella superba, and Cryogorgia koolsae was examined with culture-based and 16S rRNA gene-based techniques. Six coral colonies (two per species) were collected. Samples from all corals were cultured, and clone libraries were constructed from P. superba and C. koolsae. Cultured bacteria were dominated by the Gammaproteobacteria, especially Vibrionaceae, with other phyla comprising <6% of the isolates. The clone libraries showed dramatically different bacterial communities between corals of the same species collected at different sites, with no clear pattern of conserved bacterial consortia. Two of the clone libraries (one from each coral species) were dominated by Tenericutes, with Alphaproteobacteria dominating the remaining sequences. The other libraries were more diverse and had a more even distribution of bacterial phyla, showing more similarity between genera than within coral species. Here we report the first microbiological characterization of P. arborea, P. superba, and C. koolsae. FEMS Microbiology Ecology ?? 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. No claim to original US government works.

  17. Anchoring a Defined Sequence to the 55' Ends of mRNAs : The Bolt to Clone Rare Full Length mRNAs and Generate cDNA Libraries porn a Few Cells.

    PubMed

    Baptiste, J; Milne Edwards, D; Delort, J; Mallet, J

    1993-01-01

    Among numerous applications, the polymerase chain reaction (PCR) (1,2) provides a convenient means to clone 5' ends of rare mRNAs and to generate cDNA libraries from tissue available in amounts too low to be processed by conventional methods. Basically, the amplification of cDNAs by the PCR requires the availability of the sequences of two stretches of the molecule to be amplified. A sequence can easily be imposed at the 5' end of the first-strand cDNAs (corresponding to the 3' end of the mRNAs) by priming the reverse transcription with a specific primer (for cloning the 5' end of rare messenger) or with an oligonucleotide tailored with a poly (dT) stretch (for cDNA library construction), taking advantage of the poly (A) sequence that is located at the 3' end of mRNAs. Several strategies have been devised to tag the 3' end of the ss-cDNAs (corresponding to the 55' end of the mRNAs). We (3) and others have described strategies based on the addition of a homopolymeric dG (4,5) or dA (6,7) tail using terminal deoxyribonucleotide transferase (TdT) ("anchor-PCR" [4]). However, this strategy has important limitations. The TdT reaction is difficult to control and has a low efficiency (unpublished observations). But most importantly, the return primers containing a homopolymeric (dC or dT) tail generate nonspecific amplifications, a phenomenon that prevents the isolation of low abundance mRNA species and/or interferes with the relative abundance of primary clones in the library. To circumvent these drawbacks, we have used two approaches. First, we devised a strategy based on a cRNA enrichment procedure, which has been useful to eliminate nonspecific-PCR products and to allow detection and cloning of cDNAs of low abundance (3). More recently, to avoid the nonspecific amplification resulting from the annealing of the homopolymeric tail oligonucleotide, we have developed a novel anchoring strategy that is based on the ligation of an oligonucleotide to the 35' end of ss

  18. Changes in the gut microbiota of cloned and non-cloned control pigs during development of obesity: gut microbiota during development of obesity in cloned pigs.

    PubMed

    Pedersen, Rebecca; Andersen, Anders Daniel; Mølbak, Lars; Stagsted, Jan; Boye, Mette

    2013-02-07

    Obesity induced by a high-caloric diet has previously been associated with changes in the gut microbiota in mice and in humans. In this study, pigs were cloned to minimize genetic and biological variation among the animals with the aim of developing a controlled metabolomic model suitable for a diet-intervention study. Cloning of pigs may be an attractive way to reduce genetic influences when investigating the effect of diet and obesity on different physiological sites. The aim of this study was to assess and compare the changes in the composition of the gut microbiota of cloned vs. non-cloned pigs during development of obesity by a high-fat/high-caloric diet. Furthermore, we investigated the association between diet-induced obesity and the relative abundance of the phyla Firmicutes and Bacteroidetes in the fecal-microbiota. The fecal microbiota from obese cloned (n = 5) and non-cloned control pigs (n= 6) was investigated biweekly over a period of 136 days, by terminal restriction fragment length polymorphism (T-RFLP) and quantitative real time PCR (qPCR). A positive correlation was observed between body-weight at endpoint and percent body-fat in cloned (r=0.9, P<0.0001) and in non-cloned control pigs (r=0.9, P<0.0001). Shannon Weaver and principal component analysis (PCA) of the terminal restriction fragments (T-RFs) revealed no differences in the bacterial composition or variability of the fecal microbiota between the cloned pigs or between cloned and non-cloned control pigs. Body-weight correlated positively with the relative abundance of Firmicutes in both cloned (r=0.37; P<0.02) and non cloned-control pigs (r=0.45; P<0.006), and negatively with the abundance of Bacteroidetes in cloned pigs (r=-0.33, P<0.04), but not in the non-cloned control pigs. The cloned pigs did not have reduced inter-individual variation as compared to non-cloned pigs in regard to their gut microbiota in neither the obese nor the lean state. Diet-induced obesity was associated with an

  19. Rapid and efficient cDNA library screening by self-ligation of inverse PCR products (SLIP).

    PubMed

    Hoskins, Roger A; Stapleton, Mark; George, Reed A; Yu, Charles; Wan, Kenneth H; Carlson, Joseph W; Celniker, Susan E

    2005-12-02

    cDNA cloning is a central technology in molecular biology. cDNA sequences are used to determine mRNA transcript structures, including splice junctions, open reading frames (ORFs) and 5'- and 3'-untranslated regions (UTRs). cDNA clones are valuable reagents for functional studies of genes and proteins. Expressed Sequence Tag (EST) sequencing is the method of choice for recovering cDNAs representing many of the transcripts encoded in a eukaryotic genome. However, EST sequencing samples a cDNA library at random, and it recovers transcripts with low expression levels inefficiently. We describe a PCR-based method for directed screening of plasmid cDNA libraries. We demonstrate its utility in a screen of libraries used in our Drosophila EST projects for 153 transcription factor genes that were not represented by full-length cDNA clones in our Drosophila Gene Collection. We recovered high-quality, full-length cDNAs for 72 genes and variously compromised clones for an additional 32 genes. The method can be used at any scale, from the isolation of cDNA clones for a particular gene of interest, to the improvement of large gene collections in model organisms and the human. Finally, we discuss the relative merits of directed cDNA library screening and RT-PCR approaches.

  20. The selection performance of an antibody library displayed on filamentous phage coat proteins p9, p3 and truncated p3.

    PubMed

    Huovinen, Tuomas; Syrjänpää, Markku; Sanmark, Hanna; Seppä, Titta; Akter, Sultana; Khan, Liton Md Ferdhos; Lamminmäki, Urpo

    2014-09-19

    Filamentous phage display has become an ordinary tool to engineer antibody fragments. Several capsid proteins have been applied for displaying antibodies, of which gene III (p3) protein is used the most followed by experiments with gene IX (p9) protein. Despite the popularity, there are no library scale studies to objectively compare differences in the selection performance of the libraries, when displayed via different capsid proteins. In this study, an identical antibody repertoire was displayed as Fab fragments on p9, p3 and truncated p3 (p3Δ). In addition, the library clones were displayed as ScFv fragments on p3Δ and the Fab-p3 display valency was modulated by hyperphage and VCS-M13 superinfections. The selection performances of the libraries were followed in repeated parallel panning reactions against streptavidin (STR) and digoxigenin (DIG). Selection was successful with all display formats, but the enrichment of specific clones from Fab-p9 library was clearly less efficient than from the other libraries. The most diverse outputs were obtained from p3Δ display and the highest affinity anti-DIG antibodies from the ScFv repertoire. Unfortunately, the number of retrieved specific clones was too low for explicit analysis of the differences in the number of obtained unique clones from each library. However, severe reduction in sequence diversity was observed in p3-Fab libraries prior to panning, which in turn, materialized as a low number of unique specific clones. Oligovalent display by hyperphage resulted in a higher number of unique clones, but the same highest affinity anti-DIG Fab was recovered also by VCS-M13 superinfection. The compromised enrichment of the target-specific clones from the Fab repertoire as a fusion to p9 capsid protein in our experiments, the significant loss of functional diversity in Fab-p3 library after single phage packing cycle and the retrieval of higher affinity anti-digoxigenin clones as ScFv molecules than as Fab molecules from

  1. Interactive effects of a bacterial parasite and the insecticide carbaryl to life-history and physiology of two Daphnia magna clones differing in carbaryl sensitivity.

    PubMed

    De Coninck, Dieter I M; De Schamphelaere, Karel A C; Jansen, Mieke; De Meester, Luc; Janssen, Colin R

    2013-04-15

    Natural and chemical stressors occur simultaneously in the aquatic environment. Their combined effects on biota are usually difficult to predict from their individual effects due to interactions between the different stressors. Several recent studies have suggested that synergistic effects of multiple stressors on organisms may be more common at high compared to low overall levels of stress. In this study, we used a three-way full factorial design to investigate whether interactive effects between a natural stressor, the bacterial parasite Pasteuria ramosa, and a chemical stressor, the insecticide carbaryl, were different between two genetically distinct clones of Daphnia magna that strongly differ in their sensitivity to carbaryl. Interactive effects on various life-history and physiological endpoints were assessed as significant deviations from the reference Independent Action (IA) model, which was implemented by testing the significance of the two-way carbaryl×parasite interaction term in two-way ANOVA's on log-transformed observational data for each clone separately. Interactive effects (and thus significant deviations from IA) were detected in both the carbaryl-sensitive clone (on survival, early reproduction and growth) and in the non-sensitive clone (on growth, electron transport activity and prophenoloxidase activity). No interactions were found for maturation rate, filtration rate, and energy reserve fractions (carbohydrate, protein, lipid). Furthermore, only antagonistic interactions were detected in the non-sensitive clone, while only synergistic interactions were observed in the carbaryl sensitive clone. Our data clearly show that there are genetically determined differences in the interactive effects following combined exposure to carbaryl and Pasteuria in D. magna. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Bacterial Diversity in Human Subgingival Plaque

    PubMed Central

    Paster, Bruce J.; Boches, Susan K.; Galvin, Jamie L.; Ericson, Rebecca E.; Lau, Carol N.; Levanos, Valerie A.; Sahasrabudhe, Ashish; Dewhirst, Floyd E.

    2001-01-01

    The purpose of this study was to determine the bacterial diversity in the human subgingival plaque by using culture-independent molecular methods as part of an ongoing effort to obtain full 16S rRNA sequences for all cultivable and not-yet-cultivated species of human oral bacteria. Subgingival plaque was analyzed from healthy subjects and subjects with refractory periodontitis, adult periodontitis, human immunodeficiency virus periodontitis, and acute necrotizing ulcerative gingivitis. 16S ribosomal DNA (rDNA) bacterial genes from DNA isolated from subgingival plaque samples were PCR amplified with all-bacterial or selective primers and cloned into Escherichia coli. The sequences of cloned 16S rDNA inserts were used to determine species identity or closest relatives by comparison with sequences of known species. A total of 2,522 clones were analyzed. Nearly complete sequences of approximately 1,500 bases were obtained for putative new species. About 60% of the clones fell into 132 known species, 70 of which were identified from multiple subjects. About 40% of the clones were novel phylotypes. Of the 215 novel phylotypes, 75 were identified from multiple subjects. Known putative periodontal pathogens such as Porphyromonas gingivalis, Bacteroides forsythus, and Treponema denticola were identified from multiple subjects, but typically as a minor component of the plaque as seen in cultivable studies. Several phylotypes fell into two recently described phyla previously associated with extreme natural environments, for which there are no cultivable species. A number of species or phylotypes were found only in subjects with disease, and a few were found only in healthy subjects. The organisms identified only from diseased sites deserve further study as potential pathogens. Based on the sequence data in this study, the predominant subgingival microbial community consisted of 347 species or phylotypes that fall into 9 bacterial phyla. Based on the 347 species seen in our

  3. High-Throughput Method for Ranking the Affinity of Peptide Ligands Selected from Phage Display Libraries

    PubMed Central

    González-Techera, A.; Umpiérrez-Failache, M.; Cardozo, S.; Obal, G.; Pritsch, O.; Last, J. A.; Gee, S. J.; Hammock, B. D.; González-Sapienza, G.

    2010-01-01

    The use of phage display peptide libraries allows rapid isolation of peptide ligands for any target selector molecule. However, due to differences in peptide expression and the heterogeneity of the phage preparations, there is no easy way to compare the binding properties of the selected clones, which operates as a major “bottleneck” of the technology. Here, we present the development of a new type of library that allows rapid comparison of the relative affinity of the selected peptides in a high-throughput screening format. As a model system, a phage display peptide library constructed on a phagemid vector that contains the bacterial alkaline phosphatase gene (BAP) was selected with an antiherbicide antibody. Due to the intrinsic switching capacity of the library, the selected peptides were transferred “en masse” from the phage coat protein to BAP. This was coupled to an optimized affinity ELISA where normalized amounts of the peptide–BAP fusion allow direct comparison of the binding properties of hundreds of peptide ligands. The system was validated by plasmon surface resonance experiments using synthetic peptides, showing that the method discriminates among the affinities of the peptides within 3 orders of magnitude. In addition, the peptide–BAP protein can find direct application as a tracer reagent. PMID:18393454

  4. Phylogenetic diversity, host-specificity and community profiling of sponge-associated bacteria in the northern Gulf of Mexico.

    PubMed

    Erwin, Patrick M; Olson, Julie B; Thacker, Robert W

    2011-01-01

    Marine sponges can associate with abundant and diverse consortia of microbial symbionts. However, associated bacteria remain unexamined for the majority of host sponges and few studies use phylogenetic metrics to quantify symbiont community diversity. DNA fingerprinting techniques, such as terminal restriction fragment length polymorphisms (T-RFLP), might provide rapid profiling of these communities, but have not been explicitly compared to traditional methods. We investigated the bacterial communities associated with the marine sponges Hymeniacidon heliophila and Haliclona tubifera, a sympatric tunicate, Didemnum sp., and ambient seawater from the northern Gulf of Mexico by combining replicated clone libraries with T-RFLP analyses of 16S rRNA gene sequences. Clone libraries revealed that bacterial communities associated with the two sponges exhibited lower species richness and lower species diversity than seawater and tunicate assemblages, with differences in species composition among all four source groups. T-RFLP profiles clustered microbial communities by source; individual T-RFs were matched to the majority (80.6%) of clone library sequences, indicating that T-RFLP analysis can be used to rapidly profile these communities. Phylogenetic metrics of community diversity indicated that the two sponge-associated bacterial communities include dominant and host-specific bacterial lineages that are distinct from bacteria recovered from seawater, tunicates, and unrelated sponge hosts. In addition, a large proportion of the symbionts associated with H. heliophila were shared with distant, conspecific host populations in the southwestern Atlantic (Brazil). The low diversity and species-specific nature of bacterial communities associated with H. heliophila and H. tubifera represent a distinctly different pattern from other, reportedly universal, sponge-associated bacterial communities. Our replicated sampling strategy, which included samples that reflect the ambient

  5. Ribosomal Binding Site Switching: An Effective Strategy for High-Throughput Cloning Constructions

    PubMed Central

    Li, Yunlong; Zhang, Yong; Lu, Pei; Rayner, Simon; Chen, Shiyun

    2012-01-01

    Direct cloning of PCR fragments by TA cloning or blunt end ligation are two simple methods which would greatly benefit high-throughput (HTP) cloning constructions if the efficiency can be improved. In this study, we have developed a ribosomal binding site (RBS) switching strategy for direct cloning of PCR fragments. RBS is an A/G rich region upstream of the translational start codon and is essential for gene expression. Change from A/G to T/C in the RBS blocks its activity and thereby abolishes gene expression. Based on this property, we introduced an inactive RBS upstream of a selectable marker gene, and designed a fragment insertion site within this inactive RBS. Forward and reverse insertions of specifically tailed fragments will respectively form an active and inactive RBS, thus all background from vector self-ligation and fragment reverse insertions will be eliminated due to the non-expression of the marker gene. The effectiveness of our strategy for TA cloning and blunt end ligation are confirmed. Application of this strategy to gene over-expression, a bacterial two-hybrid system, a bacterial one-hybrid system, and promoter bank construction are also verified. The advantages of this simple procedure, together with its low cost and high efficiency, makes our strategy extremely useful in HTP cloning constructions. PMID:23185557

  6. [New hosts and vectors for genome cloning]. Progress report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    The main goal of our project remains the development of new bacterial hosts and vectors for the stable propagation of human DNA clones in E. coli. During the past six months of our current budget period, we have (1) continued to develop new hosts that permit the stable maintenance of unstable features of human DNA, and (2) developed a series of vectors for (a) cloning large DNA inserts, (b) assessing the frequency of human sequences that are lethal to the growth of E. coli, and (c) assessing the stability of human sequences cloned in M13 for large-scale sequencing projects.

  7. Fine-scale phylogenetic architecture of a complex bacterial community.

    PubMed

    Acinas, Silvia G; Klepac-Ceraj, Vanja; Hunt, Dana E; Pharino, Chanathip; Ceraj, Ivica; Distel, Daniel L; Polz, Martin F

    2004-07-29

    Although molecular data have revealed the vast scope of microbial diversity, two fundamental questions remain unanswered even for well-defined natural microbial communities: how many bacterial types co-exist, and are such types naturally organized into phylogenetically discrete units of potential ecological significance? It has been argued that without such information, the environmental function, population biology and biogeography of microorganisms cannot be rigorously explored. Here we address these questions by comprehensive sampling of two large 16S ribosomal RNA clone libraries from a coastal bacterioplankton community. We show that compensation for artefacts generated by common library construction techniques reveals fine-scale patterns of community composition. At least 516 ribotypes (unique rRNA sequences) were detected in the sample and, by statistical extrapolation, at least 1,633 co-existing ribotypes in the sampled population. More than 50% of the ribotypes fall into discrete clusters containing less than 1% sequence divergence. This pattern cannot be accounted for by interoperon variation, indicating a large predominance of closely related taxa in this community. We propose that such microdiverse clusters arise by selective sweeps and persist because competitive mechanisms are too weak to purge diversity from within them.

  8. Cloning of a Gene Whose Expression is Increased in Scrapie and in Senile Plaques in Human Brain

    NASA Astrophysics Data System (ADS)

    Wietgrefe, S.; Zupancic, M.; Haase, A.; Chesebro, B.; Race, R.; Frey, W.; Rustan, T.; Friedman, R. L.

    1985-12-01

    A complementary DNA library was constructed from messenger RNA's extracted from the brains of mice infected with the scrapie agent. The library was differentially screened with the objectives of finding clones that might be used as markers of infection and finding clones of genes whose increased expression might be correlated with the pathological changes common to scrapie and Alzheimer's disease. A gene was identified whose expression is increased in scrapie. The complementary DNA corresponding to this gene hybridized preferentially and focally to cells in the brains of scrapie-infected animals. The cloned DNA also hybridized to the neuritic plaques found with increased frequency in brains of patients with Alzheimer's disease.

  9. Product-induced gene expression, a product-responsive reporter assay used to screen metagenomic libraries for enzyme-encoding genes.

    PubMed

    Uchiyama, Taku; Miyazaki, Kentaro

    2010-11-01

    A reporter assay-based screening method for enzymes, which we named product-induced gene expression (PIGEX), was developed and used to screen a metagenomic library for amidases. A benzoate-responsive transcriptional activator, BenR, was placed upstream of the gene encoding green fluorescent protein and used as a sensor. Escherichia coli sensor cells carrying the benR-gfp gene cassette fluoresced in response to benzoate concentrations as low as 10 μM but were completely unresponsive to the substrate benzamide. An E. coli metagenomic library consisting of 96,000 clones was grown in 96-well format in LB medium containing benzamide. The library cells were then cocultivated with sensor cells. Eleven amidase genes were recovered from 143 fluorescent wells; eight of these genes were homologous to known bacterial amidase genes while three were novel genes. In addition to their activity toward benzamide, the enzymes were active toward various substrates, including d- and l-amino acid amides, and displayed enantioselectivity. Thus, we demonstrated that PIGEX is an effective approach for screening novel enzymes based on product detection.

  10. Parallel selection of antibody libraries on phage and yeast surfaces via a cross-species display.

    PubMed

    Patel, Chirag A; Wang, Jinqing; Wang, Xinwei; Dong, Feng; Zhong, Pingyu; Luo, Peter P; Wang, Kevin C

    2011-09-01

    We created a cross-species display system that allows the display of the same antibody libraries on both prokaryotic phage and eukaryotic yeast without the need for molecular cloning. Using this cross-display system, a large, diverse library can be constructed once and subsequently used for display and selection in both phage and yeast systems. In this article, we performed the parallel phage and yeast selection of an antibody maturation library using this cross-display platform. This parallel selection allowed us to isolate more unique hits than single-species selection, with 162 unique clones from phage and 107 unique clones from yeast. In addition, we were able to shuttle yeast hits back to Escherichia coli cells for affinity characterization at a higher throughput.

  11. An annotated cDNA library of juvenile Euprymna scolopes with and without colonization by the symbiont Vibrio fischeri

    PubMed Central

    Chun, Carlene K; Scheetz, Todd E; Bonaldo, Maria de Fatima; Brown, Bartley; Clemens, Anik; Crookes-Goodson, Wendy J; Crouch, Keith; DeMartini, Tad; Eyestone, Mari; Goodson, Michael S; Janssens, Bernadette; Kimbell, Jennifer L; Koropatnick, Tanya A; Kucaba, Tamara; Smith, Christina; Stewart, Jennifer J; Tong, Deyan; Troll, Joshua V; Webster, Sarahrose; Winhall-Rice, Jane; Yap, Cory; Casavant, Thomas L; McFall-Ngai, Margaret J; Soares, M Bento

    2006-01-01

    Background Biologists are becoming increasingly aware that the interaction of animals, including humans, with their coevolved bacterial partners is essential for health. This growing awareness has been a driving force for the development of models for the study of beneficial animal-bacterial interactions. In the squid-vibrio model, symbiotic Vibrio fischeri induce dramatic developmental changes in the light organ of host Euprymna scolopes over the first hours to days of their partnership. We report here the creation of a juvenile light-organ specific EST database. Results We generated eleven cDNA libraries from the light organ of E. scolopes at developmentally significant time points with and without colonization by V. fischeri. Single pass 3' sequencing efforts generated 42,564 expressed sequence tags (ESTs) of which 35,421 passed our quality criteria and were then clustered via the UIcluster program into 13,962 nonredundant sequences. The cDNA clones representing these nonredundant sequences were sequenced from the 5' end of the vector and 58% of these resulting sequences overlapped significantly with the associated 3' sequence to generate 8,067 contigs with an average sequence length of 1,065 bp. All sequences were annotated with BLASTX (E-value < -03) and Gene Ontology (GO). Conclusion Both the number of ESTs generated from each library and GO categorizations are reflective of the activity state of the light organ during these early stages of symbiosis. Future analyses of the sequences identified in these libraries promise to provide valuable information not only about pathways involved in colonization and early development of the squid light organ, but also about pathways conserved in response to bacterial colonization across the animal kingdom. PMID:16780587

  12. Primer sets for cloning the human repertoire of T cell Receptor Variable regions

    PubMed Central

    Boria, Ilenia; Cotella, Diego; Dianzani, Irma; Santoro, Claudio; Sblattero, Daniele

    2008-01-01

    Background Amplification and cloning of naïve T cell Receptor (TR) repertoires or antigen-specific TR is crucial to shape immune response and to develop immuno-based therapies. TR variable (V) regions are encoded by several genes that recombine during T cell development. The cloning of expressed genes as large diverse libraries from natural sources relies upon the availability of primers able to amplify as many V genes as possible. Results Here, we present a list of primers computationally designed on all functional TR V and J genes listed in the IMGT®, the ImMunoGeneTics information system®. The list consists of unambiguous or degenerate primers suitable to theoretically amplify and clone the entire TR repertoire. We show that it is possible to selectively amplify and clone expressed TR V genes in one single RT-PCR step and from as little as 1000 cells. Conclusion This new primer set will facilitate the creation of more diverse TR libraries than has been possible using currently available primer sets. PMID:18759974

  13. Cloning and characterization of a Candida albicans maltase gene involved in sucrose utilization.

    PubMed Central

    Geber, A; Williamson, P R; Rex, J H; Sweeney, E C; Bennett, J E

    1992-01-01

    In order to isolate the structural gene involved in sucrose utilization, we screened a sucrose-induced Candida albicans cDNA library for clones expressing alpha-glucosidase activity. The C. albicans maltase structural gene (CAMAL2) was isolated. No other clones expressing alpha-glucosidase activity. were detected. A genomic CAMAL2 clone was obtained by screening a size-selected genomic library with the cDNA clone. DNA sequence analysis reveals that CAMAL2 encodes a 570-amino-acid protein which shares 50% identity with the maltase structural gene (MAL62) of Saccharomyces carlsbergensis. The substrate specificity of the recombinant protein purified from Escherichia coli identifies the enzyme as a maltase. Northern (RNA) analysis reveals that transcription of CAMAL2 is induced by maltose and sucrose and repressed by glucose. These results suggest that assimilation of sucrose in C. albicans relies on an inducible maltase enzyme. The family of genes controlling sucrose utilization in C. albicans shares similarities with the MAL gene family of Saccharomyces cerevisiae and provides a model system for studying gene regulation in this pathogenic yeast. Images PMID:1400249

  14. Low-frequency chimeric yeast artificial chromosome libraries from flow-sorted human chromosomes 16 and 21.

    PubMed Central

    McCormick, M K; Campbell, E; Deaven, L; Moyzis, R

    1993-01-01

    Construction of chromosome-specific yeast artificial chromosome (YAC) libraries from sorted chromosomes was undertaken (i) to eliminate drawbacks associated with first-generation total genomic YAC libraries, such as the high frequency of chimeric YACs, and (ii) to provide an alternative method for generating chromosome-specific YAC libraries in addition to isolating such collections from a total genomic library. Chromosome-specific YAC libraries highly enriched for human chromosomes 16 and 21 were constructed. By maximizing the percentage of fragments with two ligatable ends and performing yeast transformations with less than saturating amounts of DNA in the presence of carrier DNA, YAC libraries with a low percentage of chimeric clones were obtained. The smaller number of YAC clones in these chromosome-specific libraries reduces the effort involved in PCR-based screening and allows hybridization methods to be a manageable screening approach. Images PMID:8430075

  15. Rapid isolation of IgNAR variable single-domain antibody fragments from a shark synthetic library.

    PubMed

    Shao, Cui-Ying; Secombes, Chris J; Porter, Andrew J

    2007-01-01

    The immunoglobulin isotype IgNAR (Novel Antigen Receptor) was discovered in the serum of the nurse shark (Ginglymostoma cirratum) and wobbegong shark (Orectolobus maculates) as a homodimer of two protein chains, each composed of a single variable domain (V) domain and five constant domains. The IgNAR variable domain contains an intact antigen-binding site and functions as an independent domain able to react to antigen with both high specificity and affinity. Here we describe the successful construction of a synthetic phage-displayed library based upon a single anti-lysozyme clone HEL-5A7 scaffold, which was previously selected from an immune IgNAR variable domain library. The complementarity-determining region 3 (CDR3) loop of this clone was varied in both length and composition and the derived library was used to pan against two model proteins, lysozyme and leptin. A single anti-lysozyme clone (Ly-X20) and anti-leptin clone (Lep-12E1) were selected for further study. Both clones were shown to be functionally expressed in Escherichia coli, extremely thermostable and bind to corresponding antigens specifically. The results here demonstrate that a synthetic IgNAR variable domain library based on a single framework scaffold can be used as a route to generate antigen binders quickly, easily and without the need of immunization.

  16. Clinical impact of methicillin-resistant staphylococcus aureus on bacterial pneumonia: cultivation and 16S ribosomal RNA gene analysis of bronchoalveolar lavage fluid.

    PubMed

    Kawanami, Toshinori; Yatera, Kazuhiro; Yamasaki, Kei; Noguchi, Shingo; Fukuda, Kazumasa; Akata, Kentarou; Naito, Keisuke; Kido, Takashi; Ishimoto, Hiroshi; Taniguchi, Hatsumi; Mukae, Hiroshi

    2016-04-16

    Determining whether methicillin-resistant Staphylococcus aureus (MRSA) is a true causative pathogen or reflective of colonization when MRSA is cultured from the respiratory tract remains important in treating patients with pneumonia. We evaluated the bacterial microbiota in bronchoalveolar lavage fluid (BALF) using the clone library method with a 16S ribosomal RNA (rRNA) gene analysis in 42 patients from a pneumonia registry who had MRSA cultured from their sputum or BALF samples. Patients were divided into two groups: those treated with (Group A) or without (Group B) anti-MRSA agents, and their clinical features were compared. Among 248 patients with pneumonia, 42 patients who had MRSA cultured from the respiratory tract were analyzed (Group A: 13 patients, Group B: 29 patients). No clones of S. aureus were detected in the BALF of 20 out of 42 patients. Twenty-eight of 29 patients in Group B showed favorable clinical outcomes, indicating that these patients had non-MRSA pneumonia. Using a microflora analysis of the BALF, the S. aureus phylotype was predominant in 5 of 28 (17.9%) patients among the detected bacterial phylotypes, but a minor population (the percentage of clones ≤ 10%) in 19 (67.9%) of 28 patients. A statistical analysis revealed no positive relationship between the percentage of clones of the S. aureus phylotype and risk factors of MRSA pneumonia. The molecular method using BALF specimens suggests that conventional cultivation method results may mislead true causative pathogens, especially in patients with MRSA pneumonia. Further studies are necessary to elucidate these clinically important issues.

  17. Application of Molecular Techniques To Elucidate the Influence of Cellulosic Waste on the Bacterial Community Structure at a Simulated Low-Level-Radioactive-Waste Site▿ †

    PubMed Central

    Field, Erin K.; D'Imperio, Seth; Miller, Amber R.; VanEngelen, Michael R.; Gerlach, Robin; Lee, Brady D.; Apel, William A.; Peyton, Brent M.

    2010-01-01

    Low-level-radioactive-waste (low-level-waste) sites, including those at various U.S. Department of Energy sites, frequently contain cellulosic waste in the form of paper towels, cardboard boxes, or wood contaminated with heavy metals and radionuclides such as chromium and uranium. To understand how the soil microbial community is influenced by the presence of cellulosic waste products, multiple soil samples were obtained from a nonradioactive model low-level-waste test pit at the Idaho National Laboratory. Samples were analyzed using 16S rRNA gene clone libraries and 16S rRNA gene microarray (PhyloChip) analyses. Both methods revealed changes in the bacterial community structure with depth. In all samples, the PhyloChip detected significantly more operational taxonomic units, and therefore relative diversity, than the clone libraries. Diversity indices suggest that diversity is lowest in the fill and fill-waste interface (FW) layers and greater in the wood waste and waste-clay interface layers. Principal-coordinate analysis and lineage-specific analysis determined that the Bacteroidetes and Actinobacteria phyla account for most of the significant differences observed between the layers. The decreased diversity in the FW layer and increased members of families containing known cellulose-degrading microorganisms suggest that the FW layer is an enrichment environment for these organisms. These results suggest that the presence of the cellulosic material significantly influences the bacterial community structure in a stratified soil system. PMID:20305022

  18. Prokaryotic diversity, composition structure, and phylogenetic analysis of microbial communities in leachate sediment ecosystems.

    PubMed

    Liu, Jingjing; Wu, Weixiang; Chen, Chongjun; Sun, Faqian; Chen, Yingxu

    2011-09-01

    In order to obtain insight into the prokaryotic diversity and community in leachate sediment, a culture-independent DNA-based molecular phylogenetic approach was performed with archaeal and bacterial 16S rRNA gene clone libraries derived from leachate sediment of an aged landfill. A total of 59 archaeal and 283 bacterial rDNA phylotypes were identified in 425 archaeal and 375 bacterial analyzed clones. All archaeal clones distributed within two archaeal phyla of the Euryarchaeota and Crenarchaeota, and well-defined methanogen lineages, especially Methanosaeta spp., are the most numerically dominant species of the archaeal community. Phylogenetic analysis of the bacterial library revealed a variety of pollutant-degrading and biotransforming microorganisms, including 18 distinct phyla. A substantial fraction of bacterial clones showed low levels of similarity with any previously documented sequences and thus might be taxonomically new. Chemical characteristics and phylogenetic inferences indicated that (1) ammonium-utilizing bacteria might form consortia to alleviate or avoid the negative influence of high ammonium concentration on other microorganisms, and (2) members of the Crenarchaeota found in the sediment might be involved in ammonium oxidation. This study is the first to report the composition of the microbial assemblages and phylogenetic characteristics of prokaryotic populations extant in leachate sediment. Additional work on microbial activity and contaminant biodegradation remains to be explored.

  19. It's all relative: ranking the diversity of aquatic bacterial communities.

    PubMed

    Shaw, Allison K; Halpern, Aaron L; Beeson, Karen; Tran, Bao; Venter, J Craig; Martiny, Jennifer B H

    2008-09-01

    The study of microbial diversity patterns is hampered by the enormous diversity of microbial communities and the lack of resources to sample them exhaustively. For many questions about richness and evenness, however, one only needs to know the relative order of diversity among samples rather than total diversity. We used 16S libraries from the Global Ocean Survey to investigate the ability of 10 diversity statistics (including rarefaction, non-parametric, parametric, curve extrapolation and diversity indices) to assess the relative diversity of six aquatic bacterial communities. Overall, we found that the statistics yielded remarkably similar rankings of the samples for a given sequence similarity cut-off. This correspondence, despite the different underlying assumptions of the statistics, suggests that diversity statistics are a useful tool for ranking samples of microbial diversity. In addition, sequence similarity cut-off influenced the diversity ranking of the samples, demonstrating that diversity statistics can also be used to detect differences in phylogenetic structure among microbial communities. Finally, a subsampling analysis suggests that further sequencing from these particular clone libraries would not have substantially changed the richness rankings of the samples.

  20. Microbial consortia of gorgonian corals from the Aleutian islands.

    PubMed

    Gray, Michael A; Stone, Robert P; McLaughlin, Molly R; Kellogg, Christina A

    2011-04-01

    Gorgonians make up the majority of corals in the Aleutian archipelago and provide critical fish habitat in areas of economically important fisheries. The microbial ecology of the deep-sea gorgonian corals Paragorgea arborea, Plumarella superba, and Cryogorgia koolsae was examined with culture-based and 16S rRNA gene-based techniques. Six coral colonies (two per species) were collected. Samples from all corals were cultured, and clone libraries were constructed from P. superba and C. koolsae. Cultured bacteria were dominated by the Gammaproteobacteria, especially Vibrionaceae, with other phyla comprising <6% of the isolates. The clone libraries showed dramatically different bacterial communities between corals of the same species collected at different sites, with no clear pattern of conserved bacterial consortia. Two of the clone libraries (one from each coral species) were dominated by Tenericutes, with Alphaproteobacteria dominating the remaining sequences. The other libraries were more diverse and had a more even distribution of bacterial phyla, showing more similarity between genera than within coral species. Here we report the first microbiological characterization of P. arborea, P. superba, and C. koolsae. FEMS Microbiology Ecology © 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. No claim to original US government works.

  1. Construction of cDNA library from intestine, mesentery and coelomocyte of Apostichopus japonicus Selenka infected with Vibrio sp. and a preliminary analysis of immunity-related genes

    NASA Astrophysics Data System (ADS)

    Liu, Hongzhan; Zheng, Fengrong; Sun, Xiuqin; Cai, Yimei

    2012-06-01

    The aquaculture of sea cucumber Apostichopus japonicus (Echinodermata, Holothuroidea) has grown rapidly during recent years and has become an important sector of the marine industry in Northern China. However, with the rapid growth of the industry and the use of non-standard culture techniques, epidemic diseases of A. japonicus now pose increasing problems to the industry. To screen the genes with stress response to bacterial infection in sea cucumber at a genome wide level, we constructed a cDNA library from A. japonicus Selenka (Aspidochirotida: Stichopodidae) after infecting them with Vibrio sp. for 48 h. Total RNA was extracted from the intestine, mesentery and coelomocyte of infected sea cucumber using Trizol and mRNA was isolated by Oligotex mRNA Kits. The ligated cDNAs were transformed into DH5α, and a library of 3.24×105 clones (3.24×105 cfu mL-1) was obtained with the sizes of inserted fragments ranging from 0.8 to 2.5 kb. Sequencing the cDNA clones resulted in a total of 1106 ESTs that passed the quality control. BlastX and BlastN searches have identified 168 (31.5%) ESTs sharing significant homology with known sequences in NCBI protein or nucleotide databases. Among a panel of 25 putative immunity-related genes, serum lectin isoform, complement component 3, complement component 3-like genes were further studied by real-time PCR and they all increased more than 5 fold in response to Vibrio sp. challenge. Our library provides a valuable molecular tool for future study of invertebrate immunity against bacterial infection and our gene expression data indicates the importance of the immune system in the evolution and development of sea cucumber.

  2. Archaeal and bacterial diversity in two hot springs from geothermal regions in Bulgaria as demostrated by 16S rRNA and GH-57 genes.

    PubMed

    Stefanova, Katerina; Tomova, Iva; Tomova, Anna; Radchenkova, Nadja; Atanassov, Ivan; Kambourova, Margarita

    2015-12-01

    Archaeal and bacterial diversity in two Bulgarian hot springs, geographically separated with different tectonic origin and different temperature of water was investigated exploring two genes, 16S rRNA and GH-57. Archaeal diversity was significantly higher in the hotter spring Levunovo (LV) (82°C); on the contrary, bacterial diversity was higher in the spring Vetren Dol (VD) (68°C). The analyzed clones from LV library were referred to twenty eight different sequence types belonging to five archaeal groups from Crenarchaeota and Euryarchaeota. A domination of two groups was observed, Candidate Thaumarchaeota and Methanosarcinales. The majority of the clones from VD were referred to HWCG (Hot Water Crenarchaeotic Group). The formation of a group of thermophiles in the order Methanosarcinales was suggested. Phylogenetic analysis revealed high numbers of novel sequences, more than one third of archaeal and half of the bacterial phylotypes displayed similarity lower than 97% with known ones. The retrieved GH-57 gene sequences showed a complex phylogenic distribution. The main part of the retrieved homologous GH-57 sequences affiliated with bacterial phyla Bacteroidetes, Deltaproteobacteria, Candidate Saccharibacteria and affiliation of almost half of the analyzed sequences is not fully resolved. GH-57 gene analysis allows an increased resolution of the biodiversity assessment and in depth analysis of specific taxonomic groups. [Int Microbiol 18(4):217-223 (2015)]. Copyright© by the Spanish Society for Microbiology and Institute for Catalan Studies.

  3. Use of RecA protein to enrich for homologous genes in a genomic library

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taidi-Laskowski, B.; Grumet, F.C.; Tyan, D.

    1988-08-25

    RecA protein-coated probe has been utilized to enrich genomic digests for desired genes in order to facilitate cloning from genomic libraries. Using a previously cloned HLA-B27 gene as the recA-coated enrichment probe, the authors obtained a mean 108x increase in the ratio of specific to nonspecific plaques in lambda libraries screened for B27 variant alleles of estimated 99% homology to the probe. Class I genes of lesser homology were less enriched. Loss of genomic DNA during the enrichment procedure can, however, restrict application of this technique whenever starting genomic DNA is very limited. Nevertheless, the impressive reduction in cloning effortmore » and material makes recA enrichment a useful new tool for cloning homologous genes from genomic DNA.« less

  4. Molecular and phenetic characterization of the bacterial assemblage of Hot Lake, WA, an environment with high concentrations of magnesium sulphate, and its relevance to Mars

    NASA Astrophysics Data System (ADS)

    Kilmer, Brian R.; Eberl, Timothy C.; Cunderla, Brent; Chen, Fei; Clark, Benton C.; Schneegurt, Mark A.

    2014-01-01

    Hot Lake (Oroville, WA) is an athalassohaline epsomite lake that can have precipitating concentrations of MgSO4 salts, mainly epsomite. Little biotic study has been done on epsomite lakes and it was unclear whether microbes isolated from epsomite lakes and their margins would fall within recognized halotolerant genera, common soil genera or novel phyla. Our initial study cultivated and characterized epsotolerant bacteria from the lake and its margins. Approximately 100 aerobic heterotrophic microbial isolates were obtained by repetitive streak-plating in high-salt media including either 10% NaCl or 2 M MgSO4. The collected isolates were all bacteria, nearly evenly divided between Gram-positive and Gram-negative clades, the most abundant genera being Halomonas, Idiomarina, Marinobacter, Marinococcus, Nesterenkonia, Nocardiopsis and Planococcus. Bacillus, Corynebacterium, Exiguobacterium, Kocuria and Staphylococcus also were cultured. This initial study included culture-independent community analysis of direct DNA extracts of lake margin soil using PCR-based clone libraries and 16S rRNA gene phylogeny. Clones assigned to Gram-positive bacterial clades (70% of total clones) were dominated by sequences related to uncultured actinobacteria. There were abundant Deltaproteobacteria clones related to bacterial sulphur metabolisms and clones of Legionella and Coxiella. These epsomite lake microbial communities seem to be divided between bacteria primarily associated with hyperhaline environments rich in NaCl and salinotolerant relatives of common soil organisms. Archaea appear to be in low abundance and none were isolated, despite near-saturated salinities. Growth of microbes at very high concentrations of magnesium and other sulphates has relevance to planetary protection and life-detection missions to Mars, where scant liquid water may form as deliquescent brines and appear as eutectic liquids.

  5. YAC cloning Mus musculus telomeric DNA: physical, genetic, in situ and STS markers for the distal telomere of chromosome 10.

    PubMed

    Kipling, D; Wilson, H E; Thomson, E J; Cooke, H J

    1995-06-01

    Three Mus musculus DBA/2 YAC libraries were constructed using a half-YAC telomere cloning vector. This functional complementation approach yields libraries which include terminal restriction fragments of the mouse genome. Screening all three libraries led to the isolation of 32 independent clones which carry linear YACs containing the mouse terminal repeat sequence, (TTAGGG)n. These YACs provide a resource to isolate regions of the mouse genome close to chromosome termini and excluded from existing conventional YAC libraries. To demonstrate their utility, a hybridization probe was isolated from Mtel-1, the first (TTAGGG)n-containing YAC isolated. This probe detects a approximately 70 kb Kpnl fragment in the mouse genome which is sensitive to pretreatment with BAL31 exonuclease. A PCR-based genetic marker generated from the sequence of this probe maps 4.4 cM from the most distal anchor locus on chromosome 10 in the EUCIB interspecific backcross. STS primers for this locus, D10Hgu1, were used to isolate YAC 110F4 from a commercially available mouse YAC library. Fluorescence in situ hybridization demonstrates that YAC 110F4 hybridizes to the distal telomere of chromosome 10. Clones in this collection of telomere YACs therefore partially overlap clones in conventional YAC libraries, and thus the previously unavailable terminal regions of the mouse genome can now be linked with the developing mouse STS YAC contig. Genetic markers such as D10Hgu1 allow the ends of the mouse genetic map to be defined, thus closing the map.

  6. Construction of a metagenomic DNA library of sponge symbionts and screening of antibacterial metabolites

    NASA Astrophysics Data System (ADS)

    Chen, Juan; Zhu, Tianjiao; Li, Dehai; Cui, Chengbin; Fang, Yuchun; Liu, Hongbing; Liu, Peipei; Gu, Qianqun; Zhu, Weiming

    2006-04-01

    To study the bioactive metabolites produced by sponge-derived uncultured symbionts, a metagenomic DNA library of the symbionts of sponge Gelliodes gracilis was constructed. The average size of DNA inserts in the library was 20 kb. This library was screened for antibiotic activity using paper dise assaying. Two clones displayed the antibacterial activity against Micrococcus tetragenus. The metabolites of these two clones were analyzed through HPLC. The result showed that their metabolites were quite different from those of the host E. coli DH5α and the host containing vector pHZ132. This study may present a new approach to exploring bioactive metabolites of sponge symbionts.

  7. Identifying Bacterial Immune Evasion Proteins Using Phage Display.

    PubMed

    Fevre, Cindy; Scheepmaker, Lisette; Haas, Pieter-Jan

    2017-01-01

    Methods aimed at identification of immune evasion proteins are mainly rely on in silico prediction of sequence, structural homology to known evasion proteins or use a proteomics driven approach. Although proven successful these methods are limited by a low efficiency and or lack of functional identification. Here we describe a high-throughput genomic strategy to functionally identify bacterial immune evasion proteins using phage display technology. Genomic bacterial DNA is randomly fragmented and ligated into a phage display vector that is used to create a phage display library expressing bacterial secreted and membrane bound proteins. This library is used to select displayed bacterial secretome proteins that interact with host immune components.

  8. Successful application of the dual-vector system II in creating a reliable phage-displayed combinatorial Fab library.

    PubMed

    Song, Suk-yoon; Hur, Byung-ung; Lee, Kyung-woo; Choi, Hyo-jung; Kim, Sung-soo; Kang, Goo; Cha, Sang-hoon

    2009-03-31

    The dual-vector system-II (DVS-II), which allows efficient display of Fab antibodies on phage, has been reported previously, but its practical applicability in a phage-displayed antibody library has not been verified. To resolve this issue, we created two small combinatorial human Fab antibody libraries using the DVS-II, and isolation of target-specific antibodies was attempted. Biopanning of one antibody library, termed DVFAB-1L library, which has a 1.3 x 10(7) combinatorial antibody complexity, against fluorescein-BSA resulted in successful isolation of human Fab clones specific for the antigen despite the presence of only a single light chain in the library. By using the unique feature of the DVS-II, an antibody library of a larger size, named DVFAB-131L, which has a 1.5 x 10(9) combinatorial antibody complexity, was also generated in a rapid manner by combining 1.3 x 10(7) heavy chains and 131 light chains and more diverse anti-fluorescein-BSA Fab antibody clones were successfully obtained. Our results demonstrate that the DVS-II can be applied readily in creating phage-displayed antibody libraries with much less effort, and target-specific antibody clones can be isolated reliably via light chain promiscuity of antibody molecule.

  9. [New hosts and vectors for genome cloning]. Progress report, 1990--1991

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    The main goal of our project remains the development of new bacterial hosts and vectors for the stable propagation of human DNA clones in E. coli. During the past six months of our current budget period, we have (1) continued to develop new hosts that permit the stable maintenance of unstable features of human DNA, and (2) developed a series of vectors for (a) cloning large DNA inserts, (b) assessing the frequency of human sequences that are lethal to the growth of E. coli, and (c) assessing the stability of human sequences cloned in M13 for large-scale sequencing projects.

  10. Alignment-Independent Comparisons of Human Gastrointestinal Tract Microbial Communities in a Multidimensional 16S rRNA Gene Evolutionary Space▿

    PubMed Central

    Rudi, Knut; Zimonja, Monika; Kvenshagen, Bente; Rugtveit, Jarle; Midtvedt, Tore; Eggesbø, Merete

    2007-01-01

    We present a novel approach for comparing 16S rRNA gene clone libraries that is independent of both DNA sequence alignment and definition of bacterial phylogroups. These steps are the major bottlenecks in current microbial comparative analyses. We used direct comparisons of taxon density distributions in an absolute evolutionary coordinate space. The coordinate space was generated by using alignment-independent bilinear multivariate modeling. Statistical analyses for clone library comparisons were based on multivariate analysis of variance, partial least-squares regression, and permutations. Clone libraries from both adult and infant gastrointestinal tract microbial communities were used as biological models. We reanalyzed a library consisting of 11,831 clones covering complete colons from three healthy adults in addition to a smaller 390-clone library from infant feces. We show that it is possible to extract detailed information about microbial community structures using our alignment-independent method. Our density distribution analysis is also very efficient with respect to computer operation time, meeting the future requirements of large-scale screenings to understand the diversity and dynamics of microbial communities. PMID:17337554

  11. Identification and Characterization of the Insecticidal Toxin “Makes Caterpillars Floppy” in Photorhabdus temperata M1021 Using a Cosmid Library

    PubMed Central

    Ullah, Ihsan; Jang, Eun-Kyung; Kim, Min-Sung; Shin, Jin-Ho; Park, Gun-Seok; Khan, Abdur Rahim; Hong, Sung-Jun; Jung, Byung-Kwon; Choi, JungBae; Park, YeongJun; Kwak, Yunyoung; Shin, Jae-Ho

    2014-01-01

    Photorhabdus temperata is an entomopathogenic enterobacterium; it is a nematode symbiont that possesses pathogenicity islands involved in insect virulence. Herein, we constructed a P. temperata M1021 cosmid library in Escherichia coli XL1-Blue MRF` and obtained 7.14 × 105 clones. However, only 1020 physiologically active clones were screened for insect virulence factors by injection of each E. coli cosmid clone into Galleria mellonella and Tenebrio molitor larvae. A single cosmid clone, PtC1015, was consequently selected due to its characteristic virulent properties, e.g., loss of body turgor followed by death of larvae when the clone was injected into the hemocoel. The sequence alignment against the available sequences in Swiss-Prot and NCBI databases, confirmed the presence of the mcf gene homolog in the genome of P. temperata M1021 showing 85% homology and 98% query coverage with the P. luminescens counterpart. Furthermore, a 2932 amino acid long Mcf protein revealed limited similarity with three protein domains. The N-terminus of the Mcf encompassed consensus sequence for a BH3 domain, the central region revealed similarity to toxin B, and the C-terminus of Mcf revealed similarity to the bacterial export domain of ApxIVA, an RTX-like toxin. In short, the Mcf toxin is likely to play a role in the elimination of insect pests, making it a promising model for use in the agricultural field. PMID:25014195

  12. New bacterial species associated with chronic periodontitis.

    PubMed

    Kumar, P S; Griffen, A L; Barton, J A; Paster, B J; Moeschberger, M L; Leys, E J

    2003-05-01

    Recent investigations of the human subgingival oral flora based on ribosomal 16S cloning and sequencing have shown many of the bacterial species present to be novel species or phylotypes. The purpose of the present investigation was to identify potential periodontal pathogens among these newly identified species and phylotypes. Species-specific ribosomal 16S primers for PCR amplification were developed for detection of new species. Associations with chronic periodontitis were observed for several new species or phylotypes, including uncultivated clones D084 and BH017 from the Deferribacteres phylum, AU126 from the Bacteroidetes phylum, Megasphaera clone BB166, clone X112 from the OP11 phylum, and clone I025 from the TM7 phylum, and the named species Eubacterium saphenum, Porphyromonas endodontalis, Prevotella denticola, and Cryptobacterium curtum. Species or phylotypes more prevalent in periodontal health included two uncultivated phylotypes, clone W090 from the Deferribacteres phylum and clone BU063 from the Bacteroidetes, and named species Atopobium rimae and Atopobium parvulum.

  13. Diversity and Functional Analysis of Bacterial Communities Associated with Natural Hydrocarbon Seeps in Acidic Soils at Rainbow Springs, Yellowstone National Park

    PubMed Central

    Hamamura, Natsuko; Olson, Sarah H.; Ward, David M.; Inskeep, William P.

    2005-01-01

    In this paper we describe the bacterial communities associated with natural hydrocarbon seeps in nonthermal soils at Rainbow Springs, Yellowstone National Park. Soil chemical analysis revealed high sulfate concentrations and low pH values (pH 2.8 to 3.8), which are characteristic of acid-sulfate geothermal activity. The hydrocarbon composition of the seep soils consisted almost entirely of saturated, acyclic alkanes (e.g., n-alkanes with chain lengths of C15 to C30, as well as branched alkanes, predominately pristane and phytane). Bacterial populations present in the seep soils were phylogenetically characterized by 16S rRNA gene clone library analysis. The majority of the sequences recovered (>75%) were related to sequences of heterotrophic acidophilic bacteria, including Acidisphaera spp. and Acidiphilium spp. of the α-Proteobacteria. Clones related to the iron- and sulfur-oxidizing chemolithotroph Acidithiobacillus spp. were also recovered from one of the seep soils. Hydrocarbon-amended soil-sand mixtures were established to examine [14C]hexadecane mineralization and corresponding changes in the bacterial populations using denaturing gradient gel electrophoresis (DGGE) of 16S rRNA gene fragments. Approximately 50% of the [14C]hexadecane added was recovered as 14CO2 during an 80-day incubation, and this was accompanied by detection of heterotrophic acidophile-related sequences as dominant DGGE bands. An alkane-degrading isolate was cultivated, whose 16S rRNA gene sequence was identical to the sequence of a dominant DGGE band in the soil-sand mixture, as well as the clone sequence recovered most frequently from the original soil. This and the presence of an alkB gene homolog in this isolate confirmed the alkane degradation capability of one population indigenous to acidic hydrocarbon seep soils. PMID:16204508

  14. Diversity and functional analysis of bacterial communities associated with natural hydrocarbon seeps in acidic soils at Rainbow Springs, Yellowstone National Park.

    PubMed

    Hamamura, Natsuko; Olson, Sarah H; Ward, David M; Inskeep, William P

    2005-10-01

    In this paper we describe the bacterial communities associated with natural hydrocarbon seeps in nonthermal soils at Rainbow Springs, Yellowstone National Park. Soil chemical analysis revealed high sulfate concentrations and low pH values (pH 2.8 to 3.8), which are characteristic of acid-sulfate geothermal activity. The hydrocarbon composition of the seep soils consisted almost entirely of saturated, acyclic alkanes (e.g., n-alkanes with chain lengths of C15 to C30, as well as branched alkanes, predominately pristane and phytane). Bacterial populations present in the seep soils were phylogenetically characterized by 16S rRNA gene clone library analysis. The majority of the sequences recovered (>75%) were related to sequences of heterotrophic acidophilic bacteria, including Acidisphaera spp. and Acidiphilium spp. of the alpha-Proteobacteria. Clones related to the iron- and sulfur-oxidizing chemolithotroph Acidithiobacillus spp. were also recovered from one of the seep soils. Hydrocarbon-amended soil-sand mixtures were established to examine [14C]hexadecane mineralization and corresponding changes in the bacterial populations using denaturing gradient gel electrophoresis (DGGE) of 16S rRNA gene fragments. Approximately 50% of the [14C]hexadecane added was recovered as 14CO2 during an 80-day incubation, and this was accompanied by detection of heterotrophic acidophile-related sequences as dominant DGGE bands. An alkane-degrading isolate was cultivated, whose 16S rRNA gene sequence was identical to the sequence of a dominant DGGE band in the soil-sand mixture, as well as the clone sequence recovered most frequently from the original soil. This and the presence of an alkB gene homolog in this isolate confirmed the alkane degradation capability of one population indigenous to acidic hydrocarbon seep soils.

  15. Constructing and detecting a cDNA library for mites.

    PubMed

    Hu, Li; Zhao, YaE; Cheng, Juan; Yang, YuanJun; Li, Chen; Lu, ZhaoHui

    2015-10-01

    RNA extraction and construction of complementary DNA (cDNA) library for mites have been quite challenging due to difficulties in acquiring tiny living mites and breaking their hard chitin. The present study is to explore a better method to construct cDNA library for mites that will lay the foundation on transcriptome and molecular pathogenesis research. We selected Psoroptes cuniculi as an experimental subject and took the following steps to construct and verify cDNA library. First, we combined liquid nitrogen grinding with TRIzol for total RNA extraction. Then, switching mechanism at 5' end of the RNA transcript (SMART) technique was used to construct full-length cDNA library. To evaluate the quality of cDNA library, the library titer and recombination rate were calculated. The reliability of cDNA library was detected by sequencing and analyzing positive clones and genes amplified by specific primers. The results showed that the RNA concentration was 836 ng/μl and the absorbance ratio at 260/280 nm was 1.82. The library titer was 5.31 × 10(5) plaque-forming unit (PFU)/ml and the recombination rate was 98.21%, indicating that the library was of good quality. In the 33 expressed sequence tags (ESTs) of P. cuniculi, two clones of 1656 and 1658 bp were almost identical with only three variable sites detected, which had an identity of 99.63% with that of Psoroptes ovis, indicating that the cDNA library was reliable. Further detection by specific primers demonstrated that the 553-bp Pso c II gene sequences of P. cuniculi had an identity of 98.56% with those of P. ovis, confirming that the cDNA library was not only reliable but also feasible.

  16. Molecular cloning of actin genes in Trichomonas vaginalis and phylogeny inferred from actin sequences.

    PubMed

    Bricheux, G; Brugerolle, G

    1997-08-01

    The parasitic protozoan Trichomonas vaginalis is known to contain the ubiquitous and highly conserved protein actin. A genomic library and a cDNA library have been screened to identify and clone the actin gene(s) of T. vaginalis. The nucleotide sequence of one gene and its flanking regions have been determined. The open reading frame encodes a protein of 376 amino acids. The sequence is not interrupted by any introns and the promoter could be represented by a 10 bp motif close to a consensus motif also found upstream of most sequenced T. vaginalis genes. The five different clones isolated from the cDNA library have similar sequences and encode three actin proteins differing only by one or two amino acids. A phylogenetic analysis of 31 actin sequences by distance matrix and parsimony methods, using centractin as outgroup, gives congruent trees with Parabasala branching above Diplomonadida.

  17. Bioproduction and characterization of extracellular melanin-like pigment from industrially polluted metagenomic library equipped Escherichia coli.

    PubMed

    Amin, Shivani; Rastogi, Rajesh P; Sonani, Ravi R; Ray, Arabinda; Sharma, Rakesh; Madamwar, Datta

    2018-04-15

    To explore the potential genes from the industrially polluted Amlakhadi canal, located in Ankleshwar, Gujarat, India, its community genome was extracted and cloned into E. coli EPI300™-T1 R using a fosmid vector (pCC2 FOS™) generating a library of 3,92,000 clones with average size of 40kb of DNA-insert. From this library, the clone DM1 producing brown colored melanin-like pigment was isolated and characterized. For over expression of the pigment, further sub-cloning of the clone DM1 was done. Sub-clone containing 10kb of the insert was sequenced for gene identification. The amino acids sequence of a protein 4-Hydroxyphenylpyruvate dioxygenase (HPPD), which is know to be involved in melanin biosynthesis was obtained from the gene sequence. The sequence-homology based 3D structure model of HPPD was constructed and analyzed. The physico-chemical nature of pigment was further analysed using 1 H and 13 C NMR, LC-MS, FTIR and UV-visible spectroscopy. The pigment was readily soluble in DMSO with an absorption maximum around 290nm. Based on the genetic and chemical characterization, the compound was confirmed as melanin-like pigment. The present results indicate that the metagenomic library from industrially polluted environment generated a microbial tool for the production of melanin-like pigment. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Bacterial avirulence genes.

    PubMed

    Leach, J E; White, F F

    1996-01-01

    Although more than 30 bacterial avirulence genes have been cloned and characterized, the function of the gene products in the elictitation of resistance is unknown in all cases but one. The product of avrD from Pseudomonas syringae pv. glycinea likely functions indirectly to elicit resistance in soybean, that is, evidence suggests the gene product is an enzyme involved in elicitor production. In most if not all cases, bacterial avirulence gene function is dependent on interactions with the hypersensitive response and pathogenicity (hrp) genes. Many hrp genes are similar to genes involved in delivery of pathogenicity factors in mammalian bacterial pathogens. Thus, analogies between mammalian and plant pathogens may provide needed clues to elucidate how virulence gene products control induction of resistance.

  19. Maize Endophytic Bacterial Diversity as Affected by Soil Cultivation History.

    PubMed

    Correa-Galeote, David; Bedmar, Eulogio J; Arone, Gregorio J

    2018-01-01

    The bacterial endophytic communities residing within roots of maize ( Zea mays L.) plants cultivated by a sustainable management in soils from the Quechua maize belt (Peruvian Andes) were examined using tags pyrosequencing spanning the V4 and V5 hypervariable regions of the 16S rRNA. Across four replicate libraries, two corresponding to sequences of endophytic bacteria from long time maize-cultivated soils and the other two obtained from fallow soils, 793 bacterial sequences were found that grouped into 188 bacterial operational taxonomic units (OTUs, 97% genetic similarity). The numbers of OTUs in the libraries from the maize-cultivated soils were significantly higher than those found in the libraries from fallow soils. A mean of 30 genera were found in the fallow soil libraries and 47 were in those from the maize-cultivated soils. Both alpha and beta diversity indexes showed clear differences between bacterial endophytic populations from plants with different soil cultivation history and that the soils cultivated for long time requires a higher diversity of endophytes. The number of sequences corresponding to main genera Sphingomonas, Herbaspirillum, Bradyrhizobium and Methylophilus in the maize-cultivated libraries were statistically more abundant than those from the fallow soils. Sequences of genera Dyella and Sreptococcus were significantly more abundant in the libraries from the fallow soils. Relative abundance of genera Burkholderia, candidatus Glomeribacter, Staphylococcus, Variovorax, Bacillus and Chitinophaga were similar among libraries. A canonical correspondence analysis of the relative abundance of the main genera showed that the four libraries distributed in two clearly separated groups. Our results suggest that cultivation history is an important driver of endophytic colonization of maize and that after a long time of cultivation of the soil the maize plants need to increase the richness of the bacterial endophytes communities.

  20. Maize Endophytic Bacterial Diversity as Affected by Soil Cultivation History

    PubMed Central

    Correa-Galeote, David; Bedmar, Eulogio J.; Arone, Gregorio J.

    2018-01-01

    The bacterial endophytic communities residing within roots of maize (Zea mays L.) plants cultivated by a sustainable management in soils from the Quechua maize belt (Peruvian Andes) were examined using tags pyrosequencing spanning the V4 and V5 hypervariable regions of the 16S rRNA. Across four replicate libraries, two corresponding to sequences of endophytic bacteria from long time maize-cultivated soils and the other two obtained from fallow soils, 793 bacterial sequences were found that grouped into 188 bacterial operational taxonomic units (OTUs, 97% genetic similarity). The numbers of OTUs in the libraries from the maize-cultivated soils were significantly higher than those found in the libraries from fallow soils. A mean of 30 genera were found in the fallow soil libraries and 47 were in those from the maize-cultivated soils. Both alpha and beta diversity indexes showed clear differences between bacterial endophytic populations from plants with different soil cultivation history and that the soils cultivated for long time requires a higher diversity of endophytes. The number of sequences corresponding to main genera Sphingomonas, Herbaspirillum, Bradyrhizobium and Methylophilus in the maize-cultivated libraries were statistically more abundant than those from the fallow soils. Sequences of genera Dyella and Sreptococcus were significantly more abundant in the libraries from the fallow soils. Relative abundance of genera Burkholderia, candidatus Glomeribacter, Staphylococcus, Variovorax, Bacillus and Chitinophaga were similar among libraries. A canonical correspondence analysis of the relative abundance of the main genera showed that the four libraries distributed in two clearly separated groups. Our results suggest that cultivation history is an important driver of endophytic colonization of maize and that after a long time of cultivation of the soil the maize plants need to increase the richness of the bacterial endophytes communities. PMID:29662471

  1. Identification and Cloning of gusA, Encoding a New β-Glucuronidase from Lactobacillus gasseri ADH†

    PubMed Central

    Russell, W. M.; Klaenhammer, T. R.

    2001-01-01

    The gusA gene, encoding a new β-glucuronidase enzyme, has been cloned from Lactobacillus gasseri ADH. This is the first report of a β-glucuronidase gene cloned from a bacterial source other than Escherichia coli. A plasmid library of L. gasseri chromosomal DNA was screened for complementation of an E. coli gus mutant. Two overlapping clones that restored β-glucuronidase activity in the mutant strain were sequenced and revealed three complete and two partial open reading frames. The largest open reading frame, spanning 1,797 bp, encodes a 597-amino-acid protein that shows 39% identity to β-glucuronidase (GusA) of E. coli K-12 (EC 3.2.1.31). The other two complete open reading frames, which are arranged to be separately transcribed, encode a putative bile salt hydrolase and a putative protein of unknown function with similarities to MerR-type regulatory proteins. Overexpression of GusA was achieved in a β-glucuronidase-negative L. gasseri strain by expressing the gusA gene, subcloned onto a low-copy-number shuttle vector, from the strong Lactobacillus P6 promoter. GusA was also expressed in E. coli from a pET expression system. Preliminary characterization of the GusA protein from crude cell extracts revealed that the enzyme was active across an acidic pH range and a broad temperature range. An analysis of other lactobacilli identified β-glucuronidase activity and gusA homologs in other L. gasseri isolates but not in other Lactobacillus species tested. PMID:11229918

  2. High-throughput and reliable protocols for animal microRNA library cloning.

    PubMed

    Xiao, Caide

    2011-01-01

    MicroRNAs are short single-stranded RNA molecules (18-25 nucleotides). Because of their ability to silence gene expressions, they can be used to diagnose and treat tumors. Experimental construction of microRNA libraries was the most important step to identify microRNAs from animal tissues. Although there are many commercial kits with special protocols to construct microRNA libraries, this chapter provides the most reliable, high-throughput, and affordable protocols for microRNA library construction. The high-throughput capability of our protocols came from a double concentration (3 and 15%, thickness 1.5 mm) polyacrylamide gel electrophoresis (PAGE), which could directly extract microRNA-size RNAs from up to 400 μg total RNA (enough for two microRNA libraries). The reliability of our protocols was assured by a third PAGE, which selected PCR products of microRNA-size RNAs ligated with 5' and 3' linkers by a miRCat™ kit. Also, a MathCAD program was provided to automatically search short RNAs inserted between 5' and 3' linkers from thousands of sequencing text files.

  3. The effect of high-fat diet on the composition of the gut microbiota in cloned and non-cloned pigs of lean and obese phenotype

    PubMed Central

    Pedersen, Rebecca; Andersen, Anders Daniel; Hermann-Bank, Marie Louise; Stagsted, Jan; Boye, Mette

    2013-01-01

    The aim of this study was to investigate the effect of high-far-high-energy diet on cloned and non-cloned domestic pigs of both lean and obese phenotype and to evaluate if the lean cloned pigs had a lower inter-individual variation as compared with non-cloned pigs. The microbiota of colon and terminal ileum was investigated in cloned and non-cloned pigs that received a high-far-high-energy diet with either restricted or ad libitum access to feed, resulting in lean and obese phenotypes, respectively. The fecal microbiota of lean pigs was investigated by terminal restriction fragment length polymorphism (T-RFLP). The intestinal microbiota of lean and obese cloned and non-cloned pigs was analyzed by quantitative real time PCR and a novel high-throughput qPCR platform (Fluidigm). Principal component analysis (PCA) of the T-RFLP profiles revealed that lean cloned and non-cloned pigs had a different overall composition of their gut microbiota. The colon of lean cloned pigs contained relatively more bacteria belonging to the phylum Firmicutes and less from the phylum Bacteroidetes than obese cloned pigs as estimated by qPCR. Fluidigm qPCR results revealed differences in specific bacterial groups in the gut microbiota of both lean and obese pigs. Our results suggest that high-far-high-energy diet is associated with changes in the gut microbiota even in the absence of obesity. Overall, the cloned pigs had a different gut microbiota from that of non-cloned pigs. To our knowledge this is the first study to investigate the gut microbiota of cloned domestic pigs of lean and obese phenotype. PMID:23974297

  4. The effect of high-fat diet on the composition of the gut microbiota in cloned and non-cloned pigs of lean and obese phenotype.

    PubMed

    Pedersen, Rebecca; Andersen, Anders Daniel; Hermann-Bank, Marie Louise; Stagsted, Jan; Boye, Mette

    2013-01-01

    The aim of this study was to investigate the effect of high-far-high-energy diet on cloned and non-cloned domestic pigs of both lean and obese phenotype and to evaluate if the lean cloned pigs had a lower inter-individual variation as compared with non-cloned pigs. The microbiota of colon and terminal ileum was investigated in cloned and non-cloned pigs that received a high-far-high-energy diet with either restricted or ad libitum access to feed, resulting in lean and obese phenotypes, respectively. The fecal microbiota of lean pigs was investigated by terminal restriction fragment length polymorphism (T-RFLP). The intestinal microbiota of lean and obese cloned and non-cloned pigs was analyzed by quantitative real time PCR and a novel high-throughput qPCR platform (Fluidigm). Principal component analysis (PCA) of the T-RFLP profiles revealed that lean cloned and non-cloned pigs had a different overall composition of their gut microbiota. The colon of lean cloned pigs contained relatively more bacteria belonging to the phylum Firmicutes and less from the phylum Bacteroidetes than obese cloned pigs as estimated by qPCR. Fluidigm qPCR results revealed differences in specific bacterial groups in the gut microbiota of both lean and obese pigs. Our results suggest that high-far-high-energy diet is associated with changes in the gut microbiota even in the absence of obesity. Overall, the cloned pigs had a different gut microbiota from that of non-cloned pigs. To our knowledge this is the first study to investigate the gut microbiota of cloned domestic pigs of lean and obese phenotype.

  5. Endophytic bacterial diversity in the phyllosphere of Amazon Paullinia cupana associated with asymptomatic and symptomatic anthracnose.

    PubMed

    Bogas, Andréa Cristina; Ferreira, Almir José; Araújo, Welington Luiz; Astolfi-Filho, Spartaco; Kitajima, Elliot Watanabe; Lacava, Paulo Teixeira; Azevedo, João Lúcio

    2015-01-01

    Endophytes colonize an ecological niche similar to that of phytopathogens, which make them candidate for disease suppression. Anthracnose is a disease caused by Colletotrichum spp., a phytopathogen that can infect guarana (Paullinia cupana), an important commercial crop in the Brazilian Amazon. We investigated the diversity of endophytic bacteria inhabiting the phyllosphere of asymptomatic and symptomatic anthracnose guarana plants. The PCR-denaturation gradient gel electrophoresis (PCR-DGGE) fingerprints revealed differences in the structure of the evaluated communities. Detailed analysis of endophytic bacteria composition using culture-dependent and 16S rRNA clone libraries revealed the presence of Firmicutes, Proteobacteria, Actinobacteria, Bacteroidetes, and Acidobacteria phyla. Firmicutes comprised the majority of isolates in asymptomatic plants (2.40E(-4)). However, cloning and sequencing of 16S rRNA revealed differences at the genus level for Neisseria (1.4E(-4)), Haemophilus (2.1E(-3)) and Arsenophonus (3.6E(-5)) in asymptomatic plants, Aquicella (3.5E(-3)) in symptomatic anthracnose plants, and Pseudomonas (1.1E(-3)), which was mainly identified in asymptomatic plants. In cross-comparisons of the endophytic bacterial communities as a whole, symptomatic anthracnose plants contained higher diversity, as reflected in the Shannon-Weaver and Simpson indices estimation (P < 0.05). Similarly, comparisons using LIBSHUFF and heatmap analysis for the relative abundance of operational taxonomic units (OTUs) showed differences between endophytic bacterial communities. These data are in agreement with the NMSD and ANOSIM analysis of DGGE profiles. Our results suggest that anthracnose can restructure endophytic bacterial communities by selecting certain strains in the phyllosphere of P. cupana. The understanding of these interactions is important for the development of strategies of biocontrol for Colletotrichum.

  6. Cloning and expression of Pectobacterium carotovorum endo-polygalacturonase gene in Pichia pastoris for production of oligogalacturonates

    USDA-ARS?s Scientific Manuscript database

    A bacterial endo-polygalacturonase (endo-PGase) gene from the plant pathogen Pectobacterium carotovorum was cloned into pGAPZaA vector and constitutively expressed in Pichia pastoris. The recombinant endo-PGase secreted by the Pichia clone showed a 1.7 fold increase when the culture medium included ...

  7. Molecular cloning and characterization of Hymenolepis diminuta alpha-tubulin gene.

    PubMed

    Mohajer-Maghari, Behrokh; Amini-Bavil-Olyaee, Samad; Webb, Rodney A; Coe, Imogen R

    2007-02-01

    To isolate a full-length alpha-tubulin cDNA from an eucestode, Hymenolepis diminuta, a lambda phage cDNA library was constructed. The alpha-tubulin gene was cloned, sequenced and characterized. The H. diminuta alpha-tubulin consisted of 450 amino acids. This protein contained putative sites for all posttranslational modifications as detyrosination/tyrosination at the carboxyl-terminal of protien, phosphorylation at residues R79 and K336, glycylation/glutamylation at residue G445 and acetylation at residue K40. Comparisons of H. diminuta alpha-tubulin with all full-length alpha-tubulin proteins revealed that H. diminuta alpha-tubulin possesses 10 distinctive residues, which are not found in any other alpha-tubulins. Phylogenetic analysis showed that H. diminuta alpha-tubulin has grouped in a separated branch adjacent eucestode and trematodes branch with 92% bootstrap value (1000 replicates). In conclusion, this is the first report of H. diminuta cDNA library construction, cloning and characterization of H. diminuta alpha-tubulin gene.

  8. A novel process of viral vector barcoding and library preparation enables high-diversity library generation and recombination-free paired-end sequencing

    PubMed Central

    Davidsson, Marcus; Diaz-Fernandez, Paula; Schwich, Oliver D.; Torroba, Marcos; Wang, Gang; Björklund, Tomas

    2016-01-01

    Detailed characterization and mapping of oligonucleotide function in vivo is generally a very time consuming effort that only allows for hypothesis driven subsampling of the full sequence to be analysed. Recent advances in deep sequencing together with highly efficient parallel oligonucleotide synthesis and cloning techniques have, however, opened up for entirely new ways to map genetic function in vivo. Here we present a novel, optimized protocol for the generation of universally applicable, barcode labelled, plasmid libraries. The libraries are designed to enable the production of viral vector preparations assessing coding or non-coding RNA function in vivo. When generating high diversity libraries, it is a challenge to achieve efficient cloning, unambiguous barcoding and detailed characterization using low-cost sequencing technologies. With the presented protocol, diversity of above 3 million uniquely barcoded adeno-associated viral (AAV) plasmids can be achieved in a single reaction through a process achievable in any molecular biology laboratory. This approach opens up for a multitude of in vivo assessments from the evaluation of enhancer and promoter regions to the optimization of genome editing. The generated plasmid libraries are also useful for validation of sequencing clustering algorithms and we here validate the newly presented message passing clustering process named Starcode. PMID:27874090

  9. Molecular diversity analysis and bacterial population dynamics of an adapted seawater microbiota during the degradation of Tunisian zarzatine oil.

    PubMed

    Zrafi-Nouira, Ines; Guermazi, Sonda; Chouari, Rakia; Safi, Nimer M D; Pelletier, Eric; Bakhrouf, Amina; Saidane-Mosbahi, Dalila; Sghir, Abdelghani

    2009-07-01

    The indigenous microbiota of polluted coastal seawater in Tunisia was enriched by increasing the concentration of zarzatine crude oil. The resulting adapted microbiota was incubated with zarzatine crude oil as the only carbon and energy source. Crude oil biodegradation capacity and bacterial population dynamics of the microbiota were evaluated every week for 28 days (day 7, day 14, day 21, and day 28). Results show that the percentage of petroleum degradation was 23.9, 32.1, 65.3, and 77.8%, respectively. At day 28, non-aromatic and aromatic hydrocarbon degradation rates reached 92.6 and 68.7%, respectively. Bacterial composition of the adapted microflora was analysed by 16S rRNA gene cloning and sequencing, using total genomic DNA extracted from the adapted microflora at days 0, 7, 14, 21, and 28. Five clone libraries were constructed and a total of 430 sequences were generated and grouped into OTUs using the ARB software package. Phylogenetic analysis of the adapted microbiota shows the presence of four phylogenetic groups: Proteobacteria, Firmicutes, Actinobacteria and Bacteroidetes. Diversity indices show a clear decrease in bacterial diversity of the adapted microflora according to the incubation time. The Proteobacteria are the most predominant (>80%) at day 7, day 14 and day 21 but not at day 28 for which the microbiota was reduced to only one OTU affiliated with the genus Kocuria of the Actinobacteria. This study shows that the degradation of zarzatine crude oil components depends on the activity of a specialized and dynamic seawater consortium composed of different phylogenetic taxa depending on the substrate complexity.

  10. Bacterial diversity in the active stage of a bioremediation system for mineral oil hydrocarbon-contaminated soils.

    PubMed

    Popp, Nicole; Schlömann, Michael; Mau, Margit

    2006-11-01

    Soils contaminated with mineral oil hydrocarbons are often cleaned in off-site bioremediation systems. In order to find out which bacteria are active during the degradation phase in such systems, the diversity of the active microflora in a degrading soil remediation system was investigated by small-subunit (SSU) rRNA analysis. Two sequential RNA extracts from one soil sample were generated by a procedure incorporating bead beating. Both extracts were analysed separately by generating individual SSU rDNA clone libraries from cDNA of the two extracts. The sequencing results showed moderate diversity. The two clone libraries were dominated by Gammaproteobacteria, especially Pseudomonas spp. Alphaproteobacteria and Betaproteobacteria were two other large groups in the clone libraries. Actinobacteria, Firmicutes, Bacteroidetes and Epsilonproteobacteria were detected in lower numbers. The obtained sequences were predominantly related to genera for which cultivated representatives have been described, but were often clustered together in the phylogenetic tree, and the sequences that were most similar were originally obtained from soils and not from pure cultures. Most of the dominant genera in the clone libraries, e.g. Pseudomonas, Acinetobacter, Sphingomonas, Acidovorax and Thiobacillus, had already been detected in (mineral oil hydrocarbon) contaminated environmental samples. The occurrence of the genera Zymomonas and Rhodoferax was novel in mineral oil hydrocarbon-contaminated soil.

  11. Comparative genomics of Lupinus angustifolius gene-rich regions: BAC library exploration, genetic mapping and cytogenetics

    PubMed Central

    2013-01-01

    Background The narrow-leafed lupin, Lupinus angustifolius L., is a grain legume species with a relatively compact genome. The species has 2n = 40 chromosomes and its genome size is 960 Mbp/1C. During the last decade, L. angustifolius genomic studies have achieved several milestones, such as molecular-marker development, linkage maps, and bacterial artificial chromosome (BAC) libraries. Here, these resources were integratively used to identify and sequence two gene-rich regions (GRRs) of the genome. Results The genome was screened with a probe representing the sequence of a microsatellite fragment length polymorphism (MFLP) marker linked to Phomopsis stem blight resistance. BAC clones selected by hybridization were subjected to restriction fingerprinting and contig assembly, and 232 BAC-ends were sequenced and annotated. BAC fluorescence in situ hybridization (BAC-FISH) identified eight single-locus clones. Based on physical mapping, cytogenetic localization, and BAC-end annotation, five clones were chosen for sequencing. Within the sequences of clones that hybridized in FISH to a single-locus, two large GRRs were identified. The GRRs showed strong and conserved synteny to Glycine max duplicated genome regions, illustrated by both identical gene order and parallel orientation. In contrast, in the clones with dispersed FISH signals, more than one-third of sequences were transposable elements. Sequenced, single-locus clones were used to develop 12 genetic markers, increasing the number of L. angustifolius chromosomes linked to appropriate linkage groups by five pairs. Conclusions In general, probes originating from MFLP sequences can assist genome screening and gene discovery. However, such probes are not useful for positional cloning, because they tend to hybridize to numerous loci. GRRs identified in L. angustifolius contained a low number of interspersed repeats and had a high level of synteny to the genome of the model legume G. max. Our results showed that

  12. Assessment of Equine Fecal Contamination: The Search for Alternative Bacterial Source-tracking Targets

    EPA Science Inventory

    16S rDNA clone libraries were evaluated for detection of fecal source-identifying bacteria from a collapsed equine manure pile. Libraries were constructed using universal eubacterial primers and Bacteroides-Prevotella group-specific primers. Eubacterial sequences indicat...

  13. Prophage-mediated dynamics of 'Candidatus Liberibacter asiaticus' populations, the destructive bacterial pathogens of citrus huanglongbing.

    PubMed

    Zhou, Lijuan; Powell, Charles A; Li, Wenbin; Irey, Mike; Duan, Yongping

    2013-01-01

    Prophages are highly dynamic components in the bacterial genome and play an important role in intraspecies variations. There are at least two prophages in the chromosomes of Candidatus Liberibacter asiaticus' (Las) Floridian isolates. Las is both unculturable and the most prevalent species of Liberibacter pathogens that cause huanglongbing (HLB), a worldwide destructive disease of citrus. In this study, seven new prophage variants resulting from two hyper-variable regions were identified by screening clone libraries of infected citrus, periwinkle and psyllids. Among them, Types A and B share highly conserved sequences and localize within the two prophages, FP1 and FP2, respectively. Although Types B and C were abundant in all three libraries, Type A was much more abundant in the libraries from the Las-infected psyllids than from the Las-infected plants, and Type D was only identified in libraries from the infected host plants but not from the infected psyllids. Sequence analysis of these variants revealed that the variations may result from recombination and rearrangement events. Conventional PCR results using type-specific molecular markers indicated that A, B, C and D are the four most abundant types in Las-infected citrus and periwinkle. However, only three types, A, B and C are abundant in Las-infected psyllids. Typing results for Las-infected citrus field samples indicated that mixed populations of Las bacteria present in Floridian isolates, but only the Type D population was correlated with the blotchy mottle symptom. Extended cloning and sequencing of the Type D region revealed a third prophage/phage in the Las genome, which may derive from the recombination of FP1 and FP2. Dramatic variations in these prophage regions were also found among the global Las isolates. These results are the first to demonstrate the prophage/phage-mediated dynamics of Las populations in plant and insect hosts, and their correlation with insect transmission and disease development.

  14. Effect of reclaimed water effluent on bacterial community structure in the Typha angustifolia L. rhizosphere soil of urbanized riverside wetland, China.

    PubMed

    Huang, Xingru; Xiong, Wei; Liu, Wei; Guo, Xiaoyu

    2017-05-01

    In order to evaluate the impact of reclaimed water on the ecology of bacterial communities in the Typha angustifolia L. rhizosphere soil, bacterial community structure was investigated using a combination of terminal restriction fragment length polymorphism and 16S rRNA gene clone library. The results revealed significant spatial variation of bacterial communities along the river from upstream and downstream. For example, a higher relative abundance of γ-Proteobacteria, Firmicutes, Chloroflexi and a lower proportion of β-Proteobacteria and ε-Proteobacteria was detected at the downstream site compared to the upstream site. Additionally, with an increase of the reclaimed water interference intensity, the rhizosphere bacterial community showed a decrease in taxon richness, evenness and diversity. The relative abundance of bacteria closely related to the resistant of heavy-metal was markedly increased, while the bacteria related for carbon/nitrogen/phosphorus/sulfur cycling wasn't strikingly changed. Besides that, the pathogenic bacteria markedly increased in the downstream rhizosphere soil since reclaimed water supplement, while the possible plant growth-promoting rhizobacteria obviously reduced in the downstream sediment. Together these data suggest cause and effect between reclaimed water input into the wetland, shift in bacterial communities through habitat change, and alteration of capacity for biogeochemical cycling of contaminants. Copyright © 2016. Published by Elsevier B.V.

  15. Chicken microsatellite markers isolated from libraries enriched for simple tandem repeats.

    PubMed

    Gibbs, M; Dawson, D A; McCamley, C; Wardle, A F; Armour, J A; Burke, T

    1997-12-01

    The total number of microsatellite loci is considered to be at least 10-fold lower in avian species than in mammalian species. Therefore, efficient large-scale cloning of chicken microsatellites, as required for the construction of a high-resolution linkage map, is facilitated by the construction of libraries using an enrichment strategy. In this study, a plasmid library enriched for tandem repeats was constructed from chicken genomic DNA by hybridization selection. Using this technique the proportion of recombinant clones that cross-hybridized to probes containing simple tandem repeats was raised to 16%, compared with < 0.1% in a non-enriched library. Primers were designed from 121 different sequences. Polymerase chain reaction (PCR) analysis of two chicken reference pedigrees enabled 72 loci to be localized within the collaborative chicken genetic map, and at least 30 of the remaining loci have been shown to be informative in these or other crosses.

  16. Culture-independent characterization of bacterial communities associated with the cold-water coral Lophelia pertusa in the northeastern Gulf of Mexico

    USGS Publications Warehouse

    Kellogg, C.A.; Lisle, J.T.; Galkiewicz, J.P.

    2009-01-01

    Bacteria are recognized as an important part of the total biology of shallow-water corals. Studies of shallow-water corals suggest that associated bacteria may benefit the corals by cycling carbon, fixing nitrogen, chelating iron, and producing antibiotics that protect the coral from other microbes. Cold-water or deep-sea corals have a fundamentally different ecology due to their adaptation to cold, dark, high-pressure environments and as such have novel microbiota. The goal of this study was to characterize the microbial associates of Lophelia pertusa in the northeastern Gulf of Mexico. This is the first study to collect the coral samples in individual insulated containers and to preserve coral samples at depth in an effort to minimize thermal shock and evaluate the effects of environmental gradients on the microbial diversity of samples. Molecular analysis of bacterial diversity showed a marked difference between the two study sites, Viosca Knoll 906/862 (VK906/862) and Viosca Knoll 826 (VK826). The bacterial communities from VK826 were dominated by a variety of unknown mycoplasmal members of the Tenericutes and Bacteroidetes, whereas the libraries from VK906/862 were dominated by members of the Proteobacteria. In addition to novel sequences, the 16S rRNA gene clone libraries revealed many bacterial sequences in common between Gulf of Mexico Lophelia corals and Norwegian fjord Lophelia corals, as well as shallow-water corals. Two Lophelia-specific bacterial groups were identified: a cluster of gammaproteobacteria related to sulfide-oxidizing gill symbionts of seep clams and a group of Mycoplasma spp. The presence of these groups in both Gulf and Norwegian Lophelia corals indicates that in spite of the geographic heterogeneity observed in Lophelia-associated bacterial communities, there are Lophelia-specific microbes. Copyright ?? 2009, American Society for Microbiology. All Rights Reserved.

  17. Sheep polyclonal antibody to map Haemonchus contortus mimotopes using phage display library.

    PubMed

    Buzatti, Andréia; Fernandez, Arnielis Diaz; Arenal, Amilcar; Pereira, Erlán; Monteiro, Alda Lucia Gomes; Molento, Marcelo Beltrão

    2018-05-24

    The aim of this study was to evaluate phage display technology for mapping Haemonchus contortus mimotopes. We screened the PhD-7 Phage Display Peptide Library Kit with a sheep polyclonal antibody against H. contortus. After four rounds of selection, 50 phage peptide clones were selected by biopanning and sequenced. Two clones displaying peptide mimotopes of H. contortus proteins were chosen for sheep immunization: clone 6 - mimotope of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and clone 17 - mimotope of a disorganized muscle family member (Dim 1). Twelve sheep were allocated into 3 groups of 4 animals as follow: G1: control group; G2/GAPDH: immunized with clone 6; and G3/Dim1: immunized with clone 17. Four immunizations were performed at intervals of seven days (0, 7, 14, and 21 days). On day 28 post initial vaccination, all groups were orally challenged with 2500 H. contortus infective larvae. The mimotope peptides selected by phage display were recognized by IgG from sheep naturaly infected with H. contortus. The immunization protocol showed an increasein IgG anti-M13 phage titers, but no effect was observed in IgG-specific for the anti-mimotope peptides. This is the first report of successful use of a phage display library for the identification of mimotopes of H. contortus proteins.

  18. Bacterial diversity in faeces from polar bear (Ursus maritimus) in Arctic Svalbard.

    PubMed

    Glad, Trine; Bernhardsen, Pål; Nielsen, Kaare M; Brusetti, Lorenzo; Andersen, Magnus; Aars, Jon; Sundset, Monica A

    2010-01-14

    Polar bears (Ursus maritimus) are major predators in the Arctic marine ecosystem, feeding mainly on seals, and living closely associated with sea ice. Little is known of their gut microbial ecology and the main purpose of this study was to investigate the microbial diversity in faeces of polar bears in Svalbard, Norway (74-81 degrees N, 10-33 degrees E). In addition the level of blaTEM alleles, encoding ampicillin resistance (ampr) were determined. In total, ten samples were collected from ten individual bears, rectum swabs from five individuals in 2004 and faeces samples from five individuals in 2006. A 16S rRNA gene clone library was constructed, and all sequences obtained from 161 clones showed affiliation with the phylum Firmicutes, with 160 sequences identified as Clostridiales and one sequence identified as unclassified Firmicutes. The majority of the sequences (70%) were affiliated with the genus Clostridium. Aerobic heterotrophic cell counts on chocolate agar ranged between 5.0 x 10(4) to 1.6 x 10(6) colony forming units (cfu)/ml for the rectum swabs and 4.0 x 10(3) to 1.0 x 10(5) cfu/g for the faeces samples. The proportion of ampr bacteria ranged from 0% to 44%. All of 144 randomly selected ampr isolates tested positive for enzymatic beta-lactamase activity. Three % of the ampr isolates from the rectal samples yielded positive results when screened for the presence of blaTEM genes by PCR. BlaTEM alleles were also detected by PCR in two out of three total faecal DNA samples from polar bears. The bacterial diversity in faeces from polar bears in their natural environment in Svalbard is low compared to other animal species, with all obtained clones affiliating to Firmicutes. Furthermore, only low levels of blaTEM alleles were detected in contrast to their increasing prevalence in some clinical and commensal bacterial populations.

  19. Bacterial diversity in faeces from polar bear (Ursus maritimus) in Arctic Svalbard

    PubMed Central

    2010-01-01

    Background Polar bears (Ursus maritimus) are major predators in the Arctic marine ecosystem, feeding mainly on seals, and living closely associated with sea ice. Little is known of their gut microbial ecology and the main purpose of this study was to investigate the microbial diversity in faeces of polar bears in Svalbard, Norway (74-81°N, 10-33°E). In addition the level of blaTEM alleles, encoding ampicillin resistance (ampr) were determined. In total, ten samples were collected from ten individual bears, rectum swabs from five individuals in 2004 and faeces samples from five individuals in 2006. Results A 16S rRNA gene clone library was constructed, and all sequences obtained from 161 clones showed affiliation with the phylum Firmicutes, with 160 sequences identified as Clostridiales and one sequence identified as unclassified Firmicutes. The majority of the sequences (70%) were affiliated with the genus Clostridium. Aerobic heterotrophic cell counts on chocolate agar ranged between 5.0 × 104 to 1.6 × 106 colony forming units (cfu)/ml for the rectum swabs and 4.0 × 103 to 1.0 × 105 cfu/g for the faeces samples. The proportion of ampr bacteria ranged from 0% to 44%. All of 144 randomly selected ampr isolates tested positive for enzymatic β-lactamase activity. Three % of the ampr isolates from the rectal samples yielded positive results when screened for the presence of blaTEM genes by PCR. BlaTEM alleles were also detected by PCR in two out of three total faecal DNA samples from polar bears. Conclusion The bacterial diversity in faeces from polar bears in their natural environment in Svalbard is low compared to other animal species, with all obtained clones affiliating to Firmicutes. Furthermore, only low levels of blaTEM alleles were detected in contrast to their increasing prevalence in some clinical and commensal bacterial populations. PMID:20074323

  20. Direct cloning from enrichment cultures, a reliable strategy for isolation of complete operons and genes from microbial consortia.

    PubMed

    Entcheva, P; Liebl, W; Johann, A; Hartsch, T; Streit, W R

    2001-01-01

    Enrichment cultures of microbial consortia enable the diverse metabolic and catabolic activities of these populations to be studied on a molecular level and to be explored as potential sources for biotechnology processes. We have used a combined approach of enrichment culture and direct cloning to construct cosmid libraries with large (>30-kb) inserts from microbial consortia. Enrichment cultures were inoculated with samples from five environments, and high amounts of avidin were added to the cultures to favor growth of biotin-producing microbes. DNA was extracted from three of these enrichment cultures and used to construct cosmid libraries; each library consisted of between 6,000 and 35,000 clones, with an average insert size of 30 to 40 kb. The inserts contained a diverse population of genomic DNA fragments isolated from the consortia organisms. These three libraries were used to complement the Escherichia coli biotin auxotrophic strain ATCC 33767 Delta(bio-uvrB). Initial screens resulted in the isolation of seven different complementing cosmid clones, carrying biotin biosynthesis operons. Biotin biosynthesis capabilities and growth under defined conditions of four of these clones were studied. Biotin measured in the different culture supernatants ranged from 42 to 3,800 pg/ml/optical density unit. Sequencing the identified biotin synthesis genes revealed high similarities to bio operons from gram-negative bacteria. In addition, random sequencing identified other interesting open reading frames, as well as two operons, the histidine utilization operon (hut), and the cluster of genes involved in biosynthesis of molybdopterin cofactors in bacteria (moaABCDE).

  1. Isolation and characterization of cDNA clones for carrot extensin and a proline-rich 33-kDa protein

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, J.; Varner, J.E.

    1985-07-01

    Extensins are hydroxyproline-rich glycoproteins associated with most dicotyledonous plant cell walls. To isolate cDNA clones encoding extensin, the authors started by isolating poly(A) RNA from carrot root tissue, and then translating the RNA in vitro, in the presence of tritiated leucine or proline. A 33-kDa peptide was identified in the translation products as a putative extensin precursor. From a cDNA library constructed with poly(A) RNA from wounded carrots, one cDNA clone (pDC5) was identified that specifically hybridized to poly(A) RNA encoding this 33-kDa peptide. They isolated three cDNA clones (pDC11, pDC12, and pDC16) from another cDNA library using pCD5 asmore » a probe. DNA sequence data, RNA hybridization analysis, and hybrid released in vitro translation indicate that the cDNA clones pDC11 encodes extensin and that cDNA clones pDC12 and pDC16 encode the 33-kDa peptide, which as yet has an unknown identity and function. The assumption that the 33-kDa peptide was an extensin precursor was invalid. RNA hybridization analysis showed that RNA encoded by both clone types is accumulated upon wounding.« less

  2. Changes in bacterial composition of biofilm in a metropolitan drinking water distribution system.

    PubMed

    Revetta, R P; Gomez-Alvarez, V; Gerke, T L; Santo Domingo, J W; Ashbolt, N J

    2016-07-01

    This study examined the development of bacterial biofilms within a metropolitan distribution system. The distribution system is fed with different source water (i.e. groundwater, GW and surface water, SW) and undergoes different treatment processes in separate facilities. The biofilm community was characterized using 16S rRNA gene clone libraries and functional potential analysis, generated from total DNA extracted from coupons in biofilm annular reactors fed with onsite drinking water for up to 18 months. Differences in the bacterial community structure were observed between GW and SW. Representatives that explained the dissimilarity were associated with the classes Betaproteobacteria, Alphaproteobacteria, Actinobacteria, Gammaproteobacteria and Firmicutes. After 9 months the biofilm bacterial community from both GW and SW were dominated by Mycobacterium species. The distribution of the dominant operational taxonomic unit (OTU) (Mycobacterium) positively correlated with the drinking water distribution system (DWDS) temperature. In this study, the biofilm community structure observed between GW and SW were dissimilar, while communities from different locations receiving SW did not show significant differences. The results suggest that source water and/or the water quality shaped by their respective treatment processes may play an important role in shaping the bacterial communities in the distribution system. In addition, several bacterial groups were present in all samples, suggesting that they are an integral part of the core microbiota of this DWDS. These results provide an ecological insight into biofilm bacterial structure in chlorine-treated drinking water influenced by different water sources and their respective treatment processes. Published 2016. This article is a U.S. Government work and is in the public domain in the USA.

  3. Massive dominance of Epsilonproteobacteria in formation waters from a Canadian oil sands reservoir containing severely biodegraded oil

    PubMed Central

    Hubert, Casey R J; Oldenburg, Thomas B P; Fustic, Milovan; Gray, Neil D; Larter, Stephen R; Penn, Kevin; Rowan, Arlene K; Seshadri, Rekha; Sherry, Angela; Swainsbury, Richard; Voordouw, Gerrit; Voordouw, Johanna K; Head, Ian M

    2012-01-01

    Summary The subsurface microbiology of an Athabasca oil sands reservoir in western Canada containing severely biodegraded oil was investigated by combining 16S rRNA gene- and polar lipid-based analyses of reservoir formation water with geochemical analyses of the crude oil and formation water. Biomass was filtered from formation water, DNA was extracted using two different methods, and 16S rRNA gene fragments were amplified with several different primer pairs prior to cloning and sequencing or community fingerprinting by denaturing gradient gel electrophoresis (DGGE). Similar results were obtained irrespective of the DNA extraction method or primers used. Archaeal libraries were dominated by Methanomicrobiales (410 of 414 total sequences formed a dominant phylotype affiliated with a Methanoregula sp.), consistent with the proposed dominant role of CO2-reducing methanogens in crude oil biodegradation. In two bacterial 16S rRNA clone libraries generated with different primer pairs, > 99% and 100% of the sequences were affiliated with Epsilonproteobacteria (n = 382 and 72 total clones respectively). This massive dominance of Epsilonproteobacteria sequences was again obtained in a third library (99% of sequences; n = 96 clones) using a third universal bacterial primer pair (inosine-341f and 1492r). Sequencing of bands from DGGE profiles and intact polar lipid analyses were in accordance with the bacterial clone library results. Epsilonproteobacterial OTUs were affiliated with Sulfuricurvum, Arcobacter and Sulfurospirillum spp. detected in other oil field habitats. The dominant organism revealed by the bacterial libraries (87% of all sequences) is a close relative of Sulfuricurvum kujiense – an organism capable of oxidizing reduced sulfur compounds in crude oil. Geochemical analysis of organic extracts from bitumen at different reservoir depths down to the oil water transition zone of these oil sands indicated active biodegradation of dibenzothiophenes, and stable

  4. Rapid Construction of Stable Infectious Full-Length cDNA Clone of Papaya Leaf Distortion Mosaic Virus Using In-Fusion Cloning

    PubMed Central

    Tuo, Decai; Shen, Wentao; Yan, Pu; Li, Xiaoying; Zhou, Peng

    2015-01-01

    Papaya leaf distortion mosaic virus (PLDMV) is becoming a threat to papaya and transgenic papaya resistant to the related pathogen, papaya ringspot virus (PRSV). The generation of infectious viral clones is an essential step for reverse-genetics studies of viral gene function and cross-protection. In this study, a sequence- and ligation-independent cloning system, the In-Fusion® Cloning Kit (Clontech, Mountain View, CA, USA), was used to construct intron-less or intron-containing full-length cDNA clones of the isolate PLDMV-DF, with the simultaneous scarless assembly of multiple viral and intron fragments into a plasmid vector in a single reaction. The intron-containing full-length cDNA clone of PLDMV-DF was stably propagated in Escherichia coli. In vitro intron-containing transcripts were processed and spliced into biologically active intron-less transcripts following mechanical inoculation and then initiated systemic infections in Carica papaya L. seedlings, which developed similar symptoms to those caused by the wild-type virus. However, no infectivity was detected when the plants were inoculated with RNA transcripts from the intron-less construct because the instability of the viral cDNA clone in bacterial cells caused a non-sense or deletion mutation of the genomic sequence of PLDMV-DF. To our knowledge, this is the first report of the construction of an infectious full-length cDNA clone of PLDMV and the splicing of intron-containing transcripts following mechanical inoculation. In-Fusion cloning shortens the construction time from months to days. Therefore, it is a faster, more flexible, and more efficient method than the traditional multistep restriction enzyme-mediated subcloning procedure. PMID:26633465

  5. Rapid Construction of Stable Infectious Full-Length cDNA Clone of Papaya Leaf Distortion Mosaic Virus Using In-Fusion Cloning.

    PubMed

    Tuo, Decai; Shen, Wentao; Yan, Pu; Li, Xiaoying; Zhou, Peng

    2015-12-01

    Papaya leaf distortion mosaic virus (PLDMV) is becoming a threat to papaya and transgenic papaya resistant to the related pathogen, papaya ringspot virus (PRSV). The generation of infectious viral clones is an essential step for reverse-genetics studies of viral gene function and cross-protection. In this study, a sequence- and ligation-independent cloning system, the In-Fusion(®) Cloning Kit (Clontech, Mountain View, CA, USA), was used to construct intron-less or intron-containing full-length cDNA clones of the isolate PLDMV-DF, with the simultaneous scarless assembly of multiple viral and intron fragments into a plasmid vector in a single reaction. The intron-containing full-length cDNA clone of PLDMV-DF was stably propagated in Escherichia coli. In vitro intron-containing transcripts were processed and spliced into biologically active intron-less transcripts following mechanical inoculation and then initiated systemic infections in Carica papaya L. seedlings, which developed similar symptoms to those caused by the wild-type virus. However, no infectivity was detected when the plants were inoculated with RNA transcripts from the intron-less construct because the instability of the viral cDNA clone in bacterial cells caused a non-sense or deletion mutation of the genomic sequence of PLDMV-DF. To our knowledge, this is the first report of the construction of an infectious full-length cDNA clone of PLDMV and the splicing of intron-containing transcripts following mechanical inoculation. In-Fusion cloning shortens the construction time from months to days. Therefore, it is a faster, more flexible, and more efficient method than the traditional multistep restriction enzyme-mediated subcloning procedure.

  6. Prophage-Mediated Dynamics of ‘Candidatus Liberibacter asiaticus’ Populations, the Destructive Bacterial Pathogens of Citrus Huanglongbing

    PubMed Central

    Zhou, Lijuan; Powell, Charles A.; Li, Wenbin; Irey, Mike; Duan, Yongping

    2013-01-01

    Prophages are highly dynamic components in the bacterial genome and play an important role in intraspecies variations. There are at least two prophages in the chromosomes of Candidatus Liberibacter asiaticus’ (Las) Floridian isolates. Las is both unculturable and the most prevalent species of Liberibacter pathogens that cause huanglongbing (HLB), a worldwide destructive disease of citrus. In this study, seven new prophage variants resulting from two hyper-variable regions were identified by screening clone libraries of infected citrus, periwinkle and psyllids. Among them, Types A and B share highly conserved sequences and localize within the two prophages, FP1 and FP2, respectively. Although Types B and C were abundant in all three libraries, Type A was much more abundant in the libraries from the Las-infected psyllids than from the Las-infected plants, and Type D was only identified in libraries from the infected host plants but not from the infected psyllids. Sequence analysis of these variants revealed that the variations may result from recombination and rearrangement events. Conventional PCR results using type-specific molecular markers indicated that A, B, C and D are the four most abundant types in Las-infected citrus and periwinkle. However, only three types, A, B and C are abundant in Las-infected psyllids. Typing results for Las-infected citrus field samples indicated that mixed populations of Las bacteria present in Floridian isolates, but only the Type D population was correlated with the blotchy mottle symptom. Extended cloning and sequencing of the Type D region revealed a third prophage/phage in the Las genome, which may derive from the recombination of FP1 and FP2. Dramatic variations in these prophage regions were also found among the global Las isolates. These results are the first to demonstrate the prophage/phage-mediated dynamics of Las populations in plant and insect hosts, and their correlation with insect transmission and disease

  7. Evaluation of bacterial diversity recovered from petroleum samples using different physical matrices.

    PubMed

    Dellagnezze, Bruna Martins; Vasconcellos, Suzan Pantaroto de; Melo, Itamar Soares de; Santos Neto, Eugênio Vaz Dos; Oliveira, Valéria Maia de

    2016-01-01

    Unraveling the microbial diversity and its complexity in petroleum reservoir environments has been a challenge throughout the years. Despite the techniques developed in order to improve methodologies involving DNA extraction from crude oil, microbial enrichments using different culture conditions can be applied as a way to increase the recovery of DNA from environments with low cellular density for further microbiological analyses. This work aimed at the evaluation of different matrices (arenite, shale and polyurethane foam) as support materials for microbial growth and biofilm formation in enrichments using a biodegraded petroleum sample as inoculum in sulfate reducing condition. Subsequent microbial diversity characterization was carried out using Scanning Electronic Microscopy (SEM), Denaturing Gradient Gel Electrophoresis (DGGE) and 16S rRNA gene libraries in order to compare the microbial biomass yield, DNA recovery efficiency and diversity among the enrichments. The DNA from microbial communities in petroleum enrichments was purified according to a protocol established in this work and used for 16S rRNA amplification with bacterial generic primers. The PCR products were cloned, and positive clones were screened by Amplified Ribosomal DNA Restriction Analysis (ARDRA). Sequencing and phylogenetic analyses revealed that the bacterial community was mostly represented by members of the genera Petrotoga, Bacillus, Pseudomonas, Geobacillus and Rahnella. The use of different support materials in the enrichments yielded an increase in microbial biomass and biofilm formation, indicating that these materials may be employed for efficient biomass recovery from petroleum reservoir samples. Nonetheless, the most diverse microbiota were recovered from the biodegraded petroleum sample using polyurethane foam cubes as support material. Copyright © 2016 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.

  8. A novel helper phage enabling construction of genome-scale ORF-enriched phage display libraries.

    PubMed

    Gupta, Amita; Shrivastava, Nimisha; Grover, Payal; Singh, Ajay; Mathur, Kapil; Verma, Vaishali; Kaur, Charanpreet; Chaudhary, Vijay K

    2013-01-01

    Phagemid-based expression of cloned genes fused to the gIIIP coding sequence and rescue using helper phages, such as VCSM13, has been used extensively for constructing large antibody phage display libraries. However, for randomly primed cDNA and gene fragment libraries, this system encounters reading frame problems wherein only one of 18 phages display the translated foreign peptide/protein fused to phagemid-encoded gIIIP. The elimination of phages carrying out-of-frame inserts is vital in order to improve the quality of phage display libraries. In this study, we designed a novel helper phage, AGM13, which carries trypsin-sensitive sites within the linker regions of gIIIP. This renders the phage highly sensitive to trypsin digestion, which abolishes its infectivity. For open reading frame (ORF) selection, the phagemid-borne phages are rescued using AGM13, so that clones with in-frame inserts express fusion proteins with phagemid-encoded trypsin-resistant gIIIP, which becomes incorporated into the phages along with a few copies of AGM13-encoded trypsin-sensitive gIIIP. In contrast, clones with out-of-frame inserts produce phages carrying only AGM13-encoded trypsin-sensitive gIIIP. Trypsin treatment of the phage population renders the phages with out-of-frame inserts non-infectious, whereas phages carrying in-frame inserts remain fully infectious and can hence be enriched by infection. This strategy was applied efficiently at a genome scale to generate an ORF-enriched whole genome fragment library from Mycobacterium tuberculosis, in which nearly 100% of the clones carried in-frame inserts after selection. The ORF-enriched libraries were successfully used for identification of linear and conformational epitopes for monoclonal antibodies specific to mycobacterial proteins.

  9. Temperate bacterial viruses as double-edged swords in bacterial warfare.

    PubMed

    Gama, João Alves; Reis, Ana Maria; Domingues, Iolanda; Mendes-Soares, Helena; Matos, Ana Margarida; Dionisio, Francisco

    2013-01-01

    It has been argued that bacterial cells may use their temperate viruses as biological weapons. For instance, a few bacterial cells among a population of lysogenic cells could release the virus and kill susceptible non-lysogenic competitors, while their clone mates would be immune. Because viruses replicate inside their victims upon infection, this process would amplify their number in the arena. Sometimes, however, temperate viruses spare recipient cells from death by establishing themselves in a dormant state inside cells. This phenomenon is called lysogenization and, for some viruses such as the λ virus, the probability of lysogenization increases with the multiplicity of infection. Therefore, the amplification of viruses leads to conflicting predictions about the efficacy of temperate viruses as biological weapons: amplification can increase the relative advantage of clone mates of lysogens but also the likelihood of saving susceptible cells from death, because the probability of lysogenization is higher. To test the usefulness of viruses as biological weapons, we performed competition experiments between lysogenic Escherichia coli cells carrying the λ virus and susceptible λ-free E. coli cells, either in a structured or unstructured habitat. In structured and sometimes in unstructured habitats, the λ virus qualitatively behaved as a "replicating toxin". However, such toxic effect of λ viruses ceased after a few days of competition. This was due to the fact that many of initially susceptible cells became lysogenic. Massive lysogenization of susceptible cells occurred precisely under the conditions where the amplification of the virus was substantial. From then on, these cells and their descendants became immune to the λ virus. In conclusion, if at short term bacterial cells may use temperate viruses as biological weapons, after a few days only the classical view of temperate bacterial viruses as parasitic agents prevails.

  10. Temperate Bacterial Viruses as Double-Edged Swords in Bacterial Warfare

    PubMed Central

    Gama, João Alves; Reis, Ana Maria; Domingues, Iolanda; Mendes-Soares, Helena; Matos, Ana Margarida; Dionisio, Francisco

    2013-01-01

    It has been argued that bacterial cells may use their temperate viruses as biological weapons. For instance, a few bacterial cells among a population of lysogenic cells could release the virus and kill susceptible non-lysogenic competitors, while their clone mates would be immune. Because viruses replicate inside their victims upon infection, this process would amplify their number in the arena. Sometimes, however, temperate viruses spare recipient cells from death by establishing themselves in a dormant state inside cells. This phenomenon is called lysogenization and, for some viruses such as the λ virus, the probability of lysogenization increases with the multiplicity of infection. Therefore, the amplification of viruses leads to conflicting predictions about the efficacy of temperate viruses as biological weapons: amplification can increase the relative advantage of clone mates of lysogens but also the likelihood of saving susceptible cells from death, because the probability of lysogenization is higher. To test the usefulness of viruses as biological weapons, we performed competition experiments between lysogenic Escherichia coli cells carrying the λ virus and susceptible λ-free E. coli cells, either in a structured or unstructured habitat. In structured and sometimes in unstructured habitats, the λ virus qualitatively behaved as a “replicating toxin”. However, such toxic effect of λ viruses ceased after a few days of competition. This was due to the fact that many of initially susceptible cells became lysogenic. Massive lysogenization of susceptible cells occurred precisely under the conditions where the amplification of the virus was substantial. From then on, these cells and their descendants became immune to the λ virus. In conclusion, if at short term bacterial cells may use temperate viruses as biological weapons, after a few days only the classical view of temperate bacterial viruses as parasitic agents prevails. PMID:23536852

  11. Classifying the bacterial gut microbiota of termites and cockroaches: A curated phylogenetic reference database (DictDb).

    PubMed

    Mikaelyan, Aram; Köhler, Tim; Lampert, Niclas; Rohland, Jeffrey; Boga, Hamadi; Meuser, Katja; Brune, Andreas

    2015-10-01

    Recent developments in sequencing technology have given rise to a large number of studies that assess bacterial diversity and community structure in termite and cockroach guts based on large amplicon libraries of 16S rRNA genes. Although these studies have revealed important ecological and evolutionary patterns in the gut microbiota, classification of the short sequence reads is limited by the taxonomic depth and resolution of the reference databases used in the respective studies. Here, we present a curated reference database for accurate taxonomic analysis of the bacterial gut microbiota of dictyopteran insects. The Dictyopteran gut microbiota reference Database (DictDb) is based on the Silva database but was significantly expanded by the addition of clones from 11 mostly unexplored termite and cockroach groups, which increased the inventory of bacterial sequences from dictyopteran guts by 26%. The taxonomic depth and resolution of DictDb was significantly improved by a general revision of the taxonomic guide tree for all important lineages, including a detailed phylogenetic analysis of the Treponema and Alistipes complexes, the Fibrobacteres, and the TG3 phylum. The performance of this first documented version of DictDb (v. 3.0) using the revised taxonomic guide tree in the classification of short-read libraries obtained from termites and cockroaches was highly superior to that of the current Silva and RDP databases. DictDb uses an informative nomenclature that is consistent with the literature also for clades of uncultured bacteria and provides an invaluable tool for anyone exploring the gut community structure of termites and cockroaches. Copyright © 2015 Elsevier GmbH. All rights reserved.

  12. Impact of Nitrate on the Structure and Function of Bacterial Biofilm Communities in Pipelines Used for Injection of Seawater into Oil Fields▿ †

    PubMed Central

    Schwermer, Carsten U.; Lavik, Gaute; Abed, Raeid M. M.; Dunsmore, Braden; Ferdelman, Timothy G.; Stoodley, Paul; Gieseke, Armin; de Beer, Dirk

    2008-01-01

    We studied the impact of NO3− on the bacterial community composition, diversity, and function in in situ industrial, anaerobic biofilms by combining microsensor profiling, 15N and 35S labeling, and 16S rRNA gene-based fingerprinting. Biofilms were grown on carbon steel coupons within a system designed to treat seawater for injection into an oil field for pressurized oil recovery. NO3− was added to the seawater in an attempt to prevent bacterial H2S generation and microbially influenced corrosion in the field. Microprofiling of nitrogen compounds and redox potential inside the biofilms showed that the zone of highest metabolic activity was located close to the metal surface, correlating with a high bacterial abundance in this zone. Upon addition, NO3− was mainly reduced to NO2−. In biofilms grown in the absence of NO3−, redox potentials of <−450 mV at the metal surface suggested the release of Fe2+. NO3− addition to previously untreated biofilms induced a decline (65%) in bacterial species richness, with Methylophaga- and Colwellia-related sequences having the highest number of obtained clones in the clone library. In contrast, no changes in community composition and potential NO3− reduction occurred upon subsequent withdrawal of NO3−. Active sulfate reduction was below detection levels in all biofilms, but S isotope fractionation analysis of sulfide deposits suggested that it must have occurred either at low rates or episodically. Scanning electron microscopy revealed that pitting corrosion occurred on all coupons, independent of the treatment. However, uniform corrosion was clearly mitigated by NO3− addition. PMID:18344353

  13. Bacterial community dynamics in a biodenitrification reactor packed with polylactic acid/poly (3-hydroxybutyrate-co-3-hydroxyvalerate) blend as the carbon source and biofilm carrier.

    PubMed

    Qiu, Tianlei; Xu, Ying; Gao, Min; Han, Meilin; Wang, Xuming

    2017-05-01

    While heterotrophic denitrification has been widely used for treating such nitrogen-rich wastewater, it requires the use of additional carbon sources. With fluctuations in the nitrate concentration in the influent, controlling the C/N ratio to avoid carbon breakthrough becomes difficult. To overcome this obstacle, solid-phase denitrification (SPD) using biodegradable polymers has been used, where denitrification and carbon source biodegradation depend on microorganisms growing within the reactor. However, the microbial community dynamics in continuous-flow SPD reactors have not been fully elucidated yet. Here, we aimed to study bacterial community dynamics in a biodenitrification reactor packed with a polylactic acid/poly (3-hydroxybutyrate-co-3-hydroxyvalerate) (PLA/PHBV) blend as the carbon source and biofilm carrier. A lab-scale denitrifying reactor filled with a PLA/PHBV blend was used. With 85 mg/L of influent NO 3 -N concentration and a hydraulic retention time (HRT) of 2.5 h, more than 92% of the nitrate was removed. The bacterial community of inoculated activated sludge had the highest species richness in all samples. Bacterial species diversity in the reactor first decreased and then increased to a stable level. Diaphorobacter species were predominant in the reactor after day 24. In total, 178 clones were retrieved from the 16S rRNA gene clone library constructed from the biofilm samples in the reactor at 62 days of operation, and 80.9% of the clones were affiliated with Betaproteobacteria. Of these, 97.2% were classified into phylotypes corresponding to Diaphorobacter nitroreducens strain NA10B with 99% sequence similarity. Diaphorobacter, Rhizobium, Acidovorax, Rubrivivax, Azospira, Thermomonas, and Acidaminobacter constituted the biofilm microflora in the stably running reactor. Copyright © 2016 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  14. Homopolymer tail-mediated ligation PCR: a streamlined and highly efficient method for DNA cloning and library construction.

    PubMed

    Lazinski, David W; Camilli, Andrew

    2013-01-01

    The amplification of DNA fragments, cloned between user-defined 5' and 3' end sequences, is a prerequisite step in the use of many current applications including massively parallel sequencing (MPS). Here we describe an improved method, called homopolymer tail-mediated ligation PCR (HTML-PCR), that requires very little starting template, minimal hands-on effort, is cost-effective, and is suited for use in high-throughput and robotic methodologies. HTML-PCR starts with the addition of homopolymer tails of controlled lengths to the 3' termini of a double-stranded genomic template. The homopolymer tails enable the annealing-assisted ligation of a hybrid oligonucleotide to the template's recessed 5' ends. The hybrid oligonucleotide has a user-defined sequence at its 5' end. This primer, together with a second primer composed of a longer region complementary to the homopolymer tail and fused to a second 5' user-defined sequence, are used in a PCR reaction to generate the final product. The user-defined sequences can be varied to enable compatibility with a wide variety of downstream applications. We demonstrate our new method by constructing MPS libraries starting from nanogram and sub-nanogram quantities of Vibrio cholerae and Streptococcus pneumoniae genomic DNA.

  15. Do Patterns of Bacterial Diversity along Salinity Gradients Differ from Those Observed for Macroorganisms?

    PubMed Central

    Zhang, Yong; Shen, Ji; van der Gast, Christopher; Hahn, Martin W.; Wu, Qinglong

    2011-01-01

    It is widely accepted that biodiversity is lower in more extreme environments. In this study, we sought to determine whether this trend, well documented for macroorganisms, also holds at the microbial level for bacteria. We used denaturing gradient gel electrophoresis (DGGE) with phylum-specific primers to quantify the taxon richness (i.e., the DGGE band numbers) of the bacterioplankton communities of 32 pristine Tibetan lakes that represent a broad salinity range (freshwater to hypersaline). For the lakes investigated, salinity was found to be the environmental variable with the strongest influence on the bacterial community composition. We found that the bacterial taxon richness in freshwater habitats increased with increasing salinity up to a value of 1‰. In saline systems (systems with >1‰ salinity), the expected decrease of taxon richness along a gradient of further increasing salinity was not observed. These patterns were consistently observed for two sets of samples taken in two different years. A comparison of 16S rRNA gene clone libraries revealed that the bacterial community of the lake with the highest salinity was characterized by a higher recent accelerated diversification than the community of a freshwater lake, whereas the phylogenetic diversity in the hypersaline lake was lower than that in the freshwater lake. These results suggest that different evolutionary forces may act on bacterial populations in freshwater and hypersaline lakes on the Tibetan Plateau, potentially resulting in different community structures and diversity patterns. PMID:22125616

  16. Cloning and expression of the gene for bacteriophage T7 RNA polymerase

    DOEpatents

    Studier, F.W.; Davanloo, P.; Rosenberg, A.H.

    1984-03-30

    This application describes a means to clone a functional gene for bacteriophage T7 RNA polymerase. Active T7 RNA polymerase is produced from the cloned gene, and a plasmid has been constructed that can produce the active enzyme in large amounts. T7 RNA polymerase transcribes DNA very efficiently and is highly selective for a relatively long promoter sequence. This enzyme is useful for synthesizing large amounts of RNA in vivo or in vitro, and is capable of producing a single RNA selectively from a complex mixture of DNAs. The procedure used to obtain a clone of the T7 RNA polymerase gene can be applied to other T7-like phages to obtain clones that produce RNA polymerases having different promoter specificities, different bacterial hosts, or other desirable properties.

  17. Phenol emulsion-enhanced DNA-driven subtractive cDNA cloning: isolation of low-abundance monkey cortex-specific mRNAs.

    PubMed Central

    Travis, G H; Sutcliffe, J G

    1988-01-01

    To isolate cDNA clones of low-abundance mRNAs expressed in monkey cerebral cortex but absent from cerebellum, we developed an improved subtractive cDNA cloning procedure that requires only modest quantities of mRNA. Plasmid DNA from a monkey cerebellum cDNA library was hybridized in large excess to radiolabeled monkey cortex cDNA in a phenol emulsion-enhanced reaction. The unhybridized cortex cDNA was isolated by chromatography on hydroxyapatite and used to probe colonies from a monkey cortex cDNA library. Of 60,000 colonies screened, 163 clones were isolated and confirmed by colony hybridization or RNA blotting to represent mRNAs, ranging from 0.001% to 0.1% abundance, specific to or highly enriched in cerebral cortex relative to cerebellum. Clones of one medium-abundance mRNA were recovered almost quantitatively. Two of the lower-abundance mRNAs were expressed at levels reduced by a factor of 10 in Alzheimer disease relative to normal human cortex. One of these was identified as the monkey preprosomatostatin I mRNA. Images PMID:2894033

  18. Improved serial analysis of V1 ribosomal sequence tags (SARST-V1) provides a rapid, comprehensive, sequence-based characterization of bacterial diversity and community composition.

    PubMed

    Yu, Zhongtang; Yu, Marie; Morrison, Mark

    2006-04-01

    Serial analysis of ribosomal sequence tags (SARST) is a recently developed technology that can generate large 16S rRNA gene (rrs) sequence data sets from microbiomes, but there are numerous enzymatic and purification steps required to construct the ribosomal sequence tag (RST) clone libraries. We report here an improved SARST method, which still targets the V1 hypervariable region of rrs genes, but reduces the number of enzymes, oligonucleotides, reagents, and technical steps needed to produce the RST clone libraries. The new method, hereafter referred to as SARST-V1, was used to examine the eubacterial diversity present in community DNA recovered from the microbiome resident in the ovine rumen. The 190 sequenced clones contained 1055 RSTs and no less than 236 unique phylotypes (based on > or = 95% sequence identity) that were assigned to eight different eubacterial phyla. Rarefaction and monomolecular curve analyses predicted that the complete RST clone library contains 99% of the 353 unique phylotypes predicted to exist in this microbiome. When compared with ribosomal intergenic spacer analysis (RISA) of the same community DNA sample, as well as a compilation of nine previously published conventional rrs clone libraries prepared from the same type of samples, the RST clone library provided a more comprehensive characterization of the eubacterial diversity present in rumen microbiomes. As such, SARST-V1 should be a useful tool applicable to comprehensive examination of diversity and composition in microbiomes and offers an affordable, sequence-based method for diversity analysis.

  19. Open resource metagenomics: a model for sharing metagenomic libraries.

    PubMed

    Neufeld, J D; Engel, K; Cheng, J; Moreno-Hagelsieb, G; Rose, D R; Charles, T C

    2011-11-30

    Both sequence-based and activity-based exploitation of environmental DNA have provided unprecedented access to the genomic content of cultivated and uncultivated microorganisms. Although researchers deposit microbial strains in culture collections and DNA sequences in databases, activity-based metagenomic studies typically only publish sequences from the hits retrieved from specific screens. Physical metagenomic libraries, conceptually similar to entire sequence datasets, are usually not straightforward to obtain by interested parties subsequent to publication. In order to facilitate unrestricted distribution of metagenomic libraries, we propose the adoption of open resource metagenomics, in line with the trend towards open access publishing, and similar to culture- and mutant-strain collections that have been the backbone of traditional microbiology and microbial genetics. The concept of open resource metagenomics includes preparation of physical DNA libraries, preferably in versatile vectors that facilitate screening in a diversity of host organisms, and pooling of clones so that single aliquots containing complete libraries can be easily distributed upon request. Database deposition of associated metadata and sequence data for each library provides researchers with information to select the most appropriate libraries for further research projects. As a starting point, we have established the Canadian MetaMicroBiome Library (CM(2)BL [1]). The CM(2)BL is a publicly accessible collection of cosmid libraries containing environmental DNA from soils collected from across Canada, spanning multiple biomes. The libraries were constructed such that the cloned DNA can be easily transferred to Gateway® compliant vectors, facilitating functional screening in virtually any surrogate microbial host for which there are available plasmid vectors. The libraries, which we are placing in the public domain, will be distributed upon request without restriction to members of both the

  20. Open resource metagenomics: a model for sharing metagenomic libraries

    PubMed Central

    Neufeld, J.D.; Engel, K.; Cheng, J.; Moreno-Hagelsieb, G.; Rose, D.R.; Charles, T.C.

    2011-01-01

    Both sequence-based and activity-based exploitation of environmental DNA have provided unprecedented access to the genomic content of cultivated and uncultivated microorganisms. Although researchers deposit microbial strains in culture collections and DNA sequences in databases, activity-based metagenomic studies typically only publish sequences from the hits retrieved from specific screens. Physical metagenomic libraries, conceptually similar to entire sequence datasets, are usually not straightforward to obtain by interested parties subsequent to publication. In order to facilitate unrestricted distribution of metagenomic libraries, we propose the adoption of open resource metagenomics, in line with the trend towards open access publishing, and similar to culture- and mutant-strain collections that have been the backbone of traditional microbiology and microbial genetics. The concept of open resource metagenomics includes preparation of physical DNA libraries, preferably in versatile vectors that facilitate screening in a diversity of host organisms, and pooling of clones so that single aliquots containing complete libraries can be easily distributed upon request. Database deposition of associated metadata and sequence data for each library provides researchers with information to select the most appropriate libraries for further research projects. As a starting point, we have established the Canadian MetaMicroBiome Library (CM2BL [1]). The CM2BL is a publicly accessible collection of cosmid libraries containing environmental DNA from soils collected from across Canada, spanning multiple biomes. The libraries were constructed such that the cloned DNA can be easily transferred to Gateway® compliant vectors, facilitating functional screening in virtually any surrogate microbial host for which there are available plasmid vectors. The libraries, which we are placing in the public domain, will be distributed upon request without restriction to members of both the

  1. AFEAP cloning: a precise and efficient method for large DNA sequence assembly.

    PubMed

    Zeng, Fanli; Zang, Jinping; Zhang, Suhua; Hao, Zhimin; Dong, Jingao; Lin, Yibin

    2017-11-14

    Recent development of DNA assembly technologies has spurred myriad advances in synthetic biology, but new tools are always required for complicated scenarios. Here, we have developed an alternative DNA assembly method named AFEAP cloning (Assembly of Fragment Ends After PCR), which allows scarless, modular, and reliable construction of biological pathways and circuits from basic genetic parts. The AFEAP method requires two-round of PCRs followed by ligation of the sticky ends of DNA fragments. The first PCR yields linear DNA fragments and is followed by a second asymmetric (one primer) PCR and subsequent annealing that inserts overlapping overhangs at both sides of each DNA fragment. The overlapping overhangs of the neighboring DNA fragments annealed and the nick was sealed by T4 DNA ligase, followed by bacterial transformation to yield the desired plasmids. We characterized the capability and limitations of new developed AFEAP cloning and demonstrated its application to assemble DNA with varying scenarios. Under the optimized conditions, AFEAP cloning allows assembly of an 8 kb plasmid from 1-13 fragments with high accuracy (between 80 and 100%), and 8.0, 11.6, 19.6, 28, and 35.6 kb plasmids from five fragments at 91.67, 91.67, 88.33, 86.33, and 81.67% fidelity, respectively. AFEAP cloning also is capable to construct bacterial artificial chromosome (BAC, 200 kb) with a fidelity of 46.7%. AFEAP cloning provides a powerful, efficient, seamless, and sequence-independent DNA assembly tool for multiple fragments up to 13 and large DNA up to 200 kb that expands synthetic biologist's toolbox.

  2. Rapid construction of a Bacterial Artificial Chromosomal (BAC) expression vector using designer DNA fragments.

    PubMed

    Chen, Chao; Zhao, Xinqing; Jin, Yingyu; Zhao, Zongbao Kent; Suh, Joo-Won

    2014-11-01

    Bacterial artificial chromosomal (BAC) vectors are increasingly being used in cloning large DNA fragments containing complex biosynthetic pathways to facilitate heterologous production of microbial metabolites for drug development. To express inserted genes using Streptomyces species as the production hosts, an integration expression cassette is required to be inserted into the BAC vector, which includes genetic elements encoding a phage-specific attachment site, an integrase, an origin of transfer, a selection marker and a promoter. Due to the large sizes of DNA inserted into the BAC vectors, it is normally inefficient and time-consuming to assemble these fragments by routine PCR amplifications and restriction-ligations. Here we present a rapid method to insert fragments to construct BAC-based expression vectors. A DNA fragment of about 130 bp was designed, which contains upstream and downstream homologous sequences of both BAC vector and pIB139 plasmid carrying the whole integration expression cassette. In-Fusion cloning was performed using the designer DNA fragment to modify pIB139, followed by λ-RED-mediated recombination to obtain the BAC-based expression vector. We demonstrated the effectiveness of this method by rapid construction of a BAC-based expression vector with an insert of about 120 kb that contains the entire gene cluster for biosynthesis of immunosuppressant FK506. The empty BAC-based expression vector constructed in this study can be conveniently used for construction of BAC libraries using either microbial pure culture or environmental DNA, and the selected BAC clones can be directly used for heterologous expression. Alternatively, if a BAC library has already been constructed using a commercial BAC vector, the selected BAC vectors can be manipulated using the method described here to get the BAC-based expression vectors with desired gene clusters for heterologous expression. The rapid construction of a BAC-based expression vector facilitates

  3. DNA cloning: A personal view after 40 years

    PubMed Central

    Cohen, Stanley N.

    2013-01-01

    In November 1973, my colleagues A. C. Y. Chang, H. W. Boyer, R. B. Helling, and I reported in PNAS that individual genes can be cloned and isolated by enzymatically cleaving DNA molecules into fragments, linking the fragments to an autonomously replicating plasmid, and introducing the resulting recombinant DNA molecules into bacteria. A few months later, Chang and I reported that genes from unrelated bacterial species can be combined and propagated using the same approach and that interspecies recombinant DNA molecules can produce a biologically functional protein in a foreign host. Soon afterward, Boyer’s laboratory and mine published our collaborative discovery that even genes from animal cells can be cloned in bacteria. These three PNAS papers quickly led to the use of DNA cloning methods in multiple areas of the biological and chemical sciences. They also resulted in a highly public controversy about the potential hazards of laboratory manipulation of genetic material, a decision by Stanford University and the University of California to seek patents on the technology that Boyer and I had invented, and the application of DNA cloning methods for commercial purposes. In the 40 years that have passed since publication of our findings, use of DNA cloning has produced insights about the workings of genes and cells in health and disease and has altered the nature of the biotechnology and biopharmaceutical industries. Here, I provide a personal perspective of the events that led to, and followed, our report of DNA cloning. PMID:24043817

  4. [Construction of dengue virus-specific full-length fully human antibody libraries by mammalian display technology].

    PubMed

    Wen, Yangming; Lan, Kaijian; Wang, Junjie; Yu, Jingyi; Qu, Yarong; Zhao, Wei; Zhang, Fuchun; Tan, Wanlong; Cao, Hong; Zhou, Chen

    2013-06-01

    To construct dengue virus-specific full-length fully human antibody libraries using mammalian cell surface display technique. Total RNA was extracted from peripheral blood mononuclear cells (PBMCs) from convalescent patients with dengue fever. The reservoirs of the light chain and heavy chain variable regions (LCκ and VH) of the antibody genes were amplified by RT-PCR and inserted into the vector pDGB-HC-TM separately to construct the light chain and heavy chain libraries. The library DNAs were transfected into CHO cells and the expression of full-length fully human antibodies on the surface of CHO cells was analyzed by flow cytometry. Using 1.2 µg of the total RNA isolated from the PBMCs as the template, the LCκ and VH were amplified and the full-length fully human antibody mammalian display libraries were constructed. The kappa light chain gene library had a size of 1.45×10(4) and the heavy chain gene library had a size of 1.8×10(5). Sequence analysis showed that 8 out of the 10 light chain clones and 7 out of the 10 heavy chain clones randomly picked up from the constructed libraries contained correct open reading frames. FACS analysis demonstrated that all the 15 clones with correct open reading frames expressed full-length antibodies, which could be detected on CHO cell surfaces. After co-transfection of the heavy chain and light chain gene libraries into CHO cells, the expression of full-length antibodies on CHO cell surfaces could be detected by FACS analysis with an expressible diversity of the antibody library reaching 1.46×10(9) [(1.45×10(4)×80%)×(1.8×10(5)×70%)]. Using 1.2 µg of total RNA as template, the LCκ and VH full-length fully human antibody libraries against dengue virus have been successfully constructed with an expressible diversity of 10(9).

  5. Genomic library screening for viruses from the human dental plaque revealed pathogen-specific lytic phage sequences.

    PubMed

    Al-Jarbou, Ahmed Nasser

    2012-01-01

    Bacterial pathogenesis presents an astounding arsenal of virulence factors that allow them to conquer many different niches throughout the course of infection. Principally fascinating is the fact that some bacterial species are able to induce different diseases by expression of different combinations of virulence factors. Nevertheless, studies aiming at screening for the presence of bacteriophages in humans have been limited. Such screening procedures would eventually lead to identification of phage-encoded properties that impart increased bacterial fitness and/or virulence in a particular niche, and hence, would potentially be used to reverse the course of bacterial infections. As the human oral cavity represents a rich and dynamic ecosystem for several upper respiratory tract pathogens. However, little is known about virus diversity in human dental plaque which is an important reservoir. We applied the culture-independent approach to characterize virus diversity in human dental plaque making a library from a virus DNA fraction amplified using a multiple displacement method and sequenced 80 clones. The resulting sequence showed 44% significant identities to GenBank databases by TBLASTX analysis. TBLAST homology comparisons showed that 66% was viral; 18% eukarya; 10% bacterial; 6% mobile elements. These sequences were sorted into 6 contigs and 45 single sequences in which 4 contigs and a single sequence showed significant identity to a small region of a putative prophage in the Corynebacterium diphtheria genome. These findings interestingly highlight the uniqueness of over half of the sequences, whilst the dominance of a pathogen-specific prophage sequences imply their role in virulence.

  6. [Changes of bacterial community structure on reusing domestic sewage of Daoxianghujing Hotel to landscape water].

    PubMed

    Zhu, Jing-nan; Wang, Xiao-dan; Zhai, Zhen-hua; Ma, Wen-lin; Li, Rong-qi; Wang, Xue-lian; Li, Yan-hong

    2010-05-01

    A 16S rDNA library was used to evaluate the bacterial diversity and identify dominant groups of bacteria in different treatment pools in the domestic sewage system of the Beijing Daoxianghujing Hotel. The results revealed that there were many types of bacteria in the hotel domestic sewage, and the bacterial Shannon-Weaver diversity index was 3.12. In addition, epsilon Proteobacteria was found to be the dominant group with the ratio of 32%. In addition, both the CFB phylum, Fusobacteria, gamma Proteobacteria and Firmicutes were also reached to 9%-15%. After treated with the reclaimed water station, the bacterial Shannon-Weaver diversity index was reduced to 2. 41 and beta Proteobacteria became the dominant group and occupied 73% of the total clones. However, following artificial wetland training, the bacterial Shannon-Weaver diversity index in the sample increased to 3.38, Actinobacteria arrived to 33% and became the most dominant group; Cyanobacteria reached to 26%, and was the second dominant group. But, the control sample comprised 38% Cyanobacteria, and mainly involved in Cyanobium, Synechoccus and Microcystis, with ratios of 47.1%, 17.6% and 8.8%, respectively. Some bacteria of Microcystis aenruginosa were also detected, which probably resulted in the light bloom finally. Therefore, the bacterial diversity and community structures changed in response to treatment of the hotel domestic sewage; there was no cyanobacteria bloom explosion in the treated water. This study will aid in investigation the changes of microbial ecology in different types of water and providing the useful information for enhancing the cyanobacteria blooms control from ecological angle.

  7. Functional Screening of Metagenome and Genome Libraries for Detection of Novel Flavonoid-Modifying Enzymes

    PubMed Central

    Rabausch, U.; Juergensen, J.; Ilmberger, N.; Böhnke, S.; Fischer, S.; Schubach, B.; Schulte, M.

    2013-01-01

    The functional detection of novel enzymes other than hydrolases from metagenomes is limited since only a very few reliable screening procedures are available that allow the rapid screening of large clone libraries. For the discovery of flavonoid-modifying enzymes in genome and metagenome clone libraries, we have developed a new screening system based on high-performance thin-layer chromatography (HPTLC). This metagenome extract thin-layer chromatography analysis (META) allows the rapid detection of glycosyltransferase (GT) and also other flavonoid-modifying activities. The developed screening method is highly sensitive, and an amount of 4 ng of modified flavonoid molecules can be detected. This novel technology was validated against a control library of 1,920 fosmid clones generated from a single Bacillus cereus isolate and then used to analyze more than 38,000 clones derived from two different metagenomic preparations. Thereby we identified two novel UDP glycosyltransferase (UGT) genes. The metagenome-derived gtfC gene encoded a 52-kDa protein, and the deduced amino acid sequence was weakly similar to sequences of putative UGTs from Fibrisoma and Dyadobacter. GtfC mediated the transfer of different hexose moieties and exhibited high activities on flavones, flavonols, flavanones, and stilbenes and also accepted isoflavones and chalcones. From the control library we identified a novel macroside glycosyltransferase (MGT) with a calculated molecular mass of 46 kDa. The deduced amino acid sequence was highly similar to sequences of MGTs from Bacillus thuringiensis. Recombinant MgtB transferred the sugar residue from UDP-glucose effectively to flavones, flavonols, isoflavones, and flavanones. Moreover, MgtB exhibited high activity on larger flavonoid molecules such as tiliroside. PMID:23686272

  8. Bacterial diversity in the oxygen minimum zone of the eastern tropical South Pacific.

    PubMed

    Stevens, Heike; Ulloa, Osvaldo

    2008-05-01

    The structure and diversity of bacterial communities associated with the oxygen minimum zone (OMZ) of the eastern tropical South Pacific was studied through phylogenetic analysis. Clone libraries of 16S rRNA gene fragments were constructed using environmental DNA collected from the OMZ (60 m and 200 m), the sea surface (10 m), and the deep oxycline (450 m). At the class level, the majority of sequences affiliated to the gamma- (53.7%) and alpha-Proteobacteria (19.7%), and to the Bacteroidetes (11.2%). A vertical partitioning of the bacterial communities was observed, with main differences between the suboxic OMZ and the more oxygenated surface and deep oxycline waters. At the surface, the microbial community was predominantly characterized by SAR86, Loktanella and unclassified Flavobacteriaceae, whereas the deeper layer was dominated by Sulfitobacter and unclassified Alteromonadaceae. In the OMZ, major constituents affiliated to the marine SAR11 clade and to thiotrophic gamma-symbionts (25% of all sequences), a group not commonly found in pelagic waters. Sequences affiliating to the phylum Chloroflexi, to the AGG47 and SAR202 clades, to the delta-Proteobacteria, to the Acidobacteria, and to the 'anammox group' of the Planctomycetes were found exclusively in the OMZ. The bacterial richness in the OMZ was higher than in the oxic surface and deeper oxycline, as revealed by rarefaction analysis and the Chao1 richness estimator (surface: 45 +/- 8, deeper oxycline: 76 +/- 26; OMZ (60 m): 97 +/- 33, OMZ (200 m): 109 +/- 31). OMZ bacterial diversity indices (Fisher's: approximately 30 +/- 5, Shannon's: approximately 3.31, inverse Simpson's: approximately 20) were similar to those found in other pelagic marine environments. Thus, our results indicate a distinct and diverse bacterial community within the OMZ, with presumably novel and yet uncultivated bacterial lineages.

  9. Microbial population index and community structure in saline-alkaline soil using gene targeted metagenomics.

    PubMed

    Keshri, Jitendra; Mishra, Avinash; Jha, Bhavanath

    2013-03-30

    Population indices of bacteria and archaea were investigated from saline-alkaline soil and a possible microbe-environment pattern was established using gene targeted metagenomics. Clone libraries were constructed using 16S rRNA and functional gene(s) involved in carbon fixation (cbbL), nitrogen fixation (nifH), ammonia oxidation (amoA) and sulfur metabolism (apsA). Molecular phylogeny revealed the dominance of Actinobacteria, Firmicutes and Proteobacteria along with archaeal members of Halobacteraceae. The library consisted of novel bacterial (20%) and archaeal (38%) genera showing ≤95% similarity to previously retrieved sequences. Phylogenetic analysis indicated ability of inhabitant to survive in stress condition. The 16S rRNA gene libraries contained novel gene sequences and were distantly homologous with cultured bacteria. Functional gene libraries were found unique and most of the clones were distantly related to Proteobacteria, while clones of nifH gene library also showed homology with Cyanobacteria and Firmicutes. Quantitative real-time PCR exhibited that bacterial abundance was two orders of magnitude higher than archaeal. The gene(s) quantification indicated the size of the functional guilds harboring relevant key genes. The study provides insights on microbial ecology and different metabolic interactions occurring in saline-alkaline soil, possessing phylogenetically diverse groups of bacteria and archaea, which may be explored further for gene cataloging and metabolic profiling. Copyright © 2012 Elsevier GmbH. All rights reserved.

  10. Bacterial diversity in different regions of gastrointestinal tract of Giant African Snail (Achatina fulica)

    PubMed Central

    Pawar, Kiran D; Banskar, Sunil; Rane, Shailendra D; Charan, Shakti S; Kulkarni, Girish J; Sawant, Shailesh S; Ghate, Hemant V; Patole, Milind S; Shouche, Yogesh S

    2012-01-01

    The gastrointestinal (GI) tract of invasive land snail Achatina fulica is known to harbor metabolically active bacterial communities. In this study, we assessed the bacterial diversity in the different regions of GI tract of Giant African snail, A. fulica by culture-independent and culture-dependent methods. Five 16S rRNA gene libraries from different regions of GI tract of active snails indicated that sequences affiliated to phylum γ-Proteobacteria dominated the esophagus, crop, intestine, and rectum libraries, whereas sequences affiliated to Tenericutes dominated the stomach library. On phylogenetic analysis, 30, 27, 9, 27, and 25 operational taxonomic units (OTUs) from esophagus, crop, stomach, intestine, and rectum libraries were identified, respectively. Estimations of the total bacterial diversity covered along with environmental cluster analysis showed highest bacterial diversity in the esophagus and lowest in the stomach. Thirty-three distinct bacterial isolates were obtained, which belonged to 12 genera of two major bacterial phyla namely γ-Proteobacteria and Firmicutes. Among these, Lactococcus lactis and Kurthia gibsonii were the dominant bacteria present in all GI tract regions. Quantitative real-time polymerase chain reaction (qPCR) analysis indicated significant differences in bacterial load in different GI tract regions of active and estivating snails. The difference in the bacterial load between the intestines of active and estivating snail was maximum. Principal component analysis (PCA) of terminal restriction fragment length polymorphism suggested that bacterial community structure changes only in intestine when snail enters estivation state. PMID:23233413

  11. Characterization of Fe(II) oxidizing bacterial activities and communities at two acidic Appalachian coalmine drainage-impacted sites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Senko, John M.; Wanjugi, Pauline; Lucas, Melanie

    2008-06-12

    We characterized the microbiologically mediated oxidative precipitation of Fe(II) from coalminederived acidic mine drainage (AMD) along flow-paths at two sites in northern Pennsylvania. At the Gum Boot site, dissolved Fe(II) was efficiently removed from AMD whereas minimal Fe(II) removal occurred at the Fridays-2 site. Neither site received human intervention to treat the AMD. Culturable Fe(II) oxidizing bacteria were most abundant at sampling locations along the AMD flow path corresponding to greatest Fe(II) removal and where overlying water contained abundant dissolved O2. Rates of Fe(II) oxidation determined in laboratory-based sediment incubations were also greatest at these sampling locations. Ribosomal RNA intergenicmore » spacer analysis and sequencing of partial 16S rRNA genes recovered from sediment bacterial communities revealed similarities among populations at points receiving regular inputs of Fe(II)-rich AMD and provided evidence for the presence of bacterial lineages capable of Fe(II) oxidation. A notable difference between bacterial communities at the two sites was the abundance of Chloroflexi-affiliated 16S rRNA gene sequences in clone libraries derived from the Gum Boot sediments. Our results suggest that inexpensive and reliable AMD treatment strategies can be implemented by mimicking the conditions present at the Gum Boot field site.« less

  12. Bacterial communities in the collection and chlorinated distribution sections of a drinking water system in Budapest, Hungary.

    PubMed

    Homonnay, Zalán G; Török, György; Makk, Judit; Brumbauer, Anikó; Major, Eva; Márialigeti, Károly; Tóth, Erika

    2014-07-01

    Bacterial communities of a bank-filtered drinking water system were investigated by aerobic cultivation and clone library analysis. Moreover, bacterial communities were compared using sequence-aided terminal restriction fragment length polymorphism (T-RFLP) fingerprinting at ten characteristic points located at both the collecting and the distributing part of the water supply system. Chemical characteristics of the samples were similar, except for the presence of chlorine residuals in the distribution system and increased total iron concentration in two of the samples. Assimilable organic carbon (AOC) concentration increased within the collection system, it was reduced by chlorination and it increased again in the distribution system. Neither fecal indicators nor pathogens were detected by standard cultivation techniques. Chlorination reduced bacterial diversity and heterotrophic plate counts. Community structures were found to be significantly different before and after chlorination: the diverse communities in wells and the collection system were dominated by chemolithotrophic (e.g., Gallionella and Nitrospira) and oligocarbophilic-heterotrophic bacteria (e.g., Sphingomonas, Sphingopyxis, and Bradyrhizobium). After chlorination in the distribution system, the most characteristic bacterium was related to the facultative methylotrophic Methylocella spp. Communities changed within the distribution system too, Mycobacterium spp. or Sphingopyxis spp. became predominant in certain samples. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Versatile P(acman) BAC Libraries for Transgenesis Studies in Drosophila melanogaster

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Venken, Koen J.T.; Carlson, Joseph W.; Schulze, Karen L.

    2009-04-21

    We constructed Drosophila melanogaster BAC libraries with 21-kb and 83-kb inserts in the P(acman) system. Clones representing 12-fold coverage and encompassing more than 95percent of annotated genes were mapped onto the reference genome. These clones can be integrated into predetermined attP sites in the genome using Phi C31 integrase to rescue mutations. They can be modified through recombineering, for example to incorporate protein tags and assess expression patterns.

  14. Bacterial biota in reflux esophagitis and Barrett’s esophagus

    PubMed Central

    Pei, Zhiheng; Yang, Liying; Peek, Richard M; Levine, Jr Steven M; Pride, David T; Blaser, Martin J

    2005-01-01

    AIM: To identify the bacterial flora in conditions such as Barrett’s esophagus and reflux esophagitis to determine if they are similar to normal esophageal flora. METHODS: Using broad-range 16S rDNA PCR, esophageal biopsies were examined from 24 patients [9 with normal esophageal mucosa, 12 with gastroesophageal reflux disease (GERD), and 3 with Barrett’s esophagus]. Two separate broad-range PCR reactions were performed for each patient, and the resulting products were cloned. In one patient with Barrett’s esophagus, 99 PCR clones were analyzed. RESULTS: Two separate clones were recovered from each patient (total = 48), representing 24 different species, with 14 species homologous to known bacteria, 5 homologous to unidentified bacteria, and 5 were not homologous (<97% identity) to any known bacterial 16S rDNA sequences. Seventeen species were found in the reflux esophagitis patients, 5 in the Barrett’s esophagus patients, and 10 in normal esophagus patients. Further analysis concentrating on a single biopsy from an individual with Barrett’s esophagus revealed the presence of 21 distinct bacterial species. Members of four phyla were represented, including Bacteroidetes, Firmicutes, Proteobacteria, and Actinobacteria. Microscopic examination of each biopsy demonstrated bacteria in intimate association with the distal esophageal epithelium, suggesting that the presence of these bacteria is not transitory. CONCLUSION: These findings provide evidence for a complex, residential bacterial population in esophageal reflux-related disorders. While much of this biota is present in the normal esophagus, more detailed comparisons may help identify potential disease associations. PMID:16437628

  15. Time-series analysis of two hydrothermal plumes at 9°50'N East Pacific Rise reveals distinct, heterogeneous bacterial populations.

    PubMed

    Sylvan, J B; Pyenson, B C; Rouxel, O; German, C R; Edwards, K J

    2012-03-01

    We deployed sediment traps adjacent to two active hydrothermal vents at 9°50'N on the East Pacific Rise (EPR) to assess the variability in bacterial community structure associated with plume particles on the timescale of weeks to months, to determine whether an endemic population of plume microbes exists, and to establish ecological relationships between bacterial populations and vent chemistry. Automated rRNA intergenic spacer analysis (ARISA) indicated that there are separate communities at the two different vents and temporal community variations between each vent. Correlation analysis between chemistry and microbiology indicated that shifts in the coarse particulate (>1 mm) Fe/(Fe+Mn+Al), Cu, V, Ca, Al, (232) Th, and Ti as well as fine-grained particulate (<1 mm) Fe/(Fe+Mn+Al), Fe, Ca, and Co are reflected in shifts in microbial populations. 16S rRNA clone libraries from each trap at three time points revealed a high percentage of Epsilonproteobacteria clones and hyperthermophilic Aquificae. There is a shift toward the end of the experiment to more Gammaproteobacteria and Alphaproteobacteria, many of whom likely participate in Fe and S cycling. The particle-attached plume environment is genetically distinct from the surrounding seawater. While work to date in hydrothermal environments has focused on determining the microbial communities on hydrothermal chimneys and the basaltic lavas that form the surrounding seafloor, little comparable data exist on the plume environment that physically and chemically connects them. By employing sediment traps for a time-series approach to sampling, we show that bacterial community composition on plume particles changes on timescales much shorter than previously known. © 2012 Blackwell Publishing Ltd.

  16. Informatic and genomic analysis of melanocyte cDNA libraries as a resource for the study of melanocyte development and function.

    PubMed

    Baxter, Laura L; Hsu, Benjamin J; Umayam, Lowell; Wolfsberg, Tyra G; Larson, Denise M; Frith, Martin C; Kawai, Jun; Hayashizaki, Yoshihide; Carninci, Piero; Pavan, William J

    2007-06-01

    As part of the RIKEN mouse encyclopedia project, two cDNA libraries were prepared from melanocyte-derived cell lines, using techniques of full-length clone selection and subtraction/normalization to enrich for rare transcripts. End sequencing showed that these libraries display over 83% complete coding sequence at the 5' end and 96-97% complete coding sequence at the 3' end. Evaluation of the libraries, derived from B16F10Y tumor cells and melan-c cells, revealed that they contain clones for a majority of the genes previously demonstrated to function in melanocyte biology. Analysis of genomic locations for transcripts revealed that the distribution of melanocyte genes is non-random throughout the genome. Three genomic regions identified that showed significant clustering of melanocyte-expressed genes contain one or more genes previously shown to regulate melanocyte development or function. A catalog of genes expressed in these libraries is presented, providing a valuable resource of cDNA clones and sequence information that can be used for identification of new genes important for melanocyte development, function, and disease.

  17. Library analysis of SCHEMA-guided protein recombination.

    PubMed

    Meyer, Michelle M; Silberg, Jonathan J; Voigt, Christopher A; Endelman, Jeffrey B; Mayo, Stephen L; Wang, Zhen-Gang; Arnold, Frances H

    2003-08-01

    The computational algorithm SCHEMA was developed to estimate the disruption caused when amino acid residues that interact in the three-dimensional structure of a protein are inherited from different parents upon recombination. To evaluate how well SCHEMA predicts disruption, we have shuffled the distantly-related beta-lactamases PSE-4 and TEM-1 at 13 sites to create a library of 2(14) (16,384) chimeras and examined which ones retain lactamase function. Sequencing the genes from ampicillin-selected clones revealed that the percentage of functional clones decreased exponentially with increasing calculated disruption (E = the number of residue-residue contacts that are broken upon recombination). We also found that chimeras with low E have a higher probability of maintaining lactamase function than chimeras with the same effective level of mutation but chosen at random from the library. Thus, the simple distance metric used by SCHEMA to identify interactions and compute E allows one to predict which chimera sequences are most likely to retain their function. This approach can be used to evaluate crossover sites for recombination and to create highly mosaic, folded chimeras.

  18. Library analysis of SCHEMA-guided protein recombination

    PubMed Central

    Meyer, Michelle M.; Silberg, Jonathan J.; Voigt, Christopher A.; Endelman, Jeffrey B.; Mayo, Stephen L.; Wang, Zhen-Gang; Arnold, Frances H.

    2003-01-01

    The computational algorithm SCHEMA was developed to estimate the disruption caused when amino acid residues that interact in the three-dimensional structure of a protein are inherited from different parents upon recombination. To evaluate how well SCHEMA predicts disruption, we have shuffled the distantly-related β-lactamases PSE-4 and TEM-1 at 13 sites to create a library of 214 (16,384) chimeras and examined which ones retain lactamase function. Sequencing the genes from ampicillin-selected clones revealed that the percentage of functional clones decreased exponentially with increasing calculated disruption (E = the number of residue–residue contacts that are broken upon recombination). We also found that chimeras with low E have a higher probability of maintaining lactamase function than chimeras with the same effective level of mutation but chosen at random from the library. Thus, the simple distance metric used by SCHEMA to identify interactions and compute E allows one to predict which chimera sequences are most likely to retain their function. This approach can be used to evaluate crossover sites for recombination and to create highly mosaic, folded chimeras. PMID:12876318

  19. Selected topics from classical bacterial genetics.

    PubMed

    Raleigh, Elisabeth A; Elbing, Karen; Brent, Roger

    2002-08-01

    Current cloning technology exploits many facts learned from classical bacterial genetics. This unit covers those that are critical to understanding the techniques described in this book. Topics include antibiotics, the LAC operon, the F factor, nonsense suppressors, genetic markers, genotype and phenotype, DNA restriction, modification and methylation and recombination.

  20. Construction of a general human chromosome jumping library, with application to cystic fibrosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Collins, F.S.; Drumm, M.L.; Cole, J.L.

    1987-02-27

    In many genetic disorders, the responsible gene and its protein product are unknown. The technique known as reverse genetics, in which chromosomal map positions and genetically linked DNA markers are used to identify and clone such genes, is complicated by the fact that the molecular distances from the closest DNA markers to the gene itself are often too large to traverse by standard cloning techniques. To address this situation, a general human chromosome jumping library was constructed that allows the cloning of DNA sequences approximately 100 kilobases away from any starting point in genomic DNA. As an illustration of itsmore » usefulness, this library was searched for a jumping clone, starting at the met oncogene, which is a marker tightly linked to the cystic fibrosis gene that is located on human chromosome 7. Mapping of the new genomic fragment by pulsed field gel electrophoresis confirmed that it resides on chromosome 7 within 240 kilobases downstream of the met gene. The use of chromosome jumping should be applicable to any genetic locus for which a closely linked DNA marker is available.« less

  1. Cross-species bacterial artificial chromosome (BAC) library screening via overgo-based hybridization and BAC-contig mapping of a yield enhancement quantitative trait locus (QTL) yld1.1 in the Malaysian wild rice Oryza rufipogon.

    PubMed

    Song, Beng-Kah; Nadarajah, Kalaivani; Romanov, Michael N; Ratnam, Wickneswari

    2005-01-01

    The construction of BAC-contig physical maps is an important step towards a partial or ultimate genome sequence analysis. Here, we describe our initial efforts to apply an overgo approach to screen a BAC library of the Malaysian wild rice species, Oryza rufipogon. Overgo design is based on repetitive element masking and sequence uniqueness, and uses short probes (approximately 40 bp), making this method highly efficient and specific. Pairs of 24-bp oligos that contain an 8-bp overlap were developed from the publicly available genomic sequences of the cultivated rice, O. sativa, to generate 20 overgo probes for a 1-Mb region that encompasses a yield enhancement QTL yld1.1 in O. rufipogon. The advantages of a high similarity in melting temperature, hybridization kinetics and specific activities of overgos further enabled a pooling strategy for library screening by filter hybridization. Two pools of ten overgos each were hybridized to high-density filters representing the O. rufipogon genomic BAC library. These screening tests succeeded in providing 69 PCR-verified positive hits from a total of 23,040 BAC clones of the entire O. rufipogon library. A minimal tilling path of clones was generated to contribute to a fully covered BAC-contig map of the targeted 1-Mb region. The developed protocol for overgo design based on O. sativa sequences as a comparative genomic framework, and the pooled overgo hybridization screening technique are suitable means for high-resolution physical mapping and the identification of BAC candidates for sequencing.

  2. Using PATIMDB to Create Bacterial Transposon Insertion Mutant Libraries

    PubMed Central

    Urbach, Jonathan M.; Wei, Tao; Liberati, Nicole; Grenfell-Lee, Daniel; Villanueva, Jacinto; Wu, Gang; Ausubel, Frederick M.

    2015-01-01

    PATIMDB is a software package for facilitating the generation of transposon mutant insertion libraries. The software has two main functions: process tracking and automated sequence analysis. The process tracking function specifically includes recording the status and fates of multiwell plates and samples in various stages of library construction. Automated sequence analysis refers specifically to the pipeline of sequence analysis starting with ABI files from a sequencing facility and ending with insertion location identifications. The protocols in this unit describe installation and use of PATIMDB software. PMID:19343706

  3. Bacterial community analysis of swine manure treated with autothermal thermophilic aerobic digestion.

    PubMed

    Han, Il; Congeevaram, Shankar; Ki, Dong-Won; Oh, Byoung-Taek; Park, Joonhong

    2011-02-01

    Due to the environmental problems associated with disposal of livestock sludge, many stabilization studies emphasizing on the sludge volume reduction were performed. However, little is known about the microbial risk present in sludge and its stabilized products. This study microbiologically explored the effects of anaerobic lagoon fermentation (ALF) and autothermal thermophilic aerobic digestion (ATAD) on pathogen-related risk of raw swine manure by using culture-independent 16S rDNA cloning and sequencing methods. In raw swine manure, clones closely related to pathogens such as Dialister pneumosintes, Erysipelothrix rhusiopathiae, Succinivibrioan dextrinosolvens, and Schineria sp. were detected. Meanwhile, in the mesophilic ALF-treated swine manure, bacterial community clones closely related to pathogens such as Schineria sp. and Succinivibrio dextrinosolvens were still detected. Interestingly, the ATAD treatment resulted in no detection of clones closely related to pathogens in the stabilized thermophilic bacterial community, with the predominance of novel Clostridia class populations. These findings support the superiority of ATAD in selectively reducing potential human and animal pathogens compared to ALF, which is a typical manure stabilization method used in livestock farms.

  4. Identification of eukaryotic open reading frames in metagenomic cDNA libraries made from environmental samples.

    PubMed

    Grant, Susan; Grant, William D; Cowan, Don A; Jones, Brian E; Ma, Yanhe; Ventosa, Antonio; Heaphy, Shaun

    2006-01-01

    Here we describe the application of metagenomic technologies to construct cDNA libraries from RNA isolated from environmental samples. RNAlater (Ambion) was shown to stabilize RNA in environmental samples for periods of at least 3 months at -20 degrees C. Protocols for library construction were established on total RNA extracted from Acanthamoeba polyphaga trophozoites. The methodology was then used on algal mats from geothermal hot springs in Tengchong county, Yunnan Province, People's Republic of China, and activated sludge from a sewage treatment plant in Leicestershire, United Kingdom. The Tenchong libraries were dominated by RNA from prokaryotes, reflecting the mainly prokaryote microbial composition. The majority of these clones resulted from rRNA; only a few appeared to be derived from mRNA. In contrast, many clones from the activated sludge library had significant similarity to eukaryote mRNA-encoded protein sequences. A library was also made using polyadenylated RNA isolated from total RNA from activated sludge; many more clones in this library were related to eukaryotic mRNA sequences and proteins. Open reading frames (ORFs) up to 378 amino acids in size could be identified. Some resembled known proteins over their full length, e.g., 36% match to cystatin, 49% match to ribosomal protein L32, 63% match to ribosomal protein S16, 70% to CPC2 protein. The methodology described here permits the polyadenylated transcriptome to be isolated from environmental samples with no knowledge of the identity of the microorganisms in the sample or the necessity to culture them. It has many uses, including the identification of novel eukaryotic ORFs encoding proteins and enzymes.

  5. Identification of Eukaryotic Open Reading Frames in Metagenomic cDNA Libraries Made from Environmental Samples†

    PubMed Central

    Grant, Susan; Grant, William D.; Cowan, Don A.; Jones, Brian E.; Ma, Yanhe; Ventosa, Antonio; Heaphy, Shaun

    2006-01-01

    Here we describe the application of metagenomic technologies to construct cDNA libraries from RNA isolated from environmental samples. RNAlater (Ambion) was shown to stabilize RNA in environmental samples for periods of at least 3 months at −20°C. Protocols for library construction were established on total RNA extracted from Acanthamoeba polyphaga trophozoites. The methodology was then used on algal mats from geothermal hot springs in Tengchong county, Yunnan Province, People's Republic of China, and activated sludge from a sewage treatment plant in Leicestershire, United Kingdom. The Tenchong libraries were dominated by RNA from prokaryotes, reflecting the mainly prokaryote microbial composition. The majority of these clones resulted from rRNA; only a few appeared to be derived from mRNA. In contrast, many clones from the activated sludge library had significant similarity to eukaryote mRNA-encoded protein sequences. A library was also made using polyadenylated RNA isolated from total RNA from activated sludge; many more clones in this library were related to eukaryotic mRNA sequences and proteins. Open reading frames (ORFs) up to 378 amino acids in size could be identified. Some resembled known proteins over their full length, e.g., 36% match to cystatin, 49% match to ribosomal protein L32, 63% match to ribosomal protein S16, 70% to CPC2 protein. The methodology described here permits the polyadenylated transcriptome to be isolated from environmental samples with no knowledge of the identity of the microorganisms in the sample or the necessity to culture them. It has many uses, including the identification of novel eukaryotic ORFs encoding proteins and enzymes. PMID:16391035

  6. Use of bacterial artificial chromosomes in generating targeted mutations in human and mouse cytomegaloviruses.

    PubMed

    Borst, Eva Maria; Benkartek, Corinna; Messerle, Martin

    2007-05-01

    Cloning of cytomegalovirus (CMV) genomes as bacterial artificial chromosomes (BAC) in E. coli and their manipulation using the techniques of bacterial genetics has greatly facilitated the construction of CMV mutants. This unit describes easily applicable procedures that allow rapid introduction of any kind of targeted mutation into BAC-cloned CMV genomes. Protocols for the reconstitution of virus from isolated BAC DNA, preparation of a virus stock, and isolation and characterization of viral DNA are also included. Special emphasis is laid on description of critical steps and thorough characterization of the altered BACs.

  7. Cloning of genes required for hypersensitivity and pathogenicity in Pseudomonas syringae pv. aptata.

    PubMed

    Minardi, P

    1995-01-01

    A genomic library of Pseudomonas syringae pv. aptata strain NCPPB 2664, which causes bacterial blight of sugar beet, lettuce and other plants, was constructed in the cosmid vector pCPP31. The 13.4 kb EcoRI fragment of the cosmid pHIR11, containing the hrp (hypersensitive response and pathogenicity) gene cluster of the closely related bacterium Pseudomonas syringae pv. syringae strain 61, was used as a probe to identify a homologous hrp gene cluster in P. syringae pv. aptata. Thirty of 2500 cosmid clones, screened by colony hybridization, gave a strong hybridization signal with the probe, but none of these conferred to the non-pathogenic bacterium, Pseudomonas fluorescens, the ability to elicit the hypersensitive response (HR) in tobacco. Southern blot analysis of EcoRI-digested genomic DNA of P. syringae pv. aptata showed hybridizing bands of 12 kb and 4.4 kb. Only a 12 kb fragment hybridized in digests of the cosmids. Cosmid clone pCPP1069 was mutagenized with Tn10-minitet and marker-exchanged into the genome of P. syringae pv. aptata. Three resulting prototrophic mutant strains failed to elicit the HR in tobacco and to cause disease in lettuce. The DNA flanking the Tn10-minitet insertions from mutated derivatives of pCPP1069 hybridized with the 10.6 kb Bg/II fragment of pHIR11. These results indicate that P. syringae pv. aptata harbours hrp genes that are similar to, but arranged differently from, homologous hrp genes of P. syringae pv. syringae.

  8. Cloning of Sucrose:Sucrose 1-Fructosyltransferase from Onion and Synthesis of Structurally Defined Fructan Molecules from Sucrose1

    PubMed Central

    Vijn, Irma; van Dijken, Anja; Lüscher, Marcel; Bos, Antoine; Smeets, Edward; Weisbeek, Peter; Wiemken, Andres; Smeekens, Sjef

    1998-01-01

    Sucrose (Suc):Suc 1-fructosyltransferase (1-SST) is the key enzyme in plant fructan biosynthesis, since it catalyzes de novo fructan synthesis from Suc. We have cloned 1-SST from onion (Allium cepa) by screening a cDNA library using acid invertase from tulip (Tulipa gesneriana) as a probe. Expression assays in tobacco (Nicotiana plumbaginifolia) protoplasts showed the formation of 1-kestose from Suc. In addition, an onion acid invertase clone was isolated from the same cDNA library. Protein extracts of tobacco protoplasts transformed with this clone showed extensive Suc-hydrolyzing activity. Conditions that induced fructan accumulation in onion leaves also induced 1-SST mRNA accumulation, whereas the acid invertase mRNA level decreased. Structurally different fructan molecules could be produced from Suc by a combined incubation of protein extract of protoplasts transformed with 1-SST and protein extract of protoplasts transformed with either the onion fructan:fructan 6G-fructosyltransferase or the barley Suc:fructan 6-fructosyltransferase. PMID:9701606

  9. Homopolymer tail-mediated ligation PCR: a streamlined and highly efficient method for DNA cloning and library construction

    PubMed Central

    Lazinski, David W.; Camilli, Andrew

    2013-01-01

    The amplification of DNA fragments, cloned between user-defined 5′ and 3′ end sequences, is a prerequisite step in the use of many current applications including massively parallel sequencing (MPS). Here we describe an improved method, called homopolymer tail-mediated ligation PCR (HTML-PCR), that requires very little starting template, minimal hands-on effort, is cost-effective, and is suited for use in high-throughput and robotic methodologies. HTML-PCR starts with the addition of homopolymer tails of controlled lengths to the 3′ termini of a double-stranded genomic template. The homopolymer tails enable the annealing-assisted ligation of a hybrid oligonucleotide to the template's recessed 5′ ends. The hybrid oligonucleotide has a user-defined sequence at its 5′ end. This primer, together with a second primer composed of a longer region complementary to the homopolymer tail and fused to a second 5′ user-defined sequence, are used in a PCR reaction to generate the final product. The user-defined sequences can be varied to enable compatibility with a wide variety of downstream applications. We demonstrate our new method by constructing MPS libraries starting from nanogram and sub-nanogram quantities of Vibrio cholerae and Streptococcus pneumoniae genomic DNA. PMID:23311318

  10. Bacterial diversity in different regions of gastrointestinal tract of Giant African snail (Achatina fulica).

    PubMed

    Pawar, Kiran D; Banskar, Sunil; Rane, Shailendra D; Charan, Shakti S; Kulkarni, Girish J; Sawant, Shailesh S; Ghate, Hemant V; Patole, Milind S; Shouche, Yogesh S

    2012-12-01

    The gastrointestinal (GI) tract of invasive land snail Achatina fulica is known to harbor metabolically active bacterial communities. In this study, we assessed the bacterial diversity in the different regions of GI tract of Giant African snail, A. fulica by culture-independent and culture-dependent methods. Five 16S rRNA gene libraries from different regions of GI tract of active snails indicated that sequences affiliated to phylum γ-Proteobacteria dominated the esophagus, crop, intestine, and rectum libraries, whereas sequences affiliated to Tenericutes dominated the stomach library. On phylogenetic analysis, 30, 27, 9, 27, and 25 operational taxonomic units (OTUs) from esophagus, crop, stomach, intestine, and rectum libraries were identified, respectively. Estimations of the total bacterial diversity covered along with environmental cluster analysis showed highest bacterial diversity in the esophagus and lowest in the stomach. Thirty-three distinct bacterial isolates were obtained, which belonged to 12 genera of two major bacterial phyla namely γ-Proteobacteria and Firmicutes. Among these, Lactococcus lactis and Kurthia gibsonii were the dominant bacteria present in all GI tract regions. Quantitative real-time polymerase chain reaction (qPCR) analysis indicated significant differences in bacterial load in different GI tract regions of active and estivating snails. The difference in the bacterial load between the intestines of active and estivating snail was maximum. Principal component analysis (PCA) of terminal restriction fragment length polymorphism suggested that bacterial community structure changes only in intestine when snail enters estivation state. © 2012 The Authors. Published by Blackwell Publishing Ltd.

  11. Cloning, bacterial expression and crystallization of Fv antibody fragments

    NASA Astrophysics Data System (ADS)

    E´, Jean-Luc; Boulot, Ginette; Chitarra, V´ronique; Riottot, Marie-Madeleine; Souchon, H´le`ne; Houdusse, Anne; Bentley, Graham A.; Narayana Bhat, T.; Spinelli, Silvia; Poljak, Roberto J.

    1992-08-01

    The variable Fv fragments of antibodies, cloned in recombinant plasmids, can be expressed in bacteria as functional proteins having immunochemical properties which are very similar or identical with those of the corresponding parts of the parent eukaryotic antibodies. They offer new possibilities for the study of antibody-antigen interactions since the crystals of Fv fragments and of their complexes with antigen reported here diffract X-rays to a higher resolution that those obtained with the cognate Fab fragments. The Fv approach should facilitate the structural study of the combining site of antibodies and the further characterization of antigen-antibody interactions by site-directed mutagenesis experiments.

  12. High-resolution mapping and sequence analysis of 597 cDNA clones transcribed from the 1 Mb region in human chromosome 4q16.3 containing Huntington disease gene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hadano, S.; Ishida, Y.; Tomiyasu, H.

    1994-09-01

    To complete a transcription map of the 1 Mb region in human chromosome 4p16.3 containing the Huntington disease (HD) gene, the isolation of cDNA clones are being performed throughout. Our method relies on a direct screening of the cDNA libraries probed with single copy microclones from 3 YAC clones spanning 1 Mbp of the HD gene region. AC-DNAs were isolated by a preparative pulsed-field gel electrophoresis, amplified by both a single unique primer (SUP)-PCR and a linker ligation PCR, and 6 microclone-DNA libraries were generated. Then, 8,640 microclones from these libraries were independently amplified by PCR, and arrayed onto themore » membranes. 800-900 microclones that were not cross-hybridized with total human and yeast genomic DNA, TAC vector DNA, and ribosomal cDNA on a dot hybridization (putatively carrying single copy sequences) were pooled to make 9 probe pools. A total of {approximately}1.8x10{sup 7} plaques from the human brain cDNA libraries was screened with 9 pool-probes, and then 672 positive cDNA clones were obtained. So far, 597 cDNA clones were defined and arrayed onto a map of the 1 Mbp of the HD gene region by hybridization with HD region-specific cosmid contigs and YAC clones. Further characterization including a DNA sequencing and Northern blot analysis is currently underway.« less

  13. A cDNA clone highly expressed in ripe banana fruit shows homology to pectate lyases.

    PubMed

    Dominguez-Puigjaner, E; LLop, I; Vendrell, M; Prat, S

    1997-07-01

    A cDNA clone (Ban17), encoding a protein homologous to pectate lyase, has been isolated from a cDNA library from climacteric banana fruit by means of differential screening. Northern analysis showed that Ban17 mRNA is first detected in early climacteric fruit, reaches a steady-state maximum at the climacteric peak, and declines thereafter in overripe fruit. Accumulation of the Ban17 transcript can be induced in green banana fruit by exogenous application of ethylene. The demonstrates that expression of this gene is under hormonal control, its induction being regulated by the rapid increase in ethylene production at the onset of ripening. The deduced amino acid sequence derived from the Ban17 cDNA shares significant identity with pectate lyases from pollen and plant pathogenic bacteria of the genus Erwinia. Similarity to bacterial pectate lyases that were proven to break down the pectic substances of the plant cell wall suggest that Ban17 might play a role in the loss of mesocarp firmness during fruit ripening.

  14. Activity-Based Screening of Metagenomic Libraries for Hydrogenase Enzymes.

    PubMed

    Adam, Nicole; Perner, Mirjam

    2017-01-01

    Here we outline how to identify hydrogenase enzymes from metagenomic libraries through an activity-based screening approach. A metagenomic fosmid library is constructed in E. coli and the fosmids are transferred into a hydrogenase deletion mutant of Shewanella oneidensis (ΔhyaB) via triparental mating. If a fosmid exhibits hydrogen uptake activity, S. oneidensis' phenotype is restored and hydrogenase activity is indicated by a color change of the medium from yellow to colorless. This new method enables screening of 48 metagenomic fosmid clones in parallel.

  15. Bacterial mutation affecting plasmid maintenance in Pseudomonas aeruginosa.

    PubMed Central

    Chang, B J; Holloway, B W

    1977-01-01

    A bacterial mutation, risA, in Pseudomonas aeruginosa caused growth inhibition at 43 degrees C of risA strains containing P2 plasmids. Incubation at 43 degrees C resulted in selection for clones that had lost P2 plasmids. PMID:122513

  16. Bacterial composition in a metropolitan drinking water distribution system utilizing different source waters.

    PubMed

    Gomez-Alvarez, Vicente; Humrighouse, Ben W; Revetta, Randy P; Santo Domingo, Jorge W

    2015-03-01

    We investigated the bacterial composition of water samples from two service areas within a drinking water distribution system (DWDS), each associated with a different primary source of water (groundwater, GW; surface water, SW) and different treatment process. Community analysis based on 16S rRNA gene clone libraries indicated that Actinobacteria (Mycobacterium spp.) and α-Proteobacteria represented nearly 43 and 38% of the total sequences, respectively. Sequences closely related to Legionella, Pseudomonas, and Vibrio spp. were also identified. In spite of the high number of sequences (71%) shared in both areas, multivariable analysis revealed significant differences between the GW and SW areas. While the dominant phylotypes where not significantly contributing in the ordination of samples, the populations associated with the core of phylotypes (1-10% in each sample) significantly contributed to the differences between both service areas. Diversity indices indicate that the microbial community inhabiting the SW area is more diverse and contains more distantly related species coexisting with local assemblages as compared with the GW area. The bacterial community structure of SW and GW service areas were dissimilar, suggesting that their respective source water and/or water quality parameters shaped by the treatment processes may contribute to the differences in community structure observed.

  17. Cloning and Expression of cDNA for Rat Heme Oxygenase

    NASA Astrophysics Data System (ADS)

    Shibahara, Shigeki; Muller, Rita; Taguchi, Hayao; Yoshida, Tadashi

    1985-12-01

    Two cDNA clones for rat heme oxygenase have been isolated from a rat spleen cDNA library in λ gt11 by immunological screening using a specific polyclonal antibody. One of these clones has an insert of 1530 nucleotides that contains the entire protein-coding region. To confirm that the isolated cDNA encodes heme oxygenase, we transfected monkey kidney cells (COS-7) with the cDNA carried in a simian virus 40 vector. The heme oxygenase was highly expressed in endoplasmic reticulum of transfected cells. The nucleotide sequence of the cloned cDNA was determined and the primary structure of heme oxygenase was deduced. Heme oxygenase is composed of 289 amino acids and has one hydrophobic segment at its carboxyl terminus, which is probably important for the insertion of heme oxygenase into endoplasmic reticulum. The cloned cDNA was used to analyze the induction of heme oxygenase in rat liver by treatment with CoCl2 or with hemin. RNA blot analysis showed that both CoCl2 and hemin increased the amount of hybridizable mRNA, suggesting that these substances may act at the transcriptional level to increase the amount of heme oxygenase.

  18. A novel lentiviral scFv display library for rapid optimization and selection of high affinity antibodies.

    PubMed

    Qudsia, Sehar; Merugu, Siva B; Mangukiya, Hitesh B; Hema, Negi; Wu, Zhenghua; Li, Dawei

    2018-04-30

    Antibody display libraries have become a popular technique to screen monoclonal antibodies for therapeutic purposes. An important aspect of display technology is to generate an optimization library by changing antibody affinity to antigen through mutagenesis and screening the high affinity antibody. In this study, we report a novel lentivirus display based optimization library antibody in which Agtuzumab scFv is displayed on cell membrane of HEK-293T cells. To generate an optimization library, hotspot mutagenesis was performed to achieve diverse antibody library. Based on sequence analysis of randomly selected clones, library size was estimated approximately to be 1.6 × 10 6 . Lentivirus display vector was used to display scFv antibody on cell surface and flow cytometery was performed to check the antibody affinity to antigen. Membrane bound scFv antibodies were then converted to secreted antibody through cre/loxP recombination. One of the mutant clones, M8 showed higher affinity to antigen in flow cytometery analysis. Further characterization of cellular and secreted scFv through western blot showed that antibody affinity was increased by three fold after mutagenesis. This study shows successful construction of a novel antibody library and suggests that hotspot mutagenesis could prove a useful and rapid optimization tool to generate similar libraries with various degree of antigen affinity. Copyright © 2018 Elsevier Inc. All rights reserved.

  19. Bacterial communities associated with three Brazilian endemic reef corals (Mussismilia spp.) in a coastal reef of the Abrolhos shelf

    NASA Astrophysics Data System (ADS)

    de Castro, Alinne Pereira; Araújo, Samuel Dias; Reis, Alessandra M. M.; Pompeu, Maira; Hatay, Mark; de Moura, Rodrigo Leão; Francini-Filho, Ronaldo B.; Thompson, Fabiano L.; Krüger, Ricardo H.

    2013-11-01

    The diversity of bacterial communities associated with three Brazilian endemic reef corals from genus Mussismilia (M. hispida, M. braziliensis, and M. harttii) at a single site was assessed using 16S rRNA clone libraries. The study site, Pedra do Leste, is a coastal reef within the largest and richest South Atlantic coralline reef complex (Abrolhos Bank) and is subject to high fishing pressure, high sedimentation loads, and other land-based stressors. The three coral species are Neogene relicts with unique biological and morphological traits that enable them to survive relatively high sedimentation levels. Our results show that sequences affiliated with γ-Proteobacteria predominated, accounting for more than 60% of the examined sequences. Indeed, the most frequent species were related to Alteromonas, Marinomonas, Neptuniibacter, and Vibrio, which are copiotrophic microorganisms common in environments highly affected by anthropogenic stress. Principal component analysis revealed that bacterial communities of M. braziliensis and M. hispida were more similar to each other than to M. harttii-associated bacteria. Such pattern is likely related to distinct morphological properties of M. harttii, such as the existence of phaceloid colonies, in which polyps are not connected by soft tissue. This is the first investigation assessing the bacterial communities of the three Brazilian endemic Mussismilia species at the same location.

  20. Molecular Characterization of a Dechlorinating Community Resulting from In Situ Biostimulation in a Trichloroethene-Contaminated Deep, Fractured Basalt Aquifer and Comparison to a Derivative Laboratory Culture

    PubMed Central

    Macbeth, Tamzen W.; Cummings, David E.; Spring, Stefan; Petzke, Lynn M.; Sorenson, Kent S.

    2004-01-01

    Sodium lactate additions to a trichloroethene (TCE) residual source area in deep, fractured basalt at a U.S. Department of Energy site have resulted in the enrichment of the indigenous microbial community, the complete dechlorination of nearly all aqueous-phase TCE to ethene, and the continued depletion of the residual source since 1999. The bacterial and archaeal consortia in groundwater obtained from the residual source were assessed by using PCR-amplified 16S rRNA genes. A clone library of bacterial amplicons was predominated by those from members of the class Clostridia (57 of 93 clones), of which a phylotype most similar to that of the homoacetogen Acetobacterium sp. strain HAAP-1 was most abundant (32 of 93 clones). The remaining Bacteria consisted of phylotypes affiliated with Sphingobacteria, Bacteroides, Spirochaetes, Mollicutes, and Proteobacteria and candidate divisions OP11 and OP3. The two proteobacterial phylotypes were most similar to those of the known dechlorinators Trichlorobacter thiogenes and Sulfurospirillum multivorans. Although not represented by the bacterial clones generated with broad-specificity bacterial primers, a Dehalococcoides-like phylotype was identified with genus-specific primers. Only four distinct phylotypes were detected in the groundwater archaeal library, including predominantly a clone affiliated with the strictly acetoclastic methanogen Methanosaeta concilii (24 of 43 clones). A mixed culture that completely dechlorinates TCE to ethene was enriched from this groundwater, and both communities were characterized by terminal restriction fragment length polymorphism (T-RFLP). According to T-RFLP, the laboratory enrichment community was less diverse overall than the groundwater community, with 22 unique phylotypes as opposed to 43 and a higher percentage of Clostridia, including the Acetobacterium population. Bioreactor archaeal structure was very similar to that of the groundwater community, suggesting that methane is

  1. Characterization of rhizosphere and endophytic bacterial communities from leaves, stems and roots of medicinal Stellera chamaejasme L.

    PubMed

    Jin, Hui; Yang, Xiao-Yan; Yan, Zhi-Qiang; Liu, Quan; Li, Xiu-Zhuang; Chen, Ji-Xiang; Zhang, Deng-Hong; Zeng, Li-Ming; Qin, Bo

    2014-07-01

    A diverse array of bacteria that inhabit the rhizosphere and different plant organs play a crucial role in plant health and growth. Therefore, a general understanding of these bacterial communities and their diversity is necessary. Using the 16S rRNA gene clone library technique, the bacterial community structure and diversity of the rhizosphere and endophytic bacteria in Stellera chamaejasme compartments were compared and clarified for the first time. Grouping of the sequences obtained showed that members of the Proteobacteria (43.2%), Firmicutes (36.5%) and Actinobacteria (14.1%) were dominant in both samples. Other groups that were consistently found, albeit at lower abundance, were Bacteroidetes (2.1%), Chloroflexi (1.9%), and Cyanobacteria (1.7%). The habitats (rhizosphere vs endophytes) and organs (leaf, stem and root) structured the community, since the Wilcoxon signed rank test indicated that more varied bacteria inhabited the rhizosphere compared to the organs of the plant. In addition, correspondence analysis also showed that differences were apparent in the bacterial communities associated with these distinct habitats. Moreover, principal component analysis revealed that the profiles obtained from the rhizosphere and roots were similar, whereas leaf and stem samples clustered together on the opposite side of the plot from the rhizosphere and roots. Taken together, these results suggested that, although the communities associated with the rhizosphere and organs shared some bacterial species, the associated communities differed in structure and diversity. Copyright © 2014 Elsevier GmbH. All rights reserved.

  2. [Construction of forward and reverse subtracted cDNA libraries between muscle tissue of Meishan and Landrace pigs].

    PubMed

    Xu, De-Quan; Zhang, Yi-Bing; Xiong, Yuan-Zhu; Gui, Jian-Fang; Jiang, Si-Wen; Su, Yu-Hong

    2003-07-01

    Using suppression subtractive hybridization (SSH) technique, forward and reverse subtracted cDNA libraries were constructed between Longissimus muscles from Meishan and Landrace pigs. A housekeeping gene, G3PDH, was used to estimate the efficiency of subtractive cDNA. In two cDNA libraries, G3PDH was subtracted very efficiently at appropriate 2(10) and 2(5) folds, respectively, indicating that some differentially expressed genes were also enriched at the same folds and the two subtractive cDNA libraries were very successful. A total of 709 and 673 positive clones were isolated from forward and reverse subtracted cDNA libraries, respectively. Analysis of PCR showed that most of all plasmids in the clones contained 150-750 bp inserts. The construction of subtractive cDNA libraries between muscle tissue from different pig breeds laid solid foundations for isolating and identifying the genes determining muscle growth and meat quality, which will be important to understand the mechanism of muscle growth, determination of meat quality and practice of molecular breeding.

  3. Characterization of microbial consortia in a terephthalate-degrading anaerobic granular sludge system.

    PubMed

    Wu, J H; Liu, W T; Tseng, I C; Cheng, S S

    2001-02-01

    The microbial composition and spatial distribution in a terephthalate-degrading anaerobic granular sludge system were characterized using molecular techniques. 16S rDNA clone library and sequence analysis revealed that 78.5% of 106 bacterial clones belonged to the delta subclass of the class Proteobacteria; the remaining clones were assigned to the green non-sulfur bacteria (7.5%), Synergistes (0.9%) and unidentified divisions (13.1%). Most of the bacterial clones in the delta-Proteobacteria formed a novel group containing no known bacterial isolates. For the domain Archaea, 81.7% and 18.3% of 72 archaeal clones were affiliated with Methanosaeta and Methanospirillum, respectively. Spatial localization of microbial populations inside granules was determined by transmission electron microscopy and fluorescent in situ hybridization with oligonucleotide probes targeting the novel delta-proteobacterial group, the acetoclastic Methanosaeta, and the hydrogenotrophic Methanospirillum and members of Methanobacteriaceae. The novel group included at least two different populations with identical rod-shape morphology, which made up more than 87% of the total bacterial cells, and were closely associated with methanogenic populations to form a nonlayered granular structure. This novel group was presumed to be the primary bacterial population involved in the terephthalate degradation in the methanogenic granular consortium.

  4. Molecular Characterization of Epiphytic Bacterial Communities on Charophycean Green Algae

    PubMed Central

    Fisher, Madeline M.; Wilcox, Lee W.; Graham, Linda E.

    1998-01-01

    Epiphytic bacterial communities within the sheath material of three filamentous green algae, Desmidium grevillii, Hyalotheca dissiliens, and Spondylosium pulchrum (class Charophyceae, order Zygnematales), collected from a Sphagnum bog were characterized by PCR amplification, cloning, and sequencing of 16S ribosomal DNA. A total of 20 partial sequences and nine different sequence types were obtained, and one sequence type was recovered from the bacterial communities on all three algae. By phylogenetic analysis, the cloned sequences were placed into several major lineages of the Bacteria domain: the Flexibacter/Cytophaga/Bacteroides phylum and the α, β, and γ subdivisions of the phylum Proteobacteria. Analysis at the subphylum level revealed that the majority of our sequences were not closely affiliated with those of known, cultured taxa, although the estimated evolutionary distances between our sequences and their nearest neighbors were always less than 0.1 (i.e., greater than 90% similar). This result suggests that the majority of sequences obtained in this study represent as yet phenotypically undescribed bacterial species and that the range of bacterial-algal interactions that occur in nature has not yet been fully described. PMID:9797295

  5. RNA-Seq for Bacterial Gene Expression.

    PubMed

    Poulsen, Line Dahl; Vinther, Jeppe

    2018-06-01

    RNA sequencing (RNA-seq) has become the preferred method for global quantification of bacterial gene expression. With the continued improvements in sequencing technology and data analysis tools, the most labor-intensive and expensive part of an RNA-seq experiment is the preparation of sequencing libraries, which is also essential for the quality of the data obtained. Here, we present a straightforward and inexpensive basic protocol for preparation of strand-specific RNA-seq libraries from bacterial RNA as well as a computational pipeline for the data analysis of sequencing reads. The protocol is based on the Illumina platform and allows easy multiplexing of samples and the removal of sequencing reads that are PCR duplicates. © 2018 by John Wiley & Sons, Inc. © 2018 John Wiley & Sons, Inc.

  6. Isolation and characterization of a cDNA clone specific for avian vitellogenin II.

    PubMed Central

    Protter, A A; Wang, S Y; Shelness, G S; Ostapchuk, P; Williams, D L

    1982-01-01

    A clone for vitellogenin, a major avian, estrogen responsive egg yolk protein, was isolated from the cDNA library of estrogen-induced rooster liver. Two forms of plasma vitellogenin, vitellogenin I (VTG I) and vitellogenin II (VTG II), distinguishable on the basis of their unique partial proteolysis maps, have been characterized and their corresponding hepatic precursor forms identified. We have used this criterion to specifically characterize which vitellogenin protein had been cloned. Partial proteolysis maps of BTG I and VTG II standards, synthesized in vivo, were compared to maps of protein synthesized in vitro using RNA hybrid-selected by the vitellogenin plasmid. Eight major digest fragments were found common to the in vitro synthesized vitellogenin and the VTG II standard while no fragments were observed to correspond to the VTG I map. A restriction map of the VTG II cDNA clone permits comparison to previously described cDNA and genomic vitellogenin clones. Images PMID:6182527

  7. Construction of an infectious genomic clone of porcine parvovirus: effect of the 5'-end on DNA replication.

    PubMed

    Casal, J I; Diaz-Aroca, E; Ranz, A I; Manclus, J J

    1990-08-01

    The linear single-stranded DNA genome of the porcine parvovirus, an autonomous parvovirus, was cloned in duplex form into the bacterial plasmid pUC18 using a simple and reliable method. These clones were stable during propagation in Escherichia coli JM109. The recombinant clones of porcine parvovirus were infectious when transfected into monolayers of swine testes cells as identified by the development of cytopathic effect, indirect immunofluorescence with specific antiserum, and hemagglutination assays. DNA isolated from progeny virus arising from transfected infectious clones was found to be indistinguishable from wild-type DNA by restriction enzyme analysis. Defective genomes could also be detected in the progeny DNA even though the infection was initiated with homogeneous, cloned DNA. The presence of the turn of the 5'-end loop seems to be necessary to get stable infectious clones.

  8. Host-associated bacterial taxa from Chlorobi, Chloroflexi, GN02, Synergistetes, SR1, TM7, and WPS-2 Phyla/candidate divisions

    PubMed Central

    Camanocha, Anuj; Dewhirst, Floyd E.

    2014-01-01

    Background and objective In addition to the well-known phyla Firmicutes, Proteobacteria, Bacteroidetes, Actinobacteria, Spirochaetes, Fusobacteria, Tenericutes, and Chylamydiae, the oral microbiomes of mammals contain species from the lesser-known phyla or candidate divisions, including Synergistetes, TM7, Chlorobi, Chloroflexi, GN02, SR1, and WPS-2. The objectives of this study were to create phyla-selective 16S rDNA PCR primer pairs, create selective 16S rDNA clone libraries, identify novel oral taxa, and update canine and human oral microbiome databases. Design 16S rRNA gene sequences for members of the lesser-known phyla were downloaded from GenBank and Greengenes databases and aligned with sequences in our RNA databases. Primers with potential phylum level selectivity were designed heuristically with the goal of producing nearly full-length 16S rDNA amplicons. The specificity of primer pairs was examined by making clone libraries from PCR amplicons and determining phyla identity by BLASTN analysis. Results Phylum-selective primer pairs were identified that allowed construction of clone libraries with 96–100% specificity for each of the lesser-known phyla. From these clone libraries, seven human and two canine novel oral taxa were identified and added to their respective taxonomic databases. For each phylum, genome sequences closest to human oral taxa were identified and added to the Human Oral Microbiome Database to facilitate metagenomic, transcriptomic, and proteomic studies that involve tiling sequences to the most closely related taxon. While examining ribosomal operons in lesser-known phyla from single-cell genomes and metagenomes, we identified a novel rRNA operon order (23S-5S-16S) in three SR1 genomes and the splitting of the 23S rRNA gene by an I-CeuI-like homing endonuclease in a WPS-2 genome. Conclusions This study developed useful primer pairs for making phylum-selective 16S rRNA clone libraries. Phylum-specific libraries were shown to be useful

  9. Probing the dynamic reversibility and generation of dynamic combinatorial libraries in the presence of bacterial model oligopeptides as templating guests of tetra-carbohydrazide macrocycles using electrospray mass spectrometry.

    PubMed

    Nour, Hany F; Islam, Tuhidul; Fernández-Lahore, Marcelo; Kuhnert, Nikolai

    2012-12-30

    Over the past few decades, bacterial resistance to antibiotics has emerged as a real threat to human health. Accordingly, there is an urgent demand for the development of innovative strategies for discovering new antibiotics. We present the first use of tetra-carbohydrazide cyclophane macrocycles in dynamic combinatorial chemistry (DCC) and molecular recognition as chiral hosts binding oligopeptides, which mimic bacterial cell wall. This study introduces an innovative application of electrospray ionisation time-of-flight mass spectrometry (ESI-TOF MS) to oligopeptides recognition using DCC. A small dynamic library composed of eight functionalised macrocycles has been generated in solution and all members were characterised by ESI-TOF MS. We also probed the dynamic reversibility and mechanism of formation of tetra-carbohydrazide cyclophanes in real-time using ESI-TOF MS. Dynamic reversibility of tetra-carbohydrazide cyclophanes is favored under thermodynamic control. The mechanism of formation of tetra-carbohydrazide cyclophanes involves key dialdehyde intermediates, which have been detected and assigned according to their high-resolution m/z values. Three members of the dynamic library bind efficiently in the gas phase to a selection of oligopeptides, unique to bacteria, allowing observation of host/guest complex ions in the gas phase. We probed the mechanism of the [2+2]-cyclocondensation reaction forming library members, proved dynamic reversibility of tetra-carbohydrazide cyclophanes and showed that complex ions formed between library members and hosts can be observed in the gas phase, allowing the solution of an important problem of biological interest. Copyright © 2012 John Wiley & Sons, Ltd.

  10. Arsenic resistance in Pteris vittata L.: identification of a cytosolic triosephosphate isomerase based on cDNA expression cloning in Escherichia coli.

    PubMed

    Rathinasabapathi, Bala; Wu, Shan; Sundaram, Sabarinath; Rivoal, Jean; Srivastava, Mrittunjai; Ma, Lena Q

    2006-12-01

    Arsenic hyperaccumulator Pteris vittata L. (Chinese brake fern) grows well in arsenic-contaminated media, with an extraordinary ability to tolerate high levels of arsenic. An expression cloning strategy was employed to identify cDNAs for the genes involved in arsenic resistance in P. vittata. Excised plasmids from the cDNA library of P. vittata fronds were introduced into Escherichia coli XL-1 Blue and plated on medium containing 4 mM of arsenate, a common form of arsenic in the environment. The deduced amino acid sequence of an arsenate-resistant clone, PV4-8, had cDNA highly homologous to plant cytosolic triosephosphate isomerases (cTPI). Cell-free extracts of PV4-8 had 3-fold higher level of triosephosphate isomerase (TPI) specific activities than that found in E. coli XL-1 Blue and had a 42 kD fusion protein immunoreactive to polyclonal antibodies raised against recombinant Solanum chacoense cTPI. The PV4-8 cDNA complemented a TPI-deficient E. coli mutant. PV4-8 expression improved arsenate resistance in E. coli WC3110, a strain deficient in arsenate reductase but not in AW3110 deficient for the whole ars operon. This is consistent with the hypothesis that PV4-8 TPI increased arsenate resistance in E. coli by directly or indirectly functioning as an arsenate reductase. When E. coli tpi gene was expressed in the same vector, bacterial arsenate resistance was not altered, indicating that arsenate tolerance was specific to P. vittata TPI. Paradoxically, P. vittata TPI activity was not more resistant to inhibition by arsenate in vitro than its bacterial counterpart suggesting that arsenate resistance of conventional TPI reaction was not the basis for the cellular arsenate resistance. P. vittata TPI activity was inhibited by incubation with reduced glutathione while bacterial TPI was unaffected. Consistent with cTPI's role in arsenate reduction, bacterial cells expressing fern TPI had significantly greater per cent of cellular arsenic as arsenite compared to cells

  11. Intravenous infusion of phage-displayed antibody library in human cancer patients: enrichment and cancer-specificity of tumor-homing phage-antibodies.

    PubMed

    Shukla, Girja S; Krag, David N; Peletskaya, Elena N; Pero, Stephanie C; Sun, Yu-Jing; Carman, Chelsea L; McCahill, Laurence E; Roland, Thomas A

    2013-08-01

    Phage display is a powerful method for target discovery and selection of ligands for cancer treatment and diagnosis. Our goal was to select tumor-binding antibodies in cancer patients. Eligibility criteria included absence of preexisting anti-phage-antibodies and a Stage IV cancer status. All patients were intravenously administered 1 × 10(11) TUs/kg of an scFv library 1 to 4 h before surgical resection of their tumors. No significant adverse events related to the phage library infusion were observed. Phage were successfully recovered from all tumors. Individual clones from each patient were assessed for binding to the tumor from which clones were recovered. Multiple tumor-binding phage-antibodies were identified. Soluble scFv antibodies were produced from the phage clones showing higher tumor binding. The tumor-homing phage-antibodies and derived soluble scFvs were found to bind varying numbers (0-5) of 8 tested normal human tissues (breast, cervix, colon, kidney, liver, spleen, skin, and uterus). The clones that showed high tumor-specificity were found to bind corresponding tumors from other patients also. Clone enrichment was observed based on tumor binding and DNA sequence data. Clone sequences of multiple variable regions showed significant matches to certain cancer-related antibodies. One of the clones (07-2,355) that was found to share a 12-amino-acid-long motif with a reported IL-17A antibody was further studied for competitive binding for possible antigen target identification. We conclude that these outcomes support the safety and utility of phage display library panning in cancer patients for ligand selection and target discovery for cancer treatment and diagnosis.

  12. Microbial dynamics in upflow anaerobic sludge blanket (UASB) bioreactor granules in response to short-term changes in substrate feed

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kovacik, William P.; Scholten, Johannes C.; Culley, David E.

    2010-08-01

    The complexity and diversity of the microbial communities in biogranules from an upflow anaerobic sludge blanket (UASB) bioreactor were determined in response to short-term changes in substrate feeds. The reactor was fed simulated brewery wastewater (SBWW) (70% ethanol, 15% acetate, 15% propionate) for 1.5 months (phase 1), acetate / sulfate for 2 months (phase 2), acetate-alone for 3 months (phase 3), and then a return to SBWW for 2 months (phase 4). Performance of the reactor remained relatively stable throughout the experiment as shown by COD removal and gas production. 16S rDNA, methanogen-associated mcrA and sulfate reducer-associated dsrAB genes weremore » PCR amplified, then cloned and sequenced. Sequence analysis of 16S clone libraries showed a relatively simple community composed mainly of the methanogenic Archaea (Methanobacterium and Methanosaeta), members of the Green Non-Sulfur (Chloroflexi) group of Bacteria, followed by fewer numbers of Syntrophobacter, Spirochaeta, Acidobacteria and Cytophaga-related Bacterial sequences. Methanogen-related mcrA clone libraries were dominated throughout by Methanobacter and Methanospirillum related sequences. Although not numerous enough to be detected in our 16S rDNA libraries, sulfate reducers were detected in dsrAB clone libraries, with sequences related to Desulfovibrio and Desulfomonile. Community diversity levels (Shannon-Weiner index) generally decreased for all libraries in response to a change from SBWW to acetate-alone feed. But there was a large transitory increase noted in 16S diversity at the two-month sampling on acetate-alone, entirely related to an increase in Bacterial diversity. Upon return to SBWW conditions in phase 4, all diversity measures returned to near phase 1 levels.« less

  13. Cloning and expression of the gene for bacteriophage T7 RNA polymerase

    DOEpatents

    Studier, F.W.; Davanloo, P.; Rosenberg, A.H.; Moffatt, B.A.; Dunn, J.J.

    1997-12-02

    This application describes a means to clone a functional gene for bacteriophage T7 RNA polymerase. Active T7 RNA polymerase is produced from the cloned gene, and a plasmid has been constructed that can produce the active enzyme in large amounts. T7 RNA polymerase transcribes DNA very efficiently and is highly selective for a relatively long promoter sequence. This enzyme is useful for synthesizing large amounts of RNA in vivo or in vitro, and is capable of producing a single RNA selectively from a complex mixture of DNAs. The procedure used to obtain a clone of the R7 RNA polymerase gene can be applied to other T7-like phages to obtain clones that produce RNA polymerases having different promoter specificities, different bacterial hosts, or other desirable properties. T7 RNA polymerase is also used in a system for selective, high-level synthesis of RNAs and proteins in suitable host cells. 10 figs.

  14. Cloning and expression of the gene for bacteriophage T7 RNA polymerase

    DOEpatents

    Studier, F. William; Davanloo, Parichehre; Rosenberg, Alan H.; Moffatt, Barbara A.; Dunn, John J.

    1999-02-09

    This application describes a means to clone a functional gene for bacteriophage T7 RNA polymerase. Active T7 RNA polymerase is produced from the cloned gene, and a plasmid has been constructed that can produce the active enzyme in large amounts. T7 RNA polymerase transcribes DNA very efficiently and is highly selective for a relatively long promoter sequence. This enzyme is useful for synthesizing large amounts of RNA in vivo or in vitro, and is capable of producing a single RNA selectively from a complex mixture of DNAs. The procedure used to obtain a clone of the R7 RNA polymerase gene can be applied to other T7-like phages to obtain clones that produce RNA polymerases having different promoter specificities, different bacterial hosts, or other desirable properties. T7 RNA polymerase is also used in a system for selective, high-level synthesis of RNAs and proteins in suitable host cells.

  15. Cloning and expression of the gene for bacteriophage T7 RNA polymerase

    DOEpatents

    Studier, F. William; Davanloo, Parichehre; Rosenberg, Alan H.; Moffatt, Barbara A.; Dunn, John J.

    1997-12-02

    This application describes a means to clone a functional gene for bacteriophage T7 RNA polymerase. Active T7 RNA polymerase is produced from the cloned gene, and a plasmid has been constructed that can produce the active enzyme in large amounts. T7 RNA polymerase transcribes DNA very efficiently and is highly selective for a relatively long promoter sequence. This enzyme is useful for synthesizing large amounts of RNA in vivo or in vitro, and is capable of producing a single RNA selectively from a complex mixture of DNAs. The procedure used to obtain a clone of the R7 RNA polymerase gene can be applied to other T7-like phages to obtain clones that produce RNA polymerases having different promoter specificities, different bacterial hosts, or other desirable properties. T7 RNA polymerase is also used in a system for selective, high-level synthesis of RNAs and proteins in suitable host cells.

  16. Cloning and expression of the gene for bacteriophage T7 RNA polymerase

    DOEpatents

    Studier, F. William; Davanloo, Parichehre; Rosenberg, Alan H.; Moffatt, Barbara A.; Dunn, John J.

    1990-01-01

    This application describes a means to clone a functional gene for bacteriophage T7 RNA polymerase. Active T7 RNA polymerase is produced from the cloned gene, and a plasmid has been constructed that can produce the active enzyme in large amounts. T7 RNA polymerase transcribes DNA very efficiently and is highly selective for a relatively long promoter sequence. This enzyme is useful for synthesizing large amounts of RNA in vivo or in vitro, and is capable of producing a single RNA selectively from a complex mixture of DNAs. The procedure used to obtain a clone of the T7 RNA polymerase gene can be applied to other T7-like phages to obtain clones that produce RNA polymerases having different promoter specificities, different bacterial hosts, or other desirable properties. T7 RNA polymerase is also used in a system for selective, high-level synthesis of RNAs and proteins in suitable host cells.

  17. Cloning and expression of the gene for bacteriophage T7 RNA polymerase

    DOEpatents

    Studier, F.W.; Davanloo, P.; Rosenberg, A.H.; Moffatt, B.A.; Dunn, J.J.

    1999-02-09

    This application describes a means to clone a functional gene for bacteriophage T7 RNA polymerase. Active T7 RNA polymerase is produced from the cloned gene, and a plasmid has been constructed that can produce the active enzyme in large amounts. T7 RNA polymerase transcribes DNA very efficiently and is highly selective for a relatively long promoter sequence. This enzyme is useful for synthesizing large amounts of RNA in vivo or in vitro, and is capable of producing a single RNA selectively from a complex mixture of DNAs. The procedure used to obtain a clone of the R7 RNA polymerase gene can be applied to other T7-like phages to obtain clones that produce RNA polymerases having different promoter specificities, different bacterial hosts, or other desirable properties. T7 RNA polymerase is also used in a system for selective, high-level synthesis of RNAs and proteins in suitable host cells. 10 figs.

  18. Identification and characterization of a cellulase-encoding gene from the buffalo rumen metagenomic library.

    PubMed

    Nguyen, Nhung Hong; Maruset, Lalita; Uengwetwanit, Tanaporn; Mhuantong, Wuttichai; Harnpicharnchai, Piyanun; Champreda, Verawat; Tanapongpipat, Sutipa; Jirajaroenrat, Kanya; Rakshit, Sudip K; Eurwilaichitr, Lily; Pongpattanakitshote, Somchai

    2012-01-01

    Microorganisms residing in the rumens of cattle represent a rich source of lignocellulose-degrading enzymes, since their diet consists of plant-based materials that are high in cellulose and hemicellulose. In this study, a metagenomic library was constructed from buffalo rumen contents using pCC1FOS fosmid vector. Ninety-three clones from the pooled library of approximately 10,000 clones showed degrading activity against AZCL-HE-Cellulose, whereas four other clones showed activity against AZCL-Xylan. Contig analysis of pyrosequencing data derived from the selected strongly positive clones revealed 15 ORFs that were closely related to lignocellulose-degrading enzymes belonging to several glycosyl hydrolase families. Glycosyl hydrolase family 5 (GHF5) was the most abundant glycosyl hydrolase found, and a majority of the GHF5s in our metagenomes were closely related to several ruminal bacteria, especially ones from other buffalo rumen metagenomes. Characterization of BT-01, a selected clone with highest cellulase activity from the primary plate screening assay, revealed a cellulase encoding gene with optimal working conditions at pH 5.5 at 50 °C. Along with its stability over acidic pH, the capability efficiently to hydrolyze cellulose in feed for broiler chickens, as exhibited in an in vitro digestibility test, suggests that BT-01 has potential application as a feed supplement.

  19. Cloning

    MedlinePlus

    Cloning describes the processes used to create an exact genetic replica of another cell, tissue or organism. ... named Dolly. There are three different types of cloning: Gene cloning, which creates copies of genes or ...

  20. What is Cloning?

    MedlinePlus

    Donate Home Cloning What is Cloning What is Cloning Clones are organisms that are exact genetic copies. ... clones made through modern cloning technologies. How Is Cloning Done? Many people first heard of cloning when ...

  1. An efficient and sensitive method for preparing cDNA libraries from scarce biological samples

    PubMed Central

    Sterling, Catherine H.; Veksler-Lublinsky, Isana; Ambros, Victor

    2015-01-01

    The preparation and high-throughput sequencing of cDNA libraries from samples of small RNA is a powerful tool to quantify known small RNAs (such as microRNAs) and to discover novel RNA species. Interest in identifying the small RNA repertoire present in tissues and in biofluids has grown substantially with the findings that small RNAs can serve as indicators of biological conditions and disease states. Here we describe a novel and straightforward method to clone cDNA libraries from small quantities of input RNA. This method permits the generation of cDNA libraries from sub-picogram quantities of RNA robustly, efficiently and reproducibly. We demonstrate that the method provides a significant improvement in sensitivity compared to previous cloning methods while maintaining reproducible identification of diverse small RNA species. This method should have widespread applications in a variety of contexts, including biomarker discovery from scarce samples of human tissue or body fluids. PMID:25056322

  2. Subtraction of cap-trapped full-length cDNA libraries to select rare transcripts.

    PubMed

    Hirozane-Kishikawa, Tomoko; Shiraki, Toshiyuki; Waki, Kazunori; Nakamura, Mari; Arakawa, Takahiro; Kawai, Jun; Fagiolini, Michela; Hensch, Takao K; Hayashizaki, Yoshihide; Carninci, Piero

    2003-09-01

    The normalization and subtraction of highly expressed cDNAs from relatively large tissues before cloning dramatically enhanced the gene discovery by sequencing for the mouse full-length cDNA encyclopedia, but these methods have not been suitable for limited RNA materials. To normalize and subtract full-length cDNA libraries derived from limited quantities of total RNA, here we report a method to subtract plasmid libraries excised from size-unbiased amplified lambda phage cDNA libraries that avoids heavily biasing steps such as PCR and plasmid library amplification. The proportion of full-length cDNAs and the gene discovery rate are high, and library diversity can be validated by in silico randomization.

  3. Bacteria of an anaerobic 1,2-dichloropropane-dechlorinating mixed culture are phylogenetically related to those of other anaerobic dechlorinating consortia.

    PubMed

    Schlötelburg, C; von Wintzingerode, F; Hauck, R; Hegemann, W; Göbel, U B

    2000-07-01

    A 16S-rDNA-based molecular study was performed to determine the bacterial diversity of an anaerobic, 1,2-dichloropropane-dechlorinating bioreactor consortium derived from sediment of the River Saale, Germany. Total community DNA was extracted and bacterial 16S rRNA genes were subsequently amplified using conserved primers. A clone library was constructed and analysed by sequencing the 16S rDNA inserts of randomly chosen clones followed by dot blot hybridization with labelled polynucleotide probes. The phylogenetic analysis revealed significant sequence similarities of several as yet uncultured bacterial species in the bioreactor to those found in other reductively dechlorinating freshwater consortia. In contrast, no close relationship was obtained with as yet uncultured bacteria found in reductively dechlorinating consortia derived from marine habitats. One rDNA clone showed >97% sequence similarity to Dehalobacter species, known for reductive dechlorination of tri- and tetrachloroethene. These results suggest that reductive dechlorination in microbial freshwater habitats depends upon a specific bacterial community structure.

  4. Error Analysis of Deep Sequencing of Phage Libraries: Peptides Censored in Sequencing

    PubMed Central

    Matochko, Wadim L.; Derda, Ratmir

    2013-01-01

    Next-generation sequencing techniques empower selection of ligands from phage-display libraries because they can detect low abundant clones and quantify changes in the copy numbers of clones without excessive selection rounds. Identification of errors in deep sequencing data is the most critical step in this process because these techniques have error rates >1%. Mechanisms that yield errors in Illumina and other techniques have been proposed, but no reports to date describe error analysis in phage libraries. Our paper focuses on error analysis of 7-mer peptide libraries sequenced by Illumina method. Low theoretical complexity of this phage library, as compared to complexity of long genetic reads and genomes, allowed us to describe this library using convenient linear vector and operator framework. We describe a phage library as N × 1 frequency vector n = ||ni||, where ni is the copy number of the ith sequence and N is the theoretical diversity, that is, the total number of all possible sequences. Any manipulation to the library is an operator acting on n. Selection, amplification, or sequencing could be described as a product of a N × N matrix and a stochastic sampling operator (S a). The latter is a random diagonal matrix that describes sampling of a library. In this paper, we focus on the properties of S a and use them to define the sequencing operator (S e q). Sequencing without any bias and errors is S e q = S a IN, where IN is a N × N unity matrix. Any bias in sequencing changes IN to a nonunity matrix. We identified a diagonal censorship matrix (C E N), which describes elimination or statistically significant downsampling, of specific reads during the sequencing process. PMID:24416071

  5. cDNA cloning and analysis of betaine aldehyde dehydrogenase, a salt inducible enzyme in sugar beet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCue, K.F.; Hanson, A.D.

    1990-05-01

    Betaine accumulates and serves as a compatible osmolyte in some plants subjected to drought or salinity stress. The last enzyme in the betaine biosynthetic pathway is betaine aldehyde dehydrogenase (BADH). The activity of BADH increases in response to increasing salinity levels. This increase in activity corresponds to an increase in protein detectable by immunoblotting, and to an increase in the translatable BADH mRNA. BADH was cloned from a cDNA library constructed in {lambda}gt10 using poly(A){sup +} RNA from sugar beets salinized to 500 mM NaCl. cDNAs were size selected (>1kb) before ligation into the vector, and the library was screenedmore » with a spinach BADH cDNA probe. Three nearly full length clones obtained were confirmed as BADH by their nucleotide and deduced amino acid homology to spinach BADH. Clones averaged 1.8 kb and contained open reading frames of 500 amino acids at 80% identity with spinach BADH. RNA gel blot analysis of poly(A){sup +} RNA indicated that salinization to 500 mM NaCl resulted in a 5-fold increase of BADH mRNA level.« less

  6. Effects of bacterial secondary symbionts on host plant use in pea aphids

    PubMed Central

    McLean, A. H. C.; van Asch, M.; Ferrari, J.; Godfray, H. C. J.

    2011-01-01

    Aphids possess several facultative bacterial symbionts that have important effects on their hosts' biology. These have been most closely studied in the pea aphid (Acyrthosiphon pisum), a species that feeds on multiple host plants. Whether secondary symbionts influence host plant utilization is unclear. We report the fitness consequences of introducing different strains of the symbiont Hamiltonella defensa into three aphid clones collected on Lathyrus pratensis that naturally lack symbionts, and of removing symbionts from 20 natural aphid–bacterial associations. Infection decreased fitness on Lathyrus but not on Vicia faba, a plant on which most pea aphids readily feed. This may explain the unusually low prevalence of symbionts in aphids collected on Lathyrus. There was no effect of presence of symbiont on performance of the aphids on the host plants of the clones from which the H. defensa strains were isolated. Removing the symbiont from natural aphid–bacterial associations led to an average approximate 20 per cent reduction in fecundity, both on the natural host plant and on V. faba, suggesting general rather than plant-species-specific effects of the symbiont. Throughout, we find significant genetic variation among aphid clones. The results provide no evidence that secondary symbionts have a major direct role in facilitating aphid utilization of particular host plant species. PMID:20843842

  7. Molecular Phylogenetic Diversity and Spatial Distribution of Bacterial Communities in Cooling Stage during Swine Manure Composting

    PubMed Central

    Guo, Yan; Zhang, Jinliang; Yan, Yongfeng; Wu, Jian; Zhu, Nengwu; Deng, Changyan

    2015-01-01

    Polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) and subsequent sub-cloning and sequencing were used in this study to analyze the molecular phylogenetic diversity and spatial distribution of bacterial communities in different spatial locations during the cooling stage of composted swine manure. Total microbial DNA was extracted, and bacterial near full-length 16S rRNA genes were subsequently amplified, cloned, RFLP-screened, and sequenced. A total of 420 positive clones were classified by RFLP and near-full-length 16S rDNA sequences. Approximately 48 operational taxonomic units (OTUs) were found among 139 positive clones from the superstratum sample; 26 among 149 were from the middle-level sample and 35 among 132 were from the substrate sample. Thermobifida fusca was common in the superstratum layer of the pile. Some Bacillus spp. were remarkable in the middle-level layer, and Clostridium sp. was dominant in the substrate layer. Among 109 OTUs, 99 displayed homology with those in the GenBank database. Ten OTUs were not closely related to any known species. The superstratum sample had the highest microbial diversity, and different and distinct bacterial communities were detected in the three different layers. This study demonstrated the spatial characteristics of the microbial community distribution in the cooling stage of swine manure compost. PMID:25925066

  8. Spatial diversity of bacterioplankton communities in surface water of northern South China Sea.

    PubMed

    Li, Jialin; Li, Nan; Li, Fuchao; Zou, Tao; Yu, Shuxian; Wang, Yinchu; Qin, Song; Wang, Guangyi

    2014-01-01

    The South China Sea is one of the largest marginal seas, with relatively frequent passage of eddies and featuring distinct spatial variation in the western tropical Pacific Ocean. Here, we report a phylogenetic study of bacterial community structures in surface seawater of the northern South China Sea (nSCS). Samples collected from 31 sites across large environmental gradients were used to construct clone libraries and yielded 2,443 sequences grouped into 170 OTUs. Phylogenetic analysis revealed 23 bacterial classes with major components α-, β- and γ-Proteobacteria, as well as Cyanobacteria. At class and genus taxon levels, community structure of coastal waters was distinctively different from that of deep-sea waters and displayed a higher diversity index. Redundancy analyses revealed that bacterial community structures displayed a significant correlation with the water depth of individual sampling sites. Members of α-Proteobacteria were the principal component contributing to the differences of the clone libraries. Furthermore, the bacterial communities exhibited heterogeneity within zones of upwelling and anticyclonic eddies. Our results suggested that surface bacterial communities in nSCS had two-level patterns of spatial distribution structured by ecological types (coastal VS. oceanic zones) and mesoscale physical processes, and also provided evidence for bacterial phylogenetic phyla shaped by ecological preferences.

  9. Cloning and purification of alpha-neurotoxins from king cobra (Ophiophagus hannah).

    PubMed

    He, Ying-Ying; Lee, Wei-Hui; Zhang, Yun

    2004-09-01

    Thirteen complete and three partial cDNA sequences were cloned from the constructed king cobra (Ophiophagus hannah) venom gland cDNA library. Phylogenetic analysis of nucleotide sequences of king cobra with those from other snake venoms revealed that obtained cDNAs are highly homologous to snake venom alpha-neurotoxins. Alignment of deduced mature peptide sequences of the obtained clones with those of other reported alpha-neurotoxins from the king cobra venom indicates that our obtained 16 clones belong to long-chain neurotoxins (seven), short-chain neurotoxins (seven), weak toxin (one) and variant (one), respectively. Up to now, two out of 16 newly cloned king cobra alpha-neurotoxins have identical amino acid sequences with CM-11 and Oh-6A/6B, which have been characterized from the same venom. Furthermore, five long-chain alpha-neurotoxins and two short-chain alpha-neurotoxins were purified from crude venom and their N-terminal amino acid sequences were determined. The cDNAs encoding the putative precursors of the purified native peptide were also determined based on the N-terminal amino acid sequencing. The purified alpha-neurotoxins showed different lethal activities on mice.

  10. Construction and EST sequencing of full-length, drought stress cDNA libraries for common beans (Phaseolus vulgaris L.)

    PubMed Central

    2011-01-01

    Background Common bean is an important legume crop with only a moderate number of short expressed sequence tags (ESTs) made with traditional methods. The goal of this research was to use full-length cDNA technology to develop ESTs that would overlap with the beginning of open reading frames and therefore be useful for gene annotation of genomic sequences. The library was also constructed to represent genes expressed under drought, low soil phosphorus and high soil aluminum toxicity. We also undertook comparisons of the full-length cDNA library to two previous non-full clone EST sets for common bean. Results Two full-length cDNA libraries were constructed: one for the drought tolerant Mesoamerican genotype BAT477 and the other one for the acid-soil tolerant Andean genotype G19833 which has been selected for genome sequencing. Plants were grown in three soil types using deep rooting cylinders subjected to drought and non-drought stress and tissues were collected from both roots and above ground parts. A total of 20,000 clones were selected robotically, half from each library. Then, nearly 10,000 clones from the G19833 library were sequenced with an average read length of 850 nucleotides. A total of 4,219 unigenes were identified consisting of 2,981 contigs and 1,238 singletons. These were functionally annotated with gene ontology terms and placed into KEGG pathways. Compared to other EST sequencing efforts in common bean, about half of the sequences were novel or represented the 5' ends of known genes. Conclusions The present full-length cDNA libraries add to the technological toolbox available for common bean and our sequencing of these clones substantially increases the number of unique EST sequences available for the common bean genome. All of this should be useful for both functional gene annotation, analysis of splice site variants and intron/exon boundary determination by comparison to soybean genes or with common bean whole-genome sequences. In addition the

  11. Impact of cultivation on characterisation of species composition of soil bacterial communities.

    PubMed

    McCaig, A E.; Grayston, S J.; Prosser, J I.; Glover, L A.

    2001-03-01

    The species composition of culturable bacteria in Scottish grassland soils was investigated using a combination of Biolog and 16S rDNA analysis for characterisation of isolates. The inclusion of a molecular approach allowed direct comparison of sequences from culturable bacteria with sequences obtained during analysis of DNA extracted directly from the same soil samples. Bacterial strains were isolated on Pseudomonas isolation agar (PIA), a selective medium, and on tryptone soya agar (TSA), a general laboratory medium. In total, 12 and 21 morphologically different bacterial cultures were isolated on PIA and TSA, respectively. Biolog and sequencing placed PIA isolates in the same taxonomic groups, the majority of cultures belonging to the Pseudomonas (sensu stricto) group. However, analysis of 16S rDNA sequences proved more efficient than Biolog for characterising TSA isolates due to limitations of the Microlog database for identifying environmental bacteria. In general, 16S rDNA sequences from TSA isolates showed high similarities to cultured species represented in sequence databases, although TSA-8 showed only 92.5% similarity to the nearest relative, Bacillus insolitus. In general, there was very little overlap between the culturable and uncultured bacterial communities, although two sequences, PIA-2 and TSA-13, showed >99% similarity to soil clones. A cloning step was included prior to sequence analysis of two isolates, TSA-5 and TSA-14, and analysis of several clones confirmed that these cultures comprised at least four and three sequence types, respectively. All isolate clones were most closely related to uncultured bacteria, with clone TSA-5.1 showing 99.8% similarity to a sequence amplified directly from the same soil sample. Interestingly, one clone, TSA-5.4, clustered within a novel group comprising only uncultured sequences. This group, which is associated with the novel, deep-branching Acidobacterium capsulatum lineage, also included clones isolated

  12. Construction of high quality Gateway™ entry libraries and their application to yeast two-hybrid for the monocot model plant Brachypodium distachyon.

    PubMed

    Cao, Shuanghe; Siriwardana, Chamindika L; Kumimoto, Roderick W; Holt, Ben F

    2011-05-19

    Monocots, especially the temperate grasses, represent some of the most agriculturally important crops for both current food needs and future biofuel development. Because most of the agriculturally important grass species are difficult to study (e.g., they often have large, repetitive genomes and can be difficult to grow in laboratory settings), developing genetically tractable model systems is essential. Brachypodium distachyon (hereafter Brachypodium) is an emerging model system for the temperate grasses. To fully realize the potential of this model system, publicly accessible discovery tools are essential. High quality cDNA libraries that can be readily adapted for multiple downstream purposes are a needed resource. Additionally, yeast two-hybrid (Y2H) libraries are an important discovery tool for protein-protein interactions and are not currently available for Brachypodium. We describe the creation of two high quality, publicly available Gateway™ cDNA entry libraries and their derived Y2H libraries for Brachypodium. The first entry library represents cloned cDNA populations from both short day (SD, 8/16-h light/dark) and long day (LD, 20/4-h light/dark) grown plants, while the second library was generated from hormone treated tissues. Both libraries have extensive genome coverage (~5 × 107 primary clones each) and average clone lengths of ~1.5 Kb. These entry libraries were then used to create two recombination-derived Y2H libraries. Initial proof-of-concept screens demonstrated that a protein with known interaction partners could readily re-isolate those partners, as well as novel interactors. Accessible community resources are a hallmark of successful biological model systems. Brachypodium has the potential to be a broadly useful model system for the grasses, but still requires many of these resources. The Gateway™ compatible entry libraries created here will facilitate studies for multiple user-defined purposes and the derived Y2H libraries can be

  13. Liming in the sugarcane burnt system and the green harvest practice affect soil bacterial community in northeastern São Paulo, Brazil.

    PubMed

    Val-Moraes, Silvana Pompeia; de Macedo, Helena Suleiman; Kishi, Luciano Takeshi; Pereira, Rodrigo Matheus; Navarrete, Acacio Aparecido; Mendes, Lucas William; de Figueiredo, Eduardo Barretto; La Scala, Newton; Tsai, Siu Mui; de Macedo Lemos, Eliana Gertrudes; Alves, Lúcia Maria Carareto

    2016-12-01

    Here we show that both liming the burnt sugarcane and the green harvest practice alter bacterial community structure, diversity and composition in sugarcane fields in northeastern São Paulo state, Brazil. Terminal restriction fragment length polymorphism fingerprinting and 16S rRNA gene cloning and sequencing were used to analyze changes in soil bacterial communities. The field experiment consisted of sugarcane-cultivated soils under different regimes: green sugarcane (GS), burnt sugarcane (BS), BS in soil amended with lime applied to increase soil pH (BSL), and native forest (NF) as control soil. The bacterial community structures revealed disparate patterns in sugarcane-cultivated soils and forest soil (R = 0.786, P = 0.002), and overlapping patterns were shown for the bacterial community structure among the different management regimes applied to sugarcane (R = 0.194, P = 0.002). The numbers of operational taxonomic units (OTUs) found in the libraries were 117, 185, 173 and 166 for NF, BS, BSL and GS, respectively. Sugarcane-cultivated soils revealed higher bacterial diversity than NF soil, with BS soil accounting for a higher richness of unique OTUs (101 unique OTUs) than NF soil (23 unique OTUs). Cluster analysis based on OTUs revealed similar bacterial communities in NF and GS soils, while the bacterial community from BS soil was most distinct from the others. Acidobacteria and Alphaproteobacteria were the most abundant bacterial phyla across the different soils with Acidobacteria Gp1 accounting for a higher abundance in NF and GS soils than burnt sugarcane-cultivated soils (BS and BSL). In turn, Acidobacteria Gp4 abundance was higher in BS soils than in other soils. These differential responses in soil bacterial community structure, diversity and composition can be associated with the agricultural management, mainly liming practices, and harvest methods in the sugarcane-cultivated soils, and they can be detected shortly after harvest.

  14. Cloning of precursors for two MIH/VIH-related peptides in the prawn, Macrobrachium rosenbergii.

    PubMed

    Yang, W J; Rao, K R

    2001-11-30

    Two cDNA clones (634 and 1366 bp) encoding MIH/VIH (molt-inhibiting hormone/vitellogenesis-inhibiting hormone)-related peptides were isolated and sequenced from a Macrobrachium rosenbergii eyestalk ganglia cDNA library. The clones contain a 360 and 339 bp open-reading frame, and their conceptually translated peptides consist of a 41 and 34 amino acid signal peptide, respectively, and a 78 amino acid residue mature peptide hormone. The amino acid sequences of the peptides exhibit higher identities with other known MIHs and VIH (44-69%) than with CHHs (28-33%). This is the first report describing the cloning and sequencing of two MIH/VIH-related peptides in a single crustacean species. Transcription of these mRNAs was detected in the eyestalk ganglia, but not in the thoracic ganglia, hepatopancreas, gut, gill, heart, or muscle.

  15. Characterization of Thermostable Cellulases Produced by Bacillus and Geobacillus Strains

    USDA-ARS?s Scientific Manuscript database

    Bacterial community composition of thermophilic (60 deg C) mixed cellulose-enrichment cultures was examined by constructing a 16S rDNA clone library which demonstrated major lineages affiliated to Actinobacteria, Bacteroidetes, Chloroflexi, Deinococcus-Thermus, Firmicutes, and Proteobacteria. A tot...

  16. Drastic changes in aquatic bacterial populations from the Cuatro Cienegas Basin (Mexico) in response to long-term environmental stress.

    PubMed

    Pajares, Silvia; Eguiarte, Luis E; Bonilla-Rosso, German; Souza, Valeria

    2013-12-01

    Understanding the changes of aquatic microbial community composition in response to changes in temperature and ultraviolet irradiation is relevant for predicting biogeochemical modifications in the functioning of natural microbial communities under global climate change scenarios. Herein we investigate shifts in the bacterioplankton composition in response to long-term changes in temperature and UV radiation. For this purpose, 15 mesocosms were seeded with composite aquatic microbial communities from natural pools within the Cuatro Cienegas Basin (Mexican Chihuahuan desert) and were subject to different temperatures and UV conditions. 16S rRNA gene clone libraries were obtained from water samples at the mid-point (4 months) and the end of the experiment (8 months). An increase in bacterial diversity over time was found in the treatment of constant temperature and UV protection, which suggests that stable environments promote the establishment of complex and diverse bacterial community. Drastic changes in the phylogenetic bacterioplankton composition and structure were observed in response to fluctuating temperature and increasing UV radiation and temperature. Fluctuating temperature induced the largest decrease of bacterial richness during the experiment, indicating that frequent temperature changes drive the reduction in abundance of several species, most notably autotrophs. The long-term impact of these environmental stresses reduced diversity and selected for generalist aquatic bacterial populations, such as Porphyrobacter. These changes at the community level occur at an ecological time scale, suggesting that under global warming scenarios cascade effects on the food web are possible if the microbial diversity is modified.

  17. Molecular cloning of an inducible serine esterase gene from human cytotoxic lymphocytes.

    PubMed Central

    Trapani, J A; Klein, J L; White, P C; Dupont, B

    1988-01-01

    A cDNA clone encoding a human serine esterase gene was isolated from a library constructed from poly(A)+ RNA of allogeneically stimulated, interleukin 2-expanded peripheral blood mononuclear cells. The clone, designated HSE26.1, represents a full-length copy of a 0.9-kilobase mRNA present in human cytotoxic cells but absent from a wide variety of noncytotoxic cell lines. Clone HSE26.1 contains an 892-base-pair sequence, including a single 741-base-pair open reading frame encoding a putative 247-residue polypeptide. The first 20 amino acids of the polypeptide form a leader sequence. The mature protein is predicted to have an unglycosylated Mr of approximately equal to 26,000 and contains a single potential site for N-linked glycosylation. The nucleotide and predicted amino acid sequences of clone HSE26.1 are homologous with all murine and human serine esterases cloned thus far but are most similar to mouse granzyme B (70% nucleotide and 68% amino acid identity). HSE26.1 protein is expressed weakly in unstimulated peripheral blood mononuclear cells but is strongly induced within 6-hr incubation in medium containing phytohemagglutinin. The data suggest that the protein encoded by HSE26.1 plays a role in cell-mediated cytotoxicity. Images PMID:3261871

  18. Efficient and simpler method to construct normalized cDNA libraries with improved representations of full-length cDNAs

    DOEpatents

    Soares, Marcelo Bento; Bonaldo, Maria de Fatima

    1998-01-01

    This invention provides a method to normalize a cDNA library comprising: (a) constructing a directionally cloned library containing cDNA inserts wherein the insert is capable of being amplified by polymerase chain reaction; (b) converting a double-stranded cDNA library into single-stranded DNA circles; (c) generating single-stranded nucleic acid molecules complementary to the single-stranded DNA circles converted in step (b) by polymerase chain reaction with appropriate primers; (d) hybridizing the single-stranded DNA circles converted in step (b) with the complementary single-stranded nucleic acid molecules generated in step (c) to produce partial duplexes to an appropriate Cot; and (e) separating the unhybridized single-stranded DNA circles from the hybridized DNA circles, thereby generating a normalized cDNA library. This invention also provides a method to normalize a cDNA library wherein the generating of single-stranded nucleic acid molecules complementary to the single-stranded DNA circles converted in step (b) is by excising cDNA inserts from the double-stranded cDNA library; purifying the cDNA inserts from cloning vectors; and digesting the cDNA inserts with an exonuclease. This invention further provides a method to construct a subtractive cDNA library following the steps described above. This invention further provides normalized and/or subtractive cDNA libraries generated by the above methods.

  19. Efficient and simpler method to construct normalized cDNA libraries with improved representations of full-length cDNAs

    DOEpatents

    Soares, M.B.; Fatima Bonaldo, M. de

    1998-12-08

    This invention provides a method to normalize a cDNA library comprising: (a) constructing a directionally cloned library containing cDNA inserts wherein the insert is capable of being amplified by polymerase chain reaction; (b) converting a double-stranded cDNA library into single-stranded DNA circles; (c) generating single-stranded nucleic acid molecules complementary to the single-stranded DNA circles converted in step (b) by polymerase chain reaction with appropriate primers; (d) hybridizing the single-stranded DNA circles converted in step (b) with the complementary single-stranded nucleic acid molecules generated in step (c) to produce partial duplexes to an appropriate Cot; and (e) separating the unhybridized single-stranded DNA circles from the hybridized DNA circles, thereby generating a normalized cDNA library. This invention also provides a method to normalize a cDNA library wherein the generating of single-stranded nucleic acid molecules complementary to the single-stranded DNA circles converted in step (b) is by excising cDNA inserts from the double-stranded cDNA library; purifying the cDNA inserts from cloning vectors; and digesting the cDNA inserts with an exonuclease. This invention further provides a method to construct a subtractive cDNA library following the steps described above. This invention further provides normalized and/or subtractive cDNA libraries generated by the above methods. 25 figs.

  20. Selection of peptides targeting helix 31 of bacterial 16S ribosomal RNA by screening M13 phage-display libraries.

    PubMed

    Lamichhane, Tek N; Abeydeera, N Dinuka; Duc, Anne-Cécile E; Cunningham, Philip R; Chow, Christine S

    2011-01-28

    Ribosomal RNA is the catalytic portion of ribosomes, and undergoes a variety of conformational changes during translation. Structural changes in ribosomal RNA can be facilitated by the presence of modified nucleotides. Helix 31 of bacterial 16S ribosomal RNA harbors two modified nucleotides, m²G966 and m⁵C967, that are highly conserved among bacteria, though the degree and nature of the modifications in this region are different in eukaryotes. Contacts between helix 31 and the P-site tRNA, initiation factors, and ribosomal proteins highlight the importance of this region in translation. In this work, a heptapeptide M13 phage-display library was screened for ligands that target the wild-type, naturally modified bacterial helix 31. Several peptides, including TYLPWPA, CVRPFAL, TLWDLIP, FVRPFPL, ATPLWLK, and DIRTQRE, were found to be prevalent after several rounds of screening. Several of the peptides exhibited moderate affinity (in the high nM to low µM range) to modified helix 31 in biophysical assays, including surface plasmon resonance (SPR), and were also shown to bind 30S ribosomal subunits. These peptides also inhibited protein synthesis in cell-free translation assays.

  1. Recombinational Cloning Using Gateway and In-Fusion Cloning Schemes

    PubMed Central

    Throop, Andrea L.; LaBaer, Joshua

    2015-01-01

    The comprehensive study of protein structure and function, or proteomics, depends on the obtainability of full-length cDNAs in species-specific expression vectors and subsequent functional analysis of the expressed protein. Recombinational cloning is a universal cloning technique based on site-specific recombination that is independent of the insert DNA sequence of interest, which differentiates this method from the classical restriction enzyme-based cloning methods. Recombinational cloning enables rapid and efficient parallel transfer of DNA inserts into multiple expression systems. This unit summarizes strategies for generating expression-ready clones using the most popular recombinational cloning technologies, including the commercially available Gateway® (Life Technologies) and In-Fusion® (Clontech) cloning technologies. PMID:25827088

  2. The high diversity of MRSA clones detected in a university hospital in istanbul.

    PubMed

    Oksuz, Lutfiye; Dupieux, Celine; Tristan, Anne; Bes, Michele; Etienne, Jerome; Gurler, Nezahat

    2013-01-01

    To characterize the methicillin-resistant Staphylococcus aureus (MRSA) clones present in Istanbul, 102 MRSA isolates collected during a 5-year period at the Istanbul Medical Faculty Hospital were characterized using microarray analysis and phenotypic resistance profiles. Resistance to methicillin was detected with a cefoxitin disk diffusion assay and confirmed with a MRSA-agar and MRSA detection kit. Antimicrobial susceptibility testing was performed by a disk diffusion assay and interpreted according to the 2012 guidelines of the Antibiogram Committee of the French Society for Microbiology. Decreased susceptibility to glycopeptides was confirmed using the population analysis profile-area under the curve (PAP-AUC) method. The presence of the mecA gene was detected by polymerase chain reaction. Bacterial DNA was extracted according to the manufacturer's recommended protocol using commercial extraction kits. Strains were extensively characterized using the DNA microarray. Isolates were grouped into six clonal complexes. The most frequently detected clone was the Vienna/Hungarian/Brazilian clone (ST239-MRSA-III), which accounted for 53.9% of the isolates. These isolates were resistant to multiple antibiotics, particularly penicillin, tetracycline, rifampicin, kanamycin, tobramycin, gentamicin, levofloxacin, erythromycin, lincomycin and fosfomycin. Furthermore, three isolates were detected by population analysis profile as heterogeneous vancomycin-intermediate S. aureus (hVISA). The UK-EMRSA-15 clone (ST22-MRSA-IV PVL negative) was detected in 9.8% of the isolates and was mainly susceptible to all anti-staphylococcal antibiotics. Seven isolates (6.9%) were positive for PVL genes and were assigned to the CC80-MRSA-IV clone (European CA-MRSA clone, three isolates), ST8-MRSA-IV clone (USA300 clone, two isolates, one ACME-positive) or ST22-MRSA-IV clone ("Regensburg EMRSA" clone, two isolates). All other clones were detected in one to six isolates and corresponded to well

  3. Bacterial Investigation of Ammonium-rich Sediment in the Pearl River Delta, China

    NASA Astrophysics Data System (ADS)

    Liu, K.; Chunbo, H.; Jiao, J. J.; Jidong, G.

    2011-12-01

    High ammonium loading of groundwater is a major concern because of the potential toxicity to ecosystem and human health. As one of the most complex large-scale delta systems in China, Pearl River Delta (PRD) was reported to have the highest ammonium concentration for natural groundwater ever reported globally. In this research, borehole SD14 was drilled through the aquitard into the basal aquifer in the PRD. 16S rRNA gene library construction and Denaturing Gradient Gel Electrophoresis (DGGE) analysis were conducted to reveal bacterial community variation of different geology strata. A total of 161 clones from three 16S rRNA libraries were sequenced and clustered into 55 distinct operational taxonomic units (OTU) at 3% cutoff. The phylogenetic analysis indicated that the predominant bacterial phylum was Proteobacteria (50.9%), followed by Chloroflexi (16.8%), Acidobacteria (4.38%) and Firmicutes (3.73%). In the sediment samples from SD14 at the depths of 6.9m, 22.5m and 37.4m, Proteobacteria made up 60.3%, 42.0% and 35.3% of the communities respectively, showing a declining ratio with the depth. Most of the bacteria in all the samples were previously discovered in marine environments, indicating that SD14 used to be in a marine sedimentary environment. Bacteria associated with iron oxidation and nitrogen fixing were found in the sample at 6.9 m, while in the other two samples there existed bacteria which were associated with methane cycling, sulfate reducing and denitrifying. The DGGE results showed that microbial community structures varied significantly with the increase of depth, and that Delftia acidovorans, a species of Proteobacteria which was able to reduce nitrate to nitrite, was the predominant species in samples at 22.5 and 37.4 m, suggesting ammonium as a control factor shaping the bacterial community. The results of this research provided important information of the bacteria in the PRD sediments. High bacterial diversity was observed in samples, and

  4. Randomly picked cosmid clones overlap the pyrB and oriC gap in the physical map of the E. coli chromosome.

    PubMed Central

    Knott, V; Rees, D J; Cheng, Z; Brownlee, G G

    1988-01-01

    Sets of overlapping cosmid clones generated by random sampling and fingerprinting methods complement data at pyrB (96.5') and oriC (84') in the published physical map of E. coli. A new cloning strategy using sheared DNA, and a low copy, inducible cosmid vector were used in order to reduce bias in libraries, in conjunction with micro-methods for preparing cosmid DNA from a large number of clones. Our results are relevant to the design of the best approach to the physical mapping of large genomes. PMID:2834694

  5. Improvements to the Kunkel mutagenesis protocol for constructing primary and secondary phage-display libraries.

    PubMed

    Huang, Renhua; Fang, Pete; Kay, Brian K

    2012-09-01

    Site-directed mutagenesis is routinely performed in protein engineering experiments. One method, termed Kunkel mutagenesis, is frequently used for constructing libraries of peptide or protein variants in M13 bacteriophage, followed by affinity selection of phage particles. To make this method more efficient, the following two modifications were introduced: culture was incubated at 25°C for phage replication, which yielded two- to sevenfold more single-stranded DNA template compared to growth at 37°C, and restriction endonuclease recognition sites were used to remove non-recombinants. With both of the improvements, we could construct primary libraries of high complexity and that were 99-100% recombinant. Finally, with a third modification to the standard protocol of Kunkel mutagenesis, two secondary (mutagenic) libraries of a fibronectin type III (FN3) monobody were constructed with DNA segments that were amplified by error-prone and asymmetric PCR. Two advantages of this modification are that it bypasses the lengthy steps of restriction enzyme digestion and ligation, and that the pool of phage clones, recovered after affinity selection, can be used directly to generate a secondary library. Screening one of the two mutagenic libraries yielded variants that bound two- to fourfold tighter to human Pak1 kinase than the starting clone. The protocols described in this study should accelerate the discovery of phage-displayed recombinant affinity reagents. Copyright © 2012 Elsevier Inc. All rights reserved.

  6. Bacterial community associated with the trunk latex of Hancornia speciosa Gomes (Apocynaceae) grown in the northeast of Brazil.

    PubMed

    Silva, Thais Freitas da; Coelho, Marcia Reed Rodrigues; Vollú, Renata Estebanez; de Vasconcelos Goulart, Fátima Regina; Alviano, Daniela Sales; Alviano, Celuta Sales; Seldin, Lucy

    2011-03-01

    Prevention or cure of different illnesses through the use of plant latex is a worldwide known concept. The antifungal activity of Hancornia speciosa latex has been observed against Candida albicans. However, H. speciosa latex is not a sterile plant exudate and secondary metabolites produced by bacteria could be involved in fungal inhibition. In the present study, the bacterial communities of the latex from three H. speciosa trees were characterized using traditional plating and molecular methods. Twelve strains isolated from the latex samples were clustered into four groups by amplified ribosomal DNA restriction analysis (ARDRA). One representative of each group was sequenced and they were identified as belonging to the genera Bacillus, Klebsiella, Enterobacter and Escherichia. None of the 12 isolates showed antifungal activity against C. albicans. A lack of a microbial origin for the antifungal properties of latex was noted. DGGE profiles generated from each of the three latex samples showed unique patterns. Sequencing of the DGGE bands demonstrated the affiliation with the genera Klebsiella, Pantoea, Enterobacter and Burkholderia. In addition, clone libraries were generated and the phylogenetic distribution of the 50 analyzed clones was similar to that obtained using DGGE. The presence of some potential pathogens should be considered before using H. speciosa latex in folk medicine.

  7. Endophyte Microbiome Diversity in Micropropagated Atriplex canescens and Atriplex torreyi var griffithsii

    PubMed Central

    Lucero, Mary E.; Unc, Adrian; Cooke, Peter; Dowd, Scot; Sun, Shulei

    2011-01-01

    Microbial diversity associated with micropropagated Atriplex species was assessed using microscopy, isolate culturing, and sequencing. Light, electron, and confocal microscopy revealed microbial cells in aseptically regenerated leaves and roots. Clone libraries and tag-encoded FLX amplicon pyrosequencing (TEFAP) analysis amplified sequences from callus homologous to diverse fungal and bacterial taxa. Culturing isolated some seed borne endophyte taxa which could be readily propagated apart from the host. Microbial cells were observed within biofilm-like residues associated with plant cell surfaces and intercellular spaces. Various universal primers amplified both plant and microbial sequences, with different primers revealing different patterns of fungal diversity. Bacterial and fungal TEFAP followed by alignment with sequences from curated databases revealed 7 bacterial and 17 ascomycete taxa in A. canescens, and 5 bacterial taxa in A. torreyi. Additional diversity was observed among isolates and clone libraries. Micropropagated Atriplex retains a complex, intimately associated microbiome which includes diverse strains well poised to interact in manners that influence host physiology. Microbiome analysis was facilitated by high throughput sequencing methods, but primer biases continue to limit recovery of diverse sequences from even moderately complex communities. PMID:21437280

  8. Cloning, clones and clonal disease.

    PubMed

    Luzzatto, L

    2000-01-01

    In the past, cloning has been familiar to plant breeders because many plants can be easily reproduced in this way, bypassing the lengthy process of cross-fertilisation. Recently, the concept of cloning has become popular in human biology and medicine on two accounts. First, individual genes can be cloned from the enormous complexity of the DNA that makes up the human genetic material. It is expected that, within a few years, all the estimated 100,000 human genes will be isolated by this approach. This should make it possible to identify all the genes that determine the individual characteristics of human beings, including those responsible for causing human diseases or for making people more or less susceptible to pick up diseases from the environment. Cloned genes made into pharmaceutical products are already in use for treating a variety of diseases, from hormonal deficiencies to certain types of anaemia.

  9. Stability of a biogas-producing bacterial, archaeal and fungal community degrading food residues.

    PubMed

    Bengelsdorf, Frank R; Gerischer, Ulrike; Langer, Susanne; Zak, Manuel; Kazda, Marian

    2013-04-01

    The resident microbiota was analyzed in a mesophilic, continuously operating biogas plant predominantly utilizing food residues, stale bread, and other waste cosubstrates together with pig manure and maize silage. The dominating bacterial, archaeal, and eukaryotic community members were characterized by two different 16S/18S rRNA gene culture-independent approaches. Prokaryotic 16S rRNA gene and eukaryotic 18S rRNA gene clone libraries were constructed and further analyzed by restriction fragment length polymorphism (RFLP), 16S/18S rRNA gene sequencing, and phylogenetic tree reconstruction. The most dominant bacteria belonged to the phyla Bacteriodetes, Chloroflexus, and Firmicutes. On the family level, the bacterial composition confirmed high differences among biogas plants studied so fare. In contrast, the methanogenic archaeal community was similar to that of other studied biogas plants. Furthermore, it was possible to identify fungi at the genus level, namely Saccharomyces and Mucor. Both genera, which are important for microbial degradation of complex compounds, were up to now not found in biogas plants. The results revealed their long-term presence as indicated by denaturating gradient gel electrophoresis (DGGE). The DGGE method confirmed that the main members of the microbial community were constantly present over more than one-year period. © 2012 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  10. Cloning and expression analysis of a gene that shows developmental regulation upon tuberization in potato.

    PubMed

    Jackson, S; Gascón, J; Carrera, E; Monte, E; Prat, S

    1997-01-01

    Differential screening of a potato leaf cDNA library with cDNA probes made from tuberizing and non-tuberizing Solanum demissum plants led to the identification of a clone that is upregulated in leaves and other tissues upon tuberization. This clone was also shown to have a high level of expression in green tomato fruit, its expression falling off as the fruit turns red. No sucrose or hormonal regulation of the expression of this clone was observed and it did not respond to wounding or heat stress. Clone 32B is 532 bp long and contains an open reading frame encoding a small protein of 98 amino acids. The deduced protein sequence has a putative signal peptide for ER transport and a 10 amino acid domain in the C-terminal region of the protein, both of which are also found in the cotton LEA5, Arabidopsis Di21 and the mungbean Arg2 proteins.

  11. Life at the hyperarid margin: novel bacterial diversity in arid soils of the Atacama Desert, Chile

    USGS Publications Warehouse

    Neilson, Julia W.; Quade, Jay; Ortiz, Marianyoly; Nelson, William M.; Legatzki, Antje; Tian, Fei; LaComb, Michelle; Betancourt, Julio L.; Wing, Rod A.; Soderlund, Carol A.; Maier, Raina M.

    2012-01-01

    Nearly half the earth's surface is occupied by dryland ecosystems, regions susceptible to reduced states of biological productivity caused by climate fluctuations. Of these regions, arid zones located at the interface between vegetated semiarid regions and biologically unproductive hyperarid zones are considered most vulnerable. The objective of this study was to conduct a deep diversity analysis of bacterial communities in unvegetated arid soils of the Atacama Desert, to characterize community structure and infer the functional potential of these communities based on observed phylogenetic associations. A 454-pyrotag analysis was conducted of three unvegetated arid sites located at the hyperarid-arid margin. The analysis revealed communities with unique bacterial diversity marked by high abundances of novel Actinobacteria and Chloroflexi and low levels of Acidobacteria and Proteobacteria, phyla that are dominant in many biomes. A 16S rRNA gene library of one site revealed the presence of clones with phylogenetic associations to chemoautotrophic taxa able to obtain energy through oxidation of nitrite, carbon monoxide, iron, or sulfur. Thus, soils at the hyperarid margin were found to harbor a wealth of novel bacteria and to support potentially viable communities with phylogenetic associations to non-phototrophic primary producers and bacteria capable of biogeochemical cycling.

  12. High bacterial diversity in epilithic biofilms of oligotrophic mountain lakes.

    PubMed

    Bartrons, Mireia; Catalan, Jordi; Casamayor, Emilio O

    2012-11-01

    Benthic microbial biofilms attached to rocks (epilithic) are major sites of carbon cycling and can dominate ecosystem primary production in oligotrophic lakes. We studied the bacterial community composition of littoral epilithic biofilms in five connected oligotrophic high mountain lakes located at different altitudes by genetic fingerprinting and clone libraries of the 16S rRNA gene. Different intra-lake samples were analyzed, and consistent changes in community structure (chlorophyll a and organic matter contents, and bacterial community composition) were observed along the altitudinal gradient, particularly related with the location of the lake above or below the treeline. Epilithic biofilm genetic fingerprints were both more diverse among lakes than within lakes and significantly different between montane (below the tree line) and alpine lakes (above the tree line). The genetic richness in the epilithic biofilm was much higher than in the plankton of the same lacustrine area studied in previous works, with significantly idiosyncratic phylogenetic composition (specifically distinct from lake plankton or mountain soils). Data suggest the coexistence of aerobic, anaerobic, phototrophic, and chemotrophic microorganisms in the biofilm, Bacteroidetes and Cyanobacteria being the most important bacterial taxa, followed by Alpha-, Beta-, Gamma-, and Deltaproteobacteria, Chlorobi, Planctomycetes, and Verrucomicrobia. The degree of novelty was especially high for epilithic Bacteroidetes, and up to 50 % of the sequences formed monophyletic clusters distantly related to any previously reported sequence. More than 35 % of the total sequences matched at <95 % identity to any previously reported 16S rRNA gene, indicating that alpine epilithic biofilms are unexplored habitats that contain a substantial degree of novelty within a short geographical distance. Further research is needed to determine whether these communities are involved in more biogeochemical pathways than

  13. Rapid CRISPR/Cas9-Mediated Cloning of Full-Length Epstein-Barr Virus Genomes from Latently Infected Cells.

    PubMed

    Yajima, Misako; Ikuta, Kazufumi; Kanda, Teru

    2018-04-03

    Herpesviruses have relatively large DNA genomes of more than 150 kb that are difficult to clone and sequence. Bacterial artificial chromosome (BAC) cloning of herpesvirus genomes is a powerful technique that greatly facilitates whole viral genome sequencing as well as functional characterization of reconstituted viruses. We describe recently invented technologies for rapid BAC cloning of herpesvirus genomes using CRISPR/Cas9-mediated homology-directed repair. We focus on recent BAC cloning techniques of Epstein-Barr virus (EBV) genomes and discuss the possible advantages of a CRISPR/Cas9-mediated strategy comparatively with precedent EBV-BAC cloning strategies. We also describe the design decisions of this technology as well as possible pitfalls and points to be improved in the future. The obtained EBV-BAC clones are subjected to long-read sequencing analysis to determine complete EBV genome sequence including repetitive regions. Rapid cloning and sequence determination of various EBV strains will greatly contribute to the understanding of their global geographical distribution. This technology can also be used to clone disease-associated EBV strains and test the hypothesis that they have special features that distinguish them from strains that infect asymptomatically.

  14. Rapid CRISPR/Cas9-Mediated Cloning of Full-Length Epstein-Barr Virus Genomes from Latently Infected Cells

    PubMed Central

    Ikuta, Kazufumi; Kanda, Teru

    2018-01-01

    Herpesviruses have relatively large DNA genomes of more than 150 kb that are difficult to clone and sequence. Bacterial artificial chromosome (BAC) cloning of herpesvirus genomes is a powerful technique that greatly facilitates whole viral genome sequencing as well as functional characterization of reconstituted viruses. We describe recently invented technologies for rapid BAC cloning of herpesvirus genomes using CRISPR/Cas9-mediated homology-directed repair. We focus on recent BAC cloning techniques of Epstein-Barr virus (EBV) genomes and discuss the possible advantages of a CRISPR/Cas9-mediated strategy comparatively with precedent EBV-BAC cloning strategies. We also describe the design decisions of this technology as well as possible pitfalls and points to be improved in the future. The obtained EBV-BAC clones are subjected to long-read sequencing analysis to determine complete EBV genome sequence including repetitive regions. Rapid cloning and sequence determination of various EBV strains will greatly contribute to the understanding of their global geographical distribution. This technology can also be used to clone disease-associated EBV strains and test the hypothesis that they have special features that distinguish them from strains that infect asymptomatically. PMID:29614006

  15. Development and analysis of a tick-borne encephalitis virus infectious clone using a novel and rapid strategy.

    PubMed

    Gritsun, T S; Gould, E A

    1998-12-01

    In less than 1 month we have constructed an infectious clone of attenuated tick-borne encephalitis virus (strain Vasilchenko) from 100 microl of unpurified virus suspension using long high fidelity PCR and a modified bacterial cloning system. Optimization of the 3' antisense primer concentration was essential to achieve PCR synthesis of an 11 kb cDNA copy of RNA from infectious virus. A novel system utilising two antisense primers, a 14-mer for reverse transcription and a 35-mer for long PCR, produced high yields of genomic length cDNA. Use of low copy number Able K cells and an incubation temperature of 28 degrees C increased the genetic stability of cloned cDNA. Clones containing 11 kb cDNA inserts produced colonies of reduced size, thus providing a positive selection system for full length clones. Sequencing of the infectious clone emphasised the improved fidelity of the method compared with conventional PCR and cloning methods. A simple and rapid strategy for genetic manipulation of the infectious clone is also described. These developments represent a significant advance in recombinant technology and should be applicable to positive stranded RNA viruses which cannot easily be purified or genetically manipulated.

  16. Brain cDNA clone for human cholinesterase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McTiernan, C.; Adkins, S.; Chatonnet, A.

    1987-10-01

    A cDNA library from human basal ganglia was screened with oligonucleotide probes corresponding to portions of the amino acid sequence of human serum cholinesterase. Five overlapping clones, representing 2.4 kilobases, were isolated. The sequenced cDNA contained 207 base pairs of coding sequence 5' to the amino terminus of the mature protein in which there were four ATG translation start sites in the same reading frame as the protein. Only the ATG coding for Met-(-28) lay within a favorable consensus sequence for functional initiators. There were 1722 base pairs of coding sequence corresponding to the protein found circulating in human serum.more » The amino acid sequence deduced from the cDNA exactly matched the 574 amino acid sequence of human serum cholinesterase, as previously determined by Edman degradation. Therefore, our clones represented cholinesterase rather than acetylcholinesterase. It was concluded that the amino acid sequences of cholinesterase from two different tissues, human brain and human serum, were identical. Hybridization of genomic DNA blots suggested that a single gene, or very few genes coded for cholinesterase.« less

  17. Composition and stability of bacterial communities associated with granular activated carbon and anthracite filters in a pilot scale municipal drinking water treatment facility.

    PubMed

    Shirey, T B; Thacker, R W; Olson, J B

    2012-06-01

    Granular activated carbon (GAC) is an alternative filter substrate for municipal water treatment as it provides a high surface area suitable for microbial colonization. The resulting microbial growth promotes biodegradation of organic materials and other contaminants from influent waters. Here, the community structure of the bacteria associated with three GAC and two anthracite filters was examined over 12 months to monitor changes in community composition. Nearly complete 16S rRNA genes were polymerase chain reaction amplified for terminal restriction fragment length polymorphism (T-RFLP) analyses. The identity of commonly occurring peaks was determined through the construction of five representative 16S rRNA clone libraries. Based on sequence analysis, the bacterial communities associated with both anthracite and GAC filters appear to be composed of environmentally derived bacteria, with no known human pathogens. Analysis of similarity tests revealed that significant differences in bacterial community structure occurred over time, with filter substrate playing an important role in determining community composition. GAC filters exhibited the greatest degree of bacterial community variability over the sampling period, while anthracite filters showed a lower degree of variability and less change in community composition. Thus, GAC may be a suitable biologically active filter substrate for the treatment of municipal drinking water.

  18. PHYLOGENETIC DIVERSITY IN DRINKING WATER BACTERIA IN A DISTRIBUTION SYSTEM SIMULATOR

    EPA Science Inventory

    This work was carried out to characterize the composition of microbial populations in a distribution system simulator (DSS) by direct sequence analysis of 16S rDNA clone libraries. Bacterial populations were examined in chlorinated distribution water and chloraminated DSS feed an...

  19. Diversity of bacteria in surface ice of Austre Lovénbreen glacier, Svalbard.

    PubMed

    Zeng, Yin-Xin; Yan, Ming; Yu, Yong; Li, Hui-Rong; He, Jian-Feng; Sun, Kun; Zhang, Fang

    2013-05-01

    Two 16S rRNA gene clone libraries Cores 1U and 2U were constructed using two ice core samples collected from Austre Lovénbreen glacier in Svalbard. The two libraries yielded a total of 262 clones belonging to 59 phylotypes. Sequences fell into 10 major lineages of the domain Bacteria, including Proteobacteria (alpha, beta, gamma and delta subdivisions), Bacteroidetes, Actinobacteria, Firmicutes, Acidobacteria, Deinococcus-Thermus, Chloroflexi, Planctomycetes, Cyanobacteria and candidate division TM7. Among them, Bacteroidetes, Actinobacteria, Alphaproteobacteria and Cyanobacteria were most abundant. UniFrac data showed no significant differences in community composition between the two ice cores. A total of nineteen bacterial strains from the genera Pseudoalteromonas and Psychrobacter were isolated from the ice cores. Phylogenetic and phenotypic analyses revealed a close relationship between the ice core isolates and bacteria in marine environments, indicating a wide distribution of some bacterial phylotypes in both terrestrial and marine ecosystems.

  20. WebPrInSeS: automated full-length clone sequence identification and verification using high-throughput sequencing data.

    PubMed

    Massouras, Andreas; Decouttere, Frederik; Hens, Korneel; Deplancke, Bart

    2010-07-01

    High-throughput sequencing (HTS) is revolutionizing our ability to obtain cheap, fast and reliable sequence information. Many experimental approaches are expected to benefit from the incorporation of such sequencing features in their pipeline. Consequently, software tools that facilitate such an incorporation should be of great interest. In this context, we developed WebPrInSeS, a web server tool allowing automated full-length clone sequence identification and verification using HTS data. WebPrInSeS encompasses two separate software applications. The first is WebPrInSeS-C which performs automated sequence verification of user-defined open-reading frame (ORF) clone libraries. The second is WebPrInSeS-E, which identifies positive hits in cDNA or ORF-based library screening experiments such as yeast one- or two-hybrid assays. Both tools perform de novo assembly using HTS data from any of the three major sequencing platforms. Thus, WebPrInSeS provides a highly integrated, cost-effective and efficient way to sequence-verify or identify clones of interest. WebPrInSeS is available at http://webprinses.epfl.ch/ and is open to all users.

  1. WebPrInSeS: automated full-length clone sequence identification and verification using high-throughput sequencing data

    PubMed Central

    Massouras, Andreas; Decouttere, Frederik; Hens, Korneel; Deplancke, Bart

    2010-01-01

    High-throughput sequencing (HTS) is revolutionizing our ability to obtain cheap, fast and reliable sequence information. Many experimental approaches are expected to benefit from the incorporation of such sequencing features in their pipeline. Consequently, software tools that facilitate such an incorporation should be of great interest. In this context, we developed WebPrInSeS, a web server tool allowing automated full-length clone sequence identification and verification using HTS data. WebPrInSeS encompasses two separate software applications. The first is WebPrInSeS-C which performs automated sequence verification of user-defined open-reading frame (ORF) clone libraries. The second is WebPrInSeS-E, which identifies positive hits in cDNA or ORF-based library screening experiments such as yeast one- or two-hybrid assays. Both tools perform de novo assembly using HTS data from any of the three major sequencing platforms. Thus, WebPrInSeS provides a highly integrated, cost-effective and efficient way to sequence-verify or identify clones of interest. WebPrInSeS is available at http://webprinses.epfl.ch/ and is open to all users. PMID:20501601

  2. Phylogenetic and functional diversity of metagenomic libraries of phenol degrading sludge from petroleum refinery wastewater treatment system.

    PubMed

    Silva, Cynthia C; Hayden, Helen; Sawbridge, Tim; Mele, Pauline; Kruger, Ricardo H; Rodrigues, Marili Vn; Costa, Gustavo Gl; Vidal, Ramon O; Sousa, Maíra P; Torres, Ana Paula R; Santiago, Vânia Mj; Oliveira, Valéria M

    2012-03-27

    In petrochemical refinery wastewater treatment plants (WWTP), different concentrations of pollutant compounds are received daily in the influent stream, including significant amounts of phenolic compounds, creating propitious conditions for the development of particular microorganisms that can rapidly adapt to such environment. In the present work, the microbial sludge from a refinery WWTP was enriched for phenol, cloned into fosmid vectors and pyrosequenced. The fosmid libraries yielded 13,200 clones and a comprehensive bioinformatic analysis of the sequence data set revealed a complex and diverse bacterial community in the phenol degrading sludge. The phylogenetic analyses using MEGAN in combination with RDP classifier showed a massive predominance of Proteobacteria, represented mostly by the genera Diaphorobacter, Pseudomonas, Thauera and Comamonas. The functional classification of phenol degrading sludge sequence data set generated by MG-RAST showed the wide metabolic diversity of the microbial sludge, with a high percentage of genes involved in the aerobic and anaerobic degradation of phenol and derivatives. In addition, genes related to the metabolism of many other organic and xenobiotic compounds, such as toluene, biphenyl, naphthalene and benzoate, were found. Results gathered herein demonstrated that the phenol degrading sludge has complex phylogenetic and functional diversities, showing the potential of such community to degrade several pollutant compounds. This microbiota is likely to represent a rich resource of versatile and unknown enzymes which may be exploited for biotechnological processes such as bioremediation.

  3. Map-based cloning of a gene controlling Omega-3 fatty acid desaturation in Arabidopsis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arondel, V.; Lemieux, B.; Hwang, I.

    1992-11-20

    A gene from the flowering plant Arabidopsis thaliana that encodes an omega-3 desaturase was cloned on the basis of the genetic map position of a mutation affecting membrane and storage lipid fatty acid composition. Yeast artificial chromosomes covering the genetic locus were identified and used to probe a seed complementary DNA library. A complementary DNA clone for the desaturase was identified and introduced into roots of both wild-type and mutant plants by Ti plasmid-mediated transformation. Transgenic tissues of both mutant and wild-type plants had significantly increased amounts of the fatty acid produced by this desaturase. 24 refs., 2 figs., 1more » tabs.« less

  4. Cloning of Trametes versicolar genes induced by nitrogen starvation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trudel, P.; Courchesne, D.; Roy, C.

    1988-06-01

    We have screened a genomic library of Trametes versicolar for genes whose expression is associated with nitrogen starvation, which has been shown to induce ligninolytic activity. Using two different approaches based on differential expression, we isolated 29 clones. These were shown by restriction mapping and cross-hybridization to code for 11 distinct differentially expressed genes. Northern analysis of the kinetics of expression of these genes revealed that at least four of them have kinetics of induction that parallel kinetics of induction of ligninolytic activity.

  5. Bacterial Diterpene Synthases: New Opportunities for Mechanistic Enzymology and Engineered Biosynthesis

    PubMed Central

    Smanski, Michael J.; Peterson, Ryan M.; Huang, Sheng-Xiong; Shen, Ben

    2012-01-01

    Diterpenoid biosynthesis has been extensively studied in plants and fungi, yet cloning and engineering diterpenoid pathways in these organisms remain challenging. Bacteria are emerging as prolific producers of diterpenoid natural products, and bacterial diterpene synthases are poised to make significant contributions to our understanding of terpenoid biosynthesis. Here we will first survey diterpenoid natural products of bacterial origin and briefly review their biosynthesis with emphasis on diterpene synthases (DTSs) that channel geranylgeranyl diphosphate to various diterpenoid scaffolds. We will then highlight differences of DTSs of bacterial and higher organism origins and discuss the challenges in discovering novel bacterial DTSs. We will conclude by discussing new opportunities for DTS mechanistic enzymology and applications of bacterial DTS in biocatalysis and metabolic pathway engineering. PMID:22445175

  6. Altamira cave Paleolithic paintings harbor partly unknown bacterial communities.

    PubMed

    Schabereiter-Gurtner, Claudia; Saiz-Jimenez, Cesareo; Piñar, Guadalupe; Lubitz, Werner; Rölleke, Sabine

    2002-05-21

    Since it has been reported that microorganisms can affect painting pigments, Paleolithic painting microbiology deserves attention. The present study is the first report on the bacterial colonization of the valuable Paleolithic paintings in the famous Altamira cave (Spain). One sample taken from a painting area in the Polychromes Hall was analyzed culture-independently. This was the first time microbiologists were allowed to take sample material directly from Altamira paintings. Identification methods included PCR amplification of 16S rRNA genes (16S rDNA) and community fingerprinting by denaturing gradient gel electrophoresis (DGGE). The applied approach gave insight into a great bacterial taxonomic diversity, and allowed the detection of unexpected and unknown bacteria with potential effects on the conservation of the painting. Regarding the number of 29 visible DGGE bands in the community fingerprint, the numbers of analyzed clones described about 72% of the phylogenetic diversity present in the sample. Thirty-eight percent of the sequences analyzed were phylogenetically most closely related to cultivated bacteria, while the majority (62%) were most closely related to environmental 16S rDNA clones. Bacteria identified in Altamira were related with sequence similarities between 84.8 and 99.4% to members of the cosmopolitan Proteobacteria (52.3%), to members of the Acidobacterium division (23.8%), Cytophaga/Flexibacter/Bacteroides phylum (9.5%), green non-sulfur bacteria (4.8%), Planctomycetales (4.8%) and Actinobacteria (4.8%). The high number of clones most closely related to environmental 16S rDNA clones showed the broad spectrum of unknown and yet to be cultivated bacteria in Altamira cave.

  7. Human cloning 2001.

    PubMed

    Healy, David L; Weston, Gareth; Pera, Martin F; Rombauts, Luk; Trounson, Alan O

    2002-05-01

    This review summaries human cloning from a clinical perspective. Natural human clones, that is, monozygotic twins, are increasing in the general community. Iatrogenic human clones have been produced for decades in infertile couples given fertility treatment such as ovulation induction. A clear distinction must be made between therapeutic cloning using embryonic stem cells and reproductive cloning attempts. Unlike the early clinical years of in vitro fertilization, with cloning there is no animal model that is safe and dependable. Until there is such a model, 'Dolly'-style human cloning is medically unacceptable.

  8. Bacterial population dynamics during uranium reduction andre-oxidation: Application of a novel high density oligonucleotidemicroarray approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brodie, Eoin L.; DeSantis, Todd Z.; Joyner, Dominique C.

    2006-01-30

    Reduction of soluble uranium U(VI) to less-soluble uraniumU(IV) is a promising approach to minimize migration from contaminatedaquifers. It is generally assumed that, under constant reducingconditions, U(IV) is stable and immobile; however, in a previous study,we documented reoxidation of U(IV) under continuous reducing conditions(Wan et al., Environ. Sci. Technol. 2005, 39:6162 6169). To determine ifchanges in microbial community composition were a factor in U(IV)reoxidation, we employed a high-density phylogenetic DNA microarray (16Smicroarray) containing 500,000 probes to monitor changes in bacterialpopulations during this remediation process. Comparison of the 16Smicroarray with clone libraries demonstrated successful detection andclassification of most clone groups. Analysis ofmore » the most dynamic groupsof 16S rRNA gene amplicons detected by the 16S microarray identified fiveclusters of bacterial subfamilies responding in a similar manner. Thisapproach demonstrated that amplicons of known metal-reducing bacteriasuch as Geothrix fermentans (confirmed by quantitative PCR) and thosewithin the Geobacteraceae were abundant during U(VI) reduction and didnot decline during the U(IV) reoxidation phase. Significantly, it appearsthat the observed reoxidation of uranium under reducing conditionsoccurred despite elevated microbial activity and the consistent presenceof metal-reducing bacteria. High-density phylogenetic microarraysconstitute a powerful tool, enabling the detection and monitoring of asubstantial portion of the microbial population in a routine, accurate,and reproducible manner.« less

  9. High specificity but contrasting biodiversity of Sphagnum-associated bacterial and plant communities in bog ecosystems independent of the geographical region.

    PubMed

    Opelt, Katja; Berg, Christian; Schönmann, Susan; Eberl, Leo; Berg, Gabriele

    2007-10-01

    Mosses represent ecological niches that harbor a hitherto largely uncharacterized microbial diversity. To investigate which factors affect the biodiversity of bryophyte-associated bacteria, we analyzed the bacterial communities associated with two moss species, which exhibit different ecological behaviors and importance in bog ecosystems, Sphagnum magellanicum and Sphagnum fallax, from six temperate and boreal bogs in Germany and Norway. Furthermore, their surrounding plant communities were studied. Molecular analysis of bacterial communities was determined by single-strand conformation polymorphism (SSCP) analysis using eubacterial and genus-specific primers for the dominant genera Burkholderia and Serratia as well as by sequence analysis of a Burkholderia 16S rRNA gene clone library. Plant communities were analyzed by monitoring the abundance and composition of bryophyte and vascular plant species, and by determining ecological indicator values. Interestingly, we found a high degree of host specificity for associated bacterial and plant communities of both Sphagnum species independent of the geographical region. Calculation of diversity indices on the basis of SSCP gels showed that the S. fallax-associated communities displayed a statistically significant higher degree of diversity than those associated with S. magellanicum. In contrast, analyses of plant communities of Sphagnum-specific habitats resulted in a higher diversity of S. magellanicum-specific habitats for all six sites. The higher content of nutrients in the S. fallax-associated ecosystems can explain higher diversity of microorganisms.

  10. Composition and Variability of Biofouling Organisms in Seawater Reverse Osmosis Desalination Plants ▿ †

    PubMed Central

    Zhang, Minglu; Jiang, Sunny; Tanuwidjaja, Dian; Voutchkov, Nikolay; Hoek, Eric M. V.; Cai, Baoli

    2011-01-01

    Seawater reverse osmosis (SWRO) membrane biofouling remains a common challenge in the desalination industry, but the marine bacterial community that causes membrane fouling is poorly understood. Microbial communities at different stages of treatment processes (intake, cartridge filtration, and SWRO) of a desalination pilot plant were examined by both culture-based and culture-independent approaches. Bacterial isolates were identified to match the genera Shewanella, Alteromonas, Vibrio, and Cellulophaga based on 16S rRNA gene sequencing analysis. The 16S rRNA gene clone library of the SWRO membrane biofilm showed that a filamentous bacterium, Leucothrix mucor, which belongs to the gammaproteobacteria, accounted for nearly 30% of the clone library, while the rest of the microorganisms (61.2% of the total clones) were related to the alphaproteobacteria. 16S rRNA gene terminal restriction fragment length polymorphism (T-RFLP) analysis indicated that bacteria colonizing the SWRO membrane represented a subportion of microbes in the source seawater; however, they were quite different from those colonizing the cartridge filter. The examination of five SWRO membranes from desalination plants located in different parts of the world showed that although the bacterial communities from the membranes were not identical to each other, some dominant bacteria were commonly observed. In contrast, bacterial communities in source seawater were significantly different based on location and season. Microbial profiles from 14 cartridge filters collected from different plants also revealed spatial trends. PMID:21551282

  11. Cloning and expression of clt genes encoding milk-clotting proteases from Myxococcus xanthus 422.

    PubMed

    Poza, M; Prieto-Alcedo, M; Sieiro, C; Villa, T G

    2004-10-01

    The screening of a gene library of the milk-clotting strain Myxococcus xanthus 422 constructed in Escherichia coli allowed the description of eight positive clones containing 26 open reading frames. Only three of them (cltA, cltB, and cltC) encoded proteins that exhibited intracellular milk-clotting ability in E. coli, Saccharomyces cerevisiae, and Pichia pastoris expression systems.

  12. Specific ligands for classical swine fever virus screened from landscape phage display library.

    PubMed

    Yin, Long; Luo, Yuzi; Liang, Bo; Wang, Fei; Du, Min; Petrenko, Valery A; Qiu, Hua-Ji; Liu, Aihua

    2014-09-01

    Classical swine fever (CSF) is a devastating infectious disease caused by classical swine fever virus (CSFV). The screening of CSFV-specific ligands is of great significance for diagnosis and treatment of CSF. Affinity selection from random peptide libraries is an efficient approach to discover ligands with high stability and specificity. Here, we screened phage ligands for the CSFV E2 protein from f8/8 landscape phage display library by biopanning and obtained four phage clones specific for the E2 protein of CSFV. Viral blocking assays indicated that the phage clone displaying the octapeptide sequence DRATSSNA remarkably inhibited the CSFV replication in PK-15 cells at a titer of 10(10) transduction units, as evidenced by significantly decreased viral RNA copies and viral titers. The phage-displayed E2-binding peptides have the potential to be developed as antivirals for CSF. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Tissue Gene Expression Analysis Using Arrayed Normalized cDNA Libraries

    PubMed Central

    Eickhoff, Holger; Schuchhardt, Johannes; Ivanov, Igor; Meier-Ewert, Sebastian; O'Brien, John; Malik, Arif; Tandon, Neeraj; Wolski, Eryk-Witold; Rohlfs, Elke; Nyarsik, Lajos; Reinhardt, Richard; Nietfeld, Wilfried; Lehrach, Hans

    2000-01-01

    We have used oligonucleotide-fingerprinting data on 60,000 cDNA clones from two different mouse embryonic stages to establish a normalized cDNA clone set. The normalized set of 5,376 clones represents different clusters and therefore, in almost all cases, different genes. The inserts of the cDNA clones were amplified by PCR and spotted on glass slides. The resulting arrays were hybridized with mRNA probes prepared from six different adult mouse tissues. Expression profiles were analyzed by hierarchical clustering techniques. We have chosen radioactive detection because it combines robustness with sensitivity and allows the comparison of multiple normalized experiments. Sensitive detection combined with highly effective clustering algorithms allowed the identification of tissue-specific expression profiles and the detection of genes specifically expressed in the tissues investigated. The obtained results are publicly available (http://www.rzpd.de) and can be used by other researchers as a digital expression reference. [The sequence data described in this paper have been submitted to the EMBL data library under accession nos. AL360374–AL36537.] PMID:10958641

  14. A Microbial Community in Sediments Beneath the Western Antarctic Ice Sheet, Ice Stream C (Kamb)

    NASA Astrophysics Data System (ADS)

    Skidmore, M.; Han, S.; Foo, W.; Bui, D.; Lanoil, B.

    2004-12-01

    In 2000, an ice-drilling project focusing on the "sticky spot" of Ice Stream C recovered cores of sub-glacial sediments from beneath the Western Antarctic Ice Sheet. We have characterized several chemical and microbiological parameters of the sole intact sediment core. Pore waters extracted from these sediments were brackish and some were supersaturated with respect to calcite. Ion chromatography demonstrated the presence of several organic acids at low, but detectable, levels in the pore water. DAPI direct cell counts were approximately 107 cells g-1. Aerobic viable plate counts were much lower than direct cell counts; however, they were two orders of magnitude higher on plates incubated at low temperature (4 ° C; 3.63 x 105 CFU ml-1) than at higher temperatures (ca. 22° C; 1.5 x 103 CFU ml-1); no colonies were detected on plates incubated anaerobically at either temperature. 16S rDNA clone library analysis indicates extremely limited bacterial diversity in these samples: six phylogenetic clades were detected. The three dominant bacterial phylogenetic clades in the clone libraries (252 clones total) were most closely related to Thiobacillus thioparus (180 clones), Polaromonas vacuolata (34 clones), and Gallionella ferruginea (35 clones) and their relatives; one clone each represented the other three phylogenetic clades (most closely related to Ralstonia pickettii, Lysobacter antibioticus, and Xylella fastidiosa, respectively). These sequences match closely with sequences previously obtained from other subglacial environments in Alaska, Ellesmere Island, Canada and New Zealand. Implications of this microbial community to subglacial chemistry and microbial biogeography will be discussed.

  15. Cloning and characterization of a Prevotella melaninogenica hemolysin.

    PubMed Central

    Allison, H E; Hillman, J D

    1997-01-01

    Hemolysins have been proven to be important virulence factors in many medically relevant pathogenic organisms. Their production has also been implicated in the etiology of periodontal disease. Hemolytic strain 361B of Prevotella melaninogenica, a putative etiologic agent of periodontal disease, was used in this study. The cloning, sequencing, and characterization of phyA, the structural gene for a P. melaninogenica hemolysin, is described. No extensive sequence homology could be identified between phyA and any reported sequence at either the nucleotide or amino acid level. As predicted from sequence analysis, this gene produces a 39-kDa protein which has hemolytic activity as measured by zymogram analysis. Unlike many Ca2+-dependent bacterial hemolysins, both the cloned and native PhyA proteins were enhanced by the presence of EDTA in a dose-dependent fashion with 40 mM EDTA allowing maximum activity. Ca2+ and Mg2+ were found to be inhibitory. The hemolytic activity also was found to have a dose-dependent endpoint. Through recovery of hemolytic activity from a spent reaction, this endpoint was shown to be the result of end product inhibition. This is the first report describing the cloning and sequencing of a gene from P. melaninogenica. PMID:9199448

  16. Cloning and characterization of a Prevotella melaninogenica hemolysin.

    PubMed

    Allison, H E; Hillman, J D

    1997-07-01

    Hemolysins have been proven to be important virulence factors in many medically relevant pathogenic organisms. Their production has also been implicated in the etiology of periodontal disease. Hemolytic strain 361B of Prevotella melaninogenica, a putative etiologic agent of periodontal disease, was used in this study. The cloning, sequencing, and characterization of phyA, the structural gene for a P. melaninogenica hemolysin, is described. No extensive sequence homology could be identified between phyA and any reported sequence at either the nucleotide or amino acid level. As predicted from sequence analysis, this gene produces a 39-kDa protein which has hemolytic activity as measured by zymogram analysis. Unlike many Ca2+-dependent bacterial hemolysins, both the cloned and native PhyA proteins were enhanced by the presence of EDTA in a dose-dependent fashion with 40 mM EDTA allowing maximum activity. Ca2+ and Mg2+ were found to be inhibitory. The hemolytic activity also was found to have a dose-dependent endpoint. Through recovery of hemolytic activity from a spent reaction, this endpoint was shown to be the result of end product inhibition. This is the first report describing the cloning and sequencing of a gene from P. melaninogenica.

  17. The High Diversity of MRSA Clones Detected in a University Hospital in Istanbul

    PubMed Central

    Oksuz, Lutfiye; Dupieux, Celine; Tristan, Anne; Bes, Michele; Etienne, Jerome; Gurler, Nezahat

    2013-01-01

    Background: To characterize the methicillin-resistant Staphylococcus aureus (MRSA) clones present in Istanbul, 102 MRSA isolates collected during a 5-year period at the Istanbul Medical Faculty Hospital were characterized using microarray analysis and phenotypic resistance profiles. Methods: Resistance to methicillin was detected with a cefoxitin disk diffusion assay and confirmed with a MRSA-agar and MRSA detection kit. Antimicrobial susceptibility testing was performed by a disk diffusion assay and interpreted according to the 2012 guidelines of the Antibiogram Committee of the French Society for Microbiology. Decreased susceptibility to glycopeptides was confirmed using the population analysis profile-area under the curve (PAP-AUC) method. The presence of the mecA gene was detected by polymerase chain reaction. Bacterial DNA was extracted according to the manufacturer's recommended protocol using commercial extraction kits. Strains were extensively characterized using the DNA microarray. Results: Isolates were grouped into six clonal complexes. The most frequently detected clone was the Vienna/Hungarian/Brazilian clone (ST239-MRSA-III), which accounted for 53.9% of the isolates. These isolates were resistant to multiple antibiotics, particularly penicillin, tetracycline, rifampicin, kanamycin, tobramycin, gentamicin, levofloxacin, erythromycin, lincomycin and fosfomycin. Furthermore, three isolates were detected by population analysis profile as heterogeneous vancomycin-intermediate S. aureus (hVISA). The UK-EMRSA-15 clone (ST22-MRSA-IV PVL negative) was detected in 9.8% of the isolates and was mainly susceptible to all anti-staphylococcal antibiotics. Seven isolates (6.9%) were positive for PVL genes and were assigned to the CC80-MRSA-IV clone (European CA-MRSA clone, three isolates), ST8-MRSA-IV clone (USA300 clone, two isolates, one ACME-positive) or ST22-MRSA-IV clone (“Regensburg EMRSA” clone, two isolates). All other clones were detected in one to six

  18. Archaeal and Bacterial Communities Associated with the Surface Mucus of Caribbean Corals Differ in Their Degree of Host Specificity and Community Turnover Over Reefs.

    PubMed

    Frade, Pedro R; Roll, Katharina; Bergauer, Kristin; Herndl, Gerhard J

    2016-01-01

    Comparative studies on the distribution of archaeal versus bacterial communities associated with the surface mucus layer of corals have rarely taken place. It has therefore remained enigmatic whether mucus-associated archaeal and bacterial communities exhibit a similar specificity towards coral hosts and whether they vary in the same fashion over spatial gradients and between reef locations. We used microbial community profiling (terminal-restriction fragment length polymorphism, T-RFLP) and clone library sequencing of the 16S rRNA gene to compare the diversity and community structure of dominant archaeal and bacterial communities associating with the mucus of three common reef-building coral species (Porites astreoides, Siderastrea siderea and Orbicella annularis) over different spatial scales on a Caribbean fringing reef. Sampling locations included three reef sites, three reef patches within each site and two depths. Reference sediment samples and ambient water were also taken for each of the 18 sampling locations resulting in a total of 239 samples. While only 41% of the bacterial operational taxonomic units (OTUs) characterized by T-RFLP were shared between mucus and the ambient water or sediment, for archaeal OTUs this percentage was 2-fold higher (78%). About half of the mucus-associated OTUs (44% and 58% of bacterial and archaeal OTUs, respectively) were shared between the three coral species. Our multivariate statistical analysis (ANOSIM, PERMANOVA and CCA) showed that while the bacterial community composition was determined by habitat (mucus, sediment or seawater), host coral species, location and spatial distance, the archaeal community composition was solely determined by the habitat. This study highlights that mucus-associated archaeal and bacterial communities differ in their degree of community turnover over reefs and in their host-specificity.

  19. Diversity of Metabolically Active Bacteria in Water-Flooded High-Temperature Heavy Oil Reservoir

    PubMed Central

    Nazina, Tamara N.; Shestakova, Natalya M.; Semenova, Ekaterina M.; Korshunova, Alena V.; Kostrukova, Nadezda K.; Tourova, Tatiana P.; Min, Liu; Feng, Qingxian; Poltaraus, Andrey B.

    2017-01-01

    The goal of this work was to study the overall genomic diversity of microorganisms of the Dagang high-temperature oilfield (PRC) and to characterize the metabolically active fraction of these populations. At this water-flooded oilfield, the microbial community of formation water from the near-bottom zone of an injection well where the most active microbial processes of oil degradation occur was investigated using molecular, cultural, radiotracer, and physicochemical techniques. The samples of microbial DNA and RNA from back-flushed water were used to obtain the clone libraries for the 16S rRNA gene and cDNA of 16S rRNA, respectively. The DNA-derived clone libraries were found to contain bacterial and archaeal 16S rRNA genes and the alkB genes encoding alkane monooxygenases similar to those encoded by alkB-geo1 and alkB-geo6 of geobacilli. The 16S rRNA genes of methanogens (Methanomethylovorans, Methanoculleus, Methanolinea, Methanothrix, and Methanocalculus) were predominant in the DNA-derived library of Archaea cloned sequences; among the bacterial sequences, the 16S rRNA genes of members of the genus Geobacillus were the most numerous. The RNA-derived library contained only bacterial cDNA of the 16S rRNA sequences belonging to metabolically active aerobic organotrophic bacteria (Tepidimonas, Pseudomonas, Acinetobacter), as well as of denitrifying (Azoarcus, Tepidiphilus, Calditerrivibrio), fermenting (Bellilinea), iron-reducing (Geobacter), and sulfate- and sulfur-reducing bacteria (Desulfomicrobium, Desulfuromonas). The presence of the microorganisms of the main functional groups revealed by molecular techniques was confirmed by the results of cultural, radioisotope, and geochemical research. Functioning of the mesophilic and thermophilic branches was shown for the microbial food chain of the near-bottom zone of the injection well, which included the microorganisms of the carbon, sulfur, iron, and nitrogen cycles. PMID:28487680

  20. The GA5 locus of Arabidopsis thaliana encodes a multifunctional gibberellin 20-oxidase: molecular cloning and functional expression.

    PubMed

    Xu, Y L; Li, L; Wu, K; Peeters, A J; Gage, D A; Zeevaart, J A

    1995-07-03

    The biosynthesis of gibberellins (GAs) after GA12-aldehyde involves a series of oxidative steps that lead to the formation of bioactive GAs. Previously, a cDNA clone encoding a GA 20-oxidase [gibberellin, 2-oxoglutarate:oxygen oxidoreductase (20-hydroxylating, oxidizing), EC 1.14.11.-] was isolated by immunoscreening a cDNA library from liquid endosperm of pumpkin (Cucurbita maxima L.) with antibodies against partially purified GA 20-oxidase. Here, we report isolation of a genomic clone for GA 20-oxidase from a genomic library of the long-day species Arabidopsis thaliana Heynh., strain Columbia, by using the pumpkin cDNA clone as a heterologous probe. This genomic clone contains a GA 20-oxidase gene that consists of three exons and two introns. The three exons are 1131-bp long and encode 377 amino acid residues. A cDNA clone corresponding to the putative GA 20-oxidase genomic sequence was constructed with the reverse transcription-PCR method, and the identity of the cDNA clone was confirmed by analyzing the capability of the fusion protein expressed in Escherichia coli to convert GA53 to GA44 and GA19 to GA20. The Arabidopsis GA 20-oxidase shares 55% identity and > 80% similarity with the pumpkin GA 20-oxidase at the derived amino acid level. Both GA 20-oxidases share high homology with other 2-oxoglutarate-dependent dioxygenases (2-ODDs), but the highest homology was found between the two GA 20-oxidases. Mapping results indicated tight linkage between the cloned GA 20-oxidase and the GA5 locus of Arabidopsis. The ga5 semidwarf mutant contains a G-->A point mutation that inserts a translational stop codon in the protein-coding sequence, thus confirming that the GA5 locus encodes GA 20-oxidase. Expression of the GA5 gene in Ara-bidopsis leaves was enhanced after plants were transferred from short to long days; it was reduced by GA4 treatment, suggesting end-product repression in the GA biosynthetic pathway.

  1. To clone or not to clone--a Jewish perspective.

    PubMed Central

    Lipschutz, J H

    1999-01-01

    Many new reproductive methods such as artificial insemination, in vitro fertilisation, freezing of human embryos, and surrogate motherhood were at first widely condemned but are now seen in Western society as not just ethically and morally acceptable, but beneficial in that they allow otherwise infertile couples to have children. The idea of human cloning was also quickly condemned but debate is now emerging. This article examines cloning from a Jewish perspective and finds evidence to support the view that there is nothing inherently wrong with the idea of human cloning. A hypothesis is also advanced suggesting that even if a body was cloned, the brain, which is the essence of humanity, would remain unique. This author suggests that the debate should be changed from "Is cloning wrong?" to "When is cloning wrong?". PMID:10226913

  2. Evaluation and identification of Marek’s disease virus BAC clones as standardized reagents for research

    USDA-ARS?s Scientific Manuscript database

    Marek’s disease virus (MDV) is an alphaherpesvirus that causes Marek’s disease (MD), a lymphoproliferative disease in chickens. Understanding of MDV gene function advanced significantly following the cloning of the MDV genome as either a series of overlapping cosmids or as a bacterial artificial chr...

  3. T-vector and in vivo recombination as tools to construct a large antibody library of breast cancer.

    PubMed

    Lv, Yong-Gang; Wang, Ting; Yuan, Shi-Fang; Li, Nan-Lin; Chen, Jiang-Hao; Zhao, Ai-Zhi; Ling, Rui; Wang, Ling

    2010-06-01

    The emergence of phage antibody libraries is an important advance in the field of antibody engineering. It provides a useful methodology to produce human antibodies and has the potential to replace traditional hybridoma technology. In our research, we used T-vector and in vivo recombination to construct a large antibody library from breast cancer patients. The use of T-vector considerably increased the cloning efficiency, and the diversity of the library could be increased easily using in vivo recombination. Taken together, a combination of these two techniques might be valuable in constructing a large antibody library.

  4. Bacterial Community Analysis, New Exoelectrogen Isolation and Enhanced Performance of Microbial Electrochemical Systems Using Nano-Decorated Anodes

    NASA Astrophysics Data System (ADS)

    Xu, Shoutao

    Microbial electrochemical systems (MESs) have attracted much research attention in recent years due to their promising applications in renewable energy generation, bioremediation, and wastewater treatment. In a MES, microorganisms interact with electrodes via electrons, catalyzing oxidation and reduction reactions at the anode and the cathode. The bacterial community of a high power mixed consortium MESs (maximum power density is 6.5W/m2) was analyzed by using denature gradient gel electrophoresis (DGGE) and 16S DNA clone library methods. The bacterial DGGE profiles were relatively complex (more than 10 bands) but only three brightly dominant bands in DGGE results. These results indicated there are three dominant bacterial species in mixed consortium MFCs. The 16S DNA clone library method results revealed that the predominant bacterial species in mixed culture is Geobacter sp (66%), Arcobacter sp and Citrobacter sp. These three bacterial species reached to 88% of total bacterial species. This result is consistent with the DGGE result which showed that three bright bands represented three dominant bacterial species. Exoelectrogenic bacterial strain SX-1 was isolated from a mediator-less microbial fuel cell by conventional plating techniques with ferric citrate as electron acceptor under anaerobic conditions. Phylogenetic analysis of the 16S rDNA sequence revealed that it was related to the members of Citrobacter genus with Citrobacter sp. sdy-48 being the most closely related species. The bacterial strain SX-1 produced electricity from citrate, acetate, glucose, sucrose, glycerol, and lactose in MFCs with the highest current density of 205 mA/m2 generated from citrate. Cyclic voltammetry analysis indicated that membrane associated proteins may play an important role in facilitating electron transfer from the bacteria to the electrode. This is the first study that demonstrates that Citrobacter species can transfer electrons to extracellular electron acceptors

  5. The strains recommended for use in the bacterial reverse mutation test (OECD guideline 471) can be certified as non-genetically modified organisms.

    PubMed

    Sugiyama, Kei-Ichi; Yamada, Masami; Awogi, Takumi; Hakura, Atsushi

    2016-01-01

    The bacterial reverse mutation test, commonly called Ames test, is used worldwide. In Japan, the genetically modified organisms (GMOs) are regulated under the Cartagena Domestic Law, and organisms obtained by self-cloning and/or natural occurrence would be exempted from the law case by case. The strains of Salmonella typhimurium and Escherichia coli recommended for use in the bacterial reverse mutation test (OECD guideline 471), have been considered as non-GMOs because they can be constructed by self-cloning or naturally occurring bacterial strains, or do not disturb the biological diversity. The present article explains the reasons why these tester strains should be classified as non-GMOs.

  6. Resilience of coral-associated bacterial communities exposed to fish farm effluent.

    PubMed

    Garren, Melissa; Raymundo, Laurie; Guest, James; Harvell, C Drew; Azam, Farooq

    2009-10-06

    The coral holobiont includes the coral animal, algal symbionts, and associated microbial community. These microbes help maintain the holobiont homeostasis; thus, sustaining robust mutualistic microbial communities is a fundamental part of long-term coral reef survival. Coastal pollution is one major threat to reefs, and intensive fish farming is a rapidly growing source of this pollution. We investigated the susceptibility and resilience of the bacterial communities associated with a common reef-building coral, Porites cylindrica, to coastal pollution by performing a clonally replicated transplantation experiment in Bolinao, Philippines adjacent to intensive fish farming. Ten fragments from each of four colonies (total of 40 fragments) were followed for 22 days across five sites: a well-flushed reference site (the original fragment source); two sites with low exposure to milkfish (Chanos chanos) aquaculture effluent; and two sites with high exposure. Elevated levels of dissolved organic carbon (DOC), chlorophyll a, total heterotrophic and autotrophic bacteria abundance, virus like particle (VLP) abundances, and culturable Vibrio abundance characterized the high effluent sites. Based on 16S rRNA clone libraries and denaturing gradient gel electrophoresis (DGGE) analysis, we observed rapid, dramatic changes in the coral-associated bacterial communities within five days of high effluent exposure. The community composition on fragments at these high effluent sites shifted towards known human and coral pathogens (i.e. Arcobacter, Fusobacterium, and Desulfovibrio) without the host corals showing signs of disease. The communities shifted back towards their original composition by day 22 without reduction in effluent levels. This study reveals fish farms as a likely source of pathogens with the potential to proliferate on corals and an unexpected short-term resilience of coral-associated bacterial communities to eutrophication pressure. These data highlight a need for

  7. Resilience of Coral-Associated Bacterial Communities Exposed to Fish Farm Effluent

    PubMed Central

    Garren, Melissa; Raymundo, Laurie; Guest, James; Harvell, C. Drew; Azam, Farooq

    2009-01-01

    Background The coral holobiont includes the coral animal, algal symbionts, and associated microbial community. These microbes help maintain the holobiont homeostasis; thus, sustaining robust mutualistic microbial communities is a fundamental part of long-term coral reef survival. Coastal pollution is one major threat to reefs, and intensive fish farming is a rapidly growing source of this pollution. Methodology & Principal Findings We investigated the susceptibility and resilience of the bacterial communities associated with a common reef-building coral, Porites cylindrica, to coastal pollution by performing a clonally replicated transplantation experiment in Bolinao, Philippines adjacent to intensive fish farming. Ten fragments from each of four colonies (total of 40 fragments) were followed for 22 days across five sites: a well-flushed reference site (the original fragment source); two sites with low exposure to milkfish (Chanos chanos) aquaculture effluent; and two sites with high exposure. Elevated levels of dissolved organic carbon (DOC), chlorophyll a, total heterotrophic and autotrophic bacteria abundance, virus like particle (VLP) abundances, and culturable Vibrio abundance characterized the high effluent sites. Based on 16S rRNA clone libraries and denaturing gradient gel electrophoresis (DGGE) analysis, we observed rapid, dramatic changes in the coral-associated bacterial communities within five days of high effluent exposure. The community composition on fragments at these high effluent sites shifted towards known human and coral pathogens (i.e. Arcobacter, Fusobacterium, and Desulfovibrio) without the host corals showing signs of disease. The communities shifted back towards their original composition by day 22 without reduction in effluent levels. Significance This study reveals fish farms as a likely source of pathogens with the potential to proliferate on corals and an unexpected short-term resilience of coral-associated bacterial communities to

  8. Construction of cDNA expression library of watermelon for isolation of ClWRKY1 transcription factors gene involved in resistance to Fusarium wilt.

    PubMed

    Yang, Bing-Yan; Huo, Xiu-Ai; Li, Peng-Fei; Wang, Cui-Xia; Duan, Hui-Jun

    2014-08-01

    Full-length cDNAs are very important for genome annotation and functional analysis of genes. The number of full-length cDNAs from watermelon remains limited. Here we report first the construction of a full-length enriched cDNA library from Fusarium wilt stressed watermelon (Citrullus lanatus Thunb.) cultivar PI296341 root tissues using the SMART method. The titer of primary cDNA library and amplified library was 2.21 x 10(6) and 2.0 x 10(10) pfu/ml, respectively and the rate of recombinant was above 85%. The size of insert fragment ranged from 0.3 to 2.0 kb. In this study, we first cloned a gene named ClWRKY1, which was 1981 bp long and encoded a protein consisting of 394 amino acids. It contained two characteristic WRKY domains and two zinc finger motifs. Quantitative real-time PCR showed that ClWRKY1 expression levels reached maximum level at 12 h after inoculation with Fusarium oxysporum f. sp. niveum. The full-length cDNA library of watermelon root tissues is not only essential for the cloning of genes which are known, but also an initial key for the screening and cloning of new genes that might be involved in resistance to Fusarium wilt.

  9. Raw Cow Milk Bacterial Population Shifts Attributable to Refrigeration

    PubMed Central

    Lafarge, Véronique; Ogier, Jean-Claude; Girard, Victoria; Maladen, Véronique; Leveau, Jean-Yves; Gruss, Alexandra; Delacroix-Buchet, Agnès

    2004-01-01

    We monitored the dynamic changes in the bacterial population in milk associated with refrigeration. Direct analyses of DNA by using temporal temperature gel electrophoresis (TTGE) and denaturing gradient gel electrophoresis (DGGE) allowed us to make accurate species assignments for bacteria with low-GC-content (low-GC%) (<55%) and medium- or high-GC% (>55%) genomes, respectively. We examined raw milk samples before and after 24-h conservation at 4°C. Bacterial identification was facilitated by comparison with an extensive bacterial reference database (∼150 species) that we established with DNA fragments of pure bacterial strains. Cloning and sequencing of fragments missing from the database were used to achieve complete species identification. Considerable evolution of bacterial populations occurred during conservation at 4°C. TTGE and DGGE are shown to be a powerful tool for identifying the main bacterial species of the raw milk samples and for monitoring changes in bacterial populations during conservation at 4°C. The emergence of psychrotrophic bacteria such as Listeria spp. or Aeromonas hydrophila is demonstrated. PMID:15345453

  10. A function-based screen for seeking RubisCO active clones from metagenomes: novel enzymes influencing RubisCO activity.

    PubMed

    Böhnke, Stefanie; Perner, Mirjam

    2015-03-01

    Ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO) is a key enzyme of the Calvin cycle, which is responsible for most of Earth's primary production. Although research on RubisCO genes and enzymes in plants, cyanobacteria and bacteria has been ongoing for years, still little is understood about its regulation and activation in bacteria. Even more so, hardly any information exists about the function of metagenomic RubisCOs and the role of the enzymes encoded on the flanking DNA owing to the lack of available function-based screens for seeking active RubisCOs from the environment. Here we present the first solely activity-based approach for identifying RubisCO active fosmid clones from a metagenomic library. We constructed a metagenomic library from hydrothermal vent fluids and screened 1056 fosmid clones. Twelve clones exhibited RubisCO activity and the metagenomic fragments resembled genes from Thiomicrospira crunogena. One of these clones was further analyzed. It contained a 35.2 kb metagenomic insert carrying the RubisCO gene cluster and flanking DNA regions. Knockouts of twelve genes and two intergenic regions on this metagenomic fragment demonstrated that the RubisCO activity was significantly impaired and was attributed to deletions in genes encoding putative transcriptional regulators and those believed to be vital for RubisCO activation. Our new technique revealed a novel link between a poorly characterized gene and RubisCO activity. This screen opens the door to directly investigating RubisCO genes and respective enzymes from environmental samples.

  11. Vertical distribution of major sulfate-reducing bacteria in a shallow eutrophic meromictic lake.

    PubMed

    Kubo, Kyoko; Kojima, Hisaya; Fukui, Manabu

    2014-10-01

    The vertical distribution of sulfate-reducing bacteria was investigated in a shallow, eutrophic, meromictic lake, Lake Harutori, located in a residential area of Kushiro, Japan. A steep chemocline, characterized by gradients of oxygen, sulfide and salinity, was found at a depth of 3.5-4.0 m. The sulfide concentration at the bottom of the lake was high (up to a concentration of 10.7 mM). Clone libraries were constructed using the aprA gene, which encodes adenosine-5'-phosphosulfate reductase subunit A, in order to monitor sulfate-reducing bacteria. In the aprA clone libraries, the most abundant sequences were those from the Desulfosarcina-Desulfococcus (DSS) group. A primer set for a DSS group-specific 16S rRNA gene was used to construct another clone library, analysis of which revealed that the uncultured group of sulfate-reducing bacteria, SEEP SRB-1, accounted for nearly half of the obtained sequences. Quantification of the major bacterial groups by catalyzed reporter deposition-fluorescence in situ hybridization demonstrated that the DSS group accounted for 3.2-4.8% of the total bacterial community below the chemocline. The results suggested that the DSS group was one of the major groups of sulfate-reducing bacteria and that these presumably metabolically versatile bacteria might play an important role in sulfur cycling in Lake Harutori. Copyright © 2014 Elsevier GmbH. All rights reserved.

  12. Using Partial Genomic Fosmid Libraries for Sequencing CompleteOrganellar Genomes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McNeal, Joel R.; Leebens-Mack, James H.; Arumuganathan, K.

    2005-08-26

    Organellar genome sequences provide numerous phylogenetic markers and yield insight into organellar function and molecular evolution. These genomes are much smaller in size than their nuclear counterparts; thus, their complete sequencing is much less expensive than total nuclear genome sequencing, making broader phylogenetic sampling feasible. However, for some organisms it is challenging to isolate plastid DNA for sequencing using standard methods. To overcome these difficulties, we constructed partial genomic libraries from total DNA preparations of two heterotrophic and two autotrophic angiosperm species using fosmid vectors. We then used macroarray screening to isolate clones containing large fragments of plastid DNA. Amore » minimum tiling path of clones comprising the entire genome sequence of each plastid was selected, and these clones were shotgun-sequenced and assembled into complete genomes. Although this method worked well for both heterotrophic and autotrophic plants, nuclear genome size had a dramatic effect on the proportion of screened clones containing plastid DNA and, consequently, the overall number of clones that must be screened to ensure full plastid genome coverage. This technique makes it possible to determine complete plastid genome sequences for organisms that defy other available organellar genome sequencing methods, especially those for which limited amounts of tissue are available.« less

  13. [Construction of large fragment metagenome library of natural mangrove soil].

    PubMed

    Jiang, Yun-Xia; Zheng, Tian-Ling

    2007-11-01

    Applying our optimized direct extraction method, the percentage of large fragment DNA in the total extracted mangrove soil DNA was significant increased. The large fragment metagenome library derived from natural mangrove soil over four seasons was successfully constructed by the optimized DNA extraction and electro elution purification method. All of the clones had recombinant Cosmids and each differed in their fragment profiles when Cosmid DNA was extracted from 12 randomly picked colonies and digested with BamHI. The average insert size for this library was larger than 35 kbp. This culturing-independent library at least encompassed 335 Mbp valuable genetic information of mangrove soil microbes. It allowed mining of valuable intertidal microbial resource to become a reality. It is a recommended method for those researchers who have still not circumvented the large insert environmental libraries or for those beginning research in this field, so as to avoid them attempting repetitive, fussy work.

  14. [Primary culture of cat intestinal epithelial cell and construction of its cDNA library].

    PubMed

    Ye, L; Gui-Hua, Z; Kun, Y; Hong-Fa, W; Ting, X; Gong-Zhen, L; Wei-Xia, Z; Yong, C

    2017-04-12

    Objective To establish the primary cat intestinal epithelial cells (IECs) culture methods and construct the cDNA library for the following yeast two-hybrid experiment, so as to screen the virulence interaction factors among the final host. Methods The primary cat IECs were cultured by the tissue cultivation and combined digestion with collagenase XI and dispase I separately. Then the cat IECs cultured was identified with the morphological observation and cyto-keratin detection, by using goat anti-cyto-keratin monoclonal antibodies. The mRNA of cat IECs was isolated and used as the template to synthesize the first strand cDNA by SMART™ technology, and then the double-strand cDNAs were acquired by LD-PCR, which were subsequently cloned into the plasmid PGADT7-Rec to construct yeast two-hybrid cDNA library in the yeast strain Y187 by homologous recombination. Matchmaker™ Insert Check PCR was used to detect the size distribution of cDNA fragments after the capacity calculation of the cDNA library. Results The comparison of the two cultivation methods indicated that the combined digestion of collagenase XI and dispase I was more effective than the tissue cultivation. The cat IECs system of continuous culture was established and the cat IECs with high purity were harvested for constructing the yeast two-hybrid cDNA library. The library contained 1.1×10 6 independent clones. The titer was 2.8×10 9 cfu/ml. The size of inserted fragments was among 0.5-2.0 kb. Conclusion The yeast two-hybrid cDNA library of cat IECs meets the requirements of further screen research, and this study lays the foundation of screening the Toxoplasma gondii virulence interaction factors among the cDNA libraries of its final hosts.

  15. Biodiversity hot spot on a hot spot: novel extremophile diversity in Hawaiian fumaroles.

    PubMed

    Wall, Kate; Cornell, Jennifer; Bizzoco, Richard W; Kelley, Scott T

    2015-01-06

    Fumaroles (steam vents) are the most common, yet least understood, microbial habitat in terrestrial geothermal settings. Long believed too extreme for life, recent advances in sample collection and DNA extraction methods have found that fumarole deposits and subsurface waters harbor a considerable diversity of viable microbes. In this study, we applied culture-independent molecular methods to explore fumarole deposit microbial assemblages in 15 different fumaroles in four geographic locations on the Big Island of Hawai'i. Just over half of the vents yielded sufficient high-quality DNA for the construction of 16S ribosomal RNA gene sequence clone libraries. The bacterial clone libraries contained sequences belonging to 11 recognized bacterial divisions and seven other division-level phylogenetic groups. Archaeal sequences were less numerous, but similarly diverse. The taxonomic composition among fumarole deposits was highly heterogeneous. Phylogenetic analysis found cloned fumarole sequences were related to microbes identified from a broad array of globally distributed ecotypes, including hot springs, terrestrial soils, and industrial waste sites. Our results suggest that fumarole deposits function as an "extremophile collector" and may be a hot spot of novel extremophile biodiversity. © 2015 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.

  16. Biodiversity hot spot on a hot spot: novel extremophile diversity in Hawaiian fumaroles

    PubMed Central

    Wall, Kate; Cornell, Jennifer; Bizzoco, Richard W; Kelley, Scott T

    2015-01-01

    Fumaroles (steam vents) are the most common, yet least understood, microbial habitat in terrestrial geothermal settings. Long believed too extreme for life, recent advances in sample collection and DNA extraction methods have found that fumarole deposits and subsurface waters harbor a considerable diversity of viable microbes. In this study, we applied culture-independent molecular methods to explore fumarole deposit microbial assemblages in 15 different fumaroles in four geographic locations on the Big Island of Hawai'i. Just over half of the vents yielded sufficient high-quality DNA for the construction of 16S ribosomal RNA gene sequence clone libraries. The bacterial clone libraries contained sequences belonging to 11 recognized bacterial divisions and seven other division-level phylogenetic groups. Archaeal sequences were less numerous, but similarly diverse. The taxonomic composition among fumarole deposits was highly heterogeneous. Phylogenetic analysis found cloned fumarole sequences were related to microbes identified from a broad array of globally distributed ecotypes, including hot springs, terrestrial soils, and industrial waste sites. Our results suggest that fumarole deposits function as an “extremophile collector” and may be a hot spot of novel extremophile biodiversity. PMID:25565172

  17. Preparation of BAC libraries from marine microbial populations.

    PubMed

    Sabehi, Gazalah; Béjà, Oded

    2013-01-01

    A protocol is presented here for the construction of BAC (bacterial artificial chromosome) libraries from planktonic microbial communities collected in marine environments. The protocol describes the collection and preparation of the planktonic microbial cells, high molecular weight DNA purification from those cells, the preparation of the BAC vector, and the special ligation and electrotransformation procedures required for successful library preparation. With small modifications, this protocol can be applied to microbes collected from other environments. © 2013 Elsevier Inc. All rights reserved.

  18. Cloning and heterologous expression of blasticidin S biosynthetic genes from Streptomyces griseochromogenes.

    PubMed

    Cone, M C; Petrich, A K; Gould, S J; Zabriskie, T M

    1998-06-01

    Two small chromosomal DNA fragments (2.6 and 4.8 kb) from the blasticidin S producer Streptomyces griseochromogenes were cloned in the high copy number vector pIJ702 and shown to confer increased resistance to blasticidin S upon S. lividans TK24. These fragments were used to screen a library of S. griseochromogenes DNA prepared in the cosmid shuttle vector pOJ446. Cosmids containing DNA inserts of at least 23 kb were identified which hybridized to one or the other resistance fragment, but not to both. Transformation of S. lividans TK24 with several cosmids hybridizing with the 4.8 kb resistance fragment resulted in clones that produced cytosylglucuronic acid, the first intermediate of the blasticidin S biosynthetic pathway, and other blasticidin-related metabolites. A strain of S. lividans TK24 harboring both the 4.8 kb-hybridizing cosmid and the 2.6 kb resistance fragment cloned in pIJ702 produced 12.5 times as much demethylblasticidin S as the transformant harboring the cosmid alone.

  19. Bacterial and archaeal phylogenetic diversity of a cold sulfur-rich spring on the shoreline of Lake Erie, Michigan

    USGS Publications Warehouse

    Chaudhary, A.; Haack, S.K.; Duris, J.W.; Marsh, T.L.

    2009-01-01

    Studies of sulfidic springs have provided new insights into microbial metabolism, groundwater biogeochemistry, and geologic processes. We investigated Great Sulphur Spring on the western shore of Lake Erie and evaluated the phylogenetic affiliations of 189 bacterial and 77 archaeal 16S rRNA gene sequences from three habitats: the spring origin (11-m depth), bacterial-algal mats on the spring pond surface, and whitish filamentous materials from the spring drain. Water from the spring origin water was cold, pH 6.3, and anoxic (H2, 5.4 nM; CH4, 2.70 ??M) with concentrations of S2- (0.03 mM), SO42- (14.8 mM), Ca2+ (15.7 mM), and HCO3- (4.1 mM) similar to those in groundwater from the local aquifer. No archaeal and few bacterial sequences were >95% similar to sequences of cultivated organisms. Bacterial sequences were largely affiliated with sulfur-metabolizing or chemolithotrophic taxa in Beta-, Gamma-, Delta-, and Epsilonproteobacteria. Epsilonproteobacteria sequences similar to those obtained from other sulfidic environments and a new clade of Cyanobacteria sequences were particularly abundant (16% and 40%, respectively) in the spring origin clone library. Crenarchaeota sequences associated with archaeal-bacterial consortia in whitish filaments at a German sulfidic spring were detected only in a similar habitat at Great Sulphur Spring. This study expands the geographic distribution of many uncultured Archaea and Bacteria sequences to the Laurentian Great Lakes, indicates possible roles for epsilonproteobacteria in local aquifer chemistry and karst formation, documents new oscillatorioid Cyanobacteria lineages, and shows that uncultured, cold-adapted Crenarchaeota sequences may comprise a significant part of the microbial community of some sulfidic environments. Copyright ?? 2009, American Society for Microbiology. All Rights Reserved.

  20. Microbial Communities in the Surface Mucopolysaccharide Layer and the Black Band Microbial Mat of Black Band-Diseased Siderastrea siderea

    PubMed Central

    Sekar, Raju; Mills, DeEtta K.; Remily, Elizabeth R.; Voss, Joshua D.; Richardson, Laurie L.

    2006-01-01

    Microbial community profiles and species composition associated with two black band-diseased colonies of the coral Siderastrea siderea were studied by 16S rRNA-targeted gene cloning, sequencing, and amplicon-length heterogeneity PCR (LH-PCR). Bacterial communities associated with the surface mucopolysaccharide layer (SML) of apparently healthy tissues of the infected colonies, together with samples of the black band disease (BBD) infections, were analyzed using the same techniques for comparison. Gene sequences, ranging from 424 to 1,537 bp, were retrieved from all positive clones (n = 43 to 48) in each of the four clone libraries generated and used for comparative sequence analysis. In addition to LH-PCR community profiling, all of the clone sequences were aligned with LH-PCR primer sequences, and the theoretical lengths of the amplicons were determined. Results revealed that the community profiles were significantly different between BBD and SML samples. The SML samples were dominated by γ-proteobacteria (53 to 64%), followed by β-proteobacteria (18 to 21%) and α-proteobacteria (5 to 11%). In contrast, both BBD clone libraries were dominated by α-proteobacteria (58 to 87%), followed by verrucomicrobia (2 to 10%) and 0 to 6% each of δ-proteobacteria, bacteroidetes, firmicutes, and cyanobacteria. Alphaproteobacterial sequence types related to the bacteria associated with toxin-producing dinoflagellates were observed in BBD clone libraries but were not found in the SML libraries. Similarly, sequences affiliated with the family Desulfobacteraceae and toxin-producing cyanobacteria, both believed to be involved in BBD pathogenesis, were found only in BBD libraries. These data provide evidence for an association of numerous toxin-producing heterotrophic microorganisms with BBD of corals. PMID:16957217

  1. Differences between bacterial communities in the gut of a soil-feeding termite (Cubitermes niokoloensis) and its mounds.

    PubMed

    Fall, Saliou; Hamelin, Jérôme; Ndiaye, Farma; Assigbetse, Komi; Aragno, Michel; Chotte, Jean Luc; Brauman, Alain

    2007-08-01

    In tropical ecosystems, termite mound soils constitute an important soil compartment covering around 10% of African soils. Previous studies have shown (S. Fall, S. Nazaret, J. L. Chotte, and A. Brauman, Microb. Ecol. 28:191-199, 2004) that the bacterial genetic structure of the mounds of soil-feeding termites (Cubitermes niokoloensis) is different from that of their surrounding soil. The aim of this study was to characterize the specificity of bacterial communities within mounds with respect to the digestive and soil origins of the mound. We have compared the bacterial community structures of a termite mound, termite gut sections, and surrounding soil using PCR-denaturing gradient gel electrophoresis (DGGE) analysis and cloning and sequencing of PCR-amplified 16S rRNA gene fragments. DGGE analysis revealed a drastic difference between the genetic structures of the bacterial communities of the termite gut and the mound. Analysis of 266 clones, including 54 from excised bands, revealed a high level of diversity in each biota investigated. The soil-feeding termite mound was dominated by the Actinobacteria phylum, whereas the Firmicutes and Proteobacteria phyla dominate the gut sections of termites and the surrounding soil, respectively. Phylogenetic analyses revealed a distinct clustering of Actinobacteria phylotypes between the mound and the surrounding soil. The Actinobacteria clones of the termite mound were diverse, distributed among 10 distinct families, and like those in the termite gut environment lightly dominated by the Nocardioidaceae family. Our findings confirmed that the soil-feeding termite mound (C. niokoloensis) represents a specific bacterial habitat in the tropics.

  2. Cost-effective sequencing of full-length cDNA clones powered by a de novo-reference hybrid assembly.

    PubMed

    Kuroshu, Reginaldo M; Watanabe, Junichi; Sugano, Sumio; Morishita, Shinichi; Suzuki, Yutaka; Kasahara, Masahiro

    2010-05-07

    Sequencing full-length cDNA clones is important to determine gene structures including alternative splice forms, and provides valuable resources for experimental analyses to reveal the biological functions of coded proteins. However, previous approaches for sequencing cDNA clones were expensive or time-consuming, and therefore, a fast and efficient sequencing approach was demanded. We developed a program, MuSICA 2, that assembles millions of short (36-nucleotide) reads collected from a single flow cell lane of Illumina Genome Analyzer to shotgun-sequence approximately 800 human full-length cDNA clones. MuSICA 2 performs a hybrid assembly in which an external de novo assembler is run first and the result is then improved by reference alignment of shotgun reads. We compared the MuSICA 2 assembly with 200 pooled full-length cDNA clones finished independently by the conventional primer-walking using Sanger sequencers. The exon-intron structure of the coding sequence was correct for more than 95% of the clones with coding sequence annotation when we excluded cDNA clones insufficiently represented in the shotgun library due to PCR failure (42 out of 200 clones excluded), and the nucleotide-level accuracy of coding sequences of those correct clones was over 99.99%. We also applied MuSICA 2 to full-length cDNA clones from Toxoplasma gondii, to confirm that its ability was competent even for non-human species. The entire sequencing and shotgun assembly takes less than 1 week and the consumables cost only approximately US$3 per clone, demonstrating a significant advantage over previous approaches.

  3. Construction of naïve camelids VHH repertoire in phage display-based library.

    PubMed

    Sabir, Jamal S M; Atef, Ahmed; El-Domyati, Fotouh M; Edris, Sherif; Hajrah, Nahid; Alzohairy, Ahmed M; Bahieldin, Ahmed

    2014-04-01

    Camelids have unique antibodies, namely HCAbs (VHH) or commercially named Nanobodies(®) (Nb) that are composed only of a heavy-chain homodimer. As libraries based on immunized camelids are time-consuming, costly and likely redundant for certain antigens, we describe the construction of a naïve camelid VHHs library from blood serum of non-immunized camelids with affinity in the subnanomolar range and suitable for standard immune applications. This approach is rapid and recovers VHH repertoire with the advantages of being more diverse, non-specific and devoid of subpopulations of specific antibodies, which allows the identification of binders for any potential antigen (or pathogen). RNAs from a number of camelids from Saudi Arabia were isolated and cDNAs of the diverse vhh gene were amplified; the resulting amplicons were cloned in the phage display pSEX81 vector. The size of the library was found to be within the required range (10(7)) suitable for subsequent applications in disease diagnosis and treatment. Two hundred clones were randomly selected and the inserted gene library was either estimated for redundancy or sequenced and aligned to the reference camelid vhh gene (acc. No. ADE99145). Results indicated complete non-specificity of this small library in which no single event of redundancy was detected. These results indicate the efficacy of following this approach in order to yield a large and diverse enough gene library to secure the presence of the required version encoding the required antibodies for any target antigen. This work is a first step towards the construction of phage display-based biosensors useful in disease (e.g., TB or tuberculosis) diagnosis and treatment. Copyright © 2014 Académie des sciences. Published by Elsevier SAS. All rights reserved.

  4. Comparing bacterial community composition between healthy and white plague-like disease states in Orbicella annularis using PhyloChip™ G3 microarrays

    USGS Publications Warehouse

    Kellogg, Christina A.; Piceno, Yvette M.; Tom, Lauren M.; DeSantis, Todd Z.; Gray, Michael A.; Zawada, David G.; Andersen, Gary L.

    2013-01-01

    Coral disease is a global problem. Diseases are typically named or described based on macroscopic changes, but broad signs of coral distress such as tissue loss or discoloration are unlikely to be specific to a particular pathogen. For example, there appear to be multiple diseases that manifest the rapid tissue loss that characterizes ‘white plague.’ PhyloChip™ G3 microarrays were used to compare the bacterial community composition of both healthy and white plague-like diseased corals. Samples of lobed star coral (Orbicella annularis, formerly of the genus Montastraea [1]) were collected from two geographically distinct areas, Dry Tortugas National Park and Virgin Islands National Park, to determine if there were biogeographic differences between the diseases. In fact, all diseased samples clustered together, however there was no consistent link to Aurantimonas coralicida, which has been described as the causative agent of white plague type II. The microarrays revealed a large amount of bacterial heterogeneity within the healthy corals and less diversity in the diseased corals. Gram-positive bacterial groups (Actinobacteria, Firmicutes) comprised a greater proportion of the operational taxonomic units (OTUs) unique to healthy samples. Diseased samples were enriched in OTUs from the families Corynebacteriaceae, Lachnospiraceae, Rhodobacteraceae, and Streptococcaceae. Much previous coral disease work has used clone libraries, which seem to be methodologically biased toward recovery of Gram-negative bacterial sequences and may therefore have missed the importance of Gram-positive groups. The PhyloChip™ data presented here provide a broader characterization of the bacterial community changes that occur within Orbicella annularis during the shift from a healthy to diseased state.

  5. Comparing Bacterial Community Composition between Healthy and White Plague-Like Disease States in Orbicella annularis Using PhyloChip™ G3 Microarrays

    PubMed Central

    Kellogg, Christina A.; Piceno, Yvette M.; Tom, Lauren M.; DeSantis, Todd Z.; Gray, Michael A.; Zawada, David G.; Andersen, Gary L.

    2013-01-01

    Coral disease is a global problem. Diseases are typically named or described based on macroscopic changes, but broad signs of coral distress such as tissue loss or discoloration are unlikely to be specific to a particular pathogen. For example, there appear to be multiple diseases that manifest the rapid tissue loss that characterizes ‘white plague.’ PhyloChip™ G3 microarrays were used to compare the bacterial community composition of both healthy and white plague-like diseased corals. Samples of lobed star coral (Orbicella annularis, formerly of the genus Montastraea [1]) were collected from two geographically distinct areas, Dry Tortugas National Park and Virgin Islands National Park, to determine if there were biogeographic differences between the diseases. In fact, all diseased samples clustered together, however there was no consistent link to Aurantimonas coralicida, which has been described as the causative agent of white plague type II. The microarrays revealed a large amount of bacterial heterogeneity within the healthy corals and less diversity in the diseased corals. Gram-positive bacterial groups (Actinobacteria, Firmicutes) comprised a greater proportion of the operational taxonomic units (OTUs) unique to healthy samples. Diseased samples were enriched in OTUs from the families Corynebacteriaceae, Lachnospiraceae, Rhodobacteraceae, and Streptococcaceae. Much previous coral disease work has used clone libraries, which seem to be methodologically biased toward recovery of Gram-negative bacterial sequences and may therefore have missed the importance of Gram-positive groups. The PhyloChip™data presented here provide a broader characterization of the bacterial community changes that occur within Orbicella annularis during the shift from a healthy to diseased state. PMID:24278181

  6. The Clone Factory

    ERIC Educational Resources Information Center

    Stoddard, Beryl

    2005-01-01

    Have humans been cloned? Is it possible? Immediate interest is sparked when students are asked these questions. In response to their curiosity, the clone factory activity was developed to help them understand the process of cloning. In this activity, students reenact the cloning process, in a very simplified simulation. After completing the…

  7. 3G vector-primer plasmid for constructing full-length-enriched cDNA libraries.

    PubMed

    Zheng, Dong; Zhou, Yanna; Zhang, Zidong; Li, Zaiyu; Liu, Xuedong

    2008-09-01

    We designed a 3G vector-primer plasmid for the generation of full-length-enriched complementary DNA (cDNA) libraries. By employing the terminal transferase activity of reverse transcriptase and the modified strand replacement method, this plasmid (assembled with a polydT end and a deoxyguanosine [dG] end) combines priming full-length cDNA strand synthesis and directional cDNA cloning. As a result, the number of steps involved in cDNA library preparation is decreased while simplifying downstream gene manipulation, sequencing, and subcloning. The 3G vector-primer plasmid method yields fully represented plasmid primed libraries that are equivalent to those made by the SMART (switching mechanism at 5' end of RNA transcript) approach.

  8. Survival of prokaryotes in a polluted waste dump during remediation by alkaline hydrolysis.

    PubMed

    Nielsen, Marie Bank; Kjeldsen, Kasper Urup; Lever, Mark Alexander; Ingvorsen, Kjeld

    2014-04-01

    A combination of culture-dependent and culture-independent techniques was used to characterize bacterial and archaeal communities in a highly polluted waste dump and to assess the effect of remediation by alkaline hydrolysis on these communities. This waste dump (Breakwater 42), located in Denmark, contains approximately 100 different toxic compounds including large amounts of organophosphorous pesticides such as parathions. The alkaline hydrolysis (12 months at pH >12) decimated bacterial and archaeal abundances, as estimated by 16S rRNA gene-based qPCR, from 2.1 × 10(4) and 2.9 × 10(3) gene copies per gram wet soil respectively to below the detection limit of the qPCR assay. Clone libraries constructed from PCR-amplified 16S rRNA gene fragments showed a significant reduction in bacterial diversity as a result of the alkaline hydrolysis, with preferential survival of Betaproteobacteria, which increased in relative abundance from 0 to 48 %. Many of the bacterial clone sequences and the 27 isolates were related to known xenobiotic degraders. An archaeal clone library from a non-hydrolyzed sample showed the presence of three main clusters, two representing methanogens and one representing marine aerobic ammonia oxidizers. Isolation of alkalitolerant bacterial pure cultures from the hydrolyzed soil confirmed that although alkaline hydrolysis severely reduces microbial community diversity and size certain bacteria survive a prolonged alkaline hydrolysis process. Some of the isolates from the hydrolyzed soil were capable of growing at high pH (pH 10.0) in synthetic media indicating that they could become active in in situ biodegradation upon hydrolysis.

  9. Characterizing the walnut genome through analyses of BAC end sequences

    USDA-ARS?s Scientific Manuscript database

    Persian walnut (Juglans regia L.) is an economically important tree for its nut crop and timber. To gain insight into the structure and evolution of the walnut genome, we constructed two bacterial artificial chromosome (BAC) libraries, containing a total of 129,024 clones, from in vitro-grown shoots...

  10. Characterization of a full-length infectious cDNA clone and a GFP reporter derivative of the oncolytic picornavirus SVV-001.

    PubMed

    Poirier, John T; Reddy, P Seshidhar; Idamakanti, Neeraja; Li, Shawn S; Stump, Kristine L; Burroughs, Kevin D; Hallenbeck, Paul L; Rudin, Charles M

    2012-12-01

    Seneca Valley virus (SVV-001) is an oncolytic picornavirus with selective tropism for a subset of human cancers with neuroendocrine differentiation. To characterize further the specificity of SVV-001 and its patterns and kinetics of intratumoral spread, bacterial plasmids encoding a cDNA clone of the full-length wild-type virus and a derivative virus expressing GFP were generated. The full-length cDNA of the SVV-001 RNA genome was cloned into a bacterial plasmid under the control of the T7 core promoter sequence to create an infectious cDNA clone, pNTX-09. A GFP reporter virus cDNA clone, pNTX-11, was then generated by cloning a fusion protein of GFP and the 2A protein from foot-and-mouth disease virus immediately following the native SVV-001 2A sequence. Recombinant GFP-expressing reporter virus, SVV-GFP, was rescued from cells transfected with in vitro RNA transcripts from pNTX-11 and propagated in cell culture. The proliferation kinetics of SVV-001 and SVV-GFP were indistinguishable. The SVV-GFP reporter virus was used to determine that a subpopulation of permissive cells is present in small-cell lung cancer cell lines previously thought to lack permissivity to SVV-001. Finally, it was shown that SVV-GFP administered to tumour-bearing animals homes in to and infects tumours whilst having no detectable tropism for normal mouse tissues at 1×10(11) viral particles kg(-1), a dose equivalent to that administered in ongoing clinical trials. These infectious clones will be of substantial value in further characterizing the biology of this virus and as a backbone for the generation of additional oncolytic derivatives.

  11. Listeria monocytogenes source distribution analysis indicates regional heterogeneity and ecological niche preference among serotype 4b clones

    USDA-ARS?s Scientific Manuscript database

    Human illness due to the foodborne bacterial pathogen Listeria monocytogenes frequently involves certain widely disseminated clonal complexes (CCs), primarily of serotype 4b. CC1, CC2 and CC6, previously also designated epidemic clone (EC) I, Ia and II, respectively, have been frequently implicate...

  12. Debating Whether Dinosaurs Should Be "Cloned" from Ancient DNA To Promote Cooperative Learning in an Introductory Evolution Course.

    ERIC Educational Resources Information Center

    Soja, Constance M.; Huerta, Deborah

    2001-01-01

    Describes an interactive internet exercise that enables students to engage in cooperative library and web research on a controversial topic in science, specifically the cloning of extinct lifeforms. Creates a dynamic learning environment in a large introductory geology course and demonstrates the importance of scientific literacy. (Author/SAH)

  13. Cloning the Antibody Response in Humans with Chronic Inflammatory Disease: Immunopanning of Subacute Sclerosing Panencephalitis (SSPE) Brain Sections with Antibody Phage Libraries Prepared from SSPE Brain Enriches for Antibody Recognizing Measles Virus Antigens In Situ

    PubMed Central

    Owens, Gregory P.; Williamson, R. Anthony; Burgoon, Mark P.; Ghausi, Omar; Burton, Dennis R.; Gilden, Donald H.

    2000-01-01

    In central nervous system (CNS) infectious and inflammatory diseases of known cause, oligoclonal bands represent antibody directed against the causative agent. To determine whether disease-relevant antibodies can be cloned from diseased brain, we prepared an antibody phage display library from the brain of a human with subacute sclerosing panencephalitis (SSPE), a chronic encephalitis caused by measles virus, and selected the library against SSPE brain sections. Antibodies that were retrieved reacted strongly with measles virus cell extracts by enzyme-linked immunosorbent assay and were specific for the measles virus nucleocapsid protein. These antibodies immunostained cells in different SSPE brains but not in control brain. Our data provide the first demonstration that diseased brain can be used to select in situ for antibodies directed against the causative agent of disease and point to the potential usefulness of this approach in identifying relevant antibodies in chronic CNS or systemic inflammatory diseases of unknown cause. PMID:10627565

  14. Construction of high-quality Caco-2 three-frame cDNA library and its application to yeast two-hybrid for the human astrovirus protein-protein interaction.

    PubMed

    Zhao, Wei; Li, Xin; Liu, Wen-Hui; Zhao, Jian; Jin, Yi-Ming; Sui, Ting-Ting

    2014-09-01

    Human epithelial colorectal adenocarcinoma (Caco-2) cells are widely used as an in vitro model of the human small intestinal mucosa. Caco-2 cells are host cells of the human astrovirus (HAstV) and other enteroviruses. High quality cDNA libraries are pertinent resources and critical tools for protein-protein interaction research, but are currently unavailable for Caco-2 cells. To construct a three-open reading frame, full length-expression cDNA library from the Caco-2 cell line for application to HAstV protein-protein interaction screening, total RNA was extracted from Caco-2 cells. The switching mechanism at the 5' end of the RNA transcript technique was used for cDNA synthesis. Double-stranded cDNA was digested by Sfi I and ligated to reconstruct a pGADT7-Sfi I three-frame vector. The ligation mixture was transformed into Escherichia coli HST08 premium electro cells by electroporation to construct the primary cDNA library. The library capacity was 1.0×10(6)clones. Gel electrophoresis results indicated that the fragments ranged from 0.5kb to 4.2kb. Randomly picked clones show that the recombination rate was 100%. The three-frame primary cDNA library plasmid mixture (5×10(5)cfu) was also transformed into E. coli HST08 premium electro cells, and all clones were harvested to amplify the cDNA library. To detect the sufficiency of the cDNA library, HAstV capsid protein as bait was screened and tested against the Caco-2 cDNA library by a yeast two-hybrid (Y2H) system. A total of 20 proteins were found to interact with the capsid protein. These results showed that a high-quality three-frame cDNA library from Caco-2 cells was successfully constructed. This library was efficient for the application to the Y2H system, and could be used for future research. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Bacterial Community Associated with the Intestinal Tract of Chinese Mitten Crab (Eriocheir sinensis) Farmed in Lake Tai, China

    PubMed Central

    Chen, Xiaobing; Di, Panpan; Wang, Hongming; Li, Bailin; Pan, Yingjie; Yan, Shuling; Wang, Yongjie

    2015-01-01

    Chinese mitten crab (CMC, Eriocheir sinensis) is an economically valuable species in South-East Asia that has been widely farmed in China. Characterization of the intestinal bacterial diversity of CMC will provide insights into the aquaculturing of CMCs. Based on the analysis of cloned 16S rRNA genes from culture-independent CMC gut bacteria, 124 out of 128 different clones reveal >95% nucleotide similarity to the species belonging to the four phyla of Tenericutes, Bacteroidetes, Firmicutes and Proteobacteria; one clone shows 91% sequence similarity to the member of TM7 (a candidate phylum without cultured representatives). Fluorescent in situ hybridization also reveals the abundance of Bacteroidetes in crab intestine. Electron micrographs show that spherical and filamentous bacteria are closely associated with the microvillus brush border of the midgut epithelium and are often inserted into the space between the microvilli using a stalk-like cell appendage. In contrast, the predominant rod-shaped bacteria in the hindgut are tightly attached to the epithelium surface by an unusual pili-like structure. Both 16S rRNA gene denaturing gel gradient electrophoresis and metagenome library indicate that the CMC Mollicutes group 2 appears to be present in both the midgut and hindgut with no significant difference in abundance. The CMC Mollicutes group 1, however, was found mostly in the midgut of CMCs. The CMC gut Mollicutes phylotypes appear to be most closely related to Mollicutes symbionts detected in the gut of isopods (Crustacea: Isopoda). Overall, the results suggest that CMCs harbor diverse, novel and specific gut bacteria, which are likely to live in close relationships with the CMC host. PMID:25875449

  16. Properties of promoters cloned randomly from the Saccharomyces cerevisiae genome.

    PubMed Central

    Santangelo, G M; Tornow, J; McLaughlin, C S; Moldave, K

    1988-01-01

    Promoters were isolated at random from the genome of Saccharomyces cerevisiae by using a plasmid that contains a divergently arrayed pair of promoterless reporter genes. A comprehensive library was constructed by inserting random (DNase I-generated) fragments into the intergenic region upstream from the reporter genes. Simple in vivo assays for either reporter gene product (alcohol dehydrogenase or beta-galactosidase) allowed the rapid identification of promoters from among these random fragments. Poly(dA-dT) homopolymer tracts were present in three of five randomly cloned promoters. With two exceptions, each RNA start site detected was 40 to 100 base pairs downstream from a TATA element. All of the randomly cloned promoters were capable of activating reporter gene transcription bidirectionally. Interestingly, one of the promoter fragments originated in a region of the S. cerevisiae rDNA spacer; regulated divergent transcription (presumably by RNA polymerase II) initiated in the same region. Images PMID:2847031

  17. A Mini-Library of Sequenced Human DNA Fragments: Linking Bench Experiments with Informatics

    ERIC Educational Resources Information Center

    Dalgleish, Raymond; Shanks, Morag E.; Monger, Karen; Butler, Nicola J.

    2012-01-01

    We describe the development of a mini-library of human DNA fragments for use in an enquiry-based learning (EBL) undergraduate practical incorporating "wet-lab" and bioinformatics tasks. In spite of the widespread emergence of the polymerase chain reaction (PCR), the cloning and analysis of DNA fragments in "Escherichia coli"…

  18. A high throughput screen for biomining cellulase activity from metagenomic libraries.

    PubMed

    Mewis, Keith; Taupp, Marcus; Hallam, Steven J

    2011-02-01

    Cellulose, the most abundant source of organic carbon on the planet, has wide-ranging industrial applications with increasing emphasis on biofuel production (1). Chemical methods to modify or degrade cellulose typically require strong acids and high temperatures. As such, enzymatic methods have become prominent in the bioconversion process. While the identification of active cellulases from bacterial and fungal isolates has been somewhat effective, the vast majority of microbes in nature resist laboratory cultivation. Environmental genomic, also known as metagenomic, screening approaches have great promise in bridging the cultivation gap in the search for novel bioconversion enzymes. Metagenomic screening approaches have successfully recovered novel cellulases from environments as varied as soils (2), buffalo rumen (3) and the termite hind-gut (4) using carboxymethylcellulose (CMC) agar plates stained with congo red dye (based on the method of Teather and Wood (5)). However, the CMC method is limited in throughput, is not quantitative and manifests a low signal to noise ratio (6). Other methods have been reported (7,8) but each use an agar plate-based assay, which is undesirable for high-throughput screening of large insert genomic libraries. Here we present a solution-based screen for cellulase activity using a chromogenic dinitrophenol (DNP)-cellobioside substrate (9). Our library was cloned into the pCC1 copy control fosmid to increase assay sensitivity through copy number induction (10). The method uses one-pot chemistry in 384-well microplates with the final readout provided as an absorbance measurement. This readout is quantitative, sensitive and automated with a throughput of up to 100X 384-well plates per day using a liquid handler and plate reader with attached stacking system.

  19. Phylogenetic and functional diversity of metagenomic libraries of phenol degrading sludge from petroleum refinery wastewater treatment system

    PubMed Central

    2012-01-01

    In petrochemical refinery wastewater treatment plants (WWTP), different concentrations of pollutant compounds are received daily in the influent stream, including significant amounts of phenolic compounds, creating propitious conditions for the development of particular microorganisms that can rapidly adapt to such environment. In the present work, the microbial sludge from a refinery WWTP was enriched for phenol, cloned into fosmid vectors and pyrosequenced. The fosmid libraries yielded 13,200 clones and a comprehensive bioinformatic analysis of the sequence data set revealed a complex and diverse bacterial community in the phenol degrading sludge. The phylogenetic analyses using MEGAN in combination with RDP classifier showed a massive predominance of Proteobacteria, represented mostly by the genera Diaphorobacter, Pseudomonas, Thauera and Comamonas. The functional classification of phenol degrading sludge sequence data set generated by MG-RAST showed the wide metabolic diversity of the microbial sludge, with a high percentage of genes involved in the aerobic and anaerobic degradation of phenol and derivatives. In addition, genes related to the metabolism of many other organic and xenobiotic compounds, such as toluene, biphenyl, naphthalene and benzoate, were found. Results gathered herein demonstrated that the phenol degrading sludge has complex phylogenetic and functional diversities, showing the potential of such community to degrade several pollutant compounds. This microbiota is likely to represent a rich resource of versatile and unknown enzymes which may be exploited for biotechnological processes such as bioremediation. PMID:22452812

  20. cDNA cloning of rat and human medium chain acyl-CoA dehydrogenase (MCAD)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matsubara, Y.; Kraus, J.P.; Rosenberg, L.E.

    MCAD is one of three mitochondrial flavoenzymes which catalyze the first step in the ..beta..-oxidation of straight chain fatty acids. It is a tetramer with a subunit Mr of 45 kDa. MCAD is synthesized in the cytosol as a 49 kDa precursor polypeptide (pMCAD), imported into mitochondria, and cleaved to the mature form. Genetic deficiency of MCAD causes recurrent episodes of hypoglycemic coma accompanied by medium chain dicarboxylic aciduria. Employing a novel approach, the authors now report isolation of partial rat and human cDNA clones encoding pMCAD. mRNA encoding pMCAD was purified to near homogeneity by polysome immunoadsorption using polyclonalmore » monospecific antibody. Single-stranded (/sup 32/P)labeled cDNA probe was synthesized using the enriched mRNA as template, and was used to screen directly 16,000 colonies from a total rat liver cDNA library constructed in pBR322. One clone (600 bp) was detected by in situ hybridization. Hybrid-selected translation with this cDNA yielded a 49 kDa polypeptide indistinguishable in size from rat pMCAD and immunoprecipitable with anti-MCAD antibody. Using the rat cDNA as probe, 43,000 colonies from a human liver cDNA library were screened. Four identical positive clones (400 bp) were isolated and positively identified by hybrid-selected translation and immunoprecipitation. The sizes of rat and human mRNAs encoding pMCAD were 2.2 kb and 2.4 kb, respectively, as determined by Northern blotting.« less

  1. Screening of Metagenomic and Genomic Libraries Reveals Three Classes of Bacterial Enzymes That Overcome the Toxicity of Acrylate

    PubMed Central

    Curson, Andrew R. J.; Burns, Oliver J.; Voget, Sonja; Daniel, Rolf; Todd, Jonathan D.; McInnis, Kathryn; Wexler, Margaret; Johnston, Andrew W. B.

    2014-01-01

    Acrylate is produced in significant quantities through the microbial cleavage of the highly abundant marine osmoprotectant dimethylsulfoniopropionate, an important process in the marine sulfur cycle. Acrylate can inhibit bacterial growth, likely through its conversion to the highly toxic molecule acrylyl-CoA. Previous work identified an acrylyl-CoA reductase, encoded by the gene acuI, as being important for conferring on bacteria the ability to grow in the presence of acrylate. However, some bacteria lack acuI, and, conversely, many bacteria that may not encounter acrylate in their regular environments do contain this gene. We therefore sought to identify new genes that might confer tolerance to acrylate. To do this, we used functional screening of metagenomic and genomic libraries to identify novel genes that corrected an E. coli mutant that was defective in acuI, and was therefore hyper-sensitive to acrylate. The metagenomic libraries yielded two types of genes that overcame this toxicity. The majority encoded enzymes resembling AcuI, but with significant sequence divergence among each other and previously ratified AcuI enzymes. One other metagenomic gene, arkA, had very close relatives in Bacillus and related bacteria, and is predicted to encode an enoyl-acyl carrier protein reductase, in the same family as FabK, which catalyses the final step in fatty-acid biosynthesis in some pathogenic Firmicute bacteria. A genomic library of Novosphingobium, a metabolically versatile alphaproteobacterium that lacks both acuI and arkA, yielded vutD and vutE, two genes that, together, conferred acrylate resistance. These encode sequential steps in the oxidative catabolism of valine in a pathway in which, significantly, methacrylyl-CoA is a toxic intermediate. These findings expand the range of bacteria for which the acuI gene encodes a functional acrylyl-CoA reductase, and also identify novel enzymes that can similarly function in conferring acrylate resistance, likely, again

  2. Phylogenetic diversity of bacterial communities in bovine rumen as affected by diets and microenvironments.

    PubMed

    Kim, Minseok; Morrison, Mark; Yu, Zhongtang

    2011-09-01

    Phylogenetic analysis was conducted to examine ruminal bacteria in two ruminal fractions (adherent fraction vs. liquid fraction) collected from cattle fed with two different diets: forage alone vs. forage plus concentrate. One hundred forty-four 16S rRNA gene (rrs) sequences were obtained from clone libraries constructed from the four samples. These rrs sequences were assigned to 116 different operational taxonomic units (OTUs) defined at 0.03 phylogenetic distance. Most of these OTUs could not be assigned to any known genus. The phylum Firmicutes was represented by approximately 70% of all the sequences. By comparing to the OTUs already documented in the rumen, 52 new OTUs were identified. UniFrac, SONS, and denaturing gradient gel electrophoresis analyses revealed difference in diversity between the two fractions and between the two diets. This study showed that rrs sequences recovered from small clone libraries can still help identify novel species-level OTUs.

  3. Cloning and sequence analysis of the invertase gene INV 1 from the yeast Pichia anomala.

    PubMed

    Pérez, J A; Rodríguez, J; Rodríguez, L; Ruiz, T

    1996-02-01

    A genomic library from the yeast Pichia anomala has been constructed and employed to clone the gene encoding the sucrose-hydrolysing enzyme invertase by complementation of a sucrose non-fermenting mutant of Saccharomyces cerevisiae. The cloned gene, INV1, was sequenced and found to encode a polypeptide of 550 amino acids which contained a 22 amino-acid signal sequence and ten potential glycosylation sites. The amino-acid sequence shows significant identity with other yeast invertases and also with Kluyveromyces marxianus inulinase, a yeast beta-fructofuranosidase which has a different substrate specificity. The nucleotide sequences of the 5' and 3' non-coding regions were found to contain several consensus motifs probably involved in the initiation and termination of gene transcription.

  4. Development of bacterial display peptides for use in biosensing applications

    NASA Astrophysics Data System (ADS)

    Stratis-Cullum, Dimitra N.; Kogot, Joshua M.; Sellers, Michael S.; Hurley, Margaret M.; Sarkes, Deborah A.; Pennington, Joseph M.; Val-Addo, Irene; Adams, Bryn L.; Warner, Candice R.; Carney, James P.; Brown, Rebecca L.; Pellegrino, Paul M.

    2012-06-01

    Recent advances in synthetic library engineering continue to show promise for the rapid production of reagent technology in response to biological threats. A synthetic library of peptide mutants built off a bacterial host offers a convenient means to link the peptide sequence, (i.e., identity of individual library members) with the desired molecular recognition traits, but also allows for a relatively simple protocol, amenable to automation. An improved understanding of the mechanisms of recognition and control of synthetic reagent isolation and evolution remain critical to success. In this paper, we describe our approach to development of peptide affinity reagents based on peptide bacterial display technology with improved control of binding interactions for stringent evolution of reagent candidates, and tailored performance capabilities. There are four key elements to the peptide affinity reagent program including: (1) the diverse bacterial library technology, (2) advanced reagent screening amenable to laboratory automation and control, (3) iterative characterization and feedback on both affinity and specificity of the molecular interactions, and (3) integrated multiscale computational prescreening of candidate peptide ligands including in silico prediction of improved binding performance. Specific results on peptides binders to Protective Antigen (PA) protein of Bacillus anthracis and Staphylococcal Enterotoxin B (SEB) will be presented. Recent highlights of on cell vs. off-cell affinity behavior and correlation of the results with advanced docking simulations on the protein-peptide system(s) are included. The potential of this technology and approach to enable rapid development of a new affinity reagent with unprecedented speed (less than one week) would allow for rapid response to new and constantly emerging threats.

  5. Bacterial consortia at different wine fermentation phases of two typical Central European grape varieties: Blaufränkisch (Frankovka modrá) and Grüner Veltliner (Veltlínske zelené).

    PubMed

    Godálová, Zuzana; Kraková, Lucia; Puškárová, Andrea; Bučková, Mária; Kuchta, Tomáš; Piknová, Ľubica; Pangallo, Domenico

    2016-01-18

    This is the first study focused to bacterial diversity and dynamic during the vinification of two important Central Europe grape vines: Blaufränkisch and Grüner Veltliner. The investigation strategy included culture-dependent and culture-independent approaches. Four different agar media were utilized for the isolation of various bacteria occurring in several fermentation stages. The isolates were clustered by fluorescent-ITS PCR and, one or more representatives of each cluster, were identified by 16 rRNA gene sequencing. The culture-independent approach, based on 16S rRNA gene amplification, combined the denaturing gradient gel electrophoresis (DGGE) method and the construction of bacterial clone library for each wine fermentation step. A complex bacterial community was identified, comprising different lactic acid bacteria and acetic acid bacteria, such as Leuconostoc spp., Lactobacillus spp. and Gluconobacter spp. Other OTUs and bacterial isolates embraced the Actinobacteria, Bacilli, Alpha-, Beta- and Gamma-proteobacteria classes. Different taxa already detected by recent studies, such as Sphingomonas, Variovorax, Pantoea, Enterobacter and Tatumella, were detected confirming the continuous occurrence of these kinds of bacteria in wine environment. Moreover, novel genera (Amycolatopsis, Hydrogenophilus, Snodgrassella, Telluria, Gilliamella, Lelliottia, and Lonsdale quercina) never detected before were recognized, too. The role of these, until now anonymous, bacteria during vinification deserves investigation, which could open a new research field in wine technology. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Altering the selection capabilities of common cloning vectors via restriction enzyme mediated gene disruption

    PubMed Central

    2013-01-01

    Background The cloning of gene sequences forms the basis for many molecular biological studies. One important step in the cloning process is the isolation of bacterial transformants carrying vector DNA. This involves a vector-encoded selectable marker gene, which in most cases, confers resistance to an antibiotic. However, there are a number of circumstances in which a different selectable marker is required or may be preferable. Such situations can include restrictions to host strain choice, two phase cloning experiments and mutagenesis experiments, issues that result in additional unnecessary cloning steps, in which the DNA needs to be subcloned into a vector with a suitable selectable marker. Results We have used restriction enzyme mediated gene disruption to modify the selectable marker gene of a given vector by cloning a different selectable marker gene into the original marker present in that vector. Cloning a new selectable marker into a pre-existing marker was found to change the selection phenotype conferred by that vector, which we were able to demonstrate using multiple commonly used vectors and multiple resistance markers. This methodology was also successfully applied not only to cloning vectors, but also to expression vectors while keeping the expression characteristics of the vector unaltered. Conclusions Changing the selectable marker of a given vector has a number of advantages and applications. This rapid and efficient method could be used for co-expression of recombinant proteins, optimisation of two phase cloning procedures, as well as multiple genetic manipulations within the same host strain without the need to remove a pre-existing selectable marker in a previously genetically modified strain. PMID:23497512

  7. The GA5 locus of Arabidopsis thaliana encodes a multifunctional gibberellin 20-oxidase: Molecular cloning and functional expression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Yun-Ling; Li, Li; Wu, Keqiang

    1995-07-03

    The biosynthesis of gibberellins (GAs) after GA{sub 12}-aldehyde involves a series of oxidative steps that lead to the formation of bioactive GAs. Previously, a cDNA clone encoding a GA 20-oxidase [gibberellin, 2-oxoglutarate:oxygen oxidoreductase (20-hydroxylating, oxidizing), EC 1.14.11-] was isolated by immunoscreening a cDNA library from liquid endosperm of pumpkin (Cucurbita maxima L.) with antibodies against partially purified GA 20-oxidase. Here, we report isolation of a genomic clone for GA 20-oxidase from a genomic library of the long-day species Arabidopsis thaliana Heynh., strain Columbia, by using the pumpkin cDNA clone as a heterologous probe. This genomic clone contains a GA 20-oxidasemore » gene that consists of three exons and two introns. The three exons are 1131-bp long and encode 377 amino acid residues. A cDNA clone corresponding to the putative GA 20-oxidase genomic sequence was constructed with the reverse transcription-PCR method, and the identity of the cDNA clone was confirmed by analyzing the capability of the fusion protein expressed in Escherichia coli to convert GA{sub 53} to GA{sub 44} and GA{sub 19} to GA{sub 20}. The Arabidopsis GA 20-oxidase shares 55% identity and >80% similarity with the pumpkin GA 20-oxidase at the derived amino acid level. Both GA 20-oxidases share high homology with other 2-oxoglutarate-dependent dioxygenases (2-ODDs), but the highest homology was found between the two GA 20-oxidases. Mapping results indicated tight linkage between the cloned GA 20-oxidase and the GA locus of Arabidopsis. The ga5 semidwarf mutant contains a G {yields} A point mutation that inserts a translational stop codon in the protein-coding sequence, thus confirming that the GA5 locus encodes GA 20-oxidase. Expression of the GA5 gene in Arabidopsis leaves was enhanced after plants were transferred from short to long days; it was reduced by GA{sub 4} treatment, suggesting end-product repression in the GA biosynthetic pathway. 28 refs., 6

  8. Cost-Effective Sequencing of Full-Length cDNA Clones Powered by a De Novo-Reference Hybrid Assembly

    PubMed Central

    Sugano, Sumio; Morishita, Shinichi; Suzuki, Yutaka

    2010-01-01

    Background Sequencing full-length cDNA clones is important to determine gene structures including alternative splice forms, and provides valuable resources for experimental analyses to reveal the biological functions of coded proteins. However, previous approaches for sequencing cDNA clones were expensive or time-consuming, and therefore, a fast and efficient sequencing approach was demanded. Methodology We developed a program, MuSICA 2, that assembles millions of short (36-nucleotide) reads collected from a single flow cell lane of Illumina Genome Analyzer to shotgun-sequence ∼800 human full-length cDNA clones. MuSICA 2 performs a hybrid assembly in which an external de novo assembler is run first and the result is then improved by reference alignment of shotgun reads. We compared the MuSICA 2 assembly with 200 pooled full-length cDNA clones finished independently by the conventional primer-walking using Sanger sequencers. The exon-intron structure of the coding sequence was correct for more than 95% of the clones with coding sequence annotation when we excluded cDNA clones insufficiently represented in the shotgun library due to PCR failure (42 out of 200 clones excluded), and the nucleotide-level accuracy of coding sequences of those correct clones was over 99.99%. We also applied MuSICA 2 to full-length cDNA clones from Toxoplasma gondii, to confirm that its ability was competent even for non-human species. Conclusions The entire sequencing and shotgun assembly takes less than 1 week and the consumables cost only ∼US$3 per clone, demonstrating a significant advantage over previous approaches. PMID:20479877

  9. Bacterial community succession during in situ uranium bioremediation: spatial similarities along controlled flow paths.

    PubMed

    Hwang, Chiachi; Wu, Weimin; Gentry, Terry J; Carley, Jack; Corbin, Gail A; Carroll, Sue L; Watson, David B; Jardine, Phil M; Zhou, Jizhong; Criddle, Craig S; Fields, Matthew W

    2009-01-01

    Bacterial community succession was investigated in a field-scale subsurface reactor formed by a series of wells that received weekly ethanol additions to re-circulating groundwater. Ethanol additions stimulated denitrification, metal reduction, sulfate reduction and U(VI) reduction to sparingly soluble U(IV). Clone libraries of SSU rRNA gene sequences from groundwater samples enabled tracking of spatial and temporal changes over a 1.5-year period. Analyses showed that the communities changed in a manner consistent with geochemical variations that occurred along temporal and spatial scales. Canonical correspondence analysis revealed that the levels of nitrate, uranium, sulfide, sulfate and ethanol were strongly correlated with particular bacterial populations. As sulfate and U(VI) levels declined, sequences representative of sulfate reducers and metal reducers were detected at high levels. Ultimately, sequences associated with sulfate-reducing populations predominated, and sulfate levels declined as U(VI) remained at low levels. When engineering controls were compared with the population variation through canonical ordination, changes could be related to dissolved oxygen control and ethanol addition. The data also indicated that the indigenous populations responded differently to stimulation for bioreduction; however, the two biostimulated communities became more similar after different transitions in an idiosyncratic manner. The strong associations between particular environmental variables and certain populations provide insight into the establishment of practical and successful remediation strategies in radionuclide-contaminated environments with respect to engineering controls and microbial ecology.

  10. Cell-free immunology: construction and in vitro expression of a PCR-based library encoding a single-chain antibody repertoire.

    PubMed

    Makeyev, E V; Kolb, V A; Spirin, A S

    1999-02-12

    A novel cloning-independent strategy has been developed to generate a combinatorial library of PCR fragments encoding a murine single-chain antibody repertoire and express it directly in a cell-free system. The new approach provides an effective alternative to the techniques involving in vivo procedures of preparation and handling large libraries of antibodies. The possible use of the described strategy in the ribosome display is discussed.

  11. Targeting mammalian organelles with internalizing phage (iPhage) libraries

    PubMed Central

    Rangel, Roberto; Dobroff, Andrey S.; Guzman-Rojas, Liliana; Salmeron, Carolina C.; Gelovani, Juri G.; Sidman, Richard L.; Pasqualini, Renata; Arap, Wadih

    2015-01-01

    Techniques largely used for protein interaction studies and discovery of intracellular receptors, such as affinity capture complex purification and yeast two-hybrid, may produce inaccurate datasets due to protein insolubility, transient or weak protein interactions, or irrelevant intracellular context. A versatile tool to overcome these limitations as well as to potentially create vaccines and engineer peptides and antibodies as targeted diagnostic and therapeutic agents, is the phage display technique. We have recently developed a new technology for screening internalizing phage (iPhage) vectors and libraries utilizing a ligand/receptor-independent mechanism to penetrate eukaryotic cells. iPhage particles provide a unique discovery platform for combinatorial intracellular targeting of organelle ligands along with their corresponding receptors and to fingerprint functional protein domains in living cells. Here we explain the design, cloning, construction, and production of iPhage-based vectors and libraries, along with basic ligand-receptor identification and validation methodologies for organelle receptors. An iPhage library screening can be performed in ~8 weeks. PMID:24030441

  12. Mesocosms of aquatic bacterial communities from the Cuatro Cienegas Basin (Mexico): a tool to test bacterial community response to environmental stress.

    PubMed

    Pajares, Silvia; Bonilla-Rosso, German; Travisano, Michael; Eguiarte, Luis E; Souza, Valeria

    2012-08-01

    Microbial communities are responsible for important ecosystem processes, and their activities are regulated by environmental factors such as temperature and solar ultraviolet radiation. Here we investigate changes in aquatic microbial community structure, diversity, and evenness in response to changes in temperature and UV radiation. For this purpose, 15 mesocosms were seeded with both microbial mat communities and plankton from natural pools within the Cuatro Cienegas Basin (Mexico). Clone libraries (16S rRNA) were obtained from water samples at the beginning and at the end of the experiment (40 days). Phylogenetic analysis indicated substantial changes in aquatic community composition and structure in response to temperature and UV radiation. Extreme treatments with elevation in temperature or UV radiation reduced diversity in relation to the Control treatments, causing a reduction in richness and increase in dominance, with a proliferation of a few resistant operational taxonomic units. Each phylum was affected differentially by the new conditions, which translates in a differential modification of ecosystem functioning. This suggests that the impact of environmental stress, at least at short term, will reshape the aquatic bacterial communities of this unique ecosystem. This work also demonstrates the possibility of designing manageable synthetic microbial community ecosystems where controlled environmental variables can be manipulated. Therefore, microbial model systems offer a complementary approach to field and laboratory studies of global research problems associated with the environment.

  13. Molecular cloning and expression of Corynebacterium glutamicum genes for amino acid synthesis in Escherichia coli cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beskrovnaya, O.Yu.; Fonshtein, M.Yu.; Kolibaba, L.G.

    1989-01-01

    Molecular cloning of Corynebacterium glutamicum genes for threonine and lysine synthesis has been done in Escherichia coli cells. The clonal library of EcoRI fragments of chromosomal DNA of C. glutamicum was constructed on the plasmid vector /lambda/pSL5. The genes for threonine and lysine synthesis were identified by complementation of E. coli mutations in thrB and lysA genes, respectively. Recombinant plasmids, isolated from independent ThrB/sup +/ clone have a common 4.1-kb long EcoRI DNA fragment. Hybrid plasmids isolated from LysA/sup +/ transductants of E. coli have common 2.2 and 3.3 kb long EcoRI fragments of C. glutamicum DNA. The hybrid plasmidsmore » consistently transduced the markers thrB/sup +/ and lysA/sup +/. The Southern hybridization analysis showed that the cloned DNA fragments hybridized with the fragments of identical length in C. glutamicum chromosomes.« less

  14. [Cloning and characterization of genes differentially expressed in human dental pulp cells and gingival fibroblasts].

    PubMed

    Wang, Zhong-dong; Wu, Ji-nan; Zhou, Lin; Ling, Jun-qi; Guo, Xi-min; Xiao, Ming-zhen; Zhu, Feng; Pu, Qin; Chai, Yu-bo; Zhao, Zhong-liang

    2007-02-01

    To study the biological properties of human dental pulp cells (HDPC) by cloning and analysis of genes differentially expressed in HDPC in comparison with human gingival fibroblasts (HGF). HDPC and HGF were cultured and identified by immunocytochemistry. HPDC and HGF subtractive cDNA library was established by PCR-based modified subtractive hybridization, genes differentially expressed by HPDC were cloned, sequenced and compared to find homogeneous sequence in GenBank by BLAST. Cloning and sequencing analysis indicate 12 genes differentially expressed were obtained, in which two were unknown genes. Among the 10 known genes, 4 were related to signal transduction, 2 were related to trans-membrane transportation (both cell membrane and nuclear membrane), and 2 were related to RNA splicing mechanisms. The biological properties of HPDC are determined by the differential expression of some genes and the growth and differentiation of HPDC are associated to the dynamic protein synthesis and secretion activities of the cell.

  15. Molecular analysis of two cDNA clones encoding acidic class I chitinase in maize.

    PubMed Central

    Wu, S; Kriz, A L; Widholm, J M

    1994-01-01

    The cloning and analysis of two different cDNA clones encoding putative maize (Zea mays L.) chitinases obtained by polymerase chain reaction (PCR) and cDNA library screening is described. The cDNA library was made from poly(A)+ RNA from leaves challenged with mercuric chloride for 2 d. The two clones, pCh2 and pCh11, appear to encode class I chitinase isoforms with cysteine-rich domains (not found in pCh11 due to the incomplete sequence) and proline-/glycine-rich or proline-rich hinge domains, respectively. The pCh11 clone resembles a previously reported maize seed chitinase; however, the deduced proteins were found to have acidic isoelectric points. Analysis of all monocot chitinase sequences available to date shows that not all class I chitinases possess the basic isoelectric points usually found in dicotyledonous plants and that monocot class II chitinases do not necessarily exhibit acidic isoelectric points. Based on sequence analysis, the pCh2 protein is apparently synthesized as a precursor polypeptide with a signal peptide. Although these two clones belong to class I chitinases, they share only about 70% amino acid homology in the catalytic domain region. Southern blot analysis showed that pCh2 may be encoded by a small gene family, whereas pCh11 was single copy. Northern blot analysis demonstrated that these genes are differentially regulated by mercuric chloride treatment. Mercuric chloride treatment caused rapid induction of pCh2 from 6 to 48 h, whereas pCh11 responded only slightly to the same treatment. During seed germination, embryos constitutively expressed both chitinase genes and the phytohormone abscisic acid had no effect on the expression. The fungus Aspergillus flavus was able to induce both genes to comparable levels in aleurone layers and embryos but not in endosperm tissue. Maize callus growth on the same plate with A. flavus for 1 week showed induction of the transcripts corresponding to pCh2 but not to pCh11. These studies indicate that

  16. Human homologues of the bacterial heat-shock protein DnaJ are preferentially expressed in neurons.

    PubMed Central

    Cheetham, M E; Brion, J P; Anderton, B H

    1992-01-01

    The bacterial heat-shock protein DnaJ has been implicated in protein folding and protein complex dissociation. The DnaJ protein interacts with the prokaryotic analogue of Hsp70, DnaK, and accelerates the rate of ATP hydrolysis by DnaK. Several yeast homologues of DnaJ, with different proposed subcellular localizations and functions, have recently been isolated and are the only eukaryotic forms of DnaJ so far described. We have isolated cDNAs corresponding to two alternatively spliced transcripts of a novel human gene, HSJ1, which show sequence similarity to the bacterial DnaJ protein and the yeast homologues. The cDNA clones were isolated from a human brain-frontal-cortex expression library screened with a polyclonal antiserum raised to paired-helical-filament (PHF) proteins isolated from extracts of the brains of patients suffering from Alzheimer's disease. The similarity between the predicted human protein sequences and the bacterial and yeast proteins is highest at the N-termini, this region also shows a limited similarity to viral T-antigens and is a possible common motif involved in the interaction with DnaK/Hsp70. Northern-blot analysis has shown that human brain contains higher levels of mRNA for the DnaJ homologue than other tissues examined, and hybridization studies with riboprobes in situ show a restricted pattern of expression of the mRNA within the brain, with neuronal layers giving the strongest signal. These findings suggest that the DnaJ-DnaK (Hsp70) interaction is general to eukaryotes and, indeed, to higher organisms. Images Fig. 2. Fig. 3. Fig. 4. Fig. 5. PMID:1599432

  17. Pathogenic Leptospira species express surface-exposed proteins belonging to the bacterial immunoglobulin superfamily

    PubMed Central

    Matsunaga, James; Barocchi, Michele A.; Croda, Julio; Young, Tracy A.; Sanchez, Yolanda; Siqueira, Isadora; Bolin, Carole A.; Reis, Mitermayer G.; Riley, Lee W.; Haake, David A.; Ko, Albert I.

    2005-01-01

    Summary Proteins with bacterial immunoglobulin-like (Big) domains, such as the Yersinia pseudotuberculosis invasin and Escherichia coli intimin, are surface-expressed proteins that mediate host mammalian cell invasion or attachment. Here, we report the identification and characterization of a new family of Big domain proteins, referred to as Lig (leptospiral Ig-like) proteins, in pathogenic Leptospira. Screening of L. interrogans and L. kirschneri expression libraries with sera from leptospirosis patients identified 13 lambda phage clones that encode tandem repeats of the 90 amino acid Big domain. Two lig genes, designated ligA and ligB, and one pseudo-gene, ligC, were identified. The ligA and ligB genes encode amino-terminal lipoprotein signal peptides followed by 10 or 11 Big domain repeats and, in the case of ligB, a unique carboxy-terminal non-repeat domain. The organization of ligC is similar to that of ligB but contains mutations that disrupt the reading frame. The lig sequences are present in pathogenic but not saprophytic Leptospira species. LigA and LigB are expressed by a variety of virulent leptospiral strains. Loss of Lig protein and RNA transcript expression is correlated with the observed loss of virulence during culture attenuation of pathogenic strains. High-pressure freeze substitution followed by immunocytochemical electron microscopy confirmed that the Lig proteins were localized to the bacterial surface. Immunoblot studies with patient sera found that the Lig proteins are a major antigen recognized during the acute host infection. These observations demonstrate that the Lig proteins are a newly identified surface protein of pathogenic Leptospira, which by analogy to other bacterial immunoglobulin superfamily virulence factors, may play a role in host cell attachment and invasion during leptospiral pathogenesis. PMID:12890019

  18. Pathogenic Leptospira species express surface-exposed proteins belonging to the bacterial immunoglobulin superfamily.

    PubMed

    Matsunaga, James; Barocchi, Michele A; Croda, Julio; Young, Tracy A; Sanchez, Yolanda; Siqueira, Isadora; Bolin, Carole A; Reis, Mitermayer G; Riley, Lee W; Haake, David A; Ko, Albert I

    2003-08-01

    Proteins with bacterial immunoglobulin-like (Big) domains, such as the Yersinia pseudotuberculosis invasin and Escherichia coli intimin, are surface-expressed proteins that mediate host mammalian cell invasion or attachment. Here, we report the identification and characterization of a new family of Big domain proteins, referred to as Lig (leptospiral Ig-like) proteins, in pathogenic Leptospira. Screening of L. interrogans and L. kirschneri expression libraries with sera from leptospirosis patients identified 13 lambda phage clones that encode tandem repeats of the 90 amino acid Big domain. Two lig genes, designated ligA and ligB, and one pseudogene, ligC, were identified. The ligA and ligB genes encode amino-terminal lipoprotein signal peptides followed by 10 or 11 Big domain repeats and, in the case of ligB, a unique carboxy-terminal non-repeat domain. The organization of ligC is similar to that of ligB but contains mutations that disrupt the reading frame. The lig sequences are present in pathogenic but not saprophytic Leptospira species. LigA and LigB are expressed by a variety of virulent leptospiral strains. Loss of Lig protein and RNA transcript expression is correlated with the observed loss of virulence during culture attenuation of pathogenic strains. High-pressure freeze substitution followed by immunocytochemical electron microscopy confirmed that the Lig proteins were localized to the bacterial surface. Immunoblot studies with patient sera found that the Lig proteins are a major antigen recognized during the acute host infection. These observations demonstrate that the Lig proteins are a newly identified surface protein of pathogenic Leptospira, which by analogy to other bacterial immunoglobulin superfamily virulence factors, may play a role in host cell attachment and invasion during leptospiral pathogenesis.

  19. Comparative analyses of the bacterial microbiota of the human nostril and oropharynx.

    PubMed

    Lemon, Katherine P; Klepac-Ceraj, Vanja; Schiffer, Hilary K; Brodie, Eoin L; Lynch, Susan V; Kolter, Roberto

    2010-06-22

    The nose and throat are important sites of pathogen colonization, yet the microbiota of both is relatively unexplored by culture-independent approaches. We examined the bacterial microbiota of the nostril and posterior wall of the oropharynx from seven healthy adults using two culture-independent methods, a 16S rRNA gene microarray (PhyloChip) and 16S rRNA gene clone libraries. While the bacterial microbiota of the oropharynx was richer than that of the nostril, the oropharyngeal microbiota varied less among participants than did nostril microbiota. A few phyla accounted for the majority of the bacteria detected at each site: Firmicutes and Actinobacteria in the nostril and Firmicutes, Proteobacteria, and Bacteroidetes in the oropharynx. Compared to culture-independent surveys of microbiota from other body sites, the microbiota of the nostril and oropharynx show distinct phylum-level distribution patterns, supporting niche-specific colonization at discrete anatomical sites. In the nostril, the distribution of Actinobacteria and Firmicutes was reminiscent of that of skin, though Proteobacteria were much less prevalent. The distribution of Firmicutes, Proteobacteria, and Bacteroidetes in the oropharynx was most similar to that in saliva, with more Proteobacteria than in the distal esophagus or mouth. While Firmicutes were prevalent at both sites, distinct families within this phylum dominated numerically in each. At both sites there was an inverse correlation between the prevalences of Firmicutes and another phylum: in the oropharynx, Firmicutes and Proteobacteria, and in the nostril, Firmicutes and Actinobacteria. In the nostril, this inverse correlation existed between the Firmicutes family Staphylococcaceae and Actinobacteria families, suggesting potential antagonism between these groups.

  20. The comparison of printed resources bacterial contamination in libraries of Al-Zahra Hospital and Sciences Faculty of Isfahan University and the determination of their antibiotic sensitivity pattern.

    PubMed

    Rafiei, Hosein; Chadeganipour, Mostafa; Ojaghi, Rezvan; Maracy, Mohammad Reza; Nouri, Rasool

    2017-01-01

    During the library loan process, the printed resources can be a carrier of pathogenic bacteria. In this study, it was tried to compare the Bacterial Contamination Rates and their antibiotic sensitivity pattern in printed resources of a hospital and a non-hospital library. This is a cross-sectional study. Returning books from the Al-Zahra hospital library and library of Sciences faculty of Isfahan University provides the research community. The sample size, 96 cases, was calculated using quota sampling. For sampling sterile swab dipped in trypticase soy broth medium and transfer trypticase soy broth medium were used. To identify different type of isolated bacteria from Gram-staining test and biochemical tests such as; TSI, IMViC and etc., were used. 76 (79.2%) and 20 (20.8%) of cultured samples were negative and positive, the respectively. Of 20 positive samples, 11 samples (55%) belong to the family Enterobacteriaceae that after detecting by Differential teste identified all 11 samples of Enterobacter that all of them were sensitive to Gentamicin and Ofloxacin. Also the most resistance to Nitrofurantoin and Amikacin was observed. 9 cases remained (45%) were coagulase-negative Staphylococcus that all of them were sensitive to the Trimethoprim-sulfamethoxazole and Cephalexin antibiotics also the most resistance to Cefixime was observed. Considering that the Enterobacter sp and coagulase-negative Staphylococcus were separated from the books, the books as well as other hospital and medical equipment can transmit the infection to librarians, library users, patients and hospital staff, and also it can produce serious infections in patients with immune deficiency.