Sample records for bacterial colonies exposed

  1. Growth of Bacterial Colonies

    NASA Astrophysics Data System (ADS)

    Warren, Mya; Hwa, Terence

    2013-03-01

    On hard agar gel, there is insufficient surface hydration for bacteria to swim or swarm. Instead, growth occurs in colonies of close-packed cells, which expand purely due to repulsive interactions: individual bacteria push each other out of the way through the force of their growth. In this way, bacterial colonies represent a new type of ``active'' granular matter. In this study, we investigate the physical, biochemical, and genetic elements that determine the static and dynamic aspects of this mode of bacterial growth for E. coli. We characterize the process of colony expansion empirically, and use discrete and continuum models to examine the extent to which our observations can be explained by the growth characteristics of non-communicating cells, coupled together by physical forces, nutrients, and waste products. Our results challenge the commonly accepted modes of bacterial colony growth and provide insight into sources of growth limitation in crowded bacterial communities.

  2. Formation and dissolution of bacterial colonies.

    PubMed

    Weber, Christoph A; Lin, Yen Ting; Biais, Nicolas; Zaburdaev, Vasily

    2015-09-01

    Many organisms form colonies for a transient period of time to withstand environmental pressure. Bacterial biofilms are a prototypical example of such behavior. Despite significant interest across disciplines, physical mechanisms governing the formation and dissolution of bacterial colonies are still poorly understood. Starting from a kinetic description of motile and interacting cells we derive a hydrodynamic equation for their density on a surface, where most of the kinetic coefficients are estimated from experimental data for N. gonorrhoeae bacteria. We use it to describe the formation of multiple colonies with sizes consistent with experimental observations. Finally, we show how the changes in the cell-to-cell interactions lead to the dissolution of the bacterial colonies. The successful application of kinetic theory to a complex far from equilibrium system such as formation and dissolution of living bacterial colonies potentially paves the way for the physical quantification of the initial stages of biofilm formation.

  3. Morphodynamics of growing bacterial colony

    NASA Astrophysics Data System (ADS)

    Ghosh, Pushpita; Perlekar, Prasad; Rana, Navdeep

    Self-organization into multicellular communities is a natural trend of most of the bacteria. Mutual interactions and competition among the bacterial cells in such multicellular organization play essential role in governing the spatiotemporal dynamics. We here present the spatiotemporal dynamics of growing bacterial colony using theory and a particle-based or individual-based simulation model of nonmotile cells growing utilizing a diffusing nutrient/food on a semi-solid surface by their growth and division forces and by pushing each-other through sliding motility. We show how the resource competition over a fixed amount of food, the diffusion coefficient of the nutrient and the random genetic noise govern the morphodynamics of a single species and a well-mixed two-species bacterial colonies. Our results show that for a very low initial food concentrations, colony develops fingering pattern at the front, while for intermediate values of initial food sources, the colony undergoes transitions to branched structures at the periphery and for very high values of food colony develops smoother fronts.

  4. Periodic growth of bacterial colonies

    NASA Astrophysics Data System (ADS)

    Yamazaki, Yoshihiro; Ikeda, Takemasa; Shimada, Hirotoshi; Hiramatsu, Fumiko; Kobayashi, Naoki; Wakita, Jun-ichi; Itoh, Hiroto; Kurosu, Sayuri; Nakatsuchi, Michio; Matsuyama, Tohey; Matsushita, Mitsugu

    2005-06-01

    The formation of concentric ring colonies by bacterial species Bacillus subtilis and Proteus mirabilis has been investigated experimentally, focusing our attention on the dependence of local cell density upon the bacterial motility. It has been confirmed that these concentric ring colonies reflect the periodic change of the bacterial motility between motile cell state and immotile cell state. We conclude that this periodic change is macroscopically determined neither by biological factors (i.e., biological clock) nor by chemical factors (chemotaxis as inhibitor). And our experimental results strongly suggest that the essential factor for the change of the bacterial motility during concentric ring formation is the local cell density.

  5. Universality in Bacterial Colonies

    NASA Astrophysics Data System (ADS)

    Bonachela, Juan A.; Nadell, Carey D.; Xavier, João B.; Levin, Simon A.

    2011-07-01

    The emergent spatial patterns generated by growing bacterial colonies have been the focus of intense study in physics during the last twenty years. Both experimental and theoretical investigations have made possible a clear qualitative picture of the different structures that such colonies can exhibit, depending on the medium on which they are growing. However, there are relatively few quantitative descriptions of these patterns. In this paper, we use a mechanistically detailed simulation framework to measure the scaling exponents associated with the advancing fronts of bacterial colonies on hard agar substrata, aiming to discern the universality class to which the system belongs. We show that the universal behavior exhibited by the colonies can be much richer than previously reported, and we propose the possibility of up to four different sub-phases within the medium-to-high nutrient concentration regime. We hypothesize that the quenched disorder that characterizes one of these sub-phases is an emergent property of the growth and division of bacteria competing for limited space and nutrients.

  6. Hydrodynamics of bacterial colonies: A model

    NASA Astrophysics Data System (ADS)

    Lega, J.; Passot, T.

    2003-03-01

    We propose a hydrodynamic model for the evolution of bacterial colonies growing on soft agar plates. This model consists of reaction-diffusion equations for the concentrations of nutrients, water, and bacteria, coupled to a single hydrodynamic equation for the velocity field of the bacteria-water mixture. It captures the dynamics inside the colony as well as on its boundary and allows us to identify a mechanism for collective motion towards fresh nutrients, which, in its modeling aspects, is similar to classical chemotaxis. As shown in numerical simulations, our model reproduces both usual colony shapes and typical hydrodynamic motions, such as the whirls and jets recently observed in wet colonies of Bacillus subtilis. The approach presented here could be extended to different experimental situations and provides a general framework for the use of advection-reaction-diffusion equations in modeling bacterial colonies.

  7. Variations and heredity in bacterial colonies

    PubMed Central

    Čepl, Jaroslav; Blahůšková, Anna; Neubauer, Zdeněk; Markoš, Anton

    2016-01-01

    ABSTRACT Spontaneous variation in appearance was studied in bacterial colonies of Serratia marcescens F morphotype1: (i) A defined array of non-heritable phenotype variations does appear repeatedly; (ii) The presence of colonies of different bacterial species will narrow the variability toward the typical F appearance, as if such an added environmental factor curtailed the capacity of colony morphospace; (iii) Similarly the morphospace becomes reduced by random mutations leading to new, heritable morphotypes—at the same time opening a new array of variations typical for the mutant but not accessible directly from the original F morphospace. Results are discussed in context with biphasic model of early morphogenesis applicable to all multicellular bodies. PMID:28042382

  8. Investigation of multimodal forward scatter phenotyping from bacterial colonies

    NASA Astrophysics Data System (ADS)

    Kim, Huisung

    A rapid, label-free, and elastic light scattering (ELS) based bacterial colony phenotyping technology, bacterial rapid detection using optical scattering technology (BARDOT) provides a successful classification of several bacterial genus and species. For a thorough understanding of the phenomena and overcoming the limitations of the previous design, five additional modalities from a bacterial colony: 3D morphology, spatial optical density (OD) distribution, spectral forward scattering pattern, spectral OD, and surface backward reflection pattern are proposed to enhance the classification/identification ratio, and the feasibilities of each modality are verified. For the verification, three different instruments: integrated colony morphology analyzer (ICMA), multi-spectral BARDOT (MS-BARDOT) , and multi-modal BARDOT (MM-BARDOT) are proposed and developed. The ICMA can measure 3D morphology and spatial OD distribution of the colony simultaneously. A commercialized confocal displacement meter is used to measure the profiles of the bacterial colonies, together with a custom built optical density measurement unit to interrogate the biophysics behind the collective behavior of a bacterial colony. The system delivers essential information related to the quantitative growth dynamics (height, diameter, aspect ratio, optical density) of the bacterial colony, as well as, a relationship in between the morphological characteristics of the bacterial colony and its forward scattering pattern. Two different genera: Escherichia coli O157:H7 EDL933, and Staphylococcus aureus ATCC 25923 are selected for the analysis of the spatially resolved growth dynamics, while, Bacillus spp. such as B. subtilis ATCC 6633, B. cereus ATCC 14579, B. thuringiensis DUP6044, B. polymyxa B719W, and B. megaterium DSP 81319, are interrogated since some of the Bacillus spp. provides strikingly different characteristics of ELS patterns, and the origin of the speckle patterns are successfully correlated with

  9. Hydrodynamics of bacterial colonies: Phase diagrams

    NASA Astrophysics Data System (ADS)

    Lega, J.; Passot, T.

    2004-09-01

    We present numerical simulations of a recent hydrodynamic model describing the growth of bacterial colonies on agar plates. We show that this model is able to qualitatively reproduce experimentally observed phase diagrams, which relate a colony shape to the initial quantity of nutrients on the plate and the initial wetness of the agar. We also discuss the principal features resulting from the interplay between hydrodynamic motions and colony growth, as described by our model.

  10. Multi-Affinity for Growing Rough Interfaces of Bacterial Colonies

    NASA Astrophysics Data System (ADS)

    Kobayashi, N.; Ozawa, T.; Saito, K.; Yamazaki, Y.; Matsuyama, T.; Matsushita, M.

    We have examined whether rough interfaces of bacterial colonies are multi-affine. We have used the bacterial species called textit{Bacillus subtilis}, which has been found to exhibit a variety of colony patterns when varying both the concentration of nutrient and solidity of agar medium. Consequently, we have found that the colony interface on a nutrient-rich, solid agar medium is multi-affine. On the other hand, the colony interface on a nutrient-rich, semi-solid agar medium is self-affine.

  11. Pattern Formation of Bacterial Colonies by Escherichia coli

    NASA Astrophysics Data System (ADS)

    Tokita, Rie; Katoh, Takaki; Maeda, Yusuke; Wakita, Jun-ichi; Sano, Masaki; Matsuyama, Tohey; Matsushita, Mitsugu

    2009-07-01

    We have studied the morphological diversity and change in bacterial colonies, using the bacterial species Escherichia coli, as a function of both agar concentration Ca and nutrient concentration Cn. We observed various colony patterns, classified them into four types by pattern characteristics and established a morphological diagram by dividing it into four regions. They are regions A [diffusion-limited aggregation (DLA)-like], B (Eden-like), C (concentric-ring), and D (fluid-spreading). In particular, we have observed a concentric-ring colony growth for E. coli. We focused on the periodic growth in region C and obtained the following results: (i) A colony grows cyclically with the growing front repeating an advance (migration phase) and a momentary rest (consolidation phase) alternately. (ii) The growth width L and the bulge width W in one cycle decrease asymptotically to certain values, when Ca is increased. (iii) L does not depend on Cn, while W is an increasing function of Cn. Plausible mechanisms are proposed to explain the experimental results, by comparing them with those obtained for other bacterial species such as Proteus mirabilis and Bacillus subtilis.

  12. Development of bacterial colony phenotyping instrument using reflected scatter light

    NASA Astrophysics Data System (ADS)

    Doh, Iyll-Joon

    Bacterial rapid detection using optical scattering technology (BARDOT) involves in differentiating elastic scattering pattern of bacterial colony. This elastic light scatter technology has shown promising label-free classification rate. However, there is limited success in certain circumstances where either a growth media or a colony has higher opacity. This situation is due to the physical principles of the current BARDOT which mainly relies on optical patterns generated by transmitted signals. Incoming light is obstructed and cannot be transmitted through the dense bacterial colonies, such as Lactobacillus, Yeast, mold and soil bacteria. Moreover, a blood agar, widely used in clinical field, is an example of an opaque media that does not allow light to be transmitted through. Therefore, in this research, a newly designed reflection type scatterometer is presented. The reflection type scatterometer measures the elastic scattering pattern generated by reflected signal. A theoretical model to study the optical pattern characteristic with respect to bacterial colony morphology is presented. Both theoretical and experiment results show good agreement that the size of backward scattering pattern has positive correlation to colony aspect ratio, a colony elevation to diameter ratio. Four pathogenic bacteria on blood agar, Escherichia coli K12, Listeria innocua, Salmonella Typhimurium, and Staphylococcus aureus, are tested and measured with proposed instrument. The measured patterns are analyzed with a classification software, and high classification rate can be achieved.

  13. Geometry and mechanics of growing bacterial colonies

    NASA Astrophysics Data System (ADS)

    You, Zhihong; Pearce, Daniel; Sengupta, Anupam; Giomi, Luca

    Bacterial colonies are abundant on living and non-living surfaces, and are known to mediate a broad range of processes in ecology, medicine and industry. Although extensively researched - from single cells up to the population levels - a comprehensive biophysical picture, highlighting the cell-to-colony dynamics, is still lacking. Here, using numerical and analytical models, we study the mechanics of self-organization leading to the colony morphology of cells growing on a substrate with free boundary. We consider hard rods to mimic the growth of rod-shaped non-motile cells, and show that the colony, as a whole, does not form an ordered nematic phase, nor does it result in a purely disordered (isotropic) phase. Instead, different sizes of domains, in which cells are highly aligned at specific orientations, are found. The distribution of the domain sizes follows an exponential relation - indicating the existence of a characteristic length scale that determines the domain size relative to that of the colony. A continuum theory, based on the hydrodynamics of liquid crystals, is built to account for these phenomena, and is applied to describe the buckling transition from a planar to three-dimensional (3D) colony. The theory supports preliminary experiments conducted with different strains of rod shaped bacterial cells, and reveals that the buckling transition can be regulated by varying the cell stiffness and aspect ratio. This work proposes that, in addition to biochemical pathways, the spatio-temporal organization in microbial colonies is significantly tuned by the biomechanical and geometric properties of the microbes in consideration.

  14. Self-Organization in High-Density Bacterial Colonies: Efficient Crowd Control

    PubMed Central

    Campbell, Kyle; Melke, Pontus; Williams, Joshua W; Jedynak, Bruno; Stevens, Ann M; Groisman, Alex; Levchenko, Andre

    2007-01-01

    Colonies of bacterial cells can display complex collective dynamics, frequently culminating in the formation of biofilms and other ordered super-structures. Recent studies suggest that to cope with local environmental challenges, bacterial cells can actively seek out small chambers or cavities and assemble there, engaging in quorum sensing behavior. By using a novel microfluidic device, we showed that within chambers of distinct shapes and sizes allowing continuous cell escape, bacterial colonies can gradually self-organize. The directions of orientation of cells, their growth, and collective motion are mutually correlated and dictated by the chamber walls and locations of chamber exits. The ultimate highly organized steady state is conducive to a more-organized escape of cells from the chambers and increased access of nutrients into and evacuation of waste out of the colonies. Using a computational model, we suggest that the lengths of the cells might be optimized to maximize self-organization while minimizing the potential for stampede-like exit blockage. The self-organization described here may be crucial for the early stage of the organization of high-density bacterial colonies populating small, physically confined growth niches. It suggests that this phenomenon can play a critical role in bacterial biofilm initiation and development of other complex multicellular bacterial super-structures, including those implicated in infectious diseases. PMID:18044986

  15. Formation of complex bacterial colonies via self-generated vortices

    NASA Astrophysics Data System (ADS)

    Czirók, András; Ben-Jacob, Eshel; Cohen, Inon; Vicsek, Tamás

    1996-08-01

    Depending on the environmental conditions bacterial colonies growing on agar surfaces can exhibit complex colony formation and various types of collective motion. Experimental results are presented concerning the hydrodynamics (vortices, migration of bacteria in clusters) and colony formation of a morphotype of Bacillus subtilis. Some of these features are not specific to this morphotype but also have been observed in several other bacterial strains, suggesting the presence of universal effects. A simple model of self-propelled particles is proposed, which is capable of describing the hydrodynamics on the intermediate level, including the experimentally observed rotating disks of bacteria. The colony formation is captured by a complex generic model taking into account nutrient diffusion, reproduction, and sporulation of bacteria, extracellular slime deposition, chemoregulation, and inhomogeneous population. Our model also sheds light on some possible biological benefits of this ``multicellular behavior.''

  16. Branching instability in expanding bacterial colonies.

    PubMed

    Giverso, Chiara; Verani, Marco; Ciarletta, Pasquale

    2015-03-06

    Self-organization in developing living organisms relies on the capability of cells to duplicate and perform a collective motion inside the surrounding environment. Chemical and mechanical interactions coordinate such a cooperative behaviour, driving the dynamical evolution of the macroscopic system. In this work, we perform an analytical and computational analysis to study pattern formation during the spreading of an initially circular bacterial colony on a Petri dish. The continuous mathematical model addresses the growth and the chemotactic migration of the living monolayer, together with the diffusion and consumption of nutrients in the agar. The governing equations contain four dimensionless parameters, accounting for the interplay among the chemotactic response, the bacteria-substrate interaction and the experimental geometry. The spreading colony is found to be always linearly unstable to perturbations of the interface, whereas branching instability arises in finite-element numerical simulations. The typical length scales of such fingers, which align in the radial direction and later undergo further branching, are controlled by the size parameters of the problem, whereas the emergence of branching is favoured if the diffusion is dominant on the chemotaxis. The model is able to predict the experimental morphologies, confirming that compact (resp. branched) patterns arise for fast (resp. slow) expanding colonies. Such results, while providing new insights into pattern selection in bacterial colonies, may finally have important applications for designing controlled patterns. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  17. Collective chemotaxis and segregation of active bacterial colonies

    NASA Astrophysics Data System (ADS)

    Amar, M. Ben

    2016-02-01

    Still recently, bacterial fluid suspensions have motivated a lot of works, both experimental and theoretical, with the objective to understand their collective dynamics from universal and simple rules. Since some species are active, most of these works concern the strong interactions that these bacteria exert on a forced flow leading to instabilities, chaos and turbulence. Here, we investigate the self-organization of expanding bacterial colonies under chemotaxis, proliferation and eventually active-reaction. We propose a simple model to understand and quantify the physical properties of these living organisms which either give cohesion or on the contrary dispersion to the colony. Taking into account the diffusion and capture of morphogens complicates the model since it induces a bacterial density gradient coupled to bacterial density fluctuations and dynamics. Nevertheless under some specific conditions, it is possible to investigate the pattern formation as a usual viscous fingering instability. This explains the similarity and differences of patterns according to the physical bacterial suspension properties and explain the factors which favor compactness or branching.

  18. Reflected scatterometry for noninvasive interrogation of bacterial colonies

    NASA Astrophysics Data System (ADS)

    Kim, Huisung; Doh, Iyll-Joon; Sturgis, Jennifer; Bhunia, Arun K.; Robinson, J. Paul; Bae, Euiwon

    2016-10-01

    A phenotyping of bacterial colonies on agar plates using forward-scattering diffraction-pattern analysis provided promising classification of several different bacteria such as Salmonella, Vibrio, Listeria, and E. coli. Since the technique is based on forward-scattering phenomena, light transmittance of both the colony and the medium is critical to ensure quality data. However, numerous microorganisms and their growth media allow only limited light penetration and render the forward-scattering measurement a challenging task. For example, yeast, Lactobacillus, mold, and several soil bacteria form colorful and dense colonies that obstruct most of the incoming light passing through them. Moreover, blood agar, which is widely utilized in the clinical field, completely blocks the incident coherent light source used in forward scatterometry. We present a newly designed reflection scatterometer and validation of the resolving power of the instrument. The reflectance-type instrument can acquire backward elastic scatter patterns for both highly opaque media and colonies and has been tested with three different bacterial genera grown on blood agar plates. Cross-validation results show a classification rate above 90% for four genera.

  19. Periodic Colony Formation by Bacterial Species Bacillus subtilis

    NASA Astrophysics Data System (ADS)

    Wakita, Jun-ichi; Shimada, Hirotoshi; Itoh, Hiroto; Matsuyama, Tohey; Matsushita, Mitsugu

    2001-03-01

    We have investigated the periodic colony growth of bacterial species Bacillus subtilis. A colony grows cyclically with the interface repeating an advance (migration phase) and a rest (consolidation phase) alternately on a surface of semi-solid agar plate under appropriate environmental conditions, resulting in a concentric ring-like colony. It was found from macroscopic observations that the characteristic quantities for the periodic growth such as the migration time, the consolidation time and the terrace spacing do not depend so much on nutrient concentration Cn, but do on agar concentration Ca. The consolidation time was a weakly increasing function of Ca, while the migration time and the terrace spacing were, respectively, weakly and strongly decreasing function of Ca. Overall, the cycle (migration-plus-consolidation) time seems to be constant, and does not depend so much on both Cn and Ca. Microscopically, bacterial cells inside the growing front of a colony keep increasing their population during both migration and consolidation phases. It was also confirmed that their secreting surfactant called surfactin does not affect their periodic growth qualitatively, i.e., mutant cells which cannot secrete surfactin produce a concentric ring-like colony. All these results suggest that the diffusion of the nutrient and the surfactin are irrelevant to their periodic growth.

  20. Adaptive self-organization during growth of bacterial colonies

    NASA Astrophysics Data System (ADS)

    Ben-Jacob, Eshel; Shmueli, Haim; Shochet, Ofer; Tenenbaum, Adam

    1992-09-01

    We present a study of interfacial pattern formation during diffusion-limited growth of Bacillus subtilis. It is demonstrated that bacterial colonies can develop patterns similar to morphologies observed during diffusion-limited growth in non-living (azoic) systems such as solidification and electro-chemical deposition. The various growth morphologies, that is the global structure of the colony, are observed as we vary the growth conditions. These include fractal growth, dense-branching growth, compact growth, dendritic growth and chiral growth. The results demonstrate the action of a singular interplay between the micro-level (individual bacterium) and macro-level (the colony) in selecting the observed morphologies as is understood for non-living systems. Furthermore, the observed morphologies can be organized within a morphology diagram indicating the existence of a morphology selection principle similar to the one proposed for azoic systems. We propose a phase-field-like model (the phase being the bacterial concentration and the field being the nutrient concentration) to describe the growth. The bacteria-bacteria interaction is manifested as a phase dependent diffusion constant. Growth of a bacterial colony presents an inherent additional level of complexity compared to azoic systems, since the building blocks themselves are living systems. Thus, our studies also focus on the transition between morphologies. We have observed extended morphology transitions due to phenotypic changes of the bacteria, as well as bursts of new morphologies resulting from genotypic changes. In addition, we have observed extended and heritable transitions (mainly between dense branching growth and chiral growth) as well as phenotypic transitions that turn genotypic over time. We discuss the implications of our results in the context of the evolving picture of genome cybernetics. Diffusion limited growth of bacterial colonies combined with new understanding of pattern formation in azoic

  1. Differentiation of bacterial colonies and temporal growth patterns using hyperspectral imaging

    NASA Astrophysics Data System (ADS)

    Mehrübeoglu, Mehrube; Buck, Gregory W.; Livingston, Daniel W.

    2014-09-01

    Detection and identification of bacteria are important for health and safety. Hyperspectral imaging offers the potential to capture unique spectral patterns and spatial information from bacteria which can then be used to detect and differentiate bacterial species. Here, hyperspectral imaging has been used to characterize different bacterial colonies and investigate their growth over time. Six bacterial species (Pseudomonas fluorescens, Escherichia coli, Serratia marcescens, Salmonella enterica, Staphylococcus aureus, Enterobacter aerogenes) were grown on tryptic soy agar plates. Hyperspectral data were acquired immediately after, 24 hours after, and 96 hours after incubation. Spectral signatures from bacterial colonies demonstrated repeatable measurements for five out of six species. Spatial variations as well as changes in spectral signatures were observed across temporal measurements within and among species at multiple wavelengths due to strengthening or weakening reflectance signals from growing bacterial colonies based on their pigmentation. Between-class differences and within-class similarities were the most prominent in hyperspectral data collected 96 hours after incubation.

  2. Data for automated, high-throughput microscopy analysis of intracellular bacterial colonies using spot detection.

    PubMed

    Ernstsen, Christina L; Login, Frédéric H; Jensen, Helene H; Nørregaard, Rikke; Møller-Jensen, Jakob; Nejsum, Lene N

    2017-10-01

    Quantification of intracellular bacterial colonies is useful in strategies directed against bacterial attachment, subsequent cellular invasion and intracellular proliferation. An automated, high-throughput microscopy-method was established to quantify the number and size of intracellular bacterial colonies in infected host cells (Detection and quantification of intracellular bacterial colonies by automated, high-throughput microscopy, Ernstsen et al., 2017 [1]). The infected cells were imaged with a 10× objective and number of intracellular bacterial colonies, their size distribution and the number of cell nuclei were automatically quantified using a spot detection-tool. The spot detection-output was exported to Excel, where data analysis was performed. In this article, micrographs and spot detection data are made available to facilitate implementation of the method.

  3. Theoretical and Experimental Study of Bacterial Colony Growth in 3D

    NASA Astrophysics Data System (ADS)

    Shao, Xinxian; Mugler, Andrew; Nemenman, Ilya

    2014-03-01

    Bacterial cells growing in liquid culture have been well studied and modeled. However, in nature, bacteria often grow as biofilms or colonies in physically structured habitats. A comprehensive model for population growth in such conditions has not yet been developed. Based on the well-established theory for bacterial growth in liquid culture, we develop a model for colony growth in 3D in which a homogeneous colony of cells locally consume a diffusing nutrient. We predict that colony growth is initially exponential, as in liquid culture, but quickly slows to sub-exponential after nutrient is locally depleted. This prediction is consistent with our experiments performed with E. coli in soft agar. Our model provides a baseline to which studies of complex growth process, such as such as spatially and phenotypically heterogeneous colonies, must be compared.

  4. Detection and quantification of intracellular bacterial colonies by automated, high-throughput microscopy.

    PubMed

    Ernstsen, Christina L; Login, Frédéric H; Jensen, Helene H; Nørregaard, Rikke; Møller-Jensen, Jakob; Nejsum, Lene N

    2017-08-01

    To target bacterial pathogens that invade and proliferate inside host cells, it is necessary to design intervention strategies directed against bacterial attachment, cellular invasion and intracellular proliferation. We present an automated microscopy-based, fast, high-throughput method for analyzing size and number of intracellular bacterial colonies in infected tissue culture cells. Cells are seeded in 48-well plates and infected with a GFP-expressing bacterial pathogen. Following gentamicin treatment to remove extracellular pathogens, cells are fixed and cell nuclei stained. This is followed by automated microscopy and subsequent semi-automated spot detection to determine the number of intracellular bacterial colonies, their size distribution, and the average number per host cell. Multiple 48-well plates can be processed sequentially and the procedure can be completed in one working day. As a model we quantified intracellular bacterial colonies formed by uropathogenic Escherichia coli (UPEC) during infection of human kidney cells (HKC-8). Urinary tract infections caused by UPEC are among the most common bacterial infectious diseases in humans. UPEC can colonize tissues of the urinary tract and is responsible for acute, chronic, and recurrent infections. In the bladder, UPEC can form intracellular quiescent reservoirs, thought to be responsible for recurrent infections. In the kidney, UPEC can colonize renal epithelial cells and pass to the blood stream, either via epithelial cell disruption or transcellular passage, to cause sepsis. Intracellular colonies are known to be clonal, originating from single invading UPEC. In our experimental setup, we found UPEC CFT073 intracellular bacterial colonies to be heterogeneous in size and present in nearly one third of the HKC-8 cells. This high-throughput experimental format substantially reduces experimental time and enables fast screening of the intracellular bacterial load and cellular distribution of multiple

  5. Bacterial Colony from Two-Dimensional Division to Three-Dimensional Development

    PubMed Central

    Su, Pin-Tzu; Liao, Chih-Tang; Roan, Jiunn-Ren; Wang, Shao-Hung; Chiou, Arthur; Syu, Wan-Jr

    2012-01-01

    On agar surface, bacterial daughter cells form a 4-cell array after the first two rounds of division, and this phenomenon has been previously attributed to a balancing of interactions among the daughter bacteria and the underneath agar. We studied further the organization and development of colony after additional generations. By confocal laser scanning microscopy and real-time imaging, we observed that bacterial cells were able to self-organize and resulted in a near circular micro-colony consisting of monolayer cells. After continuous dividing, bacteria transited from two-dimensional expansion into three-dimensional growth and formed two to multi-layers in the center but retained a monolayer in the outer ring of the circular colony. The transverse width of this outer ring appeared to be approximately constant once the micro-colony reached a certain age. This observation supports the notion that balanced interplays of the forces involved lead to a gross morphology as the bacteria divide into offspring on agar surface. In this case, the result is due to a balance between the expansion force of the dividing bacteria, the non-covalent force among bacterial offspring and that between bacteria and substratum. PMID:23155376

  6. Communication-based regulated freedom of response in bacterial colonies

    NASA Astrophysics Data System (ADS)

    Ben-Jacob, Eshel; Shapira, Yoash; Becker, Israela; Raichman, Nadav; Volman, Vladislav; Hulata, Eyal; Baruchi, Itay

    2003-12-01

    Bacteria have developed intricate communication capabilities on all levels-the genome, the individual bacteria, the colony, and multi-colonial eco-systems of different bacterial species. All manner of biochemical messages are utilized for communication, including simple and complex abiotic molecules, peptides, proteins and even genetic sequences. These communication capabilities are required for bacterial cooperative self-organization into multicellular hierarchically structured colonies with complex spatio-temporal patterning. A colonial higher complexity is required for better colonial adaptability in a dynamic environment. The communication-based cooperative self-organization goes hand in hand with changes in cell structure and behavior. We identify two classes of such changes: (1) automatic and predetermined changes, which are triggered by inducive messages. (2) Regulated “decision-making” changes, which represent cellular regulated freedom of response to informative (semantic) messages. Each bacterium has internal degrees of freedom and informatics capabilities (storage, processing and interpretation of information). These features are required for the freedom of response in self-alteration (self-plasticity). Additionally, the cell can send messages to alter other bacteria in a self-regulated manner. To convert the above seemingly blurred notions into testable concepts we present the first steps towards quantification of colonial features associated with “regulated freedom”. For this we extract a binary representation of the observed patterns to show the existence of Lévy distributions with parameters that range from near the Cauchy limit to the Gaussian limit. The assumption about bacterial “regulated freedom” or “decision-making” appears in contradict the fundamental principle of time causality. We propose, that this apparent difficulty might be resolved by applying the recent understandings of biotic and abiotic self-organization, to the

  7. Construction of high-density bacterial colony arrays and patterns by the ink-jet method.

    PubMed

    Xu, Tao; Petridou, Sevastioni; Lee, Eric H; Roth, Elizabeth A; Vyavahare, Narendra R; Hickman, James J; Boland, Thomas

    2004-01-05

    We have developed a method for fabricating bacterial colony arrays and complex patterns using commercially available ink-jet printers. Bacterial colony arrays with a density of 100 colonies/cm(2) were obtained by directly ejecting Escherichia coli (E. coli) onto agar-coated substrates at a rapid arraying speed of 880 spots per second. Adjusting the concentration of bacterial suspensions allowed single colonies of viable bacteria to be obtained. In addition, complex patterns of viable bacteria as well as bacteria density gradients were constructed using desktop printers controlled by a simple software program. Copyright 2003 Wiley Periodicals, Inc.

  8. Development of a multispectral light-scatter sensor for bacterial colonies

    USDA-ARS?s Scientific Manuscript database

    We report a multispectral elastic-light-scatter instrument that can simultaneously detect three-wavelength scatter patterns and associated optical densities from individual bacterial colonies, overcoming the limits of the single-wavelength predecessor. Absorption measurements on liquid bacterial sam...

  9. Novel Perspectives on the Characterization of Species-Dependent Optical Signatures of Bacterial Colonies by Digital Holography.

    PubMed

    Buzalewicz, Igor; Kujawińska, Małgorzata; Krauze, Wojciech; Podbielska, Halina

    2016-01-01

    The use of light diffraction for the microbiological diagnosis of bacterial colonies was a significant breakthrough with widespread implications for the food industry and clinical practice. We previously confirmed that optical sensors for bacterial colony light diffraction can be used for bacterial identification. This paper is focused on the novel perspectives of this method based on digital in-line holography (DIH), which is able to reconstruct the amplitude and phase properties of examined objects, as well as the amplitude and phase patterns of the optical field scattered/diffracted by the bacterial colony in any chosen observation plane behind the object from single digital hologram. Analysis of the amplitude and phase patterns inside a colony revealed its unique optical properties, which are associated with the internal structure and geometry of the bacterial colony. Moreover, on a computational level, it is possible to select the desired scattered/diffracted pattern within the entire observation volume that exhibits the largest amount of unique, differentiating bacterial features. These properties distinguish this method from the already proposed sensing techniques based on light diffraction/scattering of bacterial colonies. The reconstructed diffraction patterns have a similar spatial distribution as the recorded Fresnel patterns, previously applied for bacterial identification with over 98% accuracy, but they are characterized by both intensity and phase distributions. Our results using digital holography provide new optical discriminators of bacterial species revealed in one single step in form of new optical signatures of bacterial colonies: digital holograms, reconstructed amplitude and phase patterns, as well as diffraction patterns from all observation space, which exhibit species-dependent features. To the best of our knowledge, this is the first report on bacterial colony analysis via digital holography and our study represents an innovative approach

  10. Novel Perspectives on the Characterization of Species-Dependent Optical Signatures of Bacterial Colonies by Digital Holography

    PubMed Central

    Buzalewicz, Igor; Kujawińska, Małgorzata; Krauze, Wojciech; Podbielska, Halina

    2016-01-01

    The use of light diffraction for the microbiological diagnosis of bacterial colonies was a significant breakthrough with widespread implications for the food industry and clinical practice. We previously confirmed that optical sensors for bacterial colony light diffraction can be used for bacterial identification. This paper is focused on the novel perspectives of this method based on digital in-line holography (DIH), which is able to reconstruct the amplitude and phase properties of examined objects, as well as the amplitude and phase patterns of the optical field scattered/diffracted by the bacterial colony in any chosen observation plane behind the object from single digital hologram. Analysis of the amplitude and phase patterns inside a colony revealed its unique optical properties, which are associated with the internal structure and geometry of the bacterial colony. Moreover, on a computational level, it is possible to select the desired scattered/diffracted pattern within the entire observation volume that exhibits the largest amount of unique, differentiating bacterial features. These properties distinguish this method from the already proposed sensing techniques based on light diffraction/scattering of bacterial colonies. The reconstructed diffraction patterns have a similar spatial distribution as the recorded Fresnel patterns, previously applied for bacterial identification with over 98% accuracy, but they are characterized by both intensity and phase distributions. Our results using digital holography provide new optical discriminators of bacterial species revealed in one single step in form of new optical signatures of bacterial colonies: digital holograms, reconstructed amplitude and phase patterns, as well as diffraction patterns from all observation space, which exhibit species-dependent features. To the best of our knowledge, this is the first report on bacterial colony analysis via digital holography and our study represents an innovative approach

  11. Buckling instability in ordered bacterial colonies

    NASA Astrophysics Data System (ADS)

    Boyer, Denis; Mather, William; Mondragón-Palomino, Octavio; Orozco-Fuentes, Sirio; Danino, Tal; Hasty, Jeff; Tsimring, Lev S.

    2011-04-01

    Bacterial colonies often exhibit complex spatio-temporal organization. This collective behavior is affected by a multitude of factors ranging from the properties of individual cells (shape, motility, membrane structure) to chemotaxis and other means of cell-cell communication. One of the important but often overlooked mechanisms of spatio-temporal organization is direct mechanical contact among cells in dense colonies such as biofilms. While in natural habitats all these different mechanisms and factors act in concert, one can use laboratory cell cultures to study certain mechanisms in isolation. Recent work demonstrated that growth and ensuing expansion flow of rod-like bacteria Escherichia coli in confined environments leads to orientation of cells along the flow direction and thus to ordering of cells. However, the cell orientational ordering remained imperfect. In this paper we study one mechanism responsible for the persistence of disorder in growing cell populations. We demonstrate experimentally that a growing colony of nematically ordered cells is prone to the buckling instability. Our theoretical analysis and discrete-element simulations suggest that the nature of this instability is related to the anisotropy of the stress tensor in the ordered cell colony.

  12. Automatic counting and classification of bacterial colonies using hyperspectral imaging

    USDA-ARS?s Scientific Manuscript database

    Detection and counting of bacterial colonies on agar plates is a routine microbiology practice to get a rough estimate of the number of viable cells in a sample. There have been a variety of different automatic colony counting systems and software algorithms mainly based on color or gray-scale pictu...

  13. Role of gravity in the formation of bacterial colonies with a hydrophobic surface layer

    NASA Astrophysics Data System (ADS)

    Puzyr, A. P.; Tirranen, L. K.; Krylova, T. Y.; Borodina, E. V.

    A simple technique for determining hydrophobic-hydrophilic properties of bacterial colonies surface, which involves putting a drop of liquid with known properties (e.g. water, oil) on their surface, has been described. This technique allows quick estimate of wettability of bacterial colony surface, i.e. its hydrophobic-hydrophilic properties. The behaviour of water drops on colonies of bacteria Bacillus five strains (of different types) has been studied. It was revealed that 1) orientation in the Earth gravity field during bacterial growth can define the form of colonies with hydrophobic surface; 2) the form and size of the colony are dependent on the extention ability, most probably, of the hydrophobic layer; 3) the Earth gravity field (gravity) serves as a 'pump' providing and keeping water within the colony. We suppose that at growing colonies on agar media the inflow of water-soluble nutrient materials takes place both due to diffusion processes and directed water current produced by the gravity. The revealed effect probably should be taken into consideration while constructing the models of colonies growing on dense nutrient media. The easily determined hydrophobic properties of colonies surface can become a systematic feature after collecting more extensive data on the surface hydrophobic-hydrophilic properties of microorganism colonies of other types and species.

  14. Spatiotemporal Self-Organization of Fluctuating Bacterial Colonies

    NASA Astrophysics Data System (ADS)

    Grafke, Tobias; Cates, Michael E.; Vanden-Eijnden, Eric

    2017-11-01

    We model an enclosed system of bacteria, whose motility-induced phase separation is coupled to slow population dynamics. Without noise, the system shows both static phase separation and a limit cycle, in which a rising global population causes a dense bacterial colony to form, which then declines by local cell death, before dispersing to reinitiate the cycle. Adding fluctuations, we find that static colonies are now metastable, moving between spatial locations via rare and strongly nonequilibrium pathways, whereas the limit cycle becomes almost periodic such that after each redispersion event the next colony forms in a random location. These results, which hint at some aspects of the biofilm-planktonic life cycle, can be explained by combining tools from large deviation theory with a bifurcation analysis in which the global population density plays the role of control parameter.

  15. Reflected scatterometry for noninvasive interrogation of bacterial colonies

    USDA-ARS?s Scientific Manuscript database

    A phenotyping of bacterial colonies on agar plates using forward-scattering diffraction-pattern analysis provided promising classification of several different bacteria such as Salmonella, Vibrio, Listeria, and E. coli. Since the technique is based on forward-scattering phenomena, light transmittanc...

  16. Direct detection of various pathogens by loop-mediated isothermal amplification assays on bacterial culture and bacterial colony.

    PubMed

    Yan, Muxia; Li, Weidong; Zhou, Zhenwen; Peng, Hongxia; Luo, Ziyan; Xu, Ling

    2017-01-01

    In this work, loop-mediated isothermal amplification based detection assay using bacterial culture and bacterial colony for various common pathogens direct detection had been established, evaluated and further applied. A total of five species of common pathogens and nine detection targets (tlh, tdh and trh for V. Parahaemolyticus, rfbE, stx1 and stx2 for E. coli, oprI for P. aeruginosa, invA for Salmonella and hylA for L. monocytogenes) were performed on bacterial culture and bacterial colony LAMP. To evaluate and optimize this assay, a total of 116 standard strains were included. Then, for each detected targets, 20 random selected strains were applied. Results were determined through both visual observation of the changed color by naked eye and electrophoresis, which increased the accuracy of survey. The minimum adding quantity of each primer had been confirmed, and the optimal amplification was obtained under 65 °C for 45 min with 25 μl reaction volume. The detection limit of bacterial culture LAMP and PCR assay were determined to be 10 2 and 10 4 or 10 5  CFU/reaction, respectively. No false positive amplification was observed when subjecting the bacterial -LAMP assay to 116 reference strains. This was the first report of colony-LAMP and culture-LAMP assay, which had been demonstrated to be a fast, reliable, cost-effective and simple method on detection of various common pathogens. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Viability of 3h grown bacterial micro-colonies after direct Raman identification.

    PubMed

    Mathey, R; Dupoy, M; Espagnon, I; Leroux, D; Mallard, F; Novelli-Rousseau, A

    2015-02-01

    Clinical diagnostics in routine microbiology still mostly relies on bacterial growth, a time-consuming process that prevents test results to be used directly as key decision-making elements for therapeutic decisions. There is some evidence that Raman micro-spectroscopy provides clinically relevant information from a limited amount of bacterial cells, thus holding the promise of reduced growth times and accelerated result delivery. Indeed, bacterial identification at the species level directly from micro-colonies at an early time of growth (6h) directly on their growth medium has been demonstrated. However, such analysis is suspected to be partly destructive and could prevent the further growth of the colony needed for other tests, e.g. antibiotic susceptibility testing (AST). In the present study, we evaluated the effect of the powerful laser excitation used for Raman identification on micro-colonies probed after very short growth times. We show here, using envelope integrity markers (Syto 9 and Propidium Iodide) directly on ultra-small micro-colonies of a few tens of Escherichia coli and Staphylococcus epidermidis cells (3h growth time), that only the cells that are directly impacted by the laser lose their membrane integrity. Growth kinetics experiments show that the non-probed surrounding cells are sometimes also affected but that the micro-colonies keep their ability to grow, resulting in normal aspect and size of colonies after 15h of growth. Thus, Raman spectroscopy could be used for very early (<3h) identification of grown micro-organisms without impairing further antibiotics susceptibility characterization steps. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Bacterial body plans: Colony ontogeny in Serratia marcescens.

    PubMed

    Rieger, Tomás; Neubauer, Zdenek; Blahůsková, Anna; Cvrcková, Fatima; Markos, Anton

    2008-01-01

    The bacterium Serratia marcescens produces a plethora of multicellular shapes of different colorations on solid substrates, allowing immediate visual detection of varieties. Such a plasticity allows studies on multicellular community scale spanning two extremes, from well-elaborated individual colonies to undifferentiated cell mass.For a single strain and medium, we obtained a range of different multicellular bodies, depending on the layout of initial plating. Four principal factors affecting the morphogenetic pathways of such bodies can be distinguished: (1) amount, density and distribution pattern of founder cells; (2) the configuration of surrounding free medium; (3) the presence and character of other bacterial bodies sharing the same niche; and (4) self-perception, resulting in delimitation towards other bodies. The last feature results in an ability of well-formed multicellular individuals to maintain their identity upon a close mutual contact, as well as in spontaneous separation of cell masses in experimental chimeras. We propose an "embryo-like" colony model where multicellular bacterial bodies develop along genuine ontogenetic pathways inherent to the given species (clone), while external shaping forces (like nutrient gradients, pH, etc.,) exert not formative, but only regulative roles in the process.

  19. Extinction transition in bacterial colonies under forced convection

    NASA Astrophysics Data System (ADS)

    Neicu, T.; Pradhan, A.; Larochelle, D. A.; Kudrolli, A.

    2000-07-01

    We report the spatiotemporal response of Bacillus subtilis growing on a nutrient-rich layer of agar to ultraviolet (UV) radiation. Below a crossover temperature, the bacteria are confined to regions that are shielded from UV radiation. A forced convection of the population is effected by rotating a UV radiation shield relative to the Petri dish. The extinction speed at which the bacterial colony lags behind the shield is found to be qualitatively similar to the front velocity of the colony growing in the absence of a hostile environment as predicted by the model of Dahmen, Nelson, and Shnerb. A quantitative comparison is not possible without considering the slow dynamics and time-dependent interaction of the population with the hostile environment.

  20. Exploring bacterial infections: theoretical and experimental studies of the bacterial population dynamics and antibiotic treatment

    NASA Astrophysics Data System (ADS)

    Shao, Xinxian

    Bacterial infections are very common in human society. Thus extensive research has been conducted to reveal the molecular mechanisms of the pathogenesis and to evaluate the antibiotics' efficacy against bacteria. Little is known, however, about the population dynamics of bacterial populations and their interactions with the host's immune system. In this dissertation, a stochatic model is developed featuring stochastic phenotypic switching of bacterial individuals to explain the single-variant bottleneck discovered in multi strain bacterial infections. I explored early events in a bacterial infection establishment using classical experiments of Moxon and Murphy on neonatal rats. I showed that the minimal model and its simple variants do not work. I proposed modifications to the model that could explain the data quantitatively. The bacterial infections are also commonly established in physical structures, as biofilms or 3-d colonies. In contrast, most research on antibiotic treatment of bacterial infections has been conducted in well-mixed liquid cultures. I explored the efficacy of antibiotics to treat such bacterial colonies, a broadly applicable method is designed and evaluated where discrete bacterial colonies on 2-d surfaces were exposed to antibiotics. I discuss possible explanations and hypotheses for the experimental results. To verify these hypotheses, we investigated the dynamics of bacterial population as 3-d colonies. We showed that a minimal mathematical model of bacterial colony growth in 3-d was able to account for the experimentally observed presence of a diffusion-limited regime. The model further revealed highly loose packing of the cells in 3-d colonies and smaller cell sizes in colonies than plancktonic cells in corresponding liquid culture. Further experimental tests of the model predictions have revealed that the ratio of the cell size in liquid culture to that in colony cultures was consistent with the model prediction, that the dead cells

  1. [Analysis of bacterial small-colony variants isolated from clinical specimens].

    PubMed

    Matsumoto, Takehisa

    2014-07-01

    There is a slow-growing subpopulation of bacteria with distinctive phenotypic and pathogenic traits called bacterial small-colony variants (SCVs). Phenotypically, SCVs show a slow growth rate, atypical colony morphology, and unusual biochemical characteristics. SCV strains often grow on blood agar or Drigalski agar as non-pigmented or pinpoint pigmented colonies, and key biochemical tests for them are often non-reactive. This review describes analyses of hemin-dependent Escherichia coli SCV and Staphylococcus aureus thymidine-dependent SCVs based on our case reports. Because SCVs exhibit fastidious growth characteristics, clinical microbiologists may easily miss or misidentify them in the clinical laboratory. Therefore, we must elucidate the cause of SCVs, and improve laboratory methods for the identification and assessment of the susceptibility of SCVs in the clinical laboratory.

  2. Cooperation, competition and antibiotic resistance in bacterial colonies.

    PubMed

    Frost, Isabel; Smith, William P J; Mitri, Sara; Millan, Alvaro San; Davit, Yohan; Osborne, James M; Pitt-Francis, Joe M; MacLean, R Craig; Foster, Kevin R

    2018-06-01

    Bacteria commonly live in dense and genetically diverse communities associated with surfaces. In these communities, competition for resources and space is intense, and yet we understand little of how this affects the spread of antibiotic-resistant strains. Here, we study interactions between antibiotic-resistant and susceptible strains using in vitro competition experiments in the opportunistic pathogen Pseudomonas aeruginosa and in silico simulations. Selection for intracellular resistance to streptomycin is very strong in colonies, such that resistance is favoured at very low antibiotic doses. In contrast, selection for extracellular resistance to carbenicillin is weak in colonies, and high doses of antibiotic are required to select for resistance. Manipulating the density and spatial structure of colonies reveals that this difference is partly explained by the fact that the local degradation of carbenicillin by β-lactamase-secreting cells protects neighbouring sensitive cells from carbenicillin. In addition, we discover a second unexpected effect: the inducible elongation of cells in response to carbenicillin allows sensitive cells to better compete for the rapidly growing colony edge. These combined effects mean that antibiotic treatment can select against antibiotic-resistant strains, raising the possibility of treatment regimes that suppress sensitive strains while limiting the rise of antibiotic resistance. We argue that the detailed study of bacterial interactions will be fundamental to understanding and overcoming antibiotic resistance.

  3. Developmental plasticity of bacterial colonies and consortia in germ-free and gnotobiotic settings

    PubMed Central

    2012-01-01

    Background Bacteria grown on semi-solid media can build two types of multicellular structures, depending on the circumstances. Bodies (colonies) arise when a single clone is grown axenically (germ-free), whereas multispecies chimeric consortia contain monoclonal microcolonies of participants. Growth of an axenic colony, mutual interactions of colonies, and negotiation of the morphospace in consortial ecosystems are results of intricate regulatory and metabolic networks. Multicellular structures developed by Serratia sp. are characteristically shaped and colored, forming patterns that reflect their growth conditions (in particular medium composition and the presence of other bacteria). Results Building on our previous work, we developed a model system for studying ontogeny of multicellular bacterial structures formed by five Serratia sp. morphotypes of two species grown in either "germ-free" or "gnotobiotic" settings (i.e. in the presence of bacteria of other conspecific morphotype, other Serratia species, or E. coli). Monoclonal bodies show regular and reproducible macroscopic appearance of the colony, as well as microscopic pattern of its growing margin. Standard development can be modified in a characteristic and reproducible manner in close vicinity of other bacterial structures (or in the presence of their products). Encounters of colonies with neighbors of a different morphotype or species reveal relationships of dominance, cooperation, or submission; multiple interactions can be summarized in "rock – paper – scissors" network of interrelationships. Chimerical (mixed) plantings consisting of two morphotypes usually produced a “consortium” whose structure is consistent with the model derived from interaction patterns observed in colonies. Conclusions Our results suggest that development of a bacterial colony can be considered analogous to embryogenesis in animals, plants, or fungi: to proceed, early stages require thorough insulation from the rest of

  4. Mechanical interactions in bacterial colonies and the surfing probability of beneficial mutations

    PubMed Central

    Farrell, Fred D.

    2017-01-01

    Bacterial conglomerates such as biofilms and microcolonies are ubiquitous in nature and play an important role in industry and medicine. In contrast to well-mixed cultures routinely used in microbial research, bacteria in a microcolony interact mechanically with one another and with the substrate to which they are attached. Here, we use a computer model of a microbial colony of rod-shaped cells to investigate how physical interactions between cells determine their motion in the colony and how this affects biological evolution. We show that the probability that a faster-growing mutant ‘surfs’ at the colony's frontier and creates a macroscopic sector depends on physical properties of cells (shape, elasticity and friction). Although all these factors contribute to the surfing probability in seemingly different ways, their effects can be summarized by two summary statistics that characterize the front roughness and cell alignment. Our predictions are confirmed by experiments in which we measure the surfing probability for colonies of different front roughness. Our results show that physical interactions between bacterial cells play an important role in biological evolution of new traits, and suggest that these interactions may be relevant to processes such as de novo evolution of antibiotic resistance. PMID:28592660

  5. Mechanical interactions in bacterial colonies and the surfing probability of beneficial mutations.

    PubMed

    Farrell, Fred D; Gralka, Matti; Hallatschek, Oskar; Waclaw, Bartlomiej

    2017-06-01

    Bacterial conglomerates such as biofilms and microcolonies are ubiquitous in nature and play an important role in industry and medicine. In contrast to well-mixed cultures routinely used in microbial research, bacteria in a microcolony interact mechanically with one another and with the substrate to which they are attached. Here, we use a computer model of a microbial colony of rod-shaped cells to investigate how physical interactions between cells determine their motion in the colony and how this affects biological evolution. We show that the probability that a faster-growing mutant 'surfs' at the colony's frontier and creates a macroscopic sector depends on physical properties of cells (shape, elasticity and friction). Although all these factors contribute to the surfing probability in seemingly different ways, their effects can be summarized by two summary statistics that characterize the front roughness and cell alignment. Our predictions are confirmed by experiments in which we measure the surfing probability for colonies of different front roughness. Our results show that physical interactions between bacterial cells play an important role in biological evolution of new traits, and suggest that these interactions may be relevant to processes such as de novo evolution of antibiotic resistance. © 2017 The Author(s).

  6. Quantitative spectral light scattering polarimetry for monitoring fractal growth pattern of Bacillus thuringiensis bacterial colonies

    NASA Astrophysics Data System (ADS)

    Banerjee, Paromita; Soni, Jalpa; Ghosh, Nirmalya; Sengupta, Tapas K.

    2013-02-01

    It is of considerable current interest to develop various methods which help to understand and quantify the cellular association in growing bacterial colonies and is also important in terms of detection and identification of a bacterial species. A novel approach is used here to probe the morphological structural changes occurring during the growth of the bacterial colony of Bacillus thuringiensis under different environmental conditions (in normal nutrient agar, in presence of glucose - acting as additional nutrient and additional 3mM arsenate as additional toxic material). This approach combines the quantitative Mueller matrix polarimetry to extract intrinsic polarization properties and inverse analysis of the polarization preserving part of the light scattering spectra to determine the fractal parameter H (Hurst exponent) using Born approximation. Interesting differences are observed in the intrinsic polarization parameters and also in the Hurst exponent, which is a measurement of the fractality of a pattern formed by bacteria while growing as a colony. These findings are further confirmed with optical microscopic studies of the same sample and the results indicate a very strong and distinct dependence on the environmental conditions during growth, which can be exploited to quantify different bacterial species and their growth patterns.

  7. Biophysical modeling of forward scattering from bacterial colonies using scalar diffraction theory

    NASA Astrophysics Data System (ADS)

    Bae, Euiwon; Banada, Padmapriya P.; Huff, Karleigh; Bhunia, Arun K.; Robinson, J. Paul; Hirleman, E. Daniel

    2007-06-01

    A model for forward scattering from bacterial colonies is presented. The colonies of interest consist of approximately 1012-1013 individual bacteria densely packed in a configuration several millimeters in diameter and approximately 0.1-0.2 mm in thickness. The model is based on scalar diffraction theory and accounts for amplitude and phase modulation created by three macroscopic properties of the colonies: phase modulation due to the surface topography, phase modulation due to the radial structure observed from some strains and species, and diffraction from the outline of the colony. Phase contrast and confocal microscopy were performed to provide quantitative information on the shape and internal structure of the colonies. The computed results showed excellent agreement with the experimental scattering data for three different Listeria species: Listeria innocua, Listeria ivanovii, and Listeria monocytogenes. The results provide a physical explanation for the unique and distinctive scattering signatures produced by colonies of closely related Listeria species and support the efficacy of forward scattering for rapid detection and classification of pathogens without tagging.

  8. The Arctic Soil Bacterial Communities in the Vicinity of a Little Auk Colony

    PubMed Central

    Zielińska, Sylwia; Kidawa, Dorota; Stempniewicz, Lech; Łoś, Marcin; Łoś, Joanna M.

    2016-01-01

    Due to deposition of birds' guano, eggshells or feathers, the vicinity of a large seabirds' breeding colony is expected to have a substantial impact on the soil's physicochemical features as well as on diversity of vegetation and the soil invertebrates. Consequently, due to changing physicochemical features the structure of bacterial communities might fluctuate in different soil environments. The aim of this study was to investigate the bacterial assemblages in the Arctic soil within the area of a birds' colony and in a control sample from a topographically similar location but situated away from the colony's impact area. A high number of OTUs found in both areas indicates a highly complex microbial populations structure. The most abundant phyla in both of the tested samples were: Proteobacteria, Acidobacteria, Actinobacteria, and Chloroflexi, with different proportions in the total share. Despite differences in the physicochemical soil characteristics, the soil microbial community structures at the phylum level were similar to some extent in the two samples. The only share that was significantly higher in the control area when compared to the sample obtained within the birds' colony, belonged to the Actinobacteria phylum. Moreover, when analyzing the class level for each phylum, several differences between the samples were observed. Furthermore, lower proportions of Proteobacteria and Acidobacteria were observed in the soil sample under the influence of the bird's colony, which most probably could be linked to higher nitrogen concentrations in that sample. PMID:27667982

  9. Holotransformations of bacterial colonies and genome cybernetics

    NASA Astrophysics Data System (ADS)

    Ben-Jacob, Eshel; Tenenbaum, Adam; Shochet, Ofer; Avidan, Orna

    1994-01-01

    We present a study of colony transformations during growth of Bacillus subtilis under adverse environmental conditions. It is a continuation of our pilot study of “Adaptive self-organization during growth of bacterial colonies” (Physica A 187 (1992) 378). First we identify and describe the transformations pathway, i.e. the excitation of the branching modes from Bacillus subtilis 168 (grown under diffusion limited conditions) and the phase transformations between the tip-splitting phase (phase T) and the chiral phase (phase C) which belong to the same mode. This pathway shows the evolution of complexity as the bacteria are exposed to adverse growth conditions. We present the morphology diagram of phases T and C as a function of agar concentration and pepton level. As expected, the growth of phase T is ramified (fractal-like or DLA-like) at low pepton level (about 1 g/1) and turns compact at high pepton level (about 10 g/1). The growth of phase C is also ramified at low pepton level and turns denser and finally compact as the pepton level increases. Generally speaking, the colonies develop more complex patterns and higher micro-level organization for more adverse environments. We use the growth velocity as a response function to describe the growth. At low agar concentration (and low pepton level) phase C grows faster than phase T, and for a high agar concentration (about 2%) phase T grows faster. We observe colony transformations between the two phases (phase transformations). They are found to be consistent with the “fastest growing morphology” selection principle adopted from azoic systems. The transformations are always from the slower phase to the faster one. Hence, we observe T→ C transformations at low agar concentrations and C→ T transformations at high agar concentrations. We have observed both localized and extended transformations. Usually, the transformations are localized for more adverse growth conditions, and extended for growth conditions

  10. Dynamical Properties of Transient Spatio-Temporal Patterns in Bacterial Colony of Proteus mirabilis

    NASA Astrophysics Data System (ADS)

    Watanabe, Kazuhiko; Wakita, Jun-ichi; Itoh, Hiroto; Shimada, Hirotoshi; Kurosu, Sayuri; Ikeda, Takemasa; Yamazaki, Yoshihiro; Matsuyama, Tohey; Matsushita, Mitsugu

    2002-02-01

    Spatio-temporal patterns emerged inside a colony of bacterial species Proteus mirabilis on the surface of nutrient-rich semisolid agar medium have been investigated. We observed various patterns composed of the following basic types: propagating stripe, propagating stripe with fixed dislocation, expanding and shrinking target, and rotating spiral. The remarkable point is that the pattern changes immediately when we alter the position for observation, but it returns to the original if we restore the observing position within a few minutes. We further investigated mesoscopic and microscopic properties of the spatio-temporal patterns. It turned out that whenever the spatio-temporal patterns are observed in a colony, the areas are composed of two superimposed monolayers of elongated bacterial cells. In each area they are aligned almost parallel with each other like a two-dimensional nematic liquid crystal, and move collectively and independently of another layer. It has been found that the observed spatio-temporal patterns are explained as the moiré effect.

  11. Multiscale modeling of bacterial colonies: how pili mediate the dynamics of single cells and cellular aggregates

    NASA Astrophysics Data System (ADS)

    Pönisch, Wolfram; Weber, Christoph A.; Juckeland, Guido; Biais, Nicolas; Zaburdaev, Vasily

    2017-01-01

    Neisseria gonorrhoeae is the causative agent of one of the most common sexually transmitted diseases, gonorrhea. Over the past two decades there has been an alarming increase of reported gonorrhea cases where the bacteria were resistant to the most commonly used antibiotics thus prompting for alternative antimicrobial treatment strategies. The crucial step in this and many other bacterial infections is the formation of microcolonies, agglomerates consisting of up to several thousands of cells. The attachment and motility of cells on solid substrates as well as the cell-cell interactions are primarily mediated by type IV pili, long polymeric filaments protruding from the surface of cells. While the crucial role of pili in the assembly of microcolonies has been well recognized, the exact mechanisms of how they govern the formation and dynamics of microcolonies are still poorly understood. Here, we present a computational model of individual cells with explicit pili dynamics, force generation and pili-pili interactions. We employ the model to study a wide range of biological processes, such as the motility of individual cells on a surface, the heterogeneous cell motility within the large cell aggregates, and the merging dynamics and the self-assembly of microcolonies. The results of numerical simulations highlight the central role of pili generated forces in the formation of bacterial colonies and are in agreement with the available experimental observations. The model can quantify the behavior of multicellular bacterial colonies on biologically relevant temporal and spatial scales and can be easily adjusted to include the geometry and pili characteristics of various bacterial species. Ultimately, the combination of the microbiological experimental approach with the in silico model of bacterial colonies might provide new qualitative and quantitative insights on the development of bacterial infections and thus pave the way to new antimicrobial treatments.

  12. Deadly competition between sibling bacterial colonies

    PubMed Central

    Be'er, Avraham; Zhang, H. P.; Florin, E.-L.; Payne, Shelley M.; Ben-Jacob, Eshel; Swinney, Harry L.

    2009-01-01

    Bacteria can secrete a wide array of antibacterial compounds when competing with other bacteria for the same resources. Some of these compounds, such as bacteriocins, can affect bacteria of similar or closely related strains. In some cases, these secretions have been found to kill sibling cells that belong to the same colony. Here, we present experimental observations of competition between 2 sibling colonies of Paenibacillus dendritiformis grown on a low-nutrient agar gel. We find that neighboring colonies (growing from droplet inoculation) mutually inhibit growth through secretions that become lethal if the level exceeds a well-defined threshold. In contrast, within a single colony developing from a droplet inoculation, no growth inhibition is observed. However, growth inhibition and cell death are observed if material extracted from the agar between 2 growing colonies is introduced outside a growing single colony. To interpret the observations, we devised a simple mathematical model for the secretion of an antibacterial compound. Simulations of this model illustrate how secretions from neighboring colonies can be deadly, whereas secretions from a single colony growing from a droplet are not. PMID:19129489

  13. Phase transition of traveling waves in bacterial colony pattern

    NASA Astrophysics Data System (ADS)

    Wakano, Joe Yuichiro; Komoto, Atsushi; Yamaguchi, Yukio

    2004-05-01

    Depending on the growth condition, bacterial colonies can exhibit different morphologies. Many previous studies have used reaction diffusion equations to reproduce spatial patterns. They have revealed that nonlinear reaction term can produce diverse patterns as well as nonlinear diffusion coefficient. Typical reaction term consists of nutrient consumption, bacterial reproduction, and sporulation. Among them, the functional form of sporulation rate has not been biologically investigated. Here we report experimentally measured sporulation rate. Then, based on the result, a reaction diffusion model is proposed. One-dimensional simulation showed the existence of traveling wave solution. We study the wave form as a function of the initial nutrient concentration and find two distinct types of solution. Moreover, transition between them is very sharp, which is analogous to phase transition. The velocity of traveling wave also shows sharp transition in nonlinear diffusion model, which is consistent with the previous experimental result. The phenomenon can be explained by separatrix in reaction term dynamics. Results of two-dimensional simulation are also shown and discussed.

  14. Periodic Pattern Formation of Bacterial Colonies

    NASA Astrophysics Data System (ADS)

    Itoh, Hiroto; Wakita, Jun-ichi; Matsuyama, Tohey; Matsushita, Mitsugu

    1999-04-01

    We have experimentally investigated pattern formation of colonies ofbacterial species Proteus mirabilis, which is famous forforming concentric-ring-like colonies.The colony grows cyclically with the interface repeating an advance anda stop alternately on a surface of a solid agar medium.We distinguish three phases (initial lag phase, the followingmigration and consolidation phases that appear alternately) for the colony growth.When we cut a colony just behind a migrating front shortly after the migrationstarted, the migration ended earlier and the following consolidationlasted longer.However, the following cycles were not influenced by the cut, i.e., thephases of the migration and consolidation were not affected.Global chemical signals governing the colony formation from thecenter were not found to exist.We also quantitatively checked phase entrainment by letting two coloniescollide with each other and found that it does not take place in macroscopic scales.All these experimental results suggest that the most important factorfor the migration is the cell population density.

  15. Large Scale Bacterial Colony Screening of Diversified FRET Biosensors

    PubMed Central

    Litzlbauer, Julia; Schifferer, Martina; Ng, David; Fabritius, Arne; Thestrup, Thomas; Griesbeck, Oliver

    2015-01-01

    Biosensors based on Förster Resonance Energy Transfer (FRET) between fluorescent protein mutants have started to revolutionize physiology and biochemistry. However, many types of FRET biosensors show relatively small FRET changes, making measurements with these probes challenging when used under sub-optimal experimental conditions. Thus, a major effort in the field currently lies in designing new optimization strategies for these types of sensors. Here we describe procedures for optimizing FRET changes by large scale screening of mutant biosensor libraries in bacterial colonies. We describe optimization of biosensor expression, permeabilization of bacteria, software tools for analysis, and screening conditions. The procedures reported here may help in improving FRET changes in multiple suitable classes of biosensors. PMID:26061878

  16. Pyrite discs in coal: evidence for fossilized bacterial colonies

    USGS Publications Warehouse

    Southam, G.; Donald, R.; Rostad, A.; Brock, C.

    2001-01-01

    Discs of pyrite from 1 to 3 mm in diameter and ∼100 μm thick were observed within fracture planes in coal from the Black Mesa coal deposit in northeastern Arizona. The pyrite discs were composed of aggregates of crystals, which suggested that sulfide mineral diagenesis had initiated at multiple nucleation sites and occurred prior to the compaction forces occurring during coal formation. Stable sulfur isotope analysis of the discs (δ34S = −31.7‰) supports a bacterial origin resulting from dissimilatory sulfate reduction. Fossilized bacteria on the disc surfaces (average = 27/100 μm2) appeared as halos when viewed using reflected light microscopy, but were lenticular by scanning electron microscopy, each microfossil being 2–3 μm in length. A fossilized bacterial colony (pyrite disc), 1 mm in diameter, would contain ∼2.1 × 107 microfossils. These microfossils were not observed on hydrothermal pyrite. Coating and in-filling of sulfate-reducing bacteria with iron disulfide during in vitro sulfide mineral diagenesis provide mechanisms to explain the preservation of the three-dimensional lenticular microfossils observed on the pyrite discs.

  17. MorphoCol: An ontology-based knowledgebase for the characterisation of clinically significant bacterial colony morphologies.

    PubMed

    Sousa, Ana Margarida; Pereira, Maria Olívia; Lourenço, Anália

    2015-06-01

    One of the major concerns of the biomedical community is the increasing prevalence of antimicrobial resistant microorganisms. Recent findings show that the diversification of colony morphology may be indicative of the expression of virulence factors and increased resistance to antibiotic therapeutics. To transform these findings, and upcoming results, into a valuable clinical decision making tool, colony morphology characterisation should be standardised. Notably, it is important to establish the minimum experimental information necessary to contextualise the environment that originated the colony morphology, and describe the main morphological features associated unambiguously. This paper presents MorphoCol, a new ontology-based tool for the standardised, consistent and machine-interpretable description of the morphology of colonies formed by human pathogenic bacteria. The Colony Morphology Ontology (CMO) is the first controlled vocabulary addressing the specificities of the morphology of clinically significant bacteria, whereas the MorphoCol publicly Web-accessible knowledgebase is an end-user means to search and compare CMO annotated colony morphotypes. Its ultimate aim is to help correlate the morphological alterations manifested by colony-forming bacteria during infection with their response to the antimicrobial treatments administered. MorphoCol is the first tool to address bacterial colony morphotyping systematically and deliver a free of charge resource to the community. Hopefully, it may introduce interesting features of analysis on pathogenic behaviour and play a significant role in clinical decision making. http://morphocol.org. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Growth of bacteria in 3-d colonies

    PubMed Central

    Mugler, Andrew; Kim, Justin

    2017-01-01

    The dynamics of growth of bacterial populations has been extensively studied for planktonic cells in well-agitated liquid culture, in which all cells have equal access to nutrients. In the real world, bacteria are more likely to live in physically structured habitats as colonies, within which individual cells vary in their access to nutrients. The dynamics of bacterial growth in such conditions is poorly understood, and, unlike that for liquid culture, there is not a standard broadly used mathematical model for bacterial populations growing in colonies in three dimensions (3-d). By extending the classic Monod model of resource-limited population growth to allow for spatial heterogeneity in the bacterial access to nutrients, we develop a 3-d model of colonies, in which bacteria consume diffusing nutrients in their vicinity. By following the changes in density of E. coli in liquid and embedded in glucose-limited soft agar, we evaluate the fit of this model to experimental data. The model accounts for the experimentally observed presence of a sub-exponential, diffusion-limited growth regime in colonies, which is absent in liquid cultures. The model predicts and our experiments confirm that, as a consequence of inter-colony competition for the diffusing nutrients and of cell death, there is a non-monotonic relationship between total number of colonies within the habitat and the total number of individual cells in all of these colonies. This combined theoretical-experimental study reveals that, within 3-d colonies, E. coli cells are loosely packed, and colonies produce about 2.5 times as many cells as the liquid culture from the same amount of nutrients. We verify that this is because cells in liquid culture are larger than in colonies. Our model provides a baseline description of bacterial growth in 3-d, deviations from which can be used to identify phenotypic heterogeneities and inter-cellular interactions that further contribute to the structure of bacterial

  19. New Paenibacillus larvae bacterial isolates from honey bee colonies infected with American foulbrood disease in Egypt.

    PubMed

    Masry, Saad Hamdy Daif; Kabeil, Sanaa Soliman; Hafez, Elsayed Elsayed

    2014-03-04

    The American foulbrood disease is widely distributed all over the world and causes a serious problem for the honeybee industry. Different infected larvae were collected from different apiaries, ground in phosphate saline buffer (PSB) and bacterial isolation was carried out on nutrient agar medium. Different colonies were observed and were characterized biologically. Two bacterial isolates (SH11 and SH33) were subjected to molecular identification using 16S rRNA gene and the sequence analysis revealed that the two isolates are Paenibacillus larvae with identity not exceeding 83%. The DNA sequence alignment between the other P. larvae bacterial strains and the two identified bacterial isolates showed that all the examined bacterial strains have the same ancestor, i.e. they have the same origin. The SH33 isolate was closely related to the P. larvae isolated from Germany, whereas the isolate SH11 was close to the P. larvae isolated from India. The phylogenetic tree constructed for 20 different Bacillus sp. and the two isolates SH11 and SH33 demonstrated that the two isolates are Bacillus sp. and they are new isolates. The bacterial isolates will be subjected to more tests for more confirmations.

  20. Viability of honeybee colonies exposed to sunflowers grown from seeds treated with the neonicotinoids thiamethoxam and clothianidin.

    PubMed

    Hernando, M Dolores; Gámiz, Victoria; Gil-Lebrero, Sergio; Rodríguez, Inmaculada; García-Valcárcel, Ana I; Cutillas, V; Fernández-Alba, Amadeo R; Flores, José M

    2018-07-01

    In this study, honeybee colonies were monitored in a field study conducted on sunflowers grown from seeds treated with the systemic neonicotinoids thiamethoxam or clothianidin. This field trial was carried out in different representative growing areas in Spain over a beekeeping season. The health and development of the colonies was assessed by measuring factors that have a significant influence on their strength and overwintering ability. The parameters assessed were: colony strength (adult bees), brood development, amount of pollen and honey stores and presence and status of the queen. The concentration of residues (clothianidin and thiamethoxam) in samples of beebread and in adult bees was at the level of ng.g -1 ; in the ranges of 0.10-2.89 ng g -1 and 0.05-0.12 ng g -1 ; 0.10-0.37 ng g -1 and 0.01-0.05 ng g -1 , respectively. Multivariate models were applied to evaluate the interaction among factors. No significant differences were found between the honeybee colonies of the different treatment groups, either exposed or not to the neonicotinoids. The seasonal development of the colonies was affected by the environmental conditions which, together with the initial strength of the bee colonies and the characteristics of the plots, had a significant effect on the different variables studied. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. A quantitative test of population genetics using spatiogenetic patterns in bacterial colonies.

    PubMed

    Korolev, Kirill S; Xavier, João B; Nelson, David R; Foster, Kevin R

    2011-10-01

    It is widely accepted that population-genetics theory is the cornerstone of evolutionary analyses. Empirical tests of the theory, however, are challenging because of the complex relationships between space, dispersal, and evolution. Critically, we lack quantitative validation of the spatial models of population genetics. Here we combine analytics, on- and off-lattice simulations, and experiments with bacteria to perform quantitative tests of the theory. We study two bacterial species, the gut microbe Escherichia coli and the opportunistic pathogen Pseudomonas aeruginosa, and show that spatiogenetic patterns in colony biofilms of both species are accurately described by an extension of the one-dimensional stepping-stone model. We use one empirical measure, genetic diversity at the colony periphery, to parameterize our models and show that we can then accurately predict another key variable: the degree of short-range cell migration along an edge. Moreover, the model allows us to estimate other key parameters, including effective population size (density) at the expansion frontier. While our experimental system is a simplification of natural microbial community, we argue that it constitutes proof of principle that the spatial models of population genetics can quantitatively capture organismal evolution.

  2. Chemotactic-based adaptive self-organization during colonial development

    NASA Astrophysics Data System (ADS)

    Cohen, Inon; Czirók, Andras; Ben-Jacob, Eshel

    1996-02-01

    Bacterial colonies have developed sophisticated modes of cooperative behavior which enable them to respond to adverse growth conditions. It has been shown that such behavior can be manifested in the development of complex colonial patterns. Certain bacterial species exhibit formation of branching patterns during colony development. Here we present a generic model to describe such patterning of swimming (tumbling) bacteria on agar surfaces. The model incorporates: (1) food diffusion, (2) reproduction and sporulation of the cells, (3) movement of the bacterial cells within a self-produced wetting fluid and (4) chemotactic signaling. As a plausible explanation for transitions between different branching morphologies, we propose an interplay between chemotaxis towards food, self-produced short range chemoattractant and long range chemorepellent.

  3. Morphological Diversity of the Colony Produced by Bacteria Proteus mirabilis

    NASA Astrophysics Data System (ADS)

    Nakahara, Akio; Shimada, Yuji; Wakita, Jun-ichi; Matsushita, Mitsugu; Matsuyama, Tohey

    1996-08-01

    Morphological changes of colonies have been investigatedfor a bacterial strain of Proteus mirabilis, which is a famous speciesfor producing concentric-ring-like colonies. It was found that colony patterns can be classified into three types,i.e., cyclic spreading, diffusion-limited growth (DLA-like)and three-dimensional growth (inside the agar medium) patterns. Cyclic spreading patterns can further be classifiedinto three subgroups, i.e., concentric-ring, homogeneous and spatiotemporal patterns. These subgroups were classified by examining the development of colony structure after colonies spread all over petri-dishes. Comparison of the results with thoseof another bacterial species Bacillus subtilis is also discussed.

  4. Artificial Symmetry-Breaking for Morphogenetic Engineering Bacterial Colonies.

    PubMed

    Nuñez, Isaac N; Matute, Tamara F; Del Valle, Ilenne D; Kan, Anton; Choksi, Atri; Endy, Drew; Haseloff, Jim; Rudge, Timothy J; Federici, Fernan

    2017-02-17

    Morphogenetic engineering is an emerging field that explores the design and implementation of self-organized patterns, morphologies, and architectures in systems composed of multiple agents such as cells and swarm robots. Synthetic biology, on the other hand, aims to develop tools and formalisms that increase reproducibility, tractability, and efficiency in the engineering of biological systems. We seek to apply synthetic biology approaches to the engineering of morphologies in multicellular systems. Here, we describe the engineering of two mechanisms, symmetry-breaking and domain-specific cell regulation, as elementary functions for the prototyping of morphogenetic instructions in bacterial colonies. The former represents an artificial patterning mechanism based on plasmid segregation while the latter plays the role of artificial cell differentiation by spatial colocalization of ubiquitous and segregated components. This separation of patterning from actuation facilitates the design-build-test-improve engineering cycle. We created computational modules for CellModeller representing these basic functions and used it to guide the design process and explore the design space in silico. We applied these tools to encode spatially structured functions such as metabolic complementation, RNAPT7 gene expression, and CRISPRi/Cas9 regulation. Finally, as a proof of concept, we used CRISPRi/Cas technology to regulate cell growth by controlling methionine synthesis. These mechanisms start from single cells enabling the study of morphogenetic principles and the engineering of novel population scale structures from the bottom up.

  5. Reduced bacterial colony count of anaerobic bacteria is associated with a worsening in lung clearance index and inflammation in cystic fibrosis.

    PubMed

    O'Neill, Katherine; Bradley, Judy M; Johnston, Elinor; McGrath, Stephanie; McIlreavey, Leanne; Rowan, Stephen; Reid, Alastair; Bradbury, Ian; Einarsson, Gisli; Elborn, J Stuart; Tunney, Michael M

    2015-01-01

    Anaerobic bacteria have been identified in abundance in the airways of cystic fibrosis (CF) subjects. The impact their presence and abundance has on lung function and inflammation is unclear. The aim of this study was to investigate the relationship between the colony count of aerobic and anaerobic bacteria, lung clearance index (LCI), spirometry and C-Reactive Protein (CRP) in patients with CF. Sputum and blood were collected from CF patients at a single cross-sectional visit when clinically stable. Community composition and bacterial colony counts were analysed using extended aerobic and anaerobic culture. Patients completed spirometry and a multiple breath washout (MBW) test to obtain LCI. An inverse correlation between colony count of aerobic bacteria (n = 41, r = -0.35; p = 0.02), anaerobic bacteria (n = 41, r = -0.44, p = 0.004) and LCI was observed. There was an inverse correlation between colony count of anaerobic bacteria and CRP (n = 25, r = -0.44, p = 0.03) only. The results of this study demonstrate that a lower colony count of aerobic and anaerobic bacteria correlated with a worse LCI. A lower colony count of anaerobic bacteria also correlated with higher CRP levels. These results indicate that lower abundance of aerobic and anaerobic bacteria may reflect microbiota disruption and disease progression in the CF lung.

  6. Laser-induced speckle scatter patterns in Bacillus colonies

    PubMed Central

    Kim, Huisung; Singh, Atul K.; Bhunia, Arun K.; Bae, Euiwon

    2014-01-01

    Label-free bacterial colony phenotyping technology called BARDOT (Bacterial Rapid Detection using Optical scattering Technology) provided successful classification of several different bacteria at the genus, species, and serovar level. Recent experiments with colonies of Bacillus species provided strikingly different characteristics of elastic light scatter (ELS) patterns, which were comprised of random speckles compared to other bacteria, which are dominated by concentric rings and spokes. Since this laser-based optical sensor interrogates the whole volume of the colony, 3-D information of micro- and macro-structures are all encoded in the far-field scatter patterns. Here, we present a theoretical model explaining the underlying mechanism of the speckle formation by the colonies from Bacillus species. Except for Bacillus polymyxa, all Bacillus spp. produced random bright spots on the imaging plane, which presumably dependent on the cellular and molecular organization and content within the colony. Our scatter model-based analysis revealed that colony spread resulting in variable surface roughness can modify the wavefront of the scatter field. As the center diameter of the Bacillus spp. colony grew from 500 to 900 μm, average speckles area decreased two-fold and the number of small speckles increased seven-fold. In conclusion, as Bacillus colony grows, the average speckle size in the scatter pattern decreases and the number of smaller speckle increases due to the swarming growth characteristics of bacteria within the colony. PMID:25352840

  7. Morphodynamics of a growing microbial colony driven by cell death

    NASA Astrophysics Data System (ADS)

    Ghosh, Pushpita; Levine, Herbert

    2017-11-01

    Bacterial cells can often self-organize into multicellular structures with complex spatiotemporal morphology. In this work, we study the spatiotemporal dynamics of a growing microbial colony in the presence of cell death. We present an individual-based model of nonmotile bacterial cells which grow and proliferate by consuming diffusing nutrients on a semisolid two-dimensional surface. The colony spreads by growth forces and sliding motility of cells and undergoes cell death followed by subsequent disintegration of the dead cells in the medium. We model cell death by considering two possible situations: In one of the cases, cell death occurs in response to the limitation of local nutrients, while the other case corresponds to an active death process, known as apoptotic or programmed cell death. We demonstrate how the colony morphology is influenced by the presence of cell death. Our results show that cell death facilitates transitions from roughly circular to highly branched structures at the periphery of an expanding colony. Interestingly, our results also reveal that for the colonies which are growing in higher initial nutrient concentrations, cell death occurs much earlier compared to the colonies which are growing in lower initial nutrient concentrations. This work provides new insights into the branched patterning of growing bacterial colonies as a consequence of complex interplay among the biochemical and mechanical effects.

  8. Reduced Bacterial Colony Count of Anaerobic Bacteria Is Associated with a Worsening in Lung Clearance Index and Inflammation in Cystic Fibrosis

    PubMed Central

    Bradley, Judy M.; Johnston, Elinor; McGrath, Stephanie; McIlreavey, Leanne; Rowan, Stephen; Reid, Alastair; Bradbury, Ian; Einarsson, Gisli

    2015-01-01

    Anaerobic bacteria have been identified in abundance in the airways of cystic fibrosis (CF) subjects. The impact their presence and abundance has on lung function and inflammation is unclear. The aim of this study was to investigate the relationship between the colony count of aerobic and anaerobic bacteria, lung clearance index (LCI), spirometry and C-Reactive Protein (CRP) in patients with CF. Sputum and blood were collected from CF patients at a single cross-sectional visit when clinically stable. Community composition and bacterial colony counts were analysed using extended aerobic and anaerobic culture. Patients completed spirometry and a multiple breath washout (MBW) test to obtain LCI. An inverse correlation between colony count of aerobic bacteria (n = 41, r = -0.35; p = 0.02), anaerobic bacteria (n = 41, r = -0.44, p = 0.004) and LCI was observed. There was an inverse correlation between colony count of anaerobic bacteria and CRP (n = 25, r = -0.44, p = 0.03) only. The results of this study demonstrate that a lower colony count of aerobic and anaerobic bacteria correlated with a worse LCI. A lower colony count of anaerobic bacteria also correlated with higher CRP levels. These results indicate that lower abundance of aerobic and anaerobic bacteria may reflect microbiota disruption and disease progression in the CF lung. PMID:25992575

  9. Fipronil promotes motor and behavioral changes in honey bees (Apis mellifera) and affects the development of colonies exposed to sublethal doses.

    PubMed

    Zaluski, Rodrigo; Kadri, Samir Moura; Alonso, Diego Peres; Martins Ribolla, Paulo Eduardo; de Oliveira Orsi, Ricardo

    2015-05-01

    Bees play a crucial role in pollination and generate honey and other hive products; therefore, their worldwide decline is cause for concern. New broad-spectrum systemic insecticides such as fipronil can harm bees and their use has been discussed as a potential threat to bees' survival. In the present study, the authors evaluate the in vitro toxicity of fipronil and note behavioral and motor activity changes in Africanized adult Apis mellifera that ingest or come into contact with lethal or sublethal doses of fipronil. The effects of sublethal doses on brood viability, population growth, behavior, and the expression of the defensin 1 gene in adult bees were studied in colonies fed with contaminated sugar syrup (8 µg fipronil L(-1) ). Fipronil is highly toxic to bees triggering agitation, seizures, tremors, and paralysis. Bees that are exposed to a lethal or sublethal doses showed reduced motor activity. The number of eggs that hatched, the area occupied by worker eggs, and the number of larvae and pupae that developed were reduced, adult bees showed lethargy, and colonies were abandoned when they were exposed to sublethal doses of fipronil. No change was seen in the bees' expression of defensin 1. The authors conclude that fipronil is highly toxic to honey bees and even sublethal doses may negatively affect the development and maintenance of colonies. © 2015 SETAC.

  10. Neonicotinoid pesticides can reduce honeybee colony genetic diversity

    PubMed Central

    Troxler, Aline; Retschnig, Gina; Gauthier, Laurent; Straub, Lars; Moritz, Robin F. A.; Neumann, Peter; Williams, Geoffrey R.

    2017-01-01

    Neonicotinoid insecticides can cause a variety of adverse sub-lethal effects in bees. In social species such as the honeybee, Apis mellifera, queens are essential for reproduction and colony functioning. Therefore, any negative effect of these agricultural chemicals on the mating success of queens may have serious consequences for the fitness of the entire colony. Queens were exposed to the common neonicotinoid pesticides thiamethoxam and clothianidin during their developmental stage. After mating, their spermathecae were dissected to count the number of stored spermatozoa. Furthermore, their worker offspring were genotyped with DNA microsatellites to determine the number of matings and the genotypic composition of the colony. Colonies providing the male mating partners were also inferred. Both neonicotinoid and control queens mated with drones originating from the same drone source colonies, and stored similar number of spermatozoa. However, queens reared in colonies exposed to both neonicotinoids experienced fewer matings. This resulted in a reduction of the genetic diversity in their colonies (i.e. higher intracolonial relatedness). As decreased genetic diversity among worker bees is known to negatively affect colony vitality, neonicotinoids may have a cryptic effect on colony health by reducing the mating frequency of queens. PMID:29059234

  11. Growth Mechanism of Microbial Colonies

    NASA Astrophysics Data System (ADS)

    Zhu, Minhui; Martini, K. Michael; Kim, Neil H.; Sherer, Nicholas; Lee, Jia Gloria; Kuhlman, Thomas; Goldenfeld, Nigel

    Experiments on nutrient-limited E. coli colonies, growing on agar gel from single cells reveal a power-law distribution of sizes, both during the growth process and in the final stage when growth has ceased. We developed a Python simulation to study the growth mechanism of the bacterial population and thus understand the broad details of the experimental findings. The simulation takes into account nutrient uptake, metabolic function, growth and cell division. Bacteria are modeled in two dimensions as hard circle-capped cylinders with steric interactions and elastic stress dependent growth characteristics. Nutrient is able to diffuse within and between the colonies. The mechanism of microbial colony growth involves reproduction of cells within the colonies and the merging of different colonies. We report results on the dynamic scaling laws and final state size distribution, that capture in semi-quantitative detail the trends observed in experiment. Supported by NSF Grant 0822613.

  12. A New Method for Qualitative Multi-scale Analysis of Bacterial Biofilms on Filamentous Fungal Colonies Using Confocal and Electron Microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miquel Guennoc, Cora; Rose, Christophe; Guinnet, Frédéric

    Bacterial biofilms frequently form on fungal surfaces and can be involved in numerous bacterial-fungal interaction processes, such as metabolic cooperation, competition, or predation. The study of biofilms is important in many biological fields, including environmental science, food production, and medicine. However, few studies have focused on such bacterial biofilms, partially due to the difficulty of investigating them. Most of the methods for qualitative and quantitative biofilm analyses described in the literature are only suitable for biofilms forming on abiotic surfaces or on homogeneous and thin biotic surfaces, such as a monolayer of epithelial cells. While laser scanning confocal microscopy (LSCM)more » is often used to analyze in situ and in vivo biofilms, this technology becomes very challenging when applied to bacterial biofilms on fungal hyphae, due to the thickness and the three dimensions of the hyphal networks. To overcome this shortcoming, we developed a protocol combining microscopy with a method to limit the accumulation of hyphal layers in fungal colonies. Using this method, we were able to investigate the development of bacterial biofilms on fungal hyphae at multiple scales using both LSCM and scanning electron microscopy (SEM). Furthermore, this report describes the protocol, including microorganism cultures, bacterial biofilm formation conditions, biofilm staining, and LSCM and SEM visualizations.« less

  13. A New Method for Qualitative Multi-scale Analysis of Bacterial Biofilms on Filamentous Fungal Colonies Using Confocal and Electron Microscopy

    DOE PAGES

    Miquel Guennoc, Cora; Rose, Christophe; Guinnet, Frédéric; ...

    2017-01-01

    Bacterial biofilms frequently form on fungal surfaces and can be involved in numerous bacterial-fungal interaction processes, such as metabolic cooperation, competition, or predation. The study of biofilms is important in many biological fields, including environmental science, food production, and medicine. However, few studies have focused on such bacterial biofilms, partially due to the difficulty of investigating them. Most of the methods for qualitative and quantitative biofilm analyses described in the literature are only suitable for biofilms forming on abiotic surfaces or on homogeneous and thin biotic surfaces, such as a monolayer of epithelial cells. While laser scanning confocal microscopy (LSCM)more » is often used to analyze in situ and in vivo biofilms, this technology becomes very challenging when applied to bacterial biofilms on fungal hyphae, due to the thickness and the three dimensions of the hyphal networks. To overcome this shortcoming, we developed a protocol combining microscopy with a method to limit the accumulation of hyphal layers in fungal colonies. Using this method, we were able to investigate the development of bacterial biofilms on fungal hyphae at multiple scales using both LSCM and scanning electron microscopy (SEM). Furthermore, this report describes the protocol, including microorganism cultures, bacterial biofilm formation conditions, biofilm staining, and LSCM and SEM visualizations.« less

  14. Common bacterial responses in six ecosystems exposed to 10 years of elevated atmospheric carbon dioxide.

    PubMed

    Dunbar, John; Eichorst, Stephanie A; Gallegos-Graves, La Verne; Silva, Shannon; Xie, Gary; Hengartner, N W; Evans, R David; Hungate, Bruce A; Jackson, Robert B; Megonigal, J Patrick; Schadt, Christopher W; Vilgalys, Rytas; Zak, Donald R; Kuske, Cheryl R

    2012-05-01

    Six terrestrial ecosystems in the USA were exposed to elevated atmospheric CO(2) in single or multifactorial experiments for more than a decade to assess potential impacts. We retrospectively assessed soil bacterial community responses in all six-field experiments and found ecosystem-specific and common patterns of soil bacterial community response to elevated CO(2) . Soil bacterial composition differed greatly across the six ecosystems. No common effect of elevated atmospheric CO(2) on bacterial biomass, richness and community composition across all of the ecosystems was identified, although significant responses were detected in individual ecosystems. The most striking common trend across the sites was a decrease of up to 3.5-fold in the relative abundance of Acidobacteria Group 1 bacteria in soils exposed to elevated CO(2) or other climate factors. The Acidobacteria Group 1 response observed in exploratory 16S rRNA gene clone library surveys was validated in one ecosystem by 100-fold deeper sequencing and semi-quantitative PCR assays. Collectively, the 16S rRNA gene sequencing approach revealed influences of elevated CO(2) on multiple ecosystems. Although few common trends across the ecosystems were detected in the small surveys, the trends may be harbingers of more substantive changes in less abundant, more sensitive taxa that can only be detected by deeper surveys. Representative bacterial 16S rRNA gene clone sequences were deposited in GenBank with Accession No. JQ366086–JQ387568. Published 2012. This article is a U.S. Government work and is in the public domain in the USA.

  15. Ammonia produced by bacterial colonies promotes growth of ampicillin-sensitive Serratia sp. by means of antibiotic inactivation.

    PubMed

    Cepl, Jaroslav; Blahůšková, Anna; Cvrčková, Fatima; Markoš, Anton

    2014-05-01

    Volatiles produced by bacterial cultures are known to induce regulatory and metabolic alterations in nearby con-specific or heterospecific bacteria, resulting in phenotypic changes including acquisition of antibiotic resistance. We observed unhindered growth of ampicillin-sensitive Serratia rubidaea and S. marcescens on ampicillin-containing media, when exposed to volatiles produced by dense bacterial growth. However, this phenomenon appeared to result from pH increase in the medium caused by bacterial volatiles rather than alterations in the properties of the bacterial cultures, as alkalization of ampicillin-containing culture media to pH 8.5 by ammonia or Tris exhibited the same effects, while pretreatment of bacterial cultures under the same conditions prior to antibiotic exposure did not increase ampicillin resistance. Ampicillin was readily inactivated at pH 8.5, suggesting that observed bacterial growth results from metabolic alteration of the medium, rather than an active change in the target bacterial population (i.e. induction of resistance or tolerance). However, even such seemingly simple mechanism may provide a biologically meaningful basis for protection against antibiotics in microbial communities growing on semi-solid media. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  16. Use of colony-based bacterial strain typing for tracking the fate of Lactobacillus strains during human consumption

    PubMed Central

    2009-01-01

    Background The Lactic Acid Bacteria (LAB) are important components of the healthy gut flora and have been used extensively as probiotics. Understanding the cultivable diversity of LAB before and after probiotic administration, and being able to track the fate of administered probiotic isolates during feeding are important parameters to consider in the design of clinical trials to assess probiotic efficacy. Several methods may be used to identify bacteria at the strain level, however, PCR-based methods such as Random Amplified Polymorphic DNA (RAPD) are particularly suited to rapid analysis. We examined the cultivable diversity of LAB in the human gut before and after feeding with two Lactobacillus strains, and also tracked the fate of these two administered strains using a RAPD technique. Results A RAPD typing scheme was developed to genetically type LAB isolates from a wide range of species, and optimised for direct application to bacterial colony growth. A high-throughput strategy for fingerprinting the cultivable diversity of human faeces was developed and used to determine: (i) the initial cultivable LAB strain diversity in the human gut, and (ii) the fate of two Lactobacillus strains (Lactobacillus salivarius NCIMB 30211 and Lactobacillus acidophilus NCIMB 30156) contained within a capsule that was administered in a small-scale human feeding study. The L. salivarius strain was not cultivated from the faeces of any of the 12 volunteers prior to capsule administration, but appeared post-feeding in four. Strains matching the L. acidophilus NCIMB 30156 feeding strain were found in the faeces of three volunteers prior to consumption; after taking the Lactobacillus capsule, 10 of the 12 volunteers were culture positive for this strain. The appearance of both Lactobacillus strains during capsule consumption was statistically significant (p < 0.05). Conclusion We have shown that genetic strain typing of the cultivable human gut microbiota can be evaluated using a high

  17. Colony variation of Helicobacter pylori: pathogenic potential is correlated to cell wall lipid composition.

    PubMed

    Bukholm, G; Tannaes, T; Nedenskov, P; Esbensen, Y; Grav, H J; Hovig, T; Ariansen, S; Guldvog, I

    1997-05-01

    Differences in expression of disease after infection with Helicobacter pylori have so far been connected with host factors and bacterial interstrain variation. In this study, spontaneous and ecology-mediated intrastrain variation was examined. Four clinical isolates of H. pylori were shown to give rise to two colony forms. Bacterial morphology was examined by electron microscopy. Bacterial fractions were examined for proteins using ion exchange chromatography and SDS-PAGE; for lipids using thin-layer chromatography, lipid anion-exchange chromatography, column chromatography on silica gel, 31P-NMR, gas chromatography and mass spectrometry. Bacterial in vitro invasiveness and adhesiveness were examined in two different systems, and urease and VacA toxin were assayed by Western blot analysis. H. pylori was shown to give rise to two colony forms: at normal pH the population was dominated by L colonies. One strain was chosen for further studies. Bacteria from L colonies retained VacA toxin and urease, did not invade or adhere to epithelial cells, and contained normal quantities of phosphatidylethanolamine. In a small frequency, spontaneous S colonies were formed. Bacteria from these colonies released VacA and urease, adhered to and invaded epithelial cells and contained increased amounts of lysophosphatidyl ethanolamine and phosphatidyl serine. After addition of HCl to the culture medium (pH6), almost only S colonies were formed. The results demonstrate that environmental factors, such as HCl, can change the bacterial cell wall, and thereby enhance expression of virulence factors of H. pylori in vitro. A similar in vivo variation would have implications for our understanding of the interaction between HCl secretion in the gastric mucosa and H. pylori in the development of peptic ulcer disease.

  18. Resilience of coral-associated bacterial communities exposed to fish farm effluent.

    PubMed

    Garren, Melissa; Raymundo, Laurie; Guest, James; Harvell, C Drew; Azam, Farooq

    2009-10-06

    The coral holobiont includes the coral animal, algal symbionts, and associated microbial community. These microbes help maintain the holobiont homeostasis; thus, sustaining robust mutualistic microbial communities is a fundamental part of long-term coral reef survival. Coastal pollution is one major threat to reefs, and intensive fish farming is a rapidly growing source of this pollution. We investigated the susceptibility and resilience of the bacterial communities associated with a common reef-building coral, Porites cylindrica, to coastal pollution by performing a clonally replicated transplantation experiment in Bolinao, Philippines adjacent to intensive fish farming. Ten fragments from each of four colonies (total of 40 fragments) were followed for 22 days across five sites: a well-flushed reference site (the original fragment source); two sites with low exposure to milkfish (Chanos chanos) aquaculture effluent; and two sites with high exposure. Elevated levels of dissolved organic carbon (DOC), chlorophyll a, total heterotrophic and autotrophic bacteria abundance, virus like particle (VLP) abundances, and culturable Vibrio abundance characterized the high effluent sites. Based on 16S rRNA clone libraries and denaturing gradient gel electrophoresis (DGGE) analysis, we observed rapid, dramatic changes in the coral-associated bacterial communities within five days of high effluent exposure. The community composition on fragments at these high effluent sites shifted towards known human and coral pathogens (i.e. Arcobacter, Fusobacterium, and Desulfovibrio) without the host corals showing signs of disease. The communities shifted back towards their original composition by day 22 without reduction in effluent levels. This study reveals fish farms as a likely source of pathogens with the potential to proliferate on corals and an unexpected short-term resilience of coral-associated bacterial communities to eutrophication pressure. These data highlight a need for

  19. Resilience of Coral-Associated Bacterial Communities Exposed to Fish Farm Effluent

    PubMed Central

    Garren, Melissa; Raymundo, Laurie; Guest, James; Harvell, C. Drew; Azam, Farooq

    2009-01-01

    Background The coral holobiont includes the coral animal, algal symbionts, and associated microbial community. These microbes help maintain the holobiont homeostasis; thus, sustaining robust mutualistic microbial communities is a fundamental part of long-term coral reef survival. Coastal pollution is one major threat to reefs, and intensive fish farming is a rapidly growing source of this pollution. Methodology & Principal Findings We investigated the susceptibility and resilience of the bacterial communities associated with a common reef-building coral, Porites cylindrica, to coastal pollution by performing a clonally replicated transplantation experiment in Bolinao, Philippines adjacent to intensive fish farming. Ten fragments from each of four colonies (total of 40 fragments) were followed for 22 days across five sites: a well-flushed reference site (the original fragment source); two sites with low exposure to milkfish (Chanos chanos) aquaculture effluent; and two sites with high exposure. Elevated levels of dissolved organic carbon (DOC), chlorophyll a, total heterotrophic and autotrophic bacteria abundance, virus like particle (VLP) abundances, and culturable Vibrio abundance characterized the high effluent sites. Based on 16S rRNA clone libraries and denaturing gradient gel electrophoresis (DGGE) analysis, we observed rapid, dramatic changes in the coral-associated bacterial communities within five days of high effluent exposure. The community composition on fragments at these high effluent sites shifted towards known human and coral pathogens (i.e. Arcobacter, Fusobacterium, and Desulfovibrio) without the host corals showing signs of disease. The communities shifted back towards their original composition by day 22 without reduction in effluent levels. Significance This study reveals fish farms as a likely source of pathogens with the potential to proliferate on corals and an unexpected short-term resilience of coral-associated bacterial communities to

  20. Assessment of chronic sublethal effects of imidacloprid on honey bee colony health.

    PubMed

    Dively, Galen P; Embrey, Michael S; Kamel, Alaa; Hawthorne, David J; Pettis, Jeffery S

    2015-01-01

    Here we present results of a three-year study to determine the fate of imidacloprid residues in hive matrices and to assess chronic sublethal effects on whole honey bee colonies fed supplemental pollen diet containing imidacloprid at 5, 20 and 100 μg/kg over multiple brood cycles. Various endpoints of colony performance and foraging behavior were measured during and after exposure, including winter survival. Imidacloprid residues became diluted or non-detectable within colonies due to the processing of beebread and honey and the rapid metabolism of the chemical. Imidacloprid exposure doses up to 100 μg/kg had no significant effects on foraging activity or other colony performance indicators during and shortly after exposure. Diseases and pest species did not affect colony health but infestations of Varroa mites were significantly higher in exposed colonies. Honey stores indicated that exposed colonies may have avoided the contaminated food. Imidacloprid dose effects was delayed later in the summer, when colonies exposed to 20 and 100 μg/kg experienced higher rates of queen failure and broodless periods, which led to weaker colonies going into the winter. Pooled over two years, winter survival of colonies averaged 85.7, 72.4, 61.2 and 59.2% in the control, 5, 20 and 100 μg/kg treatment groups, respectively. Analysis of colony survival data showed a significant dose effect, and all contrast tests comparing survival between control and treatment groups were significant, except for colonies exposed to 5 μg/kg. Given the weight of evidence, chronic exposure to imidacloprid at the higher range of field doses (20 to 100 μg/kg) in pollen of certain treated crops could cause negative impacts on honey bee colony health and reduced overwintering success, but the most likely encountered high range of field doses relevant for seed-treated crops (5 μg/kg) had negligible effects on colony health and are unlikely a sole cause of colony declines.

  1. Assessment of Chronic Sublethal Effects of Imidacloprid on Honey Bee Colony Health

    PubMed Central

    Dively, Galen P.; Embrey, Michael S.; Kamel, Alaa; Hawthorne, David J.; Pettis, Jeffery S.

    2015-01-01

    Here we present results of a three-year study to determine the fate of imidacloprid residues in hive matrices and to assess chronic sublethal effects on whole honey bee colonies fed supplemental pollen diet containing imidacloprid at 5, 20 and 100 μg/kg over multiple brood cycles. Various endpoints of colony performance and foraging behavior were measured during and after exposure, including winter survival. Imidacloprid residues became diluted or non-detectable within colonies due to the processing of beebread and honey and the rapid metabolism of the chemical. Imidacloprid exposure doses up to 100 μg/kg had no significant effects on foraging activity or other colony performance indicators during and shortly after exposure. Diseases and pest species did not affect colony health but infestations of Varroa mites were significantly higher in exposed colonies. Honey stores indicated that exposed colonies may have avoided the contaminated food. Imidacloprid dose effects was delayed later in the summer, when colonies exposed to 20 and 100 μg/kg experienced higher rates of queen failure and broodless periods, which led to weaker colonies going into the winter. Pooled over two years, winter survival of colonies averaged 85.7, 72.4, 61.2 and 59.2% in the control, 5, 20 and 100 μg/kg treatment groups, respectively. Analysis of colony survival data showed a significant dose effect, and all contrast tests comparing survival between control and treatment groups were significant, except for colonies exposed to 5 μg/kg. Given the weight of evidence, chronic exposure to imidacloprid at the higher range of field doses (20 to 100 μg/kg) in pollen of certain treated crops could cause negative impacts on honey bee colony health and reduced overwintering success, but the most likely encountered high range of field doses relevant for seed-treated crops (5 μg/kg) had negligible effects on colony health and are unlikely a sole cause of colony declines. PMID:25786127

  2. Chronic sublethal stress causes bee colony failure

    PubMed Central

    Bryden, John; Gill, Richard J; Mitton, Robert A A; Raine, Nigel E; Jansen, Vincent A A; Hodgson, David

    2013-01-01

    Current bee population declines and colony failures are well documented yet poorly understood and no single factor has been identified as a leading cause. The evidence is equivocal and puzzling: for instance, many pathogens and parasites can be found in both failing and surviving colonies and field pesticide exposure is typically sublethal. Here, we investigate how these results can be due to sublethal stress impairing colony function. We mathematically modelled stress on individual bees which impairs colony function and found how positive density dependence can cause multiple dynamic outcomes: some colonies fail while others thrive. We then exposed bumblebee colonies to sublethal levels of a neonicotinoid pesticide. The dynamics of colony failure, which we observed, were most accurately described by our model. We argue that our model can explain the enigmatic aspects of bee colony failures, highlighting an important role for sublethal stress in colony declines. PMID:24112478

  3. Interplay between intrinsic noise and the stochasticity of the cell cycle in bacterial colonies.

    PubMed

    Canela-Xandri, Oriol; Sagués, Francesc; Buceta, Javier

    2010-06-02

    Herein we report on the effects that different stochastic contributions induce in bacterial colonies in terms of protein concentration and production. In particular, we consider for what we believe to be the first time cell-to-cell diversity due to the unavoidable randomness of the cell-cycle duration and its interplay with other noise sources. To that end, we model a recent experimental setup that implements a protein dilution protocol by means of division events to characterize the gene regulatory function at the single cell level. This approach allows us to investigate the effect of different stochastic terms upon the total randomness experimentally reported for the gene regulatory function. In addition, we show that the interplay between intrinsic fluctuations and the stochasticity of the cell-cycle duration leads to different constructive roles. On the one hand, we show that there is an optimal value of protein concentration (alternatively an optimal value of the cell cycle phase) such that the noise in protein concentration attains a minimum. On the other hand, we reveal that there is an optimal value of the stochasticity of the cell cycle duration such that the coherence of the protein production with respect to the colony average production is maximized. The latter can be considered as a novel example of the recently reported phenomenon of diversity induced resonance. Copyright (c) 2010 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  4. Real-time bacterial microcolony counting using on-chip microscopy

    NASA Astrophysics Data System (ADS)

    Jung, Jae Hee; Lee, Jung Eun

    2016-02-01

    Observing microbial colonies is the standard method for determining the microbe titer and investigating the behaviors of microbes. Here, we report an automated, real-time bacterial microcolony-counting system implemented on a wide field-of-view (FOV), on-chip microscopy platform, termed ePetri. Using sub-pixel sweeping microscopy (SPSM) with a super-resolution algorithm, this system offers the ability to dynamically track individual bacterial microcolonies over a wide FOV of 5.7 mm × 4.3 mm without requiring a moving stage or lens. As a demonstration, we obtained high-resolution time-series images of S. epidermidis at 20-min intervals. We implemented an image-processing algorithm to analyze the spatiotemporal distribution of microcolonies, the development of which could be observed from a single bacterial cell. Test bacterial colonies with a minimum diameter of 20 μm could be enumerated within 6 h. We showed that our approach not only provides results that are comparable to conventional colony-counting assays but also can be used to monitor the dynamics of colony formation and growth. This microcolony-counting system using on-chip microscopy represents a new platform that substantially reduces the detection time for bacterial colony counting. It uses chip-scale image acquisition and is a simple and compact solution for the automation of colony-counting assays and microbe behavior analysis with applications in antibacterial drug discovery.

  5. Real-time bacterial microcolony counting using on-chip microscopy

    PubMed Central

    Jung, Jae Hee; Lee, Jung Eun

    2016-01-01

    Observing microbial colonies is the standard method for determining the microbe titer and investigating the behaviors of microbes. Here, we report an automated, real-time bacterial microcolony-counting system implemented on a wide field-of-view (FOV), on-chip microscopy platform, termed ePetri. Using sub-pixel sweeping microscopy (SPSM) with a super-resolution algorithm, this system offers the ability to dynamically track individual bacterial microcolonies over a wide FOV of 5.7 mm × 4.3 mm without requiring a moving stage or lens. As a demonstration, we obtained high-resolution time-series images of S. epidermidis at 20-min intervals. We implemented an image-processing algorithm to analyze the spatiotemporal distribution of microcolonies, the development of which could be observed from a single bacterial cell. Test bacterial colonies with a minimum diameter of 20 μm could be enumerated within 6 h. We showed that our approach not only provides results that are comparable to conventional colony-counting assays but also can be used to monitor the dynamics of colony formation and growth. This microcolony-counting system using on-chip microscopy represents a new platform that substantially reduces the detection time for bacterial colony counting. It uses chip-scale image acquisition and is a simple and compact solution for the automation of colony-counting assays and microbe behavior analysis with applications in antibacterial drug discovery. PMID:26902822

  6. Nutrient chemotaxis suppression of a diffusive instability in bacterial colony dynamics

    NASA Astrophysics Data System (ADS)

    Arouh, Scott; Levine, Herbert

    2000-07-01

    Bacteria grown on a semisolid agar surface have been observed to form branching patterns as the colony envelope propagates outward. The fundamental cause of this instability relates to the need for limited nutrient to diffuse towards the colony. Here, we investigate the effect on this instability of allowing the bacteria to move chemotactically in response to the nutrient gradient. Our results show that this additional effect has a tendency to suppress the instability. Our calculations are done within the context of a simple ``cutoff'' model of colony dynamics, but presumably remain valid for more complex and hence more realistic approaches.

  7. Blue light (470 nm) effectively inhibits bacterial and fungal growth.

    PubMed

    De Lucca, A J; Carter-Wientjes, C; Williams, K A; Bhatnagar, D

    2012-12-01

    Blue light (470 nm) LED antimicrobial properties were studied alone against bacteria and with or without the food grade photosensitizer, erythrosine (ERY) against filamentous fungi. Leuconostoc mesenteroides (LM), Bacillus atrophaeus (BA) or Pseudomonas aeruginosa (PA) aliquots were exposed on nutrient agar plates to Array 1 (AR1, 0·2 mW cm(-2)) or Array 2 (AR2, 80 mW cm(-2)), which emitted impure or pure blue light (0-300 J cm(-2)), respectively. Inoculated control (room light only) plates were incubated (48 h) and colonies enumerated. The antifungal properties of blue light combined with ERY (11·4 and 22·8 μmol l(-1)) on Penicillium digitatum (PD) and Fusarium graminearum (FG) conidia were determined. Conidial controls consisted of: no light, room light-treated conidia and ERY plus room light. Light-treated (ERY + blue light) conidial samples were exposed only to AR2 (0-100 J cm(-2)), aliquots spread on potato dextrose agar plates, incubated (48 h, 30°C) and colonies counted. Blue light alone significantly reduced bacterial and FG viability. Combined with ERY, it significantly reduced PD viability. Blue light is lethal to bacteria and filamentous fungi although effectiveness is dependent on light purity, energy levels and microbial genus. Light from two arrays of different blue LEDs significantly reduced bacterial (Leuconostoc mesenteroides, Bacillus atrophaeus and Pseudomonas aeruginosa) viabilities. Significant in vitro viability loss was observed for the filamentous fungi, Penicillium digitatum and Fusarium graminearum when exposed to pure blue light only plus a photosensitizer. F. graminearum viability was significantly reduced by blue light alone. Results suggest that (i) the amount of significant loss in bacterial viability observed for blue light that is pure or with traces of other wavelengths is genus dependent and (ii) depending on fungal genera, pure blue light is fungicidal with or without a photosensitizer. © 2012 The Society for

  8. An (almost) solvable model for bacterial pattern formation

    NASA Astrophysics Data System (ADS)

    Grammaticos, B.; Badoual, M.; Aubert, M.

    2007-10-01

    We present a simple model for the description of ring-like concentric structures in bacterial colonies. We model the differences between Bacillus subtilis and Proteus mirabilis colonies by using a different dependence of the duration of the consolidation phase on the concentration of agar. We compare our results to experimental data from these two bacterial species colonies and obtain a good agreement. Based on this analysis, we formulate a hypothesis on the connection of the diffusion constant that appears in the model to the experimental agar concentration.

  9. Chronic sublethal stress causes bee colony failure.

    PubMed

    Bryden, John; Gill, Richard J; Mitton, Robert A A; Raine, Nigel E; Jansen, Vincent A A

    2013-12-01

    Current bee population declines and colony failures are well documented yet poorly understood and no single factor has been identified as a leading cause. The evidence is equivocal and puzzling: for instance, many pathogens and parasites can be found in both failing and surviving colonies and field pesticide exposure is typically sublethal. Here, we investigate how these results can be due to sublethal stress impairing colony function. We mathematically modelled stress on individual bees which impairs colony function and found how positive density dependence can cause multiple dynamic outcomes: some colonies fail while others thrive. We then exposed bumblebee colonies to sublethal levels of a neonicotinoid pesticide. The dynamics of colony failure, which we observed, were most accurately described by our model. We argue that our model can explain the enigmatic aspects of bee colony failures, highlighting an important role for sublethal stress in colony declines. © 2013 The Authors. Ecology Letters published by John Wiley & Sons Ltd and CNRS.

  10. Sensitive, Rapid Detection of Bacterial Spores

    NASA Technical Reports Server (NTRS)

    Kern, Roger G.; Venkateswaran, Kasthuri; Chen, Fei; Pickett, Molly; Matsuyama, Asahi

    2009-01-01

    A method of sensitive detection of bacterial spores within delays of no more than a few hours has been developed to provide an alternative to a prior three-day NASA standard culture-based assay. A capability for relatively rapid detection of bacterial spores would be beneficial for many endeavors, a few examples being agriculture, medicine, public health, defense against biowarfare, water supply, sanitation, hygiene, and the food-packaging and medical-equipment industries. The method involves the use of a commercial rapid microbial detection system (RMDS) that utilizes a combination of membrane filtration, adenosine triphosphate (ATP) bioluminescence chemistry, and analysis of luminescence images detected by a charge-coupled-device camera. This RMDS has been demonstrated to be highly sensitive in enumerating microbes (it can detect as little as one colony-forming unit per sample) and has been found to yield data in excellent correlation with those of culture-based methods. What makes the present method necessary is that the specific RMDS and the original protocols for its use are not designed for discriminating between bacterial spores and other microbes. In this method, a heat-shock procedure is added prior to an incubation procedure that is specified in the original RMDS protocols. In this heat-shock procedure (which was also described in a prior NASA Tech Briefs article on enumerating sporeforming bacteria), a sample is exposed to a temperature of 80 C for 15 minutes. Spores can survive the heat shock, but nonspore- forming bacteria and spore-forming bacteria that are not in spore form cannot survive. Therefore, any colonies that grow during incubation after the heat shock are deemed to have originated as spores.

  11. Performance of honey bee colonies under a long-lasting dietary exposure to sublethal concentrations of the neonicotinoid insecticide thiacloprid.

    PubMed

    Siede, Reinhold; Faust, Lena; Meixner, Marina D; Maus, Christian; Grünewald, Bernd; Büchler, Ralph

    2017-07-01

    Substantial honey bee colony losses have occurred periodically in the last decades. The drivers for these losses are not fully understood. The influence of pests and pathogens are beyond dispute, but in addition, chronic exposure to sublethal concentrations of pesticides has been suggested to affect the performance of honey bee colonies. This study aims to elucidate the potential effects of a chronic exposure to sublethal concentrations (one realistic worst-case concentration) of the neonicotinoid thiacloprid to honey bee colonies in a three year replicated colony feeding study. Thiacloprid did not significantly affect the colony strength. No differences between treatment and control were observed for the mortality of bees, the infestation with the parasitic mite Varroa destructor and the infection levels of viruses. No colony losses occurred during the overwintering seasons. Furthermore, thiacloprid did not influence the constitutive expression of the immunity-related hymenoptaecin gene. However, upregulation of hymenoptaecin expression as a response to bacterial challenge was less pronounced in exposed bees than in control bees. Under field conditions, bee colonies are not adversely affected by a long-lasting exposure to sublethal concentrations of thiacloprid. No indications were found that field-realistic and higher doses exerted a biologically significant effect on colony performance. © 2017 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry. © 2017 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

  12. Effects of a granulocyte colony stimulating factor, Neulasta, in mini pigs exposed to total body proton irradiation

    PubMed Central

    Sanzari, Jenine K.; Krigsfeld, Gabriel S.; Shuman, Anne L.; Diener, Antonia K.; Lin, Liyong; Mai, Wilfried; Kennedy, Ann R.

    2015-01-01

    Astronauts could be exposed to solar particle event (SPE) radiation, which is comprised mostly of proton radiation. Proton radiation is also a treatment option for certain cancers. Both astronauts and clinical patients exposed to ionizing radiation are at risk for white blood cell (WBC) loss, which are the body’s main defense against infection. In this report, the effect of Neulasta treatment, a granulocyte colony stimulating factor, after proton radiation exposure is discussed. Mini pigs exposed to total body proton irradiation at a dose of 2 Gy received 4 treatments of either Neulasta or saline injections. Peripheral blood cell counts and thromboelastography parameters were recorded up to 30 days post-irradiation. Neulasta significantly improved white blood cell (WBC), specifically neutrophil, loss in irradiated animals by approximately 60% three days after the first injection, compared to the saline treated irradiated animals. Blood cell counts quickly decreased after the last Neulasta injection, suggesting a transient effect on WBC stimulation. Statistically significant changes in hemostasis parameters were observed after proton radiation exposure in both the saline and Neulasta treated irradiated groups, as well internal organ complications such as pulmonary changes. In conclusion, Neulasta treatment temporarily alleviates proton radiation-induced WBC loss, but has no effect on altered hemostatic responses. PMID:25909052

  13. Effects of a granulocyte colony stimulating factor, Neulasta, in mini pigs exposed to total body proton irradiation

    NASA Astrophysics Data System (ADS)

    Sanzari, Jenine K.; Krigsfeld, Gabriel S.; Shuman, Anne L.; Diener, Antonia K.; Lin, Liyong; Mai, Wilfried; Kennedy, Ann R.

    2015-04-01

    Astronauts could be exposed to solar particle event (SPE) radiation, which is comprised mostly of proton radiation. Proton radiation is also a treatment option for certain cancers. Both astronauts and clinical patients exposed to ionizing radiation are at risk for loss of white blood cells (WBCs), which are the body's main defense against infection. In this report, the effect of Neulasta treatment, a granulocyte colony stimulating factor, after proton radiation exposure is discussed. Mini pigs exposed to total body proton irradiation at a dose of 2 Gy received 4 treatments of either Neulasta or saline injections. Peripheral blood cell counts and thromboelastography parameters were recorded up to 30 days post-irradiation. Neulasta significantly improved WBC loss, specifically neutrophils, in irradiated animals by approximately 60% three days after the first injection, compared to the saline treated, irradiated animals. Blood cell counts quickly decreased after the last Neulasta injection, suggesting a transient effect on WBC stimulation. Statistically significant changes in hemostasis parameters were observed after proton radiation exposure in both the saline and Neulasta treated irradiated groups, as well as internal organ complications such as pulmonary changes. In conclusion, Neulasta treatment temporarily alleviates proton radiation-induced WBC loss, but has no effect on altered hemostatic responses.

  14. Spatiotemporal evolution of bacterial biofilm colonies

    NASA Astrophysics Data System (ADS)

    Wilking, James; Koehler, Stephan; Sinha, Naveen; Seminara, Agnese; Brenner, Michael; Weitz, David

    2014-03-01

    Many bacteria on earth live in surface-attached communities known as biofilms. Gene expression in a biofilm is typically varied, resulting in a variety of phenotypes within a single film. These phenotypes play a critical role in biofilm physiology and development. We use time-resolved, wide-field fluorescence microscopy to image triple-labeled fluorescent Bacillus Subtilis colonies grown on agar to determine in a non-invasive fashion the evolving phenotypes. We infer their transition rates from the resulting spatiotemporal maps of gene expression. Moreover, we correlate these transition rates with local measurements of nutrient concentration to determine the influence of extracellular signals on gene expression.

  15. Colonialism, Education and Rural Buddhist Communities in Bangladesh

    ERIC Educational Resources Information Center

    Barua, Bijoy

    2007-01-01

    This paper will excavate pre-independence (British/Pakistan) and post-independence colonial education interventions into Buddhist culture and education with the view to expose the nature and shape of colonial domination and related Buddhist efforts at cultural and educational decolonization. This will be accomplished by (a) considering a brief…

  16. Experimental Study for Automatic Colony Counting System Based Onimage Processing

    NASA Astrophysics Data System (ADS)

    Fang, Junlong; Li, Wenzhe; Wang, Guoxin

    Colony counting in many colony experiments is detected by manual method at present, therefore it is difficult for man to execute the method quickly and accurately .A new automatic colony counting system was developed. Making use of image-processing technology, a study was made on the feasibility of distinguishing objectively white bacterial colonies from clear plates according to the RGB color theory. An optimal chromatic value was obtained based upon a lot of experiments on the distribution of the chromatic value. It has been proved that the method greatly improves the accuracy and efficiency of the colony counting and the counting result is not affected by using inoculation, shape or size of the colony. It is revealed that automatic detection of colony quantity using image-processing technology could be an effective way.

  17. Visualization of Biosurfactant Film Flow in a Bacillus subtilis Swarm Colony on an Agar Plate

    PubMed Central

    Kim, Kyunghoon; Kim, Jung Kyung

    2015-01-01

    Collective bacterial dynamics plays a crucial role in colony development. Although many research groups have studied the behavior of fluidic swarm colonies, the detailed mechanics of its motion remains elusive. Here, we developed a visualization method using submicron fluorescent beads for investigating the flow field in a thin layer of fluid that covers a Bacillus subtilis swarm colony growing on an agar plate. The beads were initially embedded in the agar plate and subsequently distributed spontaneously at the upper surface of the expanding colony. We conducted long-term live cell imaging of the B. subtilis colony using the fluorescent tracers, and obtained high-resolution velocity maps of microscale vortices in the swarm colony using particle image velocimetry. A distinct periodic fluctuation in the average speed and vorticity of flow in swarm colony was observed at the inner region of the colony, and correlated with the switch between bacterial swarming and growth phases. At the advancing edge of the colony, both the magnitudes of velocity and vorticity of flow in swarm colony were inversely correlated with the spreading speed of the swarm edge. The advanced imaging tool developed in this study would facilitate further understanding of the effect of micro vortices in swarm colony on the collective dynamics of bacteria. PMID:26343634

  18. Visualization of Biosurfactant Film Flow in a Bacillus subtilis Swarm Colony on an Agar Plate.

    PubMed

    Kim, Kyunghoon; Kim, Jung Kyung

    2015-08-26

    Collective bacterial dynamics plays a crucial role in colony development. Although many research groups have studied the behavior of fluidic swarm colonies, the detailed mechanics of its motion remains elusive. Here, we developed a visualization method using submicron fluorescent beads for investigating the flow field in a thin layer of fluid that covers a Bacillus subtilis swarm colony growing on an agar plate. The beads were initially embedded in the agar plate and subsequently distributed spontaneously at the upper surface of the expanding colony. We conducted long-term live cell imaging of the B. subtilis colony using the fluorescent tracers, and obtained high-resolution velocity maps of microscale vortices in the swarm colony using particle image velocimetry. A distinct periodic fluctuation in the average speed and vorticity of flow in swarm colony was observed at the inner region of the colony, and correlated with the switch between bacterial swarming and growth phases. At the advancing edge of the colony, both the magnitudes of velocity and vorticity of flow in swarm colony were inversely correlated with the spreading speed of the swarm edge. The advanced imaging tool developed in this study would facilitate further understanding of the effect of micro vortices in swarm colony on the collective dynamics of bacteria.

  19. A simple and inexpensive method for maintaining a defined flora mouse colony.

    PubMed

    Sedlacek, R S; Mason, K A

    1977-10-01

    The use of autoclaved cages, feed, bedding, water, and filter caps combined with aseptic techniques of animal husbandry in an existing mouse colony was ineffective in maintaining a defined flora colony. The addition of a laminar air flow bench equipped with a high efficiency particulate air filter provided a sterile environment in which to manipulate mice when the filter caps were removed. The installation of a duct to direct all air entering the room through the bench filter reduced the airborne bacterial counts in the room. This modification combined with the culling or marking of infected cages so that no future breeders would be taken from these cages eliminated a number of bacterial contaminants (Staphylococcus aureus, S epidermidis, and streptococci) from the colony.

  20. Effect of Lactobacillus johnsonii CRL1647 on different parameters of honeybee colonies and bacterial populations of the bee gut.

    PubMed

    Audisio, M C; Sabaté, D C; Benítez-Ahrendts, M R

    2015-01-01

    Lactobacillus johnsonii CRL1647, isolated from the intestinal tract of a worker-bee in Salta, Argentina, was delivered to Apis mellifera L. honey bee colonies according to two different administration schedules: 1×10(5) cfu/ml every 15 days (2011) or monthly (2012). The effect of each treatment on the bee-colony performance was monitored by measuring honey production, and the prevalence of varroasis and nosemosis. Worker bees from each assay were randomly captured 3 days after administration and assayed for the following intestinal culturable and defined bacterial populations: total aerobic microorganisms, Bacillus spp. spores, Lactobacillus spp., Enterococcus spp. and enterobacteria. Interestingly, both treatments generated a similar increase in honey production in treated colonies compared to controls: 36.8% (every 15 days) and 36.3% (monthly). Nosema index always exhibited a reduction when lactobacilli were administered; in turn, Varroa incidence was lower when the lactobacilli were administered once a month. Moreover, the administration of L. johnsonii CRL1647 every 15 days produced an increase in the total number of aerobic microorganisms and in bacteria belonging to the genera Lactobacillus and Enterococcus; at the same time, a decrease was observed in the number of total spores at the end of the treatment. The number of enterobacteria was constant and remained below that of control hives at the end of the assay. On the other hand, the delivery of lactobacilli once a month only showed an increase in the number of bacteria belonging to the genus Lactobacillus; meanwhile, viable counts of the remaining microorganisms assayed were reduced. Even though it seems that both treatments were similar, those bee colonies that received L. johnsonii CRL1647 every 15 days became so strong that they swarmed.

  1. Erythroid colony induction without erythropoietin by Friend leukemia virus in vitro.

    PubMed

    Clarke, B J; Axelrad, A A; Shreeve, M M; McLeod, D L

    1975-09-01

    Erythroid colonies could be produced without the addition of erythropeietin in plasma cultures seeded with bone marrow cells from normal C3Hf/Bi mice by exposure of the cells in vitro to medium from a cell line (IS) that continuously produces Friend leukemia virus in culture. The activity in the culture medium was viral rather than erythropoietin-like, since it was sedimentable by high-speed centrifugation and heat labile. Erythroid colonies did not develop when the bone marrow cells exposed to virus-containing medium were from mice genetically resistant to Friend virus. IS culture medium contained both Friend spleen focus-forming and XC-plaque-forming activities. No erythroid colonies were induced when genetically sensitive cells were exposed to a preparation from which the spleen focus-forming activity had been removed, but which contained XC plaque-forming activity in high concentration. Thus the spleen focus-forming component of Friend virus appeared to be responsible for inducing erythroid colony formation without erythropoietin in vitro. Some erythroid colonies were also found in control cultures to which neither virus nor erythropoietin had been added. Reduction in the concentration of fetal calf serum in the culture medium substantially decreased the number of these colonies but had only a minor effect on the number of virus-induced colonies. The number of erythroid colonies produced after 2 days of culture without erythropoietin or fetal calf serum was approximately proportional to the titer of Friend spleen focus-forming virus to whcih the bone marrow cells had been exposed. This system should prove useful for investigation in vitro of Friend virus--host cell interactions which lead to erythropoietin-independent erythropoiesis.

  2. Detection of hemolytic Listeria monocytogenes by using DNA colony hybridization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Datta, A.R.; Wentz, B.A.; Hill, W.E.

    1987-09-01

    A fragment of about 500 base pairs of the beta-hemolysin gene from Listeria monocytogenes was used to screen different bacterial strains by DNA colony hybridization. The cells in the colonies were lysed by microwaves in the presence of sodium hydroxide. Of 52 different strains of Listeria species screened, only the DNA from beta-hemolytic (CAMP-positive) strains of L. monocytogenes hybridized with this probe.

  3. Impact of Chronic Neonicotinoid Exposure on Honeybee Colony Performance and Queen Supersedure

    PubMed Central

    Sandrock, Christoph; Tanadini, Matteo; Tanadini, Lorenzo G.; Fauser-Misslin, Aline; Potts, Simon G.; Neumann, Peter

    2014-01-01

    Background Honeybees provide economically and ecologically vital pollination services to crops and wild plants. During the last decade elevated colony losses have been documented in Europe and North America. Despite growing consensus on the involvement of multiple causal factors, the underlying interactions impacting on honeybee health and colony failure are not fully resolved. Parasites and pathogens are among the main candidates, but sublethal exposure to widespread agricultural pesticides may also affect bees. Methodology/Principal Findings To investigate effects of sublethal dietary neonicotinoid exposure on honeybee colony performance, a fully crossed experimental design was implemented using 24 colonies, including sister-queens from two different strains, and experimental in-hive pollen feeding with or without environmentally relevant concentrations of thiamethoxam and clothianidin. Honeybee colonies chronically exposed to both neonicotinoids over two brood cycles exhibited decreased performance in the short-term resulting in declining numbers of adult bees (−28%) and brood (−13%), as well as a reduction in honey production (−29%) and pollen collections (−19%), but colonies recovered in the medium-term and overwintered successfully. However, significantly decelerated growth of neonicotinoid-exposed colonies during the following spring was associated with queen failure, revealing previously undocumented long-term impacts of neonicotinoids: queen supersedure was observed for 60% of the neonicotinoid-exposed colonies within a one year period, but not for control colonies. Linked to this, neonicotinoid exposure was significantly associated with a reduced propensity to swarm during the next spring. Both short-term and long-term effects of neonicotinoids on colony performance were significantly influenced by the honeybees’ genetic background. Conclusions/Significance Sublethal neonicotinoid exposure did not provoke increased winter losses. Yet

  4. Analytic model for ring pattern formation by bacterial swarmers

    NASA Astrophysics Data System (ADS)

    Arouh, Scott

    2001-03-01

    We analyze a model proposed by Medvedev, Kaper, and Kopell (the MKK model) for ring formation in two-dimensional bacterial colonies of Proteus mirabilis. We correct the model to formally include a feature crucial of the ring generation mechanism: a bacterial density threshold to the nonlinear diffusivity of the MKK model. We numerically integrate the model equations, and observe the logarithmic profiles of the bacterial densities near the front. These lead us to define a consolidation front distinct from the colony radius. We find that this consolidation front propagates outward toward the colony radius with a nearly constant velocity. We then implement the corrected MKK equations in two dimensions and compare our results with biological experiment. Our numerical results indicate that the two-dimensional corrected MKK model yields smooth (rather than branched) rings, and that colliding colonies merge if grown in phase but not if grown out of phase. We also introduce a model, based on coupling the MKK model to a nutrient field, for simulating experimentally observed branched rings.

  5. The role of gravity in the nutrition and formation of Bacillus colonies

    NASA Astrophysics Data System (ADS)

    Puzyr, A.; Tirranen, L.; Krylova, T.

    The soil-like substrate is used to cultivate higher plants in man-made closed ecosystems. It allows increasing the closeness of the systems and decreasing the plant solid residues and human wastes. Unusual funnel-shaped bacterial colonies of Bacillus species have been observed during analysis of microflora of plant nutritional solution. The colonies have the following characteristics: a) the diameter of "funnel socket" (the biomass contacting with nutritional agar) is 10.0-15.0 mm; b) the thickness of "funnel socket" is 0.5-2.5 mm; c) the diameter of the middle part of the "funnel spout" (the biomass contacting with the gas phase) is 1,0-1,5 mm; d) the length of the "funnel spout" is 10.0-15.0 mm. In the socket and the middle part of the "funnel spout" there is a gas cavity which is most probably formed by bacterial gas metabolites. It has been shown that: i) the surface of these funnel-shaped colonies of Bacillus species is hydrophobic, as is the surface of other Bacillus species ( . brevis, B. cellulomonos, B. flavus, B.B formosus, B. subtilis); ii) the forms of colonies can be changed by varying the position of the growing biomass in relation to the gravitation forces. The experiment proved that the form of the "funnel sockets" and the length of the "funnel spouts" of the colonies are determined by hydrophobic air-contacting surface layer, which does not leak and stretches under the weight of accumulated water. A hypothesis has been suggested that the gravity force plays the role of a "pump" supplying and holding water within the colony. Thus, the water that comes under the gravity force contains dissolved nutrients and bacterial cells in the hydrophobic layer. These cells that are situated far away from the nutrient agar have no nutrient deficiency. The water accumulated by the colonies might be free water of agar media or it can be produced by metabolic disruption of medium fat. Hence, when growing a colony in agar media the water-soluble nutrient substances

  6. Uniform modeling of bacterial colony patterns with varying nutrient and substrate

    NASA Astrophysics Data System (ADS)

    Schwarcz, Deborah; Levine, Herbert; Ben-Jacob, Eshel; Ariel, Gil

    2016-04-01

    Bacteria develop complex patterns depending on growth condition. For example, Bacillus subtilis exhibit five different patterns depending on substrate hardness and nutrient concentration. We present a unified integro-differential model that reproduces the entire experimentally observed morphology diagram at varying nutrient concentrations and substrate hardness. The model allows a comprehensive and quantitative comparison between experimental and numerical variables and parameters, such as colony growth rate, nutrient concentration and diffusion constants. As a result, the role of the different physical mechanisms underlying and regulating the growth of the colony can be evaluated.

  7. Chromophore-enhanced bacterial photothermolysis

    NASA Astrophysics Data System (ADS)

    Huckleby, Jana K.; Morton, Rebecca J.; Bartels, Kenneth E.

    1999-06-01

    The use of chromophore dyes to enhance the bactericidal effect of laser energy was studied as a means to optimize laser treatment for the decontamination of wound. Using an in vitro study, various concentrations of indocyanine green (ICG), carbon black, and fluorescein were mixed with a suspension of bacteria and plated on tryptic soy agar. Plates were exposed to a laser beam of 10-15 watts for times ranging from 0 to 180 seconds, incubated overnight, and colony counts were performed. Bacteria not mixed with chromophore were used as controls. Six bacterial strains encompassing a range of bacterial types were used: Staphylococcus aureau, Streptococcus pyogenes, Escherichia coli, Pseudomonas aeruginosa, Bacillus cereus spore suspensions, and Clostridium perfringens. Laser treatment alone had no effect on any of the bacteria. Significant killing of gram-positive bacteria, including spores of Bacillus cereus, was observed only with the use of ICG and diode laser energy. No effect was observed using any of the chromophores on the gram-negative bacteria. The results of this study indicate that successful killing of gram-positive bacteria can be achieved using ICG combined with appropriate laser energy and wavelength. Efforts to enhance the susceptibility of gram-negative bacteria to photothermolysis by laser energy were unsuccessful.

  8. Survival of bacterial isolates exposed to simulated Jovian trapped radiation belt electrons and solar wind protons

    NASA Technical Reports Server (NTRS)

    Taylor, D. M.; Hagen, C. A.; Renninger, G. M.; Simko, G. J.; Smith, C. D.; Yelinek, J. A.

    1972-01-01

    With missions to Jupiter, the spacecraft will be exposed for extended duration to solar wind radiation and the Jovian trapped radiation belt. This study is designed to determine the effect of these radiation environments on spacecraft bacterial isolates. The information can be used in the probability of contamination analysis for these missions. A bacterial subpopulation from Mariner Mars 1971 spacecraft (nine sporeforming and three nonsporeforming isolates) plus two comparative organisms, Staphylococcus epidermidis ATCC 17917 and a strain of Bacillus subtilis var. niger, were exposed to 2-, 12-, and 25-MeV electrons at different doses with simultaneous exposure to a vacuum of 0.0013 N/sqm at 20 and -20 C. The radioresistance of the subpopulation was dependent on the isolate, dose, and energy of electrons. Temperature affected the radioresistance of only the sporeforming isolates. Survival data indicated that spores were reduced approximately 1 log/1500 J/kg, while nonsporeforming isolates (micrococci) were reduced 1.5 to 2 logs/1500 J/kg with the exception of an apparent radioresistant isolate whose resistance approached that of the spores. The subpopulation was found to be less resistant to lower energy than to higher energy electrons.

  9. Deep learning approach to bacterial colony classification.

    PubMed

    Zieliński, Bartosz; Plichta, Anna; Misztal, Krzysztof; Spurek, Przemysław; Brzychczy-Włoch, Monika; Ochońska, Dorota

    2017-01-01

    In microbiology it is diagnostically useful to recognize various genera and species of bacteria. It can be achieved using computer-aided methods, which make the recognition processes more automatic and thus significantly reduce the time necessary for the classification. Moreover, in case of diagnostic uncertainty (the misleading similarity in shape or structure of bacterial cells), such methods can minimize the risk of incorrect recognition. In this article, we apply the state of the art method for texture analysis to classify genera and species of bacteria. This method uses deep Convolutional Neural Networks to obtain image descriptors, which are then encoded and classified with Support Vector Machine or Random Forest. To evaluate this approach and to make it comparable with other approaches, we provide a new dataset of images. DIBaS dataset (Digital Image of Bacterial Species) contains 660 images with 33 different genera and species of bacteria.

  10. Survival of bacterial isolates exposed to simulated Jovian trapped radiation belt electrons and solar wind protons

    NASA Technical Reports Server (NTRS)

    Taylor, D. M.; Hagen, C. A.; Renninger, G. M.; Simko, G. J.; Smith, C. D.; Yelinek, J. A.

    1973-01-01

    With missions to Jupiter, the spacecraft will be exposed for extended durations to solar wind radiation and the Jovian trapped radiation belt. This study is designed to determine the effect of these radiation environments on spacecraft bacterial isolates. The information can be used in the probability of contamination analysis for these missions. A bacterial subpopulation from Mariner Mars 1971 spacecraft (nine spore-forming and three non-spore-forming isolates) plus two comparative organisms, Staphylococcus epidermidis ATCC 17917 and a strain of Bacillus subtilis var. niger, were exposed to 2, 12, and 25 MeV electrons at different doses with simultaneous exposure to a vacuum of 1.3 x 10(-4) N m-2 at 20 and -20 degrees C. The radioresistance of the subpopulation was dependent on the isolate, dose and energy of electrons. Temperature affected the radioresistance of only the spore-forming isolates. Survival data indicated that spores were reduced approximately 1 log/1500 J kg-1 (10 J kg-1=1 krad), while non-spore-forming isolates (micrococci) were reduced 1.5-2 logs/1500 J kg-1 with the exception of an apparent radioresistant isolate whose resistance approached that of the spores. The subpopulation was found to be less resistant to lower energy than to higher energy electrons. The bacterial isolates were exposed to 3 keV protons under the same conditions as the electrons with a total fluence of 1.5 x 10(13) p cm-2 and a dose rate of 8.6 x 10(9) p cm-2 s-1. The results showed that only 20% of S. epidermidis and 45% of B. subtilis populations survived exposure to the 3 keV protons, while the mean survival of the spacecraft subpopulation was 45% with a range from 31.8% (non-spore-former) to 64.8% (non-spore-former). No significant difference existed between spore-forming and non-spore-forming isolates.

  11. Plasma surface modification of rigid contact lenses decreases bacterial adhesion.

    PubMed

    Wang, Yingming; Qian, Xuefeng; Zhang, Xiaofeng; Xia, Wei; Zhong, Lei; Sun, Zhengtai; Xia, Jing

    2013-11-01

    Contact lens safety is an important topic in clinical studies. Corneal infections usually occur because of the use of bacteria-carrying contact lenses. The current study investigated the impact of plasma surface modification on bacterial adherence to rigid contact lenses made of fluorosilicone acrylate materials. Boston XO and XO2 contact lenses were modified using plasma technology (XO-P and XO2-P groups). Untreated lenses were used as controls. Plasma-treated and control lenses were incubated in solutions containing Staphylococcus aureus or Pseudomonas aeruginosa. MTT colorimetry, colony-forming unit counting method, and scanning electron microscopy were used to measure bacterial adhesion. MTT colorimetry measurements showed that the optical density (OD) values of XO-P and XO2-P were significantly lower than those of XO and XO2, respectively, after incubation with S. aureus (P < 0.01). The OD value of XO-P was also much lower than that of XO after incubation with P. aeruginosa (P < 0.01). Colony-forming unit counting revealed that a significantly lower number of bacterial colonies attached to the XO-P versus XO lenses and to the XO2-P versus XO2 lenses incubated with S. aureus (P < 0.01). Fewer bacterial colonies attached to the XO-P versus XO lenses incubated with P. aeruginosa (P < 0.01). Further, scanning electron microscopy suggested different bacterial adhesion morphology on plasma-treated versus control lenses. Plasma surface modification can significantly decrease bacterial adhesion to fluorosilicone acrylate contact lenses. This study provides important evidence of a unique benefit of plasma technology in contact lens surface modification.

  12. Modelling the morphology of migrating bacterial colonies

    NASA Astrophysics Data System (ADS)

    Nishiyama, A.; Tokihiro, T.; Badoual, M.; Grammaticos, B.

    2010-08-01

    We present a model which aims at describing the morphology of colonies of Proteus mirabilis and Bacillus subtilis. Our model is based on a cellular automaton which is obtained by the adequate discretisation of a diffusion-like equation, describing the migration of the bacteria, to which we have added rules simulating the consolidation process. Our basic assumption, following the findings of the group of Chuo University, is that the migration and consolidation processes are controlled by the local density of the bacteria. We show that it is possible within our model to reproduce the morphological diagrams of both bacteria species. Moreover, we model some detailed experiments done by the Chuo University group, obtaining a fine agreement.

  13. Pathogen webs in collapsing honey bee colonies.

    PubMed

    Cornman, R Scott; Tarpy, David R; Chen, Yanping; Jeffreys, Lacey; Lopez, Dawn; Pettis, Jeffery S; vanEngelsdorp, Dennis; Evans, Jay D

    2012-01-01

    Recent losses in honey bee colonies are unusual in their severity, geographical distribution, and, in some cases, failure to present recognized characteristics of known disease. Domesticated honey bees face numerous pests and pathogens, tempting hypotheses that colony collapses arise from exposure to new or resurgent pathogens. Here we explore the incidence and abundance of currently known honey bee pathogens in colonies suffering from Colony Collapse Disorder (CCD), otherwise weak colonies, and strong colonies from across the United States. Although pathogen identities differed between the eastern and western United States, there was a greater incidence and abundance of pathogens in CCD colonies. Pathogen loads were highly covariant in CCD but not control hives, suggesting that CCD colonies rapidly become susceptible to a diverse set of pathogens, or that co-infections can act synergistically to produce the rapid depletion of workers that characterizes the disorder. We also tested workers from a CCD-free apiary to confirm that significant positive correlations among pathogen loads can develop at the level of individual bees and not merely as a secondary effect of CCD. This observation and other recent data highlight pathogen interactions as important components of bee disease. Finally, we used deep RNA sequencing to further characterize microbial diversity in CCD and non-CCD hives. We identified novel strains of the recently described Lake Sinai viruses (LSV) and found evidence of a shift in gut bacterial composition that may be a biomarker of CCD. The results are discussed with respect to host-parasite interactions and other environmental stressors of honey bees.

  14. Pathogen Webs in Collapsing Honey Bee Colonies

    PubMed Central

    Cornman, R. Scott; Tarpy, David R.; Chen, Yanping; Jeffreys, Lacey; Lopez, Dawn; Pettis, Jeffery S.; vanEngelsdorp, Dennis; Evans, Jay D.

    2012-01-01

    Recent losses in honey bee colonies are unusual in their severity, geographical distribution, and, in some cases, failure to present recognized characteristics of known disease. Domesticated honey bees face numerous pests and pathogens, tempting hypotheses that colony collapses arise from exposure to new or resurgent pathogens. Here we explore the incidence and abundance of currently known honey bee pathogens in colonies suffering from Colony Collapse Disorder (CCD), otherwise weak colonies, and strong colonies from across the United States. Although pathogen identities differed between the eastern and western United States, there was a greater incidence and abundance of pathogens in CCD colonies. Pathogen loads were highly covariant in CCD but not control hives, suggesting that CCD colonies rapidly become susceptible to a diverse set of pathogens, or that co-infections can act synergistically to produce the rapid depletion of workers that characterizes the disorder. We also tested workers from a CCD-free apiary to confirm that significant positive correlations among pathogen loads can develop at the level of individual bees and not merely as a secondary effect of CCD. This observation and other recent data highlight pathogen interactions as important components of bee disease. Finally, we used deep RNA sequencing to further characterize microbial diversity in CCD and non-CCD hives. We identified novel strains of the recently described Lake Sinai viruses (LSV) and found evidence of a shift in gut bacterial composition that may be a biomarker of CCD. The results are discussed with respect to host-parasite interactions and other environmental stressors of honey bees. PMID:22927991

  15. Epigenetic Regulation of Placenta-Specific 8 Contributes to Altered Function of Endothelial Colony-Forming Cells Exposed to Intrauterine Gestational Diabetes Mellitus.

    PubMed

    Blue, Emily K; Sheehan, BreAnn M; Nuss, Zia V; Boyle, Frances A; Hocutt, Caleb M; Gohn, Cassandra R; Varberg, Kaela M; McClintick, Jeanette N; Haneline, Laura S

    2015-07-01

    Intrauterine exposure to gestational diabetes mellitus (GDM) is linked to development of hypertension, obesity, and type 2 diabetes in children. Our previous studies determined that endothelial colony-forming cells (ECFCs) from neonates exposed to GDM exhibit impaired function. The current goals were to identify aberrantly expressed genes that contribute to impaired function of GDM-exposed ECFCs and to evaluate for evidence of altered epigenetic regulation of gene expression. Genome-wide mRNA expression analysis was conducted on ECFCs from control and GDM pregnancies. Candidate genes were validated by quantitative RT-PCR and Western blotting. Bisulfite sequencing evaluated DNA methylation of placenta-specific 8 (PLAC8). Proliferation and senescence assays of ECFCs transfected with siRNA to knockdown PLAC8 were performed to determine functional impact. Thirty-eight genes were differentially expressed between control and GDM-exposed ECFCs. PLAC8 was highly expressed in GDM-exposed ECFCs, and PLAC8 expression correlated with maternal hyperglycemia. Methylation status of 17 CpG sites in PLAC8 negatively correlated with mRNA expression. Knockdown of PLAC8 in GDM-exposed ECFCs improved proliferation and senescence defects. This study provides strong evidence in neonatal endothelial progenitor cells that GDM exposure in utero leads to altered gene expression and DNA methylation, suggesting the possibility of altered epigenetic regulation. © 2015 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

  16. Significance of Hemolytic Colonies in Throat Cultures

    PubMed Central

    Quinn, Robert W.; Lowry, P. Nye

    1969-01-01

    These studies indicate that a single strain of hemolytic streptococci almost exclusively predominates the bacterial flora in patients with streptococcal infections and in the carrier state. One can proceed with confidence that, in isolating streptococci from throat swabs cultured on blood-agar plates, only a single hemolytic colony need be picked for serological grouping and typing. PMID:4888863

  17. Proteome analysis of Arabidopsis seedlings exposed to bacterial volatiles.

    PubMed

    Kwon, Young Sang; Ryu, Choong-Min; Lee, Soohyun; Park, Hyo Bee; Han, Ki Soo; Lee, Jung Han; Lee, Kyunghee; Chung, Woo Sik; Jeong, Mi-Jeong; Kim, Hee Kyu; Bae, Dong-Won

    2010-11-01

    Plant root-associated bacteria (rhizobacteria) elicit plant basal immunity referred to as induced systemic resistance (ISR) against multiple pathogens. Among multi-bacterial determinants involving such ISR, the induction of ISR and promotion of growth by bacterial volatile compounds was previously reported. To exploit global de novo expression of plant proteins by bacterial volatiles, proteomic analysis was performed after exposure of Arabidopsis plants to the rhizobacterium Bacillus subtilis GB03. Ethylene biosynthesis enzymes were significantly up-regulated. Analysis by quantitative reverse transcriptase polymerase chain reaction confirmed that ethylene biosynthesis-related genes SAM-2, ACS4, ACS12, and ACO2 as well as ethylene response genes, ERF1, GST2, and CHIB were up-regulated by the exposure to bacterial volatiles. More interestingly, the emission of bacterial volatiles significantly up-regulated both key defense mechanisms mediated by jasmonic acid and salicylic acid signaling pathways. In addition, high accumulation of antioxidant proteins also provided evidence of decreased sensitivity to reactive oxygen species during the elicitation of ISR by bacterial volatiles. The present results suggest that the proteomic analysis of plant defense responses in bacterial volatile-mediated ISR can reveal the mechanisms of plant basal defenses orchestrated by endogenous ethylene production pathways and the generation of reactive oxygen species.

  18. Elucidating the impact of micro-scale heterogeneous bacterial distribution on biodegradation

    NASA Astrophysics Data System (ADS)

    Schmidt, Susanne I.; Kreft, Jan-Ulrich; Mackay, Rae; Picioreanu, Cristian; Thullner, Martin

    2018-06-01

    Groundwater microorganisms hardly ever cover the solid matrix uniformly-instead they form micro-scale colonies. To which extent such colony formation limits the bioavailability and biodegradation of a substrate is poorly understood. We used a high-resolution numerical model of a single pore channel inhabited by bacterial colonies to simulate the transport and biodegradation of organic substrates. These high-resolution 2D simulation results were compared to 1D simulations that were based on effective rate laws for bioavailability-limited biodegradation. We (i) quantified the observed bioavailability limitations and (ii) evaluated the applicability of previously established effective rate concepts if microorganisms are heterogeneously distributed. Effective bioavailability reductions of up to more than one order of magnitude were observed, showing that the micro-scale aggregation of bacterial cells into colonies can severely restrict the bioavailability of a substrate and reduce in situ degradation rates. Effective rate laws proved applicable for upscaling when using the introduced effective colony sizes.

  19. Validation of an automated colony counting system for group A Streptococcus.

    PubMed

    Frost, H R; Tsoi, S K; Baker, C A; Laho, D; Sanderson-Smith, M L; Steer, A C; Smeesters, P R

    2016-02-08

    The practice of counting bacterial colony forming units on agar plates has long been used as a method to estimate the concentration of live bacteria in culture. However, due to the laborious and potentially error prone nature of this measurement technique, an alternative method is desirable. Recent technologic advancements have facilitated the development of automated colony counting systems, which reduce errors introduced during the manual counting process and recording of information. An additional benefit is the significant reduction in time taken to analyse colony counting data. Whilst automated counting procedures have been validated for a number of microorganisms, the process has not been successful for all bacteria due to the requirement for a relatively high contrast between bacterial colonies and growth medium. The purpose of this study was to validate an automated counting system for use with group A Streptococcus (GAS). Twenty-one different GAS strains, representative of major emm-types, were selected for assessment. In order to introduce the required contrast for automated counting, 2,3,5-triphenyl-2H-tetrazolium chloride (TTC) dye was added to Todd-Hewitt broth with yeast extract (THY) agar. Growth on THY agar with TTC was compared with growth on blood agar and THY agar to ensure the dye was not detrimental to bacterial growth. Automated colony counts using a ProtoCOL 3 instrument were compared with manual counting to confirm accuracy over the stages of the growth cycle (latent, mid-log and stationary phases) and in a number of different assays. The average percentage differences between plating and counting methods were analysed using the Bland-Altman method. A percentage difference of ±10 % was determined as the cut-off for a critical difference between plating and counting methods. All strains measured had an average difference of less than 10 % when plated on THY agar with TTC. This consistency was also observed over all phases of the growth

  20. Longitudinal Effects of Supplemental Forage on the Honey Bee (Apis mellifera) Microbiota and Inter- and Intra-Colony Variability.

    PubMed

    Rothman, Jason A; Carroll, Mark J; Meikle, William G; Anderson, Kirk E; McFrederick, Quinn S

    2018-02-03

    Honey bees (Apis mellifera) provide vital pollination services for a variety of agricultural crops around the world and are known to host a consistent core bacterial microbiome. This symbiotic microbial community is essential to many facets of bee health, including likely nutrient acquisition, disease prevention and optimal physiological function. Being that the bee microbiome is likely involved in the digestion of nutrients, we either provided or excluded honey bee colonies from supplemental floral forage before being used for almond pollination. We then used 16S rRNA gene sequencing to examine the effects of forage treatment on the bees' microbial gut communities over four months. In agreement with previous studies, we found that the honey bee gut microbiota is quite stable over time. Similarly, we compared the gut communities of bees from separate colonies and sisters sampled from within the same hive over four months. Surprisingly, we found that the gut microbial communities of individual sisters from the same colony can exhibit as much variation as bees from different colonies. Supplemental floral forage had a subtle effect on the composition of the microbiome during the month of March only, with strains of Gilliamella apicola, Lactobacillus, and Bartonella being less proportionally abundant in bees exposed to forage in the winter. Collectively, our findings show that there is unexpected longitudinal variation within the gut microbial communities of sister honey bees and that supplemental floral forage can subtly alter the microbiome of managed honey bees.

  1. Development of a colony lift immunoassay to facilitate rapid detection and quantification of Escherichia coli O157:H7 from agar plates and filter monitor membranes.

    PubMed

    Ingram, D T; Lamichhane, C M; Rollins, D M; Carr, L E; Mallinson, E T; Joseph, S W

    1998-07-01

    E. coli O157:H7 is a food-borne adulterant that can cause hemorrhagic ulcerative colitis and hemolytic uremic syndrome. Faced with an increasing risk of foods contaminated with E. coli O157:H7, food safety officials are seeking improved methods to detect and isolate E. coli O157:H7 in hazard analysis and critical control point systems in meat- and poultry-processing plants. A colony lift immunoassay was developed to facilitate the positive identification and quantification of E. coli O157:H7 by incorporating a simple colony lift enzyme-linked immunosorbent assay with filter monitors and traditional culture methods. Polyvinylidene difluoride (PVDF) membranes (Millipore, Bedford, Mass.) were prewet with methanol and were used to make replicates of every bacterial colony on agar plates or filter monitor membranes that were then reincubated for 15 to 18 h at 36 +/- 1 degree C, during which the colonies not only remained viable but were reestablished. The membranes were dried, blocked with blocking buffer (Kirkegaard and Perry Laboratories [KPL], Gaithersburg, Md.), and exposed for 7 min to an affinity-purified horseradish peroxidase-labeled goat anti-E. coli O157 antibody (KPL). The membranes were washed, exposed to a 3,3',5,5'-tetramethylbenzidine membrane substrate (TMB; KPL) or aminoethyl carbazole (AEC; Sigma Chemical Co., St. Louis, Mo.), rinsed in deionized water, and air dried. Colonies of E. coli O157:H7 were identified by either a blue (via TMB) or a red (via AEC) color reaction. The colored spots on the PVDF lift membrane were then matched to their respective parent colonies on the agar plates or filter monitor membranes. The colony lift immunoassay was tested with a wide range of genera in the family Enterobacteriaceae as well as different serotypes within the E. coli genus. The colony lift immunoassay provided a simple, rapid, and accurate method for confirming the presence of E. coli O157:H7 colonies isolated on filter monitors or spread plates by

  2. Development of a Colony Lift Immunoassay To Facilitate Rapid Detection and Quantification of Escherichia coli O157:H7 from Agar Plates and Filter Monitor Membranes

    PubMed Central

    Ingram, David T.; Lamichhane, Chinta M.; Rollins, David M.; Carr, Lewis E.; Mallinson, Edward T.; Joseph, Sam W.

    1998-01-01

    E. coli O157:H7 is a food-borne adulterant that can cause hemorrhagic ulcerative colitis and hemolytic uremic syndrome. Faced with an increasing risk of foods contaminated with E. coli O157:H7, food safety officials are seeking improved methods to detect and isolate E. coli O157:H7 in hazard analysis and critical control point systems in meat- and poultry-processing plants. A colony lift immunoassay was developed to facilitate the positive identification and quantification of E. coli O157:H7 by incorporating a simple colony lift enzyme-linked immunosorbent assay with filter monitors and traditional culture methods. Polyvinylidene difluoride (PVDF) membranes (Millipore, Bedford, Mass.) were prewet with methanol and were used to make replicates of every bacterial colony on agar plates or filter monitor membranes that were then reincubated for 15 to 18 h at 36 ± 1°C, during which the colonies not only remained viable but were reestablished. The membranes were dried, blocked with blocking buffer (Kirkegaard and Perry Laboratories [KPL], Gaithersburg, Md.), and exposed for 7 min to an affinity-purified horseradish peroxidase-labeled goat anti-E. coli O157 antibody (KPL). The membranes were washed, exposed to a 3,3′,5,5′-tetramethylbenzidine membrane substrate (TMB; KPL) or aminoethyl carbazole (AEC; Sigma Chemical Co., St. Louis, Mo.), rinsed in deionized water, and air dried. Colonies of E. coli O157:H7 were identified by either a blue (via TMB) or a red (via AEC) color reaction. The colored spots on the PVDF lift membrane were then matched to their respective parent colonies on the agar plates or filter monitor membranes. The colony lift immunoassay was tested with a wide range of genera in the family Enterobacteriaceae as well as different serotypes within the E. coli genus. The colony lift immunoassay provided a simple, rapid, and accurate method for confirming the presence of E. coli O157:H7 colonies isolated on filter monitors or spread plates by traditional

  3. Instability in bacterial populations and the curvature tensor

    NASA Astrophysics Data System (ADS)

    Melgarejo, Augusto; Langoni, Laura; Ruscitti, Claudia

    2016-09-01

    In the geometry associated with equilibrium thermodynamics the scalar curvature Rs is a measure of the volume of correlation, and therefore the singularities of Rs indicates the system instabilities. We explore the use of a similar approach to study instabilities in non-equilibrium systems and we choose as a test example, a colony of bacteria. In this regard we follow the proposal made by Obata et al. of using the curvature tensor for studying system instabilities. Bacterial colonies are often found in nature in concentrated biofilms, or other colony types, which can grow into spectacular patterns visible under the microscope. For instance, it is known that a decrease of bacterial motility with density can promote separation into bulk phases of two coexisting densities; this is opposed to the logistic law for birth and death that allows only a single uniform density to be stable. Although this homogeneous configuration is stable in the absence of bacterial interactions, without logistic growth, a density-dependent swim speed v(ρ) leads to phase separation via a spinodal instability. Thus we relate the singularities in the curvature tensor R to the spinodal instability, that is the appearance of regions of different densities of bacteria.

  4. Prediction of the light scattering patterns from bacteria colonies by a time-resolved reaction-diffusion model and the scalar diffraction theory

    NASA Astrophysics Data System (ADS)

    Bae, Euiwon; Bai, Nan; Aroonnual, Amornrat; Bhunia, Arun K.; Robinson, J. Paul; Hirleman, E. Daniel

    2009-05-01

    In order to maximize the utility of the optical scattering technology in the area of bacterial colony identification, it is necessary to have a thorough understanding of how bacteria species grow into different morphological aggregation and subsequently function as distinctive optical amplitude and phase modulators to alter the incoming Gaussian laser beam. In this paper, a 2-dimentional reaction-diffusion (RD) model with nutrient concentration, diffusion coefficient, and agar hardness as variables is investigated to explain the correlation between the various environmental parameters and the distinctive morphological aggregations formed by different bacteria species. More importantly, the morphological change of the bacterial colony against time is demonstrated by this model, which is able to characterize the spatio-temporal patterns formed by the bacteria colonies over their entire growth curve. The bacteria population density information obtained from the RD model is mathematically converted to the amplitude/phase modulation factor used in the scalar diffraction theory which predicts the light scattering patterns for bacterial colonies. The conclusions drawn from the RD model combined with the scalar diffraction theory are useful in guiding the design of the optical scattering instrument aiming at bacteria colony detection and classification.

  5. Second-Hand Cigarette Smoke Impairs Bacterial Phagocytosis in Macrophages by Modulating CFTR Dependent Lipid-Rafts

    PubMed Central

    Ni, Inzer; Ji, Changhoon; Vij, Neeraj

    2015-01-01

    Introduction First/Second-hand cigarette-smoke (FHS/SHS) exposure weakens immune defenses inducing chronic obstructive pulmonary disease (COPD) but the underlying mechanisms are not fully understood. Hence, we evaluated if SHS induced changes in membrane/lipid-raft (m-/r)-CFTR (cystic fibrosis transmembrane conductance regulator) expression/activity is a potential mechanism for impaired bacterial phagocytosis in COPD. Methods RAW264.7 murine macrophages were exposed to freshly prepared CS-extract (CSE) containing culture media and/or Pseudomonas-aeruginosa-PA01-GFP for phagocytosis (fluorescence-microscopy), bacterial survival (colony-forming-units-CFU), and immunoblotting assays. The CFTR-expression/activity and lipid-rafts were modulated by transient-transfection or inhibitors/inducers. Next, mice were exposed to acute/sub-chronic-SHS or room-air (5-days/3-weeks) and infected with PA01-GFP, followed by quantification of bacterial survival by CFU-assay. Results We investigated the effect of CSE treatment on RAW264.7 cells infected by PA01-GFP and observed that CSE treatment significantly (p<0.01) inhibits PA01-GFP phagocytosis as compared to the controls. We also verified this in murine model, exposed to acute/sub-chronic-SHS and found significant (p<0.05, p<0.02) increase in bacterial survival in the SHS-exposed lungs as compared to the room-air controls. Next, we examined the effect of impaired CFTR ion-channel-activity on PA01-GFP infection of RAW264.7 cells using CFTR172-inhibitor and found no significant change in phagocytosis. We also similarly evaluated the effect of a CFTR corrector-potentiator compound, VRT-532, and observed no significant rescue of CSE impaired PA01-GFP phagocytosis although it significantly (p<0.05) decreases CSE induced bacterial survival. Moreover, induction of CFTR expression in macrophages significantly (p<0.03) improves CSE impaired PA01-GFP phagocytosis as compared to the control. Next, we verified the link between m

  6. Colony pace: a life-history trait affecting social insect epidemiology.

    PubMed

    Buechel, Séverine Denise; Schmid-Hempel, Paul

    2016-01-13

    Among colonies of social insects, the worker turnover rate (colony 'pace') typically shows considerable variation. This has epidemiological consequences for parasites, because in 'fast-paced' colonies, with short-lived workers, the time of parasite residence in a given host will be reduced, and further transmission may thus get less likely. Here, we test this idea and ask whether pace is a life-history strategy against infectious parasites. We infected bumblebees (Bombus terrestris) with the infectious gut parasite Crithidia bombi, and experimentally manipulated birth and death rates to mimic slow and fast pace. We found that fewer workers and, importantly, fewer last-generation workers that are responsible for rearing sexuals were infected in colonies with faster pace. This translates into increased fitness in fast-paced colonies, as daughter queens exposed to fewer infected workers in the nest are less likely to become infected themselves, and have a higher chance of founding their own colonies in the next year. High worker turnover rate can thus act as a strategy of defence against a spreading infection in social insect colonies. © 2016 The Author(s).

  7. Influence of condition of growth of bacterial colonies on fractal dimension of bacterial speckle patterns

    NASA Astrophysics Data System (ADS)

    Ulyanov, Alexander S.; Lyapina, Anna M.; Ulianova, Onega V.; Feodorova, Valentina A.

    2010-10-01

    New field of application of fractal dimensions is proposed. A technique, based on the calculation of fractal dimension, was used for express-diagnostics and identification of bacteria of the vaccine strain Yersinia pestis EV line NIIEG. Purpose of this study was the experimental investigation of properties of speckle patterns, formed under laser illumination of a single colony of the strain that was grown on different agars.

  8. Influence of condition of growth of bacterial colonies on fractal dimension of bacterial speckle patterns

    NASA Astrophysics Data System (ADS)

    Ulyanov, Alexander S.; Lyapina, Anna M.; Ulianova, Onega V.; Feodorova, Valentina A.

    2011-03-01

    New field of application of fractal dimensions is proposed. A technique, based on the calculation of fractal dimension, was used for express-diagnostics and identification of bacteria of the vaccine strain Yersinia pestis EV line NIIEG. Purpose of this study was the experimental investigation of properties of speckle patterns, formed under laser illumination of a single colony of the strain that was grown on different agars.

  9. The Comparative Effects of CS and Various Pollutants on Fresh Water Phytoplankton Colonies of ’Wolffia papulifera’ Thompson

    DTIC Science & Technology

    Varying concentrations of nine potential pollutants were tested for effects in vitro against colonies of Wolffia papulifera. Death was observed in...colonies of Wolffia exposed to 100 ppm or above of CS, DDT, Malathion, Diazinon, and indole acetic acid (IAA) and to 1000 ppm of Aldrin, Dieldrin, Sevin...of Aldrin and Malathion; and 0.01 ppm of 2,4-D. Teratogenic effects were observed in Wolffia colonies exposed to Malathion at 1 ppm, of 2,4-D at 0.1

  10. Linking Measures of Colony and Individual Honey Bee Health to Survival among Apiaries Exposed to Varying Agricultural Land Use

    PubMed Central

    Smart, Matthew; Pettis, Jeff; Rice, Nathan; Browning, Zac; Spivak, Marla

    2016-01-01

    We previously characterized and quantified the influence of land use on survival and productivity of colonies positioned in six apiaries and found that colonies in apiaries surrounded by more land in uncultivated forage experienced greater annual survival, and generally more honey production. Here, detailed metrics of honey bee health were assessed over three years in colonies positioned in the same six apiaries. The colonies were located in North Dakota during the summer months and were transported to California for almond pollination every winter. Our aim was to identify relationships among measures of colony and individual bee health that impacted and predicted overwintering survival of colonies. We tested the hypothesis that colonies in apiaries surrounded by more favorable land use conditions would experience improved health. We modeled colony and individual bee health indices at a critical time point (autumn, prior to overwintering) and related them to eventual spring survival for California almond pollination. Colony measures that predicted overwintering apiary survival included the amount of pollen collected, brood production, and Varroa destructor mite levels. At the individual bee level, expression of vitellogenin, defensin1, and lysozyme2 were important markers of overwinter survival. This study is a novel first step toward identifying pertinent physiological responses in honey bees that result from their positioning near varying landscape features in intensive agricultural environments. PMID:27027871

  11. Linking Measures of Colony and Individual Honey Bee Health to Survival among Apiaries Exposed to Varying Agricultural Land Use.

    PubMed

    Smart, Matthew; Pettis, Jeff; Rice, Nathan; Browning, Zac; Spivak, Marla

    2016-01-01

    We previously characterized and quantified the influence of land use on survival and productivity of colonies positioned in six apiaries and found that colonies in apiaries surrounded by more land in uncultivated forage experienced greater annual survival, and generally more honey production. Here, detailed metrics of honey bee health were assessed over three years in colonies positioned in the same six apiaries. The colonies were located in North Dakota during the summer months and were transported to California for almond pollination every winter. Our aim was to identify relationships among measures of colony and individual bee health that impacted and predicted overwintering survival of colonies. We tested the hypothesis that colonies in apiaries surrounded by more favorable land use conditions would experience improved health. We modeled colony and individual bee health indices at a critical time point (autumn, prior to overwintering) and related them to eventual spring survival for California almond pollination. Colony measures that predicted overwintering apiary survival included the amount of pollen collected, brood production, and Varroa destructor mite levels. At the individual bee level, expression of vitellogenin, defensin1, and lysozyme2 were important markers of overwinter survival. This study is a novel first step toward identifying pertinent physiological responses in honey bees that result from their positioning near varying landscape features in intensive agricultural environments.

  12. Spatio-Temporal Patterns in Colonies of Rod-Shaped Bacteria

    NASA Astrophysics Data System (ADS)

    Kitsunezaki, S.

    In incubation experiments of bacterial colonies of Proteus Mirabilis, macroscopic spatio-temporal patterns, such as turbulent and unidirectional spiral patterns, appear in colonies. Considering only kinetic propeties of rod-shaped bacteria, we propose a phenomenological model for the directional and positional distributions. As the average density increases, homogeneous states bifurcate sub-critically into nonuniform states exhibiting localized collective motion, and spiral patterns appear for sufficiently large density. These patterns result from interactions between the local bacteria densities and the order parameter representing collective motion. Our model can be described by reduced equations using a perturbative method for large density. The unidirectionality of sprial rotation is also discussed.

  13. Phenotypic Heterogeneity and the Evolution of Bacterial Life Cycles.

    PubMed

    van Gestel, Jordi; Nowak, Martin A

    2016-02-01

    Most bacteria live in colonies, where they often express different cell types. The ecological significance of these cell types and their evolutionary origin are often unknown. Here, we study the evolution of cell differentiation in the context of surface colonization. We particularly focus on the evolution of a 'sticky' cell type that is required for surface attachment, but is costly to express. The sticky cells not only facilitate their own attachment, but also that of non-sticky cells. Using individual-based simulations, we show that surface colonization rapidly evolves and in most cases leads to phenotypic heterogeneity, in which sticky and non-sticky cells occur side by side on the surface. In the presence of regulation, cell differentiation leads to a remarkable set of bacterial life cycles, in which cells alternate between living in the liquid and living on the surface. The dominant life stage is formed by the surface-attached colony that shows many complex features: colonies reproduce via fission and by producing migratory propagules; cells inside the colony divide labour; and colonies can produce filaments to facilitate expansion. Overall, our model illustrates how the evolution of an adhesive cell type goes hand in hand with the evolution of complex bacterial life cycles.

  14. Phenotypic Heterogeneity and the Evolution of Bacterial Life Cycles

    PubMed Central

    van Gestel, Jordi; Nowak, Martin A.

    2016-01-01

    Most bacteria live in colonies, where they often express different cell types. The ecological significance of these cell types and their evolutionary origin are often unknown. Here, we study the evolution of cell differentiation in the context of surface colonization. We particularly focus on the evolution of a ‘sticky’ cell type that is required for surface attachment, but is costly to express. The sticky cells not only facilitate their own attachment, but also that of non-sticky cells. Using individual-based simulations, we show that surface colonization rapidly evolves and in most cases leads to phenotypic heterogeneity, in which sticky and non-sticky cells occur side by side on the surface. In the presence of regulation, cell differentiation leads to a remarkable set of bacterial life cycles, in which cells alternate between living in the liquid and living on the surface. The dominant life stage is formed by the surface-attached colony that shows many complex features: colonies reproduce via fission and by producing migratory propagules; cells inside the colony divide labour; and colonies can produce filaments to facilitate expansion. Overall, our model illustrates how the evolution of an adhesive cell type goes hand in hand with the evolution of complex bacterial life cycles. PMID:26894881

  15. Pathogens as Predictors of Honey Bee Colony Strength in England and Wales.

    PubMed

    Budge, Giles E; Pietravalle, Stéphane; Brown, Mike; Laurenson, Lynn; Jones, Ben; Tomkies, Victoria; Delaplane, Keith S

    2015-01-01

    Inspectors with the UK National Bee Unit were asked for 2007-2008 to target problem apiaries in England and Wales for pathogen screening and colony strength measures. Healthy colonies were included in the sampling to provide a continuum of health conditions. A total of 406 adult bee samples was screened and yielded 7 viral, 1 bacterial, and 2 microsporidial pathogens and 1 ectoparasite (Acarapis woodi). In addition, 108 samples of brood were screened and yielded 4 honey bee viruses. Virus prevalence varied from common (deformed wing virus, black queen cell virus) to complete absence (Israeli acute paralysis virus). When colonies were forced into one of two classes, strong or weak, the weak colonies contained more pathogens in adult bees. Among observed pathogens, only deformed wing virus was able to predict colony strength. The effect was negative such that colonies testing positive for deformed wing virus were likely to have fewer combs of bees or brood. This study constitutes the first record for Nosema ceranae in Great Britain. These results contribute to the growing body of evidence linking pathogens to poor honey bee health.

  16. Spatial Distribution of Lactococcus lactis Colonies Modulates the Production of Major Metabolites during the Ripening of a Model Cheese.

    PubMed

    Le Boucher, Clémentine; Gagnaire, Valérie; Briard-Bion, Valérie; Jardin, Julien; Maillard, Marie-Bernadette; Dervilly-Pinel, Gaud; Le Bizec, Bruno; Lortal, Sylvie; Jeanson, Sophie; Thierry, Anne

    2016-01-01

    In cheese, lactic acid bacteria are immobilized at the coagulation step and grow as colonies. The spatial distribution of bacterial colonies is characterized by the size and number of colonies for a given bacterial population within cheese. Our objective was to demonstrate that different spatial distributions, which lead to differences in the exchange surface between the colonies and the cheese matrix, can influence the ripening process. The strategy was to generate cheeses with the same growth and acidification of a Lactococcus lactis strain with two different spatial distributions, big and small colonies, to monitor the production of the major ripening metabolites, including sugars, organic acids, peptides, free amino acids, and volatile metabolites, over 1 month of ripening. The monitored metabolites were qualitatively the same for both cheeses, but many of them were more abundant in the small-colony cheeses than in the big-colony cheeses over 1 month of ripening. Therefore, the results obtained showed that two different spatial distributions of L. lactis modulated the ripening time course by generating moderate but significant differences in the rates of production or consumption for many of the metabolites commonly monitored throughout ripening. The present work further explores the immobilization of bacteria as colonies within cheese and highlights the consequences of this immobilization on cheese ripening. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  17. Changes in bacterial gut community of Reticulitermes flavipes (Kollar) and Reticulitermes tibialis Banks after feeding on termiticidal bait material

    Treesearch

    Rachel A. Arango; Frederick Green III; Kenneth F. Raffa

    2014-01-01

    In this study, 454-pyrosequencing was used to evaluate the effect of two termiticidal baits, hexaflumuron and diflubenzuron, on the bacterial gut community in two Reticulitermes flavipes colonies and one Reticulitermes tibialis colony. Results showed two bacterial groups to be most abundant in the gut, the Bacteroidetes and...

  18. Bacterial community diversity of the deep-sea octocoral Paramuricea placomus.

    PubMed

    Kellogg, Christina A; Ross, Steve W; Brooke, Sandra D

    2016-01-01

    Compared to tropical corals, much less is known about deep-sea coral biology and ecology. Although the microbial communities of some deep-sea corals have been described, this is the first study to characterize the bacterial community associated with the deep-sea octocoral, Paramuricea placomus . Samples from five colonies of P. placomus were collected from Baltimore Canyon (379-382 m depth) in the Atlantic Ocean off the east coast of the United States of America. DNA was extracted from the coral samples and 16S rRNA gene amplicons were pyrosequenced using V4-V5 primers. Three samples sequenced deeply (>4,000 sequences each) and were further analyzed. The dominant microbial phylum was Proteobacteria, but other major phyla included Firmicutes and Planctomycetes. A conserved community of bacterial taxa held in common across the three P. placomus colonies was identified, comprising 68-90% of the total bacterial community depending on the coral individual. The bacterial community of P. placomus does not appear to include the genus Endozoicomonas , which has been found previously to be the dominant bacterial associate in several temperate and tropical gorgonians. Inferred functionality suggests the possibility of nitrogen cycling by the core bacterial community.

  19. Gamma-irradiated bacterial preparation having anti-tumor activity

    DOEpatents

    Vass, Arpad A.; Tyndall, Richard L.; Terzaghi-Howe, Peggy

    1999-01-01

    A bacterial preparation from Pseudomonas species isolated #15 ATCC 55638 that has been exposed to gamma radiation exhibits cytotoxicity that is specific for neoplastic carcinoma cells. A method for obtaining a bacterial preparation having antitumor activity consists of suspending a bacterial isolate in media and exposing the suspension to gamma radiation. A bacterial preparation of an aged culture of an amoeba-associated bacteria exhibits anti-reverse transcriptase activity. A method for obtaining a bacterial preparation having anti-reverse transcriptase activity from an amoeba-associated bacterial isolate grown to stationary phase is disclosed.

  20. Probing the fractal pattern and organization of Bacillus thuringiensis bacteria colonies growing under different conditions using quantitative spectral light scattering polarimetry

    NASA Astrophysics Data System (ADS)

    Banerjee, Paromita; Soni, Jalpa; Purwar, Harsh; Ghosh, Nirmalya; Sengupta, Tapas K.

    2013-03-01

    Development of methods for quantification of cellular association and patterns in growing bacterial colony is of considerable current interest, not only to help understand multicellular behavior of a bacterial species but also to facilitate detection and identification of a bacterial species in a given space and under a given set of condition(s). We have explored quantitative spectral light scattering polarimetry for probing the morphological and structural changes taking place during colony formations of growing Bacillus thuringiensis bacteria under different conditions (in normal nutrient agar representing favorable growth environment, in the presence of 1% glucose as an additional nutrient, and 3 mM sodium arsenate as toxic material). The method is based on the measurement of spectral 3×3 Mueller matrices (which involves linear polarization measurements alone) and its subsequent analysis via polar decomposition to extract the intrinsic polarization parameters. Moreover, the fractal micro-optical parameter, namely, the Hurst exponent H, is determined via fractal-Born approximation-based inverse analysis of the polarization-preserving component of the light scattering spectra. Interesting differences are noted in the derived values for the H parameter and the intrinsic polarization parameters (linear diattenuation d, linear retardance δ, and linear depolarization Δ coefficients) of the growing bacterial colonies under different conditions. The bacterial colony growing in presence of 1% glucose exhibit the strongest fractality (lowest value of H), whereas that growing in presence of 3 mM sodium arsenate showed the weakest fractality. Moreover, the values for δ and d parameters are found to be considerably higher for the colony growing in presence of glucose, indicating more structured growth pattern. These findings are corroborated further with optical microscopic studies conducted on the same samples.

  1. Bacterial body plans

    PubMed Central

    Rieger, Tomáš; Neubauer, Zdeněk; Blahůšková, Anna; Cvrčková, Fatima

    2008-01-01

    The bacterium Serratia marcescens produces a plethora of multicellular shapes of different colorations on solid substrates, allowing immediate visual detection of varieties. Such a plasticity allows studies on multicellular community scale spanning two extremes, from well-elaborated individual colonies to undifferentiated cell mass. For a single strain and medium, we obtained a range of different multicellular bodies, depending on the layout of initial plating. Four principal factors affecting the morphogenetic pathways of such bodies can be distinguished: (1) amount, density and distribution pattern of founder cells; (2) the configuration of surrounding free medium; (3) the presence and character of other bacterial bodies sharing the same niche; and (4) self-perception, resulting in delimitation towards other bodies. The last feature results in an ability of well-formed multicellular individuals to maintain their identity upon a close mutual contact, as well as in spontaneous separation of cell masses in experimental chimeras. We propose an “embryo-like” colony model where multicellular bacterial bodies develop along genuine ontogenetic pathways inherent to the given species (clone), while external shaping forces (like nutrient gradients, pH, etc.,) exert not formative, but only regulative roles in the process. PMID:19513204

  2. Regional distribution of Paenibacillus larvae subspecies larvae, the causative organism of American foulbrood, in honey bee colonies of the Western United States.

    PubMed

    Eischen, Frank A; Graham, R Henry; Cox, Robert

    2005-08-01

    We examined honey bee, Apis mellifera L., colonies pollinating almonds in California during February 2003 for Paenibacillus larvae subsp. Larvae, the causative organism of the virulent brood disease American foulbrood. Colonies originating from the Rocky Mountain area and California had significantly higher numbers (P < 0.05) of bacterial colony-forming units (CFUs) (408 and 324 per 30 adult bees, respectively) than colonies from the upper Midwest (1.28). Colonies from the northwestern, central, and southwestern United States had intermediate CFU or bacterial colony levels. Operations positive for P. larvae larvae were relatively uniform at approximately 70-80%, and no regional significant differences were found. Percentages of colonies with high CFUs (> or = 400 per 30 bees) differed significantly, with those from the Rocky Mountain region having 8.73% compared with those of the upper Midwest with 0%. The significance of CFU levels was evaluated by inoculating healthy colonies with diseased immatures and sampling adult bees. The number of CFUs detected per diseased immature was conservatively estimated to be approximately 399 CFUs per 30 adult bees. We defined this spore level as 1 disease equivalent. Based on this, 3.86% colonies in our survey had 1 or more disease equivalent number of P. larvae larvae CFUs. Operations with high P. larvae larvae spore levels in their colonies will likely observe American foulbrood if prophylaxis is not practiced diligently.

  3. Neonicotinoid pesticide reduces bumble bee colony growth and queen production.

    PubMed

    Whitehorn, Penelope R; O'Connor, Stephanie; Wackers, Felix L; Goulson, Dave

    2012-04-20

    Growing evidence for declines in bee populations has caused great concern because of the valuable ecosystem services they provide. Neonicotinoid insecticides have been implicated in these declines because they occur at trace levels in the nectar and pollen of crop plants. We exposed colonies of the bumble bee Bombus terrestris in the laboratory to field-realistic levels of the neonicotinoid imidacloprid, then allowed them to develop naturally under field conditions. Treated colonies had a significantly reduced growth rate and suffered an 85% reduction in production of new queens compared with control colonies. Given the scale of use of neonicotinoids, we suggest that they may be having a considerable negative impact on wild bumble bee populations across the developed world.

  4. Propolis envelope in Apis mellifera colonies supports honey bees against the pathogen, Paenibacillus larvae.

    PubMed

    Borba, Renata S; Spivak, Marla

    2017-09-12

    Honey bees have immune defenses both as individuals and as a colony (e.g., individual and social immunity). One form of honey bee social immunity is the collection of antimicrobial plant resins and the deposition of the resins as a propolis envelope within the nest. In this study, we tested the effects of the propolis envelope as a natural defense against Paenibacillus larvae, the causative agent of American foulbrood (AFB) disease. Using colonies with and without a propolis envelope, we quantified: 1) the antimicrobial activity of larval food fed to 1-2 day old larvae; and 2) clinical signs of AFB. Our results show that the antimicrobial activity of larval food was significantly higher when challenged colonies had a propolis envelope compared to colonies without the envelope. In addition, colonies with a propolis envelope had significantly reduced levels of AFB clinical signs two months following challenge. Our results indicate that the propolis envelope serves as an antimicrobial layer around the colony that helps protect the brood from bacterial pathogen infection, resulting in a lower colony-level infection load.

  5. Chronic exposure of a honey bee colony to 2.45 GHz continuous wave microwaves

    NASA Technical Reports Server (NTRS)

    Westerdahl, B. B.; Gary, N. E.

    1981-01-01

    A honey bee colony (Apis mellifera L.) was exposed 28 days to 2.45 GHz continuous wave microwaves at a power density (1 mW/sq cm) expected to be associated with rectennae in the solar power satellite power transmission system. Differences found between the control and microwave-treated colonies were not large, and were in the range of normal variation among similar colonies. Thus, there is an indication that microwave treatment had little, if any, effect on (1) flight and pollen foraging activity, (2) maintenance of internal colony temperature, (3) brood rearing activity, (4) food collection and storage, (5) colony weight, and (6) adult populations. Additional experiments are necessary before firm conclusions can be made.

  6. Gamma-irradiated bacterial preparation having anti-tumor activity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vass, A.A.; Tyndall, R.L.; Terzaghi-Howe, P.

    1999-11-16

    This application describes a bacterial preparation from Pseudomonas species isolated {number{underscore}sign}15 ATCC 55638 that has been exposed to gamma radiation exhibits cytotoxicity that is specific for neoplastic carcinoma cells. A method for obtaining a bacterial preparation having antitumor activity consists of suspending a bacterial isolate in media and exposing the suspension to gamma radiation. A bacterial preparation of an aged culture of an amoeba-associated bacteria exhibits anti-reverse transcriptase activity. A method for obtaining a bacterial preparation having anti-reverse transcriptase activity from an amoeba-associated bacterial isolate grown to stationary phase is disclosed.

  7. The development of a specific pathogen free (SPF) barrier colony of marmosets (Callithrix jacchus) for aging research

    PubMed Central

    Ross, Corinna N.; Austad, Steven; Brasky, Kathy; Brown, Celeste J.; Forney, Larry J.; Gelfond, Jonathan A.; Lanford, Robert; Richardson, Arlan; Tardif, Suzette D.

    2017-01-01

    A specific pathogen free (SPF) barrier colony of breeding marmosets (Callithrix jacchus) was established at the Barshop Institute for Longevity and Aging Studies. Rodent and other animal models maintained as SPF barrier colonies have demonstrated improved health and lengthened lifespans enhancing the quality and repeatability of aging research. The marmosets were screened for two viruses and several bacterial pathogens prior to establishing the new SPF colony. Twelve founding animals successfully established a breeding colony with increased reproductive success, improved health parameters, and increased median lifespan when compared to a conventionally housed, open colony. The improved health and longevity of marmosets from the SPF barrier colony suggests that such management can be used to produce a unique resource for future studies of aging processes in a nonhuman primate model. PMID:29227963

  8. Colony-specific calcification and mortality under ocean acidification in the branching coral Montipora digitata.

    PubMed

    Kavousi, Javid; Tanaka, Yasuaki; Nishida, Kozue; Suzuki, Atsushi; Nojiri, Yukihiro; Nakamura, Takashi

    2016-08-01

    Ocean acidification (OA) threatens calcifying marine organisms including reef-building corals. In this study, we examined the OA responses of individual colonies of the branching scleractinian coral Montipora digitata. We exposed nubbins of unique colonies (n = 15) to ambient or elevated pCO2 under natural light and temperature regimes for 110 days. Although elevated pCO2 exposure on average reduced calcification, individual colonies showed unique responses ranging from declines in positive calcification to negative calcification (decalcification) to no change. Similarly, mortality was greater on average in elevated pCO2, but also showed colony-specific patterns. High variation in colony responses suggests the possibility that ongoing OA may lead to natural selection of OA-tolerant colonies within a coral population. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. The influence of the growth conditions of the plague microbe vaccine strain colonies on the fractal dimension of biospeckles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ul'yanov, A S; Lyapina, A M; Ulianova, O V

    2011-04-30

    Specific statistical characteristics of biospeckles, emerging under the diffraction of coherent beams on the bacterial colonies, are studied. The dependence of the fractal dimensions of biospeckles on the conditions of both illumination and growth of the colonies is studied theoretically and experimentally. Particular attention is paid to the fractal properties of biospeckles, emerging under the scattering of light by the colonies of the vaccinal strain of the plague microbe. The possibility in principle to classify the colonies of Yersinia pestis EV NIIEG using the fractal dimension analysis is demonstrated. (optical technologies in biophysics and medicine)

  10. The influence of the growth conditions of the plague microbe vaccine strain colonies on the fractal dimension of biospeckles

    NASA Astrophysics Data System (ADS)

    Ul'yanov, A. S.; Lyapina, A. M.; Ulianova, O. V.; Fedorova, V. A.; Uianov, S. S.

    2011-04-01

    Specific statistical characteristics of biospeckles, emerging under the diffraction of coherent beams on the bacterial colonies, are studied. The dependence of the fractal dimensions of biospeckles on the conditions of both illumination and growth of the colonies is studied theoretically and experimentally. Particular attention is paid to the fractal properties of biospeckles, emerging under the scattering of light by the colonies of the vaccinal strain of the plague microbe. The possibility in principle to classify the colonies of Yersinia pestis EV NIIEG using the fractal dimension analysis is demonstrated.

  11. Parent–offspring resemblance in colony-specific adult survival of cliff swallows

    USGS Publications Warehouse

    Brown, Charles R.; Roche, Erin A.; Brown, Mary Bomberger

    2015-01-01

    Survival is a key component of fitness. Species that occupy discrete breeding colonies with different characteristics are often exposed to varying costs and benefits associated with group size or environmental conditions, and survival is an integrative net measure of these effects. We investigated the extent to which survival probability of adult (≥1-year old) cliff swallows (Petrochelidon pyrrhonota) occupying different colonies resembled that of their parental cohort and thus whether the natal colony had long-term effects on individuals. Individuals were cross-fostered between colonies soon after hatching and their presence as breeders monitored at colonies in the western Nebraska study area for the subsequent decade. Colony-specific adult survival probabilities of offspring born and reared in the same colony, and those cross-fostered away from their natal colony soon after birth, were positively and significantly related to subsequent adult survival of the parental cohort from the natal colony. This result held when controlling for the effect of natal colony size and the age composition of the parental cohort. In contrast, colony-specific adult survival of offspring cross-fostered to a site was unrelated to that of their foster parent cohort or to the cohort of non-fostered offspring with whom they were reared. Adult survival at a colony varied inversely with fecundity, as measured by mean brood size, providing evidence for a survival–fecundity trade-off in this species. The results suggest some heritable variation in adult survival, likely maintained by negative correlations between fitness components. The study provides additional evidence that colonies represent non-random collections of individuals.

  12. Fish skin bacteria: Colonial and cellular hydrophobicity.

    PubMed

    Sar, N; Rosenberg, E

    1987-05-01

    Bacteria were desorbed from the skin of healthy, fast-swimming fish by several procedures, including brief exposure to sonic oscillation and treatment with nontoxic surface active agents. The surface properties of these bacteria were studied by measuring their adhesion to hexadecane, as well as by a newly developed, simple method for studying the hydrophobicity of bacterial lawns. This method, referred to as the "Direction of Spreading" (DOS) method, consists of recording the direction to which a water drop spreads when introduced at the border between bacterial lawns and other surfaces. Of the 13 fish skin isolates examined, two strains were as hydrophobic as polystyrene by the DOS method. Suspended cells of one of these strains adhered strongly to hexadecane (84%), whereas cells of the other strain adhered poorly (13%). Another strain which was almost as hydrophobic as polystyrene by the DOS method did not adhere to hexadecane at all. Similarly, lawns of three other strains were more hydrophobic than glass by the DOS method, but cell suspensions prepared from these colonies showed little or no adhesion to hexadecane. The high colonial but relatively low cellular hydrophobicity could be due to a hydrophobic slime that is removed during the suspension and washing procedures. The possibility that specific bacteria assist in fish locomotion by changing the surface properties of the fish skin and by producing drag-reducing polymers is discussed.

  13. Reduction in bacterial load using hypochlorous acid hygiene solution on ocular skin

    PubMed Central

    Stroman, David W; Mintun, Keri; Epstein, Arthur B; Brimer, Crystal M; Patel, Chirag R; Branch, James D; Najafi-Tagol, Kathryn

    2017-01-01

    Purpose To examine the magnitude of bacterial load reduction on the surface of the periocular skin 20 minutes after application of a saline hygiene solution containing 0.01% pure hypochlorous acid (HOCl). Methods Microbiological specimens were collected immediately prior to applying the hygiene solution and again 20 minutes later. Total microbial colonies were counted and each unique colony morphology was processed to identify the bacterial species and to determine the susceptibility profile to 15 selected antibiotics. Results Specimens were analyzed from the skin samples of 71 eyes from 36 patients. Prior to treatment, 194 unique bacterial isolates belonging to 33 different species were recovered. Twenty minutes after treatment, 138 unique bacterial isolates belonging to 26 different species were identified. Staphylococci accounted for 61% of all strains recovered and Staphylococcus epidermidis strains comprised 60% of the staphylococcal strains. No substantial differences in the distribution of Gram-positive, Gram-negative, or anaerobic species were noted before and after treatment. The quantitative data demonstrated a >99% reduction in the staphylococcal load on the surface of the skin 20 minutes following application of the hygiene solution. The total S. epidermidis colony-forming units were reduced by 99.5%. The HOCl hygiene solution removed staphylococcal isolates that were resistant to multiple antibiotics equally well as those isolates that were susceptible to antibiotics. Conclusion The application of a saline hygiene solution preserved with pure HOCl acid reduced the bacterial load significantly without altering the diversity of bacterial species remaining on the skin under the lower eyelid. PMID:28458509

  14. Bacterial reduction and dentin microhardness after treatment by a pulsed fiber optic delivered Nd:YAG laser

    NASA Astrophysics Data System (ADS)

    Goodis, Harold E.; White, Joel M.; Marshall, Sally J.; Marshall, Grayson W.

    1994-09-01

    The purpose of this study was to determine the microhardness and extent of bacterial reduction of contaminated dentin following pulsed fiber optic delivered Nd:YAG laser exposure. Knoop hardness was determined before and after laser exposures from 0.3 to 3.0 W and repetition rates of 10 to 30 Hz. Half the sections were covered with an organic black pigment before laser exposure to evaluate the use of the pigment as an initiator to increase laser absorbance on the surface. Repeated measures design was employed to determine the microhardness of cut and polished dentin sections. Additional dentin sections were sterilized by gamma irradiation and then inoculated with B. subtilis, E. coli or B. stearothermophilus. The contaminated sections were exposed to contact delivered Nd:YAG laser. Cultures were obtained from the dentin surfaces and the colony forming units counted. Increased microhardness was found for all laser treatments above the physical modification. Bacterial reduction was obtained but complete sterilization was not.

  15. Stability of pathogenic colony types of Neisseria gonorrhoeae in liquid culture by using the parameters of colonial morphology and deoxyribonucleic acid transformation.

    PubMed Central

    La Scolea, L J; Dul, M J; Young, F E

    1975-01-01

    This investigation describes the surveillance of the colonial stability of the pathogenic type 1 from the gonococcal strain F62 to the nonvirulent types 3 and 4 in different liquid media. The maintenance of the colony types was monitored by the parameters of colonial morphology and deoxyribonucleic acid-mediated transformation. During growth in a complex medium, Mueller-Hinton broth, only 46.7% of the gonococcal population remained as type 1 after 12 h. The greatest change in the type 1 colony-forming units correlated with the decline in viable count. The conversion process could not be prevented by the continual maintenance of the gonococcus in logarithmic growth. The frequency of transformation from PRO(minus) (proline) to PRO(plus) was proportional to this decrease in type 1 colony-forming units. In contrast to Mueller-Hinton medium, the chemically defined minimal medium Gonococcal Genetic Medium (GGM) was capable of maintaining approximately 90% of the gonococcal population in the type 1 colonial form after 16 h of growth, despite a decrease in the viable count. Although the percentage of type 1 appeared to remain constant in GGM, the apparent transformation frequency increased approximately 24-fold from 0 to 12 h of growth. GGM appears to stimulate or maintain competence, as evidenced by an eightfold increase in transformation when cells are exposed to deoxyribonucleic acid in GGM as compared to Mueller-Hinton. PMID:809469

  16. Chronic exposure of a honey bee colony to 2. 45 GHz continuous wave microwaves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Westerdahl, B.B.; Gary, N.E.

    A honey bee colony (Apis mellifera L.) was exposed 28 days to 2.45 GHz continuous wave microwaves at a power density (1 mW/sq cm) expected to be associated with rectennae in the solar power satellite power transmission system. Differences found between the control and microwave-treated colonies were not large, and were in the range of normal variation among similar colonies. Thus, there is an indication that microwave treatment had little, if any, effect on (1) flight and pollen foraging activity, (2) maintenance of internal colony temperature, (3) brood rearing activity, (4) food collection and storage, (5) colony weight, and (6)more » adult populations. Additional experiments are necessary before firm conclusions can be made.« less

  17. Differentiation of epithelial cells to M cells in response to bacterial colonization on the follicle-associated epithelium of Peyer's patch in rat small intestine.

    PubMed

    Chin, Keigi; Onishi, Sachiko; Yuji, Midori; Inamoto, Tetsurou; Qi, Wang-Mei; Warita, Katsuhiko; Yokoyama, Toshifumi; Hoshi, Nobuhiko; Kitagawa, Hiroshi

    2006-10-01

    To clarify the relationship between M cells and intestinal microflora, histoplanimetrical investigation into the bacterial colonization and the differentiation to M cells was carried out in rat Peyer's patch under physiological conditions. The follicle-associated epithelium (FAE), except for the narrow area of apical region, was closely covered with both neighboring intestinal villi and a thick mucous layer, the latter of which also filled the intervillous spaces as well as the space between the FAE and the neighboring intestinal villi. Indigenous bacteria adhered almost constantly to the narrow areas of apical regions of both intestinal villi and the FAE. Bacterial colonies were occasionally located on the basal to middle region of FAE, where M cells also appeared, forming large pockets. When bacterial colonies were located on the basal to middle region of FAE, bacteria with the same morphological characteristics also proliferated in the intervillous spaces neighboring the Peyer's patch. In cases with no bacterial colonies on the basal to middle region of FAE, however, M cells were rare in the FAE. Histoplanimetrical analysis showed the similar distribution pattern of bacterial colonies on the FAE and M cells in the FAE. M cells ultrastructurally engulfed indigenous bacteria, which were then transported to the pockets. These results suggest that indigenous bacterial colonization on the FAE stimulates the differentiation of M cells in the FAE under physiological conditions. The uptake of bacteria by M cells might contribute the regulation of the development of indigenous bacterial colonies in the small intestine.

  18. Multiple sequence alignment using multi-objective based bacterial foraging optimization algorithm.

    PubMed

    Rani, R Ranjani; Ramyachitra, D

    2016-12-01

    Multiple sequence alignment (MSA) is a widespread approach in computational biology and bioinformatics. MSA deals with how the sequences of nucleotides and amino acids are sequenced with possible alignment and minimum number of gaps between them, which directs to the functional, evolutionary and structural relationships among the sequences. Still the computation of MSA is a challenging task to provide an efficient accuracy and statistically significant results of alignments. In this work, the Bacterial Foraging Optimization Algorithm was employed to align the biological sequences which resulted in a non-dominated optimal solution. It employs Multi-objective, such as: Maximization of Similarity, Non-gap percentage, Conserved blocks and Minimization of gap penalty. BAliBASE 3.0 benchmark database was utilized to examine the proposed algorithm against other methods In this paper, two algorithms have been proposed: Hybrid Genetic Algorithm with Artificial Bee Colony (GA-ABC) and Bacterial Foraging Optimization Algorithm. It was found that Hybrid Genetic Algorithm with Artificial Bee Colony performed better than the existing optimization algorithms. But still the conserved blocks were not obtained using GA-ABC. Then BFO was used for the alignment and the conserved blocks were obtained. The proposed Multi-Objective Bacterial Foraging Optimization Algorithm (MO-BFO) was compared with widely used MSA methods Clustal Omega, Kalign, MUSCLE, MAFFT, Genetic Algorithm (GA), Ant Colony Optimization (ACO), Artificial Bee Colony (ABC), Particle Swarm Optimization (PSO) and Hybrid Genetic Algorithm with Artificial Bee Colony (GA-ABC). The final results show that the proposed MO-BFO algorithm yields better alignment than most widely used methods. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  19. Individual based simulations of bacterial growth on agar plates

    NASA Astrophysics Data System (ADS)

    Ginovart, M.; López, D.; Valls, J.; Silbert, M.

    2002-03-01

    The individual based simulator, INDividual DIScrete SIMulations (INDISIM) has been used to study the behaviour of the growth of bacterial colonies on a finite dish. The simulations reproduce the qualitative trends of pattern formation that appear during the growth of Bacillus subtilis on an agar plate under different initial conditions of nutrient peptone concentration, the amount of agar on the plate, and the temperature. The simulations are carried out by imposing closed boundary conditions on a square lattice divided into square spatial cells. The simulator studies the temporal evolution of the bacterial population possible by setting rules of behaviour for each bacterium, such as its uptake, metabolism and reproduction, as well as rules for the medium in which the bacterial cells grow, such as concentration of nutrient particles and their diffusion. The determining factors that characterize the structure of the bacterial colony patterns in the presents simulations, are the initial concentrations of nutrient particles, that mimic the amount of peptone in the experiments, and the set of values for the microscopic diffusion parameter related, in the experiments, to the amount of the agar medium.

  20. Factors influencing microbial colonies in the air of operating rooms.

    PubMed

    Fu Shaw, Ling; Chen, Ian Horng; Chen, Chii Shya; Wu, Hui Hsin; Lai, Li Shing; Chen, Yin Yin; Wang, Fu Der

    2018-01-02

    The operating room (OR) of the hospital is a special unit that requires a relatively clean environment. The microbial concentration of an indoor OR extrinsically influences surgical site infection rates. The aim of this study was to use active sampling methods to assess microbial colony counts in working ORs and to determine the factors affecting air contamination in a tertiary referral medical center. This study was conducted in 28 operating rooms located in a 3000-bed medical center in northern Taiwan. The microbiologic air counts were measured using an impactor air sampler from May to August 2015. Information about the procedure-related operative characteristics and surgical environment (environmental- and personnel-related factors) characteristics was collected. A total of 250 air samples were collected during surgical procedures. The overall mean number of bacterial colonies in the ORs was 78 ± 47 cfu/m 3 . The mean number of colonies was the highest for transplant surgery (123 ± 60 cfu/m 3 ), followed by pediatric surgery (115 ± 30.3 cfu/m 3 ). A total of 25 samples (10%) contained pathogens; Coagulase-negative staphylococcus (n = 12, 4.8%) was the most common pathogen. After controlling for potentially confounding factors by a multiple regression analysis, the surgical stage had the significantly highest correlation with bacterial counts (r = 0.346, p < 0.001). Otherwise, independent factors influencing bacterial counts were the type of surgery (29.85 cfu/m 3 , 95% CI 1.28-58.42, p = 0.041), site of procedure (20.19 cfu/m 3 , 95% CI 8.24-32.14, p = 0.001), number of indoor staff (4.93 cfu/m 3 , 95% CI 1.47-8.38, p = 0.005), surgical staging (36.5 cfu/m 3 , 95% CI 24.76-48.25, p < 0.001), and indoor air temperature (9.4 cfu/m 3 , 95% CI 1.61-17.18, p = 0.018). Under the well-controlled ventilation system, the mean microbial colony counts obtained by active sampling in different working ORs were low. The

  1. Predicting mutant selection in competition experiments with ciprofloxacin-exposed Escherichia coli.

    PubMed

    Khan, David D; Lagerbäck, Pernilla; Malmberg, Christer; Kristoffersson, Anders N; Wistrand-Yuen, Erik; Sha, Cao; Cars, Otto; Andersson, Dan I; Hughes, Diarmaid; Nielsen, Elisabet I; Friberg, Lena E

    2018-03-01

    Predicting competition between antibiotic-susceptible wild-type (WT) and less susceptible mutant (MT) bacteria is valuable for understanding how drug concentrations influence the emergence of resistance. Pharmacokinetic/pharmacodynamic (PK/PD) models predicting the rate and extent of takeover of resistant bacteria during different antibiotic pressures can thus be a valuable tool in improving treatment regimens. The aim of this study was to evaluate a previously developed mechanism-based PK/PD model for its ability to predict in vitro mixed-population experiments with competition between Escherichia coli (E. coli) WT and three well-defined E. coli resistant MTs when exposed to ciprofloxacin. Model predictions for each bacterial strain and ciprofloxacin concentration were made for in vitro static and dynamic time-kill experiments measuring CFU (colony forming units)/mL up to 24 h with concentrations close to or below the minimum inhibitory concentration (MIC), as well as for serial passage experiments with concentrations well below the MIC measuring ratios between the two strains with flow cytometry. The model was found to reasonably well predict the initial bacterial growth and killing of most static and dynamic time-kill competition experiments without need for parameter re-estimation. With parameter re-estimation of growth rates, an adequate fit was also obtained for the 6-day serial passage competition experiments. No bacterial interaction in growth was observed. This study demonstrates the predictive capacity of a PK/PD model and further supports the application of PK/PD modelling for prediction of bacterial kill in different settings, including resistance selection. Copyright © 2017 Elsevier B.V. and International Society of Chemotherapy. All rights reserved.

  2. Effect of Ichthyophthirius multifiliis parasitism on the survival, hematology and bacterial load in channel catfish previously exposed to Edwardsiella ictaluri.

    PubMed

    Shoemaker, Craig A; Martins, Maurício L; Xu, De-Hai; Klesius, Phillip H

    2012-11-01

    The effect of Ichthyophthirius multifiliis (Ich) parasitism on survival, hematology and bacterial load in channel catfish, Ictalurus punctatus, previously exposed to Edwardsiella ictaluri was studied. Fish were exposed to E. ictaluri 1 day prior to Ich in the following treatments: (1) infected by E. ictaluri and Ich at 2,500 theronts/fish; (2) infected by E. ictaluri only; (3) infected by Ich at 2,500 theronts/fish only; and (4) non infected control. Mortality was significantly higher in fish previously exposed to E. ictaluri and then infected by Ich (71.1 %). Mortalities were 26.7 %, 28.9 % and 0 % for fish infected by E. ictaluri only, by Ich only and non-infected control, respectively. Quantitative polymerase chain reaction demonstrated the presence of E. ictaluri in the brain, gill, kidney and liver of fish infected with E. ictaluri regardless of Ich parasitism. At day 8, E. ictaluri parasitized fish had significantly more bacteria present in the brain, gill and liver, with no bacteria detected in these organs in the E. ictaluri-only treatment, suggesting that the bacteria persisted longer in parasitized fish. Decreased red blood cells count and hematocrit in fish at days 8 and 19 after co-infection suggests chronic anemia. Lymphocyte numbers significantly decreased in all infected treatments versus the non-infected controls at days 2, 8 and 19. Lymphopenia suggests that lymphocytes were actively involved in the immune response. Bacterial clearance was probably influenced by the stress of parasitism and/or the mucosal response induced by ectoparasitic Ich that resulted in the higher mortality seen in the co-infected treatment.

  3. High-Throughput Quantification of Bacterial-Cell Interactions Using Virtual Colony Counts

    PubMed Central

    Hoffmann, Stefanie; Walter, Steffi; Blume, Anne-Kathrin; Fuchs, Stephan; Schmidt, Christiane; Scholz, Annemarie; Gerlach, Roman G.

    2018-01-01

    The quantification of bacteria in cell culture infection models is of paramount importance for the characterization of host-pathogen interactions and pathogenicity factors involved. The standard to enumerate bacteria in these assays is plating of a dilution series on solid agar and counting of the resulting colony forming units (CFU). In contrast, the virtual colony count (VCC) method is a high-throughput compatible alternative with minimized manual input. Based on the recording of quantitative growth kinetics, VCC relates the time to reach a given absorbance threshold to the initial cell count using a series of calibration curves. Here, we adapted the VCC method using the model organism Salmonella enterica sv. Typhimurium (S. Typhimurium) in combination with established cell culture-based infection models. For HeLa infections, a direct side-by-side comparison showed a good correlation of VCC with CFU counting after plating. For MDCK cells and RAW macrophages we found that VCC reproduced the expected phenotypes of different S. Typhimurium mutants. Furthermore, we demonstrated the use of VCC to test the inhibition of Salmonella invasion by the probiotic E. coli strain Nissle 1917. Taken together, VCC provides a flexible, label-free, automation-compatible methodology to quantify bacteria in in vitro infection assays. PMID:29497603

  4. The effect of antibacterial acting extracorporeal shockwaves on bacterial cell integrity.

    PubMed

    Horn, Carsten; Mengele, Karin; Gerdesmeyer, Ludger; Gradinger, Reiner; Gollwitzer, Hans

    2009-12-01

    Antibacterial effects of extracorporeal shockwaves (ESWs) have been demonstrated in vitro against bacteria under static and dynamic growth conditions. This study assessed the effects of ESWs on the cell wall integrity of bacteria. Standardized suspensions of Staphylococcus aureus were exposed to various shockwave impulses (2000-12,000) of different energy flux densities (EFD, 0.38-0.96 mJ/mm(2)). Bacterial suspensions of equal concentration that had been permeabilized (to >99%) with isopropanol were used as positive controls. The bacteria of all groups were stained with Sytox Green nucleic acid stain. The fluorescence of the shockwave-treated, permeabilized, and untreated suspensions was measured and compared for bacterial survival, quantified by colony-forming units after plating. Although ESWs showed a significant energy-dependent antibacterial effect that reduced CFUs in the treated suspensions by between 56% and 99%, only maximum energies (4000 impulses at 0.96 mJ/mm(2) and 12,000 impulses at 0.59 mJ/mm(2)) were followed by a significant increase in fluorescence compared with the untreated control (p<0.05). However, the fluorescence of these treated groups was still far less than that of the alcohol-permeabilized positive control groups (p<0.05). Lower energies and impulse rates did not show increased intracellular uptake of the fluorescent dye (p>0.05). This is the first study to assess bacterial cell wall permeability after ESW treatment. It was found that the permeabilization of bacterial cells after ESW treatment was far less than expected due to the corresponding antibacterial effect. Other mechanisms, such as intracellular effects, might be involved in bacterial killing after ESWs and still must be elucidated.

  5. Characterization of the Active Microbiotas Associated with Honey Bees Reveals Healthier and Broader Communities when Colonies are Genetically Diverse

    PubMed Central

    Mattila, Heather R.; Rios, Daniela; Walker-Sperling, Victoria E.; Roeselers, Guus; Newton, Irene L. G.

    2012-01-01

    Recent losses of honey bee colonies have led to increased interest in the microbial communities that are associated with these important pollinators. A critical function that bacteria perform for their honey bee hosts, but one that is poorly understood, is the transformation of worker-collected pollen into bee bread, a nutritious food product that can be stored for long periods in colonies. We used 16S rRNA pyrosequencing to comprehensively characterize in genetically diverse and genetically uniform colonies the active bacterial communities that are found on honey bees, in their digestive tracts, and in bee bread. This method provided insights that have not been revealed by past studies into the content and benefits of honey bee-associated microbial communities. Colony microbiotas differed substantially between sampling environments and were dominated by several anaerobic bacterial genera never before associated with honey bees, but renowned for their use by humans to ferment food. Colonies with genetically diverse populations of workers, a result of the highly promiscuous mating behavior of queens, benefited from greater microbial diversity, reduced pathogen loads, and increased abundance of putatively helpful bacteria, particularly species from the potentially probiotic genus Bifidobacterium. Across all colonies, Bifidobacterium activity was negatively correlated with the activity of genera that include pathogenic microbes; this relationship suggests a possible target for understanding whether microbes provide protective benefits to honey bees. Within-colony diversity shapes microbiotas associated with honey bees in ways that may have important repercussions for colony function and health. Our findings illuminate the importance of honey bee-bacteria symbioses and examine their intersection with nutrition, pathogen load, and genetic diversity, factors that are considered key to understanding honey bee decline. PMID:22427917

  6. Zimbabwe Colonial and Post-Colonial Language Policy and Planning Practices

    ERIC Educational Resources Information Center

    Makoni, Sinfree B.; Dube, Busi; Mashiri, Pedzisai

    2006-01-01

    This monograph focuses on the development of colonial and post-colonial language policies and practices in Zimbabwe, attributing changes to evolving philosophies and politics in colonial and post-colonial Zimbabwe. In colonial Zimbabwe, we argue that the language policies had as one of their key objectives the development of a bilingual white…

  7. Bacterial bioluminescence onset and quenching: a dynamical model for a quorum sensing-mediated property

    PubMed Central

    Side, Domenico Delle; Nassisi, Vincenzo; Pennetta, Cecilia; Alifano, Pietro; Di Salvo, Marco; Talà, Adelfia; Chechkin, Aleksei; Seno, Flavio

    2017-01-01

    We present an effective dynamical model for the onset of bacterial bioluminescence, one of the most studied quorum sensing-mediated traits. Our model is built upon simple equations that describe the growth of the bacterial colony, the production and accumulation of autoinducer signal molecules, their sensing within bacterial cells, and the ensuing quorum activation mechanism that triggers bioluminescent emission. The model is directly tested to quantitatively reproduce the experimental distributions of photon emission times, previously measured for bacterial colonies of Vibrio jasicida, a luminescent bacterium belonging to the Harveyi clade, growing in a highly drying environment. A distinctive and novel feature of the proposed model is bioluminescence ‘quenching’ after a given time elapsed from activation. Using an advanced fitting procedure based on the simulated annealing algorithm, we are able to infer from the experimental observations the biochemical parameters used in the model. Such parameters are in good agreement with the literature data. As a further result, we find that, at least in our experimental conditions, light emission in bioluminescent bacteria appears to originate from a subtle balance between colony growth and quorum activation due to autoinducers diffusion, with the two phenomena occurring on the same time scale. This finding is consistent with a negative feedback mechanism previously reported for Vibrio harveyi. PMID:29308273

  8. Bacterial bioluminescence onset and quenching: a dynamical model for a quorum sensing-mediated property.

    PubMed

    Side, Domenico Delle; Nassisi, Vincenzo; Pennetta, Cecilia; Alifano, Pietro; Di Salvo, Marco; Talà, Adelfia; Chechkin, Aleksei; Seno, Flavio; Trovato, Antonio

    2017-12-01

    We present an effective dynamical model for the onset of bacterial bioluminescence, one of the most studied quorum sensing-mediated traits. Our model is built upon simple equations that describe the growth of the bacterial colony, the production and accumulation of autoinducer signal molecules, their sensing within bacterial cells, and the ensuing quorum activation mechanism that triggers bioluminescent emission. The model is directly tested to quantitatively reproduce the experimental distributions of photon emission times, previously measured for bacterial colonies of Vibrio jasicida , a luminescent bacterium belonging to the Harveyi clade, growing in a highly drying environment. A distinctive and novel feature of the proposed model is bioluminescence 'quenching' after a given time elapsed from activation. Using an advanced fitting procedure based on the simulated annealing algorithm, we are able to infer from the experimental observations the biochemical parameters used in the model. Such parameters are in good agreement with the literature data. As a further result, we find that, at least in our experimental conditions, light emission in bioluminescent bacteria appears to originate from a subtle balance between colony growth and quorum activation due to autoinducers diffusion, with the two phenomena occurring on the same time scale. This finding is consistent with a negative feedback mechanism previously reported for Vibrio harveyi .

  9. Lower virus infections in Varroa destructor-infested and uninfested brood and adult honey bees (Apis mellifera) of a low mite population growth colony compared to a high mite population growth colony.

    PubMed

    Emsen, Berna; Hamiduzzaman, Mollah Md; Goodwin, Paul H; Guzman-Novoa, Ernesto

    2015-01-01

    A comparison was made of the prevalence and relative quantification of deformed wing virus (DWV), Israeli acute paralysis virus (IAPV), black queen cell virus (BQCV), Kashmir bee virus (KBV), acute bee paralysis virus (ABPV) and sac brood virus (SBV) in brood and adult honey bees (Apis mellifera) from colonies selected for high (HMP) and low (LMP) Varroa destructor mite population growth. Two viruses, ABPV and SBV, were never detected. For adults without mite infestation, DWV, IAPV, BQCV and KBV were detected in the HMP colony; however, only BQCV was detected in the LMP colony but at similar levels as in the HMP colony. With mite infestation, the four viruses were detected in adults of the HMP colony but all at higher amounts than in the LMP colony. For brood without mite infestation, DWV and IAPV were detected in the HMP colony, but no viruses were detected in the LMP colony. With mite infestation of brood, the four viruses were detected in the HMP colony, but only DWV and IAPV were detected and at lower amounts in the LMP colony. An epidemiological explanation for these results is that pre-experiment differences in virus presence and levels existed between the HMP and LMP colonies. It is also possible that low V. destructor population growth in the LMP colony resulted in the bees being less exposed to the mite and thus less likely to have virus infections. LMP and HMP bees may have also differed in susceptibility to virus infection.

  10. Vitamin D rescues dysfunction of fetal endothelial colony forming cells from individuals with gestational diabetes.

    PubMed

    Gui, J; Rohrbach, A; Borns, K; Hillemanns, P; Feng, L; Hubel, C A; von Versen-Höynck, F

    2015-04-01

    Gestational diabetes (GDM) is associated with long-term cardiovascular and metabolic diseases in offspring. However, the mechanisms are not well understood. We explored whether fetal exposure to a diabetic environment is associated with fetal endothelial progenitor cell dysfunction, and whether vitamin D can reverse the impairment. Nineteen women with uncomplicated pregnancies and 18 women with GDM were recruited before delivery. Time to first appearance of endothelial colony forming cell (ECFC) colonies and number of ECFC colonies formed from culture of cord peripheral blood mononuclear cells were determined. Angiogenesis-related functions of ECFCs in vitro were tested in the presence or absence of vitamin D. Fetal ECFCs from GDM pregnancies formed fewer colonies in culture (P = 0.04) and displayed reduced proliferation (P = 0.02), migration (P = 0.04) and tubule formation (P = 0.03) compared to uncomplicated pregnancies. Fetal ECFCs exposed to hyperglycemia in vitro exhibited less migration (P < 0.05) and less tubule formation (P < 0.05) than normoglycemic control. Vitamin D significantly improved the dysfunction of fetal ECFCs from pregnancies complicated by GDM or after exposure of healthy ECFCs to hyperglycemia. Fetal ECFCs from GDM pregnancies or ECFCs exposed to hyperglycemia in vitro exhibit reduced quantity and impaired angiogenesis-related functions. Vitamin D significantly rescues these functions. These findings may have implications for vascular function of infants exposed to a diabetic intrauterine environment. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Colony image acquisition and genetic segmentation algorithm and colony analyses

    NASA Astrophysics Data System (ADS)

    Wang, W. X.

    2012-01-01

    Colony anaysis is used in a large number of engineerings such as food, dairy, beverages, hygiene, environmental monitoring, water, toxicology, sterility testing. In order to reduce laboring and increase analysis acuracy, many researchers and developers have made efforts for image analysis systems. The main problems in the systems are image acquisition, image segmentation and image analysis. In this paper, to acquire colony images with good quality, an illumination box was constructed. In the box, the distances between lights and dishe, camra lens and lights, and camera lens and dishe are adjusted optimally. In image segmentation, It is based on a genetic approach that allow one to consider the segmentation problem as a global optimization,. After image pre-processing and image segmentation, the colony analyses are perfomed. The colony image analysis consists of (1) basic colony parameter measurements; (2) colony size analysis; (3) colony shape analysis; and (4) colony surface measurements. All the above visual colony parameters can be selected and combined together, used to make a new engineeing parameters. The colony analysis can be applied into different applications.

  12. Stress indicator gene expression profiles, colony dynamics and tissue development of honey bees exposed to sub-lethal doses of imidacloprid in laboratory and field experiments.

    PubMed

    De Smet, Lina; Hatjina, Fani; Ioannidis, Pavlos; Hamamtzoglou, Anna; Schoonvaere, Karel; Francis, Frédéric; Meeus, Ivan; Smagghe, Guy; de Graaf, Dirk C

    2017-01-01

    In this study, different context-dependent effects of imidacloprid exposure on the honey bee response were studied. Honey bees were exposed to different concentrations of imidacloprid during a time period of 40 days. Next to these variables, a laboratory-field comparison was conducted. The influence of the chronic exposure on gene expression levels was determined using an in-house developed microarray targeting different immunity-related and detoxification genes to determine stress-related gene expression changes. Increased levels of the detoxification genes encoding, CYP9Q3 and CYT P450, were detected in imidacloprid-exposed honey bees. The different context-dependent effects of imidacloprid exposure on honey bees were confirmed physiologically by decreased hypopharyngeal gland sizes. Honey bees exposed to imidacloprid in laboratory cages showed a general immunosuppression and no detoxification mechanisms were triggered significantly, while honey bees in-field showed a resilient response with an immune stimulation at later time points. However, the treated colonies had a brood and population decline tendency after the first brood cycle in the field. In conclusion, this study highlighted the different context-dependent effects of imidacloprid exposure on the honey bee response. These findings warn for possible pitfalls concerning the generalization of results based on specific experiments with short exposure times. The increased levels of CYT P450 and CYP9Q3 combined with an immune response reaction can be used as markers for bees which are exposed to pesticides in the field.

  13. Stress indicator gene expression profiles, colony dynamics and tissue development of honey bees exposed to sub-lethal doses of imidacloprid in laboratory and field experiments

    PubMed Central

    Ioannidis, Pavlos; Hamamtzoglou, Anna; Schoonvaere, Karel; Francis, Frédéric; Meeus, Ivan; Smagghe, Guy; de Graaf, Dirk C.

    2017-01-01

    In this study, different context-dependent effects of imidacloprid exposure on the honey bee response were studied. Honey bees were exposed to different concentrations of imidacloprid during a time period of 40 days. Next to these variables, a laboratory-field comparison was conducted. The influence of the chronic exposure on gene expression levels was determined using an in-house developed microarray targeting different immunity-related and detoxification genes to determine stress-related gene expression changes. Increased levels of the detoxification genes encoding, CYP9Q3 and CYT P450, were detected in imidacloprid-exposed honey bees. The different context-dependent effects of imidacloprid exposure on honey bees were confirmed physiologically by decreased hypopharyngeal gland sizes. Honey bees exposed to imidacloprid in laboratory cages showed a general immunosuppression and no detoxification mechanisms were triggered significantly, while honey bees in-field showed a resilient response with an immune stimulation at later time points. However, the treated colonies had a brood and population decline tendency after the first brood cycle in the field. In conclusion, this study highlighted the different context-dependent effects of imidacloprid exposure on the honey bee response. These findings warn for possible pitfalls concerning the generalization of results based on specific experiments with short exposure times. The increased levels of CYT P450 and CYP9Q3 combined with an immune response reaction can be used as markers for bees which are exposed to pesticides in the field. PMID:28182641

  14. Expression of genes involved in oxidative stress response in colonies of the ascidian Botryllus schlosseri exposed to various environmental conditions

    NASA Astrophysics Data System (ADS)

    Tasselli, Stefano; Ballin, Francesca; Franchi, Nicola; Fabbri, Elena; Ballarin, Loriano

    2017-03-01

    Environmental stress conditions are ultimately related to the induction of oxidative stress in organisms, as a consequence of an increased production of reactive oxygen species (ROS). This could be exploited to study sub-lethal effects induced by the environment in the organisms. In the present work, we evaluate the possibility to use the colonial ascidian Botryllus schlosseri as a bioindicator, to assess the environmental quality in the Lagoon of Venice. Three colony batches were immersed, for 22 days, at two sites (1 and 2) with different grades of hydrodynamics and anthropogenic impact and physico-chemical features of seawater; a control batch was kept in a large tank with continuous seawater flow at the Marine Station of the Department of Biology, University of Padova, in Chioggia (site 3). Seawater at site 2 had higher pH and temperature than site 1. Colonies were then retrieved, their mRNA was extracted and the level of transcription of genes involved in oxidative stress response (glutathione synthase, γ-glutamyl-cysteine ligase, modulatory subunit, two isoforms of glutathione peroxidases and Cu/Zn superoxide dismutase) was evaluated. In colonies from sites 1 and 2, most genes showed significantly increased transcriptional levels with respect to control values. Spectrophotometric analyses of colony homogenates revealed that the enzymatic activity of superoxide dismutase and catalase was higher in colonies from site 2 as compared to site 1, allowing us to speculate that colonies in site 2 were under higher stress level than those in site 1. Overall, we can conclude that B. schlosseri seems a good indicator of the ecological status of the Lagoon environment, within a range of pH and temperature in which colonies are used to live.

  15. Identification of Fungal Colonies on Ground Control and Flight Veggie Plant Pillows

    NASA Technical Reports Server (NTRS)

    Scotten, Jessica E.; Hummerick, Mary E.; Khodadad, Christina L.; Spencer, Lashelle E.; Massa, Gioia D.

    2017-01-01

    The Veggie system focuses on growing fresh produce that can be harvested and consumed by astronauts. The microbial colonies in each Veggie experiment are evaluated to determine the safety level of the produce and then differences between flight and ground samples. The identifications of the microbial species can detail risks or benefits to astronaut and plant health. Each Veggie ground or flight experiment includes six plants grown from seeds that are glued into wicks in Teflon pillows filled with clay arcillite and fertilizer. Fungal colonies were isolated from seed wicks, growth media, and lettuce (cv. 'Outredgeous') roots grown in VEG-01B pillows on ISS and in corresponding ground control pillows grown in controlled growth chambers. The colonies were sorted by morphology and identified using MicroSeq(TM) 500 16s rDNA Bacterial Identification System and BIOLOG GEN III MicroPlate(TM). Health risks for each fungal identification were then assessed using literature sources. The goal was to identify all the colonies isolated from flight and ground control VEG-01B plants, roots, and rooting medium and compare the resulting identifications.

  16. Changing the 30-min Rule in Canada: The Effect of Room Temperature on Bacterial Growth in Red Blood Cells.

    PubMed

    Ramirez-Arcos, Sandra; Kou, Yuntong; Ducas, Éric; Thibault, Louis

    2016-11-01

    To maintain product quality and safety, the '30-min rule' requires the discard of red blood cells (RBCs) that are exposed to uncontrolled temperatures for more than 30 min. Recent studies suggest this rule may safely be extended to a 60-min rule. A pool-and-split design study (N = 4) was run in parallel at Canadian Blood Services (SAGM RBCs) and Héma-Québec (AS-3 RBCs). RBCs were spiked with ∼1 colony-forming unit/ml of mesophilic and psychrophilic bacteria. Control units remained in storage at 1-6 °C for 42 days. Test 30 (T30) and T60 units were exposed to room temperature (RT) six times during storage, each time for 30 and 60 min, respectively. Bacterial proliferation was monitored. Mesophilic bacteria do not proliferate in RBCs. The growth of psychrophilic bacteria is not significantly different in RBCs exposed for 30 or 60 min to RT (p < 0.05). The study findings were the final evidence to support extension from a 30-min rule to a 60-min rule in Canada.

  17. Colonies of Bumble Bees (Bombus impatiens) Produce Fewer Workers, Less Bee Biomass, and Have Smaller Mother Queens Following Fungicide Exposure.

    PubMed

    Bernauer, Olivia M; Gaines-Day, Hannah R; Steffan, Shawn A

    2015-06-01

    Bees provide vital pollination services to the majority of flowering plants in both natural and agricultural systems. Unfortunately, both native and managed bee populations are experiencing declines, threatening the persistence of these plants and crops. Agricultural chemicals are one possible culprit contributing to bee declines. Even fungicides, generally considered safe for bees, have been shown to disrupt honey bee development and impair bumble bee behavior. Little is known, however, how fungicides may affect bumble bee colony growth. We conducted a controlled cage study to determine the effects of fungicide exposure on colonies of a native bumble bee species (Bombus impatiens). Colonies of B. impatiens were exposed to flowers treated with field-relevant levels of the fungicide chlorothalonil over the course of one month. Colony success was assessed by the number and biomass of larvae, pupae, and adult bumble bees. Bumble bee colonies exposed to fungicide produced fewer workers, lower total bee biomass, and had lighter mother queens than control colonies. Our results suggest that fungicides negatively affect the colony success of a native bumble bee species and that the use of fungicides during bloom has the potential to severely impact the success of native bumble bee populations foraging in agroecosystems.

  18. Lower Virus Infections in Varroa destructor-Infested and Uninfested Brood and Adult Honey Bees (Apis mellifera) of a Low Mite Population Growth Colony Compared to a High Mite Population Growth Colony

    PubMed Central

    Emsen, Berna; Hamiduzzaman, Mollah Md.; Goodwin, Paul H.; Guzman-Novoa, Ernesto

    2015-01-01

    A comparison was made of the prevalence and relative quantification of deformed wing virus (DWV), Israeli acute paralysis virus (IAPV), black queen cell virus (BQCV), Kashmir bee virus (KBV), acute bee paralysis virus (ABPV) and sac brood virus (SBV) in brood and adult honey bees (Apis mellifera) from colonies selected for high (HMP) and low (LMP) Varroa destructor mite population growth. Two viruses, ABPV and SBV, were never detected. For adults without mite infestation, DWV, IAPV, BQCV and KBV were detected in the HMP colony; however, only BQCV was detected in the LMP colony but at similar levels as in the HMP colony. With mite infestation, the four viruses were detected in adults of the HMP colony but all at higher amounts than in the LMP colony. For brood without mite infestation, DWV and IAPV were detected in the HMP colony, but no viruses were detected in the LMP colony. With mite infestation of brood, the four viruses were detected in the HMP colony, but only DWV and IAPV were detected and at lower amounts in the LMP colony. An epidemiological explanation for these results is that pre-experiment differences in virus presence and levels existed between the HMP and LMP colonies. It is also possible that low V. destructor population growth in the LMP colony resulted in the bees being less exposed to the mite and thus less likely to have virus infections. LMP and HMP bees may have also differed in susceptibility to virus infection. PMID:25723540

  19. Live/Dead Bacterial Spore Assay Using DPA-Triggered Tb Luminescence

    NASA Technical Reports Server (NTRS)

    Ponce, Adrian

    2003-01-01

    A method of measuring the fraction of bacterial spores in a sample that remain viable exploits DPA-triggered luminescence of Tb(3+) and is based partly on the same principles as those described earlier. Unlike prior methods for performing such live/dead assays of bacterial spores, this method does not involve counting colonies formed by cultivation (which can take days), or counting of spores under a microscope, and works whether or not bacterial spores are attached to other small particles (i.e., dust), and can be implemented on a time scale of about 20 minutes.

  20. Periodic Colony Formation of Bacteria Due to their Cell Reproduction and Movement

    NASA Astrophysics Data System (ADS)

    Itoh, H.; Wakita, J.; Watanabe, K.; Matsuyama, T.; Matsushita, M.

    We have experimentally investigated periodic pattern formation produced by bacterial species Proteus mirabilis, which forms concentric-ring-like colonies by repeating migration and rest alternately on the surface of a solid agar medium. We distinguish three phases (initial lag phase, the following migration and consolidation phases that appear alternately) for the colony growth. Here we mainly used physical approaches in order to try to understand the formation of concentric-ring-like colonies, such as cutting the part of a colony during its growth. Global chemical signals governing the colony formation from the center were not found. We also checked phase entrainment quantitatively by letting two colonies collide with each other and confirmed that it does not take place in macroscopic scales. When we cut a colony just behind the migrating front shortly after the migration started, the migration ended earlier and the following consolidation lasted longer. However, the following cycles were not influenced by the cut, i.e., the following migration and consolidation phases were both found to return normal. The cut results in the stop of supply of cell population to the migrating front by internal waves. In fact the cell population on the new terrace during the first migration after the cut was less than that without cut. Furthermore, the cell population density was found to be recovered to the ordinary value by the end of the consolidation. All these experimental results suggest that the most important factor for the repetition of migration and consolidation phases is the cell population density.

  1. Distinct growth strategies of soil bacteria as revealed by large-scale colony tracking.

    PubMed

    Ernebjerg, Morten; Kishony, Roy

    2012-03-01

    Our understanding of microbial ecology has been significantly furthered in recent years by advances in sequencing techniques, but comprehensive surveys of the phenotypic characteristics of environmental bacteria remain rare. Such phenotypic data are crucial for understanding the microbial strategies for growth and the diversity of microbial ecosystems. Here, we describe a high-throughput measurement of the growth of thousands of bacterial colonies using an array of flat-bed scanners coupled with automated image analysis. We used this system to investigate the growth properties of members of a microbial community from untreated soil. The system provides high-quality measurements of the number of CFU, colony growth rates, and appearance times, allowing us to directly study the distribution of these properties in mixed environmental samples. We find that soil bacteria display a wide range of growth strategies which can be grouped into several clusters that cannot be reduced to any of the classical dichotomous divisions of soil bacteria, e.g., into copiotophs and oligotrophs. We also find that, at early times, cells are most likely to form colonies when other, nearby colonies are present but not too dense. This maximization of culturability at intermediate plating densities suggests that the previously observed tendency for high density to lead to fewer colonies is partly offset by the induction of colony formation caused by interactions between microbes. These results suggest new types of growth classification of soil bacteria and potential effects of species interactions on colony growth.

  2. Effect of human milk fortifiers on bacterial growth in human milk.

    PubMed

    Santiago, Myla S; Codipilly, Champa N; Potak, Debra C; Schanler, Richard J

    2005-10-01

    As a component in human milk fortifiers (HMF), iron may equilibrate with human milk for as long as 24 hours, bind important bacteriostatic proteins, and potentially affect the host defense properties of human milk. We compared bacterial growth in human milk prepared with each of two HMF differing in their content of iron. Samples of human milk obtained from mothers of premature infants were divided and mixed with one of two HMF and maintained at refrigerator temperature. Refrigerated milk samples were removed at 0, 24, and 72 hours for determination of total bacterial colony counts (TBCC). TBCC did not differ between groups but declined from 0 to 72 hours, p<0.001. These data suggest that differences in iron content, or other nutrients in HMF, do not affect bacterial growth in human milk. Storage of fortified human milk at refrigerator temperature for 72 hours results in decreased bacterial growth. As a component in human milk fortifiers (HMF), iron may equilibrate with human milk for as long as 24 hours, bind important bacteriostatic proteins, and potentially affect the host defense properties of human milk. We compared bacterial growth in human milk prepared with each of two HMF differing in their content of iron. Samples of human milk obtained from mothers of premature infants were divided and mixed with one of two HMF and maintained at refrigerator temperature. Refrigerated milk samples were removed at 0, 24, and 72 hours for determination of total bacterial colony counts (TBCC).

  3. Social Transfer of Pathogenic Fungus Promotes Active Immunisation in Ant Colonies

    PubMed Central

    Konrad, Matthias; Vyleta, Meghan L.; Theis, Fabian J.; Stock, Miriam; Tragust, Simon; Klatt, Martina; Drescher, Verena; Marr, Carsten; Ugelvig, Line V.; Cremer, Sylvia

    2012-01-01

    Due to the omnipresent risk of epidemics, insect societies have evolved sophisticated disease defences at the individual and colony level. An intriguing yet little understood phenomenon is that social contact to pathogen-exposed individuals reduces susceptibility of previously naive nestmates to this pathogen. We tested whether such social immunisation in Lasius ants against the entomopathogenic fungus Metarhizium anisopliae is based on active upregulation of the immune system of nestmates following contact to an infectious individual or passive protection via transfer of immune effectors among group members—that is, active versus passive immunisation. We found no evidence for involvement of passive immunisation via transfer of antimicrobials among colony members. Instead, intensive allogrooming behaviour between naive and pathogen-exposed ants before fungal conidia firmly attached to their cuticle suggested passage of the pathogen from the exposed individuals to their nestmates. By tracing fluorescence-labelled conidia we indeed detected frequent pathogen transfer to the nestmates, where they caused low-level infections as revealed by growth of small numbers of fungal colony forming units from their dissected body content. These infections rarely led to death, but instead promoted an enhanced ability to inhibit fungal growth and an active upregulation of immune genes involved in antifungal defences (defensin and prophenoloxidase, PPO). Contrarily, there was no upregulation of the gene cathepsin L, which is associated with antibacterial and antiviral defences, and we found no increased antibacterial activity of nestmates of fungus-exposed ants. This indicates that social immunisation after fungal exposure is specific, similar to recent findings for individual-level immune priming in invertebrates. Epidemiological modeling further suggests that active social immunisation is adaptive, as it leads to faster elimination of the disease and lower death rates than

  4. Broad-spectrum antibiotic or G-CSF as potential countermeasures for impaired control of bacterial infection associated with an SPE exposure during spaceflight.

    PubMed

    Li, Minghong; Holmes, Veronica; Ni, Houping; Sanzari, Jenine K; Romero-Weaver, Ana L; Lin, Liyong; Carabe-Fernandez, Alejandro; Diffenderfer, Eric S; Kennedy, Ann R; Weissman, Drew

    2015-01-01

    A major risk for astronauts during prolonged space flight is infection as a result of the combined effects of microgravity, situational and confinement stress, alterations in food intake, altered circadian rhythm, and radiation that can significantly impair the immune system and the body's defense systems. We previously reported a massive increase in morbidity with a decrease in the ability to control a bacterial challenge when mice were maintained under hindlimb suspension (HS) conditions and exposed to solar particle event (SPE)-like radiation. HS and SPE-like radiation treatment alone resulted in a borderline significant increase in morbidity. Therefore, development and testing of countermeasures that can be used during extended space missions in the setting of exposure to SPE radiation becomes a serious need. In the present study, we investigated the efficacy of enrofloxacin (an orally bioavailable antibiotic) and Granulocyte colony stimulating factor (G-CSF) (Neulasta) on enhancing resistance to Pseudomonas aeruginosa infection in mice subjected to HS and SPE-like radiation. The results revealed that treatment with enrofloxacin or G-CSF enhanced bacterial clearance and significantly decreased morbidity and mortality in challenged mice exposed to suspension and radiation. These results establish that antibiotics, such as enrofloxacin, and G-CSF could be effective countermeasures to decrease the risk of bacterial infections after exposure to SPE radiation during extended space flight, thereby reducing both the risk to the crew and the danger of mission failure.

  5. [The cytogenetic monitoring of the environmental conditions on the territories exposed by the radioactive contamination as a result of Chernobyl Nuclear Power Station accident (colony Urazovo Belgorod region as an example)].

    PubMed

    Artiukhov, V G; Kalaev, V N

    2006-01-01

    Cytogenetic characteristics of the seed progeny of birch (Betula pendula Roth), growing in colony Urazovo Belgorod region exposed by the impact of Chernobyl precipitation in 1986, were determinated. The changing of cytogenetic characteristics in comparison with the control (mitotic index and level of mitosis pathologies grown, their spectrum widens part of persistent nucleolies at the stages of metaphase, anaphase, telophase of mitosis enlarges, square of surface of single nucleolies decreases, part of moderate-active nucleolies "bark-core vacuolisated" type increase) on the experimental squares is revealed. The most considerable effects were observed in 2000, which connected with the increasing of the contaminations of mentioned territory as a result of brick factory work. By means of cluster analysis methods it was established that the cleanest in northwestern part of colony Urazovo, the most contaminated is central part. It was purposed, that chemical compounds, are main agents caused the changing of cytogenetic properties of test-object after the normalization of the radiation level.

  6. Active depinning of bacterial droplets: The collective surfing of Bacillus subtilis

    PubMed Central

    Hennes, Marc; Tailleur, Julien; Charron, Gaëlle

    2017-01-01

    How systems are endowed with migration capacity is a fascinating question with implications ranging from the design of novel active systems to the control of microbial populations. Bacteria, which can be found in a variety of environments, have developed among the richest set of locomotion mechanisms both at the microscopic and collective levels. Here, we uncover, experimentally, a mode of collective bacterial motility in humid environment through the depinning of bacterial droplets. Although capillary forces are notoriously enormous at the bacterial scale, even capable of pinning water droplets of millimetric size on inclined surfaces, we show that bacteria are able to harness a variety of mechanisms to unpin contact lines, hence inducing a collective slipping of the colony across the surface. Contrary to flagella-dependent migration modes like swarming, we show that this much faster “colony surfing” still occurs in mutant strains of Bacillus subtilis lacking flagella. The active unpinning seen in our experiments relies on a variety of microscopic mechanisms, which could each play an important role in the migration of microorganisms in humid environment. PMID:28536199

  7. Deferiprone and Gallium-Protoporphyrin Have the Capacity to Potentiate the Activity of Antibiotics in Staphylococcus aureus Small Colony Variants

    PubMed Central

    Richter, Katharina; Thomas, Nicky; Zhang, Guimin; Prestidge, Clive A.; Coenye, Tom; Wormald, Peter-John; Vreugde, Sarah

    2017-01-01

    Small colony variants (SCVs) of bacteria like Staphylococcus aureus are characterized by a reduced colony size and are linked to increased antibiotic tolerance and resistance. Their altered expression of virulence factors, slow growing properties and their ability to form biofilms make the eradication of SCVs challenging. In the context of biofilm-related infectious diseases involving S. aureus SCVs, a therapy targeting bacterial iron metabolism was evaluated. The combination of the iron-chelator deferiprone (Def) and the heme-analog gallium-protoporphyrin (GaPP), in solution and incorporated in a surgical wound gel, was tested for activity against planktonic and sessile SCVs. To this end, the activity of Def-GaPP was assessed against planktonic S. aureus SCVs, as well as against in vitro and in vivo biofilms in the colony biofilm model, an artificial wound model and a Caenorhabditis elegans infection model. While Def alone failed to show substantial antibacterial activity, GaPP and the combination of Def-GaPP demonstrated concentration- and strain-dependent antibacterial properties. Specifically, the Def-GaPP combination significantly reduced the bacterial load in an artificial wound model and increased the survival of S. aureus SCV infected C. elegans. When Def-GaPP were combined with gentamicin or ciprofloxacin, the triple combinations exceeded the antibiofilm activity of the individual compounds in the colony biofilm model. In targeting bacterial iron metabolism, Def-GaPP showed significant activity against planktonic and sessile SCVs. Moreover, Def-GaPP could potentiate the activity of gentamicin and ciprofloxacin. Delivered in a wound healing gel, Def-GaPP showed promise as a new topical strategy against infections with S. aureus SCVs. PMID:28690982

  8. Deferiprone and Gallium-Protoporphyrin Have the Capacity to Potentiate the Activity of Antibiotics in Staphylococcus aureus Small Colony Variants.

    PubMed

    Richter, Katharina; Thomas, Nicky; Zhang, Guimin; Prestidge, Clive A; Coenye, Tom; Wormald, Peter-John; Vreugde, Sarah

    2017-01-01

    Small colony variants (SCVs) of bacteria like Staphylococcus aureus are characterized by a reduced colony size and are linked to increased antibiotic tolerance and resistance. Their altered expression of virulence factors, slow growing properties and their ability to form biofilms make the eradication of SCVs challenging. In the context of biofilm-related infectious diseases involving S. aureus SCVs, a therapy targeting bacterial iron metabolism was evaluated. The combination of the iron-chelator deferiprone (Def) and the heme-analog gallium-protoporphyrin (GaPP), in solution and incorporated in a surgical wound gel, was tested for activity against planktonic and sessile SCVs. To this end, the activity of Def-GaPP was assessed against planktonic S. aureus SCVs, as well as against in vitro and in vivo biofilms in the colony biofilm model, an artificial wound model and a Caenorhabditis elegans infection model. While Def alone failed to show substantial antibacterial activity, GaPP and the combination of Def-GaPP demonstrated concentration- and strain-dependent antibacterial properties. Specifically, the Def-GaPP combination significantly reduced the bacterial load in an artificial wound model and increased the survival of S. aureus SCV infected C. elegans . When Def-GaPP were combined with gentamicin or ciprofloxacin, the triple combinations exceeded the antibiofilm activity of the individual compounds in the colony biofilm model. In targeting bacterial iron metabolism, Def-GaPP showed significant activity against planktonic and sessile SCVs. Moreover, Def-GaPP could potentiate the activity of gentamicin and ciprofloxacin. Delivered in a wound healing gel, Def-GaPP showed promise as a new topical strategy against infections with S. aureus SCVs.

  9. Significant sequelae after bacterial meningitis in Niger: a cohort study.

    PubMed

    Jusot, Jean-François; Tohon, Zilahatou; Yazi, Abdoul Aziz; Collard, Jean-Marc

    2013-05-21

    Beside high mortality, acute bacterial meningitis may lead to a high frequency of neuropsychological sequelae. The Sahelian countries belonging to the meningitis belt experience approximately 50% of the meningitis cases occurring in the world. Studies in Africa have shown that N. meningitidis could cause hearing loss in up to 30% of the cases, exceeding sometimes measles. The situation is similar in Niger which experiences yearly meningitis epidemics and where rehabilitation wards are rare and hearing aids remain unaffordable. The aim of this study was to estimate the frequency of neuropsychological sequelae after acute bacterial meningitis in four of the eight regions of Niger. Subjects exposed to acute bacterial meningitis were enrolled into a cohort with non exposed subjects matched on age and gender. Consenting subjects were interviewed during inclusion and at a control visit two months later. If clinical symptoms or psychological troubles persisted at both visits among the exposed subjects with a frequency significantly greater than that observed among the non exposed subjects, a sequelae was retained. The comparison of the frequency of sequelae between non exposed and exposed subjects to bacterial meningitis was also calculated using the Fisher exact test. Three persisting functional symptoms were registered: headaches, asthenia, and vertigo among 31.3, 36.9, and 22.4% respectively of the exposed subjects. A significant motor impairment was retrieved among 12.3% of the exposed versus 1.6% of the non exposed subjects. Hearing loss significantly disabled 31.3% of the exposed subjects and 10.4% exhibited a serious deafness. This study carried out in Niger confirms two serious neurological sequelae occurring at high frequencies after bacterial meningitis: severe and profound hearing loss and motor impairment. Cochlear implantation and hearing aids are too expensive for populations living in developing countries. Neurological sequelae occurring after meningitis

  10. Bare below elbows: does this policy affect handwashing efficacy and reduce bacterial colonisation?

    PubMed Central

    Burger, A; Wijewardena, C; Clayson, S; Greatorex, RA

    2010-01-01

    INTRODUCTION UK Department of Health guidelines recommend that clinical staff are ‘bare below the elbows’. There is a paucity of evidence to support this policy. One may hypothesise that absence of clothing around wrists facilitates more effective handwashing: this study aims to establish whether dress code affects bacterial colonisation before and after handwashing. SUBJECTS AND METHODS Sixty-six clinical staff volunteered to take part in the study, noting whether they were bare below the elbows (BBE) or not bare (NB). Using a standardised technique, imprints of left and right fingers, palms, wrists and forearms were taken onto mini agar plates. Imprints were repeated after handwashing. After incubation, colonies per plate were counted, and subcultures taken. RESULTS Thirty-eight staff were BBE and 28 were not. A total of 1112 plates were cultured. Before handwashing there was no significant difference in number of colonies between BBE and NB groups (Mann–Whitney, P < 0.05). Handwashing reduced the colony count, with greatest effect on fingers, palms and dominant wrists (t-test, P < 0.05). Comparing the two groups again after handwashing revealed no significant difference (Mann–Whitney, P < 0.05). Subcultures revealed predominantly skin flora. CONCLUSIONS There was a large variation in number of colonies cultured. Handwashing resulted in a statistically significant reduction in colony count on fingers, palms and dominant wrist regardless of clothing. We conclude that handwashing produces a significant reduction in number of bacterial colonies on staff hands, and that clothing that is not BBE does not impede this reduction. PMID:20727253

  11. Bacterial survival following shock compression in the GigaPascal range

    NASA Astrophysics Data System (ADS)

    Hazael, Rachael; Fitzmaurice, Brianna C.; Foglia, Fabrizia; Appleby-Thomas, Gareth J.; McMillan, Paul F.

    2017-09-01

    The possibility that life can exist within previously unconsidered habitats is causing us to expand our understanding of potential planetary biospheres. Significant populations of living organisms have been identified at depths extending up to several km below the Earth's surface; whereas laboratory experiments have shown that microbial species can survive following exposure to GigaPascal (GPa) pressures. Understanding the degree to which simple organisms such as microbes survive such extreme pressurization under static compression conditions is being actively investigated. The survival of bacteria under dynamic shock compression is also of interest. Such studies are being partly driven to test the hypothesis of potential transport of biological organisms between planetary systems. Shock compression is also of interest for the potential modification and sterilization of foodstuffs and agricultural products. Here we report the survival of Shewanella oneidensis bacteria exposed to dynamic (shock) compression. The samples examined included: (a) a "wild type" (WT) strain and (b) a "pressure adapted" (PA) population obtained by culturing survivors from static compression experiments to 750 MPa. Following exposure to peak shock pressures of 1.5 and 2.5 GPa the proportion of survivors was established as the number of colony forming units (CFU) present after recovery to ambient conditions. The data were compared with previous results in which the same bacterial samples were exposed to static pressurization to the same pressures, for 15 minutes each. The results indicate that shock compression leads to survival of a significantly greater proportion of both WT and PA organisms. The significantly shorter duration of the pressure pulse during the shock experiments (2-3 μs) likely contributes to the increased survival of the microbial species. One reason for this can involve the crossover from deformable to rigid solid-like mechanical relaxational behavior that occurs for

  12. Evaluation of heterotrophic plate and chromogenic agar colony counting in water quality laboratories.

    PubMed

    Hallas, Gary; Monis, Paul

    2015-01-01

    The enumeration of bacteria using plate-based counts is a core technique used by food and water microbiology testing laboratories. However, manual counting of bacterial colonies is both time and labour intensive, can vary between operators and also requires manual entry of results into laboratory information management systems, which can be a source of data entry error. An alternative is to use automated digital colony counters, but there is a lack of peer-reviewed validation data to allow incorporation into standards. We compared the performance of digital counting technology (ProtoCOL3) against manual counting using criteria defined in internationally recognized standard methods. Digital colony counting provided a robust, standardized system suitable for adoption in a commercial testing environment. The digital technology has several advantages:•Improved measurement of uncertainty by using a standard and consistent counting methodology with less operator error.•Efficiency for labour and time (reduced cost).•Elimination of manual entry of data onto LIMS.•Faster result reporting to customers.

  13. Bacterial adhesion to unworn and worn silicone hydrogel lenses.

    PubMed

    Vijay, Ajay Kumar; Zhu, Hua; Ozkan, Jerome; Wu, Duojia; Masoudi, Simin; Bandara, Rani; Borazjani, Roya N; Willcox, Mark D P

    2012-08-01

    The objective of this study was to determine the bacterial adhesion to various silicone hydrogel lens materials and to determine whether lens wear modulated adhesion. Bacterial adhesion (total and viable cells) of Staphylococcus aureus (31, 38, and ATCC 6538) and Pseudomonas aeruginosa (6294, 6206, and GSU-3) to 10 commercially available different unworn and worn silicone hydrogel lenses was measured. Results of adhesion were correlated to polymer and surface properties of contact lenses. S. aureus adhesion to unworn lenses ranged from 2.8 × 10 to 4.4 × 10 colony forming units per lens. The highest adhesion was to lotrafilcon A lenses, and the lowest adhesion was to asmofilcon A lenses. P. aeruginosa adhesion to unworn lenses ranged from 8.9 × 10 to 3.2 × 10 colony forming units per lens. The highest adhesion was to comfilcon A lenses, and the lowest adhesion was to asmofilcon A and balafilcon A lenses. Lens wear altered bacterial adhesion, but the effect was specific to lens and strain type. Adhesion of bacteria, regardless of genera/species or lens wear, was generally correlated with the hydrophobicity of the lens; the less hydrophobic the lens surface, the greater the adhesion. P. aeruginosa adhered in higher numbers to lenses in comparison with S. aureus strains, regardless of the lens type or lens wear. The effect of lens wear was specific to strain and lens. Hydrophobicity of the silicone hydrogel lens surface influenced the adhesion of bacterial cells.

  14. Bacterial carriage on the fingernails of OR nurses.

    PubMed

    Wynd, C A; Samstag, D E; Lapp, A M

    1994-11-01

    This study provides statistically significant data that demonstrate that chipped fingernail polish or fingernail polish worn longer than four days fosters increased numbers of bacteria on the fingernails of OR nurses after surgical hand scrubs. There were no significant correlations between fingernail length and the numbers of bacterial colonies on the fingernails of the study groups tested after performing a standard surgical hand scrub. A convenience sample of 102 perioperative nurses with either freshly polished fingernails; chipped fingernail polish; or natural, polish-free fingernails participated. The data suggest OR nurses can wear fresh fingernail polish on healthy fingernails without risking increased bacterial counts.

  15. Disease and colony foundation in the dampwood termite Zootermopsis angusticollis: The survival advantage of nestmate pairs

    NASA Astrophysics Data System (ADS)

    Calleri, Daniel V.; Rosengaus, Rebeca B.; Traniello, James F. A.

    2005-06-01

    To determine the impact of inbreeding and outbreeding on disease resistance and survival during colony foundation, nestmate (NM) and non-nestmate (NON) primary reproductives of the dampwood termite Zootermopsis angusticollis were exposed to a single or double dose of conidia of the entomopathogenic fungus Metarhizium anisopliae. Male and female primary reproductive pairs originating from the same parent colony had higher survivorship than NON pairs in control and conidia-exposure treatments. The survival advantage of NM primary reproductives increased with the intensity of pathogen challenge and was significantly greater in the single- and double-dose treatments than in the controls. Although NM pairs had significantly lower mortality than NON pairs, the survivorship of colonies stabilized as they matured and inbred and outbred colonies did not differ in offspring production. These results demonstrate that colony foundation by NON male and female reproductives may have a disease-related survival cost during this critical phase of their life cycle. There may also be a cost associated with lower offspring heterozygosity, but in the first generation this does not appear to significantly impact colony growth.

  16. Bacterial diskospondylitis in juvenile mink from 2 Ontario mink farms.

    PubMed

    Martínez, Jorge; Vidaña, Beatriz; Cruz-Arambulo, Robert; Slavic, Durda; Tapscott, Brian; Brash, Marina L

    2013-09-01

    Nine juvenile mink with hind-limb paresis/paralysis from 2 Ontario farms were submitted for necropsy. Diagnostic tests revealed spinal compression and severe thoracic diskospondylitis with intralesional Gram-positive coccoid bacterial colonies. Streptococcus canis, Streptococcus dysgalactiae subsp. equisimilis, and hemolytic Staphylococcus spp. were isolated from vertebral lesions.

  17. Public health developments in colonial Malaya: colonialism and the politics of prevention.

    PubMed

    Manderson, L

    1999-01-01

    In both African and Asian colonies until the late 19th century, colonial medicine operated pragmatically to meet the medical needs first of colonial officers and troops, immigrant settlers, and laborers responsible for economic development, then of indigenous populations when their ill health threatened the well-being of the expatriate population. Since the turn of the century, however, the consequences of colonial expansion and development for indigenous people's health had become increasingly apparent, and disease control and public health programs were expanded in this light. These programs increased government surveillance of populations at both community and household levels. As a consequence, colonial states extended institutional oversight and induced dependency through public health measures. Drawing on my own work on colonial Malaya, I illustrate developments in public health and their links to the moral logic of colonialism and its complementarity to the political economy.

  18. Hyperspectral imaging for presumptive identification of bacterial colonies on solid chromogenic culture media

    NASA Astrophysics Data System (ADS)

    Guillemot, Mathilde; Midahuen, Rony; Archeny, Delpine; Fulchiron, Corine; Montvernay, Regis; Perrin, Guillaume; Leroux, Denis F.

    2016-04-01

    BioMérieux is automating the microbiology laboratory in order to reduce cost (less manpower and consumables), to improve performance (increased sensitivity, machine algorithms) and to gain traceability through optimization of the clinical laboratory workflow. In this study, we evaluate the potential of Hyperspectral imaging (HSI) as a substitute to human visual observation when performing the task of microbiological culture interpretation. Microbial colonies from 19 strains subcategorized in 6 chromogenic classes were analyzed after a 24h-growth on a chromogenic culture medium (chromID® CPS Elite, bioMérieux, France). The HSI analysis was performed in the VNIR region (400-900 nm) using a linescan configuration. Using algorithms relying on Linear Spectral Unmixing, and using exclusively Diffuse Reflectance Spectra (DRS) as input data, we report interclass classification accuracies of 100% using a fully automatable approach and no use of morphological information. In order to eventually simplify the instrument, the performance of degraded DRS was also evaluated using only the most discriminant 14 spectral channels (a model for a multispectral approach) or 3 channels (model of a RGB image). The overall classification performance remains unchanged for our multispectral model but is degraded for the predicted RGB model, hints that a multispectral solution might bring the answer for an improved colony recognition.

  19. Paediatric Crohn disease patients with stricturing behaviour exhibit ileal granulocyte–macrophage colony-stimulating factor (GM-CSF) autoantibody production and reduced neutrophil bacterial killing and GM-CSF bioactivity

    PubMed Central

    Jurickova, I; Collins, M H; Chalk, C; Seese, A; Bezold, R; Lake, K; Allmen, D; Frischer, J S; Falcone, R A; Trapnell, B C; Denson, L A

    2013-01-01

    Granulocyte–macrophage colony-stimulating factor (GM-CSF) autoantibodies are associated with stricturing behaviour in Crohn disease (CD). We hypothesized that CD ileal lamina propria mononuclear cells (LPMC) would produce GM-CSF autoantibodies and peripheral blood (PB) samples would contain GM-CSF neutralizing capacity (NC). Paediatric CD and control PBMC and ileal biopsies or LPMC were isolated and cultured and GM-CSF, immunoglobulin (Ig)G and GM-CSF autoantibodies production were measured by enzyme-linked immunosorbent assay (ELISA). Basal and GM-CSF-primed neutrophil bacterial killing and signal transducer and activator of transcription 5 (STAT5) tyrosine phosphorylation (pSTAT5) were measured by flow cytometry. GM-CSF autoantibodies were enriched within total IgG for LPMC isolated from CD ileal strictures and proximal margins compared to control ileum. Neutrophil bacterial killing was reduced in CD patients compared to controls. Within CD, neutrophil GM-CSF-dependent STAT5 activation and bacterial killing were reduced as GM-CSF autoantibodies increased. GM-CSF stimulation of pSTAT5 did not vary between controls and CD patients in washed PB granulocytes in which serum was removed. However, GM-CSF stimulation of pSTAT5 was reduced in whole PB samples from CD patients. These data were used to calculate the GM-CSF NC. CD patients with GM-CSF NC greater than 25% exhibited a fourfold higher rate of stricturing behaviour and surgery. The likelihood ratio (95% confidence interval) for stricturing behaviour for patients with elevation in both GM-CSF autoantibodies and GM-CSF NC was equal to 5 (2, 11). GM-CSF autoantibodies are produced by LPMC isolated from CD ileal resection specimens and are associated with reduced neutrophil bacterial killing. CD peripheral blood contains GM-CSF NC, which is associated with increased rates of stricturing behaviour. PMID:23600834

  20. Genetic diversity affects colony survivorship in commercial honey bee colonies

    NASA Astrophysics Data System (ADS)

    Tarpy, David R.; vanEngelsdorp, Dennis; Pettis, Jeffrey S.

    2013-08-01

    Honey bee ( Apis mellifera) queens mate with unusually high numbers of males (average of approximately 12 drones), although there is much variation among queens. One main consequence of such extreme polyandry is an increased diversity of worker genotypes within a colony, which has been shown empirically to confer significant adaptive advantages that result in higher colony productivity and survival. Moreover, honey bees are the primary insect pollinators used in modern commercial production agriculture, and their populations have been in decline worldwide. Here, we compare the mating frequencies of queens, and therefore, intracolony genetic diversity, in three commercial beekeeping operations to determine how they correlate with various measures of colony health and productivity, particularly the likelihood of queen supersedure and colony survival in functional, intensively managed beehives. We found the average effective paternity frequency ( m e ) of this population of honey bee queens to be 13.6 ± 6.76, which was not significantly different between colonies that superseded their queen and those that did not. However, colonies that were less genetically diverse (headed by queens with m e ≤ 7.0) were 2.86 times more likely to die by the end of the study when compared to colonies that were more genetically diverse (headed by queens with m e > 7.0). The stark contrast in colony survival based on increased genetic diversity suggests that there are important tangible benefits of increased queen mating number in managed honey bees, although the exact mechanism(s) that govern these benefits have not been fully elucidated.

  1. Genetic diversity affects colony survivorship in commercial honey bee colonies.

    PubMed

    Tarpy, David R; Vanengelsdorp, Dennis; Pettis, Jeffrey S

    2013-08-01

    Honey bee (Apis mellifera) queens mate with unusually high numbers of males (average of approximately 12 drones), although there is much variation among queens. One main consequence of such extreme polyandry is an increased diversity of worker genotypes within a colony, which has been shown empirically to confer significant adaptive advantages that result in higher colony productivity and survival. Moreover, honey bees are the primary insect pollinators used in modern commercial production agriculture, and their populations have been in decline worldwide. Here, we compare the mating frequencies of queens, and therefore, intracolony genetic diversity, in three commercial beekeeping operations to determine how they correlate with various measures of colony health and productivity, particularly the likelihood of queen supersedure and colony survival in functional, intensively managed beehives. We found the average effective paternity frequency (m e ) of this population of honey bee queens to be 13.6 ± 6.76, which was not significantly different between colonies that superseded their queen and those that did not. However, colonies that were less genetically diverse (headed by queens with m e  ≤ 7.0) were 2.86 times more likely to die by the end of the study when compared to colonies that were more genetically diverse (headed by queens with m e  > 7.0). The stark contrast in colony survival based on increased genetic diversity suggests that there are important tangible benefits of increased queen mating number in managed honey bees, although the exact mechanism(s) that govern these benefits have not been fully elucidated.

  2. Inhibition of heparin precipitation, bacterial growth, and fungal growth with a combined isopropanol-ethanol locking solution for vascular access devices.

    PubMed

    Restrepo, Daniel; Laconi, Nicholas S; Alcantar, Norma A; West, Leigh A; Buttice, Audrey L; Patel, Saumil; Kayton, Mark L

    2015-03-01

    Clinical reports of ethanol-lock use for the prevention of catheter-related bloodstream infections have been marked by the occurrence of serious catheter occlusions, particularly among children with mediports. We hypothesized that precipitate forms when ethanol mixes with heparin at the concentrations relevant for vascular access devices, but that the use of a combination of two alcohols, ethanol and isopropanol, would diminish heparin-related precipitation, while retaining anti-bacterial and anti-fungal effects. Heparin (0-100units/mL) was incubated in ethanol-water solutions (30%-70% vol/vol) or in an aqueous solution containing equal parts (35% and 35% vol/vol) of isopropanol and ethanol. Precipitation at temperatures from 4 to 40°C was measured in nephelometric turbidity units using a benchtop turbidimeter. Growth of Escherichia coli, Staphylococcus aureus, and Candida albicans colonies were measured following exposure to solutions of ethanol or isopropanol-ethanol. Groupwise comparisons were performed using analysis of variance with Bonferroni-corrected, post-hoc T-testing. Seventy percent ethanol and heparin exhibit dose-dependent precipitation that is pronounced and significant at the concentrations typically used in mediports (p<0.05). Precipitate is significantly reduced by use of a combined 35% isopropanol-35% ethanol solution rather than 70% ethanol (p<0.05), while maintaining the solution's anti-bacterial and anti-fungal properties. On the other hand, although ethanol solutions under 70% form less precipitate with heparin, such concentrations are also less effective at bacterial colony inhibition than solutions of either 70% ethanol or 35% isopropanol-35% ethanol (p<0.05). A combined 35% isopropanol-35% ethanol locking solution inhibits bacterial and fungal growth similarly to 70% ethanol, but results in less precipitate than 70% ethanol when exposed to heparin. Further study of a combined isopropanol-ethanol locking solution for the prevention of

  3. Rapid detection and differentiation of Staphylococcus colonies using an optical scattering technology.

    PubMed

    Alsulami, Tawfiq S; Zhu, Xingyue; Abdelhaseib, Maha Usama; Singh, Atul K; Bhunia, Arun K

    2018-05-24

    Staphylococcus species are a major pathogen responsible for nosocomial infections and foodborne illnesses. We applied a laser-based BARDOT (bacterial rapid detection using optical scattering technology) for rapid colony screening and detection of Staphylococcus on an agar plate and differentiate these from non-Staphylococcus spp. Among the six growth media tested, phenol red mannitol agar (PRMA) was found most suitable for building the Staphylococcus species scatter image libraries. Scatter image library for Staphylococcus species gave a high positive predictive value (PPV 87.5-100%) when tested against known laboratory strains of Staphylococcus spp., while the PPV against non-Staphylococcus spp. was 0-38%. A total of nine naturally contaminated bovine raw milk and ready-to-eat chicken salad samples were tested, and BARDOT detected Staphylococcus including Staphylococcus aureus with 80-100% PPV. Forty-five BARDOT-identified bacterial isolates from naturally contaminated foods were further confirmed by tuf and nuc gene-specific PCR and 16S rRNA gene sequence. This label-free, non-invasive on-plate colony screening technology can be adopted by the food industries, biotechnology companies, and public health laboratories for Staphylococcus species detection including S. aureus from various samples for food safety and public health management. Graphical abstract.

  4. Public health developments in colonial Malaya: colonialism and the politics of prevention.

    PubMed Central

    Manderson, L

    1999-01-01

    In both African and Asian colonies until the late 19th century, colonial medicine operated pragmatically to meet the medical needs first of colonial officers and troops, immigrant settlers, and laborers responsible for economic development, then of indigenous populations when their ill health threatened the well-being of the expatriate population. Since the turn of the century, however, the consequences of colonial expansion and development for indigenous people's health had become increasingly apparent, and disease control and public health programs were expanded in this light. These programs increased government surveillance of populations at both community and household levels. As a consequence, colonial states extended institutional oversight and induced dependency through public health measures. Drawing on my own work on colonial Malaya, I illustrate developments in public health and their links to the moral logic of colonialism and its complementarity to the political economy. PMID:9987478

  5. Long-term salinity tolerance is accompanied by major restructuring of the coral bacterial microbiome.

    PubMed

    Röthig, Till; Ochsenkühn, Michael A; Roik, Anna; van der Merwe, Riaan; Voolstra, Christian R

    2016-03-01

    Scleractinian corals are assumed to be stenohaline osmoconformers, although they are frequently subjected to variations in seawater salinity due to precipitation, freshwater run-off and other processes. Observed responses to altered salinity levels include differences in photosynthetic performance, respiration and increased bleaching and mortality of the coral host and its algal symbiont, but a study looking at bacterial community changes is lacking. Here, we exposed the coral Fungia granulosa to strongly increased salinity levels in short- and long-term experiments to disentangle temporal and compartment effects of the coral holobiont (i.e. coral host, symbiotic algae and associated bacteria). Our results show a significant reduction in calcification and photosynthesis, but a stable microbiome after short-term exposure to high-salinity levels. By comparison, long-term exposure yielded unchanged photosynthesis levels and visually healthy coral colonies indicating long-term acclimation to high-salinity levels that were accompanied by a major coral microbiome restructuring. Importantly, a bacterium in the family Rhodobacteraceae was succeeded by Pseudomonas veronii as the numerically most abundant taxon. Further, taxonomy-based functional profiling indicates a shift in the bacterial community towards increased osmolyte production, sulphur oxidation and nitrogen fixation. Our study highlights that bacterial community composition in corals can change within days to weeks under altered environmental conditions, where shifts in the microbiome may enable adjustment of the coral to a more advantageous holobiont composition. © 2016 The Authors. Molecular Ecology Published by John Wiley & Sons Ltd.

  6. Triclosan-Induced Aminoglycoside-Tolerant Listeria monocytogenes Isolates Can Appear as Small-Colony Variants

    PubMed Central

    Kastbjerg, Vicky G.; Hein-Kristensen, Line

    2014-01-01

    Exposure of the human food-borne pathogen Listeria monocytogenes to sublethal concentrations of triclosan can cause resistance to several aminoglycosides. Aminoglycoside-resistant isolates exhibit two colony morphologies: normal-size and pinpoint colonies. The purposes of the present study were to characterize the small colonies of L. monocytogenes and to determine if specific genetic changes could explain the triclosan-induced aminoglycoside resistance in both pinpoint and normal-size isolates. Isolates from the pinpoint colonies grew poorly under aerated conditions, but growth was restored by addition of antibiotics. Pinpoint isolates had decreased hemolytic activity under stagnant conditions and a changed spectrum of carbohydrate utilization compared to the wild type and isolates from normal-size colonies. Genome sequence comparison revealed that all seven pinpoint isolates had a mutation in a heme gene, and addition of heme caused the pinpoint isolates to revert to normal colony size. Triclosan-induced gentamicin-resistant isolates had mutations in several different genes, and it cannot be directly concluded how the different mutations caused gentamicin resistance. However, since many of the mutations affected proteins involved in respiration, it seems likely that the mutations affected the active transport of the antibiotic and thereby caused resistance by decreasing the amount of aminoglycoside that enters the bacterial cell. Our study emphasizes that triclosan likely has more targets than just fabI and that exposure to triclosan can cause resistance to antibiotics that enters the cell via active transport. Further studies are needed to elucidate if L. monocytogenes pinpoint isolates could have any clinical impact, e.g., in persistent infections. PMID:24637686

  7. Anatomical characteristics of teats and premilking bacterial counts of teat skin swabs of primiparous cows exposed to different types of bedding.

    PubMed

    Guarín, J F; Baumberger, C; Ruegg, P L

    2017-02-01

    Bacterial populations of teat skin are associated with risk of intramammary infection and may be influenced by anatomical characteristics of teats. The objective of this study was to evaluate associations of selected anatomical characteristics of teats with bacterial counts of teat skin of cows exposed to different types of bedding. Primarily primiparous Holstein cows (n = 128) were randomly allocated to 4 pens within a single barn. Each pen contained 1 type of bedding [new sand (NES), recycled sand (RS), deep-bedded manure solids (DBMS), and shallow-bedded manure solids over foam core mattresses (SBMS)]. During a single farm visit udders (n = 112) were scored for hygiene and 1 front (n = 112) and 1 rear teat (n = 111) of each enrolled cow were scored for hyperkeratosis (HK). Teat length, teat barrel diameter, and teat apex diameter were measured and teat skin swabs were systematically collected for microbiological analysis. Linear type evaluation data for udders of each cow were retrieved for each cow. Teat position (front or rear) was associated with occurrence of clinical mastitis during the 12 mo before the farm visit and more cases occurred in front quarters. The proportion of udders that were classified as clean (score 1 or 2) was 68, 82, 54, and 95% for cows housed in pens containing NES, RS, SBMS, and DBMS, respectively. No association was found between HK score and teat position and no association was found between HK score and teat skin bacterial count. Bacterial counts of teat skin swabs from front teats of cows in pens containing RS and SBMS were significantly less than those of rear teats of cows in pens containing DBMS or NES. Teat skin bacterial counts were significantly greater for swabs obtained from teats of cows with udder hygiene scores of 3 and 4 as compared with swabs obtained from cows with cleaner udders. Of all udder conformation traits evaluated, only narrower rear teat placement was positively associated with bacterial counts on teat skin

  8. Bacterial diskospondylitis in juvenile mink from 2 Ontario mink farms

    PubMed Central

    Martínez, Jorge; Vidaña, Beatriz; Cruz-Arambulo, Robert; Slavic, Durda; Tapscott, Brian; Brash, Marina L.

    2013-01-01

    Nine juvenile mink with hind-limb paresis/paralysis from 2 Ontario farms were submitted for necropsy. Diagnostic tests revealed spinal compression and severe thoracic diskospondylitis with intralesional Gram-positive coccoid bacterial colonies. Streptococcus canis, Streptococcus dysgalactiae subsp. equisimilis, and hemolytic Staphylococcus spp. were isolated from vertebral lesions. PMID:24155490

  9. Effects of microwaves on the colony-forming capacity of haemopoietic stem cells in mice.

    PubMed

    Rotkovská, D; Vacek, A; Bartonícková, A

    1987-01-01

    A suspension of bone marrow cells from femurs of female (CBA X C57Bl)F1 mice was exposed to 2450 MHz CW microwaves in a specially designed waveguide exposure system. The temperature of the suspension rose, during exposure to microwaves, from 20 degrees C to 45 degrees C, and at an interval within 20 degrees C to 45 degrees C the number of haemopoietic stem cells (CFUs) was determined by the spleen exocolony method. The time of exposure of bone marrow cells to each temperature studied was 20 s. Control suspensions of bone marrow cells were exposed to a water bath temperature. There were no significant effects of the CFUs with the water bath temperature, while after exposure to microwaves the number of spleen colonies was elevated with a nadir at the temperature of 37 degrees C. With a microwave-induced increase of the temperature above 41 degrees C the number of CFUs in the bone marrow suspension decreased. The increase in the number of colonies was related to the rise in the seeding rate of the CFUs as well as to a rise in their proliferative activity, while the drop in the number of colonies was influenced also by heat-killing of the CFUs by microwave exposure.

  10. Bio-physical modeling of time-resolved forward scattering by Listeria colonies

    NASA Astrophysics Data System (ADS)

    Bae, Euiwon; Banada, Padmapriya P.; Bhunia, Arun K.; Hirleman, E. Daniel

    2006-10-01

    We have developed a detection system and associated protocol based on optical forward scattering where the bacterial colonies of various species and strains growing on solid nutrient surfaces produced unique scatter signatures. The aim of the present investigation was to develop a bio-physical model for the relevant phenomena. In particular, we considered time-varying macroscopic morphological properties of the growing colonies and modeled the scattering using scalar diffraction theory. For the present work we performed detailed studies with three species of Listeria; L. innocua, L. monocytogenes, and L. ivanovii. The baseline experiments involved cultures grown on brain heart infusion (BHI) agar and the scatter images were captured every six hours for an incubation period of 42 hours. The morphologies of the colonies were studied by phase contrast microscopy, including measurement of the diameter of the colony. Growth curves, represented by colony diameter as a function of time, were compared with the time-evolution of scattering signatures. Similar studies were carried out with L. monocytogenes grown on different substrates. Non-dimensionalizing incubation time in terms of the time to reach stationary phase was effective in reducing the dimensionality of the model. Bio-physical properties of the colony such as diameter, bacteria density variation, surface curvature/profile, and transmission coefficient are important parameters in predicting the features of the forward scattering signatures. These parameters are included in a baseline model that treats the colony as a concentric structure with radial variations in phase modulation. In some cases azimuthal variations and random phase inclusions were included as well. The end result is a protocol (growth media, incubation time and conditions) that produces reproducible and distinguishable scatter patterns for a variety of harmful food borne pathogens in a short period of time. Further, the bio-physical model we

  11. MALDI-TOF mass spectrometry and high-consequence bacteria: safety and stability of biothreat bacterial sample testing in clinical diagnostic laboratories.

    PubMed

    Tracz, Dobryan M; Tober, Ashley D; Antonation, Kym S; Corbett, Cindi R

    2018-03-01

    We considered the application of MALDI-TOF mass spectrometry for BSL-3 bacterial diagnostics, with a focus on the biosafety of live-culture direct-colony testing and the stability of stored extracts. Biosafety level 2 (BSL-2) bacterial species were used as surrogates for BSL-3 high-consequence pathogens in all live-culture MALDI-TOF experiments. Viable BSL-2 bacteria were isolated from MALDI-TOF mass spectrometry target plates after 'direct-colony' and 'on-plate' extraction testing, suggesting that the matrix chemicals alone cannot be considered sufficient to inactivate bacterial culture and spores in all samples. Sampling of the instrument interior after direct-colony analysis did not recover viable organisms, suggesting that any potential risks to the laboratory technician are associated with preparation of the MALDI-TOF target plate before or after testing. Secondly, a long-term stability study (3 years) of stored MALDI-TOF extracts showed that match scores can decrease below the threshold for reliable species identification (<1.7), which has implications for proficiency test panel item storage and distribution.

  12. Growth of Listeria monocytogenes and Yersinia enterocolitica colonies under modified atmospheres at 4 and 8 degrees C using a model food system.

    PubMed

    Harrison, W A; Peters, A C; Fielding, L M

    2000-01-01

    The growth of Listeria monocytogenes and Yersinia enterocolitica colonies was studied on solid media at 4 and 8 degrees C under modified atmospheres (MAs) of 5% O2: 10% CO2: 85% N2 (MA1), 30% CO2: 70% N2 (MA2) and air (control). Colony radius, determined using computer image analysis, allowed specific growth rates (mu) and the time taken to detect bacterial colonies to be estimated, after colonies became visible. At 4 degrees C both MAs decreased the growth rates of L. monocytogenes by 1.5- and 3.0-fold under MA1 (mu = 0.02 h(-1)) and MA2 (mu = 0.01 h(-1)), respectively, as compared with the control (mu = 0.03 h(-1)). The time to detection of bacterial colonies was increased from 15 d (control) to 24 (MA1) and 29 d (MA2). At 8 degrees C MA2 decreased the growth rate by 1.5-fold (mu = 0.04 h(-1)) as compared with the control (mu = 0.06 h(-1)) and detection of colonies increased from 7 (control) to 9 d (MA2). At 4 degrees C both MAs decreased the growth rates of Y. enterocolitica by 1.5- and 2.5-fold under MA1 (mu = 0.03 h(-1)) and MA2 (mu = 0.02 h(-1)), respectively, as compared with the control (mu = 0.05 h(-1)). At 8 degrees C identical growth rates were obtained under MA1 and the control (mu = 0.07 h(-1)) whilst a decrease in the growth rate was obtained under MA2 (mu = 0.04 h(-1)). The detection of colonies varied from 6 (8 degrees C, aerobic) to 19 d (4 degrees C, MA2). Refrigerated modified atmosphere packaged foods should be maintained at 4 degrees C and below to ensure product safety.

  13. The Amana Colonies.

    ERIC Educational Resources Information Center

    Lilja, Marilyn

    Designed for use in Iowa elementary schools, this unit introduces students to Iowa's Amana Colonies. Four lessons cover the history and cultural heritage of the colonies, daily life in historical times, daily life in modern times, and the colonies as a corporate museum. Throughout the lessons, emphasis is placed on the values and organization of…

  14. Bacterial populations associated with the dirty area of a South African poultry abattoir.

    PubMed

    Geornaras, I; de Jesus, A E; von Holy, A

    1998-06-01

    Bacterial populations associated with three sample types from the neck region of poultry carcasses in the dirty area of an abattoir were characterized. Sample types before and after scalding were skin only, feathers only, and a skin and feather combination. The neck skin of carcasses after the defeathering processing stage was also sampled. Bacterial populations associated with water from the scald tank, rubber fingers at the exit of the defeathering machine, and air in the dirty area were also characterized. Bacterial colonies (751) were randomly isolated from yeast extract-supplemented tryptone soya agar plates exhibiting 30 to 300 colonies. Micrococcus spp. were isolated in the highest proportion from pre-and postscalded carcass samples (63.5 to 86.1% of isolates), regardless of the sample type. Conversely, Enterobacteriaceae (40.3%), Acinetobacter (19.4%), and Aeromonas/Vibrio (12.5%) species predominated on neck skin samples taken from mechanically defeathered carcasses. Isolates from the rubber fingers were, however, predominantly Micrococcus spp. (94.4%). Bacterial groups isolated in the highest proportion from scald tank water samples were Micrococcus spp. (38.3%), species of Enterobacteriaceae (29.1%), and lactic acid bacteria (17.0%). Corynebacterium spp., species of Enterobacteriaceae, and Micrococcus spp. were dominant on air settle plates.

  15. Sub-lethal effects of dietary neonicotinoid insecticide exposure on honey bee queen fecundity and colony development

    NASA Astrophysics Data System (ADS)

    Wu-Smart, Judy; Spivak, Marla

    2016-08-01

    Many factors can negatively affect honey bee (Apis mellifera L.) health including the pervasive use of systemic neonicotinoid insecticides. Through direct consumption of contaminated nectar and pollen from treated plants, neonicotinoids can affect foraging, learning, and memory in worker bees. Less well studied are the potential effects of neonicotinoids on queen bees, which may be exposed indirectly through trophallaxis, or food-sharing. To assess effects on queen productivity, small colonies of different sizes (1500, 3000, and 7000 bees) were fed imidacloprid (0, 10, 20, 50, and 100 ppb) in syrup for three weeks. We found adverse effects of imidacloprid on queens (egg-laying and locomotor activity), worker bees (foraging and hygienic activities), and colony development (brood production and pollen stores) in all treated colonies. Some effects were less evident as colony size increased, suggesting that larger colony populations may act as a buffer to pesticide exposure. This study is the first to show adverse effects of imidacloprid on queen bee fecundity and behavior and improves our understanding of how neonicotinoids may impair short-term colony functioning. These data indicate that risk-mitigation efforts should focus on reducing neonicotinoid exposure in the early spring when colonies are smallest and queens are most vulnerable to exposure.

  16. Sub-lethal effects of dietary neonicotinoid insecticide exposure on honey bee queen fecundity and colony development

    PubMed Central

    Wu-Smart, Judy; Spivak, Marla

    2016-01-01

    Many factors can negatively affect honey bee (Apis mellifera L.) health including the pervasive use of systemic neonicotinoid insecticides. Through direct consumption of contaminated nectar and pollen from treated plants, neonicotinoids can affect foraging, learning, and memory in worker bees. Less well studied are the potential effects of neonicotinoids on queen bees, which may be exposed indirectly through trophallaxis, or food-sharing. To assess effects on queen productivity, small colonies of different sizes (1500, 3000, and 7000 bees) were fed imidacloprid (0, 10, 20, 50, and 100 ppb) in syrup for three weeks. We found adverse effects of imidacloprid on queens (egg-laying and locomotor activity), worker bees (foraging and hygienic activities), and colony development (brood production and pollen stores) in all treated colonies. Some effects were less evident as colony size increased, suggesting that larger colony populations may act as a buffer to pesticide exposure. This study is the first to show adverse effects of imidacloprid on queen bee fecundity and behavior and improves our understanding of how neonicotinoids may impair short-term colony functioning. These data indicate that risk-mitigation efforts should focus on reducing neonicotinoid exposure in the early spring when colonies are smallest and queens are most vulnerable to exposure. PMID:27562025

  17. Sub-lethal effects of dietary neonicotinoid insecticide exposure on honey bee queen fecundity and colony development.

    PubMed

    Wu-Smart, Judy; Spivak, Marla

    2016-08-26

    Many factors can negatively affect honey bee (Apis mellifera L.) health including the pervasive use of systemic neonicotinoid insecticides. Through direct consumption of contaminated nectar and pollen from treated plants, neonicotinoids can affect foraging, learning, and memory in worker bees. Less well studied are the potential effects of neonicotinoids on queen bees, which may be exposed indirectly through trophallaxis, or food-sharing. To assess effects on queen productivity, small colonies of different sizes (1500, 3000, and 7000 bees) were fed imidacloprid (0, 10, 20, 50, and 100 ppb) in syrup for three weeks. We found adverse effects of imidacloprid on queens (egg-laying and locomotor activity), worker bees (foraging and hygienic activities), and colony development (brood production and pollen stores) in all treated colonies. Some effects were less evident as colony size increased, suggesting that larger colony populations may act as a buffer to pesticide exposure. This study is the first to show adverse effects of imidacloprid on queen bee fecundity and behavior and improves our understanding of how neonicotinoids may impair short-term colony functioning. These data indicate that risk-mitigation efforts should focus on reducing neonicotinoid exposure in the early spring when colonies are smallest and queens are most vulnerable to exposure.

  18. Intercellular Genomics of Subsurface Microbial Colonies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ortoleva, Peter; Tuncay, Kagan; Gannon, Dennis

    2007-02-14

    This report summarizes progress in the second year of this project. The objective is to develop methods and software to predict the spatial configuration, properties and temporal evolution of microbial colonies in the subsurface. To accomplish this, we integrate models of intracellular processes, cell-host medium exchange and reaction-transport dynamics on the colony scale. At the conclusion of the project, we aim to have the foundations of a predictive mathematical model and software that captures the three scales of these systems – the intracellular, pore, and colony wide spatial scales. In the second year of the project, we refined our transcriptionalmore » regulatory network discovery (TRND) approach that utilizes gene expression data along with phylogenic similarity and gene ontology analyses and applied it successfully to E.coli, human B cells, and Geobacter sulfurreducens. We have developed a new Web interface, GeoGen, which is tailored to the reconstruction of microbial TRNs and solely focuses on Geobacter as one of DOE’s high priority microbes. Our developments are designed such that the frameworks for the TRND and GeoGen can readily be used for other microbes of interest to the DOE. In the context of modeling a single bacterium, we are actively pursuing both steady-state and kinetic approaches. The steady-state approach is based on a flux balance that uses maximizing biomass growth rate as its objective, subjected to various biochemical constraints, for the optimal values of reaction rates and uptake/release of metabolites. For the kinetic approach, we use Karyote, a rigorous cell model developed by us for an earlier DOE grant and the DARPA BioSPICE Project. We are also investigating the interplay between bacterial colonies and environment at both pore and macroscopic scales. The pore scale models use detailed representations for realistic porous media accounting for the distribution of grain size whereas the macroscopic models employ the Darcy

  19. Bacterial Dispersal Promotes Biodegradation in Heterogeneous Systems Exposed to Osmotic Stress

    PubMed Central

    Worrich, Anja; König, Sara; Banitz, Thomas; Centler, Florian; Frank, Karin; Thullner, Martin; Harms, Hauke; Miltner, Anja; Wick, Lukas Y.; Kästner, Matthias

    2016-01-01

    Contaminant biodegradation in soils is hampered by the heterogeneous distribution of degrading communities colonizing isolated microenvironments as a result of the soil architecture. Over the last years, soil salinization was recognized as an additional problem especially in arid and semiarid ecosystems as it drastically reduces the activity and motility of bacteria. Here, we studied the importance of different spatial processes for benzoate biodegradation at an environmentally relevant range of osmotic potentials (ΔΨo) using model ecosystems exhibiting a heterogeneous distribution of the soil-borne bacterium Pseudomonas putida KT2440. Three systematically manipulated scenarios allowed us to cover the effects of (i) substrate diffusion, (ii) substrate diffusion and autonomous bacterial dispersal, and (iii) substrate diffusion and autonomous as well as mediated bacterial dispersal along glass fiber networks mimicking fungal hyphae. To quantify the relative importance of the different spatial processes, we compared these heterogeneous scenarios to a reference value obtained for each ΔΨo by means of a quasi-optimal scenario in which degraders were ab initio homogeneously distributed. Substrate diffusion as the sole spatial process was insufficient to counteract the disadvantage due to spatial degrader heterogeneity at ΔΨo ranging from 0 to −1 MPa. In this scenario, only 13.8−21.3% of the quasi-optimal biodegradation performance could be achieved. In the same range of ΔΨo values, substrate diffusion in combination with bacterial dispersal allowed between 68.6 and 36.2% of the performance showing a clear downwards trend with decreasing ΔΨo. At −1.5 MPa, however, this scenario performed worse than the diffusion scenario, possibly as a result of energetic disadvantages associated with flagellum synthesis and emerging requirements to exceed a critical population density to resist osmotic stress. Network-mediated bacterial dispersal kept biodegradation

  20. Brood removal influences fall of Varroa destructor (Mesostigmata: Varroidae) in honey bee (Hymenoptera: Apidae) colonies

    USDA-ARS?s Scientific Manuscript database

    The hygienic removal of brood infested with Varroa destructor by Apis mellifera disrupts the reproduction of the infesting mites and exposes the foundress mites to potential removal from the colony by grooming. Using brood deliberately infested with marked Varroa, we investigated the association bet...

  1. Combined pesticide exposure severely affects individual- and colony-level traits in bees

    PubMed Central

    Gill, Richard J.; Ramos-Rodriguez, Oscar; Raine, Nigel E.

    2012-01-01

    Reported widespread declines of wild and managed insect pollinators have serious consequences for global ecosystem services and agricultural production1-3. Bees contribute around 80% of insect pollination, so it is imperative we understand and mitigate the causes of current declines4-6. Recent studies have implicated the role of pesticides as exposure to these chemicals has been associated with changes in bee behaviour7-11 and reductions in colony queen production12. However the key link between changes in individual behaviour and consequent impact at the colony level has not been shown. Social bee colonies depend on the collective performance of numerous individual workers. So whilst field-level pesticide concentrations can have a subtle/sublethal effect at the individual level8, it is not known whether bee societies can buffer such effects or if it results in a severe cumulative effect at the colony level. Furthermore, widespread agricultural intensification means bees are exposed to numerous pesticides when foraging13-15, yet the possible combinatorial effects of pesticide exposure have rarely been investigated16,17. Here we show that chronic exposure of bumblebees to two pesticides (neonicotinoid and pyrethroid) at concentrations that could approximate field-level exposure impairs natural foraging behaviour and increases worker mortality leading to significant reductions in brood development and colony success. We found worker foraging performance, particularly pollen collecting efficiency, was significantly reduced with observed knock-on effects for forager recruitment, worker losses and overall worker productivity. Moreover, we provide evidence that combinatorial exposure to pesticides increases the propensity of colonies to fail. PMID:23086150

  2. Kynetic resazurin assay (KRA) for bacterial quantification of foodborne pathogens

    NASA Astrophysics Data System (ADS)

    Arenas, Yaxal; Mandel, Arkady; Lilge, Lothar

    2012-03-01

    Fast detection of bacterial concentrations is important for the food industry and for healthcare. Early detection of infections and appropriate treatment is essential since, the delay of treatments for bacterial infections tends to be associated with higher mortality rates. In the food industry and in healthcare, standard procedures require the count of colony-forming units in order to quantify bacterial concentrations, however, this method is time consuming and reports require three days to be completed. An alternative is metabolic-colorimetric assays which provide time efficient in vitro bacterial concentrations. A colorimetric assay based on Resazurin was developed as a time kinetic assay (KRA) suitable for bacterial concentration measurements. An optimization was performed by finding excitation and emission wavelengths for fluorescent acquisition. A comparison of two non-related bacteria, foodborne pathogens Escherichia coli and Listeria monocytogenes, was performed in 96 well plates. A metabolic and clonogenic dependence was established for fluorescent kinetic signals.

  3. Colony Failure Linked to Low Sperm Viability in Honey Bee (Apis mellifera) Queens and an Exploration of Potential Causative Factors

    PubMed Central

    Pettis, Jeffery S.; Rice, Nathan; Joselow, Katie; vanEngelsdorp, Dennis; Chaimanee, Veeranan

    2016-01-01

    Queen health is closely linked to colony performance in honey bees as a single queen is normally responsible for all egg laying and brood production within the colony. In the U. S. in recent years, queens have been failing at a high rate; with 50% or greater of queens replaced in colonies within 6 months when historically a queen might live one to two years. This high rate of queen failure coincides with the high mortality rates of colonies in the US, some years with >50% of colonies dying. In the current study, surveys of sperm viability in US queens were made to determine if sperm viability plays a role in queen or colony failure. Wide variation was observed in sperm viability from four sets of queens removed from colonies that beekeepers rated as in good health (n = 12; average viability = 92%), were replacing as part of normal management (n = 28; 57%), or where rated as failing (n = 18 and 19; 54% and 55%). Two additional paired set of queens showed a statistically significant difference in viability between colonies rated by the beekeeper as failing or in good health from the same apiaries. Queens removed from colonies rated in good health averaged high viability (ca. 85%) while those rated as failing or in poor health had significantly lower viability (ca. 50%). Thus low sperm viability was indicative of, or linked to, colony performance. To explore the source of low sperm viability, six commercial queen breeders were surveyed and wide variation in viability (range 60–90%) was documented between breeders. This variability could originate from the drones the queens mate with or temperature extremes that queens are exposed to during shipment. The role of shipping temperature as a possible explanation for low sperm viability was explored. We documented that during shipment queens are exposed to temperature spikes (<8 and > 40°C) and these spikes can kill 50% or more of the sperm stored in queen spermathecae in live queens. Clearly low sperm viability is

  4. Colony Failure Linked to Low Sperm Viability in Honey Bee (Apis mellifera) Queens and an Exploration of Potential Causative Factors.

    PubMed

    Pettis, Jeffery S; Rice, Nathan; Joselow, Katie; vanEngelsdorp, Dennis; Chaimanee, Veeranan

    2016-01-01

    Queen health is closely linked to colony performance in honey bees as a single queen is normally responsible for all egg laying and brood production within the colony. In the U. S. in recent years, queens have been failing at a high rate; with 50% or greater of queens replaced in colonies within 6 months when historically a queen might live one to two years. This high rate of queen failure coincides with the high mortality rates of colonies in the US, some years with >50% of colonies dying. In the current study, surveys of sperm viability in US queens were made to determine if sperm viability plays a role in queen or colony failure. Wide variation was observed in sperm viability from four sets of queens removed from colonies that beekeepers rated as in good health (n = 12; average viability = 92%), were replacing as part of normal management (n = 28; 57%), or where rated as failing (n = 18 and 19; 54% and 55%). Two additional paired set of queens showed a statistically significant difference in viability between colonies rated by the beekeeper as failing or in good health from the same apiaries. Queens removed from colonies rated in good health averaged high viability (ca. 85%) while those rated as failing or in poor health had significantly lower viability (ca. 50%). Thus low sperm viability was indicative of, or linked to, colony performance. To explore the source of low sperm viability, six commercial queen breeders were surveyed and wide variation in viability (range 60-90%) was documented between breeders. This variability could originate from the drones the queens mate with or temperature extremes that queens are exposed to during shipment. The role of shipping temperature as a possible explanation for low sperm viability was explored. We documented that during shipment queens are exposed to temperature spikes (<8 and > 40°C) and these spikes can kill 50% or more of the sperm stored in queen spermathecae in live queens. Clearly low sperm viability is linked

  5. Evolution of Bacterial Suicide

    NASA Astrophysics Data System (ADS)

    Tchernookov, Martin; Nemenman, Ilya

    2013-03-01

    While active, controlled cellular suicide (autolysis) in bacteria is commonly observed, it has been hard to argue that autolysis can be beneficial to an individual who commits it. We propose a theoretical model that predicts that bacterial autolysis is evolutionarily advantageous to an individualand would fixate in physically structured environments for stationary phase colonies. We perform spatially resolved agent-based simulations of the model, which predict that lower mixing in the environment results in fixation of a higher autolysis rate from a single mutated cell, regardless of the colony's genetic diversity. We argue that quorum sensing will fixate as well, even if initially rare, if it is coupled to controlling the autolysis rate. The model does not predict a strong additional competitive advantage for cells where autolysis is controlled by quorum sensing systems that distinguish self from nonself. These predictions are broadly supported by recent experimental results in B. subtilisand S. pneumoniae. Research partially supported by the James S McDonnell Foundation grant No. 220020321 and by HFSP grant No. RGY0084/2011.

  6. Colonial and post-colonial aspects of Australian identity.

    PubMed

    Tranter, Bruce; Donoghue, Jed

    2007-06-01

    Since the 1988 Bicentennial and the 2001 centenary of federation celebrations colonial images have flourished in Australia, highlighting the roles of convicts and free settlers during early colonization. Old sites, such as Port Arthur have been re-invigorated, and in 2004 Tasmanians celebrated the bicentenary of 'white' settlement. However, social scientists have given little attention to the role of colonial and post-colonial figures and myths as aspects of Australian national identity. We seek to address this issue by examining how convicts, free settlers, bushrangers and ANZACs are associated with contemporary identity in Australia. We examine evidence from the 2003 Australian Survey of Social Attitudes and find that historical figures such as the ANZACs and post-World War II immigrants comprise important aspects of national identity. A substantial majority of Australians judged ANZACs to be important, countering recent claims of the 'demise of the digger'. Sporting heroes are also at the core of Australian identity. Colonial figures appear to be far less important, although views on national identity vary according to social location. In particular, left-wing, university educated, younger, postmaterialist Australians view convicts and bushrangers as relatively important, indicating the salience of the larrikin in Australian identity.

  7. The colony environment modulates sleep in honey bee workers.

    PubMed

    Eban-Rothschild, Ada; Bloch, Guy

    2015-02-01

    One of the most important and evolutionarily conserved roles of sleep is the processing and consolidation of information acquired during wakefulness. In both insects and mammals, environmental and social stimuli can modify sleep physiology and behavior, yet relatively little is known about the specifics of the wake experiences and their relative contribution to experience-dependent modulation of sleep. Honey bees provide an excellent model system in this regard because their behavioral repertoire is well characterized and the environment they experience during the day can be manipulated while keeping an ecologically and sociobiologically relevant context. We examined whether social experience modulates sleep in honey bees, and evaluated the relative contribution of different social signals. We exposed newly emerged bees to different components of their natural social environment and then monitored their sleep behavior in individual cages in a constant lab environment. We found that rich waking experience modulates subsequent sleep. Bees that experienced the colony environment for 1 or 2 days slept more than same-age sister bees that were caged individually or in small groups in the lab. Furthermore, bees placed in mesh-enclosures in the colony, that prevented direct contact with nestmates, slept similarly to bees freely moving in the colony. These results suggest that social signals that do not require direct or close distance interactions between bees are sufficiently rich to encompass almost the entire effect of the colony on sleep. Our findings provide a remarkable example of social experience-dependent modulation of an essential biological process. © 2015. Published by The Company of Biologists Ltd.

  8. Histopathological and bacterial study of Persian sturgeon fry, Acipenser persicus (Borodin, 1897) exposed to copper sulfate and potassium permanganate.

    PubMed

    Moshtaghi, Batol; Khara, Hossein; Pazhan, Zabiyollah; Shenavar, Alireza

    2016-09-01

    Persian sturgeon frys were exposed to different concentrations of copper sulfate and potassium permanganate in order to the evaluation of their impacts on bacterial load of skin, gill and surrounding water and also the histopathological alternations of gill tissue. For this purpose, the sublethal doses were determined after a pre-test and then the experiment was done in 4 (for copper sulfate: 0.07, 0.14, 026 and 0.5 mg/l) and 5 (for potassium permanganate: 0.07, 0.14, 026, 0.5 and 1 mg/l) treatments with three replicates inside the glass aquaria. Also, one group without disinfecting drug was considered as control for each experiment. The microbial and histopathological investigations were done after 96 h exposure. According to our results, a range of histopathological alternations were observed in gills tissue including mucus coagulation and secretion, hyperplasia, lamellar necrosis, hyperplasia, lamellar adhesion, haemorrhage, thickening of secondary lamellae, hypertrophy of supporter cartilage, clubbing of gill lamellae and sliming of primary lamellae. The severity of these alternations increased with increasing of the doses of the copper sulfate and potassium permanganate. The bacterial load (CFU/g) of gill, skin and surrounding water was lower in 0.07 mg/l copper sulfate treatment and 1 mg/l potassium permanganate treatment (P < 0.05) than in other treatments. In conclusion, our results showed that the certain doses of the copper sulfate and potassium permanganate have disinfecting effects on bacterial load of gill, skin and surrounding water, although this is along with some histopathological alternations. Also, it seems that the copper sulfate has higher disinfecting power than potassium permanganate.

  9. Absence of bacterial resistance following repeat exposure to photodynamic therapy

    NASA Astrophysics Data System (ADS)

    Pedigo, Lisa A.; Gibbs, Aaron J.; Scott, Robert J.; Street, Cale N.

    2009-06-01

    The prevalence of antibiotic resistant bacteria necessitates exploration of alternative approaches to treat hospital and community acquired infections. The aim of this study was to determine whether bacterial pathogens develop resistance to antimicrobial photodynamic therapy (aPDT) during repeated sub-lethal challenge. Antibiotic sensitive and resistant strains of S. aureus and antibiotic sensitive E. coli were subjected to repeat PDT treatments using a methylene blue photosensitizer formulation and 670 nm illumination from a non-thermal diode laser. Parameters were adjusted such that kills were <100% so that surviving colonies could be passaged for subsequent exposures. With each repeat, kills were compared to those using non-exposed cultures of the same strain. Oxacillin resistance was induced in S. aureus using a disc diffusion method. For each experiment, "virgin" and "repeat" cultures were exposed to methylene blue at 0.01% w/v and illuminated with an energy dose of 20.6 J/cm2. No significant difference in killing of E. coli (repeat vs. virgin culture) was observed through 11 repeat exposures. Similar results were seen using MSSA and MRSA, wherein kill rate did not significantly differ from control over 25 repeat exposures. In contrast, complete oxacillin resistance could be generated in S. aureus over a limited number of exposures. PDT is effective in the eradication of pathogens including antibiotic resistance strains. Furthermore, repeated sub-lethal exposure does not induce resistance to subsequent PDT treatments. The absence of resistance formation represents a significant advantage of PDT over traditional antibiotics.

  10. Why come back home? Breeding-site fidelity varies with group size and parasite load in a colonial bird.

    PubMed

    Brown, Charles R; Roche, Erin A; Brown, Mary Bomberger

    2017-10-01

    Fidelity to a past breeding site is widespread among animals and may confer both costs and benefits. Colonial species occur at specific sites that can accommodate multiple breeders, and the choice of whether to return to last year's site or disperse elsewhere can affect colony site use, the colony size distribution and individual fitness. For the colonial cliff swallow, Petrochelidon pyrrhonota , which occupies colonies of widely different sizes, we used a 30-year field study in western Nebraska to investigate how the extent of infestation by ectoparasites and colony size affected breeders' colony site fidelity between years. We compared philopatry at colonies where parasitic swallow bugs, Oeciacus vicarius , had been removed by fumigation with that at nonfumigated sites exposed to natural levels of ectoparasites. About 25% of birds at nonfumigated colonies returned to their previous year's site, whereas about 69% of birds at fumigated colonies did so. Site fidelity was greatest at nonfumigated sites that changed the least in size between years. Birds were less likely to return to a nonfumigated site as the colony there became increasingly larger. Individuals philopatric to both nonfumigated and fumigated sites resided in colonies more similar in size between years than did dispersing birds. Most cliff swallows settled within 6 km of their previous year's site, indicating that many nonphilopatric birds still may have had some familiarity with the local landscape surrounding the site to which they moved. Removal of ectoparasites at a site allows large colonies to persist there perennially, probably contributing to higher philopatry because such large colonies are rare and would have been difficult to find had the residents dispersed. Cliff swallows are likely to be sensitive to both colony size and general familiarity with a given site or landscape region, and probably integrate these with other cues to select breeding colonies.

  11. Reproduction and caste ratios under stress in trematode colonies with a division of labour.

    PubMed

    Lloyd, Melanie M; Poulin, Robert

    2013-06-01

    Trematodes form clonal colonies in their first intermediate host. Individuals are, depending on species, rediae or sporocysts (which asexually reproduce) and cercariae (which develop within rediae or sporocysts and infect the next host). Some species use a division of labour within colonies, with 2 distinct redial morphs: small rediae (non-reproducing) and large rediae (individuals which produce cercariae). The theory of optimal caste ratio predicts that the ratio of caste members (small to large rediae) responds to environmental variability. This was tested in Philophthalmus sp. colonies exposed to host starvation and competition with the trematode, Maritrema novaezealandensis. Philophthalmus sp. infected snails, with and without M. novaezealandensis, were subjected to food treatments. Reproductive output, number of rediae, and the ratio of small to large rediae were compared among treatments. Philophthalmus sp. colonies responded to host starvation and competition; reproductive output was higher in well-fed snails of both infection types compared with snails in lower food treatments and well-fed, single infected snails compared with well-fed double infected snails. Furthermore, the caste ratio in Philophthalmus sp. colonies was altered in response to competition. This is the first study showing caste ratio responses to environmental pressures in trematodes with a division of labour.

  12. Resistance of Bacterial Endospores to Outer Space for Planetary Protection Purposes—Experiment PROTECT of the EXPOSE-E Mission

    PubMed Central

    Moeller, Ralf; Cadet, Jean; Douki, Thierry; Mancinelli, Rocco L.; Nicholson, Wayne L.; Panitz, Corinna; Rabbow, Elke; Rettberg, Petra; Spry, Andrew; Stackebrandt, Erko; Vaishampayan, Parag; Venkateswaran, Kasthuri J.

    2012-01-01

    Abstract Spore-forming bacteria are of particular concern in the context of planetary protection because their tough endospores may withstand certain sterilization procedures as well as the harsh environments of outer space or planetary surfaces. To test their hardiness on a hypothetical mission to Mars, spores of Bacillus subtilis 168 and Bacillus pumilus SAFR-032 were exposed for 1.5 years to selected parameters of space in the experiment PROTECT during the EXPOSE-E mission on board the International Space Station. Mounted as dry layers on spacecraft-qualified aluminum coupons, the “trip to Mars” spores experienced space vacuum, cosmic and extraterrestrial solar radiation, and temperature fluctuations, whereas the “stay on Mars” spores were subjected to a simulated martian environment that included atmospheric pressure and composition, and UV and cosmic radiation. The survival of spores from both assays was determined after retrieval. It was clearly shown that solar extraterrestrial UV radiation (λ≥110 nm) as well as the martian UV spectrum (λ≥200 nm) was the most deleterious factor applied; in some samples only a few survivors were recovered from spores exposed in monolayers. Spores in multilayers survived better by several orders of magnitude. All other environmental parameters encountered by the “trip to Mars” or “stay on Mars” spores did little harm to the spores, which showed about 50% survival or more. The data demonstrate the high chance of survival of spores on a Mars mission, if protected against solar irradiation. These results will have implications for planetary protection considerations. Key Words: Planetary protection—Bacterial spores—Space experiment—Simulated Mars mission. Astrobiology 12, 445–456. PMID:22680691

  13. Surviving bacterial sibling rivalry: inducible and reversible phenotypic switching in Paenibacillus dendritiformis.

    PubMed

    Be'er, Avraham; Florin, E-L; Fisher, Carolyn R; Swinney, Harry L; Payne, Shelley M

    2011-01-01

    Natural habitats vary in available nutrients and room for bacteria to grow, but successful colonization can lead to overcrowding and stress. Here we show that competing sibling colonies of Paenibacillus dendritiformis bacteria survive overcrowding by switching between two distinct vegetative phenotypes, motile rods and immotile cocci. Growing colonies of the rod-shaped bacteria produce a toxic protein, Slf, which kills cells of encroaching sibling colonies. However, sublethal concentrations of Slf induce some of the rods to switch to Slf-resistant cocci, which have distinct metabolic and resistance profiles, including resistance to cell wall antibiotics. Unlike dormant spores of P. dendritiformis, the cocci replicate. If cocci encounter conditions that favor rods, they secrete a signaling molecule that induces a switch to rods. Thus, in contrast to persister cells, P. dendritiformis bacteria adapt to changing environmental conditions by inducible and reversible phenotypic switching. In favorable environments, species may face space and nutrient limits due to overcrowding. Bacteria provide an excellent model for analyzing principles underlying overcrowding and regulation of density in nature, since their population dynamics can be easily and accurately assessed under controlled conditions. We describe a newly discovered mechanism for survival of a bacterial population during overcrowding. When competing with sibling colonies, Paenibacillus dendritiformis produces a lethal protein (Slf) that kills cells at the interface of encroaching colonies. Slf also induces a small proportion of the cells to switch from motile, rod-shaped cells to nonmotile, Slf-resistant, vegetative cocci. When crowding is reduced and nutrients are no longer limiting, the bacteria produce a signal that induces cocci to switch back to motile rods, allowing the population to spread. Genes encoding components of this phenotypic switching pathway are widespread among bacterial species, suggesting

  14. Colony size and brood investment of Myrmica rubra ant colonies in habitats invaded by goldenrods.

    PubMed

    Grześ, I M; Ślipiński, P; Babik, H; Moroń, D; Walter, B; Trigos Peral, G; Maak, I; Witek, M

    2018-01-01

    Ant richness and abundance are negatively affected by the invasion of alien goldenrods ( Solidago sp.). However, little is known about the mechanisms standing behind the impact of the invaders on ant life history, such as colony investments in growth and reproduction. We examined this problem of the investments of Myrmica rubra ant colonies living in different grasslands invaded and non-invaded by goldenrods. Altogether, 47 colonies were analysed; and for each colony, we calculated the number of queens, workers and the production of young workers, gynes, and males. We found that colonies from invaded meadows are smaller in size, but have a similar number of adult queens compared to colonies from non-invaded sites. We also found different brood investments among colonies from invaded and non-invaded meadows-colonies from non-invaded meadows produce more young workers and invest more in growth, whereas colonies from invaded meadows invest more in reproduction through higher gyne production. Male production was at a similar level in colonies from both habitat types. The observed patterns may be explained by the effect of various environmental factors occurring in both grassland types, such as stress in changed habitats, higher competition among gynes in non-invaded grasslands, or finally, by the adaptive colony-level response of ants to stress. The higher production of gynes observed in the invaded grasslands may support dispersal and enhance the probability of establishing a colony in a more favourable location.

  15. Broadcast Spawning Coral Mussismilia hispida Can Vertically Transfer its Associated Bacterial Core

    PubMed Central

    Leite, Deborah C. A.; Leão, Pedro; Garrido, Amana G.; Lins, Ulysses; Santos, Henrique F.; Pires, Débora O.; Castro, Clovis B.; van Elsas, Jan D.; Zilberberg, Carla; Rosado, Alexandre S.; Peixoto, Raquel S.

    2017-01-01

    The hologenome theory of evolution (HTE), which is under fierce debate, presupposes that parts of the microbiome are transmitted from one generation to the next [vertical transmission (VT)], which may also influence the evolution of the holobiont. Even though bacteria have previously been described in early life stages of corals, these early life stages (larvae) could have been inoculated in the water and not inside the parental colony (through gametes) carrying the parental microbiome. How Symbiodinium is transmitted to offspring is also not clear, as only one study has described this mechanism in spawners. All other studies refer to incubators. To explore the VT hypothesis and the key components being transferred, colonies of the broadcast spawner species Mussismilia hispida were kept in nurseries until spawning. Gamete bundles, larvae and adult corals were analyzed to identify their associated microbiota with respect to composition and location. Symbiodinium and bacteria were detected by sequencing in gametes and coral planula larvae. However, no cells were detected using microscopy at the gamete stage, which could be related to the absence of those cells inside the oocytes/dispersed in the mucus or to a low resolution of our approach. A preliminary survey of Symbiodinium diversity indicated that parental colonies harbored Symbiodinium clades B, C and G, whereas only clade B was found in oocytes and planula larvae [5 days after fertilization (a.f.)]. The core bacterial populations found in the bundles, planula larvae and parental colonies were identified as members of the genera Burkholderia, Pseudomonas, Acinetobacter, Ralstonia, Inquilinus and Bacillus, suggesting that these populations could be vertically transferred through the mucus. The collective data suggest that spawner corals, such as M. hispida, can transmit Symbiodinium cells and the bacterial core to their offspring by a coral gamete (and that this gamete, with its bacterial load, is released into

  16. Three-dimensional characterization of bacterial microcolonies on solid agar-based culture media.

    PubMed

    Drazek, Laurent; Tournoud, Maud; Derepas, Frédéric; Guicherd, Maryse; Mahé, Pierre; Pinston, Frédéric; Veyrieras, Jean-Baptiste; Chatellier, Sonia

    2015-02-01

    For the last century, in vitro diagnostic process in microbiology has mainly relied on the growth of bacteria on the surface of a solid agar medium. Nevertheless, few studies focused in the past on the dynamics of microcolonies growth on agar surface before 8 to 10h of incubation. In this article, chromatic confocal microscopy has been applied to characterize the early development of a bacterial colony. This technology relies on a differential focusing depth of the white light. It allows one to fully measure the tridimensional shape of microcolonies more quickly than classical confocal microscopy but with the same spatial resolution. Placing the device in an incubator, the method was able to individually track colonies growing on an agar plate, and to follow the evolution of their surface or volume. Using an appropriate statistical modeling framework, for a given microorganism, the doubling time has been estimated for each individual colony, as well as its variability between colonies, both within and between agar plates. A proof of concept led on four bacterial strains of four distinct species demonstrated the feasibility and the interest of the approach. It showed in particular that doubling times derived from early tri-dimensional measurements on microcolonies differed from classical measurements in micro-dilutions based on optical diffusion. Such a precise characterization of the tri-dimensional shape of microcolonies in their late-lag to early-exponential phase could be beneficial in terms of in vitro diagnostics. Indeed, real-time monitoring of the biomass available in a colony could allow to run well established microbial identification workflows like, for instance, MALDI-TOF mass-spectrometry, as soon as a sufficient quantity of material is available, thereby reducing the time needed to provide a diagnostic. Moreover, as done for pre-identification of macro-colonies, morphological indicators such as three-dimensional growth profiles derived from

  17. Bacterial diversity in a glacier foreland of the high Arctic.

    PubMed

    Schütte, Ursel M E; Abdo, Zaid; Foster, James; Ravel, Jacques; Bunge, John; Solheim, Bjørn; Forney, Larry J

    2010-03-01

    Over the past 100 years, Arctic temperatures have increased at almost twice the global average rate. One consequence is the acceleration of glacier retreat, exposing new habitats that are colonized by microorganisms whose diversity and function are unknown. Here, we characterized bacterial diversity along two approximately parallel chronosequences in an Arctic glacier forefield that span six time points following glacier retreat. We assessed changes in phylotype richness, evenness and turnover rate through the analysis of 16S rRNA gene sequences recovered from 52 samples taken from surface layers along the chronosequences. An average of 4500 sequences was obtained from each sample by 454 pyrosequencing. Using parametric methods, it was estimated that bacterial phylotype richness was high, and that it increased significantly from an average of 4000 (at a threshold of 97% sequence similarity) at locations exposed for 5 years to an average of 7050 phylotypes per 0.5 g of soil at sites that had been exposed for 150 years. Phylotype evenness also increased over time, with an evenness of 0.74 for 150 years since glacier retreat reflecting large proportions of rare phylotypes. The bacterial species turnover rate was especially high between sites exposed for 5 and 19 years. The level of bacterial diversity present in this High Arctic glacier foreland was comparable with that found in temperate and tropical soils, raising the question whether global patterns of bacterial species diversity parallel that of plants and animals, which have been found to form a latitudinal gradient and be lower in polar regions compared with the tropics.

  18. Quantification of Bacterial Twitching Motility in Dense Colonies Using Transmitted Light Microscopy and Computational Image Analysis.

    PubMed

    Smith, Benjamin; Li, Jianfang; Metruccio, Matteo; Wan, Stephanie; Evans, David; Fleiszig, Suzanne

    2018-04-20

    A method was developed to allow the quantification and mapping of relative bacterial twitching motility in dense samples, where tracking of individual bacteria was not feasible. In this approach, movies of bacterial films were acquired using differential interference contrast microscopy (DIC), and bacterial motility was then indirectly quantified by the degree to which the bacteria modulated the intensity of light in the field-of-view over time. This allowed the mapping of areas of relatively high and low motility within a single field-of-view, and comparison of the total distribution of motility between samples.

  19. Colony image acquisition and segmentation

    NASA Astrophysics Data System (ADS)

    Wang, W. X.

    2007-12-01

    For counting of both colonies and plaques, there is a large number of applications including food, dairy, beverages, hygiene, environmental monitoring, water, toxicology, sterility testing, AMES testing, pharmaceuticals, paints, sterile fluids and fungal contamination. Recently, many researchers and developers have made efforts for this kind of systems. By investigation, some existing systems have some problems. The main problems are image acquisition and image segmentation. In order to acquire colony images with good quality, an illumination box was constructed as: the box includes front lightning and back lightning, which can be selected by users based on properties of colony dishes. With the illumination box, lightning can be uniform; colony dish can be put in the same place every time, which make image processing easy. The developed colony image segmentation algorithm consists of the sub-algorithms: (1) image classification; (2) image processing; and (3) colony delineation. The colony delineation algorithm main contain: the procedures based on grey level similarity, on boundary tracing, on shape information and colony excluding. In addition, a number of algorithms are developed for colony analysis. The system has been tested and satisfactory.

  20. Detection of a Reproducible, Single-Member Shift in Soil Bacterial Communities Exposed to Low Levels of Hydrogen▿

    PubMed Central

    Osborne, Catherine A.; Peoples, Mark B.; Janssen, Peter H.

    2010-01-01

    Soil is exposed to hydrogen when symbiotic rhizobia in legume root nodules cannot recycle the hydrogen that is generated during nitrogen fixation. The hydrogen emitted is most likely taken up by free-living soil bacteria that use hydrogen as an energy source, though the bacteria that do this in situ remain unclear. In this study, we investigated the effect of hydrogen exposure on the bacteria of two different soils in a microcosm setup designed to simulate hydrogen-emitting root nodules. Although the size and overall composition of the soil bacterial community did not significantly alter after hydrogen exposure, one ribotype increased in relative abundance within each soil. This single-ribotype shift was identified by generating multiple terminal restriction fragment length polymorphism (T-RFLP) profiles of 16S rRNA genes from each soil sample, with gene sequence confirmation to identify terminal restriction fragments. The increased abundance of a single ribotype after hydrogen exposure, within an otherwise similar community, was found in replicate samples taken from each microcosm and was reproducible across replicate experiments. Similarly, only one member of the soil bacterial community increased in abundance in response to hydrogen exposure in soil surrounding the root nodules of field-grown soybean (Glycine max). The ribotypes that increased after hydrogen exposure in each soil system tested were all from known hydrogen-oxidizing lineages within the order Actinomycetales. We suggest that soil actinomycetes are important utilizers of hydrogen at relevant concentrations in soil and could be key contributors to soil's function as a sink in the global hydrogen cycle. PMID:20061453

  1. Highly heterogeneous bacterial communities associated with the South China Sea reef corals Porites lutea, Galaxea fascicularis and Acropora millepora.

    PubMed

    Li, Jie; Chen, Qi; Zhang, Si; Huang, Hui; Yang, Jian; Tian, Xin-Peng; Long, Li-Juan

    2013-01-01

    Coral harbor diverse and specific bacteria play significant roles in coral holobiont function. Bacteria associated with three of the common and phylogenetically divergent reef-building corals in the South China Sea, Porites lutea, Galaxea fascicularis and Acropora millepora, were investigated using 454 barcoded-pyrosequencing. Three colonies of each species were sampled, and 16S rRNA gene libraries were constructed individually. Analysis of pyrosequencing libraries showed that bacterial communities associated with the three coral species were more diverse than previous estimates based on corals from the Caribbean Sea, Indo-Pacific reefs and the Red Sea. Three candidate phyla, including BRC1, OD1 and SR1, were found for the first time in corals. Bacterial communities were separated into three groups: P. lutea and G. fascicular, A. millepora and seawater. P. lutea and G. fascicular displayed more similar bacterial communities, and bacterial communities associated with A. millepora differed from the other two coral species. The three coral species shared only 22 OTUs, which were distributed in Alphaproteobacteria, Deltaproteobacteria, Gammaproteobacteria, Chloroflexi, Actinobacteria, Acidobacteria and an unclassified bacterial group. The composition of bacterial communities within each colony of each coral species also showed variation. The relatively small common and large specific bacterial communities in these corals implies that bacterial associations may be structured by multiple factors at different scales and that corals may associate with microbes in terms of similar function, rather than identical species.

  2. The Impact of Oxygen on Bacterial Enteric Pathogens.

    PubMed

    Wallace, N; Zani, A; Abrams, E; Sun, Y

    2016-01-01

    Bacterial enteric pathogens are responsible for a tremendous amount of foodborne illnesses every year through the consumption of contaminated food products. During their transit from contaminated food sources to the host gastrointestinal tract, these pathogens are exposed and must adapt to fluctuating oxygen levels to successfully colonize the host and cause diseases. However, the majority of enteric infection research has been conducted under aerobic conditions. To raise awareness of the importance in understanding the impact of oxygen, or lack of oxygen, on enteric pathogenesis, we describe in this review the metabolic and physiological responses of nine bacterial enteric pathogens exposed to environments with different oxygen levels. We further discuss the effects of oxygen levels on virulence regulation to establish potential connections between metabolic adaptations and bacterial pathogenesis. While not providing an exhaustive list of all bacterial pathogens, we highlight key differences and similarities among nine facultative anaerobic and microaerobic pathogens in this review to argue for a more in-depth understanding of the diverse impact oxygen levels have on enteric pathogenesis. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Post-Colonial Theory and Action Research

    ERIC Educational Resources Information Center

    Parsons, Jim B.; Harding, Kelly J.

    2011-01-01

    This essay explores connections between post-colonial theory and action research. Post-colonial theory is committed to addressing the plague of colonialism. Action research, at its core, promises to problematize uncontested "colonial" hegemonies of any form. Both post-colonial theory and action research engage dialogic, critically reflective and…

  4. Life in the colonies: learning the alien ways of colonial organisms.

    PubMed

    Winston, Judith E

    2010-12-01

    Who needs to go to outer space to study alien beings when the oceans of our own planet abound with bizarre and unknown creatures? Many of them belong to sessile clonal and colonial groups, including sponges, hydroids, corals, octocorals, ascidians, bryozoans, and some polychaetes. Their life histories, in many ways unlike our own, are a challenge for biologists. Studying their ecology, behavior, and taxonomy means trying to “think like a colony” to understand the factors important in their lives. Until the 1980s, most marine ecologists ignored these difficult modular organisms. Plant ecologists showed them ways to deal with the two levels of asexually produced modules and genetic individuals, leading to a surge in research on the ecology of clonal and colonial marine invertebrates. Bryozoans make excellent model colonial animals. Their life histories range from ephemeral to perennial. Aspects of their lives such as growth, reproduction, partial mortality due to predation or fouling, and the behavior of both autozooids and polymorphs can be studied at the level of the colony, as well as that of the individual module, in living colonies and over time.

  5. Prospective Large-Scale Field Study Generates Predictive Model Identifying Major Contributors to Colony Losses

    PubMed Central

    Kielmanowicz, Merav Gleit; Inberg, Alex; Lerner, Inbar Maayan; Golani, Yael; Brown, Nicholas; Turner, Catherine Louise; Hayes, Gerald J. R.; Ballam, Joan M.

    2015-01-01

    Over the last decade, unusually high losses of colonies have been reported by beekeepers across the USA. Multiple factors such as Varroa destructor, bee viruses, Nosema ceranae, weather, beekeeping practices, nutrition, and pesticides have been shown to contribute to colony losses. Here we describe a large-scale controlled trial, in which different bee pathogens, bee population, and weather conditions across winter were monitored at three locations across the USA. In order to minimize influence of various known contributing factors and their interaction, the hives in the study were not treated with antibiotics or miticides. Additionally, the hives were kept at one location and were not exposed to potential stress factors associated with migration. Our results show that a linear association between load of viruses (DWV or IAPV) in Varroa and bees is present at high Varroa infestation levels (>3 mites per 100 bees). The collection of comprehensive data allowed us to draw a predictive model of colony losses and to show that Varroa destructor, along with bee viruses, mainly DWV replication, contributes to approximately 70% of colony losses. This correlation further supports the claim that insufficient control of the virus-vectoring Varroa mite would result in increased hive loss. The predictive model also indicates that a single factor may not be sufficient to trigger colony losses, whereas a combination of stressors appears to impact hive health. PMID:25875764

  6. Micro-CT X-ray imaging exposes structured diffusion barriers within biofilms.

    PubMed

    Keren-Paz, Alona; Brumfeld, Vlad; Oppenheimer-Shaanan, Yaara; Kolodkin-Gal, Ilana

    2018-01-01

    In nature, bacteria predominantly exist as highly structured biofilms, which are held together by extracellular polymeric substance and protect their residents from environmental insults, such as antibiotics. The mechanisms supporting this phenotypic resistance are poorly understood. Recently, we identified a new mechanism maintaining biofilms - an active production of calcite minerals. In this work, a high-resolution and robust µCT technique is used to study the mineralized areas within intact bacterial biofilms. µCT is a vital tool for visualizing bacterial communities that can provide insights into the relationship between bacterial biofilm structure and function. Our results imply that dense and structured calcium carbonate lamina forms a diffusion barrier sheltering the inner cell mass of the biofilm colony. Therefore, µCT can be employed in clinical settings to predict the permeability of the biofilms. It is demonstrated that chemical interference with urease, a key enzyme in biomineralization, inhibits the assembly of complex bacterial structures, prevents the formation of mineral diffusion barriers and increases biofilm permeability. Therefore, biomineralization enzymes emerge as novel therapeutic targets for highly resistant infections.

  7. A Mathematical Model of Intra-Colony Spread of American Foulbrood in European Honeybees (Apis mellifera L.).

    PubMed

    Jatulan, Eduardo O; Rabajante, Jomar F; Banaay, Charina Gracia B; Fajardo, Alejandro C; Jose, Editha C

    2015-01-01

    American foulbrood (AFB) is one of the severe infectious diseases of European honeybees (Apis mellifera L.) and other Apis species. This disease is caused by a gram-positive, spore-forming bacterium Paenibacillus larvae. In this paper, a compartmental (SI framework) model is constructed to represent the spread of AFB within a colony. The model is analyzed to determine the long-term fate of the colony once exposed to AFB spores. It was found out that without effective and efficient treatment, AFB infection eventually leads to colony collapse. Furthermore, infection thresholds were predicted based on the stability of the equilibrium states. The number of infected cell combs is one of the factors that drive disease spread. Our results can be used to forecast the transmission timeline of AFB infection and to evaluate the control strategies for minimizing a possible epidemic.

  8. Bacterial community diversity of the deep-sea octocoral Paramuricea placomus

    USGS Publications Warehouse

    Kellogg, Christina A.; Ross, Steve W.; Brooke, Sandra D.

    2016-01-01

    Compared to tropical corals, much less is known about deep-sea coral biology and ecology. Although the microbial communities of some deep-sea corals have been described, this is the first study to characterize the bacterial community associated with the deep-sea octocoral, Paramuricea placomus. Samples from five colonies of P. placomus were collected from Baltimore Canyon (379–382 m depth) in the Atlantic Ocean off the east coast of the United States of America. DNA was extracted from the coral samples and 16S rRNA gene amplicons were pyrosequenced using V4-V5 primers. Three samples sequenced deeply (>4,000 sequences each) and were further analyzed. The dominant microbial phylum was Proteobacteria, but other major phyla included Firmicutes and Planctomycetes. A conserved community of bacterial taxa held in common across the three P. placomuscolonies was identified, comprising 68–90% of the total bacterial community depending on the coral individual. The bacterial community of P. placomusdoes not appear to include the genus Endozoicomonas, which has been found previously to be the dominant bacterial associate in several temperate and tropical gorgonians. Inferred functionality suggests the possibility of nitrogen cycling by the core bacterial community.

  9. BACTERIAL GROWTH AND MULTIPLICATION AS DISCLOSED BY MICRO MOTION PICTURES

    PubMed Central

    Wyckoff, Ralph W. G.

    1934-01-01

    Using a micro motion picture technique for making records, studies covering several thousand hours of observation have been made of the growth of a number of bacteria. On the basis of these experiments a discussion is offered of bacterial division and its influence on gross colony appearance, of different kinds of pleomorphism that have been observed, and of the nature of the internal structure that is seen in some bacteria. Several of the microorganisms chosen for examination are ones that have been thought to give evidence of life cycle phenomena. The present pictures, however, contain no evidence of a bacterial cycle in the commonly accepted meaning of the term. PMID:19870252

  10. Behavioral Effects and Tunneling Responses of Eastern Subterranean Termites (Isoptera: Rhinotermitidae) Exposed to Chlorantraniliprole-Treated Soils.

    PubMed

    Saran, Raj K; Ziegler, Melissa; Kudlie, Sara; Harrison, Danielle; Leva, David M; Scherer, Clay; Coffelt, Mark A

    2014-10-01

    Intrinsic toxicities of chlorantraniliprole, fipronil, and imidacloprid were evaluated with topical applications on worker termites. Worker termites were exposed to substrates treated with formulated chlorantraniliprole to study contact toxicity, tunneling, and postexposure behaviors. The intrinsic toxicities (LD50, ng/termite) of chlorantraniliprole (1.25, 0.96, and 0.44) and fipronil (0.12, 0.11, and 0.13) at 11 d were similar for workers from three termite colonies. Imidacloprid toxicity (LD50) values were highly variable among the workers from three different colonies, values at 11 d ranging from 0.7 to 75 ng/termite. Termite workers exposed to sand and soils treated with chlorantraniliprole at 50 ppm exhibited delayed mortality and, for most of the exposure times, it took >5 d to observe 90-100% mortality in termite workers. Exposure to chlorantraniliprole-treated sand (50 ppm) for as little as 1 min stopped feeding and killed 90-100% of the workers. Tunneling (≈ 2 h) in different soil types treated with chlorantraniliprole at 50 ppm, even those with high organic matter (6.3%) and clay content (30%), caused immediate feeding cessation in worker termites and mortality in the next 7-14 d. Worker termites exposed for 1 and 60 min to sand treated with chlorantraniliprole (50 ppm) were able to walk normally for 4 h after exposure in most cases. Delayed toxicity, increased aggregation, and grooming were observed in exposed termites and discussed in the context of horizontal transfer effects within termite colonies. © 2014 Entomological Society of America.

  11. Influence of type-I fimbriae and fluid shear stress on bacterial behavior and multicellular architecture of early Escherichia coli biofilms at single-cell resolution.

    PubMed

    Wang, Liyun; Keatch, Robert; Zhao, Qi; Wright, John A; Bryant, Clare E; Redmann, Anna L; Terentjev, Eugene M

    2018-01-12

    Biofilm formation on abiotic surfaces in food and medical industry can cause severe contamination and infection, yet how biological and physical factors determine cellular architecture of early biofilms and bacterial behavior of the constituent cells remains largely unknown. In this study we examine the specific role of type-I fimbriae in nascent stages of biofilm formation and the response of micro-colonies to environmental flow shear at single-cell resolution. The results show that type-I fimbriae are not required for reversible adhesion from plankton, but critical for irreversible adhesion of Escherichia coli ( E.coli ) MG1655 forming biofilms on polyethylene terephthalate (PET) surfaces. Besides establishing a firm cell-surface contact, the irreversible adhesion seems necessary to initiate the proliferation of E.coli on the surface. After application of shear stress, bacterial retention is dominated by the 3D architecture of colonies independent of the population and the multi-layered structure could protect the embedded cells from being insulted by fluid shear, while cell membrane permeability mainly depends on the biofilm population and the duration time of the shear stress. Importance Bacterial biofilms could lead to severe contamination problems in medical devices and food processing equipment. However, biofilms are usually studied at a rough macroscopic level, thus little is known about how individual bacterial behavior within biofilms and multicellular architecture are influenced by bacterial appendages (e.g. pili/fimbriae) and environmental factors during early biofilm formation. We apply Confocal Laser Scanning Microscopy (CLSM) to visualize E.coli micro-colonies at single-cell resolution. Our findings suggest that type-I fimbriae are vital to the initiation of bacterial proliferation on surfaces and that the responses of biofilm architecture and cell membrane permeability of constituent bacteria to fluid shear stress are different, which are

  12. Non-Native Suckermouth Armored Catfishes in Florida: Description of Nest Borrows and Burrow Colonies with Assessment of Shoreline Conditions

    DTIC Science & Technology

    2009-04-01

    were found within the uppermost meter of the bank. The portion of the banks with burrows typically contained few leafy or herbaceous plants . How...ever, as is normal in riverine envi- ronments, herbaceous and some small woody plants were found sprouting within burrow colonies exposed by low...water. As would be expected, the longer the expo- sure, the greater the plant cover- age. However, even in exposed areas the vegetation was

  13. Colony-specific investigations reveal highly variable responses among individual corals to ocean acidification and warming.

    PubMed

    Kavousi, Javid; Reimer, James Davis; Tanaka, Yasuaki; Nakamura, Takashi

    2015-08-01

    As anthropogenic climate change is an ongoing concern, scientific investigations on its impacts on coral reefs are increasing. Although impacts of combined ocean acidification (OA) and temperature stress (T) on reef-building scleractinian corals have been studied at the genus, species and population levels, there are little data available on how individual corals respond to combined OA and anomalous temperatures. In this study, we exposed individual colonies of Acropora digitifera, Montipora digitata and Porites cylindrica to four pCO2-temperature treatments including 400 μatm-28 °C, 400 μatm-31 °C, 1000 μatm-28 °C and 1000 μatm-31 °C for 26 days. Physiological parameters including calcification, protein content, maximum photosynthetic efficiency, Symbiodinium density, and chlorophyll content along with Symbiodinium type of each colony were examined. Along with intercolonial responses, responses of individual colonies versus pooled data to the treatments were investigated. The main results were: 1) responses to either OA or T or their combination were different between individual colonies when considering physiological functions; 2) tolerance to either OA or T was not synonymous with tolerance to the other parameter; 3) tolerance to both OA and T did not necessarily lead to tolerance of OA and T combined (OAT) at the same time; 4) OAT had negative, positive or no impacts on physiological functions of coral colonies; and 5) pooled data were not representative of responses of all individual colonies. Indeed, the pooled data obscured actual responses of individual colonies or presented a response that was not observed in any individual. From the results of this study we recommend improving experimental designs of studies investigating physiological responses of corals to climate change by complementing them with colony-specific examinations. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Characterization of the cyanobacteria and associated bacterial community from an ephemeral wetland in New Zealand.

    PubMed

    Secker, Nick H; Chua, Jocelyn P S; Laurie, Rebecca E; McNoe, Les; Guy, Paul L; Orlovich, David A; Summerfield, Tina C

    2016-10-01

    New Zealand ephemeral wetlands are ecologically important, containing up to 12% of threatened native plant species and frequently exhibiting conspicuous cyanobacterial growth. In such environments, cyanobacteria and associated heterotrophs can influence primary production and nutrient cycling. Wetland communities, including bacteria, can be altered by increased nitrate and phosphate due to agricultural practices. We have characterized cyanobacteria from the Wairepo Kettleholes Conservation Area and their associated bacteria. Use of 16S rRNA amplicon sequencing identified several operational taxonomic units (OTUs) representing filamentous heterocystous and non-heterocystous cyanobacterial taxa. One Nostoc OTU that formed macroscopic colonies dominated the cyanobacterial community. A diverse bacterial community was associated with the Nostoc colonies, including a core microbiome of 39 OTUs. Identity of the core microbiome associated with macroscopic Nostoc colonies was not changed by the addition of nutrients. One OTU was highly represented in all Nostoc colonies (27.6%-42.6% of reads) and phylogenetic analyses identified this OTU as belonging to the genus Sphingomonas. Scanning electron microscopy showed the absence of heterotrophic bacteria within the Nostoc colony but revealed a diverse community associated with the colonies on the external surface. © 2016 Phycological Society of America.

  15. Colony Dimorphism in Bradyrhizobium Strains

    PubMed Central

    Sylvester-Bradley, Rosemary; Thornton, Philip; Jones, Peter

    1988-01-01

    Ten isolates of Bradyrhizobium spp. which form two colony types were studied; the isolates originated from a range of legume species. The two colony types differed in the amount of gum formed or size or both, depending on the strain. Whole 7-day-old colonies of each type were subcultured to determine the proportion of cells which had changed to the other type. An iterative computerized procedure was used to determine the rate of switching per generation between the two types and to predict proportions reached at equilibrium for each strain. The predicted proportions of the wetter (more gummy) or larger colony type at equilibrium differed significantly between strains, ranging from 0.9999 (strain CIAT 2383) to 0.0216 (strain CIAT 2469), because some strains switched faster from dry to wet (or small to large) and others switched faster from wet to dry (or large to small). Predicted equilibrium was reached after about 140 generations in strain USDA 76. In all but one strain (CIAT 3030) the growth rate of the wetter colony type was greater than or similar to that of the drier type. The mean difference in generation time between the two colony types was 0.37 h. Doubling times calculated for either colony type after 7 days of growth on the agar surface ranged from 6.0 to 7.3 h. The formation of two persistent colony types by one strain (clonal or colony dimorphism) may be a common phenomenon among Bradyrhizobium strains. Images PMID:16347599

  16. Intraspecific Variation among Social Insect Colonies: Persistent Regional and Colony-Level Differences in Fire Ant Foraging Behavior

    PubMed Central

    Bockoven, Alison A.; Wilder, Shawn M.; Eubanks, Micky D.

    2015-01-01

    Individuals vary within a species in many ecologically important ways, but the causes and consequences of such variation are often poorly understood. Foraging behavior is among the most profitable and risky activities in which organisms engage and is expected to be under strong selection. Among social insects there is evidence that within-colony variation in traits such as foraging behavior can increase colony fitness, but variation between colonies and the potential consequences of such variation are poorly documented. In this study, we tested natural populations of the red imported fire ant, Solenopsis invicta, for the existence of colony and regional variation in foraging behavior and tested the persistence of this variation over time and across foraging habitats. We also reared single-lineage colonies in standardized environments to explore the contribution of colony lineage. Fire ants from natural populations exhibited significant and persistent colony and regional-level variation in foraging behaviors such as extra-nest activity, exploration, and discovery of and recruitment to resources. Moreover, colony-level variation in extra-nest activity was significantly correlated with colony growth, suggesting that this variation has fitness consequences. Lineage of the colony had a significant effect on extra-nest activity and exploratory activity and explained approximately half of the variation observed in foraging behaviors, suggesting a heritable component to colony-level variation in behavior. PMID:26197456

  17. A Connection between Colony Biomass and Death in Caribbean Reef-Building Corals

    PubMed Central

    Thornhill, Daniel J.; Rotjan, Randi D.; Todd, Brian D.; Chilcoat, Geoff C.; Iglesias-Prieto, Roberto; Kemp, Dustin W.; LaJeunesse, Todd C.; Reynolds, Jennifer McCabe; Schmidt, Gregory W.; Shannon, Thomas; Warner, Mark E.; Fitt, William K.

    2011-01-01

    Increased sea-surface temperatures linked to warming climate threaten coral reef ecosystems globally. To better understand how corals and their endosymbiotic dinoflagellates (Symbiodinium spp.) respond to environmental change, tissue biomass and Symbiodinium density of seven coral species were measured on various reefs approximately every four months for up to thirteen years in the Upper Florida Keys, United States (1994–2007), eleven years in the Exuma Cays, Bahamas (1995–2006), and four years in Puerto Morelos, Mexico (2003–2007). For six out of seven coral species, tissue biomass correlated with Symbiodinium density. Within a particular coral species, tissue biomasses and Symbiodinium densities varied regionally according to the following trends: Mexico≥Florida Keys≥Bahamas. Average tissue biomasses and symbiont cell densities were generally higher in shallow habitats (1–4 m) compared to deeper-dwelling conspecifics (12–15 m). Most colonies that were sampled displayed seasonal fluctuations in biomass and endosymbiont density related to annual temperature variations. During the bleaching episodes of 1998 and 2005, five out of seven species that were exposed to unusually high temperatures exhibited significant decreases in symbiotic algae that, in certain cases, preceded further decreases in tissue biomass. Following bleaching, Montastraea spp. colonies with low relative biomass levels died, whereas colonies with higher biomass levels survived. Bleaching- or disease-associated mortality was also observed in Acropora cervicornis colonies; compared to A. palmata, all A. cervicornis colonies experienced low biomass values. Such patterns suggest that Montastraea spp. and possibly other coral species with relatively low biomass experience increased susceptibility to death following bleaching or other stressors than do conspecifics with higher tissue biomass levels. PMID:22216307

  18. Bacterial Acclimation Inside an Aqueous Battery.

    PubMed

    Dong, Dexian; Chen, Baoling; Chen, P

    2015-01-01

    Specific environmental stresses may lead to induced genomic instability in bacteria, generating beneficial mutants and potentially accelerating the breeding of industrial microorganisms. The environmental stresses inside the aqueous battery may be derived from such conditions as ion shuttle, pH gradient, free radical reaction and electric field. In most industrial and medical applications, electric fields and direct currents are used to kill bacteria and yeast. However, the present study focused on increasing bacterial survival inside an operating battery. Using a bacterial acclimation strategy, both Escherichia coli and Bacillus subtilis were acclimated for 10 battery operation cycles and survived in the battery for over 3 days. The acclimated bacteria changed in cell shape, growth rate and colony color. Further analysis indicated that electrolyte concentration could be one of the major factors determining bacterial survival inside an aqueous battery. The acclimation process significantly improved the viability of both bacteria E. coli and B. subtilis. The viability of acclimated strains was not affected under battery cycle conditions of 0.18-0.80 mA cm(-2) and 1.4-2.1 V. Bacterial addition within 1.0×10(10) cells mL(-1) did not significantly affect battery performance. Because the environmental stress inside the aqueous battery is specific, the use of this battery acclimation strategy may be of great potential for the breeding of industrial microorganisms.

  19. Bacterial Acclimation Inside an Aqueous Battery

    PubMed Central

    Dong, Dexian; Chen, Baoling; Chen, P.

    2015-01-01

    Specific environmental stresses may lead to induced genomic instability in bacteria, generating beneficial mutants and potentially accelerating the breeding of industrial microorganisms. The environmental stresses inside the aqueous battery may be derived from such conditions as ion shuttle, pH gradient, free radical reaction and electric field. In most industrial and medical applications, electric fields and direct currents are used to kill bacteria and yeast. However, the present study focused on increasing bacterial survival inside an operating battery. Using a bacterial acclimation strategy, both Escherichia coli and Bacillus subtilis were acclimated for 10 battery operation cycles and survived in the battery for over 3 days. The acclimated bacteria changed in cell shape, growth rate and colony color. Further analysis indicated that electrolyte concentration could be one of the major factors determining bacterial survival inside an aqueous battery. The acclimation process significantly improved the viability of both bacteria E. coli and B. subtilis. The viability of acclimated strains was not affected under battery cycle conditions of 0.18-0.80 mA cm-2 and 1.4-2.1 V. Bacterial addition within 1.0×1010 cells mL-1 did not significantly affect battery performance. Because the environmental stress inside the aqueous battery is specific, the use of this battery acclimation strategy may be of great potential for the breeding of industrial microorganisms. PMID:26070088

  20. Predicting Honeybee Colony Failure: Using the BEEHAVE Model to Simulate Colony Responses to Pesticides

    PubMed Central

    2015-01-01

    To simulate effects of pesticides on different honeybee (Apis mellifera L.) life stages, we used the BEEHAVE model to explore how increased mortalities of larvae, in-hive workers, and foragers, as well as reduced egg-laying rate, could impact colony dynamics over multiple years. Stresses were applied for 30 days, both as multiples of the modeled control mortality and as set percentage daily mortalities to assess the sensitivity of the modeled colony both to small fluctuations in mortality and periods of low to very high daily mortality. These stresses simulate stylized exposure of the different life stages to nectar and pollen contaminated with pesticide for 30 days. Increasing adult bee mortality had a much greater impact on colony survival than mortality of bee larvae or reduction in egg laying rate. Importantly, the seasonal timing of the imposed mortality affected the magnitude of the impact at colony level. In line with the LD50, we propose a new index of “lethal imposed stress”: the LIS50 which indicates the level of stress on individuals that results in 50% colony mortality. This (or any LISx) is a comparative index for exploring the effects of different stressors at colony level in model simulations. While colony failure is not an acceptable protection goal, this index could be used to inform the setting of future regulatory protection goals. PMID:26444386

  1. Behavioral Modulation of Infestation by Varroa destructor in Bee Colonies. Implications for Colony Stability.

    PubMed

    de Figueiró Santos, Joyce; Coelho, Flávio Codeço; Bliman, Pierre-Alexandre

    2016-01-01

    Colony Collapse Disorder (CCD) has become a global problem for beekeepers and for the crops that depend on bee pollination. While many factors are known to increase the risk of colony collapse, the ectoparasitic mite Varroa destructor is considered to be the most serious one. Although this mite is unlikely to cause the collapse of hives itself, it is the vector for many viral diseases which are among the likely causes for Colony Collapse Disorder. The effects of V. destructor infestation differ from one part of the world to another, with greater morbidity and higher colony losses in European honey bees (EHB) in Europe, Asia and North America. Although this mite has been present in Brazil for many years, there have been no reports of colony losses amongst Africanized Honey Bees (AHB). Studies carried out in Mexico have highlighted different behavioral responses by the AHB to the presence of the mite, notably as far as grooming and hygienic behavior are concerned. Could these explain why the AHB are less susceptible to Colony Collapse Disorder? In order to answer this question, we have developed a mathematical model of the infestation dynamics to analyze the role of resistance behavior by bees in the overall health of the colony, and as a consequence, its ability to face epidemiological challenges.

  2. Noninvasive forward-scattering system for rapid detection, characterization, and identification of Listeria colonies: image processing and data analysis

    NASA Astrophysics Data System (ADS)

    Rajwa, Bartek; Bayraktar, Bulent; Banada, Padmapriya P.; Huff, Karleigh; Bae, Euiwon; Hirleman, E. Daniel; Bhunia, Arun K.; Robinson, J. Paul

    2006-10-01

    Bacterial contamination by Listeria monocytogenes puts the public at risk and is also costly for the food-processing industry. Traditional methods for pathogen identification require complicated sample preparation for reliable results. Previously, we have reported development of a noninvasive optical forward-scattering system for rapid identification of Listeria colonies grown on solid surfaces. The presented system included application of computer-vision and patternrecognition techniques to classify scatter pattern formed by bacterial colonies irradiated with laser light. This report shows an extension of the proposed method. A new scatterometer equipped with a high-resolution CCD chip and application of two additional sets of image features for classification allow for higher accuracy and lower error rates. Features based on Zernike moments are supplemented by Tchebichef moments, and Haralick texture descriptors in the new version of the algorithm. Fisher's criterion has been used for feature selection to decrease the training time of machine learning systems. An algorithm based on support vector machines was used for classification of patterns. Low error rates determined by cross-validation, reproducibility of the measurements, and robustness of the system prove that the proposed technology can be implemented in automated devices for detection and classification of pathogenic bacteria.

  3. The gut bacterial communities associated with lab-raised and field-collected ants of Camponotus fragilis (Formicidae: Formicinae).

    PubMed

    He, Hong; Wei, Cong; Wheeler, Diana E

    2014-09-01

    Camponotus is the second largest ant genus and known to harbor the primary endosymbiotic bacteria of the genus Blochmannia. However, little is known about the effect of diet and environment changes on the gut bacterial communities of these ants. We investigated the intestinal bacterial communities in the lab-raised and field-collected ants of Camponotus fragilis which is found in the southwestern United States and northern reaches of Mexico. We determined the difference of gut bacterial composition and distribution among the crop, midgut, and hindgut of the two types of colonies. Number of bacterial species varied with the methods of detection and the source of the ants. Lab-raised ants yielded 12 and 11 species using classical microbial culture methods and small-subunit rRNA genes (16S rRNAs) polymerase chain reaction-restriction fragment-length polymorphism analysis, respectively. Field-collected ants yielded just 4 and 1-3 species using the same methods. Most gut bacterial species from the lab-raised ants were unevenly distributed among the crop, midgut, and hindgut, and each section had its own dominant bacterial species. Acetobacter was the prominent bacteria group in crop, accounting for about 55 % of the crop clone library. Blochmannia was the dominant species in midgut, nearly reaching 90 % of the midgut clone library. Pseudomonas aeruginosa dominated the hindgut, accounting for over 98 % of the hindgut clone library. P. aeruginosa was the only species common to all three sections. A comparison between lab-raised and field-collected ants, and comparison with other species, shows that gut bacterial communities vary with local environment and diet. The bacterial species identified here were most likely commensals with little effect on their hosts or mild pathogens deleterious to colony health.

  4. Worker piping triggers hissing for coordinated colony defence in the dwarf honeybee Apis florea.

    PubMed

    Sen Sarma, Moushumi; Fuchs, Stefan; Werber, Christian; Tautz, Jürgen

    2002-01-01

    Defending a large social insect colony containing several thousands of workers requires the simultaneous action of many individuals. Ideally this action involves communication between the workers, enabling coordinated action and a fast response. The Asian dwarf honeybee, Apis florea, is a small honeybee with an open nesting habit and a comparatively small colony size, features that leave them particularly exposed to predators. We describe here a novel defence response of these bees in which the emission of an initial warning signal from one individual ("piping") is followed 0.3 to 0.7 seconds later by a general response from a large number of bees ("hissing"). Piping is audible to the human ear, with a fundamental frequency of 384 +/- 31Hz and lasting for 0.82 +/- 0.35 seconds. Hissing is a broad band, noisy signal, clearly audible to the human observer and produced by slight but visible movements of the bees' wings. Hissing begins in individuals close to the piping bee, spreads rapidly to neighbours and results in an impressive coordinated crescendo occasionally involving the entire colony. Piping and hissing are accompanied by a marked decrease, or even cessation, of worker activities such as forager dancing and departures from the colony. We show that whereas hissing of the colony can be elicited without piping, the sequential and correlated piping and hissing response is specific to the presence of potential predators close to the colony. We suggest that the combined audio-visual effect of the hissing might deter small predators, while the cessation of flight activity could decrease the risk of predation by birds and insects which prey selectively on flying bees.

  5. Precise, High-throughput Analysis of Bacterial Growth.

    PubMed

    Kurokawa, Masaomi; Ying, Bei-Wen

    2017-09-19

    Bacterial growth is a central concept in the development of modern microbial physiology, as well as in the investigation of cellular dynamics at the systems level. Recent studies have reported correlations between bacterial growth and genome-wide events, such as genome reduction and transcriptome reorganization. Correctly analyzing bacterial growth is crucial for understanding the growth-dependent coordination of gene functions and cellular components. Accordingly, the precise quantitative evaluation of bacterial growth in a high-throughput manner is required. Emerging technological developments offer new experimental tools that allow updates of the methods used for studying bacterial growth. The protocol introduced here employs a microplate reader with a highly optimized experimental procedure for the reproducible and precise evaluation of bacterial growth. This protocol was used to evaluate the growth of several previously described Escherichia coli strains. The main steps of the protocol are as follows: the preparation of a large number of cell stocks in small vials for repeated tests with reproducible results, the use of 96-well plates for high-throughput growth evaluation, and the manual calculation of two major parameters (i.e., maximal growth rate and population density) representing the growth dynamics. In comparison to the traditional colony-forming unit (CFU) assay, which counts the cells that are cultured in glass tubes over time on agar plates, the present method is more efficient and provides more detailed temporal records of growth changes, but has a stricter detection limit at low population densities. In summary, the described method is advantageous for the precise and reproducible high-throughput analysis of bacterial growth, which can be used to draw conceptual conclusions or to make theoretical observations.

  6. Anti-bacterial effect of essential oil from Xanthium strumarium against shiga toxin-producing Escherichia coli.

    PubMed

    Sharifi-Rad, J; Soufi, L; Ayatollahi, S A M; Iriti, M; Sharifi-Rad, M; Varoni, E M; Shahri, F; Esposito, S; Kuhestani, K; Sharifi-Rad, M

    2016-09-19

    Shiga toxin-producing Escherichia coli (STEC) serotype O157:H7 is one of the most important human pathogenic microorganisms, which can cause life-threatening infections. Xanthium strumarium L. is a plant with anti-bacterial activity against gram-negative and gram-positive bacteria. This study aims to demonstrate in vitro efficacy of the essential oil (EO) extracted from Xanthium strumarium L. against E. coli O157:H7. Using the agar test diffusion, the effect of Xanthium strumarium L. EO (5, 10, 15, 30, 60, and 120 mg/mL) was verified at each of the four different growth phases of E. coli O157:H7. Cell counts of viable cells and colony forming unit (CFU) were determined at regular time points using Breed's method and colony counting method, respectively. No viable cell was detectable after the 1 hour-exposure to X. strumarium EO at 30, 60, and 120 mg/mL concentrations. No bacterial colony was formed after 1 h until the end of the incubation period at 24 h. At lower concentrations, the number of bacteria cells decreased and colonies could be observed only after incubation. At the exponential phase, the EO at 15 mg/mL was only bacteriostatic, while from 30 mg/mL started to be bactericidal. X. strumarium EO antibacterial activity against Shiga toxin-producing E. coli O157:H7 is dependent on EO concentration and physiological state of the microorganisms tested. The best inhibitory activity was achieved during the late exponential and the stationary phases.

  7. Dynamics of the presence of israeli acute paralysis virus in honey bee colonies with colony collapse disorder.

    PubMed

    Hou, Chunsheng; Rivkin, Hadassah; Slabezki, Yossi; Chejanovsky, Nor

    2014-05-05

    The determinants of Colony Collapse Disorder (CCD), a particular case of collapse of honey bee colonies, are still unresolved. Viruses including the Israeli acute paralysis virus (IAPV) were associated with CCD. We found an apiary with colonies showing typical CCD characteristics that bore high loads of IAPV, recovered some colonies from collapse and tested the hypothesis if IAPV was actively replicating in them and infectious to healthy bees. We found that IAPV was the dominant pathogen and it replicated actively in the colonies: viral titers decreased from April to September and increased from September to December. IAPV extracted from infected bees was highly infectious to healthy pupae: they showed several-fold amplification of the viral genome and synthesis of the virion protein VP3. The health of recovered colonies was seriously compromised. Interestingly, a rise of IAPV genomic copies in two colonies coincided with their subsequent collapse. Our results do not imply IAPV as the cause of CCD but indicate that once acquired and induced to replication it acts as an infectious factor that affects the health of the colonies and may determine their survival. This is the first follow up outside the US of CCD-colonies bearing IAPV under natural conditions.

  8. Dynamics of the Presence of Israeli Acute Paralysis Virus in Honey Bee Colonies with Colony Collapse Disorder

    PubMed Central

    Hou, Chunsheng; Rivkin, Hadassah; Slabezki, Yossi; Chejanovsky, Nor

    2014-01-01

    The determinants of Colony Collapse Disorder (CCD), a particular case of collapse of honey bee colonies, are still unresolved. Viruses including the Israeli acute paralysis virus (IAPV) were associated with CCD. We found an apiary with colonies showing typical CCD characteristics that bore high loads of IAPV, recovered some colonies from collapse and tested the hypothesis if IAPV was actively replicating in them and infectious to healthy bees. We found that IAPV was the dominant pathogen and it replicated actively in the colonies: viral titers decreased from April to September and increased from September to December. IAPV extracted from infected bees was highly infectious to healthy pupae: they showed several-fold amplification of the viral genome and synthesis of the virion protein VP3. The health of recovered colonies was seriously compromised. Interestingly, a rise of IAPV genomic copies in two colonies coincided with their subsequent collapse. Our results do not imply IAPV as the cause of CCD but indicate that once acquired and induced to replication it acts as an infectious factor that affects the health of the colonies and may determine their survival. This is the first follow up outside the US of CCD-colonies bearing IAPV under natural conditions. PMID:24800677

  9. Antibiotic use and bacterial complications following upper respiratory tract infections: a population-based study

    PubMed Central

    Cars, Thomas; Eriksson, Irene; Granath, Anna; Wettermark, Björn; Hellman, Jenny; Norman, Christer; Ternhag, Anders

    2017-01-01

    Objectives To investigate if use of antibiotics was associated with bacterial complications following upper respiratory tract infections (URTIs). Design Ecological time-trend analysis and a prospective cohort study. Setting Primary, outpatient specialist and inpatient care in Stockholm County, Sweden. All analyses were based on administrative healthcare data on consultations, diagnoses and dispensed antibiotics from January 2006 to January 2016. Main outcome measures Ecological time-trend analysis: 10-year trend analyses of the incidence of URTIs, bacterial infections/complications and respiratory antibiotic use. Prospective cohort study: Incidence of bacterial complications following URTIs in antibiotic-exposed and non-exposed patients. Results The utilisation of respiratory tract antibiotics decreased by 22% from 2006 to 2015, but no increased trend for mastoiditis (p=0.0933), peritonsillar abscess (p=0.0544), invasive group A streptococcal disease (p=0.3991), orbital abscess (p=0.9637), extradural and subdural abscesses (p=0.4790) and pansinusitis (p=0.3971) was observed. For meningitis and acute ethmoidal sinusitis, a decrease in the numbers of infections from 2006 to 2015 was observed (p=0.0038 and p=0.0003, respectively), and for retropharyngeal and parapharyngeal abscesses, an increase was observed (p=0.0214). Bacterial complications following URTIs were uncommon in both antibiotic-exposed (less than 1.5 per 10 000 episodes) and non-exposed patients (less than 1.3 per 10 000 episodes) with the exception of peritonsillar abscess after tonsillitis (risk per 10 000 tonsillitis episodes: 32.4 and 41.1 in patients with no antibiotic treatment and patients treated with antibiotics, respectively). Conclusions Bacterial complications following URTIs are rare, and antibiotics may lack protective effect in preventing bacterial complications. Analyses of routinely collected administrative healthcare data can provide valuable information on the number of URTIs

  10. Conceptual design of a lunar colony

    NASA Technical Reports Server (NTRS)

    Dalton, C. (Editor); Hohmann, E. (Editor)

    1972-01-01

    A systems engineering study is presented for a proposed lunar colony. The lunar colony was to grow from an existent, 12-man, earth-dependent lunar surface base and was to utilize lunar resources, becoming as earth-independent as possible. An in-depth treatment of some of the aspects of the lunar colony was given. We have found that the use of lunar resources is feasible for oxygen production (both for breathing and for space tug fuel), food production, and building materials. A program is outlined for recycling waste materials developed at the colony as well as a full program for growth and research activity of the colony to a level of 180 colonists. Recommendations for the lunar colony are given.

  11. Transcriptional signatures of parasitization and markers of colony decline in Varroa-infested honey bees (Apis mellifera).

    PubMed

    Zanni, Virginia; Galbraith, David A; Annoscia, Desiderato; Grozinger, Christina M; Nazzi, Francesco

    2017-08-01

    Extensive annual losses of honey bee colonies (Apis mellifera L.) reported in the northern hemisphere represent a global problem for agriculture and biodiversity. The parasitic mite Varroa destructor, in association with deformed wing virus (DWV), plays a key role in this phenomenon, but the underlying mechanisms are still unclear. To elucidate these mechanisms, we analyzed the gene expression profile of uninfested and mite infested bees, under laboratory and field conditions, highlighting the effects of parasitization on the bee's transcriptome under a variety of conditions and scenarios. Parasitization was significantly correlated with higher viral loads. Honey bees exposed to mite infestation exhibited an altered expression of genes related to stress response, immunity, nervous system function, metabolism and behavioural maturation. Additionally, mite infested young bees showed a gene expression profile resembling that of forager bees. To identify potential molecular markers of colony decline, the expression of genes that were commonly regulated across the experiments were subsequently assessed in colonies experiencing increasing mite infestation levels. These studies suggest that PGRP-2, hymenoptaecin, a glucan recognition protein, UNC93 and a p450 cytocrome maybe suitable general biomarkers of Varroa-induced colony decline. Furthermore, the reliability of vitellogenin, a yolk protein previously identified as a good marker of colony survival, was confirmed here. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. A comparison of antibacterial and antibiofilm efficacy of phenothiazinium dyes between Gram positive and Gram negative bacterial biofilm.

    PubMed

    Misba, Lama; Zaidi, Sahar; Khan, Asad U

    2017-06-01

    Antimicrobial photodynamic therapy (APDT) is a process that generates reactive oxygen species (ROS) in presence of photosensitizer, visible light and oxygen which destroys the bacterial cells. We investigated the photoinactivation efficiency of phenothiazinium dyes and the effect of ROS generation on Gram positive and Gram negative bacterial cell as well as on biofilm. Enterococcus faecalis and Klebsiella pneumonia were incubated with all the three phenothiazinium dyes and exposed to 630nm of light. After PDT, colony forming unit (CFU) were performed to estimate the cell survival fraction. Intracellular reactive oxygen species (ROS) was detected by DCFH-DA. Crystal violet (CV) assay and extracellular polysaccharides (EPS) reduction assay were performed to analyze antibiofilm effect. Confocal laser electron microscope (CLSM) scanning electron microscope (SEM) was performed to assess the disruption of biofilm. 8log 10 reduction in bacterial count was observed in Enterococcus faecalis while 3log 10 in Klebsiella pneumoniae. CV and EPS reduction assay revealed that photodynamic inhibition was more pronounced in Enterococcus faecalis. In addition to this CLSM and SEM study showed an increase in cell permeability of propidium iodide and leakage of cellular constituents in treated preformed biofilm which reflects the antibiofilm action of photodynamic therapy. We conclude that Gram-positive bacteria (Enterococcus faecalis) are more susceptible to APDT due to increased level of ROS generation inside the cell, higher photosensitizer binding efficiency and DNA degradation. Phenothiazinium dyes are proved to be highly efficient against both planktonic and biofilm state of cells. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Moxifloxacin superior to cefuroxime in reducing bacterial adhesion of Staphylococcus epidermidis on hydrophobic intraocular lenses.

    PubMed

    Benbouzid, Fathalah; Kodjikian, Laurent; Hartmann, Daniel; Renaud, François; Baillif, Stéphanie

    2016-02-01

    To compare the anti-adhesive effect of cefuroxime and moxifloxacin on the primary attachment phase of Staphylococcus epidermidis on hydrophobic acrylic intraocular lenses (IOLs). Forty hydrophobic acrylic IOLs were used. Two groups of IOLs were soaked in a moxifloxacin (Mox-T1: 0.5 mg/0.1 ml) or a cefuroxime (Cef-T1: cefuroxime 1 mg/0.1 ml) solution before incubation in a S. epidermidis bacterial suspension. Two other groups were incubated in the bacterial suspension before antibiotics (Cef-T2 and Mox-T2) were added. The control group (Ctrl) consisted of IOLs incubated in the bacterial suspension. After incubation, IOLs were sonicated and vortexed. The resultant suspension was spread over a nutritive agar plate. Bacterial colonies were counted after 24 hr of incubation. Mean number of colony-forming units per IOL was Cef-T1: 184 × 10(3) (SE: 5.24; SD: 28.21), Cef-T2: 117 × 10(3) (SE: 5.74; SD: 30.37), Mox-T1: 1.27 × 10(3) (SE: 0.12; SD: 0.61), Mox-T2: 25 × 10(3) (SE:1.98; SD: 9.72) and Ctrl: 361 × 10(3) (SE: 26.9; SD: 107.6). The number of adhering bacteria did not vary whether cefuroxime was added before or after IOL incubation in the bacterial suspension (p = 0.132). Moxifloxacin was more effective in reducing the number of adhering bacteria when used before IOL incubation (p < 0.001). Overall for T1 and T2, moxifloxacin was more effective than cefuroxime in reducing bacterial adhesion on IOLs (p < 0.001). Moxifloxacin and cefuroxime significantly reduced S. epidermidis adhesion on hydrophobic acrylic IOLs. The anti-adhesive effect was superior with moxifloxacin. © 2015 Acta Ophthalmologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.

  14. Antibiotic-Induced Anomalous Statistics of Collective Bacterial Swarming

    NASA Astrophysics Data System (ADS)

    Benisty, Sivan; Ben-Jacob, Eshel; Ariel, Gil; Be'er, Avraham

    2015-01-01

    Under sublethal antibiotics concentrations, the statistics of collectively swarming Bacillus subtilis transitions from normal to anomalous, with a heavy-tailed speed distribution and a two-step temporal correlation of velocities. The transition is due to changes in the properties of the bacterial motion and the formation of a motility-defective subpopulation that self-segregates into regions. As a result, both the colonial expansion and the growth rate are not affected by antibiotics. This phenomenon suggests a new strategy bacteria employ to fight antibiotic stress.

  15. Pollen foraging in colonies of Melipona bicolor (Apidae, Meliponini): effects of season, colony size and queen number.

    PubMed

    Hilário, S D; Imperatriz-Fonseca, V L

    2009-01-01

    We evaluated the ratio between the number of pollen foragers and the total number of bees entering colonies of Melipona bicolor, a facultative polygynous species of stingless bees. The variables considered in our analysis were: seasonality, colony size and the number of physogastric queens in each colony. The pollen forager ratios varied significantly between seasons; the ratio was higher in winter than in summer. However, colony size and number of queens per colony had no significant effect. We conclude that seasonal differences in pollen harvest are related to the production of sexuals and to the number of individuals and their body size.

  16. Isolation and identification of bacterial endophytes from grasses along the Oregon coast

    USDA-ARS?s Scientific Manuscript database

    Bacterial endophytes have been shown to improve abiotic and biotic stress responses in plants. Grasses growing along the Oregon coast are exposed to harsh conditions and may harbor endophytes that enable them to survive and grow under these conditions. Bacterial endophytes were isolated from thirty-...

  17. Planting of neonicotinoid-coated corn raises honey bee mortality and sets back colony development.

    PubMed

    Samson-Robert, Olivier; Labrie, Geneviève; Chagnon, Madeleine; Fournier, Valérie

    2017-01-01

    Worldwide occurrences of honey bee colony losses have raised concerns about bee health and the sustainability of pollination-dependent crops. While multiple causal factors have been identified, seed coating with insecticides of the neonicotinoid family has been the focus of much discussion and research. Nonetheless, few studies have investigated the impacts of these insecticides under field conditions or in commercial beekeeping operations. Given that corn-seed coating constitutes the largest single use of neonicotinoid, our study compared honey bee mortality from commercial apiaries located in two different agricultural settings, i.e. corn-dominated areas and corn-free environments, during the corn planting season. Data was collected in 2012 and 2013 from 26 bee yards. Dead honey bees from five hives in each apiary were counted and collected, and samples were analyzed using a multi-residue LC-MS/MS method. Long-term effects on colony development were simulated based on a honey bee population dynamic model. Mortality survey showed that colonies located in a corn-dominated area had daily mortality counts 3.51 times those of colonies from corn crop-free sites. Chemical analyses revealed that honey bees were exposed to various agricultural pesticides during the corn planting season, but were primarily subjected to neonicotinoid compounds (54% of analysed samples contained clothianidin, and 31% contained both clothianidin and thiamethoxam). Performance development simulations performed on hive populations' show that increased mortality during the corn planting season sets back colony development and bears contributions to collapse risk but, most of all, reduces the effectiveness and value of colonies for pollination services. Our results also have implications for the numerous large-scale and worldwide-cultivated crops that currently rely on pre-emptive use of neonicotinoid seed treatments.

  18. Planting of neonicotinoid-coated corn raises honey bee mortality and sets back colony development

    PubMed Central

    Samson-Robert, Olivier; Labrie, Geneviève; Chagnon, Madeleine

    2017-01-01

    Worldwide occurrences of honey bee colony losses have raised concerns about bee health and the sustainability of pollination-dependent crops. While multiple causal factors have been identified, seed coating with insecticides of the neonicotinoid family has been the focus of much discussion and research. Nonetheless, few studies have investigated the impacts of these insecticides under field conditions or in commercial beekeeping operations. Given that corn-seed coating constitutes the largest single use of neonicotinoid, our study compared honey bee mortality from commercial apiaries located in two different agricultural settings, i.e. corn-dominated areas and corn-free environments, during the corn planting season. Data was collected in 2012 and 2013 from 26 bee yards. Dead honey bees from five hives in each apiary were counted and collected, and samples were analyzed using a multi-residue LC-MS/MS method. Long-term effects on colony development were simulated based on a honey bee population dynamic model. Mortality survey showed that colonies located in a corn-dominated area had daily mortality counts 3.51 times those of colonies from corn crop-free sites. Chemical analyses revealed that honey bees were exposed to various agricultural pesticides during the corn planting season, but were primarily subjected to neonicotinoid compounds (54% of analysed samples contained clothianidin, and 31% contained both clothianidin and thiamethoxam). Performance development simulations performed on hive populations’ show that increased mortality during the corn planting season sets back colony development and bears contributions to collapse risk but, most of all, reduces the effectiveness and value of colonies for pollination services. Our results also have implications for the numerous large-scale and worldwide-cultivated crops that currently rely on pre-emptive use of neonicotinoid seed treatments. PMID:28828265

  19. Comparison of the cytotoxic effect of polystyrene latex nanoparticles on planktonic cells and bacterial biofilms

    NASA Astrophysics Data System (ADS)

    Nomura, Toshiyuki; Fujisawa, Eri; Itoh, Shikibu; Konishi, Yasuhiro

    2016-06-01

    The cytotoxic effect of positively charged polystyrene latex nanoparticles (PSL NPs) was compared between planktonic bacterial cells and bacterial biofilms using confocal laser scanning microscopy, atomic force microscopy, and a colony counting method. Pseudomonas fluorescens, which is commonly used in biofilm studies, was employed as the model bacteria. We found that the negatively charged bacterial surface of the planktonic cells was almost completely covered with positively charged PSL NPs, leading to cell death, as indicated by the NP concentration being greater than that required to achieve single layer coverage. In addition, the relationship between surface coverage and cell viability of P. fluorescens cells correlated well with the findings in other bacterial cells ( Escherichia coli and Lactococcus lactis). However, most of the bacterial cells that formed the biofilm were viable despite the positively charged PSL NPs being highly toxic to planktonic bacterial cells. This indicated that bacterial cells embedded in the biofilm were protected by self-produced extracellular polymeric substances (EPS) that provide resistance to antibacterial agents. In conclusion, mature biofilms covered with EPS exhibit resistance to NP toxicity as well as antibacterial agents.

  20. Simplified Protocol for Carba NP Test for Enhanced Detection of Carbapenemase Producers Directly from Bacterial Cultures

    PubMed Central

    Pasteran, Fernando; Tijet, Nathalie; Melano, Roberto G.

    2015-01-01

    We compared carbapenemase detection among 266 Gram-negative bacilli (161 carbapenemase producers) using the Carba NP tests issued by the CLSI (CNPt-CLSI) and a novel protocol (CNPt-direct) designed for carbapenemase detection direct from bacterial cultures (instead of bacterial extracts required by the CLSI tests). The specificities were comparable (100%), but the CNPt-direct was more sensitive (98% versus 84%). The CNPt-direct was easier to perform due to the direct use of colonies and offered a more robust detection of carbapenemase producers. PMID:26424841

  1. Ecological observations on the colonial ascidian Didemnum sp. in a New England tide pool habitat

    USGS Publications Warehouse

    Valentine, P.C.; Carman, M.R.; Blackwood, D.S.; Heffron, E.J.

    2007-01-01

    The colonial ascidian Didemnum sp. has colonized northwestern Atlantic coastal habitats from southern Long Island, New York, to Eastport, Maine. It is also present in offshore habitats of the Georges Bank fishing grounds. It threatens to alter fisheries habitats and shellfish aquacultures. Observations in a tide pool at Sandwich, MA from December 2003 to February 2006 show that Didemnum sp. tolerates water temperatures ranging from ≤ 1 to > 24 °C, with daily changes of up to 11 °C. It attaches to pebbles, cobbles, and boulders, and it overgrows other tunicates, seaweeds, sponges, and bivalves. From May to mid July, colonies appear as small patches on the bottoms of rocks. Colonies grow rapidly from July to September, with some growth into December, and they range in color from pink to pale yellow to pale orange. Colony health declines from October through April, presumably in response to changes in water temperatures, and this degenerative process is manifested by color changes, by the appearance of small dark brown spots that represent clumps of fecal pellets in the colony, by scavenging by periwinkles, and by a peeling-away of colonies from the sides of cobbles and boulders. At Sandwich, colonies died that were exposed to air at low tide. The species does not exhibit this seasonal cycle of growth and decline in subtidal habitats (40–65 m) on the Georges Bank fishing grounds where the daily climate is relatively stable and annual water temperatures range from 4 to 15 °C. Experiments in the tide pool with small colony fragments (5 to 9 cm2) show they re-attach and grow rapidly by asexual budding, increasing in size 6- to 11-fold in the first 15 days. Didemnum sp. at Sandwich has no known predators except for common periwinkles (Littorina littorea) that graze on degenerating colonies in the October to April time period and whenever colonies are stressed by desiccation. The tendencies of the ascidian (1) to attach to firm substrates, (2) to rapidly overgrow

  2. Survival of spores of the UV-resistant Bacillus subtilis strain MW01 after exposure to low-earth orbit and simulated martian conditions: data from the space experiment ADAPT on EXPOSE-E.

    PubMed

    Wassmann, Marko; Moeller, Ralf; Rabbow, Elke; Panitz, Corinna; Horneck, Gerda; Reitz, Günther; Douki, Thierry; Cadet, Jean; Stan-Lotter, Helga; Cockell, Charles S; Rettberg, Petra

    2012-05-01

    In the space experiment "Molecular adaptation strategies of microorganisms to different space and planetary UV climate conditions" (ADAPT), bacterial endospores of the highly UV-resistant Bacillus subtilis strain MW01 were exposed to low-Earth orbit (LEO) and simulated martian surface conditions for 559 days on board the European Space Agency's exposure facility EXPOSE-E, mounted outside the International Space Station. The survival of B. subtilis MW01 spores from both assays (LEO and simulated martian conditions) was determined by a colony-formation assay after retrieval. It was clearly shown that solar extraterrestrial UV radiation (λ≥110 nm) as well as the martian UV spectrum (λ≥200 nm) was the most deleterious factor applied; in some samples only a few spore survivors were recovered from B. subtilis MW01 spores exposed in monolayers. However, if shielded from solar irradiation, about 8% of MW01 spores survived in LEO conditions, and 100% survived in simulated martian conditions, compared to the laboratory controls. The results demonstrate the effect of shielding against the high inactivation potential of extraterrestrial solar UV radiation, which limits the chances of survival of even the highly UV-resistant strain of B. subtilis MW01 in the harsh environments of outer space and the martian surface.

  3. Queen promiscuity lowers disease within honeybee colonies

    PubMed Central

    Seeley, Thomas D; Tarpy, David R

    2006-01-01

    Most species of social insects have singly mated queens, but in some species each queen mates with numerous males to create a colony with a genetically diverse worker force. The adaptive significance of polyandry by social insect queens remains an evolutionary puzzle. Using the honeybee (Apis mellifera), we tested the hypothesis that polyandry improves a colony's resistance to disease. We established colonies headed by queens that had been artificially inseminated by either one or 10 drones. Later, we inoculated these colonies with spores of Paenibacillus larvae, the bacterium that causes a highly virulent disease of honeybee larvae (American foulbrood). We found that, on average, colonies headed by multiple-drone inseminated queens had markedly lower disease intensity and higher colony strength at the end of the summer relative to colonies headed by single-drone inseminated queens. These findings support the hypothesis that polyandry by social insect queens is an adaptation to counter disease within their colonies. PMID:17015336

  4. Settlement success of Favia fragum planulae exposed to different sediment types and concentrations from southern Puerto Rico

    EPA Science Inventory

    Sedimentation has been reported to adversely affect coral ecosystems, but the precise effects of sediment on coral larval settlement and metamorphosis are not well understood. Planulae from laboratory-cultured Favia fragum colonies were collected and exposed to sediment collected...

  5. Evaluation of reproduction and raising offspring in a nursery-reared SPF baboon (Papio hamadryas anubis) colony.

    PubMed

    Budda, Madeline L; Ely, John J; Doan, Sandra; Chavez-Suarez, Maria; White, Gary L; Wolf, Roman F

    2013-08-01

    Baboons (Papio hamadryas anubis) of a conventional breeding colony were nursery-reared to create a specific pathogen-free (SPF) baboon-breeding program. Because the founding generations were nursery-reared until 2 years of age, it was suspected that the SPF baboons would exhibit increased reproductive challenges as adults. Mothering behavior was of interest, because SPF females were not exposed to parental role models during the nursery-rearing process. We compared reproductive data from the SPF baboon breeding program during its first 10 years with data from age-matched baboons during the same period from an established, genetically-similar conventional breeding colony. We also evaluated records documenting mother-infant behaviors within the SPF colony. The average age of menarche in SPF females was 3.3 years. The overall live birth rate of both SPF and conventional females was approximately 90%, with no difference in pregnancy outcome between the two colonies. The average age at first conception for SPF females was earlier (4.2 years) than that of the conventional females (4.7 years). In both colonies, primiparous females were more likely to abort than multiparous females. Similarly, primiparous females were more likely to lose their infants to death or human intervention. A mothering score system was developed in the SPF colony to facilitate intervention of poor mother-infant relationships. Records revealed 70% of SPF mothers were able to raise one or more of their infants successfully to at least 180 days of age, which did not differ from conventional mothers. SPF females returned to post-partum amenorrhea 27 days sooner on average than the conventional females, independent of dam age. The nursery-rearing process used for recruitment into the SPF colony therefore did not have an adverse effect on reproduction or rearing offspring. © 2013 Wiley Periodicals, Inc.

  6. JAX Colony Management System (JCMS): an extensible colony and phenotype data management system.

    PubMed

    Donnelly, Chuck J; McFarland, Mike; Ames, Abigail; Sundberg, Beth; Springer, Dave; Blauth, Peter; Bult, Carol J

    2010-04-01

    The Jackson Laboratory Colony Management System (JCMS) is a software application for managing data and information related to research mouse colonies, associated biospecimens, and experimental protocols. JCMS runs directly on computers that run one of the PC Windows operating systems, but can be accessed via web browser interfaces from any computer running a Windows, Macintosh, or Linux operating system. JCMS can be configured for a single user or multiple users in small- to medium-size work groups. The target audience for JCMS includes laboratory technicians, animal colony managers, and principal investigators. The application provides operational support for colony management and experimental workflows, sample and data tracking through transaction-based data entry forms, and date-driven work reports. Flexible query forms allow researchers to retrieve database records based on user-defined criteria. Recent advances in handheld computers with integrated barcode readers, middleware technologies, web browsers, and wireless networks add to the utility of JCMS by allowing real-time access to the database from any networked computer.

  7. EFFECT OF AEROSOLIZATION ON CULTURABILITY AND VIABILITY OF GRAM-NEGATIVE BACTERIA

    EPA Science Inventory

    Estimations of the bacterial content of air can be more easily made now than a decade ago, with colony formation the method of choice for enumeration of airborne bacteria.However, plate counts are subject to error because bacteria exposed to the air may remain viable yet lose the...

  8. Bacterial attachment on titanium surfaces is dependent on topography and chemical changes induced by nonthermal atmospheric pressure plasma.

    PubMed

    Jeong, Won-Seok; Kwon, Jae-Sung; Lee, Jung-Hwan; Uhm, Soo-Hyuk; Ha Choi, Eun; Kim, Kwang-Mahn

    2017-07-26

    Here, we investigated the antibacterial effects of chemical changes induced by nonthermal atmospheric pressure plasma (NTAPP) on smooth and rough Ti. The morphologies of smooth and rough surfaces of Ti were examined using scanning electron microscopy (SEM). Both Ti specimens were then treated for 10 min by NTAPP with nitrogen gas. The surface roughness, chemistry, and wettability were examined by optical profilometry, x-ray photoelectron spectroscopy, and water contact angle analysis, respectively. Bacterial attachment was measured by determining the number of colony forming units and by SEM analysis. The rough Ti showed irregular micropits, whereas smooth Ti had a relatively regular pattern on the surface. There were no differences in morphology between samples before and after NTAPP treatment. NTAPP treatment resulted in changes from hydrophobic to hydrophilic properties on rough and smooth Ti; rough Ti showed relatively higher hydrophilicity. Before NTAPP treatment, Streptococcus sanguinis (S. sanguinis) showed greater attachment on rough Ti, and after NTAPP treatment, there was a significant reduction in bacterial attachment. Moreover, the bacterial attachment rate was significantly lower on rough Ti, and the structure of S. sanguinis colonies were significantly changed on NTAPP-treated Ti. NTAPP treatment inhibited bacterial attachment surrounding titanium implants, regardless of surface topography. Therefore, NTAPP treatment on Ti is a next-generation tool for antibacterial applications in the orthopaedic and dental fields.

  9. Colony Fusion in a Parthenogenetic Ant, Pristomyrmex punctatus

    PubMed Central

    Satow, Show; Satoh, Toshiyuki; Hirota, Tadao

    2013-01-01

    In the ant Pristomyrmex punctatus Smith (Hymenoptera: Formicidae), all young workers lay a small number of eggs parthenogenetically. Some colonies consist of monoclonal individuals that provide high inclusive fitness, according to the kin selection theory. However, in some populations, a majority of the colonies contain multiple lineages. Intracolonial genetic variation of parthenogenetic ants cannot be explained by the multiple mating of single founderesses or by the foundation of a colony by multiple foundresses, which are the usual causes of genetically diverse colonies in social insects. Here, we hypothesized that the fusion of established colonies might facilitate the formation of multiclonal colonies. Colony fusion decreases indirect benefits because of the reduction in intracolonial relatedness. However, when suitable nesting places for overwintering are scarce, colony fusion provides a strategy for the survival of colonies. Here, ants derived from different colonies were allowed to encounter one another in a container with just one nesting place. Initially, high aggression was observed; however, after several days, no aggression was observed and the ants shared the nest. When the fused colonies were allowed to transfer to two alternative nests, ants from different colonies occupied the same nest. This study highlights the importance of limiting the number of nesting places in order to understand the genetic diversity of parthenogenetic ant colonies. PMID:23895053

  10. Towards Spectral Library-free MALDI-TOF MS Bacterial Identification.

    PubMed

    Cheng, Ding; Qiao, Liang; Horvatovich, Péter

    2018-05-11

    Bacterial identification is of great importance in clinical diagnosis, environmental monitoring and food safety control. Among various strategies, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) has drawn significant interests, and has been clinically used. Nevertheless, current bioinformatics solutions use spectral libraries for the identification of bacterial strains. Spectral library generation requires acquisition of MALDI-TOF spectra from monoculture bacterial colonies, which is time-consuming and not possible for many species and strains. We propose a strategy for bacterial typing by MALDI-TOF using protein sequences from public database, i.e. UniProt. Ten genes were identified to encode proteins most often observed by MALD-TOF from bacteria through 500 times repeated a 10-fold double cross-validation procedure, using 403 MALDI-TOF spectra corresponding to 14 genera, 81 species and 403 strains, and the protein sequences of 1276 species in UniProt. The 10 genes were then used to annotate peaks on MALDI-TOF spectra of bacteria for bacterial identification. With the approach, bacteria can be identified at the genus level by searching against a database containing the protein sequences of 42 genera of bacteria from UniProt. Our approach identified 84.1% of the 403 spectra correctly at the genus level. Source code of the algorithm is available at https://github.com/dipcarbon/BacteriaMSLF.

  11. Simplified Protocol for Carba NP Test for Enhanced Detection of Carbapenemase Producers Directly from Bacterial Cultures.

    PubMed

    Pasteran, Fernando; Tijet, Nathalie; Melano, Roberto G; Corso, Alejandra

    2015-12-01

    We compared carbapenemase detection among 266 Gram-negative bacilli (161 carbapenemase producers) using the Carba NP tests issued by the CLSI (CNPt-CLSI) and a novel protocol (CNPt-direct) designed for carbapenemase detection direct from bacterial cultures (instead of bacterial extracts required by the CLSI tests). The specificities were comparable (100%), but the CNPt-direct was more sensitive (98% versus 84%). The CNPt-direct was easier to perform due to the direct use of colonies and offered a more robust detection of carbapenemase producers. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  12. Survival and endogenous colony formation in irradiated mice grafted with normal or infectious mononucleosis bone marrow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Louwagie, A. C.; Verwilghen, R. L.

    1973-07-01

    Mice were exposed to 850 or 975 rad of whole-body radiation; three hr later mice were given normal human bone marrow, infectious mononucleosis bone marrow, or cells from malignant blood diseases. The surviving mice were killed at day 9 and the spleen nodules were counted. Some mice were also given antihuman antilymphocytic serum (ALS). In mice exposed to 975 rad, the highest survival was observed in mice grafted with infectious mononucleosis bone marrow, while none of the animals grafted with cells from malignant blood diseases survived 9 days. In mice exposed to 850 rad, grafting of normal or infectious mononucleosismore » bone marrow markedly decreased the survival. Endogenous spleen colonies were induced in all animals grafted with normal or infectious mononucleosis bone marrow. (HLW)« less

  13. Portable bacterial identification system based on elastic light scatter patterns.

    PubMed

    Bae, Euiwon; Ying, Dawei; Kramer, Donald; Patsekin, Valery; Rajwa, Bartek; Holdman, Cheryl; Sturgis, Jennifer; Davisson, V Jo; Robinson, J Paul

    2012-08-28

    Conventional diagnosis and identification of bacteria requires shipment of samples to a laboratory for genetic and biochemical analysis. This process can take days and imposes significant delay to action in situations where timely intervention can save lives and reduce associated costs. To enable faster response to an outbreak, a low-cost, small-footprint, portable microbial-identification instrument using forward scatterometry has been developed. This device, weighing 9 lb and measuring 12 × 6 × 10.5 in., utilizes elastic light scatter (ELS) patterns to accurately capture bacterial colony characteristics and delivers the classification results via wireless access. The overall system consists of two CCD cameras, one rotational and one translational stage, and a 635-nm laser diode. Various software algorithms such as Hough transform, 2-D geometric moments, and the traveling salesman problem (TSP) have been implemented to provide colony count and circularity, centering process, and minimized travel time among colonies. Experiments were conducted with four bacteria genera using pure and mixed plate and as proof of principle a field test was conducted in four different locations where the average classification rate ranged between 95 and 100%.

  14. Methods and measurement variance for field estimations of coral colony planar area using underwater photographs and semi-automated image segmentation.

    PubMed

    Neal, Benjamin P; Lin, Tsung-Han; Winter, Rivah N; Treibitz, Tali; Beijbom, Oscar; Kriegman, David; Kline, David I; Greg Mitchell, B

    2015-08-01

    Size and growth rates for individual colonies are some of the most essential descriptive parameters for understanding coral communities, which are currently experiencing worldwide declines in health and extent. Accurately measuring coral colony size and changes over multiple years can reveal demographic, growth, or mortality patterns often not apparent from short-term observations and can expose environmental stress responses that may take years to manifest. Describing community size structure can reveal population dynamics patterns, such as periods of failed recruitment or patterns of colony fission, which have implications for the future sustainability of these ecosystems. However, rapidly and non-invasively measuring coral colony sizes in situ remains a difficult task, as three-dimensional underwater digital reconstruction methods are currently not practical for large numbers of colonies. Two-dimensional (2D) planar area measurements from projection of underwater photographs are a practical size proxy, although this method presents operational difficulties in obtaining well-controlled photographs in the highly rugose environment of the coral reef, and requires extensive time for image processing. Here, we present and test the measurement variance for a method of making rapid planar area estimates of small to medium-sized coral colonies using a lightweight monopod image-framing system and a custom semi-automated image segmentation analysis program. This method demonstrated a coefficient of variation of 2.26% for repeated measurements in realistic ocean conditions, a level of error appropriate for rapid, inexpensive field studies of coral size structure, inferring change in colony size over time, or measuring bleaching or disease extent of large numbers of individual colonies.

  15. Coupling MALDI-TOF mass spectrometry protein and specialized metabolite analyses to rapidly discriminate bacterial function

    PubMed Central

    Clark, Chase M.; Costa, Maria S.

    2018-01-01

    For decades, researchers have lacked the ability to rapidly correlate microbial identity with bacterial metabolism. Since specialized metabolites are critical to bacterial function and survival in the environment, we designed a data acquisition and bioinformatics technique (IDBac) that utilizes in situ matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) to analyze protein and specialized metabolite spectra recorded from single bacterial colonies picked from agar plates. We demonstrated the power of our approach by discriminating between two Bacillus subtilis strains in <30 min solely on the basis of their differential ability to produce cyclic peptide antibiotics surfactin and plipastatin, caused by a single frameshift mutation. Next, we used IDBac to detect subtle intraspecies differences in the production of metal scavenging acyl-desferrioxamines in a group of eight freshwater Micromonospora isolates that share >99% sequence similarity in the 16S rRNA gene. Finally, we used IDBac to simultaneously extract protein and specialized metabolite MS profiles from unidentified Lake Michigan sponge-associated bacteria isolated from an agar plate. In just 3 h, we created hierarchical protein MS groupings of 11 environmental isolates (10 MS replicates each, for a total of 110 spectra) that accurately mirrored phylogenetic groupings. We further distinguished isolates within these groupings, which share nearly identical 16S rRNA gene sequence identity, based on interspecies and intraspecies differences in specialized metabolite production. IDBac is an attempt to couple in situ MS analyses of protein content and specialized metabolite production to allow for facile discrimination of closely related bacterial colonies. PMID:29686101

  16. Hydrodebridement of wounds: effectiveness in reducing wound bacterial contamination and potential for air bacterial contamination.

    PubMed

    Bowling, Frank L; Stickings, Daryl S; Edwards-Jones, Valerie; Armstrong, David G; Boulton, Andrew Jm

    2009-05-08

    The purpose of this study was to assess the level of air contamination with bacteria after surgical hydrodebridement and to determine the effectiveness of hydro surgery on bacterial reduction of a simulated infected wound. Four porcine samples were scored then infected with a broth culture containing a variety of organisms and incubated at 37 degrees C for 24 hours. The infected samples were then debrided with the hydro surgery tool (Versajet, Smith and Nephew, Largo, Florida, USA). Samples were taken for microbiology, histology and scanning electron microscopy pre-infection, post infection and post debridement. Air bacterial contamination was evaluated before, during and after debridement by using active and passive methods; for active sampling the SAS-Super 90 air sampler was used, for passive sampling settle plates were located at set distances around the clinic room. There was no statistically significant reduction in bacterial contamination of the porcine samples post hydrodebridement. Analysis of the passive sampling showed a significant (p < 0.001) increase in microbial counts post hydrodebridement. Levels ranging from 950 colony forming units per meter cubed (CFUs/m3) to 16780 CFUs/m3 were observed with active sampling of the air whilst using hydro surgery equipment compared with a basal count of 582 CFUs/m3. During removal of the wound dressing, a significant increase was observed relative to basal counts (p < 0.05). Microbial load of the air samples was still significantly raised 1 hour post-therapy. The results suggest a significant increase in bacterial air contamination both by active sampling and passive sampling. We believe that action might be taken to mitigate fallout in the settings in which this technique is used.

  17. An American termite in Paris: temporal colony dynamics.

    PubMed

    Baudouin, Guillaume; Dedeine, Franck; Bech, Nicolas; Bankhead-Dronnet, Stéphanie; Dupont, Simon; Bagnères, Anne-Geneviève

    2017-12-01

    Termites of the genus Reticulitermes are widespread invaders, particularly in urban habitats. Their cryptic and subterranean lifestyle makes them difficult to detect, and we know little about their colony dynamics over time. In this study we examined the persistence of Reticulitermes flavipes (Kollar) colonies in the city of Paris over a period of 15 years. The aim was (1) to define the boundaries of colonies sampled within the same four areas over two sampling periods, (2) to determine whether the colonies identified during the first sampling period persisted to the second sampling period, and (3) to compare the results obtained when colonies were delineated using a standard population genetic approach versus a Bayesian clustering method that combined both spatial and genetic information. Herein, colony delineations were inferred from genetic differences at nine microsatellite loci and one mitochondrial locus. Four of the 18 identified colonies did not show significant differences in their genotype distributions between the two sampling periods. While allelic richness was low, making it hard to reliably distinguish colony family type, most colonies appeared to retain the same breeding structure over time. These large and expansive colonies showed an important ability to fuse (39% were mixed-family colonies), contained hundreds of reproductives and displayed evidence of isolation-by-distance, suggesting budding dispersal. These traits, which favor colony persistence over time, present a challenge for pest control efforts, which apply treatment locally. The other colonies showed significant differences, but we cannot exclude the possibility that their genotype distributions simply changed over time.

  18. Internal hive temperature as a means of monitoring honey bee colony health in a migratory beekeeping operation before and during winter

    USDA-ARS?s Scientific Manuscript database

    Internal temperatures of honey bee hives kept at different sites in North Dakota were monitored before and during winter to evaluate the effects of treatment, in the form of exposure to commercial pollination, and location on colony health. In October, hives exposed to commercial pollination durin...

  19. Streptomycin Induced Stress Response in Salmonella enterica Serovar Typhimurium Shows Distinct Colony Scatter Signature

    PubMed Central

    Singh, Atul K.; Drolia, Rishi; Bai, Xingjian; Bhunia, Arun K.

    2015-01-01

    We investigated the streptomycin-induced stress response in Salmonella enterica serovars with a laser optical sensor, BARDOT (bacterial rapid detection using optical scattering technology). Initially, the top 20 S. enterica serovars were screened for their response to streptomycin at 100 μg/mL. All, but four S. enterica serovars were resistant to streptomycin. The MIC of streptomycin-sensitive serovars (Enteritidis, Muenchen, Mississippi, and Schwarzengrund) varied from 12.5 to 50 μg/mL, while streptomycin-resistant serovar (Typhimurium) from 125–250 μg/mL. Two streptomycin-sensitive serovars (Enteritidis and Mississippi) were grown on brain heart infusion (BHI) agar plates containing sub-inhibitory concentration of streptomycin (1.25–5 μg/mL) and a streptomycin-resistant serovar (Typhimurium) was grown on BHI containing 25–50 μg/mL of streptomycin and the colonies (1.2 ± 0.1 mm diameter) were scanned using BARDOT. Data show substantial qualitative and quantitative differences in the colony scatter patterns of Salmonella grown in the presence of streptomycin than the colonies grown in absence of antibiotic. Mass-spectrometry identified overexpression of chaperonin GroEL, which possibly contributed to the observed differences in the colony scatter patterns. Quantitative RT-PCR and immunoassay confirmed streptomycin-induced GroEL expression while, aminoglycoside adenylyltransferase (aadA), aminoglycoside efflux pump (aep), multidrug resistance subunit acrA, and ribosomal protein S12 (rpsL), involved in streptomycin resistance, were unaltered. The study highlights suitability of the BARDOT as a non-invasive, label-free tool for investigating stress response in Salmonella in conjunction with the molecular and immunoassay methods. PMID:26252374

  20. The degree of bacterial contamination while performing spine surgery.

    PubMed

    Ahn, Dong Ki; Park, Hoon Seok; Kim, Tae Woo; Yang, Jong Hwa; Boo, Kyung Hwan; Kim, In Ja; Lee, Hye Jin

    2013-03-01

    Prospective experimental study. To evaluate bacterial contamination during surgery. The participants of surgery and ventilation system have been known as the most significant sources of contamination. Two pairs of air culture blood agar plate for G(+) bacteria and MacConkey agar plate for G(-) bacteria were placed at 3 different locations in a conventional operation room: in the surgical field, under the airflow of local air conditioner, and pathway to door while performing spine surgeries. One pair of culture plates was retrieved after one hour and the other pair was retrieved after 3 hours. The cultured bacteria were identified and number of colonies was counted. There was no G(-) bacteria identified. G(+) bacteria grew on all 90 air culture blood agar plates. The colony count of one hour group was 14.5±5.4 in the surgical field, 11.3±6.6 under the local air conditioner, and 13.1±8.7 at the pathway to the door. There was no difference among the 3 locations. The colony count of 3 hours group was 46.4±19.5, 30.3±12.9, and 39.7±15.2, respectively. It was more at the surgical field than under the air conditioner (p=0.03). The number of colonies of one hour group was 13.0±7.0 and 3 hours group was 38.8±17.1. There was positive correlation between the time and the number of colonies (r=0.76, p=0.000). Conventional operation room was contaminated by G(+) bacteria. The degree of contamination was most high at the surgical field. The number of bacteria increased right proportionally to the time.

  1. The Degree of Bacterial Contamination While Performing Spine Surgery

    PubMed Central

    Ahn, Dong Ki; Park, Hoon Seok; Yang, Jong Hwa; Boo, Kyung Hwan; Kim, In Ja; Lee, Hye Jin

    2013-01-01

    Study Design Prospective experimental study. Purpose To evaluate bacterial contamination during surgery. Overview of Literature The participants of surgery and ventilation system have been known as the most significant sources of contamination. Methods Two pairs of air culture blood agar plate for G(+) bacteria and MacConkey agar plate for G(-) bacteria were placed at 3 different locations in a conventional operation room: in the surgical field, under the airflow of local air conditioner, and pathway to door while performing spine surgeries. One pair of culture plates was retrieved after one hour and the other pair was retrieved after 3 hours. The cultured bacteria were identified and number of colonies was counted. Results There was no G(-) bacteria identified. G(+) bacteria grew on all 90 air culture blood agar plates. The colony count of one hour group was 14.5±5.4 in the surgical field, 11.3±6.6 under the local air conditioner, and 13.1±8.7 at the pathway to the door. There was no difference among the 3 locations. The colony count of 3 hours group was 46.4±19.5, 30.3±12.9, and 39.7±15.2, respectively. It was more at the surgical field than under the air conditioner (p=0.03). The number of colonies of one hour group was 13.0±7.0 and 3 hours group was 38.8±17.1. There was positive correlation between the time and the number of colonies (r=0.76, p=0.000). Conclusions Conventional operation room was contaminated by G(+) bacteria. The degree of contamination was most high at the surgical field. The number of bacteria increased right proportionally to the time. PMID:23508998

  2. Stories, skulls, and colonial collections.

    PubMed

    Roque, Ricardo

    2011-01-01

    The essay explores the hypothesis of colonial collecting processes involving the active addition of the colonial context and historical past to museum objects through the production of short stories. It examines the emergent historicity of collections through a focus on the "histories" that museum workers and colonial agents have been attaching to scientific collections of human skulls. Drawing on the notions of collection trajectory and historiographical work, it offers an alternative perspective from which to approach the creation of singular histories and individual archives for objects in collections.

  3. Mutagenicity evaluation of metal oxide nanoparticles by the bacterial reverse mutation assay.

    PubMed

    Pan, Xiaoping; Redding, James E; Wiley, Patricia A; Wen, Lisa; McConnell, J Scott; Zhang, Baohong

    2010-03-01

    Nanomaterials have been emerging as a new group of contaminants in the environment. We reported the use of a bacterial reverse mutation assay (Ames assay) to evaluate the mutagenicity of five metal oxide nanoparticles Al(2)O(3), Co(3)O(4), CuO, TiO(2), and ZnO in this study. Results showed the mutagenicity was negative for four nanoparticles (Al(2)O(3), Co(3)O(4), TiO(2), and ZnO) up to 1000mug/plate to all three tested strains without S9 metabolic activation. Using a preincubation procedure and high S9 (9%) activation, TiO(2) and ZnO induced marginal mutagenesis to strain Escherichia coli WP2 trp uvrA. CuO displayed low mutagenic potential to Salmonella typhimurium TA97a and TA100 at specific concentrations. However, the colony inhibition effect of CuO was predominant to the strain E. coli WP2 trp uvrA. A dose-dependent inhibition of Escherichia coli WP2 colony was found under CuO exposure at concentration range of 100-1600mug/plate. No growth inhibition of tested bacterial strains by Al(2)O(3), Co(3)O(4), and ZnO was observed at the concentrations used. Published by Elsevier Ltd.

  4. Effects of lead(II) on the extracellular polysaccharide (EPS) production and colony formation of cultured Microcystis aeruginosa.

    PubMed

    Bi, Xiang-dong; Zhang, Shu-lin; Dai, Wei; Xing, Ke-zhing; Yang, Fan

    2013-01-01

    To investigate the effects of lead(II) on the production of extracellular polysaccharides (EPS), including bound extracellular polysaccharides (bEPS) and soluble extracellular polysaccharides (sEPS), and the colony formation of Microcystis aeruginosa, cultures of M. aeruginosa were exposed to four concentrations (5.0, 10.0, 20.0 and 40.0 mg/L) of lead(II) for 10 d under controlled laboratory conditions. The results showed that 5.0 and 10.0 mg/L lead(II) stimulated M. aeruginosa growth throughout the experiment while 20.0 and 40.0 mg/L lead(II) inhibited M. aeruginosa growth in the first 2 d exposure and then stimulated it. As compared to the control group, significant increases in the bEPS and sEPS production were observed in 20.0 and 40.0 mg/L lead(II) treatments (P < 0.05). Large colony formations were not observed throughout the experiment. However, four tested concentrations of lead(II) could significantly promote the formation of small and middle colonies after 10 d exposure (P < 0.05), and 40.0 mg/L lead(II) had the best stimulatory effect. Lead(II) could stimulate bEPS production, which conversely promoted colony formation, suggesting that heavy metals might be contributing to the bloom-forming of M. aeruginosa in natural conditions.

  5. Parametric studies of metabolic cooperativity in Escherichia coli colonies: Strain and geometric confinement effects

    PubMed Central

    Cole, John A.; Luthey-Schulten, Zaida

    2017-01-01

    Characterizing the complex spatial and temporal interactions among cells in a biological system (i.e. bacterial colony, microbiome, tissue, etc.) remains a challenge. Metabolic cooperativity in these systems can arise due to the subtle interplay between microenvironmental conditions and the cells’ regulatory machinery, often involving cascades of intra- and extracellular signalling molecules. In the simplest of cases, as demonstrated in a recent study of the model organism Escherichia coli, metabolic cross-feeding can arise in monoclonal colonies of bacteria driven merely by spatial heterogeneity in the availability of growth substrates; namely, acetate, glucose and oxygen. Another recent study demonstrated that even closely related E. coli strains evolved different glucose utilization and acetate production capabilities, hinting at the possibility of subtle differences in metabolic cooperativity and the resulting growth behavior of these organisms. Taking a first step towards understanding the complex spatio-temporal interactions within microbial populations, we performed a parametric study of E. coli growth on an agar substrate and probed the dependence of colony behavior on: 1) strain-specific metabolic characteristics, and 2) the geometry of the underlying substrate. To do so, we employed a recently developed multiscale technique named 3D dynamic flux balance analysis which couples reaction-diffusion simulations with iterative steady-state metabolic modeling. Key measures examined include colony growth rate and shape (height vs. width), metabolite production/consumption and concentration profiles, and the emergence of metabolic cooperativity and the fractions of cell phenotypes. Five closely related strains of E. coli, which exhibit large variation in glucose consumption and organic acid production potential, were studied. The onset of metabolic cooperativity was found to vary substantially between these five strains by up to 10 hours and the relative

  6. Parametric studies of metabolic cooperativity in Escherichia coli colonies: Strain and geometric confinement effects.

    PubMed

    Peterson, Joseph R; Cole, John A; Luthey-Schulten, Zaida

    2017-01-01

    Characterizing the complex spatial and temporal interactions among cells in a biological system (i.e. bacterial colony, microbiome, tissue, etc.) remains a challenge. Metabolic cooperativity in these systems can arise due to the subtle interplay between microenvironmental conditions and the cells' regulatory machinery, often involving cascades of intra- and extracellular signalling molecules. In the simplest of cases, as demonstrated in a recent study of the model organism Escherichia coli, metabolic cross-feeding can arise in monoclonal colonies of bacteria driven merely by spatial heterogeneity in the availability of growth substrates; namely, acetate, glucose and oxygen. Another recent study demonstrated that even closely related E. coli strains evolved different glucose utilization and acetate production capabilities, hinting at the possibility of subtle differences in metabolic cooperativity and the resulting growth behavior of these organisms. Taking a first step towards understanding the complex spatio-temporal interactions within microbial populations, we performed a parametric study of E. coli growth on an agar substrate and probed the dependence of colony behavior on: 1) strain-specific metabolic characteristics, and 2) the geometry of the underlying substrate. To do so, we employed a recently developed multiscale technique named 3D dynamic flux balance analysis which couples reaction-diffusion simulations with iterative steady-state metabolic modeling. Key measures examined include colony growth rate and shape (height vs. width), metabolite production/consumption and concentration profiles, and the emergence of metabolic cooperativity and the fractions of cell phenotypes. Five closely related strains of E. coli, which exhibit large variation in glucose consumption and organic acid production potential, were studied. The onset of metabolic cooperativity was found to vary substantially between these five strains by up to 10 hours and the relative fraction

  7. Bacterial Colonization and Tissue Compatibility of Denture Base Resins.

    PubMed

    Olms, Constanze; Yahiaoui-Doktor, Maryam; Remmerbach, Torsten W; Stingu, Catalina Suzana

    2018-06-15

    Currently, there is minimal clinical data regarding biofilm composition on the surface of denture bases and the clinical tissue compatibility. Therefore, the aim of this experimental study was to compare the bacterial colonization and the tissue compatibility of a hypoallergenic polyamide with a frequently used PMMA resin tested intraorally in a randomized split-mouth design. Test specimens made of polyamide ( n = 10) and PMMA ( n = 10) were attached over a molar band appliance in oral cavity of 10 subjects. A cytological smear test was done from palatal mucosa at baseline and after four weeks. The monolayers were inspected for micronuclei. After four weeks in situ, the appliance was removed. The test specimens were immediately cultivated on non-selective and selective nutrient media. All growing colonies were identified using VITEK-MS. The anonymized results were analyzed descriptively. A total of 110 different bacterial species could be isolated, including putative pathogens. An average of 17.8 different bacterial species grew on the PMMA specimens, and 17.3 on the polyamide specimens. The highest number of different bacterial species was n = 24, found on a PMMA specimen. On the two specimens, a similar bacterial distribution was observed. Micronuclei, as a marker for genotoxic potential of dental materials, were not detected. This study indicates that the composition of bacterial biofilm developed on these resins after four weeks is not influenced by the type of resin itself. The two materials showed no cytological differences. This investigation suggests that polyamide and PMMA are suitable for clinical use as denture base material.

  8. Influence of task switching costs on colony homeostasis

    NASA Astrophysics Data System (ADS)

    Jeanson, Raphaël; Lachaud, Jean-Paul

    2015-06-01

    In social insects, division of labour allows colonies to optimise the allocation of workers across all available tasks to satisfy colony requirements. The maintenance of stable conditions within colonies (homeostasis) requires that some individuals move inside the nest to monitor colony needs and execute unattended tasks. We developed a simple theoretical model to explore how worker mobility inside the nest and task switching costs influence the maintenance of stable levels of task-associated stimuli. Our results indicate that worker mobility in large colonies generates important task switching costs and is detrimental to colony homeostasis. Our study suggests that the balance between benefits and costs associated with the mobility of workers patrolling inside the nest depends on colony size. We propose that several species of ants with diverse life-history traits should be appropriate to test the prediction that the proportion of mobile workers should vary during colony ontogeny.

  9. Comparison of the structural basis for thermal stability between archaeal and bacterial proteins.

    PubMed

    Ding, Yanrui; Cai, Yujie; Han, Yonggang; Zhao, Bingqiang

    2012-01-01

    In this study, the structural basis for thermal stability in archaeal and bacterial proteins was investigated. There were many common factors that confer resistance to high temperature in both archaeal and bacterial proteins. These factors include increases in the Lys content, the bends and blanks of secondary structure, the Glu content of salt bridge; decreases in the number of main-side chain hydrogen bond and exposed surface area, and changes in the bends and blanks of amino acids. Certainly, the utilization of charged amino acids to form salt bridges is a primary factor. In both heat-resistant archaeal and bacterial proteins, most Glu and Asp participate in the formation of salt bridges. Other factors may influence either archaeal or bacterial protein thermostability, which includes the more frequent occurrence of shorter 3(10)-helices and increased hydrophobicity in heat-resistant archaeal proteins. However, there were increases in average helix length, the Glu content in salt bridges, temperature factors and decreases in the number of main-side chain hydrogen bonds, uncharged-uncharged hydrogen bonds, hydrophobicity, and buried and exposed polar surface area in heat-resistant bacterial proteins. Evidently, there are few similarities and many disparities between the heat-resistant mechanisms of archaeal and bacterial proteins.

  10. Honeybee (Apis mellifera)-associated bacterial community affected by American foulbrood: detection of Paenibacillus larvae via microbiome analysis.

    PubMed

    Erban, Tomas; Ledvinka, Ondrej; Kamler, Martin; Nesvorna, Marta; Hortova, Bronislava; Tyl, Jan; Titera, Dalibor; Markovic, Martin; Hubert, Jan

    2017-07-11

    Honeybee (Apis mellifera L.) workers act as passive vectors of Paenibacillus larvae spores, which cause the quarantine disease American foulbrood (AFB). We assessed the relative proportions of P. larvae within the honeybee microbiome using metabarcoding analysis of the 16 S rRNA gene. The microbiome was analyzed in workers outside of the AFB zone (control - AFB0), in workers from asymptomatic colonies in an AFB apiary (AFB1), and in workers from colonies exhibiting clinical AFB symptoms (AFB2). The microbiome was processed for the entire community and for a cut-off microbiome comprising pathogenic/environmental bacteria following the removal of core bacterial sequences; varroosis levels were considered in the statistical analysis. No correlation was observed between AFB status and varroosis level, but AFB influenced the worker bee bacterial community, primarily the pathogenic/environmental bacteria. There was no significant difference in the relative abundance of P. larvae between the AFB1 and AFB0 colonies, but we did observe a 9-fold increase in P. larvae abundance in AFB2 relative to the abundance in AFB1. The relative sequence numbers of Citrobacter freundii and Hafnia alvei were higher in AFB2 and AFB1 than in AFB0, whereas Enterococcus faecalis, Klebsiella oxytoca, Spiroplasma melliferum and Morganella morganii were more abundant in AFB0 and AFB1 than in AFB2.

  11. From organized internal traffic to collective navigation of bacterial swarms

    NASA Astrophysics Data System (ADS)

    Ariel, Gil; Shklarsh, Adi; Kalisman, Oren; Ingham, Colin; Ben-Jacob, Eshel

    2013-12-01

    Bacterial swarming resulting in collective navigation over surfaces provides a valuable example of cooperative colonization of new territories. The social bacterium Paenibacillus vortex exhibits successful and diverse swarming strategies. When grown on hard agar surfaces with peptone, P. vortex develops complex colonies of vortices (rotating bacterial aggregates). In contrast, during growth on Mueller-Hinton broth gelled into a soft agar surface, a new strategy of multi-level organization is revealed: the colonies are organized into a special network of swarms (or ‘snakes’ of a fraction of millimeter in width) with intricate internal traffic. More specifically, cell movement is organized in two or three lanes of bacteria traveling between the back and the front of the swarm. This special form of cellular logistics suggests new methods in which bacteria can share resources and risk while searching for food or migrating into new territories. While the vortices-based organization on hard agar surfaces has been modeled before, here, we introduce a new multi-agent bacterial swarming model devised to capture the swarms-based organization on soft surfaces. We test two putative generic mechanisms that may underlie the observed swarming logistics: (i) chemo-activated taxis in response to chemical cues and (ii) special align-and-push interactions between the bacteria and the boundary of the layer of lubricant collectively generated by the swarming bacteria. Using realistic parameters, the model captures the observed phenomena with semi-quantitative agreement in terms of the velocity as well as the dynamics of the swarm and its envelope. This agreement implies that the bacteria interactions with the swarm boundary play a crucial role in mediating the interplay between the collective movement of the swarm and the internal traffic dynamics.

  12. Optimization of single plate-serial dilution spotting (SP-SDS) with sample anchoring as an assured method for bacterial and yeast cfu enumeration and single colony isolation from diverse samples.

    PubMed

    Thomas, Pious; Sekhar, Aparna C; Upreti, Reshmi; Mujawar, Mohammad M; Pasha, Sadiq S

    2015-12-01

    We propose a simple technique for bacterial and yeast cfu estimations from diverse samples with no prior idea of viable counts, designated as single plate-serial dilution spotting (SP-SDS) with the prime recommendation of sample anchoring (10 0 stocks). For pure cultures, serial dilutions were prepared from 0.1 OD (10 0 ) stock and 20 μl aliquots of six dilutions (10 1 -10 6 ) were applied as 10-15 micro-drops in six sectors over agar-gelled medium in 9-cm plates. For liquid samples 10 0 -10 5 dilutions, and for colloidal suspensions and solid samples (10% w/v), 10 1 -10 6 dilutions were used. Following incubation, at least one dilution level yielded 6-60 cfu per sector comparable to the standard method involving 100 μl samples. Tested on diverse bacteria, composite samples and Saccharomyces cerevisiae , SP-SDS offered wider applicability over alternative methods like drop-plating and track-dilution for cfu estimation, single colony isolation and culture purity testing, particularly suiting low resource settings.

  13. Sequestration and Distribution Characteristics of Cd(II) by Microcystis aeruginosa and Its Role in Colony Formation.

    PubMed

    Bi, Xiangdong; Yan, Ran; Li, Fenxiang; Dai, Wei; Jiao, Kewei; Zhou, Qixing; Liu, Qi

    2016-01-01

    To investigate the sequestration and distribution characteristics of Cd(II) by Microcystis aeruginosa and its role in Microcystis colony formation, M. aeruginosa was exposed to six different Cd(II) concentrations for 10 days. Cd(II) exposure caused hormesis in the growth of M. aeruginosa . Low concentrations of Cd(II) significantly induced formation of small Microcystis colonies ( P < 0.05) and increased the intracellular polysaccharide (IPS) and bound extracellular polysaccharide (bEPS) contents of M. aeruginosa significantly ( P < 0.05). There was a linear relationship between the amount of Cd(II) sequestrated by algal cells and the amount added to cultures in the rapid adsorption process that occurred during the first 5 min of exposure. After 10 d, M. aeruginosa sequestrated nearly 80% of 0.2 mg L -1 added Cd(II), while >93% of Cd(II) was sequestrated in the groups with lower added concentrations of Cd(II). More than 80% of the sequestrated Cd(II) was bioadsorbed by bEPS. The Pearson correlation coefficients of exterior and interior factors related to colony formation of M. aeruginosa revealed that Cd(II) could stimulate the production of IPS and bEPS via increasing Cd(II) bioaccumulation and bioadsorption. Increased levels of cross-linking between Cd(II) and bEPS stimulated algal cell aggregation, which eventually promoted the formation of Microcystis colonies.

  14. Sequestration and Distribution Characteristics of Cd(II) by Microcystis aeruginosa and Its Role in Colony Formation

    PubMed Central

    Bi, Xiangdong; Yan, Ran; Li, Fenxiang; Dai, Wei; Jiao, Kewei; Liu, Qi

    2016-01-01

    To investigate the sequestration and distribution characteristics of Cd(II) by Microcystis aeruginosa and its role in Microcystis colony formation, M. aeruginosa was exposed to six different Cd(II) concentrations for 10 days. Cd(II) exposure caused hormesis in the growth of M. aeruginosa. Low concentrations of Cd(II) significantly induced formation of small Microcystis colonies (P < 0.05) and increased the intracellular polysaccharide (IPS) and bound extracellular polysaccharide (bEPS) contents of M. aeruginosa significantly (P < 0.05). There was a linear relationship between the amount of Cd(II) sequestrated by algal cells and the amount added to cultures in the rapid adsorption process that occurred during the first 5 min of exposure. After 10 d, M. aeruginosa sequestrated nearly 80% of 0.2 mg L−1 added Cd(II), while >93% of Cd(II) was sequestrated in the groups with lower added concentrations of Cd(II). More than 80% of the sequestrated Cd(II) was bioadsorbed by bEPS. The Pearson correlation coefficients of exterior and interior factors related to colony formation of M. aeruginosa revealed that Cd(II) could stimulate the production of IPS and bEPS via increasing Cd(II) bioaccumulation and bioadsorption. Increased levels of cross-linking between Cd(II) and bEPS stimulated algal cell aggregation, which eventually promoted the formation of Microcystis colonies. PMID:27777956

  15. Hybrid artificial bee colony algorithm for parameter optimization of five-parameter bidirectional reflectance distribution function model.

    PubMed

    Wang, Qianqian; Zhao, Jing; Gong, Yong; Hao, Qun; Peng, Zhong

    2017-11-20

    A hybrid artificial bee colony (ABC) algorithm inspired by the best-so-far solution and bacterial chemotaxis was introduced to optimize the parameters of the five-parameter bidirectional reflectance distribution function (BRDF) model. To verify the performance of the hybrid ABC algorithm, we measured BRDF of three kinds of samples and simulated the undetermined parameters of the five-parameter BRDF model using the hybrid ABC algorithm and the genetic algorithm, respectively. The experimental results demonstrate that the hybrid ABC algorithm outperforms the genetic algorithm in convergence speed, accuracy, and time efficiency under the same conditions.

  16. Bacterial content in runoff from simulated rainfall applied to plots amended with poultry litter

    USDA-ARS?s Scientific Manuscript database

    To evaluate potential bacterial runoff from poultry litter, litter was applied to test plots and exposed to simulated rainfall 1, 8 or 15 d after litter application. Runoff samples were tested for Salmonella and Campylobacter, two bacterial pathogens commonly associated with poultry, as well as com...

  17. Probiotics Reduce Necrotizing Enterocolitis Severity in HIV-exposed Premature Infants.

    PubMed

    Van Niekerk, Evette; Nel, Daniel G; Blaauw, Reneé; Kirsten, Gert F

    2015-06-01

    To assess the effect of probiotics on the incidence of necrotizing enterocolitis (NEC) in premature infants born to human immunodeficiency virus (HIV)-positive and HIV-negative women. HIV-exposed and HIV-unexposed premature infants were randomized to either the probiotic or the placebo group. The probiotic consisted of 1 × 10(9) colony-forming units, Lactobacillus rhamnosus GG and Bifidobacterium infantis per day. In total, 74 HIV-exposed and 110 HIV-unexposed infants were enrolled and randomized. The incidence of death [4 (5.4%) vs. 7 (6%); p = 0.79] and NEC [4 (5%) vs. 5 (5%); p = 0.76] did not differ significantly between the HIV-exposed and HIV-unexposed groups. A significant difference was found for total NEC incidence between the study and control groups [3 (3%) vs. 6 (6%); p = 0.029]. The incidence of NEC in the HIV-exposed group differed significantly [Bells I 2 (5%) vs. Bells III 2 (5%); p = 0.045). Probiotic supplementation reduced the incidence of NEC in the premature very low birth weight infants; however, results failed to show a lower incidence of NEC in HIV-exposed premature infants. A reduction in the severity of disease was found in the HIV-exposed study group. © The Author [2015]. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  18. Suitability of Optical, Physical and Chemical Measurements for Detection of Changes in Bacterial Drinking Water Quality

    PubMed Central

    Ikonen, Jenni; Pitkänen, Tarja; Miettinen, Ilkka T.

    2013-01-01

    In this study, different optical, physical and chemical measurements were tested for their capacity to detect changes in water quality. The tests included UV-absorbance at 254 nm, absorbance at 420 nm, turbidity, particle counting, temperature, pH, electric conductivity (EC), free chlorine concentration and ATP concentration measurements. Special emphasis was given to investigating the potential for measurement tools to detect changes in bacterial concentrations in drinking water. Bacterial colony counts (CFU) and total bacterial cell counts (TBC) were used as reference methods for assessing the bacterial water quality. The study consists of a series of laboratory scale experiments: monitoring of regrowth of Pseudomonas fluorescens, estimation of the detection limits for optical measurements using Escherichia coli dilutions, verification of the relationships by analysing grab water samples from various distribution systems and utilisation of the measurements in the case of an accidentally contaminated distribution network. We found significant correlations between the tested measurements and the bacterial water quality. As the bacterial contamination of water often co-occurs with the intrusion of matrixes containing mainly non-bacterial components, the tested measurement tools can be considered to have the potential to rapidly detect any major changes in drinking water quality. PMID:24284353

  19. Suitability of optical, physical and chemical measurements for detection of changes in bacterial drinking water quality.

    PubMed

    Ikonen, Jenni; Pitkänen, Tarja; Miettinen, Ilkka T

    2013-10-25

    In this study, different optical, physical and chemical measurements were tested for their capacity to detect changes in water quality. The tests included UV-absorbance at 254 nm, absorbance at 420 nm, turbidity, particle counting, temperature, pH, electric conductivity (EC), free chlorine concentration and ATP concentration measurements. Special emphasis was given to investigating the potential for measurement tools to detect changes in bacterial concentrations in drinking water. Bacterial colony counts (CFU) and total bacterial cell counts (TBC) were used as reference methods for assessing the bacterial water quality. The study consists of a series of laboratory scale experiments: monitoring of regrowth of Pseudomonas fluorescens, estimation of the detection limits for optical measurements using Escherichia coli dilutions, verification of the relationships by analysing grab water samples from various distribution systems and utilisation of the measurements in the case of an accidentally contaminated distribution network. We found significant correlations between the tested measurements and the bacterial water quality. As the bacterial contamination of water often co-occurs with the intrusion of matrixes containing mainly non-bacterial components, the tested measurement tools can be considered to have the potential to rapidly detect any major changes in drinking water quality.

  20. Changes in the rumen bacterial microbiome of cattle exposed to ponderosa pine needles.

    PubMed

    Welch, K D; Stonecipher, C A; Gardner, D R; Cook, D; Pfister, J A

    2017-05-01

    Consumption of ponderosa pine needles, as well as needles and bark from a number of other trees, can cause abortions in cattle. The abortifacient compounds in these trees are labdane resin acids, including isocupressic acid and agathic acid. Previous research has demonstrated that cattle conditioned to pine needles metabolize the labdane resin acids more quickly than naïve cattle. The results from that study indicated that changes had occurred in the rumen of conditioned cattle. Therefore, in this study, the changes that occurred in the rumen bacterial microflora of cattle during exposure to ponderosa pine needles were evaluated. Cattle were dosed with ground pine needles twice daily for 7 d. Rumen samples were collected on d 0, 3, 7, and 14 (7 d after treatment stopped) and ruminal bacterial microbiome analyses were performed. There were 372 different genera of bacteria identified in the rumen samples. Principal coordinate analysis indicated that there was a significant difference in the rumen bacterial composition between the time points. There were 18 genera that increased in abundance from d 0 to d 7. Twenty three genera decreased in abundance from d 0 to d 7. The results from this study demonstrated that exposure of cattle to pine needles caused a clear shift in the rumen microbiome composition. In general, this shift lasted less than 1 wk post exposure, which indicates that any prophylactic treatment to manipulate the ruminal metabolism of the abortifacient compounds in pine needles would need to be continuously administered to maintain the necessary microbial composition in the rumen.

  1. Influence of Honey Bee Genotype and Wintering Method on Wintering Performance of Varroa destructor (Parasitiformes: Varroidae)-Infected Honey Bee (Hymenoptera: Apidae) Colonies in a Northern Climate.

    PubMed

    Bahreini, Rassol; Currie, Robert W

    2015-08-01

    The objective of this study was to assess the effectiveness of a cooperative breeding program designed to enhance winter survival of honey bees (Apis mellifera L.) when exposed to high levels of varroa (Varroa destructor Anderson and Trueman) in outdoor-wintered and indoor-wintered colonies. Half of the colonies from selected and unselected stocks were randomly assigned to be treated with late autumn oxalic acid treatment or to be left untreated. Colonies were then randomly assigned to be wintered either indoors (n = 37) or outdoors (n = 40). Late autumn treatment with oxalic acid did not improve wintering performance. However, genotype of bees affected colony survival and the proportion of commercially viable colonies in spring, as indicated by greater rates of colony survival and commercially viable colonies for selected stock (43% survived and 33% were viable) in comparison to unselected stock (19% survived and 9% were viable) across all treatment groups. Indoor wintering improved spring bee population score, proportion of colonies surviving, and proportion of commercially viable colonies relative to outdoor wintering (73% of selected stock and 41% of unselected stock survived during indoor wintering). Selected stock showed better "tolerance" to varroa as the selected stock also maintained higher bee populations relative to unselected stock. However, there was no evidence of "resistance" in selected colonies (reduced mite densities). Collectively, this experiment showed that breeding can improve tolerance to varroa and this can help minimize colony loss through winter and improve colony wintering performance. Overall, colony wintering success of both genotypes of bees was better when colonies were wintered indoors than when colonies were wintered outdoors. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  2. First Recorded Loss of an Emperor Penguin Colony in the Recent Period of Antarctic Regional Warming: Implications for Other Colonies

    PubMed Central

    Trathan, Philip N.; Fretwell, Peter T.; Stonehouse, Bernard

    2011-01-01

    In 1948, a small colony of emperor penguins Aptenodytes forsteri was discovered breeding on Emperor Island (67° 51′ 52″ S, 68° 42′ 20″ W), in the Dion Islands, close to the West Antarctic Peninsula (Stonehouse 1952). When discovered, the colony comprised approximately 150 breeding pairs; these numbers were maintained until 1970, after which time the colony showed a continuous decline. By 1999 there were fewer than 20 pairs, and in 2009 high-resolution aerial photography revealed no remaining trace of the colony. Here we relate the decline and loss of the Emperor Island colony to a well-documented rise in local mean annual air temperature and coincident decline in seasonal sea ice duration. The loss of this colony provides empirical support for recent studies (Barbraud & Weimerskirch 2001; Jenouvrier et al 2005, 2009; Ainley et al 2010; Barber-Meyer et al 2005) that have highlighted the vulnerability of emperor penguins to changes in sea ice duration and distribution. These studies suggest that continued climate change is likely to impact upon future breeding success and colony viability for this species. Furthermore, a recent circumpolar study by Fretwell & Trathan (2009) highlighted those Antarctic coastal regions where colonies appear most vulnerable to such changes. Here we examine which other colonies might be at risk, discussing various ecological factors, some previously unexplored, that may also contribute to future declines. The implications of this are important for future modelling work and for understanding which colonies actually are most vulnerable. PMID:21386883

  3. Antimicrobial effect against different bacterial strains and bacterial adaptation to essential oils used as feed additives.

    PubMed

    Melo, Antonio Diego Brandão; Amaral, Amanda Figueiredo; Schaefer, Gustavo; Luciano, Fernando Bittencourt; de Andrade, Carla; Costa, Leandro Batista; Rostagno, Marcos Horácio

    2015-10-01

    The aim of this study was to evaluate the antimicrobial activity and determine the minimum bactericidal concentration (MBC) of the essential oils derived from Origanum vulgare (oregano), Melaleuca alternifolia (tea tree), Cinnamomum cassia (cassia), and Thymus vulgaris (white thyme) against Salmonella Typhimurium, Salmonella Enteritidis, Escherichia coli, Staphylococcus aureus and Enterococcus faecalis. The study also investigated the ability of these different bacterial strains to develop adaptation after repetitive exposure to sub-lethal concentrations of these essential oils. The MBC of the essential oils studied was determined by disc diffusion and broth dilution methods. All essential oils showed antimicrobial effect against all bacterial strains. In general, the development of adaptation varied according to the bacterial strain and the essential oil (tea tree > white thyme > oregano). Therefore, it is important to use essential oils at efficient bactericidal doses in animal feed, food, and sanitizers, since bacteria can rapidly develop adaptation when exposed to sub-lethal concentrations of these oils.

  4. Antimicrobial effect against different bacterial strains and bacterial adaptation to essential oils used as feed additives

    PubMed Central

    Melo, Antonio Diego Brandão; Amaral, Amanda Figueiredo; Schaefer, Gustavo; Luciano, Fernando Bittencourt; de Andrade, Carla; Costa, Leandro Batista; Rostagno, Marcos Horácio

    2015-01-01

    The aim of this study was to evaluate the antimicrobial activity and determine the minimum bactericidal concentration (MBC) of the essential oils derived from Origanum vulgare (oregano), Melaleuca alternifolia (tea tree), Cinnamomum cassia (cassia), and Thymus vulgaris (white thyme) against Salmonella Typhimurium, Salmonella Enteritidis, Escherichia coli, Staphylococcus aureus and Enterococcus faecalis. The study also investigated the ability of these different bacterial strains to develop adaptation after repetitive exposure to sub-lethal concentrations of these essential oils. The MBC of the essential oils studied was determined by disc diffusion and broth dilution methods. All essential oils showed antimicrobial effect against all bacterial strains. In general, the development of adaptation varied according to the bacterial strain and the essential oil (tea tree > white thyme > oregano). Therefore, it is important to use essential oils at efficient bactericidal doses in animal feed, food, and sanitizers, since bacteria can rapidly develop adaptation when exposed to sub-lethal concentrations of these oils. PMID:26424908

  5. Soil water availability and microsite mediate fungal and bacterial phospholipid fatty acid biomarker abundances in Mojave Desert soils exposed to elevated atmospheric CO2

    NASA Astrophysics Data System (ADS)

    Jin, V. L.; Schaeffer, S. M.; Ziegler, S. E.; Evans, R. D.

    2011-06-01

    Changes in the rates of nitrogen (N) cycling, microbial carbon (C) substrate use, and extracellular enzyme activities in a Mojave Desert ecosystem exposed to elevated atmospheric CO2 suggest shifts in the size and/or functional characteristics of microbial assemblages in two dominant soil microsites: plant interspaces and under the dominant shrub Larrea tridentata. We used ester-linked phospholipid fatty acid (PLFA) biomarkers as a proxy for microbial biomass to quantify spatial and temporal differences in soil microbial communities from February 2003 to May 2005. Further, we used the 13C signature of the fossil CO2 source for elevated CO2 plots to trace recent plant C inputs into soil organic matter (SOM) and broad microbial groups using δ13C (‰). Differences between individual δ13CPLFA and δ13CSOM for fungal biomarkers indicated active metabolism of newer C in elevated CO2 soils. Total PLFA-C was greater in shrub microsites compared to plant interspaces, and CO2 treatment differences within microsites increased under higher soil water availability. Total, fungal, and bacterial PLFA-C increased with decreasing soil volumetric water content (VWC) in both microsites, suggesting general adaptations to xeric desert conditions. Increases in fungal-to-bacterial PLFA-C ratio with decreasing VWC reflected functional group-specific responses to changing soil water availability. While temporal and spatial extremes in resource availability in desert ecosystems contribute to the difficulty in identifying common trends or mechanisms driving microbial responses in less extreme environments, we found that soil water availability and soil microsite interacted with elevated CO2 to shift fungal and bacterial biomarker abundances in Mojave Desert soils.

  6. Estimation of lactic acid bacterial cell number by DNA quantification.

    PubMed

    Ishii, Masaki; Matsumoto, Yasuhiko; Sekimizu, Kazuhisa

    2018-01-01

    Lactic acid bacteria are provided by fermented foods, beverages, medicines, and supplements. Because the beneficial effects of medicines and supplements containing functional lactic acid bacteria are related to the bacterial cell number, it is important to establish a simple method for estimating the total number of lactic acid bacterial cells in the products for quality control. Almost all of the lactic acid bacteria in the products are dead, however, making it difficult to estimate the total number of lactic acid bacterial cells in the products using a standard colony-counting method. Here we estimated the total lactic acid bacterial cell number in samples containing dead bacteria by quantifying the DNA. The number of viable Enterococcus faecalis 0831-07 cells decreased to less than 1 × 10 -8 by 15 min of heat treatment at 80°C. The amount of extracted DNA from heat-treated cells was 78% that of non-heated cells. The number of viable Lactobacillus paraplantarum 11-1 cells decreased to 1 × 10 -4 after 4 days culture. The amount of extracted DNA of the long-cultured cells, however, was maintained at 97%. These results suggest that cell number of lactic acid bacteria killed by heat-treatment or long-term culture can be estimated by DNA quantification.

  7. Statistical modeling of dental unit water bacterial test kit performance.

    PubMed

    Cohen, Mark E; Harte, Jennifer A; Stone, Mark E; O'Connor, Karen H; Coen, Michael L; Cullum, Malford E

    2007-01-01

    While it is important to monitor dental water quality, it is unclear whether in-office test kits provide bacterial counts comparable to the gold standard method (R2A). Studies were conducted on specimens with known bacterial concentrations, and from dental units, to evaluate test kit accuracy across a range of bacterial types and loads. Colony forming units (CFU) were counted for samples from each source, using R2A and two types of test kits, and conformity to Poisson distribution expectations was evaluated. Poisson regression was used to test for effects of source and device, and to estimate rate ratios for kits relative to R2A. For all devices, distributions were Poisson for low CFU/mL when only beige-pigmented bacteria were considered. For higher counts, R2A remained Poisson, but kits exhibited over-dispersion. Both kits undercounted relative to R2A, but the degree of undercounting was reasonably stable. Kits did not grow pink-pigmented bacteria from dental-unit water identified as Methylobacterium rhodesianum. Only one of the test kits provided results with adequate reliability at higher bacterial concentrations. Undercount bias could be estimated for this device and used to adjust test kit results. Insensitivity to methylobacteria spp. is problematic.

  8. Gestational diabetes induces alterations in the function of neonatal endothelial colony-forming cells.

    PubMed

    Blue, Emily K; DiGiuseppe, Robert; Derr-Yellin, Ethel; Acosta, Juan Carlos; Pay, S Louise; Hanenberg, Helmut; Schellinger, Megan M; Quinney, Sara K; Mund, Julie A; Case, Jamie; Haneline, Laura S

    2014-02-01

    Children born to mothers with gestational diabetes mellitus (GDM) experience increased risk of developing hypertension, type 2 diabetes mellitus, and obesity. Disrupted function of endothelial colony-forming cells (ECFCs) may contribute to this enhanced risk. The goal of this study was to determine whether cord blood ECFCs from GDM pregnancies exhibit altered functionality. ECFCs isolated from the cord blood of control and GDM pregnancies were assessed for proliferation, senescence, and Matrigel network formation. The requirement for p38MAPK in hyperglycemia-induced senescence was determined using inhibition and overexpression studies. GDM-exposed ECFCs were more proliferative than control ECFCs. However, GDM-exposed ECFCs exhibited decreased network-forming ability in Matrigel. Aging of ECFCs by serial passaging led to increased senescence and reduced proliferation of GDM-exposed ECFCs. ECFCs from GDM pregnancies were resistant to hyperglycemia-induced senescence compared with those from controls. In response to hyperglycemia, control ECFCs activated p38MAPK, which was required for hyperglycemia-induced senescence. In contrast, GDM-exposed ECFCs showed no change in p38MAPK activation under equivalent conditions. Intrauterine exposure of ECFCs to GDM induces unique phenotypic alterations. The resistance of GDM-exposed ECFCs to hyperglycemia-induced senescence and decreased p38MAPK activation suggest that these progenitor cells have undergone changes that induce tolerance to a hyperglycemic environment.

  9. Use of granulocyte-colony stimulating factor to prevent recurrent clozapine-induced neutropenia on drug rechallenge: A systematic review of the literature and clinical recommendations.

    PubMed

    Myles, Nicholas; Myles, Hannah; Clark, Scott R; Bird, Robert; Siskind, Dan

    2017-10-01

    Clozapine is the most effective medication for treatment-refractory schizophrenia; however, its use is contraindicated in people who have had previous clozapine-induced neutropenia. Co-prescription of granulocyte-colony stimulating factor may prevent recurrent neutropenia and allow continuation or rechallenge of clozapine. Systematic review of literature reporting the use of granulocyte-colony stimulating factor to allow rechallenge or continuation of clozapine in people with previous episodes of clozapine-induced neutropenia. The efficacy of granulocyte-colony stimulating factor and predictors of successful rechallenge will be determined to elucidate whether evidence-based recommendations can be made regarding the use of granulocyte-colony stimulating factor in this context. A total of 17 articles were identified that reported on clozapine rechallenge with granulocyte-colony stimulating factor support. In all, 76% of cases were able to continue clozapine at median follow-up of 12 months. There were no clear clinical or laboratory predictors of successful rechallenge; however, initial neutropenia was more severe in successful cases compared to unsuccessful cases. Cases co-prescribed lithium had lower success rates of rechallenge (60%) compared to those who were not prescribed lithium (81%). The most commonly reported rechallenge strategy was use of filgrastim 150-480 µg between daily to three times a week. There were no medication-specific side effects of granulocyte-colony stimulating factor reported apart from euphoria in one case. Three cases who failed granulocyte-colony stimulating factor had bacterial infection at time of recurrent neutropenia. No deaths were reported. Preliminary data suggest granulocyte-colony stimulating factor is safe and effective in facilitating rechallenge with clozapine. Clinical recommendations for use are discussed.

  10. In vitro anti-biofilm and anti-bacterial activity of Junceella juncea for its biomedical application

    PubMed Central

    Kumar, P; Selvi, S Senthamil; Govindaraju, M

    2012-01-01

    Objective To investigate the anti-biofilm and anti-bacterial activity of Junceella juncea (J. juncea) against biofilm forming pathogenic strains. Methods Gorgonians were extracted with methanol and analysed with fourier transform infrared spectroscopy. Biofilm forming pathogens were identified by Congo red agar supplemented with sucrose. A quantitative spectrophotometric method was used to monitor in vitro biofilm reduction by microtitre plate assay. Anti-bacterial activity of methanolic gorgonian extract (MGE) was carried out by disc diffusion method followed by calculating the percentage of increase with crude methanol (CM). Results The presence of active functional group was exemplified by FT-IR spectroscopy. Dry, black, crystalline colonies confirm the production of extracellular polymeric substances responsible for biofilm formation in Congo red agar. MGE exhibited potential anti-biofilm activity against all tested bacterial strains. The anti-bacterial activity of methanolic extract was comparably higher in Salmonella typhii followed by Escherichia coli, Vibrio cholerae and Shigella flexneri. The overall percentage of increase was higher by 50.2% to CM. Conclusions To conclude, anti-biofilm and anti-bacterial efficacy of J. juncea is impressive over biofilm producing pathogens and are good source for novel anti-bacterial compounds. PMID:23593571

  11. Crop Pollination Exposes Honey Bees to Pesticides Which Alters Their Susceptibility to the Gut Pathogen Nosema ceranae

    PubMed Central

    Pettis, Jeffery S.; Lichtenberg, Elinor M.; Andree, Michael; Stitzinger, Jennie; Rose, Robyn; vanEngelsdorp, Dennis

    2013-01-01

    Recent declines in honey bee populations and increasing demand for insect-pollinated crops raise concerns about pollinator shortages. Pesticide exposure and pathogens may interact to have strong negative effects on managed honey bee colonies. Such findings are of great concern given the large numbers and high levels of pesticides found in honey bee colonies. Thus it is crucial to determine how field-relevant combinations and loads of pesticides affect bee health. We collected pollen from bee hives in seven major crops to determine 1) what types of pesticides bees are exposed to when rented for pollination of various crops and 2) how field-relevant pesticide blends affect bees’ susceptibility to the gut parasite Nosema ceranae. Our samples represent pollen collected by foragers for use by the colony, and do not necessarily indicate foragers’ roles as pollinators. In blueberry, cranberry, cucumber, pumpkin and watermelon bees collected pollen almost exclusively from weeds and wildflowers during our sampling. Thus more attention must be paid to how honey bees are exposed to pesticides outside of the field in which they are placed. We detected 35 different pesticides in the sampled pollen, and found high fungicide loads. The insecticides esfenvalerate and phosmet were at a concentration higher than their median lethal dose in at least one pollen sample. While fungicides are typically seen as fairly safe for honey bees, we found an increased probability of Nosema infection in bees that consumed pollen with a higher fungicide load. Our results highlight a need for research on sub-lethal effects of fungicides and other chemicals that bees placed in an agricultural setting are exposed to. PMID:23894612

  12. The combined effects of a monotonous diet and exposure to thiamethoxam on the performance of bumblebee micro-colonies.

    PubMed

    Dance, C; Botías, C; Goulson, D

    2017-05-01

    There is a pressing need to better understand the factors contributing to declines of wild pollinators such as bumblebees. Many different contributors have been postulated including: loss of flower-rich habitats and nesting sites; monotonous diets; impacts of invasive pathogens; exposure to pesticides such as neonicotinoids. Past research has tended to investigate the impacts of these stressors in isolation, despite the increasing recognition that bees are simultaneously exposed to a combination of stressors, with potentially additive or synergistic effects. No studies to date have investigated the combined effects of a monotonous diet and exposure to pesticides. Using queenless micro-colonies of Bombus terrestris audax, we examined this interaction by providing bees with monofloral or polyfloral pollen that was either contaminated with field-realistic levels of thiamethoxam, a commonly used neonicotinoid, or not contaminated. Both treatments were found to have a significant effect on various parameters relating to micro-colony performance. Specifically, both pesticide-treated micro-colonies and those fed monofloral pollen grew more slowly than those given polyfloral pollen or pollen without pesticides. The two factors appeared to act additively. Micro-colonies given monofloral pollens also exhibited lower reproductive efforts and produced smaller drones. Although further research is needed to examine whether similar effects are found in whole colonies, these findings increase our understanding of the likely effects of multiple stressors associated with agricultural intensification on bee declines. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. A branching process model for the analysis of abortive colony size distributions in carbon ion-irradiated normal human fibroblasts.

    PubMed

    Sakashita, Tetsuya; Hamada, Nobuyuki; Kawaguchi, Isao; Hara, Takamitsu; Kobayashi, Yasuhiko; Saito, Kimiaki

    2014-05-01

    A single cell can form a colony, and ionizing irradiation has long been known to reduce such a cellular clonogenic potential. Analysis of abortive colonies unable to continue to grow should provide important information on the reproductive cell death (RCD) following irradiation. Our previous analysis with a branching process model showed that the RCD in normal human fibroblasts can persist over 16 generations following irradiation with low linear energy transfer (LET) γ-rays. Here we further set out to evaluate the RCD persistency in abortive colonies arising from normal human fibroblasts exposed to high-LET carbon ions (18.3 MeV/u, 108 keV/µm). We found that the abortive colony size distribution determined by biological experiments follows a linear relationship on the log-log plot, and that the Monte Carlo simulation using the RCD probability estimated from such a linear relationship well simulates the experimentally determined surviving fraction and the relative biological effectiveness (RBE). We identified the short-term phase and long-term phase for the persistent RCD following carbon-ion irradiation, which were similar to those previously identified following γ-irradiation. Taken together, our results suggest that subsequent secondary or tertiary colony formation would be invaluable for understanding the long-lasting RCD. All together, our framework for analysis with a branching process model and a colony formation assay is applicable to determination of cellular responses to low- and high-LET radiation, and suggests that the long-lasting RCD is a pivotal determinant of the surviving fraction and the RBE.

  14. Multifractality in individual honeybee behavior hints at colony-specific social cascades: Reanalysis of radio-frequency identification data from five different colonies

    NASA Astrophysics Data System (ADS)

    Carver, Nicole S.; Kelty-Stephen, Damian G.

    2017-02-01

    Honeybees (Apis mellifera) exhibit complex coordination and interaction across multiple behaviors such as swarming. This coordination among honeybees in the same colony is remarkably similar to the concept of informational cascades. The multifractal geometry of cascades suggests that multifractal measures of individual honeybee activity might carry signatures of these colony-wide coordinations. The present work reanalyzes time stamps of entrances to and exits from the hive captured by radio-frequency identification (RFID) sensors reading RFID tags on individual bees. Indeed, both multifractal spectrum width for individual bees' inter-reading interval series and differences of those widths from surrogates significantly predicted not just whether the individual bee's hive had a mesh enclosure but also predicted the specific membership of individual bees in one of five colonies. The significant effects of multifractality in matching honeybee activity to type of colony and, further, matching individual honeybees to their exact home colony suggests that multifractality quantifies key features of the colony-wide interactions across many scales. This relevance of multifractality to predicting colony type or colony membership adds additional credence to the cascade metaphor for colony organization. Perhaps, multifractality provides a new tool for exploring the relationship between individual organisms and larger, more complex social behaviors.

  15. Sphagnum mosses harbour highly specific bacterial diversity during their whole lifecycle.

    PubMed

    Bragina, Anastasia; Berg, Christian; Cardinale, Massimiliano; Shcherbakov, Andrey; Chebotar, Vladimir; Berg, Gabriele

    2012-04-01

    Knowledge about Sphagnum-associated microbial communities, their structure and their origin is important to understand and maintain climate-relevant Sphagnum-dominated bog ecosystems. We studied bacterial communities of two cosmopolitan Sphagnum species, which are well adapted to different abiotic parameters (Sphagnum magellanicum, which are strongly acidic and ombrotrophic, and Sphagnum fallax, which are weakly acidic and mesotrophic), in three Alpine bogs in Austria by a multifaceted approach. Great differences between bacterial fingerprints of both Sphagna were found independently from the site. This remarkable specificity was confirmed by a cloning and a deep sequencing approach. Besides the common Alphaproteobacteria, we found a discriminative spectrum of bacteria; although Gammaproteobacteria dominated S. magellanicum, S. fallax was mainly colonised by Verrucomicrobia and Planctomycetes. Using this information for fluorescent in situ hybridisation analyses, corresponding colonisation patterns for Alphaproteobacteria and Planctomycetes were detected. Bacterial colonies were found in high abundances inside the dead big hyalocytes, but they were always connected with the living chlorocytes. Using multivariate statistical analysis, the abiotic factors nutrient richness and pH were identified to modulate the composition of Sphagnum-specific bacterial communities. Interestingly, we found that the immense bacterial diversity was transferred via the sporophyte to the gametophyte, which can explain the high specificity of Sphagnum-associated bacteria over long distances. In contrast to higher plants, which acquire their bacteria mainly from the environment, mosses as the phylogenetically oldest land plants maintain their bacterial diversity within the whole lifecycle.

  16. Sphagnum mosses harbour highly specific bacterial diversity during their whole lifecycle

    PubMed Central

    Bragina, Anastasia; Berg, Christian; Cardinale, Massimiliano; Shcherbakov, Andrey; Chebotar, Vladimir; Berg, Gabriele

    2012-01-01

    Knowledge about Sphagnum-associated microbial communities, their structure and their origin is important to understand and maintain climate-relevant Sphagnum-dominated bog ecosystems. We studied bacterial communities of two cosmopolitan Sphagnum species, which are well adapted to different abiotic parameters (Sphagnum magellanicum, which are strongly acidic and ombrotrophic, and Sphagnum fallax, which are weakly acidic and mesotrophic), in three Alpine bogs in Austria by a multifaceted approach. Great differences between bacterial fingerprints of both Sphagna were found independently from the site. This remarkable specificity was confirmed by a cloning and a deep sequencing approach. Besides the common Alphaproteobacteria, we found a discriminative spectrum of bacteria; although Gammaproteobacteria dominated S. magellanicum, S. fallax was mainly colonised by Verrucomicrobia and Planctomycetes. Using this information for fluorescent in situ hybridisation analyses, corresponding colonisation patterns for Alphaproteobacteria and Planctomycetes were detected. Bacterial colonies were found in high abundances inside the dead big hyalocytes, but they were always connected with the living chlorocytes. Using multivariate statistical analysis, the abiotic factors nutrient richness and pH were identified to modulate the composition of Sphagnum-specific bacterial communities. Interestingly, we found that the immense bacterial diversity was transferred via the sporophyte to the gametophyte, which can explain the high specificity of Sphagnum-associated bacteria over long distances. In contrast to higher plants, which acquire their bacteria mainly from the environment, mosses as the phylogenetically oldest land plants maintain their bacterial diversity within the whole lifecycle. PMID:22094342

  17. Assessing the living and dead proportions of cold-water coral colonies: implications for deep-water Marine Protected Area monitoring in a changing ocean.

    PubMed

    Vad, Johanne; Orejas, Covadonga; Moreno-Navas, Juan; Findlay, Helen S; Roberts, J Murray

    2017-01-01

    Coral growth patterns result from an interplay of coral biology and environmental conditions. In this study colony size and proportion of live and dead skeletons in the cold-water coral (CWC) Lophelia pertusa (Linnaeus, 1758) were measured using video footage from Remotely Operated Vehicle (ROV) transects conducted at the inshore Mingulay Reef Complex (MRC) and at the offshore PISCES site (Rockall Bank) in the NE Atlantic. The main goal of this paper was to explore the development of a simple method to quantify coral growth and its potential application as an assessment tool of the health of these remote habitats. Eighteen colonies were selected and whole colony and dead/living layer size were measured. Live to dead layer ratios for each colony were then determined and analysed. The age of each colony was estimated using previously published data. Our paper shows that: (1) two distinct morphotypes can be described: at the MRC, colonies displayed a 'cauliflower-shaped' morphotype whereas at the PISCES site, colonies presented a more flattened 'bush-shaped' morphotype; (2) living layer size was positively correlated with whole colony size; (3) live to dead layer ratio was negatively correlated to whole colony size; (4) live to dead layer ratio never exceeded 0.27. These results suggest that as a colony develops and its growth rate slows down, the proportion of living polyps in the colony decreases. Furthermore, at least 73% of L. pertusa colonies are composed of exposed dead coral skeleton, vulnerable to ocean acidification and the associated shallowing of the aragonite saturation horizon, with significant implications for future deep-sea reef framework integrity. The clear visual contrast between white/pale living and grey/dark dead portions of the colonies also gives a new way by which they can be visually monitored over time. The increased use of marine autonomous survey vehicles offers an important new platform from which such a surveying technique could be

  18. Bacterial Extracellular Polysaccharides in Biofilm Formation and Function

    PubMed Central

    Limoli, Dominique H.; Jones, Christopher J.; Wozniak, Daniel J.

    2015-01-01

    Microbes produce a biofilm matrix consisting of proteins, extracellular DNA, and polysaccharides that is integral in the formation of bacterial communities. Historical studies of polysaccharides revealed that their overproduction often alters the colony morphology and can be diagnostic in identifying certain species. The polysaccharide component of the matrix can provide many diverse benefits to the cells in the biofilm, including adhesion, protection, and structure. Aggregative polysaccharides act as molecular glue, allowing the bacterial cells to adhere to each other as well as surfaces. Adhesion facilitates the colonization of both biotic and abiotic surfaces by allowing the bacteria to resist physical stresses imposed by fluid movement that could separate the cells from a nutrient source. Polysaccharides can also provide protection from a wide range of stresses, such as desiccation, immune effectors, and predators such as phagocytic cells and amoebae. Finally, polysaccharides can provide structure to biofilms, allowing stratification of the bacterial community and establishing gradients of nutrients and waste products. This can be advantageous for the bacteria by establishing a heterogeneous population that is prepared to endure stresses created by the rapidly changing environments that many bacteria encounter. The diverse range of polysaccharide structures, properties, and roles highlight the importance of this matrix constituent to the successful adaptation of bacteria to nearly every niche. Here, we present an overview of the current knowledge regarding the diversity and benefits that polysaccharide production provides to bacterial communities within biofilms. PMID:26185074

  19. Bacterial Extracellular Polysaccharides in Biofilm Formation and Function.

    PubMed

    Limoli, Dominique H; Jones, Christopher J; Wozniak, Daniel J

    2015-06-01

    Microbes produce a biofilm matrix consisting of proteins, extracellular DNA, and polysaccharides that is integral in the formation of bacterial communities. Historical studies of polysaccharides revealed that their overproduction often alters the colony morphology and can be diagnostic in identifying certain species. The polysaccharide component of the matrix can provide many diverse benefits to the cells in the biofilm, including adhesion, protection, and structure. Aggregative polysaccharides act as molecular glue, allowing the bacterial cells to adhere to each other as well as surfaces. Adhesion facilitates the colonization of both biotic and abiotic surfaces by allowing the bacteria to resist physical stresses imposed by fluid movement that could separate the cells from a nutrient source. Polysaccharides can also provide protection from a wide range of stresses, such as desiccation, immune effectors, and predators such as phagocytic cells and amoebae. Finally, polysaccharides can provide structure to biofilms, allowing stratification of the bacterial community and establishing gradients of nutrients and waste products. This can be advantageous for the bacteria by establishing a heterogeneous population that is prepared to endure stresses created by the rapidly changing environments that many bacteria encounter. The diverse range of polysaccharide structures, properties, and roles highlight the importance of this matrix constituent to the successful adaptation of bacteria to nearly every niche. Here, we present an overview of the current knowledge regarding the diversity and benefits that polysaccharide production provides to bacterial communities within biofilms.

  20. Novel Prevention Strategies for Bacterial Infections in Cirrhosis

    PubMed Central

    Yan, Kathleen; Garcia-Tsao, Guadalupe

    2016-01-01

    Introduction Bacterial infections are a serious complication of cirrhosis, as they can lead to decompensation, multiple organ failure, and/or death. Preventing infections is therefore very relevant. Because gut bacterial translocation is their main pathogenic mechanism, prevention of infections is mostly based on the use of orally administered poorly absorbed antibiotics such as norfloxacin (selective intestinal decontamination). However, antibiotic prophylaxis leads to antibiotic resistance, limiting therapy and increasing morbidity and mortality. Prevention of bacterial infections in cirrhosis should therefore move away from antibiotics. Areas Covered This review focuses on various potentially novel methods to prevent infections in cirrhosis focusing on non-antibiotic strategies. The use of probiotics, nonselective intestinal decontamination with rifaximin, prokinetics and beta-blockers or fecal microbiota transplant as means of targeting altered gut microbiota, bile acids and FXR agonists are all potential alternatives to selective intestinal decontamination. Prokinetics and beta-blockers can improve intestinal motility, while bile acids and FXR agonists help by improving the intestinal barrier. Finally, granulocyte colony stimulating factor (G-CSF) and statins are emerging therapeutic strategies that may improve immune dysfunction in cirrhosis. Expert Opinion Evidence for these strategies has been restricted to animal studies and proof-of concept studies but we expect this to change in coming years. PMID:26799197

  1. Plymouth Colony, Massachusetts, USA

    NASA Image and Video Library

    1990-03-04

    Site of the original Plymouth Colony in Massachusetts (42.0N, 70.5), This detailed photo is rich in early American history. Plymouth Rock, the Pilgrims first stepping stone on North America and site of Plymouth Colony is located just behind the natural breakwater on the south shore of Plymouth Bay seen in the middle of the photo. The through canal to the south is part of the Intercoastal Canal system. Cape Cod is just south of the canal.

  2. Colourful parrot feathers resist bacterial degradation

    PubMed Central

    Burtt, Edward H.; Schroeder, Max R.; Smith, Lauren A.; Sroka, Jenna E.; McGraw, Kevin J.

    2011-01-01

    The brilliant red, orange and yellow colours of parrot feathers are the product of psittacofulvins, which are synthetic pigments known only from parrots. Recent evidence suggests that some pigments in bird feathers function not just as colour generators, but also preserve plumage integrity by increasing the resistance of feather keratin to bacterial degradation. We exposed a variety of colourful parrot feathers to feather-degrading Bacillus licheniformis and found that feathers with red psittacofulvins degraded at about the same rate as those with melanin and more slowly than white feathers, which lack pigments. Blue feathers, in which colour is based on the microstructural arrangement of keratin, air and melanin granules, and green feathers, which combine structural blue with yellow psittacofulvins, degraded at a rate similar to that of red and black feathers. These differences in resistance to bacterial degradation of differently coloured feathers suggest that colour patterns within the Psittaciformes may have evolved to resist bacterial degradation, in addition to their role in communication and camouflage. PMID:20926430

  3. Wading birds as biological indicators 1975 colony survey

    USGS Publications Warehouse

    Custer, T.W.; Osborn, R.G.

    1977-01-01

    The suitability of wading birds (herons and their allies) as biological indicators in the coastal environment were studied in 1975 by 8 teams of investigators which located and censused 198 colonies along the Atlantic coast from Maine to Florida [USA]. Over 1/4 million breeding birds [Ardea herodias, Butorides virescens, Florida caerulea, Bubulcus ibis, Dichromanassa rufescens, Casmerodius albus, Egretta thula, Hydranassa tricolor, Nycticorax nycticorax, Nyctanassa violacea, Mycteria americana, Plegadis falcinellus, Eudocimus albus and Ajaia ajaja] were censused. The number of species in colonies ranged from 1-11. The number of 1- and 2-spp. colonies increased from Florida to Maine. Colony size decreased from Florida to Maine. Wading bird colony sites are generally active each year and the number of colonies may have recently increased in some areas of the coast. Species composition and total population of colonies fluctuate from year to year. The breeding population of wading birds was correlated with the area of coastal wetlands by state. Five teams of investigators studied the reproductive biology of 9 spp. in 13 colonies. Mean clutch size, the percentage of nests in which 1 or more eggs hatched and the overall percentage of eggs that hatched differed among colonies for some species, but no latitudinal gradient was found in any of these characteristics for any species. The use of wading birds to their full potential as biological indicators requires further exploration: survey and reproductive success methods need to be tested, the survey of colonies repeated, available historical information assembled and habitat requirements measured.

  4. Imaging the Population Dynamics of Bacterial Communities in the Zebrafish Gut

    NASA Astrophysics Data System (ADS)

    Jemielita, Matthew; Taormina, Michael; Burns, Adam; Zac Stephens, W.; Hampton, Jennifer; Guillemin, Karen; Parthasarathy, Raghuveer

    2013-03-01

    The vertebrate gut is home to a diverse microbial ecosystem whose composition has a strong influence on the development and health of the host organism. While researchers are increasingly able to identify the constituent members of the microbiome, very little is known about the spatial and temporal dynamics of commensal microbial communities, including the mechanisms by which communities nucleate, grow, and interact. We address these issues using a model organism: the larval zebrafish (Danio rerio) prepared microbe-free and inoculated with controlled compositions of fluorophore-expressing bacteria. Live imaging with light sheet fluorescence microscopy enables visualization of individual bacterial cells as well as growing colonies over the entire volume of the gut over periods up to 24 hours. We analyze the structure and dynamics of imaged bacterial communities, uncovering correlations between population size, growth rates, and the timing of inoculations that suggest the existence of active changes in the host environment induced by early bacterial exposure. Our data provide the first visualizations of gut microbiota development over an extended period of time in a vertebrate.

  5. Altered host resistance to Listeria monocytogenes in mice exposed to 1-chloroacetophenone (CN) vapours

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, P.; Kumar, P.; Zachariah, K.

    1992-06-01

    Short term repeated exposure of 1-chloroacetophenone (CN) vapours at a concentration of 0.153 mg per litre for 15 minutes daily on 10 consecutive days in Swiss albino male mice resulted in increased mortality to Listeria monocytogenes. Significantly elevated bacterial growth was observed in the spleen and liver of the CN exposed animals. The increased bacterial count in these organs was evident within 4-6 days post challenge as compared to vehicle exposed infected and unexposed infected animals. Increased susceptibility to infection has been considered to be the function of immune alteration due to cumulative short term effects of CN vapour inhalation.more » This may be attributed to immunotoxic effects of CN on T-cells mediated macrophage functions.« less

  6. Effect of GF-120 (Spinosad) Aerial Sprays on Colonies of the Stingless Bee Scaptotrigona mexicana (Hymenoptera: Apidae) and the Honey Bee (Hymenoptera: Apidae).

    PubMed

    Gómez-Escobar, Enoc; Liedo, Pablo; Montoya, Pablo; Méndez-Villarreal, Agustín; Guzmán, Miguel; Vandame, Rémy; Sánchez, Daniel

    2018-06-02

    Despite their relevant contribution to the conservation of tropical ecosystems and crop productivity through pollination, the stingless bees (Apidae: Meliponini) can be considered a group of neglected species in the assessment of pesticides upon nontarget organisms. In this article, we evaluated the effect of aerial sprays of the spinosad-based fruit fly toxic bait GF-120 upon colonies of the stingless bee Scaptotrigona mexicana Guérin (Hymenoptera: Apidae), an economically important and abundant species in some landscapes of Mexico, located in mango orchards. Colonies of the honey bee Apis mellifera L. (Hymenoptera: Apidae) were used for comparison. Eight colonies (four of A. mellifera and four of S. mexicana) were moved into each of two mango orchards, one was used as a control, with no insecticide application, and other received five weekly aerial sprays of GF-120. Foraging activity and strength of colonies of both species were measured nine times over the fruiting season, previous, during and after insecticide application. We did not find a significant difference in foraging activity and strength between exposed and control colonies of A. mellifera during the observation period. However, colonies of S. mexicana seemed to be affected by the exposure, as revealed by a reduction in colony strength. However, 1 yr later, with no insecticide applications, the colonies of both species were evaluated and found to be in good conditions. Our results showed that weekly aerial sprays of GF-120 are unlikely to generate acute poisoning in both species, even if in acute toxicity tests this product has been found to be highly active.

  7. Bacterial, Fungal, and Actinomycete Populations in Soils Receiving Repeated Applications of 2,4-Dichlorophenoxyacetic Acid and Trifluralin 1

    PubMed Central

    Breazeale, F. W.; Camper, N. D.

    1970-01-01

    Soil samples were collected from an untreated plot and plots receiving repeated applications of 2,4-dichlorophenoxyacetic acid (2,4-D) and α,α,α-trifluoro-2, 6-dinitro-N,N-dipropyl-p-toluidine (trifluralin); they were then plated on media specific for bacteria, fungi, and actinomycetes. The actinomycete colony count in the trifluralin-treated plot was greater than the control, but the same as the control in the 2,4-D-treated plot. The bacterial count was lower in both treated plots. Fungal colonies in the trifluralin-treated plots were greater than the control, but not different from the control in the 2,4-D-treated plot. PMID:5437308

  8. Predictive markers of honey bee colony collapse.

    PubMed

    Dainat, Benjamin; Evans, Jay D; Chen, Yan Ping; Gauthier, Laurent; Neumann, Peter

    2012-01-01

    Across the Northern hemisphere, managed honey bee colonies, Apis mellifera, are currently affected by abrupt depopulation during winter and many factors are suspected to be involved, either alone or in combination. Parasites and pathogens are considered as principal actors, in particular the ectoparasitic mite Varroa destructor, associated viruses and the microsporidian Nosema ceranae. Here we used long term monitoring of colonies and screening for eleven disease agents and genes involved in bee immunity and physiology to identify predictive markers of honeybee colony losses during winter. The data show that DWV, Nosema ceranae, Varroa destructor and Vitellogenin can be predictive markers for winter colony losses, but their predictive power strongly depends on the season. In particular, the data support that V. destructor is a key player for losses, arguably in line with its specific impact on the health of individual bees and colonies.

  9. Live to cheat another day: bacterial dormancy facilitates the social exploitation of β-lactamases

    PubMed Central

    Medaney, Frances; Dimitriu, Tatiana; Ellis, Richard J; Raymond, Ben

    2016-01-01

    The breakdown of antibiotics by β-lactamases may be cooperative, since resistant cells can detoxify their environment and facilitate the growth of susceptible neighbours. However, previous studies of this phenomenon have used artificial bacterial vectors or engineered bacteria to increase the secretion of β-lactamases from cells. Here, we investigated whether a broad-spectrum β-lactamase gene carried by a naturally occurring plasmid (pCT) is cooperative under a range of conditions. In ordinary batch culture on solid media, there was little or no evidence that resistant bacteria could protect susceptible cells from ampicillin, although resistant colonies could locally detoxify this growth medium. However, when susceptible cells were inoculated at high densities, late-appearing phenotypically susceptible bacteria grew in the vicinity of resistant colonies. We infer that persisters, cells that have survived antibiotics by undergoing a period of dormancy, founded these satellite colonies. The number of persister colonies was positively correlated with the density of resistant colonies and increased as antibiotic concentrations decreased. We argue that detoxification can be cooperative under a limited range of conditions: if the toxins are bacteriostatic rather than bacteridical; or if susceptible cells invade communities after resistant bacteria; or if dormancy allows susceptible cells to avoid bactericides. Resistance and tolerance were previously thought to be independent solutions for surviving antibiotics. Here, we show that these are interacting strategies: the presence of bacteria adopting one solution can have substantial effects on the fitness of their neighbours. PMID:26505830

  10. Improved Ant Colony Clustering Algorithm and Its Performance Study

    PubMed Central

    Gao, Wei

    2016-01-01

    Clustering analysis is used in many disciplines and applications; it is an important tool that descriptively identifies homogeneous groups of objects based on attribute values. The ant colony clustering algorithm is a swarm-intelligent method used for clustering problems that is inspired by the behavior of ant colonies that cluster their corpses and sort their larvae. A new abstraction ant colony clustering algorithm using a data combination mechanism is proposed to improve the computational efficiency and accuracy of the ant colony clustering algorithm. The abstraction ant colony clustering algorithm is used to cluster benchmark problems, and its performance is compared with the ant colony clustering algorithm and other methods used in existing literature. Based on similar computational difficulties and complexities, the results show that the abstraction ant colony clustering algorithm produces results that are not only more accurate but also more efficiently determined than the ant colony clustering algorithm and the other methods. Thus, the abstraction ant colony clustering algorithm can be used for efficient multivariate data clustering. PMID:26839533

  11. Bacteriocin from Bacillus subtilis as a novel drug against diabetic foot ulcer bacterial pathogens

    PubMed Central

    Joseph, Baby; Dhas, Berlina; Hena, Vimalin; Raj, Justin

    2013-01-01

    Objective To isolate and identify Bacillus subtilis (B. subtilis) from soil and to characterize and partially purify the bacteriocin. To evaluate the antimicrobial activity against four diabetic foot ulcer bacterial pathogens. Methods Genotypic identification was done based on Bergey's manual of systemic bacteriology. Antimicrobial susceptibility test was done by Kirby-Bauer disc diffusion method. Colonies were identified by colony morphology and biochemical characterization and also compared with MTCC 121 strain. Further identification was done by 16S rRNA sequencing. Inhibitory activities of partially purified bacteriocin on all the DFU isolates were done by agar well diffusion method. The strain was identified to produce bacteriocin by stab overlay assay. Bacteriocin was extracted by organic solvent extraction using chloroform, further purified by HPLC and physical, and chemical characterization was performed. Results The four isolates showed high level of resistance to amoxyclav and sensitivity to ciprofloxacin. HPLC purification revealed that the extracts are bacteriocin. The phylogenetic tree analysis results showed that the isolate was 99% related to B. subtilis BSF01. The results reveled activity to all the four isolates and high level of activity was seen in case of Klebsiella sp. Conclusions Partially purified bacteriocin was found to have antimicrobial activity against the four diabetic foot ulcer bacterial pathogens, which can thus be applied as a better drug molecule on further studies. The strain B. subtilis are found to be safe for use and these antimicrobial peptides can be used as an antimicrobial in humans to treat DFU bacterial pathogens. PMID:24093784

  12. Bacteriocin from Bacillus subtilis as a novel drug against diabetic foot ulcer bacterial pathogens.

    PubMed

    Joseph, Baby; Dhas, Berlina; Hena, Vimalin; Raj, Justin

    2013-12-01

    To isolate and identify Bacillus subtilis (B. subtilis) from soil and to characterize and partially purify the bacteriocin. To evaluate the antimicrobial activity against four diabetic foot ulcer bacterial pathogens. Genotypic identification was done based on Bergey's manual of systemic bacteriology. Antimicrobial susceptibility test was done by Kirby-Bauer disc diffusion method. Colonies were identified by colony morphology and biochemical characterization and also compared with MTCC 121 strain. Further identification was done by 16S rRNA sequencing. Inhibitory activities of partially purified bacteriocin on all the DFU isolates were done by agar well diffusion method. The strain was identified to produce bacteriocin by stab overlay assay. Bacteriocin was extracted by organic solvent extraction using chloroform, further purified by HPLC and physical, and chemical characterization was performed. The four isolates showed high level of resistance to amoxyclav and sensitivity to ciprofloxacin. HPLC purification revealed that the extracts are bacteriocin. The phylogenetic tree analysis results showed that the isolate was 99% related to B. subtilis BSF01. The results reveled activity to all the four isolates and high level of activity was seen in case of Klebsiella sp. Partially purified bacteriocin was found to have antimicrobial activity against the four diabetic foot ulcer bacterial pathogens, which can thus be applied as a better drug molecule on further studies. The strain B. subtilis are found to be safe for use and these antimicrobial peptides can be used as an antimicrobial in humans to treat DFU bacterial pathogens. Copyright © 2013 Asian Pacific Tropical Biomedical Magazine. Published by Elsevier B.V. All rights reserved.

  13. A quantitative model of honey bee colony population dynamics.

    PubMed

    Khoury, David S; Myerscough, Mary R; Barron, Andrew B

    2011-04-18

    Since 2006 the rate of honey bee colony failure has increased significantly. As an aid to testing hypotheses for the causes of colony failure we have developed a compartment model of honey bee colony population dynamics to explore the impact of different death rates of forager bees on colony growth and development. The model predicts a critical threshold forager death rate beneath which colonies regulate a stable population size. If death rates are sustained higher than this threshold rapid population decline is predicted and colony failure is inevitable. The model also predicts that high forager death rates draw hive bees into the foraging population at much younger ages than normal, which acts to accelerate colony failure. The model suggests that colony failure can be understood in terms of observed principles of honey bee population dynamics, and provides a theoretical framework for experimental investigation of the problem.

  14. Seasonality in oestrus and litter size in an assistance dog breeding colony in the United Kingdom.

    PubMed

    Wigham, Eleanor E; Moxon, Rachel S; England, Gary C W; Wood, James L N; Morters, Michelle K

    2017-10-07

    Evidence of seasonality in oestrus in bitches within specialist breeding programmes, such as those for assistance dogs, may support colony management through tailoring the distribution of resources required for breeding throughout the year. However, at present there are conflicting data regarding seasonality in oestrus (and litter size) in domestic dogs. The primary objective of this study was to investigate seasonal variations in oestrus and litter size in a large assistance dog breeding colony in the UK in order to optimise colony management. The authors analysed the annual distribution of 3624 observations of oestrus collected from 568 brood bitches from January 2005 to June 2014. The authors also evaluated the relationship between month and litter size for 1609 litters observed during the same period. There was no evidence of regular seasonal variations in oestrus or litter size by meteorological season or month. The lack of seasonality in oestrus may be a function of dogs in the UK, particularly valuable breeding bitches, being exposed to fairly constant environmental conditions throughout the year as a consequence of artificial light and heating during the winter months. The authors' findings suggest that special consideration of the annual distribution of oestrus and litter size is unnecessary for the management of assistance dog breeding colonies similar to those in the UK. © British Veterinary Association (unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  15. Deformed wing virus implicated in overwintering honeybee colony losses.

    PubMed

    Highfield, Andrea C; El Nagar, Aliya; Mackinder, Luke C M; Noël, Laure M-L J; Hall, Matthew J; Martin, Stephen J; Schroeder, Declan C

    2009-11-01

    The worldwide decline in honeybee colonies during the past 50 years has often been linked to the spread of the parasitic mite Varroa destructor and its interaction with certain honeybee viruses. Recently in the United States, dramatic honeybee losses (colony collapse disorder) have been reported; however, there remains no clear explanation for these colony losses, with parasitic mites, viruses, bacteria, and fungal diseases all being proposed as possible candidates. Common characteristics that most failing colonies share is a lack of overt disease symptoms and the disappearance of workers from what appears to be normally functioning colonies. In this study, we used quantitative PCR to monitor the presence of three honeybee viruses, deformed wing virus (DWV), acute bee paralysis virus (ABPV), and black queen cell virus (BQCV), during a 1-year period in 15 asymptomatic, varroa mite-positive honeybee colonies in Southern England, and 3 asymptomatic colonies confirmed to be varroa mite free. All colonies with varroa mites underwent control treatments to ensure that mite populations remained low throughout the study. Despite this, multiple virus infections were detected, yet a significant correlation was observed only between DWV viral load and overwintering colony losses. The long-held view has been that DWV is relatively harmless to the overall health status of honeybee colonies unless it is in association with severe varroa mite infestations. Our findings suggest that DWV can potentially act independently of varroa mites to bring about colony losses. Therefore, DWV may be a major factor in overwintering colony losses.

  16. Colony patterning and collective hyphal growth of filamentous fungi

    NASA Astrophysics Data System (ADS)

    Matsuura, Shu

    2002-11-01

    Colony morphology of wild and mutant strains of Aspergillus nidulans at various nutrient and agar levels was investigated. Two types of colony patterning were found for these strains. One type produced uniform colonies at all nutrient and agar levels tested, and the other exhibited morphological change into disordered ramified colonies at low nutrient levels. Both types showed highly condensed compact colonies at high nutrient levels on low agar media that was highly diffusive. Disordered colonies were found to develop with low hyphal extension rates at low nutrient levels. To understand basic pattern selection rules, a colony model with three parameters, i.e., the initial nutrient level and the step length of nutrient random walk as the external parameters, and the frequency of nutrient uptake as an internal parameter, was constructed. At low nutrient levels, with decreasing nutrient uptake frequency under diffusive conditions, the model colony exhibited onsets of disordered ramification. Further, in the growth process of A. nidulans, reduction of hyphal extension rate due to a population effect of hyphae was found when hyphae form three-dimensional dense colonies, as compared to the case in which hyphal growth was restricted into two-dimensional space. A hyphal population effect was introduced in the colony model. Thickening of colony periphery due to the population effect became distinctive as the nutrient diffusion effect was raised at high nutrient levels with low hyphal growth rate. It was considered that colony patterning and onset of disorder were strongly governed by the combination of nutrient diffusion and hyphal growth rate.

  17. Exposure to Electronic Cigarettes Impairs Pulmonary Anti-Bacterial and Anti-Viral Defenses in a Mouse Model

    PubMed Central

    Sussan, Thomas E.; Gajghate, Sachin; Thimmulappa, Rajesh K.; Ma, Jinfang; Kim, Jung-Hyun; Sudini, Kuladeep; Consolini, Nicola; Cormier, Stephania A.; Lomnicki, Slawo; Hasan, Farhana; Pekosz, Andrew; Biswal, Shyam

    2015-01-01

    Electronic cigarettes (E-cigs) have experienced sharp increases in popularity over the past five years due to many factors, including aggressive marketing, increased restrictions on conventional cigarettes, and a perception that E-cigs are healthy alternatives to cigarettes. Despite this perception, studies on health effects in humans are extremely limited and in vivo animal models have not been generated. Presently, we determined that E-cig vapor contains 7x1011 free radicals per puff. To determine whether E-cig exposure impacts pulmonary responses in mice, we developed an inhalation chamber for E-cig exposure. Mice that were exposed to E-cig vapor contained serum cotinine concentrations that are comparable to human E-cig users. E-cig exposure for 2 weeks produced a significant increase in oxidative stress and moderate macrophage-mediated inflammation. Since, COPD patients are susceptible to bacterial and viral infections, we tested effects of E-cigs on immune response. Mice that were exposed to E-cig vapor showed significantly impaired pulmonary bacterial clearance, compared to air-exposed mice, following an intranasal infection with Streptococcus pneumonia. This defective bacterial clearance was partially due to reduced phagocytosis by alveolar macrophages from E-cig exposed mice. In response to Influenza A virus infection, E-cig exposed mice displayed increased lung viral titers and enhanced virus-induced illness and mortality. In summary, this study reports a murine model of E-cig exposure and demonstrates that E-cig exposure elicits impaired pulmonary anti-microbial defenses. Hence, E-cig exposure as an alternative to cigarette smoking must be rigorously tested in users for their effects on immune response and susceptibility to bacterial and viral infections. PMID:25651083

  18. Varroa-Virus Interaction in Collapsing Honey Bee Colonies

    PubMed Central

    Francis, Roy M.; Nielsen, Steen L.; Kryger, Per

    2013-01-01

    Varroa mites and viruses are the currently the high-profile suspects in collapsing bee colonies. Therefore, seasonal variation in varroa load and viruses (Acute-Kashmir-Israeli complex (AKI) and Deformed Wing Virus (DWV)) were monitored in a year-long study. We investigated the viral titres in honey bees and varroa mites from 23 colonies (15 apiaries) under three treatment conditions: Organic acids (11 colonies), pyrethroid (9 colonies) and untreated (3 colonies). Approximately 200 bees were sampled every month from April 2011 to October 2011, and April 2012. The 200 bees were split to 10 subsamples of 20 bees and analysed separately, which allows us to determine the prevalence of virus-infected bees. The treatment efficacy was often low for both treatments. In colonies where varroa treatment reduced the mite load, colonies overwintered successfully, allowing the mites and viruses to be carried over with the bees into the next season. In general, AKI and DWV titres did not show any notable response to the treatment and steadily increased over the season from April to October. In the untreated control group, titres increased most dramatically. Viral copies were correlated to number of varroa mites. Most colonies that collapsed over the winter had significantly higher AKI and DWV titres in October compared to survivors. Only treated colonies survived the winter. We discuss our results in relation to the varroa-virus model developed by Stephen Martin. PMID:23526946

  19. Accumulation of neutral mutations in growing cell colonies with competition.

    PubMed

    Sorace, Ron; Komarova, Natalia L

    2012-12-07

    Neutral mutations play an important role in many biological processes including cancer initiation and progression, the generation of drug resistance in bacterial and viral diseases as well as cancers, and the development of organs in multicellular organisms. In this paper we study how neutral mutants are accumulated in nonlinearly growing colonies of cells subject to growth constraints such as crowding or lack of resources. We investigate different types of growth control which range from "division-controlled" to "death-controlled" growth (and various mixtures of both). In division-controlled growth, the burden of handling overcrowding lies with the process of cell-divisions, the divisions slow down as the carrying capacity is approached. In death-controlled growth, it is death rate that increases to slow down expansion. We show that division-controlled growth minimizes the number of accumulated mutations, and death-controlled growth corresponds to the maximum number of mutants. We check that these results hold in both deterministic and stochastic settings. We further develop a general (deterministic) theory of neutral mutations and achieve an analytical understanding of the mutant accumulation in colonies of a given size in the absence of back-mutations. The long-term dynamics of mutants in the presence of back-mutations is also addressed. In particular, with equal forward- and back-mutation rates, if division-controlled and a death-controlled types are competing for space and nutrients, cells obeying division-controlled growth will dominate the population. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. Pathogenic Leptospira species express surface-exposed proteins belonging to the bacterial immunoglobulin superfamily

    PubMed Central

    Matsunaga, James; Barocchi, Michele A.; Croda, Julio; Young, Tracy A.; Sanchez, Yolanda; Siqueira, Isadora; Bolin, Carole A.; Reis, Mitermayer G.; Riley, Lee W.; Haake, David A.; Ko, Albert I.

    2005-01-01

    Summary Proteins with bacterial immunoglobulin-like (Big) domains, such as the Yersinia pseudotuberculosis invasin and Escherichia coli intimin, are surface-expressed proteins that mediate host mammalian cell invasion or attachment. Here, we report the identification and characterization of a new family of Big domain proteins, referred to as Lig (leptospiral Ig-like) proteins, in pathogenic Leptospira. Screening of L. interrogans and L. kirschneri expression libraries with sera from leptospirosis patients identified 13 lambda phage clones that encode tandem repeats of the 90 amino acid Big domain. Two lig genes, designated ligA and ligB, and one pseudo-gene, ligC, were identified. The ligA and ligB genes encode amino-terminal lipoprotein signal peptides followed by 10 or 11 Big domain repeats and, in the case of ligB, a unique carboxy-terminal non-repeat domain. The organization of ligC is similar to that of ligB but contains mutations that disrupt the reading frame. The lig sequences are present in pathogenic but not saprophytic Leptospira species. LigA and LigB are expressed by a variety of virulent leptospiral strains. Loss of Lig protein and RNA transcript expression is correlated with the observed loss of virulence during culture attenuation of pathogenic strains. High-pressure freeze substitution followed by immunocytochemical electron microscopy confirmed that the Lig proteins were localized to the bacterial surface. Immunoblot studies with patient sera found that the Lig proteins are a major antigen recognized during the acute host infection. These observations demonstrate that the Lig proteins are a newly identified surface protein of pathogenic Leptospira, which by analogy to other bacterial immunoglobulin superfamily virulence factors, may play a role in host cell attachment and invasion during leptospiral pathogenesis. PMID:12890019

  1. Pathogenic Leptospira species express surface-exposed proteins belonging to the bacterial immunoglobulin superfamily.

    PubMed

    Matsunaga, James; Barocchi, Michele A; Croda, Julio; Young, Tracy A; Sanchez, Yolanda; Siqueira, Isadora; Bolin, Carole A; Reis, Mitermayer G; Riley, Lee W; Haake, David A; Ko, Albert I

    2003-08-01

    Proteins with bacterial immunoglobulin-like (Big) domains, such as the Yersinia pseudotuberculosis invasin and Escherichia coli intimin, are surface-expressed proteins that mediate host mammalian cell invasion or attachment. Here, we report the identification and characterization of a new family of Big domain proteins, referred to as Lig (leptospiral Ig-like) proteins, in pathogenic Leptospira. Screening of L. interrogans and L. kirschneri expression libraries with sera from leptospirosis patients identified 13 lambda phage clones that encode tandem repeats of the 90 amino acid Big domain. Two lig genes, designated ligA and ligB, and one pseudogene, ligC, were identified. The ligA and ligB genes encode amino-terminal lipoprotein signal peptides followed by 10 or 11 Big domain repeats and, in the case of ligB, a unique carboxy-terminal non-repeat domain. The organization of ligC is similar to that of ligB but contains mutations that disrupt the reading frame. The lig sequences are present in pathogenic but not saprophytic Leptospira species. LigA and LigB are expressed by a variety of virulent leptospiral strains. Loss of Lig protein and RNA transcript expression is correlated with the observed loss of virulence during culture attenuation of pathogenic strains. High-pressure freeze substitution followed by immunocytochemical electron microscopy confirmed that the Lig proteins were localized to the bacterial surface. Immunoblot studies with patient sera found that the Lig proteins are a major antigen recognized during the acute host infection. These observations demonstrate that the Lig proteins are a newly identified surface protein of pathogenic Leptospira, which by analogy to other bacterial immunoglobulin superfamily virulence factors, may play a role in host cell attachment and invasion during leptospiral pathogenesis.

  2. Predictive Markers of Honey Bee Colony Collapse

    PubMed Central

    Dainat, Benjamin; Evans, Jay D.; Chen, Yan Ping; Gauthier, Laurent; Neumann, Peter

    2012-01-01

    Across the Northern hemisphere, managed honey bee colonies, Apis mellifera, are currently affected by abrupt depopulation during winter and many factors are suspected to be involved, either alone or in combination. Parasites and pathogens are considered as principal actors, in particular the ectoparasitic mite Varroa destructor, associated viruses and the microsporidian Nosema ceranae. Here we used long term monitoring of colonies and screening for eleven disease agents and genes involved in bee immunity and physiology to identify predictive markers of honeybee colony losses during winter. The data show that DWV, Nosema ceranae, Varroa destructor and Vitellogenin can be predictive markers for winter colony losses, but their predictive power strongly depends on the season. In particular, the data support that V. destructor is a key player for losses, arguably in line with its specific impact on the health of individual bees and colonies. PMID:22384162

  3. Qualitative and numerical investigations of the impact of a novel pathogen on a seabird colony

    NASA Astrophysics Data System (ADS)

    O'Regan, S. M.; Kelly, T. C.; Korobeinikov, A.; O'Callaghan, M. J. A.; Pokrovskii, A. V.

    2008-11-01

    Understanding the dynamics of novel pathogens in dense populations is crucial to public and veterinary health as well as wildlife ecology. Seabirds live in crowded colonies numbering several thousands of individuals. The long-term dynamics of avian influenza H5N1 virus in a seabird colony with no existing herd immunity are investigated using sophisticated mathematical techniques. The key characteristics of seabird population biology and the H5N1 virus are incorporated into a Susceptible-Exposed-Infected-Recovered (SEIR) model. Using the theory of integral manifolds, the SEIR model is reduced to a simpler system of two differential equations depending on the infected and recovered populations only, termed the IR model. The results of numerical experiments indicate that the IR model and the SEIR model are in close agreement. Using Lyapunov's direct method, the equilibria of the SEIR and the IR models are proven to be globally asymptotically stable in the positive quadrant.

  4. Colony-Forming Progenitor Cells in the Postnatal Mouse Liver and Pancreas Give Rise to Morphologically Distinct Insulin-Expressing Colonies in 3D Cultures

    PubMed Central

    Jin, Liang; Feng, Tao; Chai, Jing; Ghazalli, Nadiah; Gao, Dan; Zerda, Ricardo; Li, Zhuo; Hsu, Jasper; Mahdavi, Alborz; Tirrell, David A.; Riggs, Arthur D.; Ku, Hsun Teresa

    2014-01-01

    In our previous studies, colony-forming progenitor cells isolated from murine embryonic stem cell-derived cultures were differentiated into morphologically distinct insulin-expressing colonies. These colonies were small and not light-reflective when observed by phase-contrast microscopy (therefore termed “Dark” colonies). A single progenitor cell capable of giving rise to a Dark colony was termed a Dark colony-forming unit (CFU-Dark). The goal of the current study was to test whether endogenous pancreas, and its developmentally related liver, harbored CFU-Dark. Here we show that dissociated single cells from liver and pancreas of one-week-old mice give rise to Dark colonies in methylcellulose-based semisolid culture media containing either Matrigel or laminin hydrogel (an artificial extracellular matrix protein). CFU-Dark comprise approximately 0.1% and 0.03% of the postnatal hepatic and pancreatic cells, respectively. Adult liver also contains CFU-Dark, but at a much lower frequency (~0.003%). Microfluidic qRT-PCR, immunostaining, and electron microscopy analyses of individually handpicked colonies reveal the expression of insulin in many, but not all, Dark colonies. Most pancreatic insulin-positive Dark colonies also express glucagon, whereas liver colonies do not. Liver CFU-Dark require Matrigel, but not laminin hydrogel, to become insulin-positive. In contrast, laminin hydrogel is sufficient to support the development of pancreatic Dark colonies that express insulin. Postnatal liver CFU-Dark display a cell surface marker CD133+CD49flowCD107blow phenotype, while pancreatic CFU-Dark are CD133-. Together, these results demonstrate that specific progenitor cells in the postnatal liver and pancreas are capable of developing into insulin-expressing colonies, but they differ in frequency, marker expression, and matrix protein requirements for growth. PMID:25148366

  5. Changes in northern Gulf of Mexico sediment bacterial and archaeal communities exposed to hypoxia

    EPA Science Inventory

    Biogeochemical changes in marine sediments during coastal water hypoxia are well described, but less is known about underlying changes in microbial communities. Bacterial and archaeal communities in Louisiana continental shelf (LCS) hypoxic zone sediments were characterized by py...

  6. Volatile organic compounds produced by a soil-isolate, Bacillus subtilis FA26 induce adverse ultra-structural changes to the cells of Clavibacter michiganensis ssp. sepedonicus, the causal agent of bacterial ring rot of potato.

    PubMed

    Rajer, Faheem Uddin; Wu, Huijun; Xie, Yongli; Xie, Shanshan; Raza, Waseem; Tahir, Hafiz Abdul Samad; Gao, Xuewen

    2017-04-01

    Rhizobacterial volatile organic compounds (VOCs) play an important role in the suppression of soil-borne phytopathogens. In this study, the VOCs produced by a soil-isolate, Bacillus subtilis FA26, were evaluated in vitro for their antibacterial activity against Clavibacter michiganensis ssp. sepedonicus (Cms), the causal agent of bacterial ring rot of potato. The VOCs emitted by FA26 inhibited the growth of Cms significantly compared with the control. Scanning and transmission electron microscopy analyses revealed distorted colony morphology and a wide range of abnormalities in Cms cells exposed to the VOCs of FA26. Varying the inoculation strategy and inoculum size showed that the production and activity of the antibacterial VOCs of FA26 were dependent on the culture conditions. Headspace solid-phase microextraction/gas chromatography-mass spectrometry analyses revealed that FA26 produced 11 VOCs. Four VOCs (benzaldehyde, nonanal, benzothiazole and acetophenone) were associated with the antibacterial activity against Cms. The results suggested that the VOCs produced by FA26 could control the causal agent of bacterial ring rot of potato. This information will increase our understanding of the microbial interactions mediated by VOCs in nature and aid the development of safer strategies for controlling plant disease.

  7. Effect of mobile laminar airflow units on airborne bacterial contamination during neurosurgical procedures.

    PubMed

    von Vogelsang, A-C; Förander, P; Arvidsson, M; Löwenhielm, P

    2018-03-24

    Surgical site infections (SSIs) after neurosurgery are potentially life-threatening and entail great costs. SSIs may occur from airborne bacteria in the operating room, and ultraclean air is desired during infection-prone cleaning procedures. Door openings and the number of persons present in the operating room affect the air quality. Mobile laminar airflow (MLAF) units, with horizontal laminar airflow, have previously been shown to reduce airborne bacterial contamination. To assess the effect of MLAF units on airborne bacterial contamination during neurosurgical procedures. In a quasi-experimental design, bacteria-carrying particles (colony-forming units: cfu) during neurosurgical procedures were measured with active air-sampling in operating rooms with conventional turbulent ventilation, and with additional MLAF units. The MLAF units were shifted between operating rooms monthly. Colony-forming unit count and bacterial species detection were conducted after incubation. Data was collected for a period of 18 months. A total of 233 samples were collected during 45 neurosurgical procedures. The use of MLAF units significantly reduced the numbers of cfu in the surgical site area (P < 0.001) and above the instrument table (P < 0.001). Logistic regression showed that the only significant predictor affecting cfu count was the use of MLAF units (odds ratio: 41.6; 95% confidence interval: 11.3-152.8; P < 0.001). The most frequently detected bacteria were coagulase-negative staphylococci. MLAF successfully reduces cfu during neurosurgery to ultraclean air levels. MLAF units are valuable when the main operating room ventilation system is unable to produce ultraclean air in infection-prone clean neurosurgery. Copyright © 2018 The Healthcare Infection Society. Published by Elsevier Ltd. All rights reserved.

  8. Coalescing colony model: Mean-field, scaling, and geometry

    NASA Astrophysics Data System (ADS)

    Carra, Giulia; Mallick, Kirone; Barthelemy, Marc

    2017-12-01

    We analyze the coalescing model where a `primary' colony grows and randomly emits secondary colonies that spread and eventually coalesce with it. This model describes population proliferation in theoretical ecology, tumor growth, and is also of great interest for modeling urban sprawl. Assuming the primary colony to be always circular of radius r (t ) and the emission rate proportional to r (t) θ , where θ >0 , we derive the mean-field equations governing the dynamics of the primary colony, calculate the scaling exponents versus θ , and compare our results with numerical simulations. We then critically test the validity of the circular approximation for the colony shape and show that it is sound for a constant emission rate (θ =0 ). However, when the emission rate is proportional to the perimeter, the circular approximation breaks down and the roughness of the primary colony cannot be discarded, thus modifying the scaling exponents.

  9. Damage Escape and Repair in Dried Chroococcidiopsis spp. from Hot and Cold Deserts Exposed to Simulated Space and Martian Conditions

    NASA Astrophysics Data System (ADS)

    Billi, Daniela; Viaggiu, Emanuela; Cockell, Charles S.; Rabbow, Elke; Horneck, Gerda; Onofri, Silvano

    2011-01-01

    The cyanobacterium Chroococcidiopsis, overlain by 3mm of Antarctic sandstone, was exposed as dried multilayers to simulated space and martian conditions. Ground-based experiments were conducted in the context of Lichens and Fungi Experiments (EXPOSE-E mission, European Space Agency), which were performed to evaluate, after 1.5 years on the International Space Station, the survival of cyanobacteria (Chroococcidiopsis), lichens, and fungi colonized on Antarctic rock. The survival potential and the role played by protection and repair mechanisms in the response of dried Chroococcidiopsis cells to ground-based experiments were both investigated. Different methods were employed, including evaluation of the colony-forming ability, single-cell analysis of subcellular integrities based on membrane integrity molecular and redox probes, evaluation of the photosynthetic pigment autofluorescence, and assessment of the genomic DNA integrity with a PCR-based assay. Desiccation survivors of strain CCMEE 123 (coastal desert, Chile) were better suited than CCMEE 134 (Beacon Valley, Antarctica) to withstand cellular damage imposed by simulated space and martian conditions. Exposed dried cells of strain CCMEE 123 formed colonies, maintained subcellular integrities, and, depending on the exposure conditions, also escaped DNA damage or repaired the induced damage upon rewetting.

  10. Brazilian Higher Education from a Post-Colonial Perspective

    ERIC Educational Resources Information Center

    Leite, Denise

    2010-01-01

    This article examines Brazilian higher education (HE) politics from a post-colonial perspective. The term "post-colonial" originally referred to a historical period of colonial empires established by European nations. Nowadays, the term commonly distinguishes a field of contemporary studies of "defamiliarisation of the imperial…

  11. Comparison between the evaluation of bacterial regrowth capability in a turbidimeter and biodegradable dissolved organic carbon bioreactor measurements in water.

    PubMed

    Kott, Y; Ribas, F; Frías, J; Lucena, F

    1997-09-01

    In recent years, two different approaches to the study of biodegradable organic matter in distribution systems have been followed. The assimilable organic carbon (AOC) indicates the portion of the dissolved organic matter used by bacteria and converted to biomass, which is directly measured as total bacteria, active bacteria or colony-forming units and indirectly as ATP or increase in turbidity. In contrast, the biodegradable dissolved organic carbon (BDOC) is the portion of the dissolved organic carbon that can be mineralized by heterotrophic microorganisms, and it is measured as the difference between the inflow and the outflow of a bioreactor. In this study, at different steps in a water treatment plant, the bacterial regrowth capability was determined by the AOC method that measures the maximum growth rate by using a computerized Monitek turbidimeter. The BDOC was determined using a plug flow bioreactor. Measurements of colony-forming units and total organic carbon (TOC) evolution in a turbidimeter and of colony-forming units at the inflow/outflow of the bioreactor were also performed, calculating at all sampling points the coefficient yield (Y = cfu/delta TOC) in both systems. The correlations between the results from the bioreactor and turbidimeter have been calculated; a high correlation level was observed between BDOC values and all the other parameters, except for Y calculated from bacterial suspension measured in the turbidimeter.

  12. Feeding, Swimming and Navigation of Colonial Microorganisms

    NASA Astrophysics Data System (ADS)

    Kirkegaard, Julius; Bouillant, Ambre; Marron, Alan; Leptos, Kyriacos; Goldstein, Raymond

    2016-11-01

    Animals are multicellular in nature, but evolved from unicellular organisms. In the closest relatives of animals, the choanoflagellates, the unicellular species Salpincgoeca rosetta has the ability to form colonies, resembling true multicellularity. In this work we use a combination of experiments, theory, and simulations to understand the physical differences that arise from feeding, swimming and navigating as colonies instead of as single cells. We show that the feeding efficiency decreases with colony size for distinct reasons in the small and large Péclet number limits, and we find that swimming as a colony changes the conventional active random walks of microorganism to stochastic helices, but that this does not hinder effective navigation towards chemoattractants.

  13. Effect of 99 GHz continuous millimeter wave electro-magnetic radiation on E. coli viability and metabolic activity.

    PubMed

    Cohen, Irena; Cahan, Rivka; Shani, Gad; Cohen, Eyal; Abramovich, Amir

    2010-05-01

    To investigate time exposure dependence of continuous millimeter wave (CW) 99 GHz radiation on Escherichia coli bacterial cell viability and metabolic activity. Suspensions of E. coli bacterial cells with an optical density of OD(660 nm) = 0.1 were used for viability tests and OD(660 nm) = 1.0 for metabolic activity tests. These suspensions were exposed to 99 GHz CW electromagnetic radiation, generated by a Backward Wave Oscillator (BWO) tube base instrument with a horn antenna at the BWO exit, to obtain an almost ideal Gaussian beam. Calculations of the Gaussian beam show that a power of 0.2 mW/cm(2) was obtained at the bacterial plane. The experimental results show that 1 hour of exposure to 99 GHz CW electromagnetic radiation had no effect on E. coli viability and colony characterisation. In 19 h of radiation, the number of colonies forming units was half order of magnitude higher than the sham-exposed and the control. However, 19 h of exposure did not affect the E. coli metabolic activity. Exposure of E. coli to millimeter wave (MW) CW 99 GHz radiation for a short period did not affect the viability of E. coli bacterial cells. However, exposure for 19 h caused a slight proliferation but did not influence the metabolic activities of about 90 biochemical reactions that were examined. Hence, we assume that the slight proliferation (half order of magnitude) after 19 h of exposure dose not have a biological meaning.

  14. Burkholderia pseudomallei Colony Morphotypes Show a Synchronized Metabolic Pattern after Acute Infection

    PubMed Central

    Steinmetz, Ivo; Lalk, Michael

    2016-01-01

    Background Burkholderia pseudomallei is a water and soil bacterium and the causative agent of melioidosis. A characteristic feature of this bacterium is the formation of different colony morphologies which can be isolated from environmental samples as well as from clinical samples, but can also be induced in vitro. Previous studies indicate that morphotypes can differ in a number of characteristics such as resistance to oxidative stress, cellular adhesion and intracellular replication. Yet the metabolic features of B. pseudomallei and its different morphotypes have not been examined in detail so far. Therefore, this study aimed to characterize the exometabolome of B. pseudomallei morphotypes and the impact of acute infection on their metabolic characteristics. Methods and Principal Findings We applied nuclear magnetic resonance spectroscopy (1H-NMR) in a metabolic footprint approach to compare nutrition uptake and metabolite secretion of starvation induced morphotypes of the B. pseudomallei strains K96243 and E8. We observed gluconate production and uptake in all morphotype cultures. Our study also revealed that among all morphotypes amino acids could be classified with regard to their fast and slow consumption. In addition to these shared metabolic features, the morphotypes varied highly in amino acid uptake profiles, secretion of branched chain amino acid metabolites and carbon utilization. After intracellular passage in vitro or murine acute infection in vivo, we observed a switch of the various morphotypes towards a single morphotype and a synchronization of nutrient uptake and metabolite secretion. Conclusion To our knowledge, this study provides first insights into the basic metabolism of B. pseudomallei and its colony morphotypes. Furthermore, our data suggest, that acute infection leads to the synchronization of B. pseudomallei colony morphology and metabolism through yet unknown host signals and bacterial mechanisms. PMID:26943908

  15. Inbred or Outbred? Genetic Diversity in Laboratory Rodent Colonies

    PubMed Central

    Brekke, Thomas D.; Steele, Katherine A.; Mulley, John F.

    2017-01-01

    Nonmodel rodents are widely used as subjects for both basic and applied biological research, but the genetic diversity of the study individuals is rarely quantified. University-housed colonies tend to be small and subject to founder effects and genetic drift; so they may be highly inbred or show substantial genetic divergence from other colonies, even those derived from the same source. Disregard for the levels of genetic diversity in an animal colony may result in a failure to replicate results if a different colony is used to repeat an experiment, as different colonies may have fixed alternative variants. Here we use high throughput sequencing to demonstrate genetic divergence in three isolated colonies of Mongolian gerbil (Meriones unguiculatus) even though they were all established recently from the same source. We also show that genetic diversity in allegedly “outbred” colonies of nonmodel rodents (gerbils, hamsters, house mice, deer mice, and rats) varies considerably from nearly no segregating diversity to very high levels of polymorphism. We conclude that genetic divergence in isolated colonies may play an important role in the “replication crisis.” In a more positive light, divergent rodent colonies represent an opportunity to leverage genetically distinct individuals in genetic crossing experiments. In sum, awareness of the genetic diversity of an animal colony is paramount as it allows researchers to properly replicate experiments and also to capitalize on other genetically distinct individuals to explore the genetic basis of a trait. PMID:29242387

  16. Energy, Colonialism, and the American West.

    ERIC Educational Resources Information Center

    Warren, Eugene H., Jr.

    1983-01-01

    Energy development has led many people concerned with the American West to consider it a powerless colony of outside interests. The characteristics of colonies, particularly external control by energy companies and the federal government, and the applicability of these characteristics to the West are discussed. (IS)

  17. Increased Mortality in a Colony of Zebra Finches Exposed to Continuous Light

    PubMed Central

    Snyder, Jessica M; Molk, Denise M; Treuting, Piper M

    2013-01-01

    Over a 1-mo period, increased morbidity and mortality occurred in a flock of zebra finches (Taeniopygia guttata). Complete postmortem examination was performed on 6 of the affected birds, 4 of which subsequently were diagnosed with the avian gastric yeast previously known as megabacteriosis (Macrorhabdus ornithogaster). The remaining 2 birds were diagnosed with a cloacal abscess and with large bowel perforation and peritonitis. All the birds had been prophylactically treated with amphotericin B for megabacteria 2 mo previously. An environmental assessment revealed that the light cycle had been altered, and the birds were being exposed to constant light. With correction of the light cycle, the health of the birds improved dramatically. The remaining birds were treated again with amphotericin B, and baseline mortality returned to normal. The birds in this report show several similarities to previous reports of sleep deprivation syndrome in mammals. PMID:23849414

  18. Chemical microenvironments and single-cell carbon and nitrogen uptake in field-collected colonies of Trichodesmium under different pCO2

    PubMed Central

    Eichner, Meri J; Klawonn, Isabell; Wilson, Samuel T; Littmann, Sten; Whitehouse, Martin J; Church, Matthew J; Kuypers, Marcel MM; Karl, David M; Ploug, Helle

    2017-01-01

    Gradients of oxygen (O2) and pH, as well as small-scale fluxes of carbon (C), nitrogen (N) and O2 were investigated under different partial pressures of carbon dioxide (pCO2) in field-collected colonies of the marine dinitrogen (N2)-fixing cyanobacterium Trichodesmium. Microsensor measurements indicated that cells within colonies experienced large fluctuations in O2, pH and CO2 concentrations over a day–night cycle. O2 concentrations varied with light intensity and time of day, yet colonies exposed to light were supersaturated with O2 (up to ~200%) throughout the light period and anoxia was not detected. Alternating between light and dark conditions caused a variation in pH levels by on average 0.5 units (equivalent to 15 nmol l−1 proton concentration). Single-cell analyses of C and N assimilation using secondary ion mass spectrometry (SIMS; large geometry SIMS and nanoscale SIMS) revealed high variability in metabolic activity of single cells and trichomes of Trichodesmium, and indicated transfer of C and N to colony-associated non-photosynthetic bacteria. Neither O2 fluxes nor C fixation by Trichodesmium were significantly influenced by short-term incubations under different pCO2 levels, whereas N2 fixation increased with increasing pCO2. The large range of metabolic rates observed at the single-cell level may reflect a response by colony-forming microbial populations to highly variable microenvironments. PMID:28398346

  19. Colony collapse disorder in Europe.

    PubMed

    Dainat, Benjamin; Vanengelsdorp, Dennis; Neumann, Peter

    2012-02-01

    Colony collapse disorder (CCD) is a condition of honey bees, which has contributed in part to the recent major losses of honey bee colonies in the USA. Here we report the first CCD case from outside of the USA. We suggest that more standardization is needed for the case definition to diagnose CCD and to compare data on a global scale. © 2011 Society for Applied Microbiology and Blackwell Publishing Ltd.

  20. Post-Colonialism Perspectives on Educational Competition

    ERIC Educational Resources Information Center

    Yeh, Chuan-Rong

    2016-01-01

    Educational competition has always been the puzzle issue of educational researches. In this article, I analyze several aspects of educational competition within the perspective of post-colonialism discourse. In the political aspect, Taiwanese education is linked with political power, to present the post-colonial spirit by continuing dynastic…

  1. Photochemical alteration of dissolved organic matter and the subsequent effects on bacterial carbon cycling and diversity.

    PubMed

    Lønborg, Christian; Nieto-Cid, Mar; Hernando-Morales, Victor; Hernández-Ruiz, Marta; Teira, Eva; Álvarez-Salgado, Xosé Antón

    2016-05-01

    The impact of solar radiation on dissolved organic matter (DOM) derived from 3 different sources (seawater, eelgrass leaves and river water) and the effect on the bacterial carbon cycling and diversity were investigated. Seawater with DOM from the sources was first either kept in the dark or exposed to sunlight (4 days), after which a bacterial inoculum was added and incubated for 4 additional days. Sunlight exposure reduced the coloured DOM and carbon signals, which was followed by a production of inorganic nutrients. Bacterial carbon cycling was higher in the dark compared with the light treatment in seawater and river samples, while higher levels were found in the sunlight-exposed eelgrass experiment. Sunlight pre-exposure stimulated the bacterial growth efficiency in the seawater experiments, while no impact was found in the other experiments. We suggest that these responses are connected to differences in substrate composition and the production of free radicals. The bacterial community that developed in the dark and sunlight pre-treated samples differed in the seawater and river experiments. Our findings suggest that impact of sunlight exposure on the bacterial carbon transfer and diversity depends on the DOM source and on the sunlight-induced production of inorganic nutrients. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  2. A glimpse of the endophytic bacterial diversity in roots of blackberry plants (Rubus fruticosus).

    PubMed

    Contreras, M; Loeza, P D; Villegas, J; Farias, R; Santoyo, G

    2016-09-16

    The aim of this study was to explore the diversity of culturable bacterial communities residing in blackberry plants (Rubus fruticosus). Bacterial endophytes were isolated from plant roots, and their 16S rDNA sequences were amplified and sequenced. Our results show that the roots of R. fruticosus exhibit low colony forming units of bacterial endophytes per gram of fresh tissue (6 x 10 2 ± 0.5 x 10 2 ). We identified 41 endophytic bacterial species in R. fruticosus by BLAST homology search and a subsequent phylogenetic analysis, belonging to the classes Actinobacteria, Bacilli, Alfaproteobacteria, Betaproteobacteria, and Gammaproteobacteria. Predominantly, genera belonging the Proteobacteria (Burkholderia, 29.4%; Herbaspirillum, 10.7%; Pseudomonas, 4.9%; and Dyella, 3.9%), Firmicutes (Bacillus, 42.1%), and Actinobacteria (two isolates showing high identity with the Streptomyces genus, 1.9%) divisions were identified. Fifty percent of the bacterial endophytes produced the phytohormone indole-acetic acid (IAA), eleven of which exhibited higher IAA production (>5.8 mg/mL) compared to the plant growth-promoting strain, Pseudomonas fluorescens UM270. Additionally, the endophytic isolates exhibited protease activity (22%), produced siderophores (26.4%), and demonstrated antagonistic action (>50% inhibition of mycelial growth) against the grey mold phytopathogen Botrytis cinerea (3.9%). These results suggested that field-grown R. fruticosus plants contain bacterial endophytes within their tissues with the potential to promote plant growth and display antagonism towards plant pathogens.

  3. Colony Location and Captivity Influence the Gut Microbial Community Composition of the Australian Sea Lion (Neophoca cinerea)

    PubMed Central

    Delport, Tiffany C.; Power, Michelle L.; Harcourt, Robert G.; Webster, Koa N.

    2016-01-01

    ABSTRACT Gut microbiota play an important role in maintenance of mammalian metabolism and immune system regulation, and disturbances to this community can have adverse impacts on animal health. To better understand the composition of gut microbiota in marine mammals, fecal bacterial communities of the Australian sea lion (Neophoca cinerea), an endangered pinniped with localized distribution, were examined. A comparison of samples from individuals across 11 wild colonies in South and Western Australia and three Australian captive populations showed five dominant bacterial phyla: Firmicutes, Proteobacteria, Bacteroidetes, Actinobacteria, and Fusobacteria. The phylum Firmicutes was dominant in both wild (76.4% ± 4.73%) and captive animals (61.4% ± 10.8%), while Proteobacteria contributed more to captive (29.3% ± 11.5%) than to wild (10.6% ± 3.43%) fecal communities. Qualitative differences were observed between fecal communities from wild and captive animals based on principal-coordinate analysis. SIMPER (similarity percentage procedure) analyses indicated that operational taxonomic units (OTU) from the bacterial families Clostridiaceae and Ruminococcaceae were more abundant in wild than in captive animals and contributed most to the average dissimilarity between groups (SIMPER contributions of 19.1% and 10.9%, respectively). Differences in the biological environment, the foraging site fidelity, and anthropogenic impacts may provide various opportunities for unique microbial establishment in Australian sea lions. As anthropogenic disturbances to marine mammals are likely to increase, understanding the potential for such disturbances to impact microbial community compositions and subsequently affect animal health will be beneficial for management of these vulnerable species. IMPORTANCE The Australian sea lion is an endangered species for which there is currently little information regarding disease and microbial ecology. In this work, we present an in-depth study

  4. An In vitro Model for Bacterial Growth on Human Stratum Corneum.

    PubMed

    van der Krieken, Danique A; Ederveen, Thomas H A; van Hijum, Sacha A F T; Jansen, Patrick A M; Melchers, Willem J G; Scheepers, Paul T J; Schalkwijk, Joost; Zeeuwen, Patrick L J M

    2016-11-02

    The diversity and dynamics of the skin microbiome in health and disease have been studied recently, but adequate model systems to study skin microbiotas in vitro are largely lacking. We developed an in vitro system that mimics human stratum corneum, using human callus as substrate and nutrient source for bacterial growth. The growth of several commensal and pathogenic bacterial strains was measured for up to one week by counting colony-forming units or by quantitative PCR with strain-specific primers. Human skin pathogens were found to survive amidst a minimal microbiome consisting of 2 major skin commensals: Staphylococcus epidermidis and Propionibacterium acnes. In addition, complete microbiomes, taken from the backs of healthy volunteers, were inoculated and maintained using this system. This model may enable the modulation of skin microbiomes in vitro and allow testing of pathogens, biological agents and antibiotics in a medium-throughput format.

  5. Bacterial colonization on coated and uncoated orthodontic wires: A prospective clinical trial.

    PubMed

    Raji, Seyed Hamid; Shojaei, Hasan; Ghorani, Parinaz Saeidi; Rafiei, Elahe

    2014-11-01

    The advantages of coated orthodontic wires such as esthetic and their effects on reduced friction, corrosion and allergic reaction and the significant consequences of plaque accumulation on oral health encouraged us to assess bacterial colonization on these wires. A total of 18 (9 upper and 9 lower) epoxy resin coated 16 × 22 nickel-titanium wires (Spectra, GAC, USA) and 18 (9 upper and 9 lower) non-coated 16 × 22 nickel-titanium wires (Sentalloy, GAC, USA) with isolated packages were selected and sterilized before application. The samples were divided randomly between upper and lower arches in 18 patients and hence that every patient received one coated and one uncoated wire at the same time. Samples were removed and cut in equal lengths after 3 weeks and placed in phosphate buffered saline buffer. After separation of bacteria in trypsin and ethylenediaminetetraacetic acid solution, the diluted solution was cultured in blood agar and bacterial colony forming units were counted. Finally, the data was analyzed using the paired t-test and the significance was set at 0.05. Mean of bacterial colonization on uncoated wires was more than that of coated wires (P < 0.001). Bacterial plaque accumulation on epoxy resin coated nickel-titanium orthodontic wires is significantly lower than uncoated nickel-titanium wires.

  6. Structural organisation and dynamics in king penguin colonies

    NASA Astrophysics Data System (ADS)

    Gerum, Richard; Richter, Sebastian; Fabry, Ben; Le Bohec, Céline; Bonadonna, Francesco; Nesterova, Anna; Zitterbart, Daniel P.

    2018-04-01

    During breeding, king penguins do not build nests, however they show strong territorial behaviour and keep a pecking distance to neighbouring penguins. Penguin positions in breeding colonies are highly stable over weeks and appear regularly spaced, but thus far no quantitative analysis of the structural order inside a colony has been performed. In this study, we use the radial distribution function to analyse the spatial coordinates of penguin positions. Coordinates are obtained from aerial images of two colonies that were observed for several years. Our data demonstrate that the structural order in king penguin colonies resembles a 2D liquid of particles with a Lennard-Jones-type interaction potential. We verify this using a molecular dynamics simulation with thermally driven particles, whereby temperature corresponds to penguin movements, the energy well depth ɛ of the attractive potential corresponds to the strength of the colony-forming behaviour, and the repulsive zone corresponds to the pecking radius. We can recapitulate the liquid disorder of the colony, as measured by the radial distribution function, when the particles have a temperature of several (1.4–10) \

  7. Colony collapse disorder: a descriptive study.

    PubMed

    Vanengelsdorp, Dennis; Evans, Jay D; Saegerman, Claude; Mullin, Chris; Haubruge, Eric; Nguyen, Bach Kim; Frazier, Maryann; Frazier, Jim; Cox-Foster, Diana; Chen, Yanping; Underwood, Robyn; Tarpy, David R; Pettis, Jeffery S

    2009-08-03

    Over the last two winters, there have been large-scale, unexplained losses of managed honey bee (Apis mellifera L.) colonies in the United States. In the absence of a known cause, this syndrome was named Colony Collapse Disorder (CCD) because the main trait was a rapid loss of adult worker bees. We initiated a descriptive epizootiological study in order to better characterize CCD and compare risk factor exposure between populations afflicted by and not afflicted by CCD. Of 61 quantified variables (including adult bee physiology, pathogen loads, and pesticide levels), no single measure emerged as a most-likely cause of CCD. Bees in CCD colonies had higher pathogen loads and were co-infected with a greater number of pathogens than control populations, suggesting either an increased exposure to pathogens or a reduced resistance of bees toward pathogens. Levels of the synthetic acaricide coumaphos (used by beekeepers to control the parasitic mite Varroa destructor) were higher in control colonies than CCD-affected colonies. This is the first comprehensive survey of CCD-affected bee populations that suggests CCD involves an interaction between pathogens and other stress factors. We present evidence that this condition is contagious or the result of exposure to a common risk factor. Potentially important areas for future hypothesis-driven research, including the possible legacy effect of mite parasitism and the role of honey bee resistance to pesticides, are highlighted.

  8. Colony Collapse Disorder: A descriptive studey

    USDA-ARS?s Scientific Manuscript database

    Over the last two winters, there have been large-scale, unexplained losses of managed honey bee (Apis mellifera L.) colonies in the United States. In the absence of a known cause, this syndrome was named Colony Collapse Disorder (CCD) because the main trait was a rapid loss of adult worker bees. We ...

  9. Ant- and Ant-Colony-Inspired ALife Visual Art.

    PubMed

    Greenfield, Gary; Machado, Penousal

    2015-01-01

    Ant- and ant-colony-inspired ALife art is characterized by the artistic exploration of the emerging collective behavior of computational agents, developed using ants as a metaphor. We present a chronology that documents the emergence and history of such visual art, contextualize ant- and ant-colony-inspired art within generative art practices, and consider how it relates to other ALife art. We survey many of the algorithms that artists have used in this genre, address some of their aims, and explore the relationships between ant- and ant-colony-inspired art and research on ant and ant colony behavior.

  10. Cadexomer iodine provides superior efficacy against bacterial wound biofilms in vitro and in vivo.

    PubMed

    Fitzgerald, Daniel J; Renick, Paul J; Forrest, Emma C; Tetens, Shannon P; Earnest, David N; McMillan, Jillian; Kiedaisch, Brett M; Shi, Lei; Roche, Eric D

    2017-01-01

    Examination of clinical samples indicates bacterial biofilms are present in the majority of chronic wounds, and substantial evidence suggests biofilms contribute significantly to delayed healing. Bacteria in biofilms are highly tolerant of antimicrobials, and little data exist to guide the choice of anti-biofilm wound therapy. Cadexomer iodine (CI) was recently reported to have superior efficacy compared to diverse wound dressings against Pseudomonas aeruginosa biofilms in an ex vivo model. In the current study, the strong performance of CI vs. P. aeruginosa biofilm was confirmed using colony and colony drip-flow in vitro wound biofilm models. Similar in vitro efficacy of CI was also demonstrated against mature Staphylococcus aureus biofilms using the same models. Additionally, the rapid kill of mature S. aureus and P. aeruginosa colony biofilms was visualized by confocal microscopy using Live/Dead fluorescent stains. Superior in vitro efficacy of CI vs. staphylococcal biofilms was further demonstrated against methicillin-resistant S. aureus (MRSA) using multiple biofilm models with log reduction, Live/Dead, and metabolic endpoints. Comparator antimicrobial dressings, including silver-based dressings used throughout and other active agents used in individual models, elucidated only limited effects against the mature biofilms. Given the promising in vitro activity, CI was tested in an established mouse model of MRSA wound biofilm. CI had significantly greater impact on MRSA biofilm in mouse wounds than silver dressings or mupirocin based on Gram-stained histology sections and quantitative microbiology from biopsy samples (>4 log reduction in CFU/g vs. 0.7-1.6, p < 0.0001). The superior efficacy for CI in these in vitro and in vivo models suggests CI topical products may represent a better choice to address established bacterial biofilm in chronic wounds. © 2016 by the Wound Healing Society.

  11. Independent studies using deep sequencing resolve the same set of core bacterial species dominating gut communities of honey bees.

    PubMed

    Sabree, Zakee L; Hansen, Allison K; Moran, Nancy A

    2012-01-01

    Starting in 2003, numerous studies using culture-independent methodologies to characterize the gut microbiota of honey bees have retrieved a consistent and distinctive set of eight bacterial species, based on near identity of the 16S rRNA gene sequences. A recent study [Mattila HR, Rios D, Walker-Sperling VE, Roeselers G, Newton ILG (2012) Characterization of the active microbiotas associated with honey bees reveals healthier and broader communities when colonies are genetically diverse. PLoS ONE 7(3): e32962], using pyrosequencing of the V1-V2 hypervariable region of the 16S rRNA gene, reported finding entirely novel bacterial species in honey bee guts, and used taxonomic assignments from these reads to predict metabolic activities based on known metabolisms of cultivable species. To better understand this discrepancy, we analyzed the Mattila et al. pyrotag dataset. In contrast to the conclusions of Mattila et al., we found that the large majority of pyrotag sequences belonged to clusters for which representative sequences were identical to sequences from previously identified core species of the bee microbiota. On average, they represent 95% of the bacteria in each worker bee in the Mattila et al. dataset, a slightly lower value than that found in other studies. Some colonies contain small proportions of other bacteria, mostly species of Enterobacteriaceae. Reanalysis of the Mattila et al. dataset also did not support a relationship between abundances of Bifidobacterium and of putative pathogens or a significant difference in gut communities between colonies from queens that were singly or multiply mated. Additionally, consistent with previous studies, the dataset supports the occurrence of considerable strain variation within core species, even within single colonies. The roles of these bacteria within bees, or the implications of the strain variation, are not yet clear.

  12. Between Past and Present: The Sociopsychological Constructs of Colonialism, Coloniality and Postcolonialism.

    PubMed

    Tomicic, Ana; Berardi, Filomena

    2018-03-01

    If one of the major aspirations of postcolonial theory is to re-establish a balance in the relationship between the (former) colonizer and the colonized by engaging the voices of the "subaltern", and on the other hand to illuminate how power relations of the present are embedded in history (Mills 2007), we argue that important theoretical insights might inform research by anchoring post-colonial theory within a sociopsychological framework. While there is a growing corpus of sociopsychological research articles focusing on how major geopolitical events and historical processes bear on people's lives, we aim to investigate the theoretical potential of postcolonial theory within the disciplines aiming at a sociopsychological approach. By focusing on the social dynamics of power imbalances, post-colonial theory finds its operational meaning: the feelings stemming from actions committed in the past are indeed crucial in determining reparatory attitudes and policies towards members of former colonized groups. Firstly, drawing from the sociopsychological scientific production related to consequences of colonial past, seen in recent years as a growing research interest in the field, we will explore patterns and trends through a thematic analysis of literature. Social Psychology as well as adjacent disciplines can greatly benefit from this theoretical fertilization, especially in the way post-colonial ideologies relate to the symbolic promotion versus exclusion of indigenous culture (Sengupta et al., International Journal of Intercultural Relations, 36(4), 506-517, 2012). Furthermore, by comparing and contrasting the ideological cosmologies relating to this particular topic, this study aims to establish the state of knowledge in the field, to identify how research methods and thematic fields are paired, to find "gaps" and create spaces for research that become integrative of postcolonial theory. While focusing on academic production, we also hope to contribute to develop

  13. Bacterial community associated with worker honeybees (Apis mellifera) affected by European foulbrood

    PubMed Central

    Ledvinka, Ondrej; Kamler, Martin; Hortova, Bronislava; Nesvorna, Marta; Tyl, Jan; Titera, Dalibor; Markovic, Martin; Hubert, Jan

    2017-01-01

    -throughput Illumina sequencing permitted a semi-quantitative analysis of the presence of M. plutonius within the honeybee worker microbiome. The results of this study indicate that worker bees from EFB-diseased colonies are capable of transmitting M. plutonius due to the greatly increased incidence of the pathogen. The presence of M. plutonius sequences in control colonies supports the hypothesis that this pathogen exists in an enzootic state. The bacterial groups synergic to both the colonies with clinical signs of EFB and the EFB-asymptomatic colonies could be candidates for probiotics. This study confirms that E. faecalis is a secondary invader to M. plutonius; however, other putative secondary invaders were not identified in this study. PMID:28966892

  14. Membrane Alterations in Pseudomonas putida F1 Exposed to Nanoscale Zerovalent Iron: Effects of Short-Term and Repetitive nZVI Exposure.

    PubMed

    Kotchaplai, Panaya; Khan, Eakalak; Vangnai, Alisa S

    2017-07-18

    In this study, we report the effect of the commercial nanoscale zerovalent iron (nZVI) on environmental bacteria, emphasizing the importance of nZVI-bacterial membrane interaction on nZVI toxicity as well as the adaptability of bacteria to nZVI. Exposure of Pseudomonas putida F1 to 0.1, 1.0, and 5.0 g/L of nZVI caused the reduction in colony forming units (CFUs) substantially for almost 3 orders of magnitude. However, a rebound in the cell number was observed after the prolonged exposure except for 5.0 g/L nZVI at which bacterial viability was completely inhibited. Upon exposure, nZVI accumulated on and penetrated into the bacterial cell membrane. Cell membrane composition analysis revealed the conversion of the cis to trans isomer of unsaturated fatty acid upon short-term nZVI exposure, resulting in a more rigid membrane counteracting the membrane-fluidizing effect of nZVI. Several cycles of repetitive exposure of cells to 0.1 g/L nZVI induced a persistent phenotype of P. putida F1 as indicated by smaller colony morphology, a more rigid membrane, and higher tolerance to nZVI. A low interaction between nZVI particles and the surface of the nZVI-persistent phenotypic cells reduced the nZVI-induced membrane damage. This study unveils the significance of nZVI-membrane interaction on toxicity of nZVI toward bacteria.

  15. The spatial and metabolic basis of colony size variation.

    PubMed

    Chacón, Jeremy M; Möbius, Wolfram; Harcombe, William R

    2018-03-01

    Spatial structure impacts microbial growth and interactions, with ecological and evolutionary consequences. It is therefore important to quantitatively understand how spatial proximity affects interactions in different environments. We tested how proximity influences colony size when either Escherichia coli or Salmonella enterica are grown on various carbon sources. The importance of colony location changed with species and carbon source. Spatially explicit, genome-scale metabolic modeling recapitulated observed colony size variation. Competitors that determine territory size, according to Voronoi diagrams, were the most important drivers of variation in colony size. However, the relative importance of different competitors changed through time. Further, the effect of location increased when colonies took up resources quickly relative to the diffusion of limiting resources. These analyses made it apparent that the importance of location was smaller than expected for experiments with S. enterica growing on glucose. The accumulation of toxic byproducts appeared to limit the growth of large colonies and reduced variation in colony size. Our work provides an experimentally and theoretically grounded understanding of how location interacts with metabolism and diffusion to influence microbial interactions.

  16. Rapid behavioral maturation accelerates failure of stressed honey bee colonies

    PubMed Central

    Perry, Clint J.; Myerscough, Mary R.; Barron, Andrew B.

    2015-01-01

    Many complex factors have been linked to the recent marked increase in honey bee colony failure, including pests and pathogens, agrochemicals, and nutritional stressors. It remains unclear, however, why colonies frequently react to stressors by losing almost their entire adult bee population in a short time, resulting in a colony population collapse. Here we examine the social dynamics underlying such dramatic colony failure. Bees respond to many stressors by foraging earlier in life. We manipulated the demography of experimental colonies to induce precocious foraging in bees and used radio tag tracking to examine the consequences of precocious foraging for their performance. Precocious foragers completed far fewer foraging trips in their life, and had a higher risk of death in their first flights. We constructed a demographic model to explore how this individual reaction of bees to stress might impact colony performance. In the model, when forager death rates were chronically elevated, an increasingly younger forager force caused a positive feedback that dramatically accelerated terminal population decline in the colony. This resulted in a breakdown in division of labor and loss of the adult population, leaving only brood, food, and few adults in the hive. This study explains the social processes that drive rapid depopulation of a colony, and we explore possible strategies to prevent colony failure. Understanding the process of colony failure helps identify the most effective strategies to improve colony resilience. PMID:25675508

  17. Rapid behavioral maturation accelerates failure of stressed honey bee colonies.

    PubMed

    Perry, Clint J; Søvik, Eirik; Myerscough, Mary R; Barron, Andrew B

    2015-03-17

    Many complex factors have been linked to the recent marked increase in honey bee colony failure, including pests and pathogens, agrochemicals, and nutritional stressors. It remains unclear, however, why colonies frequently react to stressors by losing almost their entire adult bee population in a short time, resulting in a colony population collapse. Here we examine the social dynamics underlying such dramatic colony failure. Bees respond to many stressors by foraging earlier in life. We manipulated the demography of experimental colonies to induce precocious foraging in bees and used radio tag tracking to examine the consequences of precocious foraging for their performance. Precocious foragers completed far fewer foraging trips in their life, and had a higher risk of death in their first flights. We constructed a demographic model to explore how this individual reaction of bees to stress might impact colony performance. In the model, when forager death rates were chronically elevated, an increasingly younger forager force caused a positive feedback that dramatically accelerated terminal population decline in the colony. This resulted in a breakdown in division of labor and loss of the adult population, leaving only brood, food, and few adults in the hive. This study explains the social processes that drive rapid depopulation of a colony, and we explore possible strategies to prevent colony failure. Understanding the process of colony failure helps identify the most effective strategies to improve colony resilience.

  18. Tyk2 as a target for immune regulation in human viral/bacterial pneumonia.

    PubMed

    Berg, Johanna; Zscheppang, Katja; Fatykhova, Diana; Tönnies, Mario; Bauer, Torsten T; Schneider, Paul; Neudecker, Jens; Rückert, Jens C; Eggeling, Stephan; Schimek, Maria; Gruber, Achim D; Suttorp, Norbert; Hippenstiel, Stefan; Hocke, Andreas C

    2017-07-01

    The severity and lethality of influenza A virus (IAV) infections is frequently aggravated by secondary bacterial pneumonia. However, the mechanisms in human lung tissue that provoke this increase in fatality are unknown and therapeutic immune modulatory options are lacking.We established a human lung ex vivo co-infection model to investigate innate immune related mechanisms contributing to the susceptibility of secondary pneumococcal pneumonia.We revealed that type I and III interferon (IFN) inhibits Streptococcus pneumoniae -induced interleukin (IL)-1β release. The lack of IL-1β resulted in the repression of bacterially induced granulocyte-macrophage colony-stimulating factor (GM-CSF) liberation. Specific inhibition of IFN receptor I and III-associated tyrosine kinase 2 (Tyk2) completely restored the S. pneumoniae -induced IL-1β-GM-CSF axis, leading to a reduction of bacterial growth. A preceding IAV infection of the human alveolus leads to a type I and III IFN-dependent blockade of the early cytokines IL-1β and GM-CSF, which are key for orchestrating an adequate innate immune response against bacteria. Their virally induced suppression may result in impaired bacterial clearance and alveolar repair.Pharmacological inhibition of Tyk2 might be a new treatment option to sustain beneficial endogenous GM-CSF levels in IAV-associated secondary bacterial pneumonia. Copyright ©ERS 2017.

  19. Estimate of blow-up and relaxation time for self-gravitating Brownian particles and bacterial populations.

    PubMed

    Chavanis, P-H; Sire, C

    2004-08-01

    We determine an exact asymptotic expression of the blow-up time t(coll) for self-gravitating Brownian particles or bacterial populations (chemotaxis) close to the critical point in d=3. We show that t(coll) = t(*) (eta- eta(c) )(-1/2) with t(*) =0.917 677 02..., where eta represents the inverse temperature (for Brownian particles) or the mass (for bacterial colonies), and eta(c) is the critical value of eta above which the system blows up. This result is in perfect agreement with the numerical solution of the Smoluchowski-Poisson system. We also determine the exact asymptotic expression of the relaxation time close to but above the critical temperature and derive a large time asymptotic expansion for the density profile exactly at the critical point.

  20. Toward a post-colonial feminist methodology in nursing research: exploring the convergence of post-colonial and black feminist scholarship.

    PubMed

    Anderson, Joan M; McCann, Elizabeth Kenny

    2002-01-01

    In this paper, Joan M Anderson explores post-colonial feminist scholarship, generated through the convergence of black feminist and post-colonial scholarship, and examines its use as a theory and methodology for nursing scholarship.

  1. California gull chicks raised near colony edges have elevated stress levels

    USGS Publications Warehouse

    Herring, Garth; Ackerman, Joshua T.

    2011-01-01

    Coloniality in nesting birds represents an important life history strategy for maximizing reproductive success. Birds nesting near the edge of colonies tend to have lower reproductive success than individuals nesting near colony centers, and offspring of edge-nesting parents may be impaired relative to those of central-nesting parents. We used fecal corticosterone metabolites in California gull chicks (Larus californicus) to examine whether colony size or location within the colony influenced a chick's physiological condition. We found that chicks being raised near colony edges had higher fecal corticosterone metabolite concentrations than chicks raised near colony centers, but that colony size (ranging from 150 to 11,554 nests) had no influence on fecal corticosterone levels. Fecal corticosterone metabolite concentrations also increased with chick age. Our results suggest that similarly aged California gull chicks raised near colony edges may be more physiologically stressed, as indicated by corticosterone metabolites, than chicks raised near colony centers.

  2. Furnishing spaceship environment: evaluation of bacterial biofilms on different materials used inside International Space Station.

    PubMed

    Perrin, Elena; Bacci, Giovanni; Garrelly, Laurent; Canganella, Francesco; Bianconi, Giovanna; Fani, Renato; Mengoni, Alessio

    2018-05-08

    Performed inside International Space Station (ISS) from 2011 to 2016, VIABLE (eValuatIon And monitoring of microBiofiLms insidE International Space Station) ISS was a long-lasting experiment aimed at evaluating the bacterial contamination on different surface space materials subjected to different pre-treatment, to provide useful information for future space missions. In this work, surfaces samples of the VIABLE ISS experiment were analyzed to determine both the total bacterial load (ATP-metry, qPCR) and the composition of the microbial communities (16S rRNA genes amplicon sequencing). Data obtained showed a low bacterial contamination of all the surfaces, with values in agreement with those allowed inside ISS, and with a taxonomic composition similar to those found in previous studies (Enterobacteriales, Bacillales, Lactobacillales and Actinomycetales). No pre-treatment or material effect were observed on both the bacterial load and the composition of the communities, but for both a slight effect of the position (expose/not expose to air) was observed. In conclusion, under the conditions used for VIABLE ISS, no material or pre-treatment seems to be better than others in terms of quantity and type of bacterial contamination. Copyright © 2018 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  3. Production scheduling with ant colony optimization

    NASA Astrophysics Data System (ADS)

    Chernigovskiy, A. S.; Kapulin, D. V.; Noskova, E. E.; Yamskikh, T. N.; Tsarev, R. Yu

    2017-10-01

    The optimum solution of the production scheduling problem for manufacturing processes at an enterprise is crucial as it allows one to obtain the required amount of production within a specified time frame. Optimum production schedule can be found using a variety of optimization algorithms or scheduling algorithms. Ant colony optimization is one of well-known techniques to solve the global multi-objective optimization problem. In the article, the authors present a solution of the production scheduling problem by means of an ant colony optimization algorithm. A case study of the algorithm efficiency estimated against some others production scheduling algorithms is presented. Advantages of the ant colony optimization algorithm and its beneficial effect on the manufacturing process are provided.

  4. Immunotherapeutic effects of recombinant adenovirus encoding granulocyte–macrophage colony-stimulating factor in experimental pulmonary tuberculosis

    PubMed Central

    Francisco-Cruz, A.; Mata-Espinosa, D.; Estrada-Parra, S.; Xing, Z.; Hernández-Pando, R.

    2013-01-01

    Summary BALB/c mice with pulmonary tuberculosis (TB) develop a T helper cell type 1 that temporarily controls bacterial growth. Bacterial proliferation increases, accompanied by decreasing expression of interferon (IFN)-γ, tumour necrosis factor (TNF)-α and inducible nitric oxide synthase (iNOS). Activation of dendritic cells (DCs) is delayed. Intratracheal administration of only one dose of recombinant adenoviruses encoding granulocyte–macrophage colony-stimulating factor (AdGM-CSF) 1 day before Mycobacterium tuberculosis (Mtb) infection produced a significant decrease of pulmonary bacterial loads, higher activated DCs and increased expression of TNF-α, IFN-γ and iNOS. When AdGM-CSF was given in female mice B6D2F1 (C57BL/6J X DBA/2J) infected with a low Mtb dose to induce chronic infection similar to latent infection and corticosterone was used to induce reactivation, a very low bacilli burden in lungs was detected, and the same effect was observed in healthy mice co-housed with mice infected with mild and highly virulent bacteria in a model of transmissibility. Thus, GM-CSF is a significant cytokine in the immune protection against Mtb and gene therapy with AdGM-CSF increased protective immunity when administered in a single dose 1 day before Mtb infection in a model of progressive disease, and when used to prevent reactivation of latent infection or transmission. PMID:23379435

  5. Swabbing of waiting room magazines reveals only low levels of bacterial contamination

    PubMed Central

    Charnock, Colin

    2005-01-01

    Previous studies have shown that toys in waiting rooms of general practice surgeries can be contaminated with potentially pathogenic bacteria. The question was raised as to whether magazines might also be sources of contamination. Swabbing of the front page of 15 magazines from 11 general practice surgeries, followed by analysis for total and specific bacteria, revealed low levels of contamination. Among targeted groups of pathogens only two colonies of Staphylococcus aureus were detected. Magazines do not seem to be potentially important vectors of bacterial transfer in the setting examined. PMID:15667764

  6. Diversity of pufM genes, involved in aerobic anoxygenic photosynthesis, in the bacterial communities associated with colonial ascidians.

    PubMed

    Martínez-García, Manuel; Díaz-Valdés, Marta; Antón, Josefa

    2010-03-01

    Ascidians are invertebrate filter feeders widely distributed in benthic marine environments. A total of 14 different ascidian species were collected from the Western Mediterranean and their bacterial communities were analyzed by denaturing gradient gel electrophoresis (DGGE) of 16S rRNA gene. Results showed that ascidian tissues harbored Bacteria belonging to Gamma- and Alphaproteobacteria classes, some of them phylogenetically related to known aerobic anoxygenic phototrophs (AAPs), such as Roseobacter sp. In addition, hierarchical cluster analysis of DGGE patterns showed a large variability in the bacterial diversity among the different ascidians analyzed, which indicates that they would harbor different bacterial communities. Furthermore, pufM genes, involved in aerobic anoxygenic photosynthesis in marine and freshwater systems, were widely detected within the ascidians analyzed, because nine out of 14 species had pufM genes inside their tissues. The pufM gene was only detected in those specimens that inhabited shallow waters (<77 m of depth). Most pufM gene sequences were very closely related to that of uncultured marine bacteria. Thus, our results suggest that the association of ascidians with bacteria related to AAPs could be a general phenomenon and that ascidian-associated microbiota could use the light that penetrates through the tunic tissue as an energy source.

  7. BEEHAVE: a systems model of honeybee colony dynamics and foraging to explore multifactorial causes of colony failure

    PubMed Central

    Becher, Matthias A; Grimm, Volker; Thorbek, Pernille; Horn, Juliane; Kennedy, Peter J; Osborne, Juliet L

    2014-01-01

    A notable increase in failure of managed European honeybee Apis mellifera L. colonies has been reported in various regions in recent years. Although the underlying causes remain unclear, it is likely that a combination of stressors act together, particularly varroa mites and other pathogens, forage availability and potentially pesticides. It is experimentally challenging to address causality at the colony scale when multiple factors interact. In silico experiments offer a fast and cost-effective way to begin to address these challenges and inform experiments. However, none of the published bee models combine colony dynamics with foraging patterns and varroa dynamics. We have developed a honeybee model, BEEHAVE, which integrates colony dynamics, population dynamics of the varroa mite, epidemiology of varroa-transmitted viruses and allows foragers in an agent-based foraging model to collect food from a representation of a spatially explicit landscape. We describe the model, which is freely available online (www.beehave-model.net). Extensive sensitivity analyses and tests illustrate the model's robustness and realism. Simulation experiments with various combinations of stressors demonstrate, in simplified landscape settings, the model's potential: predicting colony dynamics and potential losses with and without varroa mites under different foraging conditions and under pesticide application. We also show how mitigation measures can be tested. Synthesis and applications. BEEHAVE offers a valuable tool for researchers to design and focus field experiments, for regulators to explore the relative importance of stressors to devise management and policy advice and for beekeepers to understand and predict varroa dynamics and effects of management interventions. We expect that scientists and stakeholders will find a variety of applications for BEEHAVE, stimulating further model development and the possible inclusion of other stressors of potential importance to honeybee

  8. BEEHAVE: a systems model of honeybee colony dynamics and foraging to explore multifactorial causes of colony failure.

    PubMed

    Becher, Matthias A; Grimm, Volker; Thorbek, Pernille; Horn, Juliane; Kennedy, Peter J; Osborne, Juliet L

    2014-04-01

    A notable increase in failure of managed European honeybee Apis mellifera L. colonies has been reported in various regions in recent years. Although the underlying causes remain unclear, it is likely that a combination of stressors act together, particularly varroa mites and other pathogens, forage availability and potentially pesticides. It is experimentally challenging to address causality at the colony scale when multiple factors interact. In silico experiments offer a fast and cost-effective way to begin to address these challenges and inform experiments. However, none of the published bee models combine colony dynamics with foraging patterns and varroa dynamics.We have developed a honeybee model, BEEHAVE, which integrates colony dynamics, population dynamics of the varroa mite, epidemiology of varroa-transmitted viruses and allows foragers in an agent-based foraging model to collect food from a representation of a spatially explicit landscape.We describe the model, which is freely available online (www.beehave-model.net). Extensive sensitivity analyses and tests illustrate the model's robustness and realism. Simulation experiments with various combinations of stressors demonstrate, in simplified landscape settings, the model's potential: predicting colony dynamics and potential losses with and without varroa mites under different foraging conditions and under pesticide application. We also show how mitigation measures can be tested. Synthesis and applications . BEEHAVE offers a valuable tool for researchers to design and focus field experiments, for regulators to explore the relative importance of stressors to devise management and policy advice and for beekeepers to understand and predict varroa dynamics and effects of management interventions. We expect that scientists and stakeholders will find a variety of applications for BEEHAVE, stimulating further model development and the possible inclusion of other stressors of potential importance to honeybee colony

  9. Continuous development precludes radioprotection in a colonial ascidian.

    PubMed

    Laird, Diana J; Weissman, Irving L

    2004-03-01

    Colonial organisms provide a unique experimental system for stem cell biology. The colonial Urochordate Botryllus schlosseri reproduces sexually as well as by continuous asexual budding. Adjacent colonies with a shared histocompatibility allele undergo vascular fusion and establish a common blood circulation, performing natural transplantation. Fused colonies become chimeras, often with complete somatic replacement of the host cell genotype by the fused parabiont. We attempted to establish a radioprotection assay for the somatic stem cells that induce long-term chimerism in Botryllus. We demonstrate over a range of radiation doses that neither autologous nor allogeneic cell transplantation enhances survival of host colonies. This suggests that high mitotic index associated with continuous asexual development leads to radiosensitivity of organs and structures essential to survival during engraftment. We observe that radiation induces uncontrolled epithelial cell proliferation in abnormally terminated buds, suggesting that stem cells are not required for the initial stages of bud development.

  10. Colony Collapse Disorder: A Descriptive Study

    PubMed Central

    vanEngelsdorp, Dennis; Evans, Jay D.; Saegerman, Claude; Mullin, Chris; Haubruge, Eric; Nguyen, Bach Kim; Frazier, Maryann; Frazier, Jim; Cox-Foster, Diana; Chen, Yanping; Underwood, Robyn; Tarpy, David R.; Pettis, Jeffery S.

    2009-01-01

    Background Over the last two winters, there have been large-scale, unexplained losses of managed honey bee (Apis mellifera L.) colonies in the United States. In the absence of a known cause, this syndrome was named Colony Collapse Disorder (CCD) because the main trait was a rapid loss of adult worker bees. We initiated a descriptive epizootiological study in order to better characterize CCD and compare risk factor exposure between populations afflicted by and not afflicted by CCD. Methods and Principal Findings Of 61 quantified variables (including adult bee physiology, pathogen loads, and pesticide levels), no single measure emerged as a most-likely cause of CCD. Bees in CCD colonies had higher pathogen loads and were co-infected with a greater number of pathogens than control populations, suggesting either an increased exposure to pathogens or a reduced resistance of bees toward pathogens. Levels of the synthetic acaricide coumaphos (used by beekeepers to control the parasitic mite Varroa destructor) were higher in control colonies than CCD-affected colonies. Conclusions/Significance This is the first comprehensive survey of CCD-affected bee populations that suggests CCD involves an interaction between pathogens and other stress factors. We present evidence that this condition is contagious or the result of exposure to a common risk factor. Potentially important areas for future hypothesis-driven research, including the possible legacy effect of mite parasitism and the role of honey bee resistance to pesticides, are highlighted. PMID:19649264

  11. Iridovirus and microsporidian linked to honey bee colony decline.

    PubMed

    Bromenshenk, Jerry J; Henderson, Colin B; Wick, Charles H; Stanford, Michael F; Zulich, Alan W; Jabbour, Rabih E; Deshpande, Samir V; McCubbin, Patrick E; Seccomb, Robert A; Welch, Phillip M; Williams, Trevor; Firth, David R; Skowronski, Evan; Lehmann, Margaret M; Bilimoria, Shan L; Gress, Joanna; Wanner, Kevin W; Cramer, Robert A

    2010-10-06

    In 2010 Colony Collapse Disorder (CCD), again devastated honey bee colonies in the USA, indicating that the problem is neither diminishing nor has it been resolved. Many CCD investigations, using sensitive genome-based methods, have found small RNA bee viruses and the microsporidia, Nosema apis and N. ceranae in healthy and collapsing colonies alike with no single pathogen firmly linked to honey bee losses. We used Mass spectrometry-based proteomics (MSP) to identify and quantify thousands of proteins from healthy and collapsing bee colonies. MSP revealed two unreported RNA viruses in North American honey bees, Varroa destructor-1 virus and Kakugo virus, and identified an invertebrate iridescent virus (IIV) (Iridoviridae) associated with CCD colonies. Prevalence of IIV significantly discriminated among strong, failing, and collapsed colonies. In addition, bees in failing colonies contained not only IIV, but also Nosema. Co-occurrence of these microbes consistently marked CCD in (1) bees from commercial apiaries sampled across the U.S. in 2006-2007, (2) bees sequentially sampled as the disorder progressed in an observation hive colony in 2008, and (3) bees from a recurrence of CCD in Florida in 2009. The pathogen pairing was not observed in samples from colonies with no history of CCD, namely bees from Australia and a large, non-migratory beekeeping business in Montana. Laboratory cage trials with a strain of IIV type 6 and Nosema ceranae confirmed that co-infection with these two pathogens was more lethal to bees than either pathogen alone. These findings implicate co-infection by IIV and Nosema with honey bee colony decline, giving credence to older research pointing to IIV, interacting with Nosema and mites, as probable cause of bee losses in the USA, Europe, and Asia. We next need to characterize the IIV and Nosema that we detected and develop management practices to reduce honey bee losses.

  12. Indoor-Biofilter Growth and Exposure to Airborne Chemicals Drive Similar Changes in Plant Root Bacterial Communities

    PubMed Central

    Hu, Yi; Chau, Linh; Pauliushchyk, Margarita; Anastopoulos, Ioannis; Anandan, Shivanthi; Waring, Michael S.

    2014-01-01

    Due to the long durations spent inside by many humans, indoor air quality has become a growing concern. Biofiltration has emerged as a potential mechanism to clean indoor air of harmful volatile organic compounds (VOCs), which are typically found at concentrations higher indoors than outdoors. Root-associated microbes are thought to drive the functioning of plant-based biofilters, or biowalls, converting VOCs into biomass, energy, and carbon dioxide, but little is known about the root microbial communities of such artificially grown plants, how or whether they differ from those of plants grown in soil, and whether any changes in composition are driven by VOCs. In this study, we investigated how bacterial communities on biofilter plant roots change over time and in response to VOC exposure. Through 16S rRNA amplicon sequencing, we compared root bacterial communities from soil-grown plants with those from two biowalls, while also comparing communities from roots exposed to clean versus VOC-laden air in a laboratory biofiltration system. The results showed differences in bacterial communities between soil-grown and biowall-grown plants and between bacterial communities from plant roots exposed to clean air and those from VOC-exposed plant roots. Both biowall-grown and VOC-exposed roots harbored enriched levels of bacteria from the genus Hyphomicrobium. Given their known capacities to break down aromatic and halogenated compounds, we hypothesize that these bacteria are important VOC degraders. While different strains of Hyphomicrobium proliferated in the two studied biowalls and our lab experiment, strains were shared across plant species, suggesting that a wide range of ornamental houseplants harbor similar microbes of potential use in living biofilters. PMID:24878602

  13. Increased concentration of Pseudomonas aeruginosa and Staphylococcus sp. in small animals exposed to aerospace environments

    NASA Technical Reports Server (NTRS)

    Guthrie, R. K.

    1976-01-01

    The effects of increased concentrations of PSEUDOMONAS AERUGINOSA AND STAPHYLOCOCCUS in the total bacterial flora of small animals exposed to simulated spacecraft environments were evaluated. Tests to detect changes in infectivity, effects of antibiotic treatments, immune responses to bacterial antigens, and effectiveness of immune responses in the experimental environment were conducted. The most significant results appear to be the differences in immune responses at simulated altitudes and the production of infection in the presence of a specific antibody.

  14. Marking individual ants for behavioral sampling in a laboratory colony.

    PubMed

    Holbrook, C Tate

    2009-07-01

    Ant societies are tractable and malleable, two features that make them ideal models for probing the organization of complex biological systems. The ability to identify specific individuals while they function as part of a colony permits an integrative analysis of social complexity, including self-organizational processes (i.e., how individual-level properties and social interactions give rise to emergent, colony-level attributes such as division of labor and collective decision making). Effects of genotype, nutrition, and physiology on individual behavior and the organization of work also can be investigated in this manner, through correlative and manipulative approaches. Moreover, aspects of colony demography (e.g., colony size, and age and size distributions of workers) can be altered experimentally to examine colony development and regulatory mechanisms underlying colony homeostasis and resiliency. This protocol describes how to sample the behavior of ants living in a colony under laboratory conditions. Specifically, it outlines how to identify and observe individuals within a colony, an approach that can be used to quantify individual- and colony-level patterns of behavior. When a lower-resolution measure of overall group behavior is desired, individual identities might not be required. Given the diversity of ants and their study, this protocol provides a very general methodology; the details can be modified according to the body size, colony size, and ecology of the focal species, as well as to specific research aims. These basic techniques can also be extended to more advanced experimental designs such as manipulation of colony demography and hormone treatment.

  15. Colony mapping: A new technique for monitoring crevice-nesting seabirds

    USGS Publications Warehouse

    Renner, H.M.; Renner, M.; Reynolds, J.H.; Harping, A.M.A.; Jones, I.L.; Irons, D.B.; Byrd, G.V.

    2006-01-01

    Monitoring populations of auklets and other crevice-nesting seabirds remains problematic, although numerous methods have been attempted since the mid-1960s. Anecdotal evidence suggests several large auklet colonies have recently decreased in both abundance and extent, concurrently with vegetation encroachment and succession. Quantifying changes in the geographical extent of auklet colonies may be a useful alternative to monitoring population size directly. We propose a standardized method for colony mapping using a randomized systematic grid survey with two components: a simple presence/absence survey and an auklet evidence density survey. A quantitative auklet evidence density index was derived from the frequency of droppings and feathers. This new method was used to map the colony on St. George Island in the southeastern Bering Sea and results were compared to previous colony mapping efforts. Auklet presence was detected in 62 of 201 grid cells (each grid cell = 2500 m2) by sampling a randomly placed 16 m2 plot in each cell; estimated colony area = 155 000 m2. The auklet evidence density index varied by two orders of magnitude across the colony and was strongly correlated with means of replicated counts of birds socializing on the colony surface. Quantitatively mapping all large auklet colonies is logistically feasible using this method and would provide an important baseline for monitoring colony status. Regularly monitoring select colonies using this method may be the best means of detecting changes in distribution and population size of crevice-nesting seabirds. ?? The Cooper Ornithological Society 2006.

  16. Specific Pathogen Free Macaque Colonies: A Review of Principles and Recent Advances for Viral Testing and Colony Management

    PubMed Central

    Yee, JoAnn L.; Vandeford, Thomas H.; Didier, Elizabeth S.; Gray, Stanton; Lewis, Anne; Roberts, Jeffrey; Taylor, Kerry; Bohm, Rudolf P.

    2016-01-01

    Specific Pathogen Free (SPF) macaques provide valuable animal models for biomedical research. In 1989 the National Center for Research Resources (now Office of Research Infrastructure Programs ORIP) of the National Institutes of Health initiated experimental research contracts to establish and maintain SPF colonies. The derivation and maintenance of SPF macaque colonies is a complex undertaking requiring knowledge of the biology of the agents for exclusion and normal physiology and behavior of macaques, application of the latest diagnostic technology, facilities management, and animal husbandry. This review provides information on the biology of the four viral agents targeted for exclusion in ORIP SPF macaque colonies, describes current state-of-the-art viral diagnostic algorithms, presents data from proficiency testing of diagnostic assays between laboratories at institutions participating in the ORIP SPF program, and outlines management strategies for maintaining the integrity of SPF colonies using results of diagnostic testing as a guide to decision making. PMID:26932456

  17. Deconstructive Pedagogy and Ideological Demystification in Post-Colonial Pakistan

    ERIC Educational Resources Information Center

    Mansoor, Asma; Malik, Samina

    2016-01-01

    With post-colonial Pakistan inheriting the British colonial ideological and governmental apparatus, the English literature curriculum implemented at the university level in Pakistan carried the interpellatory baggage of its colonial past. Our interdisciplinary exploration focuses on using deconstructive pedagogy to demystify and subvert the…

  18. The transcriptome of Spodoptera exigua larvae exposed to different types of microbes.

    PubMed

    Pascual, Laura; Jakubowska, Agata K; Blanca, Jose M; Cañizares, Joaquin; Ferré, Juan; Gloeckner, Gernot; Vogel, Heiko; Herrero, Salvador

    2012-08-01

    We have obtained and characterized the transcriptome of Spodoptera exigua larvae with special emphasis on pathogen-induced genes. In order to obtain a highly representative transcriptome, we have pooled RNA from diverse insect colonies, conditions and tissues. Sequenced cDNA included samples from 3 geographically different colonies. Enrichment of RNA from pathogen-related genes was accomplished by exposing larvae to different pathogenic and non-pathogenic microbial agents such as the bacteria Bacillus thuringiensis, Micrococcus luteus, and Escherichia coli, the yeast Saccharomyces cerevisiae, and the S. exigua nucleopolyhedrovirus (SeMNPV). In addition, to avoid the loss of tissue-specific genes we included cDNA from the midgut, fat body, hemocytes and integument derived from pathogen exposed insects. RNA obtained from the different types of samples was pooled, normalized and sequenced. Analysis of the sequences obtained using the Roche 454 FLX and Sanger methods has allowed the generation of the largest public set of ESTs from S. exigua, including a large group of immune genes, and the identification of an important number of SSR (simple sequence repeats) and SNVs (single nucleotide variants: SNPs and INDELs) with potential use as genetic markers. Moreover, data mining has allowed the discovery of novel RNA viruses with potential influence in the insect population dynamics and the larval interactions with the microbial pesticides that are currently in use for the biological control of this pest. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Genetic diversity affects colony survivorship in commercial honey bee colonies

    USDA-ARS?s Scientific Manuscript database

    Honey bee (Apis mellifera) queens mate with unusually high numbers of males (average of approximately 12 drones), although there is much variation among queens. One main consequence of such extreme polyandry is an increased diversity of worker genotypes within a colony, which has been shown empirica...

  20. Leisure, economy and colonial urbanism: Darjeeling, 1835-1930.

    PubMed

    Bhattacharya, Nandini

    2013-08-01

    This article posits that the hill station of Darjeeling was a unique form of colonial urbanism. It shifts historiographical interest from major urban centres in colonial India (such as Bombay or Calcutta) and instead attempts a greater understanding of smaller urban centres. In the process, it also interrogates the category of hill stations, which have been understood as exotic and scenic sites rather than as towns that were integral to the colonial economy. In arguing that hill stations, particularly Darjeeling, were not merely the scenic and healthy 'other' of the clamorous, dirty and diseased plains of India, it refutes suggestions that the 'despoiling' or overcrowding of Darjeeling was incremental to the purposes of its establishment. Instead, it suggests that Darjeeling was part of the colonial mainstream; its urbanization and inclusion into the greater colonial economy was effected from the time of its establishment. Therefore, a constant tension between its exotic and its functional elements persisted throughout.

  1. The Use of Different Irrigation Techniques to Decrease Bacterial Loads in Healthy and Diabetic Patients with Asymptomatic Apical Periodontitis.

    PubMed

    Ghoneim, Mai; Saber, Shehab ElDin; El-Badry, Tarek; Obeid, Maram; Hassib, Nehal

    2016-12-15

    Diabetes mellitus is a multisystem disease which weakens the human's immunity. Subsequently, it worsens the sequelae of apical periodontitis by raising a fierce bacterial trait due to the impaired host response. This study aimed to estimate bacterial reduction after using different irrigation techniques in systemically healthy and diabetic patients with asymptomatic apical periodontitis. Enterococcus faecalis , Peptostreptococcus micros , and Fusobacterium necleatum bacteria were chosen, as they are the most common and prevailing strains found in periodontitis. Bacterial samples were retrieved from necrotic root canals of systemically healthy and diabetic patients, before and after endodontic cleaning and shaping by using two different irrigation techniques; the conventional one and the EndoVac system. Quantitive polymerase chain reaction (qPCR) was utilised to detect the reduction in the bacterial count. The EndoVac irrigation system was effective in reducing bacteria, especially Peptostreptococcus micros in the diabetic group when compared to conventional irrigation technique with a statistically significant difference. The EndoVac can be considered as a promising tool in combination with irrigant solution to defeat the bacterial colonies living in the root canal system. Additional studies ought to be done to improve the means of bacterial clearance mainly in immune-compromised individuals.

  2. Is there a Space for Post-Colonial Theory in the Socio-Psychological Research on Consequences of Colonial Past?

    PubMed

    Leone, Giovanna

    2018-04-26

    The focus of my commentary is two-fold. First, I discuss what appeared to me as the central theoretical focus of the article; the possibility to create a space, if at all, for integrating post-colonial theory into the broader research field of social and psychological studies of the consequences of colonial past. Second, I intend to show why, in my opinion, the methodological choices of the authors and the criteria adopted for corpus construction allowed for data that, although too thin to establishing the state of knowledge in the field of study on consequences of colonial past, is nevertheless very informative and thoughts-provoking. My conclusions suggest that this study is an innovative attempt at describing and grasping the results of a search guided by two among the more consolidated electronic datasets currently available for English-speaking scholars. However, this study may not easily understand which can be the space to integrate post-colonial theory in the field of research on consequences of colonial past. To better reach this aim, it is perhaps necessary to build another kind of corpus, open to other languages (starting from French) and focused also on other scientific products, as books or proceedings of congress. In addition, disciplinary boundaries have to be even more explored, starting from interdisciplinary studies on education and historical culture. In spite of these limitations, I am convinced that this innovative study by Tomicic and Berardi tackles issues of relevance to any serious effort towards reflecting on long-term consequences of colonial violence and opens up to valuable new research questions and methods, to be taken into serious account and further explored in future works.

  3. Differential adult survival at close seabird colonies: The importance of spatial foraging segregation and bycatch risk during the breeding season.

    PubMed

    Genovart, Meritxell; Bécares, Juan; Igual, José-Manuel; Martínez-Abraín, Alejandro; Escandell, Raul; Sánchez, Antonio; Rodríguez, Beneharo; Arcos, José M; Oro, Daniel

    2018-03-01

    Marine megafauna, including seabirds, are critically affected by fisheries bycatch. However, bycatch risk may differ on temporal and spatial scales due to the uneven distribution and effort of fleets operating different fishing gear, and to focal species distribution and foraging behavior. Scopoli's shearwater Calonectris diomedea is a long-lived seabird that experiences high bycatch rates in longline fisheries and strong population-level impacts due to this type of anthropogenic mortality. Analyzing a long-term dataset on individual monitoring, we compared adult survival (by means of multi-event capture-recapture models) among three close predator-free Mediterranean colonies of the species. Unexpectedly for a long-lived organism, adult survival varied among colonies. We explored potential causes of this differential survival by (1) measuring egg volume as a proxy of food availability and parental condition; (2) building a specific longline bycatch risk map for the species; and (3) assessing the distribution patterns of breeding birds from the three study colonies via GPS tracking. Egg volume was very similar between colonies over time, suggesting that environmental variability related to habitat foraging suitability was not the main cause of differential survival. On the other hand, differences in foraging movements among individuals from the three colonies expose them to differential mortality risk, which likely influenced the observed differences in adult survival. The overlap of information obtained by the generation of specific bycatch risk maps, the quantification of population demographic parameters, and the foraging spatial analysis should inform managers about differential sensitivity to the anthropogenic impact at mesoscale level and guide decisions depending on the spatial configuration of local populations. The approach would apply and should be considered in any species where foraging distribution is colony-specific and mortality risk varies spatially

  4. Continuing Education of Adults in Colonial America.

    ERIC Educational Resources Information Center

    Long, Huey B.

    Designed to consolidate information about adult educational activities in colonial America, the publication covers self-directed learning, public lectures, apprenticeships and evening schools, education of women and girls, and leisure education. Advertisements and announcements from colonial newspapers published from 1765-1776 constituted the…

  5. Weight Watching and the Effect of Landscape on Honeybee Colony Productivity: Investigating the Value of Colony Weight Monitoring for the Beekeeping Industry.

    PubMed

    Lecocq, Antoine; Kryger, Per; Vejsnæs, Flemming; Bruun Jensen, Annette

    2015-01-01

    Over the last few decades, a gradual departure away from traditional agricultural practices has resulted in alterations to the composition of the countryside and landscapes across Europe. In the face of such changes, monitoring the development and productivity of honey bee colonies from different sites can give valuable insight on the influence of landscape on their productivity and might point towards future directions for modernized beekeeping practices. Using data on honeybee colony weights provided by electronic scales spread across Denmark, we investigated the effect of the immediate landscape on colony productivity. In order to extract meaningful information, data manipulation was necessary prior to analysis as a result of different management regimes or scales malfunction. Once this was carried out, we were able to show that colonies situated in landscapes composed of more than 50% urban areas were significantly more productive than colonies situated in those with more than 50% agricultural areas or those in mixed areas. As well as exploring some of the potential reasons for the observed differences, we discuss the value of weight monitoring of colonies on a large scale.

  6. Pre-colonial Ethnic Institutions and Contemporary African Development*

    PubMed Central

    Michalopoulos, Stelios; Papaioannou, Elias

    2013-01-01

    We investigate the role of deeply-rooted pre-colonial ethnic institutions in shaping comparative regional development within African countries. We combine information on the spatial distribution of ethnicities before colonization with regional variation in contemporary economic performance, as proxied by satellite images of light density at night. We document a strong association between pre-colonial ethnic political centralization and regional development. This pattern is not driven by differences in local geographic features or by other observable ethnic-specific cultural and economic variables. The strong positive association between pre-colonial political complexity and contemporary development obtains also within pairs of adjacent ethnic homelands with different legacies of pre-colonial political institutions. PMID:25089052

  7. Variation in age composition among colony sizes in Cliff Swallows.

    PubMed

    Brown, Charles R; Roche, Erin A; Brown, Mary Bomberger

    2014-09-01

    Variation in group size is characteristic of most social species. The extent to which individuals sort among group sizes based on age may yield insight into why groups vary in size and the age-specific costs and benefits of different social environments. We investigated the age composition of Cliff Swallow ( Petrochelidon pyrrhonota ) colonies of different sizes over 18 years at a long-term study site in western Nebraska, USA. Using years elapsed since banding as a relative measure of age for over 194,000 birds, we found that the proportion of age-class-1 swallows (birds banded as nestlings or juveniles or adults in the year of banding) of both sexes increased in larger colonies and at colony sites becoming active later in the summer. Age composition was unrelated to how often a particular colony site was used. The effect of colony size most likely reflected the fact that older birds return to the same colony site in successive years even when the colony size there decreases, and that yearlings and immigrants benefit more from larger colonies than do older, more experienced individuals. The date effect probably resulted in part from later spring arrival by younger and/or immigrant swallows. At fumigated sites where ectoparasitic swallow bugs ( Oeciacus vicarius ) had been removed, age composition did not vary with either colony size or colony initiation date. The patterns reported here appear to be driven partially by the presence of ectoparasites and suggest that the hematophagous bugs influence variation in Cliff Swallow group composition. Our results are consistent with the hypothesis that variation in colony size reflects, in part, age-based sorting of individuals among groups.

  8. A Post-Colonial Reading of Affirmative Action in Fiji.

    ERIC Educational Resources Information Center

    Puamau, Priscilla Qolisaya

    2001-01-01

    Presents a post-colonial reading of affirmative action (AA) policies in Fiji, arguing that AA was a deliberate response by various predominantly indigenous Fijian post-colonial governments to counter the effects of a discriminatory colonial history that produced significant educational and employment inequality. Analyzes the mixed outcomes of AA…

  9. The Genesis of Public Relations in British Colonial Practice.

    ERIC Educational Resources Information Center

    Smyth, Rosaleen

    2001-01-01

    Demonstrates how the British Colonial Office employed public relations strategies as they administered the British colony of Northern Rhodesia before, during, and after World War II. Demonstrates how civil servants in London and colonial officials implemented public relations policies, strategies, and tactics on an ad hoc basis, covering political…

  10. Maternal Oral Bacterial Levels Predict Early Childhood Caries Development

    PubMed Central

    Chaffee, B.W.; Gansky, S.A.; Weintraub, J.A.; Featherstone, J.D.B.; Ramos-Gomez, F.J.

    2014-01-01

    Objective: To calculate the association of maternal salivary bacterial challenge (mutans streptococci [MS] and lactobacilli [LB]) from pregnancy through 24 months’ postpartum with child caries incidence (≥1 cavitated or restored teeth) at 36 months. Materials & Methods: Dental, salivary bacterial, sociodemographic, and behavioral measures were collected at three- to six-month intervals from a birth cohort of low-income Hispanic mother-child dyads (N = 243). We calculated the relative child caries incidence, adjusted for confounding, following higher maternal challenge of MS (>4500 colony-forming units per milliliter of saliva [CFU/mL]) and LB (>50 CFU/mL) based on multivariable models. Results: Salivary MS and LB levels were greater among mothers of caries-affected children versus caries-free children. Mothers with higher salivary MS challenge were more likely to have MS-positive children (>0 CFU/mL), but maternal LB challenge was not a statistically significant predictor of child LB-positive status. Adjusting for sociodemographics, feeding and care practices, and maternal dental status, higher maternal salivary challenge of both MS and LB over the study period predicted nearly double the child caries incidence versus lower MS and LB (cumulative incidence ratio: 1.9; 95% confidence interval: 1.1, 3.8). Conclusion: Maternal salivary bacterial challenge not only is associated with oral infection among children but also predicts increased early childhood caries occurrence. PMID:24356441

  11. Policing native pleasures: a colonial history.

    PubMed

    Jabbar, Naheem

    2012-12-01

    The moral modality of colonial power is still with us when it comes to the recreation of sexual norms of traditional or feudal society. We can examine the emergent properties of colonial knowledge anew by exploring how the colonial regime's strategic attention of regulating brothels in India differed from the analytic of power Foucault described for sexuality in European society. It turns out that amongst other things, public anxieties about the failure of adaptation by South Asians are incapable of leaving sexuality aside as a key interpretive device for their culture. The British preoccupation with reproducing the dynamics of the bourgeois matrimonial market on foreign soil in the mid-nineteenth century similarly necessitated a sociological pretext for racial purity. However, the kind of knowledge a typical traveller and employee of the East India Company brought to the Victorian public from his own researches in the brothels and streets of colonial India, which revealed how popular prostitution was as a vice amongst the officer class, was also more than a welcome imaginary relief from Christian morality; it was an alternative vision of modernity. © London School of Economics and Political Science 2012.

  12. Thiamethoxam honey bee colony feeding study: Linking effects at the level of the individual to those at the colony level.

    PubMed

    Overmyer, Jay; Feken, Max; Ruddle, Natalie; Bocksch, Sigrun; Hill, Marcus; Thompson, Helen

    2018-03-01

    Neonicotinoid insecticides have been used globally on a wide range of crops through seed treatment as well as soil and foliar applications and have been increasingly studied in relation to the potential risk to bees because of their detection in pollen and nectar of bee-attractive crops. The present article reports the results of laboratory studies (10-d adult and 22-d larval toxicity studies assessing the chronic toxicity of thiamethoxam to adult honey bees and larvae, respectively) and a colony feeding study, with 6 wk of exposure in an area with limited alternative forage, to provide a prewintering colony-level endpoint. The endpoints following exposure of individuals in the laboratory (10-d adult chronic no-observed-effect concentration [NOEC] for mortality 117 μg thiamethoxam/kg sucrose solution, 141 μg thiamethoxam/L sucrose solution; 22-d larval chronic NOEC 102 μg thiamethoxam/kg diet) are compared with those generated at the colony level, which incorporates sublethal effects (no-observed-adverse-effect concentration [NOAEC] 50 μg thiamethoxam/L sucrose solution, 43 μg thiamethoxam/kg sucrose solution). The data for sucrose-fed honey bee colonies support the lack of effects identified in previous colony-level field studies with thiamethoxam. However, unlike these field studies demonstrating no effects, colony feeding study data also provide a threshold level of exposure likely to result in adverse effects on the colony in the absence of alternative forage, and a basis by which to evaluate the potential risk of thiamethoxam residues detected in pollen, nectar, or water following treatment of bee-attractive crops. Environ Toxicol Chem 2018;37:816-828. © 2017 SETAC. © 2017 SETAC.

  13. Pathogen webs in collapsing honey bee colonies

    USDA-ARS?s Scientific Manuscript database

    Recent losses in honey bee colonies are unusual in their severity, geographical distribution, and, in some cases, failure to present recognized symptoms of known disease. Domesticated honey bees face numerous pests and pathogens, tempting hypotheses that colony collapses arise from exposure to new o...

  14. Predictive markers of honey bee colony collapse

    USDA-ARS?s Scientific Manuscript database

    Managed honey bee colonies are currently affected by abrupt depopulation during winter and many factors are suspected to be involved, either alone or in combination. Pathogens are considered as principal actors, contributing to weaken colony health and leaving room for secondary infections. In parti...

  15. The psychology of colonialism: sex, age, and ideology in British India.

    PubMed

    Nandy, A

    1982-08-01

    It is becoming more and more obvious that colonialism--as we have come to know it during the last two hundred years--cannot be identified with only economic gain and political power. In Manchuria, Japan consistently lost money, and for many years colonial Indochina, Algeria and Angola, instead of increasing the political power of France and Portugal, sapped it. This did not make Manchuria, Indochina, Algeria or Angola less important as colonies. Nor did it disprove the point that economic gain and political power are important motives in a colonial situation. It only showed that colonialism could be characterized by the search for economic and political advantage without concomitant real economic or political gains, and sometimes even with economic or political losses. This essay argues that the first differentia of colonialism is a state of mind in the colonizers and the colonized, a colonial consciousness which includes the sometimes unrealizable wish to make economic and political profits from the colonies, but other elements, too. The political economy of colonization is of course important, but the vulgarity and insanity of colonialism are principally expressed in the sphere of psychology. The following pages will explore some of these psychological contours of colonialism in the rulers and the ruled and try to define colonialism as a shared culture which may not always begin with the establishment of alien rule in a society and end with the departure of the alien rulers from the colony. The example I shall use will be that of India, where a colonial political economy began to operate seventy-five years before the full-blown ideology of British imperialism became dominant, and where thirty years after the formal ending of the raj, the ideology of colonialism is still triumphant in many sectors of life.

  16. Colony Collapse Disorder

    EPA Pesticide Factsheets

    In CCD, the majority of worker bees in a colony disappear and leave behind a queen, plenty of food and a few nurse bees to care for remaining immature bees and the queen. EPA and USDA are working to understand this problem.

  17. Genetic diversity promotes homeostasis in insect colonies.

    PubMed

    Oldroyd, Benjamin P; Fewell, Jennifer H

    2007-08-01

    Although most insect colonies are headed by a singly mated queen, some ant, wasp and bee taxa have evolved high levels of multiple mating or 'polyandry'. We argue here that a contributing factor towards the evolution of polyandry is that the resulting genetic diversity within colonies provides them with a system of genetically based task specialization, enabling them to respond resiliently to environmental perturbation. An alternate view is that genetic contributions to task specialization are a side effect of multiple mating, which evolved through other causes, and that genetically based task specialization now makes little or no contribution to colony fitness.

  18. Synthetic quorum sensing in model microcapsule colonies

    NASA Astrophysics Data System (ADS)

    Shum, Henry; Balazs, Anna C.

    2017-08-01

    Biological quorum sensing refers to the ability of cells to gauge their population density and collectively initiate a new behavior once a critical density is reached. Designing synthetic materials systems that exhibit quorum sensing-like behavior could enable the fabrication of devices with both self-recognition and self-regulating functionality. Herein, we develop models for a colony of synthetic microcapsules that communicate by producing and releasing signaling molecules. Production of the chemicals is regulated by a biomimetic negative feedback loop, the “repressilator” network. Through theory and simulation, we show that the chemical behavior of such capsules is sensitive to both the density and number of capsules in the colony. For example, decreasing the spacing between a fixed number of capsules can trigger a transition in chemical activity from the steady, repressed state to large-amplitude oscillations in chemical production. Alternatively, for a fixed density, an increase in the number of capsules in the colony can also promote a transition into the oscillatory state. This configuration-dependent behavior of the capsule colony exemplifies quorum-sensing behavior. Using our theoretical model, we predict the transitions from the steady state to oscillatory behavior as a function of the colony size and capsule density.

  19. Bacterial adhesion forces to Ag-impregnated contact lens cases and transmission to contact lenses.

    PubMed

    Qu, Wenwen; Busscher, Henk J; van der Mei, Henny C; Hooymans, Johanna M M

    2013-03-01

    To measure adhesion forces of Pseudomonas aeruginosa, Staphylococcus aureus, and Serratia marcescens to a rigid contact lens (CL), standard polypropylene, and Ag-impregnated lens cases using atomic force microscopy and determine bacterial transmission from lens case to CL. Adhesion forces of bacterial strains to Ag-impregnated and polypropylene lens cases and a rigid CL were measured using atomic force microscopy. Adhesion forces were used to calculate Weibull distributions, from which transmission probabilities from lens case to CL were derived. Transmission probabilities were compared with actual transmission of viable bacteria from a lens case to the CL in 0.9% NaCl and in an antimicrobial lens care solution. Bacterial transmission probabilities from polypropylene lens cases based on force analysis coincided well for all strains with actual transmission in 0.9% NaCl. Bacterial adhesion forces on Ag-impregnated lens cases were much smaller than that on polypropylene and CLs, yielding a high probability of transmission. Comparison with actual bacterial transmission indicated bacterial killing due to Ag ions during colony-forming unit transmission from an Ag-impregnated lens case, especially for P. aeruginosa. Transmission of viable bacteria from Ag-impregnated lens cases could be further decreased by use of an antimicrobial lens care solution instead of 0.9% NaCl. Bacterial transmission probabilities are higher from Ag-impregnated lens cases than from polypropylene lens cases because of small adhesion forces, but this is compensated for by enhanced bacterial killing due to Ag impregnation, especially when in combination with an antimicrobial lens care solution. This calls for a balanced combination of antimicrobial lens care solutions and surface properties of a lens case and CL.

  20. Marine mesocosm bacterial colonisation of volcanic ash

    NASA Astrophysics Data System (ADS)

    Witt, Verena; Cimarelli, Corrado; Ayris, Paul; Kueppers, Ulrich; Erpenbeck, Dirk; Dingwell, Donald; Woerheide, Gert

    2015-04-01

    Volcanic eruptions regularly eject large quantities of ash particles into the atmosphere, which can be deposited via fallout into oceanic environments. Such fallout has the potential to alter pH, light and nutrient availability at local scales. Shallow-water coral reef ecosystems - "rainforests of the sea" - are highly sensitive to disturbances, such as ocean acidification, sedimentation and eutrophication. Therefore, wind-delivered volcanic ash may lead to burial and mortality of such reefs. Coral reef ecosystem resilience may depend on pioneer bacterial colonisation of the ash layer, supporting subsequent establishment of the micro- and ultimately the macro-community. However, which bacteria are involved in pioneer colonisation remain unknown. We hypothesize that physico-chemical properties (i.e., morphology, mineralogy) of the ash may dictate bacterial colonisation. The effect of substrate properties on bacterial colonisation was tested by exposing five substrates: i) quartz sand ii) crystalline ash (Sakurajima, Japan) iii) volcanic glass iv) carbonate reef sand and v) calcite sand of similar grain size, in controlled marine coral reef aquaria under low light conditions for six months. Bacterial communities were screened every month by Automated Ribosomal Intergenic Spacer Analysis of the 16S-23S rRNA Internal Transcribed Spacer region. Multivariate statistics revealed discrete groupings of bacterial communities on substrates of volcanic origin (ash and glass) and reef origin (three sands). Analysis of Similarity supported significantly different communities associated with all substrates (p=0.0001), only quartz did not differ from both carbonate and calcite sands. The ash substrate exhibited the most diverse bacterial community with the most substrate-specific bacterial operational taxonomic units. Our findings suggest that bacterial diversity and community composition during colonisation of volcanic ash in a coral reef-like environment is controlled by the

  1. Influence UHF radiation on the process of self-assembly and lethal effect of bacterial lipopolysaccharide

    NASA Astrophysics Data System (ADS)

    Brill, G. E.; Egorova, A. V.; Bugaeva, I. O.; Postnov, D. E.; Melnikov, A. G.; Ushakova, O. V.

    2018-04-01

    The influence of low-intensity electromagnetic radiation on the process of self-assembly, spectral-fluorescent characteristics and lethal effect of bacterial lipopolysaccharide (endotoxin) was performed. A solution of bacterial lipopolysaccharide exposed to electromagnetic waves with a frequency of 1 GHz, the power density of 0.1 μW/cm2 for 10 min. In experiments on a large group of control and irradiated mice, a comparative analysis of the estimated lethal dose of endotoxin was performed. It was proved that UHF radiation of certain parameters reduces the lethal effects of bacterial lipopolysaccharide on 26%.

  2. Colony-level effects of imidacloprid in subterranean termites (Isoptera: Rhinotermitidae).

    PubMed

    Parman, Vincent; Vargo, Edward L

    2010-06-01

    We determined the impact of imidacloprid (Premise) on colonies of Reticulitermes spp. (Isoptera: Rhinotermitidae) through soil applications in the field. We selected 11 houses in the Raleigh, NC, area with active termite infestations. In-ground monitoring stations (mean = 75.9 stations) were installed around each house, and samples of termites visiting the monitors, in mud tubes, as well as samples from wood debris in the yard, were collected monthly for up to 14 mo to determine the numbers and locations of colonies present before treatment. We used microsatellite genetic markers to identify individual colonies present on each property. All houses were treated with Premise 75 WSP by using an exterior perimeter/interior spot treatment. After treatment, termite samples were collected monthly for 3 mo and then quarterly for 2 yr to track the fate of colonies. Of the 12 treated colonies (those attacking structures), 75% disappeared within 90 d and were not detected again. In contrast, only 25% of 48 untreated colonies (located 2 m or further from the treatment zone) and 40% of the six likely treated colonies (located within 0.5 m of the treatment zone but not known to be attacking the structure) were not detected again during the study. Our findings are consistent with strong colony-level effects of soil treatments with imidacloprid, resulting in the suppression or elimination of Reticulitermes spp. colonies in many cases.

  3. Colony site dynamics and habitat use in Atlantic coast seabirds

    USGS Publications Warehouse

    Erwin, R.M.; Galli, J.; Burger, J.

    1981-01-01

    Seabird colony sizes and movements were documented in the DelMarVa coastal region in 1976-1977 and in New Jersey in 1978-1979. Most colonies were found on marsh and dredge deposition islands and on barrier island beaches. For the "traditionally" beach-nesting Herring Gull, Common Tern, and Black Skimmer, larger, more stable colonies were found on barrier beaches than on marsh islands. In marsh habitats, rates of colony-site change of marsh-nesting Forster's Tern and Laughing Gulls were similar to those of the former beach nesters. Several adaptations have evolved in marsh specialists to cope with a high risk of reproductive failure due to flooding, but both Herring Gulls and Common Terns also appear to be very adaptable in nesting under various habitat conditions.New colonies and those abandoned between years may be pioneering attempts by younger or inexperienced birds, because they are often smaller than persistent colonies, although patterns differ among areas and habitats. Colony-site dynamics are complex and result from many selective factors including competition, predation, physical changes in site structure, and flooding. The invasion of Herring Gulls into marshes along the mid-Atlantic coast has had an impact on new colony-site choice by associated seabirds.Calculating colony-site turnover rates allows for comparisons among species, habitats, and regions and may give useful insights into habitat quality and change and alternative nesting strategies.

  4. 21 CFR 866.2170 - Automated colony counter.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Automated colony counter. 866.2170 Section 866.2170 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Microbiology Devices § 866.2170 Automated colony...

  5. 21 CFR 866.2170 - Automated colony counter.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Automated colony counter. 866.2170 Section 866.2170 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Microbiology Devices § 866.2170 Automated colony...

  6. 21 CFR 866.2170 - Automated colony counter.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Automated colony counter. 866.2170 Section 866.2170 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Microbiology Devices § 866.2170 Automated colony...

  7. 21 CFR 866.2170 - Automated colony counter.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Automated colony counter. 866.2170 Section 866.2170 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Microbiology Devices § 866.2170 Automated colony...

  8. 21 CFR 866.2170 - Automated colony counter.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Automated colony counter. 866.2170 Section 866.2170 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Microbiology Devices § 866.2170 Automated colony...

  9. Iridovirus and Microsporidian Linked to Honey Bee Colony Decline

    PubMed Central

    Bromenshenk, Jerry J.; Henderson, Colin B.; Wick, Charles H.; Stanford, Michael F.; Zulich, Alan W.; Jabbour, Rabih E.; Deshpande, Samir V.; McCubbin, Patrick E.; Seccomb, Robert A.; Welch, Phillip M.; Williams, Trevor; Firth, David R.; Skowronski, Evan; Lehmann, Margaret M.; Bilimoria, Shan L.; Gress, Joanna; Wanner, Kevin W.; Cramer, Robert A.

    2010-01-01

    Background In 2010 Colony Collapse Disorder (CCD), again devastated honey bee colonies in the USA, indicating that the problem is neither diminishing nor has it been resolved. Many CCD investigations, using sensitive genome-based methods, have found small RNA bee viruses and the microsporidia, Nosema apis and N. ceranae in healthy and collapsing colonies alike with no single pathogen firmly linked to honey bee losses. Methodology/Principal Findings We used Mass spectrometry-based proteomics (MSP) to identify and quantify thousands of proteins from healthy and collapsing bee colonies. MSP revealed two unreported RNA viruses in North American honey bees, Varroa destructor-1 virus and Kakugo virus, and identified an invertebrate iridescent virus (IIV) (Iridoviridae) associated with CCD colonies. Prevalence of IIV significantly discriminated among strong, failing, and collapsed colonies. In addition, bees in failing colonies contained not only IIV, but also Nosema. Co-occurrence of these microbes consistently marked CCD in (1) bees from commercial apiaries sampled across the U.S. in 2006–2007, (2) bees sequentially sampled as the disorder progressed in an observation hive colony in 2008, and (3) bees from a recurrence of CCD in Florida in 2009. The pathogen pairing was not observed in samples from colonies with no history of CCD, namely bees from Australia and a large, non-migratory beekeeping business in Montana. Laboratory cage trials with a strain of IIV type 6 and Nosema ceranae confirmed that co-infection with these two pathogens was more lethal to bees than either pathogen alone. Conclusions/Significance These findings implicate co-infection by IIV and Nosema with honey bee colony decline, giving credence to older research pointing to IIV, interacting with Nosema and mites, as probable cause of bee losses in the USA, Europe, and Asia. We next need to characterize the IIV and Nosema that we detected and develop management practices to reduce honey bee losses

  10. Optical image acquisition system for colony analysis

    NASA Astrophysics Data System (ADS)

    Wang, Weixing; Jin, Wenbiao

    2006-02-01

    For counting of both colonies and plaques, there is a large number of applications including food, dairy, beverages, hygiene, environmental monitoring, water, toxicology, sterility testing, AMES testing, pharmaceuticals, paints, sterile fluids and fungal contamination. Recently, many researchers and developers have made efforts for this kind of systems. By investigation, some existing systems have some problems since they belong to a new technology product. One of the main problems is image acquisition. In order to acquire colony images with good quality, an illumination box was constructed as: the box includes front lightning and back lightning, which can be selected by users based on properties of colony dishes. With the illumination box, lightning can be uniform; colony dish can be put in the same place every time, which make image processing easy. A digital camera in the top of the box connected to a PC computer with a USB cable, all the camera functions are controlled by the computer.

  11. Longitudinal survey of two serotine bat (Eptesicus serotinus) maternity colonies exposed to EBLV-1 (European Bat Lyssavirus type 1): Assessment of survival and serological status variations using capture-recapture models.

    PubMed

    Robardet, Emmanuelle; Borel, Christophe; Moinet, Marie; Jouan, Dorothée; Wasniewski, Marine; Barrat, Jacques; Boué, Franck; Montchâtre-Leroy, Elodie; Servat, Alexandre; Gimenez, Olivier; Cliquet, Florence; Picard-Meyer, Evelyne

    2017-11-01

    This study describes two longitudinal serological surveys of European Bat Lyssavirus type 1 (EBLV-1) antibodies in serotine bat (Eptesicus serotinus) maternity colonies located in the North-East of France. This species is currently considered as the main EBLV-1 reservoir. Multievent capture-recapture models were used to determine the factors influencing bat rabies transmission as this method accounts for imperfect detection and uncertainty in disease states. Considering the period of study, analyses revealed that survival and recapture probabilities were not affected by the serological status of individuals, confirming the capacity of bats to be exposed to lyssaviruses without dying. Five bats have been found with EBLV-1 RNA in the saliva at the start of the study, suggesting they were caught during virus excretion period. Among these bats, one was interestingly recaptured one year later and harbored a seropositive status. Along the survey, some others bats have been observed to both seroconvert (i.e. move from a negative to a positive serological status) and serorevert (i.e. move from a positive to a negative serological status). Peak of seroprevalence reached 34% and 70% in site A and B respectively. On one of the 2 sites, global decrease of seroprevalence was observed all along the study period nuanced by oscillation intervals of approximately 2-3 years supporting the oscillation infection dynamics hypothesized during a previous EBLV-1 study in a Myotis myotis colony. Seroprevalence were affected by significantly higher seroprevalence in summer than in spring. The maximum time observed between successive positive serological statuses of a bat demonstrated the potential persistence of neutralizing antibodies for at least 4 years. At last, EBLV-1 serological status transitions have been shown driven by age category with higher seroreversion frequencies in adults than in juvenile. Juveniles and female adults seemed indeed acting as distinct drivers of the rabies

  12. Window contamination on Expose-R

    NASA Astrophysics Data System (ADS)

    Demets, R.; Bertrand, M.; Bolkhovitinov, A.; Bryson, K.; Colas, C.; Cottin, H.; Dettmann, J.; Ehrenfreund, P.; Elsaesser, A.; Jaramillo, E.; Lebert, M.; van Papendrecht, G.; Pereira, C.; Rohr, T.; Saiagh, K.

    2015-01-01

    Expose is a multi-user instrument for astrobiological and astrochemical experiments in space. Installed at the outer surface of the International Space Station, it enables investigators to study the impact of the open space environment on biological and biochemical test samples. Two Expose missions have been completed so far, designated as Expose-E (Rabbow et al. 2012) and Expose-R (Rabbow et al. this issue). One of the space-unique environmental factors offered by Expose is full-spectrum, ultraviolet (UV)-rich electromagnetic radiation from the Sun. This paper describes and analyses how on Expose-R, access of the test samples to Solar radiation degraded during space exposure in an unpredicted way. Several windows in front of the Sun-exposed test samples acquired a brown shade, resulting in a reduced transparency in visible light, UV and vacuum UV (VUV). Post-flight investigations revealed the discolouration to be caused by a homogenous film of cross-linked organic polymers at the inside of the windows. The chemical signature varied per sample carrier. No such films were found on windows from sealed, pressurized compartments, or on windows that had been kept out of the Sun. This suggests that volatile compounds originating from the interior of the Expose facility were cross-linked and photo-fixed by Solar irradiation at the rear side of the windows. The origin of the volatiles was not fully identified; most probably there was a variety of sources involved including the biological test samples, adhesives, plastics and printed circuit boards. The outer surface of the windows (pointing into space) was chemically impacted as well, with a probable effect on the transparency in VUV. The reported analysis of the window contamination on Expose-R is expected to help the interpretation of the scientific results and offers possibilities to mitigate this problem on future missions - in particular Expose-R2, the direct successor of Expose-R.

  13. SUSPECTED CARBARYL TOXICITY IN A CAPTIVE COLONY OF STRAW-COLORED FRUIT BATS ( EIDOLON HELVUM).

    PubMed

    Selig, Michael; Lewandowski, Albert

    2017-12-01

    Carbaryl was the first carbamate insecticide produced and remains the most widely used due to its perceived low level of toxicity in nontarget species. This report describes the management and evaluation of a group of straw-colored fruit bats, Eidolon helvum, that were exposed to carbaryl. Cholinesterase activity of blood, retina, and brain was evaluated to further investigate whether carbaryl was the causative agent. Decreased whole blood and retinal cholinesterase activity coupled with the response to atropine suggests that the cause of the clinical signs in this bat colony was due to carbaryl exposure. Whole blood and retinal tissue may be the best samples for confirming carbamate exposure in this species.

  14. 21 CFR 866.2180 - Manual colony counter.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Manual colony counter. 866.2180 Section 866.2180 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Microbiology Devices § 866.2180 Manual colony counter...

  15. 21 CFR 866.2180 - Manual colony counter.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Manual colony counter. 866.2180 Section 866.2180 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Microbiology Devices § 866.2180 Manual colony counter...

  16. 21 CFR 866.2180 - Manual colony counter.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Manual colony counter. 866.2180 Section 866.2180 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Microbiology Devices § 866.2180 Manual colony counter...

  17. 21 CFR 866.2180 - Manual colony counter.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Manual colony counter. 866.2180 Section 866.2180 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Microbiology Devices § 866.2180 Manual colony counter...

  18. 21 CFR 866.2180 - Manual colony counter.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Manual colony counter. 866.2180 Section 866.2180 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Microbiology Devices § 866.2180 Manual colony counter...

  19. Colonialism in Modern America: The Appalachian Case.

    ERIC Educational Resources Information Center

    Lewis, Helen Matthews, Ed.; And Others

    The essays in this book illustrate a conceptual model for analyzing the social and economic problems of the Appalachian region. The model is variously called Colonialism, Internal Colonialism, Exploitation, or External Oppression. It highlights the process through which dominant outside industrial interests establish control, exploit the region,…

  20. Weight Watching and the Effect of Landscape on Honeybee Colony Productivity: Investigating the Value of Colony Weight Monitoring for the Beekeeping Industry

    PubMed Central

    Lecocq, Antoine; Kryger, Per; Vejsnæs, Flemming; Bruun Jensen, Annette

    2015-01-01

    Over the last few decades, a gradual departure away from traditional agricultural practices has resulted in alterations to the composition of the countryside and landscapes across Europe. In the face of such changes, monitoring the development and productivity of honey bee colonies from different sites can give valuable insight on the influence of landscape on their productivity and might point towards future directions for modernized beekeeping practices. Using data on honeybee colony weights provided by electronic scales spread across Denmark, we investigated the effect of the immediate landscape on colony productivity. In order to extract meaningful information, data manipulation was necessary prior to analysis as a result of different management regimes or scales malfunction. Once this was carried out, we were able to show that colonies situated in landscapes composed of more than 50% urban areas were significantly more productive than colonies situated in those with more than 50% agricultural areas or those in mixed areas. As well as exploring some of the potential reasons for the observed differences, we discuss the value of weight monitoring of colonies on a large scale. PMID:26147392

  1. Social interactions in the central nest of Coptotermes formosanus juvenile colonies

    USDA-ARS?s Scientific Manuscript database

    Juvenile colonies of Coptotermes formosanus Shiraki were investigated to determine the social interactions among all individuals near the central nest of a colony. The behavioral repertoire of whole colonies of subterranean termites has yet to be identified because of their cryptic nests. Colonies w...

  2. Fitness and Recovery of Bacterial Communities and Antibiotic Resistance Genes in Urban Wastewaters Exposed to Classical Disinfection Treatments.

    PubMed

    Di Cesare, Andrea; Fontaneto, Diego; Doppelbauer, Julia; Corno, Gianluca

    2016-09-20

    Antibiotic resistance genes (ARGs) are increasingly appreciated to be important as micropollutants. Indirectly produced by human activities, they are released into the environment, as they are untargeted by conventional wastewater treatments. In order to understand the fate of ARGs and of other resistant forms (e.g., phenotypical adaptations) in urban wastewater treatment plants (WWTPs), we monitored three WWTPs with different disinfection processes (chlorine, peracetic acid (PAA), and ultraviolet light (UV)). We monitored WWTPs influx and pre- and postdisinfection effluent over 24 h, followed by incubation experiments lasting for 96 h. We measured bacterial abundance, size distribution and aggregational behavior, the proportion of intact (active) cells, and the abundances of four ARGs and of the mobile element integron1. While all the predisinfection treatments of all WWTPs removed the majority of bacteria and of associated ARGs, of the disinfection processes only PAA efficiently removed bacterial cells. However, the stress imposed by PAA selected for bacterial aggregates and, similarly to chlorine, stimulated the selection of ARGs during the incubation experiment. This suggests disinfections based on chemically aggressive destruction of bacterial cell structures can promote a residual microbial community that is more resistant to antibiotics and, given the altered aggregational behavior, to competitive stress in nature.

  3. Colony to colorimetry in 6 h: ELISA detection of a surface-expressed Pseudomonas aeruginosa virulence factor using immobilized bacteria.

    PubMed

    Adawi, Azmi; Neville, Lewis F

    2012-09-01

    A rapid ELISA employing intact Pseudomonas aeruginosa (PA) is described that allows discrimination between strains harboring flagellin type a or b. All 52 PA strains known to harbor flagellin type b were positive in this ELISA when screened with a fully human monoclonal antibody (LST-007) targeting flagellin type b. Completion of this assay in only 6 h, from picking a single bacterial colony to a colorimetric product, could easily be adapted to a clinical laboratory setting and permit the appropriate choice of therapeutic monoclonal antibody versus its homologous flagellin target in PA-infected patients. Copyright © 2012 Elsevier Inc. All rights reserved.

  4. Indoor-biofilter growth and exposure to airborne chemicals drive similar changes in plant root bacterial communities.

    PubMed

    Russell, Jacob A; Hu, Yi; Chau, Linh; Pauliushchyk, Margarita; Anastopoulos, Ioannis; Anandan, Shivanthi; Waring, Michael S

    2014-08-01

    Due to the long durations spent inside by many humans, indoor air quality has become a growing concern. Biofiltration has emerged as a potential mechanism to clean indoor air of harmful volatile organic compounds (VOCs), which are typically found at concentrations higher indoors than outdoors. Root-associated microbes are thought to drive the functioning of plant-based biofilters, or biowalls, converting VOCs into biomass, energy, and carbon dioxide, but little is known about the root microbial communities of such artificially grown plants, how or whether they differ from those of plants grown in soil, and whether any changes in composition are driven by VOCs. In this study, we investigated how bacterial communities on biofilter plant roots change over time and in response to VOC exposure. Through 16S rRNA amplicon sequencing, we compared root bacterial communities from soil-grown plants with those from two biowalls, while also comparing communities from roots exposed to clean versus VOC-laden air in a laboratory biofiltration system. The results showed differences in bacterial communities between soil-grown and biowall-grown plants and between bacterial communities from plant roots exposed to clean air and those from VOC-exposed plant roots. Both biowall-grown and VOC-exposed roots harbored enriched levels of bacteria from the genus Hyphomicrobium. Given their known capacities to break down aromatic and halogenated compounds, we hypothesize that these bacteria are important VOC degraders. While different strains of Hyphomicrobium proliferated in the two studied biowalls and our lab experiment, strains were shared across plant species, suggesting that a wide range of ornamental houseplants harbor similar microbes of potential use in living biofilters. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  5. Modelling food and population dynamics in honey bee colonies.

    PubMed

    Khoury, David S; Barron, Andrew B; Myerscough, Mary R

    2013-01-01

    Honey bees (Apis mellifera) are increasingly in demand as pollinators for various key agricultural food crops, but globally honey bee populations are in decline, and honey bee colony failure rates have increased. This scenario highlights a need to understand the conditions in which colonies flourish and in which colonies fail. To aid this investigation we present a compartment model of bee population dynamics to explore how food availability and bee death rates interact to determine colony growth and development. Our model uses simple differential equations to represent the transitions of eggs laid by the queen to brood, then hive bees and finally forager bees, and the process of social inhibition that regulates the rate at which hive bees begin to forage. We assume that food availability can influence both the number of brood successfully reared to adulthood and the rate at which bees transition from hive duties to foraging. The model predicts complex interactions between food availability and forager death rates in shaping colony fate. Low death rates and high food availability results in stable bee populations at equilibrium (with population size strongly determined by forager death rate) but consistently increasing food reserves. At higher death rates food stores in a colony settle at a finite equilibrium reflecting the balance of food collection and food use. When forager death rates exceed a critical threshold the colony fails but residual food remains. Our model presents a simple mathematical framework for exploring the interactions of food and forager mortality on colony fate, and provides the mathematical basis for more involved simulation models of hive performance.

  6. Viability, diversity and composition of the bacterial community in a high Arctic permafrost soil from Spitsbergen, Northern Norway.

    PubMed

    Hansen, Aviaja A; Herbert, Rodney A; Mikkelsen, Karina; Jensen, Lars Liengård; Kristoffersen, Tommy; Tiedje, James M; Lomstein, Bente Aa; Finster, Kai W

    2007-11-01

    The viable and non-viable fractions of the bacterial community in a 2347-year-old permafrost soil from Spitsbergen were subjected to a comprehensive investigation using culture-independent and culture-dependent methods. LIVE/DEAD BacLight staining revealed that 26% of the total number of bacterial cells were viable. Quantitatively, aerobic microcolonies, aerobic colony-forming units and culturable anaerobic bacteria comprised a minor fraction of the total number of viable bacteria, which underlines the necessity for alternative cultivation approaches in bacterial cryobiology. Sulfate reduction was detected at temperatures between -2 degrees C and 29 degrees C while methanogenesis was not detected. Bacterial diversity was high with 162 operational taxonomic units observed from 800 16S rDNA clone sequences. The 158 pure cultures isolated from the permafrost soil affiliated with 29 different bacterial genera, the majority of which have not previously been isolated from permafrost habitats. Most of the strains isolated were affiliated to the genera Cellulomonas and Arthrobacter and several of the pure cultures were closely related to bacteria reported from other cryohabitats. Characterization of viable bacterial communities in permafrost soils is important as it will enable identification of functionally important groups together with the as yet undescribed adaptations that bacteria have evolved for surviving subzero temperatures for millennia.

  7. Characterization of viral siRNA populations in honey bee colony collapse disorder.

    PubMed

    Chejanovsky, Nor; Ophir, Ron; Schwager, Michal Sharabi; Slabezki, Yossi; Grossman, Smadar; Cox-Foster, Diana

    2014-04-01

    Colony Collapse Disorder (CCD), a special case of collapse of honey bee colonies, has resulted in significant losses for beekeepers. CCD-colonies show abundance of pathogens which suggests that they have a weakened immune system. Since honey bee viruses are major players in colony collapse and given the important role of viral RNA interference (RNAi) in combating viral infections we investigated if CCD-colonies elicit an RNAi response. Deep-sequencing analysis of samples from CCD-colonies from US and Israel revealed abundant small interfering RNAs (siRNA) of 21-22 nucleotides perfectly matching the Israeli acute paralysis virus (IAPV), Kashmir virus and Deformed wing virus genomes. Israeli colonies showed high titers of IAPV and a conserved RNAi-pattern of matching the viral genome. That was also observed in sample analysis from colonies experimentally infected with IAPV. Our results suggest that CCD-colonies set out a siRNA response that is specific against predominant viruses associated with colony losses. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Evaluating robustness of a diesel-degrading bacterial consortium isolated from contaminated soil.

    PubMed

    Sydow, Mateusz; Owsianiak, Mikołaj; Szczepaniak, Zuzanna; Framski, Grzegorz; Smets, Barth F; Ławniczak, Łukasz; Lisiecki, Piotr; Szulc, Alicja; Cyplik, Paweł; Chrzanowski, Łukasz

    2016-12-25

    It is not known whether diesel-degrading bacterial communities are structurally and functionally robust when exposed to different hydrocarbon types. Here, we exposed a diesel-degrading consortium to model either alkanes, cycloalkanes or aromatic hydrocarbons as carbon sources to study its structural resistance. The structural resistance was low, with changes in relative abundances of up to four orders of magnitude, depending on hydrocarbon type and bacterial taxon. This low resistance is explained by the presence of hydrocarbon-degrading specialists in the consortium and differences in growth kinetics on individual hydrocarbons. However, despite this low resistance, structural and functional resilience were high, as verified by re-exposing the hydrocarbon-perturbed consortium to diesel fuel. The high resilience is either due to the short exposure time, insufficient for permanent changes in consortium structure and function, or the ability of some consortium members to be maintained during exposure on degradation intermediates produced by other members. Thus, the consortium is expected to cope with short-term exposures to narrow carbon feeds, while maintaining its structural and functional integrity, which remains an advantage over biodegradation approaches using single species cultures. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Bacterial infection causes stress-induced memory dysfunction in mice.

    PubMed

    Gareau, Mélanie G; Wine, Eytan; Rodrigues, David M; Cho, Joon Ho; Whary, Mark T; Philpott, Dana J; Macqueen, Glenda; Sherman, Philip M

    2011-03-01

    The brain-gut axis is a key regulator of normal intestinal physiology; for example, psychological stress is linked to altered gut barrier function, development of food allergies and changes in behaviour. Whether intestinal events, such as enteric bacterial infections and bacterial colonisation, exert a reciprocal effect on stress-associated behaviour is not well established. To determine the effects of either acute enteric infection or absence of gut microbiota on behaviour, including anxiety and non-spatial memory formation. Behaviour was assessed following infection with the non-invasive enteric pathogen, Citrobacter rodentium in both C57BL/6 mice and germ-free Swiss-Webster mice, in the presence or absence of acute water avoidance stress. Whether daily treatment with probiotics normalised behaviour was assessed, and potential mechanisms of action evaluated. No behavioural abnormalities were observed, either at the height of infection (10 days) or following bacterial clearance (30 days), in C rodentium-infected C57BL/6 mice. When infected mice were exposed to acute stress, however, memory dysfunction was apparent after infection (10 days and 30 days). Memory dysfunction was prevented by daily treatment of infected mice with probiotics. Memory was impaired in germ-free mice, with or without exposure to stress, in contrast to conventionally reared, control Swiss-Webster mice with an intact intestinal microbiota. The intestinal microbiota influences the ability to form memory. Memory dysfunction occurs in infected mice exposed to acute stress, while in the germ-free setting memory is altered at baseline.

  10. Novel bacterial pathogen Acaricomes phytoseiuli causes severe disease symptoms and histopathological changes in the predatory mite Phytoseiulus persimilis (Acari, Phytoseiidae).

    PubMed

    Schütte, Conny; Gols, Rieta; Kleespies, Regina G; Poitevin, Olivier; Dicke, Marcel

    2008-06-01

    Adult female Phytoseiulus persimilis Athias-Henriot (Acari, Phytoseiidae) of a laboratory population show a set of characteristic symptoms, designated as non-responding (NR) syndrome. Mature predators shrink, cease oviposition and die. They show a lower degree of attraction to herbivore-induced plant volatiles and a greater tendency to leave prey patches carrying ample prey. Moreover, predators may carry excretory crystals in the legs, may cease prey consumption and have a low excretion rate. Here, we satisfy Koch's postulates for a strain of Acaricomes phytoseiuli (DSM 14247) that was isolated from symptomatic female P. persimilis of the NR-population. Adult female P. persimilis were either exposed to a bacterial inoculum suspension (treatment) or to sterile distilled water (control) for a period of 3 days. Control and treated predators were examined for the occurrence of six symptoms characteristic for the NR-syndrome and the presence of A. phytoseiuli after inoculation. The latter was done by re-isolation of A. phytoseiuli from individual predators and predator feces placed on nutrient agar, by PCR-based identification and by histopathological studies of individual predators. The NR-syndrome was clearly induced in those predators that had been exposed to the bacterial inoculum (incubation time=2-5 days, fraction shrunken females=80%), whereas predators exposed to water did not show the NR-syndrome. A. phytoseiuli was never isolated from control predators whereas it could be re-isolated from 60% of the treated predators (N=37) and from feces of 41% of treated predators (N=17). Only one day after exposure A. phytoseiuli could not be re-isolated from treated predators and their feces. Light and electron microscope studies of predators exposed to A. phytoseiuli revealed striking bacterial accumulations in the lumen of the alimentary tract together with extreme degeneration of its epithelium. In addition, bacterial foci also occurred in the fat body. These phenomena

  11. Geographic structure of adelie penguin populations: overlap in colony-specific foraging areas

    USGS Publications Warehouse

    Ainley, D.G.; Ribic, C.A.; Ballard, G.; Heath, S.; Gaffney, I.; Karl, B.J.; Barton, K.J.; Wilson, P.R.; Webb, S.

    2004-01-01

    In an investigation of the factors leading to geographic structuring among Ade??lie Penguin (Pygoscelis adeliae) populations, we studied the size and overlap of colony-specific foraging areas within an isolated cluster of colonies. The study area, in the southwestern Ross Sea, included one large and three smaller colonies, ranging in size from 3900 to 135000 nesting pairs, clustered on Ross and Beaufort Islands. We used triangulation of radio signals from transmitters attached to breeding penguins to determine foraging locations and to define colony-specific foraging areas during the chick-provisioning period of four breeding seasons, 1997-2000. Colony populations (nesting pairs) were determined using aerial photography just after egg-laying; reproductive success was estimated by comparing ground counts of chicks fledged to the number of breeding pairs apparent in aerial photos. Foraging-trip duration, meal size, and adult body mass were estimated using RFID (radio frequency identification) tags and an automated reader and weighbridge. Chick growth was assessed by weekly weighing. We related the following variables to colony size: foraging distance, area, and duration; reproductive success; chick meal size and growth rate; and seasonal variation in adult body mass. We found that penguins foraged closest to their respective colonies, particularly at the smaller colonies. However, as the season progressed, foraging distance, duration, and area increased noticeably, especially at the largest colony. The foraging areas of the smaller colonies overlapped broadly, but very little foraging area overlap existed between the large colony and the smaller colonies, even though the foraging area of the large colony was well within range of the smaller colonies. Instead, the foraging areas of the smaller colonies shifted as that of the large colony grew. Colony size was not related to chick meal size, chick growth, or parental body mass. This differed from the year previous to

  12. Low-Dose Oxygen Enhances Macrophage-Derived Bacterial Clearance following Cigarette Smoke Exposure

    PubMed Central

    Bain, William G.; Tripathi, Ashutosh; Mandke, Pooja; Gans, Jonathan H.; D'Alessio, Franco R.; Sidhaye, Venkataramana K.; Aggarwal, Neil R.

    2016-01-01

    Background. Chronic obstructive pulmonary disease (COPD) is a common, smoking-related lung disease. Patients with COPD frequently suffer disease exacerbations induced by bacterial respiratory infections, suggestive of impaired innate immunity. Low-dose oxygen is a mainstay of therapy during COPD exacerbations; yet we understand little about whether oxygen can modulate the effects of cigarette smoke on lung immunity. Methods. Wild-type mice were exposed to cigarette smoke for 5 weeks, followed by intratracheal instillation of Pseudomonas aeruginosa (PAO1) and 21% or 35–40% oxygen. After two days, lungs were harvested for PAO1 CFUs, and bronchoalveolar fluid was sampled for inflammatory markers. In culture, macrophages were exposed to cigarette smoke and oxygen (40%) for 24 hours and then incubated with PAO1, followed by quantification of bacterial phagocytosis and inflammatory markers. Results. Mice exposed to 35–40% oxygen after cigarette smoke and PAO1 had improved survival and reduced lung CFUs and inflammation. Macrophages from these mice expressed less TNF-α and more scavenger receptors. In culture, macrophages exposed to cigarette smoke and oxygen also demonstrated decreased TNF-α secretion and enhanced phagocytosis of PAO1 bacteria. Conclusions. Our findings demonstrate a novel, protective role for low-dose oxygen following cigarette smoke and bacteria exposure that may be mediated by enhanced macrophage phagocytosis. PMID:27403445

  13. [Notes about other epidemics in Colonial Chile].

    PubMed

    Laval, Enrique

    2015-10-01

    In chronicles or in the historiography of the Colony in Chile there are few references about epidemics different to smallpox; like typhus, typhoid fever, dysentery, etc. Almost all, fast spreading in the country and some with high lethality, which led to overflowing the capacity of hospitals in the Chilean colonial period.

  14. Education in Colonial Africa: The German Experience

    ERIC Educational Resources Information Center

    vanderPloeg, Arie J.

    1977-01-01

    Examines the introduction and growth of state-supported schools in two German colonies in Africa, Kamerun and Deutsch Ostafrika, describes African reaction to and utilization of them, assesses, from the colonial perspective, why such schools were introduced and what they were intended to accomplish, and examines the reasons for their differential…

  15. Genetic Analysis of Termite Colonies in Wisconsin

    Treesearch

    R.A. Arango; D.A. Marschalek; F. Green III; K.F. Raffa; M.E. Berres

    2015-01-01

    The objective of this study was to document current areas of subterranean termite activity in Wisconsin and to evaluate genetic characteristics of these northern, peripheral colonies. Here, amplified fragment-length polymorphism was used to characterize levels of inbreeding, expected heterozygosity, and percent polymorphism within colonies as well as genetic structure...

  16. Bigger is better: honeybee colonies as distributed information-gathering systems.

    PubMed

    Donaldson-Matasci, Matina C; DeGrandi-Hoffman, Gloria; Dornhaus, Anna

    2013-03-01

    In collectively foraging groups, communication about food resources can play an important role in the organization of the group's activity. For example, the honeybee dance communication system allows colonies to selectively allocate foragers among different floral resources according to their quality. Because larger groups can potentially collect more information than smaller groups, they might benefit more from communication because it allows them to integrate and use that information to coordinate forager activity. Larger groups might also benefit more from communication because it allows them to dominate high-value resources by recruiting large numbers of foragers. By manipulating both colony size and the ability to communicate location information in the dance, we show that larger colonies of honeybees benefit more from communication than do smaller colonies. In fact, colony size and dance communication worked together to improve foraging performance; the estimated net gain per foraging trip was highest in larger colonies with unimpaired communication. These colonies also had the earliest peaks in foraging activity, but not the highest ones. This suggests they may find and recruit to resources more quickly, but not more heavily. The benefits of communication we observed in larger colonies are thus likely a result of more effective informationgathering due to massive parallel search rather than increased competitive ability due to heavy recruitment.

  17. Disposable bioluminescence-based biosensor for detection of bacterial count in food.

    PubMed

    Luo, Jinping; Liu, Xiaohong; Tian, Qing; Yue, Weiwei; Zeng, Jing; Chen, Guangquan; Cai, Xinxia

    2009-11-01

    A biosensor for rapid detection of bacterial count based on adenosine 5'-triphosphate (ATP) bioluminescence has been developed. The biosensor is composed of a key sensitive element and a photomultiplier tube used as a detector element. The disposable sensitive element consists of a sampler, a cartridge where intracellular ATP is chemically extracted from bacteria, and a microtube where the extracted ATP reacts with the luciferin-luciferase reagent to produce bioluminescence. The bioluminescence signal is transformed into relevant electrical signal by the detector and further measured with a homemade luminometer. Parameters affecting the amount of the extracted ATP, including the types of ATP extractants, the concentrations of ATP extractant, and the relevant neutralizing reagent, were optimized. Under the optimal experimental conditions, the biosensor showed a linear response to standard bacteria in a concentration range from 10(3) to 10(8) colony-forming units (CFU) per milliliter with a correlation coefficient of 0.925 (n=22) within 5min. Moreover, the bacterial count of real food samples obtained by the biosensor correlated well with those by the conventional plate count method. The proposed biosensor, with characteristics of low cost, easy operation, and fast response, provides potential application to rapid evaluation of bacterial contamination in the food industry, environment monitoring, and other fields.

  18. Granulocyte-Colony Stimulating Factor (G-CSF) Administration for Chemotherapy-Induced Neutropenia.

    PubMed

    Yalçin, Ş; Güler, N; Kansu, E; Ertenli, I; Güllü, I; Barişta, I; Çelik, I; Kars, A; Tekuzman, G; Baltali, E; Firat, D

    1996-01-01

    This study was aimed to evaluate the efficacy of G-CSF (Granulocyte colony stimulating factor) administration to 37 patients with neutropenia following intensive combination chemotherapy. The patients were divided into two subgroups including solid tumors given ifosfamide and etoposide combination chemotherapy (IMET subgroup) and acute myeloid leukemia (AML) patients treated with mitoxantrone and cytarabine. Control group consisted of 31 acute myeloid leukemia patients. G-CSF was started on the first day of absolute neutropenia until the absolute neutrophil count was above 1000/mm(3) for two consecutive days. G-CSF was found to be effective for early recovery of neutrophil count. Expected response was achieved within 14 days in 91.5% of the courses with a median of fifth day of G-CSF treatment. In conclusion, this study showed the efficacy of G-CSF in early recovery of neutrophil count without any reduction in the incidence of febrile episodes and documented rates of bacterial and fungal infections in patients with acute myeloid leukemia.

  19. Endoparasitism in colonial hosts: patterns and processes.

    PubMed

    Hill, S L L; Okamura, B

    2007-06-01

    This study begins to redress our lack of knowledge of the interactions between colonial hosts and their parasites by focusing on a novel host-parasite system. Investigations of freshwater bryozoan populations revealed that infection by myxozoan parasites is widespread. Covert infections were detected in all 5 populations studied and were often at high prevalence while overt infections were observed in only 1. Infections were persistent in populations subject to temporal sampling. Negative effects of infection were identified but virulence was low. Infection did not induce mortality in the environmental conditions studied. However, the production of statoblasts (dormant propagules) was greatly reduced in bryozoans with overt infections in comparison to uninfected bryozoans. Overtly-infected bryozoans also grew more slowly and had low fission rates relative to colonies lacking overt infection. Bryozoans with covert infections were smaller than uninfected bryozoans. High levels of vertical transmission were achieved through colony fission and the infection of statoblasts. Increased fission rates may be a strategy for hosts to escape from parasites but the parasite can also exploit the fragmentation of colonial hosts to gain vertical transmission and dispersal. Our study provides evidence that opportunities and constraints for host-parasite co-evolution can be highly dependent on organismal body plans and that low virulence may be associated with exploitation of colonial hosts by endoparasites.

  20. Assessment of bacterial contamination of lipstick using pyrosequencing.

    PubMed

    Lee, So Y; Lee, Si Y

    As soon as they are exposed to the environment, cosmetics become contaminated with microorganisms, and this contamination accumulates with increased use. In this study, we employed pyrosequencing to investigate the diversity of bacteria found on lipstick. Bacterial DNA was extracted from 20 lipstick samples and mixed in equal ratios for pyrosequencing analysis. As a result, 105 bacterial genera were detected, four of which ( Leifsonia , Methylobacterium , Streptococcus , and Haemophilus ) were predominant in 92% of the 19,863 total sequence reads. Potentially pathogenic genera such as Staphylococcus , Pseudomonas , Escherichia , Salmonella , Corynebacterium , Mycobacterium , and Neisseria accounted for 27.6% of the 105 genera. The most commonly identified oral bacteria belonged to the Streptococcus genus, although other oral genera such as Actinomyces , Fusobacterium , Porphyromonas , and Lactobacillus were also detected.

  1. Workers' Extra-Nest Behavioral Changes During Colony Fission in Dinoponera quadriceps (Santschi).

    PubMed

    Medeiros, J; Araújo, A

    2014-04-01

    Ant colonies can reproduce by two strategies: independent foundation, wherein the queen starts a new colony alone, and dependent foundation, in which workers assist the queen. In the queenless species Dinoponera quadriceps (Santschi), the colony reproduces obligatorily by fission, a type of dependent foundation, but this process is not well understood. This study describes a colony fission event of D. quadriceps in the field and analyzes the influence of the fission process on workers' extra-nest behavior. Based on observations of workers outside the nest, five distinct stages were identified: monodomic stage, polydomic stage, split stage, conflict stage, and post-conflict stage. The colony was initially monodomic and then occupied a second nest before it split into two independent colonies, indicating a gradual and opportunistic dependent foundation. After the fission event, the daughter colony had aggressive conflicts with the parental colony, resulting in the latter's disappearance. Colony fission affected workers' extra-nest behavior by increasing the frequency of rubbing the gaster against the substrate (which probably has a chemical marking function) and by decreasing the frequency of foraging during the split stage. After the fission event, the number of foragers was halved and foragers remained nearer to the nest during extra-nest activity. The spatial closeness of the parental and daughter colonies led to competition that caused the extinction or migration of the parental colony. Intraspecific competition was indicated by foraging directionality at the colony level, whereby areas of neighbor colonies were avoided; this directionality was stronger while both colonies coexisted.

  2. Dynamics of Superoxide Production and Decay in Natural Trichodesmium Colonies from the Sargasso Sea: Implications for Cell Signaling

    NASA Astrophysics Data System (ADS)

    Hansel, C. M.; Buchwald, C.; Diaz, J. M.; Dyhrman, S.; Van Mooy, B. A. S.

    2014-12-01

    Reactive oxygen species (ROS) are key players in the biogeochemistry of the ocean, where they serve a critical role in the cycling of carbon and metals. Research in the past decade has introduced phytoplankton and, most recently, heterotrophic bacteria as significant sources of ROS, including superoxide, within both photic and aphotic regions of the ocean. ROS are both beneficial and detrimental to life. For instance, superoxide is a vital inter- and intra-cellular signaling molecule, yet at high concentrations it induces lipid peroxidation and initiates programmed cell death (PCD). In fact, superoxide has been implicated in PCD in the nitrogen-fixing diazotroph Trichodesmium, presumably leading to the demise of blooms within oligotrophic marine systems. Here, we explore the rates of superoxide production and decay by natural Trichodesmium populations obtained from various surface waters in the Sargasso Sea. We investigate also the role of light and colony density and morphology (puff v. raft) on superoxide fluxes. We find that Trichodesmium colonies produce extracellular superoxide at extremely high rates in the dark that are on par with those of the toxic raphidophyte Chattonella. The rates of superoxide production, however, rapidly decline with increasing cell density pointing to a role for superoxide in cell signaling in these organisms. We also find extremely rapid extracellular superoxide degradation by Trichodesmium. Together, this likely reflects a need for these organisms to maintain ROS at levels that will support signaling but below the threshold level that triggers PCD or oxidative damage. We also show differences in the effect of light on superoxide fluxes as a function of Trichodesmium colony morphology, suggesting differences in either colony physiology or associated bacterial symbionts. These findings point to complex physiological, ecological, and physical influences on ROS dynamics in phytoplankton that require further exploration.

  3. A pan-European epidemiological study reveals honey bee colony survival depends on beekeeper education and disease control.

    PubMed

    Jacques, Antoine; Laurent, Marion; Ribière-Chabert, Magali; Saussac, Mathilde; Bougeard, Stéphanie; Budge, Giles E; Hendrikx, Pascal; Chauzat, Marie-Pierre

    2017-01-01

    Reports of honey bee population decline has spurred many national efforts to understand the extent of the problem and to identify causative or associated factors. However, our collective understanding of the factors has been hampered by a lack of joined up trans-national effort. Moreover, the impacts of beekeeper knowledge and beekeeping management practices have often been overlooked, despite honey bees being a managed pollinator. Here, we established a standardised active monitoring network for 5 798 apiaries over two consecutive years to quantify honey bee colony mortality across 17 European countries. Our data demonstrate that overwinter losses ranged between 2% and 32%, and that high summer losses were likely to follow high winter losses. Multivariate Poisson regression models revealed that hobbyist beekeepers with small apiaries and little experience in beekeeping had double the winter mortality rate when compared to professional beekeepers. Furthermore, honey bees kept by professional beekeepers never showed signs of disease, unlike apiaries from hobbyist beekeepers that had symptoms of bacterial infection and heavy Varroa infestation. Our data highlight beekeeper background and apicultural practices as major drivers of honey bee colony losses. The benefits of conducting trans-national monitoring schemes and improving beekeeper training are discussed.

  4. Immunotherapeutic effects of recombinant adenovirus encoding granulocyte-macrophage colony-stimulating factor in experimental pulmonary tuberculosis.

    PubMed

    Francisco-Cruz, A; Mata-Espinosa, D; Estrada-Parra, S; Xing, Z; Hernández-Pando, R

    2013-03-01

    BALB/c mice with pulmonary tuberculosis (TB) develop a T helper cell type 1 that temporarily controls bacterial growth. Bacterial proliferation increases, accompanied by decreasing expression of interferon (IFN)-γ, tumour necrosis factor (TNF)-α and inducible nitric oxide synthase (iNOS). Activation of dendritic cells (DCs) is delayed. Intratracheal administration of only one dose of recombinant adenoviruses encoding granulocyte-macrophage colony-stimulating factor (AdGM-CSF) 1 day before Mycobacterium tuberculosis (Mtb) infection produced a significant decrease of pulmonary bacterial loads, higher activated DCs and increased expression of TNF-α, IFN-γ and iNOS. When AdGM-CSF was given in female mice B6D2F1 (C57BL/6J X DBA/2J) infected with a low Mtb dose to induce chronic infection similar to latent infection and corticosterone was used to induce reactivation, a very low bacilli burden in lungs was detected, and the same effect was observed in healthy mice co-housed with mice infected with mild and highly virulent bacteria in a model of transmissibility. Thus, GM-CSF is a significant cytokine in the immune protection against Mtb and gene therapy with AdGM-CSF increased protective immunity when administered in a single dose 1 day before Mtb infection in a model of progressive disease, and when used to prevent reactivation of latent infection or transmission. © 2012 British Society for Immunology.

  5. Solving a Hamiltonian Path Problem with a bacterial computer

    PubMed Central

    Baumgardner, Jordan; Acker, Karen; Adefuye, Oyinade; Crowley, Samuel Thomas; DeLoache, Will; Dickson, James O; Heard, Lane; Martens, Andrew T; Morton, Nickolaus; Ritter, Michelle; Shoecraft, Amber; Treece, Jessica; Unzicker, Matthew; Valencia, Amanda; Waters, Mike; Campbell, A Malcolm; Heyer, Laurie J; Poet, Jeffrey L; Eckdahl, Todd T

    2009-01-01

    Background The Hamiltonian Path Problem asks whether there is a route in a directed graph from a beginning node to an ending node, visiting each node exactly once. The Hamiltonian Path Problem is NP complete, achieving surprising computational complexity with modest increases in size. This challenge has inspired researchers to broaden the definition of a computer. DNA computers have been developed that solve NP complete problems. Bacterial computers can be programmed by constructing genetic circuits to execute an algorithm that is responsive to the environment and whose result can be observed. Each bacterium can examine a solution to a mathematical problem and billions of them can explore billions of possible solutions. Bacterial computers can be automated, made responsive to selection, and reproduce themselves so that more processing capacity is applied to problems over time. Results We programmed bacteria with a genetic circuit that enables them to evaluate all possible paths in a directed graph in order to find a Hamiltonian path. We encoded a three node directed graph as DNA segments that were autonomously shuffled randomly inside bacteria by a Hin/hixC recombination system we previously adapted from Salmonella typhimurium for use in Escherichia coli. We represented nodes in the graph as linked halves of two different genes encoding red or green fluorescent proteins. Bacterial populations displayed phenotypes that reflected random ordering of edges in the graph. Individual bacterial clones that found a Hamiltonian path reported their success by fluorescing both red and green, resulting in yellow colonies. We used DNA sequencing to verify that the yellow phenotype resulted from genotypes that represented Hamiltonian path solutions, demonstrating that our bacterial computer functioned as expected. Conclusion We successfully designed, constructed, and tested a bacterial computer capable of finding a Hamiltonian path in a three node directed graph. This proof

  6. The Biochemistry and Physiology of Bacterial Adhesion to Surfaces

    DTIC Science & Technology

    1984-01-20

    Organism S was isolated from surfaces incubated 33258 (Calbiochem-Behring Corp.. La Jolla, Calif.) in in an aquarium containing Instant Ocean...Abstiact /The physiologic mechanisms involved in bacterial adhesion to inert surfaces have been Investigated employing fouling isolates obtained from...of Madilyn Fletcher. Environmental Sci- A n l ms ences Department. University of Warwick. Coventry. All organisms isolated from surfaces exposed

  7. Impairment of the Bacterial Biofilm Stability by Triclosan

    PubMed Central

    Hubas, Cédric; Behrens, Sebastian; Ricciardi, Francesco; Paterson, David M.

    2012-01-01

    The accumulation of the widely-used antibacterial and antifungal compound triclosan (TCS) in freshwaters raises concerns about the impact of this harmful chemical on the biofilms that are the dominant life style of microorganisms in aquatic systems. However, investigations to-date rarely go beyond effects at the cellular, physiological or morphological level. The present paper focuses on bacterial biofilms addressing the possible chemical impairment of their functionality, while also examining their substratum stabilization potential as one example of an important ecosystem service. The development of a bacterial assemblage of natural composition – isolated from sediments of the Eden Estuary (Scotland, UK) – on non-cohesive glass beads (<63 µm) and exposed to a range of triclosan concentrations (control, 2 – 100 µg L−1) was monitored over time by Magnetic Particle Induction (MagPI). In parallel, bacterial cell numbers, division rate, community composition (DGGE) and EPS (extracellular polymeric substances: carbohydrates and proteins) secretion were determined. While the triclosan exposure did not prevent bacterial settlement, biofilm development was increasingly inhibited by increasing TCS levels. The surface binding capacity (MagPI) of the assemblages was positively correlated to the microbial secreted EPS matrix. The EPS concentrations and composition (quantity and quality) were closely linked to bacterial growth, which was affected by enhanced TCS exposure. Furthermore, TCS induced significant changes in bacterial community composition as well as a significant decrease in bacterial diversity. The impairment of the stabilization potential of bacterial biofilm under even low, environmentally relevant TCS levels is of concern since the resistance of sediments to erosive forces has large implications for the dynamics of sediments and associated pollutant dispersal. In addition, the surface adhesive capacity of the biofilm acts as a sensitive measure of

  8. Transforming microbial genotyping: a robotic pipeline for genotyping bacterial strains.

    PubMed

    O'Farrell, Brian; Haase, Jana K; Velayudhan, Vimalkumar; Murphy, Ronan A; Achtman, Mark

    2012-01-01

    Microbial genotyping increasingly deals with large numbers of samples, and data are commonly evaluated by unstructured approaches, such as spread-sheets. The efficiency, reliability and throughput of genotyping would benefit from the automation of manual manipulations within the context of sophisticated data storage. We developed a medium- throughput genotyping pipeline for MultiLocus Sequence Typing (MLST) of bacterial pathogens. This pipeline was implemented through a combination of four automated liquid handling systems, a Laboratory Information Management System (LIMS) consisting of a variety of dedicated commercial operating systems and programs, including a Sample Management System, plus numerous Python scripts. All tubes and microwell racks were bar-coded and their locations and status were recorded in the LIMS. We also created a hierarchical set of items that could be used to represent bacterial species, their products and experiments. The LIMS allowed reliable, semi-automated, traceable bacterial genotyping from initial single colony isolation and sub-cultivation through DNA extraction and normalization to PCRs, sequencing and MLST sequence trace evaluation. We also describe robotic sequencing to facilitate cherrypicking of sequence dropouts. This pipeline is user-friendly, with a throughput of 96 strains within 10 working days at a total cost of < €25 per strain. Since developing this pipeline, >200,000 items were processed by two to three people. Our sophisticated automated pipeline can be implemented by a small microbiology group without extensive external support, and provides a general framework for semi-automated bacterial genotyping of large numbers of samples at low cost.

  9. Transforming Microbial Genotyping: A Robotic Pipeline for Genotyping Bacterial Strains

    PubMed Central

    Velayudhan, Vimalkumar; Murphy, Ronan A.; Achtman, Mark

    2012-01-01

    Microbial genotyping increasingly deals with large numbers of samples, and data are commonly evaluated by unstructured approaches, such as spread-sheets. The efficiency, reliability and throughput of genotyping would benefit from the automation of manual manipulations within the context of sophisticated data storage. We developed a medium- throughput genotyping pipeline for MultiLocus Sequence Typing (MLST) of bacterial pathogens. This pipeline was implemented through a combination of four automated liquid handling systems, a Laboratory Information Management System (LIMS) consisting of a variety of dedicated commercial operating systems and programs, including a Sample Management System, plus numerous Python scripts. All tubes and microwell racks were bar-coded and their locations and status were recorded in the LIMS. We also created a hierarchical set of items that could be used to represent bacterial species, their products and experiments. The LIMS allowed reliable, semi-automated, traceable bacterial genotyping from initial single colony isolation and sub-cultivation through DNA extraction and normalization to PCRs, sequencing and MLST sequence trace evaluation. We also describe robotic sequencing to facilitate cherrypicking of sequence dropouts. This pipeline is user-friendly, with a throughput of 96 strains within 10 working days at a total cost of < €25 per strain. Since developing this pipeline, >200,000 items were processed by two to three people. Our sophisticated automated pipeline can be implemented by a small microbiology group without extensive external support, and provides a general framework for semi-automated bacterial genotyping of large numbers of samples at low cost. PMID:23144721

  10. Changes in bacterial diversity and community structure following pesticides addition to soil estimated by cultivation technique.

    PubMed

    Cycoń, Mariusz; Piotrowska-Seget, Zofia

    2009-07-01

    An experiment was conducted under laboratory conditions to investigate the effect of increasing concentrations of fenitrothion (2, 10 and 200 mg a.i./kg soil), diuron (1.5, 7.5 and 150 mg a.i./kg soil) and thiram (3.5, 17.5 and 350 mg a.i./kg soil) on soil respiration, bacterial counts and changes in culturable fraction of soil bacteria. To ascertain these changes, the community structure, bacterial biodiversity and process of colony formation, based on the r/K strategy concept, EP- and CD-indices and the FOR model, respectively, were determined. The results showed that the measured parameters were generally unaffected by the lowest dosages of pesticides, corresponding to the recommended field rates. The highest dosages of fenitrothion and thiram suppressed the peak SIR by 15-70% and 20-80%, respectively, while diuron increased respiration rate by 17-25% during the 28-day experiment. Also, the total numbers of bacteria increased in pesticide-treated soils. However, the reverse effect on day 1 and, in addition, in case of the highest dosages of insecticide on days 14 and 28, was observed. Analysis of the community structure revealed that in all soil treatments bacterial communities were generally dominated by K-strategists. Moreover, differences in the distribution of individual bacteria classes and the gradual domination of bacteria populations belonging to r-strategists during the experiment, as compared to control, was observed. However, on day 1, at the highest pesticide dosages, fast growing bacteria constituted only 1-10% of the total colonies number during 48 h of plate incubation, whereas in remaining samples they reached from 20 to 40% of total cfu. This effect, in case of fenitrothion, lasted till the end of the experiment. At the highest dosages of fenitrothion, diuron and at all dosages of thiram the decrease of biodiversity, as indicated by EP- and CD-indices on day 1, was found. At the next sampling time, no significant retarding or stimulating effect

  11. Outbreak of pathogenic Escherichia coli in an outdoor-housed non-human primate colony.

    PubMed

    Kolappaswamy, K; Nazareno, J; Porter, W P; Klein, H J

    2014-04-01

    Pathogenic Escherichia coli has been identified as an etiologic agent in humans causing acute diarrhea or even death but has been rarely reported in non-human primates (NHP). An outbreak of diarrhea occurred in an outdoor-housed NHP colony over a period of 2 months with an attack rate of 29%. Bacterial culture and PCR were performed on the fecal specimens to identify enteroinvasive E. coli (EIEC) and Enterohemorrhagic E. coli (EHEC) in the NHPs. By random sampling of 10% of fecal samples of diarrheal cases, four cases of EIEC in rhesus macaques and two cases of EHEC in cynomolgus macaques were confirmed. This is the first time EIEC and EHEC have been reported in NHPs associated with diarrhea. The primary source of infection could not be determined. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  12. Theoretical size controls of the giant Phaeocystis globosa colonies

    NASA Astrophysics Data System (ADS)

    Liu, Xiao; Smith, Walker O.; Tang, Kam W.; Doan, Nhu Hai; Nguyen, Ngoc Lam

    2015-06-01

    An unusual characteristic of the cosmopolitan haptophyte Phaeocystis globosa is its ability to form colonies of strikingly large size-up to 3 cm in diameter. The large size and the presence of a mucoid envelope are believed to contribute to the formation of dense blooms in Southeast Asia. We collected colonies of different sizes in shallow coastal waters of Viet Nam and conducted a series of measurements and experiments on individual colonies. Using these empirical data, we developed a simple carbon-based model to predict the growth and maximal size of P. globosa colonies. Our model suggests that growth of a colony from 0.2 cm to 1.4 cm (the maximal size in our samples) would take 16 days. This number, however, is strongly influenced by the maximal photosynthetic rate and other physiological parameters used in the model. The model also returns a specific growth rate of 0.30 d-1 for colonial cells, comparable to satellite estimates, but lower than have been measured for unicellular P. globosa in batch culture at similar temperatures. We attribute this low growth rate to not only the model uncertainties, but factors such as self-shading and diffusive limitation of nutrient uptake.

  13. Fungal Innate Immunity Induced by Bacterial Microbe-Associated Molecular Patterns (MAMPs)

    PubMed Central

    Ipcho, Simon; Sundelin, Thomas; Erbs, Gitte; Kistler, H. Corby; Newman, Mari-Anne; Olsson, Stefan

    2016-01-01

    Plants and animals detect bacterial presence through Microbe-Associated Molecular Patterns (MAMPs) which induce an innate immune response. The field of fungal–bacterial interaction at the molecular level is still in its infancy and little is known about MAMPs and their detection by fungi. Exposing Fusarium graminearum to bacterial MAMPs led to increased fungal membrane hyperpolarization, a putative defense response, and a range of transcriptional responses. The fungus reacted with a different transcript profile to each of the three tested MAMPs, although a core set of genes related to energy generation, transport, amino acid production, secondary metabolism, and especially iron uptake were detected for all three. Half of the genes related to iron uptake were predicted MirA type transporters that potentially take up bacterial siderophores. These quick responses can be viewed as a preparation for further interactions with beneficial or pathogenic bacteria, and constitute a fungal innate immune response with similarities to those of plants and animals. PMID:27172188

  14. Antagonistic interactions are sufficient to explain self-assemblage of bacterial communities in a homogeneous environment: a computational modeling approach

    PubMed Central

    Zapién-Campos, Román; Olmedo-Álvarez, Gabriela; Santillán, Moisés

    2015-01-01

    Most of the studies in Ecology have been devoted to analyzing the effects the environment has on individuals, populations, and communities, thus neglecting the effects of biotic interactions on the system dynamics. In the present work we study the structure of bacterial communities in the oligotrophic shallow water system of Churince, Cuatro Cienegas, Mexico. Since the physicochemical conditions of this water system are homogeneous and quite stable in time, it is an excellent candidate to study how biotic factors influence the structure of bacterial communities. In a previous study, the binary antagonistic interactions of 78 bacterial strains, isolated from Churince, were experimentally determined. We employ these data to develop a computer algorithm to simulate growth experiments in a cellular grid representing the pond. Remarkably, in our model, the dynamics of all the simulated bacterial populations is determined solely by antagonistic interactions. Our results indicate that all bacterial strains (even those that are antagonized by many other bacteria) survive in the long term, and that the underlying mechanism is the formation of bacterial community patches. Patches corresponding to less antagonistic and highly susceptible strains are consistently isolated from the highly-antagonistic bacterial colonies by patches of neutral strains. These results concur with the observed features of the bacterial community structure previously reported. Finally, we study how our findings depend on factors like initial population size, differential population growth rates, homogeneous population death rates, and enhanced bacterial diffusion. PMID:26052318

  15. Predation of artificial ground nests on white-tailed prairie dog colonies

    USGS Publications Warehouse

    Baker, B.W.; Stanley, T.R.; Sedgwick, J.A.

    1999-01-01

    Prairie dog (Cynomys spp.) colonies are unique to prairie and shrub-steppe landscapes. However, widespread eradication, habitat loss, and sylvatic plague (Yersinia pestis) have reduced their numbers by 98% since historical times. Birds associated with prairie dogs also are declining. Potential nest predators, such as coyotes (Canis latrans), swift foxes (Vulpes velox), and badgers (Taxidea taxus), may be attracted to colonies where a high concentration of prairie dogs serve as available prey. Increased abundance of small mammals, including prairie dogs, also may increase the risk of predation for birds nesting on colonies. Finally, because grazing by prairie dogs may decrease vegetation height and canopy cover, bird nests may be easier for predators to locate. In this study, we placed 1,444 artificial ground nests on and off 74 white-tailed prairie dog (C. leucurus) colonies to test the hypothesis that nest predation rates are higher on colonies than at nearby off sites (i.e., uncolonized habitat). We sampled colonies from 27 May to 16 July 1997 at the following 3 complexes: Coyote Basin, Utah and Colorado; Moxa Arch, Wyoming; and Shirley Basin, Wyoming. Differences in daily predation rates between colonies and paired off sites averaged 1.0% (P = 0.060). When converted to a typical 14-day incubation period, predation rates averaged 14% higher on colonies (57.7 ?? 2.7%; ?? ?? SE) than at off sites (50.4 ?? 3.1%). Comparisons of habitat variables on colonies to off sites showed percent canopy cover of vegetation was similar (P = 0.114), percent bare ground was higher on colonies (P 0.288). Although we found the risk of nest predation was higher on white-tailed prairie dog colonies than at off sites, fitness of birds nesting on colonies might depend on other factors that influence foraging success, reproductive success, or nestling survival.

  16. Effects of High Hydrostatic Pressure on Bacterial Growth on Human Ossicles Explanted from Cholesteatoma Patients

    PubMed Central

    Ostwald, Jürgen; Lindner, Tobias; Zautner, Andreas Erich; Arndt, Kathleen; Pau, Hans Wilhelm; Podbielski, Andreas

    2012-01-01

    Background High hydrostatic pressure (HHP) treatment can eliminate cholesteatoma cells from explanted human ossicles prior to re-insertion. We analyzed the effects of HHP treatment on the microbial flora on ossicles and on the planktonic and biofilm states of selected isolates. Methodology Twenty-six ossicles were explanted from cholesteatoma patients. Five ossicles were directly analyzed for microbial growth without further treatment. Fifteen ossicles were cut into two pieces. One piece was exposed to HHP of 350 MPa for 10 minutes. Both the treated and untreated (control) pieces were then assessed semi-quantitatively. Three ossicles were cut into two pieces and exposed to identical pressure conditions with or without the addition of one of two different combinations of antibiotics to the medium. Differential effects of 10-minute in vitro exposure of planktonic and biofilm bacteria to pressures of 100 MPa, 250 MPa, 400 MPa and 540 MPa in isotonic and hypotonic media were analyzed using two patient isolates of Staphylococcus epidermidis and Neisseria subflava. Bacterial cell inactivation and biofilm destruction were assessed by colony counting and electron microscopy. Principal Findings A variety of microorganisms were isolated from the ossicles. Irrespective of the medium, HHP treatment at 350 MPa for 10 minutes led to satisfying but incomplete inactivation especially of Gram-negative bacteria. The addition of antibiotics increased the efficacy of elimination. A comparison of HHP treatment of planktonic and biofilm cells showed that the effects of HPP were reduced by about one decadic logarithmic unit when HPP was applied to biofilms. High hydrostatic pressure conditions that are suitable to inactivate cholesteatoma cells fail to completely sterilize ossicles even if antibiotics are added. As a result of the reduced microbial load and the viability loss of surviving bacteria, however, there is a lower risk of re-infection after re-insertion. PMID:22291908

  17. Measurement of ammonia emissions from tropical seabird colonies

    NASA Astrophysics Data System (ADS)

    Riddick, S. N.; Blackall, T. D.; Dragosits, U.; Daunt, F.; Braban, C. F.; Tang, Y. S.; MacFarlane, W.; Taylor, S.; Wanless, S.; Sutton, M. A.

    2014-06-01

    The excreta (guano) of seabirds at their breeding colonies represents a notable source of ammonia (NH3) emission to the atmosphere, with effects on surrounding ecosystems through nitrogen compounds being thereby transported from sea to land. Previous measurements in temperate UK conditions quantified emission hotspots and allowed preliminary global upscaling. However, thermodynamic processes and water availability limit NH3 formation from guano, which suggests that the proportion of excreted nitrogen that volatilizes as NH3 may potentially be higher at tropical seabird colonies than similar colonies in temperate or sub-polar regions. To investigate such differences, we measured NH3 concentrations and environmental conditions at two tropical seabird colonies during the breeding season: a colony of 20,000 tern spp. and noddies on Michaelmas Cay, Great Barrier Reef, and a colony of 200,000 Sooty terns on Ascension Island, Atlantic Ocean. At both sites time-integrated NH3 concentrations and meteorological parameters were measured. In addition, at Ascension Island, semi-continuous hourly NH3 concentrations and micrometeorological parameters were measured throughout the campaign. Ammonia emissions, quantified using a backwards Lagrangian atmospheric dispersion model, were estimated at 21.8 μg m-2 s-1 and 18.9 μg m-2 s-1 from Michaelmas Cay and Ascension Island, respectively. High temporal resolution NH3 data at Ascension Island estimated peak hourly emissions up to 377 μg NH3 m2 s-1. The estimated percentage fraction of total guano nitrogen volatilized was 67% at Michaelmas Cay and 32% at Ascension Island, with the larger value at the former site attributed to higher water availability. These values are much larger than published data for sub-polar locations, pointing to a substantial climatic dependence on emission of atmospheric NH3 from seabird colonies.

  18. Bigger is better: honeybee colonies as distributed information-gathering systems

    PubMed Central

    Donaldson-Matasci, Matina C.; DeGrandi-Hoffman, Gloria; Dornhaus, Anna

    2015-01-01

    In collectively foraging groups, communication about food resources can play an important role in the organization of the group’s activity. For example, the honeybee dance communication system allows colonies to selectively allocate foragers among different floral resources according to their quality. Because larger groups can potentially collect more information than smaller groups, they might benefit more from communication because it allows them to integrate and use that information to coordinate forager activity. Larger groups might also benefit more from communication because it allows them to dominate high-value resources by recruiting large numbers of foragers. By manipulating both colony size and the ability to communicate location information in the dance, we show that larger colonies of honeybees benefit more from communication than do smaller colonies. In fact, colony size and dance communication worked together to improve foraging performance; the estimated net gain per foraging trip was highest in larger colonies with unimpaired communication. These colonies also had the earliest peaks in foraging activity, but not the highest ones. This suggests they may find and recruit to resources more quickly, but not more heavily. The benefits of communication we observed in larger colonies are thus likely a result of more effective informationgathering due to massive parallel search rather than increased competitive ability due to heavy recruitment. PMID:26213412

  19. Effect of simulated lunar impact on the survival of bacterial spores.

    NASA Technical Reports Server (NTRS)

    Whitfield, O.; Merek, E. L.; Oyama, V. I.

    1973-01-01

    In order to test the effect of impact on organisms, the survival of bacterial spores after being propelled at high velocity in Pyrex and plastic beads into crushed basalt was measured. The beads were fired into sterilized canisters by both a conventional powder and a light gas gun. Results indicate that at the minimum (2.4 km/sec) lunar capture velocity, the number of colony forming units (CFUs) decreased by five orders of magnitude, and at 5.5 km/sec, statistically a more probable capture velocity, no CFUs were found. The decrease in CFUs observed with increasing velocity indicates that the spores were most probably killed by the impact.

  20. Direct Colony Baiting of Termite Colonies: A Tool for Ecological Studies

    Treesearch

    Don McG Ewart

    1991-01-01

    The benefits of direct colony baiting are described: bait substrates enclosed in polyvinyl chloride tubes are applied in direct contact with the galleries of the termite nest. Attention of researchers is drawn to the potential of this method for species other than the mound-building Coptotermes 1acteus. \\t