Sample records for bacterial flagellar filament

  1. Bacterial flagellar microhydrodynamics: Laminar flow over complex flagellar filaments, analog archimedean screws and cylinders, and its perturbations.

    PubMed

    Trachtenberg, Shlomo; Fishelov, Dalia; Ben-Artzi, Matania

    2003-09-01

    The flagellar filament, the bacterial organelle of motility, is the smallest rotary propeller known. It consists of 1), a basal body (part of which is the proton driven rotary motor), 2), a hook (universal joint-allowing for off-axial transmission of rotary motion), and 3), a filament (propeller-a long, rigid, supercoiled helical assembly allowing for the conversion of rotary motion into linear thrust). Helically perturbed (so-called "complex") filaments have a coarse surface composed of deep grooves and ridges following the three-start helical lines. These surface structures, reminiscent of a turbine or Archimedean screw, originate from symmetry reduction along the six-start helical lines due to dimerization of the flagellin monomers from which the filament self assembles. Using high-resolution electron microscopy and helical image reconstruction methods, we calculated three-dimensional density maps of the complex filament of Rhizobium lupini H13-3 and determined its surface pattern and boundaries. The helical symmetry of the filament allows viewing it as a stack of identical slices spaced axially and rotated by constant increments. Here we use the closed outlines of these slices to explore, in two dimensions, the hydrodynamic effect of the turbine-like boundaries of the flagellar filament. In particular, we try to determine if, and under what conditions, transitions from laminar to turbulent flow (or perturbations of the laminar flow) may occur on or near the surface of the bacterial propeller. To address these questions, we apply the boundary element method in a manner allowing the handling of convoluted boundaries. We tested the method on several simple, well-characterized cylindrical structures before applying it to real, highly convoluted biological surfaces and to simplified mechanical analogs. Our results indicate that under extreme structural and functional conditions, and at low Reynolds numbers, a deviation from laminar flow might occur on the flagellar

  2. Structural differences in the bacterial flagellar motor among bacterial species.

    PubMed

    Terashima, Hiroyuki; Kawamoto, Akihiro; Morimoto, Yusuke V; Imada, Katsumi; Minamino, Tohru

    2017-01-01

    The bacterial flagellum is a supramolecular motility machine consisting of the basal body as a rotary motor, the hook as a universal joint, and the filament as a helical propeller. Intact structures of the bacterial flagella have been observed for different bacterial species by electron cryotomography and subtomogram averaging. The core structures of the basal body consisting of the C ring, the MS ring, the rod and the protein export apparatus, and their organization are well conserved, but novel and divergent structures have also been visualized to surround the conserved structure of the basal body. This suggests that the flagellar motors have adapted to function in various environments where bacteria live and survive. In this review, we will summarize our current findings on the divergent structures of the bacterial flagellar motor.

  3. Hierarchical protein export mechanism of the bacterial flagellar type III protein export apparatus.

    PubMed

    Minamino, Tohru

    2018-06-01

    The bacterial flagellum is supramolecular motility machinery consisting of the basal body, the hook and the filament. Flagellar proteins are translocated across the cytoplasmic membrane via a type III protein export apparatus, diffuse down the central channel of the growing structure and assemble at the distal end. Flagellar assembly begins with the basal body, followed by the hook and finally the filament. The completion of hook assembly is the most important morphological checkpoint of the sequential flagellar assembly process. When the hook reaches its mature length of about 55 nm in Salmonella enterica, the type III protein export apparatus switches export specificity from proteins required for the structure and assembly of the hook to those responsible for filament assembly, thereby terminating hook assembly and initiating filament assembly. Three flagellar proteins, namely FliK, FlhB and FlhA, are responsible for this substrate specificity switching. Upon completion of the switching event, interactions among FlhA, the cytoplasmic ATPase complex and flagellar type III export chaperones establish the assembly order of the filament at the hook tip. Here, we describe our current understanding of a hierarchical protein export mechanism used in flagellar type III protein export.

  4. Na+-driven bacterial flagellar motors.

    PubMed

    Imae, Y; Atsumi, T

    1989-12-01

    Bacterial flagellar motors are the reversible rotary engine which propels the cell by rotating a helical flagellar filament as a screw propeller. The motors are embedded in the cytoplasmic membrane, and the energy for rotation is supplied by the electrochemical potential of specific ions across the membrane. Thus, the analysis of motor rotation at the molecular level is linked to an understanding of how the living system converts chemical energy into mechanical work. Based on the coupling ions, the motors are divided into two types; one is the H+-driven type found in neutrophiles such as Bacillus subtilis and Escherichia coli and the other is the Na+-driven type found in alkalophilic Bacillus and marine Vibrio. In this review, we summarize the current status of research on the rotation mechanism of the Na+-driven flagellar motors, which introduces several new aspects in the analysis.

  5. Bacterial flagellar capping proteins adopt diverse oligomeric states

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Postel, Sandra; Deredge, Daniel; Bonsor, Daniel A.

    2016-09-24

    Flagella are crucial for bacterial motility and pathogenesis. The flagellar capping protein (FliD) regulates filament assembly by chaperoning and sorting flagellin (FliC) proteins after they traverse the hollow filament and exit the growing flagellum tip. In the absence of FliD, flagella are not formed, resulting in impaired motility and infectivity. Here, we report the 2.2 Å resolution X-ray crystal structure of FliD fromPseudomonas aeruginosa, the first high-resolution structure of any FliD protein from any bacterium. Using this evidence in combination with a multitude of biophysical and functional analyses, we find thatPseudomonasFliD exhibits unexpected structural similarity to other flagellar proteins atmore » the domain level, adopts a unique hexameric oligomeric state, and depends on flexible determinants for oligomerization. Considering that the flagellin filaments on which FliD oligomers are affixed vary in protofilament number between bacteria, our results suggest that FliD oligomer stoichiometries vary across bacteria to complement their filament assemblies.« less

  6. [Structure and function of the bacterial flagellar type III protein export system in Salmonella
].

    PubMed

    Minamino, Tohru

    2015-01-01

    The bacterial flagellum is a filamentous organelle that propels the bacterial cell body in liquid media. For construction of the bacterial flagellum beyond the cytoplasmic membrane, flagellar component proteins are transported by its specific protein export apparatus from the cytoplasm to the distal end of the growing flagellar structure. The flagellar export apparatus consists of a transmembrane export gate complex and a cytoplasmic ATPase ring complex. Flagellar substrate-specific chaperones bind to their cognate substrates in the cytoplasm and escort the substrates to the docking platform of the export gate. The export apparatus utilizes ATP and proton motive force across the cytoplasmic membrane as the energy sources to drive protein export and coordinates protein export with assembly by ordered export of substrates to parallel with their order of assembly. In this review, we summarize our current understanding of the structure and function of the flagellar protein export system in Salmonella enterica serovar Typhimurium.

  7. A continuum theoretical model and finite elements simulation of bacterial flagellar filament phase transition.

    PubMed

    Wang, Xiaoling; Meng, Shuo; Han, Jingshi

    2017-10-03

    The Bacterial flagellar filament can undergo a polymorphic phase transition in response to both mechanical and chemical variations in vitro and in vivo environments. Under mechanical stimuli, such as viscous flow or forces induced by motor rotation, the filament changes its phase from left-handed normal (N) to right-handed semi-coiled (SC) via phase nucleation and growth. Our detailed mechanical analysis of existing experiments shows that both torque and bending moment contribute to the filament phase transition. In this paper, we establish a non-convex and non-local continuum model based on the Ginzburg-Landau theory to describe main characteristics of the filament phase transition such as new-phase nucleation, growth, propagation and the merging of neighboring interfaces. The finite element method (FEM) is adopted to simulate the phase transition under a displacement-controlled loading condition (rotation angle and bending deflection). We show that new-phase nucleation corresponds to the maximum torque and bending moment at the stuck end of the filament. The hysteresis loop in the loading and unloading curves indicates energy dissipation. When the new phase grows and propagates, torque and bending moment remain static. We also find that there is a drop in load when the two interfaces merge, indicating a concomitant reduction in the interfacial energy. Finally, the interface thickness is governed by the coefficients of the gradient of order parameters in the non-local interface energy. Our continuum theory and the finite element method provide a method to study the mechanical behavior of such biomaterials. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Real-Time Imaging of Fluorescent Flagellar Filaments of Rhizobium lupini H13-3: Flagellar Rotation and pH-Induced Polymorphic Transitions

    PubMed Central

    Scharf, Birgit

    2002-01-01

    The soil bacterium Rhizobium lupini H13-3 has complex right-handed flagellar filaments with unusual ridged, grooved surfaces. Clockwise (CW) rotation propels the cells forward, and course changes (tumbling) result from changes in filament speed instead of the more common change in direction of rotation. In view of these novelties, fluorescence labeling was used to analyze the behavior of single flagellar filaments during swimming and tumbling, leading to a model for directional changes in R. lupini. Also, flagellar filaments were investigated for helical conformational changes, which have not been previously shown for complex filaments. During full-speed CW rotation, the flagellar filaments form a propulsive bundle that pushes the cell on a straight path. Tumbling is caused by asynchronous deceleration and stops of individual filaments, resulting in dissociation of the propulsive bundle. R. lupini tumbles were not accompanied by helical conformational changes as are tumbles in other organisms including enteric bacteria. However, when pH was experimentally changed, four different polymorphic forms were observed. At a physiological pH of 7, normal flagellar helices were characterized by a pitch angle of 30°, a pitch of 1.36 μm, and a helical diameter of 0.50 μm. As pH increased from 9 to 11, the helices transformed from normal to semicoiled to straight. As pH decreased from 5 to 3, the helices transformed from normal to curly to straight. Transient conformational changes were also noted at high viscosity, suggesting that the R. lupini flagellar filament may adapt to high loads in viscous environments (soil) by assuming hydrodynamically favorable conformations. PMID:12374832

  9. Bacteria exploit a polymorphic instability of the flagellar filament to escape from traps.

    PubMed

    Kühn, Marco J; Schmidt, Felix K; Eckhardt, Bruno; Thormann, Kai M

    2017-06-13

    Many bacterial species swim by rotating single polar helical flagella. Depending on the direction of rotation, they can swim forward or backward and change directions to move along chemical gradients but also to navigate their obstructed natural environment in soils, sediments, or mucus. When they get stuck, they naturally try to back out, but they can also resort to a radically different flagellar mode, which we discovered here. Using high-speed microscopy, we monitored the swimming behavior of the monopolarly flagellated species Shewanella putrefaciens with fluorescently labeled flagellar filaments at an agarose-glass interface. We show that, when a cell gets stuck, the polar flagellar filament executes a polymorphic change into a spiral-like form that wraps around the cell body in a spiral-like fashion and enables the cell to escape by a screw-like backward motion. Microscopy and modeling suggest that this propagation mode is triggered by an instability of the flagellum under reversal of the rotation and the applied torque. The switch is reversible and bacteria that have escaped the trap can return to their normal swimming mode by another reversal of motor direction. The screw-type flagellar arrangement enables a unique mode of propagation and, given the large number of polarly flagellated bacteria, we expect it to be a common and widespread escape or motility mode in complex and structured environments.

  10. Isolation and characterization of flagellar filament from zoospores of Dermatophilus congolensis.

    PubMed

    Hiraizumi, Mieko; Tagawa, Yuichi

    2014-09-17

    Highly motile zoospores from Dermatophilus congolensis bovine isolates from clinical dermatophilosis in Japan were obtained by culturing at 27°C in an ambient atmosphere on heart infusion agar supplemented with 5% defibrinated sheep blood for 72h or in heart infusion broth for 48h with gentle shaking. After vigorous mechanical agitation of the zoospore suspension, the flagellar filaments detached from motile zoospores and were isolated in the clear gelatinous part of the final pellet by differential centrifugation. Typical morphology of a flagellar filament, with a width of approximately 15nm, was observed in the isolated flagellar filament by electron microscopy. A single major protein (flagellin) band with an apparent molecular mass of 35kDa was detected in the flagellar filament of D. congolensis strain AM-1 and that of 33kDa was detected in strain IT-2 by SDS-PAGE. In immunoblot analysis of whole-cell proteins from seven isolates of D. congolensis, antiserum to strain AM-1 zoospores reacted with the 35-kDa antigen band of strain AM-1, but not with any antigen band of other strains in a similar molecular mass range. In contrast, antiserum to strain IT-2 zoospores reacted with antigen bands at 33kDa from six strains, except strain AM-1. Similar strain-specific reactions of these anti-zoospore sera with isolated flagellar filaments from strains AM-1 and IT-2 were confirmed by immunoblot, indicating the presence of antigenic variations of flagellins of D. congolensis zoospores. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Structure and Function of the Bi-Directional Bacterial Flagellar Motor

    PubMed Central

    Morimoto, Yusuke V.; Minamino, Tohru

    2014-01-01

    The bacterial flagellum is a locomotive organelle that propels the bacterial cell body in liquid environments. The flagellum is a supramolecular complex composed of about 30 different proteins and consists of at least three parts: a rotary motor, a universal joint, and a helical filament. The flagellar motor of Escherichia coli and Salmonella enterica is powered by an inward-directed electrochemical potential difference of protons across the cytoplasmic membrane. The flagellar motor consists of a rotor made of FliF, FliG, FliM and FliN and a dozen stators consisting of MotA and MotB. FliG, FliM and FliN also act as a molecular switch, enabling the motor to spin in both counterclockwise and clockwise directions. Each stator is anchored to the peptidoglycan layer through the C-terminal periplasmic domain of MotB and acts as a proton channel to couple the proton flow through the channel with torque generation. Highly conserved charged residues at the rotor–stator interface are required not only for torque generation but also for stator assembly around the rotor. In this review, we will summarize our current understanding of the structure and function of the proton-driven bacterial flagellar motor. PMID:24970213

  12. Structure and function of the bi-directional bacterial flagellar motor.

    PubMed

    Morimoto, Yusuke V; Minamino, Tohru

    2014-02-18

    The bacterial flagellum is a locomotive organelle that propels the bacterial cell body in liquid environments. The flagellum is a supramolecular complex composed of about 30 different proteins and consists of at least three parts: a rotary motor, a universal joint, and a helical filament. The flagellar motor of Escherichia coli and Salmonella enterica is powered by an inward-directed electrochemical potential difference of protons across the cytoplasmic membrane. The flagellar motor consists of a rotor made of FliF, FliG, FliM and FliN and a dozen stators consisting of MotA and MotB. FliG, FliM and FliN also act as a molecular switch, enabling the motor to spin in both counterclockwise and clockwise directions. Each stator is anchored to the peptidoglycan layer through the C-terminal periplasmic domain of MotB and acts as a proton channel to couple the proton flow through the channel with torque generation. Highly conserved charged residues at the rotor-stator interface are required not only for torque generation but also for stator assembly around the rotor. In this review, we will summarize our current understanding of the structure and function of the proton-driven bacterial flagellar motor.

  13. Insight into structural remodeling of the FlhA ring responsible for bacterial flagellar type III protein export

    PubMed Central

    2018-01-01

    The bacterial flagellum is a supramolecular motility machine. Flagellar assembly begins with the basal body, followed by the hook and finally the filament. A carboxyl-terminal cytoplasmic domain of FlhA (FlhAC) forms a nonameric ring structure in the flagellar type III protein export apparatus and coordinates flagellar protein export with assembly. However, the mechanism of this process remains unknown. We report that a flexible linker of FlhAC (FlhAL) is required not only for FlhAC ring formation but also for substrate specificity switching of the protein export apparatus from the hook protein to the filament protein upon completion of the hook structure. FlhAL was required for cooperative ring formation of FlhAC. Alanine substitutions of residues involved in FlhAC ring formation interfered with the substrate specificity switching, thereby inhibiting filament assembly at the hook tip. These observations lead us to propose a mechanistic model for export switching involving structural remodeling of FlhAC. PMID:29707633

  14. Exchange of rotor components in functioning bacterial flagellar motor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fukuoka, Hajime; Inoue, Yuichi; Graduate School of Life Sciences, Tohoku University, Aoba-ku, Sendai 980-8577

    2010-03-26

    The bacterial flagellar motor is a rotary motor driven by the electrochemical potential of a coupling ion. The interaction between a rotor and stator units is thought to generate torque. The overall structure of flagellar motor has been thought to be static, however, it was recently proved that stators are exchanged in a rotating motor. Understanding the dynamics of rotor components in functioning motor is important for the clarifying of working mechanism of bacterial flagellar motor. In this study, we focused on the dynamics and the turnover of rotor components in a functioning flagellar motor. Expression systems for GFP-FliN, FliM-GFP,more » and GFP-FliG were constructed, and each GFP-fusion was functionally incorporated into the flagellar motor. To investigate whether the rotor components are exchanged in a rotating motor, we performed fluorescence recovery after photobleaching experiments using total internal reflection fluorescence microscopy. After photobleaching, in a tethered cell producing GFP-FliN or FliM-GFP, the recovery of fluorescence at the rotational center was observed. However, in a cell producing GFP-FliG, no recovery of fluorescence was observed. The transition phase of fluorescence intensity after full or partially photobleaching allowed the turnover of FliN subunits to be calculated as 0.0007 s{sup -1}, meaning that FliN would be exchanged in tens of minutes. These novel findings indicate that a bacterial flagellar motor is not a static structure even in functioning state. This is the first report for the exchange of rotor components in a functioning bacterial flagellar motor.« less

  15. Structure of the bacterial flagellar hook and implication for the molecular universal joint mechanism.

    PubMed

    Samatey, Fadel A; Matsunami, Hideyuki; Imada, Katsumi; Nagashima, Shigehiro; Shaikh, Tanvir R; Thomas, Dennis R; Chen, James Z; Derosier, David J; Kitao, Akio; Namba, Keiichi

    2004-10-28

    The bacterial flagellum is a motile organelle, and the flagellar hook is a short, highly curved tubular structure that connects the flagellar motor to the long filament acting as a helical propeller. The hook is made of about 120 copies of a single protein, FlgE, and its function as a nano-sized universal joint is essential for dynamic and efficient bacterial motility and taxis. It transmits the motor torque to the helical propeller over a wide range of its orientation for swimming and tumbling. Here we report a partial atomic model of the hook obtained by X-ray crystallography of FlgE31, a major proteolytic fragment of FlgE lacking unfolded terminal regions, and by electron cryomicroscopy and three-dimensional helical image reconstruction of the hook. The model reveals the intricate molecular interactions and a plausible switching mechanism for the hook to be flexible in bending but rigid against twisting for its universal joint function.

  16. Steps in the bacterial flagellar motor.

    PubMed

    Mora, Thierry; Yu, Howard; Sowa, Yoshiyuki; Wingreen, Ned S

    2009-10-01

    The bacterial flagellar motor is a highly efficient rotary machine used by many bacteria to propel themselves. It has recently been shown that at low speeds its rotation proceeds in steps. Here we propose a simple physical model, based on the storage of energy in protein springs, that accounts for this stepping behavior as a random walk in a tilted corrugated potential that combines torque and contact forces. We argue that the absolute angular position of the rotor is crucial for understanding step properties and show this hypothesis to be consistent with the available data, in particular the observation that backward steps are smaller on average than forward steps. We also predict a sublinear speed versus torque relationship for fixed load at low torque, and a peak in rotor diffusion as a function of torque. Our model provides a comprehensive framework for understanding and analyzing stepping behavior in the bacterial flagellar motor and proposes novel, testable predictions. More broadly, the storage of energy in protein springs by the flagellar motor may provide useful general insights into the design of highly efficient molecular machines.

  17. Gap compression/extension mechanism of bacterial flagellar hook as the molecular universal joint.

    PubMed

    Furuta, Tadaomi; Samatey, Fadel A; Matsunami, Hideyuki; Imada, Katsumi; Namba, Keiichi; Kitao, Akio

    2007-03-01

    Bacterial flagellar hook acts as a molecular universal joint, transmitting torque produced by the flagellar basal body, a rotary motor, to the flagellar filament. The hook forms polymorphic supercoil structures and can be considered as an assembly of 11 circularly arranged protofilaments. We investigated the molecular mechanism of the universal joint function of the hook by a approximately two-million-atom molecular dynamics simulation. On the inner side of the supercoil, protein subunits are highly packed along the protofilament and no gaps remain for further compression, whereas subunits are slightly separated and are hydrogen bonded through one layer of water molecules on the outer side. As for the intersubunit interactions between protofilaments, subunits are packed along the 6-start helix in a left-handed supercoil whereas they are highly packed along the 5-start helix in a right-handed supercoil. We conclude that the supercoiled structures of the hook in the left- and right-handed forms make maximal use of the gaps between subunits, which we call "gap compression/extension mechanism". Mutual sliding of subunits at the subunit interface accompanying rearrangements of intersubunit hydrogen bonds is interpreted as a mechanism to allow continuous structural change of the hook during flagellar rotation at low energy cost.

  18. Step-wise loss of bacterial flagellar torsion confers progressive phagocytic evasion.

    PubMed

    Lovewell, Rustin R; Collins, Ryan M; Acker, Julie L; O'Toole, George A; Wargo, Matthew J; Berwin, Brent

    2011-09-01

    Phagocytosis of bacteria by innate immune cells is a primary method of bacterial clearance during infection. However, the mechanisms by which the host cell recognizes bacteria and consequentially initiates phagocytosis are largely unclear. Previous studies of the bacterium Pseudomonas aeruginosa have indicated that bacterial flagella and flagellar motility play an important role in colonization of the host and, importantly, that loss of flagellar motility enables phagocytic evasion. Here we use molecular, cellular, and genetic methods to provide the first formal evidence that phagocytic cells recognize bacterial motility rather than flagella and initiate phagocytosis in response to this motility. We demonstrate that deletion of genes coding for the flagellar stator complex, which results in non-swimming bacteria that retain an initial flagellar structure, confers resistance to phagocytic binding and ingestion in several species of the gamma proteobacterial group of Gram-negative bacteria, indicative of a shared strategy for phagocytic evasion. Furthermore, we show for the first time that susceptibility to phagocytosis in swimming bacteria is proportional to mot gene function and, consequently, flagellar rotation since complementary genetically- and biochemically-modulated incremental decreases in flagellar motility result in corresponding and proportional phagocytic evasion. These findings identify that phagocytic cells respond to flagellar movement, which represents a novel mechanism for non-opsonized phagocytic recognition of pathogenic bacteria.

  19. Load-dependent assembly of the bacterial flagellar motor.

    PubMed

    Tipping, Murray J; Delalez, Nicolas J; Lim, Ren; Berry, Richard M; Armitage, Judith P

    2013-08-20

    It is becoming clear that the bacterial flagellar motor output is important not only for bacterial locomotion but also for mediating the transition from liquid to surface living. The output of the flagellar motor changes with the mechanical load placed on it by the external environment: at a higher load, the motor runs more slowly and produces higher torque. Here we show that the number of torque-generating units bound to the flagellar motor also depends on the external mechanical load, with fewer stators at lower loads. Stalled motors contained at least as many stators as rotating motors at high load, indicating that rotation is unnecessary for stator binding. Mutant stators incapable of generating torque could not be detected around the motor. We speculate that a component of the bacterial flagellar motor senses external load and mediates the strength of stator binding to the rest of the motor. The transition between liquid living and surface living is important in the life cycles of many bacteria. In this paper, we describe how the flagellar motor, used by bacteria for locomotion through liquid media and across solid surfaces, is capable of adjusting the number of bound stator units to better suit the external load conditions. By stalling motors using external magnetic fields, we also show that rotation is not required for maintenance of stators around the motor; instead, torque production is the essential factor for motor stability. These new results, in addition to previous data, lead us to hypothesize that the motor stators function as mechanosensors as well as functioning as torque-generating units.

  20. Measurements of the Rotation of the Flagellar Motor by Bead Assay.

    PubMed

    Kasai, Taishi; Sowa, Yoshiyuki

    2017-01-01

    The bacterial flagellar motor is a reversible rotary nano-machine powered by the ion flux across the cytoplasmic membrane. Each motor rotates a long helical filament that extends from the cell body at several hundreds revolutions per second. The output of the motor is characterized by its generated torque and rotational speed. The torque can be calculated as the rotational frictional drag coefficient multiplied by the angular velocity. Varieties of methods, including a bead assay, have been developed to measure the flagellar rotation rate under various load conditions on the motor. In this chapter, we describe a method to monitor the motor rotation through a position of a 1 μm bead attached to a truncated flagellar filament.

  1. Step-Wise Loss of Bacterial Flagellar Torsion Confers Progressive Phagocytic Evasion

    PubMed Central

    Lovewell, Rustin R.; Collins, Ryan M.; Acker, Julie L.; O'Toole, George A.; Wargo, Matthew J.; Berwin, Brent

    2011-01-01

    Phagocytosis of bacteria by innate immune cells is a primary method of bacterial clearance during infection. However, the mechanisms by which the host cell recognizes bacteria and consequentially initiates phagocytosis are largely unclear. Previous studies of the bacterium Pseudomonas aeruginosa have indicated that bacterial flagella and flagellar motility play an important role in colonization of the host and, importantly, that loss of flagellar motility enables phagocytic evasion. Here we use molecular, cellular, and genetic methods to provide the first formal evidence that phagocytic cells recognize bacterial motility rather than flagella and initiate phagocytosis in response to this motility. We demonstrate that deletion of genes coding for the flagellar stator complex, which results in non-swimming bacteria that retain an initial flagellar structure, confers resistance to phagocytic binding and ingestion in several species of the gamma proteobacterial group of Gram-negative bacteria, indicative of a shared strategy for phagocytic evasion. Furthermore, we show for the first time that susceptibility to phagocytosis in swimming bacteria is proportional to mot gene function and, consequently, flagellar rotation since complementary genetically- and biochemically-modulated incremental decreases in flagellar motility result in corresponding and proportional phagocytic evasion. These findings identify that phagocytic cells respond to flagellar movement, which represents a novel mechanism for non-opsonized phagocytic recognition of pathogenic bacteria. PMID:21949654

  2. The bacterial flagellar switch complex is getting more complex

    PubMed Central

    Cohen-Ben-Lulu, Galit N; Francis, Noreen R; Shimoni, Eyal; Noy, Dror; Davidov, Yaacov; Prasad, Krishna; Sagi, Yael; Cecchini, Gary; Johnstone, Rose M; Eisenbach, Michael

    2008-01-01

    The mechanism of function of the bacterial flagellar switch, which determines the direction of flagellar rotation and is essential for chemotaxis, has remained an enigma for many years. Here we show that the switch complex associates with the membrane-bound respiratory protein fumarate reductase (FRD). We provide evidence that FRD binds to preparations of isolated switch complexes, forms a 1:1 complex with the switch protein FliG, and that this interaction is required for both flagellar assembly and switching the direction of flagellar rotation. We further show that fumarate, known to be a clockwise/switch factor, affects the direction of flagellar rotation through FRD. These results not only uncover a new component important for switching and flagellar assembly, but they also reveal that FRD, an enzyme known to be primarily expressed and functional under anaerobic conditions in Escherichia coli, nonetheless, has important, unexpected functions under aerobic conditions. PMID:18337747

  3. Flagellar filament bio-templated inorganic oxide materials - towards an efficient lithium battery anode

    NASA Astrophysics Data System (ADS)

    Beznosov, Sergei N.; Veluri, Pavan S.; Pyatibratov, Mikhail G.; Chatterjee, Abhijit; Macfarlane, Douglas R.; Fedorov, Oleg V.; Mitra, Sagar

    2015-01-01

    Designing a new generation of energy-intensive and sustainable electrode materials for batteries to power a variety of applications is an imperative task. The use of biomaterials as a nanosized structural template for these materials has the potential to produce hitherto unachievable structures. In this report, we have used genetically modified flagellar filaments of the extremely halophilic archaea species Halobacterium salinarum to synthesize nanostructured iron oxide composites for use as a lithium-ion battery anode. The electrode demonstrated a superior electrochemical performance compared to existing literature results, with good capacity retention of 1032 mAh g-1 after 50 cycles and with high rate capability, delivering 770 mAh g-1 at 5 A g-1 (~5 C) discharge rate. This unique flagellar filament based template has the potential to provide access to other highly structured advanced energy materials in the future.

  4. Flagellar filament bio-templated inorganic oxide materials - towards an efficient lithium battery anode.

    PubMed

    Beznosov, Sergei N; Veluri, Pavan S; Pyatibratov, Mikhail G; Chatterjee, Abhijit; MacFarlane, Douglas R; Fedorov, Oleg V; Mitra, Sagar

    2015-01-13

    Designing a new generation of energy-intensive and sustainable electrode materials for batteries to power a variety of applications is an imperative task. The use of biomaterials as a nanosized structural template for these materials has the potential to produce hitherto unachievable structures. In this report, we have used genetically modified flagellar filaments of the extremely halophilic archaea species Halobacterium salinarum to synthesize nanostructured iron oxide composites for use as a lithium-ion battery anode. The electrode demonstrated a superior electrochemical performance compared to existing literature results, with good capacity retention of 1032 mAh g(-1) after 50 cycles and with high rate capability, delivering 770 mAh g(-1) at 5 A g(-1) (~5 C) discharge rate. This unique flagellar filament based template has the potential to provide access to other highly structured advanced energy materials in the future.

  5. Simultaneous measurement of bacterial flagellar rotation rate and swimming speed.

    PubMed Central

    Magariyama, Y; Sugiyama, S; Muramoto, K; Kawagishi, I; Imae, Y; Kudo, S

    1995-01-01

    Swimming speeds and flagellar rotation rates of individual free-swimming Vibrio alginolyticus cells were measured simultaneously by laser dark-field microscopy at 25, 30, and 35 degrees C. A roughly linear relation between swimming speed and flagellar rotation rate was observed. The ratio of swimming speed to flagellar rotation rate was 0.113 microns, which indicated that a cell progressed by 7% of pitch of flagellar helix during one flagellar rotation. At each temperature, however, swimming speed had a tendency to saturate at high flagellar rotation rate. That is, the cell with a faster-rotating flagellum did not always swim faster. To analyze the bacterial motion, we proposed a model in which the torque characteristics of the flagellar motor were considered. The model could be analytically solved, and it qualitatively explained the experimental results. The discrepancy between the experimental and the calculated ratios of swimming speed to flagellar rotation rate was about 20%. The apparent saturation in swimming speed was considered to be caused by shorter flagella that rotated faster but produced less propelling force. Images FIGURE 1 FIGURE 4 PMID:8580359

  6. Flagellar filament bio-templated inorganic oxide materials – towards an efficient lithium battery anode

    PubMed Central

    Beznosov, Sergei N.; Veluri, Pavan S.; Pyatibratov, Mikhail G.; Chatterjee, Abhijit; MacFarlane, Douglas R.; Fedorov, Oleg V.; Mitra, Sagar

    2015-01-01

    Designing a new generation of energy-intensive and sustainable electrode materials for batteries to power a variety of applications is an imperative task. The use of biomaterials as a nanosized structural template for these materials has the potential to produce hitherto unachievable structures. In this report, we have used genetically modified flagellar filaments of the extremely halophilic archaea species Halobacterium salinarum to synthesize nanostructured iron oxide composites for use as a lithium-ion battery anode. The electrode demonstrated a superior electrochemical performance compared to existing literature results, with good capacity retention of 1032 mAh g−1 after 50 cycles and with high rate capability, delivering 770 mAh g−1 at 5 A g−1 (~5 C) discharge rate. This unique flagellar filament based template has the potential to provide access to other highly structured advanced energy materials in the future. PMID:25583370

  7. Fuel of the Bacterial Flagellar Type III Protein Export Apparatus.

    PubMed

    Minamino, Tohru; Kinoshita, Miki; Namba, Keiichi

    2017-01-01

    The flagellar type III export apparatus utilizes ATP and proton motive force (PMF) across the cytoplasmic membrane as the energy sources and transports flagellar component proteins from the cytoplasm to the distal growing end of the growing structure to construct the bacterial flagellum beyond the cellular membranes. The flagellar type III export apparatus coordinates flagellar protein export with assembly by ordered export of substrates to parallel with their order of the assembly. The export apparatus is composed of a PMF-driven transmembrane export gate complex and a cytoplasmic ATPase complex. Since the ATPase complex is dispensable for flagellar protein export, PMF is the primary fuel for protein unfolding and translocation. Interestingly, the export gate complex can also use sodium motive force across the cytoplasmic membrane in addition to PMF when the ATPase complex does not work properly. Here, we describe experimental protocols, which have allowed us to identify the export substrate class and the primary fuel of the flagellar type III protein export apparatus in Salmonella enterica serovar Typhimurium.

  8. Flagellar flows around bacterial swarms

    NASA Astrophysics Data System (ADS)

    Dauparas, Justas; Lauga, Eric

    2016-08-01

    Flagellated bacteria on nutrient-rich substrates can differentiate into a swarming state and move in dense swarms across surfaces. A recent experiment measured the flow in the fluid around an Escherichia coli swarm [Wu, Hosu, and Berg, Proc. Natl. Acad. Sci. USA 108, 4147 (2011)], 10.1073/pnas.1016693108. A systematic chiral flow was observed in the clockwise direction (when viewed from above) ahead of the swarm with flow speeds of about 10 μ m /s , about 3 times greater than the radial velocity at the edge of the swarm. The working hypothesis is that this flow is due to the action of cells stalled at the edge of a colony that extend their flagellar filaments outward, moving fluid over the virgin agar. In this work we quantitatively test this hypothesis. We first build an analytical model of the flow induced by a single flagellum in a thin film and then use the model, and its extension to multiple flagella, to compare with experimental measurements. The results we obtain are in agreement with the flagellar hypothesis. The model provides further quantitative insight into the flagella orientations and their spatial distributions as well as the tangential speed profile. In particular, the model suggests that flagella are on average pointing radially out of the swarm and are not wrapped tangentially.

  9. Themes and Variations: Regulation of RpoN-Dependent Flagellar Genes across Diverse Bacterial Species

    PubMed Central

    Tsang, Jennifer; Hoover, Timothy R.

    2014-01-01

    Flagellar biogenesis in bacteria is a complex process in which the transcription of dozens of structural and regulatory genes is coordinated with the assembly of the flagellum. Although the overall process of flagellar biogenesis is conserved among bacteria, the mechanisms used to regulate flagellar gene expression vary greatly among different bacterial species. Many bacteria use the alternative sigma factor σ 54 (also known as RpoN) to transcribe specific sets of flagellar genes. These bacteria include members of the Epsilonproteobacteria (e.g., Helicobacter pylori and Campylobacter jejuni), Gammaproteobacteria (e.g., Vibrio and Pseudomonas species), and Alphaproteobacteria (e.g., Caulobacter crescentus). This review characterizes the flagellar transcriptional hierarchies in these bacteria and examines what is known about how flagellar gene regulation is linked with other processes including growth phase, quorum sensing, and host colonization. PMID:24672734

  10. The counterbend phenomenon in flagellar axonemes and cross-linked filament bundles

    PubMed Central

    Gadêlha, Hermes; Gaffney, Eamonn A.; Goriely, Alain

    2013-01-01

    Recent observations of flagellar counterbend in sea urchin sperm show that the mechanical induction of curvature in one part of a passive flagellum induces a compensatory countercurvature elsewhere. This apparent paradoxical effect cannot be explained using the standard elastic rod theory of Euler and Bernoulli, or even the more general Cosserat theory of rods. Here, we develop a geometrically exact mechanical model to describe the statics of microtubule bundles that is capable of predicting the curvature reversal events observed in eukaryotic flagella. This is achieved by allowing the interaction of deformations in different material directions, by accounting not only for structural bending, but also for the elastic forces originating from the internal cross-linking mechanics. Large-amplitude static configurations can be described analytically, and an excellent match between the model and the observed counterbend deformation was found. This allowed a simultaneous estimation of multiple sperm flagellum material parameters, namely the cross-linking sliding resistance, the bending stiffness, and the sperm head junction compliance ratio. We further show that small variations on the empirical conditions may induce discrepancies for the evaluation of the flagellar material quantities, so that caution is required when interpreting experiments. Finally, our analysis demonstrates that the counterbend emerges as a fundamental property of sliding resistance in cross-linked filamentous polymer bundles, which also suggests that cross-linking proteins may contribute to the regulation of the flagellar waveform in swimming sperm via counterbend mechanics. PMID:23824293

  11. Bacterial flagella grow through an injection-diffusion mechanism

    PubMed Central

    Renault, Thibaud T; Abraham, Anthony O; Bergmiller, Tobias; Paradis, Guillaume; Rainville, Simon; Charpentier, Emmanuelle; Guet, Călin C; Tu, Yuhai; Namba, Keiichi; Keener, James P; Minamino, Tohru; Erhardt, Marc

    2017-01-01

    The bacterial flagellum is a self-assembling nanomachine. The external flagellar filament, several times longer than a bacterial cell body, is made of a few tens of thousands subunits of a single protein: flagellin. A fundamental problem concerns the molecular mechanism of how the flagellum grows outside the cell, where no discernible energy source is available. Here, we monitored the dynamic assembly of individual flagella using in situ labelling and real-time immunostaining of elongating flagellar filaments. We report that the rate of flagellum growth, initially ∼1,700 amino acids per second, decreases with length and that the previously proposed chain mechanism does not contribute to the filament elongation dynamics. Inhibition of the proton motive force-dependent export apparatus revealed a major contribution of substrate injection in driving filament elongation. The combination of experimental and mathematical evidence demonstrates that a simple, injection-diffusion mechanism controls bacterial flagella growth outside the cell. DOI: http://dx.doi.org/10.7554/eLife.23136.001 PMID:28262091

  12. Bacterial flagella grow through an injection-diffusion mechanism.

    PubMed

    Renault, Thibaud T; Abraham, Anthony O; Bergmiller, Tobias; Paradis, Guillaume; Rainville, Simon; Charpentier, Emmanuelle; Guet, Călin C; Tu, Yuhai; Namba, Keiichi; Keener, James P; Minamino, Tohru; Erhardt, Marc

    2017-03-06

    The bacterial flagellum is a self-assembling nanomachine. The external flagellar filament, several times longer than a bacterial cell body, is made of a few tens of thousands subunits of a single protein: flagellin. A fundamental problem concerns the molecular mechanism of how the flagellum grows outside the cell, where no discernible energy source is available. Here, we monitored the dynamic assembly of individual flagella using in situ labelling and real-time immunostaining of elongating flagellar filaments. We report that the rate of flagellum growth, initially ∼1,700 amino acids per second, decreases with length and that the previously proposed chain mechanism does not contribute to the filament elongation dynamics. Inhibition of the proton motive force-dependent export apparatus revealed a major contribution of substrate injection in driving filament elongation. The combination of experimental and mathematical evidence demonstrates that a simple, injection-diffusion mechanism controls bacterial flagella growth outside the cell.

  13. Microscopic Analysis of Bacterial Motility at High Pressure

    PubMed Central

    Nishiyama, Masayoshi; Sowa, Yoshiyuki

    2012-01-01

    The bacterial flagellar motor is a molecular machine that converts an ion flux to the rotation of a helical flagellar filament. Counterclockwise rotation of the filaments allows them to join in a bundle and propel the cell forward. Loss of motility can be caused by environmental factors such as temperature, pH, and solvation. Hydrostatic pressure is also a physical inhibitor of bacterial motility, but the detailed mechanism of this inhibition is still unknown. Here, we developed a high-pressure microscope that enables us to acquire high-resolution microscopic images, regardless of applied pressures. We also characterized the pressure dependence of the motility of swimming Escherichia coli cells and the rotation of single flagellar motors. The fraction and speed of swimming cells decreased with increased pressure. At 80 MPa, all cells stopped swimming and simply diffused in solution. After the release of pressure, most cells immediately recovered their initial motility. Direct observation of the motility of single flagellar motors revealed that at 80 MPa, the motors generate torque that should be sufficient to join rotating filaments in a bundle. The discrepancy in the behavior of free swimming cells and individual motors could be due to the applied pressure inhibiting the formation of rotating filament bundles that can propel the cell body in an aqueous environment. PMID:22768943

  14. Mechanics of torque generation in the bacterial flagellar motor

    PubMed Central

    Mandadapu, Kranthi K.; Nirody, Jasmine A.; Berry, Richard M.; Oster, George

    2015-01-01

    The bacterial flagellar motor (BFM) is responsible for driving bacterial locomotion and chemotaxis, fundamental processes in pathogenesis and biofilm formation. In the BFM, torque is generated at the interface between transmembrane proteins (stators) and a rotor. It is well established that the passage of ions down a transmembrane gradient through the stator complex provides the energy for torque generation. However, the physics involved in this energy conversion remain poorly understood. Here we propose a mechanically specific model for torque generation in the BFM. In particular, we identify roles for two fundamental forces involved in torque generation: electrostatic and steric. We propose that electrostatic forces serve to position the stator, whereas steric forces comprise the actual “power stroke.” Specifically, we propose that ion-induced conformational changes about a proline “hinge” residue in a stator α-helix are directly responsible for generating the power stroke. Our model predictions fit well with recent experiments on a single-stator motor. The proposed model provides a mechanical explanation for several fundamental properties of the flagellar motor, including torque–speed and speed–ion motive force relationships, backstepping, variation in step sizes, and the effects of key mutations in the stator. PMID:26216959

  15. Mechanics of torque generation in the bacterial flagellar motor.

    PubMed

    Mandadapu, Kranthi K; Nirody, Jasmine A; Berry, Richard M; Oster, George

    2015-08-11

    The bacterial flagellar motor (BFM) is responsible for driving bacterial locomotion and chemotaxis, fundamental processes in pathogenesis and biofilm formation. In the BFM, torque is generated at the interface between transmembrane proteins (stators) and a rotor. It is well established that the passage of ions down a transmembrane gradient through the stator complex provides the energy for torque generation. However, the physics involved in this energy conversion remain poorly understood. Here we propose a mechanically specific model for torque generation in the BFM. In particular, we identify roles for two fundamental forces involved in torque generation: electrostatic and steric. We propose that electrostatic forces serve to position the stator, whereas steric forces comprise the actual "power stroke." Specifically, we propose that ion-induced conformational changes about a proline "hinge" residue in a stator α-helix are directly responsible for generating the power stroke. Our model predictions fit well with recent experiments on a single-stator motor. The proposed model provides a mechanical explanation for several fundamental properties of the flagellar motor, including torque-speed and speed-ion motive force relationships, backstepping, variation in step sizes, and the effects of key mutations in the stator.

  16. Inactivation of ferric uptake regulator (Fur) attenuates Helicobacter pylori J99 motility by disturbing the flagellar motor switch and autoinducer-2 production.

    PubMed

    Lee, Ai-Yun; Kao, Cheng-Yen; Wang, Yao-Kuan; Lin, Ssu-Yuan; Lai, Tze-Ying; Sheu, Bor-Shyang; Lo, Chien-Jung; Wu, Jiunn-Jong

    2017-08-01

    Flagellar motility of Helicobacter pylori has been shown to be important for the bacteria to establish initial colonization. The ferric uptake regulator (Fur) is a global regulator that has been identified in H. pylori which is involved in the processes of iron uptake and establishing colonization. However, the role of Fur in H. pylori motility is still unclear. Motility of the wild-type, fur mutant, and fur revertant J99 were determined by a soft-agar motility assay and direct video observation. The bacterial shape and flagellar structure were evaluated by transmission electron microscopy. Single bacterial motility and flagellar switching were observed by phase-contrast microscopy. Autoinducer-2 (AI-2) production in bacterial culture supernatant was analyzed by a bioluminescence assay. The fur mutant showed impaired motility in the soft-agar assay compared with the wild-type J99 and fur revertant. The numbers and lengths of flagellar filaments on the fur mutant cells were similar to those of the wild-type and revertant cells. Phenotypic characterization showed similar swimming speed but reduction in switching rate in the fur mutant. The AI-2 production of the fur mutant was dramatically reduced compared with wild-type J99 in log-phase culture medium. These results indicate that Fur positively modulates H. pylori J99 motility through interfering with bacterial flagellar switching. © 2017 John Wiley & Sons Ltd.

  17. Specific arrangement of alpha-helical coiled coils in the core domain of the bacterial flagellar hook for the universal joint function.

    PubMed

    Fujii, Takashi; Kato, Takayuki; Namba, Keiichi

    2009-11-11

    The bacterial flagellar hook is a short, highly curved tubular structure connecting the rotary motor to the filament acting as a helical propeller. The bending flexibility of the hook allows it to work as a universal joint. A partial atomic model of the hook revealed a sliding intersubunit domain interaction along the protofilament to produce bending flexibility. However, it remained unclear how the tightly packed inner core domains can still permit axial extension and compression. We report advances in cryoEM image analysis for high-resolution, high-throughput structural analysis and a density map of the hook that reveals most of the secondary structures, including the terminal alpha helices forming a coiled coil. The orientations and axial packing interactions of these two alpha helices are distinctly different from those of the filament, allowing them to have a room for axial compression and extension for bending flexibility without impairing the mechanical stability of the hook.

  18. Cyclic di-GMP differentially tunes a bacterial flagellar motor through a novel class of CheY-like regulators.

    PubMed

    Nesper, Jutta; Hug, Isabelle; Kato, Setsu; Hee, Chee-Seng; Habazettl, Judith Maria; Manfredi, Pablo; Grzesiek, Stephan; Schirmer, Tilman; Emonet, Thierry; Jenal, Urs

    2017-11-01

    The flagellar motor is a sophisticated rotary machine facilitating locomotion and signal transduction. Owing to its important role in bacterial behavior, its assembly and activity are tightly regulated. For example, chemotaxis relies on a sensory pathway coupling chemical information to rotational bias of the motor through phosphorylation of the motor switch protein CheY. Using a chemical proteomics approach, we identified a novel family of CheY-like (Cle) proteins in Caulobacter crescentus , which tune flagellar activity in response to binding of the second messenger c-di-GMP to a C-terminal extension. In their c-di-GMP bound conformation Cle proteins interact with the flagellar switch to control motor activity. We show that individual Cle proteins have adopted discrete cellular functions by interfering with chemotaxis and by promoting rapid surface attachment of motile cells. This study broadens the regulatory versatility of bacterial motors and unfolds mechanisms that tie motor activity to mechanical cues and bacterial surface adaptation.

  19. Polar Flagellar Motility of the Vibrionaceae

    PubMed Central

    McCarter, Linda L.

    2001-01-01

    Polar flagella of Vibrio species can rotate at speeds as high as 100,000 rpm and effectively propel the bacteria in liquid as fast as 60 μm/s. The sodium motive force powers rotation of the filament, which acts as a propeller. The filament is complex, composed of multiple subunits, and sheathed by an extension of the cell outer membrane. The regulatory circuitry controlling expression of the polar flagellar genes of members of the Vibrionaceae is different from the peritrichous system of enteric bacteria or the polar system of Caulobacter crescentus. The scheme of gene control is also pertinent to other members of the gamma purple bacteria, in particular to Pseudomonas species. This review uses the framework of the polar flagellar system of Vibrio parahaemolyticus to provide a synthesis of what is known about polar motility systems of the Vibrionaceae. In addition to its propulsive role, the single polar flagellum of V. parahaemolyticus is believed to act as a tactile sensor controlling surface-induced gene expression. Under conditions that impede rotation of the polar flagellum, an alternate, lateral flagellar motility system is induced that enables movement through viscous environments and over surfaces. Although the dual flagellar systems possess no shared structural components and although distinct type III secretion systems direct the simultaneous placement and assembly of polar and lateral organelles, movement is coordinated by shared chemotaxis machinery. PMID:11528005

  20. Visualization of bacterial flagella dynamics in a viscous shear flow

    NASA Astrophysics Data System (ADS)

    Ali, Jamel; Kim, Minjun

    2016-11-01

    We report on the dynamics of tethered bacterial flagella in an applied viscous shear flow and analyze their behavior using image processing. Flagellin proteins were repolymerized into flagellar filaments functionalized with biotin at their proximal end, and allowed to self-assemble within a micro channel coated with streptavidin. It was observed that all attached flagellar filaments aligned with the steady shear flow of various polymeric solutions. Furthermore it was observed that many of the filaments were stretched, and at elevated flow rates began to undergo polymorphic transformations, which were initiated at one end of the flagellum. When undergoing a change to a different helical form the flagellum was observed to transform to an oppositely handed helix, as to counteract the viscous torque imparted by the shear flow. It was also observed that some flagellar filaments did not undergo polymorphic transformations, but rotated about their helical axis. The rate of this rotation appears to be a function of the applied flow rate. These results expand on previous experimental work and aid in the development of a novel platform that harnesses the autonomic response of a 'forest' of bacterial flagella for engineering applications. This work was funded by NSF Grant CMMI-1000255, KEIT MOTIE Grant No. 10052980, and with Government support under and awarded by DoD, Air Force Office of Scientific Research, National Defense Science and Engineering Graduate (NDSEG) Fellowship, 32 CFR 168a.

  1. Limiting Speed of the Bacterial Flagellar Motor

    NASA Astrophysics Data System (ADS)

    Nirody, Jasmine; Berry, Richard; Oster, George

    The bacterial flagellar motor (BFM) drives swimming in a wide variety of bacterial species, making it crucial for several fundamental biological processes including chemotaxis and community formation. Recent experiments have shown that the structure of this nanomachine is more dynamic than previously believed. Specifically, the number of active torque-generating units (stators) was shown to vary across applied loads. This finding invalidates the experimental evidence reporting that limiting (zero-torque) speed is independent of the number of active stators. Here, we put forward a model for the torque generation mechanism of this motor and propose that the maximum speed of the motor increases as additional torque-generators are recruited. This is contrary to the current widely-held belief that there is a universal upper limit to the speed of the BFM. Our result arises from the assumption that stators disengage from the motor for a significant portion of their mechanochemical cycles at low loads. We show that this assumption is consistent with current experimental evidence and consolidate our predictions with arguments that a processive motor must have a high duty ratio at high loads.

  2. H{sup +} and Na{sup +} are involved in flagellar rotation of the spirochete Leptospira

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Islam, Md. Shafiqul; Morimoto, Yusuke V.; Graduate School of Frontier BioSciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871

    2015-10-16

    Leptospira is a spirochete possessing intracellular flagella. Each Leptospira flagellar filament is linked with a flagellar motor composed of a rotor and a dozen stators. For many bacterial species, it is known that the stator functions as an ion channel and that the ion flux through the stator is coupled with flagellar rotation. The coupling ion varies depending on the species; for example, H{sup +} is used in Escherichia coli, and Na{sup +} is used in Vibrio spp. to drive a polar flagellum. Although genetic and structural studies illustrated that the Leptospira flagellar motor also contains a stator, the couplingmore » ion for flagellar rotation remains unknown. In the present study, we analyzed the motility of Leptospira under various pH values and salt concentrations. Leptospira cells displayed motility in acidic to alkaline pH. In the presence of a protonophore, the cells completely lost motility in acidic to neutral pH but displayed extremely slow movement under alkaline conditions. This result suggests that H{sup +} is a major coupling ion for flagellar rotation over a wide pH range; however, we also observed that the motility of Leptospira was significantly enhanced by the addition of Na{sup +}, though it vigorously moved even under Na{sup +}-free conditions. These results suggest that H{sup +} is preferentially used and that Na{sup +} is secondarily involved in flagellar rotation in Leptospira. The flexible ion selectivity in the flagellar system could be advantageous for Leptospira to survive in a wide range of environment. - Highlights: • This is a study on input energy for motility in the spirochete Leptospira. • Leptospira biflexa exhibited active motility in acidic to alkaline pH. • Both H{sup +} and Na{sup +} are involved in flagellar rotation in Leptospira. • H{sup +} is a primary energy source, but Na{sup +} can secondarily enhance motility.« less

  3. Protein export through the bacterial flagellar type III export pathway.

    PubMed

    Minamino, Tohru

    2014-08-01

    For construction of the bacterial flagellum, which is responsible for bacterial motility, the flagellar type III export apparatus utilizes both ATP and proton motive force across the cytoplasmic membrane and exports flagellar proteins from the cytoplasm to the distal end of the nascent structure. The export apparatus consists of a membrane-embedded export gate made of FlhA, FlhB, FliO, FliP, FliQ, and FliR and a water-soluble ATPase ring complex consisting of FliH, FliI, and FliJ. FlgN, FliS, and FliT act as substrate-specific chaperones that do not only protect their cognate substrates from degradation and aggregation in the cytoplasm but also efficiently transfer the substrates to the export apparatus. The ATPase ring complex facilitates the initial entry of the substrates into the narrow pore of the export gate. The export gate by itself is a proton-protein antiporter that uses the two components of proton motive force, the electric potential difference and the proton concentration difference, for different steps of the export process. A specific interaction of FlhA with FliJ located in the center of the ATPase ring complex allows the export gate to efficiently use proton motive force to drive protein export. The ATPase ring complex couples ATP binding and hydrolysis to its assembly-disassembly cycle for rapid and efficient protein export cycle. This article is part of a Special Issue entitled: Protein trafficking and secretion in bacteria. Guest Editors: Anastassios Economou and Ross Dalbey. © 2013 Elsevier B.V. All rights reserved.

  4. Hybrid-fuel bacterial flagellar motors in Escherichia coli

    PubMed Central

    Sowa, Yoshiyuki; Homma, Michio; Ishijima, Akihiko; Berry, Richard M.

    2014-01-01

    The bacterial flagellar motor rotates driven by an electrochemical ion gradient across the cytoplasmic membrane, either H+ or Na+ ions. The motor consists of a rotor ∼50 nm in diameter surrounded by multiple torque-generating ion-conducting stator units. Stator units exchange spontaneously between the motor and a pool in the cytoplasmic membrane on a timescale of minutes, and their stability in the motor is dependent upon the ion gradient. We report a genetically engineered hybrid-fuel flagellar motor in Escherichia coli that contains both H+- and Na+-driven stator components and runs on both types of ion gradient. We controlled the number of each type of stator unit in the motor by protein expression levels and Na+ concentration ([Na+]), using speed changes of single motors driving 1-μm polystyrene beads to determine stator unit numbers. De-energized motors changed from locked to freely rotating on a timescale similar to that of spontaneous stator unit exchange. Hybrid motor speed is simply the sum of speeds attributable to individual stator units of each type. With Na+ and H+ stator components expressed at high and medium levels, respectively, Na+ stator units dominate at high [Na+] and are replaced by H+ units when Na+ is removed. Thus, competition between stator units for spaces in a motor and sensitivity of each type to its own ion gradient combine to allow hybrid motors to adapt to the prevailing ion gradient. We speculate that a similar process may occur in species that naturally express both H+ and Na+ stator components sharing a common rotor. PMID:24550452

  5. Polymorphism in Bacterial Flagella Suspensions

    NASA Astrophysics Data System (ADS)

    Schwenger, Walter J.

    Bacterial flagella are a type of biological polymer studied for its role in bacterial motility and the polymorphic transitions undertaken to facilitate the run and tumble behavior. The naturally rigid, helical shape of flagella gives rise to novel colloidal dynamics and material properties. This thesis studies methods in which the shape of bacterial flagella can be controlled using in vitro methods and the changes the shape of the flagella have on both single particle dynamics and bulk material properties. We observe individual flagellum in both the dilute and semidilute regimes to observe the effects of solvent condition on the shape of the filament as well as the effect the filament morphology has on reptation through a network of flagella. In addition, we present rheological measurements showing how the shape of filaments effects the bulk material properties of flagellar suspensions. We find that the individual particle dynamics in suspensions of flagella can vary with geometry from needing to reptate linearly via rotation for helical filaments to the prevention of long range diffusion for block copolymer filaments. Similarly, for bulk material properties of flagella suspensions, helical geometries show a dramatic enhancement in elasticity over straight filaments while block copolymers form an elastic gel without the aid of crosslinking agents.

  6. MotD of Sinorhizobium meliloti and Related α-Proteobacteria Is the Flagellar-Hook-Length Regulator and Therefore Reassigned as FliK

    PubMed Central

    Eggenhofer, Elke; Rachel, Reinhard; Haslbeck, Martin; Scharf, Birgit

    2006-01-01

    The flagella of the soil bacterium Sinorhizobium meliloti differ from the enterobacterial paradigm in the complex filament structure and modulation of the flagellar rotary speed. The mode of motility control in S. meliloti has a molecular corollary in two novel periplasmic motility proteins, MotC and MotE, that are present in addition to the ubiquitous MotA/MotB energizing proton channel. A fifth motility gene is located in the mot operon downstream of the motB and motC genes. Its gene product was originally designated MotD, a cytoplasmic motility protein having an unknown function. We report here reassignment of MotD as FliK, the regulator of flagellar hook length. The FliK gene is one of the few flagellar genes not annotated in the contiguous flagellar regulon of S. meliloti. Characteristic for its class, the 475-residue FliK protein contains a conserved, compactly folded Flg hook domain in its carboxy-terminal region. Deletion of fliK leads to formation of prolonged flagellar hooks (polyhooks) with missing filament structures. Extragenic suppressor mutations all mapped in the cytoplasmic region of the transmembrane export protein FlhB and restored assembly of a flagellar filament, and thus motility, in the presence of polyhooks. The structural properties of FliK are consistent with its function as a substrate specificity switch of the flagellar export apparatus for switching from rod/hook-type substrates to filament-type substrates. PMID:16513744

  7. Diverse high-torque bacterial flagellar motors assemble wider stator rings using a conserved protein scaffold

    PubMed Central

    Ribardo, Deborah A.; Brennan, Caitlin A.; Ruby, Edward G.; Jensen, Grant J.; Hendrixson, David R.

    2016-01-01

    Although it is known that diverse bacterial flagellar motors produce different torques, the mechanism underlying torque variation is unknown. To understand this difference better, we combined genetic analyses with electron cryo-tomography subtomogram averaging to determine in situ structures of flagellar motors that produce different torques, from Campylobacter and Vibrio species. For the first time, to our knowledge, our results unambiguously locate the torque-generating stator complexes and show that diverse high-torque motors use variants of an ancestrally related family of structures to scaffold incorporation of additional stator complexes at wider radii from the axial driveshaft than in the model enteric motor. We identify the protein components of these additional scaffold structures and elucidate their sequential assembly, demonstrating that they are required for stator-complex incorporation. These proteins are widespread, suggesting that different bacteria have tailored torques to specific environments by scaffolding alternative stator placement and number. Our results quantitatively account for different motor torques, complete the assignment of the locations of the major flagellar components, and provide crucial constraints for understanding mechanisms of torque generation and the evolution of multiprotein complexes. PMID:26976588

  8. Biotemplated flagellar nanoswimmers

    NASA Astrophysics Data System (ADS)

    Ali, Jamel; Cheang, U. Kei; Darvish, Armin; Kim, Hoyeon; Kim, Min Jun

    2017-11-01

    In this article, a porous hollow biotemplated nanoscale helix that can serve as a low Reynolds number robotic swimmer is reported. The nanorobot utilizes repolymerized bacterial flagella from Salmonella typhimurium as a nanotemplate for biomineralization. We demonstrate the ability to generate templated nanotubes with distinct helical geometries by using specific alkaline pH values to fix the polymorphic form of flagellar templates. Using uniform rotating magnetic fields to mimic the motion of the flagellar motor, we explore the swimming characteristics of these silica templated flagella and demonstrate the ability to wirelessly control their trajectories. The results suggest that the biotemplated nanoswimmer can be a cost-effective alternative to the current top-down methods used to produce helical nanorobots.

  9. The Bacterial Flagellar Type III Export Gate Complex Is a Dual Fuel Engine That Can Use Both H+ and Na+ for Flagellar Protein Export

    PubMed Central

    Minamino, Tohru; Morimoto, Yusuke V.; Hara, Noritaka; Aldridge, Phillip D.; Namba, Keiichi

    2016-01-01

    The bacterial flagellar type III export apparatus utilizes ATP and proton motive force (PMF) to transport flagellar proteins to the distal end of the growing flagellar structure for self-assembly. The transmembrane export gate complex is a H+–protein antiporter, of which activity is greatly augmented by an associated cytoplasmic ATPase complex. Here, we report that the export gate complex can use sodium motive force (SMF) in addition to PMF across the cytoplasmic membrane to drive protein export. Protein export was considerably reduced in the absence of the ATPase complex and a pH gradient across the membrane, but Na+ increased it dramatically. Phenamil, a blocker of Na+ translocation, inhibited protein export. Overexpression of FlhA increased the intracellular Na+ concentration in the presence of 100 mM NaCl but not in its absence, suggesting that FlhA acts as a Na+ channel. In wild-type cells, however, neither Na+ nor phenamil affected protein export, indicating that the Na+ channel activity of FlhA is suppressed by the ATPase complex. We propose that the export gate by itself is a dual fuel engine that uses both PMF and SMF for protein export and that the ATPase complex switches this dual fuel engine into a PMF-driven export machinery to become much more robust against environmental changes in external pH and Na+ concentration. PMID:26943926

  10. The Bacterial Flagellar Type III Export Gate Complex Is a Dual Fuel Engine That Can Use Both H+ and Na+ for Flagellar Protein Export.

    PubMed

    Minamino, Tohru; Morimoto, Yusuke V; Hara, Noritaka; Aldridge, Phillip D; Namba, Keiichi

    2016-03-01

    The bacterial flagellar type III export apparatus utilizes ATP and proton motive force (PMF) to transport flagellar proteins to the distal end of the growing flagellar structure for self-assembly. The transmembrane export gate complex is a H+-protein antiporter, of which activity is greatly augmented by an associated cytoplasmic ATPase complex. Here, we report that the export gate complex can use sodium motive force (SMF) in addition to PMF across the cytoplasmic membrane to drive protein export. Protein export was considerably reduced in the absence of the ATPase complex and a pH gradient across the membrane, but Na+ increased it dramatically. Phenamil, a blocker of Na+ translocation, inhibited protein export. Overexpression of FlhA increased the intracellular Na+ concentration in the presence of 100 mM NaCl but not in its absence, suggesting that FlhA acts as a Na+ channel. In wild-type cells, however, neither Na+ nor phenamil affected protein export, indicating that the Na+ channel activity of FlhA is suppressed by the ATPase complex. We propose that the export gate by itself is a dual fuel engine that uses both PMF and SMF for protein export and that the ATPase complex switches this dual fuel engine into a PMF-driven export machinery to become much more robust against environmental changes in external pH and Na+ concentration.

  11. Evidence for symmetry in the elementary process of bidirectional torque generation by the bacterial flagellar motor

    PubMed Central

    Nakamura, Shuichi; Kami-ike, Nobunori; Yokota, Jun-ichi P.; Minamino, Tohru; Namba, Keiichi

    2010-01-01

    The bacterial flagellar motor can rotate in both counterclockwise (CCW) and clockwise (CW) directions. It has been shown that the sodium ion-driven chimeric flagellar motor rotates with 26 steps per revolution, which corresponds to the number of FliG subunits that form part of the rotor ring, but the size of the backward step is smaller than the forward one. Here we report that the proton-driven flagellar motor of Salmonella also rotates with 26 steps per revolution but symmetrical in both CCW and CW directions with occasional smaller backward steps in both directions. Occasional shift in the stepping positions is also observed, suggesting the frequent exchange of stators in one of the 11–12 possible anchoring positions around the rotor. These observations indicate that the elementary process of torque generation by the cyclic association/dissociation of the stator with every FliG subunit along the circumference of the rotor is symmetric in CCW and CW rotation even though the structure of FliG is highly asymmetric and suggests a 180° rotation of a FliG domain for the rotor-stator interaction to reverse the direction of rotation. PMID:20876126

  12. Bacterial filamentation accelerates colonization of adhesive spots embedded in biopassive surfaces

    NASA Astrophysics Data System (ADS)

    Möller, Jens; Emge, Philippe; Avalos Vizcarra, Ima; Kollmannsberger, Philip; Vogel, Viola

    2013-12-01

    Sessile bacteria adhere to engineered surfaces and host tissues and pose a substantial clinical and economical risk when growing into biofilms. Most engineered and biological interfaces are of chemically heterogeneous nature and provide adhesive islands for bacterial attachment and growth. To mimic either defects in a surface coating of biomedical implants or heterogeneities within mucosal layers (Peyer's patches), we embedded micrometre-sized adhesive islands in a poly(ethylene glycol) biopassive background. We show experimentally and computationally that filamentation of Escherichia coli can significantly accelerate the bacterial surface colonization under physiological flow conditions. Filamentation can thus provide an advantage to a bacterial population to bridge non-adhesive distances exceeding 5 μm. Bacterial filamentation, caused by blocking of bacterial division, is common among bacterial species and can be triggered by environmental conditions or antibiotic treatment. While great awareness exists that the build-up of antibiotic resistance serves as intrinsic survival strategy, we show here that antibiotic treatment can actually promote surface colonization by triggering filamentation, which in turn prevents daughter cells from being washed away. Our combined microfabrication and computational approaches provide quantitative insights into mechanisms that enable biofouling of biopassive surfaces with embedded adhesive spots, even for spot distances that are multiples of the bacterial length.

  13. Soluble components of the flagellar export apparatus, FliI, FliJ, and FliH, do not deliver flagellin, the major filament protein, from the cytosol to the export gate.

    PubMed

    Sajó, Ráchel; Liliom, Károly; Muskotál, Adél; Klein, Agnes; Závodszky, Péter; Vonderviszt, Ferenc; Dobó, József

    2014-11-01

    Flagella, the locomotion organelles of bacteria, extend from the cytoplasm to the cell exterior. External flagellar proteins are synthesized in the cytoplasm and exported by the flagellar type III secretion system. Soluble components of the flagellar export apparatus, FliI, FliH, and FliJ, have been implicated to carry late export substrates in complex with their cognate chaperones from the cytoplasm to the export gate. The importance of the soluble components in the delivery of the three minor late substrates FlgK, FlgL (hook-filament junction) and FliD (filament-cap) has been convincingly demonstrated, but their role in the transport of the major filament component flagellin (FliC) is still unclear. We have used continuous ATPase activity measurements and quartz crystal microbalance (QCM) studies to characterize interactions between the soluble export components and flagellin or the FliC:FliS substrate-chaperone complex. As controls, interactions between soluble export component pairs were characterized providing Kd values. FliC or FliC:FliS did not influence the ATPase activity of FliI alone or in complex with FliH and/or FliJ suggesting lack of interaction in solution. Immobilized FliI, FliH, or FliJ did not interact with FliC or FliC:FliS detected by QCM. The lack of interaction in the fluid phase between FliC or FliC:FliS and the soluble export components, in particular with the ATPase FliI, suggests that cells use different mechanisms for the export of late minor substrates, and the major substrate, FliC. It seems that the abundantly produced flagellin does not require the assistance of the soluble export components to efficiently reach the export gate. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Purification and Characterization of the Bacterial Flagellar Basal Body from Salmonella enterica.

    PubMed

    Aizawa, Shin-Ichi

    2017-01-01

    The bacterial flagellum is a motility organelle. The flagellum is composed of three main structures: the basal body as a rotary engine embedded in the cellular membranes and cell wall, the long external filament that acts as a propeller, and the hook acting as a universal joint that connects them. I describe protocols for the purification of the filament and hook-basal body from Salmonella enterica serovar Typhimurium.

  15. Pseudomonas aeruginosa flagellar motility activates the phagocyte PI3K/Akt pathway to induce phagocytic engulfment.

    PubMed

    Lovewell, Rustin R; Hayes, Sandra M; O'Toole, George A; Berwin, Brent

    2014-04-01

    Phagocytosis of the bacterial pathogen Pseudomonas aeruginosa is the primary means by which the host controls bacterially induced pneumonia during lung infection. Previous studies have identified flagellar swimming motility as a key pathogen-associated molecular pattern (PAMP) recognized by phagocytes to initiate engulfment. Correspondingly, loss of flagellar motility is observed during chronic pulmonary infection with P. aeruginosa, and this likely reflects a selection for bacteria resistant to phagocytic clearance. However, the mechanism underlying the preferential phagocytic response to motile bacteria is unknown. Here we have identified a cellular signaling pathway in alveolar macrophages and other phagocytes that is specifically activated by flagellar motility. Genetic and biochemical methods were employed to identify that phagocyte PI3K/Akt activation is required for bacterial uptake and, importantly, it is specifically activated in response to P. aeruginosa flagellar motility. Based on these observations, the second important finding that emerged from these studies is that titration of the bacterial flagellar motility results in a proportional activation state of Akt. Therefore, the Akt pathway is responsive to, and corresponds with, the degree of bacterial flagellar motility, is independent of the actin polymerization that facilitates phagocytosis, and determines the phagocytic fate of P. aeruginosa. These findings elucidate the mechanism behind motility-dependent phagocytosis of extracellular bacteria and support a model whereby phagocytic clearance exerts a selective pressure on P. aeruginosa populations in vivo, which contributes to changes in pathogenesis during infections.

  16. Pseudomonas aeruginosa flagellar motility activates the phagocyte PI3K/Akt pathway to induce phagocytic engulfment

    PubMed Central

    Lovewell, Rustin R.; Hayes, Sandra M.; O'Toole, George A.

    2014-01-01

    Phagocytosis of the bacterial pathogen Pseudomonas aeruginosa is the primary means by which the host controls bacterially induced pneumonia during lung infection. Previous studies have identified flagellar swimming motility as a key pathogen-associated molecular pattern (PAMP) recognized by phagocytes to initiate engulfment. Correspondingly, loss of flagellar motility is observed during chronic pulmonary infection with P. aeruginosa, and this likely reflects a selection for bacteria resistant to phagocytic clearance. However, the mechanism underlying the preferential phagocytic response to motile bacteria is unknown. Here we have identified a cellular signaling pathway in alveolar macrophages and other phagocytes that is specifically activated by flagellar motility. Genetic and biochemical methods were employed to identify that phagocyte PI3K/Akt activation is required for bacterial uptake and, importantly, it is specifically activated in response to P. aeruginosa flagellar motility. Based on these observations, the second important finding that emerged from these studies is that titration of the bacterial flagellar motility results in a proportional activation state of Akt. Therefore, the Akt pathway is responsive to, and corresponds with, the degree of bacterial flagellar motility, is independent of the actin polymerization that facilitates phagocytosis, and determines the phagocytic fate of P. aeruginosa. These findings elucidate the mechanism behind motility-dependent phagocytosis of extracellular bacteria and support a model whereby phagocytic clearance exerts a selective pressure on P. aeruginosa populations in vivo, which contributes to changes in pathogenesis during infections. PMID:24487390

  17. Transcriptional Control of the Lateral-Flagellar Genes of Bradyrhizobium diazoefficiens.

    PubMed

    Mongiardini, Elías J; Quelas, J Ignacio; Dardis, Carolina; Althabegoiti, M Julia; Lodeiro, Aníbal R

    2017-08-01

    Bradyrhizobium diazoefficiens , a soybean N 2 -fixing symbiont, possesses a dual flagellar system comprising a constitutive subpolar flagellum and inducible lateral flagella. Here, we analyzed the genomic organization and biosynthetic regulation of the lateral-flagellar genes. We found that these genes are located in a single genomic cluster, organized in two monocistronic transcriptional units and three operons, one possibly containing an internal transcription start site. Among the monocistronic units is blr6846, homologous to the class IB master regulators of flagellum synthesis in Brucella melitensis and Ensifer meliloti and required for the expression of all the lateral-flagellar genes except lafA2 , whose locus encodes a single lateral flagellin. We therefore named blr6846 lafR ( la teral- f lagellar r egulator). Despite its similarity to two-component response regulators and its possession of a phosphorylatable Asp residue, lafR behaved as an orphan response regulator by not requiring phosphorylation at this site. Among the genes induced by lafR is flbT L , a class III regulator. We observed different requirements for FlbT L in the synthesis of each flagellin subunit. Although the accumulation of lafA1 , but not lafA2 , transcripts required FlbT L , the production of both flagellin polypeptides required FlbT L Moreover, the regulation cascade of this lateral-flagellar regulon appeared to be not as strictly ordered as those found in other bacterial species. IMPORTANCE Bacterial motility seems essential for the free-living style in the environment, and therefore these microorganisms allocate a great deal of their energetic resources to the biosynthesis and functioning of flagella. Despite energetic costs, some bacterial species possess dual flagellar systems, one of which is a primary system normally polar or subpolar, and the other is a secondary, lateral system that is produced only under special circumstances. Bradyrhizobium diazoefficiens , an N 2 -fixing

  18. Bundling of elastic filaments induced by hydrodynamic interactions

    NASA Astrophysics Data System (ADS)

    Man, Yi; Page, William; Poole, Robert J.; Lauga, Eric

    2017-12-01

    Peritrichous bacteria swim in viscous fluids by rotating multiple helical flagellar filaments. As the bacterium swims forward, all its flagella rotate in synchrony behind the cell in a tight helical bundle. When the bacterium changes its direction, the flagellar filaments unbundle and randomly reorient the cell for a short period of time before returning to their bundled state and resuming swimming. This rapid bundling and unbundling is, at its heart, a mechanical process whereby hydrodynamic interactions balance with elasticity to determine the time-varying deformation of the filaments. Inspired by this biophysical problem, we present in this paper what is perhaps the simplest model of bundling whereby two or more straight elastic filaments immersed in a viscous fluid rotate about their centerline, inducing rotational flows which tend to bend the filaments around each other. We derive an integrodifferential equation governing the shape of the filaments resulting from mechanical balance in a viscous fluid at low Reynolds number. We show that such equation may be evaluated asymptotically analytically in the long-wavelength limit, leading to a local partial differential equation governed by a single dimensionless bundling number. A numerical study of the dynamics predicted by the model reveals the presence of two configuration instabilities with increasing bundling numbers: first to a crossing state where filaments touch at one point and then to a bundled state where filaments wrap along each other in a helical fashion. We also consider the case of multiple filaments and the unbundling dynamics. We next provide an intuitive physical model for the crossing instability and show that it may be used to predict analytically its threshold and adapted to address the transition to a bundling state. We then use a macroscale experimental implementation of the two-filament configuration in order to validate our theoretical predictions and obtain excellent agreement. This long

  19. Motility and Flagellar Glycosylation in Clostridium difficile▿ †

    PubMed Central

    Twine, Susan M.; Reid, Christopher W.; Aubry, Annie; McMullin, David R.; Fulton, Kelly M.; Austin, John; Logan, Susan M.

    2009-01-01

    In this study, intact flagellin proteins were purified from strains of Clostridium difficile and analyzed using quadrupole time of flight and linear ion trap mass spectrometers. Top-down studies showed the flagellin proteins to have a mass greater than that predicted from the corresponding gene sequence. These top-down studies revealed marker ions characteristic of glycan modifications. Additionally, diversity in the observed masses of glycan modifications was seen between strains. Electron transfer dissociation mass spectrometry was used to demonstrate that the glycan was attached to the flagellin protein backbone in O linkage via a HexNAc residue in all strains examined. Bioinformatic analysis of C. difficile genomes revealed diversity with respect to glycan biosynthesis gene content within the flagellar biosynthesis locus, likely reflected by the observed flagellar glycan diversity. In C. difficile strain 630, insertional inactivation of a glycosyltransferase gene (CD0240) present in all sequenced genomes resulted in an inability to produce flagellar filaments at the cell surface and only minor amounts of unmodified flagellin protein. PMID:19749038

  20. Instability of hooks during bacterial flagellar swimming

    NASA Astrophysics Data System (ADS)

    Jabbarzadeh, Mehdi; Fu, Henry C.; Henry Fu Team

    2016-11-01

    In bacteria, a flexible hook transmits torque from the rotary motor at the cell body to the flagellum. Previously, the hook has been modeled as a Kirchhoff rod between the cell body and rotating flagellum. To study effects of the hook's flexibility on the bacteria's swimming speed and trajectory for wide range hook stiffnesses and flagellum configurations, we develop an efficient simplified spring model for the hook by linearizing the Kirchhoff rod. We treat the hydrodynamics of the cell body and helical flagellum using resistance matrices calculated by the method of regularized Stokeslets. We investigate flagellar and swimming dynamics for a range of hook flexibilities and flagellar orientations relative to the cell body and compare the results to models without hook flexibility. We investigate in detail parameters corresponding to E. coli and Vibrio alginolyticus. Generally, the flagellum changes orientation relative to the cell body, undergoing an orbit with the period of the motor rotation. We find that as the hook stiffness decreases, steady-state orbits of the flagellum first become unstable before the hook buckles, which may suggest a new mechanism of flick initiation in run-reverse-flick motility. We also find that for some parameter ranges, there are multiple stable steady state orbits, which may have implications for the tumbling and turning of bacteria.

  1. Emergence of antibiotic resistance from multinucleated bacterial filaments

    PubMed Central

    Bos, Julia; Zhang, Qiucen; Vyawahare, Saurabh; Rogers, Elizabeth; Rosenberg, Susan M.; Austin, Robert H.

    2015-01-01

    Bacteria can rapidly evolve resistance to antibiotics via the SOS response, a state of high-activity DNA repair and mutagenesis. We explore here the first steps of this evolution in the bacterium Escherichia coli. Induction of the SOS response by the genotoxic antibiotic ciprofloxacin changes the E. coli rod shape into multichromosome-containing filaments. We show that at subminimal inhibitory concentrations of ciprofloxacin the bacterial filament divides asymmetrically repeatedly at the tip. Chromosome-containing buds are made that, if resistant, propagate nonfilamenting progeny with enhanced resistance to ciprofloxacin as the parent filament dies. We propose that the multinucleated filament creates an environmental niche where evolution can proceed via generation of improved mutant chromosomes due to the mutagenic SOS response and possible recombination of the new alleles between chromosomes. Our data provide a better understanding of the processes underlying the origin of resistance at the single-cell level and suggest an analogous role to the eukaryotic aneuploidy condition in cancer. PMID:25492931

  2. Reactions of chicken sera to recombinant Campylobacter jejuni flagellar proteins.

    PubMed

    Yeh, Hung-Yueh; Hiett, Kelli L; Line, John E

    2015-03-01

    Campylobacter jejuni is a Gram-negative spiral rod bacterium and is the leading but underreported bacterial food-borne pathogen that causes human campylobacteriosis worldwide. Raw or undercooked poultry products are regarded as a major source for human infection. C. jejuni flagella have been implicated in colonization and adhesion to the mucosal surface of chicken gastrointestinal tracts. Therefore, flagellar proteins would be the excellent targets for further investigation. In this report, we used the recombinant technology to generate a battery of C. jejuni flagellar proteins, which were purified by His tag affinity chromatography and determined antigenic profiles of these recombinant flagellar proteins using sera from chickens older than 6 weeks of age. The immunoblot results demonstrate that each chicken serum reacted to various numbers of recombinant flagellar proteins. Among these recombinant proteins, chicken sera reacted predominantly to the FlgE1, FlgK, FlhF, FliG and FliY proteins. These antibody screening results provide a rationale for further evaluation of these recombinant flagellar proteins as potential vaccines for chickens to improve food safety as well as investigation of host immune response to C. jejuni.

  3. Assembly and stoichiometry of the core structure of the bacterial flagellar type III export gate complex.

    PubMed

    Fukumura, Takuma; Makino, Fumiaki; Dietsche, Tobias; Kinoshita, Miki; Kato, Takayuki; Wagner, Samuel; Namba, Keiichi; Imada, Katsumi; Minamino, Tohru

    2017-08-01

    The bacterial flagellar type III export apparatus, which is required for flagellar assembly beyond the cell membranes, consists of a transmembrane export gate complex and a cytoplasmic ATPase complex. FlhA, FlhB, FliP, FliQ, and FliR form the gate complex inside the basal body MS ring, although FliO is required for efficient export gate formation in Salmonella enterica. However, it remains unknown how they form the gate complex. Here we report that FliP forms a homohexameric ring with a diameter of 10 nm. Alanine substitutions of conserved Phe-137, Phe-150, and Glu-178 residues in the periplasmic domain of FliP (FliPP) inhibited FliP6 ring formation, suppressing flagellar protein export. FliO formed a 5-nm ring structure with 3 clamp-like structures that bind to the FliP6 ring. The crystal structure of FliPP derived from Thermotoga maritia, and structure-based photo-crosslinking experiments revealed that Phe-150 and Ser-156 of FliPP are involved in the FliP-FliP interactions and that Phe-150, Arg-152, Ser-156, and Pro-158 are responsible for the FliP-FliO interactions. Overexpression of FliP restored motility of a ∆fliO mutant to the wild-type level, suggesting that the FliP6 ring is a functional unit in the export gate complex and that FliO is not part of the final gate structure. Copurification assays revealed that FlhA, FlhB, FliQ, and FliR are associated with the FliO/FliP complex. We propose that the assembly of the export gate complex begins with FliP6 ring formation with the help of the FliO scaffold, followed by FliQ, FliR, and FlhB and finally FlhA during MS ring formation.

  4. Assembly and stoichiometry of the core structure of the bacterial flagellar type III export gate complex

    PubMed Central

    Fukumura, Takuma; Makino, Fumiaki; Dietsche, Tobias; Kinoshita, Miki; Kato, Takayuki; Wagner, Samuel; Namba, Keiichi; Imada, Katsumi

    2017-01-01

    The bacterial flagellar type III export apparatus, which is required for flagellar assembly beyond the cell membranes, consists of a transmembrane export gate complex and a cytoplasmic ATPase complex. FlhA, FlhB, FliP, FliQ, and FliR form the gate complex inside the basal body MS ring, although FliO is required for efficient export gate formation in Salmonella enterica. However, it remains unknown how they form the gate complex. Here we report that FliP forms a homohexameric ring with a diameter of 10 nm. Alanine substitutions of conserved Phe-137, Phe-150, and Glu-178 residues in the periplasmic domain of FliP (FliPP) inhibited FliP6 ring formation, suppressing flagellar protein export. FliO formed a 5-nm ring structure with 3 clamp-like structures that bind to the FliP6 ring. The crystal structure of FliPP derived from Thermotoga maritia, and structure-based photo-crosslinking experiments revealed that Phe-150 and Ser-156 of FliPP are involved in the FliP–FliP interactions and that Phe-150, Arg-152, Ser-156, and Pro-158 are responsible for the FliP–FliO interactions. Overexpression of FliP restored motility of a ∆fliO mutant to the wild-type level, suggesting that the FliP6 ring is a functional unit in the export gate complex and that FliO is not part of the final gate structure. Copurification assays revealed that FlhA, FlhB, FliQ, and FliR are associated with the FliO/FliP complex. We propose that the assembly of the export gate complex begins with FliP6 ring formation with the help of the FliO scaffold, followed by FliQ, FliR, and FlhB and finally FlhA during MS ring formation. PMID:28771466

  5. Deformation of a helical filament by flow and electric or magnetic fields

    NASA Astrophysics Data System (ADS)

    Kim, Munju; Powers, Thomas R.

    2005-02-01

    Motivated by recent advances in the real-time imaging of fluorescent flagellar filaments in living bacteria [Turner, Ryu, and Berg, J. Bacteriol. 82, 2793 (2000)], we compute the deformation of a helical elastic filament due to flow and external magnetic or high-frequency electric fields. Two cases of deformation due to hydrodynamic drag are considered: the compression of a filament rotated by a stationary motor and the extension of a stationary filament due to flow along the helical axis. We use Kirchhoff rod theory for the filament, and work to linear order in the deflection. Hydrodynamic forces are described first by resistive-force theory, and then for comparison by the more accurate slender-body theory. For helices with a short pitch, the deflection in axial flow predicted by slender-body theory is significantly smaller than that computed with resistive-force theory. Therefore, our estimate of the bending stiffness of a flagellar filament is smaller than that of previous workers. In our calculation of the deformation of a polarizable helix in an external field, we show that the problem is equivalent to the classical case of a helix deformed by forces applied only at the ends.

  6. Curcumin Reduces the Motility of Salmonella enterica Serovar Typhimurium by Binding to the Flagella, Thereby Leading to Flagellar Fragility and Shedding

    PubMed Central

    Balakrishnan, Arjun; Negi, Vidya Devi; Sakorey, Deepika; Chandra, Nagasuma

    2016-01-01

    ABSTRACT One of the important virulence properties of the pathogen is its ability to travel to a favorable environment, cross the viscous mucus barrier (intestinal barrier for enteric pathogens), and reach the epithelia to initiate pathogenesis with the help of an appendage, like flagella. Nonetheless, flagella can act as an “Achilles heel,” revealing the pathogen's presence to the host through the stimulation of innate and adaptive immune responses. We assessed whether curcumin, a dietary polyphenol, could alter the motility of Salmonella, a foodborne pathogen. It reduced the motility of Salmonella enterica serovar Typhimurium by shortening the length of the flagellar filament (from ∼8 μm to ∼5 μm) and decreasing its density (4 or 5 flagella/bacterium instead of 8 or 9 flagella/bacterium). Upon curcumin treatment, the percentage of flagellated bacteria declined from ∼84% to 59%. However, no change was detected in the expression of the flagellin gene and protein. A fluorescence binding assay demonstrated binding of curcumin to the flagellar filament. This might make the filament fragile, breaking it into smaller fragments. Computational analysis predicted the binding of curcumin, its analogues, and its degraded products to a flagellin molecule at an interface between domains D1 and D2. Site-directed mutagenesis and a fluorescence binding assay confirmed the binding of curcumin to flagellin at residues ASN120, ASP123, ASN163, SER164, ASN173, and GLN175. IMPORTANCE This work, to our knowledge the first report of its kind, examines how curcumin targets flagellar density and affects the pathogenesis of bacteria. We found that curcumin does not affect any of the flagellar synthesis genes. Instead, it binds to the flagellum and makes it fragile. It increases the torsional stress on the flagellar filament that then breaks, leaving fewer flagella around the bacteria. Flagella, which are crucial ligands for Toll-like receptor 5, are some of the most important

  7. Impact of fluorescent protein fusions on the bacterial flagellar motor.

    PubMed

    Heo, M; Nord, A L; Chamousset, D; van Rijn, E; Beaumont, H J E; Pedaci, F

    2017-10-03

    Fluorescent fusion proteins open a direct and unique window onto protein function. However, they also introduce the risk of perturbation of the function of the native protein. Successful applications of fluorescent fusions therefore rely on a careful assessment and minimization of the side effects, but such insight is still lacking for many applications. This is particularly relevant in the study of the internal dynamics of motor proteins, where both the chemical and mechanical reaction coordinates can be affected. Fluorescent proteins fused to the stator of the Bacterial Flagellar Motor (BFM) have previously been used to unveil the motor subunit dynamics. Here we report the effects on single motors of three fluorescent proteins fused to the stators, all of which altered BFM behavior. The torque generated by individual stators was reduced while their stoichiometry remained unaffected. MotB fusions decreased the switching frequency and induced a novel bias-dependent asymmetry in the speed in the two directions. These effects could be mitigated by inserting a linker at the fusion point. These findings provide a quantitative account of the effects of fluorescent fusions to the stator on BFM dynamics and their alleviation- new insights that advance the use of fluorescent fusions to probe the dynamics of protein complexes.

  8. Constraints on models for the flagellar rotary motor.

    PubMed Central

    Berg, H C

    2000-01-01

    Most bacteria that swim are propelled by flagellar filaments, each driven at its base by a rotary motor embedded in the cell wall and cytoplasmic membrane. A motor is about 45 nm in diameter and made up of about 20 different kinds of parts. It is assembled from the inside out. It is powered by a proton (or in some species, a sodium-ion) flux. It steps at least 400 times per revolution. At low speeds and high torques, about 1000 protons are required per revolution, speed is proportional to protonmotive force, and torque varies little with temperature or hydrogen isotope. At high speeds and low torques, torque increases with temperature and is sensitive to hydrogen isotope. At room temperature, torque varies remarkably little with speed from about -100 Hz (the present limit of measurement) to about 200 Hz, and then it declines rapidly reaching zero at about 300 Hz. These are facts that motor models should explain. None of the existing models for the flagellar rotary motor completely do so. PMID:10836502

  9. First genomic insights into members of a candidate bacterial phylum responsible for wastewater bulking

    PubMed Central

    Ohashi, Akiko; Parks, Donovan H.; Yamauchi, Toshihiro; Tyson, Gene W.

    2015-01-01

    Filamentous cells belonging to the candidate bacterial phylum KSB3 were previously identified as the causative agent of fatal filament overgrowth (bulking) in a high-rate industrial anaerobic wastewater treatment bioreactor. Here, we obtained near complete genomes from two KSB3 populations in the bioreactor, including the dominant bulking filament, using differential coverage binning of metagenomic data. Fluorescence in situ hybridization with 16S rRNA-targeted probes specific for the two populations confirmed that both are filamentous organisms. Genome-based metabolic reconstruction and microscopic observation of the KSB3 filaments in the presence of sugar gradients indicate that both filament types are Gram-negative, strictly anaerobic fermenters capable of non-flagellar based gliding motility, and have a strikingly large number of sensory and response regulator genes. We propose that the KSB3 filaments are highly sensitive to their surroundings and that cellular processes, including those causing bulking, are controlled by external stimuli. The obtained genomes lay the foundation for a more detailed understanding of environmental cues used by KSB3 filaments, which may lead to more robust treatment options to prevent bulking. PMID:25650158

  10. Colloidal transport by active filaments

    NASA Astrophysics Data System (ADS)

    Manna, Raj Kumar; Kumar, P. B. Sunil; Adhikari, R.

    2017-01-01

    Enhanced colloidal transport beyond the limit imposed by diffusion is usually achieved through external fields. Here, we demonstrate the ballistic transport of a colloidal sphere using internal sources of energy provided by an attached active filament. The latter is modeled as a chain of chemo-mechanically active beads connected by potentials that enforce semi-flexibility and self-avoidance. The fluid flow produced by the active beads and the forces they mediate are explicitly taken into account in the overdamped equations of motion describing the colloid-filament assembly. The speed and efficiency of transport depend on the dynamical conformational states of the filament. We characterize these states using filament writhe as an order parameter and identify ones yielding maxima in speed and efficiency of transport. The transport mechanism reported here has a remarkable resemblance to the flagellar propulsion of microorganisms which suggests its utility in biomimetic systems.

  11. Glucose induces delocalization of a flagellar biosynthesis protein from the flagellated pole.

    PubMed

    Park, Soyoung; Park, Young-Ha; Lee, Chang-Ro; Kim, Yeon-Ran; Seok, Yeong-Jae

    2016-09-01

    To survive in a continuously changing environment, bacteria sense concentration gradients of attractants or repellents, and purposefully migrate until a more favourable habitat is encountered. While glucose is known as the most effective attractant, the flagellar biosynthesis and hence chemotactic motility has been known to be repressed by glucose in some bacteria. To date, the only known regulatory mechanism of the repression of flagellar synthesis by glucose is via downregulation of the cAMP level, as shown in a few members of the family Enterobacteriaceae. Here we show that, in Vibrio vulnificus, the glucose-mediated inhibition of flagellar motility operates by a completely different mechanism. In the presence of glucose, EIIA(Glc) is dephosphorylated and inhibits the polar localization of FapA (flagellar assembly protein A) by sequestering it from the flagellated pole. A loss or delocalization of FapA results in a complete failure of the flagellar biosynthesis and motility. However, when glucose is depleted, EIIA(Glc) is phosphorylated and releases FapA such that free FapA can be localized back to the pole and trigger flagellation. Together, these data provide new insight into a bacterial strategy to reach and stay in the glucose-rich area. © 2016 John Wiley & Sons Ltd.

  12. Depolymerization dynamics of individual filaments of bacterial cytoskeletal protein FtsZ

    PubMed Central

    Mateos-Gil, Pablo; Paez, Alfonso; Hörger, Ines; Rivas, Germán; Vicente, Miguel; Tarazona, Pedro; Vélez, Marisela

    2012-01-01

    We report observation and analysis of the depolymerization filaments of the bacterial cytoskeletal protein FtsZ (filament temperature-sensitive Z) formed on a mica surface. At low concentration, proteins adsorbed on the surface polymerize forming curved filaments that close into rings that remain stable for some time before opening irreversibly and fully depolymerizing. The distribution of ring lifetimes (T) as a function of length (N), shows that the rate of ring aperture correlates with filament length. If this ring lifetime is expressed as a bond survival time, (Tb ≡ NT), this correlation is abolished, indicating that these rupture events occur randomly and independently at each monomer interface. After rings open irreversibly, depolymerization of the remaining filaments is fast, but can be slowed down and followed using a nonhydrolyzing GTP analogue. The histogram of depolymerization velocities of individual filaments has an asymmetric distribution that can be fit with a computer model that assumes two rupture rates, a slow one similar to the one observed for ring aperture, affecting monomers in the central part of the filaments, and a faster one affecting monomers closer to the open ends. From the quantitative analysis, we conclude that the depolymerization rate is affected both by nucleotide hydrolysis rate and by its exchange along the filament, that all monomer interfaces are equally competent for hydrolysis, although depolymerization is faster at the open ends than in central filament regions, and that all monomer–monomer interactions, regardless of the nucleotide present, can adopt a curved configuration. PMID:22566654

  13. Flagellar Synchronization Is a Simple Alternative to Cell Cycle Synchronization for Ciliary and Flagellar Studies

    PubMed Central

    Dutta, Soumita

    2017-01-01

    ABSTRACT The unicellular green alga Chlamydomonas reinhardtii is an ideal model organism for studies of ciliary function and assembly. In assays for biological and biochemical effects of various factors on flagellar structure and function, synchronous culture is advantageous for minimizing variability. Here, we have characterized a method in which 100% synchronization is achieved with respect to flagellar length but not with respect to the cell cycle. The method requires inducing flagellar regeneration by amputation of the entire cell population and limiting regeneration time. This results in a maximally homogeneous distribution of flagellar lengths at 3 h postamputation. We found that time-limiting new protein synthesis during flagellar synchronization limits variability in the unassembled pool of limiting flagellar protein and variability in flagellar length without affecting the range of cell volumes. We also found that long- and short-flagella mutants that regenerate normally require longer and shorter synchronization times, respectively. By minimizing flagellar length variability using a simple method requiring only hours and no changes in media, flagellar synchronization facilitates the detection of small changes in flagellar length resulting from both chemical and genetic perturbations in Chlamydomonas. This method increases our ability to probe the basic biology of ciliary size regulation and related disease etiologies. IMPORTANCE Cilia and flagella are highly conserved antenna-like organelles that found in nearly all mammalian cell types. They perform sensory and motile functions contributing to numerous physiological and developmental processes. Defects in their assembly and function are implicated in a wide range of human diseases ranging from retinal degeneration to cancer. Chlamydomonas reinhardtii is an algal model system for studying mammalian cilium formation and function. Here, we report a simple synchronization method that allows detection of

  14. Flagellar Synchronization Is a Simple Alternative to Cell Cycle Synchronization for Ciliary and Flagellar Studies.

    PubMed

    Dutta, Soumita; Avasthi, Prachee

    2017-01-01

    The unicellular green alga Chlamydomonas reinhardtii is an ideal model organism for studies of ciliary function and assembly. In assays for biological and biochemical effects of various factors on flagellar structure and function, synchronous culture is advantageous for minimizing variability. Here, we have characterized a method in which 100% synchronization is achieved with respect to flagellar length but not with respect to the cell cycle. The method requires inducing flagellar regeneration by amputation of the entire cell population and limiting regeneration time. This results in a maximally homogeneous distribution of flagellar lengths at 3 h postamputation. We found that time-limiting new protein synthesis during flagellar synchronization limits variability in the unassembled pool of limiting flagellar protein and variability in flagellar length without affecting the range of cell volumes. We also found that long- and short-flagella mutants that regenerate normally require longer and shorter synchronization times, respectively. By minimizing flagellar length variability using a simple method requiring only hours and no changes in media, flagellar synchronization facilitates the detection of small changes in flagellar length resulting from both chemical and genetic perturbations in Chlamydomonas . This method increases our ability to probe the basic biology of ciliary size regulation and related disease etiologies. IMPORTANCE Cilia and flagella are highly conserved antenna-like organelles that found in nearly all mammalian cell types. They perform sensory and motile functions contributing to numerous physiological and developmental processes. Defects in their assembly and function are implicated in a wide range of human diseases ranging from retinal degeneration to cancer. Chlamydomonas reinhardtii is an algal model system for studying mammalian cilium formation and function. Here, we report a simple synchronization method that allows detection of small

  15. The effects of a low-intensity red laser on bacterial growth, filamentation and plasmid DNA

    NASA Astrophysics Data System (ADS)

    Roos, C.; Santos, J. N.; Guimarães, O. R.; Geller, M.; Paoli, F.; Fonseca, A. S.

    2013-07-01

    Exposure of nonphotosynthesizing microorganisms to light could increase cell division in cultures, a phenomenon denominated as biostimulation. However, data concerning the importance of the genetic characteristics of cells on this effect are as yet scarce. The aim of this work was to evaluate the effects of a low-intensity red laser on the growth, filamentation and plasmids in Escherichia coli cells proficient and deficient in DNA repair. E. coli cultures were exposed to a laser (658 nm, 10 mW, 1 and 8 J cm-2) to study bacterial growth and filamentation. Also, bacterial cultures hosting pBSK plasmids were exposed to the laser to study DNA topological forms from the electrophoretic profile in agarose gels. Data indicate the low-intensity red laser: (i) had no effect on the growth of E. coli wild type and exonuclease III deficient cells; (ii) induced bacterial filamentation, (iii) led to no alteration in the electrophoretic profile of plasmids from exonuclease III deficient cells, but plasmids from wild type cells were altered. A low-intensity red laser at the low fluences used in phototherapy has no effect on growth, but induces filamentation and alters the topological forms of plasmid DNA in E. coli cultures depending on the DNA repair mechanisms.

  16. The counterbend dynamics of cross-linked filament bundles and flagella

    PubMed Central

    Coy, Rachel

    2017-01-01

    Cross-linked filament bundles, such as in cilia and flagella, are ubiquitous in biology. They are considered in textbooks as simple filaments with larger stiffness. Recent observations of flagellar counterbend, however, show that induction of curvature in one section of a passive flagellum instigates a compensatory counter-curvature elsewhere, exposing the intricate role of the diminutive cross-linking proteins at large scales. We show that this effect, a material property of the cross-linking mechanics, modifies the bundle dynamics and induces a bimodal L2 − L3 length-dependent material response that departs from the Euler–Bernoulli theory. Hence, the use of simpler theories to analyse experiments can result in paradoxical interpretations. Remarkably, the counterbend dynamics instigates counter-waves in opposition to driven oscillations in distant parts of the bundle, with potential impact on the regulation of flagellar bending waves. These results have a range of physical and biological applications, including the empirical disentanglement of material quantities via counterbend dynamics. PMID:28566516

  17. In Vitro Reconstitution of Functional Type III Protein Export and Insights into Flagellar Assembly.

    PubMed

    Terashima, Hiroyuki; Kawamoto, Akihiro; Tatsumi, Chinatsu; Namba, Keiichi; Minamino, Tohru; Imada, Katsumi

    2018-06-26

    The type III secretion system (T3SS) forms the functional core of injectisomes, protein transporters that allow bacteria to deliver virulence factors into their hosts for infection, and flagella, which are critical for many pathogens to reach the site of infection. In spite of intensive genetic and biochemical studies, the T3SS protein export mechanism remains unclear due to the difficulty of accurate measurement of protein export in vivo Here, we developed an in vitro flagellar T3S protein transport assay system using an inverted cytoplasmic membrane vesicle (IMV) for accurate and controlled measurements of flagellar protein export. We show that the flagellar T3SS in the IMV fully retains export activity. The flagellar hook was constructed inside the lumen of the IMV by adding purified component proteins externally to the IMV solution. We reproduced the hook length control and export specificity switch in the IMV consistent with that seen in the native cell. Previous in vivo analyses showed that flagellar protein export is driven by proton motive force (PMF) and facilitated by ATP hydrolysis by FliI, a T3SS-specific ATPase. Our in vitro assay recapitulated these previous in vivo observations but furthermore clearly demonstrated that even ATP hydrolysis by FliI alone can drive flagellar protein export. Moreover, this assay showed that addition of the FliH 2 /FliI complex to the assay solution at a concentration similar to that in the cell dramatically enhanced protein export, confirming that the FliH 2 /FliI complex in the cytoplasm is important for effective protein transport. IMPORTANCE The type III secretion system (T3SS) is the functional core of the injectisome, a bacterial protein transporter used to deliver virulence proteins into host cells, and bacterial flagella, critical for many pathogens. The molecular mechanism of protein transport is still unclear due to difficulties in accurate measurements of protein transport under well-controlled conditions in

  18. Kinematics of flagellar swimming in Euglena gracilis: Helical trajectories and flagellar shapes.

    PubMed

    Rossi, Massimiliano; Cicconofri, Giancarlo; Beran, Alfred; Noselli, Giovanni; DeSimone, Antonio

    2017-12-12

    The flagellar swimming of euglenids, which are propelled by a single anterior flagellum, is characterized by a generalized helical motion. The 3D nature of this swimming motion, which lacks some of the symmetries enjoyed by more common model systems, and the complex flagellar beating shapes that power it make its quantitative description challenging. In this work, we provide a quantitative, 3D, highly resolved reconstruction of the swimming trajectories and flagellar shapes of specimens of Euglena gracilis We achieved this task by using high-speed 2D image recordings taken with a conventional inverted microscope combined with a precise characterization of the helical motion of the cell body to lift the 2D data to 3D trajectories. The propulsion mechanism is discussed. Our results constitute a basis for future biophysical research on a relatively unexplored type of eukaryotic flagellar movement. Copyright © 2017 the Author(s). Published by PNAS.

  19. GTPase activity, structure, and mechanical properties of filaments assembled from bacterial cytoskeleton protein MreB.

    PubMed

    Esue, Osigwe; Wirtz, Denis; Tseng, Yiider

    2006-02-01

    MreB, a major component of the recently discovered bacterial cytoskeleton, displays a structure homologous to its eukaryotic counterpart actin. Here, we study the assembly and mechanical properties of Thermotoga maritima MreB in the presence of different nucleotides in vitro. We found that GTP, not ADP or GDP, can mediate MreB assembly into filamentous structures as effectively as ATP. Upon MreB assembly, both GTP and ATP release the gamma phosphate at similar rates. Therefore, MreB is an equally effective ATPase and GTPase. Electron microscopy and quantitative rheology suggest that the morphologies and micromechanical properties of filamentous ATP-MreB and GTP-MreB are similar. In contrast, mammalian actin assembly is favored in the presence of ATP over GTP. These results indicate that, despite high structural homology of their monomers, T. maritima MreB and actin filaments display different assembly, morphology, micromechanics, and nucleotide-binding specificity. Furthermore, the biophysical properties of T. maritima MreB filaments, including high rigidity and propensity to form bundles, suggest a mechanism by which MreB helical structure may be involved in imposing a cylindrical architecture on rod-shaped bacterial cells.

  20. Flagellar motility is a key determinant of the magnitude of the inflammasome response to Pseudomonas aeruginosa.

    PubMed

    Patankar, Yash R; Lovewell, Rustin R; Poynter, Matthew E; Jyot, Jeevan; Kazmierczak, Barbara I; Berwin, Brent

    2013-06-01

    We previously demonstrated that bacterial flagellar motility is a fundamental mechanism by which host phagocytes bind and ingest bacteria. Correspondingly, loss of bacterial motility, consistently observed in clinical isolates from chronic Pseudomonas aeruginosa infections, enables bacteria to evade association and ingestion of P. aeruginosa by phagocytes both in vitro and in vivo. Since bacterial interactions with the phagocyte cell surface are required for type three secretion system-dependent NLRC4 inflammasome activation by P. aeruginosa, we hypothesized that reduced bacterial association with phagocytes due to loss of bacterial motility, independent of flagellar expression, will lead to reduced inflammasome activation. Here we report that inflammasome activation is reduced in response to nonmotile P. aeruginosa. Nonmotile P. aeruginosa elicits reduced IL-1β production as well as caspase-1 activation by peritoneal macrophages and bone marrow-derived dendritic cells in vitro. Importantly, nonmotile P. aeruginosa also elicits reduced IL-1β levels in vivo in comparison to those elicited by wild-type P. aeruginosa. This is the first demonstration that loss of bacterial motility results in reduced inflammasome activation and antibacterial IL-1β host response. These results provide a critical insight into how the innate immune system responds to bacterial motility and, correspondingly, how pathogens have evolved mechanisms to evade the innate immune system.

  1. Flagellar Motility Is a Key Determinant of the Magnitude of the Inflammasome Response to Pseudomonas aeruginosa

    PubMed Central

    Patankar, Yash R.; Lovewell, Rustin R.; Poynter, Matthew E.; Jyot, Jeevan; Kazmierczak, Barbara I.

    2013-01-01

    We previously demonstrated that bacterial flagellar motility is a fundamental mechanism by which host phagocytes bind and ingest bacteria. Correspondingly, loss of bacterial motility, consistently observed in clinical isolates from chronic Pseudomonas aeruginosa infections, enables bacteria to evade association and ingestion of P. aeruginosa by phagocytes both in vitro and in vivo. Since bacterial interactions with the phagocyte cell surface are required for type three secretion system-dependent NLRC4 inflammasome activation by P. aeruginosa, we hypothesized that reduced bacterial association with phagocytes due to loss of bacterial motility, independent of flagellar expression, will lead to reduced inflammasome activation. Here we report that inflammasome activation is reduced in response to nonmotile P. aeruginosa. Nonmotile P. aeruginosa elicits reduced IL-1β production as well as caspase-1 activation by peritoneal macrophages and bone marrow-derived dendritic cells in vitro. Importantly, nonmotile P. aeruginosa also elicits reduced IL-1β levels in vivo in comparison to those elicited by wild-type P. aeruginosa. This is the first demonstration that loss of bacterial motility results in reduced inflammasome activation and antibacterial IL-1β host response. These results provide a critical insight into how the innate immune system responds to bacterial motility and, correspondingly, how pathogens have evolved mechanisms to evade the innate immune system. PMID:23529619

  2. A macroscopic scale model of bacterial flagellar bundling

    NASA Astrophysics Data System (ADS)

    Kim, Munju; Bird, James C.; van Parys, Annemarie J.; Breuer, Kenneth S.; Powers, Thomas R.

    2003-12-01

    Escherichia coli and other bacteria use rotating helical filaments to swim. Each cell typically has about four filaments, which bundle or disperse depending on the sense of motor rotation. To study the bundling process, we built a macroscopic scale model consisting of stepper motor-driven polymer helices in a tank filled with a high-viscosity silicone oil. The Reynolds number, the ratio of viscous to elastic stresses, and the helix geometry of our experimental model approximately match the corresponding quantities of the full-scale E. coli cells. We analyze digital video images of the rotating helices to show that the initial rate of bundling is proportional to the motor frequency and is independent of the characteristic relaxation time of the filament. We also determine which combinations of helix handedness and sense of motor rotation lead to bundling.

  3. From molecular evolution to biobricks and synthetic modules: a lesson by the bacterial flagellum.

    PubMed

    Altegoer, Florian; Schuhmacher, Jan; Pausch, Patrick; Bange, Gert

    2014-10-01

    The bacterial flagellum is a motility structure and represents one of the most sophisticated nanomachines in the biosphere. Here, we review the current knowledge on the flagellum, its architecture with respect to differences between Gram-negative and Gram-positive bacteria and other species-specific variations (e.g. the flagellar filament protein, Flagellin). We further focus on the mechanism by which the two nucleotide-binding proteins FlhF and FlhG ensure the correct reproduction of flagella place and number (the flagellation pattern). We will finish the review with an overview of current biotechnological applications, and a perspective of how understanding flagella can contribute to developing modules for synthetic approaches.

  4. Structure of the torque ring of the flagellar motor and the molecular basis for rotational switching.

    PubMed

    Lee, Lawrence K; Ginsburg, Michael A; Crovace, Claudia; Donohoe, Mhairi; Stock, Daniela

    2010-08-19

    The flagellar motor drives the rotation of flagellar filaments at hundreds of revolutions per second, efficiently propelling bacteria through viscous media. The motor uses the potential energy from an electrochemical gradient of cations across the cytoplasmic membrane to generate torque. A rapid switch from anticlockwise to clockwise rotation determines whether a bacterium runs smoothly forward or tumbles to change its trajectory. A protein called FliG forms a ring in the rotor of the flagellar motor that is involved in the generation of torque through an interaction with the cation-channel-forming stator subunit MotA. FliG has been suggested to adopt distinct conformations that induce switching but these structural changes and the molecular mechanism of switching are unknown. Here we report the molecular structure of the full-length FliG protein, identify conformational changes that are involved in rotational switching and uncover the structural basis for the formation of the FliG torque ring. This allows us to propose a model of the complete ring and switching mechanism in which conformational changes in FliG reverse the electrostatic charges involved in torque generation.

  5. Structure of Salmonella FlhE, conserved member of a flagellar Type III secretion operon

    DOE PAGES

    Lee, Jaemin; Monzingo, Arthur F.; Keatinge-Clay, Adrian T.; ...

    2014-12-26

    In this paper, the bacterial flagellum is assembled by a multicomponent transport apparatus categorized as a type III secretion system. The secretion of proteins that assemble into the flagellum is driven by the proton motive force. The periplasmic protein FlhE is a member of the flhBAE operon in the majority of bacteria where FlhE is found. FlhA and FlhB are established components of the flagellar type III secretion system. The absence of FlhE results in a proton leak through the flagellar system, inappropriate secretion patterns, and cell death, indicating that FlhE regulates an important aspect of proper flagellar biosynthesis. Wemore » isolated FlhE from the periplasm of Salmonella and solved its structure to 1.5 Å resolution. The structure reveals a β-sandwich fold, with no close structural homologs. Finally, possible roles of FlhE, including that of a chaperone, are discussed.« less

  6. Structure of Salmonella FlhE, conserved member of a flagellar Type III secretion operon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Jaemin; Monzingo, Arthur F.; Keatinge-Clay, Adrian T.

    In this paper, the bacterial flagellum is assembled by a multicomponent transport apparatus categorized as a type III secretion system. The secretion of proteins that assemble into the flagellum is driven by the proton motive force. The periplasmic protein FlhE is a member of the flhBAE operon in the majority of bacteria where FlhE is found. FlhA and FlhB are established components of the flagellar type III secretion system. The absence of FlhE results in a proton leak through the flagellar system, inappropriate secretion patterns, and cell death, indicating that FlhE regulates an important aspect of proper flagellar biosynthesis. Wemore » isolated FlhE from the periplasm of Salmonella and solved its structure to 1.5 Å resolution. The structure reveals a β-sandwich fold, with no close structural homologs. Finally, possible roles of FlhE, including that of a chaperone, are discussed.« less

  7. The flagellar motor of Caulobacter crescentus generates more torque when a cell swims backward

    PubMed Central

    Lele, Pushkar P.; Roland, Thibault; Shrivastava, Abhishek; Chen, Yihao; Berg, Howard C.

    2016-01-01

    Caulobacter crescentus, a monotrichous bacterium, swims by rotating a single right-handed helical filament. CW motor rotation thrusts the cell forward 1, a mode of motility known as the pusher mode; CCW motor rotation pulls the cell backward, a mode of motility referred to as the puller mode 2. The situation is opposite in E. coli, a peritrichous bacterium, where CCW rotation of multiple left-handed filaments drives the cell forward. The flagellar motor in E. coli generates more torque in the CCW direction than the CW direction in swimming cells 3,4. However, monotrichous bacteria including C. crescentus swim forward and backward at similar speeds, prompting the assumption that motor torques in the two modes are the same 5,6. Here, we present evidence that motors in C. crescentus develop higher torques in the puller mode than in the pusher mode, and suggest that the anisotropy in torque-generation is similar in two species, despite the differences in filament handedness and motor bias (probability of CW rotation). PMID:27499800

  8. Control of Flagellar Gene Regulation in Legionella pneumophila and Its Relation to Growth Phase▿ †

    PubMed Central

    Albert-Weissenberger, Christiane; Sahr, Tobias; Sismeiro, Odile; Hacker, Jörg; Heuner, Klaus; Buchrieser, Carmen

    2010-01-01

    The bacterial pathogen Legionella pneumophila responds to environmental changes by differentiation. At least two forms are well described: replicative bacteria are avirulent; in contrast, transmissive bacteria express virulence traits and flagella. Phenotypic analysis, Western blotting, and electron microscopy of mutants of the regulatory genes encoding RpoN, FleQ, FleR, and FliA demonstrated that flagellin expression is strongly repressed and that the mutants are nonflagellated in the transmissive phase. Transcriptome analyses elucidated that RpoN, together with FleQ, enhances transcription of 14 out of 31 flagellar class II genes, which code for the basal body, hook, and regulatory proteins. Unexpectedly, FleQ independent of RpoN enhances the transcription of fliA encoding sigma 28. Expression analysis of a fliA mutant showed that FliA activates three out of the five remaining flagellar class III genes and the flagellar class IV genes. Surprisingly, FleR does not induce but inhibits expression of at least 14 flagellar class III genes on the transcriptional level. Thus, we propose that flagellar class II genes are controlled by FleQ and RpoN, whereas the transcription of the class III gene fliA is controlled in a FleQ-dependent but RpoN-independent manner. However, RpoN and FleR might influence flagellin synthesis on a posttranscriptional level. In contrast to the commonly accepted view that enhancer-binding proteins such as FleQ always interact with RpoN to fullfill their regulatory functions, our results strongly indicate that FleQ regulates gene expression that is RpoN dependent and RpoN independent. Finally, FliA induces expression of flagellar class III and IV genes leading to the complete synthesis of the flagellum. PMID:19915024

  9. Flagellar Hook Flexibility Is Essential for Bundle Formation in Swimming Escherichia coli Cells

    PubMed Central

    Brown, Mostyn T.; Steel, Bradley C.; Silvestrin, Claudio; Wilkinson, David A.; Delalez, Nicolas J.; Lumb, Craig N.; Obara, Boguslaw; Berry, Richard M.

    2012-01-01

    Swimming Escherichia coli cells are propelled by the rotary motion of their flagellar filaments. In the normal swimming pattern, filaments positioned randomly over the cell form a bundle at the posterior pole. It has long been assumed that the hook functions as a universal joint, transmitting rotation on the motor axis through up to ∼90° to the filament in the bundle. Structural models of the hook have revealed how its flexibility is expected to arise from dynamic changes in the distance between monomers in the helical lattice. In particular, each of the 11 protofilaments that comprise the hook is predicted to cycle between short and long forms, corresponding to the inside and outside of the curved hook, once each revolution of the motor when the hook is acting as a universal joint. To test this, we genetically modified the hook so that it could be stiffened by binding streptavidin to biotinylated monomers, impeding their motion relative to each other. We found that impeding the action of the universal joint resulted in atypical swimming behavior as a consequence of disrupted bundle formation, in agreement with the universal joint model. PMID:22522898

  10. The Flagellar Regulon of Legionella—A Review

    PubMed Central

    Appelt, Sandra; Heuner, Klaus

    2017-01-01

    The Legionella genus comprises more than 60 species. In particular, Legionella pneumophila is known to cause severe illnesses in humans. Legionellaceae are ubiquitous inhabitants of aquatic environments. Some Legionellaceae are motile and their motility is important to move around in habitats. Motility can be considered as a potential virulence factor as already shown for various human pathogens. The genes of the flagellar system, regulator and structural genes, are structured in hierarchical levels described as the flagellar regulon. Their expression is modulated by various environmental factors. For L. pneumophila it was shown that the expression of genes of the flagellar regulon is modulated by the actual growth phase and temperature. Especially, flagellated Legionella are known to express genes during the transmissive phase of growth that are involved in the expression of virulence traits. It has been demonstrated that the alternative sigma-28 factor is part of the link between virulence expression and motility. In the following review, the structure of the flagellar regulon of L. pneumophila is discussed and compared to other flagellar systems of different Legionella species. Recently, it has been described that Legionella micdadei and Legionella fallonii contain a second putative partial flagellar system. Hence, the report will focus on flagellated and non-flagellated Legionella strains, phylogenetic relationships, the role and function of the alternative sigma factor (FliA) and its anti-sigma-28 factor (FlgM). PMID:29104863

  11. The Flagellar Regulon of Legionella-A Review.

    PubMed

    Appelt, Sandra; Heuner, Klaus

    2017-01-01

    The Legionella genus comprises more than 60 species. In particular, Legionella pneumophila is known to cause severe illnesses in humans. Legionellaceae are ubiquitous inhabitants of aquatic environments. Some Legionellaceae are motile and their motility is important to move around in habitats. Motility can be considered as a potential virulence factor as already shown for various human pathogens. The genes of the flagellar system, regulator and structural genes, are structured in hierarchical levels described as the flagellar regulon. Their expression is modulated by various environmental factors. For L. pneumophila it was shown that the expression of genes of the flagellar regulon is modulated by the actual growth phase and temperature. Especially, flagellated Legionella are known to express genes during the transmissive phase of growth that are involved in the expression of virulence traits. It has been demonstrated that the alternative sigma-28 factor is part of the link between virulence expression and motility. In the following review, the structure of the flagellar regulon of L. pneumophila is discussed and compared to other flagellar systems of different Legionella species. Recently, it has been described that Legionella micdadei and Legionella fallonii contain a second putative partial flagellar system. Hence, the report will focus on flagellated and non-flagellated Legionella strains, phylogenetic relationships, the role and function of the alternative sigma factor (FliA) and its anti-sigma-28 factor (FlgM).

  12. Applying torque to the Escherichia coli flagellar motor using magnetic tweezers.

    PubMed

    van Oene, Maarten M; Dickinson, Laura E; Cross, Bronwen; Pedaci, Francesco; Lipfert, Jan; Dekker, Nynke H

    2017-03-07

    The bacterial flagellar motor of Escherichia coli is a nanoscale rotary engine essential for bacterial propulsion. Studies on the power output of single motors rely on the measurement of motor torque and rotation under external load. Here, we investigate the use of magnetic tweezers, which in principle allow the application and active control of a calibrated load torque, to study single flagellar motors in Escherichia coli. We manipulate the external load on the motor by adjusting the magnetic field experienced by a magnetic bead linked to the motor, and we probe the motor's response. A simple model describes the average motor speed over the entire range of applied fields. We extract the motor torque at stall and find it to be similar to the motor torque at drag-limited speed. In addition, use of the magnetic tweezers allows us to force motor rotation in both forward and backward directions. We monitor the motor's performance before and after periods of forced rotation and observe no destructive effects on the motor. Our experiments show how magnetic tweezers can provide active and fast control of the external load while also exposing remaining challenges in calibration. Through their non-invasive character and straightforward parallelization, magnetic tweezers provide an attractive platform to study nanoscale rotary motors at the single-motor level.

  13. Applying torque to the Escherichia coli flagellar motor using magnetic tweezers

    PubMed Central

    van Oene, Maarten M.; Dickinson, Laura E.; Cross, Bronwen; Pedaci, Francesco; Lipfert, Jan; Dekker, Nynke H.

    2017-01-01

    The bacterial flagellar motor of Escherichia coli is a nanoscale rotary engine essential for bacterial propulsion. Studies on the power output of single motors rely on the measurement of motor torque and rotation under external load. Here, we investigate the use of magnetic tweezers, which in principle allow the application and active control of a calibrated load torque, to study single flagellar motors in Escherichia coli. We manipulate the external load on the motor by adjusting the magnetic field experienced by a magnetic bead linked to the motor, and we probe the motor’s response. A simple model describes the average motor speed over the entire range of applied fields. We extract the motor torque at stall and find it to be similar to the motor torque at drag-limited speed. In addition, use of the magnetic tweezers allows us to force motor rotation in both forward and backward directions. We monitor the motor’s performance before and after periods of forced rotation and observe no destructive effects on the motor. Our experiments show how magnetic tweezers can provide active and fast control of the external load while also exposing remaining challenges in calibration. Through their non-invasive character and straightforward parallelization, magnetic tweezers provide an attractive platform to study nanoscale rotary motors at the single-motor level. PMID:28266562

  14. Noise effects in bacterial motor switch

    NASA Astrophysics Data System (ADS)

    Tu, Yuhai

    2006-03-01

    The clockwise (CW) or counter clockwise (CCW) spinning of bacterial flagellar motors is controlled by the concentration of a phosphorylated protein CheY-P. In this talk, we represent the stochastic switching behavior of a bacterial flagellar motor by a dynamical two-state (CW and CCW) model, with the energy levels of the two states fluctuating in time according to the variation of the CheY-P concentration in the cell. We show that with a generic normal distribution and a modest amplitude for CheY-P concentration fluctuations, the dynamical two-state model is capable of generating a power-law distribution (as opposed to an exponential Poisson-like distribution) for the durations of the CCW states, in agreement with recent experimental observations of Korobkova et al (Nature, 428, 574(2004)). In addition, we show that the power spectrum for the flagellar motor switching time series is not determined solely by the power-law duration distribution, but also by the temporal correlation between the duration times of different CCW intervals. We point out the intrinsic connection between anomalously large fluctuations of the motor output and the overall high gain of the bacterial chemotaxis system. Suggestions for experimental verification of the dynamical two-state model will also be discussed.

  15. FliH and FliI ensure efficient energy coupling of flagellar type III protein export in Salmonella.

    PubMed

    Minamino, Tohru; Kinoshita, Miki; Inoue, Yumi; Morimoto, Yusuke V; Ihara, Kunio; Koya, Satomi; Hara, Noritaka; Nishioka, Noriko; Kojima, Seiji; Homma, Michio; Namba, Keiichi

    2016-06-01

    For construction of the bacterial flagellum, flagellar proteins are exported via its specific export apparatus from the cytoplasm to the distal end of the growing flagellar structure. The flagellar export apparatus consists of a transmembrane (TM) export gate complex and a cytoplasmic ATPase complex consisting of FliH, FliI, and FliJ. FlhA is a TM export gate protein and plays important roles in energy coupling of protein translocation. However, the energy coupling mechanism remains unknown. Here, we performed a cross-complementation assay to measure robustness of the energy transduction system of the export apparatus against genetic perturbations. Vibrio FlhA restored motility of a Salmonella ΔflhA mutant but not that of a ΔfliH-fliI flhB(P28T) ΔflhA mutant. The flgM mutations significantly increased flagellar gene expression levels, allowing Vibrio FlhA to exert its export activity in the ΔfliH-fliI flhB(P28T) ΔflhA mutant. Pull-down assays revealed that the binding affinities of Vibrio FlhA for FliJ and the FlgN-FlgK chaperone-substrate complex were much lower than those of Salmonella FlhA. These suggest that Vibrio FlhA requires the support of FliH and FliI to efficiently and properly interact with FliJ and the FlgN-FlgK complex. We propose that FliH and FliI ensure robust and efficient energy coupling of protein export during flagellar assembly. © 2016 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.

  16. Speed of the bacterial flagellar motor near zero load depends on the number of stator units.

    PubMed

    Nord, Ashley L; Sowa, Yoshiyuki; Steel, Bradley C; Lo, Chien-Jung; Berry, Richard M

    2017-10-31

    The bacterial flagellar motor (BFM) rotates hundreds of times per second to propel bacteria driven by an electrochemical ion gradient. The motor consists of a rotor 50 nm in diameter surrounded by up to 11 ion-conducting stator units, which exchange between motors and a membrane-bound pool. Measurements of the torque-speed relationship guide the development of models of the motor mechanism. In contrast to previous reports that speed near zero torque is independent of the number of stator units, we observe multiple speeds that we attribute to different numbers of units near zero torque in both Na + - and H + -driven motors. We measure the full torque-speed relationship of one and two H + units in Escherichia coli by selecting the number of H + units and controlling the number of Na + units in hybrid motors. These experiments confirm that speed near zero torque in H + -driven motors increases with the stator number. We also measured 75 torque-speed curves for Na + -driven chimeric motors at different ion-motive force and stator number. Torque and speed were proportional to ion-motive force and number of stator units at all loads, allowing all 77 measured torque-speed curves to be collapsed onto a single curve by simple rescaling. Published under the PNAS license.

  17. Speed of the bacterial flagellar motor near zero load depends on the number of stator units

    PubMed Central

    Nord, Ashley L.; Sowa, Yoshiyuki; Steel, Bradley C.; Lo, Chien-Jung; Berry, Richard M.

    2017-01-01

    The bacterial flagellar motor (BFM) rotates hundreds of times per second to propel bacteria driven by an electrochemical ion gradient. The motor consists of a rotor 50 nm in diameter surrounded by up to 11 ion-conducting stator units, which exchange between motors and a membrane-bound pool. Measurements of the torque–speed relationship guide the development of models of the motor mechanism. In contrast to previous reports that speed near zero torque is independent of the number of stator units, we observe multiple speeds that we attribute to different numbers of units near zero torque in both Na+- and H+-driven motors. We measure the full torque–speed relationship of one and two H+ units in Escherichia coli by selecting the number of H+ units and controlling the number of Na+ units in hybrid motors. These experiments confirm that speed near zero torque in H+-driven motors increases with the stator number. We also measured 75 torque–speed curves for Na+-driven chimeric motors at different ion-motive force and stator number. Torque and speed were proportional to ion-motive force and number of stator units at all loads, allowing all 77 measured torque–speed curves to be collapsed onto a single curve by simple rescaling. PMID:29078322

  18. Characterization of C-ring component assembly in flagellar motors from amino acid coevolution

    PubMed Central

    dos Santos, Ricardo Nascimento; Khan, Shahid

    2018-01-01

    Bacterial flagellar motility, an important virulence factor, is energized by a rotary motor localized within the flagellar basal body. The rotor module consists of a large framework (the C-ring), composed of the FliG, FliM and FliN proteins. FliN and FliM contacts the FliG torque ring to control the direction of flagellar rotation. We report that structure-based models constrained only by residue coevolution can recover the binding interface of atomic X-ray dimer complexes with remarkable accuracy (approx. 1 Å RMSD). We propose a model for FliM–FliN heterodimerization, which agrees accurately with homologous interfaces as well as in situ cross-linking experiments, and hence supports a proposed architecture for the lower portion of the C-ring. Furthermore, this approach allowed the identification of two discrete and interchangeable homodimerization interfaces between FliM middle domains that agree with experimental measurements and might be associated with C-ring directional switching dynamics triggered upon binding of CheY signal protein. Our findings provide structural details of complex formation at the C-ring that have been difficult to obtain with previous methodologies and clarify the architectural principle that underpins the ultra-sensitive allostery exhibited by this ring assembly that controls the clockwise or counterclockwise rotation of flagella. PMID:29892378

  19. Ultrastructural analysis of Phytomonas species from Euphorbia pinea reveals trans-cytoplasmic filaments 10 nm in diameter.

    PubMed

    Page, A M; Lagnado, J R

    2000-10-01

    Phytomonas sp. derived from Euphorbia pinea are digenetic plant trypanosomes that are transmitted by the squashbug Stenocephalus agilis and exist exclusively as promastigotes. The stable sub-pellicular microtubular array, the flagellar axoneme and the paraflagellar rod represent the major cytoskeletal components common to all trypanosomes. The work described in this paper examines in detail the ultrastructural morphology of the organism and highlights a number of novel structural features, and in particular, the presence of some detergent-resistant proteins which take the form of bundles of trans-cytoplasmic filaments of ca. 10 nm in diameter, seen in cells from both log- and stationary-phase cultures. The ultrastructural morphology and immunological cross-reactivity of these filaments are described, and their relationship to filamentous bundles previously reported in stationary-phase cultures of Crithidia fasciculata and to intermediate filaments of animal cells is discussed.

  20. Loose coupling in the bacterial flagellar motor

    PubMed Central

    Boschert, Ryan; Adler, Frederick R.; Blair, David F.

    2015-01-01

    Physiological properties of the flagellar rotary motor have been taken to indicate a tightly coupled mechanism in which each revolution is driven by a fixed number of energizing ions. Measurements that would directly test the tight-coupling hypothesis have not been made. Energizing ions flow through membrane-bound complexes formed from the proteins MotA and MotB, which are anchored to the cell wall and constitute the stator. Genetic and biochemical evidence points to a “power stroke” mechanism in which the ions interact with an aspartate residue of MotB to drive conformational changes in MotA that are transmitted to the rotor protein FliG. Each stator complex contains two separate ion-binding sites, raising the question of whether the power stroke is driven by one, two, or either number of ions. Here, we describe simulations of a model in which the conformational change can be driven by either one or two ions. This loosely coupled model can account for the observed physiological properties of the motor, including those that have been taken to indicate tight coupling; it also accords with recent measurements of motor torque at high load that are harder to explain in tight-coupling models. Under loads relevant to a swimming cell, the loosely coupled motor would perform about as well as a two-proton motor and significantly better than a one-proton motor. The loosely coupled motor is predicted to be especially advantageous under conditions of diminished energy supply, or of reduced temperature, turning faster than an obligatorily two-proton motor while using fewer ions. PMID:25825730

  1. Proposed model for the flagellar rotary motor with shear stress transmission

    PubMed Central

    Mitsui, Toshio; Ohshima, Hiroyuki

    2012-01-01

    Most bacteria that swim are propelled by flagellar filaments, which are driven by a rotary motor powered by proton flux. The motor consists of the rotor and the stator. The stator consists of about 8 MotA-Mot B complex. There seems to be no definite information about the structure between the rotor and the stator, and it is examined whether the experimental data can be explained based upon the following assumptions. (a) There is viscoelastic medium between the rotor and the stator. (b) MotA-MotB complex has an electric dipole moment and produces shear stress in the electric field by a proton in the channel. Calculation results based upon these assumptions are in good agreement with the following experimental observations. (1) One revolution of the flagellar rotation consists of a constant number of steps. (2) The rotation velocity of the rotor is proportional to the trans-membrane potential difference. (3) When the rotational velocity of a flagellum is changed by adjusting the viscosity of the outer fluid, the torque for the cell to rotate a flagellum is practically constant but sharply decreases when the rotational velocity increases over a critical value. (4) The rotation direction remains the same when the sign of the electrochemical potential gradient is reversed. (5) The cell produces constant torque to rotate the flagellum even when the cell is rotated by externally applied torque. (6) A simple switch mechanism is proposed for chemotaxis. PMID:27493532

  2. Flagellar Cap Protein FliD Mediates Adherence of Atypical Enteropathogenic Escherichia coli to Enterocyte Microvilli

    PubMed Central

    Sampaio, Suely C. F.; Luiz, Wilson B.; Vieira, Mônica A. M.; Ferreira, Rita C. C.; Garcia, Bruna G.; Sinigaglia-Coimbra, Rita; Sampaio, Jorge L. M.; Ferreira, Luís C. S.

    2016-01-01

    The expression of flagella correlates with different aspects of bacterial pathogenicity, ranging from adherence to host cells to activation of inflammatory responses by the innate immune system. In the present study, we investigated the role of flagella in the adherence of an atypical enteropathogenic Escherichia coli (aEPEC) strain (serotype O51:H40) to human enterocytes. Accordingly, isogenic mutants deficient in flagellin (FliC), the flagellar structural subunit; the flagellar cap protein (FliD); or the MotAB proteins, involved in the control of flagellar motion, were generated and tested for binding to differentiated Caco-2 cells. Binding of the aEPEC strain to enterocytes was significantly impaired in strains with the fliC and fliD genes deleted, both of which could not form flagella on the bacterial surface. A nonmotile but flagellated MotAB mutant also showed impaired adhesion to Caco-2 cells. In accordance with these observations, adhesion of aEPEC strain 1711-4 to Caco-2 cells was drastically reduced after the treatment of Caco-2 cells with purified FliD. In addition, incubation of aEPEC bacteria with specific anti-FliD serum impaired binding to Caco-2 cells. Finally, incubation of Caco-2 cells with purified FliD, followed by immunolabeling, showed that the protein was specifically bound to the microvillus tips of differentiated Caco-2 cells. The aEPEC FliD or anti-FliD serum also reduced the adherence of prototype typical enteropathogenic, enterohemorrhagic, and enterotoxigenic E. coli strains to Caco-2 cells. In conclusion, our findings further strengthened the role of flagella in the adherence of aEPEC to human enterocytes and disclosed the relevant structural and functional involvement of FliD in the adhesion process. PMID:26831466

  3. Load Response of the Flagellar Beat

    NASA Astrophysics Data System (ADS)

    Klindt, Gary S.; Ruloff, Christian; Wagner, Christian; Friedrich, Benjamin M.

    2016-12-01

    Cilia and flagella exhibit regular bending waves that perform mechanical work on the surrounding fluid, to propel cellular swimmers and pump fluids inside organisms. Here, we quantify a force-velocity relationship of the beating flagellum, by exposing flagellated Chlamydomonas cells to controlled microfluidic flows. A simple theory of flagellar limit-cycle oscillations, calibrated by measurements in the absence of flow, reproduces this relationship quantitatively. We derive a link between the energy efficiency of the flagellar beat and its ability to synchronize to oscillatory flows.

  4. A coordinated sequence of distinct flagellar waveforms enables a sharp flagellar turn mediated by squid sperm pH-taxis.

    PubMed

    Iida, Tomohiro; Iwata, Yoko; Mohri, Tatsuma; Baba, Shoji A; Hirohashi, Noritaka

    2017-10-11

    Animal spermatozoa navigate by sensing ambient chemicals to reach the site of fertilization. Generally, such chemicals derive from the female reproductive organs or cells. Exceptionally, squid spermatozoa mutually release and perceive carbon dioxide to form clusters after ejaculation. We previously identified the pH-taxis by which each spermatozoon can execute a sharp turn, but how flagellar dynamics enable this movement remains unknown. Here, we show that initiation of the turn motion requires a swim down a steep proton gradient (a theoretical estimation of ≥0.025 pH/s), crossing a threshold pH value of ~5.5. Time-resolved kinematic analysis revealed that the turn sequence results from the rhythmic exercise of two flagellar motions: a stereotypical flagellar 'bent-cane' shape followed by asymmetric wave propagation, which enables a sharp turn in the realm of low Reynolds numbers. This turning episode is terminated by an 'overshoot' trajectory that differs from either straight-line motility or turning. As with bidirectional pH-taxes in some bacteria, squid spermatozoa also showed repulsion from strong acid conditions with similar flagellar kinematics as in positive pH-taxis. These findings indicate that squid spermatozoa might have a unique reorientation mechanism, which could be dissimilar to that of classical egg-guided sperm chemotaxis in other marine invertebrates.

  5. Novel Single-Tube Agar-Based Test System for Motility Enhancement and Immunocapture of Escherichia coli O157:H7 by H7 Flagellar Antigen-Specific Antibodies

    PubMed Central

    Murinda, Shelton E.; Nguyen, Lien T.; Ivey, Susan J.; Almeida, Raul A.; Oliver, Stephen P.

    2002-01-01

    This paper describes a novel single-tube agar-based technique for motility enhancement and immunoimmobilization of Escherichia coli O157:H7. Motility indole ornithine medium and agar (0.4%, wt/vol) media containing either nutrient broth, tryptone broth, or tryptic soy broth (TSBA) were evaluated for their abilities to enhance bacterial motility. Twenty-six E. coli strains, including 19 O157:H7 strains, 1 O157:H− strain, and 6 generic E. coli strains, were evaluated. Test bacteria were stab inoculated in the center of the agar column, and tubes were incubated at 37°C for 18 to 96 h. Nineteen to 24 of the 26 test strains (73.1 to 92.3%) were motile in the different media. TSBA medium performed best and was employed in subsequent studies of motility enhancement and H7 flagellar immunocapture. H7 flagellar antiserum (30 and 60 μl) mixed with TSBA was placed as a band (1 ml) in the middle of an agar column separating the top (3-ml) and bottom (3-ml) agar layers. The top agar layer was inoculated with the test bacterial strains. The tubes were incubated at 37°C for 12 to 18 h and for 18 to 96 h. The specificity and sensitivity of the H7 flagellar immunocapture tests were 75 and 100%, respectively. The procedure described is simple and sensitive and could be adapted easily for routine use in laboratories that do not have sophisticated equipment and resources for confirming the presence of H7 flagellar antigens. Accurate and rapid identification of H7 flagellar antigen is critical for the complete characterization of E. coli O157:H7, owing to the immense clinical, public health, and economic significance of this food-borne pathogen. PMID:12454173

  6. Design of a Comprehensive Biochemistry and Molecular Biology Experiment: Phase Variation Caused by Recombinational Regulation of Bacterial Gene Expression

    ERIC Educational Resources Information Center

    Sheng, Xiumei; Xu, Shungao; Lu, Renyun; Isaac, Dadzie; Zhang, Xueyi; Zhang, Haifang; Wang, Huifang; Qiao, Zheng; Huang, Xinxiang

    2014-01-01

    Scientific experiments are indispensable parts of Biochemistry and Molecular Biology. In this study, a comprehensive Biochemistry and Molecular Biology experiment about "Salmonella enterica" serovar Typhi Flagellar phase variation has been designed. It consisted of three parts, namely, inducement of bacterial Flagellar phase variation,…

  7. Modeling torque versus speed, shot noise, and rotational diffusion of the bacterial flagellar motor.

    PubMed

    Mora, Thierry; Yu, Howard; Wingreen, Ned S

    2009-12-11

    We present a minimal physical model for the flagellar motor that enables bacteria to swim. Our model explains the experimentally measured torque-speed relationship of the proton-driven E. coli motor at various pH and temperature conditions. In particular, the dramatic drop of torque at high rotation speeds (the "knee") is shown to arise from saturation of the proton flux. Moreover, we show that shot noise in the proton current dominates the diffusion of motor rotation at low loads. This suggests a new way to probe the discreteness of the energy source, analogous to measurements of charge quantization in superconducting tunnel junctions.

  8. The Flagellar Hook Protein, FlgE, of Salmonella enterica Serovar Typhimurium Is Posttranscriptionally Regulated in Response to the Stage of Flagellar Assembly

    PubMed Central

    Bonifield, Heather R.; Yamaguchi, Shigeru; Hughes, Kelly T.

    2000-01-01

    We investigated the posttranscriptional regulation of flgE, a class 2 gene that encodes the hook subunit protein of the flagella. RNase protection assays demonstrated that the flgE gene was transcribed at comparable levels in numerous strains defective in known steps of flagellar assembly. However, Western analyses of these strains demonstrated substantial differences in FlgE protein levels. Although wild-type FlgE levels were observed in strains with deletions of genes encoding components of the switch complex and the flagellum-specific secretion apparatus, no protein was detected in a strain with deletions of the rod, ring, and hook-associated proteins. To determine whether FlgE levels were affected by the stage of hook–basal-body assembly, Western analysis was performed on strains with mutations at individual loci encompassed by the deletion. FlgE protein was undetectable in rod mutants, intermediate in ring mutants, and wild type in hook-associated protein mutants. The lack of negative regulation in switch complex and flagellum-specific secretion apparatus deletion mutants blocked for flagellar construction prior to rod assembly suggests that these structures play a role in the negative regulation of FlgE. Quantitative Western analyses of numerous flagellar mutants indicate that FlgE levels reflect the stage at which flagellar assembly is blocked. These data provide evidence for negative posttranscriptional regulation of FlgE in response to the stage of flagellar assembly. PMID:10869084

  9. Divalent Cation Control of Flagellar Motility in African Trypanosomes

    NASA Astrophysics Data System (ADS)

    Westergard, Anna M.; Hutchings, Nathan R.

    2005-03-01

    Changes in calcium concentration have been shown to dynamically affect flagellar motility in several eukaryotic systems. The African trypanosome is a monoflagellated protozoan parasite and the etiological agent of sleeping sickness. Although cell motility has been implicated in disease progression, very little is currently known about biochemical control of the trypanosome flagellum. In this study, we assess the effects of extracellular changes in calcium and nickel concentration on trypanosome flagellar movement. Using a flow through chamber, we determine the relative changes in motility in individual trypanosomes in response to various concentrations of calcium and nickel, respectively. Extracellular concentrations of calcium and nickel (as low as 100 micromolar) significantly inhibit trypanosome cell motility. The effects are reversible, as indicated by the recovery of motion after removal of the calcium or nickel from the chamber. We are currently investigating the specific changes in flagellar oscillation and coordination that result from calcium and nickel, respectively. These results verify the presence of a calcium-responsive signaling mechanism(s) that regulates flagellar beat in trypanosomes.

  10. Ocean acidification reduces sperm flagellar motility in broadcast spawning reef invertebrates.

    PubMed

    Morita, Masaya; Suwa, Ryota; Iguchi, Akira; Nakamura, Masako; Shimada, Kazuaki; Sakai, Kazuhiko; Suzuki, Atsushi

    2010-05-01

    Ocean acidification is now recognized as a threat to marine ecosystems; however, the effect of ocean acidification on fertilization in marine organisms is still largely unknown. In this study, we focused on sperm flagellar motility in broadcast spawning reef invertebrates (a coral and a sea cucumber). Below pH 7.7, the pH predicted to occur within the next 100 years, sperm flagellar motility was seriously impaired in these organisms. Considering that sperm flagellar motility is indispensable for transporting the paternal haploid genome for fertilization, fertilization taking place in seawater may decline in the not too distant future. Urgent surveys are necessary for a better understanding of the physiological consequences of ocean acidification on sperm flagellar motility in a wide range of marine invertebrates.

  11. Interactions of the chemotaxis signal protein CheY with bacterial flagellar motors visualized by evanescent wave microscopy.

    PubMed

    Khan, S; Pierce, D; Vale, R D

    The chemotaxis signal protein CheY of enteric bacteria shuttles between transmembrane methyl-accepting chemotaxis protein (MCP) receptor complexes and flagellar basal bodies [1]. The basal body C-rings, composed of the FliM, FliG and FliN proteins, form the rotor of the flagellar motor [2]. Phosphorylated CheY binds to isolated FliM [3] and may also interact with FliG [4], but its binding to basal bodies has not been measured. Using the chemorepellent acetate to phosphorylate and acetylate CheY [5], we have measured the covalent-modification-dependent binding of a green fluorescent protein-CheY fusion (GFP-CheY) to motor assemblies in bacteria lacking MCP complexes by evanescent wave microscopy [6]. At acetate concentrations that cause solely clockwise rotation, GFP-CheY molecules bound to native basal bodies or to overproduced rotor complexes with a stoichiometry comparable to the number of C-ring subunits. GFP-CheY did not bind to rotors lacking FIiM/FliN, showing that these subunits are essential for the association. This assay provides a new means of monitoring protein-protein interactions in signal transduction pathways in living cells.

  12. Regulation of flagellar assembly by glycogen synthase kinase 3 in Chlamydomonas reinhardtii.

    PubMed

    Wilson, Nedra F; Lefebvre, Paul A

    2004-10-01

    Chlamydomonas reinhardtii controls flagellar assembly such that flagella are of an equal and predetermined length. Previous studies demonstrated that lithium, an inhibitor of glycogen synthase kinase 3 (GSK3), induced flagellar elongation, suggesting that a lithium-sensitive signal transduction pathway regulated flagellar length (S. Nakamura, H. Takino, and M. K. Kojima, Cell Struct. Funct. 12:369-374, 1987). Here, we demonstrate that lithium treatment depletes the pool of flagellar proteins from the cell body and that the heterotrimeric kinesin Fla10p accumulates in flagella. We identify GSK3 in Chlamydomonas and demonstrate that its kinase activity is inhibited by lithium in vitro. The tyrosine-phosphorylated, active form of GSK3 was enriched in flagella and GSK3 associated with the axoneme in a phosphorylation-dependent manner. The level of active GSK3 correlated with flagellar length; early during flagellar regeneration, active GSK3 increased over basal levels. This increase in active GSK3 was rapidly lost within 30 min of regeneration as the level of active GSK3 decreased relative to the predeflagellation level. Taken together, these results suggest a possible role for GSK3 in regulating the assembly and length of flagella.

  13. Polymorphic transformation of helical flagella of bacteria

    NASA Astrophysics Data System (ADS)

    Lim, Sookkyung; Howard Berg Collaboration; William Ko Collaboration; Yongsam Kim Collaboration; Wanho Lee Collaboration; Charles Peskin Collaboration

    2016-11-01

    Bacteria such as E. coli swim in an aqueous environment by utilizing the rotation of flagellar motors and alternate two modes of motility, runs and tumbles. Runs are steady forward swimming driven by bundles of flagellar filaments whose motors are turning CCW; tumbles involve a reorientation of the direction of swimming triggered by motor reversals. During tumbling, the helical flagellum undergoes polymorphic transformations, which is a local change in helical pitch, helical radius, and handedness. In this work, we investigate the underlying mechanism of structural conformation and how this polymorphic transition plays a role in bacterial swimming. National Science Foundation.

  14. Modeling Torque Versus Speed, Shot Noise, and Rotational Diffusion of the Bacterial Flagellar Motor

    PubMed Central

    Mora, Thierry; Yu, Howard; Wingreen, Ned S.

    2010-01-01

    We present a minimal physical model for the flagellar motor that enables bacteria to swim. Our model explains the experimentally measured torque-speed relationship of the proton-driven E. coli motor at various pH and temperature conditions. In particular, the dramatic drop of torque at high rotation speeds (the “knee”) is shown to arise from saturation of the proton flux. Moreover, we show that shot noise in the proton current dominates the diffusion of motor rotation at low loads. This suggests a new way to probe the discreteness of the energy source, analogous to measurements of charge quantization in superconducting tunnel junctions. PMID:20366231

  15. Solid friction between soft filaments.

    PubMed

    Ward, Andrew; Hilitski, Feodor; Schwenger, Walter; Welch, David; Lau, A W C; Vitelli, Vincenzo; Mahadevan, L; Dogic, Zvonimir

    2015-06-01

    Any macroscopic deformation of a filamentous bundle is necessarily accompanied by local sliding and/or stretching of the constituent filaments. Yet the nature of the sliding friction between two aligned filaments interacting through multiple contacts remains largely unexplored. Here, by directly measuring the sliding forces between two bundled F-actin filaments, we show that these frictional forces are unexpectedly large, scale logarithmically with sliding velocity as in solid-like friction, and exhibit complex dependence on the filaments' overlap length. We also show that a reduction of the frictional force by orders of magnitude, associated with a transition from solid-like friction to Stokes's drag, can be induced by coating F-actin with polymeric brushes. Furthermore, we observe similar transitions in filamentous microtubules and bacterial flagella. Our findings demonstrate how altering a filament's elasticity, structure and interactions can be used to engineer interfilament friction and thus tune the properties of fibrous composite materials.

  16. Direction of flagellar rotation in bacterial cell envelopes.

    PubMed Central

    Ravid, S; Eisenbach, M

    1984-01-01

    Cell envelopes with functional flagella, isolated from wild-type strains of Escherichia coli and Salmonella typhimurium by formation of spheroplasts with penicillin and subsequent osmotic lysis, demonstrate counterclockwise (CCW)-biased rotation when energized with an electron donor for respiration, DL-lactate. Since the direction of flagellar rotation in bacteria is central to the expression of chemotaxis, we studied the cause of this bias. Our main observations were: (i) spheroplasts acquired a clockwise (CW) bias if instead of being lysed they were further incubated with penicillin; (ii) repellents temporarily caused CW rotation of tethered bacteria and spheroplasts but not of their derived cell envelopes; (iii) deenergizing CW-rotating cheV bacteria by KCN or arsenate treatment caused CCW bias; (iv) cell envelopes isolated from CW-rotating cheC and cheV mutants retained the CW bias, unlike envelopes isolated from cheB and cheZ mutants, which upon cytoplasmic release lost this bias and acquired CCW bias; and (v) an inwardly directed, artificially induced proton current rotated tethered envelopes in CCW direction, but an outwardly directed current was unable to rotate the envelopes. It is concluded that (i) a cytoplasmic constituent is required for the expression of CW rotation (or repression of CCW rotation) in strains which are not defective in the switch; (ii) in the absence of this cytoplasmic constituent, the motor is not reversible in such strains, and it probably is mechanically constricted so as to permit CCW sense of rotation only; (iii) the requirement of CW rotation for ATP is not at the level of the motor or the switch but at one of the preceding functional steps of the chemotaxis machinery; (iv) the cheC and cheV gene products are associated with the cytoplasmic membrane; and (v) direct interaction between the switch-motor system and the repellent sensors is improbable. Images PMID:6370958

  17. Low intensity infrared laser induces filamentation in Escherichia coli cells

    NASA Astrophysics Data System (ADS)

    Fonseca, A. S.; Presta, G. A.; Geller, M.; Paoli, F.

    2011-10-01

    Low intensity continuous wave and pulsed emission modes laser is used in treating many diseases and the resulting biostimulative effect on tissues has been described, yet the photobiological basis is not well understood. The aim of this wok was to evaluate, using bacterial filamentation assay, effects of laser on Escherichia coli cultures in exponential and stationary growth phase. E. coli cultures, proficient and deficient on DNA repair, in exponential and stationary growth phase, were exposed to low intensity infrared laser, aliquots were spread onto microscopic slides, stained by Gram method, visualized by optical microscopy, photographed and percentage of bacterial filamentation were determined. Low intensity infrared laser with therapeutic fluencies and different emission modes can induce bacterial filamentation in cultures of E. coli wild type, fpg/ mutM, endonuclease III and exonuclease III mutants in exponential and stationary growth phase. This study showed induction of bacterial, filamentation in E. coli cultures expose to low intensity infrared laser and attention to laser therapy protocols, which should take into account fluencies, wavelengths, tissue conditions, and genetic characteristics of cells before beginning treatment.

  18. Frequent pauses in Escherichia coli flagella elongation revealed by single cell real-time fluorescence imaging.

    PubMed

    Zhao, Ziyi; Zhao, Yifan; Zhuang, Xiang-Yu; Lo, Wei-Chang; Baker, Matthew A B; Lo, Chien-Jung; Bai, Fan

    2018-05-14

    The bacterial flagellum is a large extracellular protein organelle that extrudes from the cell surface. The flagellar filament is assembled from tens of thousands of flagellin subunits that are exported through the flagellar type III secretion system. Here, we measure the growth of Escherichia coli flagella in real time and find that, although the growth rate displays large variations at similar lengths, it decays on average as flagella lengthen. By tracking single flagella, we show that the large variations in growth rate occur as a result of frequent pauses. Furthermore, different flagella on the same cell show variable growth rates with correlation. Our observations are consistent with an injection-diffusion model, and we propose that an insufficient cytoplasmic flagellin supply is responsible for the pauses in flagellar growth in E. coli.

  19. Filament structure, organization, and dynamics in MreB sheets.

    PubMed

    Popp, David; Narita, Akihiro; Maeda, Kayo; Fujisawa, Tetsuro; Ghoshdastider, Umesh; Iwasa, Mitsusada; Maéda, Yuichiro; Robinson, Robert C

    2010-05-21

    In vivo fluorescence microscopy studies of bacterial cells have shown that the bacterial shape-determining protein and actin homolog, MreB, forms cable-like structures that spiral around the periphery of the cell. The molecular structure of these cables has yet to be established. Here we show by electron microscopy that Thermatoga maritime MreB forms complex, several mum long multilayered sheets consisting of diagonally interwoven filaments in the presence of either ATP or GTP. This architecture, in agreement with recent rheological measurements on MreB cables, may have superior mechanical properties and could be an important feature for maintaining bacterial cell shape. MreB polymers within the sheets appear to be single-stranded helical filaments rather than the linear protofilaments found in the MreB crystal structure. Sheet assembly occurs over a wide range of pH, ionic strength, and temperature. Polymerization kinetics are consistent with a cooperative assembly mechanism requiring only two steps: monomer activation followed by elongation. Steady-state TIRF microscopy studies of MreB suggest filament treadmilling while high pressure small angle x-ray scattering measurements indicate that the stability of MreB polymers is similar to that of F-actin filaments. In the presence of ADP or GDP, long, thin cables formed in which MreB was arranged in parallel as linear protofilaments. This suggests that the bacterial cell may exploit various nucleotides to generate different filament structures within cables for specific MreB-based functions.

  20. Quantitative Analysis of Filament Branch Orientation in Listeria Actin Comet Tails.

    PubMed

    Jasnin, Marion; Crevenna, Alvaro H

    2016-02-23

    Several bacterial and viral pathogens hijack the host actin cytoskeleton machinery to facilitate spread and infection. In particular, Listeria uses Arp2/3-mediated actin filament nucleation at the bacterial surface to generate a branched network that will help propel the bacteria. However, the mechanism of force generation remains elusive due to the lack of high-resolution three-dimensional structural data on the spatial organization of the actin mother and daughter (i.e., branch) filaments within this network. Here, we have explored the three-dimensional structure of Listeria actin tails in Xenopus laevis egg extracts using cryo-electron tomography. We found that the architecture of Listeria actin tails is shared between those formed in cells and in cell extracts. Both contained nanoscopic bundles along the plane of the substrate, where the bacterium lies, and upright filaments (also called Z filaments), both oriented tangentially to the bacterial cell wall. Here, we were able to identify actin filament intersections, which likely correspond to branches, within the tails. A quantitative analysis of putative Arp2/3-mediated branches in the actin network showed that mother filaments lie on the plane of the substrate, whereas daughter filaments have random deviations out of this plane. Moreover, the analysis revealed that branches are randomly oriented with respect to the bacterial surface. Therefore, the actin filament network does not push directly toward the surface but rather accumulates, building up stress around the Listeria surface. Our results favor a mechanism of force generation for Listeria movement where the stress is released into propulsive motion. Copyright © 2016 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  1. Interactions between multiple filaments and bacterial biofilms on the surface of an apple

    NASA Astrophysics Data System (ADS)

    He, CHENG; Maoyuan, XU; Shuhui, PAN; Xinpei, LU; Dawei, LIU

    2018-04-01

    In this paper, the interactions between two dielectric barrier discharge (DBD) filaments and three bacterial biofilms are simulated. The modeling of a DBD streamer is studied by means of 2D finite element calculation. The model is described by the proper governing equations of air DBD at atmospheric pressure and room temperature. The electric field in the computing domain and the self-consistent transportation of reactive species between a cathode and biofilms on the surface of an apple are realized by solving a Poisson equation and continuity equations. The electron temperature is solved by the electron energy conservation equation. The conductivity and permittivity of bacterial biofilms are considered, and the shapes of the bacterial biofilms are irregular in the uncertainty and randomness of colony growth. The distribution of the electrons suggests that two plasma channels divide into three plasma channels when the streamer are 1 mm from the biofilms. The toe-shapes of the biofilms and the simultaneous effect of two streamer heads result in a high electric field around the biofilms, therefore the stronger ionization facilitates the major part of two streamers combined into one streamer and three streamers arise. The distribution of the reactive oxygen species and the reactive nitrogen species captured by time fluences are non-uniform due to the toe-shaped bacterial biofilms. However, the plasma can intrude into the cavities in the adjacent biofilms due to the μm-scale mean free path. The two streamers case has a larger treatment area and realizes the simultaneous treatment of three biofilms compared with one streamer case.

  2. Magnetic Propulsion of Microswimmers with DNA-Based Flagellar Bundles.

    PubMed

    Maier, Alexander M; Weig, Cornelius; Oswald, Peter; Frey, Erwin; Fischer, Peer; Liedl, Tim

    2016-02-10

    We show that DNA-based self-assembly can serve as a general and flexible tool to construct artificial flagella of several micrometers in length and only tens of nanometers in diameter. By attaching the DNA flagella to biocompatible magnetic microparticles, we provide a proof of concept demonstration of hybrid structures that, when rotated in an external magnetic field, propel by means of a flagellar bundle, similar to self-propelling peritrichous bacteria. Our theoretical analysis predicts that flagellar bundles that possess a length-dependent bending stiffness should exhibit a superior swimming speed compared to swimmers with a single appendage. The DNA self-assembly method permits the realization of these improved flagellar bundles in good agreement with our quantitative model. DNA flagella with well-controlled shape could fundamentally increase the functionality of fully biocompatible nanorobots and extend the scope and complexity of active materials.

  3. Flagellar region 3b supports strong expression of integrated DNA and the highest chromosomal integration efficiency of the Escherichia coli flagellar regions.

    PubMed

    Juhas, Mario; Ajioka, James W

    2015-07-01

    The Gram-negative bacterium Escherichia coli is routinely used as the chassis for a variety of biotechnology and synthetic biology applications. Identification and analysis of reliable chromosomal integration and expression target loci is crucial for E. coli engineering. Chromosomal loci differ significantly in their ability to support integration and expression of the integrated genetic circuits. In this study, we investigate E. coli K12 MG1655 flagellar regions 2 and 3b. Integration of the genetic circuit into seven and nine highly conserved genes of the flagellar regions 2 (motA, motB, flhD, flhE, cheW, cheY and cheZ) and 3b (fliE, F, G, J, K, L, M, P, R), respectively, showed significant variation in their ability to support chromosomal integration and expression of the integrated genetic circuit. While not reducing the growth of the engineered strains, the integrations into all 16 target sites led to the loss of motility. In addition to high expression, the flagellar region 3b supports the highest efficiency of integration of all E. coli K12 MG1655 flagellar regions and is therefore potentially the most suitable for the integration of synthetic genetic circuits. © 2015 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  4. Role of the Dc domain of the bacterial hook protein FlgE in hook assembly and function

    PubMed Central

    Moriya, Nao; Minamino, Tohru; Ferris, Hedda U.; Morimoto, Yusuke V.; Ashihara, Masamichi; Kato, Takayuki; Namba, Keiichi

    2013-01-01

    The bacterial flagellar hook acts as a universal joint to smoothly transmit torque produced by the motor to the filament. The hook protein FlgE assembles into a 55 nm tubular structure with the help of the hook cap (FlgD). FlgE consists of four domains, D0, Dc, D1 and D2, arranged from the inner to the outer part of the tubular structure of the hook. The Dc domain contributes to the structural stability of the hook, but it is unclear how this Dc domain is responsible for the universal joint mechanism. Here, we carried out a deletion analysis of the FlgE Dc domain. FlgEΔ4/5 with deletion of residues 30 to 49 was not secreted into the culture media. FlgEΔ5 and FlgEΔ6 with deletions of residues 40 to 49 and 50 to 59, respectively, still formed hooks, allowing the export apparatus to export the hook-filament junction proteins FlgK and FlgL and flagellin FliC. However, these deletions inhibited the replacement of the FlgD hook cap by FlgK at the hook tip, thereby abolishing filament formation. Deletion of residues 50 to 59 significantly affected hook morphology. These results suggest that the Dc domain is responsible not only for hook assembly but also for FlgE export, the interaction with FlgK, and the polymorphic supercoiling mechanism of the hook. PMID:27493542

  5. Self-Elongation with Sequential Folding of a Filament of Bacterial Cells

    NASA Astrophysics Data System (ADS)

    Honda, Ryojiro; Wakita, Jun-ichi; Katori, Makoto

    2015-11-01

    Under hard-agar and nutrient-rich conditions, a cell of Bacillus subtilis grows as a single filament owing to the failure of cell separation after each growth and division cycle. The self-elongating filament of cells shows sequential folding processes, and multifold structures extend over an agar plate. We report that the growth process from the exponential phase to the stationary phase is well described by the time evolution of fractal dimensions of the filament configuration. We propose a method of characterizing filament configurations using a set of lengths of multifold parts of a filament. Systems of differential equations are introduced to describe the folding processes that create multifold structures in the early stage of the growth process. We show that the fitting of experimental data to the solutions of equations is excellent, and the parameters involved in our model systems are determined.

  6. Solid friction between soft filaments

    NASA Astrophysics Data System (ADS)

    Ward, Andrew; Hilitski, Feodor; Schwenger, Walter; Welch, David; Lau, A. W. C.; Vitelli, Vincenzo; Mahadevan, L.; Dogic, Zvonimir

    2015-06-01

    Any macroscopic deformation of a filamentous bundle is necessarily accompanied by local sliding and/or stretching of the constituent filaments. Yet the nature of the sliding friction between two aligned filaments interacting through multiple contacts remains largely unexplored. Here, by directly measuring the sliding forces between two bundled F-actin filaments, we show that these frictional forces are unexpectedly large, scale logarithmically with sliding velocity as in solid-like friction, and exhibit complex dependence on the filaments’ overlap length. We also show that a reduction of the frictional force by orders of magnitude, associated with a transition from solid-like friction to Stokes’s drag, can be induced by coating F-actin with polymeric brushes. Furthermore, we observe similar transitions in filamentous microtubules and bacterial flagella. Our findings demonstrate how altering a filament’s elasticity, structure and interactions can be used to engineer interfilament friction and thus tune the properties of fibrous composite materials.

  7. Solid friction between soft filaments

    DOE PAGES

    Ward, Andrew; Hilitski, Feodor; Schwenger, Walter; ...

    2015-03-02

    Any macroscopic deformation of a filamentous bundle is necessarily accompanied by local sliding and/or stretching of the constituent filaments. Yet the nature of the sliding friction between two aligned filaments interacting through multiple contacts remains largely unexplored. Here, by directly measuring the sliding forces between two bundled F-actin filaments, we show that these frictional forces are unexpectedly large, scale logarithmically with sliding velocity as in solid-like friction, and exhibit complex dependence on the filaments’ overlap length. We also show that a reduction of the frictional force by orders of magnitude, associated with a transition from solid-like friction to Stokes’s drag,more » can be induced by coating F-actin with polymeric brushes. Furthermore, we observe similar transitions in filamentous microtubules and bacterial flagella. In conclusion, our findings demonstrate how altering a filament’s elasticity, structure and interactions can be used to engineer interfilament friction and thus tune the properties of fibrous composite materials.« less

  8. A quantitative description of flagellar movement in golden hamster spermatozoa.

    PubMed

    Ishijima, S; Mohri, H

    1985-01-01

    Flagellar movement of golden hamster spermatozoa obtained from the testis and the caput and cauda epididymides was observed by a light microscope while holding them at their heads with a micropipette. Flagellar movement of capacitated spermatozoa and of reactivated spermatozoa demembranated with Triton X-100 was also observed. Testicular and caput epididymal spermatozoa showed weak movement in Tyrode's solution, whereas cauda epididymal spermatozoa showed vigorous movement. The flagellar bends of the cauda epididymal spermatozoa were almost planar. Capacitated spermatozoa moved with waves of a large amplitude. Demembranated spermatozoa reactivated with ATP only had a latent period before the initiation of flagellar movement, and beat at low frequency, whereas demembranated spermatozoa reactivated with both ATP and cAMP began to move immediately at high frequency. Thrust and hydrodynamic power output were calculated using the parameters for the typical waveforms of cauda epididymal spermatozoa before and after capacitation. The possible role of the large amplitude beat in capacitated spermatozoa is discussed. A comparison of the 'principal' and 'reverse' bends in golden hamster sperm flagella as defined by Woolley (1977) with those in sea urchin sperm flagella suggests that the so-called 'principal' bend in golden hamster sperm flagella corresponds to the reverse bend in sea urchin sperm flagella and vice versa.

  9. Lipopolysaccharide-Specific but Not Anti-Flagellar Immunoglobulin A Monoclonal Antibodies Prevent Salmonella enterica Serotype Enteritidis Invasion and Replication within HEp-2 Cell Monolayers

    PubMed Central

    Iankov, Ianko D.; Petrov, Dragomir P.; Mladenov, Ivan V.; Haralambieva, Iana H.; Mitov, Ivan G.

    2002-01-01

    The protective potential of immunoglobulin A (IgA) monoclonal antibodies (MAbs) directed against O and H antigens of Salmonella enterica serotype Enteritidis to prevent bacterial adhesion to and invasion of HEp-2 cells was evaluated. Although anti-flagellar IgA MAbs showed strong agglutinating capacities, they did not protect cell monolayers. In contrast, IgA MAbs specific for the O:9 epitope of Salmonella lipopolysaccharide antigen alone prevented S. enterica serotype Enteritidis entry and replication within HEp-2 cells, and the protection was not mediated by direct binding of antibodies to bacterial adhesins or by agglutination of microorganisms. PMID:11854252

  10. Intracellular Ca2+ threshold reversibly switches flagellar beat off and on.

    PubMed

    Sánchez-Cárdenas, C; Montoya, F; Navarrete, F A; Hernández-Cruz, A; Corkidi, G; Visconti, P E; Darszon, A

    2018-06-08

    Sperm motility is essential for fertilization. The asymmetry of flagellar beat in spermatozoa is finely regulated by intracellular calcium concentration ([Ca2+]i). Recently, we demonstrated that the application of high concentrations (10-20 μM) of the Ca2+ ionophore A23187 promotes sperm immobilization after 10 minutes, and its removal thereafter allows motility recovery, hyperactivation and fertilization. In addition, the same ionophore treatment overcomes infertility observed in sperm from Catsper1-/-, Slo3-/- and Adcy10-/-, but not PMCA4-/-, which strongly suggest that regulation of [Ca2+]i is mandatory for sperm motility and hyperactivation. In this study we found that prior to inducing sperm immobilization, high A23187 concentrations (10 μM) increase flagellar beat. While 5-10 μM A23187 substantially elevates [Ca2+]i and rapidly immobilizes sperm in a few minutes, smaller concentrations (0.5 and 1 μM) provoke smaller [Ca2+]i increases and sperm hyperactivation, confirming that [Ca2+]i increases act as a motility switch. Until now the [Ca2+]i thresholds that switch motility on and off were not fully understood. To study the relationship between [Ca2+]i and flagellar beating, we developed an automatic tool that allows the simultaneous measurement of these two parameters. Individual spermatozoa were treated with A23187 which is then washed to evaluate [Ca2+]i and flagellar beat recovery using the implemented method. We observe that [Ca2+]i must decrease below a threshold concentration range to facilitate subsequent flagellar beat recovery and sperm motility.

  11. Proteomic Analysis of Intact Flagella of Procyclic Trypanosoma brucei Cells Identifies Novel Flagellar Proteins with Unique Sub-localization and Dynamics*

    PubMed Central

    Subota, Ines; Julkowska, Daria; Vincensini, Laetitia; Reeg, Nele; Buisson, Johanna; Blisnick, Thierry; Huet, Diego; Perrot, Sylvie; Santi-Rocca, Julien; Duchateau, Magalie; Hourdel, Véronique; Rousselle, Jean-Claude; Cayet, Nadège; Namane, Abdelkader; Chamot-Rooke, Julia; Bastin, Philippe

    2014-01-01

    Cilia and flagella are complex organelles made of hundreds of proteins of highly variable structures and functions. Here we report the purification of intact flagella from the procyclic stage of Trypanosoma brucei using mechanical shearing. Structural preservation was confirmed by transmission electron microscopy that showed that flagella still contained typical elements such as the membrane, the axoneme, the paraflagellar rod, and the intraflagellar transport particles. It also revealed that flagella severed below the basal body, and were not contaminated by other cytoskeletal structures such as the flagellar pocket collar or the adhesion zone filament. Mass spectrometry analysis identified a total of 751 proteins with high confidence, including 88% of known flagellar components. Comparison with the cell debris fraction revealed that more than half of the flagellum markers were enriched in flagella and this enrichment criterion was taken into account to identify 212 proteins not previously reported to be associated to flagella. Nine of these were experimentally validated including a 14-3-3 protein not yet reported to be associated to flagella and eight novel proteins termed FLAM (FLAgellar Member). Remarkably, they localized to five different subdomains of the flagellum. For example, FLAM6 is restricted to the proximal half of the axoneme, no matter its length. In contrast, FLAM8 is progressively accumulating at the distal tip of growing flagella and half of it still needs to be added after cell division. A combination of RNA interference and Fluorescence Recovery After Photobleaching approaches demonstrated very different dynamics from one protein to the other, but also according to the stage of construction and the age of the flagellum. Structural proteins are added to the distal tip of the elongating flagellum and exhibit slow turnover whereas membrane proteins such as the arginine kinase show rapid turnover without a detectible polarity. PMID:24741115

  12. The Flagellar Protein FliL Is Essential for Swimming in Rhodobacter sphaeroides▿ †

    PubMed Central

    Suaste-Olmos, Fernando; Domenzain, Clelia; Mireles-Rodríguez, José Cruz; Poggio, Sebastian; Osorio, Aurora; Dreyfus, Georges; Camarena, Laura

    2010-01-01

    In this work we characterize the function of the flagellar protein FliL in Rhodobacter sphaeroides. Our results show that FliL is essential for motility in this bacterium and that in its absence flagellar rotation is highly impaired. A green fluorescent protein (GFP)-FliL fusion forms polar and lateral fluorescent foci that show different spatial dynamics. The presence of these foci is dependent on the expression of the flagellar genes controlled by the master regulator FleQ, suggesting that additional components of the flagellar regulon are required for the proper localization of GFP-FliL. Eight independent pseudorevertants were isolated from the fliL mutant strain. In each of these strains a single nucleotide change in motB was identified. The eight mutations affected only three residues located on the periplasmic side of MotB. Swimming of the suppressor mutants was not affected by the presence of the wild-type fliL allele. Pulldown and yeast two-hybrid assays showed that that the periplasmic domain of FliL is able to interact with itself but not with the periplasmic domain of MotB. From these results we propose that FliL could participate in the coupling of MotB with the flagellar rotor in an indirect fashion. PMID:20889747

  13. Coevolved Mutations Reveal Distinct Architectures for Two Core Proteins in the Bacterial Flagellar Motor

    PubMed Central

    Pandini, Alessandro; Kleinjung, Jens; Rasool, Shafqat; Khan, Shahid

    2015-01-01

    Switching of bacterial flagellar rotation is caused by large domain movements of the FliG protein triggered by binding of the signal protein CheY to FliM. FliG and FliM form adjacent multi-subunit arrays within the basal body C-ring. The movements alter the interaction of the FliG C-terminal (FliGC) “torque” helix with the stator complexes. Atomic models based on the Salmonella entrovar C-ring electron microscopy reconstruction have implications for switching, but lack consensus on the relative locations of the FliG armadillo (ARM) domains (amino-terminal (FliGN), middle (FliGM) and FliGC) as well as changes during chemotaxis. The generality of the Salmonella model is challenged by the variation in motor morphology and response between species. We studied coevolved residue mutations to determine the unifying elements of switch architecture. Residue interactions, measured by their coevolution, were formalized as a network, guided by structural data. Our measurements reveal a common design with dedicated switch and motor modules. The FliM middle domain (FliMM) has extensive connectivity most simply explained by conserved intra and inter-subunit contacts. In contrast, FliG has patchy, complex architecture. Conserved structural motifs form interacting nodes in the coevolution network that wire FliMM to the FliGC C-terminal, four-helix motor module (C3-6). FliG C3-6 coevolution is organized around the torque helix, differently from other ARM domains. The nodes form separated, surface-proximal patches that are targeted by deleterious mutations as in other allosteric systems. The dominant node is formed by the EHPQ motif at the FliMMFliGM contact interface and adjacent helix residues at a central location within FliGM. The node interacts with nodes in the N-terminal FliGc α-helix triad (ARM-C) and FliGN. ARM-C, separated from C3-6 by the MFVF motif, has poor intra-network connectivity consistent with its variable orientation revealed by structural data. ARM-C could

  14. Bacterial Actins.

    PubMed

    Izoré, Thierry; van den Ent, Fusinita

    2017-01-01

    A diverse set of protein polymers, structurally related to actin filaments contributes to the organization of bacterial cells as cytomotive or cytoskeletal filaments. This chapter describes actin homologs encoded by bacterial chromosomes. MamK filaments, unique to magnetotactic bacteria, help establishing magnetic biological compasses by interacting with magnetosomes. Magnetosomes are intracellular membrane invaginations containing biomineralized crystals of iron oxide that are positioned by MamK along the long-axis of the cell. FtsA is widespread across bacteria and it is one of the earliest components of the divisome to arrive at midcell, where it anchors the cell division machinery to the membrane. FtsA binds directly to FtsZ filaments and to the membrane through its C-terminus. FtsA shows altered domain architecture when compared to the canonical actin fold. FtsA's subdomain 1C replaces subdomain 1B of other members of the actin family and is located on the opposite side of the molecule. Nevertheless, when FtsA assembles into protofilaments, the protofilament structure is preserved, as subdomain 1C replaces subdomain IB of the following subunit in a canonical actin filament. MreB has an essential role in shape-maintenance of most rod-shaped bacteria. Unusually, MreB filaments assemble from two protofilaments in a flat and antiparallel arrangement. This non-polar architecture implies that both MreB filament ends are structurally identical. MreB filaments bind directly to membranes where they interact with both cytosolic and membrane proteins, thereby forming a key component of the elongasome. MreB filaments in cells are short and dynamic, moving around the long axis of rod-shaped cells, sensing curvature of the membrane and being implicated in peptidoglycan synthesis.

  15. Intraflagellar transport particle size scales inversely with flagellar length: revisiting the balance-point length control model.

    PubMed

    Engel, Benjamin D; Ludington, William B; Marshall, Wallace F

    2009-10-05

    The assembly and maintenance of eukaryotic flagella are regulated by intraflagellar transport (IFT), the bidirectional traffic of IFT particles (recently renamed IFT trains) within the flagellum. We previously proposed the balance-point length control model, which predicted that the frequency of train transport should decrease as a function of flagellar length, thus modulating the length-dependent flagellar assembly rate. However, this model was challenged by the differential interference contrast microscopy observation that IFT frequency is length independent. Using total internal reflection fluorescence microscopy to quantify protein traffic during the regeneration of Chlamydomonas reinhardtii flagella, we determined that anterograde IFT trains in short flagella are composed of more kinesin-associated protein and IFT27 proteins than trains in long flagella. This length-dependent remodeling of train size is consistent with the kinetics of flagellar regeneration and supports a revised balance-point model of flagellar length control in which the size of anterograde IFT trains tunes the rate of flagellar assembly.

  16. Purification and Thermal Stability of Intact Bacillus subtilis Flagella

    PubMed Central

    Dimmitt, K.; Simon, M.

    1971-01-01

    Flagella were prepared and purified in a relatively intact form from bacterial lysates. Immunochemical tests showed that over 95% of the protein in the final preparation consisted of flagellar antigen. These flagella are more stable to thermal denaturation than flagella filaments obtained by shearing. Their thermal properties more closely resemble those of flagella in the native state on bacteria. The presence of the hook structure is responsible for this extra stability. Images PMID:4993323

  17. The dynamic instability in the hook/flagellum system that triggers bacterial flicks

    NASA Astrophysics Data System (ADS)

    Jabbarzadeh, Mehdi; Fu, Henry

    2017-11-01

    Dynamical bending, buckling, and polymorphic transformations of the flagellum are known to affect bacterial motility, but run-reverse-flick motility of monotrichous bacteria also involves the even more flexible hook, which connects the flagellum to the cell body. Here, we identify the dynamic buckling mechanism that produces flicks in Vibrio alginolyticus. Estimates of forces and torques on the hook from experimental observations suggest that flicks are triggered at stresses below the hook's static Euler buckling criterion. Using an accurate linearization of the Kirchoff rod model for the hook in a model of a swimming bacterium with rigid flagellum, we show that as hook stiffness decreases there is a transition from on-axis flagellar rotation with small hook deflections to flagellar precession with large deflections. When flagellum flexibility is incorporated, the precession is disrupted by significant flagellar bending - i.e., incipient flicks. The predicted onset of dynamic instabilities corresponds well with experimentally observed flick events.

  18. Species-dependent hydrodynamics of flagellum-tethered bacteria in early biofilm development.

    PubMed

    Bennett, Rachel R; Lee, Calvin K; De Anda, Jaime; Nealson, Kenneth H; Yildiz, Fitnat H; O'Toole, George A; Wong, Gerard C L; Golestanian, Ramin

    2016-02-01

    Monotrichous bacteria on surfaces exhibit complex spinning movements. Such spinning motility is often a part of the surface detachment launch sequence of these cells. To understand the impact of spinning motility on bacterial surface interactions, we develop a hydrodynamic model of a surface-bound bacterium, which reproduces behaviours that we observe in Pseudomonas aeruginosa, Shewanella oneidensis and Vibrio cholerae, and provides a detailed dictionary for connecting observed spinning behaviour to bacteria-surface interactions. Our findings indicate that the fraction of the flagellar filament adhered to the surface, the rotation torque of this appendage, the flexibility of the flagellar hook and the shape of the bacterial cell dictate the likelihood that a microbe will detach and the optimum orientation that it should have during detachment. These findings are important for understanding species-specific reversible attachment, the key transition event between the planktonic and biofilm lifestyle for motile, rod-shaped organisms. © 2016 The Author(s).

  19. Transcriptional regulation of coordinate changes in flagellar mRNAs during differentiation of Naegleria gruberi amoebae into flagellates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, J.H.; Walsh, C.J.

    1988-06-01

    The nuclear run-on technique was used to measure the rate of transcription of flagellar genes during the differentiation of Naegleria gruberi amebae into flagellates. Synthesis of mRNAs for the axonemal proteins ..cap alpha..- and BETA-tubulin and flagellar calmodulin, as well as a coordinately regulated poly(A)/sup +/ RNA that codes for an unidentified protein, showed transient increases averaging 22-fold. The rate of synthesis of two poly(A)/sup +/ RNAs common to ameobae and flagellates was low until the transcription of the flagellar genes began to decline, at which time synthesis of the RNAs found in ameobae increased 3- to 10-fold. The observedmore » changes in the rate of transcription can account quantitatively for the 20-fold increase in flagellar mRNA concentration during the differentiation. The data for the flagellar calmodulin gene demonstrate transcriptional regulation for a nontubulin axonemal protein. The data also demonstrate at least two programs of transcriptional regulation during the differentiation and raise the intriguing possibility that some significant fraction of the nearly 200 different proteins of the flagellar axoneme is transcriptionally regulated during the 1 h it takes N. gruberi amebae to form visible flagella.« less

  20. Common Evolutionary Origin for the Rotor Domain of Rotary Atpases and Flagellar Protein Export Apparatus

    PubMed Central

    Kishikawa, Jun-ichi; Ibuki, Tatsuya; Nakamura, Shuichi; Nakanishi, Astuko; Minamino, Tohru; Miyata, Tomoko; Namba, Keiichi; Konno, Hiroki; Ueno, Hiroshi; Imada, Katsumi; Yokoyama, Ken

    2013-01-01

    The V1- and F1- rotary ATPases contain a rotor that rotates against a catalytic A3B3 or α3β3 stator. The rotor F1-γ or V1-DF is composed of both anti-parallel coiled coil and globular-loop parts. The bacterial flagellar type III export apparatus contains a V1/F1-like ATPase ring structure composed of FliI6 homo-hexamer and FliJ which adopts an anti-parallel coiled coil structure without the globular-loop part. Here we report that FliJ of Salmonella enterica serovar Typhimurium shows a rotor like function in Thermus thermophilus A3B3 based on both biochemical and structural analysis. Single molecular analysis indicates that an anti-parallel coiled-coil structure protein (FliJ structure protein) functions as a rotor in A3B3. A rotary ATPase possessing an F1-γ-like protein generated by fusion of the D and F subunits of V1 rotates, suggesting F1-γ could be the result of a fusion of the genes encoding two separate rotor subunits. Together with sequence comparison among the globular part proteins, the data strongly suggest that the rotor domains of the rotary ATPases and the flagellar export apparatus share a common evolutionary origin. PMID:23724081

  1. Filamentous phages of Ralstonia solanacearum: double-edged swords for pathogenic bacteria.

    PubMed

    Yamada, Takashi

    2013-01-01

    Some phages from genus Inovirus use host or bacteriophage-encoded site-specific integrases or recombinases establish a prophage state. During integration or excision, a superinfective form can be produced. The three states (free, prophage, and superinfective) of such phages exert different effects on host bacterial phenotypes. In Ralstonia solanacearum, the causative agent of bacterial wilt disease of crops, the bacterial virulence can be positively or negatively affected by filamentous phages, depending on their state. The presence or absence of a repressor gene in the phage genome may be responsible for the host phenotypic differences (virulent or avirulent) caused by phage infection. This strategy of virulence control may be widespread among filamentous phages that infect pathogenic bacteria of plants.

  2. Bacterial flagella and Type III secretion: case studies in the evolution of complexity.

    PubMed

    Pallen, M J; Gophna, U

    2007-01-01

    Bacterial flagella at first sight appear uniquely sophisticated in structure, so much so that they have even been considered 'irreducibly complex' by the intelligent design movement. However, a more detailed analysis reveals that these remarkable pieces of molecular machinery are the product of processes that are fully compatible with Darwinian evolution. In this chapter we present evidence for such processes, based on a review of experimental studies, molecular phylogeny and microbial genomics. Several processes have played important roles in flagellar evolution: self-assembly of simple repeating subunits, gene duplication with subsequent divergence, recruitment of elements from other systems ('molecular bricolage'), and recombination. We also discuss additional tentative new assignments of homology (FliG with MgtE, FliO with YscJ). In conclusion, rather than providing evidence of intelligent design, flagellar and non-flagellar Type III secretion systems instead provide excellent case studies in the evolution of complex systems from simpler components.

  3. Role of calmodulin and calcineurin in regulating flagellar motility and wave polarity in Leishmania.

    PubMed

    Mukhopadhyay, Aakash Gautam; Dey, Chinmoy Sankar

    2017-11-01

    We have previously reported the involvement of cyclic AMP in regulating flagellar waveforms in Leishmania. Here, we investigated the roles of calcium, calmodulin, and calcineurin in flagellar motility regulation in L. donovani. Using high-speed videomicroscopy, we show that calcium-independent calmodulin and calcineurin activity is necessary for motility in Leishmania. Inhibition of calmodulin and calcineurin induced ciliary beats interrupting flagellar beating in both live (in vivo) and ATP-reactivated (in vitro) parasites. Our results indicate that signaling mediated by calmodulin and calcineurin operates antagonistically to cAMP signaling in regulating the waveforms of Leishmania flagellum. These two pathways are possibly involved in maintaining the balance between the two waveforms, essential for responding to environmental cues, survival, and infectivity.

  4. A bacterial hydrogen-dependent CO2 reductase forms filamentous structures.

    PubMed

    Schuchmann, Kai; Vonck, Janet; Müller, Volker

    2016-04-01

    Interconversion of CO2 and formic acid is an important reaction in bacteria. A novel enzyme complex that directly utilizes molecular hydrogen as electron donor for the reversible reduction of CO2 has recently been identified in the Wood-Ljungdahl pathway of an acetogenic bacterium. This pathway is utilized for carbon fixation as well as energy conservation. Here we describe the further characterization of the quaternary structure of this enzyme complex and the unexpected behavior of this enzyme in polymerizing into filamentous structures. Polymerization of metabolic enzymes into similar structures has been observed only in rare cases but the increasing number of examples point towards a more general characteristic of enzyme functioning. Polymerization of the purified enzyme into ordered filaments of more than 0.1 μm in length was only dependent on the presence of divalent cations. Polymerization was a reversible process and connected to the enzymatic activity of the oxygen-sensitive enzyme with the filamentous form being the most active state. © 2016 Federation of European Biochemical Societies.

  5. Prokaryotic cytoskeletons: protein filaments organizing small cells.

    PubMed

    Wagstaff, James; Löwe, Jan

    2018-04-01

    Most, if not all, bacterial and archaeal cells contain at least one protein filament system. Although these filament systems in some cases form structures that are very similar to eukaryotic cytoskeletons, the term 'prokaryotic cytoskeletons' is used to refer to many different kinds of protein filaments. Cytoskeletons achieve their functions through polymerization of protein monomers and the resulting ability to access length scales larger than the size of the monomer. Prokaryotic cytoskeletons are involved in many fundamental aspects of prokaryotic cell biology and have important roles in cell shape determination, cell division and nonchromosomal DNA segregation. Some of the filament-forming proteins have been classified into a small number of conserved protein families, for example, the almost ubiquitous tubulin and actin superfamilies. To understand what makes filaments special and how the cytoskeletons they form enable cells to perform essential functions, the structure and function of cytoskeletal molecules and their filaments have been investigated in diverse bacteria and archaea. In this Review, we bring these data together to highlight the diverse ways that linear protein polymers can be used to organize other molecules and structures in bacteria and archaea.

  6. Tuning bacterial hydrodynamics with magnetic fields

    NASA Astrophysics Data System (ADS)

    Pierce, C. J.; Mumper, E.; Brown, E. E.; Brangham, J. T.; Lower, B. H.; Lower, S. K.; Yang, F. Y.; Sooryakumar, R.

    2017-06-01

    Magnetotactic bacteria are a group of motile prokaryotes that synthesize chains of lipid-bound, magnetic nanoparticles called magnetosomes. This study exploits their innate magnetism to investigate previously unexplored facets of bacterial hydrodynamics at surfaces. Through use of weak, uniform, external magnetic fields and local, micromagnetic surface patterns, the relative strength of hydrodynamic, magnetic, and flagellar force components is tuned through magnetic control of the bacteria's orientation. The resulting swimming behaviors provide a means to experimentally determine hydrodynamic parameters and offer a high degree of control over large numbers of living microscopic entities. The implications of this controlled motion for studies of bacterial motility near surfaces and for micro- and nanotechnology are discussed.

  7. Numerical studies of bacterial-carpet microflows

    NASA Astrophysics Data System (ADS)

    Huber, Greg; Tillberg, Dan; Powers, Thomas R.

    2004-03-01

    Bacterial carpets are arrays of motile bacteria attached to two-dimensional surfaces. Improved understanding of carpet flows is important in the design of microfluidic devices and transport systems powered by bacterial flagellar motion. In recent experiments by the group of Howard Berg, cells of swarming S. marcescens are stuck to the surface, with most of their flagella free to rotate in the fluid. These studies show modified transport and greatly enhanced diffusion near the active carpet surface. We present theoretical models of the flagella-driven flow, bridging the nano- to the macro-scale, simulate the diffusion and advection of passive tracers, and compare the numerical results with the tracking data of Berg et al.

  8. The Bacterial Actin MamK

    PubMed Central

    Ozyamak, Ertan; Kollman, Justin; Agard, David A.; Komeili, Arash

    2013-01-01

    It is now recognized that actin-like proteins are widespread in bacteria and, in contrast to eukaryotic actins, are highly diverse in sequence and function. The bacterial actin, MamK, represents a clade, primarily found in magnetotactic bacteria, that is involved in the proper organization of subcellular organelles, termed magnetosomes. We have previously shown that MamK from Magnetospirillum magneticum AMB-1 (AMB-1) forms dynamic filaments in vivo. To gain further insights into the molecular mechanisms that underlie MamK dynamics and function, we have now studied the in vitro properties of MamK. We demonstrate that MamK is an ATPase that, in the presence of ATP, assembles rapidly into filaments that disassemble once ATP is depleted. The mutation of a conserved active site residue (E143A) abolishes ATPase activity of MamK but not its ability to form filaments. Filament disassembly depends on both ATPase activity and potassium levels, the latter of which results in the organization of MamK filaments into bundles. These data are consistent with observations indicating that accessory factors are required to promote filament disassembly and for spatial organization of filaments in vivo. We also used cryo-electron microscopy to obtain a high resolution structure of MamK filaments. MamK adopts a two-stranded helical filament architecture, but unlike eukaryotic actin and other actin-like filaments, subunits in MamK strands are unstaggered giving rise to a unique filament architecture. Beyond extending our knowledge of the properties and function of MamK in magnetotactic bacteria, this study emphasizes the functional and structural diversity of bacterial actins in general. PMID:23204522

  9. Bacterial actin MreB forms antiparallel double filaments

    PubMed Central

    van den Ent, Fusinita; Izoré, Thierry; Bharat, Tanmay AM; Johnson, Christopher M; Löwe, Jan

    2014-01-01

    Filaments of all actin-like proteins known to date are assembled from pairs of protofilaments that are arranged in a parallel fashion, generating polarity. In this study, we show that the prokaryotic actin homologue MreB forms pairs of protofilaments that adopt an antiparallel arrangement in vitro and in vivo. We provide an atomic view of antiparallel protofilaments of Caulobacter MreB as apparent from crystal structures. We show that a protofilament doublet is essential for MreB's function in cell shape maintenance and demonstrate by in vivo site-specific cross-linking the antiparallel orientation of MreB protofilaments in E. coli. 3D cryo-EM shows that pairs of protofilaments of Caulobacter MreB tightly bind to membranes. Crystal structures of different nucleotide and polymerisation states of Caulobacter MreB reveal conserved conformational changes accompanying antiparallel filament formation. Finally, the antimicrobial agents A22/MP265 are shown to bind close to the bound nucleotide of MreB, presumably preventing nucleotide hydrolysis and destabilising double protofilaments. DOI: http://dx.doi.org/10.7554/eLife.02634.001 PMID:24843005

  10. Sodium-driven energy conversion for flagellar rotation of the earliest divergent hyperthermophilic bacterium.

    PubMed

    Takekawa, Norihiro; Nishiyama, Masayoshi; Kaneseki, Tsuyoshi; Kanai, Tamotsu; Atomi, Haruyuki; Kojima, Seiji; Homma, Michio

    2015-08-05

    Aquifex aeolicus is a hyperthermophilic, hydrogen-oxidizing and carbon-fixing bacterium that can grow at temperatures up to 95 °C. A. aeolicus has an almost complete set of flagellar genes that are conserved in bacteria. Here we observed that A. aeolicus has polar flagellum and can swim with a speed of 90 μm s(-1) at 85 °C. We expressed the A. aeolicus mot genes (motA and motB), which encode the torque generating stator proteins of the flagellar motor, in a corresponding mot nonmotile mutant of Escherichia coli. Its motility was slightly recovered by expression of A. aeolicus MotA and chimeric MotB whose periplasmic region was replaced with that of E. coli. A point mutation in the A. aeolicus MotA cytoplasmic region remarkably enhanced the motility. Using this system in E. coli, we demonstrate that the A. aeolicus motor is driven by Na(+). As motor proteins from hyperthermophilic bacteria represent the earliest motor proteins in evolution, this study strongly suggests that ancient bacteria used Na(+) for energy coupling of the flagellar motor. The Na(+)-driven flagellar genes might have been laterally transferred from early-branched bacteria into late-branched bacteria and the interaction surfaces of the stator and rotor seem not to change in evolution.

  11. Crystallization of FcpA from Leptospira, a novel flagellar protein that is essential for pathogenesis.

    PubMed

    San Martin, Fabiana; Mechaly, Ariel E; Larrieux, Nicole; Wunder, Elsio A; Ko, Albert I; Picardeau, Mathieu; Trajtenberg, Felipe; Buschiazzo, Alejandro

    2017-03-01

    The protein FcpA is a unique component of the flagellar filament of spirochete bacteria belonging to the genus Leptospira. Although it plays an essential role in translational motility and pathogenicity, no structures of FcpA homologues are currently available in the PDB. Its three-dimensional structure will unveil the novel motility mechanisms that render pathogenic Leptospira particularly efficient at invading and disseminating within their hosts, causing leptospirosis in humans and animals. FcpA from L. interrogans was purified and crystallized, but despite laborious attempts no useful X ray diffraction data could be obtained. This challenge was solved by expressing a close orthologue from the related saprophytic species L. biflexa. Three different crystal forms were obtained: a primitive and a centred monoclinic form, as well as a hexagonal variant. All forms diffracted X-rays to suitable resolutions for crystallographic analyses, with the hexagonal type typically reaching the highest limits of 2.0 Å and better. A variation of the quick-soaking procedure resulted in an iodide derivative that was instrumental for single-wavelength anomalous diffraction methods.

  12. Arsenate arrests flagellar rotation in cytoplasm-free envelopes of bacteria.

    PubMed Central

    Margolin, Y; Barak, R; Eisenbach, M

    1994-01-01

    The effect of arsenate on flagellar rotation in cytoplasm-free flagellated envelopes of Escherichia coli and Salmonella typhimurium was investigated. Flagellar rotation ceased as soon as the envelopes were exposed to arsenate. Inclusion of phosphate intracellularly (but not extracellular) prevented the inhibition by arsenate. In a parallel experiment, the rotation was not affected by inclusion of an ATP trap (hexokinase and glucose) within the envelopes. It is concluded that arsenate affects the motor in a way other than reversible deenergization. This may be an irreversible damage to the cell or direct inhibition of the motor by arsenate. The latter possibility suggests that a process of phosphorylation or phosphate binding is involved in the motor function. PMID:8071237

  13. Asymmetry in the clockwise and counterclockwise rotation of the bacterial flagellar motor

    PubMed Central

    Yuan, Junhua; Fahrner, Karen A.; Turner, Linda; Berg, Howard C.

    2010-01-01

    Cells of Escherichia coli are able to swim up gradients of chemical attractants by modulating the direction of rotation of their flagellar motors, which spin alternately clockwise (CW) and counterclockwise (CCW). Rotation in either direction has been thought to be symmetric and exhibit the same torques and speeds. The relationship between torque and speed is one of the most important measurable characteristics of the motor, used to distinguish specific mechanisms of motor rotation. Previous measurements of the torque–speed relationship have been made with cells lacking the response regulator CheY that spin their motors exclusively CCW. In this case, the torque declines slightly up to an intermediate speed called the “knee speed” after which it falls rapidly to zero. This result is consistent with a “power-stroke” mechanism for torque generation. Here, we measure the torque–speed relationship for cells that express large amounts of CheY and only spin their motors CW. We find that the torque decreases linearly with speed, a result remarkably different from that for CCW rotation. We obtain similar results for wild-type cells by reexamining data collected in previous work. We speculate that CCW rotation might be optimized for runs, with higher speeds increasing the ability of cells to sense spatial gradients, whereas CW rotation might be optimized for tumbles, where the object is to change cell trajectories. But why a linear torque–speed relationship might be optimum for the latter purpose we do not know. PMID:20615986

  14. SnapShot: The Bacterial Cytoskeleton.

    PubMed

    Fink, Gero; Szewczak-Harris, Andrzej; Löwe, Jan

    2016-07-14

    Most bacteria and archaea contain filamentous proteins and filament systems that are collectively known as the bacterial cytoskeleton, though not all of them are cytoskeletal, affect cell shape, or maintain intracellular organization. To view this SnapShot, open or download the PDF. Copyright © 2016. Published by Elsevier Inc.

  15. Genome-wide transcriptional analysis of flagellar regeneration in Chlamydomonas reinhardtii identifies orthologs of ciliary disease genes

    NASA Technical Reports Server (NTRS)

    Stolc, Viktor; Samanta, Manoj Pratim; Tongprasit, Waraporn; Marshall, Wallace F.

    2005-01-01

    The important role that cilia and flagella play in human disease creates an urgent need to identify genes involved in ciliary assembly and function. The strong and specific induction of flagellar-coding genes during flagellar regeneration in Chlamydomonas reinhardtii suggests that transcriptional profiling of such cells would reveal new flagella-related genes. We have conducted a genome-wide analysis of RNA transcript levels during flagellar regeneration in Chlamydomonas by using maskless photolithography method-produced DNA oligonucleotide microarrays with unique probe sequences for all exons of the 19,803 predicted genes. This analysis represents previously uncharacterized whole-genome transcriptional activity profiling study in this important model organism. Analysis of strongly induced genes reveals a large set of known flagellar components and also identifies a number of important disease-related proteins as being involved with cilia and flagella, including the zebrafish polycystic kidney genes Qilin, Reptin, and Pontin, as well as the testis-expressed tubby-like protein TULP2.

  16. Flagellar glycosylation in Clostridium botulinum.

    PubMed

    Twine, Susan M; Paul, Catherine J; Vinogradov, Evgeny; McNally, David J; Brisson, Jean-Robert; Mullen, James A; McMullin, David R; Jarrell, Harold C; Austin, John W; Kelly, John F; Logan, Susan M

    2008-09-01

    Flagellins from Clostridium botulinum were shown to be post-translationally modified with novel glycan moieties by top-down MS analysis of purified flagellin protein from strains of various toxin serotypes. Detailed analyses of flagellin from two strains of C. botulinum demonstrated that the protein is modified by a novel glycan moiety of mass 417 Da in O-linkage. Bioinformatic analysis of available C. botulinum genomes identified a flagellar glycosylation island containing homologs of genes recently identified in Campylobacter coli that have been shown to be responsible for the biosynthesis of legionaminic acid derivatives. Structural characterization of the carbohydrate moiety was completed utilizing both MS and NMR spectroscopy, and it was shown to be a novel legionaminic acid derivative, 7-acetamido-5-(N-methyl-glutam-4-yl)-amino-3,5,7,9-tetradeoxy-D-glycero-alpha-D-galacto-nonulosonic acid, (alphaLeg5GluNMe7Ac). Electron transfer dissociation MS with and without collision-activated dissociation was utilized to map seven sites of O-linked glycosylation, eliminating the need for chemical derivatization of tryptic peptides prior to analysis. Marker ions for novel glycans, as well as a unique C-terminal flagellin peptide marker ion, were identified in a top-down analysis of the intact protein. These ions have the potential for use in for rapid detection and discrimination of C. botulinum cells, indicating botulinum neurotoxin contamination. This is the first report of glycosylation of Gram-positive flagellar proteins by the 'sialic acid-like' nonulosonate sugar, legionaminic acid.

  17. Bacterial actin MreB forms antiparallel double filaments.

    PubMed

    van den Ent, Fusinita; Izoré, Thierry; Bharat, Tanmay Am; Johnson, Christopher M; Löwe, Jan

    2014-05-02

    Filaments of all actin-like proteins known to date are assembled from pairs of protofilaments that are arranged in a parallel fashion, generating polarity. In this study, we show that the prokaryotic actin homologue MreB forms pairs of protofilaments that adopt an antiparallel arrangement in vitro and in vivo. We provide an atomic view of antiparallel protofilaments of Caulobacter MreB as apparent from crystal structures. We show that a protofilament doublet is essential for MreB's function in cell shape maintenance and demonstrate by in vivo site-specific cross-linking the antiparallel orientation of MreB protofilaments in E. coli. 3D cryo-EM shows that pairs of protofilaments of Caulobacter MreB tightly bind to membranes. Crystal structures of different nucleotide and polymerisation states of Caulobacter MreB reveal conserved conformational changes accompanying antiparallel filament formation. Finally, the antimicrobial agents A22/MP265 are shown to bind close to the bound nucleotide of MreB, presumably preventing nucleotide hydrolysis and destabilising double protofilaments.DOI: http://dx.doi.org/10.7554/eLife.02634.001. Copyright © 2014, van den Ent et al.

  18. Motion of variable-length MreB filaments at the bacterial cell membrane influences cell morphology

    PubMed Central

    Reimold, Christian; Defeu Soufo, Herve Joel; Dempwolff, Felix; Graumann, Peter L.

    2013-01-01

    The maintenance of rod-cell shape in many bacteria depends on actin-like MreB proteins and several membrane proteins that interact with MreB. Using superresolution microscopy, we show that at 50-nm resolution, Bacillus subtilis MreB forms filamentous structures of length up to 3.4 μm underneath the cell membrane, which run at angles diverging up to 40° relative to the cell circumference. MreB from Escherichia coli forms at least 1.4-μm-long filaments. MreB filaments move along various tracks with a maximal speed of 85 nm/s, and the loss of ATPase activity leads to the formation of extended and static filaments. Suboptimal growth conditions lead to formation of patch-like structures rather than extended filaments. Coexpression of wild-type MreB with MreB mutated in the subunit interface leads to formation of shorter MreB filaments and a strong effect on cell shape, revealing a link between filament length and cell morphology. Thus MreB has an extended-filament architecture with the potential to position membrane proteins over long distances, whose localization in turn may affect the shape of the cell wall. PMID:23783036

  19. Motion of variable-length MreB filaments at the bacterial cell membrane influences cell morphology.

    PubMed

    Reimold, Christian; Defeu Soufo, Herve Joel; Dempwolff, Felix; Graumann, Peter L

    2013-08-01

    The maintenance of rod-cell shape in many bacteria depends on actin-like MreB proteins and several membrane proteins that interact with MreB. Using superresolution microscopy, we show that at 50-nm resolution, Bacillus subtilis MreB forms filamentous structures of length up to 3.4 μm underneath the cell membrane, which run at angles diverging up to 40° relative to the cell circumference. MreB from Escherichia coli forms at least 1.4-μm-long filaments. MreB filaments move along various tracks with a maximal speed of 85 nm/s, and the loss of ATPase activity leads to the formation of extended and static filaments. Suboptimal growth conditions lead to formation of patch-like structures rather than extended filaments. Coexpression of wild-type MreB with MreB mutated in the subunit interface leads to formation of shorter MreB filaments and a strong effect on cell shape, revealing a link between filament length and cell morphology. Thus MreB has an extended-filament architecture with the potential to position membrane proteins over long distances, whose localization in turn may affect the shape of the cell wall.

  20. Long helical filaments are not seen encircling cells in electron cryotomograms of rod-shaped bacteria

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Swulius, Matthew T.; Chen, Songye; Jane Ding, H.

    2011-04-22

    Highlights: {yields} No long helical filaments are seen near or along rod-shaped bacterial inner membranes by electron cryo-tomography. {yields} Electron cryo-tomography has the resolution to detect single filaments in vivo. -- Abstract: How rod-shaped bacteria form and maintain their shape is an important question in bacterial cell biology. Results from fluorescent light microscopy have led many to believe that the actin homolog MreB and a number of other proteins form long helical filaments along the inner membrane of the cell. Here we show using electron cryotomography of six different rod-shaped bacterial species, at macromolecular resolution, that no long (>80 nm)more » helical filaments exist near or along either surface of the inner membrane. We also use correlated cryo-fluorescent light microscopy (cryo-fLM) and electron cryo-tomography (ECT) to identify cytoplasmic bundles of MreB, showing that MreB filaments are detectable by ECT. In light of these results, the structure and function of MreB must be reconsidered: instead of acting as a large, rigid scaffold that localizes cell-wall synthetic machinery, moving MreB complexes may apply tension to growing peptidoglycan strands to ensure their orderly, linear insertion.« less

  1. Superresolution imaging of dynamic MreB filaments in B. subtilis--a multiple-motor-driven transport?

    PubMed

    Olshausen, Philipp V; Defeu Soufo, Hervé Joël; Wicker, Kai; Heintzmann, Rainer; Graumann, Peter L; Rohrbach, Alexander

    2013-09-03

    The cytoskeletal protein MreB is an essential component of the bacterial cell-shape generation system. Using a superresolution variant of total internal reflection microscopy with structured illumination, as well as three-dimensional stacks of deconvolved epifluorescence microscopy, we found that inside living Bacillus subtilis cells, MreB forms filamentous structures of variable lengths, typically not longer than 1 μm. These filaments move along their orientation and mainly perpendicular to the long bacterial axis, revealing a maximal velocity at an intermediate length and a decreasing velocity with increasing filament length. Filaments move along straight trajectories but can reverse or alter their direction of propagation. Based on our measurements, we provide a mechanistic model that is consistent with all observations. In this model, MreB filaments mechanically couple several motors that putatively synthesize the cell wall, whereas the filaments' traces mirror the trajectories of the motors. On the basis of our mechanistic model, we developed a mathematical model that can explain the nonlinear velocity length dependence. We deduce that the coupling of cell wall synthesis motors determines the MreB filament transport velocity, and the filament mechanically controls a concerted synthesis of parallel peptidoglycan strands to improve cell wall stability. Copyright © 2013 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  2. Emergent multicellular life cycles in filamentous bacteria owing to density-dependent population dynamics.

    PubMed

    Rossetti, Valentina; Filippini, Manuela; Svercel, Miroslav; Barbour, A D; Bagheri, Homayoun C

    2011-12-07

    Filamentous bacteria are the oldest and simplest known multicellular life forms. By using computer simulations and experiments that address cell division in a filamentous context, we investigate some of the ecological factors that can lead to the emergence of a multicellular life cycle in filamentous life forms. The model predicts that if cell division and death rates are dependent on the density of cells in a population, a predictable cycle between short and long filament lengths is produced. During exponential growth, there will be a predominance of multicellular filaments, while at carrying capacity, the population converges to a predominance of short filaments and single cells. Model predictions are experimentally tested and confirmed in cultures of heterotrophic and phototrophic bacterial species. Furthermore, by developing a formulation of generation time in bacterial populations, it is shown that changes in generation time can alter length distributions. The theory predicts that given the same population growth curve and fitness, species with longer generation times have longer filaments during comparable population growth phases. Characterization of the environmental dependence of morphological properties such as length, and the number of cells per filament, helps in understanding the pre-existing conditions for the evolution of developmental cycles in simple multicellular organisms. Moreover, the theoretical prediction that strains with the same fitness can exhibit different lengths at comparable growth phases has important implications. It demonstrates that differences in fitness attributed to morphology are not the sole explanation for the evolution of life cycles dominated by multicellularity.

  3. Instabilities of a rotating helical rod

    NASA Astrophysics Data System (ADS)

    Park, Yunyoung; Ko, William; Kim, Yongsam; Lim, Sookkyung

    2016-11-01

    Bacteria such as Escherichia coli and Vibrio alginolyticus have helical flagellar filament. By rotating a motor, which is located at the bottom end of the flagellar filament embedded in the cell body, CCW or CW, they swim forward or backward. We model a left-handed helix by the Kirchhoff rod theory and use regularized Stokes formulation to study an interaction between the surrounding fluid and the flagellar filament. We perform numerical studies focusing on relations between physical parameters and critical angular frequency of the motor, which separates overwhiring from twirling. We are also interested in the buckling instability of the hook, which is very flexible elastic rod. By measuring buckling angle, which is an angle between rotational axis and helical axis, we observe the effects of physical parameters on buckling of the hook.

  4. Bacillus subtilis MreB orthologs self-organize into filamentous structures underneath the cell membrane in a heterologous cell system.

    PubMed

    Dempwolff, Felix; Reimold, Christian; Reth, Michael; Graumann, Peter L

    2011-01-01

    Actin-like bacterial cytoskeletal element MreB has been shown to be essential for the maintenance of rod cell shape in many bacteria. MreB forms rapidly remodelling helical filaments underneath the cell membrane in Bacillus subtilis and in other bacterial cells, and co-localizes with its two paralogs, Mbl and MreBH. We show that MreB localizes as dynamic bundles of filaments underneath the cell membrane in Drosophila S2 Schneider cells, which become highly stable when the ATPase motif in MreB is modified. In agreement with ATP-dependent filament formation, the depletion of ATP in the cells lead to rapid dissociation of MreB filaments. Extended induction of MreB resulted in the formation of membrane protrusions, showing that like actin, MreB can exert force against the cell membrane. Mbl also formed membrane associated filaments, while MreBH formed filaments within the cytosol. When co-expressed, MreB, Mbl and MreBH built up mixed filaments underneath the cell membrane. Membrane protein RodZ localized to endosomes in S2 cells, but localized to the cell membrane when co-expressed with Mbl, showing that bacterial MreB/Mbl structures can recruit a protein to the cell membrane. Thus, MreB paralogs form a self-organizing and dynamic filamentous scaffold underneath the membrane that is able to recruit other proteins to the cell surface.

  5. Bacillus subtilis MreB Orthologs Self-Organize into Filamentous Structures underneath the Cell Membrane in a Heterologous Cell System

    PubMed Central

    Dempwolff, Felix; Reimold, Christian; Reth, Michael; Graumann, Peter L.

    2011-01-01

    Actin-like bacterial cytoskeletal element MreB has been shown to be essential for the maintenance of rod cell shape in many bacteria. MreB forms rapidly remodelling helical filaments underneath the cell membrane in Bacillus subtilis and in other bacterial cells, and co-localizes with its two paralogs, Mbl and MreBH. We show that MreB localizes as dynamic bundles of filaments underneath the cell membrane in Drosophila S2 Schneider cells, which become highly stable when the ATPase motif in MreB is modified. In agreement with ATP-dependent filament formation, the depletion of ATP in the cells lead to rapid dissociation of MreB filaments. Extended induction of MreB resulted in the formation of membrane protrusions, showing that like actin, MreB can exert force against the cell membrane. Mbl also formed membrane associated filaments, while MreBH formed filaments within the cytosol. When co-expressed, MreB, Mbl and MreBH built up mixed filaments underneath the cell membrane. Membrane protein RodZ localized to endosomes in S2 cells, but localized to the cell membrane when co-expressed with Mbl, showing that bacterial MreB/Mbl structures can recruit a protein to the cell membrane. Thus, MreB paralogs form a self-organizing and dynamic filamentous scaffold underneath the membrane that is able to recruit other proteins to the cell surface. PMID:22069484

  6. Zernike phase contrast cryo-electron tomography of sodium-driven flagellar hook-basal bodies from Vibrio alginolyticus.

    PubMed

    Hosogi, Naoki; Shigematsu, Hideki; Terashima, Hiroyuki; Homma, Michio; Nagayama, Kuniaki

    2011-01-01

    Vibrio alginolyticus use flagella to swim. A flagellum consists of a filament, hook and basal body. The basal body is made up of a rod and several ring structures. This study investigates the structure of the T ring which is a unique component of the V. alginolyticus sodium ion-driven flagellar basal body. Using Zernike phase contrast (ZPC) cryo-electron tomography, we compared the 3D structures of purified hook-basal bodies (HBB) from a wild-type strain (KK148) and a deletion mutant lacking MotX and MotY (TH3), which are thought to form the T ring. ZPC images of HBBs had highly improved signal-to-noise ratio compared to conventional phase contrast images. We observed the outline of the HBBs from strains KK148 and TH3, and the TH3 mutant was missing its T ring. In the wild-type strain, the T ring was beneath the LP ring and seemed to form a ring shape with diameter of 32 nm. Copyright © 2010 Elsevier Inc. All rights reserved.

  7. Temperature Dependences of Torque Generation and Membrane Voltage in the Bacterial Flagellar Motor

    PubMed Central

    Inoue, Yuichi; Baker, Matthew A.B.; Fukuoka, Hajime; Takahashi, Hiroto; Berry, Richard M.; Ishijima, Akihiko

    2013-01-01

    In their natural habitats bacteria are frequently exposed to sudden changes in temperature that have been shown to affect their swimming. With our believed to be new methods of rapid temperature control for single-molecule microscopy, we measured here the thermal response of the Na+-driven chimeric motor expressed in Escherichia coli cells. Motor torque at low load (0.35 μm bead) increased linearly with temperature, twofold between 15°C and 40°C, and torque at high load (1.0 μm bead) was independent of temperature, as reported for the H+-driven motor. Single cell membrane voltages were measured by fluorescence imaging and these were almost constant (∼120 mV) over the same temperature range. When the motor was heated above 40°C for 1–2 min the torque at high load dropped reversibly, recovering upon cooling below 40°C. This response was repeatable over as many as 10 heating cycles. Both increases and decreases in torque showed stepwise torque changes with unitary size ∼150 pN nm, close to the torque of a single stator at room temperature (∼180 pN nm), indicating that dynamic stator dissociation occurs at high temperature, with rebinding upon cooling. Our results suggest that the temperature-dependent assembly of stators is a general feature of flagellar motors. PMID:24359752

  8. The evolution of compositionally and functionally distinct actin filaments.

    PubMed

    Gunning, Peter W; Ghoshdastider, Umesh; Whitaker, Shane; Popp, David; Robinson, Robert C

    2015-06-01

    The actin filament is astonishingly well conserved across a diverse set of eukaryotic species. It has essentially remained unchanged in the billion years that separate yeast, Arabidopsis and man. In contrast, bacterial actin-like proteins have diverged to the extreme, and many of them are not readily identified from sequence-based homology searches. Here, we present phylogenetic analyses that point to an evolutionary drive to diversify actin filament composition across kingdoms. Bacteria use a one-filament-one-function system to create distinct filament systems within a single cell. In contrast, eukaryotic actin is a universal force provider in a wide range of processes. In plants, there has been an expansion of the number of closely related actin genes, whereas in fungi and metazoa diversification in tropomyosins has increased the compositional variety in actin filament systems. Both mechanisms dictate the subset of actin-binding proteins that interact with each filament type, leading to specialization in function. In this Hypothesis, we thus propose that different mechanisms were selected in bacteria, plants and metazoa, which achieved actin filament compositional variation leading to the expansion of their functional diversity. © 2015. Published by The Company of Biologists Ltd.

  9. Role of Tellurite Resistance Operon in Filamentous Growth of Yersinia pestis in Macrophages.

    PubMed

    Ponnusamy, Duraisamy; Clinkenbeard, Kenneth D

    2015-01-01

    Yersinia pestis initiates infection by parasitism of host macrophages. In response to macrophage infections, intracellular Y. pestis can assume a filamentous cellular morphology which may mediate resistance to host cell innate immune responses. We previously observed the expression of Y. pestis tellurite resistance proteins TerD and TerE from the terZABCDE operon during macrophage infections. Others have observed a filamentous response associated with expression of tellurite resistance operon in Escherichia coli exposed to tellurite. Therefore, in this study we examine the potential role of Y. pestis tellurite resistance operon in filamentous cellular morphology during macrophage infections. In vitro treatment of Y. pestis culture with sodium tellurite (Na2TeO3) caused the bacterial cells to assume a filamentous phenotype similar to the filamentous phenotype observed during macrophage infections. A deletion mutant for genes terZAB abolished the filamentous morphologic response to tellurite exposure or intracellular parasitism, but without affecting tellurite resistance. However, a terZABCDE deletion mutant abolished both filamentous morphologic response and tellurite resistance. Complementation of the terZABCDE deletion mutant with terCDE, but not terZAB, partially restored tellurite resistance. When the terZABCDE deletion mutant was complemented with terZAB or terCDE, Y. pestis exhibited filamentous morphology during macrophage infections as well as while these complemented genes were being expressed under an in vitro condition. Further in E. coli, expression of Y. pestis terZAB, but not terCDE, conferred a filamentous phenotype. These findings support the role of Y. pestis terZAB mediation of the filamentous response phenotype; whereas, terCDE confers tellurite resistance. Although the beneficial role of filamentous morphological responses by Y. pestis during macrophage infections is yet to be fully defined, it may be a bacterial adaptive strategy to macrophage

  10. Design of a comprehensive biochemistry and molecular biology experiment: phase variation caused by recombinational regulation of bacterial gene expression.

    PubMed

    Sheng, Xiumei; Xu, Shungao; Lu, Renyun; Isaac, Dadzie; Zhang, Xueyi; Zhang, Haifang; Wang, Huifang; Qiao, Zheng; Huang, Xinxiang

    2014-01-01

    Scientific experiments are indispensable parts of Biochemistry and Molecular Biology. In this study, a comprehensive Biochemistry and Molecular Biology experiment about Salmonella enterica serovar Typhi Flagellar phase variation has been designed. It consisted of three parts, namely, inducement of bacterial Flagellar phase variation, antibody agglutination test, and PCR analysis. Phase variation was observed by baterial motility assay and identified by antibody agglutination test and PCR analysis. This comprehensive experiment can be performed to help students improve their ability to use the knowledge acquired in Biochemistry and Molecular Biology. Copyright © 2014 by The International Union of Biochemistry and Molecular Biology.

  11. Community Structure of Filamentous, Sheath-Building Sulfur Bacteria, Thioploca spp., off the Coast of Chile.

    PubMed

    Schulz, H N; Jorgensen, B B; Fossing, H A; Ramsing, N B

    1996-06-01

    The filamentous sulfur bacteria Thioploca spp. produce dense bacterial mats in the shelf area off the coast of Chile and Peru. The mat consists of common sheaths, shared by many filaments, that reach 5 to 10 cm down into the sediment. The structure of the Thioploca communities off the Bay of Concepcion was investigated with respect to biomass, species distribution, and three-dimensional orientation of the sheaths. Thioploca sheaths and filaments were found across the whole shelf area within the oxygen minimum zone. The maximum wet weight of sheaths, 800 g m(sup-2), was found at a depth of 90 m. The bacterial filaments within the sheaths contributed about 10% of this weight. The highest density of filaments was found within the uppermost 1 cm of the mat. On the basis of diameter classes, it was possible to distinguish populations containing only Thioploca spp. from mixed populations containing Beggiatoa spp. Three distinct size classes of Thioploca spp. were found, two of which have been described previously as Thioploca araucae and Thioploca chileae. Many Thioploca filaments did not possess a visible sheath, and about 20% of the sheaths contained more than one Thioploca species. The three-dimensional sheath structure showed that Thioploca filaments can move from the surface and deep into the sediment.

  12. KHARON Is an Essential Cytoskeletal Protein Involved in the Trafficking of Flagellar Membrane Proteins and Cell Division in African Trypanosomes*

    PubMed Central

    Sanchez, Marco A.; Tran, Khoa D.; Valli, Jessica; Hobbs, Sam; Johnson, Errin; Gluenz, Eva; Landfear, Scott M.

    2016-01-01

    African trypanosomes and related kinetoplastid parasites selectively traffic specific membrane proteins to the flagellar membrane, but the mechanisms for this trafficking are poorly understood. We show here that KHARON, a protein originally identified in Leishmania parasites, interacts with a putative trypanosome calcium channel and is required for its targeting to the flagellar membrane. KHARON is located at the base of the flagellar axoneme, where it likely mediates targeting of flagellar membrane proteins, but is also on the subpellicular microtubules and the mitotic spindle. Hence, KHARON is probably a multifunctional protein that associates with several components of the trypanosome cytoskeleton. RNA interference-mediated knockdown of KHARON mRNA results in failure of the calcium channel to enter the flagellar membrane, detachment of the flagellum from the cell body, and disruption of mitotic spindles. Furthermore, knockdown of KHARON mRNA induces a lethal failure of cytokinesis in both bloodstream (mammalian host) and procyclic (insect vector) life cycle stages, and KHARON is thus critical for parasite viability. PMID:27489106

  13. Second-chance signal transduction explains cooperative flagellar switching.

    PubMed

    Zot, Henry G; Hasbun, Javier E; Minh, Nguyen Van

    2012-01-01

    The reversal of flagellar motion (switching) results from the interaction between a switch complex of the flagellar rotor and a torque-generating stationary unit, or stator (motor unit). To explain the steeply cooperative ligand-induced switching, present models propose allosteric interactions between subunits of the rotor, but do not address the possibility of a reaction that stimulates a bidirectional motor unit to reverse direction of torque. During flagellar motion, the binding of a ligand-bound switch complex at the dwell site could excite a motor unit. The probability that another switch complex of the rotor, moving according to steady-state rotation, will reach the same dwell site before that motor unit returns to ground state will be determined by the independent decay rate of the excited-state motor unit. Here, we derive an analytical expression for the energy coupling between a switch complex and a motor unit of the stator complex of a flagellum, and demonstrate that this model accounts for the cooperative switching response without the need for allosteric interactions. The analytical result can be reproduced by simulation when (1) the motion of the rotor delivers a subsequent ligand-bound switch to the excited motor unit, thereby providing the excited motor unit with a second chance to remain excited, and (2) the outputs from multiple independent motor units are constrained to a single all-or-none event. In this proposed model, a motor unit and switch complex represent the components of a mathematically defined signal transduction mechanism in which energy coupling is driven by steady-state and is regulated by stochastic ligand binding. Mathematical derivation of the model shows the analytical function to be a general form of the Hill equation (Hill AV (1910) The possible effects of the aggregation of the molecules of haemoglobin on its dissociation curves. J Physiol 40: iv-vii).

  14. Twirling and Whirling: Viscous Dynamics of Rotating Elastica

    NASA Astrophysics Data System (ADS)

    Wolgemuth, Charles; Powers, Thomas; Goldstein, Raymond

    1999-10-01

    The stability of forced elastic filaments arise in several important biological settings involving bend and twist elasticity at low Reynolds number. Examples include DNA transcription and replication and bacterial flagellar motion. In order to elucidate fundamental processes common to these systems, we consider the model problem of a rotationally forced filament with twist and bend elasticity. Competition between twist injection, twist diffusion, and writhing instabilities is described by a novel pair of PDEs for twist and bend evolution. Analytical and numerical methods elucidate the twist/bend coupling and reveal two dynamical regimes seperated by a Hopf bifurcation: (i) diffusion-dominated axial rotation, or twirling, and (ii) steady-state crankshafting motion, or whirling. Experiments are proposed to examine these phenomena and the consequences for swimming investigated.

  15. Superresolution Imaging of Dynamic MreB Filaments in B. subtilis—A Multiple-Motor-Driven Transport?

    PubMed Central

    Olshausen, Philipp v.; Defeu Soufo, Hervé Joël; Wicker, Kai; Heintzmann, Rainer; Graumann, Peter L.; Rohrbach, Alexander

    2013-01-01

    The cytoskeletal protein MreB is an essential component of the bacterial cell-shape generation system. Using a superresolution variant of total internal reflection microscopy with structured illumination, as well as three-dimensional stacks of deconvolved epifluorescence microscopy, we found that inside living Bacillus subtilis cells, MreB forms filamentous structures of variable lengths, typically not longer than 1 μm. These filaments move along their orientation and mainly perpendicular to the long bacterial axis, revealing a maximal velocity at an intermediate length and a decreasing velocity with increasing filament length. Filaments move along straight trajectories but can reverse or alter their direction of propagation. Based on our measurements, we provide a mechanistic model that is consistent with all observations. In this model, MreB filaments mechanically couple several motors that putatively synthesize the cell wall, whereas the filaments’ traces mirror the trajectories of the motors. On the basis of our mechanistic model, we developed a mathematical model that can explain the nonlinear velocity length dependence. We deduce that the coupling of cell wall synthesis motors determines the MreB filament transport velocity, and the filament mechanically controls a concerted synthesis of parallel peptidoglycan strands to improve cell wall stability. PMID:24010660

  16. Fabrication and magnetic control of bacteria-inspired robotic microswimmers

    NASA Astrophysics Data System (ADS)

    Cheang, U. Kei; Roy, Dheeraj; Lee, Jun Hee; Kim, Min Jun

    2010-11-01

    A biomimetic, microscale system using the mechanics of swimming bacteria has been fabricated and controlled in a low Reynolds number fluidic environment. The microswimmer consists of a polystyrene microbead conjugated to a magnetic nanoparticle via a flagellar filament using avidin-biotin linkages. The flagellar filaments were isolated from the bacterium, Salmonella typhimurium. Propulsion energy was supplied by an external rotating magnetic field designed in an approximate Helmholtz configuration. Further, the finite element analysis software, COMSOL MULTIPHYSICS, was used to develop a simulation of the robotic devices within the magnetic controller. The robotic microswimmers exhibited flagellar propulsion in two-dimensional magnetic fields, which demonstrate controllability of the biomimetically designed devices for future biomedical applications.

  17. Protein Export According to Schedule: Architecture, Assembly, and Regulation of Type III Secretion Systems from Plant- and Animal-Pathogenic Bacteria

    PubMed Central

    2012-01-01

    Summary: Flagellar and translocation-associated type III secretion (T3S) systems are present in most Gram-negative plant- and animal-pathogenic bacteria and are often essential for bacterial motility or pathogenicity. The architectures of the complex membrane-spanning secretion apparatuses of both systems are similar, but they are associated with different extracellular appendages, including the flagellar hook and filament or the needle/pilus structures of translocation-associated T3S systems. The needle/pilus is connected to a bacterial translocon that is inserted into the host plasma membrane and mediates the transkingdom transport of bacterial effector proteins into eukaryotic cells. During the last 3 to 5 years, significant progress has been made in the characterization of membrane-associated core components and extracellular structures of T3S systems. Furthermore, transcriptional and posttranscriptional regulators that control T3S gene expression and substrate specificity have been described. Given the architecture of the T3S system, it is assumed that extracellular components of the secretion apparatus are secreted prior to effector proteins, suggesting that there is a hierarchy in T3S. The aim of this review is to summarize our current knowledge of T3S system components and associated control proteins from both plant- and animal-pathogenic bacteria. PMID:22688814

  18. The domain organization of the bacterial intermediate filament-like protein crescentin is important for assembly and function

    PubMed Central

    Cabeen, Matthew T; Herrmann, Harald; Jacobs-Wagner, Christine

    2011-01-01

    Crescentin is a bacterial filament-forming protein that exhibits domain organization features found in metazoan intermediate filament (IF) proteins. Structure-function studies of eukaryotic IFs have been hindered by a lack of simple genetic systems and easily quantifiable phenotypes. Here we exploit the characteristic localization of the crescentin structure along the inner curvature of Caulobacter crescentus cells and the loss of cell curvature associated with impaired crescentin function to analyze the importance of the domain organization of crescentin. By combining biochemistry and ultrastructural analysis in vitro with cellular localization and functional studies, we show that crescentin requires its distinctive domain organization, and furthermore that different structural elements have distinct structural and functional contributions. The head domain can be functionally subdivided into two subdomains; the first (amino-terminal) is required for function but not assembly, while the second is necessary for structure assembly. The rod domain is similarly required for structure assembly, and the linker L1 appears important to prevent runaway assembly into nonfunctional aggregates. The data also suggest that the stutter and the tail domain have critical functional roles in stabilizing crescentin structures against disassembly by monovalent cations in the cytoplasm. This study suggests that the IF-like behavior of crescentin is a consequence of its domain organization, implying that the IF protein layout is an adaptable cytoskeletal motif, much like the actin and tubulin folds, that is broadly exploited for various functions throughout life from bacteria to humans. © 2011 Wiley-Liss, Inc. PMID:21360832

  19. Human sperm steer with second harmonics of the flagellar beat.

    PubMed

    Saggiorato, Guglielmo; Alvarez, Luis; Jikeli, Jan F; Kaupp, U Benjamin; Gompper, Gerhard; Elgeti, Jens

    2017-11-10

    Sperm are propelled by bending waves traveling along their flagellum. For steering in gradients of sensory cues, sperm adjust the flagellar waveform. Symmetric and asymmetric waveforms result in straight and curved swimming paths, respectively. Two mechanisms causing spatially asymmetric waveforms have been proposed: an average flagellar curvature and buckling. We image flagella of human sperm tethered with the head to a surface. The waveform is characterized by a fundamental beat frequency and its second harmonic. The superposition of harmonics breaks the beat symmetry temporally rather than spatially. As a result, sperm rotate around the tethering point. The rotation velocity is determined by the second-harmonic amplitude and phase. Stimulation with the female sex hormone progesterone enhances the second-harmonic contribution and, thereby, modulates sperm rotation. Higher beat frequency components exist in other flagellated cells; therefore, this steering mechanism might be widespread and could inspire the design of synthetic microswimmers.

  20. Flows around bacterial swarms

    NASA Astrophysics Data System (ADS)

    Dauparas, Justas; Lauga, Eric

    2015-11-01

    Flagellated bacteria on nutrient-rich substrates can differentiate into a swarming state and move in dense swarms across surfaces. A recent experiment (HC Berg, Harvard University) measured the flow in the fluid around the swarm. A systematic chiral flow was observed in the clockwise direction (when viewed from above) ahead of a E.coli swarm with flow speeds of about 10 μm/s, about 3 times greater than the radial velocity at the edge of the swarm. The working hypothesis is that this flow is due to the flagella of cells stalled at the edge of a colony which extend their flagellar filaments outwards, moving fluid over the virgin agar. In this talk we quantitatively test his hypothesis. We first build an analytical model of the flow induced by a single flagellum in a thin film and then use the model, and its extension to multiple flagella, to compare with experimental measurements.

  1. Flagellar central pair assembly in Chlamydomonas reinhardtii

    PubMed Central

    2013-01-01

    Background Most motile cilia and flagella have nine outer doublet and two central pair (CP) microtubules. Outer doublet microtubules are continuous with the triplet microtubules of the basal body, are templated by the basal body microtubules, and grow by addition of new subunits to their distal (“plus”) ends. In contrast, CP microtubules are not continuous with basal body microtubules, raising the question of how these microtubules are assembled and how their polarity is established. Methods CP assembly in Chlamydomonas reinhardtii was analyzed by electron microscopy and wide-field and super-resolution immunofluorescence microscopy. To analyze CP assembly independently from flagellar assembly, the CP-deficient katanin mutants pf15 or pf19 were mated to wild-type cells. HA-tagged tubulin and the CP-specific protein hydin were used as markers to analyze de novo CP assembly inside the formerly mutant flagella. Results In regenerating flagella, the CP and its projections assemble near the transition zone soon after the onset of outer doublet elongation. During de novo CP assembly in full-length flagella, the nascent CP was first apparent in a subdistal region of the flagellum. The developing CP replaces a fibrous core that fills the axonemal lumen of CP-deficient flagella. The fibrous core contains proteins normally associated with the C1 CP microtubule and proteins involved in intraflagellar transport (IFT). In flagella of the radial spoke-deficient mutant pf14, two pairs of CPs are frequently present with identical correct polarities. Conclusions The temporal separation of flagellar and CP assembly in dikaryons formed by mating CP-deficient gametes to wild-type gametes revealed that the formation of the CP does not require proximity to the basal body or transition zone, or to the flagellar tip. The observations on pf14 provide further support that the CP self-assembles without a template and eliminate the possibility that CP polarity is established by interaction

  2. Two flagellar BAR domain proteins in Trypanosoma brucei with stage-specific regulation

    PubMed Central

    Cicova, Zdenka; Dejung, Mario; Skalicky, Tomas; Eisenhuth, Nicole; Hanselmann, Steffen; Morriswood, Brooke; Figueiredo, Luisa M.; Butter, Falk; Janzen, Christian J.

    2016-01-01

    Trypanosomes are masters of adaptation to different host environments during their complex life cycle. Large-scale proteomic approaches provide information on changes at the cellular level, and in a systematic way. However, detailed work on single components is necessary to understand the adaptation mechanisms on a molecular level. Here, we have performed a detailed characterization of a bloodstream form (BSF) stage-specific putative flagellar host adaptation factor Tb927.11.2400, identified previously in a SILAC-based comparative proteome study. Tb927.11.2400 shares 38% amino acid identity with TbFlabarin (Tb927.11.2410), a procyclic form (PCF) stage-specific flagellar BAR domain protein. We named Tb927.11.2400 TbFlabarin-like (TbFlabarinL), and demonstrate that it originates from a gene duplication event, which occurred in the African trypanosomes. TbFlabarinL is not essential for the growth of the parasites under cell culture conditions and it is dispensable for developmental differentiation from BSF to the PCF in vitro. We generated TbFlabarinL-specific antibodies, and showed that it localizes in the flagellum. Co-immunoprecipitation experiments together with a biochemical cell fractionation suggest a dual association of TbFlabarinL with the flagellar membrane and the components of the paraflagellar rod. PMID:27779220

  3. Genetic dissection of the consensus sequence for the class 2 and class 3 flagellar promoters

    PubMed Central

    Wozniak, Christopher E.; Hughes, Kelly T.

    2008-01-01

    Summary Computational searches for DNA binding sites often utilize consensus sequences. These search models make assumptions that the frequency of a base pair in an alignment relates to the base pair’s importance in binding and presume that base pairs contribute independently to the overall interaction with the DNA binding protein. These two assumptions have generally been found to be accurate for DNA binding sites. However, these assumptions are often not satisfied for promoters, which are involved in additional steps in transcription initiation after RNA polymerase has bound to the DNA. To test these assumptions for the flagellar regulatory hierarchy, class 2 and class 3 flagellar promoters were randomly mutagenized in Salmonella. Important positions were then saturated for mutagenesis and compared to scores calculated from the consensus sequence. Double mutants were constructed to determine how mutations combined for each promoter type. Mutations in the binding site for FlhD4C2, the activator of class 2 promoters, better satisfied the assumptions for the binding model than did mutations in the class 3 promoter, which is recognized by the σ28 transcription factor. These in vivo results indicate that the activator sites within flagellar promoters can be modeled using simple assumptions but that the DNA sequences recognized by the flagellar sigma factor require more complex models. PMID:18486950

  4. Energy saving achieved by limited filamentous bulking sludge under low dissolved oxygen.

    PubMed

    Guo, Jian-Hua; Peng, Yong-Zhen; Peng, Cheng-Yao; Wang, Shu-Ying; Chen, Ying; Huang, Hui-Jun; Sun, Zhi-Rong

    2010-02-01

    Limited filamentous bulking caused by low dissolved oxygen (DO) was proposed to establish a low energy consumption wastewater treatment system. This method for energy saving was derived from two full-scale field observations, which showed pollutants removal would be enhanced and energy consumption could be reduced by at least 10% using limited filamentous bulking. Furthermore, preliminary investigation including the abundance evaluation and the identification of filamentous bacteria demonstrated that the limited filamentous bulking could be repeated steadily in a lab-scale anoxic-oxic reactor fed with domestic wastewater. The sludge loss did not occur in the secondary clarifier, while COD and total nitrogen removal efficiencies were improved by controlling DO for optimal filamentous bacterial population. Suspended solids in effluent were negligible and turbidity was lower than 2 NTU, which were distinctly lower than those under no bulking. Theoretical and experimental results indicated the aeration consumption could be saved by the application of limited filamentous bulking.

  5. Modulation of Chlamydomonas reinhardtii flagellar motility by redox poise

    PubMed Central

    Wakabayashi, Ken-ichi; King, Stephen M.

    2006-01-01

    Redox-based regulatory systems are essential for many cellular activities. Chlamydomonas reinhardtii exhibits alterations in motile behavior in response to different light conditions (photokinesis). We hypothesized that photokinesis is signaled by variations in cytoplasmic redox poise resulting from changes in chloroplast activity. We found that this effect requires photosystem I, which generates reduced NADPH. We also observed that photokinetic changes in beat frequency and duration of the photophobic response could be obtained by altering oxidative/reductive stress. Analysis of reactivated cell models revealed that this redox poise effect is mediated through the outer dynein arms (ODAs). Although the global redox state of the thioredoxin-related ODA light chains LC3 and LC5 and the redox-sensitive Ca2+-binding subunit of the docking complex DC3 did not change upon light/dark transitions, we did observe significant alterations in their interactions with other flagellar components via mixed disulfides. These data indicate that redox poise directly affects ODAs and suggest that it may act in the control of flagellar motility. PMID:16754958

  6. Direct membrane binding by bacterial actin MreB.

    PubMed

    Salje, Jeanne; van den Ent, Fusinita; de Boer, Piet; Löwe, Jan

    2011-08-05

    Bacterial actin MreB is one of the key components of the bacterial cytoskeleton. It assembles into short filaments that lie just underneath the membrane and organize the cell wall synthesis machinery. Here we show that MreB from both T. maritima and E. coli binds directly to cell membranes. This function is essential for cell shape determination in E. coli and is proposed to be a general property of many, if not all, MreBs. We demonstrate that membrane binding is mediated by a membrane insertion loop in TmMreB and by an N-terminal amphipathic helix in EcMreB and show that purified TmMreB assembles into double filaments on a membrane surface that can induce curvature. This, the first example of a membrane-binding actin filament, prompts a fundamental rethink of the structure and dynamics of MreB filaments within cells. Copyright © 2011 Elsevier Inc. All rights reserved.

  7. The flagellar apparatus of heteroloboseans.

    PubMed

    Brugerolle, Guy; Simpson, Alastair G B

    2004-01-01

    The flagellar apparatus of four heterolobosean species Percolomonas descissus, Percolomonas sulcatus, Tetramitus rostratus, and Naegleria gruberi were examined. P. descissus lives in oxygen-poor water. It is a quadriflagellated cell with a ventral groove. The two pairs of basal bodies are connected to an apical structure from which the peripheral dorso-lateral microtubules and a short striated rhizoplast originate. There is one major microtubular root, R1, which originates from the posterior basal body pair and splits into left and right portions that support the sides of the ventral groove. The anterior pair of basal bodies is associated with a root of four to five microtubules that runs to the left of the groove. This organisation is similar to that previously reported for Psalteriomonas, Lyromonas, and Percolomonas cosmopolitus. Percolomonas sulcatus has two parallel pairs of basal bodies, each of which is associated with a well-developed R1 root. These roots divide to give two distinct left portions and one merged right portion that support the margins of the slit-like ventral groove. Tetramitus rostratus has two pairs of basal bodies, several rhizoplast fibres, and two R1 roots. Each R1 root supports one wall of the ventral groove. Naegleria gruberi may have two pairs of basal bodies, each associated with a microtubular root and one long rhizoplast fibre. From available data, a 'double bikont'-like organisation of the heterolobosean flagellar apparatus is inferred, where both of the eldest basal bodies have largely 'mature' complements of microtubular roots. The cytoskeletal organisation of heteroloboseans is compared to those of (other) excavates. Our structural data and existing molecular phylogenies weaken the case that Percolomonas, Psalteriomonas, and Lyromonas are phylogenetically separable from other heteroloboseans, undermining many of the highest-level taxa proposed for these organisms, including Percolozoa, Striatorhiza, Percolomonada, Percolomonadea

  8. Empirical resistive-force theory for slender biological filaments in shear-thinning fluids

    NASA Astrophysics Data System (ADS)

    Riley, Emily E.; Lauga, Eric

    2017-06-01

    Many cells exploit the bending or rotation of flagellar filaments in order to self-propel in viscous fluids. While appropriate theoretical modeling is available to capture flagella locomotion in simple, Newtonian fluids, formidable computations are required to address theoretically their locomotion in complex, nonlinear fluids, e.g., mucus. Based on experimental measurements for the motion of rigid rods in non-Newtonian fluids and on the classical Carreau fluid model, we propose empirical extensions of the classical Newtonian resistive-force theory to model the waving of slender filaments in non-Newtonian fluids. By assuming the flow near the flagellum to be locally Newtonian, we propose a self-consistent way to estimate the typical shear rate in the fluid, which we then use to construct correction factors to the Newtonian local drag coefficients. The resulting non-Newtonian resistive-force theory, while empirical, is consistent with the Newtonian limit, and with the experiments. We then use our models to address waving locomotion in non-Newtonian fluids and show that the resulting swimming speeds are systematically lowered, a result which we are able to capture asymptotically and to interpret physically. An application of the models to recent experimental results on the locomotion of Caenorhabditis elegans in polymeric solutions shows reasonable agreement and thus captures the main physics of swimming in shear-thinning fluids.

  9. A chemotactic signaling surface on CheY defined by suppressors of flagellar switch mutations.

    PubMed Central

    Roman, S J; Meyers, M; Volz, K; Matsumura, P

    1992-01-01

    CheY is the response regulator protein that interacts with the flagellar switch apparatus to modulate flagellar rotation during chemotactic signaling. CheY can be phosphorylated and dephosphorylated in vitro, and evidence indicates that CheY-P is the activated form that induces clockwise flagellar rotation, resulting in a tumble in the cell's swimming pattern. The flagellar switch apparatus is a complex macromolecular structure composed of at least three gene products, FliG, FliM, and FliN. Genetic analysis of Escherichia coli has identified fliG and fliM as genes in which mutations occur that allele specifically suppress cheY mutations, indicating interactions among these gene products. We have generated a class of cheY mutations selected for dominant suppression of fliG mutations. Interestingly, these cheY mutations dominantly suppressed both fliG and fliM mutations; this is consistent with the idea that the CheY protein interacts with both switch gene products during signaling. Biochemical characterization of wild-type and suppressor CheY proteins did not reveal altered phosphorylation properties or evidence for phosphorylation-dependent CheY multimerization. These data indicate that suppressor CheY proteins are specifically altered in the ability to transduce chemotactic signals to the switch at some point subsequent to phosphorylation. Physical mapping of suppressor amino acid substitutions on the crystal structure of CheY revealed a high degree of spatial clustering, suggesting that this region of CheY is a signaling surface that transduces chemotactic signals to the switch. Images PMID:1400175

  10. FtsZ Cytoskeletal Filaments as a Template for Metallic Nanowire Fabrication.

    PubMed

    Ostrov, Nili; Fichman, Galit; Adler-Abramovich, Lihi; Gazit, Ehud

    2015-01-01

    Supramolecular protein assemblies can serve as templates for the fabrication of inorganic nanowires due to their morphological reproducibility and innate proclivity to form well-ordered structures. Amongst the variety of naturally occurring nano-scale assemblies, cytoskeletal fibers from diverse biological sources represent a unique family of scaffolds for biomimetics as they efficiently self-assemble in vitro in a controllable manner to form stable filaments. Here, we harness the bacterial FtsZ filament system as a scaffold for protein-based metal nanowires, and further demonstrate the control of wire alignment with the use of an external magnetic field. Due to the ease at which the bacterial FtsZ is overexpressed and purified, as well as the extensive studies of its ultrastructural properties and physiological significance, FtsZ filaments are an ideal substrate for large-scale production and chemical manipulation. Using a biologically compatible electroless metal deposition technique initiated by adsorption of platinum as a surface catalyst, we demonstrate the coating of assembled FtsZ filaments with iron, nickel, gold, and copper to fabricate continuous nanowires with diameters ranging from 10-50 nm. Organic-inorganic hybrid wires were analyzed using high-resolution field-emission-gun transmission and scanning electron microscopy, and confirmed by energy-dispersive elemental analysis. We also achieved alignment of ferrofluid-coated FtsZ filaments using an external magnetic field. Overall, we provide evidence for the robustness of the FtsZ filament system as a molecular scaffold, and offer an efficient, biocompatible procedure for facile bottom-up assembly of metallic wires on biological templates. We believe that bottom-up fabrication methods as reported herein significantly contribute to the expanding toolkit available for the incorporation of biological materials in nano-scale devices for electronic and electromechanical applications.

  11. Effective viscosity of a suspension of flagellar-beating microswimmers: Three-dimensional modeling

    NASA Astrophysics Data System (ADS)

    Jibuti, Levan; Zimmermann, Walter; Rafaï, Salima; Peyla, Philippe

    2017-11-01

    Micro-organisms usually can swim in their liquid environment by flagellar or ciliary beating. In this numerical work, we analyze the influence of flagellar beating on the orbits of a swimming cell in a shear flow. We also calculate the effect of the flagellar beating on the rheology of a dilute suspension of microswimmers. A three-dimensional model is proposed for Chlamydomonas Reinhardtii swimming with a breaststroke-like beating of two anterior flagella modeled by two counter-rotating fore beads. The active swimmer model reveals unusual angular orbits in a linear shear flow. Namely, the swimmer sustains orientations transiently across the flow. Such behavior is a result of the interplay between shear flow and the swimmer's periodic beating motion of flagella, which exert internal torques on the cell body. This peculiar behavior has some significant consequences on the rheological properties of the suspension. We calculate Einstein's viscosity of the suspension composed of such isolated modeled microswimmers (dilute case) in a shear flow. We use numerical simulations based on a Rotne-Prager-like approximation for hydrodynamic interaction between simplified flagella and the cell body. The results show an increased intrinsic viscosity for active swimmer suspensions in comparison to nonactive ones as well as a shear thinning behavior in accordance with previous experimental measurements [Phys. Rev. Lett. 104, 098102 (2010), 10.1103/PhysRevLett.104.098102].

  12. The C-terminal periplasmic domain of MotB is responsible for load-dependent control of the number of stators of the bacterial flagellar motor.

    PubMed

    Castillo, David J; Nakamura, Shuichi; Morimoto, Yusuke V; Che, Yong-Suk; Kami-Ike, Nobunori; Kudo, Seishi; Minamino, Tohru; Namba, Keiichi

    2013-01-01

    The bacterial flagellar motor is made of a rotor and stators. In Salmonella it is thought that about a dozen MotA/B complexes are anchored to the peptidoglycan layer around the motor through the C-terminal peptidoglycan-binding domain of MotB to become active stators as well as proton channels. MotB consists of 309 residues, forming a single transmembrane helix (30-50), a stalk (51-100) and a C-terminal peptidoglycan-binding domain (101-309). Although the stalk is dispensable for torque generation by the motor, it is required for efficient motor performance. Residues 51 to 72 prevent premature proton leakage through the proton channel prior to stator assembly into the motor. However, the role of residues 72-100 remains unknown. Here, we analyzed the torque-speed relationship of the MotB(Δ72-100) motor. At a low speed near stall, this mutant motor produced torque at the wild-type level. Unlike the wild-type motor, however, torque dropped off drastically by slight decrease in external load and then showed a slow exponential decay over a wide range of load by its further reduction. Since it is known that the stator is a mechano-sensor and that the number of active stators changes in a load-dependent manner, we interpreted this unusual torque-speed relationship as anomaly in load-dependent control of the number of active stators. The results suggest that residues 72-100 of MotB is required for proper load-dependent control of the number of active stators around the rotor.

  13. The role of the dynein light intermediate chain in retrograde IFT and flagellar function in Chlamydomonas

    PubMed Central

    Reck, Jaimee; Schauer, Alexandria M.; VanderWaal Mills, Kristyn; Bower, Raqual; Tritschler, Douglas; Perrone, Catherine A.; Porter, Mary E.

    2016-01-01

    The assembly of cilia and flagella depends on the activity of two microtubule motor complexes, kinesin-2 and dynein-2/1b, but the specific functions of the different subunits are poorly defined. Here we analyze Chlamydomonas strains expressing different amounts of the dynein 1b light intermediate chain (D1bLIC). Disruption of D1bLIC alters the stability of the dynein 1b complex and reduces both the frequency and velocity of retrograde intraflagellar transport (IFT), but it does not eliminate retrograde IFT. Flagellar assembly, motility, gliding, and mating are altered in a dose-dependent manner. iTRAQ-based proteomics identifies a small subset of proteins that are significantly reduced or elevated in d1blic flagella. Transformation with D1bLIC-GFP rescues the mutant phenotypes, and D1bLIC-GFP assembles into the dynein 1b complex at wild-type levels. D1bLIC-GFP is transported with anterograde IFT particles to the flagellar tip, dissociates into smaller particles, and begins processive retrograde IFT in <2 s. These studies demonstrate the role of D1bLIC in facilitating the recycling of IFT subunits and other proteins, identify new components potentially involved in the regulation of IFT, flagellar assembly, and flagellar signaling, and provide insight into the role of D1bLIC and retrograde IFT in other organisms. PMID:27251063

  14. Cell shape can mediate the spatial organization of the bacterial cytoskeleton

    NASA Astrophysics Data System (ADS)

    Wang, Siyuan; Wingreen, Ned

    2013-03-01

    The bacterial cytoskeleton guides the synthesis of cell wall and thus regulates cell shape. Since spatial patterning of the bacterial cytoskeleton is critical to the proper control of cell shape, it is important to ask how the cytoskeleton spatially self-organizes in the first place. In this work, we develop a quantitative model to account for the various spatial patterns adopted by bacterial cytoskeletal proteins, especially the orientation and length of cytoskeletal filaments such as FtsZ and MreB in rod-shaped cells. We show that the combined mechanical energy of membrane bending, membrane pinning, and filament bending of a membrane-attached cytoskeletal filament can be sufficient to prescribe orientation, e.g. circumferential for FtsZ or helical for MreB, with the accuracy of orientation increasing with the length of the cytoskeletal filament. Moreover, the mechanical energy can compete with the chemical energy of cytoskeletal polymerization to regulate filament length. Notably, we predict a conformational transition with increasing polymer length from smoothly curved to end-bent polymers. Finally, the mechanical energy also results in a mutual attraction among polymers on the same membrane, which could facilitate tight polymer spacing or bundling. The predictions of the model can be verified through genetic, microscopic, and microfluidic approaches.

  15. Structures of actin-like ParM filaments show architecture of plasmid-segregating spindles.

    PubMed

    Bharat, Tanmay A M; Murshudov, Garib N; Sachse, Carsten; Löwe, Jan

    2015-07-02

    Active segregation of Escherichia coli low-copy-number plasmid R1 involves formation of a bipolar spindle made of left-handed double-helical actin-like ParM filaments. ParR links the filaments with centromeric parC plasmid DNA, while facilitating the addition of subunits to ParM filaments. Growing ParMRC spindles push sister plasmids to the cell poles. Here, using modern electron cryomicroscopy methods, we investigate the structures and arrangements of ParM filaments in vitro and in cells, revealing at near-atomic resolution how subunits and filaments come together to produce the simplest known mitotic machinery. To understand the mechanism of dynamic instability, we determine structures of ParM filaments in different nucleotide states. The structure of filaments bound to the ATP analogue AMPPNP is determined at 4.3 Å resolution and refined. The ParM filament structure shows strong longitudinal interfaces and weaker lateral interactions. Also using electron cryomicroscopy, we reconstruct ParM doublets forming antiparallel spindles. Finally, with whole-cell electron cryotomography, we show that doublets are abundant in bacterial cells containing low-copy-number plasmids with the ParMRC locus, leading to an asynchronous model of R1 plasmid segregation.

  16. Exploring the Secretomes of Microbes and Microbial Communities Using Filamentous Phage Display

    PubMed Central

    Gagic, Dragana; Ciric, Milica; Wen, Wesley X.; Ng, Filomena; Rakonjac, Jasna

    2016-01-01

    Microbial surface and secreted proteins (the secretome) contain a large number of proteins that interact with other microbes, host and/or environment. These proteins are exported by the coordinated activities of the protein secretion machinery present in the cell. A group of bacteriophage, called filamentous phage, have the ability to hijack bacterial protein secretion machinery in order to amplify and assemble via a secretion-like process. This ability has been harnessed in the use of filamentous phage of Escherichia coli in biotechnology applications, including screening large libraries of variants for binding to “bait” of interest, from tissues in vivo to pure proteins or even inorganic substrates. In this review we discuss the roles of secretome proteins in pathogenic and non-pathogenic bacteria and corresponding secretion pathways. We describe the basics of phage display technology and its variants applied to discovery of bacterial proteins that are implicated in colonization of host tissues and pathogenesis, as well as vaccine candidates through filamentous phage display library screening. Secretome selection aided by next-generation sequence analysis was successfully applied for selective display of the secretome at a microbial community scale, the latter revealing the richness of secretome functions of interest and surprising versatility in filamentous phage display of secretome proteins from large number of Gram-negative as well as Gram-positive bacteria and archaea. PMID:27092113

  17. Molecular mechanisms of cell-cell spread of intracellular bacterial pathogens.

    PubMed

    Ireton, Keith

    2013-07-17

    Several bacterial pathogens, including Listeria monocytogenes, Shigella flexneri and Rickettsia spp., have evolved mechanisms to actively spread within human tissues. Spreading is initiated by the pathogen-induced recruitment of host filamentous (F)-actin. F-actin forms a tail behind the microbe, propelling it through the cytoplasm. The motile pathogen then encounters the host plasma membrane, forming a bacterium-containing protrusion that is engulfed by an adjacent cell. Over the past two decades, much progress has been made in elucidating mechanisms of F-actin tail formation. Listeria and Shigella produce tails of branched actin filaments by subverting the host Arp2/3 complex. By contrast, Rickettsia forms tails with linear actin filaments through a bacterial mimic of eukaryotic formins. Compared with F-actin tail formation, mechanisms controlling bacterial protrusions are less well understood. However, recent findings have highlighted the importance of pathogen manipulation of host cell-cell junctions in spread. Listeria produces a soluble protein that enhances bacterial protrusions by perturbing tight junctions. Shigella protrusions are engulfed through a clathrin-mediated pathway at 'tricellular junctions'--specialized membrane regions at the intersection of three epithelial cells. This review summarizes key past findings in pathogen spread, and focuses on recent developments in actin-based motility and the formation and internalization of bacterial protrusions.

  18. Assembly of MreB filaments on liposome membranes: a synthetic biology approach.

    PubMed

    Maeda, Yusuke T; Nakadai, Tomoyoshi; Shin, Jonghyeon; Uryu, Kunihiro; Noireaux, Vincent; Libchaber, Albert

    2012-02-17

    The physical interaction between the cytoskeleton and the cell membrane is essential in defining the morphology of living organisms. In this study, we use a synthetic approach to polymerize bacterial MreB filaments inside phospholipid vesicles. When the proteins MreB and MreC are expressed inside the liposomes, the MreB cytoskeleton structure develops at the inner membrane. Furthermore, when purified MreB is used inside the liposomes, MreB filaments form a 4-10 μm rigid bundle structure and deform the lipid vesicles in physical contact with the vesicle inner membrane. These results indicate that the fibrillation of MreB filaments can take place either in close proximity of deformable lipid membrane or in the presence of associated protein. Our finding might be relevant for the self-assembly of cytoskeleton filaments toward the construction of artificial cell systems.

  19. Twirling and Whirling: Viscous Dynamics of Rotating Elastica

    NASA Astrophysics Data System (ADS)

    Powers, Thomas R.; Wolgemuth, Charles W.; Goldstein, Raymond E.

    1999-11-01

    Motivated by diverse phenomena in cellular biophysics, including bacterial flagellar motion and DNA transcription and replication, we study the overdamped nonlinear dynamics of a rotationally forced filament with twist and bend elasticity. The competition between twist diffusion and writhing instabilities is described by a novel pair of coupled PDEs for twist and bend evolution. Analytical and numerical methods elucidate the twist-bend coupling and reveal two dynamical regimes separated by a Hopf bifurcation: (i) diffusion-dominated axial rotation, or twirling, and (ii) steady-state crankshafting motion, or whirling. The consequences of these phenomena for self-propulsion are investigated, and experimental tests proposed.

  20. Impact of matric potential and pore size distribution on growth dynamics of filamentous and non-filamentous soil bacteria.

    PubMed

    Wolf, Alexandra B; Vos, Michiel; de Boer, Wietse; Kowalchuk, George A

    2013-01-01

    The filamentous growth form is an important strategy for soil microbes to bridge air-filled pores in unsaturated soils. In particular, fungi perform better than bacteria in soils during drought, a property that has been ascribed to the hyphal growth form of fungi. However, it is unknown if, and to what extent, filamentous bacteria may also display similar advantages over non-filamentous bacteria in soils with low hydraulic connectivity. In addition to allowing for microbial interactions and competition across connected micro-sites, water films also facilitate the motility of non-filamentous bacteria. To examine these issues, we constructed and characterized a series of quartz sand microcosms differing in matric potential and pore size distribution and, consequently, in connection of micro-habitats via water films. Our sand microcosms were used to examine the individual and competitive responses of a filamentous bacterium (Streptomyces atratus) and a motile rod-shaped bacterium (Bacillus weihenstephanensis) to differences in pore sizes and matric potential. The Bacillus strain had an initial advantage in all sand microcosms, which could be attributed to its faster growth rate. At later stages of the incubation, Streptomyces became dominant in microcosms with low connectivity (coarse pores and dry conditions). These data, combined with information on bacterial motility (expansion potential) across a range of pore-size and moisture conditions, suggest that, like their much larger fungal counterparts, filamentous bacteria also use this growth form to facilitate growth and expansion under conditions of low hydraulic conductivity. The sand microcosm system developed and used in this study allowed for precise manipulation of hydraulic properties and pore size distribution, thereby providing a useful approach for future examinations of how these properties influence the composition, diversity and function of soil-borne microbial communities.

  1. MinCD cell division proteins form alternating co-polymeric cytomotive filaments

    PubMed Central

    Ghosal, Debnath; Trambaiolo, Daniel; Amos, Linda A.; Löwe, Jan

    2014-01-01

    Summary During bacterial cell division, filaments of the tubulin-like protein FtsZ assemble at midcell to form the cytokinetic Z-ring. Its positioning is regulated by the oscillation of MinCDE proteins. MinC is activated by MinD through an unknown mechanism and prevents Z-ring assembly anywhere but midcell. Here, using X-ray crystallography, electron microscopy and in vivo analyses we show that MinD activates MinC by forming a new class of alternating copolymeric filaments that show similarity to eukaryotic septin filaments A non-polymerising mutation in MinD causes aberrant cell division in E. coli. MinCD copolymers bind to membrane, interact with FtsZ, and are disassembled by MinE. Imaging a functional msfGFP-MinC fusion protein in MinE deleted cells reveals filamentous structures. EM imaging of our reconstitution of the MinCD-FtsZ interaction on liposome surfaces reveals a plausible mechanism for regulation of FtsZ ring assembly by MinCD copolymers. PMID:25500731

  2. Bacterial cytoskeleton and implications for new antibiotic targets.

    PubMed

    Wang, Huan; Xie, Longxiang; Luo, Hongping; Xie, Jianping

    2016-01-01

    Traditionally eukaryotes exclusive cytoskeleton has been found in bacteria and other prokaryotes. FtsZ, MreB and CreS are bacterial counterpart of eukaryotic tubulin, actin filaments and intermediate filaments, respectively. FtsZ can assemble to a Z-ring at the cell division site, regulate bacterial cell division; MreB can form helical structure, and involve in maintaining cell shape, regulating chromosome segregation; CreS, found in Caulobacter crescentus (C. crescentus), can form curve or helical filaments in intracellular membrane. CreS is crucial for cell morphology maintenance. There are also some prokaryotic unique cytoskeleton components playing crucial roles in cell division, chromosome segregation and cell morphology. The cytoskeleton components of Mycobacterium tuberculosis (M. tuberculosis), together with their dynamics during exposure to antibiotics are summarized in this article to provide insights into the unique organization of this formidable pathogen and druggable targets for new antibiotics.

  3. Detection of Intracellular Bacterial Communities in Human Urinary Tract Infection

    PubMed Central

    Rosen, David A; Hooton, Thomas M; Stamm, Walter E; Humphrey, Peter A; Hultgren, Scott J

    2007-01-01

    Background Urinary tract infections (UTIs) are one of the most common bacterial infections and are predominantly caused by uropathogenic Escherichia coli (UPEC). While UTIs are typically considered extracellular infections, it has been recently demonstrated that UPEC bind to, invade, and replicate within the murine bladder urothelium to form intracellular bacterial communities (IBCs). These IBCs dissociate and bacteria flux out of bladder facet cells, some with filamentous morphology, and ultimately establish quiescent intracellular reservoirs that can seed recurrent infection. This IBC pathogenic cycle has not yet been investigated in humans. In this study we sought to determine whether evidence of an IBC pathway could be found in urine specimens from women with acute UTI. Methods and Findings We collected midstream, clean-catch urine specimens from 80 young healthy women with acute uncomplicated cystitis and 20 asymptomatic women with a history of UTI. Investigators were blinded to culture results and clinical history. Samples were analyzed by light microscopy, immunofluorescence, and electron microscopy for evidence of exfoliated IBCs and filamentous bacteria. Evidence of IBCs was found in 14 of 80 (18%) urines from women with UTI. Filamentous bacteria were found in 33 of 80 (41%) urines from women with UTI. None of the 20 urines from the asymptomatic comparative group showed evidence of IBCs or filaments. Filamentous bacteria were present in all 14 of the urines with IBCs compared to 19 (29%) of 66 samples with no evidence of IBCs (p < 0.001). Of 65 urines from patients with E. coli infections, 14 (22%) had evidence of IBCs and 29 (45%) had filamentous bacteria, while none of the gram-positive infections had IBCs or filamentous bacteria. Conclusions The presence of exfoliated IBCs and filamentous bacteria in the urines of women with acute cystitis suggests that the IBC pathogenic pathway characterized in the murine model may occur in humans. The findings

  4. LACTB is a filament-forming protein localized in mitochondria

    PubMed Central

    Polianskyte, Zydrune; Peitsaro, Nina; Dapkunas, Arvydas; Liobikas, Julius; Soliymani, Rabah; Lalowski, Maciej; Speer, Oliver; Seitsonen, Jani; Butcher, Sarah; Cereghetti, Grazia M.; Linder, Matts D.; Merckel, Michael; Thompson, James; Eriksson, Ove

    2009-01-01

    LACTB is a mammalian active-site serine protein that has evolved from a bacterial penicillin-binding protein. Penicillin-binding proteins are involved in the metabolism of peptidoglycan, the major bacterial cell wall constituent, implying that LACTB has been endowed with novel biochemical properties during eukaryote evolution. Here we demonstrate that LACTB is localized in the mitochondrial intermembrane space, where it is polymerized into stable filaments with a length extending more than a hundred nanometers. We infer that LACTB, through polymerization, promotes intramitochondrial membrane organization and micro-compartmentalization. These findings have implications for our understanding of mitochondrial evolution and function. PMID:19858488

  5. Dimerization site 2 of the bacterial DNA-binding protein H-NS is required for gene silencing and stiffened nucleoprotein filament formation.

    PubMed

    Yamanaka, Yuki; Winardhi, Ricksen S; Yamauchi, Erika; Nishiyama, So-Ichiro; Sowa, Yoshiyuki; Yan, Jie; Kawagishi, Ikuro; Ishihama, Akira; Yamamoto, Kaneyoshi

    2018-06-15

    The bacterial nucleoid-associated protein H-NS is a DNA-binding protein, playing a major role in gene regulation. To regulate transcription, H-NS silences genes, including horizontally acquired foreign genes. Escherichia coli H-NS is 137 residues long and consists of two discrete and independent structural domains: an N-terminal oligomerization domain and a C-terminal DNA-binding domain, joined by a flexible linker. The N-terminal oligomerization domain is composed of two dimerization sites, dimerization sites 1 and 2, which are both required for H-NS oligomerization, but the exact role of dimerization site 2 in gene silencing is unclear. To this end, we constructed a whole set of single amino acid substitution variants spanning residues 2 to 137. Using a well-characterized H-NS target, the slp promoter of the glutamic acid-dependent acid resistance (GAD) cluster promoters, we screened for any variants defective in gene silencing. Focusing on the function of dimerization site 2, we analyzed four variants, I70C/I70A and L75C/L75A, which all could actively bind DNA but are defective in gene silencing. Atomic force microscopy analysis of DNA-H-NS complexes revealed that all of these four variants formed condensed complexes on DNA, whereas WT H-NS formed rigid and extended nucleoprotein filaments, a conformation required for gene silencing. Single-molecule stretching experiments confirmed that the four variants had lost the ability to form stiffened filaments. We conclude that dimerization site 2 of H-NS plays a key role in the formation of rigid H-NS nucleoprotein filament structures required for gene silencing. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  6. Modeling polymorphic transformation of rotating bacterial flagella in a viscous fluid

    NASA Astrophysics Data System (ADS)

    Ko, William; Lim, Sookkyung; Lee, Wanho; Kim, Yongsam; Berg, Howard C.; Peskin, Charles S.

    2017-06-01

    The helical flagella that are attached to the cell body of bacteria such as Escherichia coli and Salmonella typhimurium allow the cell to swim in a fluid environment. These flagella are capable of polymorphic transformation in that they take on various helical shapes that differ in helical pitch, radius, and chirality. We present a mathematical model of a single flagellum described by Kirchhoff rod theory that is immersed in a fluid governed by Stokes equations. We perform numerical simulations to demonstrate two mechanisms by which polymorphic transformation can occur, as observed in experiments. First, we consider a flagellar filament attached to a rotary motor in which transformations are triggered by a reversal of the direction of motor rotation [L. Turner et al., J. Bacteriol. 182, 2793 (2000), 10.1128/JB.182.10.2793-2801.2000]. We then consider a filament that is fixed on one end and immersed in an external fluid flow [H. Hotani, J. Mol. Biol. 156, 791 (1982), 10.1016/0022-2836(82)90142-5]. The detailed dynamics of the helical flagellum interacting with a viscous fluid is discussed and comparisons with experimental and theoretical results are provided.

  7. Sub-Inhibitory Concentration of Piperacillin-Tazobactam May be Related to Virulence Properties of Filamentous Escherichia coli.

    PubMed

    de Andrade, João Paulo Lopes; de Macêdo Farias, Luiz; Ferreira, João Fernando Gonçalves; Bruna-Romero, Oscar; da Glória de Souza, Daniele; de Carvalho, Maria Auxiliadora Roque; dos Santos, Kênia Valéria

    2016-01-01

    Sub-inhibitory concentrations of antibiotics are always generated as a consequence of antimicrobial therapy and the effects of such residual products in bacterial morphology are well documented, especially the filamentation generated by beta-lactams. The aim of this study was to investigate some morphological and pathological aspects (virulence factors) of Escherichia coli cultivated under half-minimum inhibitory concentration (1.0 µg/mL) of piperacillin-tazobactam (PTZ sub-MIC). PTZ sub-MIC promoted noticeable changes in the bacterial cells which reach the peak of morphological alterations (filamentation) and complexity at 16 h of antimicrobial exposure. Thereafter the filamentous cells and a control one, not treated with PTZ, were comparatively tested for growth curve; biochemical profile; oxidative stress tolerance; biofilm production and cell hydrophobicity; motility and pathogenicity in vivo. PTZ sub-MIC attenuated the E. coli growth rate, but without changes in carbohydrate fermentation or in traditional biochemical tests. Overall, the treatment of E. coli with sub-MIC of PTZ generated filamentous forms which were accompanied by the inhibition of virulence factors such as the oxidative stress response, biofilm formation, cell surface hydrophobicity, and motility. These results are consistent with the reduced pathogenicity observed for the filamentous E. coli in the murine model of intra-abdominal infection. In other words, the treatment of E. coli with sub-MIC of PTZ suggests a decrease in their virulence.

  8. An Element of Determinism in a Stochastic Flagellar Motor Switch

    PubMed Central

    Xie, Li; Altindal, Tuba; Wu, Xiao-Lun

    2015-01-01

    Marine bacterium Vibrio alginolyticus uses a single polar flagellum to navigate in an aqueous environment. Similar to Escherichia coli cells, the polar flagellar motor has two states; when the motor is counter-clockwise, the cell swims forward and when the motor is clockwise, the cell swims backward. V. alginolyticus also incorporates a direction randomization step at the start of the forward swimming interval by flicking its flagellum. To gain an understanding on how the polar flagellar motor switch is regulated, distributions of the forward Δf and backward Δb intervals are investigated herein. We found that the steady-state probability density functions, P(Δf) and P(Δb), of freely swimming bacteria are strongly peaked at a finite time, suggesting that the motor switch is not Poissonian. The short-time inhibition is sufficiently strong and long lasting, i.e., several hundred milliseconds for both intervals, which is readily observed and characterized. Treating motor reversal dynamics as a first-passage problem, which results from conformation fluctuations of the motor switch, we calculated P(Δf) and P(Δb) and found good agreement with the measurements. PMID:26554590

  9. An Element of Determinism in a Stochastic Flagellar Motor Switch.

    PubMed

    Xie, Li; Altindal, Tuba; Wu, Xiao-Lun

    2015-01-01

    Marine bacterium Vibrio alginolyticus uses a single polar flagellum to navigate in an aqueous environment. Similar to Escherichia coli cells, the polar flagellar motor has two states; when the motor is counter-clockwise, the cell swims forward and when the motor is clockwise, the cell swims backward. V. alginolyticus also incorporates a direction randomization step at the start of the forward swimming interval by flicking its flagellum. To gain an understanding on how the polar flagellar motor switch is regulated, distributions of the forward Δf and backward Δb intervals are investigated herein. We found that the steady-state probability density functions, P(Δf) and P(Δb), of freely swimming bacteria are strongly peaked at a finite time, suggesting that the motor switch is not Poissonian. The short-time inhibition is sufficiently strong and long lasting, i.e., several hundred milliseconds for both intervals, which is readily observed and characterized. Treating motor reversal dynamics as a first-passage problem, which results from conformation fluctuations of the motor switch, we calculated P(Δf) and P(Δb) and found good agreement with the measurements.

  10. Emergence of flagellar beating from the collective behavior of individual ATP-powered dyneins

    NASA Astrophysics Data System (ADS)

    Namdeo, S.; Onck, P. R.

    2016-10-01

    Flagella are hair-like projections from the surface of eukaryotic cells, and they play an important role in many cellular functions, such as cell-motility. The beating of flagella is enabled by their internal architecture, the axoneme, and is powered by a dense distribution of motor proteins, dyneins. The dyneins deliver the required mechanical work through the hydrolysis of ATP. Although the dynein-ATP cycle, the axoneme microstructure, and the flagellar-beating kinematics are well studied, their integration into a coherent picture of ATP-powered flagellar beating is still lacking. Here we show that a time-delayed negative-work-based switching mechanism is able to convert the individual sliding action of hundreds of dyneins into a regular overall beating pattern leading to propulsion. We developed a computational model based on a minimal representation of the axoneme consisting of two representative doublet microtubules connected by nexin links. The relative sliding of the microtubules is incorporated by modeling two groups of ATP-powered dyneins, each responsible for sliding in opposite directions. A time-delayed switching mechanism is postulated, which is key in converting the local individual sliding action of multiple dyneins into global beating. Our results demonstrate that an overall nonreciprocal beating pattern can emerge with time due to the spatial and temporal coordination of the individual dyneins. These findings provide insights in the fundamental working mechanism of axonemal dyneins and could possibly open new research directions in the field of flagellar motility.

  11. Emergence of flagellar beating from the collective behavior of individual ATP-powered dyneins.

    PubMed

    Namdeo, S; Onck, P R

    2016-10-01

    Flagella are hair-like projections from the surface of eukaryotic cells, and they play an important role in many cellular functions, such as cell-motility. The beating of flagella is enabled by their internal architecture, the axoneme, and is powered by a dense distribution of motor proteins, dyneins. The dyneins deliver the required mechanical work through the hydrolysis of ATP. Although the dynein-ATP cycle, the axoneme microstructure, and the flagellar-beating kinematics are well studied, their integration into a coherent picture of ATP-powered flagellar beating is still lacking. Here we show that a time-delayed negative-work-based switching mechanism is able to convert the individual sliding action of hundreds of dyneins into a regular overall beating pattern leading to propulsion. We developed a computational model based on a minimal representation of the axoneme consisting of two representative doublet microtubules connected by nexin links. The relative sliding of the microtubules is incorporated by modeling two groups of ATP-powered dyneins, each responsible for sliding in opposite directions. A time-delayed switching mechanism is postulated, which is key in converting the local individual sliding action of multiple dyneins into global beating. Our results demonstrate that an overall nonreciprocal beating pattern can emerge with time due to the spatial and temporal coordination of the individual dyneins. These findings provide insights in the fundamental working mechanism of axonemal dyneins and could possibly open new research directions in the field of flagellar motility.

  12. Identification of Fic-1 as an enzyme that inhibits bacterial DNA replication by AMPylating GyrB, promoting filament formation.

    PubMed

    Lu, Canhua; Nakayasu, Ernesto S; Zhang, Li-Qun; Luo, Zhao-Qing

    2016-01-26

    The morphology of bacterial cells is important for virulence, evasion of the host immune system, and coping with environmental stresses. The widely distributed Fic proteins (filamentation induced by cAMP) are annotated as proteins involved in cell division because of the presence of the HPFx[D/E]GN[G/K]R motif. We showed that the presence of Fic-1 from Pseudomonas fluorescens significantly reduced the yield of plasmid DNA when expressed in Escherichia coli or P. fluorescens. Fic-1 interacted with GyrB, a subunit of DNA gyrase, which is essential for bacterial DNA replication. Fic-1 catalyzed the AMPylation of GyrB at Tyr(109), a residue critical for binding ATP, and exhibited auto-AMPylation activity. Mutation of the Fic-1 auto-AMPylated site greatly reduced AMPylation activity toward itself and toward GyrB. Fic-1-dependent AMPylation of GyrB triggered the SOS response, indicative of DNA replication stress or DNA damage. Fic-1 also promoted the formation of elongated cells when the SOS response was blocked. We identified an α-inhibitor protein that we named anti-Fic-1 (AntF), encoded by a gene immediately upstream of Fic-1. AntF interacted with Fic-1, inhibited the AMPylation activity of Fic-1 for GyrB in vitro, and blocked Fic-1-mediated inhibition of DNA replication in bacteria, suggesting that Fic-1 and AntF comprise a toxin-antitoxin module. Our work establishes Fic-1 as an AMPylating enzyme that targets GyrB to inhibit DNA replication and may target other proteins to regulate bacterial morphology. Copyright © 2016, American Association for the Advancement of Science.

  13. Characterization of a Chlamydomonas Insertional Mutant that Disrupts Flagellar Central Pair Microtubule-associated Structures

    PubMed Central

    Mitchell, David R.; Sale, Winfield S.

    1999-01-01

    Two alleles at a new locus, central pair–associated complex 1 (CPC1), were selected in a screen for Chlamydomonas flagellar motility mutations. These mutations disrupt structures associated with central pair microtubules and reduce flagellar beat frequency, but do not prevent changes in flagellar activity associated with either photophobic responses or phototactic accumulation of live cells. Comparison of cpc1 and pf6 axonemes shows that cpc1 affects a row of projections along C1 microtubules distinct from those missing in pf6, and a row of thin fibers that form an arc between the two central pair microtubules. Electron microscopic images of the central pair in axonemes from radial spoke–defective strains reveal previously undescribed central pair structures, including projections extending laterally toward radial spoke heads, and a diagonal link between the C2 microtubule and the cpc1 projection. By SDS-PAGE, cpc1 axonemes show reductions of 350-, 265-, and 79-kD proteins. When extracted from wild-type axonemes, these three proteins cosediment on sucrose gradients with three other central pair proteins (135, 125, and 56 kD) in a 16S complex. Characterization of cpc1 provides new insights into the structure and biochemistry of the central pair apparatus, and into its function as a regulator of dynein-based motility. PMID:9922455

  14. The Armadillo Repeat Protein PF16 Is Essential for Flagellar Structure and Function in Plasmodium Male Gametes

    PubMed Central

    Ferguson, David J. P.; Bunting, Karen A.; Xu, Zhengyao; Bailes, Elizabeth; Sinden, Robert E.; Holder, Anthony A.; Smith, Elizabeth F.; Coates, Juliet C.; Rita Tewari

    2010-01-01

    Malaria, caused by the apicomplexan parasite Plasmodium, threatens 40% of the world's population. Transmission between vertebrate and insect hosts depends on the sexual stages of the life-cycle. The male gamete of Plasmodium parasite is the only developmental stage that possesses a flagellum. Very little is known about the identity or function of proteins in the parasite's flagellar biology. Here, we characterise a Plasmodium PF16 homologue using reverse genetics in the mouse malaria parasite Plasmodium berghei. PF16 is a conserved Armadillo-repeat protein that regulates flagellar structure and motility in organisms as diverse as green algae and mice. We show that P. berghei PF16 is expressed in the male gamete flagellum, where it plays a crucial role maintaining the correct microtubule structure in the central apparatus of the axoneme as studied by electron microscopy. Disruption of the PF16 gene results in abnormal flagellar movement and reduced fertility, but does not lead to complete sterility, unlike pf16 mutations in other organisms. Using homology modelling, bioinformatics analysis and complementation studies in Chlamydomonas, we show that some regions of the PF16 protein are highly conserved across all eukaryotes, whereas other regions may have species-specific functions. PF16 is the first ARM-repeat protein characterised in the malaria parasite genus Plasmodium and this study opens up a novel model for analysis of Plasmodium flagellar biology that may provide unique insights into an ancient organelle and suggest novel intervention strategies to control the malaria parasite. PMID:20886115

  15. Function of the conserved FHIPEP domain of the flagellar type III export apparatus, protein FlhA.

    PubMed

    Barker, Clive S; Inoue, Tomoharu; Meshcheryakova, Irina V; Kitanobo, Seiya; Samatey, Fadel A

    2016-04-01

    The Type III flagellar protein export apparatus of bacteria consists of five or six membrane proteins, notably FlhA, which controls the export of other proteins and is homologous to the large family of FHIPEP export proteins. FHIPEP proteins contain a highly-conserved cytoplasmic domain. We mutagenized the cloned Salmonella flhA gene for the 692 amino acid FlhA, changing a single, conserved amino acid in the 68-amino acid FHIPEP region. Fifty-two mutations at 30 positions mostly led to loss of motility and total disappearance of microscopically visible flagella, also Western blot protein/protein hybridization showed no detectable export of hook protein and flagellin. There were two exceptions: a D199A mutant strain, which produced short-stubby flagella; and a V151L mutant strain, which did not produce flagella and excreted mainly un-polymerized hook protein. The V151L mutant strain also exported a reduced amount of hook-cap protein FlgD, but when grown with exogenous FlgD it produced polyhooks and polyhook-filaments. A suppressor mutant in the cytoplasmic domain of the export apparatus membrane protein FlhB rescued export of hook-length control protein FliK and facilitated growth of full-length flagella. These results suggested that the FHIPEP region is part of the gate regulating substrate entry into the export apparatus pore. © 2015 John Wiley & Sons Ltd.

  16. A Universally Applicable and Rapid Method for Measuring the Growth of Streptomyces and Other Filamentous Microorganisms by Methylene Blue Adsorption-Desorption

    PubMed Central

    Fischer, Marco

    2013-01-01

    Quantitative assessment of growth of filamentous microorganisms, such as streptomycetes, is generally restricted to determination of dry weight. Here, we describe a straightforward methylene blue-based sorption assay to monitor microbial growth quantitatively, simply, and rapidly. The assay is equally applicable to unicellular and filamentous bacterial and eukaryotic microorganisms. PMID:23666340

  17. Flagellar oscillation: a commentary on proposed mechanisms.

    PubMed

    Woolley, David M

    2010-08-01

    Eukaryotic flagella and cilia have a remarkably uniform internal 'engine' known as the '9+2' axoneme. With few exceptions, the function of cilia and flagella is to beat rhythmically and set up relative motion between themselves and the liquid that surrounds them. The molecular basis of axonemal movement is understood in considerable detail, with the exception of the mechanism that provides its rhythmical or oscillatory quality. Some kind of repetitive 'switching' event is assumed to occur; there are several proposals regarding the nature of the 'switch' and how it might operate. Herein I first summarise all the factors known to influence the rate of the oscillation (the beating frequency). Many of these factors exert their effect through modulating the mean sliding velocity between the nine doublet microtubules of the axoneme, this velocity being the determinant of bend growth rate and bend propagation rate. Then I explain six proposed mechanisms for flagellar oscillation and review the evidence on which they are based. Finally, I attempt to derive an economical synthesis, drawing for preference on experimental research that has been minimally disruptive of the intricate structure of the axoneme. The 'provisional synthesis' is that flagellar oscillation emerges from an effect of passive sliding direction on the dynein arms. Sliding in one direction facilitates force-generating cycles and dynein-to-dynein synchronisation along a doublet; sliding in the other direction is inhibitory. The direction of the initial passive sliding normally oscillates because it is controlled hydrodynamically through the alternating direction of the propulsive thrust. However, in the absence of such regulation, there can be a perpetual, mechanical self-triggering through a reversal of sliding direction due to the recoil of elastic structures that deform as a response to the prior active sliding. This provisional synthesis may be a useful basis for further examination of the problem.

  18. Computing the motor torque of Escherichia coli.

    PubMed

    Das, Debasish; Lauga, Eric

    2018-06-13

    The rotary motor of bacteria is a natural nano-technological marvel that enables cell locomotion by powering the rotation of semi-rigid helical flagellar filaments in fluid environments. It is well known that the motor operates essentially at constant torque in counter-clockwise direction but past work have reported a large range of values of this torque. Focusing on Escherichia coli cells that are swimming and cells that are stuck on a glass surface for which all geometrical and environmental parameters are known (N. C. Darnton et al., J. Bacteriol., 2007, 189, 1756-1764), we use two validated numerical methods to compute the value of the motor torque consistent with experiments. Specifically, we use (and compare) a numerical method based on the boundary integral representation of Stokes flow and also develop a hybrid method combining boundary element and slender body theory to model the cell body and flagellar filament, respectively. Using measured rotation speed of the motor, our computations predict a value of the motor torque in the range 440 pN nm to 829 pN nm, depending critically on the distance between the flagellar filaments and the nearby surface.

  19. Bacterial floc mediated rapid streamer formation in creeping flows

    NASA Astrophysics Data System (ADS)

    Hassanpourfard, Mahtab; Nikakhtari, Zahra; Ghosh, Ranajay; Das, Siddhartha; Thundat, Thomas; Kumar, Aloke

    2015-11-01

    One of the contentious problems regarding the interaction of low Reynolds number (Re << 1) fluid flow with bacterial biomass is the formation of filamentous structures called streamers. Recently, we discovered that streamers can be formed from flow-induced deformation of the pre-formed bacterial flocs over extremely small timescales (less than a second). However, these streamers are different than the ones that mediated by biofilms. To optically probe the inception process of these streamers formation, bacterial flocs were embedded with 200 nm red fluorescent polystyrene beads that served as tracers. We also showed that at their inception the deformation of the flocs is dominated by large recoverable strains indicating significant elasticity. These strains subsequently increase tremendously to produce filamentous streamers. At time scales larger than streamers formation time scale, viscous response was observed from streamers. Finally, rapid clogging of microfluidic devices occurred after these streamers formed.

  20. Bacterial actin homolog ParM: arguments for an apolar, antiparallel double helix.

    PubMed

    Erickson, Harold P

    2012-09-28

    The bacterial actin homolog ParM has always been modeled as a polar filament, comprising two parallel helical strands, like actin itself. I present arguments here that ParM may be an apolar filament, in which the two helical strands are antiparallel. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Curved tails in polymerization-based bacterial motility

    NASA Astrophysics Data System (ADS)

    Rutenberg, Andrew D.; Grant, Martin

    2001-08-01

    The curved actin ``comet-tail'' of the bacterium Listeria monocytogenes is a visually striking signature of actin polymerization-based motility. Similar actin tails are associated with Shigella flexneri, spotted-fever Rickettsiae, the Vaccinia virus, and vesicles and microspheres in related in vitro systems. We show that the torque required to produce the curvature in the tail can arise from randomly placed actin filaments pushing the bacterium or particle. We find that the curvature magnitude determines the number of actively pushing filaments, independent of viscosity and of the molecular details of force generation. The variation of the curvature with time can be used to infer the dynamics of actin filaments at the bacterial surface.

  2. Flagellar dynamics reveal the distribution of chemotactic signaling molecule CheY-P in E. coli

    NASA Astrophysics Data System (ADS)

    Bano, Roshni; Mears, Patrick; Chemla, Yann; Golding, Ido

    E. colicells swim in a random walk consisting of ''runs'' - during which the flagella that propel the cell rotate counter-clockwise (CCW) - and ''tumbles''- during which one or more flagella rotate clockwise (CW). The tumbling frequency is modulated by the phosphorylation state of the signaling molecule CheY, which depends on the cell's environment. Phosphorylated CheY (CheY-P) binds to a flagellar motor and engenders a change in rotation state from CCW to CW. Despite advances in methods used to observe chemotactic signaling, it remains a challenge to measure the CheY-P level in cells directly. Here, we used an optical trap assay coupled with fluorescence microscopy to observe the dynamics of fluorescently labelled flagella in individual cells. By measuring the distribution of flagellar states in multi-flagellated cells and using our recent finding that each flagellar motor independently measures the cellular CheY-P concentration, we are able to extract the probability distribution of the CheY-P level in the cell. This analysis reveals the magnitude of fluctuations in chemotactic signaling in the live cell. We further investigate how this CheY-P distribution changes when cells encounter chemical gradients and perform chemotaxis. This work was supported by the National Science Foundation (NSF) through the Centre for Physics of Living Cells (CPLC).

  3. The phylogeny of swimming kinematics: The environment controls flagellar waveforms in sperm motility

    NASA Astrophysics Data System (ADS)

    Guasto, Jeffrey; Burton, Lisa; Zimmer, Richard; Hosoi, Anette; Stocker, Roman

    2013-11-01

    In recent years, phylogenetic and molecular analyses have dominated the study of ecology and evolution. However, physical interactions between organisms and their environment, a fundamental determinant of organism ecology and evolution, are mediated by organism form and function, highlighting the need to understand the mechanics of basic survival strategies, including locomotion. Focusing on spermatozoa, we combined high-speed video microscopy and singular value decomposition analysis to quantitatively compare the flagellar waveforms of eight species, ranging from marine invertebrates to humans. We found striking similarities in sperm swimming kinematics between genetically dissimilar organisms, which could not be uncovered by phylogenetic analysis. The emergence of dominant waveform patterns across species are suggestive of biological optimization for flagellar locomotion and point toward environmental cues as drivers of this convergence. These results reinforce the power of quantitative kinematic analysis to understand the physical drivers of evolution and as an approach to uncover new solutions for engineering applications, such as micro-robotics.

  4. THE STRUCTURE, ORIGIN, ISOLATION, AND COMPOSITION OF THE TUBULAR MASTIGONEMES OF THE OCHROMONAS FLAGELLUM

    PubMed Central

    Bouck, G. Benjamin

    1971-01-01

    The structure, assembly, and composition of the extracellular hairs (mastigonemes) of Ochromonas are detailed in this report. These mastigonemes form two lateral unbalanced rows, each row on opposite sides of the long anterior flagellum. Each mastigoneme consists of lateral filaments of two distinct sizes attached to a tubular shaft. The shaft is further differentiated into a basal region at one end and a group of from one to three terminal filaments at the free end. Mastigoneme ontogeny as revealed especially in deflagellated and regenerating cells appears to begin by assembly of the basal region and shaft within the perinuclear continuum. However, addition of lateral filaments to the shaft and extrusion of the mastigonemes to the cell surface is mediated by the Golgi complex. The ultimate distribution of mastigonemes on the flagellar surface seems to be the result of extrusion of mastigonemes near the base of the flagellum, and it is suggested that mastigonemes are then pulled up the flagellum as the axoneme elongates. Efforts to characterize mastigonemes biochemically after isolation and purification on cesium chloride (CsCl) followed by electrophoresis on acrylamide gels have demonstrated what appear to be a single major polypeptide and several differentially migrating carbohydrates. The polypeptide is not homologous with microtuble protein. The functionally anomalous role of mastigonemes in reversing flagellar thrust is discussed in relation to their distribution relative to flagellar anatomy and to the plane of flagellar undulations. PMID:5123323

  5. Mutation-specific effects on thin filament length in thin filament myopathy.

    PubMed

    Winter, Josine M de; Joureau, Barbara; Lee, Eun-Jeong; Kiss, Balázs; Yuen, Michaela; Gupta, Vandana A; Pappas, Christopher T; Gregorio, Carol C; Stienen, Ger J M; Edvardson, Simon; Wallgren-Pettersson, Carina; Lehtokari, Vilma-Lotta; Pelin, Katarina; Malfatti, Edoardo; Romero, Norma B; Engelen, Baziel G van; Voermans, Nicol C; Donkervoort, Sandra; Bönnemann, C G; Clarke, Nigel F; Beggs, Alan H; Granzier, Henk; Ottenheijm, Coen A C

    2016-06-01

    Thin filament myopathies are among the most common nondystrophic congenital muscular disorders, and are caused by mutations in genes encoding proteins that are associated with the skeletal muscle thin filament. Mechanisms underlying muscle weakness are poorly understood, but might involve the length of the thin filament, an important determinant of force generation. We investigated the sarcomere length-dependence of force, a functional assay that provides insights into the contractile strength of muscle fibers as well as the length of the thin filaments, in muscle fibers from 51 patients with thin filament myopathy caused by mutations in NEB, ACTA1, TPM2, TPM3, TNNT1, KBTBD13, KLHL40, and KLHL41. Lower force generation was observed in muscle fibers from patients of all genotypes. In a subset of patients who harbor mutations in NEB and ACTA1, the lower force was associated with downward shifted force-sarcomere length relations, indicative of shorter thin filaments. Confocal microscopy confirmed shorter thin filaments in muscle fibers of these patients. A conditional Neb knockout mouse model, which recapitulates thin filament myopathy, revealed a compensatory mechanism; the lower force generation that was associated with shorter thin filaments was compensated for by increasing the number of sarcomeres in series. This allowed muscle fibers to operate at a shorter sarcomere length and maintain optimal thin-thick filament overlap. These findings might provide a novel direction for the development of therapeutic strategies for thin filament myopathy patients with shortened thin filament lengths. Ann Neurol 2016;79:959-969. © 2016 American Neurological Association.

  6. Mutation-Specific Effects on Thin Filament Length in Thin Filament Myopathy

    PubMed Central

    de Winter, Josine M.; Joureau, Barbara; Lee, Eun-Jeong; Kiss, Balázs; Yuen, Michaela; Gupta, Vandana A.; Pappas, Christopher T.; Gregorio, Carol C.; Stienen, Ger J. M.; Edvardson, Simon; Wallgren-Pettersson, Carina; Lehtokari, Vilma-Lotta; Pelin, Katarina; Malfatti, Edoardo; Romero, Norma B.; van Engelen, Baziel G.; Voermans, Nicol C.; Donkervoort, Sandra; Bönnemann, C. G.; Clarke, Nigel F.; Beggs, Alan H.; Granzier, Henk; Ottenheijm, Coen A. C.

    2016-01-01

    Objective Thin filament myopathies are among the most common nondystrophic congenital muscular disorders, and are caused by mutations in genes encoding proteins that are associated with the skeletal muscle thin filament. Mechanisms underlying muscle weakness are poorly understood, but might involve the length of the thin filament, an important determinant of force generation. Methods We investigated the sarcomere length-dependence of force, a functional assay that provides insights into the contractile strength of muscle fibers as well as the length of the thin filaments, in muscle fibers from 51 patients with thin filament myopathy caused by mutations in NEB, ACTA1, TPM2, TPM3, TNNT1, KBTBD13, KLHL40, and KLHL41. Results Lower force generation was observed in muscle fibers from patients of all genotypes. In a subset of patients who harbor mutations in NEB and ACTA1, the lower force was associated with downward shifted force–sarcomere length relations, indicative of shorter thin filaments. Confocal microscopy confirmed shorter thin filaments in muscle fibers of these patients. A conditional Neb knockout mouse model, which recapitulates thin filament myopathy, revealed a compensatory mechanism; the lower force generation that was associated with shorter thin filaments was compensated for by increasing the number of sarcomeres in series. This allowed muscle fibers to operate at a shorter sarcomere length and maintain optimal thin–thick filament overlap. Interpretation These findings might provide a novel direction for the development of therapeutic strategies for thin filament myopathy patients with shortened thin filament lengths. PMID:27074222

  7. Diagnosis of femtosecond plasma filament by channeling microwaves along the filament

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alshershby, Mostafa; Ren, Yu; Qin, Jiang

    2013-05-20

    We introduce a simple, fast, and non-intrusive experimental method to obtain the basic parameters of femtosecond laser-generated plasma filament. The method is based on the channeling of microwaves along both a plasma filament and a well-defined conducting wire. By comparing the detected microwaves that propagate along the plasma filament and a copper wire with known conductivity and spatial dimension, the basic parameters of the plasma filament can be easily obtained. As a result of the possibility of channeling microwave radiation along the plasma filament, we were then able to obtain the plasma density distribution along the filament length.

  8. Helical filaments of human Dmc1 protein on single-stranded DNA: a cautionary tale

    PubMed Central

    Yu, Xiong; Egelman, Edward H.

    2010-01-01

    Proteins in the RecA/Rad51/RadA family form nucleoprotein filaments on DNA that catalyze a strand exchange reaction as part of homologous genetic recombination. Because of the centrality of this system to many aspects of DNA repair, the generation of genetic diversity, and cancer when this system fails or is not properly regulated, these filaments have been the object of many biochemical and biophysical studies. A recent paper has argued that the human Dmc1 protein, a meiotic homolog of bacterial RecA and human Rad51, forms filaments on single stranded DNA with ∼ 9 subunits per turn in contrast to the filaments formed on double stranded DNA with ∼ 6.4 subunits per turn, and that the stoichiometry of DNA binding is different between these two filaments. We show using scanning transmission electron microscopy (STEM) that the Dmc1 filament formed on single stranded DNA has a mass per unit length expected from ∼ 6.5 subunits per turn. More generally, we show how ambiguities in helical symmetry determination can generate incorrect solutions, and why one sometimes must use other techniques, such as biochemistry, metal shadowing, or STEM to resolve these ambiguities. While three-dimensional reconstruction of helical filaments from EM images is a powerful tool, the intrinsic ambiguities that may be present with limited resolution are not sufficiently appreciated. PMID:20600108

  9. Purification and Characterization of Axial Filaments from Treponema phagedenis Biotype reiterii (the Reiter Treponeme)

    PubMed Central

    Bharier, Michael; Allis, David

    1974-01-01

    Axial filaments have been purified from Treponema phagedenis biotype reiterii (the Reiter treponeme) and partially characterized chemically. The preparations consist largely of protein but also contain small amounts of hexose (3%). Filaments dissociate to subunits in acid, alkali, urea, guanidine, and various detergents. Amino acid analyses show an overall resemblance to other spirochetal axial filaments and to bacterial flagella. Dissociated filaments migrate as a single band upon acrylamide gel electrophoresis at pH 4.3 (in 4 M urea and 10 3 M ethylenediaminetetraacetate) and at pH 12, but in sodium dodecyl sulfate gels, three bands are obtained under a wide variety of conditions. Two of these bands migrate very close together, with molecular weights of 33,000 ± 500. The other band has a molecular weight of 36,500 ± 500. Analysis of axial filaments by the dansyl chloride method yields both methionine and glutamic acid as amino terminal end groups. Sedimentation equilibrium measurements on dissociated axial filaments in 7 M guanidine hydrochloride yield plots of log C against ϰ2 which vary with the speed and initial protein concentration used. Molecular weight values calculated from these plots are consistent with a model in which axial filament subunits are heterogeneous with respect to molecular weight in the approximate range of 32,000 to 36,000. Images PMID:4436261

  10. The actin homologue MreB organizes the bacterial cell membrane

    PubMed Central

    Strahl, Henrik; Bürmann, Frank; Hamoen, Leendert W.

    2014-01-01

    The eukaryotic cortical actin cytoskeleton creates specific lipid domains, including lipid rafts, which determine the distribution of many membrane proteins. Here we show that the bacterial actin homologue MreB displays a comparable activity. MreB forms membrane-associated filaments that coordinate bacterial cell wall synthesis. We noticed that the MreB cytoskeleton influences fluorescent staining of the cytoplasmic membrane. Detailed analyses combining an array of mutants, using specific lipid staining techniques and spectroscopic methods, revealed that MreB filaments create specific membrane regions with increased fluidity (RIFs). Interference with these fluid lipid domains (RIFs) perturbs overall lipid homeostasis and affects membrane protein localization. The influence of MreB on membrane organization and fluidity may explain why the active movement of MreB stimulates membrane protein diffusion. These novel MreB activities add additional complexity to bacterial cell membrane organization and have implications for many membrane-associated processes. PMID:24603761

  11. The actin homologue MreB organizes the bacterial cell membrane.

    PubMed

    Strahl, Henrik; Bürmann, Frank; Hamoen, Leendert W

    2014-03-07

    The eukaryotic cortical actin cytoskeleton creates specific lipid domains, including lipid rafts, which determine the distribution of many membrane proteins. Here we show that the bacterial actin homologue MreB displays a comparable activity. MreB forms membrane-associated filaments that coordinate bacterial cell wall synthesis. We noticed that the MreB cytoskeleton influences fluorescent staining of the cytoplasmic membrane. Detailed analyses combining an array of mutants, using specific lipid staining techniques and spectroscopic methods, revealed that MreB filaments create specific membrane regions with increased fluidity (RIFs). Interference with these fluid lipid domains (RIFs) perturbs overall lipid homeostasis and affects membrane protein localization. The influence of MreB on membrane organization and fluidity may explain why the active movement of MreB stimulates membrane protein diffusion. These novel MreB activities add additional complexity to bacterial cell membrane organization and have implications for many membrane-associated processes.

  12. Thermal Unfolding Simulations of Bacterial Flagellin: Insight into its Refolding Before Assembly

    PubMed Central

    Chng, Choon-Peng; Kitao, Akio

    2008-01-01

    Flagellin is the subunit of the bacterial filament, the micrometer-long propeller of a bacterial flagellum. The protein is believed to undergo unfolding for transport through the channel of the filament and to refold in a chamber at the end of the channel before being assembled into the growing filament. We report a thermal unfolding simulation study of S. typhimurium flagellin in aqueous solution as an attempt to gain atomic-level insight into the refolding process. Each molecule comprises two filament-core domains {D0, D1} and two hypervariable-region domains {D2, D3}. D2 can be separated into subdomains D2a and D2b. We observed a similar unfolding order of the domains as reported in experimental thermal denaturation. D2a and D3 exhibited high thermal stability and contained persistent three-stranded β-sheets in the denatured state which could serve as folding cores to guide refolding. A recent mutagenesis study on flagellin stability seems to suggest the importance of the folding cores. Using crude size estimates, our data suggests that the chamber might be large enough for either denatured hypervariable-region domains or filament-core domains, but not whole flagellin; this implicates a two-staged refolding process. PMID:18263660

  13. Association of Lis1 with outer arm dynein is modulated in response to alterations in flagellar motility

    PubMed Central

    Rompolas, Panteleimon; Patel-King, Ramila S.; King, Stephen M.

    2012-01-01

    The cytoplasmic dynein regulatory factor Lis1, which induces a persistent tight binding to microtubules and allows for transport of cargoes under high-load conditions, is also present in motile cilia/flagella. We observed that Lis1 levels in flagella of Chlamydomonas strains that exhibit defective motility due to mutation of various axonemal substructures were greatly enhanced compared with wild type; this increase was absolutely dependent on the presence within the flagellum of the outer arm dynein α heavy chain/light chain 5 thioredoxin unit. To assess whether cells might interpret defective motility as a “high-load environment,” we reduced the flagellar beat frequency of wild-type cells through enhanced viscous load and by reductive stress; both treatments resulted in increased levels of flagellar Lis1, which altered the intrinsic beat frequency of the trans flagellum. Differential extraction of Lis1 from wild-type and mutant axonemes suggests that the affinity of outer arm dynein for Lis1 is directly modulated. In cytoplasm, Lis1 localized to two punctate structures, one of which was located near the base of the flagella. These data reveal that the cell actively monitors motility and dynamically modulates flagellar levels of the dynein regulatory factor Lis1 in response to imposed alterations in beat parameters. PMID:22855525

  14. Modulation of the Lytic Activity of the Dedicated Autolysin for Flagellum Formation SltF by Flagellar Rod Proteins FlgB and FlgF

    PubMed Central

    Herlihey, Francesca A.; Osorio-Valeriano, Manuel; Dreyfus, Georges

    2016-01-01

    ABSTRACT SltF was identified previously as an autolysin required for the assembly of flagella in the alphaproteobacteria, but the nature of its peptidoglycan lytic activity remained unknown. Sequence alignment analyses suggest that it could function as either a muramidase, lytic transglycosylase, or β-N-acetylglucosaminidase. Recombinant SltF from Rhodobacter sphaeroides was purified to apparent homogeneity, and it was demonstrated to function as a lytic transglycosylase based on enzymatic assays involving mass spectrometric analyses. Circular dichroism (CD) analysis determined that it is composed of 83.4% α-structure and 1.48% β-structure and thus is similar to family 1A lytic transglycosylases. However, alignment of apparent SltF homologs identified in the genome database defined a new subfamily of the family 1 lytic transglycosylases. SltF was demonstrated to be endo-acting, cleaving within chains of peptidoglycan, with optimal activity at pH 7.0. Its activity is modulated by two flagellar rod proteins, FlgB and FlgF: FlgB both stabilizes and stimulates SltF activity, while FlgF inhibits it. Invariant Glu57 was confirmed as the sole catalytic acid/base residue of SltF. IMPORTANCE The bacterial flagellum is comprised of a basal body, hook, and helical filament, which are connected by a rod structure. With a diameter of approximately 4 nm, the rod is larger than the estimated pore size within the peptidoglycan sacculus, and hence its insertion requires the localized and controlled lysis of this essential cell wall component. In many beta- and gammaproteobacteria, this lysis is catalyzed by the β-N-acetylglucosaminidase domain of FlgJ. However, FlgJ of the alphaproteobacteria lacks this activity and instead it recruits a separate enzyme, SltF, for this purpose. In this study, we demonstrate that SltF functions as a newly identified class of lytic transglycosylases and that its autolytic activity is uniquely modulated by two rod proteins, FlgB and FlgF. PMID

  15. Structural and Functional Studies of H. seropedicae RecA Protein - Insights into the Polymerization of RecA Protein as Nucleoprotein Filament.

    PubMed

    Leite, Wellington C; Galvão, Carolina W; Saab, Sérgio C; Iulek, Jorge; Etto, Rafael M; Steffens, Maria B R; Chitteni-Pattu, Sindhu; Stanage, Tyler; Keck, James L; Cox, Michael M

    2016-01-01

    The bacterial RecA protein plays a role in the complex system of DNA damage repair. Here, we report the functional and structural characterization of the Herbaspirillum seropedicae RecA protein (HsRecA). HsRecA protein is more efficient at displacing SSB protein from ssDNA than Escherichia coli RecA protein. HsRecA also promotes DNA strand exchange more efficiently. The three dimensional structure of HsRecA-ADP/ATP complex has been solved to 1.7 Å resolution. HsRecA protein contains a small N-terminal domain, a central core ATPase domain and a large C-terminal domain, that are similar to homologous bacterial RecA proteins. Comparative structural analysis showed that the N-terminal polymerization motif of archaeal and eukaryotic RecA family proteins are also present in bacterial RecAs. Reconstruction of electrostatic potential from the hexameric structure of HsRecA-ADP/ATP revealed a high positive charge along the inner side, where ssDNA is bound inside the filament. The properties of this surface may explain the greater capacity of HsRecA protein to bind ssDNA, forming a contiguous nucleoprotein filament, displace SSB and promote DNA exchange relative to EcRecA. Our functional and structural analyses provide insight into the molecular mechanisms of polymerization of bacterial RecA as a helical nucleoprotein filament.

  16. Disruption of the A-Kinase Anchoring Domain in Flagellar Radial Spoke Protein 3 Results in Unregulated Axonemal cAMP-dependent Protein Kinase Activity and Abnormal Flagellar Motility

    PubMed Central

    Gaillard, Anne R.; Fox, Laura A.; Rhea, Jeanne M.; Craige, Branch

    2006-01-01

    Biochemical studies of Chlamydomonas flagellar axonemes revealed that radial spoke protein (RSP) 3 is an A-kinase anchoring protein (AKAP). To determine the physiological role of PKA anchoring in the axoneme, an RSP3 mutant, pf14, was transformed with an RSP3 gene containing a mutation in the PKA-binding domain. Analysis of several independent transformants revealed that the transformed cells exhibit an unusual phenotype: a fraction of the cells swim normally; the remainder of the cells twitch feebly or are paralyzed. The abnormal/paralyzed motility is not due to an obvious deficiency of radial spoke assembly, and the phenotype cosegregates with the mutant RSP3. We postulated that paralysis was due to failure in targeting and regulation of axonemal cAMP-dependent protein kinase (PKA). To test this, reactivation experiments of demembranated cells were performed in the absence or presence of PKA inhibitors. Importantly, motility in reactivated cell models mimicked the live cell phenotype with nearly equal fractions of motile and paralyzed cells. PKA inhibitors resulted in a twofold increase in the number of motile cells, rescuing paralysis. These results confirm that flagellar RSP3 is an AKAP and reveal that a mutation in the PKA binding domain results in unregulated axonemal PKA activity and inhibition of normal motility. PMID:16571668

  17. Salmonella Enteritidis flagellar mutants have a colonization benefit in the chicken oviduct.

    PubMed

    Kilroy, Sofie; Raspoet, Ruth; Martel, An; Bosseler, Leslie; Appia-Ayme, Corinne; Thompson, Arthur; Haesebrouck, Freddy; Ducatelle, Richard; Van Immerseel, Filip

    2017-02-01

    Egg borne Salmonella Enteritidis is still a major cause of human food poisoning. Eggs can become internally contaminated following colonization of the hen's oviduct. In this paper we aimed to analyze the role of flagella of Salmonella Enteritidis in colonization of the hen's oviduct. Using a transposon library screen we showed that mutants lacking functional flagella are significantly more efficient in colonizing the hen's oviduct in vivo. A micro-array analysis proved that transcription of a number of flagellar genes is down-regulated inside chicken oviduct cells. Flagella contain flagellin, a pathogen associated molecular pattern known to bind to Toll-like receptor 5, activating a pro-inflammatory cascade. In vitro tests using primary oviduct cells showed that flagellin is not involved in invasion. Using a ligated loop model, a diminished inflammatory reaction was seen in the oviduct resulting from injection of an aflagellated mutant compared to the wild-type. It is hypothesized that Salmonella Enteritidis downregulates flagellar gene expression in the oviduct and consequently prevents a flagellin-induced inflammatory response, thereby increasing its oviduct colonization efficiency. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Mechanical force antagonizes the inhibitory effects of RecX on RecA filament formation in Mycobacterium tuberculosis

    PubMed Central

    Le, Shimin; Chen, Hu; Zhang, Xinghua; Chen, Jin; Patil, K. Neelakanteshwar; Muniyappa, Kalappa; Yan, Jie

    2014-01-01

    Efficient bacterial recombinational DNA repair involves rapid cycles of RecA filament assembly and disassembly. The RecX protein plays a crucial inhibitory role in RecA filament formation and stability. As the broken ends of DNA are tethered during homologous search, RecA filaments assembled at the ends are likely subject to force. In this work, we investigated the interplay between RecX and force on RecA filament formation and stability. Using magnetic tweezers, at single molecular level, we found that Mycobacterium tuberculosis (Mt) RecX could catalyze stepwise de-polymerization of preformed MtRecA filament in the presence of ATP hydrolysis at low forces (<7 pN). However, applying larger forces antagonized the inhibitory effects of MtRecX, and a partially de-polymerized MtRecA filament could re-polymerize in the presence of MtRecX, which cannot be explained by previous models. Theoretical analysis of force-dependent conformational free energies of naked ssDNA and RecA nucleoprotein filament suggests that mechanical force stabilizes RecA filament, which provides a possible mechanism for the observation. As the antagonizing effect of force on the inhibitory function of RecX takes place in a physiological range; these findings broadly suggest a potential mechanosensitive regulation during homologous recombination. PMID:25294832

  19. Bacillus subtilis MreB paralogues have different filament architectures and lead to shape remodelling of a heterologous cell system.

    PubMed

    Soufo, Hervé Joël Defeu; Graumann, Peter L

    2010-12-01

    Like many bacteria, Bacillus subtilis cells contain three actin-like MreB proteins. We show that the three paralogues, MreB, Mbl and MreBH, have different filament architectures in a heterologous cell system, and form straight filaments, helices or ring structures, different from the regular helical arrangement in B. subtilis cells. However, when coexpressed, they colocalize into a single filamentous helical structure, showing that the paralogues influence each other's filament architecture. Ring-like MreBH structures can be converted into MreB-like helical filaments by a single point mutation affecting subunit contacts, showing that MreB paralogues feature flexible filament arrangements. Time-lapse and FRAP experiments show that filaments can extend as well as shrink at both ends, and also show internal rearrangement, suggesting that filaments consist of overlapping bundles of shorter filaments that continuously turn over. Upon induction in Escherichia coli cells, B. subtilis MreB (BsMreB) filaments push the cells into strikingly altered cell morphology, showing that MreB filaments can change cell shape. E. coli cells with a weakened cell wall were ruptured upon induction of BsMreB filaments, suggesting that the bacterial actin orthologue may exert force against the cell membrane and envelope, and thus possibly plays an additional mechanical role in bacteria. © 2010 Blackwell Publishing Ltd.

  20. Function of Proline Residues of MotA in Torque Generation by the Flagellar Motor of Escherichia coli

    PubMed Central

    Braun, Timothy F.; Poulson, Susan; Gully, Jonathan B.; Empey, J. Courtney; Van Way, Susan; Putnam, Angélica; Blair, David F.

    1999-01-01

    Bacterial flagellar motors obtain energy for rotation from the membrane gradient of protons or, in some species, sodium ions. The molecular mechanism of flagellar rotation is not understood. MotA and MotB are integral membrane proteins that function in proton conduction and are believed to form the stator of the motor. Previous mutational studies identified two conserved proline residues in MotA (Pro 173 and Pro 222 in the protein from Escherichia coli) and a conserved aspartic acid residue in MotB (Asp 32) that are important for function. Asp 32 of MotB probably forms part of the proton path through the motor. To learn more about the roles of the conserved proline residues of MotA, we examined motor function in Pro 173 and Pro 222 mutants, making measurements of torque at high load, speed at low and intermediate loads, and solvent-isotope effects (D2O versus H2O). Proton conduction by wild-type and mutant MotA-MotB channels was also assayed, by a growth defect that occurs upon overexpression. Several different mutations of Pro 173 reduced the torque of the motor under high load, and a few prevented motor rotation but still allowed proton flow through the MotA-MotB channels. These and other properties of the mutants suggest that Pro 173 has a pivotal role in coupling proton flow to motor rotation and is positioned in the channel near Asp 32 of MotB. Replacements of Pro 222 abolished function in all assays and were strongly dominant. Certain Pro 222 mutant proteins prevented swimming almost completely when expressed at moderate levels in wild-type cells. This dominance might be caused by rotor-stator jamming, because it was weaker when FliG carried a mutation believed to increase rotor-stator clearance. We propose a mechanism for torque generation, in which specific functions are suggested for the proline residues of MotA and Asp32 of MotB. PMID:10348868

  1. The filamentous morphotype Eikelboom type 1863 is not a single genetic entity.

    PubMed

    Seviour, E M; Blackall, L L; Christensson, C; Hugenholtz, P; Cunningham, M A; Bradford, D; Stratton, H M; Seviour, R J

    1997-04-01

    Five isolates of a filamentous bacterial morphotype with the distinctive diagnostic microscopic features of Eikelboom Type 1863 were obtained from activated sludge sewage treatment plants in Victoria, Australia. On the basis of phenotypic evidence and 16S rDNA sequence data, these isolates proved to be polyphyletic. Two (Ben 06 and Ben 06C) are from the Chryseobacterium subgroup which is in the Cytophaga group, subdivision I of the Flexibacter-Cytophaga-Bacteroides phylum. Two (Ben 56 and Ben 59) belong to the genus Acinetobacter, and one (Ben 58) is a Moraxella sp., closest to Mor. osloensis. The significance of these findings to the reliance on microscopic features for identification of these filamentous bacteria in activated sludge is discussed.

  2. Structural Insights into Membrane Targeting by the Flagellar Calcium-binding Protein (FCaBP) a Myristoylated and Palmitoylated Calcium Sensor in Trypanosoma cruzi

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    J Wingard; J Ladner; M Vanarotti

    2011-12-31

    The flagellar calcium-binding protein (FCaBP) of the protozoan Trypanosoma cruzi is targeted to the flagellar membrane where it regulates flagellar function and assembly. As a first step toward understanding the Ca{sup 2+}-induced conformational changes important for membrane-targeting, we report here the x-ray crystal structure of FCaBP in the Ca{sup 2+}-free state determined at 2.2{angstrom} resolution. The first 17 residues from the N terminus appear unstructured and solvent-exposed. Residues implicated in membrane targeting (Lys-19, Lys-22, and Lys-25) are flanked by an exposed N-terminal helix (residues 26-37), forming a patch of positive charge on the protein surface that may interact electrostatically withmore » flagellar membrane targets. The four EF-hands in FCaBP each adopt a 'closed conformation' similar to that seen in Ca{sup 2+}-free calmodulin. The overall fold of FCaBP is closest to that of grancalcin and other members of the penta EF-hand superfamily. Unlike the dimeric penta EF-hand proteins, FCaBP lacks a fifth EF-hand and is monomeric. The unstructured N-terminal region of FCaBP suggests that its covalently attached myristoyl group at the N terminus may be solvent-exposed, in contrast to the highly sequestered myristoyl group seen in recoverin and GCAP1. NMR analysis demonstrates that the myristoyl group attached to FCaBP is indeed solvent-exposed in both the Ca{sup 2+}-free and Ca{sup 2+}-bound states, and myristoylation has no effect on protein structure and folding stability. We propose that exposed acyl groups at the N terminus may anchor FCaBP to the flagellar membrane and that Ca{sup 2+}-induced conformational changes may control its binding to membrane-bound protein targets..« less

  3. Helical filaments of human Dmc1 protein on single-stranded DNA: a cautionary tale.

    PubMed

    Yu, Xiong; Egelman, Edward H

    2010-08-20

    Proteins in the RecA/Rad51/RadA family form nucleoprotein filaments on DNA that catalyze a strand exchange reaction as part of homologous genetic recombination. Because of the centrality of this system to many aspects of DNA repair, the generation of genetic diversity, and cancer when this system fails or is not properly regulated, these filaments have been the object of many biochemical and biophysical studies. A recent paper has argued that the human Dmc1 protein, a meiotic homolog of bacterial RecA and human Rad51, forms filaments on single-stranded DNA with approximately 9 subunits per turn in contrast to the filaments formed on double-stranded DNA with approximately 6.4 subunits per turn and that the stoichiometry of DNA binding is different between these two filaments. We show using scanning transmission electron microscopy that the Dmc1 filament formed on single-stranded DNA has a mass per unit length expected from approximately 6.5 subunits per turn. More generally, we show how ambiguities in helical symmetry determination can generate incorrect solutions and why one sometimes must use other techniques, such as biochemistry, metal shadowing, or scanning transmission electron microscopy, to resolve these ambiguities. While three-dimensional reconstruction of helical filaments from EM images is a powerful tool, the intrinsic ambiguities that may be present with limited resolution are not sufficiently appreciated. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  4. Flagellar generated flow mediates attachment of Giardia lamblia

    NASA Astrophysics Data System (ADS)

    Urbach, Jeffrey; Luo, Haibei; Picou, Theodore; McAllister, Ryan; Elmendorf, Heidi

    2011-03-01

    Giardia lamblia is a protozoan parasite responsible for widespread diarrheal disease in humans and animals worldwide. Attachment to the host intestinal mucosa and resistance to peristalsis is necessary for establishing infection, but the physical basis for this attachment is poorly understood. We report results from TIRF and confocal fluorescence microscopy that demonstrate that the regular beating of the posterior flagella generate a flow through the ventral disk, a suction-cup shaped structure that is against the substrate during attachment. Finite element simulations are used to compare the negative pressure generated by the flow to the measured attachment force and the expected performance of the flagellar pump. NIH grant 1R21AI062934-0.

  5. Translation elongation factor EF-Tu modulates filament formation of actin-like MreB protein in vitro.

    PubMed

    Defeu Soufo, Hervé Joël; Reimold, Christian; Breddermann, Hannes; Mannherz, Hans G; Graumann, Peter L

    2015-04-24

    EF-Tu has been shown to interact with actin-like protein MreB and to affect its localization in Escherichia coli and in Bacillus subtilis cells. We have purified YFP-MreB in an active form, which forms filaments on glass slides in vitro and was active in dynamic light-scattering assays, polymerizing in milliseconds after addition of magnesium. Purified EF-Tu enhanced the amount of MreB filaments, as seen by sedimentation assays, the speed of filament formation and the length of MreB filaments in vitro. EF-Tu had the strongest impact on MreB filaments in a 1:1 ratio, and EF-Tu co-sedimented with MreB filaments, revealing a stoichiometric interaction between both proteins. This was supported by cross-linking assays where 1:1 species were well detectable. When expressed in E. coli cells, B. subtilis MreB formed filaments and induced the formation of co-localizing B. subtilis EF-Tu structures, indicating that MreB can direct the positioning of EF-Tu structures in a heterologous cell system. Fluorescence recovery after photobleaching analysis showed that MreB filaments have a higher turnover in B. subtilis cells than in E. coli cells, indicating different filament kinetics in homologous or heterologous cell systems. The data show that MreB can direct the localization of EF-Tu in vivo, which in turn positively affects the formation and dynamics of MreB filaments. Thus, EF-Tu is a modulator of the activity of a bacterial actin-like protein. Copyright © 2015. Published by Elsevier Ltd.

  6. Testing the time-of-flight model for flagellar length sensing.

    PubMed

    Ishikawa, Hiroaki; Marshall, Wallace F

    2017-11-07

    Cilia and flagella are microtubule-based organelles that protrude from the surface of most cells, are important to the sensing of extracellular signals, and make a driving force for fluid flow. Maintenance of flagellar length requires an active transport process known as intraflagellar transport (IFT). Recent studies reveal that the amount of IFT injection negatively correlates with the length of flagella. These observations suggest that a length-dependent feedback regulates IFT. However, it is unknown how cells recognize the length of flagella and control IFT. Several theoretical models try to explain this feedback system. We focused on one of the models, the "time-of-flight" model, which measures the length of flagella on the basis of the travel time of IFT protein in the flagellar compartment. We tested the time-of-flight model using Chlamydomonas dynein mutant cells, which show slower retrograde transport speed. The amount of IFT injection in dynein mutant cells was higher than that in control cells. This observation does not support the prediction of the time-of-flight model and suggests that Chlamydomonas uses another length-control feedback system rather than that described by the time-of-flight model. © 2017 Ishikawa and Marshall. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  7. Structural and Functional Studies of H. seropedicae RecA Protein – Insights into the Polymerization of RecA Protein as Nucleoprotein Filament

    PubMed Central

    Galvão, Carolina W.; Saab, Sérgio C.; Iulek, Jorge; Etto, Rafael M.; Steffens, Maria B. R.; Chitteni-Pattu, Sindhu; Stanage, Tyler; Keck, James L.; Cox, Michael M.

    2016-01-01

    The bacterial RecA protein plays a role in the complex system of DNA damage repair. Here, we report the functional and structural characterization of the Herbaspirillum seropedicae RecA protein (HsRecA). HsRecA protein is more efficient at displacing SSB protein from ssDNA than Escherichia coli RecA protein. HsRecA also promotes DNA strand exchange more efficiently. The three dimensional structure of HsRecA-ADP/ATP complex has been solved to 1.7 Å resolution. HsRecA protein contains a small N-terminal domain, a central core ATPase domain and a large C-terminal domain, that are similar to homologous bacterial RecA proteins. Comparative structural analysis showed that the N-terminal polymerization motif of archaeal and eukaryotic RecA family proteins are also present in bacterial RecAs. Reconstruction of electrostatic potential from the hexameric structure of HsRecA-ADP/ATP revealed a high positive charge along the inner side, where ssDNA is bound inside the filament. The properties of this surface may explain the greater capacity of HsRecA protein to bind ssDNA, forming a contiguous nucleoprotein filament, displace SSB and promote DNA exchange relative to EcRecA. Our functional and structural analyses provide insight into the molecular mechanisms of polymerization of bacterial RecA as a helical nucleoprotein filament. PMID:27447485

  8. A solid-state control system for dynein-based ciliary/flagellar motility

    PubMed Central

    2013-01-01

    Ciliary and flagellar beating requires the coordinated action of multiple dyneins with different enzymatic and motor properties. In this issue, Yamamoto et al. (2013. J. Cell Biol. http://dx.doi.org/10.1083/jcb.201211048) identify the MIA (modifier of inner arms) complex within the Chlamydomonas reinhardtii axoneme that physically links to a known regulatory structure and provides a signaling conduit from the radial spokes to an inner arm dynein essential for waveform determination. PMID:23569213

  9. MotI (DgrA) acts as a molecular clutch on the flagellar stator protein MotA in Bacillus subtilis

    PubMed Central

    Subramanian, Sundharraman; Gao, Xiaohui; Dann, Charles E.; Kearns, Daniel B.

    2017-01-01

    Stator elements consisting of MotA4MotB2 complexes are anchored to the cell wall, extend through the cell membrane, and interact with FliG in the cytoplasmic C ring rotor of the flagellum. The cytoplasmic loop of MotA undergoes proton-driven conformational changes that drive flagellar rotation. Functional regulators inhibit motility by either disengaging or jamming the stator–rotor interaction. Here we show that the YcgR homolog MotI (formerly DgrA) of Bacillus subtilis inhibits motility like a molecular clutch that disengages MotA. MotI-inhibited flagella rotated freely by Brownian motion, and suppressor mutations in MotA that were immune to MotI inhibition were located two residues downstream of the critical force generation site. The 3D structure of MotI bound to c-di-GMP was solved, and MotI-fluorescent fusions localized as transient MotA-dependent puncta at the membrane when induced at subinhibitory levels. Finally, subinhibitory levels of MotI expression resulted in incomplete inhibition and proportional decreases in swimming speed. We propose a model in which flagellar stators are disengaged and sequestered from the flagellar rotor when bound by MotI. PMID:29196522

  10. Listeria monocytogenes DNA glycosylase AdiP affects flagellar motility, biofilm formation, virulence, and stress responses

    USDA-ARS?s Scientific Manuscript database

    The temperature-dependent alteration of flagellar motility gene expression is critical for the foodborne pathogen Listeria monocytogenes to respond to a changing environment. In this study, a genetic determinant, L. monocytogenes f2365_0220 (lmof2365_0220), encoding a putative protein that is struct...

  11. Bacterial Flagella as a Model Rigid Rod of Tunable Shape

    NASA Astrophysics Data System (ADS)

    Schwenger, Walter; Yardimci, Sevim; Gibaud, Thomas; Snow, Henry; Urbach, Jeff; Dogic, Zvonimir

    In this research, we study the physical properties of suspensions of bacterial flagella from Salmonella typhimurium prepared in a variety of rigid polymorphic shapes. Flagella act as a rigid colloidal particle that can exhibit non-trivial geometry including helices of varying dimensions, straight rods, or a combination of the two in the same filament. By controlling the conditions in which flagella are prepared, the polymorphic shape assumed by the filament can be controlled. Utilizing different polymorphic shapes, we combine results from optical microscopy observations of single filaments with bulk rheological measurements to help understand the role that constituent colloidal geometry plays in complex bulk behavior.

  12. Bacterial Trapping in Porous Media Flows

    NASA Astrophysics Data System (ADS)

    Dehkharghani, Amin; Waisbord, Nicolas; Dunkel, Jörn; Guasto, Jeffrey

    2016-11-01

    Swimming bacteria inhabit heterogeneous, microstructured environments that are often characterized by complex, ambient flows. Understanding the physical mechanisms underlying cell transport in these systems is key to controlling important processes such as bioremediation in porous soils and infections in human tissues. We study the transport of swimming bacteria (Bacillus subtilis) in quasi-two-dimensional porous microfluidic channels with a range of periodic microstructures and flow strengths. Measured cell trajectories and the local cell number density reveal the formation of filamentous cell concentration patterns within the porous structures. The local cell densification is maximized at shear rates in the range 1-10 s-1, but widely varies with pore geometry and flow topology. Experimental observations are complemented by Langevin simulations to demonstrate that the filamentous patterns result from a coupling of bacterial motility to the complex flow fields via Jeffery orbits, which effectively 'trap' the bacteria on streamlines. The resulting microscopic heterogeneity observed here suppresses bacterial transport and likely has implications for both mixing and cell nutrient uptake in porous media flows. NSF CBET-1511340.

  13. A penny-shaped crack in a filament reinforced matrix. 1: The filament model

    NASA Technical Reports Server (NTRS)

    Erdogan, F.; Pacella, A. H.

    1973-01-01

    The electrostatic problem of a penny-shaped crack in an elastic matrix which reinforced by filaments or fibers perpendicular to the plane of the crack was studied. The elastic filament model was developed for application to evaluation studies of the stress intensity factor along the periphery of the crack, the stresses in the filaments or fibers, and the interface shear between the matrix and the filaments or fibers. The requirements expected of the model are a sufficiently accurate representation of the filament and applicability to the interaction problems involving a cracked elastic continuum with multi-filament reinforcements. The technique for developing the model and numerical examples of it are shown.

  14. Single molecules of the bacterial actin MreB undergo directed treadmilling motion in Caulobacter crescentus.

    PubMed

    Kim, So Yeon; Gitai, Zemer; Kinkhabwala, Anika; Shapiro, Lucy; Moerner, W E

    2006-07-18

    The actin cytoskeleton represents a key regulator of multiple essential cellular functions in both eukaryotes and prokaryotes. In eukaryotes, these functions depend on the orchestrated dynamics of actin filament assembly and disassembly. However, the dynamics of the bacterial actin homolog MreB have yet to be examined in vivo. In this study, we observed the motion of single fluorescent MreB-yellow fluorescent protein fusions in living Caulobacter cells in a background of unlabeled MreB. With time-lapse imaging, polymerized MreB [filamentous MreB (fMreB)] and unpolymerized MreB [globular MreB (gMreB)] monomers could be distinguished: gMreB showed fast motion that was characteristic of Brownian diffusion, whereas the labeled molecules in fMreB displayed slow, directed motion. This directional movement of labeled MreB in the growing polymer provides an indication that, like actin, MreB monomers treadmill through MreB filaments by preferential polymerization at one filament end and depolymerization at the other filament end. From these data, we extract several characteristics of single MreB filaments, including that they are, on average, much shorter than the cell length and that the direction of their polarized assembly seems to be independent of the overall cellular polarity. Thus, MreB, like actin, exhibits treadmilling behavior in vivo, and the long MreB structures that have been visualized in multiple bacterial species seem to represent bundles of short filaments that lack a uniform global polarity.

  15. The Glycosylphosphatidylinositol-PLC in Trypanosoma brucei Forms a Linear Array on the Exterior of the Flagellar Membrane Before and After Activation

    PubMed Central

    Hanrahan, Orla; Webb, Helena; O'Byrne, Robert; Brabazon, Elaine; Treumann, Achim; Sunter, Jack D.; Carrington, Mark; Voorheis, H. Paul

    2009-01-01

    Bloodstream forms of Trypanosoma brucei contain a glycosylphosphatidylinositol-specific phospholipase C (GPI-PLC) that cleaves the GPI-anchor of the variable surface glycoprotein (VSG). Its location in trypanosomes has been controversial. Here, using confocal microscopy and surface labelling techniques, we show that the GPI-PLC is located exclusively in a linear array on the outside of the flagellar membrane, close to the flagellar attachment zone, but does not co-localize with the flagellar attachment zone protein, FAZ1. Consequently, the GPI-PLC and the VSG occupy the same plasma membrane leaflet, which resolves the topological problem associated with the cleavage reaction if the VSG and the GPI-PLC were on opposite sides of the membrane. The exterior location requires the enzyme to be tightly regulated to prevent VSG release under basal conditions. During stimulated VSG release in intact cells, the GPI-PLC did not change location, suggesting that the release mechanism involves lateral diffusion of the VSG in the plane of the membrane to the fixed position of the GPI-PLC. PMID:19503825

  16. Filamentary structures in dense plasma focus: Current filaments or vortex filaments?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soto, Leopoldo, E-mail: lsoto@cchen.cl; Pavez, Cristian; Moreno, José

    2014-07-15

    Recent observations of an azimuthally distributed array of sub-millimeter size sources of fusion protons and correlation between extreme ultraviolet (XUV) images of filaments with neutron yield in PF-1000 plasma focus have re-kindled interest in their significance. These filaments have been described variously in literature as current filaments and vortex filaments, with very little experimental evidence in support of either nomenclature. This paper provides, for the first time, experimental observations of filaments on a table-top plasma focus device using three techniques: framing photography of visible self-luminosity from the plasma, schlieren photography, and interferometry. Quantitative evaluation of density profile of filaments frommore » interferometry reveals that their radius closely agrees with the collision-less ion skin depth. This is a signature of relaxed state of a Hall fluid, which has significant mass flow with equipartition between kinetic and magnetic energy, supporting the “vortex filament” description. This interpretation is consistent with empirical evidence of an efficient energy concentration mechanism inferred from nuclear reaction yields.« less

  17. Tuning Bacterial Hydrodynamics with Magnetic Fields: A Path to Bacterial Robotics

    NASA Astrophysics Data System (ADS)

    Pierce, Christopher; Mumper, Eric; Brangham, Jack; Wijesinghe, Hiran; Lower, Stephen; Lower, Brian; Yang, Fengyuan; Sooryakumar, Ratnasingham

    Magnetotactic Bacteria (MTB) are a group of motile prokaryotes that synthesize chains of lipid-bound, magnetic nano-particles. In this study, the innate magnetism of these flagellated swimmers is exploited to explore their hydrodynamics near confining surfaces, using the magnetic field as a tuning parameter. With weak (Gauss), uniform, external, magnetic ?elds and the field gradients arising from micro-magnetic surface patterns, the relative strength of hydrodynamic, magnetic and ?agellar force components is tuned through magnetic control of the bacteria's orientation and position. In addition to direct measurement of several hydrodynamic quantities related to the motility of individual cells, their tunable dynamics reveal a number of novel, highly controllable swimming behaviors with potential value in micro-robotics applications. Specifically, the experiments permit the MTB cells to be directed along parallel or divergent trajectories, suppress their flagellar forces through magnetic means, and induce transitions between planar, circulating trajectories and drifting, vertically oriented ``top-like'' motion. The implications of the work for fundamental hydrodynamics research as well as bacterially driven robotics applications will be discussed.

  18. Understanding nucleotide-regulated FtsZ filament dynamics and the monomer assembly switch with large-scale atomistic simulations.

    PubMed

    Ramírez-Aportela, Erney; López-Blanco, José Ramón; Andreu, José Manuel; Chacón, Pablo

    2014-11-04

    Bacterial cytoskeletal protein FtsZ assembles in a head-to-tail manner, forming dynamic filaments that are essential for cell division. Here, we study their dynamics using unbiased atomistic molecular simulations from representative filament crystal structures. In agreement with experimental data, we find different filament curvatures that are supported by a nucleotide-regulated hinge motion between consecutive FtsZ monomers. Whereas GTP-FtsZ filaments bend and twist in a preferred orientation, thereby burying the nucleotide, the differently curved GDP-FtsZ filaments exhibit a heterogeneous distribution of open and closed interfaces between monomers. We identify a coordinated Mg(2+) ion as the key structural element in closing the nucleotide site and stabilizing GTP filaments, whereas the loss of the contacts with loop T7 from the next monomer in GDP filaments leads to open interfaces that are more prone to depolymerization. We monitored the FtsZ monomer assembly switch, which involves opening/closing of the cleft between the C-terminal domain and the H7 helix, and observed the relaxation of isolated and filament minus-end monomers into the closed-cleft inactive conformation. This result validates the proposed switch between the low-affinity monomeric closed-cleft conformation and the active open-cleft FtsZ conformation within filaments. Finally, we observed how the antibiotic PC190723 suppresses the disassembly switch and allosterically induces closure of the intermonomer interfaces, thus stabilizing the filament. Our studies provide detailed structural and dynamic insights into modulation of both the intrinsic curvature of the FtsZ filaments and the molecular switch coupled to the high-affinity end-wise association of FtsZ monomers.

  19. Computer simulation of flagellar movement. VI. Simple curvature-controlled models are incompletely specified.

    PubMed

    Brokaw, C J

    1985-10-01

    Computer simulation is used to examine a simple flagellar model that will initiate and propagate bending waves in the absence of viscous resistances. The model contains only an elastic bending resistance and an active sliding mechanism that generates reduced active shear moment with increasing sliding velocity. Oscillation results from a distributed control mechanism that reverses the direction of operation of the active sliding mechanism when the curvature reaches critical magnitudes in either direction. Bend propagation by curvature-controlled flagellar models therefore does not require interaction with the viscous resistance of an external fluid. An analytical examination of moment balance during bend propagation by this model yields a solution curve giving values of frequency and wavelength that satisfy the moment balance equation and give uniform bend propagation, suggesting that the model is underdetermined. At 0 viscosity, the boundary condition of 0 shear rate at the basal end of the flagellum during the development of new bends selects the particular solution that is obtained by computer simulations. Therefore, the details of the pattern of bend initiation at the basal end of a flagellum can be of major significance in determining the properties of propagated bending waves in the distal portion of a flagellum. At high values of external viscosity, the model oscillates at frequencies and wavelengths that give approximately integral numbers of waves on the flagellum. These operating points are selected because they facilitate the balance of bending moments at the ends of the model, where the external viscous moment approaches 0. These mode preferences can be overridden by forcing the model to operate at a predetermined frequency. The strong mode preferences shown by curvature-controlled flagellar models, in contrast to the weak or absent mode preferences shown by real flagella, therefore do not demonstrate the inapplicability of the moment-balance approach

  20. Sliding movement of single actin filaments on one-headed myosin filaments

    NASA Astrophysics Data System (ADS)

    Harada, Yoshie; Noguchi, Akira; Kishino, Akiyoshi; Yanagida, Toshio

    1987-04-01

    The myosin molecule consists of two heads, each of which contains an enzymatic active site and an actin-binding site. The fundamental problem of whether the two heads function independently or cooperatively during muscle contraction has been studied by methods using an actomyosin thread1, superprecipitation2-4 and chemical modification of muscle fibres5. No clear conclusion has yet been reached. We have approached this question using an assay system in which sliding movements of fluorescently labelled single actin filaments along myosin filaments can be observed directly6,7. Here, we report direct measurement of the sliding of single actin filaments along one-headed myosin filaments in which the density of heads was varied over a wide range. Our results show that cooperative interaction between the two heads of myosin is not essential for inducing the sliding movement of actin filaments.

  1. Testing a dual-fluorescence assay to monitor the viability of filamentous cyanobacteria.

    PubMed

    Johnson, Tylor J; Hildreth, Michael B; Gu, Liping; Zhou, Ruanbao; Gibbons, William R

    2015-06-01

    Filamentous cyanobacteria are currently being engineered to produce long-chain organic compounds, including 3rd generation biofuels. Because of their filamentous morphology, standard methods to quantify viability (e.g., plate counts) are not possible. This study investigated a dual-fluorescence assay based upon the LIVE/DEAD® BacLight™ Bacterial Viability Kit to quantify the percent viability of filamentous cyanobacteria using a microplate reader in a high throughput 96-well plate format. The manufacturer's protocol calls for an optical density normalization step to equalize the numbers of viable and non-viable cells used to generate calibration curves. Unfortunately, the isopropanol treatment used to generate non-viable cells released a blue pigment that altered absorbance readings of the non-viable cell solution, resulting in an inaccurate calibration curve. Thus we omitted this optical density normalization step, and carefully divided cell cultures into two equal fractions before the isopropanol treatment. While the resulting calibration curves had relatively high correlation coefficients, their use in various experiments resulted in viability estimates ranging from below 0% to far above 100%. We traced this to the apparent inaccuracy of the propidium iodide (PI) dye that was to stain only non-viable cells. Through further analysis via microplate reader, as well as confocal and wide-field epi-fluorescence microscopy, we observed non-specific binding of PI in viable filamentous cyanobacteria. While PI will not work for filamentous cyanobacteria, it is possible that other fluorochrome dyes could be used to selectively stain non-viable cells. This will be essential in future studies for screening mutants and optimizing photobioreactor system performance for filamentous cyanobacteria. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Structural and Functional Studies of H. seropedicae RecA Protein – Insights into the Polymerization of RecA Protein as Nucleoprotein Filament

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leite, Wellington C.; Galvão, Carolina W.; Saab, Sérgio C.

    The bacterial RecA protein plays a role in the complex system of DNA damage repair. Here, we report the functional and structural characterization of the Herbaspirillum seropedicae RecA protein (HsRecA). HsRecA protein is more efficient at displacing SSB protein from ssDNA than Escherichia coli RecA protein. HsRecA also promotes DNA strand exchange more efficiently. The three dimensional structure of HsRecA-ADP/ATP complex has been solved to 1.7 Å resolution. HsRecA protein contains a small N-terminal domain, a central core ATPase domain and a large C-terminal domain, that are similar to homologous bacterial RecA proteins. Comparative structural analysis showed that the N-terminalmore » polymerization motif of archaeal and eukaryotic RecA family proteins are also present in bacterial RecAs. Reconstruction of electrostatic potential from the hexameric structure of HsRecA-ADP/ATP revealed a high positive charge along the inner side, where ssDNA is bound inside the filament. The properties of this surface may explain the greater capacity of HsRecA protein to bind ssDNA, forming a contiguous nucleoprotein filament, displace SSB and promote DNA exchange relative to EcRecA. In conclusion, our functional and structural analyses provide insight into the molecular mechanisms of polymerization of bacterial RecA as a helical nucleoprotein filament.« less

  3. Transition of Femtosecond-Filament-Solid Interactions from Single to Multiple Filament Regime

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Skrodzki, P. J.; Burger, M.; Jovanovic, I.

    High-peak-power fs-laser filaments offer unique characteristics attractive to remote sensing via techniques such as remote laser-induced breakdown spectroscopy (R-LIBS). The dynamics of several ablation mechanisms following the interaction between a filament and a solid determines the emission strength and reproducibility of target plasma, which is of relevance for R-LIBS applications. Here, we investigate the space- and time-resolved dynamics of ionic and atomic emission from copper as well as the surrounding atmosphere in order to understand limitations of fs-filament-ablation for standoff energy delivery. Furthermore, we probe the shock front produced from filament-target interaction using time-resolved shadowgraphy and infer laser-material coupling efficienciesmore » for both single and multiple filament regimes through analysis of shock expansion with the Sedov model for point detonation. The results provide insight into plasma structure for the range of peak powers up to 30 times the critical power for filamentation P cr. Despite the stochastic nucleation of multiple filaments at peak-powers greater than 16 P cr, emission of ionic and neutral species increases with pump beam intensity, and short-lived nitrogen emission originating from the ambient is consistently observed. Ultimately, results suggest favorable scaling of emission intensity from target species on the laser pump energy, furthering the prospects for use of filament-solid interactions for remote sensing.« less

  4. Transition of Femtosecond-Filament-Solid Interactions from Single to Multiple Filament Regime

    DOE PAGES

    Skrodzki, P. J.; Burger, M.; Jovanovic, I.

    2017-10-06

    High-peak-power fs-laser filaments offer unique characteristics attractive to remote sensing via techniques such as remote laser-induced breakdown spectroscopy (R-LIBS). The dynamics of several ablation mechanisms following the interaction between a filament and a solid determines the emission strength and reproducibility of target plasma, which is of relevance for R-LIBS applications. Here, we investigate the space- and time-resolved dynamics of ionic and atomic emission from copper as well as the surrounding atmosphere in order to understand limitations of fs-filament-ablation for standoff energy delivery. Furthermore, we probe the shock front produced from filament-target interaction using time-resolved shadowgraphy and infer laser-material coupling efficienciesmore » for both single and multiple filament regimes through analysis of shock expansion with the Sedov model for point detonation. The results provide insight into plasma structure for the range of peak powers up to 30 times the critical power for filamentation P cr. Despite the stochastic nucleation of multiple filaments at peak-powers greater than 16 P cr, emission of ionic and neutral species increases with pump beam intensity, and short-lived nitrogen emission originating from the ambient is consistently observed. Ultimately, results suggest favorable scaling of emission intensity from target species on the laser pump energy, furthering the prospects for use of filament-solid interactions for remote sensing.« less

  5. Targeting Antibacterial Agents by Using Drug-Carrying Filamentous Bacteriophages

    PubMed Central

    Yacoby, Iftach; Shamis, Marina; Bar, Hagit; Shabat, Doron; Benhar, Itai

    2006-01-01

    Bacteriophages have been used for more than a century for (unconventional) therapy of bacterial infections, for half a century as tools in genetic research, for 2 decades as tools for discovery of specific target-binding proteins, and for nearly a decade as tools for vaccination or as gene delivery vehicles. Here we present a novel application of filamentous bacteriophages (phages) as targeted drug carriers for the eradication of (pathogenic) bacteria. The phages are genetically modified to display a targeting moiety on their surface and are used to deliver a large payload of a cytotoxic drug to the target bacteria. The drug is linked to the phages by means of chemical conjugation through a labile linker subject to controlled release. In the conjugated state, the drug is in fact a prodrug devoid of cytotoxic activity and is activated following its dissociation from the phage at the target site in a temporally and spatially controlled manner. Our model target was Staphylococcus aureus, and the model drug was the antibiotic chloramphenicol. We demonstrated the potential of using filamentous phages as universal drug carriers for targetable cells involved in disease. Our approach replaces the selectivity of the drug itself with target selectivity borne by the targeting moiety, which may allow the reintroduction of nonspecific drugs that have thus far been excluded from antibacterial use (because of toxicity or low selectivity). Reintroduction of such drugs into the arsenal of useful tools may help to combat emerging bacterial antibiotic resistance. PMID:16723570

  6. The sensory transduction pathways in bacterial chemotaxis

    NASA Technical Reports Server (NTRS)

    Taylor, Barry L.

    1989-01-01

    Bacterial chemotaxis is a useful model for investigating in molecular detail the behavioral response of cells to changes in their environment. Peritrichously flagellated bacteria such as coli and typhimurium swim by rotating helical flagella in a counterclockwise direction. If flagellar rotation is briefly reversed, the bacteria tumble and change the direction of swimming. The bacteria continuously sample the environment and use a temporal sensing mechanism to compare the present and immediate past environments. Bacteria respond to a broad range of stimuli including changes in temperature, oxygen concentration, pH and osmotic strength. Bacteria are attracted to potential sources of nutrition such as sugars and amino acids and are repelled by other chemicals. In the methylation-dependent pathways for sensory transduction and adaptation in E. coli and S. typhimurium, chemoeffectors bind to transducing proteins that span the plasma membrane. The transducing proteins are postulated to control the rate of autophosphorylation of the CheA protein, which in turn phosphorylates the CheY protein. The phospho-CheY protein binds to the switch on the flagellar motor and is the signal for clockwise rotation of the motor. Adaptation to an attractant is achieved by increasing methylation of the transducing protein until the attractant stimulus is cancelled. Responses to oxygen and certain sugars involve methylation-independent pathways in which adaption occurs without methylation of a transducing protein. Taxis toward oxygen is mediated by the electron transport system and changes in the proton motive force. Recent studies have shown that the methylation-independent pathway converges with the methylation-dependent pathway at or before the CheA protein.

  7. A Conservative Amino Acid Mutation in the Master Regulator FleQ Renders Pseudomonas aeruginosa Aflagellate

    PubMed Central

    Jain, Ruchi; Kazmierczak, Barbara I.

    2014-01-01

    Flagellar-based motility plays a critical role in Pseudomonas aeruginosa pathogenesis, influencing both the establishment of bacterial infection and the host's response to the pathogen. Nonetheless, aflagellate clinical strains are often isolated from acutely and chronically infected patients and include the virulent laboratory strain PA103. We determined that PA103's aflagellate phenotype is the result of a single amino acid change (G240V) in the master flagellar regulator, FleQ. This mutation, which lies just outside the Walker B box of FleQ, abrogates the ability of FleQ to positively regulate flagellar gene expression. Reversal of this seemingly conservative amino acid substitution is sufficient to restore swimming motility to PA103, despite the presence of mutations in other flagellar genes of PA103. We also investigated the consequences of restoring flagellar assembly on PA103 virulence. Although a negative correlation between flagellar assembly and Type 3 secretion system (T3SS) expression has been reported previously, we did not observe downregulation of T3SS expression or function in Fla+ PA103. Restoration of flagellar assembly did, however, amplify IL-1 signals measured during murine pulmonary infection and was associated with increased bacterial clearance. These experiments suggest that loss of flagellar motility may primarily benefit PA103 by attenuating pathogen recognition and clearance during acute infection. PMID:24827992

  8. Galactic cold cores. VIII. Filament formation and evolution: Filament properties in context with evolutionary models

    NASA Astrophysics Data System (ADS)

    Rivera-Ingraham, A.; Ristorcelli, I.; Juvela, M.; Montillaud, J.; Men'shchikov, A.; Malinen, J.; Pelkonen, V.-M.; Marston, A.; Martin, P. G.; Pagani, L.; Paladini, R.; Paradis, D.; Ysard, N.; Ward-Thompson, D.; Bernard, J.-P.; Marshall, D. J.; Montier, L.; Tóth, L. V.

    2017-05-01

    Context. The onset of star formation is intimately linked with the presence of massive unstable filamentary structures. These filaments are therefore key for theoretical models that aim to reproduce the observed characteristics of the star formation process in the Galaxy. Aims: As part of the filament study carried out by the Herschel Galactic Cold Cores Key Programme, here we study and discuss the filament properties presented in GCC VII (Paper I) in context with theoretical models of filament formation and evolution. Methods: A conservatively selected sample of filaments located at a distance D< 500 pc was extracted from the GCC fields with the getfilaments algorithm. The physical structure of the filaments was quantified according to two main components: the central (Gaussian) region of the filament (core component), and the power-law-like region dominating the filament column density profile at larger radii (wing component). The properties and behaviour of these components relative to the total linear mass density of the filament and the column density of its environment were compared with the predictions from theoretical models describing the evolution of filaments under gravity-dominated conditions. Results: The feasibility of a transition from a subcritical to supercritical state by accretion at any given time is dependent on the combined effect of filament intrinsic properties and environmental conditions. Reasonably self-gravitating (high Mline,core) filaments in dense environments (AV≳ 3 mag) can become supercritical on timescales of t 1 Myr by accreting mass at constant or decreasing width. The trend of increasing Mline,tot (Mline,core and Mline,wing) and ridge AV with background for the filament population also indicates that the precursors of star-forming filaments evolve coevally with their environment. The simultaneous increase of environment and filament AV explains the observed association between dense environments and high Mline,core values

  9. Filaments in curved streamlines: rapid formation of Staphylococcus aureus biofilm streamers

    NASA Astrophysics Data System (ADS)

    Kim, Minyoung Kevin; Drescher, Knut; Pak, On Shun; Bassler, Bonnie L.; Stone, Howard A.

    2014-06-01

    Biofilms are surface-associated conglomerates of bacteria that are highly resistant to antibiotics. These bacterial communities can cause chronic infections in humans by colonizing, for example, medical implants, heart valves, or lungs. Staphylococcus aureus, a notorious human pathogen, causes some of the most common biofilm-related infections. Despite the clinical importance of S. aureus biofilms, it remains mostly unknown how physical effects, in particular flow, and surface structure influence biofilm dynamics. Here we use model microfluidic systems to investigate how environmental factors, such as surface geometry, surface chemistry, and fluid flow affect biofilm development of S. aureus. We discovered that S. aureus rapidly forms flow-induced, filamentous biofilm streamers, and furthermore if surfaces are coated with human blood plasma, streamers appear within minutes and clog the channels more rapidly than if the channels are uncoated. To understand how biofilm streamer filaments reorient in flows with curved streamlines to bridge the distances between corners, we developed a mathematical model based on resistive force theory of slender filaments. Understanding physical aspects of biofilm formation of S. aureus may lead to new approaches for interrupting biofilm formation of this pathogen.

  10. Filaments in curved flow: Rapid formation of Staphylococcus aureus biofilm streamers

    NASA Astrophysics Data System (ADS)

    Kim, Min Young; Drescher, Knut; Pak, On Shun; Bassler, Bonnie L.; Stone, Howard A.

    2014-03-01

    Biofilms are surface-associated conglomerates of bacteria that are highly resistant to antibiotics. These bacterial communities can cause chronic infections in humans by colonizing, for example, medical implants, heart valves, or lungs. Staphylococcus aureus, a notorious human pathogen, causes some of the most common biofilm-related infections. Despite the clinical importance of S. aureus biofilms, it remains mostly unknown how physical effects, in particular flow, and surface structure influence biofilm dynamics. Here we use model microfluidic systems to investigate how environmental factors, such as surface geometry, surface chemistry, and fluid flow affect biofilm development in S. aureus.We discovered that S. aureus rapidly forms flow-induced, filamentous biofilm streamers, and furthermore if surfaces are coated with human blood plasma, streamers appear within minutes and clog the channels more rapidly than if the channels are uncoated. To understand how biofilm streamer filaments reorient in curved flow to bridge the distances between corners, we developed a mathematical model based on resistive force theory and slender filaments. Understanding physical aspects of biofilm formation in S. aureus may lead to new approaches for interrupting biofilm formation of this pathogen.

  11. Lipid-linked cell wall precursors regulate membrane association of bacterial actin MreB

    PubMed Central

    Schirner, Kathrin; Eun, Ye-Jin; Dion, Mike; Luo, Yun; Helmann, John D.; Garner, Ethan C.; Walker, Suzanne

    2014-01-01

    Summary The bacterial actin homolog MreB, which is critical for rod shape determination, forms filaments that rotate around the cell width on the inner surface of the cytoplasmic membrane. What determines filament association with the membranes or with other cell wall elongation proteins is not known. Using specific chemical and genetic perturbations while following MreB filament motion, we find that MreB membrane association is an actively regulated process that depends on the presence of lipid-linked peptidoglycan precursors. When precursors are depleted, MreB filaments disassemble into the cytoplasm and peptidoglycan synthesis becomes disorganized. In cells that lack wall teichoic acids, but continue to make peptidoglycan, dynamic MreB filaments are observed, although their presence is not sufficient to establish a rod shape. We propose that the cell regulates MreB filament association with the membrane, allowing rapid and reversible inactivation of cell wall enzyme complexes in response to the inhibition of cell wall synthesis. PMID:25402772

  12. Lipid-linked cell wall precursors regulate membrane association of bacterial actin MreB.

    PubMed

    Schirner, Kathrin; Eun, Ye-Jin; Dion, Mike; Luo, Yun; Helmann, John D; Garner, Ethan C; Walker, Suzanne

    2015-01-01

    The bacterial actin homolog MreB, which is crucial for rod shape determination, forms filaments that rotate around the cell width on the inner surface of the cytoplasmic membrane. What determines filament association with the membranes or with other cell wall elongation proteins is not known. Using specific chemical and genetic perturbations while following MreB filament motion, we find that MreB membrane association is an actively regulated process that depends on the presence of lipid-linked peptidoglycan precursors. When precursors are depleted, MreB filaments disassemble into the cytoplasm, and peptidoglycan synthesis becomes disorganized. In cells that lack wall teichoic acids but continue to make peptidoglycan, dynamic MreB filaments are observed, although their presence is not sufficient to establish a rod shape. We propose that the cell regulates MreB filament association with the membrane, allowing rapid and reversible inactivation of cell wall enzyme complexes in response to the inhibition of cell wall synthesis.

  13. The flaA locus of Bacillus subtilis is part of a large operon coding for flagellar structures, motility functions, and an ATPase-like polypeptide.

    PubMed Central

    Albertini, A M; Caramori, T; Crabb, W D; Scoffone, F; Galizzi, A

    1991-01-01

    We cloned and sequenced 8.3 kb of Bacillus subtilis DNA corresponding to the flaA locus involved in flagellar biosynthesis, motility, and chemotaxis. The DNA sequence revealed the presence of 10 complete and 2 incomplete open reading frames. Comparison of the deduced amino acid sequences to data banks showed similarities of nine of the deduced products to a number of proteins of Escherichia coli and Salmonella typhimurium for which a role in flagellar functioning has been directly demonstrated. In particular, the sequence data suggest that the flaA operon codes for the M-ring protein, components of the motor switch, and the distal part of the basal-body rod. The gene order is remarkably similar to that described for region III of the enterobacterial flagellar regulon. One of the open reading frames was translated into a protein with 48% amino acid identity to S. typhimurium FliI and 29% identity to the beta subunit of E. coli ATP synthase. PMID:1828465

  14. Quantifying in situ growth rate of a filamentous bacterial species in activated sludge using rRNA:rDNA ratio.

    PubMed

    Nguyen, Vivi L; He, Xia; de Los Reyes, Francis L

    2016-11-01

    If the in situ growth rate of filamentous bacteria in activated sludge can be quantified, researchers can more accurately assess the effect of operating conditions on the growth of filaments and improve the mathematical modeling of filamentous bulking. We developed a method to quantify the in situ specific growth rate of Sphaerotilus natans (a model filament) in activated sludge using the species-specific 16S rRNA:rDNA ratio. Primers targeting the 16S rRNA of S. natans were designed, and real-time PCR and RT-PCR were used to quantify DNA and RNA levels of S. natans, respectively. A positive linear relationship was found between the rRNA:rDNA ratio (from 440 to 4500) and the specific growth rate of S. natans (from 0.036 to 0.172 h -1 ) using chemostat experiments. The in situ growth rates of S. natans in activated sludge samples from three water reclamation facilities were quantified, illustrating how the approach can be applied in a complex environment such as activated sludge. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  15. Interplay between the Localization and Kinetics of Phosphorylation in Flagellar Pole Development of the Bacterium Caulobacter crescentus

    PubMed Central

    Tropini, Carolina; Huang, Kerwyn Casey

    2012-01-01

    Bacterial cells maintain sophisticated levels of intracellular organization that allow for signal amplification, response to stimuli, cell division, and many other critical processes. The mechanisms underlying localization and their contribution to fitness have been difficult to uncover, due to the often challenging task of creating mutants with systematically perturbed localization but normal enzymatic activity, and the lack of quantitative models through which to interpret subtle phenotypic changes. Focusing on the model bacterium Caulobacter crescentus, which generates two different types of daughter cells from an underlying asymmetric distribution of protein phosphorylation, we use mathematical modeling to investigate the contribution of the localization of histidine kinases to the establishment of cellular asymmetry and subsequent developmental outcomes. We use existing mutant phenotypes and fluorescence data to parameterize a reaction-diffusion model of the kinases PleC and DivJ and their cognate response regulator DivK. We then present a systematic computational analysis of the effects of changes in protein localization and abundance to determine whether PleC localization is required for correct developmental timing in Caulobacter. Our model predicts the developmental phenotypes of several localization mutants, and suggests that a novel strain with co-localization of PleC and DivJ could provide quantitative insight into the signaling threshold required for flagellar pole development. Our analysis indicates that normal development can be maintained through a wide range of localization phenotypes, and that developmental defects due to changes in PleC localization can be rescued by increased PleC expression. We also show that the system is remarkably robust to perturbation of the kinetic parameters, and while the localization of either PleC or DivJ is required for asymmetric development, the delocalization of one of these two components does not prevent

  16. Structure and Activity of the Flagellar Rotor Protein FliY

    PubMed Central

    Sircar, Ria; Greenswag, Anna R.; Bilwes, Alexandrine M.; Gonzalez-Bonet, Gabriela; Crane, Brian R.

    2013-01-01

    Rotating flagella propel bacteria toward favorable environments. Sense of rotation is determined by the intracellular response regulator CheY, which when phosphorylated (CheY-P) interacts directly with the flagellar motor. In many different types of bacteria, the CheC/CheX/FliY (CXY) family of phosphatases terminates the CheY-P signal. Unlike CheC and CheX, FliY is localized in the flagellar switch complex, which also contains the stator-coupling protein FliG and the target of CheY-P, FliM. The 2.5 Å resolution crystal structure of the FliY catalytic domain from Thermotoga maritima bears strong resemblance to the middle domain of FliM. Regions of FliM that mediate contacts within the rotor compose the phosphatase active sites in FliY. Despite the similarity between FliY and FliM, FliY does not bind FliG and thus is unlikely to be a substitute for FliM in the center of the switch complex. Solution studies indicate that FliY dimerizes through its C-terminal domains, which resemble the Escherichia coli switch complex component FliN. FliY differs topologically from the E. coli chemotaxis phosphatase CheZ but appears to utilize similar structural motifs for CheY dephosphorylation in close analogy to CheX. Recognition properties and phosphatase activities of site-directed mutants identify two pseudosymmetric active sites in FliY (Glu35/Asn38 and Glu132/Asn135), with the second site (Glu132/Asn135) being more active. A putative N-terminal CheY binding domain conserved with FliM is not required for binding CheY-P or phosphatase activity. PMID:23532838

  17. Blue light (470 nm) effectively inhibits bacterial and fungal growth

    USDA-ARS?s Scientific Manuscript database

    The activity of blue light (470nm) alone on (1) bacterial viability, and (2) with a food grade photosensitizer on filamentous fungal viability, was studied. Suspensions of the bacteria Leuconostoc mesenteroides (LM), Bacillus atrophaeus (BA), and Pseudomonas aeruginosa (PA) were prepared and aliquo...

  18. A method for the purification of bacterial flagellin that allows simple upscaling.

    PubMed

    Hiriart, Yanina; Errea, Agustina; González Maciel, Dolores; Lopez, Juan Carlos; Rumbo, Martin

    2012-01-01

    There is a growing interest in enterobacterial flagellins that may result in a demand to produce flagellin on an industrial scale for possible applications as an adjuvant, immunomodulatory agent or vaccine antigen. Traditionally, small-scale production of flagellin has occurred in the laboratory by flagellar shearing of bacterial surfaces and subsequent ultracentrifugation. The main drawback of this method is the need to use low-agitation cultures to avoid the loss of flagella due to shearing during culture. In the present work, we describe a scalable protocol for the production of flagellin with higher yields than traditional laboratory-scale protocols. The use of cross-flow filtration to concentrate bacterial cultures combines extensive shearing of flagella with a reduction in volume, greatly simplifying downstream processing. This technique also allows the use of highly-agitated culture conditions because any sheared flagella are retained in the bacterial concentrate. Flagella obtained with this procedure showed in vivo and in vitro innate activating capacities similar to those of flagella produced at laboratory scale. This procedure is flexible, allowing an increase in production scale, an enhancement of flagellin yield and no requirement for expensive equipment.

  19. CYTOPLASMIC FILAMENTS OF AMOEBA PROTEUS

    PubMed Central

    Pollard, Thomas D.; Ito, Susumu

    1970-01-01

    The role of filaments in consistency changes and movement in a motile cytoplasmic extract of Amoeba proteus was investigated by correlating light and electron microscopic observations with viscosity measurements. The extract is prepared by the method of Thompson and Wolpert (1963). At 0°C, this extract is nonmotile and similar in structure to ameba cytoplasm, consisting of groundplasm, vesicles, mitochondria, and a few 160 A filaments. The extract undergoes striking ATP-stimulated streaming when warmed to 22°C. Two phases of movement are distinguished. During the first phase, the apparent viscosity usually increases and numerous 50–70 A filaments appear in samples of the extract prepared for electron microscopy, suggesting that the increase in viscosity in caused, at least in part, by the formation of these thin filaments. During this initial phase of ATP-stimulated movement, these thin filaments are not detectable by phase-contrast or polarization microscopy, but later, in the second phase of movement, 70 A filaments aggregate to form birefringent microscopic fibrils. A preparation of pure groundplasm with no 160 A filaments or membranous organelles exhibits little or no ATP-stimulated movement, but 50–70 A filaments form and aggregate into birefringent fibrils. This observation and the structural relationship of the 70 A and the 160 A filaments in the motile extract suggest that both types of filaments may be required for movement. These two types of filaments, 50–70 A and 160 A, are also present in the cytoplasm of intact amebas. Fixed cells could not be used to study the distribution of these filaments during natural ameboid movement because of difficulties in preserving the normal structure of the ameba during preparation for electron microscopy. PMID:4915451

  20. An AlgU-regulated antisense transcript encoded within the Pseudomonas syringae fleQ gene has a positive effect on motility

    USDA-ARS?s Scientific Manuscript database

    Bacterial flagella production is controlled by a multi-tiered regulatory system that coordinates expression of 40-50 subunits and correct assembly of these complicated structures. Flagellar expression is environmentally controlled, presumably to optimize the benefits and liabilities of flagellar ex...

  1. Impact of hydrodynamic stresses on bacterial flagella

    NASA Astrophysics Data System (ADS)

    Das, Debasish; Riley, Emily; Lauga, Eric

    2017-11-01

    The locomotion of bacteria powered by helical filaments, such as Escherichia coli, critically involves the generation of flows and hydrodynamic stresses which lead to forces and moments balanced by the moment applied by the bacterial rotary motor (which is embedded in the cell wall) and the deformation of the short flexible hook. In this talk we use numerical computations to accurately compute these hydrodynamic stresses, to show how they critically lead to fluid-structure instabilities at the whole-cell level, and enquire if they can be used to rationalise experimental measurements of bacterial motor torques. ERC Consolidator Grant.

  2. Expression, purification and biochemical characterization of the cytoplasmic loop of PomA, a stator component of the Na+ driven flagellar motor

    PubMed Central

    Abe-Yoshizumi, Rei; Kobayashi, Shiori; Gohara, Mizuki; Hayashi, Kokoro; Kojima, Chojiro; Kojima, Seiji; Sudo, Yuki; Asami, Yasuo; Homma, Michio

    2013-01-01

    Flagellar motors embedded in bacterial membranes are molecular machines powered by specific ion flows. Each motor is composed of a stator and a rotor and the interactions of those components are believed to generate the torque. Na+ influx through the PomA/PomB stator complex of Vibrio alginolyticus is coupled to torque generation and is speculated to trigger structural changes in the cytoplasmic domain of PomA that interacts with a rotor protein in the C-ring, FliG, to drive the rotation. In this study, we tried to overproduce the cytoplasmic loop of PomA (PomA-Loop), but it was insoluble. Thus, we made a fusion protein with a small soluble tag (GB1) which allowed us to express and characterize the recombinant protein. The structure of the PomA-Loop seems to be very elongated or has a loose tertiary structure. When the PomA-Loop protein was produced in E. coli, a slight dominant effect was observed on motility. We conclude that the cytoplasmic loop alone retains a certain function. PMID:27493537

  3. Antimicrobial activity of filamentous fungi isolated from highly antibiotic-contaminated river sediment

    PubMed Central

    Svahn, K. Stefan; Göransson, Ulf; El-Seedi, Hesham; Bohlin, Lars; Larsson, D.G. Joakim; Olsen, Björn; Chryssanthou, Erja

    2012-01-01

    Background Filamentous fungi are well known for their production of substances with antimicrobial activities, several of which have formed the basis for the development of new clinically important antimicrobial agents. Recently, environments polluted with extraordinarily high levels of antibiotics have been documented, leading to strong selection pressure on local sentinel bacterial communities. In such microbial ecosystems, where multidrug-resistant bacteria are likely to thrive, it is possible that certain fungal antibiotics have become less efficient, thus encouraging alternative strategies for fungi to compete with bacteria. Methods In this study, sediment of a highly antibiotic-contaminated Indian river was sampled in order to investigate the presence of cultivable filamentous fungi and their ability to produce substances with antimicrobial activity. Results Sixty one strains of filamentous fungi, predominantly various Aspergillus spp. were identified. The majority of the Aspergillus strains displayed antimicrobial activity against methicillin-resistant Staphylococcus aureus, extended-spectrum beta-lactamase-producing Escherichia coli, vancomycin-resistant Enterococcus faecalis and Candida albicans. Bioassay-guided isolation of the secondary metabolites of A. fumigatus led to the identification of gliotoxin. Conclusion This study demonstrated proof of principle of using bioassay-guided isolation for finding bioactive molecules. PMID:22957125

  4. Cytoplasmic filaments of Amoeba proteus. I. The role of filaments in consistency changes and movement.

    PubMed

    Pollard, T D; Ito, S

    1970-08-01

    The role of filaments in consistency changes and movement in a motile cytoplasmic extract of Amoeba proteus was investigated by correlating light and electron microscopic observations with viscosity measurements. The extract is prepared by the method of Thompson and Wolpert (1963). At 0 degrees C, this extract is nonmotile and similar in structure to ameba cytoplasm, consisting of groundplasm, vesicles, mitochondria, and a few 160 A filaments. The extract undergoes striking ATP-stimulated streaming when warmed to 22 degrees C. Two phases of movement are distinguished. During the first phase, the apparent viscosity usually increases and numerous 50-70 A filaments appear in samples of the extract prepared for electron microscopy, suggesting that the increase in viscosity in caused, at least in part, by the formation of these thin filaments. During this initial phase of ATP-stimulated movement, these thin filaments are not detectable by phase-contrast or polarization microscopy, but later, in the second phase of movement, 70 A filaments aggregate to form birefringent microscopic fibrils. A preparation of pure groundplasm with no 160 A filaments or membranous organelles exhibits little or no ATP-stimulated movement, but 50-70 A filaments form and aggregate into birefringent fibrils. This observation and the structural relationship of the 70 A and the 160 A filaments in the motile extract suggest that both types of filaments may be required for movement. These two types of filaments, 50-70 A and 160 A, are also present in the cytoplasm of intact amebas. Fixed cells could not be used to study the distribution of these filaments during natural ameboid movement because of difficulties in preserving the normal structure of the ameba during preparation for electron microscopy.

  5. β-Helical architecture of cytoskeletal bactofilin filaments revealed by solid-state NMR

    PubMed Central

    Vasa, Suresh; Lin, Lin; Shi, Chaowei; Habenstein, Birgit; Riedel, Dietmar; Kühn, Juliane; Thanbichler, Martin; Lange, Adam

    2015-01-01

    Bactofilins are a widespread class of bacterial filament-forming proteins, which serve as cytoskeletal scaffolds in various cellular pathways. They are characterized by a conserved architecture, featuring a central conserved domain (DUF583) that is flanked by variable terminal regions. Here, we present a detailed investigation of bactofilin filaments from Caulobacter crescentus by high-resolution solid-state NMR spectroscopy. De novo sequential resonance assignments were obtained for residues Ala39 to Phe137, spanning the conserved DUF583 domain. Analysis of the secondary chemical shifts shows that this core region adopts predominantly β-sheet secondary structure. Mutational studies of conserved hydrophobic residues located in the identified β-strand segments suggest that bactofilin folding and polymerization is mediated by an extensive and redundant network of hydrophobic interactions, consistent with the high intrinsic stability of bactofilin polymers. Transmission electron microscopy revealed a propensity of bactofilin to form filament bundles as well as sheet-like, 2D crystalline assemblies, which may represent the supramolecular arrangement of bactofilin in the native context. Based on the diffraction pattern of these 2D crystalline assemblies, scanning transmission electron microscopy measurements of the mass per length of BacA filaments, and the distribution of β-strand segments identified by solid-state NMR, we propose that the DUF583 domain adopts a β-helical architecture, in which 18 β-strand segments are arranged in six consecutive windings of a β-helix. PMID:25550503

  6. β-Helical architecture of cytoskeletal bactofilin filaments revealed by solid-state NMR.

    PubMed

    Vasa, Suresh; Lin, Lin; Shi, Chaowei; Habenstein, Birgit; Riedel, Dietmar; Kühn, Juliane; Thanbichler, Martin; Lange, Adam

    2015-01-13

    Bactofilins are a widespread class of bacterial filament-forming proteins, which serve as cytoskeletal scaffolds in various cellular pathways. They are characterized by a conserved architecture, featuring a central conserved domain (DUF583) that is flanked by variable terminal regions. Here, we present a detailed investigation of bactofilin filaments from Caulobacter crescentus by high-resolution solid-state NMR spectroscopy. De novo sequential resonance assignments were obtained for residues Ala39 to Phe137, spanning the conserved DUF583 domain. Analysis of the secondary chemical shifts shows that this core region adopts predominantly β-sheet secondary structure. Mutational studies of conserved hydrophobic residues located in the identified β-strand segments suggest that bactofilin folding and polymerization is mediated by an extensive and redundant network of hydrophobic interactions, consistent with the high intrinsic stability of bactofilin polymers. Transmission electron microscopy revealed a propensity of bactofilin to form filament bundles as well as sheet-like, 2D crystalline assemblies, which may represent the supramolecular arrangement of bactofilin in the native context. Based on the diffraction pattern of these 2D crystalline assemblies, scanning transmission electron microscopy measurements of the mass per length of BacA filaments, and the distribution of β-strand segments identified by solid-state NMR, we propose that the DUF583 domain adopts a β-helical architecture, in which 18 β-strand segments are arranged in six consecutive windings of a β-helix.

  7. Unique ATPase site architecture triggers cis-mediated synchronized ATP binding in heptameric AAA+-ATPase domain of flagellar regulatory protein FlrC.

    PubMed

    Dey, Sanjay; Biswas, Maitree; Sen, Udayaditya; Dasgupta, Jhimli

    2015-04-03

    Bacterial enhancer-binding proteins (bEBPs) oligomerize through AAA(+) domains and use ATP hydrolysis-driven energy to isomerize the RNA polymerase-σ(54) complex during transcriptional initiation. Here, we describe the first structure of the central AAA(+) domain of the flagellar regulatory protein FlrC (FlrC(C)), a bEBP that controls flagellar synthesis in Vibrio cholerae. Our results showed that FlrC(C) forms heptamer both in nucleotide (Nt)-free and -bound states without ATP-dependent subunit remodeling. Unlike the bEBPs such as NtrC1 or PspF, a novel cis-mediated "all or none" ATP binding occurs in the heptameric FlrC(C), because constriction at the ATPase site, caused by loop L3 and helix α7, restricts the proximity of the trans-protomer required for Nt binding. A unique "closed to open" movement of Walker A, assisted by trans-acting "Glu switch" Glu-286, facilitates ATP binding and hydrolysis. Fluorescence quenching and ATPase assays on FlrC(C) and mutants revealed that although Arg-349 of sensor II, positioned by trans-acting Glu-286 and Tyr-290, acts as a key residue to bind and hydrolyze ATP, Arg-319 of α7 anchors ribose and controls the rate of ATP hydrolysis by retarding the expulsion of ADP. Heptameric state of FlrC(C) is restored in solution even with the transition state mimicking ADP·AlF3. Structural results and pulldown assays indicated that L3 renders an in-built geometry to L1 and L2 causing σ(54)-FlrC(C) interaction independent of Nt binding. Collectively, our results underscore a novel mechanism of ATP binding and σ(54) interaction that strives to understand the transcriptional mechanism of the bEBPs, which probably interact directly with the RNA polymerase-σ(54) complex without DNA looping. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  8. Synthetic inhibitors of bacterial cell division targeting the GTP-binding site of FtsZ.

    PubMed

    Ruiz-Avila, Laura B; Huecas, Sonia; Artola, Marta; Vergoñós, Albert; Ramírez-Aportela, Erney; Cercenado, Emilia; Barasoain, Isabel; Vázquez-Villa, Henar; Martín-Fontecha, Mar; Chacón, Pablo; López-Rodríguez, María L; Andreu, José M

    2013-09-20

    Cell division protein FtsZ is the organizer of the cytokinetic Z-ring in most bacteria and a target for new antibiotics. FtsZ assembles with GTP into filaments that hydrolyze the nucleotide at the association interface between monomers and then disassemble. We have replaced FtsZ's GTP with non-nucleotide synthetic inhibitors of bacterial division. We searched for these small molecules among compounds from the literature, from virtual screening (VS), and from our in-house synthetic library (UCM), employing a fluorescence anisotropy primary assay. From these screens we have identified the polyhydroxy aromatic compound UCM05 and its simplified analogue UCM44 that specifically bind to Bacillus subtilis FtsZ monomers with micromolar affinities and perturb normal assembly, as examined with light scattering, polymer sedimentation, and negative stain electron microscopy. On the other hand, these ligands induce the cooperative assembly of nucleotide-devoid archaeal FtsZ into distinct well-ordered polymers, different from GTP-induced filaments. These FtsZ inhibitors impair localization of FtsZ into the Z-ring and inhibit bacterial cell division. The chlorinated analogue UCM53 inhibits the growth of clinical isolates of antibiotic-resistant Staphylococcus aureus and Enterococcus faecalis. We suggest that these interfacial inhibitors recapitulate binding and some assembly-inducing effects of GTP but impair the correct structural dynamics of FtsZ filaments and thus inhibit bacterial division, possibly by binding to a small fraction of the FtsZ molecules in a bacterial cell, which opens a new approach to FtsZ-based antibacterial drug discovery.

  9. [Biofilm: set-up and organization of a bacterial community].

    PubMed

    Filloux, Alain; Vallet, Isabelle

    2003-01-01

    Bacterial attachment on various surfaces mostly takes place in the form of specialised bacterial communities, referred to as biofilm. The biofilm is formed through series of interactions between cells and adherence to surface, resulting in an organised structure. In this review we have been using Pseudomonas aeruginosa as a model microorganism to describe the series of events that occurred during this developmental process. P. aeruginosa is an opportunistic pathogen that has a wide variety of hosts and infectious sites. In addition to biofilm formation in certain tissues, inert surfaces, such as catheters, are also target for bacterial biofilm development. The use of convenient genetic screens has made possible the identification of numerous biofilm-defective mutants, which have been characterised further. These studies have allowed the proposal for a global model, in which key events are described for the different stages of biofilm formation. Briefly, flagellar mobility is crucial for approaching the surface, whereas type IV pili motility is preponderant for surface colonisation and microcolonies formation. These microcolonies are finally packed together and buried in an exopolysaccharide matrix to form the differentiated bio-film. It is obvious that the different stages of biofilm formation also involved perception of environmental stimuli. These stimuli, and their associated complex regulatory networks, have still to be fully characterised to understand the bacterial strategy, which initiates biofilm formation. One such regulatory system, called Quorum sensing, is one of the key player in the initial differentiation of biofilm. Finally, a better understanding, at the molecular level, of biofilm establishment and persistence should help for the design of antimicrobials that prevent bacterial infections.

  10. Actin filament curvature biases branching direction

    NASA Astrophysics Data System (ADS)

    Wang, Evan; Risca, Viviana; Chaudhuri, Ovijit; Chia, Jia-Jun; Geissler, Phillip; Fletcher, Daniel

    2012-02-01

    Actin filaments are key components of the cellular machinery, vital for a wide range of processes ranging from cell motility to endocytosis. Actin filaments can branch, and essential in this process is a protein complex known as the Arp2/3 complex, which nucleate new ``daughter'' filaments from pre-existing ``mother'' filaments by attaching itself to the mother filament. Though much progress has been made in understanding the Arp2/3-actin junction, some very interesting questions remain. In particular, F-actin is a dynamic polymer that undergoes a wide range of fluctuations. Prior studies of the Arp2/3-actin junction provides a very static notion of Arp2/3 binding. The question we ask is how differently does the Arp2/3 complex interact with a straight filament compared to a bent filament? In this study, we used Monte Carlo simulations of a surface-tethered worm-like chain to explore possible mechanisms underlying the experimental observation that there exists preferential branch formation by the Arp2/3 complex on the convex face of a curved filament. We show that a fluctuation gating model in which Arp2/3 binding to the actin filament is dependent upon a rare high-local-curvature shape fluctuation of the filament is consistent with the experimental data.

  11. Three New Structures of Left-Handed RadA Helical Filaments: Structural Flexibility of N-Terminal Domain Is Critical for Recombinase Activity

    PubMed Central

    Chang, Yu-Wei; Ko, Tzu-Ping; Lee, Chien-Der; Chang, Yuan-Chih; Lin, Kuei-Ann; Chang, Chia-Seng; Wang, Andrew H.-J.; Wang, Ting-Fang

    2009-01-01

    RecA family proteins, including bacterial RecA, archaeal RadA, and eukaryotic Dmc1 and Rad51, mediate homologous recombination, a reaction essential for maintaining genome integrity. In the presence of ATP, these proteins bind a single-strand DNA to form a right-handed nucleoprotein filament, which catalyzes pairing and strand exchange with a homologous double-stranded DNA (dsDNA), by as-yet unknown mechanisms. We recently reported a structure of RadA left-handed helical filament, and here present three new structures of RadA left-handed helical filaments. Comparative structural analysis between different RadA/Rad51 helical filaments reveals that the N-terminal domain (NTD) of RadA/Rad51, implicated in dsDNA binding, is highly flexible. We identify a hinge region between NTD and polymerization motif as responsible for rigid body movement of NTD. Mutant analysis further confirms that structural flexibility of NTD is essential for RadA's recombinase activity. These results support our previous hypothesis that ATP-dependent axial rotation of RadA nucleoprotein helical filament promotes homologous recombination. PMID:19295907

  12. SYMPATHETIC SOLAR FILAMENT ERUPTIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Rui; Liu, Ying D.; Zimovets, Ivan

    2016-08-10

    The 2015 March 15 coronal mass ejection as one of the two that together drove the largest geomagnetic storm of solar cycle 24 so far was associated with sympathetic filament eruptions. We investigate the relations between the different filaments involved in the eruption. A surge-like small-scale filament motion is confirmed as the trigger that initiated the erupting filament with multi-wavelength observations and using a forced magnetic field extrapolation method. When the erupting filament moved to an open magnetic field region, it experienced an obvious acceleration process and was accompanied by a C-class flare and the rise of another larger filamentmore » that eventually failed to erupt. We measure the decay index of the background magnetic field, which presents a critical height of 118 Mm. Combining with a potential field source surface extrapolation method, we analyze the distributions of the large-scale magnetic field, which indicates that the open magnetic field region may provide a favorable condition for F2 rapid acceleration and have some relation with the largest solar storm. The comparison between the successful and failed filament eruptions suggests that the confining magnetic field plays an important role in the preconditions for an eruption.« less

  13. Are there intracellular Ca2+ oscillations correlated with flagellar beating in human sperm? A three vs. two-dimensional analysis.

    PubMed

    Corkidi, G; Montoya, F; Hernández-Herrera, P; Ríos-Herrera, W A; Müller, M F; Treviño, C L; Darszon, A

    2017-09-01

    Are there intracellular Ca2+ ([Ca2+]i) oscillations correlated with flagellar beating in human sperm? The results reveal statistically significant [Ca2+]i oscillations that are correlated with the human sperm flagellar beating frequency, when measured in three-dimensions (3D). Fast [Ca2+]i oscillations that are correlated to the beating flagellar frequency of cells swimming in a restricted volume have been detected in hamster sperm. To date, such findings have not been confirmed in any other mammalian sperm species. An important question that has remained regarding these observations is whether the fast [Ca2+]i oscillations are real or might they be due to remaining defocusing effects of the Z component arising from the 3D beating of the flagella. Healthy donors whose semen samples fulfill the WHO criteria between the age of 18-28 were selected. Cells from at least six different donors were utilized for analysis. Approximately the same number of experimental and control cells were analyzed. Motile cells were obtained by the swim-up technique and were loaded with Fluo-4 (Ca2+ sensitive dye) or with Calcein (Ca2+ insensitive dye). Ni2+ was used as a non-specific plasma membrane Ca2+ channel blocker. Fluorescence data and flagella position were acquired in 3D. Each cell was recorded for up to 5.6 s within a depth of 16 microns with a high speed camera (coupled to an image intensifier) acquiring at a rate of 3000 frames per second, while an oscillating objective vibrated at 90 Hz via a piezoelectric device. From these samples, eight experimental and nine control sperm cells were analyzed in both 2D and 3D. We have implemented a new system that allows [Ca2+]i measurements of the human sperm flagellum beating in 3D. These measurements reveal statistically significant [Ca2+]i oscillations that correlate with the flagellar beating frequency. These oscillations may arise from intracellular sources and/or Ca2+ transporters, as they were insensitive to external Ni2+, a non

  14. A penny-shaped crack in a filament-reinforced matrix. I - The filament model. II - The crack problem

    NASA Technical Reports Server (NTRS)

    Erdogan, F.; Pacella, A. H.

    1974-01-01

    The study deals with the elastostatic problem of a penny-shaped crack in an elastic matrix which is reinforced by filaments or fibers perpendicular to the plane of the crack. An elastic filament model is first developed, followed by consideration of the application of the model to the penny-shaped crack problem in which the filaments of finite length are asymmetrically distributed around the crack. Since the primary interest is in the application of the results to studies relating to the fracture of fiber or filament-reinforced composites and reinforced concrete, the main emphasis of the study is on the evaluation of the stress intensity factor along the periphery of the crack, the stresses in the filaments or fibers, and the interface shear between the matrix and the filaments or fibers. Using the filament model developed, the elastostatic interaction problem between a penny-shaped crack and a slender inclusion or filament in an elastic matrix is formulated.

  15. Tungsten Filament Fire

    ERIC Educational Resources Information Center

    Ruiz, Michael J.; Perkins, James

    2016-01-01

    We safely remove the outer glass bulb from an incandescent lamp and burn up the tungsten filament after the glass is removed. This demonstration dramatically illustrates the necessity of a vacuum or inert gas for the environment surrounding the tungsten filament inside the bulb. Our approach has added historical importance since the incandescent…

  16. Filamentous phages prevalent in Pseudoalteromonas spp. confer properties advantageous to host survival in Arctic sea ice

    PubMed Central

    Yu, Zi-Chao; Chen, Xiu-Lan; Shen, Qing-Tao; Zhao, Dian-Li; Tang, Bai-Lu; Su, Hai-Nan; Wu, Zhao-Yu; Qin, Qi-Long; Xie, Bin-Bin; Zhang, Xi-Ying; Yu, Yong; Zhou, Bai-Cheng; Chen, Bo; Zhang, Yu-Zhong

    2015-01-01

    Sea ice is one of the most frigid environments for marine microbes. In contrast to other ocean ecosystems, microbes in permanent sea ice are space confined and subject to many extreme conditions, which change on a seasonal basis. How these microbial communities are regulated to survive the extreme sea ice environment is largely unknown. Here, we show that filamentous phages regulate the host bacterial community to improve survival of the host in permanent Arctic sea ice. We isolated a filamentous phage, f327, from an Arctic sea ice Pseudoalteromonas strain, and we demonstrated that this type of phage is widely distributed in Arctic sea ice. Growth experiments and transcriptome analysis indicated that this phage decreases the host growth rate, cell density and tolerance to NaCl and H2O2, but enhances its motility and chemotaxis. Our results suggest that the presence of the filamentous phage may be beneficial for survival of the host community in sea ice in winter, which is characterized by polar night, nutrient deficiency and high salinity, and that the filamentous phage may help avoid over blooming of the host in sea ice in summer, which is characterized by polar day, rich nutrient availability, intense radiation and high concentration of H2O2. Thus, while they cannot kill the host cells by lysing them, filamentous phages confer properties advantageous to host survival in the Arctic sea ice environment. Our study provides a foremost insight into the ecological role of filamentous phages in the Arctic sea ice ecosystem. PMID:25303713

  17. Electron emitting filaments for electron discharge devices

    DOEpatents

    Leung, Ka-Ngo; Pincosy, Philip A.; Ehlers, Kenneth W.

    1988-01-01

    Electrons are copiously emitted by a device comprising a loop-shaped filament made of lanthanum hexaboride. The filament is directly heated by an electrical current produced along the filament by a power supply connected to the terminal legs of the filament. To produce a filament, a diamond saw or the like is used to cut a slice from a bar made of lanthanum hexaboride. The diamond saw is then used to cut the slice into the shape of a loop which may be generally rectangular, U-shaped, hairpin-shaped, zigzag-shaped, or generally circular. The filaments provide high electron emission at a relatively low operating temperature, such as 1600.degree. C. To achieve uniform heating, the filament is formed with a cross section which is tapered between the opposite ends of the filament to compensate for non-uniform current distribution along the filament due to the emission of electrons from the filament.

  18. Electron emitting filaments for electron discharge devices

    DOEpatents

    Leung, K.N.; Pincosy, P.A.; Ehlers, K.W.

    1983-06-10

    Electrons are copiously emitted by a device comprising a loop-shaped filament made of lanthanum hexaboride. The filament is directly heated by an electrical current produced along the filament by a power supply connected to the terminal legs of the filament. To produce a filament, a diamond saw or the like is used to cut a slice from a bar made of lanthanum hexaboride. The diamond saw is then used to cut the slice into the shape of a loop which may be generally rectangular, U-shaped, hairpin-shaped, zigzag-shaped, or generally circular. The filaments provide high electron emission at a relatively low operating temperature, such as 1600/sup 0/C. To achieve uniform heating, the filament is formed with a cross section which is tapered between the opposite ends of the filament to compensate for nonuniform current distribution along the filament due to the emission of electrons from the filament.

  19. Altering the speract-induced ion permeability changes that generate flagellar Ca2+ spikes regulates their kinetics and sea urchin sperm motility.

    PubMed

    Wood, Christopher D; Nishigaki, Takuya; Tatsu, Yoshiro; Yumoto, Noboru; Baba, Shoji A; Whitaker, Michael; Darszon, Alberto

    2007-06-15

    Speract, an egg-derived sperm-activating peptide, induces changes in intracellular Ca2+, Na+, pH, cAMP, cGMP, and membrane potential in sperm of the sea urchin Strongylocentrotus purpuratus. Ca2+ is a key regulator of motility in all sperm and, in many marine species, is required for generating turns interspersed with straighter swimming paths that are essential for chemotaxis towards the egg. We show that speract triggers a train of increases in flagellar Ca2+, and that each individual Ca2+ fluctuation induces a transient increase in flagellar asymmetry that leads to a turn. We also find that modifying the amplitude, duration and interval between individual Ca2+ fluctuations by treating sperm with niflumic acid, an inhibitor of Ca2+-activated Cl(-) channels, correspondingly alters the properties of the sperm turns. We conclude that Ca2+ entry through a fast flagellar pathway not only induces sperm turns, but the kinetics of Ca2+ entry may shape the nature of these turns, and that these kinetics are tuned by other channels, possibly including Cl(-) channels. In addition, the speract-induced changes in sperm motility closely resemble those seen during chemotaxis in other marine organisms, yet speract is not a chemoattractant. This implies the Ca2+-induced motility changes are necessary but not sufficient for chemotaxis.

  20. A growing family: the expanding universe of the bacterial cytoskeleton

    PubMed Central

    Ingerson-Mahar, Michael; Gitai, Zemer

    2014-01-01

    Cytoskeletal proteins are important mediators of cellular organization in both eukaryotes and bacteria. In the past, cytoskeletal studies have largely focused on three major cytoskeletal families, namely the eukaryotic actin, tubulin, and intermediate filament (IF) proteins and their bacterial homologs MreB, FtsZ, and crescentin. However, mounting evidence suggests that these proteins represent only the tip of the iceberg, as the cellular cytoskeletal network is far more complex. In bacteria, each of MreB, FtsZ, and crescentin represents only one member of large families of diverse homologs. There are also newly identified bacterial cytoskeletal proteins with no eukaryotic homologs, such as WACA proteins and bactofilins. Furthermore, there are universally conserved proteins, such as the metabolic enzyme CtpS, that assemble into filamentous structures that can be repurposed for structural cytoskeletal functions. Recent studies have also identified an increasing number of eukaryotic cytoskeletal proteins that are unrelated to actin, tubulin, and IFs, such that expanding our understanding of cytoskeletal proteins is advancing the understanding of the cell biology of all organisms. Here, we summarize the recent explosion in the identification of new members of the bacterial cytoskeleton and describe a hypothesis for the evolution of the cytoskeleton from self-assembling enzymes. PMID:22092065

  1. Flagellar Kinematics and Swimming of Algal Cells in Viscoelastic Fluids

    PubMed Central

    Qin, B.; Gopinath, A.; Yang, J.; Gollub, J. P.; Arratia, P. E.

    2015-01-01

    The motility of microorganisms is influenced greatly by their hydrodynamic interactions with the fluidic environment they inhabit. We show by direct experimental observation of the bi-flagellated alga Chlamydomonas reinhardtii that fluid elasticity and viscosity strongly influence the beating pattern - the gait - and thereby control the propulsion speed. The beating frequency and the wave speed characterizing the cyclical bending are both enhanced by fluid elasticity. Despite these enhancements, the net swimming speed of the alga is hindered for fluids that are sufficiently elastic. The origin of this complex response lies in the interplay between the elasticity-induced changes in the spatial and temporal aspects of the flagellar cycle and the buildup and subsequent relaxation of elastic stresses during the power and recovery strokes. PMID:25778677

  2. Bacterial mineralization patterns in basaltic aquifers: implications for possible life in martian meteorite ALH84001

    NASA Technical Reports Server (NTRS)

    Thomas-Keprta, K. L.; McKay, D. S.; Wentworth, S. J.; Stevens, T. O.; Taunton, A. E.; Allen, C. C.; Coleman, A.; Gibson, E. K. Jr; Romanek, C. S.

    1998-01-01

    To explore the formation and preservation of biogenic features in igneous rocks, we have examined the organisms in experimental basaltic microcosms using scanning and transmission electron microscopy. Four types of microorganisms were recognized on the basis of size, morphology, and chemical composition. Some of the organisms mineralized rapidly, whereas others show no evidence of mineralization. Many mineralized cells are hollow and do not contain evidence of microstructure. Filaments, either attached or no longer attached to organisms, are common. Unattached filaments are mineralized and are most likely bacterial appendages (e.g., prosthecae). Features similar in size and morphology to unattached, mineralized filaments are recognized in martian meteorite ALH84001.

  3. Unwinding motion of a twisted active region filament

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yan, X. L.; Xue, Z. K.; Kong, D. F.

    To better understand the structures of active region filaments and the eruption process, we study an active region filament eruption in active region NOAA 11082 in detail on 2010 June 22. Before the filament eruption, the opposite unidirectional material flows appeared in succession along the spine of the filament. The rising of the filament triggered two B-class flares at the upper part of the filament. As the bright material was injected into the filament from the sites of the flares, the filament exhibited a rapid uplift accompanying the counterclockwise rotation of the filament body. From the expansion of the filament,more » we can see that the filament consisted of twisted magnetic field lines. The total twist of the filament is at least 5π obtained by using a time slice method. According to the morphology change during the filament eruption, it is found that the active region filament was a twisted flux rope and its unwinding motion was like a solar tornado. We also find that there was a continuous magnetic helicity injection before and during the filament eruption. It is confirmed that magnetic helicity can be transferred from the photosphere to the filament. Using the extrapolated potential fields, the average decay index of the background magnetic fields over the filament is 0.91. Consequently, these findings imply that the mechanism of solar filament eruption could be due to the kink instability and magnetic helicity accumulation.« less

  4. Learning and evolution in bacterial taxis: an operational amplifier circuit modeling the computational dynamics of the prokaryotic 'two component system' protein network.

    PubMed

    Di Paola, Vieri; Marijuán, Pedro C; Lahoz-Beltra, Rafael

    2004-01-01

    Adaptive behavior in unicellular organisms (i.e., bacteria) depends on highly organized networks of proteins governing purposefully the myriad of molecular processes occurring within the cellular system. For instance, bacteria are able to explore the environment within which they develop by utilizing the motility of their flagellar system as well as a sophisticated biochemical navigation system that samples the environmental conditions surrounding the cell, searching for nutrients or moving away from toxic substances or dangerous physical conditions. In this paper we discuss how proteins of the intervening signal transduction network could be modeled as artificial neurons, simulating the dynamical aspects of the bacterial taxis. The model is based on the assumption that, in some important aspects, proteins can be considered as processing elements or McCulloch-Pitts artificial neurons that transfer and process information from the bacterium's membrane surface to the flagellar motor. This simulation of bacterial taxis has been carried out on a hardware realization of a McCulloch-Pitts artificial neuron using an operational amplifier. Based on the behavior of the operational amplifier we produce a model of the interaction between CheY and FliM, elements of the prokaryotic two component system controlling chemotaxis, as well as a simulation of learning and evolution processes in bacterial taxis. On the one side, our simulation results indicate that, computationally, these protein 'switches' are similar to McCulloch-Pitts artificial neurons, suggesting a bridge between evolution and learning in dynamical systems at cellular and molecular levels and the evolutive hardware approach. On the other side, important protein 'tactilizing' properties are not tapped by the model, and this suggests further complexity steps to explore in the approach to biological molecular computing.

  5. Bacterial growth on stream insects: potential for use in bioassessment

    Treesearch

    A. Dennis Lemly

    1998-01-01

    Growth of filamentous bacteria (Sphaerotilus sp., Leptothrix sp.) on aquatic insects was evaluated for its usefulness as a bioindicator of detrimental nutrient levels in streams. Field measurements of insect abundance, nutrient concentrations, and incidence/ degree of bacterial growth on insects upstream and downstream of livestock pastures were made in 2 Virginia, USA...

  6. Nonlinear amplitude dynamics in flagellar beating

    NASA Astrophysics Data System (ADS)

    Oriola, David; Gadêlha, Hermes; Casademunt, Jaume

    2017-03-01

    The physical basis of flagellar and ciliary beating is a major problem in biology which is still far from completely understood. The fundamental cytoskeleton structure of cilia and flagella is the axoneme, a cylindrical array of microtubule doublets connected by passive cross-linkers and dynein motor proteins. The complex interplay of these elements leads to the generation of self-organized bending waves. Although many mathematical models have been proposed to understand this process, few attempts have been made to assess the role of dyneins on the nonlinear nature of the axoneme. Here, we investigate the nonlinear dynamics of flagella by considering an axonemal sliding control mechanism for dynein activity. This approach unveils the nonlinear selection of the oscillation amplitudes, which are typically either missed or prescribed in mathematical models. The explicit set of nonlinear equations are derived and solved numerically. Our analysis reveals the spatio-temporal dynamics of dynein populations and flagellum shape for different regimes of motor activity, medium viscosity and flagellum elasticity. Unstable modes saturate via the coupling of dynein kinetics and flagellum shape without the need of invoking a nonlinear axonemal response. Hence, our work reveals a novel mechanism for the saturation of unstable modes in axonemal beating.

  7. Nonlinear amplitude dynamics in flagellar beating.

    PubMed

    Oriola, David; Gadêlha, Hermes; Casademunt, Jaume

    2017-03-01

    The physical basis of flagellar and ciliary beating is a major problem in biology which is still far from completely understood. The fundamental cytoskeleton structure of cilia and flagella is the axoneme, a cylindrical array of microtubule doublets connected by passive cross-linkers and dynein motor proteins. The complex interplay of these elements leads to the generation of self-organized bending waves. Although many mathematical models have been proposed to understand this process, few attempts have been made to assess the role of dyneins on the nonlinear nature of the axoneme. Here, we investigate the nonlinear dynamics of flagella by considering an axonemal sliding control mechanism for dynein activity. This approach unveils the nonlinear selection of the oscillation amplitudes, which are typically either missed or prescribed in mathematical models. The explicit set of nonlinear equations are derived and solved numerically. Our analysis reveals the spatio-temporal dynamics of dynein populations and flagellum shape for different regimes of motor activity, medium viscosity and flagellum elasticity. Unstable modes saturate via the coupling of dynein kinetics and flagellum shape without the need of invoking a nonlinear axonemal response. Hence, our work reveals a novel mechanism for the saturation of unstable modes in axonemal beating.

  8. Nonlinear amplitude dynamics in flagellar beating

    PubMed Central

    Casademunt, Jaume

    2017-01-01

    The physical basis of flagellar and ciliary beating is a major problem in biology which is still far from completely understood. The fundamental cytoskeleton structure of cilia and flagella is the axoneme, a cylindrical array of microtubule doublets connected by passive cross-linkers and dynein motor proteins. The complex interplay of these elements leads to the generation of self-organized bending waves. Although many mathematical models have been proposed to understand this process, few attempts have been made to assess the role of dyneins on the nonlinear nature of the axoneme. Here, we investigate the nonlinear dynamics of flagella by considering an axonemal sliding control mechanism for dynein activity. This approach unveils the nonlinear selection of the oscillation amplitudes, which are typically either missed or prescribed in mathematical models. The explicit set of nonlinear equations are derived and solved numerically. Our analysis reveals the spatio-temporal dynamics of dynein populations and flagellum shape for different regimes of motor activity, medium viscosity and flagellum elasticity. Unstable modes saturate via the coupling of dynein kinetics and flagellum shape without the need of invoking a nonlinear axonemal response. Hence, our work reveals a novel mechanism for the saturation of unstable modes in axonemal beating. PMID:28405357

  9. Myosin binding protein-C activates thin filaments and inhibits thick filaments in heart muscle cells

    PubMed Central

    Kampourakis, Thomas; Yan, Ziqian; Gautel, Mathias; Sun, Yin-Biao; Irving, Malcolm

    2014-01-01

    Myosin binding protein-C (MyBP-C) is a key regulatory protein in heart muscle, and mutations in the MYBPC3 gene are frequently associated with cardiomyopathy. However, the mechanism of action of MyBP-C remains poorly understood, and both activating and inhibitory effects of MyBP-C on contractility have been reported. To clarify the function of the regulatory N-terminal domains of MyBP-C, we determined their effects on the structure of thick (myosin-containing) and thin (actin-containing) filaments in intact sarcomeres of heart muscle. We used fluorescent probes on troponin C in the thin filaments and on myosin regulatory light chain in the thick filaments to monitor structural changes associated with activation of demembranated trabeculae from rat ventricle by the C1mC2 region of rat MyBP-C. C1mC2 induced larger structural changes in thin filaments than calcium activation, and these were still present when active force was blocked with blebbistatin, showing that C1mC2 directly activates the thin filaments. In contrast, structural changes in thick filaments induced by C1mC2 were smaller than those associated with calcium activation and were abolished or reversed by blebbistatin. Low concentrations of C1mC2 did not affect resting force but increased calcium sensitivity and reduced cooperativity of force and structural changes in both thin and thick filaments. These results show that the N-terminal region of MyBP-C stabilizes the ON state of thin filaments and the OFF state of thick filaments and lead to a novel hypothesis for the physiological role of MyBP-C in the regulation of cardiac contractility. PMID:25512492

  10. Myosin binding protein-C activates thin filaments and inhibits thick filaments in heart muscle cells.

    PubMed

    Kampourakis, Thomas; Yan, Ziqian; Gautel, Mathias; Sun, Yin-Biao; Irving, Malcolm

    2014-12-30

    Myosin binding protein-C (MyBP-C) is a key regulatory protein in heart muscle, and mutations in the MYBPC3 gene are frequently associated with cardiomyopathy. However, the mechanism of action of MyBP-C remains poorly understood, and both activating and inhibitory effects of MyBP-C on contractility have been reported. To clarify the function of the regulatory N-terminal domains of MyBP-C, we determined their effects on the structure of thick (myosin-containing) and thin (actin-containing) filaments in intact sarcomeres of heart muscle. We used fluorescent probes on troponin C in the thin filaments and on myosin regulatory light chain in the thick filaments to monitor structural changes associated with activation of demembranated trabeculae from rat ventricle by the C1mC2 region of rat MyBP-C. C1mC2 induced larger structural changes in thin filaments than calcium activation, and these were still present when active force was blocked with blebbistatin, showing that C1mC2 directly activates the thin filaments. In contrast, structural changes in thick filaments induced by C1mC2 were smaller than those associated with calcium activation and were abolished or reversed by blebbistatin. Low concentrations of C1mC2 did not affect resting force but increased calcium sensitivity and reduced cooperativity of force and structural changes in both thin and thick filaments. These results show that the N-terminal region of MyBP-C stabilizes the ON state of thin filaments and the OFF state of thick filaments and lead to a novel hypothesis for the physiological role of MyBP-C in the regulation of cardiac contractility.

  11. Fabrication of Polylactide Nanocomposite Filament Using Melt Extrusion and Filament Characterization for 3D Printing

    NASA Astrophysics Data System (ADS)

    Jain, Shrenik Kumar

    Fused deposition modeling (FDM) technology uses thermoplastic filament for layer by layer fabrication of objects. To make functional objects with desired properties, composite filaments are required in the FDM. In this thesis, less expensive mesoporous Nano carbon (NC) and carbon nanotube (CNT) infused in Polylactide (PLA) thermoplastic filaments were fabricated to improve the electrical properties and maintain sufficient strength for 3D printing. Solution blending was used for nanocomposite fabrication and melt extrusion was employed to make cylindrical filaments. Mechanical and electrical properties of 1 to 20 wt% of NC and 1 to 3 wt% of CNT filaments were investigated and significant improvement of conductivity (3.76 S/m) and sufficient yield strength (35MPa) were obtained. Scanning electron microscopy (SEM) images exhibited uniform dispersion of nanoparticles in polymer matrix and differential scanning calorimetry (DSC) results showed no significant changes in the glass transition temperature (Tg) for all the compositions. Perspective uses of this filament are for fabrication of electrical wires in 3D printed robots, drones, prosthetics, orthotics and others.

  12. The Kinetics Underlying the Velocity of Smooth Muscle Myosin Filament Sliding on Actin Filaments in Vitro*

    PubMed Central

    Haldeman, Brian D.; Brizendine, Richard K.; Facemyer, Kevin C.; Baker, Josh E.; Cremo, Christine R.

    2014-01-01

    Actin-myosin interactions are well studied using soluble myosin fragments, but little is known about effects of myosin filament structure on mechanochemistry. We stabilized unphosphorylated smooth muscle myosin (SMM) and phosphorylated smooth muscle myosin (pSMM) filaments against ATP-induced depolymerization using a cross-linker and attached fluorescent rhodamine (XL-Rh-SMM). Electron micrographs showed that these side polar filaments are very similar to unmodified filaments. They are ∼0.63 μm long and contain ∼176 molecules. Rate constants for ATP-induced dissociation and ADP release from acto-myosin for filaments and S1 heads were similar. Actin-activated ATPases of SMM and XL-Rh-SMM were similarly regulated. XL-Rh-pSMM filaments moved processively on F-actin that was bound to a PEG brush surface. ATP dependence of filament velocities was similar to that for solution ATPases at high [actin], suggesting that both processes are limited by the same kinetic step (weak to strong transition) and therefore are attachment-limited. This differs from actin sliding over myosin monomers, which is primarily detachment-limited. Fitting filament data to an attachment-limited model showed that approximately half of the heads are available to move the filament, consistent with a side polar structure. We suggest the low stiffness subfragment 2 (S2) domain remains unhindered during filament motion in our assay. Actin-bound negatively displaced heads will impart minimal drag force because of S2 buckling. Given the ADP release rate, the velocity, and the length of S2, these heads will detach from actin before slack is taken up into a backwardly displaced high stiffness position. This mechanism explains the lack of detachment-limited kinetics at physiological [ATP]. These findings address how nonlinear elasticity in assemblies of motors leads to efficient collective force generation. PMID:24907276

  13. Mutations in Genes Involved in the Flagellar Export Apparatus of the Solvent-Tolerant Pseudomonas putida DOT-T1E Strain Impair Motility and Lead to Hypersensitivity to Toluene Shocks

    PubMed Central

    Segura, Ana; Duque, Estrella; Hurtado, Ana; Ramos, Juan L.

    2001-01-01

    Pseudomonas putida DOT-T1E is a solvent-tolerant strain able to grow in the presence of 1% (vol/vol) toluene in the culture medium. Random mutagenesis with mini-Tn5-′phoA-Km allowed us to isolate a mutant strain (DOT-T1E-42) that formed blue colonies on Luria-Bertani medium supplemented with 5-bromo-4-chloro-3-indolylphosphate and that, in contrast to the wild-type strain, was unable to tolerate toluene shocks (0.3%, vol/vol). The mutant strain exhibited patterns of tolerance or sensitivity to a number of antibiotics, detergents, and chelating agents similar to those of the wild-type strain. The mutation in this strain therefore seemed to specifically affect toluene tolerance. Cloning and sequencing of the mutation revealed that the mini-Tn5-′phoA-Km was inserted within the fliP gene, which is part of the fliLMNOPQRflhBA cluster, a set of genes that encode flagellar structure components. FliP is involved in the export of flagellar proteins, and in fact, the P. putida fliP mutant was nonmotile. The finding that, after replacing the mutant allele with the wild-type one, the strain recovered the wild-type pattern of toluene tolerance and motility unequivocally assigned FliP a function in solvent resistance. An flhB knockout mutant, another gene component of the flagellar export apparatus, was also nonmotile and hypersensitive to toluene. In contrast, a nonpolar mutation at the fliL gene, which encodes a cytoplasmic membrane protein associated with the flagellar basal body, yielded a nonmotile yet toluene-resistant strain. The results are discussed regarding a possible role of the flagellar export apparatus in the transport of one or more proteins necessary for toluene tolerance in P. putida DOT-T1E to the periplasm. PMID:11418551

  14. The Lipid Raft Proteome of African Trypanosomes Contains Many Flagellar Proteins.

    PubMed

    Sharma, Aabha I; Olson, Cheryl L; Engman, David M

    2017-08-24

    Lipid rafts are liquid-ordered membrane microdomains that form by preferential association of 3-β-hydroxysterols, sphingolipids and raft-associated proteins often having acyl modifications. We isolated lipid rafts of the protozoan parasite Trypanosoma brucei and determined the protein composition of lipid rafts in the cell. This analysis revealed a striking enrichment of flagellar proteins and several putative signaling proteins in the lipid raft proteome. Calpains and intraflagellar transport proteins, in particular, were found to be abundant in the lipid raft proteome. These findings provide additional evidence supporting the notion that the eukaryotic cilium/flagellum is a lipid raft-enriched specialized structure with high concentrations of sterols, sphingolipids and palmitoylated proteins involved in environmental sensing and cell signaling.

  15. Engineering the Controlled Assembly of Filamentous Injectisomes in E. coli K-12 for Protein Translocation into Mammalian Cells.

    PubMed

    Ruano-Gallego, David; Álvarez, Beatriz; Fernández, Luis Ángel

    2015-09-18

    Bacterial pathogens containing type III protein secretion systems (T3SS) assemble large needle-like protein complexes in the bacterial envelope, called injectisomes, for translocation of protein effectors into host cells. The application of these "molecular syringes" for the injection of proteins into mammalian cells is hindered by their structural and genomic complexity, requiring multiple polypeptides encoded along with effectors in various transcriptional units (TUs) with intricate regulation. In this work, we have rationally designed the controlled expression of the filamentous injectisomes found in enteropathogenic Escherichia coli (EPEC) in the nonpathogenic strain E. coli K-12. All structural components of EPEC injectisomes, encoded in a genomic island called the locus of enterocyte effacement (LEE), were engineered in five TUs (eLEEs) excluding effectors, promoters and transcriptional regulators. These eLEEs were placed under the control of the IPTG-inducible promoter Ptac and integrated into specific chromosomal sites of E. coli K-12 using a marker-less strategy. The resulting strain, named synthetic injector E. coli (SIEC), assembles filamentous injectisomes similar to those in EPEC. SIEC injectisomes form pores in the host plasma membrane and are able to translocate T3-substrate proteins (e.g., translocated intimin receptor, Tir) into the cytoplasm of HeLa cells reproducing the phenotypes of intimate attachment and polymerization of actin-pedestals elicited by EPEC bacteria. Hence, SIEC strain allows the controlled expression of functional filamentous injectisomes for efficient translocation of proteins with T3S-signals into mammalian cells.

  16. Towards revealing the structure of bacterial inclusion bodies.

    PubMed

    Wang, Lei

    2009-01-01

    Protein aggregation is a widely observed phenomenon in human diseases, biopharmaceutical production, and biological research. Protein aggregates are generally classified as highly ordered, such as amyloid fibrils, or amorphous, such as bacterial inclusion bodies. Amyloid fibrils are elongated filaments with diameters of 6-12 nm, they are comprised of residue-specific cross-beta structure, and display characteristic properties, such as binding with amyloid-specific dyes. Amyloid fibrils are associated with dozens of human pathological conditions, including Alzheimer disease and prion diseases. Distinguished from amyloid fibrils, bacterial inclusion bodies display apparent amorphous morphology. Inclusion bodies are formed during high-level recombinant protein production, and formation of inclusion bodies is a major concern in biotechnology. Despite of the distinctive morphological difference, bacterial inclusion bodies have been found to have some amyloid-like properties, suggesting that they might contain structures similar to amyloid-like fibrils. Recent structural data further support this hypothesis, and this review summarizes the latest progress towards revealing the structural details of bacterial inclusion bodies.

  17. Ultrastructural characteristics of tau filaments in tauopathies: immuno-electron microscopic demonstration of tau filaments in tauopathies.

    PubMed

    Arima, Kunimasa

    2006-10-01

    The microtubule-associated protein tau aggregates into filaments in the form of neurofibrillary tangles, neuropil threads and argyrophilic grains in neurons, in the form of variable astrocytic tangles in astrocytes and in the form of coiled bodies and argyrophilic threads in oligodendrocytes. These tau filaments may be classified into two types, straight filaments or tubules with 9-18 nm diameters and "twisted ribbons" composed of two parallel aligned components. In the same disease, the fine structure of tau filaments in glial cells roughly resembles that in neurons. In sporadic tauopathies, individual tau filaments show characteristic sizes, shapes and arrangements, and therefore contribute to neuropathologic differential diagnosis. In frontotemporal dementias caused by tau gene mutations, variable filamentous profiles were observed in association with mutation sites and insoluble tau isoforms, including straight filaments or tubules, paired helical filament-like filaments, and twisted ribbons. Pre-embedding immunoelectron microscopic studies were carried out using anti-3-repeat tau and anti-4-repeat tau specific antibodies, RD3 and RD4. Straight tubules in neuronal and astrocytic Pick bodies were immunolabeled by the anti-3-repeat tau antibody. The anti-4-repeat tau antibody recognized abnormal tubules comprising neurofibrillary tangles, coiled bodies and argyrophilic threads in progressive supranuclear palsy (PSP) and corticobasal degeneration. In the pre-embedding immunoelectron microscopic study using the phosphorylated tau AT8 antibody, tuft-shaped astrocytes of PSP were found to be composed of bundles of abnormal tubules in processes and perikarya of protoplasmic astrocytes. In this study, the 3-repeat tau or 4-repeat tau epitope was detected in situ at the ultrastructural level in abnormal tubules in representative pathological lesions in Pick's disease, PSP and corticobasal degeneration.

  18. Evidence for Loss of a Partial Flagellar Glycolytic Pathway during Trypanosomatid Evolution

    PubMed Central

    Brown, Robert W. B.; Collingridge, Peter W.; Gull, Keith; Rigden, Daniel J.; Ginger, Michael L.

    2014-01-01

    Classically viewed as a cytosolic pathway, glycolysis is increasingly recognized as a metabolic pathway exhibiting surprisingly wide-ranging variations in compartmentalization within eukaryotic cells. Trypanosomatid parasites provide an extreme view of glycolytic enzyme compartmentalization as several glycolytic enzymes are found exclusively in peroxisomes. Here, we characterize Trypanosoma brucei flagellar proteins resembling glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and phosphoglycerate kinase (PGK): we show the latter associates with the axoneme and the former is a novel paraflagellar rod component. The paraflagellar rod is an essential extra-axonemal structure in trypanosomes and related protists, providing a platform into which metabolic activities can be built. Yet, bioinformatics interrogation and structural modelling indicate neither the trypanosome PGK-like nor the GAPDH-like protein is catalytically active. Orthologs are present in a free-living ancestor of the trypanosomatids, Bodo saltans: the PGK-like protein from B. saltans also lacks key catalytic residues, but its GAPDH-like protein is predicted to be catalytically competent. We discuss the likelihood that the trypanosome GAPDH-like and PGK-like proteins constitute molecular evidence for evolutionary loss of a flagellar glycolytic pathway, either as a consequence of niche adaptation or the re-localization of glycolytic enzymes to peroxisomes and the extensive changes to glycolytic flux regulation that accompanied this re-localization. Evidence indicating loss of localized ATP provision via glycolytic enzymes therefore provides a novel contribution to an emerging theme of hidden diversity with respect to compartmentalization of the ubiquitous glycolytic pathway in eukaryotes. A possibility that trypanosome GAPDH-like protein additionally represents a degenerate example of a moonlighting protein is also discussed. PMID:25050549

  19. Bacterial mineralization patterns in basaltic aquifers: Implications for possible life in Martian meteorite ALH84001

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomas-Keprta, K.L.; Wentworth, S.J.; Allen, C.C.

    To explore the formation and preservation of biogenic features in igneous rocks, the authors have examined the organisms in experimental basaltic microcosms using scanning and transmission electron microscopy. Four types of microorganisms were recognized on the basis of size, morphology, and chemical composition. Some of the organisms mineralized rapidly, whereas others show no evidence of mineralization. Many mineralized cells are hollow and do not contain evidence of microstructure. Filaments, either attached or no longer attached to organisms, are common. Unattached filaments are mineralized and are most likely bacterial appendages (e.g., prosthecae). Features similar in size and morphology to unattached, mineralizedmore » filaments are recognized in martial meteorite ALH84001.« less

  20. Side-binding proteins modulate actin filament dynamics

    PubMed Central

    Crevenna, Alvaro H; Arciniega, Marcelino; Dupont, Aurélie; Mizuno, Naoko; Kowalska, Kaja; Lange, Oliver F; Wedlich-Söldner, Roland; Lamb, Don C

    2015-01-01

    Actin filament dynamics govern many key physiological processes from cell motility to tissue morphogenesis. A central feature of actin dynamics is the capacity of filaments to polymerize and depolymerize at their ends in response to cellular conditions. It is currently thought that filament kinetics can be described by a single rate constant for each end. In this study, using direct visualization of single actin filament elongation, we show that actin polymerization kinetics at both filament ends are strongly influenced by the binding of proteins to the lateral filament surface. We also show that the pointed-end has a non-elongating state that dominates the observed filament kinetic asymmetry. Estimates of flexibility as well as effects on fragmentation and growth suggest that the observed kinetic diversity arises from structural alteration. Tuning elongation kinetics by exploiting the malleability of the filament structure may be a ubiquitous mechanism to generate a rich variety of cellular actin dynamics. DOI: http://dx.doi.org/10.7554/eLife.04599.001 PMID:25706231

  1. Role of Intermediate Filaments in Vesicular Traffic.

    PubMed

    Margiotta, Azzurra; Bucci, Cecilia

    2016-04-25

    Intermediate filaments are an important component of the cellular cytoskeleton. The first established role attributed to intermediate filaments was the mechanical support to cells. However, it is now clear that intermediate filaments have many different roles affecting a variety of other biological functions, such as the organization of microtubules and microfilaments, the regulation of nuclear structure and activity, the control of cell cycle and the regulation of signal transduction pathways. Furthermore, a number of intermediate filament proteins have been involved in the acquisition of tumorigenic properties. Over the last years, a strong involvement of intermediate filament proteins in the regulation of several aspects of intracellular trafficking has strongly emerged. Here, we review the functions of intermediate filaments proteins focusing mainly on the recent knowledge gained from the discovery that intermediate filaments associate with key proteins of the vesicular membrane transport machinery. In particular, we analyze the current understanding of the contribution of intermediate filaments to the endocytic pathway.

  2. Boolean gates on actin filaments

    NASA Astrophysics Data System (ADS)

    Siccardi, Stefano; Tuszynski, Jack A.; Adamatzky, Andrew

    2016-01-01

    Actin is a globular protein which forms long polar filaments in the eukaryotic cytoskeleton. Actin networks play a key role in cell mechanics and cell motility. They have also been implicated in information transmission and processing, memory and learning in neuronal cells. The actin filaments have been shown to support propagation of voltage pulses. Here we apply a coupled nonlinear transmission line model of actin filaments to study interactions between voltage pulses. To represent digital information we assign a logical TRUTH value to the presence of a voltage pulse in a given location of the actin filament, and FALSE to the pulse's absence, so that information flows along the filament with pulse transmission. When two pulses, representing Boolean values of input variables, interact, then they can facilitate or inhibit further propagation of each other. We explore this phenomenon to construct Boolean logical gates and a one-bit half-adder with interacting voltage pulses. We discuss implications of these findings on cellular process and technological applications.

  3. Recent observations of the formation of filaments

    NASA Technical Reports Server (NTRS)

    Martin, Sara F.

    1986-01-01

    Two examples of the formation of small filaments in H alpha are described and illustrated. In both cases, the formation is seen to be the spontaneous appearance of strands of absorbing mass that evolve from no previous structure. The initial development of the filaments appears to consist of the accumulation of these absorptive strands along approximately parallel paths in a channel between large-scale, opposite polarity magnetic fields on either side of the filaments. The strands exhibit continuous changes in shape and degree of absorption which can be due to successive condensations resulting in new strands, mass motions within the strands, and outflow of the mass from the strands. For at least several hours before the formation of both filaments, small-scale fragments of opposite polarity, line-of-sight magnetic flux adjacent to or immediately below the filaments, and at the ends of the filaments, were cancelling. This type of magnetic flux disappearance continued during the development of the filaments and is commonly observed in association with established filaments. Cancellation is interpreted as an important evolutionary change in the magnetic field that can lead to configurations suitable for the formation of filaments.

  4. Interaction of Two Filaments in a Long Filament Channel Associated with Twin Coronal Mass Ejections

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, Ruisheng; Chen, Yao; Wang, Bing

    Using the high-quality observations of the Solar Dynamics Observatory , we present the interaction of two filaments (F1 and F2) in a long filament channel associated with twin coronal mass ejections (CMEs) on 2016 January 26. Before the eruption, a sequence of rapid cancellation and emergence of the magnetic flux has been observed, which likely triggered the ascending of the west filament (F1). The east footpoints of rising F1 moved toward the east far end of the filament channel, accompanied by post-eruption loops and flare ribbons. This likely indicated a large-scale eruption involving the long filament channel, which resulted frommore » the interaction between F1 and the east filament (F2). Some bright plasma flew over F2, and F2 stayed at rest during the eruption, likely due to the confinement of its overlying lower magnetic field. Interestingly, the impulsive F1 pushed its overlying magnetic arcades to form the first CME, and F1 finally evolved into the second CME after the collision with the nearby coronal hole. We suggest that the interaction of F1 and the overlying magnetic field of F2 led to the merging reconnection that forms a longer eruptive filament loop. Our results also provide a possible picture of the origin of twin CMEs and show that the large-scale magnetic topology of the coronal hole is important for the eventual propagation direction of CMEs.« less

  5. A growing family: the expanding universe of the bacterial cytoskeleton.

    PubMed

    Ingerson-Mahar, Michael; Gitai, Zemer

    2012-01-01

    Cytoskeletal proteins are important mediators of cellular organization in both eukaryotes and bacteria. In the past, cytoskeletal studies have largely focused on three major cytoskeletal families, namely the eukaryotic actin, tubulin, and intermediate filament (IF) proteins and their bacterial homologs MreB, FtsZ, and crescentin. However, mounting evidence suggests that these proteins represent only the tip of the iceberg, as the cellular cytoskeletal network is far more complex. In bacteria, each of MreB, FtsZ, and crescentin represents only one member of large families of diverse homologs. There are also newly identified bacterial cytoskeletal proteins with no eukaryotic homologs, such as WACA proteins and bactofilins. Furthermore, there are universally conserved proteins, such as the metabolic enzyme CtpS, that assemble into filamentous structures that can be repurposed for structural cytoskeletal functions. Recent studies have also identified an increasing number of eukaryotic cytoskeletal proteins that are unrelated to actin, tubulin, and IFs, such that expanding our understanding of cytoskeletal proteins is advancing the understanding of the cell biology of all organisms. Here, we summarize the recent explosion in the identification of new members of the bacterial cytoskeleton and describe a hypothesis for the evolution of the cytoskeleton from self-assembling enzymes. © 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  6. Engineering of filamentous bacteriophage for protein sensing

    NASA Astrophysics Data System (ADS)

    Brasino, Michael

    Methods of high throughput, sensitive and cost effective quantification of proteins enables personalized medicine by allowing healthcare professionals to better monitor patient condition and response to treatment. My doctoral research has attempted to advance these methods through the use of filamentous bacteriophage (phage). These bacterial viruses are particularly amenable to both genetic and chemical engineering and can be produced efficiently in large amounts. Here, I discuss several strategies for modifying phage for use in protein sensing assays. These include the expression of bio-orthogonal conjugation handles on the phage coat, the incorporation of specific recognition sequences within the phage genome, and the creation of antibody-phage conjugates via a photo-crosslinking non-canonical amino acid. The physical and chemical characterization of these engineered phage and the results of their use in modified protein sensing assays will be presented.

  7. Femtosecond Laser Filamentation for Atmospheric Sensing

    PubMed Central

    Xu, Huai Liang; Chin, See Leang

    2011-01-01

    Powerful femtosecond laser pulses propagating in transparent materials result in the formation of self-guided structures called filaments. Such filamentation in air can be controlled to occur at a distance as far as a few kilometers, making it ideally suited for remote sensing of pollutants in the atmosphere. On the one hand, the high intensity inside the filaments can induce the fragmentation of all matters in the path of filaments, resulting in the emission of characteristic fluorescence spectra (fingerprints) from the excited fragments, which can be used for the identification of various substances including chemical and biological species. On the other hand, along with the femtosecond laser filamentation, white-light supercontinuum emission in the infrared to UV range is generated, which can be used as an ideal light source for absorption Lidar. In this paper, we present an overview of recent progress concerning remote sensing of the atmosphere using femtosecond laser filamentation. PMID:22346566

  8. Powering of Hα Filaments by Cosmic Rays

    NASA Astrophysics Data System (ADS)

    Ruszkowski, Mateusz; Yang, H.-Y. Karen; Reynolds, Christopher S.

    2018-05-01

    Cluster cool cores possess networks of line-emitting filaments. These filaments are thought to originate via uplift of cold gas from cluster centers by buoyant active galactic nuclei (AGNs) bubbles, or via local thermal instability in the hot intracluster medium (ICM). Therefore, the filaments are either the signatures of AGN feedback or feeding of supermassive black holes. Despite being characterized by very short cooling times, the filaments are significant Hα emitters, which suggests that some process continuously powers these structures. Many cool cores host diffuse radio mini halos and AGN injecting radio plasma, suggesting that cosmic rays (CRs) and magnetic fields are present in the ICM. We argue that the excitation of Alfvén waves by CR streaming, and the replenishment of CR energy via accretion onto the filaments of high-plasma-β ICM characterized by low CR pressure support, can provide the adequate amount of heating to power and sustain the emission from these filaments. This mechanism does not require the CRs to penetrate the filaments, even if the filaments are magnetically isolated from the ambient ICM, and it may operate irrespectively of whether the filaments are dredged up from the center or form in situ in the ICM. This picture is qualitatively consistent with non-thermal line ratios seen in the cold filaments. Future X-ray observations of the iron line complex with XARM, Lynx, or Athena could help to test this model by providing constraints on the amount of CRs in the hot plasma that is cooling and accreting onto the filaments.

  9. Solar filament material oscillations and drainage before eruption

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bi, Yi; Jiang, Yunchun; Yang, Jiayan

    Both large-amplitude longitudinal (LAL) oscillations and material drainage in a solar filament are associated with the flow of material along the filament axis, often followed by an eruption. However, the relationship between these two motions and a subsequent eruption event is poorly understood. We analyze a filament eruption using EUV imaging data captured by the Atmospheric Imaging Array on board the Solar Dynamics Observatory and the Hα images from the Global Oscillation Network Group. Hours before the eruption, the filament was activated, with one of its legs undergoing a slow rising motion. The asymmetric activation inclined the filament relative tomore » the solar surface. After the active phase, LAL oscillations were observed in the inclined filament. The oscillation period increased slightly over time, which may suggest that the magnetic fields supporting the filament evolve to be flatter during the slow rising phase. After the oscillations, a significant amount of filament material was drained toward one filament endpoint, followed immediately by the violent eruption of the filament. The material drainage may further support the change in magnetic topology prior to the eruption. Moreover, we suggest that the filament material drainage could play a role in the transition from a slow to a fast rise of the erupting filament.« less

  10. Prediction of Solar Eruptions Using Filament Metadata

    NASA Astrophysics Data System (ADS)

    Aggarwal, Ashna; Schanche, Nicole; Reeves, Katharine K.; Kempton, Dustin; Angryk, Rafal

    2018-05-01

    We perform a statistical analysis of erupting and non-erupting solar filaments to determine the properties related to the eruption potential. In order to perform this study, we correlate filament eruptions documented in the Heliophysics Event Knowledgebase (HEK) with HEK filaments that have been grouped together using a spatiotemporal tracking algorithm. The HEK provides metadata about each filament instance, including values for length, area, tilt, and chirality. We add additional metadata properties such as the distance from the nearest active region and the magnetic field decay index. We compare trends in the metadata from erupting and non-erupting filament tracks to discover which properties present signs of an eruption. We find that a change in filament length over time is the most important factor in discriminating between erupting and non-erupting filament tracks, with erupting tracks being more likely to have decreasing length. We attempt to find an ensemble of predictive filament metadata using a Random Forest Classifier approach, but find the probability of correctly predicting an eruption with the current metadata is only slightly better than chance.

  11. The filamentous fungus Ashbya gossypii as a competitive industrial inosine producer.

    PubMed

    Ledesma-Amaro, Rodrigo; Buey, Rubén M; Revuelta, José Luis

    2016-09-01

    Inosine is a nucleoside with growing biotechnological interest due to its recently attributed beneficial health effects and as a convenient precursor of the umami flavor. At present, most of the industrial inosine production relies on bacterial fermentations. In this work, we have metabolically engineered the filamentous fungus Ashbya gossypii to obtain strains able to excrete high amounts of inosine to the culture medium. We report that the disruption of only two key genes of the purine biosynthetic pathway efficiently redirect the metabolic flux, increasing 200-fold the excretion of inosine with respect to the wild type, up to 2.2 g/L. These results allow us to propose A. gossypii as a convenient candidate for large-scale nucleoside production, especially in view of the several advantages that Ashbya has with respect to the bacterial systems used at present for the industrial production of this food additive. Biotechnol. Bioeng. 2016;113: 2060-2063. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  12. Core filaments of the nuclear matrix

    PubMed Central

    1990-01-01

    The nuclear matrix is concealed by a much larger mass of chromatin, which can be removed selectively by digesting nuclei with DNase I followed by elution of chromatin with 0.25 M ammonium sulfate. This mild procedure removes chromatin almost completely and preserves nuclear matrix morphology. The complete nuclear matrix consists of a nuclear lamina with an interior matrix composed of thick, polymorphic fibers and large masses that resemble remnant nucleoli. Further extraction of the nuclear matrices of HeLa or MCF-7 cells with 2 M sodium chloride uncovered a network of core filaments. A few dark masses remained enmeshed in the filament network and may be remnants of the nuclear matrix thick fibers and nucleoli. The highly branched core filaments had diameters of 9 and 13 nm measured relative to the intermediate filaments. They may serve as the core structure around which the matrix is constructed. The core filaments retained 70% of nuclear RNA. This RNA consisted both of ribosomal RNA precursors and of very high molecular weight hnRNA with a modal size of 20 kb. Treatment with RNase A removed the core filaments. When 2 M sodium chloride was used directly to remove chromatin after DNase I digestion without a preceding 0.25 M ammonium sulfate extraction, the core filaments were not revealed. Instead, the nuclear interior was filled with amorphous masses that may cover the filaments. This reflected a requirement for a stepwise increase in ionic strength because gradual addition of sodium chloride to a final concentration of 2 M without an 0.25 M ammonium sulfate extraction uncovered core filaments. PMID:2307700

  13. Multiple Filamentation of Laser Pulses in a Glass

    NASA Astrophysics Data System (ADS)

    Apeksimov, D. V.; Bukin, O. A.; Golik, S. S.; Zemlyanov, A. A.; Iglakova, A. N.; Kabanov, A. M.; Kuchinskaya, O. I.; Matvienko, G. G.; Oshlakov, V. K.; Petrov, A. V.; Sokolova, E. B.

    2016-03-01

    Results are presented of experiments on investigation of the spatial characteristics of multi-filamentation region of giga- and terawatt pulses of a Ti:sapphire laser in a glass. Dependences are obtained of the coordinate of the beginning of filamentation region, number of filaments, their distribution along the laser beam axis, and length of filaments on the pulse power. It is shown that with increasing radiation power, the number of filaments in the multi-filamentation region decreases, whereas the filament diameter has a quasiconstant value for all powers realized in the experiments. It is shown that as a certain power of the laser pulse with Gauss energy density distribution is reached, the filamentation region acquires the shape of a hollow cone with apex directed toward the radiation source.

  14. The Lipid Raft Proteome of African Trypanosomes Contains Many Flagellar Proteins

    PubMed Central

    Sharma, Aabha I.; Olson, Cheryl L.; Engman, David M.

    2017-01-01

    Lipid rafts are liquid-ordered membrane microdomains that form by preferential association of 3-β-hydroxysterols, sphingolipids and raft-associated proteins often having acyl modifications. We isolated lipid rafts of the protozoan parasite Trypanosoma brucei and determined the protein composition of lipid rafts in the cell. This analysis revealed a striking enrichment of flagellar proteins and several putative signaling proteins in the lipid raft proteome. Calpains and intraflagellar transport proteins, in particular, were found to be abundant in the lipid raft proteome. These findings provide additional evidence supporting the notion that the eukaryotic cilium/flagellum is a lipid raft-enriched specialized structure with high concentrations of sterols, sphingolipids and palmitoylated proteins involved in environmental sensing and cell signaling. PMID:28837104

  15. Chirality and Magnetic Configurations of Solar Filaments

    NASA Astrophysics Data System (ADS)

    Ouyang, Y.; Zhou, Y. H.; Chen, P. F.; Fang, C.

    2017-01-01

    It has been revealed that the magnetic topology in the solar atmosphere displays hemispheric preference, I.e., helicity is mainly negative/positive in the northern/southern hemispheres, respectively. However, the strength of the hemispheric rule and its cyclic variation are controversial. In this paper, we apply a new method based on the filament drainage to 571 erupting filaments from 2010 May to 2015 December in order to determine the filament chirality and its hemispheric preference. It is found that 91.6% of our sample of erupting filaments follows the hemispheric rule of helicity sign. It is also found that the strength of the hemispheric preference of the quiescent filaments decreases slightly from ˜97% in the rising phase to ˜85% in the declining phase of solar cycle 24, whereas the strength of the intermediate filaments keeps a high value around 96 ± 4% at all times. Only the active-region filaments show significant variations. Their strength of the hemispheric rule rises from ˜63% to ˜95% in the rising phase, and keeps a high value of 82% ± 5% during the declining phase. Furthermore, during a half-year period around the solar maximum, their hemispheric preference totally vanishes. Additionally, we also diagnose the magnetic configurations of the filaments based on our indirect method and find that in our sample of erupting events, 89% are inverse-polarity filaments with a flux rope magnetic configuration, whereas 11% are normal-polarity filaments with a sheared arcade configuration.

  16. Measuring Filament Orientation: A New Quantitative, Local Approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Green, C.-E.; Cunningham, M. R.; Jones, P. A.

    The relative orientation between filamentary structures in molecular clouds and the ambient magnetic field provides insight into filament formation and stability. To calculate the relative orientation, a measurement of filament orientation is first required. We propose a new method to calculate the orientation of the one-pixel-wide filament skeleton that is output by filament identification algorithms such as filfinder. We derive the local filament orientation from the direction of the intensity gradient in the skeleton image using the Sobel filter and a few simple post-processing steps. We call this the “Sobel-gradient method.” The resulting filament orientation map can be compared quantitativelymore » on a local scale with the magnetic field orientation map to then find the relative orientation of the filament with respect to the magnetic field at each point along the filament. It can also be used for constructing radial profiles for filament width fitting. The proposed method facilitates automation in analyses of filament skeletons, which is imperative in this era of “big data.”.« less

  17. Measuring Filament Orientation: A New Quantitative, Local Approach

    NASA Astrophysics Data System (ADS)

    Green, C.-E.; Dawson, J. R.; Cunningham, M. R.; Jones, P. A.; Novak, G.; Fissel, L. M.

    2017-09-01

    The relative orientation between filamentary structures in molecular clouds and the ambient magnetic field provides insight into filament formation and stability. To calculate the relative orientation, a measurement of filament orientation is first required. We propose a new method to calculate the orientation of the one-pixel-wide filament skeleton that is output by filament identification algorithms such as filfinder. We derive the local filament orientation from the direction of the intensity gradient in the skeleton image using the Sobel filter and a few simple post-processing steps. We call this the “Sobel-gradient method.” The resulting filament orientation map can be compared quantitatively on a local scale with the magnetic field orientation map to then find the relative orientation of the filament with respect to the magnetic field at each point along the filament. It can also be used for constructing radial profiles for filament width fitting. The proposed method facilitates automation in analyses of filament skeletons, which is imperative in this era of “big data.”

  18. Beyond phage display: non-traditional applications of the filamentous bacteriophage as a vaccine carrier, therapeutic biologic, and bioconjugation scaffold

    PubMed Central

    Henry, Kevin A.; Arbabi-Ghahroudi, Mehdi; Scott, Jamie K.

    2015-01-01

    For the past 25 years, phage display technology has been an invaluable tool for studies of protein–protein interactions. However, the inherent biological, biochemical, and biophysical properties of filamentous bacteriophage, as well as the ease of its genetic manipulation, also make it an attractive platform outside the traditional phage display canon. This review will focus on the unique properties of the filamentous bacteriophage and highlight its diverse applications in current research. Particular emphases are placed on: (i) the advantages of the phage as a vaccine carrier, including its high immunogenicity, relative antigenic simplicity and ability to activate a range of immune responses, (ii) the phage’s potential as a prophylactic and therapeutic agent for infectious and chronic diseases, (iii) the regularity of the virion major coat protein lattice, which enables a variety of bioconjugation and surface chemistry applications, particularly in nanomaterials, and (iv) the phage’s large population sizes and fast generation times, which make it an excellent model system for directed protein evolution. Despite their ubiquity in the biosphere, metagenomics work is just beginning to explore the ecology of filamentous and non-filamentous phage, and their role in the evolution of bacterial populations. Thus, the filamentous phage represents a robust, inexpensive, and versatile microorganism whose bioengineering applications continue to expand in new directions, although its limitations in some spheres impose obstacles to its widespread adoption and use. PMID:26300850

  19. Coordinated Beating of Algal Flagella is Mediated by Basal Coupling

    NASA Astrophysics Data System (ADS)

    Wan, Kirsty; Goldstein, Raymond

    Cilia or flagella often exhibit synchronized behavior. This includes phase-locking, as seen in Chlamydomonas, and metachronal wave formation in the respiratory cilia of higher organisms. Since the observations by Gray and Rothschild of phase synchrony of nearby swimming spermatozoa, it has been a working hypothesis that synchrony arises from hydrodynamic interactions between beating filaments. Recent work on the dynamics of physically separated pairs of flagella isolated from the multicellular alga Volvox has shown that hydrodynamic coupling alone is sufficient for synchrony. However, the situation is more complex when considering multiple flagella on a single cell. We suggest that a mechanism, internal to the cell, provides an additional flagellar coupling. For instance, flagella of Chlamydomonas mutants deficient in filamentary connections between basal bodies are found to display markedly different synchronization from the wildtype. Diverse flagellar coordination strategies found in quadri-, octo- and hexadecaflagellates reveal further evidence that intracellular couplings between flagellar basal bodies compete with hydrodynamic interactions to determine the precise form of flagellar synchronization in unicellular algae.

  20. Dynamics and mechanics of motor-filament systems

    NASA Astrophysics Data System (ADS)

    Kruse, K.; Jülicher, F.

    2006-08-01

    Motivated by the cytoskeleton of eukaryotic cells, we develop a general framework for describing the large-scale dynamics of an active filament network. In the cytoskeleton, active cross-links are formed by motor proteins that are able to induce relative motion between filaments. Starting from pair-wise interactions of filaments via such active processes, our framework is based on momentum conservation and an analysis of the momentum flux. This allows us to calculate the stresses in the filament network generated by the action of motor proteins. We derive effective theories for the filament dynamics which can be related to continuum theories of active polar gels. As an example, we discuss the stability of homogenous isotropic filament distributions in two spatial dimensions.

  1. Laser femtoseconde, filamentation, nuage et orage

    NASA Astrophysics Data System (ADS)

    Courvoisier, F.; Boutou, V.; Kasparian, J.; Salmon, E.; Méjean, G.; Yu, J.; Wolf, J.-P.

    2005-06-01

    Les applications telles que le contrôle de foudre grâce aux filaments autoguidés générés par un laser femtoseconde nécessitent de propager un tel filament à travers des aérosols de gouttes d'eau. Nous montrons qu'un filament survit à son interaction avec une goutte de diamètre comparable au sien (95 μ m), ainsi qu'à des nuages d'épaisseur optique 3,2, soit 5% de transmission. Cette transmission est permise par la présence d'un “bain de photons” autour du filament. Ce bain forme un réservoir contenant une part importante de l'énergie du faisceau, en équilibre avec le filament, et favorisant son alimentation.

  2. The antagonistic effect of Saccharomyces boulardii on Candida albicans filamentation, adhesion and biofilm formation.

    PubMed

    Krasowska, Anna; Murzyn, Anna; Dyjankiewicz, Agnieszka; Łukaszewicz, Marcin; Dziadkowiec, Dorota

    2009-12-01

    The dimorphic fungus Candida albicans is a member of the normal flora residing in the intestinal tract of humans. In spite of this, under certain conditions it can induce both superficial and serious systemic diseases, as well as be the cause of gastrointestinal infections. Saccharomyces boulardii is a yeast strain that has been shown to have applications in the prevention and treatment of intestinal infections caused by bacterial pathogens. The purpose of this study was to determine whether S. boulardii affects the virulence factors of C. albicans. We demonstrate the inhibitory effect of live S. boulardii cells on the filamentation (hyphae and pseudohyphae formation) of C. albicans SC5314 strain proportional to the amount of S. boulardii added. An extract from S. boulardii culture has a similar effect. Live S. boulardii and the extract from S. boulardii culture filtrate diminish C. albicans adhesion to and subsequent biofilm formation on polystyrene surfaces under both aerobic and microaerophilic conditions. This effect is very strong and requires lower doses of S. boulardii cells or concentrations of the extract than serum-induced filamentation tests. Saccharomyces boulardii has a strong negative effect on very important virulence factors of C. albicans, i.e. the ability to form filaments and to adhere and form biofilms on plastic surfaces.

  3. CHIRALITY AND MAGNETIC CONFIGURATIONS OF SOLAR FILAMENTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ouyang, Y.; Zhou, Y. H.; Chen, P. F.

    It has been revealed that the magnetic topology in the solar atmosphere displays hemispheric preference, i.e., helicity is mainly negative/positive in the northern/southern hemispheres, respectively. However, the strength of the hemispheric rule and its cyclic variation are controversial. In this paper, we apply a new method based on the filament drainage to 571 erupting filaments from 2010 May to 2015 December in order to determine the filament chirality and its hemispheric preference. It is found that 91.6% of our sample of erupting filaments follows the hemispheric rule of helicity sign. It is also found that the strength of the hemisphericmore » preference of the quiescent filaments decreases slightly from ∼97% in the rising phase to ∼85% in the declining phase of solar cycle 24, whereas the strength of the intermediate filaments keeps a high value around 96 ± 4% at all times. Only the active-region filaments show significant variations. Their strength of the hemispheric rule rises from ∼63% to ∼95% in the rising phase, and keeps a high value of 82% ± 5% during the declining phase. Furthermore, during a half-year period around the solar maximum, their hemispheric preference totally vanishes. Additionally, we also diagnose the magnetic configurations of the filaments based on our indirect method and find that in our sample of erupting events, 89% are inverse-polarity filaments with a flux rope magnetic configuration, whereas 11% are normal-polarity filaments with a sheared arcade configuration.« less

  4. A Comparison Study of an Active Region Eruptive Filament and a Neighboring Non-Eruptive Filament

    NASA Astrophysics Data System (ADS)

    Wu, S. T.; Jiang, C.; Feng, X. S.; Hu, Q.

    2014-12-01

    We perform a comparison study of an eruptive filament in the core region of AR 11283 and a nearby non-eruptive filament. The coronal magnetic field supporting these two filaments is extrapolated using our data-driven CESE-MHD-NLFFF code (Jiang et al. 2013, Jiang etal. 2014), which presents two magnetic flux ropes (FRs) in the same extrapolation box. The eruptive FR contains a bald-patch separatrix surface (BPSS) spatially co-aligned very well with a pre-eruption EUV sigmoid, which is consistent with the BPSS model for the coronal sigmoids. The numerically reproduced magnetic dips of the FRs match observations of the filaments strikingly well, which supports strongly the FR-dip model for filaments. The FR that supports the AR eruptive filament is much smaller (with a length of 3 Mm) compared with the large-scale FR holding the quiescent filament (with a length of 30 Mm). But the AR eruptive FR contains most of the magnetic free energy in the extrapolation box and holds a much higher magnetic energy density than the quiescent FR, because it resides along the main polarity inversion line (PIL) around sunspots with strong magnetic shear. Both the FRs are weakly twisted and cannot trigger kink instability. The AR eruptive FR is unstable because its axis reaches above a critical height for torus instability (TI), at which the overlying closed arcades can no longer confine the FR stably. To the contrary, the quiescent FR is firmly held down by its overlying field, as its axis apex is far below the TI threshold height. (This work is partially supported by NSF AGS-1153323 and 1062050)

  5. High-resolution Observations of Sympathetic Filament Eruptions by NVST

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Shangwei; Su, Yingna; Zhou, Tuanhui

    We investigate two sympathetic filament eruptions observed by the New Vacuum Solar Telescope on 2015 October 15. The full picture of the eruptions is obtained from the corresponding Solar Dynamics Observatory ( SDO )/Atmospheric Imaging Assembly (AIA) observations. The two filaments start from active region NOAA 12434 in the north and end in one large quiescent filament channel in the south. The left filament erupts first, followed by the right filament eruption about 10 minutes later. Clear twist structure and rotating motion are observed in both filaments during the eruption. Both eruptions failed, since the filaments first rise up, thenmore » flow toward the south and merge into the southern large quiescent filament. We also observe repeated activations of mini filaments below the right filament after its eruption. Using magnetic field models constructed based on SDO /HMI magnetograms via the flux rope insertion method, we find that the left filament eruption is likely to be triggered by kink instability, while the weakening of overlying magnetic fields due to magnetic reconnection at an X-point between the two filament systems might play an important role in the onset of the right filament eruption.« less

  6. Generalized minimal principle for rotor filaments.

    PubMed

    Dierckx, Hans; Wellner, Marcel; Bernus, Olivier; Verschelde, Henri

    2015-05-01

    To a reaction-diffusion medium with an inhomogeneous anisotropic diffusion tensor D, we add a fourth spatial dimension such that the determinant of the diffusion tensor is constant in four dimensions. We propose a generalized minimal principle for rotor filaments, stating that the scroll wave filament strives to minimize its surface area in the higher-dimensional space. As a consequence, stationary scroll wave filaments in the original 3D medium are geodesic curves with respect to the metric tensor G=det(D)D(-1). The theory is confirmed by numerical simulations for positive and negative filament tension and a model with a non-stationary spiral core. We conclude that filaments in cardiac tissue with positive tension preferentially reside or anchor in regions where cardiac cells are less interconnected, such as portions of the cardiac wall with a large number of cleavage planes.

  7. Striation and convection in penumbral filaments

    NASA Astrophysics Data System (ADS)

    Spruit, H. C.; Scharmer, G. B.; Löfdahl, M. G.

    2010-10-01

    Observations with the 1-m Swedish Solar Telescope of the flows seen in penumbral filaments are presented. Time sequences of bright filaments show overturning motions strikingly similar to those seen along the walls of small isolated structures in the active regions. The filaments show outward propagating striations with inclination angles suggesting that they are aligned with the local magnetic field. We interpret it as the equivalent of the striations seen in the walls of small isolated magnetic structures. Their origin is then a corrugation of the boundary between an overturning convective flow inside the filament and the magnetic field wrapping around it. The outward propagation is a combination of a pattern motion due to the downflow observed along the sides of bright filaments, and the Evershed flow. The observed short wavelength of the striation argues against the existence of a dynamically significant horizontal field inside the bright filaments. Its intensity contrast is explained by the same physical effect that causes the dark cores of filaments, light bridges and “canals”. In this way striation represents an important clue to the physics of penumbral structure and its relation with other magnetic structures on the solar surface. We put this in perspective with results from the recent 3-D radiative hydrodynamic simulations. 4 movies are only available in electronic form at http://www.aanda.org

  8. How molecular motors shape the flagellar beat

    PubMed Central

    Riedel-Kruse, Ingmar H.; Hilfinger, Andreas; Howard, Jonathon; Jülicher, Frank

    2007-01-01

    Cilia and eukaryotic flagella are slender cellular appendages whose regular beating propels cells and microorganisms through aqueous media. The beat is an oscillating pattern of propagating bends generated by dynein motor proteins. A key open question is how the activity of the motors is coordinated in space and time. To elucidate the nature of this coordination we inferred the mechanical properties of the motors by analyzing the shape of beating sperm: Steadily beating bull sperm were imaged and their shapes were measured with high precision using a Fourier averaging technique. Comparing our experimental data with wave forms calculated for different scenarios of motor coordination we found that only the scenario of interdoublet sliding regulating motor activity gives rise to satisfactory fits. We propose that the microscopic origin of such “sliding control” is the load dependent detachment rate of motors. Agreement between observed and calculated wave forms was obtained only if significant sliding between microtubules occurred at the base. This suggests a novel mechanism by which changes in basal compliance could reverse the direction of beat propagation. We conclude that the flagellar beat patterns are determined by an interplay of the basal properties of the axoneme and the mechanical feedback of dynein motors. PMID:19404446

  9. Methods for modeling cytoskeletal and DNA filaments

    NASA Astrophysics Data System (ADS)

    Andrews, Steven S.

    2014-02-01

    This review summarizes the models that researchers use to represent the conformations and dynamics of cytoskeletal and DNA filaments. It focuses on models that address individual filaments in continuous space. Conformation models include the freely jointed, Gaussian, angle-biased chain (ABC), and wormlike chain (WLC) models, of which the first three bend at discrete joints and the last bends continuously. Predictions from the WLC model generally agree well with experiment. Dynamics models include the Rouse, Zimm, stiff rod, dynamic WLC, and reptation models, of which the first four apply to isolated filaments and the last to entangled filaments. Experiments show that the dynamic WLC and reptation models are most accurate. They also show that biological filaments typically experience strong hydrodynamic coupling and/or constrained motion. Computer simulation methods that address filament dynamics typically compute filament segment velocities from local forces using the Langevin equation and then integrate these velocities with explicit or implicit methods; the former are more versatile and the latter are more efficient. Much remains to be discovered in biological filament modeling. In particular, filament dynamics in living cells are not well understood, and current computational methods are too slow and not sufficiently versatile. Although primarily a review, this paper also presents new statistical calculations for the ABC and WLC models. Additionally, it corrects several discrepancies in the literature about bending and torsional persistence length definitions, and their relations to flexural and torsional rigidities.

  10. The Regulation of Filamentous Growth in Yeast

    PubMed Central

    Cullen, Paul J.; Sprague, George F.

    2012-01-01

    Filamentous growth is a nutrient-regulated growth response that occurs in many fungal species. In pathogens, filamentous growth is critical for host–cell attachment, invasion into tissues, and virulence. The budding yeast Saccharomyces cerevisiae undergoes filamentous growth, which provides a genetically tractable system to study the molecular basis of the response. Filamentous growth is regulated by evolutionarily conserved signaling pathways. One of these pathways is a mitogen activated protein kinase (MAPK) pathway. A remarkable feature of the filamentous growth MAPK pathway is that it is composed of factors that also function in other pathways. An intriguing challenge therefore has been to understand how pathways that share components establish and maintain their identity. Other canonical signaling pathways—rat sarcoma/protein kinase A (RAS/PKA), sucrose nonfermentable (SNF), and target of rapamycin (TOR)—also regulate filamentous growth, which raises the question of how signals from multiple pathways become integrated into a coordinated response. Together, these pathways regulate cell differentiation to the filamentous type, which is characterized by changes in cell adhesion, cell polarity, and cell shape. How these changes are accomplished is also discussed. High-throughput genomics approaches have recently uncovered new connections to filamentous growth regulation. These connections suggest that filamentous growth is a more complex and globally regulated behavior than is currently appreciated, which may help to pave the way for future investigations into this eukaryotic cell differentiation behavior. PMID:22219507

  11. Towards revealing the structure of bacterial inclusion bodies

    PubMed Central

    2009-01-01

    Protein aggregation is a widely observed phenomenon in human diseases, biopharmaceutical production, and biological research. Protein aggregates are generally classified as highly ordered, such as amyloid fibrils, or amorphous, such as bacterial inclusion bodies. Amyloid fibrils are elongated filaments with diameters of 6–12 nm, they are comprised of residue-specific cross-β structure, and display characteristic properties, such as binding with amyloid-specific dyes. Amyloid fibrils are associated with dozens of human pathological conditions, including Alzheimer disease and prion diseases. Distinguished from amyloid fibrils, bacterial inclusion bodies display apparent amorphous morphology. Inclusion bodies are formed during high-level recombinant protein production, and formation of inclusion bodies is a major concern in biotechnology. Despite of the distinctive morphological difference, bacterial inclusion bodies have been found to have some amyloid-like properties, suggesting that they might contain structures similar to amyloid-like fibrils. Recent structural data further support this hypothesis, and this review summarizes the latest progress towards revealing the structural details of bacterial inclusion bodies. PMID:19806034

  12. Following the Viterbi Path to Deduce Flagellar Actin-Interacting Proteins of Leishmania spp.: Report on Cofilins and Twinfilins

    NASA Astrophysics Data System (ADS)

    Pacheco, Ana Carolina L.; Araújo, Fabiana F.; Kamimura, Michel T.; Medeiros, Sarah R.; Viana, Daniel A.; Oliveira, Fátima de Cássia E.; Filho, Raimundo Araújo; Costa, Marcília P.; Oliveira, Diana M.

    2007-11-01

    For performing vital cellular processes, such as motility, eukaryotic cells rely on the actin cytoskeleton, whose structure and dynamics are tightly controlled by a large number of actin-interacting (AIP) or actin-related/regulating (ARP) proteins. Trypanosomatid protozoa, such as Leishmania, rely on their flagellum for motility and sensory reception, which are believed to allow parasite migration, adhesion, invasion and even persistence on mammalian host tissues to cause disease. Actin can determine cell stiffness and transmit force during mechanotransduction, cytokinesis, cell motility and other cellular shape changes, while the identification and analyses of AIPs can help to improve understanding of their mechanical properties on physiological architectures, such as the present case regarding Leishmania flagellar apparatus. This work conveniently apply bioinformatics tools in some refined pattern recognition techniques (such as hidden Markov models (HMMs) through the Viterbi algorithm/path) in order to improve the recognition of actin-binding/interacting activity through identification of AIPs in genomes, transcriptomes and proteomes of Leishmania species. We here report cofilin and twinfilin as putative components of the flagellar apparatus, a direct bioinformatics contribution in the secondary annotation of Leishmania and trypanosomatid genomes.

  13. Motion of single MreB bacterial actin proteins in Caulobacter show treadmilling in vivo

    NASA Astrophysics Data System (ADS)

    Moerner, W. E.; Kim, Soyeon; Gitai, Zemer; Kinkhabwala, Anika; McAdams, Harley; Shapiro, Lucy

    2006-03-01

    Ensemble imaging of a bacterial actin homologue, the MreB protein, suggests that the MreB proteins form a dynamic filamentous spiral along the long axis of the cell in Caulobacter crescentus. MreB contracts and expands along the cell axis and plays an important role in cell shape and polarity maintenance, as well as chromosome segregation and translocation of the origin of replication during cell division. In this study we investigated the real-time polymerization of MreB in Caulobacter crescentus using single-molecule fluorescence imaging. With time-lapse imaging, polymerized MreB could be distinguished from cytoplasmic MreB monomers, because single monomeric MreB showed fast motion characteristic of Brownian diffusion, while single polymerized MreB displayed slow, directed motion. This directional movement of labeled MreB in the growing polymer implies that treadmilling is the predominant mechanism in MreB filament formation. These single-molecule imaging experiments provide the first available information on the velocity of bacterial actin polymerization in a living cell.

  14. The Stokesian hydrodynamics of flexing, stretching filaments

    NASA Astrophysics Data System (ADS)

    Shelley, Michael J.; Ueda, Tetsuji

    2000-11-01

    A central element of many fundamental problems in physics and biology lies in the interaction of a viscous fluid with slender, elastic filaments. Examples arise in the dynamics of biological fibers, the motility of microscopic organisms, and in phase transitions of liquid crystals. When considering the dynamics on the scale of a single filament, the surrounding fluid can often be assumed to be inertialess and hence governed by the Stokes’ equations. A typical simplification then is to assume a local relation, along the filament, between the force per unit length exerted by the filament upon the fluid and the velocity of the filament. While this assumption can be justified through slender-body theory as the leading-order effect, this approximation is only logarithmically separated (in aspect ratio) from the next-order contribution capturing the first effects of non-local interactions mediated by the surrounding fluid; non-local interactions become increasingly important as a filament comes within proximity to itself, or another filament. Motivated by a pattern forming system in isotropic to smectic-A phase transitions, we consider the non-local Stokesian dynamics of a growing elastica immersed in a fluid. The non-local interactions of the filament with itself are included using a modification of the slender-body theory of Keller and Rubinow. This modification is asymptotically equivalent, and removes an instability of their formulation at small, unphysical length-scales. Within this system, the filament lives on a marginal stability boundary, driven by a continual process of growth and buckling. Repeated bucklings result in filament flex, which, coupled to the non-local interactions and mediated by elastic response, leads to the development of space-filling patterns. We develop numerical methods to solve this system accurately and efficiently, even in the presence of temporal stiffness and the close self-approach of the filament. While we have ignored many of the

  15. Mini-thin filaments regulated by troponin–tropomyosin

    PubMed Central

    Gong, Huiyu; Hatch, Victoria; Ali, Laith; Lehman, William; Craig, Roger; Tobacman, Larry S.

    2005-01-01

    Striated muscle thin filaments contain hundreds of actin monomers and scores of troponins and tropomyosins. To study the cooperative mechanism of thin filaments, “mini-thin filaments” were generated by isolating particles nearly matching the minimal structural repeat of thin filaments: a double helix of actin subunits with each strand approximately seven actins long and spanned by a troponin–tropomyosin complex. One end of the particles was capped by a gelsolin (segment 1–3)–TnT fusion protein (substituting for normal TnT), and the other end was capped by tropomodulin. EM showed that the particles were 46 ± 9 nm long, with a knob-like mass attributable to gelsolin at one end. Average actin, tropomyosin, and gelsolin–troponin composition indicated one troponin–tropomyosin attached to each strand of the two-stranded actin filament. The minifilaments thus nearly represent single regulatory units of thin filaments. The myosin S1 MgATPase rate stimulated by the minifilaments was Ca2+-sensitive, indicating that single regulatory length particles are sufficient for regulation. Ca2+ bound cooperatively to cardiac TnC in conventional thin filaments but noncooperatively to cardiac TnC in minifilaments in the absence of myosin. This suggests that thin filament Ca2+-binding cooperativity reflects indirect troponin–troponin interactions along the long axis of conventional filaments, which do not occur in minifilaments. Despite noncooperative Ca2+ binding to minifilaments in the absence of myosin, Ca2+ cooperatively activated the myosin S1-particle ATPase rate. Two-stranded single regulatory units therefore may be sufficient for myosin-mediated Ca2+-binding cooperativity. Functional mini-thin filaments are well suited for biochemical and structural analysis of thin-filament regulation. PMID:15644437

  16. Modulation of flagellar expression in Escherichia coli by acetyl phosphate and the osmoregulator OmpR.

    PubMed Central

    Shin, S; Park, C

    1995-01-01

    During the search for unknown factors involved in motility, we have found that expression of the flagellar master operon flhDC is affected by mutations of the pta and ackA genes, encoding phosphotransacetylase and acetate kinase, respectively (S. Shin, J. Sheen, and C. Park, Korean J. Microbiol. 31:504-511, 1993). Here we describe results showing that this effect is modulated by externally added acetate, except when both pta and ackA are mutated, suggesting the role of acetyl phosphate, an intermediate of acetate metabolism, as a regulatory effector. Furthermore, the following evidence indicates that the phosphorylation of OmpR, a trans factor for osmoregulation, regulates flagellar expression. First, in a strain lacking ompR, the expression of flhDC is no longer responsive to a change in the level of acetyl phosphate. Second, an increase in medium osmolarity does not decrease flhDC expression in an ompR mutant. It is known that such an increase normally enhances OmpR phosphorylation. Third, OmpR protein binds to the DNA fragment containing the flhDC promoter, and its affinity is increased with phosphorylation by acetyl phosphate. DNase I footprinting revealed the regions of the flhDC promoter protected by OmpR in the presence or absence of phosphorylation. Therefore, we propose that the phosphorylated OmpR, generated by either osmolarity change or the internal level of acetyl phosphate, negatively regulates the expression of flagella. PMID:7642497

  17. Modulation of flagellar expression in Escherichia coli by acetyl phosphate and the osmoregulator OmpR.

    PubMed

    Shin, S; Park, C

    1995-08-01

    During the search for unknown factors involved in motility, we have found that expression of the flagellar master operon flhDC is affected by mutations of the pta and ackA genes, encoding phosphotransacetylase and acetate kinase, respectively (S. Shin, J. Sheen, and C. Park, Korean J. Microbiol. 31:504-511, 1993). Here we describe results showing that this effect is modulated by externally added acetate, except when both pta and ackA are mutated, suggesting the role of acetyl phosphate, an intermediate of acetate metabolism, as a regulatory effector. Furthermore, the following evidence indicates that the phosphorylation of OmpR, a trans factor for osmoregulation, regulates flagellar expression. First, in a strain lacking ompR, the expression of flhDC is no longer responsive to a change in the level of acetyl phosphate. Second, an increase in medium osmolarity does not decrease flhDC expression in an ompR mutant. It is known that such an increase normally enhances OmpR phosphorylation. Third, OmpR protein binds to the DNA fragment containing the flhDC promoter, and its affinity is increased with phosphorylation by acetyl phosphate. DNase I footprinting revealed the regions of the flhDC promoter protected by OmpR in the presence or absence of phosphorylation. Therefore, we propose that the phosphorylated OmpR, generated by either osmolarity change or the internal level of acetyl phosphate, negatively regulates the expression of flagella.

  18. Convergent-Filament Nonmechanical Pump

    NASA Technical Reports Server (NTRS)

    Collins, Earl R., Jr.

    1989-01-01

    Simple device induces small flow of liquid without help of moving parts, in presence or absence of gravity. Drops of liquid move on filaments from wide end of cone to narrow end. Gradually blend with drops on adjacent filaments to form large drops with menisci. Important use expected to be returning liquid condensate in heat pipes, and collection of samples from clouds or fog.

  19. Ultraminiature broadband light source with spiral shaped filament

    NASA Technical Reports Server (NTRS)

    McConaghy, Charles F. (Inventor); Olsen, Barry L. (Inventor); Tuma, Margaret L. (Inventor); Collura, Joseph S. (Inventor); Pocha, Michael D. (Inventor); Helvajian, Henry (Inventor); Meyer, Glenn A. (Inventor); Hansen, William W (Inventor)

    2012-01-01

    An ultraminiature light source using a double-spiral shaped tungsten filament includes end contact portions which are separated to allow for radial and length-wise unwinding of the spiral. The double-spiral filament is spaced relatively far apart at the end portions thereof so that contact between portions of the filament upon expansion is avoided. The light source is made by fabricating a double-spiral ultraminiature tungsten filament from tungsten foil and housing the filament in a ceramic package having a reflective bottom and a well wherein the filament is suspended. A vacuum furnace brazing process attaches the filament to contacts of the ceramic package. Finally, a cover with a transparent window is attached onto the top of the ceramic package by solder reflow in a second vacuum furnace process to form a complete hermetically sealed package.

  20. The N Terminus of Phosphodiesterase TbrPDEB1 of Trypanosoma brucei Contains the Signal for Integration into the Flagellar Skeleton ▿

    PubMed Central

    Luginbuehl, Edith; Ryter, Damaris; Schranz-Zumkehr, Judith; Oberholzer, Michael; Kunz, Stefan; Seebeck, Thomas

    2010-01-01

    The precise subcellular localization of the components of the cyclic AMP (cAMP) signaling pathways is a crucial aspect of eukaryotic intracellular signaling. In the human pathogen Trypanosoma brucei, the strict control of cAMP levels by cAMP-specific phosphodiesterases is essential for parasite survival, both in cell culture and in the infected host. Among the five cyclic nucleotide phosphodiesterases identified in this organism, two closely related isoenzymes, T. brucei PDEB1 (TbrPDEB1) (PDEB1) and TbrPDEB2 (PDEB2) are predominantly responsible for the maintenance of cAMP levels. Despite their close sequence similarity, they are distinctly localized in the cell. PDEB1 is mostly located in the flagellum, where it forms an integral part of the flagellar skeleton. PDEB2 is mainly located in the cell body, and only a minor part of the protein localizes to the flagellum. The current study, using transfection of procyclic trypanosomes with green fluorescent protein (GFP) reporters, demonstrates that the N termini of the two enzymes are essential for determining their final subcellular localization. The first 70 amino acids of PDEB1 are sufficient to specifically direct a GFP reporter to the flagellum and to lead to its detergent-resistant integration into the flagellar skeleton. In contrast, the analogous region of PDEB2 causes the GFP reporter to reside predominantly in the cell body. Mutagenesis of selected residues in the N-terminal region of PDEB2 demonstrated that single amino acid changes are sufficient to redirect the reporter from a cell body location to stable integration into the flagellar skeleton. PMID:20693305

  1. Graphene-based filament material for thermal ionization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hewitt, J.; Shick, C.; Siegfried, M.

    The use of graphene oxide materials for thermal ionization mass spectrometry analysis of plutonium and uranium has been investigated. Filament made from graphene oxide slurries have been 3-D printed. A method for attaching these filaments to commercial thermal ionization post assemblies has been devised. Resistive heating of the graphene based filaments under high vacuum showed stable operation in excess of 4 hours. Plutonium ion production has been observed in an initial set of filaments spiked with the Pu 128 Certified Reference Material.

  2. Filament eruption connected to protospheric activity

    NASA Technical Reports Server (NTRS)

    Simon, G.; Gesztelyi, L.; Schmieder, B.; Mein, N

    1986-01-01

    Two cases of activation of filaments that occured in regions of intense magnetic activity was studied. The simultaneous observations from Debrecen Observatory (white light and H alpha filtergram), and from Meudon Observatory (magnetogram, MSDP dopplergram and intensity maps in H alpha) gave a complementary set of data from which can be produced evidence of the influence of the photospheric magnetic field on the destabilization process of the filaments. On June 22, 1980, the eruption of the filament is associated with the motion of pores, which are manifestations of emerging flux knots. On September 3, 1980, the twisting motions in the filament are associated to the birth of a pore in its neighborhood. These observations are discussed.

  3. Bacterial streamers in curved microchannels

    NASA Astrophysics Data System (ADS)

    Rusconi, Roberto; Lecuyer, Sigolene; Guglielmini, Laura; Stone, Howard

    2009-11-01

    Biofilms, generally identified as microbial communities embedded in a self-produced matrix of extracellular polymeric substances, are involved in a wide variety of health-related problems ranging from implant-associated infections to disease transmissions and dental plaque. The usual picture of these bacterial films is that they grow and develop on surfaces. However, suspended biofilm structures, or streamers, have been found in natural environments (e.g., rivers, acid mines, hydrothermal hot springs) and are always suggested to stem from a turbulent flow. We report the formation of bacterial streamers in curved microfluidic channels. By using confocal laser microscopy we are able to directly image and characterize the spatial and temporal evolution of these filamentous structures. Such streamers, which always connect the inner corners of opposite sides of the channel, are always located in the middle plane. Numerical simulations of the flow provide evidences for an underlying hydrodynamic mechanism behind the formation of the streamers.

  4. Production, characterization, and modeling of mineral filled polypropylene filaments

    NASA Astrophysics Data System (ADS)

    George, Brian Robert

    1999-11-01

    This research produced mineral filled polypropylene filaments using a variety of fillers, characterized these filaments, and attempted to model their mechanical properties with current composite models. Also, these filaments were compared with bone to determine if they are suitable for modeling the mechanical properties of bone. Fillers used consist of wollastonite, talc, calcium carbonate, titanium dioxide, and hydroxyapatite. Fillers and polypropylene chips were combined and extruded into rods with the use of a mixer. The rods were chipped up and then formed into filaments through melt extrusion utilizing a piston extruder. Filaments with volume fractions of filler of 0.05, 0.10, 0.15, and 0.20 were produced. Additionally, some methods of trying to improve the properties of these filaments were attempted, but did not result in any significant property improvements. The fillers and filaments were visually characterized with a scanning electron microscope. Cross-sections, filament outer surfaces, fracture surfaces, and longitudinal cut open surfaces were viewed in this manner. Those filaments with anisotropic filler had some oriented filler particles, while all filaments suffered from poor adhesion between the polypropylene and the filler as well as agglomerations of filler particles. Twenty specimens of each filament were tensile tested and the average tenacity, strain, and modulus were calculated. Filaments containing talc, talc and wollastonite, titanium dioxide, or hydroxyapatite suffered from a drastic transition from ductile to brittle with the addition of 0.05 volume fraction of filler. This is evidenced by the sharp decrease in strain at this volume fraction of filler when compared to the strain of the unfilled polypropylene filament. Additionally, these same filaments suffered a sharp decrease in tenacity at the same volume fraction. These instant decreases are attributed to the agglomerations of filler in the filament. Generally, the modulus of the

  5. Thick Filament Protein Network, Functions, and Disease Association.

    PubMed

    Wang, Li; Geist, Janelle; Grogan, Alyssa; Hu, Li-Yen R; Kontrogianni-Konstantopoulos, Aikaterini

    2018-03-13

    Sarcomeres consist of highly ordered arrays of thick myosin and thin actin filaments along with accessory proteins. Thick filaments occupy the center of sarcomeres where they partially overlap with thin filaments. The sliding of thick filaments past thin filaments is a highly regulated process that occurs in an ATP-dependent manner driving muscle contraction. In addition to myosin that makes up the backbone of the thick filament, four other proteins which are intimately bound to the thick filament, myosin binding protein-C, titin, myomesin, and obscurin play important structural and regulatory roles. Consistent with this, mutations in the respective genes have been associated with idiopathic and congenital forms of skeletal and cardiac myopathies. In this review, we aim to summarize our current knowledge on the molecular structure, subcellular localization, interacting partners, function, modulation via posttranslational modifications, and disease involvement of these five major proteins that comprise the thick filament of striated muscle cells. © 2018 American Physiological Society. Compr Physiol 8:631-709, 2018. Copyright © 2018 American Physiological Society. All rights reserved.

  6. Dynamics of contracting surfactant-covered filaments

    NASA Astrophysics Data System (ADS)

    Kamat, Pritish; Thete, Sumeet; Xu, Qi; Basaran, Osman

    2013-11-01

    When drops are produced from a nozzle, a thin liquid thread connects the primary drop that is about to form to the rest of the liquid in the nozzle. Often, the thread becomes disconnected from both the primary drop and the remnant liquid mass hanging from the nozzle and thereby gives rise to a free filament. Due to surface tension, the free filament then contracts or recoils. During recoil, the filament can either contract into a single satellite droplet or break up into several small satellites. Such satellite droplets are undesirable in applications where they can, for example, cause misting in a manufacturing environment and mar product quality in ink-jet printing. In many applications, the filaments are coated with a monolayer of surfactant. In this work, we study the dynamics of contraction of slender filaments of a Newtonian fluid that are covered with a monolayer of surfactant when the surrounding fluid is a passive gas. Taking advantage of the fact that the filaments are long and slender, we use a 1D-slender-jet approximation of the governing system of equations consisting of the Navier-Stokes system and the convection-diffusion equation for surfactant transport. We solve the 1D system of equations by a finite element based numerical method.

  7. INTERACTION OF TWO FILAMENT CHANNELS OF DIFFERENT CHIRALITIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joshi, Navin Chandra; Magara, Tetsuya; Moon, Yong-Jae

    2016-07-10

    We present observations of the interactions between the two filament channels of different chiralities and associated dynamics that occurred during 2014 April 18–20. While two flux ropes of different helicity with parallel axial magnetic fields can only undergo a bounce interaction when they are brought together, the observations at first glance show that the heated plasma is moving from one filament channel to the other. The SDO /AIA 171 Å observations and the potential-field source-surface magnetic field extrapolation reveal the presence of a fan-spine magnetic configuration over the filament channels with a null point located above them. Three different eventsmore » of filament activations, partial eruptions, and associated filament channel interactions have been observed. The activation initiated in one filament channel seems to propagate along the neighboring filament channel. We believe that the activation and partial eruption of the filaments brings the field lines of flux ropes containing them closer to the null point and triggers the magnetic reconnection between them and the fan-spine magnetic configuration. As a result, the hot plasma moves along the outer spine line toward the remote point. Utilizing the present observations, for the first time we have discussed how two different-chirality filament channels can interact and show interrelation.« less

  8. Two-step solar filament eruptions

    NASA Astrophysics Data System (ADS)

    Filippov, B.

    2018-04-01

    Coronal mass ejections (CMEs) are closely related to eruptive filaments and usually are the continuation of the same eruptive process into the upper corona. There are failed filament eruptions when a filament decelerates and stops at some greater height in the corona. Sometimes the filament after several hours starts to rise again and develops into the successful eruption with a CME formation. We propose a simple model for the interpretation of such two-step eruptions in terms of equilibrium of a flux rope in a two-scale ambient magnetic field. The eruption is caused by a slow decrease of the holding magnetic field. The presence of two critical heights for the initiation of the flux-rope vertical instability allows the flux rope to stay after the first jump some time in a metastable equilibrium near the second critical height. If the decrease of the ambient field continues, the next eruption step follows.

  9. METHOD OF MAKING TUNGSTEN FILAMENTS

    DOEpatents

    Frazer, J.W.

    1962-12-18

    A method of making tungsten filaments is described in which the tungsten is completely free of isotope impurities in the range of masses 234 to 245 for use in mass spectrometers. The filament comprises a tantalum core generally less than 1 mil in diameter having a coating of potassium-free tantalum-diffused tungsten molecularly bonded thereto. In the preferred process of manufacture a short, thin tantalum filament is first mounted between terminal posts mounted in insulated relation through a backing plate. The tungsten is most conveniently vapor plated onto the tantalum by a tungsten carbonyl vapor decomposition method having a critical step because of the tendency of the tantalum to volatilize at the temperature of operntion of the filament. The preferred recipe comprises volatilizing tantalum by resistance henting until the current drops by about 40%, cutting the voltage back to build up the tungsten, and then gradually building the temperature back up to balance the rate of tungsten deposition with the rate of tantalum volatilization. (AEC)

  10. Proper horizontal photospheric flows in a filament channel

    NASA Astrophysics Data System (ADS)

    Schmieder, B.; Roudier, T.; Mein, N.; Mein, P.; Malherbe, J. M.; Chandra, R.

    2014-04-01

    Context. An extended filament in the central part of the active region NOAA 11106 crossed the central meridian on Sept. 17, 2010 in the southern hemisphere. It has been observed in Hα with the THEMIS telescope in the Canary Islands and in 304 Å with the EUV imager (AIA) onboard the Solar Dynamic Observatory (SDO). Counterstreaming along the Hα threads and bright moving blobs (jets) along the 304 Å filament channel were observed during 10 h before the filament erupted at 17:03 UT. Aims: The aim of the paper is to understand the coupling between magnetic field and convection in filament channels and relate the horizontal photospheric motions to the activity of the filament. Methods: An analysis of the proper photospheric motions using SDO/HMI continuum images with the new version of the coherent structure tracking (CST) algorithm developed to track granules, as well as the large scale photospheric flows, was performed for three hours. Using corks, we derived the passive scalar points and produced a map of the cork distribution in the filament channel. Averaging the velocity vectors in the southern hemisphere in each latitude in steps of 3.5 arcsec, we defined a profile of the differential rotation. Results: Supergranules are clearly identified in the filament channel. Diverging flows inside the supergranules are similar in and out of the filament channel. Converging flows corresponding to the accumulation of corks are identified well around the Hα filament feet and at the edges of the EUV filament channel. At these convergence points, the horizontal photospheric velocity may reach 1 km s-1, but with a mean velocity of 0.35 km s-1. In some locations, horizontal flows crossing the channel are detected, indicating eventually large scale vorticity. Conclusions: The coupling between convection and magnetic field in the photosphere is relatively strong. The filament experienced the convection motions through its anchorage points with the photosphere, which are

  11. Plasma Brightenings in a Failed Solar Filament Eruption

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Y.; Ding, M. D., E-mail: yingli@nju.edu.cn

    Failed filament eruptions are solar eruptions that are not associated with coronal mass ejections. In a failed filament eruption, the filament materials usually show some ascending and falling motions as well as generating bright EUV emissions. Here we report a failed filament eruption (SOL2016-07-22) that occurred in a quiet-Sun region observed by the Atmospheric Imaging Assembly on board the Solar Dynamics Observatory . In this event, the filament spreads out but gets confined by the surrounding magnetic field. When interacting with the ambient magnetic field, the filament material brightens up and flows along the magnetic field lines through the coronamore » to the chromosphere. We find that some materials slide down along the lifting magnetic structure containing the filament and impact the chromosphere, and through kinetic energy dissipation, cause two ribbon-like brightenings in a wide temperature range. There is evidence suggesting that magnetic reconnection occurs between the filament magnetic structure and the surrounding magnetic fields where filament plasma is heated to coronal temperatures. In addition, thread-like brightenings show up on top of the erupting magnetic fields at low temperatures, which might be produced by an energy imbalance from a fast drop of radiative cooling due to plasma rarefaction. Thus, this single event of a failed filament eruption shows the existence of a variety of plasma brightenings that may be caused by completely different heating mechanisms.« less

  12. Fabrication of PLA Filaments and its Printable Performance

    NASA Astrophysics Data System (ADS)

    Liu, Wenjie; Zhou, Jianping; Ma, Yuming; Wang, Jie; Xu, Jie

    2017-12-01

    Fused deposition modeling (FDM) is a typical 3D printing technology and preparation of qualified filaments is the basis. In order to prepare polylactic acid (PLA) filaments suitable for personalized FDM 3D printing, this article investigated the effect of factors such as extrusion temperature and screw speed on the diameter, surface roughness and ultimate tensile stress of the obtained PLA filaments. The optimal process parameters for fabrication of qualified filaments were determined. Further, the printable performance of the obtained PLA filaments for 3D objects was preliminarily explored.

  13. Terahertz waves radiated from two noncollinear femtosecond plasma filaments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Du, Hai-Wei; Hoshina, Hiromichi; Otani, Chiko, E-mail: otani@riken.jp

    2015-11-23

    Terahertz (THz) waves radiated from two noncollinear femtosecond plasma filaments with a crossing angle of 25° are investigated. The irradiated THz waves from the crossing filaments show a small THz pulse after the main THz pulse, which was not observed in those from single-filament scheme. Since the position of the small THz pulse changes with the time-delay of two filaments, this phenomenon can be explained by a model in which the small THz pulse is from the second filament. The denser plasma in the overlap region of the filaments changes the movement of space charges in the plasma, thereby changingmore » the angular distribution of THz radiation. As a result, this schematic induces some THz wave from the second filament to propagate along the path of the THz wave from the first filament. Thus, this schematic alters the direction of the THz radiation from the filamentation, which can be used in THz wave remote sensing.« less

  14. Aerogel-supported filament

    DOEpatents

    Wuest, Craig R.; Tillotson, Thomas M.; Johnson, III, Coleman V.

    1995-01-01

    The present invention is a thin filament embedded in a low density aerogel for use in radiation detection instruments and incandescent lamps. The aerogel provides a supportive matrix that is thermally and electrically nonconductive, mechanically strong, highly porous, gas-permeable, and transparent to ionizing radiation over short distances. A low density, open-cell aerogel is cast around a fine filament or wire, which allows the wire to be positioned with little or no tension and keeps the wire in place in the event of breakage. The aerogel support reduces the stresses on the wire caused by vibrational, gravitational, electrical, and mechanical forces.

  15. Lamp automatically switches to new filament on burnout

    NASA Technical Reports Server (NTRS)

    Ingle, W. B.

    1966-01-01

    Lamp with primary and secondary filaments has a means for automatic switching to the secondary filament at primary filament burnout. Lamp failures and resultant expenses during oscillograph printing are appreciably reduced.

  16. Sulfur cycling and metabolism of phototrophic and filamentous sulfur bacteria

    NASA Technical Reports Server (NTRS)

    Guerrero, R.; Brune, D.; Poplawski, R.; Schmidt, T. M.

    1985-01-01

    Phototrophic sulfur bacteria taken from different habitate (Alum Rock State Park, Palo Alto salt marsh, and Big Soda Lake) were grown on selective media, characterized by morphological and pigment analysis, and compared with bacteria maintained in pure culture. A study was made of the anaerobic reduction of intracellular sulfur globules by a phototrophic sulfur bacterium (Chromatium vinosum) and a filamentous aerobic sulfur bacterium (Beggiatoa alba). Buoyant densities of different bacteria were measured in Percoll gradients. This method was also used to separate different chlorobia in mixed cultures and to assess the relative homogeneity of cultures taken directly or enriched from natural samples (including the purple bacterial layer found at a depth of 20 meters at Big Soda Lake.) Interactions between sulfide oxidizing bacteria were studied.

  17. A comparison study of a solar active-region eruptive filament and a neighboring non-eruptive filament

    NASA Astrophysics Data System (ADS)

    Jiang, Chao-Wei; Wu, Shi-Tsan; Feng, Xue-Shang; Hu, Qiang

    2016-01-01

    Solar active region (AR) 11283 is a very magnetically complex region and it has produced many eruptions. However, there exists a non-eruptive filament in the plage region just next to an eruptive one in the AR, which gives us an opportunity to perform a comparison analysis of these two filaments. The coronal magnetic field extrapolated using our CESE-MHD-NLFFF code reveals that two magnetic flux ropes (MFRs) exist in the same extrapolation box supporting these two filaments, respectively. Analysis of the magnetic field shows that the eruptive MFR contains a bald-patch separatrix surface (BPSS) cospatial very well with a pre-eruptive EUV sigmoid, which is consistent with the BPSS model for coronal sigmoids. The magnetic dips of the non-eruptive MFRs match Hα observation of the non-eruptive filament strikingly well, which strongly supports the MFR-dip model for filaments. Compared with the non-eruptive MFR/filament (with a length of about 200 Mm), the eruptive MFR/filament is much smaller (with a length of about 20 Mm), but it contains most of the magnetic free energy in the extrapolation box and holds a much higher free energy density than the non-eruptive one. Both the MFRs are weakly twisted and cannot trigger kink instability. The AR eruptive MFR is unstable because its axis reaches above a critical height for torus instability, at which the overlying closed arcades can no longer confine the MFR stably. On the contrary, the quiescent MFR is very firmly held by its overlying field, as its axis apex is far below the torus-instability threshold height. Overall, this comparison investigation supports that an MFR can exist prior to eruption and the ideal MHD instability can trigger an MFR eruption.

  18. The Connection Between Solar Coronal Cavities and Solar Filaments

    NASA Astrophysics Data System (ADS)

    Zawadzki, B.; Karna, N.; Prchlik, J.; Reeves, K.; Kempton, D.; Angryk, R.

    2017-12-01

    Filaments are structures in the solar corona made up of relatively cool, dense, partially ionized plasma. Coronal cavities, circular or elliptical regions of low plasma density, are observed above prominences on the solar limb when viewed in EUV and white light coronal images. Since most filament/cavity eruptions lead to a coronal mass ejection (CME), determining the likelihood of an eruption event will improve our ability to predict space weather. We examine SDO/AIA cavity metadata and HEK filament metadata to determine which cavities are associated with which filaments from 2012 to 2015. Our study involved 140 cavities and 368 filaments that appeared poleward of +-30 degrees. We categorized the cavities and filaments based on the stability of the structures, defined by whether or not the cavity and filament exist long enough to track fully across the solar disk. Using these categories we perform a statistical study on various filament qualities within the metadata. Our findings indicate that filaments with cavities are observed more often at high latitude in compared to filaments without cavities. Moreover, our study indicates that a statistically significant difference exists between the filament length and tilt distributions for certain categories. This work supported by the NSF-REU solar physics program at SAO, grant number AGS-1560313, and the NSF-DIBBS project, grant number ACI-1443061.

  19. Changes in the flagellar bundling time account for variations in swimming behavior of flagellated bacteria in viscous media

    NASA Astrophysics Data System (ADS)

    Qu, Zijie; Temel, Fatma; Henderikx, Rene; Breuer, Kenneth

    2017-11-01

    The motility of bacteria E.coli in viscous fluids has been widely studied, although conflicting results on the effect of viscosity on swimming speed abound. The swimming mode of wild-type E.coli is idealized as a run-and-tumble sequence in which periods of straight swimming at a constant speed are randomly interrupted by a tumble, defined as a sudden change of direction with a very low speed. Using a tracking microscope, we follow cells for extended time and find that the swimming behavior of a single cell can exhibit a variety of behaviors including run-and-tumble and ``slow-random-walk'' in which the cells move at relatively low speed without the characteristic run. Although the characteristic swimming speed varies between individuals and in different polymer solutions, we find that the skewness of the speed distribution is solely a function of viscosity, and uniquely determines the ratio of the average speed to the characteristic run speed. Using Resistive Force Theory and the cell-specific measured characteristic run speed, we show that differences in the swimming behavior observed in solutions of different viscosity are due to changes in the flagellar bundling time, which increases as the viscosity rises, due to lower rotation rate of the flagellar motor. National Science Foundation.

  20. Blue light (470 nm) effectively inhibits bacterial and fungal growth.

    PubMed

    De Lucca, A J; Carter-Wientjes, C; Williams, K A; Bhatnagar, D

    2012-12-01

    Blue light (470 nm) LED antimicrobial properties were studied alone against bacteria and with or without the food grade photosensitizer, erythrosine (ERY) against filamentous fungi. Leuconostoc mesenteroides (LM), Bacillus atrophaeus (BA) or Pseudomonas aeruginosa (PA) aliquots were exposed on nutrient agar plates to Array 1 (AR1, 0·2 mW cm(-2)) or Array 2 (AR2, 80 mW cm(-2)), which emitted impure or pure blue light (0-300 J cm(-2)), respectively. Inoculated control (room light only) plates were incubated (48 h) and colonies enumerated. The antifungal properties of blue light combined with ERY (11·4 and 22·8 μmol l(-1)) on Penicillium digitatum (PD) and Fusarium graminearum (FG) conidia were determined. Conidial controls consisted of: no light, room light-treated conidia and ERY plus room light. Light-treated (ERY + blue light) conidial samples were exposed only to AR2 (0-100 J cm(-2)), aliquots spread on potato dextrose agar plates, incubated (48 h, 30°C) and colonies counted. Blue light alone significantly reduced bacterial and FG viability. Combined with ERY, it significantly reduced PD viability. Blue light is lethal to bacteria and filamentous fungi although effectiveness is dependent on light purity, energy levels and microbial genus. Light from two arrays of different blue LEDs significantly reduced bacterial (Leuconostoc mesenteroides, Bacillus atrophaeus and Pseudomonas aeruginosa) viabilities. Significant in vitro viability loss was observed for the filamentous fungi, Penicillium digitatum and Fusarium graminearum when exposed to pure blue light only plus a photosensitizer. F. graminearum viability was significantly reduced by blue light alone. Results suggest that (i) the amount of significant loss in bacterial viability observed for blue light that is pure or with traces of other wavelengths is genus dependent and (ii) depending on fungal genera, pure blue light is fungicidal with or without a photosensitizer. © 2012 The Society for

  1. Bacterial Tethering Analysis Reveals a “Run-Reverse-Turn” Mechanism for Pseudomonas Species Motility

    PubMed Central

    Qian, Chen; Wong, Chui Ching; Swarup, Sanjay

    2013-01-01

    We have developed a program that can accurately analyze the dynamic properties of tethered bacterial cells. The program works especially well with cells that tend to give rise to unstable rotations, such as polar-flagellated bacteria. The program has two novel components. The first dynamically adjusts the center of the cell's rotational trajectories. The second applies piecewise linear approximation to the accumulated rotation curve to reduce noise and separate the motion of bacteria into phases. Thus, it can separate counterclockwise (CCW) and clockwise (CW) rotations distinctly and measure rotational speed accurately. Using this program, we analyzed the properties of tethered Pseudomonas aeruginosa and Pseudomonas putida cells for the first time. We found that the Pseudomonas flagellar motor spends equal time in both CCW and CW phases and that it rotates with the same speed in both phases. In addition, we discovered that the cell body can remain stationary for short periods of time, leading to the existence of a third phase of the flagellar motor which we call “pause.” In addition, P. aeruginosa cells adopt longer run lengths, fewer pause frequencies, and shorter pause durations as part of their chemotactic response. We propose that one purpose of the pause phase is to allow the cells to turn at a large angle, where we show that pause durations in free-swimming cells positively correlate with turn angle sizes. Taken together, our results suggest a new “run-reverse-turn” paradigm for polar-flagellated Pseudomonas motility that is different from the “run-and-tumble” paradigm established for peritrichous Escherichia coli. PMID:23728820

  2. Observations of the Growth of an Active Region Filament

    NASA Astrophysics Data System (ADS)

    Yang, Bo

    2017-04-01

    We present observations of the growth of an active region filament caused by magnetic interactions among the filament and its adjacent superpenumbral filament (SF) and dark thread-like structures (T). Multistep reconnections are identified during the whole growing process. Magnetic flux convergence and cancellation occurring at the positive footpoint region of the filament is the first step reconnection, which resulted in the filament bifurcating into two sets of intertwined threads. One set anchored in situ, while the other set moved toward and interacted with the SF and part of T. This indicates the second step reconnection, which gave rise to the disappearance of the SF and the formation of a long thread-like structure that connects the far ends of the filament and T. The long thread-like structure further interacted with the T and then separated into two parts, representing the third step reconnection. Finally, another similar long thread-like structure, which intertwined with the fixed filament threads, appeared. Hαobservations show that this twisted structure is a longer sinistral filament. Based on the observed photospheric vector magnetograms, we performed a non-linear force-free field extrapolation to reconstruct the magnetic fields above the photosphere and found that the coronal magnetic field lines associated with the filament consists of two twisted flux ropes winding around each other. These results suggest that magnetic interactions among filaments and their adjacent SFs and T could lead to the growth of the filaments, and the filament is probably supported in a flux rope.

  3. OBSERVATIONS OF THE GROWTH OF AN ACTIVE REGION FILAMENT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Bo; Jiang, Yunchun; Yang, Jiayan

    We present observations of the growth of an active region filament caused by magnetic interactions among the filament and its adjacent superpenumbral filament (SF) and dark thread-like structures (T). Multistep reconnections are identified during the whole growing process. Magnetic flux convergence and cancellation occurring at the positive footpoint region of the filament is the first step reconnection, which resulted in the filament bifurcating into two sets of intertwined threads. One set anchored in situ, while the other set moved toward and interacted with the SF and part of T. This indicates the second step reconnection, which gave rise to themore » disappearance of the SF and the formation of a long thread-like structure that connects the far ends of the filament and T. The long thread-like structure further interacted with the T and then separated into two parts, representing the third step reconnection. Finally, another similar long thread-like structure, which intertwined with the fixed filament threads, appeared. H {sub α} observations show that this twisted structure is a longer sinistral filament. Based on the observed photospheric vector magnetograms, we performed a non-linear force-free field extrapolation to reconstruct the magnetic fields above the photosphere and found that the coronal magnetic field lines associated with the filament consists of two twisted flux ropes winding around each other. These results suggest that magnetic interactions among filaments and their adjacent SFs and T could lead to the growth of the filaments, and the filament is probably supported in a flux rope.« less

  4. A comprehensive insight into bacterial virulence in drinking water using 454 pyrosequencing and Illumina high-throughput sequencing.

    PubMed

    Huang, Kailong; Zhang, Xu-Xiang; Shi, Peng; Wu, Bing; Ren, Hongqiang

    2014-11-01

    In order to comprehensively investigate bacterial virulence in drinking water, 454 pyrosequencing and Illumina high-throughput sequencing were used to detect potential pathogenic bacteria and virulence factors (VFs) in a full-scale drinking water treatment and distribution system. 16S rRNA gene pyrosequencing revealed high bacterial diversity in the drinking water (441-586 operational taxonomic units). Bacterial diversity decreased after chlorine disinfection, but increased after pipeline distribution. α-Proteobacteria was the most dominant taxonomic class. Alignment against the established pathogen database showed that several types of putative pathogens were present in the drinking water and Pseudomonas aeruginosa had the highest abundance (over 11‰ of total sequencing reads). Many pathogens disappeared after chlorine disinfection, but P. aeruginosa and Leptospira interrogans were still detected in the tap water. High-throughput sequencing revealed prevalence of various pathogenicity islands and virulence proteins in the drinking water, and translocases, transposons, Clp proteases and flagellar motor switch proteins were the predominant VFs. Both diversity and abundance of the detectable VFs increased after the chlorination, and decreased after the pipeline distribution. This study indicates that joint use of 454 pyrosequencing and Illumina sequencing can comprehensively characterize environmental pathogenesis, and several types of putative pathogens and various VFs are prevalent in drinking water. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. The flagellar master operon flhDC is a pleiotropic regulator involved in motility and virulence of the fish pathogen Yersinia ruckeri.

    PubMed

    Jozwick, A K S; Graf, J; Welch, T J

    2017-03-01

    To investigate the function of the master flagellar operon flhDC in the fish pathogen Yersinia ruckeri and compare the effect of a constructed flhD mutation to a naturally occurring fliR mutation causing loss-of-motility in emergent biotype 2 (BT2) strains. Yersinia ruckeri flhD and fliR mutants were constructed in a motile strain. Both mutations caused loss-of-motility, ablation of flagellin synthesis and phospholipase secretion, similar to naturally occurring BT2 strains. Transcriptome analysis confirmed flhDC regulation of flagellar, chemotaxis and phospholipase loci as well as other genes of diverse function. The flhD mutation confers a competitive advantage within the fish host when compared with its parent strain, while this advantage was not seen with the naturally occurring fliR mutation. An intact flhD is necessary for expression of the flagellar secretion system as well as other diverse loci, consistent with a role for flhD as a pleiotropic regulator. The maintenance of the flhD locus in Y. ruckeri strains suggests its importance for aspects of Y. ruckeri biology other than virulence, since the flhD mutation conferred a competitive advantage during experimental challenge of rainbow trout. Yersinia ruckeri is the causative agent of enteric red mouth disease, an invasive septicaemia that affects farmed salmonid fish species. Disease outbreaks can cause severe economic losses in aquaculture. BT2 variants, which have independently emerged worldwide, are an increasing threat to farmed fish production. Knowledge of mechanisms involved in virulence, conserved functions and gene regulation among strains may be exploited for the development of novel disease control strategies to prevent pathogen growth or virulence phenotypes within aquaculture. Published 2016. This article is a U.S. Government work and is in the public domain in the USA.

  6. Brownian microhydrodynamics of active filaments.

    PubMed

    Laskar, Abhrajit; Adhikari, R

    2015-12-21

    Slender bodies capable of spontaneous motion in the absence of external actuation in an otherwise quiescent fluid are common in biological, physical and technological contexts. The interplay between the spontaneous fluid flow, Brownian motion, and the elasticity of the body presents a challenging fluid-structure interaction problem. Here, we model this problem by approximating the slender body as an elastic filament that can impose non-equilibrium velocities or stresses at the fluid-structure interface. We derive equations of motion for such an active filament by enforcing momentum conservation in the fluid-structure interaction and assuming slow viscous flow in the fluid. The fluid-structure interaction is obtained, to any desired degree of accuracy, through the solution of an integral equation. A simplified form of the equations of motion, which allows for efficient numerical solutions, is obtained by applying the Kirkwood-Riseman superposition approximation to the integral equation. We use this form of equation of motion to study dynamical steady states in free and hinged minimally active filaments. Our model provides the foundation to study collective phenomena in momentum-conserving, Brownian, active filament suspensions.

  7. Remote electrical arc suppression by laser filamentation.

    PubMed

    Schubert, Elise; Mongin, Denis; Kasparian, Jérôme; Wolf, Jean-Pierre

    2015-11-02

    We investigate the interaction of narrow plasma channels formed in the filamentation of ultrashort laser pulses, with a DC high voltage. The laser filaments prevent electrical arcs by triggering corona that neutralize the high-voltage electrodes. This phenomenon, that relies on the electric field modulation and free electron release around the filament, opens new prospects to lightning and over-voltage mitigation.

  8. Spontaneous beating and synchronization of extensile active filament

    NASA Astrophysics Data System (ADS)

    Sarkar, Debarati; Thakur, Snigdha

    2017-04-01

    We simulate a semi-flexible active filament that exhibits spontaneous oscillations on clamping and show self-propulsion when left free. The activity on the filament relies on the nano-dimers distributed at regular intervals along the chain. With an emphasis on the spontaneous beating of a clamped filament, we demonstrate that the two competing forces necessary for oscillation are the elastic forces due to polymer rigidity and the active forces due to chemical activity. In addition, we also study the synchronization of two extensile filaments and the role played by non-local hydrodynamic interactions. We observe a phase lock scenario between the filaments during their synchronous motion.

  9. Hydrodynamic interaction induced spontaneous rotation of coupled active filaments.

    PubMed

    Jiang, Huijun; Hou, Zhonghuai

    2014-12-14

    We investigate the coupled dynamics of active filaments with long range hydrodynamic interactions (HI). Remarkably, we find that filaments can rotate spontaneously under the same conditions in which a single filament alone can only move in translation. Detailed analysis reveals that the emergence of coupled rotation originates from an asymmetric flow field associated with HI which breaks the symmetry of translational motion when filaments approach. The breaking is then further stabilized by HI to form self-sustained coupled rotation. Intensive simulations show that coupled rotation forms easily when one filament tends to collide with the front-half of the other. For head-to-tail approaching, we observe another interesting HI-induced coupled motion, where filaments move together in the form of one following the other. Moreover, the radius of coupled rotation increases exponentially as the rigidity of the filament increases, which suggests that HI are also important for the alignment of rigid-rod-like filaments which has been assumed to be solely a consequence of direct collisions.

  10. Aerogel-supported filament

    DOEpatents

    Wuest, C.R.; Tillotson, T.M.; Johnson, C.V. III

    1995-05-16

    The present invention is a thin filament embedded in a low density aerogel for use in radiation detection instruments and incandescent lamps. The aerogel provides a supportive matrix that is thermally and electrically nonconductive, mechanically strong, highly porous, gas-permeable, and transparent to ionizing radiation over short distances. A low density, open-cell aerogel is cast around a fine filament or wire, which allows the wire to be positioned with little or no tension and keeps the wire in place in the event of breakage. The aerogel support reduces the stresses on the wire caused by vibrational, gravitational, electrical, and mechanical forces. 6 Figs.

  11. Star-forming Filament Models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Myers, Philip C., E-mail: pmyers@cfa.harvard.edu

    2017-03-20

    New models of star-forming filamentary clouds are presented in order to quantify their properties and to predict their evolution. These 2D axisymmetric models describe filaments that have no core, one low-mass core, and one cluster-forming core. They are based on Plummer-like cylinders and spheroids that are bounded by a constant-density surface of finite extent. In contrast to 1D Plummer-like models, they have specific values of length and mass, they approximate observed column density maps, and their distributions of column density ( N -pdfs) are pole-free. Each model can estimate the star-forming potential of a core-filament system by identifying the zonemore » of gas dense enough to form low-mass stars and by counting the number of enclosed thermal Jeans masses. This analysis suggests that the Musca central filament may be near the start of its star-forming life, with enough dense gas to make its first ∼3 protostars, while the Coronet filament is near the midpoint of its star formation, with enough dense gas to add ∼8 protostars to its ∼20 known stars. In contrast, L43 appears to be near the end of its star-forming life, since it lacks enough dense gas to add any new protostars to the two young stellar objectsalready known.« less

  12. Mid-infrared laser filaments in the atmosphere

    PubMed Central

    Mitrofanov, A. V.; Voronin, A. A.; Sidorov-Biryukov, D. A.; Pugžlys, A.; Stepanov, E. A.; Andriukaitis, G.; Flöry, T.; Ališauskas, S.; Fedotov, A. B.; Baltuška, A.; Zheltikov, A. M.

    2015-01-01

    Filamentation of ultrashort laser pulses in the atmosphere offers unique opportunities for long-range transmission of high-power laser radiation and standoff detection. With the critical power of self-focusing scaling as the laser wavelength squared, the quest for longer-wavelength drivers, which would radically increase the peak power and, hence, the laser energy in a single filament, has been ongoing over two decades, during which time the available laser sources limited filamentation experiments in the atmosphere to the near-infrared and visible ranges. Here, we demonstrate filamentation of ultrashort mid-infrared pulses in the atmosphere for the first time. We show that, with the spectrum of a femtosecond laser driver centered at 3.9 μm, right at the edge of the atmospheric transmission window, radiation energies above 20 mJ and peak powers in excess of 200 GW can be transmitted through the atmosphere in a single filament. Our studies reveal unique properties of mid-infrared filaments, where the generation of powerful mid-infrared supercontinuum is accompanied by unusual scenarios of optical harmonic generation, giving rise to remarkably broad radiation spectra, stretching from the visible to the mid-infrared. PMID:25687621

  13. A Method for 3D-Reconstruction of a Muscle Thick Filament Using the Tilt Series Images of a Single Filament Electron Tomogram

    PubMed Central

    Márquez, G.; Pinto, A.; Alamo, L.; Baumann, B.; Ye, F.; Winkler, H.; Taylor, K.; Padrón, R.

    2014-01-01

    Summary Myosin interacting-heads (MIH) motifs are visualized in 3D-reconstructions of thick filaments from striated muscle. These reconstructions are calculated by averaging methods using images from electron micrographs of grids prepared using numerous filament preparations. Here we propose an alternative method to calculate the 3D-reconstruction of a single thick filament using only a tilt series images recorded by electron tomography. Relaxed thick filaments, prepared from tarantula leg muscle homogenates, were negatively stained. Single-axis tilt series of single isolated thick filaments were obtained with the electron microscope at a low electron dose, and recorded on a CCD camera by electron tomography. An IHRSR 3D-recontruction was calculated from the tilt series images of a single thick filament. The reconstruction was enhanced by including in the search stage dual tilt image segments while only single tilt along the filament axis is usually used, as well as applying a band pass filter just before the back projection. The reconstruction from a single filament has a 40 Å resolution and clearly shows the presence of MIH motifs. In contrast, the electron tomogram 3D-reconstruction of the same thick filament –calculated without any image averaging and/or imposition of helical symmetry- only reveals MIH motifs infrequently. This is –to our knowledge- the first application of the IHRSR method to calculate a 3D reconstruction from tilt series images. This single filament IHRSR reconstruction method (SF-IHRSR) should provide a new tool to assess structural differences between well-ordered thick (or thin) filaments in a grid by recording separately their electron tomograms. PMID:24727133

  14. A method for 3D-reconstruction of a muscle thick filament using the tilt series images of a single filament electron tomogram.

    PubMed

    Márquez, G; Pinto, A; Alamo, L; Baumann, B; Ye, F; Winkler, H; Taylor, K; Padrón, R

    2014-05-01

    Myosin interacting-heads (MIH) motifs are visualized in 3D-reconstructions of thick filaments from striated muscle. These reconstructions are calculated by averaging methods using images from electron micrographs of grids prepared using numerous filament preparations. Here we propose an alternative method to calculate the 3D-reconstruction of a single thick filament using only a tilt series images recorded by electron tomography. Relaxed thick filaments, prepared from tarantula leg muscle homogenates, were negatively stained. Single-axis tilt series of single isolated thick filaments were obtained with the electron microscope at a low electron dose, and recorded on a CCD camera by electron tomography. An IHRSR 3D-recontruction was calculated from the tilt series images of a single thick filament. The reconstruction was enhanced by including in the search stage dual tilt image segments while only single tilt along the filament axis is usually used, as well as applying a band pass filter just before the back projection. The reconstruction from a single filament has a 40 Å resolution and clearly shows the presence of MIH motifs. In contrast, the electron tomogram 3D-reconstruction of the same thick filament - calculated without any image averaging and/or imposition of helical symmetry - only reveals MIH motifs infrequently. This is - to our knowledge - the first application of the IHRSR method to calculate a 3D reconstruction from tilt series images. This single filament IHRSR reconstruction method (SF-IHRSR) should provide a new tool to assess structural differences between well-ordered thick (or thin) filaments in a grid by recording separately their electron tomograms. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Hindered bacterial mobility in porous media flow enhances dispersion

    NASA Astrophysics Data System (ADS)

    Dehkharghani, Amin; Waisbord, Nicolas; Dunkel, Jörn; Guasto, Jeffrey

    2017-11-01

    Swimming bacteria live in porous environments characterized by dynamic fluid flows, where they play a crucial role in processes ranging from the bioremediation to the spread of infections. We study bacterial transport in a quasi-two-dimensional porous microfluidic device, which is complemented by Langevin simulations. The cell trajectories reveal filamentous patterns of high cell concentration, which result from the accumulation of bacteria in the high-shear regions of the flow and their subsequent advection. Moreover, the effective diffusion coefficient of the motile bacteria is severely hindered in the transverse direction to the flow due to decorrelation of the cells' persistent random walk by shear-induced rotation. The hindered lateral diffusion has the surprising consequence of strongly enhancing the longitudinal bacterial transport through a dispersion effect. These results demonstrate the significant role of the flow and geometry in bacterial transport through porous media with potential implications for understanding ecosystem dynamics and engineering bioreactors. NSF CBET-1511340, NSF CAREER-1554095.

  16. Direct observation of subunit exchange along mature vimentin intermediate filaments.

    PubMed

    Nöding, Bernd; Herrmann, Harald; Köster, Sarah

    2014-12-16

    Actin filaments, microtubules, and intermediate filaments (IFs) are central elements of the metazoan cytoskeleton. At the molecular level, the assembly mechanism for actin filaments and microtubules is fundamentally different from that of IFs. The former two types of filaments assemble from globular proteins. By contrast, IFs assemble from tetrameric complexes of extended, half-staggered, and antiparallel oriented coiled-coils. These tetramers laterally associate into unit-length filaments; subsequent longitudinal annealing of unit-length filaments yields mature IFs. In vitro, IFs form open structures without a fixed number of tetramers per cross-section along the filament. Therefore, a central question for the structural biology of IFs is whether individual subunits can dissociate from assembled filaments and rebind at other sites. Using the fluorescently labeled IF-protein vimentin for assembly, we directly observe and quantitatively determine subunit exchange events between filaments as well as with soluble vimentin pools. Thereby we demonstrate that the cross-sectional polymorphism of donor and acceptor filaments plays an important role. We propose that in segments of donor filaments with more than the standard 32 molecules per cross-section, subunits are not as tightly bound and are predisposed to be released from the filament. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  17. Bacterial plaque colonization around dental implant surfaces.

    PubMed

    Covani, Ugo; Marconcini, Simone; Crespi, Roberto; Barone, Antonio

    2006-09-01

    To examine the distribution of bacteria into the internal and external surfaces of failed implants using histologic analysis. There were 10 failed pure titanium and 5 failed hydroxyapatite-coated titanium implants consecutively removed various years after their placement. Criteria for fixture removal were peri-implant radiolucency and clinical mobility. The mobile fixtures were retrieved with the patients under local anesthesia. Fixtures were removed maintaining the abutments with the aim to observe the bacterial infiltration at the level of abutment/implant interface and on the implant surface. A thin radiolucent space was always present around all the failed implants. The abutments screws were tightly secured in all clinical cases. The bacterial cells were composed of cocci and filaments, which were adherent to the implant surface with an orientation perpendicular to the long axis of the implant. All the specimens included in this study showed bacteria at the level of implant/abutment interface. Histologic analysis at the level of abutment/implant interface in 2-stage implants identified heavy bacterial colonization. These findings appear to support those studies showing bacteria penetration at the level of the micro-gap, which can legitimate the hypothesis that the micro-gap at the bone level could present a risk for bone loss caused by bacterial colonization.

  18. Self-assembly of nematic liquid crystal elastomer filaments

    NASA Astrophysics Data System (ADS)

    Wei, Wei-Shao; Xia, Yu; Yang, Shu; Yodh, A. G.

    In this work we investigate the self-assembly of nematic liquid crystal polymer (NLCP) filaments and their corresponding cross-linked elastomer structures. Specifically, by fine-tuning surfactant concentration, prepolymer chain length, and temperature within a background aqueous phase we can generate filaments composed of oligomerized LC monomers. Filaments with narrowly dispersed diameters ranging from one hundred nanometers to a few micrometers can be obtained. Using polarization optical microscopy, we show that the nematic LCs within the filaments have an escaped radial structure. After photo-cross-linking, nematic liquid crystal elastomer filaments are obtained with well-maintained directors and smooth surface structure. Since these materials are elastomers, the size and mechanical and optical response of the filaments can be ''tuned'' near the nematic to isotropic phase transition temperature. This work is supported by NSF DMR16-07378, PENN MRSEC Grant DMR11-20901, and NASA Grant NNX08AO0G.

  19. Topology of interaction between titin and myosin thick filaments.

    PubMed

    Kellermayer, Miklós; Sziklai, Dominik; Papp, Zsombor; Decker, Brennan; Lakatos, Eszter; Mártonfalvi, Zsolt

    2018-05-05

    Titin is a giant protein spanning between the Z- and M-lines of the sarcomere. In the A-band titin is associated with the myosin thick filament. It has been speculated that titin may serve as a blueprint for thick-filament formation due to the super-repeat structure of its A-band domains. Accordingly, titin might provide a template that determines the length and structural periodicity of the thick filament. Here we tested the titin ruler hypothesis by mixing titin and myosin at in situ stoichiometric ratios (300 myosins per 12 titins) in buffers of different ionic strength (KCl concentration range 100-300 mM). The topology of the filamentous complexes was investigated with atomic force microscopy. We found that the samples contained distinct, segregated populations of titin molecules and myosin thick filaments. We were unable to identify complexes in which myosin molecules were regularly associated to either mono- or oligomeric titin in either relaxed or stretched states of the titin filaments. Thus, the electrostatically driven self-association is stronger in both myosin and titin than their binding to each other, and it is unlikely that titin functions as a geometrical template for thick-filament formation. However, when allowed to equilibrate configurationally, long myosin thick filaments appeared with titin oligomers attached to their surface. The titin meshwork formed on the thick-filament surface may play a role in controlling thick-filament length by regulating the structural dynamics of myosin molecules and placing a mechanical limit on the filament length. Copyright © 2018 Elsevier Inc. All rights reserved.

  20. Physical principles of filamentous protein self-assembly kinetics

    NASA Astrophysics Data System (ADS)

    Michaels, Thomas C. T.; Liu, Lucie X.; Meisl, Georg; Knowles, Tuomas P. J.

    2017-04-01

    The polymerization of proteins and peptides into filamentous supramolecular structures is an elementary form of self-organization of key importance to the functioning biological systems, as in the case of actin biofilaments that compose the cellular cytoskeleton. Aberrant filamentous protein self-assembly, however, is associated with undesired effects and severe clinical disorders, such as Alzheimer’s and Parkinson’s diseases, which, at the molecular level, are associated with the formation of certain forms of filamentous protein aggregates known as amyloids. Moreover, due to their unique physicochemical properties, protein filaments are finding extensive applications as biomaterials for nanotechnology. With all these different factors at play, the field of filamentous protein self-assembly has experienced tremendous activity in recent years. A key question in this area has been to elucidate the microscopic mechanisms through which filamentous aggregates emerge from dispersed proteins with the goal of uncovering the underlying physical principles. With the latest developments in the mathematical modeling of protein aggregation kinetics as well as the improvement of the available experimental techniques it is now possible to tackle many of these complex systems and carry out detailed analyses of the underlying microscopic steps involved in protein filament formation. In this paper, we review some classical and modern kinetic theories of protein filament formation, highlighting their use as a general strategy for quantifying the molecular-level mechanisms and transition states involved in these processes.

  1. On the fragmentation of filaments in a molecular cloud simulation

    NASA Astrophysics Data System (ADS)

    Chira, R.-A.; Kainulainen, J.; Ibáñez-Mejía, J. C.; Henning, Th.; Mac Low, M.-M.

    2018-03-01

    Context. The fragmentation of filaments in molecular clouds has attracted a lot of attention recently as there seems to be a close relation between the evolution of filaments and star formation. The study of the fragmentation process has been motivated by simple analytical models. However, only a few comprehensive studies have analysed the evolution of filaments using numerical simulations where the filaments form self-consistently as part of large-scale molecular cloud evolution. Aim. We address the early evolution of parsec-scale filaments that form within individual clouds. In particular, we focus on three questions: How do the line masses of filaments evolve? How and when do the filaments fragment? How does the fragmentation relate to the line masses of the filaments? Methods: We examine three simulated molecular clouds formed in kiloparsec-scale numerical simulations performed with the FLASH adaptive mesh refinement magnetohydrodynamic code. The simulations model a self-gravitating, magnetised, stratified, supernova-driven interstellar medium, including photoelectric heating and radiative cooling. We follow the evolution of the clouds for 6 Myr from the time self-gravity starts to act. We identify filaments using the DisPerSe algorithm, and compare the results to other filament-finding algorithms. We determine the properties of the identified filaments and compare them with the predictions of analytic filament stability models. Results: The average line masses of the identified filaments, as well as the fraction of mass in filamentary structures, increases fairly continuously after the onset of self-gravity. The filaments show fragmentation starting relatively early: the first fragments appear when the line masses lie well below the critical line mass of Ostriker's isolated hydrostatic equilibrium solution ( 16 M⊙ pc-1), commonly used as a fragmentation criterion. The average line masses of filaments identified in three-dimensional volume density cubes

  2. Flux Cancellation Leading to Solar Filament Eruptions

    NASA Astrophysics Data System (ADS)

    Popescu, R. M.; Panesar, N. K.; Sterling, A. C.; Moore, R. L.

    2016-12-01

    Solar filaments are strands of relatively cool, dense plasma magnetically suspended in the lower density hotter solar corona. They trace magnetic polarity inversion lines (PILs) in the photosphere below, and are supported against gravity at heights of up to 100 Mm above the chromosphere by the magnetic field in and around them. This field erupts when it is rendered unstable by either magnetic flux cancellation or emergence at or near the PIL. We have studied the evolution of photospheric magnetic flux leading to ten observed filament eruptions. Specifically, we look for gradual magnetic changes in the neighborhood of the PIL prior to and during eruption. We use Extreme Ultraviolet (EUV) images from the Atmospheric Imaging Assembly (AIA), and magnetograms from the Helioseismic and Magnetic Imager (HMI), both onboard the Solar Dynamics Observatory (SDO), to study filament eruptions and their photospheric magnetic fields. We examine whether flux cancellation or/and emergence leads to filament eruptions and find that continuous flux cancellation was present at the PIL for many hours prior to each eruption. We present two events in detail and find the following: (a) the pre-eruption filament-holding core field is highly sheared and appears in the shape of a sigmoid above the PIL; (b) at the start of the eruption the opposite arms of the sigmoid reconnect in the middle above the site of (tether-cutting) flux cancellation at the PIL; (c) the filaments first show a slow-rise, followed by a fast-rise as they erupt. We conclude that these two filament eruptions result from flux cancellation in the middle of the sheared field and are in agreement with the standard model for a CME/flare filament eruption from a closed bipolar magnetic field [flux cancellation (van Ballegooijen and Martens 1989 and Moore and Roumelrotis 1992) and runaway tether-cutting (Moore et. al 2001)].

  3. Flux Cancellation Leading to CME Filament Eruptions

    NASA Technical Reports Server (NTRS)

    Popescu, Roxana M.; Panesar, Navdeep K.; Sterling, Alphonse C.; Moore, Ronald L.

    2016-01-01

    Solar filaments are strands of relatively cool, dense plasma magnetically suspended in the lower density hotter solar corona. They trace magnetic polarity inversion lines (PILs) in the photosphere below, and are supported against gravity at heights of up to approx.100 Mm above the chromosphere by the magnetic field in and around them. This field erupts when it is rendered unstable, often by magnetic flux cancellation or emergence at or near the PIL. We have studied the evolution of photospheric magnetic flux leading to ten observed filament eruptions. Specifically, we look for gradual magnetic changes in the neighborhood of the PIL prior to and during eruption. We use Extreme Ultraviolet (EUV) images from the Atmospheric Imaging Assembly (AIA), and magnetograms from the Helioseismic and Magnetic Imager (HMI), both on board the Solar Dynamics Observatory (SDO), to study filament eruptions and their photospheric magnetic fields. We examine whether flux cancellation or/and emergence leads to filament eruptions. We find that continuous flux cancellation was present at the PIL for many hours prior to each eruption. We present two CME-producing eruptions in detail and find the following: (a) the pre-eruption filament-holding core field is highly sheared and appears in the shape of a sigmoid above the PIL; (b) at the start of the eruption the opposite arms of the sigmoid reconnect in the middle above the site of (tether-cutting) flux cancellation at the PIL; (c) the filaments first show a slow-rise, followed by a fast-rise as they erupt. We conclude that these two filament eruptions result from flux cancellation in the middle of the sheared field, and thereafter evolve in agreement with the standard model for a CME/flare filament eruption from a closed bipolar magnetic field [flux cancellation (van Ballegooijen and Martens 1989 and Moore and Roumelrotis 1992) and runaway tether-cutting (Moore et. al 2001)].

  4. Cofilin-Linked Changes in Actin Filament Flexibility Promote Severing

    PubMed Central

    McCullough, Brannon R.; Grintsevich, Elena E.; Chen, Christine K.; Kang, Hyeran; Hutchison, Alan L.; Henn, Arnon; Cao, Wenxiang; Suarez, Cristian; Martiel, Jean-Louis; Blanchoin, Laurent; Reisler, Emil; De La Cruz, Enrique M.

    2011-01-01

    The actin regulatory protein, cofilin, increases the bending and twisting elasticity of actin filaments and severs them. It has been proposed that filaments partially decorated with cofilin accumulate stress from thermally driven shape fluctuations at bare (stiff) and decorated (compliant) boundaries, thereby promoting severing. This mechanics-based severing model predicts that changes in actin filament compliance due to cofilin binding affect severing activity. Here, we test this prediction by evaluating how the severing activities of vertebrate and yeast cofilactin scale with the flexural rigidities determined from analysis of shape fluctuations. Yeast actin filaments are more compliant in bending than vertebrate actin filaments. Severing activities of cofilactin isoforms correlate with changes in filament flexibility. Vertebrate cofilin binds but does not increase the yeast actin filament flexibility, and does not sever them. Imaging of filament thermal fluctuations reveals that severing events are associated with local bending and fragmentation when deformations attain a critical angle. The critical severing angle at boundaries between bare and cofilin-decorated segments is smaller than in bare or fully decorated filaments. These measurements support a cofilin-severing mechanism in which mechanical asymmetry promotes local stress accumulation and fragmentation at boundaries of bare and cofilin-decorated segments, analogous to failure of some nonprotein materials. PMID:21723825

  5. Optical spectroscopy using gas-phase femtosecond laser filamentation.

    PubMed

    Odhner, Johanan; Levis, Robert

    2014-01-01

    Femtosecond laser filamentation occurs as a dynamic balance between the self-focusing and plasma defocusing of a laser pulse to produce ultrashort radiation as brief as a few optical cycles. This unique source has many properties that make it attractive as a nonlinear optical tool for spectroscopy, such as propagation at high intensities over extended distances, self-shortening, white-light generation, and the formation of an underdense plasma. The plasma channel that constitutes a single filament and whose position in space can be controlled by its input parameters can span meters-long distances, whereas multifilamentation of a laser beam can be sustained up to hundreds of meters in the atmosphere. In this review, we briefly summarize the current understanding and use of laser filaments for spectroscopic investigations of molecules. A theoretical framework of filamentation is presented, along with recent experimental evidence supporting the established understanding of filamentation. Investigations carried out on vibrational and rotational spectroscopy, filament-induced breakdown, fluorescence spectroscopy, and backward lasing are discussed.

  6. Formation of a solar Hα filament from orphan penumbrae

    NASA Astrophysics Data System (ADS)

    Buehler, D.; Lagg, A.; van Noort, M.; Solanki, S. K.

    2016-05-01

    Aims: The formation and evolution of an Hα filament in active region (AR) 10953 is described. Methods: Observations from the Solar Optical Telescope (SOT) aboard the Hinode satellite starting from UT 18:09 on 27th April 2007 until UT 06:08 on 1st May 2007 were analysed. 20 scans of the 6302 Å Fe I line pair recorded by SOT/SP were inverted using the spatially coupled version of the SPINOR code. The inversions were analysed together with co-spatial SOT/BFI G-band and Ca II H and SOT/NFI Hα observations. Results: Following the disappearance of an initial Hα filament aligned along the polarity inversion line (PIL) of the AR, a new Hα filament formed in its place some 20 h later, which remained stable for, at least, another 1.5 days. The creation of the new Hα filament was driven by the ascent of horizontal magnetic fields from the photosphere into the chromosphere at three separate locations along the PIL. The magnetic fields at two of these locations were situated directly underneath the initial Hα filament and formed orphan penumbrae already aligned along the Hα filament channel. The 700 G orphan penumbrae were stable and trapped in the photosphere until the disappearance of the overlying initial Hα filament, after which they started to ascend into the chromosphere at 10 ± 5 m/s. Each ascent was associated with a simultaneous magnetic flux reduction of up to 50% in the photosphere. The ascended orphan penumbrae formed dark seed structures in Hα in parallel with the PIL, which elongated and merged to form an Hα filament. The filament channel featured horizontal magnetic fields of on average 260 G at log (τ) = -2 suspended above the nearly field-free lower photosphere. The fields took on an overall inverse configuration at log (τ) = -2 suggesting a flux rope topology for the new Hα filament. The destruction of the initial Hα filament was likely caused by the flux emergence at the third location along the PIL. Conclusions: We present a new

  7. Importance of filament diameter when using bass brushing technique.

    PubMed

    Vowles, A D; Wade, A B

    1977-08-01

    A comparative study using a crossover experimental construction was made of the effectiveness of brushes containing 6/10 nylon filaments of 0.132 mm mean diameter using a Bass technique with those containing filaments of the same type of nylon but 0.280 mm diameter. Each type of brush was used for a 2-week period. Even though the finer filament brushes contained more than three times as many filaments, they were inferior in cleaning achievement to the brushes with the broader filaments. The difference was particularly marked on the facial aspect, but was largely nullified lingually. The effectiveness of the Bass technique in the gingival zone demonstrated in a previous investigation when brushes containing filaments of 0.18 and 0.20 mm were used, was not found in this investigation. It is concluded that filament diameter is critical in achieving effective cleaning using the Bass technique.

  8. Method for preparing metallated filament-wound structures

    DOEpatents

    Peterson, George R.

    1979-01-01

    Metallated graphite filament-wound structures are prepared by coating a continuous multi-filament carbon yarn with a metal carbide, impregnating the carbide coated yarn with a polymerizable carbon precursor, winding the resulting filament about a mandrel, partially curing the impregnation in air, subjecting the wound composite to heat and pressure to cure the carbon precursor, and thereafter heating the composite in a sizing die at a pressure loading of at least 1000 psi for graphitizing the carbonaceous material in the composite. The carbide in the composite coalesces into rod-like shapes which are disposed in an end-to-end relationship parallel with the filaments to provide resistance to erosion in abrasive laden atmospheres.

  9. Flagellin based biomimetic coatings: From cell-repellent surfaces to highly adhesive coatings.

    PubMed

    Kovacs, Boglarka; Patko, Daniel; Szekacs, Inna; Orgovan, Norbert; Kurunczi, Sandor; Sulyok, Attila; Khanh, Nguyen Quoc; Toth, Balazs; Vonderviszt, Ferenc; Horvath, Robert

    2016-09-15

    Biomimetic coatings with cell-adhesion-regulating functionalities are intensively researched today. For example, cell-based biosensing for drug development, biomedical implants, and tissue engineering require that the surface adhesion of living cells is well controlled. Recently, we have shown that the bacterial flagellar protein, flagellin, adsorbs through its terminal segments to hydrophobic surfaces, forming an oriented monolayer and exposing its variable D3 domain to the solution. Here, we hypothesized that this nanostructured layer is highly cell-repellent since it mimics the surface of the flagellar filaments. Moreover, we proposed flagellin as a carrier molecule to display the cell-adhesive RGD (Arg-Gly-Asp) peptide sequence and induce cell adhesion on the coated surface. The D3 domain of flagellin was replaced with one or more RGD motifs linked by various oligopeptides modulating flexibility and accessibility of the inserted segment. The obtained flagellin variants were applied to create surface coatings inducing cell adhesion and spreading to different levels, while wild-type flagellin was shown to form a surface layer with strong anti-adhesive properties. As reference surfaces synthetic polymers were applied which have anti-adhesive (PLL-g-PEG poly(l-lysine)-graft-poly(ethylene glycol)) or adhesion inducing properties (RGD-functionalized PLL-g-PEG). Quantitative adhesion data was obtained by employing optical biochips and microscopy. Cell-adhesion-regulating coatings can be simply formed on hydrophobic surfaces by using the developed flagellin-based constructs. The developed novel RGD-displaying flagellin variants can be easily obtained by bacterial production and can serve as alternatives to create cell-adhesion-regulating biomimetic coatings. In the present work, we show for the first time that. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  10. Beam wandering of femtosecond laser filament in air.

    PubMed

    Yang, Jing; Zeng, Tao; Lin, Lie; Liu, Weiwei

    2015-10-05

    The spatial wandering of a femtosecond laser filament caused by the filament heating effect in air has been studied. An empirical formula has also been derived from the classical Karman turbulence model, which determines quantitatively the displacement of the beam center as a function of the propagation distance and the effective turbulence structure constant. After fitting the experimental data with this formula, the effective turbulence structure constant has been estimated for a single filament generated in laboratory environment. With this result, one may be able to estimate quantitatively the displacement of a filament over long distance propagation and interpret the practical performance of the experiments assisted by femtosecond laser filamentation, such as remote air lasing, pulse compression, high order harmonic generation (HHG), etc.

  11. Scroll wave filaments self-wrap around unexcitable heterogeneities.

    PubMed

    Jiménez, Zulma A; Steinbock, Oliver

    2012-09-01

    Scroll waves are three-dimensional excitation vortices rotating around one-dimensional phase singularities called filaments. In experiments with a chemical reaction-diffusion system and in numerical simulations, we study the pinning of closed filament loops to inert cylindrical heterogeneities. We show that the filament wraps itself around the heterogeneity and thus avoids contraction and annihilation. This entwining steadily increases the total length of the pinned filament and reshapes the entire rotation backbone of the vortex. Self-pinning is fastest for thin cylinders with radii not much larger than the core of the unpinned rotor. The process ends when the filament is attached to the entire length of the cylinder. The possible importance of self-pinning in cardiac systems is discussed.

  12. Dimensional quantization effects in the thermodynamics of conductive filaments

    NASA Astrophysics Data System (ADS)

    Niraula, D.; Grice, C. R.; Karpov, V. G.

    2018-06-01

    We consider the physical effects of dimensional quantization in conductive filaments that underlie operations of some modern electronic devices. We show that, as a result of quantization, a sufficiently thin filament acquires a positive charge. Several applications of this finding include the host material polarization, the stability of filament constrictions, the equilibrium filament radius, polarity in device switching, and quantization of conductance.

  13. Dimensional quantization effects in the thermodynamics of conductive filaments.

    PubMed

    Niraula, D; Grice, C R; Karpov, V G

    2018-06-29

    We consider the physical effects of dimensional quantization in conductive filaments that underlie operations of some modern electronic devices. We show that, as a result of quantization, a sufficiently thin filament acquires a positive charge. Several applications of this finding include the host material polarization, the stability of filament constrictions, the equilibrium filament radius, polarity in device switching, and quantization of conductance.

  14. Propagation distance-resolved characteristics of filament-induced copper plasma

    DOE PAGES

    Ghebregziabher, Isaac; Hartig, Kyle C.; Jovanovic, Igor

    2016-03-02

    Copper plasma generated at different filament-copper interaction points was characterized by spectroscopic, acoustic, and imaging measurements. The longitudinal variation of the filament intensity was qualitatively determined by acoustic measurements in air. The maximum plasma temperature was measured at the location of peak filament intensity, corresponding to the maximum mean electron energy during plasma formation. The highest copper plasma density was measured past the location of the maximum electron density in the filament, where spectral broadening of the filament leads to enhanced ionization. Acoustic measurements in air and on solid target were correlated to reconstructed plasma properties. Lastly, optimal line emissionmore » is measured near the geometric focus of the lens used to produce the filament.« less

  15. Transition from linear- to nonlinear-focusing regime in filamentation

    PubMed Central

    Lim, Khan; Durand, Magali; Baudelet, Matthieu; Richardson, Martin

    2014-01-01

    Laser filamentation in gases is often carried out in the laboratory with focusing optics to better stabilize the filament, whereas real-world applications of filaments frequently involve collimated or near-collimated beams. It is well documented that geometrical focusing can alter the properties of laser filaments and, consequently, a transition between a collimated and a strongly focused filament is expected. Nevertheless, this transition point has not been identified. Here, we propose an analytical method to determine the transition, and show that it corresponds to an actual shift in the balance of physical mechanisms governing filamentation. In high-NA conditions, filamentation is primarily governed by geometrical focusing and plasma effects, while the Kerr nonlinearity plays a more significant role as NA decreases. We find the transition between the two regimes to be relatively insensitive to the intrinsic laser parameters, and our analysis agrees well with a wide range of parameters found in published literature. PMID:25434678

  16. COMPLEX FLARE DYNAMICS INITIATED BY A FILAMENT–FILAMENT INTERACTION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Chunming; McAteer, R. T. James; Liu, Rui

    2015-11-01

    We report on an eruption involving a relatively rare filament–filament interaction on 2013 June 21, observed by SDO and STEREO-B. The two filaments were separated in height with a “double-decker” configuration. The eruption of the lower filament began simultaneously with a descent of the upper filament, resulting in a convergence and direct interaction of the two filaments. The interaction was accompanied by the heating of surrounding plasma and an apparent crossing of a loop-like structure through the upper filament. The subsequent coalescence of the filaments drove a bright front ahead of the erupting structures. The whole process was associated withmore » a C3.0 flare followed immediately by an M2.9 flare. Shrinking loops and descending dark voids were observed during the M2.9 flare at different locations above a C-shaped flare arcade as part of the energy release, giving us unique insight into the flare dynamics.« less

  17. [A new type of flagellar structure. Type 9+n

    PubMed Central

    1977-01-01

    The ultrastructural study of the Eoacanthocephala sperm cell shows a variation from 0 to 5 in the number of the axial fibers in the axoneme. All the species of the order Eoacanthocephala available to us show this variation; moreover, every individual possesses simultaneously several different structural types. So, we are dealing with a new flagellar organization: 9+n, with 0 less than or equal to n less than or equal to 5. In the Quadrigyridae and the Tenuisentidae families, n varies from 0 to 4, with a maximum of 2 for most individuals, exceptionally at 1 for some individuals. In the Neoechinorhynchidae family, n varies from 0 to 5 with a conspicuous prevalence of 3 (from 84 to 99%, according to the individual). These results prompted us to reexamine the two other orders of Acanthocephala in which the structural types 9+2 or 9+0 have been considered as fixed. Indeed, we have found a few flagella the structure of which is different from the prevalent one. It seems, therefore, that the number of the central fibers of the axoneme in the Acanthocephala sperm cell is never absolutely fixed. PMID:557042

  18. Spatial evolution of laser filaments in turbulent air

    NASA Astrophysics Data System (ADS)

    Zeng, Tao; Zhu, Shiping; Zhou, Shengling; He, Yan

    2018-04-01

    In this study, the spatial evolution properties of laser filament clusters in turbulent air were evaluated using numerical simulations. Various statistical parameters were calculated, such as the percolation probability, filling factor, and average cluster size. The results indicate that turbulence-induced multi-filamentation can be described as a new phase transition universality class. In addition, during this process, the relationship between the average cluster size and filling factor could be fit by a power function. Our results are valuable for applications involving filamentation that can be influenced by the geometrical features of multiple filaments.

  19. Proper horizontal photospheric flows below an eruptive filament

    NASA Astrophysics Data System (ADS)

    Schmieder, Brigitte; Mein, Pierre; Mein, Nicole; Roudier, Thierry; Chandra, Ramseh

    An analysis of the proper motions using SDO/HMI continuum images with the new version of the coherent structure tracking (CST) algorithm developed to track the granules as well as the large scale photospheric flows, was perfomed during three hours in a region containing a large filament channel on September 17, 2010. Supergranules were idenfied in the filament channel. Diverging flows inside the supergranules are similar in and out the filament channel. Using corks, we derived the passive scalar points and produced maps of cork distribution. The anchorage structures with the photosphere (feet) of the filament are located in the areas of converging flows with accumulations of corks. Averaging the velocity vectors for each latitude we defined a profile of the differential rotation. We conclude that the coupling between the convection and magnetic field in the photosphere is relatively strong. The filament experienced the convection motions through its feet. On a large scale point-of-view the differential rotation induced a shear of 0.1 km/s in the filament. On a small scale point-of-view convection motions favored the interaction/cancellation of the parasitic polarities at the base of the feet with the surrounding network explaining the brightenings,/jets and the eruption that were observed in the EUV filament.

  20. Measuring the regulation of keratin filament network dynamics

    PubMed Central

    Moch, Marcin; Herberich, Gerlind; Aach, Til; Leube, Rudolf E.; Windoffer, Reinhard

    2013-01-01

    The organization of the keratin intermediate filament cytoskeleton is closely linked to epithelial function. To study keratin network plasticity and its regulation at different levels, tools are needed to localize and measure local network dynamics. In this paper, we present image analysis methods designed to determine the speed and direction of keratin filament motion and to identify locations of keratin filament polymerization and depolymerization at subcellular resolution. Using these methods, we have analyzed time-lapse fluorescence recordings of fluorescent keratin 13 in human vulva carcinoma-derived A431 cells. The fluorescent keratins integrated into the endogenous keratin cytoskeleton, and thereby served as reliable markers of keratin dynamics. We found that increased times after seeding correlated with down-regulation of inward-directed keratin filament movement. Bulk flow analyses further revealed that keratin filament polymerization in the cell periphery and keratin depolymerization in the more central cytoplasm were both reduced. Treating these cells and other human keratinocyte-derived cells with EGF reversed all these processes within a few minutes, coinciding with increased keratin phosphorylation. These results highlight the value of the newly developed tools for identifying modulators of keratin filament network dynamics and characterizing their mode of action, which, in turn, contributes to understanding the close link between keratin filament network plasticity and epithelial physiology. PMID:23757496

  1. Igg Subclasses Targeting the Flagella of Salmonella enterica Serovar Typhimurium Can Mediate Phagocytosis and Bacterial Killing

    PubMed Central

    Goh, Yun Shan; Armour, Kathryn L; Clark, Michael R; Grant, Andrew J; Mastroeni, Pietro

    2016-01-01

    Invasive non-typhoidal Salmonella are a common cause of invasive disease in immuno-compromised individuals and in children. Multi-drug resistance poses challenges to disease control, with a critical need for effective vaccines. Flagellin is an attractive vaccine candidate due to surface exposure and high epitope copy number, but its potential as a target for opsonophacytic antibodies is unclear. We examined the effect of targeting flagella with different classes of IgG on the interaction between Salmonella Typhimurium and a human phagocyte-like cell line, THP-1. We tagged the FliC flagellar protein with a foreign CD52 mimotope (TSSPSAD) and bacteria were opsonized with a panel of humanised CD52 antibodies with the same antigen-binding V-region, but different constant regions. We found that IgG binding to flagella increases bacterial phagocytosis and reduces viable intracellular bacterial numbers. Opsonisation with IgG3, followed by IgG1, IgG4, and IgG2, resulted in the highest level of bacterial uptake and in the highest reduction in the intracellular load of viable bacteria. Taken together, our data provide proof-of-principle evidence that targeting flagella with antibodies can increase the antibacterial function of host cells, with IgG3 being the most potent subclass. These data will assist the rational design of urgently needed, optimised vaccines against iNTS disease. PMID:27366588

  2. Energetics and kinetics of cooperative cofilin-actin filament interactions.

    PubMed

    Cao, Wenxiang; Goodarzi, Jim P; De La Cruz, Enrique M

    2006-08-11

    We have evaluated the thermodynamic parameters associated with cooperative cofilin binding to actin filaments, accounting for contributions of ion-linked equilibria, and determined the kinetic basis of cooperative cofilin binding. Ions weaken non-contiguous (isolated, non-cooperative) cofilin binding to an actin filament without affecting cooperative filament interactions. Non-contiguous cofilin binding is coupled to the dissociation of approximately 1.7 thermodynamically bound counterions. Counterion dissociation contributes approximately 40% of the total cofilin binding free energy (in the presence of 50 mM KCl). The non-contiguous and cooperative binding free energies are driven entirely by large, positive entropy changes, consistent with a cofilin-mediated increase in actin filament structural dynamics. The rate constant for cofilin binding to an isolated site on an actin filament is slow and likely to be limited by filament breathing. Cooperative cofilin binding arises from an approximately tenfold more rapid association rate constant and an approximately twofold slower dissociation rate constant. The more rapid association rate constant is presumably a consequence of cofilin-dependent changes in the average orientation of subdomain 2, subunit angular disorder and filament twist, which increase the accessibility of a neighboring cofilin-binding site on an actin filament. Cooperative association is more rapid than binding to an isolated site, but still slow for a second-order reaction, suggesting that cooperative binding is limited also by binding site accessibility. We suggest that the dissociation of actin-associated ions weakens intersubunit interactions in the actin filament lattice that enhance cofilin-binding site accessibility, favor cooperative binding and promote filament severing.

  3. Flagellar membrane fusion and protein exchange in trypanosomes; a new form of cell-cell communication?

    PubMed Central

    Imhof, Simon; Fragoso, Cristina; Hemphill, Andrew; von Schubert, Conrad; Li, Dong; Legant, Wesley; Betzig, Eric; Roditi, Isabel

    2016-01-01

    Diverse structures facilitate direct exchange of proteins between cells, including plasmadesmata in plants and tunnelling nanotubes in bacteria and higher eukaryotes.  Here we describe a new mechanism of protein transfer, flagellar membrane fusion, in the unicellular parasite Trypanosoma brucei. When fluorescently tagged trypanosomes were co-cultured, a small proportion of double-positive cells were observed. The formation of double-positive cells was dependent on the presence of extracellular calcium and was enhanced by placing cells in medium supplemented with fresh bovine serum. Time-lapse microscopy revealed that double-positive cells arose by bidirectional protein exchange in the absence of nuclear transfer.  Furthermore, super-resolution microscopy showed that this process occurred in ≤1 minute, the limit of temporal resolution in these experiments. Both cytoplasmic and membrane proteins could be transferred provided they gained access to the flagellum. Intriguingly, a component of the RNAi machinery (Argonaute) was able to move between cells, raising the possibility that small interfering RNAs are transported as cargo. Transmission electron microscopy showed that shared flagella contained two axonemes and two paraflagellar rods bounded by a single membrane. In some cases flagellar fusion was partial and interactions between cells were transient. In other cases fusion occurred along the entire length of the flagellum, was stable for several hours and might be irreversible. Fusion did not appear to be deleterious for cell function: paired cells were motile and could give rise to progeny while fused. The motile flagella of unicellular organisms are related to the sensory cilia of higher eukaryotes, raising the possibility that protein transfer between cells via cilia or flagella occurs more widely in nature. PMID:27239276

  4. Large scale filaments associated with Milky Way spiral arms

    NASA Astrophysics Data System (ADS)

    Wang, Ke; Testi, Leonardo; Ginsburg, Adam; Walmsley, Malcolm; Molinari, Sergio; Schisano, Eugenio

    2015-08-01

    The ubiquity of filamentary structure at various scales through out the Galaxy has triggered a renewed interest in their formation, evolution, and role in star formation. The largest filaments can reach up to Galactic scale as part of the spiral arm structure. However, such large scale filaments are hard to identify systematically due to limitations in identifying methodology (i.e., as extinction features). We present a new approach to directly search for the largest, coldest, and densest filaments in the Galaxy, making use of sensitive Herschel Hi-GAL data complemented by spectral line cubes. We present a sample of the 9 most prominent Herschel filaments from a pilot search field. These filaments measure 37-99 pc long and 0.6-3.0 pc wide with masses (0.5-8.3)×104 Msun, and beam-averaged (28", or 0.4-0.7 pc) peak H2 column densities of (1.7-9.3)x1022 cm-2. The bulk of the filaments are relatively cold (17-21 K), while some local clumps have a dust temperature up to 25-47 K due to local star formation activities. All the filaments are located within <~60 pc from the Galactic mid-plane. Comparing the filaments to a recent spiral arm model incorporating the latest parallax measurements, we find that 7/9 of them reside within arms, but most are close to arm edges. These filaments are comparable in length to the Galactic scale height and therefore are not simply part of a grander turbulent cascade. These giant filaments, which often contain regularly spaced pc-scale clumps, are much larger than the filaments found in the Herschel Gould's Belt Survey, and they form the upper ends in the filamentary hierarchy. Full operational ALMA and NOEMA will be able to resolve and characterize similar filaments in nearby spiral galaxies, allowing us to compare the star formation in a uniform context of spiral arms.

  5. Hanging Filament

    NASA Image and Video Library

    2014-06-16

    The Sun sported a very long filament that stretched out over 500,000 miles (800,000 km) and was visible for several days (June 3-4, 2014). It broke apart and dissipated soon after the end of the video clip. Filaments are tenuous strands of plasma held above the Sun's surface by magnetic forces. They appear darker because their temperature is somewhat cooler than that of the Sun's surface. The still image, shown in a combination of two wavelengths of extreme ultraviolet light, was taken at 11:33 UT on June 4. Credit: NASA/Goddard/Solar Dynamics Observatory NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  6. Proteomics on the rims; insights into the biology of the nuclear envelope and flagellar pocket of trypanosomes

    PubMed Central

    Field, Mark C.; Adung’a, Vincent; Obado, Samson; Chait, Brian T.; Rout, Michael P.

    2014-01-01

    SUMMERY Trypanosomatids represent the causative agents of major diseases in humans, livestock and plants, with inevitable suffering and economic hardship as a result. They are also evolutionarily highly divergent organisms, and the many unique aspects of trypanosome biology provide opportunities in terms of identification of drug targets, the challenge of exploiting these putative targets, and at the same time significant scope for exploration of novel and divergent cell biology. We can estimate from genome sequences that the degree of divergence of trypanosomes from animals and fungi is extreme, with perhaps one third to one half of predicted trypanosome proteins having no known function based on homology or recognizable protein domains/architecture. Two highly important aspects of trypanosome biology are the flagellar pocket and the nuclear envelope, where in silico analysis clearly suggests great potential divergence in the proteome. The flagellar pocket is the sole site of endo- and exocytosis in trypanosomes and plays important roles in immune evasion via variant surface glycoprotein (VSG) trafficking and providing a location for sequestration of various invariant receptors. The trypanosome nuclear envelope has been largely unexplored, but by analogy with higher eukaryotes, roles in the regulation of chromatin and most significantly, in controlling VSG gene expression are expected. Here we discuss recent successful proteomics-based approaches towards characterization of the nuclear envelope and the endocytic apparatus, the identification of conserved and novel trypanosomatid-specific features, and the implications of these findings. PMID:22309600

  7. Geometrical and Mechanical Properties Control Actin Filament Organization

    PubMed Central

    Ennomani, Hajer; Théry, Manuel; Nedelec, Francois; Blanchoin, Laurent

    2015-01-01

    The different actin structures governing eukaryotic cell shape and movement are not only determined by the properties of the actin filaments and associated proteins, but also by geometrical constraints. We recently demonstrated that limiting nucleation to specific regions was sufficient to obtain actin networks with different organization. To further investigate how spatially constrained actin nucleation determines the emergent actin organization, we performed detailed simulations of the actin filament system using Cytosim. We first calibrated the steric interaction between filaments, by matching, in simulations and experiments, the bundled actin organization observed with a rectangular bar of nucleating factor. We then studied the overall organization of actin filaments generated by more complex pattern geometries used experimentally. We found that the fraction of parallel versus antiparallel bundles is determined by the mechanical properties of actin filament or bundles and the efficiency of nucleation. Thus nucleation geometry, actin filaments local interactions, bundle rigidity, and nucleation efficiency are the key parameters controlling the emergent actin architecture. We finally simulated more complex nucleation patterns and performed the corresponding experiments to confirm the predictive capabilities of the model. PMID:26016478

  8. Recruitment Kinetics of Tropomyosin Tpm3.1 to Actin Filament Bundles in the Cytoskeleton Is Independent of Actin Filament Kinetics.

    PubMed

    Appaduray, Mark A; Masedunskas, Andrius; Bryce, Nicole S; Lucas, Christine A; Warren, Sean C; Timpson, Paul; Stear, Jeffrey H; Gunning, Peter W; Hardeman, Edna C

    2016-01-01

    The actin cytoskeleton is a dynamic network of filaments that is involved in virtually every cellular process. Most actin filaments in metazoa exist as a co-polymer of actin and tropomyosin (Tpm) and the function of an actin filament is primarily defined by the specific Tpm isoform associated with it. However, there is little information on the interdependence of these co-polymers during filament assembly and disassembly. We addressed this by investigating the recovery kinetics of fluorescently tagged isoform Tpm3.1 into actin filament bundles using FRAP analysis in cell culture and in vivo in rats using intracellular intravital microscopy, in the presence or absence of the actin-targeting drug jasplakinolide. The mobile fraction of Tpm3.1 is between 50% and 70% depending on whether the tag is at the C- or N-terminus and whether the analysis is in vivo or in cultured cells. We find that the continuous dynamic exchange of Tpm3.1 is not significantly impacted by jasplakinolide, unlike tagged actin. We conclude that tagged Tpm3.1 may be able to undergo exchange in actin filament bundles largely independent of the assembly and turnover of actin.

  9. Heavy tailed bacterial motor switching statistics define macroscopic transport properties during upstream contamination by E. coli

    NASA Astrophysics Data System (ADS)

    Figueroa-Morales, N.; Rivera, A.; Altshuler, E.; Darnige, T.; Douarche, C.; Soto, R.; Lindner, A.; Clément, E.

    The motility of E. Coli bacteria is described as a run and tumble process. Changes of direction correspond to a switch in the flagellar motor rotation. The run time distribution is described as an exponential decay of characteristic time close to 1s. Remarkably, it has been demonstrated that the generic response for the distribution of run times is not exponential, but a heavy tailed power law decay, which is at odds with the motility findings. We investigate the consequences of the motor statistics in the macroscopic bacterial transport. During upstream contamination processes in very confined channels, we have identified very long contamination tongues. Using a stochastic model considering bacterial dwelling times on the surfaces related to the run times, we are able to reproduce qualitatively and quantitatively the evolution of the contamination profiles when considering the power law run time distribution. However, the model fails to reproduce the qualitative dynamics when the classical exponential run and tumble distribution is considered. Moreover, we have corroborated the existence of a power law run time distribution by means of 3D Lagrangian tracking. We then argue that the macroscopic transport of bacteria is essentially determined by the motor rotation statistics.

  10. Mechanical model for filament buckling and growth by phase ordering.

    PubMed

    Rey, Alejandro D; Abukhdeir, Nasser M

    2008-02-05

    A mechanical model of open filament shape and growth driven by phase ordering is formulated. For a given phase-ordering driving force, the model output is the filament shape evolution and the filament end-point kinematics. The linearized model for the slope of the filament is the Cahn-Hilliard model of spinodal decomposition, where the buckling corresponds to concentration fluctuations. Two modes are predicted: (i) sequential growth and buckling and (ii) simultaneous buckling and growth. The relation among the maximum buckling rate, filament tension, and matrix viscosity is given. These results contribute to ongoing work in smectic A filament buckling.

  11. Kinetic analysis of F-actin depolymerization in polymorphonuclear leukocyte lysates indicates that chemoattractant stimulation increases actin filament number without altering the filament length distribution

    PubMed Central

    1991-01-01

    The rate of filamentous actin (F-actin) depolymerization is proportional to the number of filaments depolarizing and changes in the rate are proportional to changes in filament number. To determine the number and length of actin filaments in polymorphonuclear leukocytes and the change in filament number and length that occurs during the increase in F-actin upon chemoattractant stimulation, the time course of cellular F-actin depolymerization in lysates of control and peptide- stimulated cells was examined. F-actin was quantified by the TRITC- labeled phalloidin staining of pelletable actin. Lysis in 1.2 M KCl and 10 microM DNase I minimized the effects of F-actin binding proteins and G-actin, respectively, on the kinetics of depolymerization. To determine filament number and length from a depolymerization time course, depolymerization kinetics must be limited by the actin monomer dissociation rate. Comparison of time courses of depolymerization in the presence (pointed ends free) or absence (barbed and pointed ends free) of cytochalasin suggested depolymerization occurred from both ends of the filament and that monomer dissociation was rate limiting. Control cells had 1.7 +/- 0.4 x 10(5) filaments with an average length of 0.29 +/- 0.09 microns. Chemo-attractant stimulation for 90 s at room temperature with 0.02 microM N-formylnorleucylleucylphenylalanine caused a twofold increase in F-actin and about a two-fold increase in the total number of actin filaments to 4.0 +/- 0.5 x 10(5) filaments with an average length of 0.27 +/- 0.07 microns. In both cases, most (approximately 80%) of the filaments were quite short (less than or equal to 0.18 micron). The length distributions of actin filaments in stimulated and control cells were similar. PMID:1918158

  12. Disintegration of an eruptive filament via interactions with quasi-separatrix layers

    NASA Astrophysics Data System (ADS)

    Liu, Rui; Chen, Jun; Wang, YuMing

    2018-06-01

    The disintegration of solar filaments via mass drainage is a frequently observed phenomenon during a variety of filament activities. It is generally considered that the draining of dense filament material is directed by both gravity and magnetic field, yet the detailed process remains elusive. Here we report on a partial filament eruption during which filament material drains downward to the surface not only along the filament's legs, but to a remote flare ribbon through a fan-out curtain-like structure. It is found that the magnetic configuration is characterized by two conjoining dome-like quasi-sepratrix layers (QSLs). The filament is located underneath one QSL dome, whose footprint apparently bounds the major flare ribbons resulting from the filament eruption, whereas the remote flare ribbon matches well with the other QSL dome's far-side footprint. We suggest that the interaction of the filament with the overlying QSLs results in the splitting and disintegration of the filament.

  13. System Applies Polymer Powder To Filament Tow

    NASA Technical Reports Server (NTRS)

    Baucom, Robert M.; Snoha, John J.; Marchello, Joseph M.

    1993-01-01

    Polymer powder applied uniformly and in continuous manner. Powder-coating system applies dry polymer powder to continuous fiber tow. Unique filament-spreading technique, combined with precise control of tension on fibers in system, ensures uniform application of polymer powder to web of spread filaments. Fiber tows impregnated with dry polymer powders ("towpregs") produced for preform-weaving and composite-material-molding applications. System and process valuable to prepreg industry, for production of flexible filament-windable tows and high-temperature polymer prepregs.

  14. A Robust Actin Filaments Image Analysis Framework

    PubMed Central

    Alioscha-Perez, Mitchel; Benadiba, Carine; Goossens, Katty; Kasas, Sandor; Dietler, Giovanni; Willaert, Ronnie; Sahli, Hichem

    2016-01-01

    The cytoskeleton is a highly dynamical protein network that plays a central role in numerous cellular physiological processes, and is traditionally divided into three components according to its chemical composition, i.e. actin, tubulin and intermediate filament cytoskeletons. Understanding the cytoskeleton dynamics is of prime importance to unveil mechanisms involved in cell adaptation to any stress type. Fluorescence imaging of cytoskeleton structures allows analyzing the impact of mechanical stimulation in the cytoskeleton, but it also imposes additional challenges in the image processing stage, such as the presence of imaging-related artifacts and heavy blurring introduced by (high-throughput) automated scans. However, although there exists a considerable number of image-based analytical tools to address the image processing and analysis, most of them are unfit to cope with the aforementioned challenges. Filamentous structures in images can be considered as a piecewise composition of quasi-straight segments (at least in some finer or coarser scale). Based on this observation, we propose a three-steps actin filaments extraction methodology: (i) first the input image is decomposed into a ‘cartoon’ part corresponding to the filament structures in the image, and a noise/texture part, (ii) on the ‘cartoon’ image, we apply a multi-scale line detector coupled with a (iii) quasi-straight filaments merging algorithm for fiber extraction. The proposed robust actin filaments image analysis framework allows extracting individual filaments in the presence of noise, artifacts and heavy blurring. Moreover, it provides numerous parameters such as filaments orientation, position and length, useful for further analysis. Cell image decomposition is relatively under-exploited in biological images processing, and our study shows the benefits it provides when addressing such tasks. Experimental validation was conducted using publicly available datasets, and in osteoblasts

  15. Elastohydrodynamic synchronization of adjacent beating flagella

    NASA Astrophysics Data System (ADS)

    Goldstein, Raymond E.; Lauga, Eric; Pesci, Adriana I.; Proctor, Michael R. E.

    2016-11-01

    It is now well established that nearby beating pairs of eukaryotic flagella or cilia typically synchronize in phase. A substantial body of evidence supports the hypothesis that hydrodynamic coupling between the active filaments, combined with waveform compliance, provides a robust mechanism for synchrony. This elastohydrodynamic mechanism has been incorporated into bead-spring models in which the beating flagella are represented by microspheres tethered by radial springs as they are driven about orbits by internal forces. While these low-dimensional models reproduce the phenomenon of synchrony, their parameters are not readily relatable to those of the filaments they represent. More realistic models, which reflect the underlying elasticity of the axonemes and the active force generation, take the form of fourth-order nonlinear partial differential equations (PDEs). While computational studies have shown the occurrence of synchrony, the effects of hydrodynamic coupling between nearby filaments governed by such continuum models have been examined theoretically only in the regime of interflagellar distances d large compared to flagellar length L . Yet in many biological situations d /L ≪1 . Here we present an asymptotic analysis of the hydrodynamic coupling between two extended filaments in the regime d /L ≪1 and find that the form of the coupling is independent of the microscopic details of the internal forces that govern the motion of the individual filaments. The analysis is analogous to that yielding the localized induction approximation for vortex filament motion, extended to the case of mutual induction. In order to understand how the elastohydrodynamic coupling mechanism leads to synchrony of extended objects, we introduce a heuristic model of flagellar beating. The model takes the form of a single fourth-order nonlinear PDE whose form is derived from symmetry considerations, the physics of elasticity, and the overdamped nature of the dynamics. Analytical

  16. Safety assessment of continuous glass filaments used in eclipse.

    PubMed

    Swauger, J E; Foy, J W

    2000-11-01

    Eclipse is a cigarette that produces smoke by primarily heating, rather than burning, tobacco. The Eclipse heat source assembly employs a continuous filament glass mat jacket to insulate the heat source. The glass mat insulator is composed of continuous glass filaments and a binder. The purpose of this article is to address the potential toxicological significance of the continuous glass filaments under the conditions of intended use. Transfer data and the unique physical characteristics of the filaments demonstrate that significant exposure of the smoker will not occur. The available environmental survey data clearly demonstrate that Eclipse smokers are extremely unlikely to be exposed to continuous glass filaments at a level that represents a biologically significant increase over background exposure to glass fibers. The chemical composition of the continuous glass filaments used in Eclipse is generally similar to C-glass fiber compositions such as MMVF 11 that have failed to produce either tumors or fibrosis in chronic inhalation studies conducted in rats. In vitro dissolution data demonstrate that the continuous glass filaments used in Eclipse are more soluble than biologically active fibers such as rock wool (MMVF 21) or asbestos. However, the continuous glass filaments used in Eclipse were not as soluble in simulated extracellular lung fluid as representative C-glass fibers (MMVF 10 and MMVF 11). In brief, exposure of Eclipse smokers to continuous glass filaments is extremely unlikely to occur at a level that may be construed to be of biological significance.

  17. Two-dimensional photoacoustic imaging of femtosecond filament in water

    NASA Astrophysics Data System (ADS)

    Potemkin, F. V.; Mareev, E. I.; Rumiantsev, B. V.; Bychkov, A. S.; Karabutov, A. A.; Cherepetskaya, E. B.; Makarov, V. A.

    2018-07-01

    We report a first-of-its-kind optoacoustic tomography of a femtosecond filament in water. Using a broadband (~100 MHz) piezoelectric transducer and a back-projection reconstruction technique, a single filament profile was retrieved. Obtained pressure distribution induced by the femtosecond filament allowed us to identify the size of the core and the energy reservoir with spatial resolution better than 10 µm. The photoacoustic imaging provides direct measurements of the energy deposition into the medium under filamentation of ultrashort laser pulses that cannot be obtained by existing techniques. In combination with a relative simplicity and high accuracy, photoacoustic imaging can be considered as a breakthrough instrument for filamentation investigation.

  18. Thioredoxin is required for filamentous phage assembly.

    PubMed Central

    Russel, M; Model, P

    1985-01-01

    Sequence comparisons show that the fip gene product of Escherichia coli, which is required for filamentous phage assembly, is thioredoxin. Thioredoxin serves as a cofactor for reductive processes in many cell types and is a constituent of phage T7 DNA polymerase. The fip-1 mutation makes filamentous phage and T7 growth temperature sensitive in cells that carry it. The lesion lies within a highly conserved thioredoxin active site. Thioredoxin reductase (NADPH), as well as thioredoxin, is required for efficient filamentous phage production. Mutant phages defective in phage gene I are particularly sensitive to perturbations in the fip-thioredoxin system. A speculative model is presented in which thioredoxin reductase, thioredoxin, and the gene I protein interact to drive an engine for filamentous phage assembly. Images PMID:3881756

  19. Simultaneous transverse oscillations of a prominence and a filament and longitudinal oscillation of another filament induced by a single shock wave

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shen, Yuandeng; Liu, Ying D.; Chen, P. F.

    2014-11-10

    We present the first stereoscopic and Doppler observations of simultaneous transverse oscillations of a prominence and a filament and longitudinal oscillation of another filament launched by a single shock wave. Using Hα Doppler observations, we derive the three-dimensional oscillation velocities at different heights along the prominence axis. The results indicate that the prominence has a larger oscillation amplitude and damping time at higher altitude, but the periods at different heights are the same (i.e., 13.5 minutes). This suggests that the prominence oscillates like a linear vertical rigid body with one end anchored on the Sun. One of the filaments showsmore » weak transverse oscillation after the passing of the shock, which is possibly due to the low altitude of the filament and the weakening (due to reflection) of the shock wave before the interaction. Large-amplitude longitudinal oscillation is observed in the other filament after the passing of the shock wave. The velocity amplitude and period are about 26.8 km s{sup –1} and 80.3 minutes, respectively. We propose that the orientation of a filament or prominence relative to the normal vector of the incoming shock should be an important factor for launching transverse or longitudinal filament oscillations. In addition, the restoring forces of the transverse prominence are most likely due to the coupling of gravity and magnetic tension of the supporting magnetic field, while that for the longitudinal filament oscillation is probably the resultant force of gravity and magnetic pressure.« less

  20. Tissue-Associated “Candidatus Mycoplasma corallicola” and Filamentous Bacteria on the Cold-Water Coral Lophelia pertusa (Scleractinia)▿ †

    PubMed Central

    Neulinger, Sven C.; Gärtner, Andrea; Järnegren, Johanna; Ludvigsen, Martin; Lochte, Karin; Dullo, Wolf-Christian

    2009-01-01

    The cold-water coral Lophelia pertusa (Scleractinia, Caryophylliidae) is a key species in the formation of cold-water reefs, which are among the most diverse deep-sea ecosystems. It occurs in two color varieties: white and red. Bacterial communities associated with Lophelia have been investigated in recent years, but the role of the associated bacteria remains largely obscure. This study uses catalyzed reporter deposition fluorescence in situ hybridization to detect the in situ location of specific bacterial groups on coral specimens from the Trondheimsfjord (Norway). Two tissue-associated groups were identified: (i) bacteria on the host's tentacle ectoderm, “Candidatus Mycoplasma corallicola,” are flasklike, pointed cells and (ii) endoderm-associated bona fide TM7 bacteria form long filaments in the gastral cavity. These tissue-bound bacteria were found in all coral specimens from the Trondheimsfjord, indicating a closer relationship with the coral compared to bacterial assemblages present in coral mucus and gastric fluid. PMID:19114511

  1. Long-range self-organization of cytoskeletal myosin II filament stacks.

    PubMed

    Hu, Shiqiong; Dasbiswas, Kinjal; Guo, Zhenhuan; Tee, Yee-Han; Thiagarajan, Visalatchi; Hersen, Pascal; Chew, Teng-Leong; Safran, Samuel A; Zaidel-Bar, Ronen; Bershadsky, Alexander D

    2017-02-01

    Although myosin II filaments are known to exist in non-muscle cells, their dynamics and organization are incompletely understood. Here, we combined structured illumination microscopy with pharmacological and genetic perturbations, to study the process of actomyosin cytoskeleton self-organization into arcs and stress fibres. A striking feature of the myosin II filament organization was their 'registered' alignment into stacks, spanning up to several micrometres in the direction orthogonal to the parallel actin bundles. While turnover of individual myosin II filaments was fast (characteristic half-life time 60 s) and independent of actin filament turnover, the process of stack formation lasted a longer time (in the range of several minutes) and required myosin II contractility, as well as actin filament assembly/disassembly and crosslinking (dependent on formin Fmnl3, cofilin1 and α-actinin-4). Furthermore, myosin filament stack formation involved long-range movements of individual myosin filaments towards each other suggesting the existence of attractive forces between myosin II filaments. These forces, possibly transmitted via mechanical deformations of the intervening actin filament network, may in turn remodel the actomyosin cytoskeleton and drive its self-organization.

  2. Filaments in Lupus I

    NASA Astrophysics Data System (ADS)

    Takahashi, Satoko; Rodon, J.; De Gregorio-Monsalvo, I.; Plunkett, A.

    2017-06-01

    The mechanisms behind the formation of sub-stellar mass sources are key to determine the populations at the low-mass end of the stellar distribution. Here, we present mapping observations toward the Lupus I cloud in C18O(2-1) and 13CO(2-1) obtained with APEX. We have identified a few velocity-coherent filaments. Each contains several substellar mass sources that are also identified in the 1.1mm continuum data (see also SOLA catalogue presentation). We will discuss the velocity structure, fragmentation properties of the identified filaments, and the nature of the detected sources.

  3. Probing the structure of RecA-DNA filaments. Advantages of a fluorescent guanine analog.

    PubMed

    Singleton, Scott F; Roca, Alberto I; Lee, Andrew M; Xiao, Jie

    2007-04-23

    The RecA protein of Escherichia coli plays a crucial roles in DNA recombination and repair, as well as various aspects of bacterial pathogenicity. The formation of a RecA-ATP-ssDNA complex initiates all RecA activities and yet a complete structural and mechanistic description of this filament has remained elusive. An analysis of RecA-DNA interactions was performed using fluorescently labeled oligonucleotides. A direct comparison was made between fluorescein and several fluorescent nucleosides. The fluorescent guanine analog 6-methylisoxanthopterin (6MI) demonstrated significant advantages over the other fluorophores and represents an important new tool for characterizing RecA-DNA interactions.

  4. Fungal networks shape dynamics of bacterial dispersal and community assembly in cheese rind microbiomes.

    PubMed

    Zhang, Yuanchen; Kastman, Erik K; Guasto, Jeffrey S; Wolfe, Benjamin E

    2018-01-23

    Most studies of bacterial motility have examined small-scale (micrometer-centimeter) cell dispersal in monocultures. However, bacteria live in multispecies communities, where interactions with other microbes may inhibit or facilitate dispersal. Here, we demonstrate that motile bacteria in cheese rind microbiomes use physical networks created by filamentous fungi for dispersal, and that these interactions can shape microbial community structure. Serratia proteamaculans and other motile cheese rind bacteria disperse on fungal networks by swimming in the liquid layers formed on fungal hyphae. RNA-sequencing, transposon mutagenesis, and comparative genomics identify potential genetic mechanisms, including flagella-mediated motility, that control bacterial dispersal on hyphae. By manipulating fungal networks in experimental communities, we demonstrate that fungal-mediated bacterial dispersal can shift cheese rind microbiome composition by promoting the growth of motile over non-motile community members. Our single-cell to whole-community systems approach highlights the interactive dynamics of bacterial motility in multispecies microbiomes.

  5. Observations of the Merging of Two Quiescent Filaments

    NASA Astrophysics Data System (ADS)

    Mikurda, Katarzyna; Martin, S. F.

    2007-05-01

    The two filaments were observed close to disk center in the same field of view of approximately 9x9 arc. min. The observations were made using a tunable lithium niobate, narrow band etalon on the 25 cm Martin Solar Telescope at Helio Research in southern California. One filament was close to the equator and was oriented nearly east-west and the other, to the west, was oriented north-south with the north end approximately 120 Mm from the west end of the equatorial filament. Continued observations were made of these filaments for 2 to 5.5 hours per day between October 10 and 15, 2004. The observations were made at multiple wavelengths within + and - 1 Å around Hα. We compared Hα centerline images with data taken by SOHO/EIT at 304A and observed significant differences in the evolution of the filaments at these wavelengths. For example, in EIT 304 Å images the two filaments seem to join on October 12, i.e. about two days earlier than in Hα. Moreover, the observed merging took longer (over three days) in Hα than in EIT 304 Å images, where it took place on a single day. The dynamics of the merger event is demonstrated with Hα and EIT 304 Å movies. The Doppler velocities calculated from the line wings images before, during and after the merging event were in the normal range for quiescent filaments. In our investigation of subsequent SOHO/EIT images at 304 Å we found no sign of an eruption due to the merging of the filaments. The contribution of KM was supported under NASA grant NAG5-10852 and SFM acknowledges NSF grant ATM-0519249.

  6. Dynamics and Breakup of a Contracting Viscous Filament

    NASA Astrophysics Data System (ADS)

    Wilkes, Edward; Notz, Patrick; Ambravaneswaran, Bala; Basaran, Osman

    1999-11-01

    Free viscous filaments are formed during the breakup of liquid drops and jets. Such filaments are typically precursors of satellite droplets that are often undesirable in applications such as ink-jet printing. In this paper, the contraction of an axisymmetric liquid filament due to action of surface tension is studied theoretically. The analysis is based on solving (a) the full Navier-Stokes system in two-dimensions (2-d) and (b) a one-dimensional (1-d) approximation of the exact equations based on slender-jet theory. The rigorous, 2-d calculations are carried out with finite element algorithms using either algebraic or elliptic mesh generation. As the filament contracts, bulbous regions form at its two ends. When the initial aspect ratio a/b and/or the Reynolds number Re are sufficiently low, the ends coalesce into an oscillating free drop. Filament breakup occurs when a/b and/or Re are sufficiently high. The 2-d algorithms reveal for the first time that liquid filaments of finite viscosity can overturn prior to interface rupture. The power of elliptic mesh generation over algebraic methods in analyzing such situations is highlighted.

  7. Oriented thick and thin filaments in Amoeba proteus.

    PubMed

    Rinaldi, R A; Hrebenda, B

    1975-07-01

    Actin and myosin filaments as a foundation of contractile systems are well established from ameba to man (3). Wolpert et al. (19) isolated by differential centrifugation from Amoeba proteus a motile fraction composed of filaments which moved upon the addition of ATP. Actin filaments are found in amebas (1, 12, 13) which react with vertebrate heavy meromyosin (HMM), forming arrowhead complexes as vertebrate actin (3, 9), and are prominent within the ectoplasmic tube where some of them are attached to the plasmalemma (1, 12). Thick and thin filaments possessing the morphological characteristics of myosin and actin have been obtained from isolated ameba cytoplasm (18, 19). In addition, there are filaments exhibiting ATPase activity in amebas which react with actin (12, 16, 17). However, giant ameba (Chaos-proteus) shapes are difficult to preserve, and the excellent contributions referred to above are limited by visible distortions occurring in the amebas (rounding up, pseudopods disappearing, and cellular organelles swelling) upon fixation. Achievement of normal ameboid shape in recent glycerination work (15) led us to attempt other electron microscope fixation techniques, resulting in a surprising preservation of A. proteus with a unique orientation of thick and thin filaments in the ectoplasmic region.

  8. Accretion-driven turbulence in filaments - I. Non-gravitational accretion

    NASA Astrophysics Data System (ADS)

    Heigl, S.; Burkert, A.; Gritschneder, M.

    2018-03-01

    We study accretion-driven turbulence for different inflow velocities in star-forming filaments using the code RAMSES. Filaments are rarely isolated objects and their gravitational potential will lead to radially dominated accretion. In the non-gravitational case, accretion by itself can already provoke non-isotropic, radially dominated turbulent motions responsible for the complex structure and non-thermal line widths observed in filaments. We find that there is a direct linear relation between the absolute value of the total density-weighted velocity dispersion and the infall velocity. The turbulent velocity dispersion in the filaments is independent of sound speed or any net flow along the filament. We show that the density-weighted velocity dispersion acts as an additional pressure term, supporting the filament in hydrostatic equilibrium. Comparing to observations, we find that the projected non-thermal line width variation is generally subsonic independent of inflow velocity.

  9. Dissociation of tsl-tif-Induced Filamentation and recA Protein Synthesis in Escherichia coli K-12

    PubMed Central

    Huisman, Olivier; D'Ari, Richard; George, Jacqueline

    1980-01-01

    In Escherichia coli, expression of the tif-1 mutation (in the recA gene) induces the “SOS response” at 40°C, including massive synthesis of the recA(tif) protein, cell filamentation, appearance of new repair and mutagenic activities, and prophage induction. Expression of the tsl-1 mutation (in the lexA gene) induces massive synthesis of the recA protein and cell filamentation at 42°C, although other SOS functions are not induced. In this paper we show that the septation inhibition induced in tif and tsl strains at 42°C is not due to the presence of a high concentration of recA protein since (i) no recA mutants (≤10−8) were isolated among thermoresistant nonfilamenting revertants of a tif-1 tsl-1 strain, (ii) in a tsl-1 zab-53 strain, only the low basal level of recA protein was synthesized at 42°C, yet cell division was inhibited, and (iii) in a tsl-1 recA99 (amber) strain, no recA protein could be detected at 42°C, yet cell division was inhibited. Among suppressors of tsl-tif-induced lethality are mutations at a locus which we call infB, located in the 66- to 83-min region. The infB1 mutation confers a highly pleiotropic phenotype, which is suggestive of a regulatory defect; it suppressed tsl-tif-induced filamentation but not recA protein synthesis, it did not suppress ultraviolet-induced filamentation (in a lon derivative), and it reduced but did not abolish tif-mediated induction of λ prophage and bacterial mutagenesis. The dissociation of tsl-tif-induced septation inhibition and recA protein synthesis in the tif-1 tsl-1 infB1 strain suggests that the control of SOS filamentation may not be strictly identical to the control of recA protein synthesis. Images PMID:6445897

  10. The plant pathogenic fungus Gaeumannomyces graminis var. tritici improves bacterial growth and triggers early gene regulations in the biocontrol strain Pseudomonas fluorescens Pf29Arp.

    PubMed

    Barret, M; Frey-Klett, P; Boutin, M; Guillerm-Erckelboudt, A-Y; Martin, F; Guillot, L; Sarniguet, A

    2009-01-01

    In soil, some antagonistic rhizobacteria contribute to reduce root diseases caused by phytopathogenic fungi. Direct modes of action of these bacteria have been largely explored; however, commensal interaction also takes place between these microorganisms and little is known about the influence of filamentous fungi on bacteria. An in vitro confrontation bioassay between the pathogenic fungus Gaeumannomyces graminis var. tritici (Ggt) and the biocontrol bacterial strain Pseudomonas fluorescens Pf29Arp was set up to analyse bacterial transcriptional changes induced by the fungal mycelium at three time-points of the interaction before cell contact and up until contact. For this, a Pf29Arp shotgun DNA microarray was constructed. Specifity of Ggt effect was assessed in comparison with one of two other filamentous fungi, Laccaria bicolor and Magnaporthe grisea. During a commensal interaction, Ggt increased the growth rate of Pf29Arp. Before contact, Ggt induced bacterial genes involved in mycelium colonization. At contact, genes encoding protein of stress response and a patatin-like protein were up-regulated. Among all the bacterial genes identified, xseB was specifically up-regulated at contact by Ggt but down-regulated by the other fungi. Data showed that the bacterium sensed the presence of the fungus early, but the main gene alteration occurred during bacterial-fungal cell contact.

  11. Large-scale filaments associated with Milky Way spiral arms

    NASA Astrophysics Data System (ADS)

    Wang, Ke; Testi, Leonardo; Ginsburg, Adam; Walmsley, C. Malcolm; Molinari, Sergio; Schisano, Eugenio

    2015-07-01

    The ubiquity of filamentary structure at various scales throughout the Galaxy has triggered a renewed interest in their formation, evolution, and role in star formation. The largest filaments can reach up to Galactic scale as part of the spiral arm structure. However, such large-scale filaments are hard to identify systematically due to limitations in identifying methodology (i.e. as extinction features). We present a new approach to directly search for the largest, coldest, and densest filaments in the Galaxy, making use of sensitive Herschel Hi-GAL (Herschel Infrared Galactic Plane Survey) data complemented by spectral line cubes. We present a sample of the nine most prominent Herschel filaments, including six identified from a pilot search field plus three from outside the field. These filaments measure 37-99 pc long and 0.6-3.0 pc wide with masses (0.5-8.3) × 104 M⊙, and beam-averaged (28 arcsec, or 0.4-0.7 pc) peak H2 column densities of (1.7-9.3)× 1022 cm- 2. The bulk of the filaments are relatively cold (17-21 K), while some local clumps have a dust temperature up to 25-47 K. All the filaments are located within ≲60 pc from the Galactic mid-plane. Comparing the filaments to a recent spiral arm model incorporating the latest parallax measurements, we find that 7/9 of them reside within arms, but most are close to arm edges. These filaments are comparable in length to the Galactic scaleheight and therefore are not simply part of a grander turbulent cascade.

  12. The effect of delays on filament oscillations and stability

    NASA Astrophysics Data System (ADS)

    van den Oord, G. H. J.; Schutgens, N. A. J.; Kuperus, M.

    1998-11-01

    We discuss the linear response of a filament to perturbations, taking the finite communication time between the filament and the photosphere into account. The finite communication time introduces delays in the system. Recently Schutgens (1997ab) investigated the solutions of the delay equation for vertical perturbations. In this paper we expand his analysis by considering also horizontal and coupled oscillations. The latter occur in asymmetric coronal fields. We also discuss the effect of Alfven wave emission on filament oscillations and show that wave emission is important for stabilizing filaments. We introduce a fairly straightforward method to study the solutions of delay equations as a function of the filament-photosphere communication time. A solution can be described by a linear combination of damped harmonic oscillations each characterized by a frequency, a damping/growth time and, accordingly, a quality factor. As a secondary result of our analysis we show that, within the context of line current models, Kippenhahn/Schlüter-type filament equilibria can never be stable in the horizontal and the vertical direction at the same time but we also demonstrate that Kuperus/Raadu-type equilibria can account for both an inverse or a normal polarity signature. The diagnostic value of our analysis for determining, e.g., the filament current from observations of oscillating filaments is discussed.

  13. Big Soda Lake (Nevada). 1. Pelagic bacterial heterotrophy and biomass

    USGS Publications Warehouse

    Zehr, Jon P.; Harvey, Ronald W.; Oremland, Ronald S.; Cloern, James E.; George, Leah H.; Lane, Judith L.

    1987-01-01

    Bacterial activities and abundance were measured seasonally in the water column of meromictic Big Soda Lake which is divided into three chemically distinct zones: aerobic mixolimnion, anaerobic mixolimnion, and anaerobic monimolimnion. Bacterial abundance ranged between 5 and 52 x 106 cells ml−1, with highest biomass at the interfaces between these zones: 2–4 mg C liter−1 in the photosynthetic bacterial layer (oxycline) and 0.8–2.0 mg C liter−1 in the chemocline. Bacterial cell size and morphology also varied with depth: small coccoid cells were dominant in the aerobic mixolimnion, whereas the monimolimnion had a more diverse population that included cocci, rods, and large filaments. Heterotrophic activity was measured by [methyl-3H]thymidine incorporation and [14C]glutamate uptake. Highest uptake rates were at or just below the photosynthetic bacterial layer and were attributable to small (<1 µm) heterotrophs rather than the larger photosynthetic bacteria. These high rates of heterotrophic uptake were apparently linked with fermentation; rates of other mineralization processes (e.g. sulfate reduction, methanogenesis, denitrification) in the anoxic mixolimnion were insignificant. Heterotrophic activity in the highly reduced monimolimnion was generally much lower than elsewhere in the water column. Therefore, although the monimolimnion contained most of the bacterial abundance and biomass (∼60%), most of the cells there were inactive.

  14. A First Approach to Filament Dynamics

    ERIC Educational Resources Information Center

    Silva, P. E. S.; de Abreu, F. Vistulo; Simoes, R.; Dias, R. G.

    2010-01-01

    Modelling elastic filament dynamics is a topic of high interest due to the wide range of applications. However, it has reached a high level of complexity in the literature, making it unaccessible to a beginner. In this paper we explain the main steps involved in the computational modelling of the dynamics of an elastic filament. We first derive…

  15. Scanning For Hotspots In Lamp Filaments

    NASA Technical Reports Server (NTRS)

    Powers, Charles E.; Van Sant, Tim; Leidecker, Henning

    1993-01-01

    Scanning photometer designed for use in investigation of failures of incandescent lamp filaments. Maps brightness as function of position along each filament to identify bright (hot) spots, occurring at notches and signifying incipient breaks or rewelds. Also used to measure nonuniformity in outputs of such linear devices as light-emitting diodes, and to measure diffraction patterns of lenses.

  16. Magnetic Fields in the Massive Dense Cores of the DR21 Filament: Weakly Magnetized Cores in a Strongly Magnetized Filament

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ching, Tao-Chung; Lai, Shih-Ping; Zhang, Qizhou

    We present Submillimeter Array 880 μ m dust polarization observations of six massive dense cores in the DR21 filament. The dust polarization shows complex magnetic field structures in the massive dense cores with sizes of 0.1 pc, in contrast to the ordered magnetic fields of the parsec-scale filament. The major axes of the massive dense cores appear to be aligned either parallel or perpendicular to the magnetic fields of the filament, indicating that the parsec-scale magnetic fields play an important role in the formation of the massive dense cores. However, the correlation between the major axes of the cores andmore » the magnetic fields of the cores is less significant, suggesting that during the core formation, the magnetic fields below 0.1 pc scales become less important than the magnetic fields above 0.1 pc scales in supporting a core against gravity. Our analysis of the angular dispersion functions of the observed polarization segments yields a plane-of-sky magnetic field strength of 0.4–1.7 mG for the massive dense cores. We estimate the kinematic, magnetic, and gravitational virial parameters of the filament and the cores. The virial parameters show that the gravitational energy in the filament dominates magnetic and kinematic energies, while the kinematic energy dominates in the cores. Our work suggests that although magnetic fields may play an important role in a collapsing filament, the kinematics arising from gravitational collapse must become more important than magnetic fields during the evolution from filaments to massive dense cores.« less

  17. Pseudomonas aeruginosa Evasion of Phagocytosis Is Mediated by Loss of Swimming Motility and Is Independent of Flagellum Expression▿ †

    PubMed Central

    Amiel, Eyal; Lovewell, Rustin R.; O'Toole, George A.; Hogan, Deborah A.; Berwin, Brent

    2010-01-01

    Pseudomonas aeruginosa is a pathogenic Gram-negative bacterium that causes severe opportunistic infections in immunocompromised individuals; in particular, severity of infection with P. aeruginosa positively correlates with poor prognosis in cystic fibrosis (CF) patients. Establishment of chronic infection by this pathogen is associated with downregulation of flagellar expression and of other genes that regulate P. aeruginosa motility. The current paradigm is that loss of flagellar expression enables immune evasion by the bacteria due to loss of engagement by phagocytic receptors that recognize flagellar components and loss of immune activation through flagellin-mediated Toll-like receptor (TLR) signaling. In this work, we employ bacterial and mammalian genetic approaches to demonstrate that loss of motility, not the loss of the flagellum per se, is the critical factor in the development of resistance to phagocytosis by P. aeruginosa. We demonstrate that isogenic P. aeruginosa mutants deficient in flagellar function, but retaining an intact flagellum, are highly resistant to phagocytosis by both murine and human phagocytic cells at levels comparable to those of flagellum-deficient mutants. Furthermore, we show that loss of MyD88 signaling in murine phagocytes does not recapitulate the phagocytic deficit observed for either flagellum-deficient or motility-deficient P. aeruginosa mutants. Our data demonstrate that loss of bacterial motility confers a dramatic resistance to phagocytosis that is independent of both flagellar expression and TLR signaling. These findings provide an explanation for the well-documented observation of nonmotility in clinical P. aeruginosa isolates and for how this phenotype confers upon the bacteria an advantage in the context of immune evasion. PMID:20457788

  18. Pseudomonas aeruginosa evasion of phagocytosis is mediated by loss of swimming motility and is independent of flagellum expression.

    PubMed

    Amiel, Eyal; Lovewell, Rustin R; O'Toole, George A; Hogan, Deborah A; Berwin, Brent

    2010-07-01

    Pseudomonas aeruginosa is a pathogenic Gram-negative bacterium that causes severe opportunistic infections in immunocompromised individuals; in particular, severity of infection with P. aeruginosa positively correlates with poor prognosis in cystic fibrosis (CF) patients. Establishment of chronic infection by this pathogen is associated with downregulation of flagellar expression and of other genes that regulate P. aeruginosa motility. The current paradigm is that loss of flagellar expression enables immune evasion by the bacteria due to loss of engagement by phagocytic receptors that recognize flagellar components and loss of immune activation through flagellin-mediated Toll-like receptor (TLR) signaling. In this work, we employ bacterial and mammalian genetic approaches to demonstrate that loss of motility, not the loss of the flagellum per se, is the critical factor in the development of resistance to phagocytosis by P. aeruginosa. We demonstrate that isogenic P. aeruginosa mutants deficient in flagellar function, but retaining an intact flagellum, are highly resistant to phagocytosis by both murine and human phagocytic cells at levels comparable to those of flagellum-deficient mutants. Furthermore, we show that loss of MyD88 signaling in murine phagocytes does not recapitulate the phagocytic deficit observed for either flagellum-deficient or motility-deficient P. aeruginosa mutants. Our data demonstrate that loss of bacterial motility confers a dramatic resistance to phagocytosis that is independent of both flagellar expression and TLR signaling. These findings provide an explanation for the well-documented observation of nonmotility in clinical P. aeruginosa isolates and for how this phenotype confers upon the bacteria an advantage in the context of immune evasion.

  19. Actin Filament Polymerization Regulates Gliding Motility by Apicomplexan ParasitesV⃞

    PubMed Central

    Wetzel, D.M.; Håkansson, S.; Hu, K.; Roos, D.; Sibley, L.D.

    2003-01-01

    Host cell entry by Toxoplasma gondii depends critically on actin filaments in the parasite, yet paradoxically, its actin is almost exclusively monomeric. In contrast to the absence of stable filaments in conventional samples, rapid-freeze electron microscopy revealed that actin filaments were formed beneath the plasma membrane of gliding parasites. To investigate the role of actin filaments in motility, we treated parasites with the filament-stabilizing drug jasplakinolide (JAS) and monitored the distribution of actin in live and fixed cells using yellow fluorescent protein (YFP)-actin. JAS treatment caused YFP-actin to redistribute to the apical and posterior ends, where filaments formed a spiral pattern subtending the plasma membrane. Although previous studies have suggested that JAS induces rigor, videomicroscopy demonstrated that JAS treatment increased the rate of parasite gliding by approximately threefold, indicating that filaments are rate limiting for motility. However, JAS also frequently reversed the normal direction of motility, disrupting forward migration and cell entry. Consistent with this alteration, subcortical filaments in JAS-treated parasites occurred in tangled plaques as opposed to the straight, roughly parallel orientation observed in control cells. These studies reveal that precisely controlled polymerization of actin filaments imparts the correct timing, duration, and directionality of gliding motility in the Apicomplexa. PMID:12589042

  20. Plethora of transitions during breakup of liquid filaments

    DOE PAGES

    Castrejón-Pita, José Rafael; Castrejón-Pita, Alfonso Arturo; Thete, Sumeet Suresh; ...

    2015-03-30

    Thinning and breakup of liquid filaments are central to dripping of leaky faucets, inkjet drop formation, and raindrop fragmentation. As the filament radius decreases, curvature and capillary pressure, both inversely proportional to radius, increase and fluid is expelled with increasing velocity from the neck. As the neck radius vanishes, the governing equations become singular and the filament breaks. In slightly viscous liquids, thinning initially occurs in an inertial regime where inertial and capillary forces balance. By contrast, in highly viscous liquids, initial thinning occurs in a viscous regime where viscous and capillary forces balance. As the filament thins, viscous forcesmore » in the former case and inertial forces in the latter become important, and theory shows that the filament approaches breakup in the final inertial–viscous regime where all three forces balance. However, previous simulations and experiments reveal that transition from an initial to the final regime either occurs at a value of filament radius well below that predicted by theory or is not observed. In this paper, we perform new simulations and experiments, and show that a thinning filament unexpectedly passes through a number of intermediate transient regimes, thereby delaying onset of the inertial–viscous regime. Finally, the new findings have practical implications regarding formation of undesirable satellite droplets and also raise the question as to whether similar dynamical transitions arise in other free-surface flows such as coalescence that also exhibit singularities.« less

  1. Plethora of transitions during breakup of liquid filaments

    PubMed Central

    Castrejón-Pita, José Rafael; Castrejón-Pita, Alfonso Arturo; Thete, Sumeet Suresh; Sambath, Krishnaraj; Hutchings, Ian M.; Hinch, John; Lister, John R.; Basaran, Osman A.

    2015-01-01

    Thinning and breakup of liquid filaments are central to dripping of leaky faucets, inkjet drop formation, and raindrop fragmentation. As the filament radius decreases, curvature and capillary pressure, both inversely proportional to radius, increase and fluid is expelled with increasing velocity from the neck. As the neck radius vanishes, the governing equations become singular and the filament breaks. In slightly viscous liquids, thinning initially occurs in an inertial regime where inertial and capillary forces balance. By contrast, in highly viscous liquids, initial thinning occurs in a viscous regime where viscous and capillary forces balance. As the filament thins, viscous forces in the former case and inertial forces in the latter become important, and theory shows that the filament approaches breakup in the final inertial–viscous regime where all three forces balance. However, previous simulations and experiments reveal that transition from an initial to the final regime either occurs at a value of filament radius well below that predicted by theory or is not observed. Here, we perform new simulations and experiments, and show that a thinning filament unexpectedly passes through a number of intermediate transient regimes, thereby delaying onset of the inertial–viscous regime. The new findings have practical implications regarding formation of undesirable satellite droplets and also raise the question as to whether similar dynamical transitions arise in other free-surface flows such as coalescence that also exhibit singularities. PMID:25825761

  2. Novel Membrane-Bound eIF2α Kinase in the Flagellar Pocket of Trypanosoma brucei▿

    PubMed Central

    Moraes, Maria Carolina S.; Jesus, Teresa C. L.; Hashimoto, Nilce N.; Dey, Madhusudan; Schwartz, Kevin J.; Alves, Viviane S.; Avila, Carla C.; Bangs, James D.; Dever, Thomas E.; Schenkman, Sergio; Castilho, Beatriz A.

    2007-01-01

    Translational control mediated by phosphorylation of the alpha subunit of the eukaryotic initiation factor 2 (eIF2α) is central to stress-induced programs of gene expression. Trypanosomatids, important human pathogens, display differentiation processes elicited by contact with the distinct physiological milieu found in their insect vectors and mammalian hosts, likely representing stress situations. Trypanosoma brucei, the agent of African trypanosomiasis, encodes three potential eIF2α kinases (TbeIF2K1 to -K3). We show here that TbeIF2K2 is a transmembrane glycoprotein expressed both in procyclic and in bloodstream forms. The catalytic domain of TbeIF2K2 phosphorylates yeast and mammalian eIF2α at Ser51. It also phosphorylates the highly unusual form of eIF2α found in trypanosomatids specifically at residue Thr169 that corresponds to Ser51 in other eukaryotes. T. brucei eIF2α, however, is not a substrate for GCN2 or PKR in vitro. The putative regulatory domain of TbeIF2K2 does not share any sequence similarity with known eIF2α kinases. In both procyclic and bloodstream forms TbeIF2K2 is mainly localized in the membrane of the flagellar pocket, an organelle that is the exclusive site of exo- and endocytosis in these parasites. It can also be detected in endocytic compartments but not in lysosomes, suggesting that it is recycled between endosomes and the flagellar pocket. TbeIF2K2 location suggests a relevance in sensing protein or nutrient transport in T. brucei, an organism that relies heavily on posttranscriptional regulatory mechanisms to control gene expression in different environmental conditions. This is the first membrane-associated eIF2α kinase described in unicellular eukaryotes. PMID:17873083

  3. Rotor Vortex Filaments: Living on the Slipstream's Edge

    NASA Technical Reports Server (NTRS)

    Young, Larry A.

    1997-01-01

    The purpose of this paper is to gain a better understanding of rotor wake evolution in hover and axial flow by deriving an analytical solution for the time dependent behavior of vortex filament circulation and core size. This solution is applicable only for vortex filaments in the rotor far-wake. A primarily inviscid vortex/shear layer interaction (where the slipstream boundary is modeled as a shear layer) has been identified in this analytical treatment. This vortex/shear layer interaction results in decreasing, vortex filament circulation and core size with time. The inviscid vortex/shear layer interaction is shown, in a first-order treatment, to be of greater magnitude than viscous diffusion effects. The rate of contraction, and ultimate collapse, of the vortex filament core is found to be directly proportional to the rotor inflow velocity. This new insight into vortex filament decay promises to help reconcile several disparate observations made in the literature and will, hopefully, promote new advances in theoretical modeling of rotor wakes.

  4. Molecular Characterization of Epiphytic Bacterial Communities on Charophycean Green Algae

    PubMed Central

    Fisher, Madeline M.; Wilcox, Lee W.; Graham, Linda E.

    1998-01-01

    Epiphytic bacterial communities within the sheath material of three filamentous green algae, Desmidium grevillii, Hyalotheca dissiliens, and Spondylosium pulchrum (class Charophyceae, order Zygnematales), collected from a Sphagnum bog were characterized by PCR amplification, cloning, and sequencing of 16S ribosomal DNA. A total of 20 partial sequences and nine different sequence types were obtained, and one sequence type was recovered from the bacterial communities on all three algae. By phylogenetic analysis, the cloned sequences were placed into several major lineages of the Bacteria domain: the Flexibacter/Cytophaga/Bacteroides phylum and the α, β, and γ subdivisions of the phylum Proteobacteria. Analysis at the subphylum level revealed that the majority of our sequences were not closely affiliated with those of known, cultured taxa, although the estimated evolutionary distances between our sequences and their nearest neighbors were always less than 0.1 (i.e., greater than 90% similar). This result suggests that the majority of sequences obtained in this study represent as yet phenotypically undescribed bacterial species and that the range of bacterial-algal interactions that occur in nature has not yet been fully described. PMID:9797295

  5. Proteomics of filamentous fungi.

    PubMed

    Kim, Yonghyun; Nandakumar, M P; Marten, Mark R

    2007-09-01

    Proteomic analysis, defined here as the global assessment of cellular proteins expressed in a particular biological state, is a powerful tool that can provide a systematic understanding of events at the molecular level. Proteomic studies of filamentous fungi have only recently begun to appear in the literature, despite the prevalence of these organisms in the biotechnology industry, and their importance as both human and plant pathogens. Here, we review recent publications that have used a proteomic approach to develop a better understanding of filamentous fungi, highlighting sample preparation methods and whole-cell cytoplasmic proteomics, as well as subproteomics of cell envelope, mitochondrial and secreted proteins.

  6. Detection and characterization of multi-filament evolution during resistive switching

    DOE PAGES

    Mickel, Patrick R.; Lohn, Andrew J.; Marinella, Matthew J.

    2014-08-05

    We present resistive switching data in TaO x memristors displaying signatures of multi-filament switching modes, and develop a geometrically defined equivalent circuit to separate the individual resistances and powers dissipated in each filament. Using these resolved values, we compare the individual switching curves of each filament and demonstrate that the switching data of each filament collapse onto a single switching curve determined by the analytical steady-state resistive switching solution for filamentary switching. Analyzing our results in terms of this solution, we determine the switching temperature, heat flow, conductivity, and time evolving areas of each filament during resistive switching. Finally, wemore » discuss operational modes which may limit the formation of additional conducting filaments, potentially leading to increased device endurance.« less

  7. Filamentous bacteria existence in aerobic granular reactors.

    PubMed

    Figueroa, M; Val del Río, A; Campos, J L; Méndez, R; Mosquera-Corral, A

    2015-05-01

    Filamentous bacteria are associated to biomass settling problems in wastewater treatment plants. In systems based on aerobic granular biomass they have been proposed to contribute to the initial biomass aggregation process. However, their development on mature aerobic granular systems has not been sufficiently studied. In the present research work, filamentous bacteria were studied for the first time after long-term operation (up to 300 days) of aerobic granular systems. Chloroflexi and Sphaerotilus natans have been observed in a reactor fed with synthetic wastewater. These filamentous bacteria could only come from the inoculated sludge. Thiothrix and Chloroflexi bacteria were observed in aerobic granular biomass treating wastewater from a fish canning industry. Meganema perideroedes was detected in a reactor treating wastewater from a plant processing marine products. As a conclusion, the source of filamentous bacteria in these mature aerobic granular systems fed with industrial effluents was the incoming wastewater.

  8. Sensitivity and Specificity of Laser-Scanning In Vivo Confocal Microscopy for Filamentous Fungal Keratitis: Role of Observer Experience.

    PubMed

    Kheirkhah, Ahmad; Syed, Zeba A; Satitpitakul, Vannarut; Goyal, Sunali; Müller, Rodrigo; Tu, Elmer Y; Dana, Reza

    2017-07-01

    To determine sensitivity and specificity of laser-scanning in vivo confocal microscopy (LS-IVCM) for detection of filamentous fungi in patients with microbial keratitis and to evaluate the effect of observer's imaging experience on these parameters. Retrospective reliability study. This study included 21 patients with filamentous fungal keratitis and 24 patients with bacterial keratitis (as controls). The etiology of infection was confirmed based on the response to specific therapy regardless of culture results. All patients had undergone full-thickness corneal imaging by a LS-IVCM (Heidelberg Retina Tomograph 3 with Rostock Cornea Module; Heidelberg Engineering, Heidelberg, Germany). The images were evaluated for the presence of fungal filaments by 2 experienced observers and 2 inexperienced observers. All observers were masked to the clinical and microbiologic data. The mean number of images obtained per eye was 917 ± 353. The average sensitivity of LS-IVCM for detecting fungal filaments was 71.4% ± 0% for the experienced observers and 42.9% ± 6.7% for the inexperienced observers. The average specificity was 89.6% ± 3.0% and 87.5% ± 17.7% for these 2 groups of observers, respectively. Although there was a good agreement between the 2 experienced observers (κ = 0.77), the inexperienced observers showed only a moderate interobserver agreement (κ = 0.51). The LS-IVCM sensitivity was higher in patients with fungal infections who had positive culture or longer duration of the disease. Although LS-IVCM has a high specificity for diagnosing filamentous fungal keratitis, its sensitivity is moderate and highly dependent on the level of the observer's experience and training with this imaging modality. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Oriented thick and thin filaments in amoeba proteus

    PubMed Central

    Rinaldi, RA; Hrebenda, B

    1975-01-01

    Actin and myosin filaments as a foundation of contractile systems are well established from ameba to man (3). Wolpert et al. (19) isolated by differential centrifugation from Amoeba proteus a motile fraction composed of filaments which moved upon the addition of ATP. Actin filaments are found in amebas (1, 12, 13) which react with vertebrate heavy meromyosin (HMM), forming arrowhead complexes as vertebrate actin (3, 9), and are prominent within the ectoplasmic tube where some of them are attached to the plasmalemma (1, 12). Thick and thin filaments possessing the morphological characteristics of myosin and actin have been obtained from isolated ameba cytoplasm (18, 19). In addition, there are filaments exhibiting ATPase activity in amebas which react with actin (12, 16, 17). However, giant ameba (Chaos-proteus) shapes are difficult to preserve, and the excellent contributions referred to above are limited by visible distortions occurring in the amebas (rounding up, pseudopods disappearing, and cellular organelles swelling) upon fixation. Achievement of normal ameboid shape in recent glycerination work (15) led us to attempt other electron microscope fixation techniques, resulting in a surprising preservation of A. proteus with a unique orientation of thick and thin filaments in the ectoplasmic region. PMID:1141376

  10. Model-based analysis of keratin intermediate filament assembly

    NASA Astrophysics Data System (ADS)

    Martin, Ines; Leitner, Anke; Walther, Paul; Herrmann, Harald; Marti, Othmar

    2015-09-01

    The cytoskeleton of epithelial cells consists of three types of filament systems: microtubules, actin filaments and intermediate filaments (IFs). Here, we took a closer look at type I and type II IF proteins, i.e. keratins. They are hallmark constituents of epithelial cells and are responsible for the generation of stiffness, the cellular response to mechanical stimuli and the integrity of entire cell layers. Thereby, keratin networks constitute an important instrument for cells to adapt to their environment. In particular, we applied models to characterize the assembly of keratin K8 and K18 into elongated filaments as a means for network formation. For this purpose, we measured the length of in vitro assembled keratin K8/K18 filaments by transmission electron microscopy at different time points. We evaluated the experimental data of the longitudinal annealing reaction using two models from polymer chemistry: the Schulz-Zimm model and the condensation polymerization model. In both scenarios one has to make assumptions about the reaction process. We compare how well the models fit the measured data and thus determine which assumptions fit best. Based on mathematical modelling of experimental filament assembly data we define basic mechanistic properties of the elongation reaction process.

  11. Lighting the universe with filaments.

    PubMed

    Gao, Liang; Theuns, Tom

    2007-09-14

    The first stars in the universe form when chemically pristine gas heats as it falls into dark-matter potential wells, cools radiatively because of the formation of molecular hydrogen, and becomes self-gravitating. Using supercomputer simulations, we demonstrated that the stars' properties depend critically on the currently unknown nature of the dark matter. If the dark-matter particles have intrinsic velocities that wipe out small-scale structure, then the first stars form in filaments with lengths on the order of the free-streaming scale, which can be approximately 10(20) meters (approximately 3 kiloparsecs, corresponding to a baryonic mass of approximately 10(7) solar masses) for realistic "warm dark matter" candidates. Fragmentation of the filaments forms stars with a range of masses, which may explain the observed peculiar element abundance pattern of extremely metal-poor stars, whereas coalescence of fragments and stars during the filament's ultimate collapse may seed the supermassive black holes that lurk in the centers of most massive galaxies.

  12. Adaptive virus detection using filament-coupled antibodies.

    PubMed

    Stone, Gregory P; Lin, Kelvin S; Haselton, Frederick R

    2006-01-01

    We recently reported the development of a filament-antibody recognition assay (FARA), in which the presence of virions in solution initiates the formation of enzyme-linked immunosorbent assay (ELISA)-like antibody complexes. The unique features of this assay are that processing is achieved by motion of a filament and that, in the presence of a virus, antibody-virus complexes are coupled to the filament at known locations. In this work, we combine the unique features of this assay with a 638-nm laser-based optical detector to enable adaptive control of virus detection. Integration of on-line fluorescence detection yields approximately a five-fold increase in signal-to-noise ratio (SNR) compared to the fluorescence detection method reported previously. A one-minute incubation with an M13K07 test virus is required to detect 10(10) virionsml, and 40 min was required to detect 10(8) virionsml. In tests of the components of an adaptive strategy, a 30-min virus (3.3 x 10(10) virionsml) incubation time, followed by repositioning the filament-captured virus either within the detecting antibody chamber, (20 microg ml) or within the virus chamber, found an increase in signal roughly proportional to the cumulative residence times in these chambers. Furthermore, cumulative fluorescence signals observed for a filament-captured virus after repeated positioning of the filament within the virus chamber are similar to those observed for a single long incubation time. The unique features of the FARA-like design combined with online optical detection to direct subsequent bioprocessing steps provides new flexibility for developing adaptive molecular recognition assays.

  13. Filamentous actin organization in the unfertilized sea urchin egg cortex.

    PubMed

    Henson, J H; Begg, D A

    1988-06-01

    We have investigated the organization of filamentous actin in the cortex of unfertilized eggs of the sea urchins Strongylocentrotus purpuratus and Lytechinus variegatus. Rhodamine phalloidin and anti-actin immunofluorescent staining of isolated cortices reveal a punctate pattern of fluorescent sources. Comparison of this pattern with SEM images of microvillar morphology and distribution indicates that filamentous actin in the cortex is predominantly localized in the microvilli. Thin-section TEM and quick-freeze deep-etch ultrastructure of isolated cortices demonstrates that this microvillar-associated actin is in a novel organizational state composed of very short filaments arranged in a tight network and that these filament networks form mounds that extend beyond the plane of the plasma membrane. Actin filaments within the networks do not exhibit free ends and make end-on attachments with the membrane only within the region of the evaginating microvilli. Myosin S-1 dissociable crosslinks, 2-3 nm in diameter, are observed between network filaments and between network filaments and the membrane. A second population of long, individual actin filaments is observed in close lateral association with the plasma membrane and frequently complexes with the microvillar actin networks. The filamentous actin of the unfertilized egg cortex may participate in establishing the mechanical properties of the egg surface and may function in nucleating the assembly of cortical actin following fertilization.

  14. Material Supply and Magnetic Configuration of an Active Region Filament

    NASA Astrophysics Data System (ADS)

    Zou, P.; Fang, C.; Chen, P. F.; Yang, K.; Hao, Q.; Cao, Wenda

    2016-11-01

    It is important to study the fine structures of solar filaments with high-resolution observations, since it can help us understand the magnetic and thermal structures of the filaments and their dynamics. In this paper, we study a newly formed filament located inside the active region NOAA 11762, which was observed by the 1.6 m New Solar Telescope at Big Bear Solar Observatory from 16:40:19 UT to 17:07:58 UT on 2013 June 5. As revealed by the Hα filtergrams, cool material is seen to be injected into the filament spine with a speed of 5-10 km s-1. At the source of the injection, brightenings are identified in the chromosphere, which are accompanied by magnetic cancellation in the photosphere, implying the importance of magnetic reconnection in replenishing the filament with plasmas from the lower atmosphere. Counter-streamings are detected near one endpoint of the filament, with the plane-of-the-sky speed being 7-9 km s-1 in the Hα red-wing filtergrams and 9-25 km s-1 in the blue-wing filtergrams. The observations are indicative that this active region filament is supported by a sheared arcade without magnetic dips, and the counter-streamings are due to unidirectional flows with alternative directions, rather than due to the longitudinal oscillations of filament threads as in many other filaments.

  15. Dynamics of a single flexible filament in a flowing soap film

    NASA Astrophysics Data System (ADS)

    Chen, Chaonan; Feng, Shunshan; Zhou, Tong

    2016-11-01

    The interactions between flexible plates and surrounding fluids like two-dimensional flag-in-wind problems are important physical phenomena. Here we use a spandex filament with one end fixed flapping in gravity-driven soap film device which can be regarded as a quasi-two-dimensional flow tunnel. A silk filament had been used previously to demonstrate three stable dynamical states: stretched-straight, flapping, and bistable states. The similar phenomena occured for a spandex filament while the bifurcation conditions seem to be different compared with a silk filament, as the critical filament length is longer and critical inflow velocity is higher than that for a silk filament. In the experiment, we considered some representative parameters (filament length, inflow velocity, and bending stiffness of the filament) to study their effects on the stability of the filament and its bifurcation conditions. An interface-tracking ALE finite element method was then conducted to reproduce the experiment and investigate more details about effects of these parameters. which are significant to reveal the underlying mechanism of flag-in-wind problem. Corresponding Author. Email:zhoutong@bit.edu.cn.

  16. The Cape Ghir filament system in August 2009 (NW Africa)

    NASA Astrophysics Data System (ADS)

    Sangrà, Pablo; Troupin, Charles; Barreiro-González, Beatriz; Desmond Barton, Eric; Orbi, Abdellatif; Arístegui, Javier

    2015-06-01

    In the framework of the Canaries-Iberian marine ecosystem Exchanges (CAIBEX) experiment, an interdisciplinary high-resolution survey was conducted in the NW African region of Cape Ghir (30°38'N) during August 2009. The anatomy of a major filament is investigated on scales down to the submesoscale using in situ and remotely sensed data. The filament may be viewed as a system composed of three intimately connected structures: a small, shallow, and cold filament embedded within a larger, deeper, and cool filament and an intrathermocline anticyclonic eddy (ITE). The cold filament, which stretches 110 km offshore, is a shallow feature 60 m deep and 25 km wide, identified by minimal surface temperatures and rich in chlorophyll a. This structure comprises two asymmetrical submesoscale (˜18 km) fronts with jets flowing in opposite directions. The cold filament is embedded near the equatorward boundary of a much broader region of approximately 120 km width and 150 m depth that forms the cool filament and stretches at least 200 km offshore. This cool region, partly resulting from the influence of cold filament, is limited by two asymmetrical mesoscale (˜50 km) frontal boundaries. At the ITE, located north of the cold filament, we observe evidence of downwelling as indicated by a relatively high concentration of particles extending from the surface to more than 200 m depth. We hypothesize that this ITE may act as a sink of carbon and thus the filament system may serve dual roles of offshore carbon export and carbon sink.

  17. The effective resistance between twisted superconducting filaments in tapes

    NASA Astrophysics Data System (ADS)

    Takács, S.; Iwakuma, M.; Funaki, K.

    2001-05-01

    We consider two mechanisms, which influence the effective resistance between crossing strands on flat cables or filaments in twisted tapes. The one-layer classical Rutherford-type cable and the tapes with twisted BSCCO filaments in silver matrix are taken as analogous cases. The amount of the matrix between strands or filaments increases the effective conductance compared with the direct current paths (determined by the touching area of the filaments). The increase factor is about two and can easily be suppressed by other effects, like the contact resistance between the superconductor and the matrix. The second mechanism is due to the existence of induced voltage between any points of crossing filaments. This leads to an additional effective conductance, proportional to the square of the total number of filaments. Both effects are not very important for isotropic superconductors, but due to the strong anisotropy of critical parameters they can dominate for high temperature superconductors. The first one may partially compensate the influence of the usually weaker critical current density perpendicular to the tape. The contribution due to the second effect can explain the higher resistivity of the matrix in BSCCO tapes compared with pure silver. It seems that to obtain low AC coupling losses in BSCCO tapes, structures with small filament number are required.

  18. Waving of filaments induced by molecular motors

    NASA Astrophysics Data System (ADS)

    de Canio, Gabriele; Lauga, Eric; Goldstein, Raymond E.

    2017-11-01

    In many cellular phenomena, for example cytoplasmic streaming, molecular motors translocate along microtubules carrying cargoes which entrain fluid. The piconewton forces that motors produce can be sufficient to bend or buckle the filaments. When large numbers of such forced filaments interact through the surrounding fluid, as in particular stages of oocyte development in Drosophila melanogaster, complex dynamics are observed, but the mechanism underlying them has remained unclear. By using a combination of theory and numerical simulations, we study a simplified microtubules-molecular motor system in a viscous fluid and show that it can capture the wave-like filament motion dynamics observed in experiments.

  19. Nonlinear Binormal Flow of Vortex Filaments

    NASA Astrophysics Data System (ADS)

    Strong, Scott; Carr, Lincoln

    2015-11-01

    With the current advances in vortex imaging of Bose-Einstein condensates occurring at the Universities of Arizona, São Paulo and Cambridge, interest in vortex filament dynamics is experiencing a resurgence. Recent simulations, Salman (2013), depict dissipative mechanisms resulting from vortex ring emissions and Kelvin wave generation associated with vortex self-intersections. As the local induction approximation fails to capture reconnection events, it lacks a similar dissipative mechanism. On the other hand, Strong&Carr (2012) showed that the exact representation of the velocity field induced by a curved segment of vortex contains higher-order corrections expressed in powers of curvature. This nonlinear binormal flow can be transformed, Hasimoto (1972), into a fully nonlinear equation of Schrödinger type. Continued transformation, Madelung (1926), reveals that the filament's square curvature obeys a quasilinear scalar conservation law with source term. This implies a broader range of filament dynamics than is possible with the integrable linear binormal flow. In this talk we show the affect higher-order corrections have on filament dynamics and discuss physical scales for which they may be witnessed in future experiments. Partially supported by NSF.

  20. Mapping the filaments in NGC 1275

    NASA Astrophysics Data System (ADS)

    Cobos, Aracely Susan; Rich, Jeffrey; Great Observatories All-sky LIRG Survey (GOALS)

    2018-01-01

    The giant elliptical brightest cluster galaxies (BCGs) at the centers of many massive clusters are often surrounded by drawn-out forms of gaseous material. It is believed that this gaseous material is gas condensing from the intracluster medium (ICM) in a “cooling flow,” and it can directly impact the growth of the BCG. The galaxy NGC 1275 is one of the closest giant elliptical BCGs and lies at the center of the Perseus cluster. NGC 1275 has large filaments that are thought to be associated with a cooling flow, but they may also be affected by its AGN. To investigate the relationship between the AGN and the cooling flow we have mapped the filaments around NGC 1275 with the Cosmic Web Imager, an image-slicing integral field spectrograph at Palomar Observatories. We employ standard emission-line ratio diagnostics to determine the source of ionizing radiation. We use our analysis to investigate whether the formation of the extended filaments is a result of gas from the ICM collapsing onto the galaxy as it cools or if it is possible that the filaments are a result of the cluster’s interaction with the outflow driven by the AGN.

  1. Intermediate filament mechanics in vitro and in the cell: from coiled coils to filaments, fibers and networks.

    PubMed

    Köster, Sarah; Weitz, David A; Goldman, Robert D; Aebi, Ueli; Herrmann, Harald

    2015-02-01

    Intermediate filament proteins form filaments, fibers and networks both in the cytoplasm and the nucleus of metazoan cells. Their general structural building plan accommodates highly varying amino acid sequences to yield extended dimeric α-helical coiled coils of highly conserved design. These 'rod' particles are the basic building blocks of intrinsically flexible, filamentous structures that are able to resist high mechanical stresses, that is, bending and stretching to a considerable degree, both in vitro and in the cell. Biophysical and computer modeling studies are beginning to unfold detailed structural and mechanical insights into these major supramolecular assemblies of cell architecture, not only in the 'test tube' but also in the cellular and tissue context. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Graphite filament wound pressure vessels

    NASA Technical Reports Server (NTRS)

    Feldman, A.; Damico, J. J.

    1972-01-01

    Filament wound NOL rings, 4-inch and 8-inch diameter closed-end vessels involving three epoxy resin systems and three graphite fibers were tested to develop property data and fabrication technology for filament wound graphite/epoxy pressure vessels. Vessels were subjected to single-cycle burst tests at room temperature. Manufacturing parameters were established for tooling, winding, and curing that resulted in the development of a pressure/vessel performance factor (pressure x volume/weight) or more than 900,000 in. for an oblate spheroid specimen.

  3. Role of FlgT in Anchoring the Flagellum of Vibrio cholerae▿

    PubMed Central

    Martinez, Raquel M.; Jude, Brooke A.; Kirn, Thomas J.; Skorupski, Karen; Taylor, Ronald K.

    2010-01-01

    Flagellar motility has long been regarded as an important virulence factor. In Vibrio cholerae, the single polar flagellum is essential for motility as well as for proper attachment and colonization. In this study, we demonstrate that the novel flagellar protein FlgT is involved in anchoring the flagellum to the V. cholerae cell. A screen for novel colonization factors by use of TnphoA mutagenesis identified flgT. An in-frame deletion of flgT established that FlgT is required for attachment, colonization, and motility. Transmission electron microscopy revealed that while the flgT mutant is capable of assembling a phenotypically normal flagellum, the flgT population is mostly aflagellate compared to the wild-type population. Further analyses indicated that the flagellum of the flgT mutant is released into the culture supernatant from the cell upon completion of assembly. Additionally, hook basal body complexes appear to be released along with the filament. These results indicate that FlgT functions to stabilize the flagellar apparatus at the pole of the cell. PMID:20154133

  4. Cell proliferation and apoptosis in gill filaments of the lucinid Codakia orbiculata (Montagu, 1808) (Mollusca: Bivalvia) during bacterial decolonization and recolonization.

    PubMed

    Elisabeth, Nathalie H; Gustave, Sylvie D D; Gros, Olivier

    2012-08-01

    The shallow-water bivalve Codakia orbiculata which harbors gill-endosymbiotic sulfur-oxidizing γ-proteobacteria can lose and acquire its endosymbionts throughout its life. Long-term starvation and recolonization experiments led to changes in the organization of cells in the lateral zone of gill filaments. This plasticity is linked to the presence or absence of gill-endosymbionts. Herein, we propose that this reorganization can be explained by three hypotheses: (a) a variation in the number of bacteriocytes and granule cells due to proliferation or apoptosis processes, (b) a variation of the volume of these two cell types without modification in the number, and (c) a combination of both number and cell volume variation. To test these hypotheses, we analyzed cell reorganization in terms of proliferation and apoptosis in adults submitted to starvation and returned to the field using catalyzed reporter deposition fluorescence in situ hybridization, immunohistochemistry, and structural analyses. We observed that cell and tissue reorganization in gills filaments is due to a variation in cell relative abundance that maybe associated with a variation in cell apparent volume and depends on the environment. In fact, bacteriocytes mostly multiply in freshly collected and newly recolonized individuals, and excess bacteriocytes are eliminated in later recolonization stages. We highlight that host tissue regeneration in gill filaments of this symbiotic bivalve can occur by both replication of existing cells and division of undifferentiated cells localized in tissular bridges, which might be a tissue-specific multipotent stem cell zone. Copyright © 2012 Wiley Periodicals, Inc.

  5. Desmin filaments studied by quasi-elastic light scattering.

    PubMed Central

    Hohenadl, M; Storz, T; Kirpal, H; Kroy, K; Merkel, R

    1999-01-01

    We studied polymers of desmin, a muscle-specific type III intermediate filament protein, using quasi-elastic light scattering. Desmin was purified from chicken gizzard. Polymerization was induced either by 2 mM MgCl(2) or 150 mM NaCl. The polymer solutions were in the semidilute regime. We concluded that the persistence length of the filaments is between 0.1 and 1 microm. In all cases, we found a hydrodynamic diameter of desmin filaments of 16-18 nm. The filament dynamics exhibits a characteristic frequency in the sense that correlation functions measured on one sample but at different scattering vectors collapse onto a single master curve when time is normalized by the experimentally determined initial decay rate. PMID:10512839

  6. Stereoscopic Analysis of 19 May and 31 Aug 2007 Filament Eruptions

    NASA Technical Reports Server (NTRS)

    Liewer, Paulett; DeJong, E. M.; Hall, J. R.

    2008-01-01

    The presentation outline includes results from stereoscopic analysis of SECCHI/EUVI data for 19 May 2007 filament eruption, including the determined 3D trajectory of erupting filament, strong evidence for reconnection below erupting filament as consistent with standard model, and comparison of EUVI and H-alpha images during eruption; and results from stereoscopic analytic of 21 August 2007 filament eruption. Slide topics include standard model of filament eruption; 2007 May 19 STEREO A/SECCHI/EUVI 195 and 304 A: CME signatures and filament eruption, 3D reconstruction of erupting prominence; filament's relation to coronal magnetic fields; 3d reconstructions of filament eruption; height-time plot of eruption from 3D reconstructions; detailed pre-eruptions comparison of H-alpha and EUVI 304 at 12:42 UT; comparisons during the eruption; STEREO prominence and CME August 31, 2007; reconstructions of prominence and leading edges of both dark cavity and CME; and 3D reconstructions of prominence and leading edges.

  7. Conformational Spread in the Flagellar Motor Switch: A Model Study

    PubMed Central

    Maini, Philip K.; Berry, Richard M.; Bai, Fan

    2012-01-01

    The reliable response to weak biological signals requires that they be amplified with fidelity. In E. coli, the flagellar motors that control swimming can switch direction in response to very small changes in the concentration of the signaling protein CheY-P, but how this works is not well understood. A recently proposed allosteric model based on cooperative conformational spread in a ring of identical protomers seems promising as it is able to qualitatively reproduce switching, locked state behavior and Hill coefficient values measured for the rotary motor. In this paper we undertook a comprehensive simulation study to analyze the behavior of this model in detail and made predictions on three experimentally observable quantities: switch time distribution, locked state interval distribution, Hill coefficient of the switch response. We parameterized the model using experimental measurements, finding excellent agreement with published data on motor behavior. Analysis of the simulated switching dynamics revealed a mechanism for chemotactic ultrasensitivity, in which cooperativity is indispensable for realizing both coherent switching and effective amplification. These results showed how cells can combine elements of analog and digital control to produce switches that are simultaneously sensitive and reliable. PMID:22654654

  8. Viruses of Entamoeba histolytica II. Morphogenesis of the Polyhedral Particle (ABRM2→HK-9)→HB-301 and the Filamentous Agent (ABRM)2→HK-9

    PubMed Central

    Mattern, Carl F. T.; Diamond, Louis S.; Daniel, Wendell A.

    1972-01-01

    The intracellular development of two morphologically different amoebal viruses has been studied by electron microscopy. One is a polyhedral agent which was observed as early as 24 hr after infection in the perinuclear cytoplasm. Subsequently, cell lysis occurred and particles were found in large number bound to membranes of disrupted amoebae. Other particles were found in phagocytic vacuoles suggesting a possible portal of entry into amoebae. The other virus is a filamentous particle which is first seen in small clusters in the nucleus after 24 hr of infection. The number of particles increases such that by 72 hr massive whorls of particles occupy a substantial part of the nucleus. After rupture of the nuclear membrane, clusters of filaments are widely dispersed throughout the cytoplasm. Still later, the cytoplasmic membrane disintegrates and clusters of filaments are found extracellularly, but free of cell membranes. The morphology of these agents is discussed in comparison with a variety of plant, animal, and bacterial viruses. Images PMID:4335523

  9. Constitutive Models for the Force-Extension Behavior of Biological Filaments

    NASA Astrophysics Data System (ADS)

    Palmer, J. S.; Castro, C. E.; Arslan, M.; Boyce, M. C.

    Biopolymer filaments form the molecular backbone of biological structures throughout the body. The biomechanical response of single filaments yields insight into their individual behavior at the molecular level as well as their concerted networked behavior at the cellular and tissue scales. This paper focuses on modeling approaches for axial force vs. extension behavior of single biopolymer filaments within three stiffness regimes: flexible, semiflexible, and stiff. The end-to-end force-extension behaviors of flexible and semiflexible filaments arise as a result of a reduction in configurational space as the filament is straightened and are captured with entropic models including the freely jointed chain model and the worm-like chain model. As the filament is straightened and the end-to-end distance approaches the filament contour length, the contour length is directly axially extended and an internal energy contribution governs the force-extension behavior in this limiting extension regime. On the other hand, for stiff filaments in originally crimped or kinked configurations, the end-to-end force vs. extension behavior results from the unbending (straightening) of the crimped configuration as governed by an internal energy based elastica approximation which is also complemented by an axial stretching contribution once the end-to-end distance approaches the contour length of the filament. Simplified, analytical force-extension relationships are developed for the worm-like chain model for semiflexible filaments, and for the Euler elastica model for stiffer, wavy fibers. For the case of flexible molecules containing modular folded domains, the influence of force-induced unfolding on the force-extension behavior of single molecules and assemblies of multiple molecules is also presented.

  10. Electron emission controller with pulsed heating of filament

    NASA Astrophysics Data System (ADS)

    Durakiewicz, Tomasz

    1996-11-01

    A novel circuit has been invented for the versatile and safe stabilization of the electron emission current (Ie) produced by a hot filament in mass spectrometers or in ionization gauges. The voltage signal, which is directly proportional to Ie, is provided to the inverting input of a comparator, whereas the noninverting input is connected to the reference voltage. In addition to the commonly used negative feedback loop, a positive feedback loop was introduced by siting a resistor between the noninverting input and the output of the comparator, which results in a pulsation of the filament voltage. The pulses are rectangular, so that the power dissipated by the transistor in the filament power supply circuit is radically reduced. To refine the switching action of the transistor, the output of the comparator is connected through a capacitor to the transistor gate. A concise discussion of the phase shift between Ie, the filament temperature Tf, and the filament voltage Vf, including time constants for different modes of power dissipation, is included.

  11. Modeling the filament winding process

    NASA Technical Reports Server (NTRS)

    Calius, E. P.; Springer, G. S.

    1985-01-01

    A model is presented which can be used to determine the appropriate values of the process variables for filament winding a cylinder. The model provides the cylinder temperature, viscosity, degree of cure, fiber position and fiber tension as functions of position and time during the filament winding and subsequent cure, and the residual stresses and strains within the cylinder during and after the cure. A computer code was developed to obtain quantitative results. Sample results are given which illustrate the information that can be generated with this code.

  12. Tropomyosin inhibits ADF/cofilin-dependent actin filament dynamics.

    PubMed

    Ono, Shoichiro; Ono, Kanako

    2002-03-18

    Tropomyosin binds to actin filaments and is implicated in stabilization of actin cytoskeleton. We examined biochemical and cell biological properties of Caenorhabditis elegans tropomyosin (CeTM) and obtained evidence that CeTM is antagonistic to ADF/cofilin-dependent actin filament dynamics. We purified CeTM, actin, and UNC-60B (a muscle-specific ADF/cofilin isoform), all of which are derived from C. elegans, and showed that CeTM and UNC-60B bound to F-actin in a mutually exclusive manner. CeTM inhibited UNC-60B-induced actin depolymerization and enhancement of actin polymerization. Within isolated native thin filaments, actin and CeTM were detected as major components, whereas UNC-60B was present at a trace amount. Purified UNC-60B was unable to interact with the native thin filaments unless CeTM and other associated proteins were removed by high-salt extraction. Purified CeTM was sufficient to restore the resistance of the salt-extracted filaments from UNC-60B. In muscle cells, CeTM and UNC-60B were localized in different patterns. Suppression of CeTM by RNA interference resulted in disorganized actin filaments and paralyzed worms in wild-type background. However, in an ADF/cofilin mutant background, suppression of CeTM did not worsen actin organization and worm motility. These results suggest that tropomyosin is a physiological inhibitor of ADF/cofilin-dependent actin dynamics.

  13. Investigation of the corneal filament in filamentary keratitis.

    PubMed

    Tanioka, Hidetoshi; Yokoi, Norihiko; Komuro, Aoi; Shimamoto, Takasumi; Kawasaki, Satoshi; Matsuda, Akira; Kinoshita, Shigeru

    2009-08-01

    To date, no studies have elucidated the composition of the corneal filament in detail. In this study, an immunohistochemical technique was used to clarify the exact composition of the corneal filament in filamentary keratitis. In addition, the mechanisms responsible for filament formation were identified. Filaments were obtained from 13 patients with filamentary keratitis with a background of penetrating keratoplasty, aqueous tear deficiency, and severe ocular surface disorders, who were receiving treatment at an outpatient facility. From those tissues, transverse and longitudinal frozen sections were prepared and subjected to an indirect fluorescent immunohistochemical analysis with primary antibodies, including cytokeratins (CK1, -4, -6, -10, -12, and -13), mucins (MUC1, -4, -5AC, and -16), keratinization-related proteins (transglutaminase [TGase]-1 and filaggrin), cell proliferation marker Ki67, and markers of infiltration cells (HLA-DR and neutrophil-elastase). TUNEL staining was used for the detection of apoptosis. Fluorescent images of the sections were inspected with a fluorescence microscope. The filaments were composed of CK12-positive cells and had a roll-formed central core. They were covered with MUC5AC- and -16-positive mucins including CK4- and -13-positive cells and neutrophil-elastase-positive cells. The filaments also included broken cells and DNA fiber-form postlesional nuclei that were positive for TUNEL staining. However, those areas stained weakly for CK6 and HLA-DR; faintly for CK1, CK10, MUC1, and MUC4; and not at all for Ki67, TGase-1, and filaggrin. The results of this research have the potential to open new pathways toward understanding the mechanism that generates the filament in filamentary keratitis, as well as new treatments in the future.

  14. Phylogenetic and Metagenomic Analyses of Substrate-Dependent Bacterial Temporal Dynamics in Microbial Fuel Cells

    PubMed Central

    Zhang, Husen; Chen, Xi; Braithwaite, Daniel; He, Zhen

    2014-01-01

    Understanding the microbial community structure and genetic potential of anode biofilms is key to improve extracellular electron transfers in microbial fuel cells. We investigated effect of substrate and temporal dynamics of anodic biofilm communities using phylogenetic and metagenomic approaches in parallel with electrochemical characterizations. The startup non-steady state anodic bacterial structures were compared for a simple substrate, acetate, and for a complex substrate, landfill leachate, using a single-chamber air-cathode microbial fuel cell. Principal coordinate analysis showed that distinct community structures were formed with each substrate type. The bacterial diversity measured as Shannon index decreased with time in acetate cycles, and was restored with the introduction of leachate. The change of diversity was accompanied by an opposite trend in the relative abundance of Geobacter-affiliated phylotypes, which were acclimated to over 40% of total Bacteria at the end of acetate-fed conditions then declined in the leachate cycles. The transition from acetate to leachate caused a decrease in output power density from 243±13 mW/m2 to 140±11 mW/m2, accompanied by a decrease in Coulombic electron recovery from 18±3% to 9±3%. The leachate cycles selected protein-degrading phylotypes within phylum Synergistetes. Metagenomic shotgun sequencing showed that leachate-fed communities had higher cell motility genes including bacterial chemotaxis and flagellar assembly, and increased gene abundance related to metal resistance, antibiotic resistance, and quorum sensing. These differentially represented genes suggested an altered anodic biofilm community in response to additional substrates and stress from the complex landfill leachate. PMID:25202990

  15. Phylogenetic and metagenomic analyses of substrate-dependent bacterial temporal dynamics in microbial fuel cells.

    PubMed

    Zhang, Husen; Chen, Xi; Braithwaite, Daniel; He, Zhen

    2014-01-01

    Understanding the microbial community structure and genetic potential of anode biofilms is key to improve extracellular electron transfers in microbial fuel cells. We investigated effect of substrate and temporal dynamics of anodic biofilm communities using phylogenetic and metagenomic approaches in parallel with electrochemical characterizations. The startup non-steady state anodic bacterial structures were compared for a simple substrate, acetate, and for a complex substrate, landfill leachate, using a single-chamber air-cathode microbial fuel cell. Principal coordinate analysis showed that distinct community structures were formed with each substrate type. The bacterial diversity measured as Shannon index decreased with time in acetate cycles, and was restored with the introduction of leachate. The change of diversity was accompanied by an opposite trend in the relative abundance of Geobacter-affiliated phylotypes, which were acclimated to over 40% of total Bacteria at the end of acetate-fed conditions then declined in the leachate cycles. The transition from acetate to leachate caused a decrease in output power density from 243±13 mW/m2 to 140±11 mW/m2, accompanied by a decrease in Coulombic electron recovery from 18±3% to 9±3%. The leachate cycles selected protein-degrading phylotypes within phylum Synergistetes. Metagenomic shotgun sequencing showed that leachate-fed communities had higher cell motility genes including bacterial chemotaxis and flagellar assembly, and increased gene abundance related to metal resistance, antibiotic resistance, and quorum sensing. These differentially represented genes suggested an altered anodic biofilm community in response to additional substrates and stress from the complex landfill leachate.

  16. The Role of Magnetic Fields in High-Mass Star-Forming Filaments

    NASA Astrophysics Data System (ADS)

    Stephens, Ian

    2015-10-01

    Filaments are ubiquitous in the star formation process. Planck has revealed that magnetic fields are perpendicular to the densest filaments, which are the birthplace of high-mass stars, suggesting that fields help funnel gas into the filaments. However, the resolved field morphologies and strengths in the dense filaments are unknown. We propose HAWC+ 53 and 214 um polarimetric observations toward two filaments, the Snake (G11.1) and G18.6, to unveil the field morphology. Such observations will probe the filament field morphology at the subarcminute scale over the largest spatial extent to date: 25 and 9 pc respectively. We expect to have over 400 independent beams worth of detections. From the field morphology, we will test the hub-filament theory and investigate how the magnetic field strength and morphology changes with evolution and size-scale.

  17. The Role of Magnetic Fields in High-Mass Star-Forming Filaments

    NASA Astrophysics Data System (ADS)

    Stephens, Ian

    Filaments are ubiquitous in the star formation process. Planck has revealed that magnetic fields are perpendicular to the densest filaments, which are the birthplace of high-mass stars, suggesting that fields help funnel gas into the filaments. However, the resolved field morphologies and strengths in the dense filaments are unknown. We propose HAWC+ 53 and 214 um polarimetric observations toward two filaments, the Snake (G11.1) and G18.6, to unveil the field morphology. Such observations will probe the filament field morphology at the subarcminute scale over the largest spatial extent to date: 25 and 9 pc respectively. We expect to have over 400 independent beams worth of detections. From the field morphology, we will test the hub-filament theory and investigate how the magnetic field strength and morphology changes with evolution and size-scale.

  18. Health Risks Associated with Exposure to Filamentous Fungi

    PubMed Central

    Egbuta, Mary Augustina; Mwanza, Mulunda

    2017-01-01

    Filamentous fungi occur widely in the environment, contaminating soil, air, food and other substrates. Due to their wide distribution, they have medical and economic implications. Regardless of their use as a source of antibiotics, vitamins and raw materials for various industrially important chemicals, most fungi and filamentous fungi produce metabolites associated with a range of health risks, both in humans and in animals. The association of filamentous fungi and their metabolites to different negative health conditions in humans and animals, has contributed to the importance of investigating different health risks induced by this family of heterotrophs. This review aims to discuss health risks associated with commonly occurring filamentous fungal species which belong to genera Aspergillus, Penicillium and Fusarium, as well as evaluating their pathogenicity and mycotoxic properties. PMID:28677641

  19. Drops moving along and across a filament

    NASA Astrophysics Data System (ADS)

    Sahu, Rakesh P.; Sinha-Ray, Suman; Yarin, Alexander; Pourdeyhimi, Behnam

    2013-11-01

    The present work is devoted to the experimental study of oil drop motion both along and across a filament due to the air jet blowing. In case of drop moving along the filament, phenomena such as drop stick-slip motion, shape oscillations, shedding of a tail along the filament, the tail capillary instability and drop recoil motion were observed which were rationalized in the framework of simplified models. Experiments with cross-flow of the surrounding gas relative to the filament with an oil drop on it were conducted, with air velocity in the range of 7.23 to 22.7 m s-1. The Weber number varied from 2 to 40 and the Ohnesorge number varied from 0.07 to 0.8. The lower and upper critical Weber numbers were introduced to distinguish between the beginning of the drop blowing off the filament and the onset of the bag-stamen breakup. The range of the Weber number between these two critical values is filled with three types of vibrational breakup: V1 (a balloon-like drop being blown off), V2 (a drop on a single stamen being blown off), and V3 (a drop on a double stamen being blown off). The Weber number/Ohnesorge number plane was delineated into domains of different breakup regimes. The work is supported by the Nonwovens Cooperative Research Center (NCRC).

  20. Extending Femtosecond Filamentation of High Power Laser Propagating in the Atmosphere

    NASA Astrophysics Data System (ADS)

    Eisenmann, Shmuel; Sivan, Yonatan; Fibich, Gadi; Zigler, Arie

    2008-06-01

    We show experimentally for ultrashort laser pulses propagating in air, that the filamentation distance of intense laser pulses in the atmosphere can be extended and controlled with a simple double-lens setup. Using this method we were able to achieve a 20-fold delay of the filamentation distance of non-chirped 120 fs pulses propagating in air, from 16 m to 330 m. At 330 m, the collapsing pulse is sufficiently powerful to create plasma filaments. We also show that the scatter of the filaments at 330 m can be significantly reduced by tilting the second lens. We derive a simple formula for the filamentation distance, and confirm its agreement with the experimental results. We also observe that delaying the onset of filamentation increases the filament length. To the best of our knowledge, this is the longest distance reported in the literature at which plasma filaments were created and controlled. Finally, we show that the peak power at the onset of collapse is significantly higher with the double-lens setup, compared with the standard negative chirping approach.