Multiple sequence alignment using multi-objective based bacterial foraging optimization algorithm.
Rani, R Ranjani; Ramyachitra, D
2016-12-01
Multiple sequence alignment (MSA) is a widespread approach in computational biology and bioinformatics. MSA deals with how the sequences of nucleotides and amino acids are sequenced with possible alignment and minimum number of gaps between them, which directs to the functional, evolutionary and structural relationships among the sequences. Still the computation of MSA is a challenging task to provide an efficient accuracy and statistically significant results of alignments. In this work, the Bacterial Foraging Optimization Algorithm was employed to align the biological sequences which resulted in a non-dominated optimal solution. It employs Multi-objective, such as: Maximization of Similarity, Non-gap percentage, Conserved blocks and Minimization of gap penalty. BAliBASE 3.0 benchmark database was utilized to examine the proposed algorithm against other methods In this paper, two algorithms have been proposed: Hybrid Genetic Algorithm with Artificial Bee Colony (GA-ABC) and Bacterial Foraging Optimization Algorithm. It was found that Hybrid Genetic Algorithm with Artificial Bee Colony performed better than the existing optimization algorithms. But still the conserved blocks were not obtained using GA-ABC. Then BFO was used for the alignment and the conserved blocks were obtained. The proposed Multi-Objective Bacterial Foraging Optimization Algorithm (MO-BFO) was compared with widely used MSA methods Clustal Omega, Kalign, MUSCLE, MAFFT, Genetic Algorithm (GA), Ant Colony Optimization (ACO), Artificial Bee Colony (ABC), Particle Swarm Optimization (PSO) and Hybrid Genetic Algorithm with Artificial Bee Colony (GA-ABC). The final results show that the proposed MO-BFO algorithm yields better alignment than most widely used methods. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Crowd evacuation model based on bacterial foraging algorithm
NASA Astrophysics Data System (ADS)
Shibiao, Mu; Zhijun, Chen
To understand crowd evacuation, a model based on a bacterial foraging algorithm (BFA) is proposed in this paper. Considering dynamic and static factors, the probability of pedestrian movement is established using cellular automata. In addition, given walking and queue times, a target optimization function is built. At the same time, a BFA is used to optimize the objective function. Finally, through real and simulation experiments, the relationship between the parameters of evacuation time, exit width, pedestrian density, and average evacuation speed is analyzed. The results show that the model can effectively describe a real evacuation.
Hernández-Ocaña, Betania; Pozos-Parra, Ma. Del Pilar; Mezura-Montes, Efrén; Portilla-Flores, Edgar Alfredo; Vega-Alvarado, Eduardo; Calva-Yáñez, Maria Bárbara
2016-01-01
This paper presents two-swim operators to be added to the chemotaxis process of the modified bacterial foraging optimization algorithm to solve three instances of the synthesis of four-bar planar mechanisms. One swim favors exploration while the second one promotes fine movements in the neighborhood of each bacterium. The combined effect of the new operators looks to increase the production of better solutions during the search. As a consequence, the ability of the algorithm to escape from local optimum solutions is enhanced. The algorithm is tested through four experiments and its results are compared against two BFOA-based algorithms and also against a differential evolution algorithm designed for mechanical design problems. The overall results indicate that the proposed algorithm outperforms other BFOA-based approaches and finds highly competitive mechanisms, with a single set of parameter values and with less evaluations in the first synthesis problem, with respect to those mechanisms obtained by the differential evolution algorithm, which needed a parameter fine-tuning process for each optimization problem. PMID:27057156
Hernández-Ocaña, Betania; Pozos-Parra, Ma Del Pilar; Mezura-Montes, Efrén; Portilla-Flores, Edgar Alfredo; Vega-Alvarado, Eduardo; Calva-Yáñez, Maria Bárbara
2016-01-01
This paper presents two-swim operators to be added to the chemotaxis process of the modified bacterial foraging optimization algorithm to solve three instances of the synthesis of four-bar planar mechanisms. One swim favors exploration while the second one promotes fine movements in the neighborhood of each bacterium. The combined effect of the new operators looks to increase the production of better solutions during the search. As a consequence, the ability of the algorithm to escape from local optimum solutions is enhanced. The algorithm is tested through four experiments and its results are compared against two BFOA-based algorithms and also against a differential evolution algorithm designed for mechanical design problems. The overall results indicate that the proposed algorithm outperforms other BFOA-based approaches and finds highly competitive mechanisms, with a single set of parameter values and with less evaluations in the first synthesis problem, with respect to those mechanisms obtained by the differential evolution algorithm, which needed a parameter fine-tuning process for each optimization problem.
Spiral bacterial foraging optimization method: Algorithm, evaluation and convergence analysis
NASA Astrophysics Data System (ADS)
Kasaiezadeh, Alireza; Khajepour, Amir; Waslander, Steven L.
2014-04-01
A biologically-inspired algorithm called Spiral Bacterial Foraging Optimization (SBFO) is investigated in this article. SBFO, previously proposed by the same authors, is a multi-agent, gradient-based algorithm that minimizes both the main objective function (local cost) and the distance between each agent and a temporary central point (global cost). A random jump is included normal to the connecting line of each agent to the central point, which produces a vortex around the temporary central point. This random jump is also suitable to cope with premature convergence, which is a feature of swarm-based optimization methods. The most important advantages of this algorithm are as follows: First, this algorithm involves a stochastic type of search with a deterministic convergence. Second, as gradient-based methods are employed, faster convergence is demonstrated over GA, DE, BFO, etc. Third, the algorithm can be implemented in a parallel fashion in order to decentralize large-scale computation. Fourth, the algorithm has a limited number of tunable parameters, and finally SBFO has a strong certainty of convergence which is rare in existing global optimization algorithms. A detailed convergence analysis of SBFO for continuously differentiable objective functions has also been investigated in this article.
Zajicek, J.L.; Brown, L.; Brown, S.B.; Honeyfield, D.C.; Fitzsimons, J.D.; Tillitt, D.E.
2009-01-01
The source of thiaminase in the Great Lakes food web remains unknown. Biochemical characterization of the thiaminase I activities observed in forage fish was undertaken to provide insights into potential thiaminase sources and to optimize catalytic assay conditions. We measured the thiaminase I activities of crude extracts from five forage fish species and one strain of Paenibacillus thiaminolyticus over a range of pH values. The clupeids, alewife Alosa pseudoharengus and gizzard shad Dorosoma cepedianum, had very similar thiaminase I pH dependencies, with optimal activity ranges (> or = 90% of maximum activity) between pH 4.6 and 5.5. Rainbow smelt Osmerus mordax and spottail shiner Notropis hudsonius had optimal activity ranges between pH 5.5-6.6. The thiaminase I activity pH dependence profile of P. thiaminolyticus had an optimal activity range between pH 5.4 and 6.3, which was similar to the optimal range for rainbow smelt and spottail shiners. Incubation of P. thiaminolyticus extracts with extracts from bloater Coregonus hoyi (normally, bloaters have little or no detectable thiaminase I activity) did not significantly alter the pH dependence profile of P. thiaminolyticus-derived thiaminase I, such that it continued to resemble that of the rainbow smelt and spottail shiner, with an apparent optimal activity range between pH 5.7 and 6.6. These data are consistent with the hypothesis of a bacterial source for thiaminase I in the nonclupeid species of forage fish; however, the data also suggest different sources of thiaminase I enzymes in the clupeid species.
Bacteria use type IV pili to walk upright and detach from surfaces.
Gibiansky, Maxsim L; Conrad, Jacinta C; Jin, Fan; Gordon, Vernita D; Motto, Dominick A; Mathewson, Margie A; Stopka, Wiktor G; Zelasko, Daria C; Shrout, Joshua D; Wong, Gerard C L
2010-10-08
Bacterial biofilms are structured multicellular communities involved in a broad range of infections. Knowing how free-swimming bacteria adapt their motility mechanisms near surfaces is crucial for understanding the transition between planktonic and biofilm phenotypes. By translating microscopy movies into searchable databases of bacterial behavior, we identified fundamental type IV pili-driven mechanisms for Pseudomonas aeruginosa surface motility involved in distinct foraging strategies. Bacteria stood upright and "walked" with trajectories optimized for two-dimensional surface exploration. Vertical orientation facilitated surface detachment and could influence biofilm morphology.
Considerations on the Use of Exogenous Fibrolytic Enzymes to Improve Forage Utilization
Mendoza, Germán D.; Plata-Pérez, Fernando X.
2014-01-01
Digestion of cell wall fractions of forage in the rumen is incomplete due to the complex links which limit their degradation. It is therefore necessary to find options to optimize the use of forages in ruminant production systems. One alternative is to use exogenous enzymes. Exogenous fibrolytic enzymes are of fungal or bacterial origin and increase nutrient availability from the cell wall, which consists of three fractions in different proportions depending on the species of forage: digestible, potentially digestible, and indigestible. The response to addition of exogenous enzymes varies with the type of forage; many researchers infer that there are enzyme-forage interactions but fail to explain the biological mechanism. We hypothesize that the response is related to the proportion of the potentially digestible fraction. The exogenous enzyme activity depends on several factors but if the general conditions for enzyme action are available, the potentially digestible fraction may determine the magnitude of the response. Results of experiments with exogenous fibrolytic enzymes in domestic ruminants are inconsistent. This, coupled with their high cost, has made their use unattractive to farmers. Development of cheaper products exploring other microorganisms with fibrolytic activity, such as Fomes fomentarius or Cellulomonas flavigena, is required. PMID:25379525
Eldridge, David J; Woodhouse, Jason N; Curlevski, Nathalie J A; Hayward, Matthew; Brown, Mark V; Neilan, Brett A
2015-01-01
Animals that modify their physical environment by foraging in the soil can have dramatic effects on ecosystem functions and processes. We compared bacterial and fungal communities in the foraging pits created by bilbies and burrowing bettongs with undisturbed surface soils dominated by biocrusts. Bacterial communities were characterized by Actinobacteria and Alphaproteobacteria, and fungal communities by Lecanoromycetes and Archaeosporomycetes. The composition of bacterial or fungal communities was not observed to vary between loamy or sandy soils. There were no differences in richness of either bacterial or fungal operational taxonomic units (OTUs) in the soil of young or old foraging pits, or undisturbed soils. Although the bacterial assemblage did not vary among the three microsites, the composition of fungi in undisturbed soils was significantly different from that in old or young foraging pits. Network analysis indicated that a greater number of correlations between bacterial OTUs occurred in undisturbed soils and old pits, whereas a greater number of correlations between fungal OTUs occurred in undisturbed soils. Our study suggests that digging by soil-disturbing animals is likely to create successional shifts in soil microbial and fungal communities, leading to functional shifts associated with the decomposition of organic matter and the fixation of nitrogen. Given the primacy of organic matter decomposition in arid and semi-arid environments, the loss of native soil-foraging animals is likely to impair the ability of these systems to maintain key ecosystem processes such as the mineralization of nitrogen and the breakdown of organic matter, and to recover from disturbance. PMID:25932616
Performance comparison of some evolutionary algorithms on job shop scheduling problems
NASA Astrophysics Data System (ADS)
Mishra, S. K.; Rao, C. S. P.
2016-09-01
Job Shop Scheduling as a state space search problem belonging to NP-hard category due to its complexity and combinational explosion of states. Several naturally inspire evolutionary methods have been developed to solve Job Shop Scheduling Problems. In this paper the evolutionary methods namely Particles Swarm Optimization, Artificial Intelligence, Invasive Weed Optimization, Bacterial Foraging Optimization, Music Based Harmony Search Algorithms are applied and find tuned to model and solve Job Shop Scheduling Problems. To compare about 250 Bench Mark instances have been used to evaluate the performance of these algorithms. The capabilities of each these algorithms in solving Job Shop Scheduling Problems are outlined.
Grilli, D J; Cerón, M E; Paez, S; Egea, V; Schnittger, L; Cravero, S; Escudero, M Sosa; Allegretti, L; Arenas, G N
2013-09-01
We isolated and identified functional groups of bacteria in the rumen of Creole goats involved in ruminal fermentation of native forage shrubs. The functional bacterial groups were evaluated by comparing the total viable, total anaerobic, cellulolytic, hemicellulolytic, and amylolytic bacterial counts in the samples taken from fistulated goats fed native forage diet (Atriplex lampa and Prosopis flexuosa). Alfalfa hay and corn were used as control diet. The roll tubes method increased the possibility of isolating and 16S rDNA gene sequencing allowed definitive identification of bacterial species involved in the ruminal fermentation. The starch and fiber contents of the diets influenced the number of total anaerobic bacteria and fibrolytic and amylolytic functional groups. Pseudobutyrivibrio ruminis and Pseudobutyrivibrio xylanivorans were the main species isolated and identified. The identification of bacterial strains involved in the rumen fermentation helps to explain the ability of these animals to digest fiber plant cell wall contained in native forage species.
Chaos minimization in DC-DC boost converter using circuit parameter optimization
NASA Astrophysics Data System (ADS)
Sudhakar, N.; Natarajan, Rajasekar; Gourav, Kumar; Padmavathi, P.
2017-11-01
DC-DC converters are prone to several types of nonlinear phenomena including bifurcation, quasi periodicity, intermittency and chaos. These undesirable effects must be controlled for periodic operation of the converter to ensure the stability. In this paper an effective solution to control of chaos in solar fed DC-DC boost converter is proposed. Controlling of chaos is significantly achieved using optimal circuit parameters obtained through Bacterial Foraging Optimization Algorithm. The optimization renders the suitable parameters in minimum computational time. The obtained results are compared with the operation of traditional boost converter. Further the obtained results with BFA optimized parameter ensures the operations of the converter are within the controllable region. To elaborate the study of bifurcation analysis with optimized and unoptimized parameters are also presented.
Petri, R M; Forster, R J; Yang, W; McKinnon, J J; McAllister, T A
2012-06-01
To determine the effects of the removal of forage in high-concentrate diets on rumen fermentation conditions and rumen bacterial populations using culture-independent methods. Detectable bacteria and fermentation parameters were measured in the solid and liquid fractions of digesta from cattle fed two dietary treatments, high concentrate (HC) and high concentrate without forage (HCNF). Comparison of rumen fermentation conditions showed that duration of time spent below pH 5·2 and rumen osmolality were higher in the HCNF treatment. Simpson's index of 16S PCR-DGGE images showed a greater diversity of dominant species in the HCNF treatment. Real-time qPCR showed populations of Fibrobacter succinogenes (P = 0·01) were lower in HCNF than HC diets. Ruminococcus spp., F. succinogenes and Selenomonas ruminantium were at higher (P ≤ 0·05) concentrations in the solid vs the liquid fraction of digesta regardless of diet. The detectable bacterial community structure in the rumen is highly diverse. Reducing diet complexity by removing forage increased bacterial diversity despite the associated reduction in ruminal pH being less conducive for fibrolytic bacterial populations. Quantitative PCR showed that removal of forage from the diet resulted in a decline in the density of some, but not all fibrolytic bacterial species examined. Molecular techniques such as DGGE and qPCR provide an increased understanding of the impacts of dietary changes on the nature of rumen bacterial populations, and conclusions derived using these techniques may not match those previously derived using traditional laboratory culturing techniques. © 2012 The Authors. Journal of Applied Microbiology © 2012 The Society for Applied Microbiology.
Petri, Renee M; Schwaiger, Tyler; Penner, Greg B; Beauchemin, Karen A; Forster, Robert J; McKinnon, John J; McAllister, Tim A
2013-01-01
This study investigated the effect of diet and host on the rumen bacterial microbiome and the impact of an acidotic challenge on its composition. Using parallel pyrosequencing of the V3 hypervariable region of 16S rRNA gene, solid and liquid associated bacterial communities of 8 heifers were profiled. Heifers were exclusively fed forage, before being transitioned to a concentrate diet, subjected to an acidotic challenge and allowed to recover. Samples of rumen digesta were collected when heifers were fed forage, mixed forage, high grain, during challenge (4 h and 12 h) and recovery. A total of 560,994 high-quality bacterial sequences were obtained from the solid and liquid digesta. Using cluster analysis, prominent bacterial populations differed (P≤0.10) in solid and liquid fractions between forage and grain diets. Differences among hosts and diets were not revealed by DGGE, but real time qPCR showed that several bacteria taxon were impacted by changes in diet, with the exception of Streptococcus bovis. Analysis of the core rumen microbiome identified 32 OTU's representing 10 distinct bacterial taxa including Bacteroidetes (32.8%), Firmicutes (43.2%) and Proteobacteria (14.3%). Diversity of OTUs was highest with forage with 38 unique OTUs identified as compared to only 11 with the high grain diet. Comparison of the microbial profiles of clincial vs. subclinical acidotic heifers found a increases in the relative abundances of Acetitomaculum, Lactobacillus, Prevotella, and Streptococcus. Increases in Streptococcus and Lactobacillus likely reflect the tolerance of these species to low pH and their ability to proliferate on surplus fermentable carbohydrate. The acetogen, Acetitomaculum may thereforeplay a role in the conversion of lactate to acetate in acidotic animals. Further profiling of the bacterial populations associated with subclinical and clinical acidosis could establish a microbial fingerprint for these disorders and provide insight into whether there are causative microbial populations that could potentially be therapeutically manipulated.
Petri, Renee M.; Schwaiger, Tyler; Penner, Greg B.; Beauchemin, Karen A.; Forster, Robert J.; McKinnon, John J.; McAllister, Tim A.
2013-01-01
This study investigated the effect of diet and host on the rumen bacterial microbiome and the impact of an acidotic challenge on its composition. Using parallel pyrosequencing of the V3 hypervariable region of 16S rRNA gene, solid and liquid associated bacterial communities of 8 heifers were profiled. Heifers were exclusively fed forage, before being transitioned to a concentrate diet, subjected to an acidotic challenge and allowed to recover. Samples of rumen digesta were collected when heifers were fed forage, mixed forage, high grain, during challenge (4 h and 12 h) and recovery. A total of 560,994 high-quality bacterial sequences were obtained from the solid and liquid digesta. Using cluster analysis, prominent bacterial populations differed (P≤0.10) in solid and liquid fractions between forage and grain diets. Differences among hosts and diets were not revealed by DGGE, but real time qPCR showed that several bacteria taxon were impacted by changes in diet, with the exception of Streptococcus bovis. Analysis of the core rumen microbiome identified 32 OTU's representing 10 distinct bacterial taxa including Bacteroidetes (32.8%), Firmicutes (43.2%) and Proteobacteria (14.3%). Diversity of OTUs was highest with forage with 38 unique OTUs identified as compared to only 11 with the high grain diet. Comparison of the microbial profiles of clincial vs. subclinical acidotic heifers found a increases in the relative abundances of Acetitomaculum, Lactobacillus, Prevotella, and Streptococcus. Increases in Streptococcus and Lactobacillus likely reflect the tolerance of these species to low pH and their ability to proliferate on surplus fermentable carbohydrate. The acetogen, Acetitomaculum may thereforeplay a role in the conversion of lactate to acetate in acidotic animals. Further profiling of the bacterial populations associated with subclinical and clinical acidosis could establish a microbial fingerprint for these disorders and provide insight into whether there are causative microbial populations that could potentially be therapeutically manipulated. PMID:24391765
NASA Astrophysics Data System (ADS)
Hummel, Christiaan; Honkoop, Pieter; van der Meer, Jaap
2011-07-01
Doubt has been shed recently on the most popular optimal foraging theory stating that predators should maximize prey profitability, i.e., select that prey item that contains the highest energy content per handling time. We hypothesized that sea stars do not forage on blue mussels according to the classical optimal foraging theory but are actively avoiding damage that may be caused by e.g. capture of foraging on too-strong mussel shells, hence the sea stars will have a stronger preference for mussels that are smaller than the most profitable ones. Here we present experimental evidence of the sea star Asterias rubens as a predator that indeed chooses much smaller blue mussels Mytilus edulis to forage on than the most profitable ones. Hence this study does not support the optimal foraging theory. There may be other constraints involved in foraging than just optimizing energy intake, for example predators may also be concerned with preventing potential loss or damage of their foraging instruments.
Investigations into the design principles in the chemotactic behavior of Escherichia coli.
Kim, Tae-Hwan; Jung, Sung Hoon; Cho, Kwang-Hyun
2008-01-01
Inspired by the recent studies on the analysis of biased random walk behavior of Escherichia coli[Passino, K.M., 2002. Biomimicry of bacterial foraging for distributed optimization and control. IEEE Control Syst. Mag. 22 (3), 52-67; Passino, K.M., 2005. Biomimicry for Optimization, Control and Automation. Springer-Verlag, pp. 768-798; Liu, Y., Passino, K.M., 2002. Biomimicry of social foraging bacteria for distributed optimization: models, principles, and emergent behaviors. J. Optim. Theory Appl. 115 (3), 603-628], we have developed a model describing the motile behavior of E. coli by specifying some simple rules on the chemotaxis. Based on this model, we have analyzed the role of some key parameters involved in the chemotactic behavior to unravel the underlying design principles. By investigating the target tracking capability of E. coli in a maze through computer simulations, we found that E. coli clusters can be controlled as target trackers in a complex micro-scale-environment. In addition, we have explored the dynamical characteristics of this target tracking mechanism through perturbation of parameters under noisy environments. It turns out that the E. coli chemotaxis mechanism might be designed such that it is sensitive enough to efficiently track the target and also robust enough to overcome environmental noises.
Optimal foraging by birds: feeder-based experiments for secondary and post-secondary students
USDA-ARS?s Scientific Manuscript database
Optimal foraging theory attempts to explain the foraging patterns observed in animals, including their choice of particular food items and foraging locations. Here, we describe three exercises designed to test hypotheses about food choice and foraging habitat preference using bird feeders. These e...
USDA-ARS?s Scientific Manuscript database
Research was conducted to determine the effects of sources of tannins on in vitro ruminal gas and foam production, in vivo ruminal bacterial populations, bloat dynamics and ADG of heifers grazing wheat forage. Two experiments were conducted to 1) enumerate the effect of tannins supplementation on bi...
Rothman, Jason A; Carroll, Mark J; Meikle, William G; Anderson, Kirk E; McFrederick, Quinn S
2018-02-03
Honey bees (Apis mellifera) provide vital pollination services for a variety of agricultural crops around the world and are known to host a consistent core bacterial microbiome. This symbiotic microbial community is essential to many facets of bee health, including likely nutrient acquisition, disease prevention and optimal physiological function. Being that the bee microbiome is likely involved in the digestion of nutrients, we either provided or excluded honey bee colonies from supplemental floral forage before being used for almond pollination. We then used 16S rRNA gene sequencing to examine the effects of forage treatment on the bees' microbial gut communities over four months. In agreement with previous studies, we found that the honey bee gut microbiota is quite stable over time. Similarly, we compared the gut communities of bees from separate colonies and sisters sampled from within the same hive over four months. Surprisingly, we found that the gut microbial communities of individual sisters from the same colony can exhibit as much variation as bees from different colonies. Supplemental floral forage had a subtle effect on the composition of the microbiome during the month of March only, with strains of Gilliamella apicola, Lactobacillus, and Bartonella being less proportionally abundant in bees exposed to forage in the winter. Collectively, our findings show that there is unexpected longitudinal variation within the gut microbial communities of sister honey bees and that supplemental floral forage can subtly alter the microbiome of managed honey bees.
Optimal Foraging by Birds: Experiments for Secondary & Postsecondary Students
ERIC Educational Resources Information Center
Pecor, Keith W.; Lake, Ellen C.; Wund, Matthew A.
2015-01-01
Optimal foraging theory attempts to explain the foraging patterns observed in animals, including their choice of particular food items and foraging locations. We describe three experiments designed to test hypotheses about food choice and foraging habitat preference using bird feeders. These experiments can be used alone or in combination and can…
Saro, Cristina; Molina-Alcaide, Eduarda; Abecia, Leticia; Ranilla, María José; Carro, María Dolores
2018-04-01
The objective of this study was to compare the automated ribosomal intergenic spacer analysis (ARISA) and the denaturing gradient gel electrophoresis (DGGE) techniques for analysing the effects of diet on diversity in bacterial pellets isolated from the liquid (liquid-associated bacteria (LAB)) and solid (solid-associated bacteria (SAB)) phase of the rumen. The four experimental diets contained forage to concentrate ratios of 70:30 or 30:70 and had either alfalfa hay or grass hay as forage. Four rumen-fistulated animals (two sheep and two goats) received the diets in a Latin square design. Bacterial pellets (LAB and SAB) were isolated at 2 h post-feeding for DNA extraction and analysed by ARISA and DGGE. The number of peaks in individual samples ranged from 48 to 99 for LAB and from 41 to 95 for SAB with ARISA, and values of DGGE-bands ranged from 27 to 50 for LAB and from 18 to 45 for SAB. The LAB samples from high concentrate-fed animals tended (p < 0.10) to show greater peak numbers and Shannon index values than those isolated from high forage-fed animals with ARISA, but no differences were identified with DGGE. The SAB samples from high concentrate-fed animals had lower (p < 0.05) peak numbers and Shannon index values than those from animals fed high-forage diets with ARISA, but only a trend was noticed for these parameters with DGGE (p < 0.10). The ARISA detected that animals fed alfalfa hay diets showed lower (p < 0.05) SAB diversity than those fed grass hay diets, but no differences were observed with DGGE. No effect of forage type on LAB diversity was detected by any technique. In this study, ARISA detected some changes in ruminal bacterial communities that were not detected by DGGE, and therefore ARISA was considered more appropriate for assessing bacterial diversity of ruminal bacterial pellets. The results highlight the impact of the fingerprinting technique used to draw conclusions on dietary factors affecting bacterial diversity in ruminal bacterial pellets.
Abdelkarim, Noha; Mohamed, Amr E; El-Garhy, Ahmed M; Dorrah, Hassen T
2016-01-01
The two-coupled distillation column process is a physically complicated system in many aspects. Specifically, the nested interrelationship between system inputs and outputs constitutes one of the significant challenges in system control design. Mostly, such a process is to be decoupled into several input/output pairings (loops), so that a single controller can be assigned for each loop. In the frame of this research, the Brain Emotional Learning Based Intelligent Controller (BELBIC) forms the control structure for each decoupled loop. The paper's main objective is to develop a parameterization technique for decoupling and control schemes, which ensures robust control behavior. In this regard, the novel optimization technique Bacterial Swarm Optimization (BSO) is utilized for the minimization of summation of the integral time-weighted squared errors (ITSEs) for all control loops. This optimization technique constitutes a hybrid between two techniques, which are the Particle Swarm and Bacterial Foraging algorithms. According to the simulation results, this hybridized technique ensures low mathematical burdens and high decoupling and control accuracy. Moreover, the behavior analysis of the proposed BELBIC shows a remarkable improvement in the time domain behavior and robustness over the conventional PID controller.
Mohamed, Amr E.; Dorrah, Hassen T.
2016-01-01
The two-coupled distillation column process is a physically complicated system in many aspects. Specifically, the nested interrelationship between system inputs and outputs constitutes one of the significant challenges in system control design. Mostly, such a process is to be decoupled into several input/output pairings (loops), so that a single controller can be assigned for each loop. In the frame of this research, the Brain Emotional Learning Based Intelligent Controller (BELBIC) forms the control structure for each decoupled loop. The paper's main objective is to develop a parameterization technique for decoupling and control schemes, which ensures robust control behavior. In this regard, the novel optimization technique Bacterial Swarm Optimization (BSO) is utilized for the minimization of summation of the integral time-weighted squared errors (ITSEs) for all control loops. This optimization technique constitutes a hybrid between two techniques, which are the Particle Swarm and Bacterial Foraging algorithms. According to the simulation results, this hybridized technique ensures low mathematical burdens and high decoupling and control accuracy. Moreover, the behavior analysis of the proposed BELBIC shows a remarkable improvement in the time domain behavior and robustness over the conventional PID controller. PMID:27807444
NASA Astrophysics Data System (ADS)
Bénichou, O.; Bhat, U.; Krapivsky, P. L.; Redner, S.
2018-02-01
We introduce the frugal foraging model in which a forager performs a discrete-time random walk on a lattice in which each site initially contains S food units. The forager metabolizes one unit of food at each step and starves to death when it last ate S steps in the past. Whenever the forager eats, it consumes all food at its current site and this site remains empty forever (no food replenishment). The crucial property of the forager is that it is frugal and eats only when encountering food within at most k steps of starvation. We compute the average lifetime analytically as a function of the frugality threshold and show that there exists an optimal strategy, namely, an optimal frugality threshold k* that maximizes the forager lifetime.
Optimal Foraging in Semantic Memory
ERIC Educational Resources Information Center
Hills, Thomas T.; Jones, Michael N.; Todd, Peter M.
2012-01-01
Do humans search in memory using dynamic local-to-global search strategies similar to those that animals use to forage between patches in space? If so, do their dynamic memory search policies correspond to optimal foraging strategies seen for spatial foraging? Results from a number of fields suggest these possibilities, including the shared…
Min, B R; Pinchak, W E; Anderson, R C; Hume, M E
2006-10-01
The role of ruminal bacteria in the frothy bloat complex common to cattle grazing winter wheat has not been previously determined. Two experiments, one in vitro and another in vivo, were designed to elucidate the effects of fresh wheat forage on bacterial growth, biofilm complexes, rumen fermentation end products, rumen bacterial diversity, and bloat potential. In Exp. 1, 6 strains of ruminal bacteria (Streptococcus bovis strain 26, Prevotella ruminicola strain 23, Eubacterium ruminantium B1C23, Ruminococcus albus SY3, Fibrobacter succinogenes ssp. S85, and Ruminococcus flavefaciens C94) were used in vitro to determine the effect of soluble plant protein from winter wheat forage on specific bacterial growth rate, biofilm complexes, VFA, and ruminal H2 and CH4 in mono or coculture with Methanobrevibacter smithii. The specific growth rate in plant protein medium containing soluble plant protein (3.27% nitrogen) was measured during a 24-h incubation at 39 degrees C in Hungate tubes under a CO2 gas phase. A monoculture of M. smithii was grown similarly, except under H2:CO2 (1:1), in a basal methanogen growth medium supplemented likewise with soluble plant protein. In Exp. 2, 6 ruminally cannulated steers grazing wheat forage were used to evaluate the influence of bloat on the production of biofilm complexes, ruminal microbial biodiversity patterns, and ruminal fluid protein fractions. In Exp. 1, cultures of R. albus (P < 0.01) and R. flavefaciens (P < 0.05) produced the most H2 among strains and resulted in greater (P < 0.01) CH4 production when cocultured with M. smithii than other coculture combinations. Cultures of S. bovis and E. ruminantium + M. smithii produced the most biofilm mass among strains. In Exp. 2, when diets changed from bermudagrass hay to wheat forage, biofilm production increased (P < 0.01). Biofilm production, concentrations of whole ruminal content (P < 0.01), and cheesecloth filtrate protein fractions (P < 0.05) in the ruminal fluid were greater on d 50 for bloated than for nonbloated steers when grazing wheat forage. The molecular analysis of the 16S rDNA showed that 2 different ruminal microbiota populations developed between bloated and nonbloated animals grazing wheat forage. Bloat in cattle grazing wheat pastures may be caused by increased production of biofilm, resulting from a diet-influenced switch in the rumen bacterial population.
Liu, Junhua; Zhang, Mengling; Xue, Chunxu; Zhu, Weiyun; Mao, Shengyong
2016-12-01
Three ruminally cannulated Holstein cows were used to characterize the dynamics of bacterial colonization of rice straw and alfalfa hay and to assess the differences in the composition and inferred gene function of the colonized microbiota between these 2 forages. Nonincubated (0h) rice straw and alfalfa hay samples and residues in nylon bags incubated for 0.5, 2, 6, 16, and 48h were analyzed for dry matter and were used for DNA extraction and MiSeq (Illumina Inc., San Diego, CA) sequencing of the 16S rRNA gene. The microbial communities that colonized the air-dried and nonincubated (0h) rice straw and alfalfa hay were both dominated by members of the Proteobacteria (contributing toward 70.47% of the 16S RNA reads generated). In situ incubation of the 2 forages revealed major shifts in the community composition: Proteobacteria were replaced within 30min by members belonging to the Bacteroidetes and Firmicutes, contributing toward 51.9 and 36.6% of the 16S rRNA reads generated, respectively. A second significant shift was observed after 6h of rumen incubation, when members of the Spirochaetes and Fibrobacteria phyla became abundant in the forage-adherent community. During the first 30min of rumen incubation, ~20.7 and 36.1% of the rice straw and alfalfa hay, respectively, were degraded, whereas little biomass degradation occurred between 30min and 2h after the rice straw or alfalfa hay was placed in the rumen. Significant differences were noted in attached bacterial community structure between the 2 forage groups, and the abundances of dominant genera Anaeroplasma, Butyrivibrio, Fibrobacter, and Prevotella were affected by the forage types. Real-time PCR results showed that the 16S rRNA copies of total bacteria attached to these 2 forages were affected by the forage types and incubation time, and higher numbers of attached bacterial 16S rRNA were observed in the alfalfa hay samples than in the rice straw from 0.5 to 16h of incubation. The metagenomes predicted by phylogenetic investigation of communities by reconstruction of unobserved states (PICRUSt) revealed that the forage types significantly affected 21 metabolic pathways identified in the Kyoto Encyclopedia of Genes and Genomes, and 33 were significantly changed over time. Collectively, our results reveal a difference in the dynamics of bacterial colonization and the inferred gene function of microbiota associated with rice straw and alfalfa hay within the rumen. These findings are of great importance for the targeted improvement of forage nutrient use efficiency in ruminants. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Testing Optimal Foraging Theory Using Bird Predation on Goldenrod Galls
ERIC Educational Resources Information Center
Yahnke, Christopher J.
2006-01-01
All animals must make choices regarding what foods to eat, where to eat, and how much time to spend feeding. Optimal foraging theory explains these behaviors in terms of costs and benefits. This laboratory exercise focuses on optimal foraging theory by investigating the winter feeding behavior of birds on the goldenrod gall fly by comparing…
Info-gap robust-satisficing model of foraging behavior: do foragers optimize or satisfice?
Carmel, Yohay; Ben-Haim, Yakov
2005-11-01
In this note we compare two mathematical models of foraging that reflect two competing theories of animal behavior: optimizing and robust satisficing. The optimal-foraging model is based on the marginal value theorem (MVT). The robust-satisficing model developed here is an application of info-gap decision theory. The info-gap robust-satisficing model relates to the same circumstances described by the MVT. We show how these two alternatives translate into specific predictions that at some points are quite disparate. We test these alternative predictions against available data collected in numerous field studies with a large number of species from diverse taxonomic groups. We show that a large majority of studies appear to support the robust-satisficing model and reject the optimal-foraging model.
To Eat or Not to Eat: An Easy Simulation of Optimal Diet Selection in the Classroom
ERIC Educational Resources Information Center
Ray, Darrell L.
2010-01-01
Optimal diet selection, a component of optimal foraging theory, suggests that animals should select a diet that either maximizes energy or nutrient consumption per unit time or minimizes the foraging time needed to attain required energy or nutrients. In this exercise, students simulate the behavior of foragers that either show no foraging…
A method for measuring total thiaminase activity in fish tissues
Zajicek, James L.; Tillitt, Donald E.; Honeyfield, Dale C.; Brown, Scott B.; Fitzsimons, John D.
2005-01-01
An accurate, quantitative, and rapid method for the measurement of thiaminase activity in fish samples is required to provide sufficient information to characterize the role of dietary thiaminase in the onset of thiamine deficiency in Great Lakes salmonines. A radiometric method that uses 14C-thiamine was optimized for substrate and co-substrate (nicotinic acid) concentrations, incubation time, and sample dilution. Total thiaminase activity was successfully determined in extracts of selected Great Lakes fishes and invertebrates. Samples included whole-body and selected tissues of forage fishes. Positive control material prepared from frozen alewives Alosa pseudoharengus collected in Lake Michigan enhanced the development and application of the method. The method allowed improved discrimination of thiaminolytic activity among forage fish species and their tissues. The temperature dependence of the thiaminase activity observed in crude extracts of Lake Michigan alewives followed a Q10 = 2 relationship for the 1-37??C temperature range, which is consistent with the bacterial-derived thiaminase I protein. ?? Copyright by the American Fisheries Society 2005.
An enhanced multi-channel bacterial foraging optimization algorithm for MIMO communication system
NASA Astrophysics Data System (ADS)
Palanimuthu, Senthilkumar Jayalakshmi; Muthial, Chandrasekaran
2017-04-01
Channel estimation and optimisation are the main challenging tasks in Multi Input Multi Output (MIMO) wireless communication systems. In this work, a Multi-Channel Bacterial Foraging Optimization Algorithm approach is proposed for the selection of antenna in a transmission area. The main advantage of this method is, it reduces the loss of bandwidth during data transmission effectively. Here, we considered the channel estimation and optimisation for improving the transmission speed and reducing the unused bandwidth. Initially, the message is given to the input of the communication system. Then, the symbol mapping process is performed for converting the message into signals. It will be encoded based on the space-time encoding technique. Here, the single signal is divided into multiple signals and it will be given to the input of space-time precoder. Hence, the multiplexing is applied to transmission channel estimation. In this paper, the Rayleigh channel is selected based on the bandwidth range. This is the Gaussian distribution type channel. Then, the demultiplexing is applied on the obtained signal that is the reverse function of multiplexing, which splits the combined signal arriving from a medium into the original information signal. Furthermore, the long-term evolution technique is used for scheduling the time to channels during transmission. Here, the hidden Markov model technique is employed to predict the status information of the channel. Finally, the signals are decoded and the reconstructed signal is obtained after performing the scheduling process. The experimental results evaluate the performance of the proposed MIMO communication system in terms of bit error rate, mean squared error, average throughput, outage capacity and signal to interference noise ratio.
NASA Astrophysics Data System (ADS)
Sudhakar, N.; Rajasekar, N.; Akhil, Saya; Jyotheeswara Reddy, K.
2017-11-01
The boost converter is the most desirable DC-DC power converter for renewable energy applications for its favorable continuous input current characteristics. In other hand, these DC-DC converters known as practical nonlinear systems are prone to several types of nonlinear phenomena including bifurcation, quasiperiodicity, intermittency and chaos. These undesirable effects has to be controlled for maintaining normal periodic operation of the converter and to ensure the stability. This paper presents an effective solution to control the chaos in solar fed DC-DC boost converter since the converter experiences wide range of input power variation which leads to chaotic phenomena. Controlling of chaos is significantly achieved using optimal circuit parameters obtained through Nelder-Mead Enhanced Bacterial Foraging Optimization Algorithm. The optimization renders the suitable parameters in minimum computational time. The results are compared with the traditional methods. The obtained results of the proposed system ensures the operation of the converter within the controllable region.
Optimal foraging, not biogenetic law, predicts spider orb web allometry.
Gregorič, Matjaž; Kiesbüy, Heine C; Lebrón, Shakira G Quiñones; Rozman, Alenka; Agnarsson, Ingi; Kuntner, Matjaž
2013-03-01
The biogenetic law posits that the ontogeny of an organism recapitulates the pattern of evolutionary changes. Morphological evidence has offered some support for, but also considerable evidence against, the hypothesis. However, biogenetic law in behavior remains underexplored. As physical manifestation of behavior, spider webs offer an interesting model for the study of ontogenetic behavioral changes. In orb-weaving spiders, web symmetry often gets distorted through ontogeny, and these changes have been interpreted to reflect the biogenetic law. Here, we test the biogenetic law hypothesis against the alternative, the optimal foraging hypothesis, by studying the allometry in Leucauge venusta orb webs. These webs range in inclination from vertical through tilted to horizontal; biogenetic law predicts that allometry relates to ontogenetic stage, whereas optimal foraging predicts that allometry relates to gravity. Specifically, pronounced asymmetry should only be seen in vertical webs under optimal foraging theory. We show that, through ontogeny, vertical webs in L. venusta become more asymmetrical in contrast to tilted and horizontal webs. Biogenetic law thus cannot explain L. venusta web allometry, but our results instead support optimization of foraging area in response to spider size.
USDA-ARS?s Scientific Manuscript database
Ant Colony Optimization (ACO) refers to the family of algorithms inspired by the behavior of real ants and used to solve combinatorial problems such as the Traveling Salesman Problem (TSP).Optimal Foraging Theory (OFT) is an evolutionary principle wherein foraging organisms or insect parasites seek ...
Fermentation of six different forages in the semi-continuous fermentation technique Caesitec.
Vosmer, J; Liesegang, A; Wanner, M; Zeyner, A; Suter, D; Hoelzle, L; Wichert, B
2012-10-01
The aim of the present study was to compare carbohydrate degradation of forages which store carbohydrates either predominantly as fructan or starch, in horses' hindgut. The effects of an abrupt change from hay-based feeding to green fodder-based feeding on the caecal flora were tested with the in vitro hindgut simulation technique 'Caesitec'. Six trials with different forages (English ryegrass, tall fescue, grass mixture-horses, grass mixture-cows, lucerne, white clover) were conducted. During a 4-day stabilisation period, samples were taken once a day before loading the fermenters with hay. After diet-change to forage-based feeding, samples were taken four times a day. Ammonia and pH-value were measured before and 1, 2 and 6 h after loading the 'Caesitec'. Gas formation was measured daily. Bacterial numbers, lactate and short chain fatty acids were detected at four time-points of each trial. The grass mixtures contained the highest amounts of fructan. The pH-values were in the physiological range from pH 6 up to 7 (6.58-6.83) by feeding all forages. Gas formation, anaerobic and aerobic bacterial numbers increased after diet change from hay to any forage. The maximum amount of fructan (3.75 g/kg) in swiss pasture did not cause a permanent pathological change in the hindgut-flora. © 2012 Blackwell Verlag GmbH.
Multiple-stage decisions in a marine central-place forager
NASA Astrophysics Data System (ADS)
Friedlaender, Ari S.; Johnston, David W.; Tyson, Reny B.; Kaltenberg, Amanda; Goldbogen, Jeremy A.; Stimpert, Alison K.; Curtice, Corrie; Hazen, Elliott L.; Halpin, Patrick N.; Read, Andrew J.; Nowacek, Douglas P.
2016-05-01
Air-breathing marine animals face a complex set of physical challenges associated with diving that affect the decisions of how to optimize feeding. Baleen whales (Mysticeti) have evolved bulk-filter feeding mechanisms to efficiently feed on dense prey patches. Baleen whales are central place foragers where oxygen at the surface represents the central place and depth acts as the distance to prey. Although hypothesized that baleen whales will target the densest prey patches anywhere in the water column, how depth and density interact to influence foraging behaviour is poorly understood. We used multi-sensor archival tags and active acoustics to quantify Antarctic humpback whale foraging behaviour relative to prey. Our analyses reveal multi-stage foraging decisions driven by both krill depth and density. During daylight hours when whales did not feed, krill were found in deep high-density patches. As krill migrated vertically into larger and less dense patches near the surface, whales began to forage. During foraging bouts, we found that feeding rates (number of feeding lunges per hour) were greatest when prey was shallowest, and feeding rates decreased with increasing dive depth. This strategy is consistent with previous models of how air-breathing diving animals optimize foraging efficiency. Thus, humpback whales forage mainly when prey is more broadly distributed and shallower, presumably to minimize diving and searching costs and to increase feeding rates overall and thus foraging efficiency. Using direct measurements of feeding behaviour from animal-borne tags and prey availability from echosounders, our study demonstrates a multi-stage foraging process in a central place forager that we suggest acts to optimize overall efficiency by maximizing net energy gain over time. These data reveal a previously unrecognized level of complexity in predator-prey interactions and underscores the need to simultaneously measure prey distribution in marine central place forager studies.
Multiple-stage decisions in a marine central-place forager.
Friedlaender, Ari S; Johnston, David W; Tyson, Reny B; Kaltenberg, Amanda; Goldbogen, Jeremy A; Stimpert, Alison K; Curtice, Corrie; Hazen, Elliott L; Halpin, Patrick N; Read, Andrew J; Nowacek, Douglas P
2016-05-01
Air-breathing marine animals face a complex set of physical challenges associated with diving that affect the decisions of how to optimize feeding. Baleen whales (Mysticeti) have evolved bulk-filter feeding mechanisms to efficiently feed on dense prey patches. Baleen whales are central place foragers where oxygen at the surface represents the central place and depth acts as the distance to prey. Although hypothesized that baleen whales will target the densest prey patches anywhere in the water column, how depth and density interact to influence foraging behaviour is poorly understood. We used multi-sensor archival tags and active acoustics to quantify Antarctic humpback whale foraging behaviour relative to prey. Our analyses reveal multi-stage foraging decisions driven by both krill depth and density. During daylight hours when whales did not feed, krill were found in deep high-density patches. As krill migrated vertically into larger and less dense patches near the surface, whales began to forage. During foraging bouts, we found that feeding rates (number of feeding lunges per hour) were greatest when prey was shallowest, and feeding rates decreased with increasing dive depth. This strategy is consistent with previous models of how air-breathing diving animals optimize foraging efficiency. Thus, humpback whales forage mainly when prey is more broadly distributed and shallower, presumably to minimize diving and searching costs and to increase feeding rates overall and thus foraging efficiency. Using direct measurements of feeding behaviour from animal-borne tags and prey availability from echosounders, our study demonstrates a multi-stage foraging process in a central place forager that we suggest acts to optimize overall efficiency by maximizing net energy gain over time. These data reveal a previously unrecognized level of complexity in predator-prey interactions and underscores the need to simultaneously measure prey distribution in marine central place forager studies.
Design, analysis, and testing of a flexure-based vibration-assisted polishing device
NASA Astrophysics Data System (ADS)
Gu, Yan; Zhou, Yan; Lin, Jieqiong; Lu, Mingming; Zhang, Chenglong; Chen, Xiuyuan
2018-05-01
A vibration-assisted polishing device (VAPD) composed of leaf-spring and right-circular flexure hinges is proposed with the aim of realizing vibration-assisted machining along elliptical trajectories. To design the structure, energy methods and the finite-element method are used to calculate the performance of the proposed VAPD. An improved bacterial foraging optimization algorithm is used to optimize the structural parameters. In addition, the performance of the VAPD is tested experimentally. The experimental results indicate that the maximum strokes of the two directional mechanisms operating along the Z1 and Z2 directions are 29.5 μm and 29.3 μm, respectively, and the maximum motion resolutions are 10.05 nm and 10.01 nm, respectively. The maximum working bandwidth is 1,879 Hz, and the device has a good step response.
Effect of summer annuals on ruminal fermentation and methane output in continuous culture
USDA-ARS?s Scientific Manuscript database
Summer annuals (SA) provide forage during the summer “forage slump”, yet research on ruminal fermentation and CH4 output of SA is lacking. A 4-unit, dual-flow continuous culture fermentor system was used to assess nutrient digestibility, VFA production, bacterial protein synthesis, and CH4 output of...
NASA Astrophysics Data System (ADS)
da Luz, M. G. E.; Raposo, E. P.; Viswanathan, G. M.
2015-09-01
In the present issue of Physics of Life Reviews, A.M. Reynolds publishes an interesting (and stimulating) work titled "Liberating Lévy walk research from the shackles of optimal foraging" [1]. As the title indicates, one of its main discussed points is that, in trying to understand and describe animal foraging through the Lévy walk (LW) framework [2-4], one should not surge into optimization ideas as the essential underlying mechanism. In other words, the reason for the existence of a wide diversity of animal foraging processes that follow the typical LW statistical behavior might not be driven by the maximization of the search outcomes. Actually, in a broad perspective LWs transcend Ecology and Biology, and can be found in a huge diversity of systems, including many inanimate ones [2-4]. Therefore, we do agree that constraining the LW research to the confines of optimal foraging theory can be restrictive. Moreover, given the huge complexity and diversity of biological phenomena, it is unlikely that a single impelling force would be responsible for all the observed life-related Lévy patterns.
Duniere, Lysiane; Xu, Shanwei; Long, Jin; Elekwachi, Chijioke; Wang, Yuxi; Turkington, Kelly; Forster, Robert; McAllister, Tim A
2017-03-03
Describing the microbial populations present in small grain silage and understanding their changes during ensiling is of interest for improving the nutrient value of these important forage crops. Barley, oat and triticale forages as well as an intercropped mixture of the 3 crops were harvested and ensiled in mini silos for a period of 90 days, followed by 14 days of aerobic exposure. Changes in fermentation characteristics and nutritive value were assessed in terminal silages and bacterial and fungal communities during ensiling and aerobic exposure were described using 16S and 18S rDNA sequencing, respectively. All small grain silages exhibited chemical traits that were associated with well ensiled forages, such as low pH value (4.09 ± 0.28) and high levels of lactic acid (59.8 ± 14.59 mg/g DM). The number of microbial core genome operational taxonomic units (OTUs) decreased with time of ensiling. Taxonomic bacterial community profiles were dominated by the Lactobacillales after fermentation, with a notable increase in Bacillales as a result of aerobic exposure. Diversity of the fungal core microbiome was shown to also be reduced during ensiling. Operational taxonomic units assigned to filamentous fungi were found in the core microbiome at ensiling and after aerobic exposure, whereas the Saccharomycetales were the dominate yeast population after 90 days of ensiling and aerobic exposure. Bacterial and fungal orders typically associated with silage spoilage were identified in the core microbiome after aerobic exposure. Next Generation Sequencing was successfully used to describe bacterial communities and the first record of fungal communities throughout the process of ensiling and utilization. Adequately describing the microbial ecology of silages could lead to improved ensiling practices and the selection of silage inoculants that act synergistically with the natural forage microbiome.
Multiple-stage decisions in a marine central-place forager
Friedlaender, Ari S.; Johnston, David W.; Tyson, Reny B.; Kaltenberg, Amanda; Goldbogen, Jeremy A.; Stimpert, Alison K.; Curtice, Corrie; Hazen, Elliott L.; Halpin, Patrick N.; Read, Andrew J.; Nowacek, Douglas P.
2016-01-01
Air-breathing marine animals face a complex set of physical challenges associated with diving that affect the decisions of how to optimize feeding. Baleen whales (Mysticeti) have evolved bulk-filter feeding mechanisms to efficiently feed on dense prey patches. Baleen whales are central place foragers where oxygen at the surface represents the central place and depth acts as the distance to prey. Although hypothesized that baleen whales will target the densest prey patches anywhere in the water column, how depth and density interact to influence foraging behaviour is poorly understood. We used multi-sensor archival tags and active acoustics to quantify Antarctic humpback whale foraging behaviour relative to prey. Our analyses reveal multi-stage foraging decisions driven by both krill depth and density. During daylight hours when whales did not feed, krill were found in deep high-density patches. As krill migrated vertically into larger and less dense patches near the surface, whales began to forage. During foraging bouts, we found that feeding rates (number of feeding lunges per hour) were greatest when prey was shallowest, and feeding rates decreased with increasing dive depth. This strategy is consistent with previous models of how air-breathing diving animals optimize foraging efficiency. Thus, humpback whales forage mainly when prey is more broadly distributed and shallower, presumably to minimize diving and searching costs and to increase feeding rates overall and thus foraging efficiency. Using direct measurements of feeding behaviour from animal-borne tags and prey availability from echosounders, our study demonstrates a multi-stage foraging process in a central place forager that we suggest acts to optimize overall efficiency by maximizing net energy gain over time. These data reveal a previously unrecognized level of complexity in predator–prey interactions and underscores the need to simultaneously measure prey distribution in marine central place forager studies. PMID:27293784
Grodzinski, Uri; Spiegel, Orr; Korine, Carmi; Holderied, Marc W
2009-05-01
1. Understanding the causes and consequences of animal flight speed has long been a challenge in biology. Aerodynamic theory is used to predict the most economical flight speeds, minimizing energy expenditure either per distance (maximal range speed, Vmr) or per time (minimal power speed, Vmp). When foraging in flight, flight speed also affects prey encounter and energy intake rates. According to optimal flight speed theory, such effects may shift the energetically optimal foraging speed to above Vmp. 2. Therefore, we predicted that if energetic considerations indeed have a substantial effect on flight speed of aerial-hawking bats, they will use high speed (close to Vmr) to commute from their daily roost to the foraging sites, while a slower speed (but still above Vmp) will be preferred during foraging. To test these predictions, echolocation calls of commuting and foraging Pipistrellus kuhlii were recorded and their flight tracks were reconstructed using an acoustic flight path tracking system. 3. Confirming our qualitative prediction, commuting flight was found to be significantly faster than foraging flight (9.3 vs. 6.7 m s(-1)), even when controlling for its lower tortuosity. 4. In order to examine our quantitative prediction, we compared observed flight speeds with Vmp and Vmr values generated for the study population using two alternative aerodynamic models, based on mass and wing morphology variables measured from bats we captured while commuting. The Vmp and Vmr values generated by one of the models were much lower than our measured flight speed. According to the other model used, however, measured foraging flight was faster than Vmp and commuting flight slightly slower than Vmr, which is in agreement with the predictions of optimal flight speed theory. 5. Thus, the second aerodynamic model we used seems to be a reasonable predictor of the different flight speeds used by the bats while foraging and while commuting. This supports the hypothesis that bats fly at a context-dependent, energetically optimal flight speed.
Foraging habitat for shorebirds in southeastern Missouri and its predicted future availability
Twedt, Daniel J.
2013-01-01
Water management to protect agriculture in alluvial floodplains often conflicts with wildlife use of seasonal floodwater. Such is the case along the Mississippi River in southeastern Missouri where migrating shorebirds forage in shallow-flooded fields. I estimated the current availability of habitat for foraging shorebirds within the New Madrid and St. Johns Basins based on daily river elevations (1943–2009), under assumptions that shorebirds forage in open habitat with water depth <15 cm and use mudflats for 3 days after exposure. The area of shorebird foraging habitat, based on replicated 50-year random samples, averaged 975 ha per day during spring and 33 ha per day during fall. Adjustments to account for habitat quality associated with different water depths, duration of mudflat exposure, intra-seasonal availability, and state of agricultural crops, indicated the equivalent of 494 ha daily of optimal habitat during spring and 11 ha during fall. Proposed levees and pumps to protect cropland would reduce shorebird foraging habitat by 80 %: to 211 ha (108 optimal ha) per day during spring and 9 ha (<3 optimal ha) per day during fall. Alternative water management that allows natural flooding below a prescribed elevation would retain nearly all existing shorebird foraging habitat during fall and about 60 % of extant habitat during spring.
Relationship between brain plasticity, learning and foraging performance in honey bees.
Cabirol, Amélie; Cope, Alex J; Barron, Andrew B; Devaud, Jean-Marc
2018-01-01
Brain structure and learning capacities both vary with experience, but the mechanistic link between them is unclear. Here, we investigated whether experience-dependent variability in learning performance can be explained by neuroplasticity in foraging honey bees. The mushroom bodies (MBs) are a brain center necessary for ambiguous olfactory learning tasks such as reversal learning. Using radio frequency identification technology, we assessed the effects of natural variation in foraging activity, and the age when first foraging, on both performance in reversal learning and on synaptic connectivity in the MBs. We found that reversal learning performance improved at foraging onset and could decline with greater foraging experience. If bees started foraging before the normal age, as a result of a stress applied to the colony, the decline in learning performance with foraging experience was more severe. Analyses of brain structure in the same bees showed that the total number of synaptic boutons at the MB input decreased when bees started foraging, and then increased with greater foraging intensity. At foraging onset MB structure is therefore optimized for bees to update learned information, but optimization of MB connectivity deteriorates with foraging effort. In a computational model of the MBs sparser coding of information at the MB input improved reversal learning performance. We propose, therefore, a plausible mechanistic relationship between experience, neuroplasticity, and cognitive performance in a natural and ecological context.
Information Foraging Theory: A Framework for Intelligence Analysis
2014-11-01
oceanographic information, human intelligence (HUMINT), open-source intelligence ( OSINT ), and information provided by other governmental departments [1][5...Human Intelligence IFT Information Foraging Theory LSA Latent Semantic Similarity MVT Marginal Value Theorem OFT Optimal Foraging Theory OSINT
Tomasik, Martin J; Knecht, Michaela; Freund, Alexandra M
2017-12-01
Based on optimal foraging theory, we propose a metric that allows evaluating the goodness of goal systems, that is, systems comprising multiple goals with facilitative and conflicting interrelations. This optimal foraging theory takes into account expectancy and value, as well as opportunity costs, of foraging. Applying this approach to goal systems provides a single index of goodness of a goal system for goal striving. Three quasi-experimental studies (N = 277, N = 145, and N = 210) provide evidence for the usefulness of this approach for goal systems comprising between 3 to 10 goals. Results indicate that persons with a more optimized goal-system are more conscientious and open to new experience, are more likely to represent their goals in terms of means (i.e., adopt a process focus), and are more satisfied and engaged with their goals. Persons with a suboptimal goal system tend to switch their goals more often and thereby optimize their goal system. We discuss limitations as well as possible future directions of this approach. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Trade-offs between energy maximization and parental care in a central place forager, the sea otter
Thometz, N M; Staedler, M.M.; Tomoleoni, Joseph; Bodkin, James L.; Bentall, G.B.; Tinker, M. Tim
2016-01-01
Between 1999 and 2014, 126 archival time–depth recorders (TDRs) were used to examine the foraging behavior of southern sea otters (Enhydra lutris nereis) off the coast of California, in both resource-abundant (recently occupied, low sea otter density) and resource-limited (long-occupied, high sea otter density) locations. Following predictions of foraging theory, sea otters generally behaved as energy rate maximizers. Males and females without pups employed similar foraging strategies to optimize rates of energy intake in resource-limited habitats, with some exceptions. Both groups increased overall foraging effort and made deeper, longer and more energetically costly dives as resources became limited, but males were more likely than females without pups to utilize extreme dive profiles. In contrast, females caring for young pups (≤10 weeks) prioritized parental care over energy optimization. The relative importance of parental care versus energy optimization for adult females with pups appeared to reflect developmental changes as dependent young matured. Indeed, contrary to females during the initial stages of lactation, females with large pups approaching weaning once again prioritized optimizing energy intake. The increasing prioritization of energy optimization over the course of lactation was possible due to the physiological development of pups and likely driven by the energetic deficit incurred by females early in lactation. Our results suggest that regardless of resource availability, females at the end of lactation approach a species-specific ceiling for percent time foraging and that reproductive females in the central portion of the current southern sea otter range are disproportionately affected by resource limitation.
Optimal web investment in sub-optimal foraging conditions.
Harmer, Aaron M T; Kokko, Hanna; Herberstein, Marie E; Madin, Joshua S
2012-01-01
Orb web spiders sit at the centre of their approximately circular webs when waiting for prey and so face many of the same challenges as central-place foragers. Prey value decreases with distance from the hub as a function of prey escape time. The further from the hub that prey are intercepted, the longer it takes a spider to reach them and the greater chance they have of escaping. Several species of orb web spiders build vertically elongated ladder-like orb webs against tree trunks, rather than circular orb webs in the open. As ladder web spiders invest disproportionately more web area further from the hub, it is expected they will experience reduced prey gain per unit area of web investment compared to spiders that build circular webs. We developed a model to investigate how building webs in the space-limited microhabitat on tree trunks influences the optimal size, shape and net prey gain of arboricolous ladder webs. The model suggests that as horizontal space becomes more limited, optimal web shape becomes more elongated, and optimal web area decreases. This change in web geometry results in decreased net prey gain compared to webs built without space constraints. However, when space is limited, spiders can achieve higher net prey gain compared to building typical circular webs in the same limited space. Our model shows how spiders optimise web investment in sub-optimal conditions and can be used to understand foraging investment trade-offs in other central-place foragers faced with constrained foraging arenas.
Optimal web investment in sub-optimal foraging conditions
NASA Astrophysics Data System (ADS)
Harmer, Aaron M. T.; Kokko, Hanna; Herberstein, Marie E.; Madin, Joshua S.
2012-01-01
Orb web spiders sit at the centre of their approximately circular webs when waiting for prey and so face many of the same challenges as central-place foragers. Prey value decreases with distance from the hub as a function of prey escape time. The further from the hub that prey are intercepted, the longer it takes a spider to reach them and the greater chance they have of escaping. Several species of orb web spiders build vertically elongated ladder-like orb webs against tree trunks, rather than circular orb webs in the open. As ladder web spiders invest disproportionately more web area further from the hub, it is expected they will experience reduced prey gain per unit area of web investment compared to spiders that build circular webs. We developed a model to investigate how building webs in the space-limited microhabitat on tree trunks influences the optimal size, shape and net prey gain of arboricolous ladder webs. The model suggests that as horizontal space becomes more limited, optimal web shape becomes more elongated, and optimal web area decreases. This change in web geometry results in decreased net prey gain compared to webs built without space constraints. However, when space is limited, spiders can achieve higher net prey gain compared to building typical circular webs in the same limited space. Our model shows how spiders optimise web investment in sub-optimal conditions and can be used to understand foraging investment trade-offs in other central-place foragers faced with constrained foraging arenas.
Chaos-order transition in foraging behavior of ants.
Li, Lixiang; Peng, Haipeng; Kurths, Jürgen; Yang, Yixian; Schellnhuber, Hans Joachim
2014-06-10
The study of the foraging behavior of group animals (especially ants) is of practical ecological importance, but it also contributes to the development of widely applicable optimization problem-solving techniques. Biologists have discovered that single ants exhibit low-dimensional deterministic-chaotic activities. However, the influences of the nest, ants' physical abilities, and ants' knowledge (or experience) on foraging behavior have received relatively little attention in studies of the collective behavior of ants. This paper provides new insights into basic mechanisms of effective foraging for social insects or group animals that have a home. We propose that the whole foraging process of ants is controlled by three successive strategies: hunting, homing, and path building. A mathematical model is developed to study this complex scheme. We show that the transition from chaotic to periodic regimes observed in our model results from an optimization scheme for group animals with a home. According to our investigation, the behavior of such insects is not represented by random but rather deterministic walks (as generated by deterministic dynamical systems, e.g., by maps) in a random environment: the animals use their intelligence and experience to guide them. The more knowledge an ant has, the higher its foraging efficiency is. When young insects join the collective to forage with old and middle-aged ants, it benefits the whole colony in the long run. The resulting strategy can even be optimal.
Chaos–order transition in foraging behavior of ants
Li, Lixiang; Peng, Haipeng; Kurths, Jürgen; Yang, Yixian; Schellnhuber, Hans Joachim
2014-01-01
The study of the foraging behavior of group animals (especially ants) is of practical ecological importance, but it also contributes to the development of widely applicable optimization problem-solving techniques. Biologists have discovered that single ants exhibit low-dimensional deterministic-chaotic activities. However, the influences of the nest, ants’ physical abilities, and ants’ knowledge (or experience) on foraging behavior have received relatively little attention in studies of the collective behavior of ants. This paper provides new insights into basic mechanisms of effective foraging for social insects or group animals that have a home. We propose that the whole foraging process of ants is controlled by three successive strategies: hunting, homing, and path building. A mathematical model is developed to study this complex scheme. We show that the transition from chaotic to periodic regimes observed in our model results from an optimization scheme for group animals with a home. According to our investigation, the behavior of such insects is not represented by random but rather deterministic walks (as generated by deterministic dynamical systems, e.g., by maps) in a random environment: the animals use their intelligence and experience to guide them. The more knowledge an ant has, the higher its foraging efficiency is. When young insects join the collective to forage with old and middle-aged ants, it benefits the whole colony in the long run. The resulting strategy can even be optimal. PMID:24912159
Kamoun, M; Ammar, H; Théwis, A; Beckers, Y; France, J; López, S
2014-11-01
The use of stable (15)N as a marker to determine microbial contamination in nylon bag incubation residues to estimate protein degradability was investigated. Three methods using (15)N were compared: (15)N-labeled forage (dilution method, LF), (15)N enrichment of rumen solids-associated bacteria (SAB), and (15)N enrichment of rumen liquid-associated bacteria (LAB). Herbage from forages differing in protein and fiber contents (early-cut Italian ryegrass, late-cut Italian ryegrass, and red clover) were freeze-dried and ground and then incubated in situ in the rumen of 3 steers for 3, 6, 12, 24, and 48 h using the nylon bag technique. The (15)N-labeled forages were obtained by fertilizing the plots where herbage was grown with (15)NH4 (15)NO3. Unlabeled forages (obtained from plots fertilized with NH4NO3) were incubated at the same time that ((15)NH4)2SO4 was continuously infused into the rumen of the steers, and then pellets of labeled SAB and LAB were isolated by differential centrifugation of samples of ruminal contents. The proportion of bacterial N in the incubation residues increased from 0.09 and 0.45 g bacterial N/g total N at 3 h of incubation to 0.37 and 0.85 g bacterial N/g total N at 48 h of incubation for early-cut and late-cut ryegrass, respectively. There were differences (P < 0.001) between uncorrected N degradability values and those corrected for microbial contamination with all of the methods. Apparent N degradability of the low-N, high-fiber forage (late-cut ryegrass) was 0.51, whereas the corrected values were 0.85, 0.84, and 0.77 for the LF, SAB, and LAB methods, respectively. With early-cut ryegrass and red clover, the differences between uncorrected and corrected values ranged between 6% and 13%, with small differences among the labeling methods. Generally, methods using labeled forage or labeled SAB and LAB provided similar corrected degradability values. The accuracy in estimating the extent of degradation of protein in the rumen from in situ disappearance curves is improved when values are corrected for microbial contamination of the bag residue.
The Role of Semantic Clustering in Optimal Memory Foraging
ERIC Educational Resources Information Center
Montez, Priscilla; Thompson, Graham; Kello, Christopher T.
2015-01-01
Recent studies of semantic memory have investigated two theories of optimal search adopted from the animal foraging literature: Lévy flights and marginal value theorem. Each theory makes different simplifying assumptions and addresses different findings in search behaviors. In this study, an experiment is conducted to test whether clustering in…
Information Foraging in Nuclear Power Plant Control Rooms
DOE Office of Scientific and Technical Information (OSTI.GOV)
R.L. Boring
2011-09-01
nformation foraging theory articulates the role of the human as an 'informavore' that seeks information and follows optimal foraging strategies (i.e., the 'information scent') to find meaningful information. This paper briefly reviews the findings from information foraging theory outside the nuclear domain and then discusses the types of information foraging strategies operators employ for normal and off-normal operations in the control room. For example, operators may employ a predatory 'wolf' strategy of hunting for information in the face of a plant upset. However, during routine operations, the operators may employ a trapping 'spider' strategy of waiting for relevant indicators tomore » appear. This delineation corresponds to information pull and push strategies, respectively. No studies have been conducted to determine explicitly the characteristics of a control room interface that is optimized for both push and pull information foraging strategies, nor has there been empirical work to validate operator performance when transitioning between push and pull strategies. This paper explores examples of control room operators as wolves vs. spiders and con- cludes by proposing a set of research questions to investigate information foraging in control room settings.« less
The effects of facilitation and competition on group foraging in patches
Laguë, Marysa; Tania, Nessy; Heath, Joel; Edelstein-Keshet, Leah
2012-01-01
Significant progress has been made towards understanding the social behaviour of animal groups, but the patch model, a foundation of foraging theory, has received little attention in a social context. The effect of competition on the optimal time to leave a foraging patch was considered as early as the original formulation of the marginal value theorem, but surprisingly, the role of facilitation (where foraging in groups decreases the time to find food in patches), has not been incorporated. Here we adapt the classic patch model to consider how the trade-off between facilitation and competition influence optimal group size. Using simple assumptions about the effect of group size on the food-finding time and the sharing of resources, we find conditions for existence of optima in patch residence time and in group size. When patches are close together (low travel times), larger group sizes are optimal. Groups are predicted to exploit patches differently than individual foragers and the degree of patch depletion at departure depends on the details of the trade-off between competition and facilitation. A variety of currencies and group-size effects are also considered and compared. Using our simple formulation, we also study the effects of social foraging on patch exploitation which to date have received little empirical study. PMID:22743132
The effects of facilitation and competition on group foraging in patches.
Laguë, Marysa; Tania, Nessy; Heath, Joel; Edelstein-Keshet, Leah
2012-10-07
Significant progress has been made towards understanding the social behaviour of animal groups, but the patch model, a foundation of foraging theory, has received little attention in a social context. The effect of competition on the optimal time to leave a foraging patch was considered as early as the original formulation of the marginal value theorem, but surprisingly, the role of facilitation (where foraging in groups decreases the time to find food in patches), has not been incorporated. Here we adapt the classic patch model to consider how the trade-off between facilitation and competition influences optimal group size. Using simple assumptions about the effect of group size on the food-finding time and the sharing of resources, we find conditions for existence of optima in patch residence time and in group size. When patches are close together (low travel times), larger group sizes are optimal. Groups are predicted to exploit patches differently than individual foragers and the degree of patch depletion at departure depends on the details of the trade-off between competition and facilitation. A variety of currencies and group-size effects are also considered and compared. Using our simple formulation, we also study the effects of social foraging on patch exploitation which to date have received little empirical study. Copyright © 2012 Elsevier Ltd. All rights reserved.
Wehmeyer, Christoph; Falk von Rudorff, Guido; Wolf, Sebastian; Kabbe, Gabriel; Schärf, Daniel; Kühne, Thomas D; Sebastiani, Daniel
2012-11-21
We present a stochastic, swarm intelligence-based optimization algorithm for the prediction of global minima on potential energy surfaces of molecular cluster structures. Our optimization approach is a modification of the artificial bee colony (ABC) algorithm which is inspired by the foraging behavior of honey bees. We apply our modified ABC algorithm to the problem of global geometry optimization of molecular cluster structures and show its performance for clusters with 2-57 particles and different interatomic interaction potentials.
NASA Astrophysics Data System (ADS)
Wehmeyer, Christoph; Falk von Rudorff, Guido; Wolf, Sebastian; Kabbe, Gabriel; Schärf, Daniel; Kühne, Thomas D.; Sebastiani, Daniel
2012-11-01
We present a stochastic, swarm intelligence-based optimization algorithm for the prediction of global minima on potential energy surfaces of molecular cluster structures. Our optimization approach is a modification of the artificial bee colony (ABC) algorithm which is inspired by the foraging behavior of honey bees. We apply our modified ABC algorithm to the problem of global geometry optimization of molecular cluster structures and show its performance for clusters with 2-57 particles and different interatomic interaction potentials.
Wong, W Z; H'ng, P S; Chin, K L; Sajap, Ahmad Said; Tan, G H; Paridah, M T; Othman, Soni; Chai, E W; Go, W Z
2015-10-01
The lower termite, Coptotermes curvignathus, is one of the most prominent plantation pests that feed upon, digest, and receive nourishment from exclusive lignocellulose diets. The objective of this study was to examine the utilization of sole carbon sources by isolated culturable aerobic bacteria among communities from the gut and foraging pathway of C. curvignathus. We study the bacteria occurrence from the gut of C. curvignathus and its surrounding feeding area by comparing the obtained phenotypic fingerprint with Biolog's extensive species library. A total of 24 bacteria have been identified mainly from the family Enterobacteriaceae from the identification of Biolog Gen III. Overall, the bacteria species in the termite gut differ from those of foraging pathway within a location, except Acintobacter baumannii, which was the only bacteria species found in both habitats. Although termites from a different study area do not have the same species of bacteria in the gut, they do have a bacterial community with similar role in degrading certain carbon sources. Sugars were preferential in termite gut isolates, while nitrogen carbon sources were preferential in foraging pathway isolates. The preferential use of specific carbon sources by these two bacterial communities reflects the role of bacteria for regulation of carbon metabolism in the termite gut and foraging pathway. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Evaluating Student Assessments: The Use of Optimal Foraging Theory
ERIC Educational Resources Information Center
Whalley, W. Brian
2016-01-01
The concepts of optimal foraging theory and the marginal value theorem are used to investigate possible student behaviour in accruing marks in various forms of assessment. The ideas of predator energy consumption, handling and search times can be evaluated in terms of student behaviour and gaining marks or "attainment". These ideas can…
Animal Foraging and the Evolution of Goal-Directed Cognition
ERIC Educational Resources Information Center
Hills, Thomas T.
2006-01-01
Foraging-and feeding-related behaviors across eumetazoans share similar molecular mechanisms, suggesting the early evolution of an optimal foraging behavior called area-restricted search (ARS), involving mechanisms of dopamine and glutamate in the modulation of behavioral focus. Similar mechanisms in the vertebrate basal ganglia control motor…
Pitta, D W; Pinchak, W E; Dowd, S; Dorton, K; Yoon, I; Min, B R; Fulford, J D; Wickersham, T A; Malinowski, D P
2014-12-01
Grazing steers on winter wheat forage is routinely practiced in the Southern Great Plains of the US. Here, we investigated the dynamics in bacterial populations of both solid and liquid ruminal fractions of steers grazing on maturing wheat forage of changing nutritive quality. The relationship between bacterial diversity and fermentation parameters in the liquid fraction was also investigated. During the first 28 days, the wheat was in a vegetative phase with a relatively high crude protein content (CP; 21%), which led to the incidence of mild cases of frothy bloat among steers. Rumen samples were collected on days 14, 28, 56 and 76, separated into solid and liquid fractions and analyzed for bacterial diversity using 16S pyrotag technology. The predominant phyla identified were Bacteroidetes (59-77%) and Firmicutes (20-33%) across both ruminal fractions. Very few differences were observed in the rumen bacterial communities within solid and liquid fractions on day 14. However, by day 28, the relatively high CP content complemented a distinct bacterial and chemical composition of the rumen fluid that was characterized by a higher ratio (4:1) of Bacteroidetes:Firmicutes and a corresponding lower acetate:propionate (3:1) ratio. Further, a greater accumulation of biofilm (mucopolysaccharide complex) on day 28 was strongly associated with the abundance of Firmicutes lineages such as Clostridium, Ruminococcus, Oscillospira and Moryella (P<0.05) in the fiber fraction. Such changes were diminished as the CP concentration declined over the course of the study. The abundance of Firmicutes was noticeable by 76 d in both fractions which signifies the development of a core microbiome associated with digestion of a more recalcitrant fiber in the mature wheat. This study demonstrates dynamics in the rumen microbiome and their association with fermentation activity in the rumen of steers during the vegetative (bloat-prone) and reproductive stages of wheat forage. Copyright © 2014 Elsevier Ltd. All rights reserved.
Martínez, M E; Ranilla, M J; Tejido, M L; Saro, C; Carro, M D
2010-08-01
Four ruminally and duodenally cannulated sheep and 8 Rusitec fermenters were used to determine the effects of dietary characteristics on microbial populations and bacterial diversity. The purpose of the study was to assess how closely fermenters can mimic the differences between diets found in vivo. The 4 experimental diets contained forage to concentrate (F:C) ratios of 70:30 (high forage; HF) or 30:70 (high concentrate; HC) with either alfalfa hay (A) or grass hay (G) as the forage. Total bacterial numbers were greater in the rumen of sheep fed HF diets compared with those fed HC diets, whereas the opposite was found in fermenters. The numbers of cellulolytic bacteria were not affected by F:C ratio in any fermentation system, but cellulolytic numbers were 2.7 and 1.8 times greater in sheep than in fermenters for HF and HC diets, respectively. Neither total bacterial nor cellulolytic numbers were affected by the type of forage in sheep or fermenters. Decreasing F:C ratio increased total protozoa and Entodiniae numbers in sheep by about 29 and 25%, respectively, but it had no effect in fermenters. Isotrichidae and Ophryoscolecinae numbers in sheep were not affected by changing F:C ratio, but both disappeared completely from fermenters fed HC diets. Total protozoa and Entodiniae numbers were greater in sheep fed A diets than in those fed G diets, whereas the opposite was found in fermenters. Results indicate that under the conditions of the present study, protozoa population in Rusitec fermenters was not representative of that in the rumen of sheep fed the same diets. In addition, protozoa numbers in fermenters were 121 and 226 times lower than those in the sheep rumen for HF and HC diets, respectively. The automated ribosomal intergenic spacer analysis of the 16S ribosomal DNA was used to analyze the diversity of liquid- and solid-associated bacteria in both systems. A total of 170 peaks were detected in the automated ribosomal intergenic spacer analysis electropherograms of bacterial pellets across the full set of 64 samples, from which 160 were detected in at least 1 individual from each system (sheep or fermenter). Diversity of liquid-associated bacterial pellets was greater with G diets in fermenters but seemed to be unaffected by diet in sheep. Bacterial diversity in solid-associated bacteria pellets was greater for G diets compared with A diets in sheep and fermenters. Different conditions in the fermenters compared with sheep rumen might have caused a selection of some bacterial strains. Copyright (c) 2010 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Su, Weixing; Chen, Hanning; Liu, Fang; Lin, Na; Jing, Shikai; Liang, Xiaodan; Liu, Wei
2017-03-01
There are many dynamic optimization problems in the real world, whose convergence and searching ability is cautiously desired, obviously different from static optimization cases. This requires an optimization algorithm adaptively seek the changing optima over dynamic environments, instead of only finding the global optimal solution in the static environment. This paper proposes a novel comprehensive learning artificial bee colony optimizer (CLABC) for optimization in dynamic environments problems, which employs a pool of optimal foraging strategies to balance the exploration and exploitation tradeoff. The main motive of CLABC is to enrich artificial bee foraging behaviors in the ABC model by combining Powell's pattern search method, life-cycle, and crossover-based social learning strategy. The proposed CLABC is a more bee-colony-realistic model that the bee can reproduce and die dynamically throughout the foraging process and population size varies as the algorithm runs. The experiments for evaluating CLABC are conducted on the dynamic moving peak benchmarks. Furthermore, the proposed algorithm is applied to a real-world application of dynamic RFID network optimization. Statistical analysis of all these cases highlights the significant performance improvement due to the beneficial combination and demonstrates the performance superiority of the proposed algorithm.
Fernandes, Karlette A.; Kittelmann, Sandra; Rogers, Christopher W.; Gee, Erica K.; Bolwell, Charlotte F.; Bermingham, Emma N.; Thomas, David G.
2014-01-01
The effects of abrupt dietary transition on the faecal microbiota of forage-fed horses over a 3-week period were investigated. Yearling Thoroughbred fillies reared as a cohort were exclusively fed on either an ensiled conserved forage-grain diet (“Group A”; n = 6) or pasture (“Group B”; n = 6) for three weeks prior to the study. After the Day 0 faecal samples were collected, horses of Group A were abruptly transitioned to pasture. Both groups continued to graze similar pasture for three weeks, with faecal samples collected at 4-day intervals. DNA was isolated from the faeces and microbial 16S and 18S rRNA gene amplicons were generated and analysed by pyrosequencing. The faecal bacterial communities of both groups of horses were highly diverse (Simpson’s index of diversity >0.8), with differences between the two groups on Day 0 (P<0.017 adjusted for multiple comparisons). There were differences between Groups A and B in the relative abundances of four genera, BF311 (family Bacteroidaceae; P = 0.003), CF231 (family Paraprevotellaceae; P = 0.004), and currently unclassified members within the order Clostridiales (P = 0.003) and within the family Lachnospiraceae (P = 0.006). The bacterial community of Group A horses became similar to Group B within four days of feeding on pasture, whereas the structure of the archaeal community remained constant pre- and post-dietary change. The community structure of the faecal microbiota (bacteria, archaea and ciliate protozoa) of pasture-fed horses was also identified. The initial differences observed appeared to be linked to recent dietary history, with the bacterial community of the forage-fed horses responding rapidly to abrupt dietary change. PMID:25383707
Fernandes, Karlette A; Kittelmann, Sandra; Rogers, Christopher W; Gee, Erica K; Bolwell, Charlotte F; Bermingham, Emma N; Thomas, David G
2014-01-01
The effects of abrupt dietary transition on the faecal microbiota of forage-fed horses over a 3-week period were investigated. Yearling Thoroughbred fillies reared as a cohort were exclusively fed on either an ensiled conserved forage-grain diet ("Group A"; n = 6) or pasture ("Group B"; n = 6) for three weeks prior to the study. After the Day 0 faecal samples were collected, horses of Group A were abruptly transitioned to pasture. Both groups continued to graze similar pasture for three weeks, with faecal samples collected at 4-day intervals. DNA was isolated from the faeces and microbial 16S and 18S rRNA gene amplicons were generated and analysed by pyrosequencing. The faecal bacterial communities of both groups of horses were highly diverse (Simpson's index of diversity > 0.8), with differences between the two groups on Day 0 (P < 0.017 adjusted for multiple comparisons). There were differences between Groups A and B in the relative abundances of four genera, BF311 (family Bacteroidaceae; P = 0.003), CF231 (family Paraprevotellaceae; P = 0.004), and currently unclassified members within the order Clostridiales (P = 0.003) and within the family Lachnospiraceae (P = 0.006). The bacterial community of Group A horses became similar to Group B within four days of feeding on pasture, whereas the structure of the archaeal community remained constant pre- and post-dietary change. The community structure of the faecal microbiota (bacteria, archaea and ciliate protozoa) of pasture-fed horses was also identified. The initial differences observed appeared to be linked to recent dietary history, with the bacterial community of the forage-fed horses responding rapidly to abrupt dietary change.
ERIC Educational Resources Information Center
Mazur-Stommen, Susan
2006-01-01
This article contributes to the field of anthropological pedagogy, adding to recent articles regarding needed change in anthropology teaching methods. All have in common the practice of anthropology in the classroom. The author used the theory of optimal foraging to encourage students to operationalize human behavior. The economic benefit that…
Rumen Bacterial Degradation of Forage Cell Walls Investigated by Electron Microscopy
Akin, Danny E.; Amos, Henry E.
1975-01-01
The association of rumen bacteria with specific leaf tissues of the forage grass Kentucky-31 tall fescue (Festuca arundinacea Schreb.) during in vitro degradation was investigated by transmission and scanning electron microscopy. Examination of degraded leaf cross-sections revealed differential rates of tissue degradation in that the cell walls of the mesophyll and pholem were degraded prior to those of the outer bundle sheath and epidermis. Rumen bacteria appeared to degrade the mesophyll, in some cases, and phloem without prior attachment to the plant cell walls. The degradation of bundle sheath and epidermal cell walls appeared to be preceded by attachment of bacteria to the plant cell wall. Ultrastructural features apparently involved in the adhesion of large cocci to plant cells were observed by transmission and scanning electron microscopy. The physical association between plant and rumen bacterial cells during degradation apparently varies with tissue types. Bacterial attachment, by extracellular features in some microorganisms, is required prior to degradation of the more resistant tissues. Images PMID:16350017
USDA-ARS?s Scientific Manuscript database
Depending on concentration, condensed tannins (CT) in forages have no effect, enhance, or impede protein utilization and performance of ruminants. Defining optimal forage CT levels has been elusive, partly because current methods for estimating total soluble plus insoluble CT are laborious or inaccu...
AlZahal, Ousama; Li, Fuyong; Guan, Le Luo; Walker, Nicola D; McBride, Brian W
2017-06-01
The objective of the current study was to employ a DNA-based sequencing technology to study the effect of active dry yeast (ADY) supplementation, diet type, and sample location within the rumen on rumen bacterial community diversity and composition, and to use an RNA-based method to study the effect of ADY supplementation on rumen microbial metabolism during high-grain feeding (HG). Our previous report demonstrated that the supplementation of lactating dairy cows with ADY attenuated the effect of subacute ruminal acidosis. Therefore, we used samples from that study, where 16 multiparous, rumen-cannulated lactating Holstein cows were randomly assigned to 1 of 2 dietary treatments: ADY (Saccharomyces cerevisiae strain Y1242, 80 billion cfu/animal per day) or control (carrier only). Cows received a high-forage diet (77:23, forage:concentrate), then were abruptly switched to HG (49:51, forage:concentrate). Rumen bacterial community diversity and structure were highly influenced by diet and sampling location (fluid, solids, epimural). The transition to HG reduced bacterial diversity, but epimural bacteria maintained a greater diversity than fluid and solids. Analysis of molecular variance indicated a significant separation due to diet × sampling location, but not due to treatment. Across all samples, the analysis yielded 6,254 nonsingleton operational taxonomic units (OTU), which were classified into several phyla: mainly Firmicutes, Bacteroidetes, Fibrobacteres, Tenericutes, and Proteobacteria. High forage and solids were dominated by OTU from Fibrobacter, whereas HG and fluid were dominated by OTU from Prevotella. Epimural samples, however, were dominated in part by Campylobacter. Active dry yeast had no effect on bacterial community diversity or structure. The phylum SR1 was more abundant in all ADY samples regardless of diet or sampling location. Furthermore, on HG, OTU2 and OTU3 (both classified into Fibrobacter succinogenes) were more abundant with ADY in fluid and solids than control samples. This increase with ADY was paralleled by a reduction in prominent Prevotella OTU. Metatranscriptomic profiling of rumen microbiome conducted on random samples from the HG phase showed that ADY increased the abundance of the cellulase endo-β-1,4-glucanase and had a tendency to increase the hemicellulase α-glucuronidase. In conclusion, the shift from high forage to HG and sampling location had a more significant influence on ruminal bacterial community abundance and structure compared with ADY. However, evidence suggested that ADY can increase the abundance of some dominant anaerobic OTU belonging to F. succinogenes and phylum SR1. Further, microbial mRNA-based evidence suggested that ADY can increase the abundance of a specific microbial fibrolytic enzymes. The Authors. Published by the Federation of Animal Science Societies and Elsevier Inc. on behalf of the American Dairy Science Association®. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).
Carberry, Ciara A.; Kenny, David A.; Han, Sukkyan; McCabe, Matthew S.
2012-01-01
Feed-efficient animals have lower production costs and reduced environmental impact. Given that rumen microbial fermentation plays a pivotal role in host nutrition, the premise that rumen microbiota may contribute to host feed efficiency is gaining momentum. Since diet is a major factor in determining rumen community structure and fermentation patterns, we investigated the effect of divergence in phenotypic residual feed intake (RFI) on ruminal community structure of beef cattle across two contrasting diets. PCR-denaturing gradient gel electrophoresis (DGGE) and quantitative PCR (qPCR) were performed to profile the rumen bacterial population and to quantify the ruminal populations of Entodinium spp., protozoa, Fibrobacter succinogenes, Ruminococcus flavefaciens, Ruminococcus albus, Prevotella brevis, the genus Prevotella, and fungi in 14 low (efficient)- and 14 high (inefficient)-RFI animals offered a low-energy, high-forage diet, followed by a high-energy, low-forage diet. Canonical correspondence and Spearman correlation analyses were used to investigate associations between physiological variables and rumen microbial structure and specific microbial populations, respectively. The effect of RFI on bacterial profiles was influenced by diet, with the association between RFI group and PCR-DGGE profiles stronger for the higher forage diet. qPCR showed that Prevotella abundance was higher (P < 0.0001) in inefficient animals. A higher (P < 0.0001) abundance of Entodinium and Prevotella spp. and a lower (P < 0.0001) abundance of Fibrobacter succinogenes were observed when animals were offered the low-forage diet. Thus, differences in the ruminal microflora may contribute to host feed efficiency, although this effect may also be modulated by the diet offered. PMID:22562991
Carberry, Ciara A; Kenny, David A; Han, Sukkyan; McCabe, Matthew S; Waters, Sinead M
2012-07-01
Feed-efficient animals have lower production costs and reduced environmental impact. Given that rumen microbial fermentation plays a pivotal role in host nutrition, the premise that rumen microbiota may contribute to host feed efficiency is gaining momentum. Since diet is a major factor in determining rumen community structure and fermentation patterns, we investigated the effect of divergence in phenotypic residual feed intake (RFI) on ruminal community structure of beef cattle across two contrasting diets. PCR-denaturing gradient gel electrophoresis (DGGE) and quantitative PCR (qPCR) were performed to profile the rumen bacterial population and to quantify the ruminal populations of Entodinium spp., protozoa, Fibrobacter succinogenes, Ruminococcus flavefaciens, Ruminococcus albus, Prevotella brevis, the genus Prevotella, and fungi in 14 low (efficient)- and 14 high (inefficient)-RFI animals offered a low-energy, high-forage diet, followed by a high-energy, low-forage diet. Canonical correspondence and Spearman correlation analyses were used to investigate associations between physiological variables and rumen microbial structure and specific microbial populations, respectively. The effect of RFI on bacterial profiles was influenced by diet, with the association between RFI group and PCR-DGGE profiles stronger for the higher forage diet. qPCR showed that Prevotella abundance was higher (P < 0.0001) in inefficient animals. A higher (P < 0.0001) abundance of Entodinium and Prevotella spp. and a lower (P < 0.0001) abundance of Fibrobacter succinogenes were observed when animals were offered the low-forage diet. Thus, differences in the ruminal microflora may contribute to host feed efficiency, although this effect may also be modulated by the diet offered.
Social status shapes the bacterial and fungal gut communities of the honey bee.
Yun, Ji-Hyun; Jung, Mi-Ja; Kim, Pil Soo; Bae, Jin-Woo
2018-01-31
Despite the fungal abundance in honey and bee bread, little is known about the fungal gut community of the honey bee and its effect on host fitness. Using pyrosequencing of the 16S rRNA gene and ITS2 region amplicons, we analysed the bacterial and fungal gut communities of the honey bee as affected by the host social status. Both communities were significantly affected by the host social status. The bacterial gut community was similar to those characterised in previous studies. The fungal gut communities of most worker bees were highly dominated by Saccharomyces but foraging bees and queens were colonised by diverse fungal species and Zygosaccharomyces, respectively. The high fungal density and positive correlation between Saccharomyces species and Lactobacillus species, known yeast antagonists, were only observed in the nurse bee; this suggested that the conflict between Saccharomyces and Lactobacillus was compromised by the metabolism of the host and/or other gut microbes. PICRUSt analysis revealed significant differences in enriched gene clusters of the bacterial gut communities of the nurse and foraging bees, suggesting that different host social status might induce changes in the gut microbiota, and, that consequently, gut microbial community shifts to adapt to the gut environment.
Petri, R M; Schwaiger, T; Penner, G B; Beauchemin, K A; Forster, R J; McKinnon, J J; McAllister, T A
2013-06-01
Little is known about the nature of the rumen epithelial adherent (epimural) microbiome in cattle fed different diets. Using denaturing gradient gel electrophoresis (DGGE), quantitative real-time PCR (qPCR), and pyrosequencing of the V3 hypervariable coding region of 16S rRNA, epimural bacterial communities of 8 cattle were profiled during the transition from a forage to a high-concentrate diet, during acidosis, and after recovery. A total of 153,621 high-quality gene sequences were obtained, with populations exhibiting less taxonomic variability among individuals than across diets. The bacterial community composition exhibited clustering (P < 0.03) by diet, with only 14 genera, representing >1% of the rumen epimural population, differing (P ≤ 0.05) among diets. During acidosis, levels of Atopobium, Desulfocurvus, Fervidicola, Lactobacillus, and Olsenella increased, while during the recovery, Desulfocurvus, Lactobacillus, and Olsenella reverted to levels similar to those with the high-grain diet and Sharpea and Succinivibrio reverted to levels similar to those with the forage diet. The relative abundances of bacterial populations changed during diet transition for all qPCR targets except Streptococcus spp. Less than 5% of total operational taxonomic units (OTUs) identified exhibited significant variability across diets. Based on DGGE, the community structures of epithelial populations differed (P ≤ 0.10); segregation was most prominent for the mixed forage diet versus the grain, acidotic challenge, and recovery diets. Atopobium, cc142, Lactobacillus, Olsenella, RC39, Sharpea, Solobacterium, Succiniclasticum, and Syntrophococcus were particularly prevalent during acidosis. Determining the metabolic roles of these key genera in the rumens of cattle fed high-grain diets could define a clinical microbial profile associated with ruminal acidosis.
Petri, R. M.; Schwaiger, T.; Penner, G. B.; Beauchemin, K. A.; Forster, R. J.; McKinnon, J. J.
2013-01-01
Little is known about the nature of the rumen epithelial adherent (epimural) microbiome in cattle fed different diets. Using denaturing gradient gel electrophoresis (DGGE), quantitative real-time PCR (qPCR), and pyrosequencing of the V3 hypervariable coding region of 16S rRNA, epimural bacterial communities of 8 cattle were profiled during the transition from a forage to a high-concentrate diet, during acidosis, and after recovery. A total of 153,621 high-quality gene sequences were obtained, with populations exhibiting less taxonomic variability among individuals than across diets. The bacterial community composition exhibited clustering (P < 0.03) by diet, with only 14 genera, representing >1% of the rumen epimural population, differing (P ≤ 0.05) among diets. During acidosis, levels of Atopobium, Desulfocurvus, Fervidicola, Lactobacillus, and Olsenella increased, while during the recovery, Desulfocurvus, Lactobacillus, and Olsenella reverted to levels similar to those with the high-grain diet and Sharpea and Succinivibrio reverted to levels similar to those with the forage diet. The relative abundances of bacterial populations changed during diet transition for all qPCR targets except Streptococcus spp. Less than 5% of total operational taxonomic units (OTUs) identified exhibited significant variability across diets. Based on DGGE, the community structures of epithelial populations differed (P ≤ 0.10); segregation was most prominent for the mixed forage diet versus the grain, acidotic challenge, and recovery diets. Atopobium, cc142, Lactobacillus, Olsenella, RC39, Sharpea, Solobacterium, Succiniclasticum, and Syntrophococcus were particularly prevalent during acidosis. Determining the metabolic roles of these key genera in the rumens of cattle fed high-grain diets could define a clinical microbial profile associated with ruminal acidosis. PMID:23584771
Kim, Yo-Han; Nagata, Rie; Ohtani, Natsuki; Ichijo, Toshihiro; Ikuta, Kentaro; Sato, Shigeru
2016-01-01
We investigated the relationship between ruminal pH and bacteria in calves fed calf starter with and without forage during weaning transition. First, 16 Holstein bull calves were obtained from dairy farms and equipped with rumen cannulas by cannulation surgery. Then, calves (73.5 ± 4.2 kg; mean ± SE) were assigned to groups fed calf starter either with forage (HAY, n = 8) or without forage (CON, n = 8), and all calves were weaned at 8 weeks of age. Ruminal pH was measured continuously, and rumen fluid samples were collected at 7, 8, 9, and 11 weeks of age, namely −1, 0, 1, and 3 weeks after weaning, respectively, to assess volatile fatty acid concentrations and bacterial DNA. The 24-h mean ruminal pH was significantly (P < 0.05) different between the two groups. Diurnal changes in the 1-h mean ruminal pH were observed throughout the study in the HAY group; however, they were not observed at 0 and 1 weeks after weaning in the CON group. Moreover, the HAY group had significantly (P < 0.05) higher proportions of acetate and butyrate and lower proportion of propionate, and significantly (P < 0.05) lower ruminal acetate-to-propionate ratios were observed in the CON group. The ruminal bacterial diversity indices decreased after −1 week in both groups and increased at 0 and 1 weeks after weaning in the HAY and CON groups, respectively. From the 454 pyrosequencing analysis, significant differences (P < 0.05) were observed in the relative abundance of several phyla (Bacteroidetes, Actinobacteria, and Tenericutes) and one genus (Prevotella) between the two groups. From quantitative real-time PCR analysis, the HAY group had the higher copy numbers of cellulolytic bacteria (Ruminococcus flavefaciens and Ruminococcus albus) compared with the CON group. This study demonstrated that feeding of dietary forage alleviates subacute ruminal acidosis due to diurnal changes in ruminal pH. Furthermore, changes in ruminal pH affect the ruminal bacterial diversity and relative abundance, and these changes might have influenced the establishment of fermentative ruminal functions during weaning transition. PMID:27818645
McFrederick, Quinn S; Wcislo, William T; Hout, Michael C; Mueller, Ulrich G
2014-05-01
Social transmission and host developmental stage are thought to profoundly affect the structure of bacterial communities associated with honey bees and bumble bees, but these ideas have not been explored in other bee species. The halictid bees Megalopta centralis and M. genalis exhibit intrapopulation social polymorphism, which we exploit to test whether bacterial communities differ by host social structure, developmental stage, or host species. We collected social and solitary Megalopta nests and sampled bees and nest contents from all stages of host development. To survey these bacterial communities, we used 16S rRNA gene 454 pyrosequencing. We found no effect of social structure, but found differences by host species and developmental stage. Wolbachia prevalence differed between the two host species. Bacterial communities associated with different developmental stages appeared to be driven by environmentally acquired bacteria. A Lactobacillus kunkeei clade bacterium that is consistently associated with other bee species was dominant in pollen provisions and larval samples, but less abundant in mature larvae and pupae. Foraging adults appeared to often reacquire L. kunkeei clade bacteria, likely while foraging at flowers. Environmental transmission appears to be more important than social transmission for Megalopta bees at the cusp between social and solitary behavior. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.
Hybrid Artificial Root Foraging Optimizer Based Multilevel Threshold for Image Segmentation
Liu, Yang; Liu, Junfei
2016-01-01
This paper proposes a new plant-inspired optimization algorithm for multilevel threshold image segmentation, namely, hybrid artificial root foraging optimizer (HARFO), which essentially mimics the iterative root foraging behaviors. In this algorithm the new growth operators of branching, regrowing, and shrinkage are initially designed to optimize continuous space search by combining root-to-root communication and coevolution mechanism. With the auxin-regulated scheme, various root growth operators are guided systematically. With root-to-root communication, individuals exchange information in different efficient topologies, which essentially improve the exploration ability. With coevolution mechanism, the hierarchical spatial population driven by evolutionary pressure of multiple subpopulations is structured, which ensure that the diversity of root population is well maintained. The comparative results on a suit of benchmarks show the superiority of the proposed algorithm. Finally, the proposed HARFO algorithm is applied to handle the complex image segmentation problem based on multilevel threshold. Computational results of this approach on a set of tested images show the outperformance of the proposed algorithm in terms of optimization accuracy computation efficiency. PMID:27725826
Hybrid Artificial Root Foraging Optimizer Based Multilevel Threshold for Image Segmentation.
Liu, Yang; Liu, Junfei; Tian, Liwei; Ma, Lianbo
2016-01-01
This paper proposes a new plant-inspired optimization algorithm for multilevel threshold image segmentation, namely, hybrid artificial root foraging optimizer (HARFO), which essentially mimics the iterative root foraging behaviors. In this algorithm the new growth operators of branching, regrowing, and shrinkage are initially designed to optimize continuous space search by combining root-to-root communication and coevolution mechanism. With the auxin-regulated scheme, various root growth operators are guided systematically. With root-to-root communication, individuals exchange information in different efficient topologies, which essentially improve the exploration ability. With coevolution mechanism, the hierarchical spatial population driven by evolutionary pressure of multiple subpopulations is structured, which ensure that the diversity of root population is well maintained. The comparative results on a suit of benchmarks show the superiority of the proposed algorithm. Finally, the proposed HARFO algorithm is applied to handle the complex image segmentation problem based on multilevel threshold. Computational results of this approach on a set of tested images show the outperformance of the proposed algorithm in terms of optimization accuracy computation efficiency.
Soundharrajan, Ilavenil; Kim, Da Hye; Srisesharam, Srigopalram; Kuppusamy, Palaniselvam; Park, Hyung Soo; Yoon, Yong Hee; Kim, Won Ho; Song, Young Gil; Choi, Ki Choon
2017-10-01
The present study aimed to investigate the efficacy of customised Lactobacillus plantarum KCC-10, KCC-19 and K-46 on nutrient composition and fermentation quality of low moisture Italian ryegrass (IRG) forage. An addition of customised bacterial inoculants (CBI) did not affect the nutrient compositions and digestibility rates of haylage. The lactic acid content was higher in CBI-inoculated haylage, whereas the amount of acetic acid and butyric acid production was significantly reduced than the control. CBI-inoculated haylage exhibited higher numbers of bacterial colonies that reduced the pH of the haylage. Low pH in haylage is an important criterion for preventing undesirable microbial growth and improves fermentation quality of haylage. PCR studies indicated that the DNA of L. plantarum was predominantly amplified. It evidenced that the CBI is the main reason behind the improvement of haylage fermentation as compared to control. Overall results suggested that KCC-10, KCC-19 and K-46 are considered as potent strains for improving fermentation quality of low moisture forage and preserve its stability for a long time.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wasserman, F.E.; Patterson, D.A.; Kunz, T.H.
1986-01-01
The effect of chronic continuous wave microwave radiation on the foraging behavior of the White-throated Sparrow was examined using an optimal foraging laboratory technique. Birds were exposed to microwaves for seven days at a frequency of 2.45 GHz and power densities of 0.0, 0.1, 1.0, 10.0, and 25.0 mW/cm/sup 2/. Even though there were differences in foraging behaviors among power densities no trend was found for a dose response effect. Birds showed no significant differences in foraging behaviors among pre-exposure, exposure, and post-exposure periods.
Ahmad, Faisul Arif; Ramli, Abd Rahman; Samsudin, Khairulmizam; Hashim, Shaiful Jahari
2014-01-01
Deploying large numbers of mobile robots which can interact with each other produces swarm intelligent behavior. However, mobile robots are normally running with finite energy resource, supplied from finite battery. The limitation of energy resource required human intervention for recharging the batteries. The sharing information among the mobile robots would be one of the potentials to overcome the limitation on previously recharging system. A new approach is proposed based on integrated intelligent system inspired by foraging of honeybees applied to multimobile robot scenario. This integrated approach caters for both working and foraging stages for known/unknown power station locations. Swarm mobile robot inspired by honeybee is simulated to explore and identify the power station for battery recharging. The mobile robots will share the location information of the power station with each other. The result showed that mobile robots consume less energy and less time when they are cooperating with each other for foraging process. The optimizing of foraging behavior would result in the mobile robots spending more time to do real work.
Ahmad, Faisul Arif; Ramli, Abd Rahman; Samsudin, Khairulmizam; Hashim, Shaiful Jahari
2014-01-01
Deploying large numbers of mobile robots which can interact with each other produces swarm intelligent behavior. However, mobile robots are normally running with finite energy resource, supplied from finite battery. The limitation of energy resource required human intervention for recharging the batteries. The sharing information among the mobile robots would be one of the potentials to overcome the limitation on previously recharging system. A new approach is proposed based on integrated intelligent system inspired by foraging of honeybees applied to multimobile robot scenario. This integrated approach caters for both working and foraging stages for known/unknown power station locations. Swarm mobile robot inspired by honeybee is simulated to explore and identify the power station for battery recharging. The mobile robots will share the location information of the power station with each other. The result showed that mobile robots consume less energy and less time when they are cooperating with each other for foraging process. The optimizing of foraging behavior would result in the mobile robots spending more time to do real work. PMID:24949491
Higginson, Andrew D; Fawcett, Tim W; Trimmer, Pete C; McNamara, John M; Houston, Alasdair I
2012-11-01
Animals live in complex environments in which predation risk and food availability change over time. To deal with this variability and maximize their survival, animals should take into account how long current conditions may persist and the possible future conditions they may encounter. This should affect their foraging activity, and with it their vulnerability to predation across periods of good and bad conditions. Here we develop a comprehensive theory of optimal risk allocation that allows for environmental persistence and for fluctuations in food availability as well as predation risk. We show that it is the duration of good and bad periods, independent of each other, rather than the overall proportion of time exposed to each that is the most important factor affecting behavior. Risk allocation is most pronounced when conditions change frequently, and optimal foraging activity can either increase or decrease with increasing exposure to bad conditions. When food availability fluctuates rapidly, animals should forage more when food is abundant, whereas when food availability fluctuates slowly, they should forage more when food is scarce. We also show that survival can increase as variability in predation risk increases. Our work reveals that environmental persistence should profoundly influence behavior. Empirical studies of risk allocation should therefore carefully control the duration of both good and bad periods and consider manipulating food availability as well as predation risk.
Fostering the future with forages
USDA-ARS?s Scientific Manuscript database
Sustainability of agriculture requires innovation and development of systems with high potential to optimize productivity and environmental quality. An ARS scientist in the Plant Science Research Unit in Raleigh NC summarized the multitude of ecosystem services provided by forages, and the potentia...
Demma, D.J.; Mech, L.D.
2009-01-01
We tested whether Wolf (Canis lupus) visits to individual female White-tailed Deer (Odocoileus virginianus) summer ranges during 2003 and 2004 in northeastern Minnesota were in accord with optimal-foraging theory. Using GPS collars with 10- to 30-minute location attempts on four Wolves and five female deer, plus eleven VHF-collared female deer in the Wolves' territory, provided new insights into the frequency of Wolf visits to summer ranges of female deer. Wolves made a mean 0.055 visits/day to summer ranges of deer three years and older, significantly more than their 0.032 mean visits/day to ranges of two-year-old deer, which generally produce fewer fawns, and most Wolf visits to ranges of older deer were much longer than those to ranges of younger deer. Because fawns comprise the major part of the Wolf's summer diet, this Wolf behavior accords with optimal-foraging theory.
Polansky, Leo; Douglas-Hamilton, Iain; Wittemyer, George
2013-01-01
Adaptive movement behaviors allow individuals to respond to fluctuations in resource quality and distribution in order to maintain fitness. Classically, studies of the interaction between ecological conditions and movement behavior have focused on such metrics as travel distance, velocity, home range size or patch occupancy time as the salient metrics of behavior. Driven by the emergence of very regular high frequency data, more recently the importance of interpreting the autocorrelation structure of movement as a behavioral metric has become apparent. Studying movement of a free ranging African savannah elephant population, we evaluated how two movement metrics, diel displacement (DD) and movement predictability (MP - the degree of autocorrelated movement activity at diel time scales), changed in response to variation in resource availability as measured by the Normalized Difference Vegetation Index. We were able to capitalize on long term (multi-year) yet high resolution (hourly) global positioning system tracking datasets, the sample size of which allows robust analysis of complex models. We use optimal foraging theory predictions as a framework to interpret our results, in particular contrasting the behaviors across changes in social rank and resource availability to infer which movement behaviors at diel time scales may be optimal in this highly social species. Both DD and MP increased with increasing forage availability, irrespective of rank, reflecting increased energy expenditure and movement predictability during time periods of overall high resource availability. However, significant interactions between forage availability and social rank indicated a stronger response in DD, and a weaker response in MP, with increasing social status. Relative to high ranking individuals, low ranking individuals expended more energy and exhibited less behavioral movement autocorrelation during lower forage availability conditions, likely reflecting sub-optimal movement behavior. Beyond situations of contest competition, rank status appears to influence the extent to which individuals can modify their movement strategies across periods with differing forage availability. Large-scale spatiotemporal resource complexity not only impacts fine scale movement and optimal foraging strategies directly, but likely impacts rates of inter- and intra-specific interactions and competition resulting in socially based movement responses to ecological dynamics.
Palminteri, Suzanne; Powell, George V N; Peres, Carlos A
2016-05-01
Specialized seed predators in tropical forests may avoid seasonal food scarcity and interspecific feeding competition but may need to diversify their daily diet to limit ingestion of any given toxin. Seed predators may, therefore, adopt foraging strategies that favor dietary diversity and resource monitoring, rather than efficient energy intake, as suggested by optimal foraging theory. We tested whether fine-scale space use by a small-group-living seed predator-the bald-faced saki monkey (Pithecia irrorata)-reflected optimization of short-term foraging efficiency, maximization of daily dietary diversity, and/or responses to the threat of territorial encroachment by neighboring groups. Food patches across home ranges of five adjacent saki groups were widely spread, but areas with higher densities of stems or food species were not allocated greater feeding time. Foraging patterns-specifically, relatively long daily travel paths that bypassed available fruiting trees and relatively short feeding bouts in undepleted food patches-suggest a strategy that maximizes dietary diversification, rather than "optimal" foraging. Travel distance was unrelated to the proportion of seeds in the diet. Moreover, while taxonomically diverse, the daily diets of our study groups were no more species-rich than randomly derived diets based on co-occurring available food species. Sakis preferentially used overlapping areas of their HRs, within which adjacent groups shared many food trees, yet the density of food plants or food species in these areas was no greater than in other HR areas. The high likelihood of depletion by neighboring groups of otherwise enduring food sources may encourage monitoring of peripheral food patches in overlap areas, even if at the expense of immediate energy intake, suggesting that between-group competition is a key driver of fine-scale home range use in sakis. © 2015 Wiley Periodicals, Inc.
What do foraging wasps optimize in a variable environment, energy investment or body temperature?
Kovac, Helmut; Stabentheiner, Anton; Brodschneider, Robert
2015-11-01
Vespine wasps (Vespula sp.) are endowed with a pronounced ability of endothermic heat production. To show how they balance energetics and thermoregulation under variable environmental conditions, we measured the body temperature and respiration of sucrose foragers (1.5 M, unlimited flow) under variable ambient temperature (T a = 20-35 °C) and solar radiation (20-570 W m(-2)). Results revealed a graduated balancing of metabolic efforts with thermoregulatory needs. The thoracic temperature in the shade depended on ambient temperature, increasing from ~37 to 39 °C. However, wasps used solar heat gain to regulate their thorax temperature at a rather high level at low T a (mean T thorax ~ 39 °C). Only at high T a they used solar heat to reduce their metabolic rate remarkably. A high body temperature accelerated the suction speed and shortened foraging time. As the costs of foraging strongly depended on duration, the efficiency could be significantly increased with a high body temperature. Heat gain from solar radiation enabled the wasps to enhance foraging efficiency at high ambient temperature (T a = 30 °C) by up to 63 %. The well-balanced change of economic strategies in response to environmental conditions minimized costs of foraging and optimized energetic efficiency.
Optimizing eastern gamagrass forage harvests using growing degree days
USDA-ARS?s Scientific Manuscript database
Tripsacum dactyloides (L.) L., commonly known as eastern gamagrass is useful for grazing, stored forage, soil amelioration and conservation, and potentially as a biofuel feedstock. Our goal was to calculate accumulated growing degree days (GDD) from existing datasets collected for eastern gamagrass...
Thurman, Jill; Parry, Jacqueline D; Hill, Philip J; Laybourn-Parry, Johanna
2010-10-01
This study examined whether two ciliates could discriminate between equally-sized bacterial prey in mixture and if so, how selectivity might benefit the ciliate population. Live Klebsiella aerogenes, K. ozaenae and Escherichia coli, expressing different coloured fluorescent proteins, were cultured in such a way as to provide populations containing equally-sized cells (to prevent size-selective grazing taking place) and these prey were fed to each ciliate in 50:50 mixtures. Colpidium striatum selected K. aerogenes over K. ozaenae which itself was selected over E. coli. Tetrahymena pyriformis showed no selectivity between K. aerogenes and E. coli but K. aerogenes was selected over K. ozaenae while E. coli was not. This apparent selection of K. aerogenes over K. ozaenae was sustained in ciliate populations with different feeding histories and when K. aerogenes comprised only 20% of the prey mixture, suggesting possible optimal foraging behaviour. The metabolic benefits for selecting K. aerogenes were identified as possibly being an increase in cell biovolume and yield for C. striatum and T. pyriformis, respectively. The mechanism by which these ciliates selected specific bacterial cells in mixture is currently unknown but the use of live fluorescent bacteria, in prey mixtures, offers an exciting avenue for further investigation of selective feeding by protozoa. Copyright 2010 Elsevier Ltd. All rights reserved.
Comparison of gizzard and intestinal microbiota of wild neotropical birds
Shin, Hakdong; Sanz, Virginia; Lentino, Miguel; Martínez, L. Margarita; Contreras, Monica; Michelangeli, Fabian; Domínguez-Bello, María Gloria
2018-01-01
Gut bacterial communities have been shown to be influenced by diet, host phylogeny and anatomy, but most of these studies have been done in captive animals. Here we compare the bacterial communities in the digestive tract of wild birds. We characterized the gizzard and intestinal microbiota among 8 wild Neotropical bird species, granivorous or frugivorous species of the orders Columbiformes and Passeriformes. We sequenced the V4 region of the 16S rRNA gene in 94 collected samples from 32 wild birds from 5 localities, and compared bacterial communities by foraging guild, organ, locality and bird taxonomy. 16S rRNA gene-based sequencing data were examined using QIIME with linear discriminant analysis effect size (LEfSe) and metabolic pathways were predicted using PICRUSt algorism. We identified 8 bacterial phyla, dominated by Firmicutes, Actinobacteria and Proteobacteria. Beta diversity analyses indicated significant separation of gut communities by bird orders (Columbiformes vs. Passerifomes) and between bird species (p<0.01). In lower intestine, PICRUSt shows a predominance of carbohydrate metabolism in granivorous birds and xenobiotics biodegradation pathways in frugivorous birds. Gizzard microbiota was significantly richer in granivorous, in relation to frugivorous birds (Chao 1; non-parametric t-test, p<0.05), suggesting a microbial gizzard function, beyond grinding food. The results suggest that the most important factor separating the bacterial community structure was bird taxonomy, followed by foraging guild. However, variation between localities is also likely to be important, but this could not been assessed with our study design. PMID:29579092
Optimal diving behaviour and respiratory gas exchange in birds.
Halsey, Lewis G; Butler, Patrick J
2006-11-01
This review discusses the advancements in our understanding of the physiology and behaviour of avian diving that have been underpinned by optimal foraging theory and the testing of optimal models. To maximise their foraging efficiency during foraging periods, diving birds must balance numerous factors that are directly or indirectly related to the replenishment of the oxygen stores and the removal of excess carbon dioxide. These include (1) the time spent underwater (which diminishes the oxygen supply, increases carbon dioxide levels and may even include a build up of lactate due to anaerobic metabolism), (2) the time spent at the surface recovering from the previous dive and preparing for the next (including reloading their oxygen supply, decreasing their carbon dioxide levels and possibly also metabolising lactate) and (3) the trade-off between maximising oxygen reserves for consumption underwater by taking in more air to the respiratory system, and minimising the energy costs of positive buoyancy caused by this air, to maximise the time available underwater to forage. Due to its importance in avian diving, replenishment of the oxygen stores has become integral to models of optimal diving, which predict the time budgeting of animals foraging underwater. While many of these models have been examined qualitatively, such tests of predictive trends appear fallible and only quantifiable support affords strong evidence of their predictive value. This review describes how the quantification of certain optimal diving models, using tufted ducks, indeed demonstrates some predictive success. This suggests that replenishment of the oxygen stores and removal of excess carbon dioxide have significant influences on the duration of the surface period between dives. Nevertheless, present models are too simplistic to be robust predictors of diving behaviour for individual animals and it is proposed that they require refinement through the incorporation of other variables that also influence diving behaviour such as, perhaps, prey density and predator avoidance.
Leung, Elaine S; Augé, Amélie A; Chilvers, B Louise; Moore, Antoni B; Robertson, Bruce C
2013-01-01
Foragers can show adaptive responses to changes within their environment through morphological and behavioural plasticity. We investigated the plasticity in body size, at sea movements and diving behaviour of juvenile female New Zealand (NZ) sea lions (Phocarctos hookeri) in two contrasting environments. The NZ sea lion is one of the rarest pinnipeds in the world. Most of the species is based at the subantarctic Auckland Islands (AI; considered to be marginal foraging habitat), with a recolonizing population on the Otago Peninsula, NZ mainland (considered to be more optimal habitat). We investigated how juvenile NZ sea lions adjust their foraging behaviour in contrasting environments by deploying satellite-linked platform transmitting terminals (PTTs) and time-depth recorders (TDRs) on 2-3 year-old females at AI (2007-2010) and Otago (2009-2010). Juvenile female NZ sea lions exhibited plasticity in body size and behaviour. Otago juveniles were significantly heavier than AI juveniles. Linear mixed effects models showed that study site had the most important effect on foraging behaviour, while mass and age had little influence. AI juveniles spent more time at sea, foraged over larger areas, and dove deeper and longer than Otago juveniles. It is difficult to attribute a specific cause to the observed contrasts in foraging behaviour because these differences may be driven by disparities in habitat/prey characteristics, conspecific density levels or interseasonal variation. Nevertheless, the smaller size and increased foraging effort of AI juveniles, combined with the lower productivity in this region, support the hypothesis that AI are less optimal habitat than Otago. It is more difficult for juveniles to forage in suboptimal habitats given their restricted foraging ability and lower tolerance for food limitation compared to adults. Thus, effective management measures should consider the impacts of low resource environments, along with changes that can alter food availability such as potential resource competition with fisheries.
Leung, Elaine S.; Augé, Amélie A.; Chilvers, B. Louise; Moore, Antoni B.; Robertson, Bruce C.
2013-01-01
Foragers can show adaptive responses to changes within their environment through morphological and behavioural plasticity. We investigated the plasticity in body size, at sea movements and diving behaviour of juvenile female New Zealand (NZ) sea lions (Phocarctos hookeri) in two contrasting environments. The NZ sea lion is one of the rarest pinnipeds in the world. Most of the species is based at the subantarctic Auckland Islands (AI; considered to be marginal foraging habitat), with a recolonizing population on the Otago Peninsula, NZ mainland (considered to be more optimal habitat). We investigated how juvenile NZ sea lions adjust their foraging behaviour in contrasting environments by deploying satellite-linked platform transmitting terminals (PTTs) and time-depth recorders (TDRs) on 2–3 year-old females at AI (2007–2010) and Otago (2009–2010). Juvenile female NZ sea lions exhibited plasticity in body size and behaviour. Otago juveniles were significantly heavier than AI juveniles. Linear mixed effects models showed that study site had the most important effect on foraging behaviour, while mass and age had little influence. AI juveniles spent more time at sea, foraged over larger areas, and dove deeper and longer than Otago juveniles. It is difficult to attribute a specific cause to the observed contrasts in foraging behaviour because these differences may be driven by disparities in habitat/prey characteristics, conspecific density levels or interseasonal variation. Nevertheless, the smaller size and increased foraging effort of AI juveniles, combined with the lower productivity in this region, support the hypothesis that AI are less optimal habitat than Otago. It is more difficult for juveniles to forage in suboptimal habitats given their restricted foraging ability and lower tolerance for food limitation compared to adults. Thus, effective management measures should consider the impacts of low resource environments, along with changes that can alter food availability such as potential resource competition with fisheries. PMID:23671630
Distribution Patterns Predict Individual Specialization in the Diet of Dolphin Gulls
Masello, Juan F.; Wikelski, Martin; Voigt, Christian C.; Quillfeldt, Petra
2013-01-01
Many animals show some degree of individual specialization in foraging strategies and diet. This has profound ecological and evolutionary implications. For example, populations containing diverse individual foraging strategies will respond in different ways to changes in the environment, thus affecting the capacity of the populations to adapt to environmental changes and to diversify. However, patterns of individual specialization have been examined in few species. Likewise it is usually unknown whether specialization is maintained over time, because examining the temporal scale at which specialization occurs can prove difficult in the field. In the present study, we analyzed individual specialization in foraging in Dolphin Gulls Leucophaeus scoresbii, a scavenger endemic to the southernmost coasts of South America. We used GPS position logging and stable isotope analyses (SIA) to investigate individual specialization in feeding strategies and their persistence over time. The analysis of GPS data indicated two major foraging strategies in Dolphin Gulls from New I. (Falkland Is./Islas Malvinas). Tagged individuals repeatedly attended either a site with mussel beds or seabird and seal colonies during 5 to 7 days of tracking. Females foraging at mussel beds were heavier than those foraging at seabird colonies. Nitrogen isotope ratios (δ15N) of Dolphin Gull blood cells clustered in two groups, showing that individuals were consistent in their preferred foraging strategies over a period of at least several weeks. The results of the SIA as well as the foraging patterns recorded revealed a high degree of specialization for particular feeding sites and diets by individual Dolphin Gulls. Individual differences in foraging behavior were not related to sex. Specialization in Dolphin Gulls may be favored by the advantages of learning and memorizing optimal feeding locations and behaviors. Specialized individuals may reduce search and handling time and thus, optimize their energy gain and/or minimize time spent foraging. PMID:23844073
A stochastic differential equation model for the foraging behavior of fish schools.
Tạ, Tôn Việt; Nguyen, Linh Thi Hoai
2018-03-15
Constructing models of living organisms locating food sources has important implications for understanding animal behavior and for the development of distribution technologies. This paper presents a novel simple model of stochastic differential equations for the foraging behavior of fish schools in a space including obstacles. The model is studied numerically. Three configurations of space with various food locations are considered. In the first configuration, fish swim in free but limited space. All individuals can find food with large probability while keeping their school structure. In the second and third configurations, they move in limited space with one and two obstacles, respectively. Our results reveal that the probability of foraging success is highest in the first configuration, and smallest in the third one. Furthermore, when school size increases up to an optimal value, the probability of foraging success tends to increase. When it exceeds an optimal value, the probability tends to decrease. The results agree with experimental observations.
A stochastic differential equation model for the foraging behavior of fish schools
NASA Astrophysics Data System (ADS)
Tạ, Tôn ệt, Vi; Hoai Nguyen, Linh Thi
2018-05-01
Constructing models of living organisms locating food sources has important implications for understanding animal behavior and for the development of distribution technologies. This paper presents a novel simple model of stochastic differential equations for the foraging behavior of fish schools in a space including obstacles. The model is studied numerically. Three configurations of space with various food locations are considered. In the first configuration, fish swim in free but limited space. All individuals can find food with large probability while keeping their school structure. In the second and third configurations, they move in limited space with one and two obstacles, respectively. Our results reveal that the probability of foraging success is highest in the first configuration, and smallest in the third one. Furthermore, when school size increases up to an optimal value, the probability of foraging success tends to increase. When it exceeds an optimal value, the probability tends to decrease. The results agree with experimental observations.
Resource diversity and landscape-level homogeneity drive native bee foraging.
Jha, Shalene; Kremen, Claire
2013-01-08
Given widespread declines in pollinator communities and increasing global reliance on pollinator-dependent crops, there is an acute need to develop a mechanistic understanding of native pollinator population and foraging biology. Using a population genetics approach, we determine the impact of habitat and floral resource distributions on nesting and foraging patterns of a critical native pollinator, Bombus vosnesenskii. Our findings demonstrate that native bee foraging is far more plastic and extensive than previously believed and does not follow a simple optimal foraging strategy. Rather, bumble bees forage further in pursuit of species-rich floral patches and in landscapes where patch-to-patch variation in floral resources is less, regardless of habitat composition. Thus, our results reveal extreme foraging plasticity and demonstrate that floral diversity, not density, drives bee foraging distance. Furthermore, we find a negative impact of paved habitat and a positive impact of natural woodland on bumble bee nesting densities. Overall, this study reveals that natural and human-altered landscapes can be managed for increased native bee nesting and extended foraging, dually enhancing biodiversity and the spatial extent of pollination services.
Bacteria foraging in turbulent waters
NASA Astrophysics Data System (ADS)
Taylor, John; Tang, Wenbo; Stocker, Roman
2009-11-01
Marine bacteria are the Ocean's recyclers, contributing to as much as 50% of the productivity of the marine food web. Bacteria forage on patches of dissolved nutrients using chemotaxis, the ability to swim up chemical gradients. As turbulence is ubiquitous in the Ocean, it is important to understand how turbulent flow conditions affect bacterial foraging. We used three-dimensional, isotropic direct numerical simulations coupled with a bacterial transport equation to address this problem. After the flow is continuously forced until it reaches a steady state, microscale nutrient patches are injected into the turbulent flow, and stirring produces thin nutrient filaments. Two populations of bacteria compete against each other: one population is motile and chemotactic (`active'), the other is non-motile (`passive'). The distribution of both populations is initially uniform. Chemotaxis allows active bacteria to cluster near the center of the nutrient filaments, increasing their nutrient uptake relative to passive bacteria. Increasing the turbulence intensity increases the short-term chemotactic advantage by quickly producing large gradients in the nutrient concentration, but also leads to rapid mixing of the nutrient field, which makes the chemotactic advantage short-lived. The results suggest that the evolutionary advantage of chemotaxis, based on the increase in nutrient uptake relative to the energetic cost of swimming, strongly depends on the turbulence level.
Social foraging with partial (public) information.
Mann, Ofri; Kiflawi, Moshe
2014-10-21
Group foragers can utilize public information to better estimate patch quality and arrive at more efficient patch-departure rules. However, acquiring such information may come at a cost; e.g. reduced search efficiency. We present a Bayesian group-foraging model in which social foragers do not require full awareness of their companions' foraging success; only of their number. In our model, patch departure is based on direct estimates of the number of remaining items. This is achieved by considering all likely combinations of initial patch-quality and group foraging-success; given the individual forager's experience within the patch. Slower rates of information-acquisition by our 'partially-aware' foragers lead them to over-utilize poor patches; more than fully-aware foragers. However, our model suggests that the ensuing loss in long-term intake-rates can be matched by a relatively low cost to the acquisition of full public information. In other words, we suggest that group-size offers sufficient information for optimal patch utilization by social foragers. We suggest, also, that our model is applicable to other situations where resources undergo 'background depletion', which is coincident but independent of the consumer's own utilization. Copyright © 2014 Elsevier Ltd. All rights reserved.
Chronic and Acute Stress Promote Overexploitation in Serial Decision Making
Lenow, Jennifer K.; Constantino, Sara M.
2017-01-01
Many decisions that humans make resemble foraging problems in which a currently available, known option must be weighed against an unknown alternative option. In such foraging decisions, the quality of the overall environment can be used as a proxy for estimating the value of future unknown options against which current prospects are compared. We hypothesized that such foraging-like decisions would be characteristically sensitive to stress, a physiological response that tracks biologically relevant changes in environmental context. Specifically, we hypothesized that stress would lead to more exploitative foraging behavior. To test this, we investigated how acute and chronic stress, as measured by changes in cortisol in response to an acute stress manipulation and subjective scores on a questionnaire assessing recent chronic stress, relate to performance in a virtual sequential foraging task. We found that both types of stress bias human decision makers toward overexploiting current options relative to an optimal policy. These findings suggest a possible computational role of stress in decision making in which stress biases judgments of environmental quality. SIGNIFICANCE STATEMENT Many of the most biologically relevant decisions that we make are foraging-like decisions about whether to stay with a current option or search the environment for a potentially better one. In the current study, we found that both acute physiological and chronic subjective stress are associated with greater overexploitation or staying at current options for longer than is optimal. These results suggest a domain-general way in which stress might bias foraging decisions through changing one's appraisal of the overall quality of the environment. These novel findings not only have implications for understanding how this important class of foraging decisions might be biologically implemented, but also for understanding the computational role of stress in behavior and cognition more broadly. PMID:28483979
Central-place foraging and ecological effects of an invasive predator across multiple habitats.
Benkwitt, Cassandra E
2016-10-01
Cross-habitat foraging movements of predators can have widespread implications for predator and prey populations, community structure, nutrient transfer, and ecosystem function. Although central-place foraging models and other aspects of optimal foraging theory focus on individual predator behavior, they also provide useful frameworks for understanding the effects of predators on prey populations across multiple habitats. However, few studies have examined both the foraging behavior and ecological effects of nonnative predators across multiple habitats, and none has tested whether nonnative predators deplete prey in a manner predicted by these foraging models. I conducted behavioral observations of invasive lionfish (Pterois volitans) to determine whether they exhibit foraging movements similar to other central-place consumers. Then, I used a manipulative field experiment to test whether their effects on prey populations are consistent with three qualitative predictions from optimal foraging models. Specifically, I predicted that the effects of invasive lionfish on native prey will (1) occur at central sites first and then in surrounding habitats, (2) decrease with increasing distance away from their shelter site, and (3) extend to greater distances when prey patches are spaced closer together. Approximately 40% of lionfish exhibited short-term crepuscular foraging movements into surrounding habitats from the coral patch reefs where they shelter during daylight hours. Over the course of 7 weeks, lionfish depleted native fish populations on the coral patch reefs where they reside, and subsequently on small structures in the surrounding habitat. However, their effects did not decrease with increasing distance from the central shelter site and the influence of patch spacing was opposite the prediction. Instead, lionfish always had the greatest effects in areas with the highest prey densities. The differences between the predicted and observed effects of lionfish foraging are likely due to different constraints faced by invasive predators compared to native predators, namely that lionfish do not face increased predation risk with increased movement away from shelter sites. By foraging at greater distances from patch reefs than native predators, lionfish eliminated a spatial refuge from predation used by juveniles of many commercially and ecologically important reef fishes. © 2016 by the Ecological Society of America.
Group foraging increases foraging efficiency in a piscivorous diver, the African penguin
McGeorge, Cuan; Ginsberg, Samuel; Pichegru, Lorien; Pistorius, Pierre A.
2017-01-01
Marine piscivores have evolved a variety of morphological and behavioural adaptations, including group foraging, to optimize foraging efficiency when targeting shoaling fish. For penguins that are known to associate at sea and feed on these prey resources, there is nonetheless a lack of empirical evidence to support improved foraging efficiency when foraging with conspecifics. We examined the hunting strategies and foraging performance of breeding African penguins equipped with animal-borne video recorders. Individuals pursued both solitary as well as schooling pelagic fish, and demonstrated independent as well as group foraging behaviour. The most profitable foraging involved herding of fish schools upwards during the ascent phase of a dive where most catches constituted depolarized fish. Catch-per-unit-effort was significantly improved when targeting fish schools as opposed to single fish, especially when foraging in groups. In contrast to more generalist penguin species, African penguins appear to have evolved specialist hunting strategies closely linked to their primary reliance on schooling pelagic fish. The specialist nature of the observed hunting strategies further limits the survival potential of this species if Allee effects reduce group size-related foraging efficiency. This is likely to be exacerbated by diminishing fish stocks due to resource competition and environmental change. PMID:28989785
Forage production of grass-legume binary mixtures on Intermountain Western USA irrigated pastures
USDA-ARS?s Scientific Manuscript database
A well-managed irrigated pasture is optimized for forage production with the use of N fertilizer which incurs extra expense. The objective was to determine which binary grass-legume mixture and mixture planting ratio of tall fescue (Festuca arundinacea Schreb.) (TF), meadow brome (Bromus bieberstei...
Calculating foraging area using gloal navigation satellite system (GNSS) technology
USDA-ARS?s Scientific Manuscript database
Adjusting stocking rate to changing forage conditions is a critical part of pro-active range management. In general stocking rate approaches tend to assume more optimal landscape use patterns than will actually occur. Today we can monitor spatio-temporal landscape use on a 24/7 basis using animals...
Methane and hydrogen sulfide production during co-digestion of forage radish and dairy manure
USDA-ARS?s Scientific Manuscript database
Forage radish cover crops were investigated as a co-substrate to increase biogas production from dairy manure-based anaerobic digestion. Lab-scale batch digesters (300 mL) were operated under mesophilic conditions during two experiments. In the first experiment, the optimal co-digestion ratio for ...
USDA-ARS?s Scientific Manuscript database
Heifers grazing winter range require supplemental nutrients to compliment dormant forage to achieve optimal growth and performance. A study was conducted to evaluate nutritional environment and effect of different supplementation strategies for developing heifers grazing dormant winter range. Eigh...
Noisy swimming at low Reynolds numbers.
Dunkel, Jörn; Zaid, Irwin M
2009-08-01
Small organisms (e.g., bacteria) and artificial microswimmers move due to a combination of active swimming and passive Brownian motion. Considering a simplified linear three-sphere swimmer, we study how the swimmer size regulates the interplay between self-driven and diffusive behavior at low Reynolds number. Starting from the Kirkwood-Smoluchowski equation and its corresponding Langevin equation, we derive formulas for the orientation correlation time, the mean velocity and the mean-square displacement in three space dimensions. The validity of the analytical results is illustrated through numerical simulations. Tuning the swimmer parameters to values that are typical of bacteria, we find three characteristic regimes: (i) Brownian motion at small times, (ii) quasiballistic behavior at intermediate time scales, and (iii) quasidiffusive behavior at large times due to noise-induced rotation. Our analytical results can be useful for a better quantitative understanding of optimal foraging strategies in bacterial systems, and they can help to construct more efficient artificial microswimmers in fluctuating fluids.
Buttemer, William A; Dawson, William R
1993-10-01
We observed a colony of marine iguanas (Amblyrhynchus cristatus) on Isla Fernandina, Galápagos, Ecuador, while measuring local micrometeorological and tidal conditions. We found size-related differences in foraging mode, with smaller iguanas feeding intertidally during daytime low tides and larger iguanas feeding subtidally. Despite having greater opportunity, subtidal foragers did not time their foraging bouts or exploit their environment in ways that optimized their period at high body temperature. Instead, the foraging schedule of these iguanas served to maximize their rate of rewarming following emergence from the cool sea. Intertidal feeders, by contrast, showed much greater behavioral flexibility in attempting to exploit their thermal environment. We suggest that size-ordered differences in marine iguana thermoregulatory behavior reflect underlying ontogenetic changes in costs and benefits of thermoregulation due to differences in predator pressure, quantity of food and electrolytes taken at each feeding, mode of foraging, and agonistic tendencies.
A Clustering-Based Approach to Enriching Code Foraging Environment.
Niu, Nan; Jin, Xiaoyu; Niu, Zhendong; Cheng, Jing-Ru C; Li, Ling; Kataev, Mikhail Yu
2016-09-01
Developers often spend valuable time navigating and seeking relevant code in software maintenance. Currently, there is a lack of theoretical foundations to guide tool design and evaluation to best shape the code base to developers. This paper contributes a unified code navigation theory in light of the optimal food-foraging principles. We further develop a novel framework for automatically assessing the foraging mechanisms in the context of program investigation. We use the framework to examine to what extent the clustering of software entities affects code foraging. Our quantitative analysis of long-lived open-source projects suggests that clustering enriches the software environment and improves foraging efficiency. Our qualitative inquiry reveals concrete insights into real developer's behavior. Our research opens the avenue toward building a new set of ecologically valid code navigation tools.
On salesmen and tourists: Two-step optimization in deterministic foragers
NASA Astrophysics Data System (ADS)
Maya, Miguel; Miramontes, Octavio; Boyer, Denis
2017-02-01
We explore a two-step optimization problem in random environments, the so-called restaurant-coffee shop problem, where a walker aims at visiting the nearest and better restaurant in an area and then move to the nearest and better coffee-shop. This is an extension of the Tourist Problem, a one-step optimization dynamics that can be viewed as a deterministic walk in a random medium. A certain amount of heterogeneity in the values of the resources to be visited causes the emergence of power-laws distributions for the steps performed by the walker, similarly to a Lévy flight. The fluctuations of the step lengths tend to decrease as a consequence of multiple-step planning, thus reducing the foraging uncertainty. We find that the first and second steps of each planned movement play very different roles in heterogeneous environments. The two-step process improves only slightly the foraging efficiency compared to the one-step optimization, at a much higher computational cost. We discuss the implications of these findings for animal and human mobility, in particular in relation to the computational effort that informed agents should deploy to solve search problems.
Seasonal Food Scarcity Prompts Long-Distance Foraging by a Wild Social Bee.
Pope, Nathaniel S; Jha, Shalene
2018-01-01
Foraging is an essential process for mobile animals, and its optimization serves as a foundational theory in ecology and evolution; however, drivers of foraging are rarely investigated across landscapes and seasons. Using a common bumblebee species from the western United States (Bombus vosnesenskii), we ask whether seasonal decreases in food resources prompt changes in foraging behavior and space use. We employ a unique integration of population genetic tools and spatially explicit foraging models to estimate foraging distances and rates of patch visitation for wild bumblebee colonies across three study regions and two seasons. By mapping the locations of 669 wild-caught individual foragers, we find substantial variation in colony-level foraging distances, often exhibiting a 60-fold difference within a study region. Our analysis of visitation rates indicates that foragers display a preference for destination patches with high floral cover and forage significantly farther for these patches, but only in the summer, when landscape-level resources are low. Overall, these results indicate that an increasing proportion of long-distance foraging bouts take place in the summer. Because wild bees are pollinators, their foraging dynamics are of urgent concern, given the potential impacts of global change on their movement and services. The behavioral shift toward long-distance foraging with seasonal declines in food resources suggests a novel, phenologically directed approach to landscape-level pollinator conservation and greater consideration of late-season floral resources in pollinator habitat management.
Adaptive collective foraging in groups with conflicting nutritional needs
Senior, Alistair M.; Lihoreau, Mathieu; Charleston, Michael A.; Buhl, Jerome; Raubenheimer, David; Simpson, Stephen J.
2016-01-01
Collective foraging, based on positive feedback and quorum responses, is believed to improve the foraging efficiency of animals. Nutritional models suggest that social information transfer increases the ability of foragers with closely aligned nutritional needs to find nutrients and maintain a balanced diet. However, whether or not collective foraging is adaptive in a heterogeneous group composed of individuals with differing nutritional needs is virtually unexplored. Here we develop an evolutionary agent-based model using concepts of nutritional ecology to address this knowledge gap. Our aim was to evaluate how collective foraging, mediated by social retention on foods, can improve nutrient balancing in individuals with different requirements. The model suggests that in groups where inter-individual nutritional needs are unimodally distributed, high levels of collective foraging yield optimal individual fitness by reducing search times that result from moving between nutritionally imbalanced foods. However, where nutritional needs are highly bimodal (e.g. where the requirements of males and females differ) collective foraging is selected against, leading to group fission. In this case, additional mechanisms such as assortative interactions can coevolve to allow collective foraging by subgroups of individuals with aligned requirements. Our findings indicate that collective foraging is an efficient strategy for nutrient regulation in animals inhabiting complex nutritional environments and exhibiting a range of social forms. PMID:27152206
Human memory retrieval as Lévy foraging
NASA Astrophysics Data System (ADS)
Rhodes, Theo; Turvey, Michael T.
2007-11-01
When people attempt to recall as many words as possible from a specific category (e.g., animal names) their retrievals occur sporadically over an extended temporal period. Retrievals decline as recall progresses, but short retrieval bursts can occur even after tens of minutes of performing the task. To date, efforts to gain insight into the nature of retrieval from this fundamental phenomenon of semantic memory have focused primarily upon the exponential growth rate of cumulative recall. Here we focus upon the time intervals between retrievals. We expected and found that, for each participant in our experiment, these intervals conformed to a Lévy distribution suggesting that the Lévy flight dynamics that characterize foraging behavior may also characterize retrieval from semantic memory. The closer the exponent on the inverse square power-law distribution of retrieval intervals approximated the optimal foraging value of 2, the more efficient was the retrieval. At an abstract dynamical level, foraging for particular foods in one's niche and searching for particular words in one's memory must be similar processes if particular foods and particular words are randomly and sparsely located in their respective spaces at sites that are not known a priori. We discuss whether Lévy dynamics imply that memory processes, like foraging, are optimized in an ecological way.
Bailey, Rachel L
2016-12-01
More energy dense foods are preferable from an optimal foraging perspective, which suggests these foods are more motivationally relevant due to their greater capability of fulfilling biological imperatives. This increase in motivational relevance may be exacerbated in circumstances where foraging will be necessary. This study examined how food energy density and presence of food in the immediate environment interacted to influence motivational processing of food advertisements. N = 58 adults viewed advertisements for foods varying in energy density in contexts where the advertised food was actually present in the viewing room or not. Advertisements for more energy dense foods elicited greater skin conductivity level compared to ads for less energy dense foods when food was not present. All ads elicited decreases in corrugator supercilii activation indicating positive emotional response resultant from appetitive motivational activation, though the greatest activation was exhibited toward higher energy density foods when food was present. This supports an optimal foraging perspective and has implications for healthy eating interventions. Copyright © 2016 Elsevier Ltd. All rights reserved.
Longer guts and higher food quality increase energy intake in migratory swans.
van Gils, Jan A; Beekman, Jan H; Coehoorn, Pieter; Corporaal, Els; Dekkers, Ten; Klaassen, Marcel; van Kraaij, Rik; de Leeuw, Rinze; de Vries, Peter P
2008-11-01
1. Within the broad field of optimal foraging, it is increasingly acknowledged that animals often face digestive constraints rather than constraints on rates of food collection. This therefore calls for a formalization of how animals could optimize food absorption rates. 2. Here we generate predictions from a simple graphical optimal digestion model for foragers that aim to maximize their (true) metabolizable food intake over total time (i.e. including nonforaging bouts) under a digestive constraint. 3. The model predicts that such foragers should maintain a constant food retention time, even if gut length or food quality changes. For phenotypically flexible foragers, which are able to change the size of their digestive machinery, this means that an increase in gut length should go hand in hand with an increase in gross intake rate. It also means that better quality food should be digested more efficiently. 4. These latter two predictions are tested in a large avian long-distance migrant, the Bewick's swan (Cygnus columbianus bewickii), feeding on grasslands in its Dutch wintering quarters. 5. Throughout winter, free-ranging Bewick's swans, growing a longer gut and experiencing improved food quality, increased their gross intake rate (i.e. bite rate) and showed a higher digestive efficiency. These responses were in accordance with the model and suggest maintenance of a constant food retention time. 6. These changes doubled the birds' absorption rate. Had only food quality changed (and not gut length), then absorption rate would have increased by only 67%; absorption rate would have increased by only 17% had only gut length changed (and not food quality). 7. The prediction that gross intake rate should go up with gut length parallels the mechanism included in some proximate models of foraging that feeding motivation scales inversely to gut fullness. We plea for a tighter integration between ultimate and proximate foraging models.
Amanullah, S. M.; Kim, D. H.; Lee, H. J.; Joo, Y. H.; Kim, S. B.; Kim, S. C.
2014-01-01
This study examined the effects of bacterial inoculants on chemical composition and fermentation indices of barley silage. Barley forage (Youngyang) was harvested at 24% dry matter (DM) and wilted to 47.9% DM. The wilted barley forage was chopped to 3–5 cm length and applied with no inoculant (CON), L. plantarum (1×1010 cfu/g, LP) or Effective Microorganisms (0.5×109 cfu/g, EM). Then the forages were ensiled in four replications for each treatment in 20 L mini silos and stored for 100 days. The contents of crude protein and ether extract were higher in CON silage ensiled for 100-d, while the contents of DM and crude ash were higher in EM silage (p<0.05). The contents of ADF, NDF and hemicellulose as well as the in vitro DM digestibility were not affected by microbial inoculation (p>0.05). The pH, ammonia-N concentration and lactate to acetate ratio were higher (p<0.05) in CON silage, while lactate concentrations were higher (p<0.05) in CON and LP silage. Acetate concentration and lactic acid bacteria was increased (p<0.05) by both inoculants (LP and EM), but propionate concentration and yeast was increased (p<0.05) by EM and LP, respectively. These results indicated that the fermentation quality of barley silage was improved by the application of bacterial inoculants. PMID:25049981
The evolutionary origins of Lévy walk foraging
Wosniack, Marina E.
2017-01-01
We study through a reaction-diffusion algorithm the influence of landscape diversity on the efficiency of search dynamics. Remarkably, the identical optimal search strategy arises in a wide variety of environments, provided the target density is sparse and the searcher’s information is restricted to its close vicinity. Our results strongly impact the current debate on the emergentist vs. evolutionary origins of animal foraging. The inherent character of the optimal solution (i.e., independent on the landscape for the broad scenarios assumed here) suggests an interpretation favoring the evolutionary view, as originally implied by the Lévy flight foraging hypothesis. The latter states that, under conditions of scarcity of information and sparse resources, some organisms must have evolved to exploit optimal strategies characterized by heavy-tailed truncated power-law distributions of move lengths. These results strongly suggest that Lévy strategies—and hence the selection pressure for the relevant adaptations—are robust with respect to large changes in habitat. In contrast, the usual emergentist explanation seems not able to explain how very similar Lévy walks can emerge from all the distinct non-Lévy foraging strategies that are needed for the observed large variety of specific environments. We also report that deviations from Lévy can take place in plentiful ecosystems, where locomotion truncation is very frequent due to high encounter rates. So, in this case normal diffusion strategies—performing as effectively as the optimal one—can naturally emerge from Lévy. Our results constitute the strongest theoretical evidence to date supporting the evolutionary origins of experimentally observed Lévy walks. PMID:28972973
Metagenomic and metaproteomic insights into bacterial communities in leaf-cutter ant fungus gardens.
Aylward, Frank O; Burnum, Kristin E; Scott, Jarrod J; Suen, Garret; Tringe, Susannah G; Adams, Sandra M; Barry, Kerrie W; Nicora, Carrie D; Piehowski, Paul D; Purvine, Samuel O; Starrett, Gabriel J; Goodwin, Lynne A; Smith, Richard D; Lipton, Mary S; Currie, Cameron R
2012-09-01
Herbivores gain access to nutrients stored in plant biomass largely by harnessing the metabolic activities of microbes. Leaf-cutter ants of the genus Atta are a hallmark example; these dominant neotropical herbivores cultivate symbiotic fungus gardens on large quantities of fresh plant forage. As the external digestive system of the ants, fungus gardens facilitate the production and sustenance of millions of workers. Using metagenomic and metaproteomic techniques, we characterize the bacterial diversity and physiological potential of fungus gardens from two species of Atta. Our analysis of over 1.2 Gbp of community metagenomic sequence and three 16S pyrotag libraries reveals that in addition to harboring the dominant fungal crop, these ecosystems contain abundant populations of Enterobacteriaceae, including the genera Enterobacter, Pantoea, Klebsiella, Citrobacter and Escherichia. We show that these bacterial communities possess genes associated with lignocellulose degradation and diverse biosynthetic pathways, suggesting that they play a role in nutrient cycling by converting the nitrogen-poor forage of the ants into B-vitamins, amino acids and other cellular components. Our metaproteomic analysis confirms that bacterial glycosyl hydrolases and proteins with putative biosynthetic functions are produced in both field-collected and laboratory-reared colonies. These results are consistent with the hypothesis that fungus gardens are specialized fungus-bacteria communities that convert plant material into energy for their ant hosts. Together with recent investigations into the microbial symbionts of vertebrates, our work underscores the importance of microbial communities in the ecology and evolution of herbivorous metazoans.
Metagenomic and metaproteomic insights into bacterial communities in leaf-cutter ant fungus gardens
Aylward, Frank O; Burnum, Kristin E; Scott, Jarrod J; Suen, Garret; Tringe, Susannah G; Adams, Sandra M; Barry, Kerrie W; Nicora, Carrie D; Piehowski, Paul D; Purvine, Samuel O; Starrett, Gabriel J; Goodwin, Lynne A; Smith, Richard D; Lipton, Mary S; Currie, Cameron R
2012-01-01
Herbivores gain access to nutrients stored in plant biomass largely by harnessing the metabolic activities of microbes. Leaf-cutter ants of the genus Atta are a hallmark example; these dominant neotropical herbivores cultivate symbiotic fungus gardens on large quantities of fresh plant forage. As the external digestive system of the ants, fungus gardens facilitate the production and sustenance of millions of workers. Using metagenomic and metaproteomic techniques, we characterize the bacterial diversity and physiological potential of fungus gardens from two species of Atta. Our analysis of over 1.2 Gbp of community metagenomic sequence and three 16S pyrotag libraries reveals that in addition to harboring the dominant fungal crop, these ecosystems contain abundant populations of Enterobacteriaceae, including the genera Enterobacter, Pantoea, Klebsiella, Citrobacter and Escherichia. We show that these bacterial communities possess genes associated with lignocellulose degradation and diverse biosynthetic pathways, suggesting that they play a role in nutrient cycling by converting the nitrogen-poor forage of the ants into B-vitamins, amino acids and other cellular components. Our metaproteomic analysis confirms that bacterial glycosyl hydrolases and proteins with putative biosynthetic functions are produced in both field-collected and laboratory-reared colonies. These results are consistent with the hypothesis that fungus gardens are specialized fungus–bacteria communities that convert plant material into energy for their ant hosts. Together with recent investigations into the microbial symbionts of vertebrates, our work underscores the importance of microbial communities in the ecology and evolution of herbivorous metazoans. PMID:22378535
Chronic and Acute Stress Promote Overexploitation in Serial Decision Making.
Lenow, Jennifer K; Constantino, Sara M; Daw, Nathaniel D; Phelps, Elizabeth A
2017-06-07
Many decisions that humans make resemble foraging problems in which a currently available, known option must be weighed against an unknown alternative option. In such foraging decisions, the quality of the overall environment can be used as a proxy for estimating the value of future unknown options against which current prospects are compared. We hypothesized that such foraging-like decisions would be characteristically sensitive to stress, a physiological response that tracks biologically relevant changes in environmental context. Specifically, we hypothesized that stress would lead to more exploitative foraging behavior. To test this, we investigated how acute and chronic stress, as measured by changes in cortisol in response to an acute stress manipulation and subjective scores on a questionnaire assessing recent chronic stress, relate to performance in a virtual sequential foraging task. We found that both types of stress bias human decision makers toward overexploiting current options relative to an optimal policy. These findings suggest a possible computational role of stress in decision making in which stress biases judgments of environmental quality. SIGNIFICANCE STATEMENT Many of the most biologically relevant decisions that we make are foraging-like decisions about whether to stay with a current option or search the environment for a potentially better one. In the current study, we found that both acute physiological and chronic subjective stress are associated with greater overexploitation or staying at current options for longer than is optimal. These results suggest a domain-general way in which stress might bias foraging decisions through changing one's appraisal of the overall quality of the environment. These novel findings not only have implications for understanding how this important class of foraging decisions might be biologically implemented, but also for understanding the computational role of stress in behavior and cognition more broadly. Copyright © 2017 the authors 0270-6474/17/375681-09$15.00/0.
Prey field switching based on preferential behaviour can induce Lévy flights
Lundy, Mathieu G.; Harrison, Alan; Buckley, Daniel J.; Boston, Emma S.; Scott, David D.; Teeling, Emma C.; Montgomery, W. Ian; Houghton, Jonathan D. R.
2013-01-01
Using the foraging movements of an insectivorous bat, Myotis mystacinus, we describe temporal switching of foraging behaviour in response to resource availability. These observations conform to predictions of optimized search under the Lévy flight paradigm. However, we suggest that this occurs as a result of a preference behaviour and knowledge of resource distribution. Preferential behaviour and knowledge of a familiar area generate distinct movement patterns as resource availability changes on short temporal scales. The behavioural response of predators to changes in prey fields can elicit different functional responses, which are considered to be central in the development of stable predator–prey communities. Recognizing how the foraging movements of an animal relate to environmental conditions also elucidates the evolution of optimized search and the prevalence of discrete strategies in natural systems. Applying techniques that use changes in the frequency distribution of movements facilitates exploration of the processes that underpin behavioural changes. PMID:23054951
Bees do not use nearest-neighbour rules for optimization of multi-location routes.
Lihoreau, Mathieu; Chittka, Lars; Le Comber, Steven C; Raine, Nigel E
2012-02-23
Animals collecting patchily distributed resources are faced with complex multi-location routing problems. Rather than comparing all possible routes, they often find reasonably short solutions by simply moving to the nearest unvisited resources when foraging. Here, we report the travel optimization performance of bumble-bees (Bombus terrestris) foraging in a flight cage containing six artificial flowers arranged such that movements between nearest-neighbour locations would lead to a long suboptimal route. After extensive training (80 foraging bouts and at least 640 flower visits), bees reduced their flight distances and prioritized shortest possible routes, while almost never following nearest-neighbour solutions. We discuss possible strategies used during the establishment of stable multi-location routes (or traplines), and how these could allow bees and other animals to solve complex routing problems through experience, without necessarily requiring a sophisticated cognitive representation of space.
NASA Astrophysics Data System (ADS)
Sims, David W.
2015-09-01
The seminal papers by Viswanathan and colleagues in the late 1990s [1,2] proposed not only that scale-free, superdiffusive Lévy walks can describe the free-ranging movement patterns observed in animals such as the albatross [1], but that the Lévy walk was optimal for searching for sparsely and randomly distributed resource targets [2]. This distinct advantage, now shown to be present over a much broader set of conditions than originally theorised [3], implied that the Lévy walk is a search strategy that should be found very widely in organisms [4]. In the years since there have been several influential empirical studies showing that Lévy walks can indeed be detected in the movement patterns of a very broad range of taxa, from jellyfish, insects, fish, reptiles, seabirds, humans [5-10], and even in the fossilised trails of extinct invertebrates [11]. The broad optimality and apparent deep evolutionary origin of movement (search) patterns that are well approximated by Lévy walks led to the development of the Lévy flight foraging (LFF) hypothesis [12], which states that "since Lévy flights and walks can optimize search efficiencies, therefore natural selection should have led to adaptations for Lévy flight foraging".
By the Light of the Moon: North Pacific Dolphins Optimize Foraging with the Lunar Cycle
NASA Astrophysics Data System (ADS)
Simonis, Anne Elizabeth
The influence of the lunar cycle on dolphin foraging behavior was investigated in the productive, southern California Current Ecosystem and the oligotrophic Hawaiian Archipelago. Passive acoustic recordings from 2009 to 2015 were analyzed to document the presence of echolocation from four dolphin species that demonstrate distinct foraging preferences and diving abilities. Visual observations of dolphins, cloud coverage, commercial landings of market squid (Doryteuthis opalescens) and acoustic backscatter of fish were also considered in the Southern California Bight. The temporal variability of echolocation is described from daily to annual timescales, with emphasis on the lunar cycle as an established behavioral driver for potential dolphin prey. For dolphins that foraged at night, the presence of echolocation was reduced during nights of the full moon and during times of night that the moon was present in the night sky. In the Southern California Bight, echolocation activity was reduced for both shallow- diving common dolphins (Delphinus delphis) and deeper-diving Risso's dolphins (Grampus griseus) during times of increased illumination. Seasonal differences in acoustic behavior for both species suggest a geographic shift in dolphin populations, shoaling scattering layers or prey switching behavior during warm months, whereby dolphins target prey that do not vertically migrate. In the Hawaiian Archipelago, deep-diving short-finned pilot whales (Globicephala macrorhynchus) and shallow-diving false killer whales (Pseudorca crassidens) also showed reduced echolocation behavior during periods of increased lunar illumination. In contrast to nocturnal foraging in the northwestern Hawaiian Islands, false killer whales in the main Hawaiian Islands mainly foraged during the day and the lunar cycle showed little influence on their nocturnal acoustic behavior. Different temporal patterns in false killer whale acoustic behavior between the main and northwestern Hawaiian Islands can likely be attributed to the presence of distinct populations or social clusters with dissimilar foraging strategies. Consistent observations of reduced acoustic activity during times of increased lunar illumination show that the lunar cycle is an important predictor for nocturnal dolphin foraging behavior. The result of this research advances the scientific understanding of how dolphins optimize their foraging behavior in response to the changing distribution and abundance of their prey.
The application of foraging theory to the information searching behaviour of general practitioners.
Dwairy, Mai; Dowell, Anthony C; Stahl, Jean-Claude
2011-08-23
General Practitioners (GPs) employ strategies to identify and retrieve medical evidence for clinical decision making which take workload and time constraints into account. Optimal Foraging Theory (OFT) initially developed to study animal foraging for food is used to explore the information searching behaviour of General Practitioners. This study is the first to apply foraging theory within this context.Study objectives were: 1. To identify the sequence and steps deployed in identifiying and retrieving evidence for clinical decision making. 2. To utilise Optimal Foraging Theory to assess the effectiveness and efficiency of General Practitioner information searching. GPs from the Wellington region of New Zealand were asked to document in a pre-formatted logbook the steps and outcomes of an information search linked to their clinical decision making, and fill in a questionnaire about their personal, practice and information-searching backgrounds. A total of 115/155 eligible GPs returned a background questionnaire, and 71 completed their information search logbook. GPs spent an average of 17.7 minutes addressing their search for clinical information. Their preferred information sources were discussions with colleagues (38% of sources) and books (22%). These were the two most profitable information foraging sources (15.9 min and 9.5 min search time per answer, compared to 34.3 minutes in databases). GPs nearly always accessed another source when unsuccessful (95% after 1st source), and frequently when successful (43% after 2nd source). Use of multiple sources accounted for 41% of searches, and increased search success from 70% to 89%. By consulting in foraging terms the most 'profitable' sources of information (colleagues, books), rapidly switching sources when unsuccessful, and frequently double checking, GPs achieve an efficient trade-off between maximizing search success and information reliability, and minimizing searching time. As predicted by foraging theory, GPs trade time-consuming evidence-based (electronic) information sources for sources with a higher information reward per unit time searched. Evidence-based practice must accommodate these 'real world' foraging pressures, and Internet resources should evolve to deliver information as effectively as traditional methods of information gathering.
Ant Foraging As an Indicator of Tropical Dry Forest Restoration.
Hernández-Flores, J; Osorio-Beristain, M; Martínez-Garza, C
2016-08-01
Variation in foraging behavior may indicate differences in food availability and allow assessment of restoration actions. Ants are prominent bioindicators used in assessing ecological responses to disturbance. However, behavioral data have been poorly incorporated as an index. The foraging performance of red harvester ants was quantified in order to evaluate the success of a restoration ecology experiment in the tropical dry forest of Sierra de Huautla, Morelos, in central Mexico. Foraging performance by granivorous, Pogonomyrmex barbatus, ants was diminished after 6 and 8 years of cattle grazing and wood harvest were excluded as part of a restoration experiment in a highly degraded biome. Despite investing more time in foraging, ant colonies in exclusion plots showed lower foraging success and acquired less seed biomass than colonies in control plots. In line with the predictions of optimal foraging theory, in restored plots where ant foraging performance was poor, ants harvested a higher diversity of seeds. Reduced foraging success and increased harvest of non-preferred foods in exclusion plots were likely due to the growth of herbaceous vegetation, which impedes travel by foragers. Moreover, by 8 years of exclusion, 37% of nests in exclusion plots had disappeared compared to 0% of nests in control plots. Ants' foraging success and behavior were sensitive to changes in habitat quality due to the plant successional process triggered by a restoration intervention. This study spotlights on the utility of animal foraging behavior in the evaluation of habitat restoration programs. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Duarte, Andrea C.; Holman, Devin B.; Alexander, Trevor W.; Durmic, Zoey; Vercoe, Philip E.; Chaves, Alexandre V.
2017-01-01
In vitro fermentation systems such as the rumen simulation technique (RUSITEC) are frequently used to assess dietary manipulations in livestock, thereby limiting the use of live animals. Despite being in use for nearly 40 years, improvements are continually sought in these systems to better reflect and mimic natural processes in ruminants. The aim of this study was to evaluate the effect of forage preparation, i.e., frozen minced (FM) and freeze-dried and ground (FDG), on the ruminal microbiota and on fermentation characteristics when included as a substrate in a RUSITEC system. A completely randomized design experiment was performed over a 15-day period, with 7 days of adaptation and an 8-day experimental period. Fermentation parameters (total gas, CH4, and volatile fatty acid production) were analyzed on a daily basis over the experimental period and the archaeal and bacterial microbiota (liquid-associated microbes [LAM] and solid-associated microbes [SAM] was assessed at 0, 5, 10, and 15 days using high-throughput sequencing of the 16S rRNA gene. Results from this study suggested a tendency (P = 0.09) of FM treatment to increase daily CH4 (mg/d) production by 16.7% when compared with FDG treatment. Of the major volatile fatty acids (acetate, propionate, and butyrate), only butyrate production was greater (P = 0.01) with FM treatment compared with FDG substrate. The archaeal and bacterial diversity and richness did not differ between the forage preparations, although feed particle size of the forage had a significant effect on microbial community structure in the SAM and LAM samples. The Bacteroidetes phylum was more relatively abundant in the FM substrate treatment, while Proteobacteria was enriched in the FDG treatment. At the genus-level, Butyrivibrio, Prevotella, and Roseburia were enriched in the FM substrate treatment and Campylobacter and Lactobacillus in the FDG substrate treatment. Evidence from this study suggests that forage preparation affects CH4 production, butyrate production, and the structure of the rumen microbiota during in vitro fermentation. PMID:28473826
Multi Dimensional Honey Bee Foraging Algorithm Based on Optimal Energy Consumption
NASA Astrophysics Data System (ADS)
Saritha, R.; Vinod Chandra, S. S.
2017-10-01
In this paper a new nature inspired algorithm is proposed based on natural foraging behavior of multi-dimensional honey bee colonies. This method handles issues that arise when food is shared from multiple sources by multiple swarms at multiple destinations. The self organizing nature of natural honey bee swarms in multiple colonies is based on the principle of energy consumption. Swarms of multiple colonies select a food source to optimally fulfill the requirements of its colonies. This is based on the energy requirement for transporting food between a source and destination. Minimum use of energy leads to maximizing profit in each colony. The mathematical model proposed here is based on this principle. This has been successfully evaluated by applying it on multi-objective transportation problem for optimizing cost and time. The algorithm optimizes the needs at each destination in linear time.
Keser, Lidewij H.; Visser, Eric J. W.; Dawson, Wayne; Song, Yao-Bin; Yu, Fei-Hai; Fischer, Markus; Dong, Ming; van Kleunen, Mark
2015-01-01
Although plastic root-foraging responses are thought to be adaptive, as they may optimize nutrient capture of plants, this has rarely been tested. We investigated whether nutrient-foraging responses are adaptive, and whether they pre-adapt alien species to become natural-area invaders. We grew 12 pairs of congeneric species (i.e., 24 species) native to Europe in heterogeneous and homogeneous nutrient environments, and compared their foraging responses and performance. One species in each pair is a USA natural-area invader, and the other one is not. Within species, individuals with strong foraging responses, measured as plasticity in root diameter and specific root length, had a higher biomass. Among species, the ones with strong foraging responses, measured as plasticity in root length and root biomass, had a higher biomass. Our results therefore suggest that root foraging is an adaptive trait. Invasive species showed significantly stronger root-foraging responses than non-invasive species when measured as root diameter. Biomass accumulation was decreased in the heterogeneous vs. the homogeneous environment. In aboveground, but not belowground and total biomass, this decrease was smaller in invasive than in non-invasive species. Our results show that strong plastic root-foraging responses are adaptive, and suggest that it might aid in pre-adapting species to becoming natural-area invaders. PMID:25964790
Foraging under conditions of short-term exploitative competition: the case of stock traders
Saavedra, Serguei; Malmgren, R. Dean; Switanek, Nicholas; Uzzi, Brian
2013-01-01
Theory purports that animal foraging choices evolve to maximize returns, such as net energy intake. Empirical research in both human and non-human animals reveals that individuals often attend to the foraging choices of their competitors while making their own foraging choices. Owing to the complications of gathering field data or constructing experiments, however, broad facts relating theoretically optimal and empirically realized foraging choices are only now emerging. Here, we analyse foraging choices of a cohort of professional day traders who must choose between trading the same stock multiple times in a row—patch exploitation—or switching to a different stock—patch exploration—with potentially higher returns. We measure the difference between a trader's resource intake and the competitors' expected intake within a short period of time—a difference we call short-term comparative returns. We find that traders' choices can be explained by foraging heuristics that maximize their daily short-term comparative returns. However, we find no one-best relationship between different trading choices and net income intake. This suggests that traders' choices can be short-term win oriented and, paradoxically, maybe maladaptive for absolute market returns. PMID:23363635
Foraging under conditions of short-term exploitative competition: the case of stock traders.
Saavedra, Serguei; Malmgren, R Dean; Switanek, Nicholas; Uzzi, Brian
2013-03-22
Theory purports that animal foraging choices evolve to maximize returns, such as net energy intake. Empirical research in both human and non-human animals reveals that individuals often attend to the foraging choices of their competitors while making their own foraging choices. Owing to the complications of gathering field data or constructing experiments, however, broad facts relating theoretically optimal and empirically realized foraging choices are only now emerging. Here, we analyse foraging choices of a cohort of professional day traders who must choose between trading the same stock multiple times in a row--patch exploitation--or switching to a different stock--patch exploration--with potentially higher returns. We measure the difference between a trader's resource intake and the competitors' expected intake within a short period of time--a difference we call short-term comparative returns. We find that traders' choices can be explained by foraging heuristics that maximize their daily short-term comparative returns. However, we find no one-best relationship between different trading choices and net income intake. This suggests that traders' choices can be short-term win oriented and, paradoxically, maybe maladaptive for absolute market returns.
NASA Astrophysics Data System (ADS)
Xu, Shuo; Ji, Ze; Truong Pham, Duc; Yu, Fan
2011-11-01
The simultaneous mission assignment and home allocation for hospital service robots studied is a Multidimensional Assignment Problem (MAP) with multiobjectives and multiconstraints. A population-based metaheuristic, the Binary Bees Algorithm (BBA), is proposed to optimize this NP-hard problem. Inspired by the foraging mechanism of honeybees, the BBA's most important feature is an explicit functional partitioning between global search and local search for exploration and exploitation, respectively. Its key parts consist of adaptive global search, three-step elitism selection (constraint handling, non-dominated solutions selection, and diversity preservation), and elites-centred local search within a Hamming neighbourhood. Two comparative experiments were conducted to investigate its single objective optimization, optimization effectiveness (indexed by the S-metric and C-metric) and optimization efficiency (indexed by computational burden and CPU time) in detail. The BBA outperformed its competitors in almost all the quantitative indices. Hence, the above overall scheme, and particularly the searching history-adapted global search strategy was validated.
Evolutionary and anthropological perspectives on optimal foraging in obesogenic environments.
Lieberman, Leslie Sue
2006-07-01
The nutrition transition has created an obesogenic environment resulting in a growing obesity pandemic. An optimal foraging approach provides cost/benefit models of cognitive, behavioral and physiological strategies that illuminate the causes of caloric surfeit and consequent obesity in current environments of abundant food cues; easy-access and reliable food patches; low processing costs and enormous variety of energy-dense foods. Experimental and naturalistic observations demonstrate that obesogenic environments capitalize on human proclivities by displaying colorful advertising, supersizing meals, providing abundant variety, increasing convenience, and utilizing distractions that impede monitoring of food portions during consumption. The globalization of fast foods propels these trends.
The Role of Semantic Clustering in Optimal Memory Foraging.
Montez, Priscilla; Thompson, Graham; Kello, Christopher T
2015-11-01
Recent studies of semantic memory have investigated two theories of optimal search adopted from the animal foraging literature: Lévy flights and marginal value theorem. Each theory makes different simplifying assumptions and addresses different findings in search behaviors. In this study, an experiment is conducted to test whether clustering in semantic memory may play a role in evidence for both theories. Labeled magnets and a whiteboard were used to elicit spatial representations of semantic knowledge about animals. Category recall sequences from a separate experiment were used to trace search paths over the spatial representations of animal knowledge. Results showed that spatial distances between animal names arranged on the whiteboard were correlated with inter-response intervals (IRIs) during category recall, and distributions of both dependent measures approximated inverse power laws associated with Lévy flights. In addition, IRIs were relatively shorter when paths first entered animal clusters, and longer when they exited clusters, which is consistent with marginal value theorem. In conclusion, area-restricted searches over clustered semantic spaces may account for two different patterns of results interpreted as supporting two different theories of optimal memory foraging. Copyright © 2015 Cognitive Science Society, Inc.
Crowley, Philip H; Hopper, Kevin R; Krupa, James J
2013-12-01
Carnivorous plants and spiders, along with their prey, are main players in an insect-feeding guild found on acidic, poorly drained soils in disturbed habitat. Darwin's notion that these plants must actively attract the insects they capture raises the possibility that spiders could benefit from proximity to prey hotspots created by the plants. Alternatively, carnivorous plants and spiders may deplete prey locally or (through insect redistribution) more widely, reducing each other's gain rates from predation. Here, we formulate and analyze a model of this guild, parameterized for carnivorous sundews and lycosid spiders, under assumptions of random movement by insects and optimal foraging by predators. Optimal foraging here involves gain maximization via trap investment (optimal web sizes and sundew trichome densities) and an ideal free distribution of spiders between areas with and without sundews. We find no facilitation: spiders and sundews engage in intense exploitation competition. Insect attraction by plants modestly increases sundew gain rates but slightly decreases spider gain rates. In the absence of population size structure, optimal spider redistribution between areas with and without sundews yields web sizes that are identical for all spiders, regardless of proximity to sundews. Web-building spiders have higher gain rates than wandering spiders in this system at high insect densities, but wandering spiders have the advantage at low insect densities. Results are complex, indicating that predictions to be tested empirically must be based on careful quantitative assessment.
Rands, Sean A.
2011-01-01
Functional explanations of behaviour often propose optimal strategies for organisms to follow. These ‘best’ strategies could be difficult to perform given biological constraints such as neural architecture and physiological constraints. Instead, simple heuristics or ‘rules-of-thumb’ that approximate these optimal strategies may instead be performed. From a modelling perspective, rules-of-thumb are also useful tools for considering how group behaviour is shaped by the behaviours of individuals. Using simple rules-of-thumb reduces the complexity of these models, but care needs to be taken to use rules that are biologically relevant. Here, we investigate the similarity between the outputs of a two-player dynamic foraging game (which generated optimal but complex solutions) and a computational simulation of the behaviours of the two members of a foraging pair, who instead followed a rule-of-thumb approximation of the game's output. The original game generated complex results, and we demonstrate here that the simulations following the much-simplified rules-of-thumb also generate complex results, suggesting that the rule-of-thumb was sufficient to make some of the model outcomes unpredictable. There was some agreement between both modelling techniques, but some differences arose – particularly when pair members were not identical in how they gained and lost energy. We argue that exploring how rules-of-thumb perform in comparison to their optimal counterparts is an important exercise for biologically validating the output of agent-based models of group behaviour. PMID:21765938
Rands, Sean A
2011-01-01
Functional explanations of behaviour often propose optimal strategies for organisms to follow. These 'best' strategies could be difficult to perform given biological constraints such as neural architecture and physiological constraints. Instead, simple heuristics or 'rules-of-thumb' that approximate these optimal strategies may instead be performed. From a modelling perspective, rules-of-thumb are also useful tools for considering how group behaviour is shaped by the behaviours of individuals. Using simple rules-of-thumb reduces the complexity of these models, but care needs to be taken to use rules that are biologically relevant. Here, we investigate the similarity between the outputs of a two-player dynamic foraging game (which generated optimal but complex solutions) and a computational simulation of the behaviours of the two members of a foraging pair, who instead followed a rule-of-thumb approximation of the game's output. The original game generated complex results, and we demonstrate here that the simulations following the much-simplified rules-of-thumb also generate complex results, suggesting that the rule-of-thumb was sufficient to make some of the model outcomes unpredictable. There was some agreement between both modelling techniques, but some differences arose - particularly when pair members were not identical in how they gained and lost energy. We argue that exploring how rules-of-thumb perform in comparison to their optimal counterparts is an important exercise for biologically validating the output of agent-based models of group behaviour.
Zhang, Y; Liu, K; Hao, X; Xin, H
2017-12-01
The objectives of this study were to investigate the effect of different dietary ratios of forage and concentrate (F:C) on ruminal odd- and branched-chain fatty acids (OBCFAs) contents and to evaluate the relationships between OBCFA and ruminal fermentation parameters as well as bacterial populations tested by real-time PCR technique. The experimental design was a 3 × 3 Latin square. Three rumen-fistulated dry Holstein cows were fed three rations with different dietary F:C ratios (F:C; 30:70, 50:50 and 70:30). The rumen samples were collected every two hours (0600, 0800, 1000, 1200, 1400, 1600, 1800, 2000, 2200, 2400, 0200 and 0400 h) over three consecutive days in each sampling period. The results showed that rumen OBCFA profiles are significantly (p < 0.05) affected by the dietary F:C ratios. The concentrations of C11:0, C13:0, iso-C15:0, iso-C16:0, iso-C17:0 and C17:0 were higher in the cows fed dietary F:C ratio of 70:30 than those fed with other two rations. However, the concentrations of anteiso-C15:0, C15:0 and total OBCFA were on the lowest level in the high forage diet. Correlation and regression analysis showed that ruminal OBCFAs had strong relationships with ruminal fermentation parameters and bacterial populations. In particular, the iso-fatty acids had potential power to predict butyrate and isoacids metabolized in the rumen, whereas the fatty acids with 17 carbon atoms correlated with ruminal NH 3 -N content. The OBCFA contents have different relationships with fibrolytic and starch bacteria in the rumen. C17:0 and its isomers might be used to predict populations of fibrolytic bacteria. Journal of Animal Physiology and Animal Nutrition © 2016 Blackwell Verlag GmbH.
Stabentheiner, Anton; Kovac, Helmut
2014-01-01
Heterothermic insects like honeybees, foraging in a variable environment, face the challenge of keeping their body temperature high to enable immediate flight and to promote fast exploitation of resources. Because of their small size they have to cope with an enormous heat loss and, therefore, high costs of thermoregulation. This calls for energetic optimisation which may be achieved by different strategies. An ‘economizing’ strategy would be to reduce energetic investment whenever possible, for example by using external heat from the sun for thermoregulation. An ‘investment-guided’ strategy, by contrast, would be to invest additional heat production or external heat gain to optimize physiological parameters like body temperature which promise increased energetic returns. Here we show how honeybees balance these strategies in response to changes of their local microclimate. In a novel approach of simultaneous measurement of respiration and body temperature foragers displayed a flexible strategy of thermoregulatory and energetic management. While foraging in shade on an artificial flower they did not save energy with increasing ambient temperature as expected but acted according to an ‘investment-guided’ strategy, keeping the energy turnover at a high level (∼56–69 mW). This increased thorax temperature and speeded up foraging as ambient temperature increased. Solar heat was invested to increase thorax temperature at low ambient temperature (‘investment-guided’ strategy) but to save energy at high temperature (‘economizing’ strategy), leading to energy savings per stay of ∼18–76% in sunshine. This flexible economic strategy minimized costs of foraging, and optimized energetic efficiency in response to broad variation of environmental conditions. PMID:25162211
Scavengers on the move: behavioural changes in foraging search patterns during the annual cycle.
López-López, Pascual; Benavent-Corai, José; García-Ripollés, Clara; Urios, Vicente
2013-01-01
Optimal foraging theory predicts that animals will tend to maximize foraging success by optimizing search strategies. However, how organisms detect sparsely distributed food resources remains an open question. When targets are sparse and unpredictably distributed, a Lévy strategy should maximize foraging success. By contrast, when resources are abundant and regularly distributed, simple brownian random movement should be sufficient. Although very different groups of organisms exhibit Lévy motion, the shift from a Lévy to a brownian search strategy has been suggested to depend on internal and external factors such as sex, prey density, or environmental context. However, animal response at the individual level has received little attention. We used GPS satellite-telemetry data of Egyptian vultures Neophron percnopterus to examine movement patterns at the individual level during consecutive years, with particular interest in the variations in foraging search patterns during the different periods of the annual cycle (i.e. breeding vs. non-breeding). Our results show that vultures followed a brownian search strategy in their wintering sojourn in Africa, whereas they exhibited a more complex foraging search pattern at breeding grounds in Europe, including Lévy motion. Interestingly, our results showed that individuals shifted between search strategies within the same period of the annual cycle in successive years. Results could be primarily explained by the different environmental conditions in which foraging activities occur. However, the high degree of behavioural flexibility exhibited during the breeding period in contrast to the non-breeding period is challenging, suggesting that not only environmental conditions explain individuals' behaviour but also individuals' cognitive abilities (e.g., memory effects) could play an important role. Our results support the growing awareness about the role of behavioural flexibility at the individual level, adding new empirical evidence about how animals in general, and particularly scavengers, solve the problem of efficiently finding food resources.
NASA Astrophysics Data System (ADS)
Song, Y.; Yao, Q.; Wang, G.; Yang, X.; Mayes, M. A.
2017-12-01
Increasing evidences is indicating that soil organic matter (SOM) decomposition and stabilization process is a continuum process and controlled by both microbial functions and their interaction with minerals (known as the microbial efficiency-matrix stabilization theory (MEMS)). Our metagenomics analysis of soil samples from both P-deficit and P-fertilization sites in Panama has demonstrated that community-level enzyme functions could adapt to maximize the acquisition of limiting nutrients and minimize energy demand for foraging (known as the optimal foraging theory). This optimization scheme can mitigate the imbalance of C/P ratio between soil substrate and microbial community and relieve the P limitation on microbial carbon use efficiency over the time. Dynamic allocation of multiple enzyme groups and their interaction with microbial/substrate stoichiometry has rarely been considered in biogeochemical models due to the difficulties in identifying microbial functional groups and quantifying the change in enzyme expression in response to soil nutrient availability. This study aims to represent the omics-informed optimal foraging theory in the Continuum Microbial ENzyme Decomposition model (CoMEND), which was developed to represent the continuum SOM decomposition process following the MEMS theory. The SOM pools in the model are classified based on soil chemical composition (i.e. Carbohydrates, lignin, N-rich SOM and P-rich SOM) and the degree of SOM depolymerization. The enzyme functional groups for decomposition of each SOM pool and N/P mineralization are identified by the relative composition of gene copy numbers. The responses of microbial activities and SOM decomposition to nutrient availability are simulated by optimizing the allocation of enzyme functional groups following the optimal foraging theory. The modeled dynamic enzyme allocation in response to P availability is evaluated by the metagenomics data measured from P addition and P-deficit soil samples in Panama sites.The implementation of dynamic enzyme allocation in response to nutrient availability in the CoMEND model enables us to capture the varying microbial C/P ratio and soil carbon dynamics in response to shifting nutrient constraints over time in tropical soils.
Hafla, A N; Soder, K J; Brito, A F; Rubano, M D; Dell, C J
2014-12-01
A 4-unit dual-flow continuous-culture fermentor system was used to assess the effect of supplementing 7-d sprouted barley (SB) or barley grain (BG) with an herbage-based or haylage-based diet on nutrient digestibility, volatile fatty acid (VFA) profiles, bacterial protein synthesis, and methane (CH4) output. Treatments were randomly assigned to fermentors in a 4 × 4 Latin square design with a 2 × 2 factorial arrangement using 7 d for diet adaptation and 3 d for sample collection. Experimental diets were (1) 55.5 g of herbage dry matter (DM) + 4.5 g of SB DM, (2) 56.0 g of herbage DM + 4.0 g of BG DM, (3) 55.5 g of haylage DM + 4.5 g of SB DM, and (4) 56.0 g of haylage DM + 4.0 g of BG DM. Forages were fed at 0730, 1030, 1400, and 1900 h, whereas SB and BG were fed at 0730 and 1400 h. Gas samples for CH₄ analysis were collected at 0725, 0900, 1000, 1355, 1530, and 1630 h on d 8, 9, and 10. Fluid samples were taken once daily on d 8, 9, and 10 for pH measurements and for ammonia-N and VFA analysis and analyzed for DM, organic matter, crude protein, neutral detergent fiber, and acid detergent fiber for determination of nutrient digestibilities and estimation of bacterial protein synthesis. Orthogonal contrasts were used to compare the effect of forage source (haylage vs. herbage), supplement (BG vs. SB), and the forage × supplement interaction. Apparent and true DM and organic matter digestibilities as well as apparent crude protein digestibility were not affected by forage source. However, true DM digestibility was greatest for diets supplemented with SB. Apparent neutral and acid detergent fiber digestibilities of herbage-based diets were higher than haylage-based diets but fiber digestibility was not affected by supplement. Diets supplemented with SB had higher mean and minimum pH than BG; however, maximum pH was not affected by diet. Supplementation with BG produced a greater concentration of total VFA compared with diets supplemented with SB. Haylage-based diets produced greater CH4 output compared with herbage-based diets but supplementation did not affect CH4 output. Efficiency of bacterial protein synthesis was greater for herbage-based diets compared with haylage-based diets, with no effect of supplementation. Overall, supplementation with SB marginally increased true DM digestibility of herbage- and haylage-based diets but did not affect fiber and crude protein digestibilities, CH4 output, and bacterial efficiency, compared with BG. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Thermal and digestive constraints to foraging behaviour in marine mammals.
Rosen, David A S; Winship, Arliss J; Hoopes, Lisa A
2007-11-29
While foraging models of terrestrial mammals are concerned primarily with optimizing time/energy budgets, models of foraging behaviour in marine mammals have been primarily concerned with physiological constraints. This has historically centred on calculations of aerobic dive limits. However, other physiological limits are key to forming foraging behaviour, including digestive limitations to food intake and thermoregulation. The ability of an animal to consume sufficient prey to meet its energy requirements is partly determined by its ability to acquire prey (limited by available foraging time, diving capabilities and thermoregulatory costs) and process that prey (limited by maximum digestion capacity and the time devoted to digestion). Failure to consume sufficient prey will have feedback effects on foraging, thermoregulation and digestive capacity through several interacting avenues. Energy deficits will be met through catabolism of tissues, principally the hypodermal lipid layer. Depletion of this blubber layer can affect both buoyancy and gait, increasing the costs and decreasing the efficiency of subsequent foraging attempts. Depletion of the insulative blubber layer may also increase thermoregulatory costs, which will decrease the foraging abilities through higher metabolic overheads. Thus, an energy deficit may lead to a downward spiral of increased tissue catabolism to pay for increased energy costs. Conversely, the heat generated through digestion and foraging activity may help to offset thermoregulatory costs. Finally, the circulatory demands of diving, thermoregulation and digestion may be mutually incompatible. This may force animals to alter time budgets to balance these exclusive demands. Analysis of these interacting processes will lead to a greater understanding of the physiological constraints within which the foraging behaviour must operate.
Honey Bees Inspired Optimization Method: The Bees Algorithm.
Yuce, Baris; Packianather, Michael S; Mastrocinque, Ernesto; Pham, Duc Truong; Lambiase, Alfredo
2013-11-06
Optimization algorithms are search methods where the goal is to find an optimal solution to a problem, in order to satisfy one or more objective functions, possibly subject to a set of constraints. Studies of social animals and social insects have resulted in a number of computational models of swarm intelligence. Within these swarms their collective behavior is usually very complex. The collective behavior of a swarm of social organisms emerges from the behaviors of the individuals of that swarm. Researchers have developed computational optimization methods based on biology such as Genetic Algorithms, Particle Swarm Optimization, and Ant Colony. The aim of this paper is to describe an optimization algorithm called the Bees Algorithm, inspired from the natural foraging behavior of honey bees, to find the optimal solution. The algorithm performs both an exploitative neighborhood search combined with random explorative search. In this paper, after an explanation of the natural foraging behavior of honey bees, the basic Bees Algorithm and its improved versions are described and are implemented in order to optimize several benchmark functions, and the results are compared with those obtained with different optimization algorithms. The results show that the Bees Algorithm offering some advantage over other optimization methods according to the nature of the problem.
Dangerous prey and daring predators: a review.
Mukherjee, Shomen; Heithaus, Michael R
2013-08-01
How foragers balance risks during foraging is a central focus of optimal foraging studies. While diverse theoretical and empirical work has revealed how foragers should and do manage food and safety from predators, little attention has been given to the risks posed by dangerous prey. This is a potentially important oversight because risk of injury can give rise to foraging costs similar to those arising from the risk of predation, and with similar consequences. Here, we synthesize the literature on how foragers manage risks associated with dangerous prey and adapt previous theory to make the first steps towards a framework for future studies. Though rarely documented, it appears that in some systems predators are frequently injured while hunting and risk of injury can be an important foraging cost. Fitness costs of foraging injuries, which can be fatal, likely vary widely but have rarely been studied and should be the subject of future research. Like other types of risk-taking behaviour, it appears that there is individual variation in the willingness to take risks, which can be driven by social factors, experience and foraging abilities, or differences in body condition. Because of ongoing modifications to natural communities, including changes in prey availability and relative abundance as well as the introduction of potentially dangerous prey to numerous ecosystems, understanding the prevalence and consequences of hunting dangerous prey should be a priority for behavioural ecologists. © 2013 The Authors. Biological Reviews © 2013 Cambridge Philosophical Society.
Optimisation of a honeybee-colony's energetics via social learning based on queuing delays
NASA Astrophysics Data System (ADS)
Thenius, Ronald; Schmickl, Thomas; Crailsheim, Karl
2008-06-01
Natural selection shaped the foraging-related processes of honeybees in such a way that a colony can react to changing environmental conditions optimally. To investigate this complex dynamic social system, we developed a multi-agent model of the nectar flow inside and outside of a honeybee colony. In a honeybee colony, a temporal caste collects nectar in the environment. These foragers bring their harvest into the colony, where they unload their nectar loads to one or more storer bees. Our model predicts that a cohort of foragers, collecting nectar from a single nectar source, is able to detect changes in quality in other food sources they have never visited, via the nectar processing system of the colony. We identified two novel pathways of forager-to-forager communication. Foragers can gain information about changes in the nectar flow in the environment via changes in their mean waiting time for unloadings and the number of experienced multiple unloadings. This way two distinct groups of foragers that forage on different nectar sources and that never communicate directly can share information via a third cohort of worker bees. We show that this noisy and loosely knotted social network allows a colony to perform collective information processing, so that a single forager has all necessary information available to be able to 'tune' its social behaviour, like dancing or dance-following. This way the net nectar gain of the colony is increased.
Bacterial stem blight of alfalfa: A disease that increases frost damage
USDA-ARS?s Scientific Manuscript database
Alfalfa producers count on the first harvest in late spring to deliver the highest tonnage and best quality of forage of the year. A late frost can significantly reduce both yield and quality. Losses are due not only to the physical damage from freezing of the alfalfa stem and leaves but also from d...
Social familiarity modulates group living and foraging behaviour of juvenile predatory mites
NASA Astrophysics Data System (ADS)
Strodl, Markus A.; Schausberger, Peter
2012-04-01
Environmental stressors during early life may have persistent consequences for phenotypic development and fitness. In group-living species, an important stressor during juvenile development is the presence and familiarity status of conspecific individuals. To alleviate intraspecific conflicts during juvenile development, many animals evolved the ability to discriminate familiar and unfamiliar individuals based on prior association and use this ability to preferentially associate with familiar individuals. Assuming that familiar neighbours require less attention than unfamiliar ones, as predicted by limited attention theory, assorting with familiar individuals should increase the efficiency in other tasks. We assessed the influence of social familiarity on within-group association behaviour, development and foraging of juvenile life stages of the group-living, plant-inhabiting predatory mite Phytoseiulus persimilis. The observed groups consisted either of mixed-age familiar and unfamiliar juvenile mites or of age-synchronized familiar or unfamiliar juvenile mites or of pairs of familiar or unfamiliar larvae. Overall, familiar mites preferentially grouped together and foraged more efficiently, i.e. needed less prey at similar developmental speed and body size at maturity, than unfamiliar mites. Preferential association of familiar mites was also apparent in the inter-exuviae distances. Social familiarity was established by imprinting in the larval stage, was not cancelled or overridden by later conspecific contacts and persisted into adulthood. Life stage had an effect on grouping with larvae being closer together than nymphal stages. Ultimately, optimized foraging during the developmental phase may relax within-group competition, enhance current and future food supply needed for optimal development and optimize patch exploitation and leaving under limited food.
Evidence of Levy walk foraging patterns in human hunter-gatherers.
Raichlen, David A; Wood, Brian M; Gordon, Adam D; Mabulla, Audax Z P; Marlowe, Frank W; Pontzer, Herman
2014-01-14
When searching for food, many organisms adopt a superdiffusive, scale-free movement pattern called a Lévy walk, which is considered optimal when foraging for heterogeneously located resources with little prior knowledge of distribution patterns [Viswanathan GM, da Luz MGE, Raposo EP, Stanley HE (2011) The Physics of Foraging: An Introduction to Random Searches and Biological Encounters]. Although memory of food locations and higher cognition may limit the benefits of random walk strategies, no studies to date have fully explored search patterns in human foraging. Here, we show that human hunter-gatherers, the Hadza of northern Tanzania, perform Lévy walks in nearly one-half of all foraging bouts. Lévy walks occur when searching for a wide variety of foods from animal prey to underground tubers, suggesting that, even in the most cognitively complex forager on Earth, such patterns are essential to understanding elementary foraging mechanisms. This movement pattern may be fundamental to how humans experience and interact with the world across a wide range of ecological contexts, and it may be adaptive to food distribution patterns on the landscape, which previous studies suggested for organisms with more limited cognition. Additionally, Lévy walks may have become common early in our genus when hunting and gathering arose as a major foraging strategy, playing an important role in the evolution of human mobility.
Implementing unpredictability in feeding enrichment for Malayan sun bears (Helarctos malayanus).
Schneider, Marion; Nogge, Gunther; Kolter, Lydia
2014-01-01
Bears in the wild spend large proportions of time in foraging activities. In zoos their time budgets differ markedly from those of their wild counterparts. Feeding enrichment has been documented to increase foraging behavior and to reduce stereotypies. But in general these procedures have no long-term effects and result in habituation. As can be expected by the predictions of the optimal foraging theory, foraging activities are restricted as long as the availability of food is predictable. To quantify the effect of spatial unpredictability, three feeding methods have been designed to stimulate functional foraging behavior in captive Malayan sun bears in the long-term. In order to examine if habituation occurs, the most effective method was tested for 12 consecutive days. Activities of four adult sun bears at the Cologne Zoo were recorded by focal animal recording of foraging behaviors and time sampling of activities for a total of 360 hr. Implementing unpredictability significantly increased the time the bears spent foraging and led to a higher diversity of foraging behaviors. The effects lasted throughout the entire day and no habituation occurred in the course of 12 consecutive days. The study shows how functional species typical behavior in captive Malayan sun bears can be stimulated in the long-term by simulating natural characteristics of food availability. © 2014 Wiley Periodicals, Inc.
van Gils, J A; Tijsen, W
2007-05-01
Foragers tend to exploit patches to a lesser extent farther away from their central place. This has been interpreted as a response to increased risk of predation or increased metabolic costs of prey delivery. Here we show that migratory Bewick's swans (Cygnus columbianus bewickii), though not incurring greater predation risks farther out or delivering food to a central place, also feed for shorter periods at patches farther away from their roost. Predictions from an energy budget model suggest that increasing metabolic travel costs per se are responsible. Establishing the relation between intake rate and exploitation time enabled us to express giving-up exploitation times as quitting harvest rates (QHRs). This revealed that net QHRs were not different from observed long-term net intake rates, a sign that the birds were maximizing their long-term net intake rate. This study is unique because giving-up decisions were measured at the individual level, metabolic and predation costs were assessed simultaneously, the relation with harvest rate was made explicit, and finally, short-term giving-up decisions were related to long-term net intake rates. We discuss and conceptualize the implications of metabolic traveling costs for carrying-capacity predictions by bridging the gap between optimal-foraging theory and optimal-migration theory.
A neural network model of foraging decisions made under predation risk.
Coleman, Scott L; Brown, Vincent R; Levine, Daniel S; Mellgren, Roger L
2005-12-01
This article develops the cognitive-emotional forager (CEF) model, a novel application of a neural network to dynamical processes in foraging behavior. The CEF is based on a neural network known as the gated dipole, introduced by Grossberg, which is capable of representing short-term affective reactions in a manner similar to Solomon and Corbit's (1974) opponent process theory. The model incorporates a trade-off between approach toward food and avoidance of predation under varying levels of motivation induced by hunger. The results of simulations in a simple patch selection paradigm, using a lifetime fitness criterion for comparison, indicate that the CEF model is capable of nearly optimal foraging and outperforms a run-of-luck rule-of-thumb model. Models such as the one presented here can illuminate the underlying cognitive and motivational components of animal decision making.
Aggressive and foraging behavioral interactions among ruffe
Savino, Jacqueline F.; Kostich, Melissa J.
2000-01-01
The ruffe, Gymnocephalus cernuus, is a nonindigenous percid in the Great Lakes. Ruffe are aggressive benthivores and forage over soft substrates. Laboratory studies in pools (100 cm in diameter, 15 cm water depth) were conducted to determine whether fish density (low = 2, medium = 4, high = 6 ruffe per pool) changed foraging and aggressive behaviors with a limited food supply of chironomid larvae. All fish densities demonstrated a hierarchy based on aggressive interactions, but ruffe were most aggressive at low and high fish densities. Time spent in foraging was lowest at the low fish density. The best forager at the low fish density was the most aggressive individual, but the second most aggressive fish at the medium and high fish density was the best forager and also the one chased most frequently. A medium fish density offered the best energetic benefits to ruffe by providing the lowest ratio of time spent in aggression to that spent foraging. Based on our results, ruffe should grow best at an intermediate density. With high ruffe densities, we would also expect disparity in size as the more aggressive fish are able to garner a disproportionate amount of the resources. Alternatively, as the Great Lakes are a fairly open system, ruffe could migrate out of one area to colonize another as populations exceed optimal densities.
Foraging decisions, patch use, and seasonality in egrets (Aves: ciconiiformes)
Erwin, R.M.
1985-01-01
Feeding snowy (Egretta thula) and great (Casmerodius albus) egrets were observed during 2 breeding seasons in coastal New Jersey and 2 brief winter periods in northeast Florida (USA). A number of tests based on assumptions of foraging models, predictions from foraging theory, and earlier empirical tests concerning time allocation and movement in foraging patches was made. Few of the expectations based on foraging theory and/or assumptions were supported by the empirical evidence. Snowy egrets fed with greater intensity and efficiency during the breeding season (when young were being fed) than during winter. They also showed some tendency to leave patches when their capture rate declined, and they spent more time foraging in patches when other birds were present nearby. Great egrets showed few of these tendencies, although they did leave patches when their intercapture intervals increased. Satiation differences had some influence on feeding rates in snowy egrets, but only at the end of feeding bouts. Some individuals of both species revisited areas in patches that had recently been exploited, and success rates were usually higher after the 2nd visit. Apparently, for predators of active prey, short-term changes in resource availability ('resource depression') may be more important than resource depletion, a common assumption in most optimal foraging theory models.
Arthur, Karen E; Kelez, Shaleyla; Larsen, Thomas; Choy, C Anela; Popp, Brian N
2014-05-01
Plants, bacteria, and fungi produce essential amino acids (EAAs) with distinctive patterns of delta13C values that can be used as naturally occurring fingerprints of biosynthetic origin of EAAs in a food web. Because animals cannot synthesize EAAs and must obtain them from food, their tissues reflect delta13C(EAA) patterns found in diet, but it is not known how microbes responsible for hindgut fermentation in some herbivores influence the delta13C values of EAAs in their hosts' tissues. We examined whether distinctive delta13C fingerprints of hindgut flora are evident in the tissues of green turtles (Chelonia mydas), which are known to be facultative hindgut fermenters. We determined delta13C(EAA) values in tissues of green turtles foraging herbivorously in neritic habitats of Hawaii and compared them with those from green, olive ridley, and loggerhead turtles foraging carnivorously in oceanic environments of the central and southeast Pacific Ocean. Results of multivariate statistical analysis revealed two distinct groups that could be distinguished based on unique delta13C(EAA) patterns. A three-end-member predictive linear discriminant model indicated that delta13C(EAA) fingerprints existed in the tissues of carnivorous turtles that resembled patterns found in microalgae, which form the base of an oceanic food web, whereas herbivorous turtles derive EAAs from a bacterial or seagrass source. This study demonstrates the capacity for delta13C fingerprinting to establish the biosynthetic origin of EAAs in higher consumers, and that marine turtles foraging on macroalgal diets appear to receive nutritional supplementation from bacterial symbionts in their digestive system.
No apparent correlation between honey bee forager gut microbiota and honey production.
Horton, Melissa A; Oliver, Randy; Newton, Irene L
2015-01-01
One of the best indicators of colony health for the European honey bee (Apis mellifera) is its performance in the production of honey. Recent research into the microbial communities naturally populating the bee gut raise the question as to whether there is a correlation between microbial community structure and colony productivity. In this work, we used 16S rRNA amplicon sequencing to explore the microbial composition associated with forager bees from honey bee colonies producing large amounts of surplus honey (productive) and compared them to colonies producing less (unproductive). As supported by previous work, the honey bee microbiome was found to be dominated by three major phyla: the Proteobacteria, Bacilli and Actinobacteria, within which we found a total of 23 different bacterial genera, including known "core" honey bee microbiome members. Using discriminant function analysis and correlation-based network analysis, we identified highly abundant members (such as Frischella and Gilliamella) as important in shaping the bacterial community; libraries from colonies with high quantities of these Orbaceae members were also likely to contain fewer Bifidobacteria and Lactobacillus species (such as Firm-4). However, co-culture assays, using isolates from these major clades, were unable to confirm any antagonistic interaction between Gilliamella and honey bee gut bacteria. Our results suggest that honey bee colony productivity is associated with increased bacterial diversity, although this mechanism behind this correlation has yet to be determined. Our results also suggest researchers should not base inferences of bacterial interactions solely on correlations found using sequencing. Instead, we suggest that depth of sequencing and library size can dramatically influence statistically significant results from sequence analysis of amplicons and should be cautiously interpreted.
The improved business valuation model for RFID company based on the community mining method.
Li, Shugang; Yu, Zhaoxu
2017-01-01
Nowadays, the appetite for the investment and mergers and acquisitions (M&A) activity in RFID companies is growing rapidly. Although the huge number of papers have addressed the topic of business valuation models based on statistical methods or neural network methods, only a few are dedicated to constructing a general framework for business valuation that improves the performance with network graph (NG) and the corresponding community mining (CM) method. In this study, an NG based business valuation model is proposed, where real options approach (ROA) integrating CM method is designed to predict the company's net profit as well as estimate the company value. Three improvements are made in the proposed valuation model: Firstly, our model figures out the credibility of the node belonging to each community and clusters the network according to the evolutionary Bayesian method. Secondly, the improved bacterial foraging optimization algorithm (IBFOA) is adopted to calculate the optimized Bayesian posterior probability function. Finally, in IBFOA, bi-objective method is used to assess the accuracy of prediction, and these two objectives are combined into one objective function using a new Pareto boundary method. The proposed method returns lower forecasting error than 10 well-known forecasting models on 3 different time interval valuing tasks for the real-life simulation of RFID companies.
The improved business valuation model for RFID company based on the community mining method
Li, Shugang; Yu, Zhaoxu
2017-01-01
Nowadays, the appetite for the investment and mergers and acquisitions (M&A) activity in RFID companies is growing rapidly. Although the huge number of papers have addressed the topic of business valuation models based on statistical methods or neural network methods, only a few are dedicated to constructing a general framework for business valuation that improves the performance with network graph (NG) and the corresponding community mining (CM) method. In this study, an NG based business valuation model is proposed, where real options approach (ROA) integrating CM method is designed to predict the company’s net profit as well as estimate the company value. Three improvements are made in the proposed valuation model: Firstly, our model figures out the credibility of the node belonging to each community and clusters the network according to the evolutionary Bayesian method. Secondly, the improved bacterial foraging optimization algorithm (IBFOA) is adopted to calculate the optimized Bayesian posterior probability function. Finally, in IBFOA, bi-objective method is used to assess the accuracy of prediction, and these two objectives are combined into one objective function using a new Pareto boundary method. The proposed method returns lower forecasting error than 10 well-known forecasting models on 3 different time interval valuing tasks for the real-life simulation of RFID companies. PMID:28459815
Reynolds, Andrew M.; Stelzer, Ralph J.; Lim, Ka S.; Smith, Alan D.; Osborne, Juliet L.; Chittka, Lars
2012-01-01
Central place foragers, such as pollinating bees, typically develop circuits (traplines) to visit multiple foraging sites in a manner that minimizes overall travel distance. Despite being taxonomically widespread, these routing behaviours remain poorly understood due to the difficulty of tracking the foraging history of animals in the wild. Here we examine how bumblebees (Bombus terrestris) develop and optimise traplines over large spatial scales by setting up an array of five artificial flowers arranged in a regular pentagon (50 m side length) and fitted with motion-sensitive video cameras to determine the sequence of visitation. Stable traplines that linked together all the flowers in an optimal sequence were typically established after a bee made 26 foraging bouts, during which time only about 20 of the 120 possible routes were tried. Radar tracking of selected flights revealed a dramatic decrease by 80% (ca. 1500 m) of the total travel distance between the first and the last foraging bout. When a flower was removed and replaced by a more distant one, bees engaged in localised search flights, a strategy that can facilitate the discovery of a new flower and its integration into a novel optimal trapline. Based on these observations, we developed and tested an iterative improvement heuristic to capture how bees could learn and refine their routes each time a shorter route is found. Our findings suggest that complex dynamic routing problems can be solved by small-brained animals using simple learning heuristics, without the need for a cognitive map. PMID:23049479
Donald J. Lipscomb; Thomas M. Williams
2006-01-01
We have used RCWFAT (an ARC-INFO program that evaluates RCW habitat) to examine the 2003 Red Cockaded Woodpecker (RCW) Recovery Plan, which will influence silvicultural activities on large tracts of southeastern forests. The new plan includes 11 specific characteristics of forest stands that constitute âGood Quality Foraging Habitatâ (GQFH) and requires 120 to 200...
Comparisons of patch-use models for wintering American tree sparrows
Tome, M.W.
1990-01-01
Optimal foraging theory has stimulated numerous theoretical and empirical studies of foraging behavior for >20 years. These models provide a valuable tool for studying the foraging behavior of an organism. As with any other tool, the models are most effective when properly used. For example, to obtain a robust test of a foraging model, Stephens and Krebs (1986) recommend experimental designs in which four questions are answered in the affirmative. First, do the foragers play the same "game" as the model? Sec- ond, are the assumptions of the model met? Third, does the test rule out alternative possibilities? Finally, are the appropriate variables measured? Negative an- swers to any of these questions could invalidate the model and lead to confusion over the usefulness of foraging theory in conducting ecological studies. Gaines (1989) attempted to determine whether American Tree Sparrows (Spizella arborea) foraged by a time (Krebs 1973) or number expectation rule (Gibb 1962), or in a manner consistent with the predictions of Charnov's (1976) marginal value theorem (MVT). Gaines (1989: 118) noted appropriately that field tests of foraging models frequently involve uncontrollable circumstances; thus, it is often difficult to meet the assumptions of the models. Gaines also states (1989: 118) that "violations of the assumptions are also in- formative but do not constitute robust tests of predicted hypotheses," and that "the problem can be avoided by experimental analyses which concurrently test mutually exclusive hypotheses so that alter- native predictions will be eliminated if falsified." There is a problem with this approach because, when major assumptions of models are not satisfied, it is not justifiable to compare a predator's foraging behavior with the model's predictions. I submit that failing to follow the advice offered by Stephens and Krebs (1986) can invalidate tests of foraging models.
Metabolomics Reveals the Origins of Antimicrobial Plant Resins Collected by Honey Bees
Wilson, Michael B.; Spivak, Marla; Hegeman, Adrian D.; Rendahl, Aaron; Cohen, Jerry D.
2013-01-01
The deposition of antimicrobial plant resins in honey bee, Apis mellifera, nests has important physiological benefits. Resin foraging is difficult to approach experimentally because resin composition is highly variable among and between plant families, the environmental and plant-genotypic effects on resins are unknown, and resin foragers are relatively rare and often forage in unobservable tree canopies. Subsequently, little is known about the botanical origins of resins in many regions or the benefits of specific resins to bees. We used metabolomic methods as a type of environmental forensics to track individual resin forager behavior through comparisons of global resin metabolite patterns. The resin from the corbiculae of a single bee was sufficient to identify that resin's botanical source without prior knowledge of resin composition. Bees from our apiary discriminately foraged for resin from eastern cottonwood (Populus deltoides), and balsam poplar (P. balsamifera) among many available, even closely related, resinous plants. Cottonwood and balsam poplar resin composition did not show significant seasonal or regional changes in composition. Metabolomic analysis of resin from 6 North American Populus spp. and 5 hybrids revealed peaks characteristic to taxonomic nodes within Populus, while antimicrobial analysis revealed that resin from different species varied in inhibition of the bee bacterial pathogen, Paenibacillus larvae. We conclude that honey bees make discrete choices among many resinous plant species, even among closely related species. Bees also maintained fidelity to a single source during a foraging trip. Furthermore, the differential inhibition of P. larvae by Populus spp., thought to be preferential for resin collection in temperate regions, suggests that resins from closely related plant species many have different benefits to bees. PMID:24204850
Metagenomic and metaproteomic insights into bacterial communities in leaf-cutter ant fungus gardens
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aylward, Frank O.; Burnum, Kristin E.; Scott, Jarrod J.
2012-09-01
Herbivores gain access to nutrients stored in plant biomass largely by harnessing the metabolic activities of microbes. Leaf-cutter ants of the genus Atta are a hallmark example; these dominant Neotropical herbivores cultivate symbiotic fungus gardens on massive quantities of fresh plant forage. As the external digestive system of the ants, fungus gardens facilitate the production and sustenance of millions of workers in mature Atta colonies. Here we use metagenomic, and metaproteomic techniques to characterize the bacterial diversity and overall physiological potential of fungus gardens from two species of Atta. Our analysis of over 1.2 Gbp of community metagenomic sequence andmore » three 16S pyrotag libraries reveals that, in addition to harboring the dominant fungal crop, these ecosystems contain abundant populations of Enterobacteriaceae, including the genera Enterobacter, Pantoea, Klebsiella, Citrobacter, and Escherichia. We show that these bacterial communities possess genes commonly associated with lignocellulose degradation, and likely participate in the processing of plant biomass. Additionally, we demonstrate that bacteria in these environments encode a diverse suite of biosynthetic pathways, and that they may enrich the nitrogen-poor forage of the ants with B-vitamins, amino acids, and proteins. These results are consistent with the hypothesis that fungus gardens are highly-specialized fungus-bacteria communities that efficiently convert plant material into usable energy for their ant hosts. Together with recent investigations into the microbial symbionts of vertebrates, our work underscores the importance of microbial communities to the ecology and evolution of herbivorous metazoans.« less
Dynamic programming for optimization of timber production and grazing in ponderosa pine
Kurt H. Riitters; J. Douglas Brodie; David W. Hann
1982-01-01
Dynamic programming procedures are presented for optimizing thinning and rotation of even-aged ponderosa pine by using the four descriptors: age, basal area, number of trees, and time since thinning. Because both timber yield and grazing yield are functions of stand density, the two outputs-forage and timber-can both be optimized. The soil expectation values for single...
Pollinator Foraging Adaptation and Coexistence of Competing Plants.
Revilla, Tomás A; Křivan, Vlastimil
2016-01-01
We use the optimal foraging theory to study coexistence between two plant species and a generalist pollinator. We compare conditions for plant coexistence for non-adaptive vs. adaptive pollinators that adjust their foraging strategy to maximize fitness. When pollinators have fixed preferences, we show that plant coexistence typically requires both weak competition between plants for resources (e.g., space or nutrients) and pollinator preferences that are not too biased in favour of either plant. We also show how plant coexistence is promoted by indirect facilitation via the pollinator. When pollinators are adaptive foragers, pollinator's diet maximizes pollinator's fitness measured as the per capita population growth rate. Simulations show that this has two conflicting consequences for plant coexistence. On the one hand, when competition between pollinators is weak, adaptation favours pollinator specialization on the more profitable plant which increases asymmetries in plant competition and makes their coexistence less likely. On the other hand, when competition between pollinators is strong, adaptation promotes generalism, which facilitates plant coexistence. In addition, adaptive foraging allows pollinators to survive sudden loss of the preferred plant host, thus preventing further collapse of the entire community.
Toscano, Benjamin J; Gownaris, Natasha J; Heerhartz, Sarah M; Monaco, Cristián J
2016-09-01
Behavioral traits and diet were traditionally thought to be highly plastic within individuals. This view was espoused in the widespread use of optimality models, which broadly predict that individuals can modify behavioral traits and diet across ecological contexts to maximize fitness. Yet, research conducted over the past 15 years supports an alternative view; fundamental behavioral traits (e.g., activity level, exploration, sociability, boldness and aggressiveness) and diet often vary among individuals and this variation persists over time and across contexts. This phenomenon has been termed animal personality with regard to behavioral traits and individual specialization with regard to diet. While these aspects of individual-level phenotypic variation have been thus far studied in isolation, emerging evidence suggests that personality and individual specialization may covary, or even be causally related. Building on this work, we present the overarching hypothesis that animal personality can drive specialization through individual differences in various aspects of consumer foraging behavior. Specifically, we suggest pathways by which consumer personality traits influence foraging activity, risk-dependent foraging, roles in social foraging groups, spatial aspects of foraging and physiological drivers of foraging, which in turn can lead to consistent individual differences in food resource use. These pathways provide a basis for generating testable hypotheses directly linking animal personality to ecological dynamics, a major goal in contemporary behavioral ecology.
Tunnel-construction methods and foraging path of a fossorial herbivore, Geomys bursarius
Andersen, Douglas C.
1988-01-01
The fossorial rodent Geomys bursarius excavates tunnels to find and gain access to belowground plant parts. This is a study of how the foraging path of this animal, as denoted by feeding-tunnel systems constructed within experimental gardens, reflects both adaptive behavior and constraints associated with the fossorial lifestyle. The principal method of tunnel construction involves the end-to-end linking of short, linear segments whose directionalities are bimodal, but symmetrically distributed about 0°. The sequence of construction of left- and right-directed segments is random, and segments tend to be equal in length. The resulting tunnel advances, zigzag-fashion, along a single heading. This linearity, and the tendency for branches to be orthogonal to the originating tunnel, are consistent with the search path predicted for a "harvesting animal" (Pyke, 1978) from optimal-foraging theory. A suite of physical and physiological constraints on the burrowing process, however, may be responsible for this geometric pattern. That is, by excavating in the most energy-efficient manner, G. bursarius automatically creates the basic components to an optimal-search path. The general search pattern was not influenced by habitat quality (plant density). Branch origins are located more often than expected at plants, demonstrating area-restricted search, a tactic commonly noted in aboveground foragers. The potential trade-offs between construction methods that minimize energy cost and those that minimize vulnerability to predators are discussed.
Creative foraging: An experimental paradigm for studying exploration and discovery
Mayo, Avraham E.; Mayo, Ruth; Rozenkrantz, Liron; Tendler, Avichai; Alon, Uri; Noy, Lior
2017-01-01
Creative exploration is central to science, art and cognitive development. However, research on creative exploration is limited by a lack of high-resolution automated paradigms. To address this, we present such an automated paradigm, the creative foraging game, in which people search for novel and valuable solutions in a large and well-defined space made of all possible shapes made of ten connected squares. Players discovered shape categories such as digits, letters, and airplanes as well as more abstract categories. They exploited each category, then dropped it to explore once again, and so on. Aligned with a prediction of optimal foraging theory (OFT), during exploration phases, people moved along meandering paths that are about three times longer than the shortest paths between shapes; when exploiting a category of related shapes, they moved along the shortest paths. The moment of discovery of a new category was usually done at a non-prototypical and ambiguous shape, which can serve as an experimental proxy for creative leaps. People showed individual differences in their search patterns, along a continuum between two strategies: a mercurial quick-to-discover/quick-to-drop strategy and a thorough slow-to-discover/slow-to-drop strategy. Contrary to optimal foraging theory, players leave exploitation to explore again far before categories are depleted. This paradigm opens the way for automated high-resolution study of creative exploration. PMID:28767668
Young, Lindsay C; Vanderlip, Cynthia; Duffy, David C; Afanasyev, Vsevolod; Shaffer, Scott A
2009-10-28
When searching for prey, animals should maximize energetic gain, while minimizing energy expenditure by altering their movements relative to prey availability. However, with increasing amounts of marine debris, what once may have been 'optimal' foraging strategies for top marine predators, are leading to sub-optimal diets comprised in large part of plastic. Indeed, the highly vagile Laysan albatross (Phoebastria immutabilis) which forages throughout the North Pacific, are well known for their tendency to ingest plastic. Here we examine whether Laysan albatrosses nesting on Kure Atoll and Oahu Island, 2,150 km apart, experience different levels of plastic ingestion. Twenty two geolocators were deployed on breeding adults for up to two years. Regurgitated boluses of undigestable material were also collected from chicks at each site to compare the amount of plastic vs. natural foods. Chicks from Kure Atoll were fed almost ten times the amount of plastic compared to chicks from Oahu despite boluses from both colonies having similar amounts of natural food. Tracking data indicated that adults from either colony did not have core overlapping distributions during the early half of the breeding period and that adults from Kure had a greater overlap with the putative range of the Western Garbage Patch corroborating our observation of higher plastic loads at this colony. At-sea distributions also varied throughout the year suggesting that Laysan albatrosses either adjusted their foraging behavior according to constraints on time away from the nest or to variation in resources. However, in the non-breeding season, distributional overlap was greater indicating that the energy required to reach the foraging grounds was less important than the total energy available. These results demonstrate how a marine predator that is not dispersal limited alters its foraging strategy throughout the reproductive cycle to maximize energetic gain and how this has led to differences in plastic ingestion.
Kazahari, Nobuko
2014-04-01
Animals have been assumed to employ an optimal foraging strategy (e.g., rate-maximizing strategy). In patchy food environments, intake rate within patches is positively correlated with patch quality, and declines as patches are depleted through consumption. This causes patch-leaving and determines patch residence time. In group-foraging situations, patch residence times are also affected by patch sharing. Optimal patch models for groups predict that patch residence times decrease as the number of co-feeding animals increases because of accelerated patch depletion. However, group members often depart patches without patch depletion, and their patch residence time deviates from patch models. It has been pointed out that patch residence time is also influenced by maintaining social proximity with others among group-living animals. In this study, the effects of maintaining social cohesion and that of rate-maximizing strategy on patch residence time were examined in Japanese macaques (Macaca fuscata). I hypothesized that foragers give up patches to remain in the proximity of their troop members. On the other hand, foragers may stay for a relatively long period when they do not have to abandon patches to follow the troop. In this study, intake rate and foraging effort (i.e., movement) did not change during patch residency. Macaques maintained their intake rate with only a little foraging effort. Therefore, the patches were assumed to be undepleted during patch residency. Further, patch residence time was affected by patch-leaving to maintain social proximity, but not by the intake rate. Macaques tended to stay in patches for short periods when they needed to give up patches for social proximity, and remained for long periods when they did not need to leave to keep social proximity. Patch-leaving and patch residence time that prioritize the maintenance of social cohesion may be a behavioral pattern in group-living primates.
Foraging Ecology of Fall-Migrating Shorebirds in the Illinois River Valley
Smith, Randolph V.; Stafford, Joshua D.; Yetter, Aaron P.; Horath, Michelle M.; Hine, Christopher S.; Hoover, Jeffery P.
2012-01-01
Populations of many shorebird species appear to be declining in North America, and food resources at stopover habitats may limit migratory bird populations. We investigated body condition of, and foraging habitat and diet selection by 4 species of shorebirds in the central Illinois River valley during fall migrations 2007 and 2008 (Killdeer [Charadrius vociferus], Least Sandpiper [Calidris minutilla], Pectoral Sandpiper [Calidris melanotos], and Lesser Yellowlegs [Tringa flavipes]). All species except Killdeer were in good to excellent condition, based on size-corrected body mass and fat scores. Shorebird diets were dominated by invertebrate taxa from Orders Diptera and Coleoptera. Additionally, Isopoda, Hemiptera, Hirudinea, Nematoda, and Cyprinodontiformes contribution to diets varied by shorebird species and year. We evaluated diet and foraging habitat selection by comparing aggregate percent dry mass of food items in shorebird diets and core samples from foraging substrates. Invertebrate abundances at shorebird collection sites and random sites were generally similar, indicating that birds did not select foraging patches within wetlands based on invertebrate abundance. Conversely, we found considerable evidence for selection of some diet items within particular foraging sites, and consistent avoidance of Oligochaeta. We suspect the diet selectivity we observed was a function of overall invertebrate biomass (51.2±4.4 [SE] kg/ha; dry mass) at our study sites, which was greater than estimates reported in most other food selection studies. Diet selectivity in shorebirds may follow tenants of optimal foraging theory; that is, at low food abundances shorebirds forage opportunistically, with the likelihood of selectivity increasing as food availability increases. Nonetheless, relationships between the abundance, availability, and consumption of Oligochaetes for and by waterbirds should be the focus of future research, because estimates of foraging carrying capacity would need to be revised downward if Oligochaetes are truly avoided or unavailable for consumption. PMID:23028795
NASA Astrophysics Data System (ADS)
Humphries, Nicolas E.
2015-09-01
The comprehensive review of Lévy patterns observed in the moves and pauses of a vast array of organisms by Reynolds [1] makes clear a need to attempt to unify phenomena to understand how organism movement may have evolved. However, I would contend that the research on Lévy 'movement patterns' we detect in time series of animal movements has to a large extent been misunderstood. The statistical techniques, such as Maximum Likelihood Estimation, used to detect these patterns look only at the statistical distribution of move step-lengths and not at the actual pattern, or structure, of the movement path. The path structure is lost altogether when move step-lengths are sorted prior to analysis. Likewise, the simulated movement paths, with step-lengths drawn from a truncated power law distribution in order to test characteristics of the path, such as foraging efficiency, in no way match the actual paths, or trajectories, of real animals. These statistical distributions are, therefore, null models of searching or foraging activity. What has proved surprising about these step-length distributions is the extent to which they improve the efficiency of random searches over simple Brownian motion. It has been shown unequivocally that a power law distribution of move step lengths is more efficient, in terms of prey items located per unit distance travelled, than any other distribution of move step-lengths so far tested (up to 3 times better than Brownian), and over a range of prey field densities spanning more than 4 orders of magnitude [2].
Páez, David J; Restif, Olivier; Eby, Peggy; Plowright, Raina K
2018-05-05
Bats provide important ecosystem services such as pollination of native forests; they are also a source of zoonotic pathogens for humans and domestic animals. Human-induced changes to native habitats may have created more opportunities for bats to reside in urban settings, thus decreasing pollination services to native forests and increasing opportunities for zoonotic transmission. In Australia, fruit bats ( Pteropus spp. flying foxes) are increasingly inhabiting urban areas where they feed on anthropogenic food sources with nutritional characteristics and phenology that differ from native habitats. We use optimal foraging theory to investigate the relationship between bat residence time in a patch, the time it takes to search for a new patch (simulating loss of native habitat) and seasonal resource production. We show that it can be beneficial to reside in a patch, even when food productivity is low, as long as foraging intensity is low and the expected searching time is high. A small increase in the expected patch searching time greatly increases the residence time, suggesting nonlinear associations between patch residence and loss of seasonal native resources. We also found that sudden increases in resource consumption due to an influx of new bats has complex effects on patch departure times that again depend on expected searching times and seasonality. Our results suggest that the increased use of urban landscapes by bats may be a response to new spatial and temporal configurations of foraging opportunities. Given that bats are reservoir hosts of zoonotic diseases, our results provide a framework to study the effects of foraging ecology on disease dynamics.One contribution of 14 to a theme isssue 'Anthropogenic resource subsidies and host-parasite dynamics in wildlife'. © 2018 The Author(s).
Ahrenstorff, Tyler D.; Hrabik, Thomas R.; Stockwell, Jason D.; Yule, Daniel L.; Sass, Greg G.
2011-01-01
Diel vertical migrations are common among many aquatic species and are often associated with changing light levels. The underlying mechanisms are generally attributed to optimizing foraging efficiency or growth rates and avoiding predation risk (μ). The objectives of this study were to (1) assess seasonal and interannual changes in vertical migration patterns of three trophic levels in the Lake Superior pelagic food web and (2) examine the mechanisms underlying the observed variability by using models of foraging, growth, and μ. Our results suggest that the opossum shrimp Mysis diluviana, kiyi Coregonus kiyi, and siscowet lake trout Salvelinus namaycush migrate concurrently during each season, but spring migrations are less extensive than summer and fall migrations. In comparison with M. diluviana, kiyis, and siscowets, the migrations by ciscoes C. artedi were not as deep in the water column during the day, regardless of season. Foraging potential and μ probably drive the movement patterns of M. diluviana, while our modeling results indicate that movements by kiyis and ciscoes are related to foraging opportunity and growth potential and receive a lesser influence from μ. The siscowet is an abundant apex predator in the pelagia of Lake Superior and probably undertakes vertical migrations in the water column to optimize foraging efficiency and growth. The concurrent vertical movement patterns of most species are likely to facilitate nutrient transport in this exceedingly oligotrophic ecosystem, and they demonstrate strong linkages between predators and prey. Fishery management strategies should use an ecosystem approach and should consider how altering the densities of long-lived top predators produces cascading effects on the nutrient cycling and energy flow in lower trophic levels.
Péron, Clara; Weimerskirch, Henri; Bost, Charles-André
2012-07-07
Seabird populations of the Southern Ocean have been responding to climate change for the last three decades and demographic models suggest that projected warming will cause dramatic population changes over the next century. Shift in species distribution is likely to be one of the major possible adaptations to changing environmental conditions. Habitat models based on a unique long-term tracking dataset of king penguin (Aptenodytes patagonicus) breeding on the Crozet Islands (southern Indian Ocean) revealed that despite a significant influence of primary productivity and mesoscale activity, sea surface temperature consistently drove penguins' foraging distribution. According to climate models of the Intergovernmental Panel on Climate Change (IPCC), the projected warming of surface waters would lead to a gradual southward shift of the more profitable foraging zones, ranging from 25 km per decade for the B1 IPCC scenario to 40 km per decade for the A1B and A2 scenarios. As a consequence, distances travelled by incubating and brooding birds to reach optimal foraging zones associated with the polar front would double by 2100. Such a shift is far beyond the usual foraging range of king penguins breeding and would negatively affect the Crozet population on the long term, unless penguins develop alternative foraging strategies.
Péron, Clara; Weimerskirch, Henri; Bost, Charles-André
2012-01-01
Seabird populations of the Southern Ocean have been responding to climate change for the last three decades and demographic models suggest that projected warming will cause dramatic population changes over the next century. Shift in species distribution is likely to be one of the major possible adaptations to changing environmental conditions. Habitat models based on a unique long-term tracking dataset of king penguin (Aptenodytes patagonicus) breeding on the Crozet Islands (southern Indian Ocean) revealed that despite a significant influence of primary productivity and mesoscale activity, sea surface temperature consistently drove penguins' foraging distribution. According to climate models of the Intergovernmental Panel on Climate Change (IPCC), the projected warming of surface waters would lead to a gradual southward shift of the more profitable foraging zones, ranging from 25 km per decade for the B1 IPCC scenario to 40 km per decade for the A1B and A2 scenarios. As a consequence, distances travelled by incubating and brooding birds to reach optimal foraging zones associated with the polar front would double by 2100. Such a shift is far beyond the usual foraging range of king penguins breeding and would negatively affect the Crozet population on the long term, unless penguins develop alternative foraging strategies. PMID:22378808
Ergon, Torbjørn; Speakman, John R; Scantlebury, Michael; Cavanagh, Rachel; Lambin, Xavier
2004-03-01
Winter is energetically challenging for small herbivores because of greater energy requirements for thermogenesis at a time when little energy is available. We formulated a model predicting optimal wintering body size, accounting for the scaling of both energy expenditure and assimilation to body size, and the trade-off between survival benefits of a large size and avoiding survival costs of foraging. The model predicts that if the energy cost of maintaining a given body mass differs between environments, animals should be smaller in the more demanding environments, and there should be a negative correlation between body mass and daily energy expenditure (DEE) across environments. In contrast, if animals adjust their energy intake according to variation in survival costs of foraging, there should be a positive correlation between body mass and DEE. Decreasing temperature always increases equilibrium DEE, but optimal body mass may either increase or decrease in colder climates depending on the exact effects of temperature on mass-specific survival and energy demands. Measuring DEE with doubly labeled water on wintering Microtus agrestis at four field sites, we found that DEE was highest at the sites where voles were smallest despite a positive correlation between DEE and body mass within sites. This suggests that variation in wintering body mass between sites was due to variation in food quality/availability and not adjustments in foraging activity to varying risks of predation.
Caffeinated forage tricks honeybees into increasing foraging and recruitment behaviors.
Couvillon, Margaret J; Al Toufailia, Hasan; Butterfield, Thomas M; Schrell, Felix; Ratnieks, Francis L W; Schürch, Roger
2015-11-02
In pollination, plants provide food reward to pollinators who in turn enhance plant reproduction by transferring pollen, making the relationship largely cooperative; however, because the interests of plants and pollinators do not always align, there exists the potential for conflict, where it may benefit both to cheat the other [1, 2]. Plants may even resort to chemistry: caffeine, a naturally occurring, bitter-tasting, pharmacologically active secondary compound whose main purpose is to detract herbivores, is also found in lower concentrations in the nectar of some plants, even though nectar, unlike leaves, is made to be consumed by pollinators. [corrected]. A recent laboratory study showed that caffeine may lead to efficient and effective foraging by aiding honeybee memory of a learned olfactory association [4], suggesting that caffeine may enhance bee reward perception. However, without field data, the wider ecological significance of caffeinated nectar remains difficult to interpret. Here we demonstrate in the field that caffeine generates significant individual- and colony-level effects in free-flying worker honeybees. Compared to a control, a sucrose solution with field-realistic doses of caffeine caused honeybees to significantly increase their foraging frequency, waggle dancing probability and frequency, and persistency and specificity to the forage location, resulting in a quadrupling of colony-level recruitment. An agent-based model also demonstrates how caffeine-enhanced foraging may reduce honey storage. Overall, caffeine causes bees to overestimate forage quality, tempting the colony into sub-optimal foraging strategies, which makes the relationship between pollinator and plant less mutualistic and more exploitative. VIDEO ABSTRACT. Copyright © 2015 Elsevier Ltd. All rights reserved.
Massardier-Galatà, Lauriane; Morinay, Jennifer; Bailleul, Frédéric; Wajnberg, Eric; Guinet, Christophe; Coquillard, Patrick
2017-01-01
In response to climate warming, a southward shift in productive frontal systems serving as the main foraging sites for many top predator species is likely to occur in Subantarctic areas. Central place foragers, such as seabirds and pinnipeds, are thus likely to cope with an increase in the distance between foraging locations and their land-based breeding colonies. Understanding how central place foragers should modify their foraging behavior in response to changes in prey accessibility appears crucial. A spatially explicit individual-based simulation model (Marine Central Place Forager Simulator (MarCPFS)), including bio-energetic components, was built to evaluate effects of possible changes in prey resources accessibility on individual performances and breeding success. The study was calibrated on a particular example: the Antarctic fur seal (Arctocephalus gazella), which alternates between oceanic areas in which females feed and the land-based colony in which they suckle their young over a 120 days rearing period. Our model shows the importance of the distance covered to feed and prey aggregation which appeared to be key factors to which animals are highly sensitive. Memorization and learning abilities also appear to be essential breeding success traits. Females were found to be most successful for intermediate levels of prey aggregation and short distance to the resource, resulting in optimal female body length. Increased distance to resources due to climate warming should hinder pups' growth and survival while female body length should increase.
Massardier-Galatà, Lauriane; Morinay, Jennifer; Bailleul, Frédéric; Wajnberg, Eric; Guinet, Christophe; Coquillard, Patrick
2017-01-01
In response to climate warming, a southward shift in productive frontal systems serving as the main foraging sites for many top predator species is likely to occur in Subantarctic areas. Central place foragers, such as seabirds and pinnipeds, are thus likely to cope with an increase in the distance between foraging locations and their land-based breeding colonies. Understanding how central place foragers should modify their foraging behavior in response to changes in prey accessibility appears crucial. A spatially explicit individual-based simulation model (Marine Central Place Forager Simulator (MarCPFS)), including bio-energetic components, was built to evaluate effects of possible changes in prey resources accessibility on individual performances and breeding success. The study was calibrated on a particular example: the Antarctic fur seal (Arctocephalus gazella), which alternates between oceanic areas in which females feed and the land-based colony in which they suckle their young over a 120 days rearing period. Our model shows the importance of the distance covered to feed and prey aggregation which appeared to be key factors to which animals are highly sensitive. Memorization and learning abilities also appear to be essential breeding success traits. Females were found to be most successful for intermediate levels of prey aggregation and short distance to the resource, resulting in optimal female body length. Increased distance to resources due to climate warming should hinder pups’ growth and survival while female body length should increase. PMID:28355282
How regulation based on a common stomach leads to economic optimization of honeybee foraging.
Schmickl, Thomas; Karsai, Istvan
2016-01-21
Simple regulatory mechanisms based on the idea of the saturable 'common stomach' can control the regulation of protein foraging and protein allocation in honeybee colonies and colony-level responses to environmental changes. To study the economic benefits of pollen and nectar foraging strategies of honeybees to both plants and honeybees under different environmental conditions, a model was developed and analyzed. Reallocation of the foraging workforce according to the quality and availability of resources (an 'adaptive' strategy used by honeybees) is not only a successful strategy for the bees but also for plants, because intensified pollen foraging after rain periods (when nectar quality is low) compensates a major fraction of the pollination flights lost during the rain. The 'adaptive' strategy performed better than the'fixed' (steady, minimalistic, and non-adaptive foraging without feedback) or the 'proactive' (stockpiling in anticipation of rain) strategies in brood survival and or in nectar/sugar economics. The time pattern of rain periods has profound effect on the supply-and-demand of proteins. A tropical rain pattern leads to a shortage of the influx of pollen and nectar, but it has a less profound impact on brood mortality than a typical continental rainfall pattern. Allocating more bees for pollen foraging has a detrimental effect on the nectar stores, therefore while saving larvae from starvation the 'proactive' strategy could fail to collect enough nectar for surviving winter. Copyright © 2015 Elsevier Ltd. All rights reserved.
Abdul Rahman, Norafizah; Abd Halim, Mohd Ridzwan; Mahawi, Noraniza; Hasnudin, Hazira; Al-Obaidi, Jameel R; Abdullah, Norhani
2017-01-01
Corn was inoculated with Lactobacillus plantarum and Propionibacterium freudenreichii subsp. shermanii either independently or as a mixture at ensiling, in order to determine the effect of bacterial additives on corn silage quality. Grain corn was harvested at 32-37% of dry matter and ensiled in a 4 L laboratory silo. Forage was treated as follows: bacterial types: B0 (without bacteria-control), B1 (L. plantarum) , B2 ( P. freudenreichii subsp. shermanii ), and B3 (combination of L. plantarum and P. freudenreichii subsp. shermanii ). Each 2 kg of chopped forage was treated with 10 mL of bacterial culture and allowed to ferment for 27 days. The first experiment determined the most suitable wavelength for detection of bacteria (490 nm and 419 nm for B1 and B2, resp.) and the preferable inoculation size (1 × 10 5 cfu/g). The second experiment analysed the effect of B1 and B2 applied singly or as a mixture on the fermentation characteristics and quality of corn silage. L. plantarum alone increased crude protein (CP) and reduced pH rapidly. In a mixture with P. freudenreichii , the final pH was the lowest compared to other treatments. As a mixture, inclusion of bacteria resulted in silage with lower digestibility than control. Corn silage treated with L. plantarum or P. freudenreichii either alone or mixed together produced desirable silage properties; however, this was not significantly better than untreated silage.
Abdul Rahman, Norafizah; Abd Halim, Mohd Ridzwan; Mahawi, Noraniza; Hasnudin, Hazira
2017-01-01
Corn was inoculated with Lactobacillus plantarum and Propionibacterium freudenreichii subsp. shermanii either independently or as a mixture at ensiling, in order to determine the effect of bacterial additives on corn silage quality. Grain corn was harvested at 32–37% of dry matter and ensiled in a 4 L laboratory silo. Forage was treated as follows: bacterial types: B0 (without bacteria-control), B1 (L. plantarum), B2 (P. freudenreichii subsp. shermanii), and B3 (combination of L. plantarum and P. freudenreichii subsp. shermanii). Each 2 kg of chopped forage was treated with 10 mL of bacterial culture and allowed to ferment for 27 days. The first experiment determined the most suitable wavelength for detection of bacteria (490 nm and 419 nm for B1 and B2, resp.) and the preferable inoculation size (1 × 105 cfu/g). The second experiment analysed the effect of B1 and B2 applied singly or as a mixture on the fermentation characteristics and quality of corn silage. L. plantarum alone increased crude protein (CP) and reduced pH rapidly. In a mixture with P. freudenreichii, the final pH was the lowest compared to other treatments. As a mixture, inclusion of bacteria resulted in silage with lower digestibility than control. Corn silage treated with L. plantarum or P. freudenreichii either alone or mixed together produced desirable silage properties; however, this was not significantly better than untreated silage. PMID:28503566
Implementing Goal-Directed Foraging Decisions of a Simpler Nervous System in Simulation
Brown, Jeffrey W.; Caetano-Anollés, Derek; Catanho, Marianne; Gribkova, Ekaterina; Ryckman, Nathaniel; Tian, Kun; Voloshin, Mikhail
2018-01-01
Economic decisions arise from evaluation of alternative actions in contexts of motivation and memory. In the predatory sea-slug Pleurobranchaea the economic decisions of foraging are found to occur by the workings of a simple, affectively controlled homeostat with learning abilities. Here, the neuronal circuit relations for approach-avoidance choice of Pleurobranchaea are expressed and tested in the foraging simulation Cyberslug. Choice is organized around appetitive state as a moment-to-moment integration of sensation, motivation (satiation/hunger), and memory. Appetitive state controls a switch for approach vs. avoidance turn responses to sensation. Sensory stimuli are separately integrated for incentive value into appetitive state, and for prey location (stimulus place) into mapping motor response. Learning interacts with satiation to regulate prey choice affectively. The virtual predator realistically reproduces the decisions of the real one in varying circumstances and satisfies optimal foraging criteria. The basic relations are open to experimental embellishment toward enhanced neural and behavioral complexity in simulation, as was the ancestral bilaterian nervous system in evolution. PMID:29503862
Filin, I
2009-06-01
Using diffusion processes, I model stochastic individual growth, given exogenous hazards and starvation risk. By maximizing survival to final size, optimal life histories (e.g. switching size for habitat/dietary shift) are determined by two ratios: mean growth rate over growth variance (diffusion coefficient) and mortality rate over mean growth rate; all are size dependent. For example, switching size decreases with either ratio, if both are positive. I provide examples and compare with previous work on risk-sensitive foraging and the energy-predation trade-off. I then decompose individual size into reversibly and irreversibly growing components, e.g. reserves and structure. I provide a general expression for optimal structural growth, when reserves grow stochastically. I conclude that increased growth variance of reserves delays structural growth (raises threshold size for its commencement) but may eventually lead to larger structures. The effect depends on whether the structural trait is related to foraging or defence. Implications for population dynamics are discussed.
Ultimate explanations and suboptimal choice.
Vasconcelos, Marco; Machado, Armando; Pandeirada, Josefa N S
2018-07-01
Researchers have unraveled multiple cases in which behavior deviates from rationality principles. We propose that such deviations are valuable tools to understand the adaptive significance of the underpinning mechanisms. To illustrate, we discuss in detail an experimental protocol in which animals systematically incur substantial foraging losses by preferring a lean but informative option over a rich but non-informative one. To understand how adaptive mechanisms may fail to maximize food intake, we review a model inspired by optimal foraging principles that reconciles sub-optimal choice with the view that current behavioral mechanisms were pruned by the optimizing action of natural selection. To move beyond retrospective speculation, we then review critical tests of the model, regarding both its assumptions and its (sometimes counterintuitive) predictions, all of which have been upheld. The overall contention is that (a) known mechanisms can be used to develop better ultimate accounts and that (b) to understand why mechanisms that generate suboptimal behavior evolved, we need to consider their adaptive value in the animal's characteristic ecology. Copyright © 2018 Elsevier B.V. All rights reserved.
Pollinator Foraging Adaptation and Coexistence of Competing Plants
Revilla, Tomás A.; Křivan, Vlastimil
2016-01-01
We use the optimal foraging theory to study coexistence between two plant species and a generalist pollinator. We compare conditions for plant coexistence for non-adaptive vs. adaptive pollinators that adjust their foraging strategy to maximize fitness. When pollinators have fixed preferences, we show that plant coexistence typically requires both weak competition between plants for resources (e.g., space or nutrients) and pollinator preferences that are not too biased in favour of either plant. We also show how plant coexistence is promoted by indirect facilitation via the pollinator. When pollinators are adaptive foragers, pollinator’s diet maximizes pollinator’s fitness measured as the per capita population growth rate. Simulations show that this has two conflicting consequences for plant coexistence. On the one hand, when competition between pollinators is weak, adaptation favours pollinator specialization on the more profitable plant which increases asymmetries in plant competition and makes their coexistence less likely. On the other hand, when competition between pollinators is strong, adaptation promotes generalism, which facilitates plant coexistence. In addition, adaptive foraging allows pollinators to survive sudden loss of the preferred plant host, thus preventing further collapse of the entire community. PMID:27505254
NASA Astrophysics Data System (ADS)
Jean, Pierre-Olivier; Bradley, Robert; Tremblay, Jean-Pierre
2015-04-01
An important asset for the management of wild ungulates is the ability to recognize the spatial distribution of forage quality across heterogeneous landscapes. To do so typically requires knowledge of which plant species are eaten, in what abundance they are eaten, and what their nutritional quality might be. Acquiring such data may be, however, difficult and time consuming. Here, we are proposing a rapid and cost-effective forage quality monitoring tool that combines near infrared (NIR) spectra of fecal samples and easily obtained data on plant community composition. Our approach rests on the premise that NIR spectra of fecal samples collected within low population density exclosures reflect the optimal forage quality of a given landscape. Forage quality can thus be based on the Mahalanobis distance of fecal spectral scans across the landscape relative to fecal spectral scans inside exclosures (referred to as DISTEX). The Gi* spatial autocorrelation statistic can then be applied among neighbouring DISTEX values to detect and map 'hot-spots' and 'cold-spots' of nutritional quality over the landscape. We tested our approach in a heterogeneous boreal landscape on Anticosti Island (Qu
Bacterial cellulose production by Gluconacetobacter sp. PKY5 in a rotary biofilm contactor.
Kim, Yong-Jun; Kim, Jin-Nam; Wee, Young-Jung; Park, Don-Hee; Ryu, Hwa-Won
2007-04-01
A rotary biofilm contactor (RBC) inoculated with Gluconacetobacter sp. RKY5 was used as a bioreactor for improved bacterial cellulose production. The optimal number of disk for bacterial cellulose production was found to be eight, at which bacterial cellulose and cell concentrations were 5.52 and 4.98 g/L. When the aeration rate was maintained at 1.25 vvm, bacterial cellulose and cell concentrations were maximized (5.67 and 5.25 g/L, respectively). The optimal rotation speed of impeller in RBC was 15 rpm. When the culture pH in RBC was not controlled during fermentation, the maximal amount of bacterial cellulose (5.53 g/L) and cells (4.91 g/L) was obtained. Under the optimized culture conditions, bacterial cellulose and cell concentrations in RBC reached to 6.17 and 5.58 g/L, respectively.
Bacterial Cellulose Production by Gluconacetobacter sp. RKY5 in a Rotary Biofilm Contactor
NASA Astrophysics Data System (ADS)
Kim, Yong-Jun; Kim, Jin-Nam; Wee, Young-Jung; Park, Don-Hee; Ryu, Hwa-Won
A rotary biofilm contactor (RBC) inoculated with Gluconacetobacter sp. RKY5 was used as a bioreactor for improved bacterial cellulose production. The optimal number of disk for bacterial cellulose production was found to be eight, at which bacterial cellulose and cell concentrations were 5.52 and 4.98 g/L. When the aeration rate was maintained at 1.25 vvm, bacterial cellulose and cell concentrations were maximized (5.67 and 5.25 g/L, respectively). The optimal rotation speed of impeller in RBC was 15 rpm. When the culture pH in RBC was not controlled during fermentation, the maximal amount of bacterial cellulose (5.53 g/L) and cells (4.91 g/L) was obtained. Under the optimized culture conditions, bacterial cellulose and cell concentrations in RBC reached to 6.17 and 5.58 g/L, respectively.
Tong, Zongyong; Xie, Can; Ma, Lei; Liu, Liping; Jin, Yongsheng; Dong, Jiangli; Wang, Tao
2014-01-01
Alfalfa (Medicago sativa L.) is one of the most important forage crops used to feed livestock, such as cattle and sheep, and the sulfur amino acid (SAA) content of alfalfa is used as an index of its nutritional value. Aspartate kinase (AK) catalyzes the phosphorylation of aspartate to Asp-phosphate, the first step in the aspartate family biosynthesis pathway, and adenylylsulfate reductase (APR) catalyzes the conversion of activated sulfate to sulfite, providing reduced sulfur for the synthesis of cysteine, methionine, and other essential metabolites and secondary compounds. To reduce the feedback inhibition of other metabolites, we cloned bacterial AK and APR genes, modified AK, and introduced them into alfalfa. Compared to the wild-type alfalfa, the content of cysteine increased by 30% and that of methionine increased substantially by 60%. In addition, a substantial increase in the abundance of essential amino acids (EAAs), such as aspartate and lysine, was found. The results also indicated a close connection between amino acid metabolism and the tricarboxylic acid (TCA) cycle. The total amino acid content and the forage biomass tested showed no significant changes in the transgenic plants. This approach provides a new method for increasing SAAs and allows for the development of new genetically modified crops with enhanced nutritional value.
Iannetta, Pietro P. M.; Young, Mark; Bachinger, Johann; Bergkvist, Göran; Doltra, Jordi; Lopez-Bellido, Rafael J.; Monti, Michele; Pappa, Valentini A.; Reckling, Moritz; Topp, Cairistiona F. E.; Walker, Robin L.; Rees, Robert M.; Watson, Christine A.; James, Euan K.; Squire, Geoffrey R.; Begg, Graham S.
2016-01-01
The potential of biological nitrogen fixation (BNF) to provide sufficient N for production has encouraged re-appraisal of cropping systems that deploy legumes. It has been argued that legume-derived N can maintain productivity as an alternative to the application of mineral fertilizer, although few studies have systematically evaluated the effect of optimizing the balance between legumes and non N-fixing crops to optimize production. In addition, the shortage, or even absence in some regions, of measurements of BNF in crops and forages severely limits the ability to design and evaluate new legume–based agroecosystems. To provide an indication of the magnitude of BNF in European agriculture, a soil-surface N-balance approach was applied to historical data from 8 experimental cropping systems that compared legume and non-legume crop types (e.g., grains, forages and intercrops) across pedoclimatic regions of Europe. Mean BNF for different legume types ranged from 32 to 115 kg ha−1 annually. Output in terms of total biomass (grain, forage, etc.) was 30% greater in non-legumes, which used N to produce dry matter more efficiently than legumes, whereas output of N was greater from legumes. When examined over the crop sequence, the contribution of BNF to the N-balance increased to reach a maximum when the legume fraction was around 0.5 (legume crops were present in half the years). BNF was lower when the legume fraction increased to 0.6–0.8, not because of any feature of the legume, but because the cropping systems in this range were dominated by mixtures of legume and non-legume forages to which inorganic N as fertilizer was normally applied. Forage (e.g., grass and clover), as opposed to grain crops in this range maintained high outputs of biomass and N. In conclusion, BNF through grain and forage legumes has the potential to generate major benefit in terms of reducing or dispensing with the need for mineral N without loss of total output. PMID:27917178
Iannetta, Pietro P M; Young, Mark; Bachinger, Johann; Bergkvist, Göran; Doltra, Jordi; Lopez-Bellido, Rafael J; Monti, Michele; Pappa, Valentini A; Reckling, Moritz; Topp, Cairistiona F E; Walker, Robin L; Rees, Robert M; Watson, Christine A; James, Euan K; Squire, Geoffrey R; Begg, Graham S
2016-01-01
The potential of biological nitrogen fixation (BNF) to provide sufficient N for production has encouraged re-appraisal of cropping systems that deploy legumes. It has been argued that legume-derived N can maintain productivity as an alternative to the application of mineral fertilizer, although few studies have systematically evaluated the effect of optimizing the balance between legumes and non N-fixing crops to optimize production. In addition, the shortage, or even absence in some regions, of measurements of BNF in crops and forages severely limits the ability to design and evaluate new legume-based agroecosystems. To provide an indication of the magnitude of BNF in European agriculture, a soil-surface N-balance approach was applied to historical data from 8 experimental cropping systems that compared legume and non-legume crop types (e.g., grains, forages and intercrops) across pedoclimatic regions of Europe. Mean BNF for different legume types ranged from 32 to 115 kg ha -1 annually. Output in terms of total biomass (grain, forage, etc.) was 30% greater in non-legumes, which used N to produce dry matter more efficiently than legumes, whereas output of N was greater from legumes. When examined over the crop sequence, the contribution of BNF to the N-balance increased to reach a maximum when the legume fraction was around 0.5 (legume crops were present in half the years). BNF was lower when the legume fraction increased to 0.6-0.8, not because of any feature of the legume, but because the cropping systems in this range were dominated by mixtures of legume and non-legume forages to which inorganic N as fertilizer was normally applied. Forage (e.g., grass and clover), as opposed to grain crops in this range maintained high outputs of biomass and N. In conclusion, BNF through grain and forage legumes has the potential to generate major benefit in terms of reducing or dispensing with the need for mineral N without loss of total output.
NASA Astrophysics Data System (ADS)
Tagmann-Ioset, Aline; Schaub, Michael; Reichlin, Thomas S.; Weisshaupt, Nadja; Arlettaz, Raphaël
2012-02-01
Most farmland birds have declined significantly throughout the world due to agricultural intensification. Agri-environmental policies could not halt the decline of ground-foraging insectivorous farmland birds in Europe, indicating a gap in knowledge of species' ecological requirements. This represents a major impediment to the development of efficient, evidence-based agri-environmental measures. Using radio-tracking we studied habitat selection by farmland Hoopoes, a rare terrestrially foraging bird in Central Europe, and assessed habitat preferences of their main prey (Molecrickets), with the aim to identify optimal foraging habitat profiles in order to guide farmland management. Hierarchical logistic regression modelling of habitat descriptors at actual foraging locations vs. random locations within the home ranges of 13 males showed that the availability of bare ground was the principal determinant of foraging activity, with an optimum of 60-70% bare ground at patch scale. This ideal habitat configuration, which facilitates birds' terrestrial hunting, was found primarily in intensively farmed fruit tree plantations which dominated the landscape matrix: this habitat offers extensive strips of bare ground due to systematic removal of ground vegetation along tree rows. In contrast, dense grassland and cropland were avoided. Another important habitat feature was the availability of nongravelly soil, which enabled Hoopoes to probe the earth with their long, curved bill in search of underground invertebrates. The role of Molecrickets, however, appeared secondary to foraging patch selection, suggesting that prey accessibility was per se more important than prey abundance. Creating patches of bare ground within modern farmland where sufficient supplies of suitable invertebrate prey exist will support Hoopoe populations.
Vardi, Reut; Abramsky, Zvika; Kotler, Burt P; Altstein, Ofir; Rosenzweig, Michael L
2017-07-01
Behavioral games predators play among themselves may have profound effects on behavioral games predators play with their prey. We studied the behavioral game between predators and prey within the framework of social foraging among predators. We tested how conspecific interactions among predators (little egret) change the predator-prey behavioral game and foraging success. To do so, we examined foraging behavior of egrets alone and in pairs (male and female) in a specially designed aviary consisting of three equally spaced pools with identical initial prey (comet goldfish) densities. Each pool was comprised of a risky microhabitat, rich with food, and a safe microhabitat with no food, forcing the fish to trade off food and safety. When faced with two versus one egret, we found that fish significantly reduced activity in the risky habitat. Egrets in pairs suffered reduced foraging success (negative intraspecific density dependence) and responded to fish behavior and to their conspecific by changing their visiting regime at the different pools-having shorter, more frequent visits. The time egret spent on each visit allowed them to match their long-term capture success rate across the environment to their capture success rate in the pool, which satisfies one aspect of optimality. Overall, egrets in pairs allocated more time for foraging and changed their foraging tactics to focus more on fish under cover and fish 'peeping' out from their shelter. These results suggest that both prey and predator show behavioral flexibility and can adjust to changing conditions as needed in this foraging game.
Belanche, Alejandro; Kingston-Smith, Alison H.; Newbold, Charles J.
2016-01-01
Rumen function is generally suboptimal leading to losses in methane and nitrogen. Analysis of the rumen microbiome is thus important to understanding the underlying microbial activity under different feeding strategies. This study investigated the effect of forage conservation method and vitamin E supplementation on rumen function using a rumen simulation technique. Ryegrass (GRA) or ryegrass hay (HAY) was supplemented with 20% concentrate containing zero or 50 IU/d vitamin E, as α-tocopheryl acetate, according to a 2 × 2 factorial design. The forage conservation method did not substantially change the nutrient composition but had a profound impact on the structure and diversity of the rumen microbiome. HAY diets promoted a more complex bacterial community (+38 OTUs) dominated by Firmicutes. This bacterial adaptation, together with increased rumen protozoa levels and methanogen diversity, was associated with greater fiber disappearance (+12%) in HAY diets, but also with greater rumen true N degradability (+7%) than GRA diets. HAY diets also had a higher metabolic H recovery and methane production (+35%) suggesting more efficient inter-species H transfer between bacteria, protozoa and methanogens. Contrarily, GRA diets promoted more simplified methanogen and bacterial communities, which were dominated by Bacteroidetes and Lactobacillus, thus lactate formation may have acted as an alternative H sink in GRA diets. Moreover the structure of the bacterial community with GRA diets was highly correlated with N utilization, and GRA diets promoted greater bacterial growth and microbial protein synthesis (+16%), as well as a more efficient microbial protein synthesis (+22%). A dose-response experiment using batch cultures revealed that vitamin E supplementation increased rumen fermentation in terms of total VFA and gas production, with protozoal activity higher when supplying α-tocopheryl acetate vs. α-tocopherol. Moreover, α-tocopheryl acetate promoted a small increase in feed degradability (+8%), possibly as a result of its antioxidant properties which led to higher bacterial and protozoal levels. Vitamin E supplementation also modified the levels of some methanogen species indicating that they may be particularly sensitive to oxidative stresses. Our findings suggested that when possible, grass should be fed instead of grass hay, in order to improve rumen function and to decrease the environmental impact of livestock agriculture. PMID:27375609
Weimerskirch, H.; Le Corre, M.; Ropert-Coudert, Y.; Kato, A.; Marsac, F.
2005-01-01
In seabirds a broad variety of morphologies, flight styles and feeding methods exist as an adaptation to optimal foraging in contrasted marine environments for a wide variety of prey types. Because of the low productivity of tropical waters it is expected that specific flight and foraging techniques have been selected there, but very few data are available. By using five different types of high-precision miniaturized logger (global positioning systems, accelerometers, time depth recorders, activity recorders, altimeters) we studied the way a seabird is foraging over tropical waters. Red-footed boobies are foraging in the day, never foraging at night, probably as a result of predation risks. They make extensive use of wind conditions, flying preferentially with crosswinds at median speed of 38 km h−1, reaching highest speeds with tail winds. They spent 66% of the foraging trip in flight, using a flap–glide flight, and gliding 68% of the flight. Travelling at low costs was regularly interrupted by extremely active foraging periods where birds are very frequently touching water for landing, plunge diving or surface diving (30 landings h−1). Dives were shallow (maximum 2.4 m) but frequent (4.5 dives h−1), most being plunge dives. While chasing for very mobile prey like flying fishes, boobies have adopted a very active and specific hunting behaviour, but the use of wind allows them to reduce travelling cost by their extensive use of gliding. During the foraging and travelling phases birds climb regularly to altitudes of 20–50 m to spot prey or congeners. During the final phase of the flight, they climb to high altitudes, up to 500 m, probably to avoid attacks by frigatebirds along the coasts. This study demonstrates the use by boobies of a series of very specific flight and activity patterns that have probably been selected as adaptations to the conditions of tropical waters. PMID:15875570
Weimerskirch, H; Le Corre, M; Ropert-Coudert, Y; Kato, A; Marsac, F
2005-01-07
In seabirds a broad variety of morphologies, flight styles and feeding methods exist as an adaptation to optimal foraging in contrasted marine environments for a wide variety of prey types. Because of the low productivity of tropical waters it is expected that specific flight and foraging techniques have been selected there, but very few data are available. By using five different types of high-precision miniaturized logger (global positioning systems, accelerometers, time depth recorders, activity recorders, altimeters) we studied the way a seabird is foraging over tropical waters. Red-footed boobies are foraging in the day, never foraging at night, probably as a result of predation risks. They make extensive use of wind conditions, flying preferentially with crosswinds at median speed of 38 km h(-1), reaching highest speeds with tail winds. They spent 66% of the foraging trip in flight, using a flap-glide flight, and gliding 68% of the flight. Travelling at low costs was regularly interrupted by extremely active foraging periods where birds are very frequently touching water for landing, plunge diving or surface diving (30 landings h(-1)). Dives were shallow (maximum 2.4 m) but frequent (4.5 dives h(-1)), most being plunge dives. While chasing for very mobile prey like flying fishes, boobies have adopted a very active and specific hunting behaviour, but the use of wind allows them to reduce travelling cost by their extensive use of gliding. During the foraging and travelling phases birds climb regularly to altitudes of 20-50 m to spot prey or congeners. During the final phase of the flight, they climb to high altitudes, up to 500 m, probably to avoid attacks by frigatebirds along the coasts. This study demonstrates the use by boobies of a series of very specific flight and activity patterns that have probably been selected as adaptations to the conditions of tropical waters.
Wang, B; Jiang, L S; Liu, J X
2018-06-01
Optimizing the amino acid (AA) profile of rumen undegradable protein (RUP) can positively affect the amount of milk protein. This study was conducted to improve knowledge regarding the AA profile of rumen undegradable protein from corn stover, rice straw and alfalfa hay as well as the total mixed ratio diets (TMR) based on one of them as forage source [forage-to-concentrate ratio of 45:55 (30% of corn stover (CS), 30% of rice straw (RS), 23% of alfalfa hay (AH) and dry matter basis)]. The other ingredients in the three TMR diets were similar. The RUP of all the forages and diets was estimated by incubation for 16 hr in the rumen of three ruminally cannulated lactating cows. All residues were corrected for microbial colonization, which was necessary in determining the AA composition of RUP from feed samples using in situ method. Compared with their original AA composition, the AA pattern of forages and forage-based diets changed drastically after rumen exposure. In addition, the extent of ruminal degradation of analysed AA was not constant among the forages. The greatest individual AA degradability of alfalfa hay and corn stover was Pro, but was His of rice straw. A remarkable difference was observed between microbial attachment corrected and uncorrected AA profiles of RUP, except for alfalfa hay and His in the three forages and TMR diets. The ruminal AA degradability of cereal straws was altered compared with alfalfa hay but not for the TMR diets. In summary, the AA composition of forages and TMR-based diets changed significantly after ruminal exposure, indicating that the original AA profiles of the feed cannot represent its AA composition of RUP. The AA profile of RUP and ruminal AA degradability for corn stover and rice straw contributed to missing information in the field. © 2017 Blackwell Verlag GmbH.
Castelán-Ortega, Octavio Alonso; Martínez-García, Carlos Galdino; Mould, Fergus L; Dorward, Peter; Rehman, Tahir; Rayas-Amor, Adolfo Armando
2016-06-01
This study evaluates the available on-farm resources of five case studies typified as small-scale dairy systems in central Mexico. A comprehensive mixed-integer linear programming model was developed and applied to two case studies. The optimal plan suggested the following: (1) instruction and utilization of maize silage, (2) alfalfa hay making that added US$140/ha/cut to the total net income, (3) allocation of land to cultivated pastures in a ratio of 27:41(cultivated pastures/maize crop) rather than at the current 14:69, and dairy cattle should graze 12 h/day, (4) to avoid grazing of communal pastures because this activity represented an opportunity cost of family labor that reduced the farm net income, and (5) that the highest farm net income was obtained when liquid milk and yogurt sales were included in the optimal plan. In the context of small-scale dairy systems of central Mexico, the optimal plan would need to be implemented gradually to enable farmers to develop required skills and to change management strategies from reliance on forage and purchased concentrate to pasture-based and conserved forage systems.
Non-pest prey do not disrupt aphid predation by a web-building spider.
Welch, K D; Whitney, T D; Harwood, J D
2016-02-01
A generalist predator's ability to contribute to biological control is influenced by the decisions it makes during foraging. Predators often use flexible foraging tactics, which allows them to pursue specific types of prey at the cost of reducing the likelihood of capturing other types of prey. When a pest insect has low nutritional quality or palatability for a predator, the predator is likely to reject that prey in favour of pursuing alternative, non-pest prey. This is often thought to limit the effectiveness of generalist predators in consuming aphids, which are of low nutritional quality for many generalist predators. Here, we report behavioural assays that test the hypothesis that the generalist predator, Grammonota inornata (Araneae: Linyphiidae), preferentially forages for a non-pest prey with high nutritional quality (springtails), and rejects a pest prey with low nutritional quality (aphids). In no-choice assays, molecular gut-content analysis revealed that spiders continued to feed on the low-quality aphids at high rates, even when high-quality springtails were readily available. When provided a choice between aphids and springtails in two-way choice tests, spiders did not show the expected preference for springtails. Decision-making by spiders during foraging therefore appears to be sub-optimal, possibly because of attraction to the less frequently encountered of two preys as part of a dietary diversification strategy. These results indicate that behavioural preferences alone do not necessarily compromise the pest-suppression capacity of natural enemies: even nutritionally sub-optimal pest prey can potentially be subject to predation and suppression by natural enemies.
Evolution of social learning when high expected payoffs are associated with high risk of failure.
Arbilly, Michal; Motro, Uzi; Feldman, Marcus W; Lotem, Arnon
2011-11-07
In an environment where the availability of resources sought by a forager varies greatly, individual foraging is likely to be associated with a high risk of failure. Foragers that learn where the best sources of food are located are likely to develop risk aversion, causing them to avoid the patches that are in fact the best; the result is sub-optimal behaviour. Yet, foragers living in a group may not only learn by themselves, but also by observing others. Using evolutionary agent-based computer simulations of a social foraging game, we show that in an environment where the most productive resources occur with the lowest probability, socially acquired information is strongly favoured over individual experience. While social learning is usually regarded as beneficial because it filters out maladaptive behaviours, the advantage of social learning in a risky environment stems from the fact that it allows risk aversion to be circumvented and the best food source to be revisited despite repeated failures. Our results demonstrate that the consequences of individual risk aversion may be better understood within a social context and suggest one possible explanation for the strong preference for social information over individual experience often observed in both humans and animals.
Heath, Joel P.; Gilchrist, H. Grant; Ydenberg, Ronald C.
2010-01-01
To maximize fitness, animals must respond to a variety of processes that operate at different rates or timescales. Appropriate decisions could therefore involve complex interactions among these processes. For example, eiders wintering in the arctic sea ice must consider locomotion and physiology of diving for benthic invertebrates, digestive processing rate and a nonlinear decrease in profitability of diving as currents increase over the tidal cycle. Using a multi-scale dynamic modelling approach and continuous field observations of individuals, we demonstrate that the strategy that maximizes long-term energy gain involves resting during the most profitable foraging period (slack currents). These counterintuitive foraging patterns are an adaptive trade-off between multiple overlapping rate processes and cannot be explained by classical rate-maximizing optimization theory, which only considers a single timescale and predicts a constant rate of foraging. By reducing foraging and instead digesting during slack currents, eiders structure their activity in order to maximize long-term energetic gain over an entire tide cycle. This study reveals how counterintuitive patterns and a complex functional response can result from a simple trade-off among several overlapping rate processes, emphasizing the necessity of a multi-scale approach for understanding adaptive routines in the wild and evaluating mechanisms in ecological time series. PMID:20504814
Evolution of social learning when high expected payoffs are associated with high risk of failure
Arbilly, Michal; Motro, Uzi; Feldman, Marcus W.; Lotem, Arnon
2011-01-01
In an environment where the availability of resources sought by a forager varies greatly, individual foraging is likely to be associated with a high risk of failure. Foragers that learn where the best sources of food are located are likely to develop risk aversion, causing them to avoid the patches that are in fact the best; the result is sub-optimal behaviour. Yet, foragers living in a group may not only learn by themselves, but also by observing others. Using evolutionary agent-based computer simulations of a social foraging game, we show that in an environment where the most productive resources occur with the lowest probability, socially acquired information is strongly favoured over individual experience. While social learning is usually regarded as beneficial because it filters out maladaptive behaviours, the advantage of social learning in a risky environment stems from the fact that it allows risk aversion to be circumvented and the best food source to be revisited despite repeated failures. Our results demonstrate that the consequences of individual risk aversion may be better understood within a social context and suggest one possible explanation for the strong preference for social information over individual experience often observed in both humans and animals. PMID:21508013
Kim, Minseok; Morrison, Mark; Yu, Zhongtang
2011-09-01
Phylogenetic analysis was conducted to examine ruminal bacteria in two ruminal fractions (adherent fraction vs. liquid fraction) collected from cattle fed with two different diets: forage alone vs. forage plus concentrate. One hundred forty-four 16S rRNA gene (rrs) sequences were obtained from clone libraries constructed from the four samples. These rrs sequences were assigned to 116 different operational taxonomic units (OTUs) defined at 0.03 phylogenetic distance. Most of these OTUs could not be assigned to any known genus. The phylum Firmicutes was represented by approximately 70% of all the sequences. By comparing to the OTUs already documented in the rumen, 52 new OTUs were identified. UniFrac, SONS, and denaturing gradient gel electrophoresis analyses revealed difference in diversity between the two fractions and between the two diets. This study showed that rrs sequences recovered from small clone libraries can still help identify novel species-level OTUs.
Wang, Peng; Zhu, Zhouquan; Huang, Shuai
2013-01-01
This paper presents a novel biologically inspired metaheuristic algorithm called seven-spot ladybird optimization (SLO). The SLO is inspired by recent discoveries on the foraging behavior of a seven-spot ladybird. In this paper, the performance of the SLO is compared with that of the genetic algorithm, particle swarm optimization, and artificial bee colony algorithms by using five numerical benchmark functions with multimodality. The results show that SLO has the ability to find the best solution with a comparatively small population size and is suitable for solving optimization problems with lower dimensions.
Zhu, Zhouquan
2013-01-01
This paper presents a novel biologically inspired metaheuristic algorithm called seven-spot ladybird optimization (SLO). The SLO is inspired by recent discoveries on the foraging behavior of a seven-spot ladybird. In this paper, the performance of the SLO is compared with that of the genetic algorithm, particle swarm optimization, and artificial bee colony algorithms by using five numerical benchmark functions with multimodality. The results show that SLO has the ability to find the best solution with a comparatively small population size and is suitable for solving optimization problems with lower dimensions. PMID:24385879
Bee Swarm Optimization for Medical Web Information Foraging.
Drias, Yassine; Kechid, Samir; Pasi, Gabriella
2016-02-01
The present work is related to Web intelligence and more precisely to medical information foraging. We present here a novel approach based on agents technology for information foraging. An architecture is proposed, in which we distinguish two important phases. The first one is a learning process for localizing the most relevant pages that might interest the user. This is performed on a fixed instance of the Web. The second takes into account the openness and the dynamicity of the Web. It consists on an incremental learning starting from the result of the first phase and reshaping the outcomes taking into account the changes that undergoes the Web. The whole system offers a tool to help the user undertaking information foraging. We implemented the system using a group of cooperative reactive agents and more precisely a colony of artificial bees. In order to validate our proposal, experiments were conducted on MedlinePlus, a benchmark dedicated for research in the domain of Health. The results are promising either for those related to Web regularities and for the response time, which is very short and hence complies the real time constraint.
The Mechanisms of Water Exchange: The Regulatory Roles of Multiple Interactions in Social Wasps.
Agrawal, Devanshu; Karsai, Istvan
2016-01-01
Evolutionary benefits of task fidelity and improving information acquisition via multiple transfers of materials between individuals in a task partitioned system have been shown before, but in this paper we provide a mechanistic explanation of these phenomena. Using a simple mathematical model describing the individual interactions of the wasps, we explain the functioning of the common stomach, an information center, which governs construction behavior and task change. Our central hypothesis is a symmetry between foragers who deposit water and foragers who withdraw water into and out of the common stomach. We combine this with a trade-off between acceptance and resistance to water transfer. We ultimately derive a mathematical function that relates the number of interactions that foragers complete with common stomach wasps during a foraging cycle. We use field data and additional model assumptions to calculate values of our model parameters, and we use these to explain why the fullness of the common stomach stabilizes just below 50 percent, why the average number of successful interactions between foragers and the wasps forming the common stomach is between 5 and 7, and why there is a variation in this number of interactions over time. Our explanation is that our proposed water exchange mechanism places natural bounds on the number of successful interactions possible, water exchange is set to optimize mediation of water through the common stomach, and the chance that foragers abort their task prematurely is very low.
Bats Can Use Magnetic Compass in Foraging Behavior
NASA Astrophysics Data System (ADS)
Tian, L.; Zhang, B.; Pan, Y.; Zhu, R.
2016-12-01
Foraging plays an important role in an animal's ability to survive and reproduce. It is widely recognized that many animals and microorganisms can use geomagnetic compass in migration or homing orientation. Among them, bats, the only flying mammals, can use the magnetic compass in migrating orientations. For instance, we found the migratory microbat, Nyctalus plancyi, could use the magnetic polarity compass in roosting orientation under the strength range at least from a much weaker magnetic field than the present-day geomagnetic field (as low as 10 μT) to up to stronger magnetic field (100 μT). This high sensitivity to magnetic fields intensity may explain how magnetic orientation could have long-term evolved in bats even as the Earth's magnetic field strength varied as the polarity reversed many times in the past. Recently, we carried out foraging behavioral experiments on N. plancyi under various magnetic field conditions. Interestingly, it has shown that, although the auditory including echolocation, or olfactory sense may be the primary methods for seeking food under totally dark circumstance, the bats showed preferred foraging orientations at the magnetic north-south directions when any other sensory cues are insufficient for location of the food. It confirmed that bats could optimally use multiple directional cues including the geomagnetic field in their foraging in field. When bats foraging, they would navigate along the magnetic field direction if there were no direct sensory cues. As it gets close, the direct cues from food would guide them to the food.
Effects of Liming on Forage Availability and Nutrient Content in a Forest Impacted by Acid Rain
Pabian, Sarah E.; Ermer, Nathan M.; Tzilkowski, Walter M.; Brittingham, Margaret C.
2012-01-01
Acidic deposition and subsequent forest soil acidification and nutrient depletion can affect negatively the growth, health and nutrient content of vegetation, potentially limiting the availability and nutrient content of forage for white-tailed deer (Odocoileus virginianus) and other forest herbivores. Liming is a mitigation technique that can be used to restore forest health in acidified areas, but little is known about how it affects the growth or nutrient content of deer forage. We examined the effects of dolomitic limestone application on the growth and chemical composition of understory plants in an acidified forest in central Pennsylvania, with a focus on vegetative groups included as white-tailed deer forage. We used a Before-After-Control-Impact study design with observations 1 year before liming and up to 5 years post-liming on 2 treated and 2 untreated 100-ha sites. Before liming, forage availability and several nutrients were below levels considered optimal for white-tailed deer, and many vegetative characteristics were related to soil chemistry. We observed a positive effect of liming on forb biomass, with a 2.7 fold increase on limed sites, but no biomass response in other vegetation groups. We observed positive effects of liming on calcium and magnesium content and negative effects on aluminum and manganese content of several plant groups. Responses to liming by forbs and plant nutrients show promise for improving vegetation health and forage quality and quantity for deer. PMID:22761890
Effects of liming on forage availability and nutrient content in a forest impacted by acid rain.
Pabian, Sarah E; Ermer, Nathan M; Tzilkowski, Walter M; Brittingham, Margaret C
2012-01-01
Acidic deposition and subsequent forest soil acidification and nutrient depletion can affect negatively the growth, health and nutrient content of vegetation, potentially limiting the availability and nutrient content of forage for white-tailed deer (Odocoileus virginianus) and other forest herbivores. Liming is a mitigation technique that can be used to restore forest health in acidified areas, but little is known about how it affects the growth or nutrient content of deer forage. We examined the effects of dolomitic limestone application on the growth and chemical composition of understory plants in an acidified forest in central Pennsylvania, with a focus on vegetative groups included as white-tailed deer forage. We used a Before-After-Control-Impact study design with observations 1 year before liming and up to 5 years post-liming on 2 treated and 2 untreated 100-ha sites. Before liming, forage availability and several nutrients were below levels considered optimal for white-tailed deer, and many vegetative characteristics were related to soil chemistry. We observed a positive effect of liming on forb biomass, with a 2.7 fold increase on limed sites, but no biomass response in other vegetation groups. We observed positive effects of liming on calcium and magnesium content and negative effects on aluminum and manganese content of several plant groups. Responses to liming by forbs and plant nutrients show promise for improving vegetation health and forage quality and quantity for deer.
The Mechanisms of Water Exchange: The Regulatory Roles of Multiple Interactions in Social Wasps
Agrawal, Devanshu; Karsai, Istvan
2016-01-01
Evolutionary benefits of task fidelity and improving information acquisition via multiple transfers of materials between individuals in a task partitioned system have been shown before, but in this paper we provide a mechanistic explanation of these phenomena. Using a simple mathematical model describing the individual interactions of the wasps, we explain the functioning of the common stomach, an information center, which governs construction behavior and task change. Our central hypothesis is a symmetry between foragers who deposit water and foragers who withdraw water into and out of the common stomach. We combine this with a trade-off between acceptance and resistance to water transfer. We ultimately derive a mathematical function that relates the number of interactions that foragers complete with common stomach wasps during a foraging cycle. We use field data and additional model assumptions to calculate values of our model parameters, and we use these to explain why the fullness of the common stomach stabilizes just below 50 percent, why the average number of successful interactions between foragers and the wasps forming the common stomach is between 5 and 7, and why there is a variation in this number of interactions over time. Our explanation is that our proposed water exchange mechanism places natural bounds on the number of successful interactions possible, water exchange is set to optimize mediation of water through the common stomach, and the chance that foragers abort their task prematurely is very low. PMID:26751076
Modeling Physarum space exploration using memristors
NASA Astrophysics Data System (ADS)
Ntinas, V.; Vourkas, I.; Sirakoulis, G. Ch; Adamatzky, A. I.
2017-05-01
Slime mold Physarum polycephalum optimizes its foraging behaviour by minimizing the distances between the sources of nutrients it spans. When two sources of nutrients are present, the slime mold connects the sources, with its protoplasmic tubes, along the shortest path. We present a two-dimensional mesh grid memristor based model as an approach to emulate Physarum’s foraging strategy, which includes space exploration and reinforcement of the optimally formed interconnection network in the presence of multiple aliment sources. The proposed algorithmic approach utilizes memristors and LC contours and is tested in two of the most popular computational challenges for Physarum, namely maze and transportation networks. Furthermore, the presented model is enriched with the notion of noise presence, which positively contributes to a collective behavior and enables us to move from deterministic to robust results. Consequently, the corresponding simulation results manage to reproduce, in a much better qualitative way, the expected transportation networks.
Emergence of Lévy Walks from Second-Order Stochastic Optimization
NASA Astrophysics Data System (ADS)
Kuśmierz, Łukasz; Toyoizumi, Taro
2017-12-01
In natural foraging, many organisms seem to perform two different types of motile search: directed search (taxis) and random search. The former is observed when the environment provides cues to guide motion towards a target. The latter involves no apparent memory or information processing and can be mathematically modeled by random walks. We show that both types of search can be generated by a common mechanism in which Lévy flights or Lévy walks emerge from a second-order gradient-based search with noisy observations. No explicit switching mechanism is required—instead, continuous transitions between the directed and random motions emerge depending on the Hessian matrix of the cost function. For a wide range of scenarios, the Lévy tail index is α =1 , consistent with previous observations in foraging organisms. These results suggest that adopting a second-order optimization method can be a useful strategy to combine efficient features of directed and random search.
Group choice: the ideal free distribution of human social behavior.
Kraft, J R; Baum, W M
2001-07-01
Group choice refers to the distribution of group members between two choice alternatives over time. The ideal free distribution (IFD), an optimal foraging model from behavioral ecology, predicts that the ratio of foragers at two resource sites should equal the ratio of obtained resources, a prediction that is formally analogous to the matching law of individual choice, except that group choice is a social phenomenon. Two experiments investigated the usefulness of IFD analyses of human group choice and individual-based explanations that might account for the group-level events. Instead of nonhuman animals foraging at two sites for resources, a group of humans chose blue and red cards to receive points that could earn cash prizes. The groups chose blue and red cards in ratios in positive relation to the ratios of points associated with the cards. When group choice ratios and point ratios were plotted on logarithmic coordinates and fitted with regression lines, the slopes (i.e., sensitivity measures) approached 1.0 but tended to fall short of it (i.e., undermatching), with little bias and little unaccounted for variance. These experiments demonstrate that an IFD analysis of group choice is possible and useful, and suggest that group choice may be explained by the individual members' tendency to optimize reinforcement.
Testing optimal foraging theory in a penguin-krill system.
Watanabe, Yuuki Y; Ito, Motohiro; Takahashi, Akinori
2014-03-22
Food is heterogeneously distributed in nature, and understanding how animals search for and exploit food patches is a fundamental challenge in ecology. The classic marginal value theorem (MVT) formulates optimal patch residence time in response to patch quality. The MVT was generally proved in controlled animal experiments; however, owing to the technical difficulties in recording foraging behaviour in the wild, it has been inadequately examined in natural predator-prey systems, especially those in the three-dimensional marine environment. Using animal-borne accelerometers and video cameras, we collected a rare dataset in which the behaviour of a marine predator (penguin) was recorded simultaneously with the capture timings of mobile, patchily distributed prey (krill). We provide qualitative support for the MVT by showing that (i) krill capture rate diminished with time in each dive, as assumed in the MVT, and (ii) dive duration (or patch residence time, controlled for dive depth) increased with short-term, dive-scale krill capture rate, but decreased with long-term, bout-scale krill capture rate, as predicted from the MVT. Our results demonstrate that a single environmental factor (i.e. patch quality) can have opposite effects on animal behaviour depending on the time scale, emphasizing the importance of multi-scale approaches in understanding complex foraging strategies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Campbell, Jonathan T.; Baynes, Edward E., Jr.; Aguirre,Carlos
Reducing agricultural water use in arid regions while maintaining or improving economic productivity of the agriculture sector is a major challenge. Controlled environment agriculture (CEA, or, greenhouse agriculture) affords advantages in direct resource use (less land and water required) and productivity (i.e., much higher product yield and quality per unit of resources used) relative to conventional open-field practices. These advantages come at the price of higher operating complexity and costs per acre. The challenge is to implement and apply CEA such that the productivity and resource use advantages will sufficiently outweigh the higher operating costs to provide for overall benefitmore » and viability. This project undertook an investigation of CEA for livestock forage production as a water-saving alternative to open-field forage production in arid regions. Forage production is a large consumer of fresh water in many arid regions of the world, including the southwestern U.S. and northern Mexico. With increasing competition among uses (agriculture, municipalities, industry, recreation, ecosystems, etc.) for limited fresh water supplies, agricultural practice alternatives that can potentially maintain or enhance productivity while reducing water use warrant consideration. The project established a pilot forage production greenhouse facility in southern New Mexico based on a relatively modest and passive (no active heating or cooling) system design pioneered in Chihuahua, Mexico. Experimental operations were initiated in August 2004 and carried over into early-FY05 to collect data and make initial assessments of operational and technical system performance, assess forage nutrition content and suitability for livestock, identify areas needing improvement, and make initial assessment of overall feasibility. The effort was supported through the joint leveraging of late-start FY04 LDRD funds and bundled CY2004 project funding from the New Mexico Small Business Technical Assistance program at Sandia. Despite lack of optimization with the project system, initial results show the dramatic water savings potential of hydroponic forage production compared with traditional irrigated open field practice. This project produced forage using only about 4.5% of the water required for equivalent open field production. Improved operation could bring water use to 2% or less. The hydroponic forage production system and process used in this project are labor intensive and not optimized for minimum water usage. Freshly harvested hydroponic forage has high moisture content that dilutes its nutritional value by requiring that livestock consume more of it to get the same nutritional content as conventional forage. In most other aspects the nutritional content compares well on a dry weight equivalent basis with other conventional forage. More work is needed to further explore and quantify the opportunities, limitations, and viability of this technique for broader use. Collection of greenhouse environmental data in this project was uniquely facilitated through the implementation and use of a self-organizing, wirelessly networked, multi-modal sensor system array with remote cell phone data link capability. Applications of wirelessly networked sensing with improved modeling/simulation and other Sandia technologies (e.g., advanced sensing and control, embedded reasoning, modeling and simulation, materials, robotics, etc.) can potentially contribute to significant improvement across a broad range of CEA applications.« less
Coelho, Joseph R.; Hastings, Jon M.; Holliday, Charles W.
2012-01-01
This study evaluated foraging effectiveness of Pacific cicada killers (Sphecius convallis) by comparing observed prey loads to that predicted by an optimality model. Female S. convallis preyed exclusively on the cicada Tibicen parallelus, resulting in a mean loaded flight muscle ratio (FMR) of 0.187 (N = 46). This value lies just above the marginal level, and only seven wasps (15%) were below 0.179. The low standard error (0.002) suggests that S. convallis is the most ideal flying predator so far examined in this respect. Preying on a single species may have allowed stabilizing selection to adjust the morphology of females to a nearly ideal size. That the loaded FMR is slightly above the marginal level may provide a small safety factor for wasps that do not have optimal thorax temperatures or that have to contend with attempted prey theft. Operational FMR was directly related to wasp body mass. Smaller wasps were overloaded in spite of provisioning with smaller cicadas, while larger wasps were underloaded despite provisioning with larger cicadas. Small wasps may have abandoned larger cicadas because of difficulty with carriage. PMID:26467953
Monitoring Forage Production of California Rangeland Using Remote Sensing Observations
NASA Astrophysics Data System (ADS)
Liu, H.; Jin, Y.; Dahlgren, R. A.; O'Geen, A. T.; Roche, L. M.; Smith, A. M.; Flavell, D.
2016-12-01
Pastures and rangeland cover more than 10 million hectares in California's coastal and inland foothill regions, providing feeds to livestock and important ecosystem services. Forage production in California has a large year-to-year variation due to large inter-annual and seasonal variabilities in precipitation and temperature. It also varies spatially due to the variability in climate and soils. Our goal is to develop a robust and cost-effective tool to map the near-real-time and historical forage productivity in California using remote sensing observations from Landsat and MODIS satellites. We used a Monteith's eco-physiological plant growth theory: the aboveground net primary production (ANPP) is determined by (i) the absorbed photosynthetically active radiation (APAR) and the (ii) light use efficiency (LUE): ANPP = APAR * LUEmax * f(T) * f(SM), where LUEmax is the maximum LUE, and f(T) and f(SM) are the temperature and soil moisture constrains on LUE. APAR was estimated with Landsat and MODIS vegetation index (VI), and LUE was calibrated with a statewide point dataset of peak forage production measurements at 75 annual rangeland sites. A non-linear optimization was performed to derive maximum LUE and the parameters for temperature and soil moisture regulation on LUE by minimizing the differences between the estimated and measured ANPP. Our results showed the satellite-derived annual forage production estimates correlated well withcontemporaneous in-situ forage measurements and captured both the spatial and temporal productivity patterns of forage productivity well. This remote sensing algorithm can be further improved as new field measurements become available. This tool will have a great importance in maintaining a sustainable range industry by providing key knowledge for ranchers and the stakeholders to make managerial decisions.
The patch distributed producer-scrounger game.
Ohtsuka, Yasunori; Toquenaga, Yukihiko
2009-09-21
Grouping in animals is ubiquitous and thought to provide group members antipredatory advantages and foraging efficiency. However, parasitic foraging strategy often emerges in a group. The optimal parasitic policy has given rise to the producer-scrounger (PS) game model, in which producers search for food patches, and scroungers parasitize the discovered patches. The N-persons PS game model constructed by Vickery et al. (1991. Producers, scroungers, and group foraging. American Naturalist 137, 847-863) predicts the evolutionarily stable strategy (ESS) of frequency of producers (q;) that depends on the advantage of producers and the number of foragers in a group. However, the model assumes that the number of discovered patches in one time unit never exceeds one. In reality, multiple patches could be found in one time unit. In the present study, we relax this assumption and assumed that the number of discovered patches depends on the producers' variable encounter rate with patches (lambda). We show that q; strongly depends on lambda within a feasible range, although it still depends on the advantage of producer and the number of foragers in a group. The basic idea of PS game is the same as the information sharing (parasitism), because scroungers are also thought to parasitize informations of locations of food patches. Horn (1968) indicated the role of information-parasitism in animal aggregation (Horn, H.S., 1968. The adaptive significance of colonial nesting in the Brewer's blackbird (euphagus cyanocephalus). Ecology 49, 682-646). Our modified PS game model shows the same prediction as the Horn's graphical animal aggregation model; the proportion of scroungers will increase or animals should adopt colonial foraging when resource is spatiotemporally clumped, but scroungers will decrease or animals should adopt territorial foraging if the resource is evenly distributed.
Nutrient-Specific Foraging in Invertebrate Predators
NASA Astrophysics Data System (ADS)
Mayntz, David; Raubenheimer, David; Salomon, Mor; Toft, Søren; Simpson, Stephen J.
2005-01-01
Many herbivores and omnivores adjust their food selection behavior to regulate the intake of multiple nutrients. Carnivores, however, are generally assumed to optimize the rate of prey capture rather than select prey according to nutrient composition. We showed experimentally that invertebrate predators can forage selectively for protein and lipids to redress specific nutritional imbalances. This selection can take place at different stages of prey handling: The predator may select among foods of different nutritional composition, eat more of a prey if it is rich in nutrients that the predator is deficient in, or extract specific nutrients from a single prey item.
Tong, Zongyong; Xie, Can; Ma, Lei; Liu, Liping; Jin, Yongsheng; Dong, Jiangli; Wang, Tao
2014-01-01
Alfalfa (Medicago sativa L.) is one of the most important forage crops used to feed livestock, such as cattle and sheep, and the sulfur amino acid (SAA) content of alfalfa is used as an index of its nutritional value. Aspartate kinase (AK) catalyzes the phosphorylation of aspartate to Asp-phosphate, the first step in the aspartate family biosynthesis pathway, and adenylylsulfate reductase (APR) catalyzes the conversion of activated sulfate to sulfite, providing reduced sulfur for the synthesis of cysteine, methionine, and other essential metabolites and secondary compounds. To reduce the feedback inhibition of other metabolites, we cloned bacterial AK and APR genes, modified AK, and introduced them into alfalfa. Compared to the wild-type alfalfa, the content of cysteine increased by 30% and that of methionine increased substantially by 60%. In addition, a substantial increase in the abundance of essential amino acids (EAAs), such as aspartate and lysine, was found. The results also indicated a close connection between amino acid metabolism and the tricarboxylic acid (TCA) cycle. The total amino acid content and the forage biomass tested showed no significant changes in the transgenic plants. This approach provides a new method for increasing SAAs and allows for the development of new genetically modified crops with enhanced nutritional value. PMID:24520364
Managing manure nutrients through multi-crop forage production.
Newton, G L; Bernard, J K; Hubbard, R K; Allison, J R; Lowrance, R R; Gascho, G J; Gates, R N; Vellidis, G
2003-06-01
Concentrated sources of dairy manure represent significant water pollution potential. The southern United States may be more vulnerable to water quality problems than some other regions because of climate, typical farm size, and cropping practices. Dairy manure can be an effective source of plant nutrients and large quantities of nutrients can be recycled through forage production, especially when multi-cropping systems are utilized. Linking forage production with manure utilization is an environmentally sound approach for addressing both of these problems. Review of two triple-crop systems revealed greater N and P recoveries for a corn silage-bermudagrass hay-rye haylage system, whereas forage yields and quality were greater for a corn silage-corn silage-rye haylage system, when manure was applied at rates to supply N. Nutrient uptake was lower than application during the autumn-winter period, and bermudagrass utilized more of the remaining excess than a second crop of corn silage. Economic comparison of these systems suggests that the added value of the two corn silage crop system was not enough to off-set its increased production cost. Therefore, the system that included bermudagrass demonstrated both environmental and economic advantages. Review of the N and P uptake and calculated crop value of various single, double, and triple crop forage systems indicated that the per hectare economic value as well as the N and P uptakes tended to follow DM yields, and grasses tended to out-perform broadleaf forages. Taken across all systems, systems that included bermudagrass tended to have some of the highest economic values and uptakes of N and P. Manure applied at rates to supply N results in application of excess P, and production will not supply adequate quantities of forage to meet the herd's needs. Systems that lower manure application and supply supplemental N to produce all necessary forage under manure application will likely be less economically attractive due to additional costs of moving manure further and, applying it to greater land areas, but will be environmentally necessary in most cases. Intensive forage systems can produce acceptable to high quality forage, protect the environment, and be economically attractive. The optimal manure-forage system will depend on the farm characteristics and specific local conditions. Buffers and nutrient sinks can protect streams and water bodies from migrating nutrients and should be included as a part of crop production systems.
NASA Astrophysics Data System (ADS)
Chowanski, Kurt M.
Forested lands contribute to the United States (US) economy by providing livestock and timber production. Livestock grazing of forested lands has been widespread throughout the western US since the settlement era, and currently occurs on 51.4 million hectares (ha) representing 16% of all US grazing land and 22% of all US forested land (Nickerson et al. 2011). While livestock grazing and timber harvest are occurring on a substantial amount of forested land, relationships between management practices, tree stocking, timber production, forage production, livestock grazing, wildlife, aesthetics, and ecological integrity are not well documented. Whether considering timber or cattle, finding a balance between production and resource conservation is a fundamental challenge to agricultural producers, and is often a tradeoff between short term gains and long term sustainability. This dissertation aims to identify livestock and timber management practices that optimize production and are ecologically conservative. Specifically, I focused on three objectives. First, I reviewed the published literature and summarized what is known about best-practices for concurrent management of livestock and timber production in pine forests in the US. I found most studies came from the southeastern and western US where timber and livestock production on the same land unit are common. The relationship between pine cover and forage seemed fairly consistent across the US, and production was optimized when cattle grazed open canopy forests with basal areas between 5 and 14 m2 ha-1 (15-35% tree canopy cover). Second, I developed forest cover maps to estimate forage production in the Black Hills, South Dakota (SD) for the period from 1999 to 2015. I developed a regression model based on Landsat and Ikonos satellite imagery and was able to detect large changes in forest cover over time. I then used these maps in combination with maps of soil type and Palmer Drought Severity Index (PDSI) to update forage production estimates for the region. These changes in forest cover have large implications for forage production in the Black Hills. Over the 15 year period, mean tree cover decreased in 181 pastures in the Mystic Ranger District by 17.6 +/- 0.6%, and there was a corresponding 15.5 +/- 0.6% increase in mean forage production. Third, I conducted a 2 -year field experiment in the Black Hills, SD to study the relationships between management practices such as livestock stocking rates, grazing pressure, and timber harvest history, and aspects of resource condition such as tree regeneration, forage production, and plant community composition. From 2014-2015, I visited 44 pastures across a spectrum of management practices and measured seedling regeneration (590 plots), plant species richness (393 plots), primary production (246 plots), and visual obstruction (120 transects). I found that cattle grazing did not affect ponderosa pine regeneration. Grazing did affect plant diversity, and I found the highest plant diversity in areas of moderate grazing pressure. This work suggests that moderate stocking rates should have no effect on the timber industry but could positively affect native plant diversity. In the conclusion, I summarize what I learned from the literature review, mapping exercise, and field study and provide some management recommendations based on this work. Overall, I found that updated forage production estimates based on satellite imagery, and using grazing pressure index (GPI) to identify optimal stocking rates are tools that can facilitate management of livestock and timber production in the Black Hills, SD.
Modelled drift patterns of fish larvae link coastal morphology to seabird colony distribution.
Sandvik, Hanno; Barrett, Robert T; Erikstad, Kjell Einar; Myksvoll, Mari S; Vikebø, Frode; Yoccoz, Nigel G; Anker-Nilssen, Tycho; Lorentsen, Svein-Håkon; Reiertsen, Tone K; Skarðhamar, Jofrid; Skern-Mauritzen, Mette; Systad, Geir Helge
2016-05-13
Colonial breeding is an evolutionary puzzle, as the benefits of breeding in high densities are still not fully explained. Although the dynamics of existing colonies are increasingly understood, few studies have addressed the initial formation of colonies, and empirical tests are rare. Using a high-resolution larval drift model, we here document that the distribution of seabird colonies along the Norwegian coast can be explained by variations in the availability and predictability of fish larvae. The modelled variability in concentration of fish larvae is, in turn, predicted by the topography of the continental shelf and coastline. The advection of fish larvae along the coast translates small-scale topographic characteristics into a macroecological pattern, viz. the spatial distribution of top-predator breeding sites. Our findings provide empirical corroboration of the hypothesis that seabird colonies are founded in locations that minimize travel distances between breeding and foraging locations, thereby enabling optimal foraging by central-place foragers.
Rodríguez, Carlos; Dell’Omo, Giacomo; Bustamante, Javier
2017-01-01
Tri-axial accelerometry has proved to be a useful technique to study animal behavior with little direct observation, and also an effective way to measure energy expenditure, allowing a refreshing revisit to optimal foraging theory. This theory predicts that individuals should gain the most energy for the lowest cost in terms of time and energy when foraging, in order to maximize their fitness. However, during a foraging trip, central-place foragers could face different trade-offs during the commuting and searching parts of the trip, influencing behavioral decisions. Using the lesser kestrel (Falco naumanni) as an example we study the time and energy costs of different behaviors during the commuting and searching parts of a foraging trip. Lesser kestrels are small insectivorous falcons that behave as central-place foragers during the breeding season. They can commute by adopting either time-saving flapping flights or energy-saving soaring-gliding flights, and capture prey by using either time-saving active hovering flights or energy-saving perch-hunting. We tracked 6 lesser kestrels using GPS and tri-axial accelerometers during the breeding season. Our results indicate that males devoted more time and energy to flight behaviors than females in agreement with being the sex responsible for food provisioning to the nest. During the commuting flights, kestrels replaced flapping with soaring-gliding flights as solar radiation increased and thermal updrafts got stronger. In the searching part, they replaced perch-hunting with hovering as wind speed increased and they experienced a stronger lift. But also, they increased the use of hovering as air temperature increased, which has a positive influence on the activity level of the preferred prey (large grasshoppers). Kestrels maintained a constant energy expenditure per foraging trip, although flight and hunting strategies changed dramatically with weather conditions, suggesting a fixed energy budget per trip to which they adjusted their commuting and searching strategies in response to weather conditions. PMID:28591181
Marui, Junichiro; Matsushita-Morita, Mayumi; Tada, Sawaki; Hattori, Ryota; Suzuki, Satoshi; Amano, Hitoshi; Ishida, Hiroki; Yamagata, Youhei; Takeuchi, Michio; Kusumoto, Ken-Ichi
2012-08-01
The apsA and apsB genes encoding family M1 aminopeptidases were identified in the industrial fungus Aspergillus oryzae. The apsB was transcriptionally up-regulated up to 2.5-fold in response to the deprivation of nitrogen or carbon sources in growth media, while up-regulation of apsA was less significant. The encoded proteins were bacterially expressed and purified to characterize their enzymatic properties. ApsA and ApsB were optimally active at pH 7.0 and 35 °C and stable at pH ranges of 6-10 and 4-10, respectively, up to 40 °C. The enzymes were inhibited by bestatin and EDTA, as has been reported for family M1 aminopeptidases that characteristically contain a zinc-binding catalytic motif. Both enzymes preferentially liberated N-terminal lysine, which is an essential amino acid and an important additive to animal feed. Enzymes that efficiently release N-terminal lysine from peptides could be useful for food and forage industries. Examination of the reactivity toward peptide substrate of varying length revealed that ApsB exhibited broader substrate specificity than ApsA although the reactivity of ApsB decreased as the length of peptide substrate decreased.
Complex scaling behavior in animal foraging patterns
NASA Astrophysics Data System (ADS)
Premachandra, Prabhavi Kaushalya
This dissertation attempts to answer questions from two different areas of biology, ecology and neuroscience, using physics-based techniques. In Section 2, suitability of three competing random walk models is tested to describe the emergent movement patterns of two species of primates. The truncated power law (power law with exponential cut off) is the most suitable random walk model that characterizes the emergent movement patterns of these primates. In Section 3, an agent-based model is used to simulate search behavior in different environments (landscapes) to investigate the impact of the resource landscape on the optimal foraging movement patterns of deterministic foragers. It should be noted that this model goes beyond previous work in that it includes parameters such as spatial memory and satiation, which have received little consideration to date in the field of movement ecology. When the food availability is scarce in a tropical forest-like environment with feeding trees distributed in a clumped fashion and the size of those trees are distributed according to a lognormal distribution, the optimal foraging pattern of a generalist who can consume various and abundant food types indeed reaches the Levy range, and hence, show evidence for Levy-flight-like (power law distribution with exponent between 1 and 3) behavior. Section 4 of the dissertation presents an investigation of phase transition behavior in a network of locally coupled self-sustained oscillators as the system passes through various bursting states. The results suggest that a phase transition does not occur for this locally coupled neuronal network. The data analysis in the dissertation adopts a model selection approach and relies on methods based on information theory and maximum likelihood.
Chemotaxis can provide biological organisms with good solutions to the travelling salesman problem.
Reynolds, A M
2011-05-01
The ability to find good solutions to the traveling salesman problem can benefit some biological organisms. Bacterial infection would, for instance, be eradicated most promptly if cells of the immune system minimized the total distance they traveled when moving between bacteria. Similarly, foragers would maximize their net energy gain if the distance that they traveled between multiple dispersed prey items was minimized. The traveling salesman problem is one of the most intensively studied problems in combinatorial optimization. There are no efficient algorithms for even solving the problem approximately (within a guaranteed constant factor from the optimum) because the problem is nondeterministic polynomial time complete. The best approximate algorithms can typically find solutions within 1%-2% of the optimal, but these are computationally intensive and can not be implemented by biological organisms. Biological organisms could, in principle, implement the less efficient greedy nearest-neighbor algorithm, i.e., always move to the nearest surviving target. Implementation of this strategy does, however, require quite sophisticated cognitive abilities and prior knowledge of the target locations. Here, with the aid of numerical simulations, it is shown that biological organisms can simply use chemotaxis to solve, or at worst provide good solutions (comparable to those found by the greedy algorithm) to, the traveling salesman problem when the targets are sources of a chemoattractant and are modest in number (n < 10). This applies to neutrophils and macrophages in microbial defense and to some predators.
Liberating Lévy walk research from the shackles of optimal foraging
NASA Astrophysics Data System (ADS)
Reynolds, Andy
2015-09-01
There is now compelling evidence that many organisms have movement patterns that can be described as Lévy walks, or Lévy flights. Lévy movement patterns have been identified in cells, microorganisms, molluscs, insects, reptiles, fish, birds and even human hunter-gatherers. Most research into Lévy walks as models of organism movement patterns has been shaped by the 'Lévy flight foraging hypothesis'. This states that, since Lévy walks can optimize search efficiencies, natural selection should lead to adaptations that select for Lévy walk foraging. However, a growing body of research on generative mechanisms suggests that Lévy walks can arise freely as by-products of otherwise innocuous behaviours; consequently their advantageous properties are purely coincidental. This suggests that the Lévy flight foraging hypothesis should be amended, or even replaced, by a simpler and more general hypothesis. This new hypothesis would state that 'Lévy walks emerge spontaneously and naturally from innate behaviours and innocuous responses to the environment but, if advantageous, then there could be selection against losing them'. The new hypothesis has the virtue of making fewer assumptions and being broader than the original hypothesis; it also encompasses the many examples of suboptimal Lévy patterns that challenge the prevailing paradigm. This does not detract from the Lévy flight foraging hypothesis, in fact, it adds to the theory by providing a stronger and more compelling case for the occurrence of Lévy walks. It dispenses with concerns about the theoretical arguments in support of the Lévy flight foraging hypothesis and so may lead to a wider acceptance of Lévy walks as models of movement pattern data. Furthermore, organisms can approximate Lévy walks by adapting intrinsic behaviour in simple ways; this occurs when Lévy movement patterns are advantageous, but come with an associated cost. These new developments represent a major change in perspective and provide the broadest picture yet of Lévy movement patterns. However, the process of understanding and identifying Lévy movement patterns still has a long way to go, and further reinterpretations and shifts in understanding will occur. In conclusion, Lévy walk research remains exciting precisely because so much remains to be understood, and because, even relatively small studies, are interesting discoveries in their own right.
Liberating Lévy walk research from the shackles of optimal foraging.
Reynolds, Andy
2015-09-01
There is now compelling evidence that many organisms have movement patterns that can be described as Lévy walks, or Lévy flights. Lévy movement patterns have been identified in cells, microorganisms, molluscs, insects, reptiles, fish, birds and even human hunter-gatherers. Most research into Lévy walks as models of organism movement patterns has been shaped by the 'Lévy flight foraging hypothesis'. This states that, since Lévy walks can optimize search efficiencies, natural selection should lead to adaptations that select for Lévy walk foraging. However, a growing body of research on generative mechanisms suggests that Lévy walks can arise freely as by-products of otherwise innocuous behaviours; consequently their advantageous properties are purely coincidental. This suggests that the Lévy flight foraging hypothesis should be amended, or even replaced, by a simpler and more general hypothesis. This new hypothesis would state that 'Lévy walks emerge spontaneously and naturally from innate behaviours and innocuous responses to the environment but, if advantageous, then there could be selection against losing them'. The new hypothesis has the virtue of making fewer assumptions and being broader than the original hypothesis; it also encompasses the many examples of suboptimal Lévy patterns that challenge the prevailing paradigm. This does not detract from the Lévy flight foraging hypothesis, in fact, it adds to the theory by providing a stronger and more compelling case for the occurrence of Lévy walks. It dispenses with concerns about the theoretical arguments in support of the Lévy flight foraging hypothesis and so may lead to a wider acceptance of Lévy walks as models of movement pattern data. Furthermore, organisms can approximate Lévy walks by adapting intrinsic behaviour in simple ways; this occurs when Lévy movement patterns are advantageous, but come with an associated cost. These new developments represent a major change in perspective and provide the broadest picture yet of Lévy movement patterns. However, the process of understanding and identifying Lévy movement patterns still has a long way to go, and further reinterpretations and shifts in understanding will occur. In conclusion, Lévy walk research remains exciting precisely because so much remains to be understood, and because, even relatively small studies, are interesting discoveries in their own right. Copyright © 2015 Elsevier B.V. All rights reserved.
Akter, Asma; Biella, Paolo; Klecka, Jan
2017-01-01
Plants often grow in clusters of various sizes and have a variable number of flowers per inflorescence. This small-scale spatial clustering affects insect foraging strategies and plant reproductive success. In our study, we aimed to determine how visitation rate and foraging behaviour of pollinators depend on the number of flowers per plant and on the size of clusters of multiple plants using Dracocephalum moldavica (Lamiaceae) as a target species. We measured flower visitation rate by observations of insects visiting single plants and clusters of plants with different numbers of flowers. Detailed data on foraging behaviour within clusters of different sizes were gathered for honeybees, Apis mellifera, the most abundant visitor of Dracocephalum in the experiments. We found that the total number of flower visitors increased with the increasing number of flowers on individual plants and in larger clusters, but less then proportionally. Although individual honeybees visited more flowers in larger clusters, they visited a smaller proportion of flowers, as has been previously observed. Consequently, visitation rate per flower and unit time peaked in clusters with an intermediate number of flowers. These patterns do not conform to expectations based on optimal foraging theory and the ideal free distribution model. We attribute this discrepancy to incomplete information about the distribution of resources. Detailed observations and video recordings of individual honeybees also showed that the number of flowers had no effect on handling time of flowers by honeybees. We evaluated the implications of these patterns for insect foraging biology and plant reproduction.
2017-01-01
Plants often grow in clusters of various sizes and have a variable number of flowers per inflorescence. This small-scale spatial clustering affects insect foraging strategies and plant reproductive success. In our study, we aimed to determine how visitation rate and foraging behaviour of pollinators depend on the number of flowers per plant and on the size of clusters of multiple plants using Dracocephalum moldavica (Lamiaceae) as a target species. We measured flower visitation rate by observations of insects visiting single plants and clusters of plants with different numbers of flowers. Detailed data on foraging behaviour within clusters of different sizes were gathered for honeybees, Apis mellifera, the most abundant visitor of Dracocephalum in the experiments. We found that the total number of flower visitors increased with the increasing number of flowers on individual plants and in larger clusters, but less then proportionally. Although individual honeybees visited more flowers in larger clusters, they visited a smaller proportion of flowers, as has been previously observed. Consequently, visitation rate per flower and unit time peaked in clusters with an intermediate number of flowers. These patterns do not conform to expectations based on optimal foraging theory and the ideal free distribution model. We attribute this discrepancy to incomplete information about the distribution of resources. Detailed observations and video recordings of individual honeybees also showed that the number of flowers had no effect on handling time of flowers by honeybees. We evaluated the implications of these patterns for insect foraging biology and plant reproduction. PMID:29136042
Hybrid foraging search: Searching for multiple instances of multiple types of target.
Wolfe, Jeremy M; Aizenman, Avigael M; Boettcher, Sage E P; Cain, Matthew S
2016-02-01
This paper introduces the "hybrid foraging" paradigm. In typical visual search tasks, observers search for one instance of one target among distractors. In hybrid search, observers search through visual displays for one instance of any of several types of target held in memory. In foraging search, observers collect multiple instances of a single target type from visual displays. Combining these paradigms, in hybrid foraging tasks observers search visual displays for multiple instances of any of several types of target (as might be the case in searching the kitchen for dinner ingredients or an X-ray for different pathologies). In the present experiment, observers held 8-64 target objects in memory. They viewed displays of 60-105 randomly moving photographs of objects and used the computer mouse to collect multiple targets before choosing to move to the next display. Rather than selecting at random among available targets, observers tended to collect items in runs of one target type. Reaction time (RT) data indicate searching again for the same item is more efficient than searching for any other targets, held in memory. Observers were trying to maximize collection rate. As a result, and consistent with optimal foraging theory, they tended to leave 25-33% of targets uncollected when moving to the next screen/patch. The pattern of RTs shows that while observers were collecting a target item, they had already begun searching memory and the visual display for additional targets, making the hybrid foraging task a useful way to investigate the interaction of visual and memory search. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Hanan, N. P.; Kahiu, M. N.
2016-12-01
Grazing systems are important for survival of humans, livestock and wildlife in Sub-Saharan Africa (SSA). They are mainly found in the arid and semi-arid regions and are characterized by naturally occurring tree-grass vegetation mixtures ("savannas"), low and erratic rainfall, low human populations, and scanty water resources. Due to the scarce population and perceived low resource base they have been marginalized for decades, if not centuries. However, their economic and environmental significance, particularly their role as foraging lands for livestock and wildlife cannot be underrated. SSA natural grazing systems comprise a significant source of livelihood, where millions of people depend on pastoralism as a source of food and income. Further, the African savannas support diverse flora and charismatic large herbivore and carnivore guilds. The above considerations motivate a more detailed study of the composition, temporal and spatial variability of foraging resources in SSA arid and semi-arid regions. We have therefore embarked on a research to map Africa foraging resources by partitioning MODIS total leaf area index (LAIA) time series into its woody (LAIW) and herbaceous (LAIH) constituents as proxies for grazing and browsing resources, respectively. Using the portioned LAI estimates we will develop a case study to assess how forage resources affect distribution and abundance of large herbivores in Africa. In our case study we explore two separate but related hypothesis: i) small and medium sized mammalian herbivore numbers will peak at intermediate biomass (LAIH for grazers and LAIW for browsers), since they optimize on forage quantity and quality. Conversely, large-body mammalian herbivores have the ability to process high quantity-low quality food, hence, we hypothesize that ii) larger herbivores will tend to be more common in high forage areas irrespective of forage quality. We will use LAIH and LAIW retrievals to compute annual average leaf area duration (LAD) as a proxy for forage quantity for grazing and browsing for wild and domestic herbivores. Our objectives include: i) to present the MODIS LAI partitioning approach and show case the results of the partitioned woody and herbaceous LAI; and ii) to assess the relationship between forage resources and herbivory in Sub-Saharan Africa.
The twilight zone: ambient light levels trigger activity in primitive ants.
Narendra, Ajay; Reid, Samuel F; Hemmi, Jan M
2010-05-22
Many animals become active during twilight, a narrow time window where the properties of the visual environment are dramatically different from both day and night. Despite the fact that many animals including mammals, reptiles, birds and insects become active in this specific temporal niche, we do not know what cues trigger this activity. To identify the onset of specific temporal niches, animals could anticipate the timing of regular events or directly measure environmental variables. We show that the Australian bull ant, Myrmecia pyriformis, starts foraging only during evening twilight throughout the year. The onset occurs neither at a specific temperature nor at a specific time relative to sunset, but at a specific ambient light intensity. Foraging onset occurs later when light intensities at sunset are brighter than normal or earlier when light intensities at sunset are darker than normal. By modifying ambient light intensity experimentally, we provide clear evidence that ants indeed measure light levels and do not rely on an internal rhythm to begin foraging. We suggest that the reason for restricting the foraging onset to twilight and measuring light intensity to trigger activity is to optimize the trade-off between predation risk and ease of navigation.
The twilight zone: ambient light levels trigger activity in primitive ants
Narendra, Ajay; Reid, Samuel F.; Hemmi, Jan M.
2010-01-01
Many animals become active during twilight, a narrow time window where the properties of the visual environment are dramatically different from both day and night. Despite the fact that many animals including mammals, reptiles, birds and insects become active in this specific temporal niche, we do not know what cues trigger this activity. To identify the onset of specific temporal niches, animals could anticipate the timing of regular events or directly measure environmental variables. We show that the Australian bull ant, Myrmecia pyriformis, starts foraging only during evening twilight throughout the year. The onset occurs neither at a specific temperature nor at a specific time relative to sunset, but at a specific ambient light intensity. Foraging onset occurs later when light intensities at sunset are brighter than normal or earlier when light intensities at sunset are darker than normal. By modifying ambient light intensity experimentally, we provide clear evidence that ants indeed measure light levels and do not rely on an internal rhythm to begin foraging. We suggest that the reason for restricting the foraging onset to twilight and measuring light intensity to trigger activity is to optimize the trade-off between predation risk and ease of navigation. PMID:20129978
Effects of pasture renovation on hydrology, nutrient runoff, and forage yield.
de Koff, J P; Moore, P A; Formica, J; Van Eps, M; DeLaune, P B
2011-01-01
Proper pasture management is important in promoting optimal forage growth and reducing runoff and nutrient loss. Pasture renovation is a management tool that improves aeration by mechanically creating holes or pockets within the soil. Pasture renovation was performed before manure application (poultry litter or swine slurry) on different pasture soils and rainfall simulations were conducted to identify the effects of pasture renovation on nutrient runoff and forage growth. Renovation of small plots resulted in significant and beneficial hydrological changes. During the first rainfall simulation, runoff volumes were 45 to 74% lower for seven out of eight renovated treatments, and infiltration rates increased by 3 to 87% for all renovated treatments as compared with nonrenovated treatments. Renovation of pasture soils fertilized with poultry litter led to significant reductions in dissolved reactive P (DRP) (74-87%), total P (TP) (76-85%), and total nitrogen (TN) (72-80%) loads in two of the three soils studied during the first rainfall simulation. Renovation did not result in any significant differences in forage yields. Overall, beneficial impacts of renovation lasted up to 3 mo, the most critical period for nutrient runoff following manure application. Therefore, renovation could be an important best management practice in these areas.
Mohana, Sarayu; Shrivastava, Shalini; Divecha, Jyoti; Madamwar, Datta
2008-02-01
Decolorization and degradation of polyazo dye Direct Black 22 was carried out by distillery spent wash degrading mixed bacterial consortium, DMC. Response surface methodology (RSM) involving a central composite design (CCD) in four factors was successfully employed for the study and optimization of decolorization process. The hyper activities and interactions between glucose concentration, yeast extract concentration, dye concentration and inoculum size on dye decolorization were investigated and modeled. Under optimized conditions the bacterial consortium was able to decolorize the dye almost completely (>91%) within 12h. Bacterial consortium was able to decolorize 10 different azo dyes. The optimum combination of the four variables predicted through RSM was confirmed through confirmatory experiments and hence this bacterial consortium holds potential for the treatment of industrial waste water. Dye degradation products obtained during the course of decolorization were analyzed by HPTLC.
Das, Swagatam; Biswas, Subhodip; Panigrahi, Bijaya K; Kundu, Souvik; Basu, Debabrota
2014-10-01
This paper presents a novel search metaheuristic inspired from the physical interpretation of the optic flow of information in honeybees about the spatial surroundings that help them orient themselves and navigate through search space while foraging. The interpreted behavior combined with the minimal foraging is simulated by the artificial bee colony algorithm to develop a robust search technique that exhibits elevated performance in multidimensional objective space. Through detailed experimental study and rigorous analysis, we highlight the statistical superiority enjoyed by our algorithm over a wide variety of functions as compared to some highly competitive state-of-the-art methods.
The emerging contribution of social wasps to grape rot disease ecology
Boyden, Sean D.; Soriano, Jonathan-Andrew N.; Corey, Tyler B.; Leff, Jonathan W.; Fierer, Noah; Starks, Philip T.
2017-01-01
Grape sour (bunch) rot is a polymicrobial disease of vineyards that causes millions of dollars in lost revenue per year due to decreased quality of grapes and resultant wine. The disease is associated with damaged berries infected with a community of acetic acid bacteria, yeasts, and filamentous fungi that results in rotting berries with high amounts of undesirable volatile acidity. Many insect species cause the initial grape berry damage that can lead to this disease, but most studies have focused on the role of fruit flies in facilitating symptoms and vectoring the microorganisms of this disease complex. Like fruit flies, social wasps are abundant in vineyards where they feed on ripe berries and cause significant damage, while also dispersing yeasts involved in wine fermentation. Despite this, their possible role in disease facilitation and dispersal of grape rots has not been explored. We tested the hypothesis that the paper wasp Polistes dominulus could facilitate grape sour rot in the absence of other insect vectors. Using marker gene sequencing we characterized the bacterial and fungal community of wild-caught adults. We used a sterilized foraging arena to determine if these wasps transfer viable microorganisms when foraging. We then tested if wasps harboring their native microbial community, or those inoculated with sour rot, had an effect on grape sour rot incidence and severity using a laboratory foraging arena. We found that all wasps harbor some portion of the sour rot microbial community and that they have the ability to transfer viable microorganisms when foraging. Foraging by inoculated and uninoculated wasps led to an increase in berry rot disease symptom severity and incidence. Our results indicate that paper wasps can facilitate sour rot diseases in the absence of other vectors and that the mechanism of this facilitation may include both increasing host susceptibility and transmitting these microbial communities to the grapes. Social wasps are understudied but relevant players in the sour rot ecology of vineyards. PMID:28462032
Improving precision of forage yield trials: A case study
USDA-ARS?s Scientific Manuscript database
Field-based agronomic and genetic research relies heavily on the data generated from field evaluations. Therefore, it is imperative to optimize the precision of yield estimates in cultivar evaluation trials to make reliable selections. Experimental error in yield trials is sensitive to several facto...
Mucin glycan foraging in the human gut microbiome
Tailford, Louise E.; Crost, Emmanuelle H.; Kavanaugh, Devon; Juge, Nathalie
2015-01-01
The availability of host and dietary carbohydrates in the gastrointestinal (GI) tract plays a key role in shaping the structure-function of the microbiota. In particular, some gut bacteria have the ability to forage on glycans provided by the mucus layer covering the GI tract. The O-glycan structures present in mucin are diverse and complex, consisting predominantly of core 1-4 mucin-type O-glycans containing α- and β- linked N-acetyl-galactosamine, galactose and N-acetyl-glucosamine. These core structures are further elongated and frequently modified by fucose and sialic acid sugar residues via α1,2/3/4 and α2,3/6 linkages, respectively. The ability to metabolize these mucin O-linked oligosaccharides is likely to be a key factor in determining which bacterial species colonize the mucosal surface. Due to their proximity to the immune system, mucin-degrading bacteria are in a prime location to influence the host response. However, despite the growing number of bacterial genome sequences available from mucin degraders, our knowledge on the structural requirements for mucin degradation by gut bacteria remains fragmented. This is largely due to the limited number of functionally characterized enzymes and the lack of studies correlating the specificity of these enzymes with the ability of the strain to degrade and utilize mucin and mucin glycans. This review focuses on recent findings unraveling the molecular strategies used by mucin-degrading bacteria to utilize host glycans, adapt to the mucosal environment, and influence human health. PMID:25852737
Mapato, Chaowarit; Wanapat, Metha
2018-03-23
Both quantity and quality of forages are important in dry season feeding. Eight Thai native beef bulls were arranged in a Completely randomized design to evaluate dwarf Napier namely Sweet grass (Pennisetum purpureum cv. Mahasarakham) preserved as silage or hay on feed intake, digestibility, and rumen fermentation. The animals were fed with forage ad libitum supplemented with concentrate mixture at 1.0% of BW for 21 days; data were collected during the last 7 days. The results showed that there were differences (P < 0.05) between treatments in dry matter (DM) intake, DM digestibility, and ruminal pH, in which hay feeding gave enhanced feed intake and more favorable ruminal pH. Nevertheless, mean ruminal ammonia nitrogen, total volatile fatty acids (TVFAs), proportion of VFAs, bacterial and protozoal population, and blood urea nitrogen were similar (P > 0.05) in animals fed silage and hay. Sweet grass is better preserved as hay rather than silage.
Wood Storks of the Birdsville Colony and swamps of the Savannah River Plant: 1986 annual report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coulter, M.C.
1987-04-01
The Savannah River Ecology Laboratory (SREL) Wood Stork program is a long-term program including various facets. It is primarily aimed at determining the importance of the SRSS to foraging storks and managing the Kathwood Foraging Ponds. In order to accomplish this we have examined the breeding biology of the birds at the colony to determine when the birds may have maximum food demand. We have also studied foraging ecology of the birds in order to gain insights that would allow us to develop a more effective management plan for the Kathwood ponds. More specifically, the objectives of the work carriedmore » out in 1986 were: (1) to determine the locations of foraging sites of Wood Storks from the Birdsville colony and examine year-to-year variation in sites used; (2) to characterize in more detail the habitat, vegetation, water quality and prey density/biomass at these sites; (3) to observe the breeding birds to determine the times when food demands at the colony are greatest; (4) to examine the movement of storks from the rookery to foraging sites and relate seasonal trends to the breeding biology; (5) to examine the importance of the SRSS to foraging Wood Storks; and (6) to examine the movements of individual birds to determine the generality of the observed patterns. At the Kathwood ponds we monitored water quality to ensure that water conditions were optimal for the stocked aquatic prey, determined when to make the ponds available to the storks, and monitored the numbers of storks and other wading birds at the ponds. In this report, I present the results of the studies carried out during 1986.« less
Wood storks of the Birdsville colony and swamps of the Savannah River Plant
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coulter, M.C.
1989-08-01
The Savannah River Ecology Laboratory (SREL) Wood Stork program is a long-term program including various facets. It is primarily aimed at determining the importance of the SRSS to foraging storks and managing the Kathwood Foraging Ponds. In order to accomplish this, we have examined the breeding biology of the birds at the colony to determine when the birds may have maximum food demand. We have also studied foraging ecology of the birds in order to gain insights that would allow us to develop a more effective management plan for the Kathwood ponds. More specifically, the objectives of the work carriedmore » out in 1988 were: (1) to determine the locations of foraging sites of Wood Storks from the Birdsville colony and examine year-to-year variation in sites used; (2) to characterize in more detail the habitat, vegetation, water quality and prey density/biomass at these sites; (3) to observe the breeding birds to determine times when food demands at the colony are greatest; (4) to examine the movements of storks from the rookery to foraging sites and related seasonal trends to the breeding biology; (5) to examine the importance of the SRSS to foraging Wood Storks; and (6) to examine the movements of individual birds to determine the generality of the observed patterns. At the Kathwood ponds we monitored water quality to ensure that water conditions were optimal for the stocked aquatic ponds, determined when to make the ponds available to the storks, and monitored the numbers of storks and other wading birds at the ponds. In this report, I present the results of these studies conducted in 1988. 30 refs., 107 figs., 81 tabs.« less
du Plessis, Katherine L; Martin, Rowan O; Hockey, Philip A R; Cunningham, Susan J; Ridley, Amanda R
2012-10-01
Recent mass mortalities of bats, birds and even humans highlight the substantial threats that rising global temperatures pose for endotherms. Although less dramatic, sublethal fitness costs of high temperatures may be considerable and result in changing population demographics. Endothermic animals exposed to high environmental temperatures can adjust their behaviour (e.g. reducing activity) or physiology (e.g. elevating rates of evaporative water loss) to maintain body temperatures within tolerable limits. The fitness consequences of these adjustments, in terms of the ability to balance water and energy budgets and therefore maintain body condition, are poorly known. We investigated the effects of daily maximum temperature on foraging and thermoregulatory behaviour as well as maintenance of body condition in a wild, habituated population of Southern Pied Babblers Turdoides bicolor. These birds inhabit a hot, arid area of southern Africa where they commonly experience environmental temperatures exceeding optimal body temperatures. Repeated measurements of individual behaviour and body mass were taken across days varying in maximum air temperature. Contrary to expectations, foraging effort was unaffected by daily maximum temperature. Foraging efficiency, however, was lower on hotter days and this was reflected in a drop in body mass on hotter days. When maximum air temperatures exceeded 35.5 °C, individuals no longer gained sufficient weight to counter typical overnight weight loss. This reduction in foraging efficiency is likely driven, in part, by a trade-off with the need to engage in heat-dissipation behaviours. When we controlled for temperature, individuals that actively dissipated heat while continuing to forage experienced a dramatic decrease in their foraging efficiency. This study demonstrates the value of investigations of temperature-dependent behaviour in the context of impacts on body condition, and suggests that increasingly high temperatures will have negative implications for the fitness of these arid-zone birds. © 2012 Blackwell Publishing Ltd.
Ant algorithms for discrete optimization.
Dorigo, M; Di Caro, G; Gambardella, L M
1999-01-01
This article presents an overview of recent work on ant algorithms, that is, algorithms for discrete optimization that took inspiration from the observation of ant colonies' foraging behavior, and introduces the ant colony optimization (ACO) metaheuristic. In the first part of the article the basic biological findings on real ants are reviewed and their artificial counterparts as well as the ACO metaheuristic are defined. In the second part of the article a number of applications of ACO algorithms to combinatorial optimization and routing in communications networks are described. We conclude with a discussion of related work and of some of the most important aspects of the ACO metaheuristic.
Ant Navigation: Fractional Use of the Home Vector
Cheung, Allen; Hiby, Lex; Narendra, Ajay
2012-01-01
Home is a special location for many animals, offering shelter from the elements, protection from predation, and a common place for gathering of the same species. Not surprisingly, many species have evolved efficient, robust homing strategies, which are used as part of each and every foraging journey. A basic strategy used by most animals is to take the shortest possible route home by accruing the net distances and directions travelled during foraging, a strategy well known as path integration. This strategy is part of the navigation toolbox of ants occupying different landscapes. However, when there is a visual discrepancy between test and training conditions, the distance travelled by animals relying on the path integrator varies dramatically between species: from 90% of the home vector to an absolute distance of only 50 cm. We here ask what the theoretically optimal balance between PI-driven and landmark-driven navigation should be. In combination with well-established results from optimal search theory, we show analytically that this fractional use of the home vector is an optimal homing strategy under a variety of circumstances. Assuming there is a familiar route that an ant recognizes, theoretically optimal search should always begin at some fraction of the home vector, depending on the region of familiarity. These results are shown to be largely independent of the search algorithm used. Ant species from different habitats appear to have optimized their navigation strategy based on the availability and nature of navigational information content in their environment. PMID:23209744
Hierarchical random walks in trace fossils and the origin of optimal search behavior
Sims, David W.; Reynolds, Andrew M.; Humphries, Nicolas E.; Southall, Emily J.; Wearmouth, Victoria J.; Metcalfe, Brett; Twitchett, Richard J.
2014-01-01
Efficient searching is crucial for timely location of food and other resources. Recent studies show that diverse living animals use a theoretically optimal scale-free random search for sparse resources known as a Lévy walk, but little is known of the origins and evolution of foraging behavior and the search strategies of extinct organisms. Here, using simulations of self-avoiding trace fossil trails, we show that randomly introduced strophotaxis (U-turns)—initiated by obstructions such as self-trail avoidance or innate cueing—leads to random looping patterns with clustering across increasing scales that is consistent with the presence of Lévy walks. This predicts that optimal Lévy searches may emerge from simple behaviors observed in fossil trails. We then analyzed fossilized trails of benthic marine organisms by using a novel path analysis technique and find the first evidence, to our knowledge, of Lévy-like search strategies in extinct animals. Our results show that simple search behaviors of extinct animals in heterogeneous environments give rise to hierarchically nested Brownian walk clusters that converge to optimal Lévy patterns. Primary productivity collapse and large-scale food scarcity characterizing mass extinctions evident in the fossil record may have triggered adaptation of optimal Lévy-like searches. The findings suggest that Lévy-like behavior has been used by foragers since at least the Eocene but may have a more ancient origin, which might explain recent widespread observations of such patterns among modern taxa. PMID:25024221
DOE Office of Scientific and Technical Information (OSTI.GOV)
Macevicz, S.C.
1979-05-09
This thesis attempts to explain the evolution of certain features of social insect colony population structure by the use of optimization models. Two areas are examined in detail. First, the optimal reproductive strategies of annual eusocial insects are considered. A model is constructed for the growth of workers and reproductives as a function of the resources allocated to each. Next the allocation schedule is computed which yields the maximum number of reproductives by season's end. The results indicate that if there is constant return to scale for allocated resources the optimal strategy is to invest in colony growth until approximatelymore » one generation before season's end, whereupon worker production ceases and reproductive effort is switched entirely to producing queens and males. Furthermore, the results indicate that if there is decreasing return to scale for allocated resources then simultaneous production of workers and reproductives is possible. The model is used to explain the colony demography of two species of wasp, Polistes fuscatus and Vespa orientalis. Colonies of these insects undergo a sudden switch from the production of workers to the production of reproductives. The second area examined concerns optimal forager size distributions for monomorphic ant colonies. A model is constructed that describes the colony's energetic profit as a function which depends on the size distribution of food resources as well as forager efficiency, metabolic costs, and manufacturing costs.« less
Horváth, Vivien; Marczali, Zsolt; Samu, Ferenc
2015-01-01
Non-consumptive effects (NCEs) of predators are part of the complex interactions among insect natural enemies and prey. NCEs have been shown to significantly affect prey foraging and feeding. Leafhopper's (Auchenorrhyncha) lengthy phloem feeding bouts may play a role in pathogen transmission in vector species and also exposes them to predation risk. However, NCEs on leafhoppers have been scarcely studied, and we lack basic information about how anti-predator behaviour influences foraging and feeding in these species. Here we report a study on non-consumptive and consumptive predator-prey interactions in a naturally co-occurring spider–leafhopper system. In mesocosm arenas we studied movement patterns during foraging and feeding of the leafhopper Psammotettix alienus in the presence of the spider predator Tibellus oblongus. Leafhoppers delayed feeding and fed much less often when the spider was present. Foraging movement pattern changed under predation risk: movements became more frequent and brief. There was considerable individual variation in foraging movement activity. Those individuals that increased movement activity in the presence of predators exposed themselves to higher predation risk. However, surviving individuals exhibited a ‘cool headed’ reaction to spider presence by moving less than leafhoppers in control trials. No leafhoppers were preyed upon while feeding. We consider delayed feeding as a “paradoxical” antipredator tactic, since it is not necessarily an optimal strategy against a sit-and-wait generalist predator. PMID:26295476
Değirmenci, Laura; Thamm, Markus; Scheiner, Ricarda
2018-04-01
Honeybees (Apis mellifera) are well-known for their sophisticated division of labor with each bee performing sequentially a series of social tasks. Colony organization is largely based on age-dependent division of labor. While bees perform several tasks inside the hive such as caring for brood ("nursing"), cleaning or sealing brood cells or producing honey, older bees leave to colony to collect pollen (proteins) and nectar (carbohydrates) as foragers. The most pronounced behavioral transition occurs when nurse bees become foragers. For both social roles, the detection and evaluation of sugars is decisive for optimal task performance. Nurse bees rely on their gustatory senses to prepare brood food, while foragers evaluate a nectar source before starting to collect food from it. To test whether social organization is related to differential sensing of sugars we compared the taste of nurse bees and foragers for different sugars. Searching for molecular correlates for differences in sugar perception, we further quantified expression of gustatory receptor genes in both behavioral groups. Our results demonstrate that nurse bees and foragers perceive and evaluate different sugars differently. Both groups, however, prefer sucrose over fructose. At least part of the taste differences between social roles could be related to a differential expression of taste receptors in the antennae and brain. Our results suggest that differential expression of sugar receptor genes might be involved in regulating division of labor through nutrition-related signaling pathways. Copyright © 2017 Elsevier Ltd. All rights reserved.
Jodice, P.G.R.; Roby, D.D.; Suryan, R.M.; Irons, D.B.; Kaufman, A.M.; Turco, K.R.; Visser, G. Henk
2003-01-01
We sought to determine the effect of variation in time-activity budgets (TABs) and foraging behavior on energy expenditure rates of parent black-legged kittiwakes (Rissa tridactyla). We quantified TABs using direct observations of radio-tagged adults and simultaneously measured field metabolic rates (FMR) of these same individuals (n = 20) using the doubly labeled water technique. Estimated metabolic rates of kittiwakes attending their brood at the nest or loafing near the colony were similar (ca. 1.3 x basal metabolic rate [BMR]), although loafing during foraging trips was more costly (2.9 x BMR). Metabolic rates during commuting flight (7.3 x BMR) and prey-searching flight (6.2 x BMR) were similar, while metabolic rates during plunge diving were much higher (ca. 47 x BMR). The proportion of the measurement interval spent foraging had a positive effect on FMR (R2 = 0.68), while the combined proportion of time engaged in nest attendance and loafing near the colony had a negative effect on FMR (R2 = 0.72). Thus, more than two-thirds of the variation in kittiwake FMR could be explained by the allocation of time among various activities. The high energetic cost of plunge diving relative to straight flight and searching flight suggests that kittiwakes can optimize their foraging strategy under conditions of low food availability by commuting long distances to feed in areas where gross foraging efficiency is high.
Bees without Flowers: Before Peak Bloom, Diverse Native Bees Find Insect-Produced Honeydew Sugars.
Meiners, Joan M; Griswold, Terry L; Harris, David J; Ernest, S K Morgan
2017-08-01
Bee foragers respond to complex visual, olfactory, and extrasensory cues to optimize searches for floral rewards. Their abilities to detect and distinguish floral colors, shapes, volatiles, and ultraviolet signals and even gauge nectar availability from changes in floral humidity or electric fields are well studied. Bee foraging behaviors in the absence of floral cues, however, are rarely considered. We observed 42 species of wild bees visiting inconspicuous, nonflowering shrubs during early spring in a protected Mediterranean habitat. We determined experimentally that these bees were accessing sugary honeydew secretions from scale insects without the aid of standard cues. While honeydew use is known among some social Hymenoptera, its use across a diverse community of solitary bees is a novel observation. The widespread ability of native bees to locate and use unadvertised, nonfloral sugars suggests unappreciated sensory mechanisms and/or the existence of an interspecific foraging network among solitary bees that may influence how native bees cope with scarcity of floral resources and increasing environmental change.
Modelled drift patterns of fish larvae link coastal morphology to seabird colony distribution
Sandvik, Hanno; Barrett, Robert T.; Erikstad, Kjell Einar; Myksvoll, Mari S.; Vikebø, Frode; Yoccoz, Nigel G.; Anker-Nilssen, Tycho; Lorentsen, Svein-Håkon; Reiertsen, Tone K.; Skarðhamar, Jofrid; Skern-Mauritzen, Mette; Systad, Geir Helge
2016-01-01
Colonial breeding is an evolutionary puzzle, as the benefits of breeding in high densities are still not fully explained. Although the dynamics of existing colonies are increasingly understood, few studies have addressed the initial formation of colonies, and empirical tests are rare. Using a high-resolution larval drift model, we here document that the distribution of seabird colonies along the Norwegian coast can be explained by variations in the availability and predictability of fish larvae. The modelled variability in concentration of fish larvae is, in turn, predicted by the topography of the continental shelf and coastline. The advection of fish larvae along the coast translates small-scale topographic characteristics into a macroecological pattern, viz. the spatial distribution of top-predator breeding sites. Our findings provide empirical corroboration of the hypothesis that seabird colonies are founded in locations that minimize travel distances between breeding and foraging locations, thereby enabling optimal foraging by central-place foragers. PMID:27173005
Field design factors affecting the precision of ryegrass forage yield estimation
USDA-ARS?s Scientific Manuscript database
Field-based agronomic and genetic research relies heavily on the data generated from field evaluations. Therefore, it is imperative to optimize the precision and accuracy of yield estimates in cultivar evaluation trials to make reliable selections. Experimental error in yield trials is sensitive to ...
Adaptive root foraging strategies along a boreal-temperate forest gradient.
Ostonen, Ivika; Truu, Marika; Helmisaari, Heljä-Sisko; Lukac, Martin; Borken, Werner; Vanguelova, Elena; Godbold, Douglas L; Lõhmus, Krista; Zang, Ulrich; Tedersoo, Leho; Preem, Jens-Konrad; Rosenvald, Katrin; Aosaar, Jürgen; Armolaitis, Kęstutis; Frey, Jane; Kabral, Naima; Kukumägi, Mai; Leppälammi-Kujansuu, Jaana; Lindroos, Antti-Jussi; Merilä, Päivi; Napa, Ülle; Nöjd, Pekka; Parts, Kaarin; Uri, Veiko; Varik, Mats; Truu, Jaak
2017-08-01
The tree root-mycorhizosphere plays a key role in resource uptake, but also in the adaptation of forests to changing environments. The adaptive foraging mechanisms of ectomycorrhizal (EcM) and fine roots of Picea abies, Pinus sylvestris and Betula pendula were evaluated along a gradient from temperate to subarctic boreal forest (38 sites between latitudes 48°N and 69°N) in Europe. Variables describing tree resource uptake structures and processes (absorptive fine root biomass and morphology, nitrogen (N) concentration in absorptive roots, extramatrical mycelium (EMM) biomass, community structure of root-associated EcM fungi, soil and rhizosphere bacteria) were used to analyse relationships between root system functional traits and climate, soil and stand characteristics. Absorptive fine root biomass per stand basal area increased significantly from temperate to boreal forests, coinciding with longer and thinner root tips with higher tissue density, smaller EMM biomass per root length and a shift in soil microbial community structure. The soil carbon (C) : N ratio was found to explain most of the variability in absorptive fine root and EMM biomass, root tissue density, N concentration and rhizosphere bacterial community structure. We suggest a concept of absorptive fine root foraging strategies involving both qualitative and quantitative changes in the root-mycorrhiza-bacteria continuum along climate and soil C : N gradients. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.
Using Chemical Reaction Kinetics to Predict Optimal Antibiotic Treatment Strategies.
Abel Zur Wiesch, Pia; Clarelli, Fabrizio; Cohen, Ted
2017-01-01
Identifying optimal dosing of antibiotics has proven challenging-some antibiotics are most effective when they are administered periodically at high doses, while others work best when minimizing concentration fluctuations. Mechanistic explanations for why antibiotics differ in their optimal dosing are lacking, limiting our ability to predict optimal therapy and leading to long and costly experiments. We use mathematical models that describe both bacterial growth and intracellular antibiotic-target binding to investigate the effects of fluctuating antibiotic concentrations on individual bacterial cells and bacterial populations. We show that physicochemical parameters, e.g. the rate of drug transmembrane diffusion and the antibiotic-target complex half-life are sufficient to explain which treatment strategy is most effective. If the drug-target complex dissociates rapidly, the antibiotic must be kept constantly at a concentration that prevents bacterial replication. If antibiotics cross bacterial cell envelopes slowly to reach their target, there is a delay in the onset of action that may be reduced by increasing initial antibiotic concentration. Finally, slow drug-target dissociation and slow diffusion out of cells act to prolong antibiotic effects, thereby allowing for less frequent dosing. Our model can be used as a tool in the rational design of treatment for bacterial infections. It is easily adaptable to other biological systems, e.g. HIV, malaria and cancer, where the effects of physiological fluctuations of drug concentration are also poorly understood.
Using Chemical Reaction Kinetics to Predict Optimal Antibiotic Treatment Strategies
Abel zur Wiesch, Pia; Cohen, Ted
2017-01-01
Identifying optimal dosing of antibiotics has proven challenging—some antibiotics are most effective when they are administered periodically at high doses, while others work best when minimizing concentration fluctuations. Mechanistic explanations for why antibiotics differ in their optimal dosing are lacking, limiting our ability to predict optimal therapy and leading to long and costly experiments. We use mathematical models that describe both bacterial growth and intracellular antibiotic-target binding to investigate the effects of fluctuating antibiotic concentrations on individual bacterial cells and bacterial populations. We show that physicochemical parameters, e.g. the rate of drug transmembrane diffusion and the antibiotic-target complex half-life are sufficient to explain which treatment strategy is most effective. If the drug-target complex dissociates rapidly, the antibiotic must be kept constantly at a concentration that prevents bacterial replication. If antibiotics cross bacterial cell envelopes slowly to reach their target, there is a delay in the onset of action that may be reduced by increasing initial antibiotic concentration. Finally, slow drug-target dissociation and slow diffusion out of cells act to prolong antibiotic effects, thereby allowing for less frequent dosing. Our model can be used as a tool in the rational design of treatment for bacterial infections. It is easily adaptable to other biological systems, e.g. HIV, malaria and cancer, where the effects of physiological fluctuations of drug concentration are also poorly understood. PMID:28060813
Proctor, Darby; Essler, Jennifer; Pinto, Ana I.; Wismer, Sharon; Stoinski, Tara; Brosnan, Sarah F.; Bshary, Redouan
2012-01-01
The insight that animals' cognitive abilities are linked to their evolutionary history, and hence their ecology, provides the framework for the comparative approach. Despite primates renowned dietary complexity and social cognition, including cooperative abilities, we here demonstrate that cleaner wrasse outperform three primate species, capuchin monkeys, chimpanzees and orang-utans, in a foraging task involving a choice between two actions, both of which yield identical immediate rewards, but only one of which yields an additional delayed reward. The foraging task decisions involve partner choice in cleaners: they must service visiting client reef fish before resident clients to access both; otherwise the former switch to a different cleaner. Wild caught adult, but not juvenile, cleaners learned to solve the task quickly and relearned the task when it was reversed. The majority of primates failed to perform above chance after 100 trials, which is in sharp contrast to previous studies showing that primates easily learn to choose an action that yields immediate double rewards compared to an alternative action. In conclusion, the adult cleaners' ability to choose a superior action with initially neutral consequences is likely due to repeated exposure in nature, which leads to specific learned optimal foraging decision rules. PMID:23185293
Testing competing measures of profitability for mobile resources.
Barrette, Maryse; Wu, Gi-Mick; Brodeur, Jacques; Giraldeau, Luc-Alain; Boivin, Guy
2009-01-01
Optimal diet theory often fails to predict a forager's diet choice when prey are mobile. Because they escape or defend themselves, mobile prey are likely to increase the forager's handling time, thereby decreasing its fitness gain rate. Many animals have been shown to select their prey so as to maximize either their fitness gain or their fitness gain rate. However, no study has yet compared directly these two measures of profitability by generating testable predictions about the choice of the forager. Under laboratory conditions, we compared these two measures of profitability, using the aphid parasitoid Aphidius colemani and its host, Myzus persicae. Fitness gain was calculated for parasitoids developing in each host instar by measuring life-history traits such as developmental time, sex ratio and fecundity. Fitness gain rate was estimated by dividing fitness gain by handling time, the time required to subdue the host. Fourth instar aphids provided the best fitness gain to parasitoids, whereas second instar aphids were the most profitable in terms of fitness gain rate. Host choice tests showed that A. colemani females preferred second instar hosts, suggesting that their decision maximizes fitness gain rate over fitness gain. Our results indicate that fitness gain rate is a reliable predictor of animal's choice for foragers exploiting resources that impose additional time cost due to their mobility.
COMMUNICATION: Stochastic resonance and the evolution of Daphnia foraging strategy
NASA Astrophysics Data System (ADS)
Dees, Nathan D.; Bahar, Sonya; Moss, Frank
2008-12-01
Search strategies are currently of great interest, with reports on foraging ranging from albatrosses and spider monkeys to microzooplankton. Here, we investigate the role of noise in optimizing search strategies. We focus on the zooplankton Daphnia, which move in successive sequences consisting of a hop, a pause and a turn through an angle. Recent experiments have shown that their turning angle distributions (TADs) and underlying noise intensities are similar across species and age groups, suggesting an evolutionary origin of this internal noise. We explore this hypothesis further with a digital simulation (EVO) based solely on the three central Darwinian themes: inheritability, variability and survivability. Separate simulations utilizing stochastic resonance (SR) indicate that foraging success, and hence fitness, is maximized at an optimum TAD noise intensity, which is represented by the distribution's characteristic width, σ. In both the EVO and SR simulations, foraging success is the criterion, and the results are the predicted characteristic widths of the TADs that maximize success. Our results are twofold: (1) the evolving characteristic widths achieve stasis after many generations; (2) as a hop length parameter is changed, variations in the evolved widths generated by EVO parallel those predicted by SR. These findings provide support for the hypotheses that (1) σ is an evolved quantity and that (2) SR plays a role in evolution.
USDA-ARS?s Scientific Manuscript database
Nitrogen fertilization of forage grasses is critical for optimizing biomass and utilization of manure soil nutrients. Field studies were conducted in 2007-09 to determine the effects of spring N fertilization on amelioration of high soil P when cool-season, annual ryegrass (Lolium multiflorum L.) is...
Bees without flowers: before peak bloom, diverse native bees find insect-produced honeydew sugars
USDA-ARS?s Scientific Manuscript database
Bee foragers respond to complex visual, olfactory, and extrasensory cues to optimize searches for floral rewards. Their abilities to detect and distinguish floral colors, shapes, volatiles, and ultraviolet signals, and even gauge nectar availability from changes in floral humidity or electric fields...
Namboodiri, Vijay Mohan K; Levy, Joshua M; Mihalas, Stefan; Sims, David W; Hussain Shuler, Marshall G
2016-08-02
Understanding the exploration patterns of foragers in the wild provides fundamental insight into animal behavior. Recent experimental evidence has demonstrated that path lengths (distances between consecutive turns) taken by foragers are well fitted by a power law distribution. Numerous theoretical contributions have posited that "Lévy random walks"-which can produce power law path length distributions-are optimal for memoryless agents searching a sparse reward landscape. It is unclear, however, whether such a strategy is efficient for cognitively complex agents, from wild animals to humans. Here, we developed a model to explain the emergence of apparent power law path length distributions in animals that can learn about their environments. In our model, the agent's goal during search is to build an internal model of the distribution of rewards in space that takes into account the cost of time to reach distant locations (i.e., temporally discounting rewards). For an agent with such a goal, we find that an optimal model of exploration in fact produces hyperbolic path lengths, which are well approximated by power laws. We then provide support for our model by showing that humans in a laboratory spatial exploration task search space systematically and modify their search patterns under a cost of time. In addition, we find that path length distributions in a large dataset obtained from free-ranging marine vertebrates are well described by our hyperbolic model. Thus, we provide a general theoretical framework for understanding spatial exploration patterns of cognitively complex foragers.
Environmental context explains Lévy and Brownian movement patterns of marine predators.
Humphries, Nicolas E; Queiroz, Nuno; Dyer, Jennifer R M; Pade, Nicolas G; Musyl, Michael K; Schaefer, Kurt M; Fuller, Daniel W; Brunnschweiler, Juerg M; Doyle, Thomas K; Houghton, Jonathan D R; Hays, Graeme C; Jones, Catherine S; Noble, Leslie R; Wearmouth, Victoria J; Southall, Emily J; Sims, David W
2010-06-24
An optimal search theory, the so-called Lévy-flight foraging hypothesis, predicts that predators should adopt search strategies known as Lévy flights where prey is sparse and distributed unpredictably, but that Brownian movement is sufficiently efficient for locating abundant prey. Empirical studies have generated controversy because the accuracy of statistical methods that have been used to identify Lévy behaviour has recently been questioned. Consequently, whether foragers exhibit Lévy flights in the wild remains unclear. Crucially, moreover, it has not been tested whether observed movement patterns across natural landscapes having different expected resource distributions conform to the theory's central predictions. Here we use maximum-likelihood methods to test for Lévy patterns in relation to environmental gradients in the largest animal movement data set assembled for this purpose. Strong support was found for Lévy search patterns across 14 species of open-ocean predatory fish (sharks, tuna, billfish and ocean sunfish), with some individuals switching between Lévy and Brownian movement as they traversed different habitat types. We tested the spatial occurrence of these two principal patterns and found Lévy behaviour to be associated with less productive waters (sparser prey) and Brownian movements to be associated with productive shelf or convergence-front habitats (abundant prey). These results are consistent with the Lévy-flight foraging hypothesis, supporting the contention that organism search strategies naturally evolved in such a way that they exploit optimal Lévy patterns.
Amoeboid organism solves complex nutritional challenges
Dussutour, Audrey; Latty, Tanya; Beekman, Madeleine; Simpson, Stephen J.
2010-01-01
A fundamental question in nutritional biology is how distributed systems maintain an optimal supply of multiple nutrients essential for life and reproduction. In the case of animals, the nutritional requirements of the cells within the body are coordinated by the brain in neural and chemical dialogue with sensory systems and peripheral organs. At the level of an insect society, the requirements for the entire colony are met by the foraging efforts of a minority of workers responding to cues emanating from the brood. Both examples involve components specialized to deal with nutrient supply and demand (brains and peripheral organs, foragers and brood). However, some of the most species-rich, largest, and ecologically significant heterotrophic organisms on earth, such as the vast mycelial networks of fungi, comprise distributed networks without specialized centers: How do these organisms coordinate the search for multiple nutrients? We address this question in the acellular slime mold Physarum polycephalum and show that this extraordinary organism can make complex nutritional decisions, despite lacking a coordination center and comprising only a single vast multinucleate cell. We show that a single slime mold is able to grow to contact patches of different nutrient quality in the precise proportions necessary to compose an optimal diet. That such organisms have the capacity to maintain the balance of carbon- and nitrogen-based nutrients by selective foraging has considerable implications not only for our understanding of nutrient balancing in distributed systems but for the functional ecology of soils, nutrient cycling, and carbon sequestration. PMID:20142479
Zhang, Jun; Shi, Haitao; Wang, Yajing; Cao, Zhijun; Yang, Hongjian; Li, Shengli
2018-01-01
Limit-feeding of a high concentrate diet has been proposed as an effective method for improving feed efficiency and reducing total manure output of dairy heifers; meanwhile the effects of this method on hindgut microbiota are still unclear. This study investigated the effects of a wide range of dietary forage:concentrate ratios (F:C) on the fecal composition of bacteria and archaea in heifers using next-generation sequencing. Four diets with different F:C (80:20, 60:40, 40:60, and 20:80) were limit-fed to 24 Holstein heifers, and the fecal fermentation parameters and bacterial and archaeal communities were investigated. With increasing dietary concentrate levels, the fecal dry matter output, neutral detergent fiber (NDF) content, and proportion of acetate decreased linearly (P < 0.01), while the fecal starch content and proportions of propionate, butyrate, and total branched-chain volatile fatty acids (TBCVFAs) were increased (P ≤ 0.05). An increased concentrate level linearly increased (P = 0.02) the relative abundance of Proteobacteria, and linearly decreased (P = 0.02) the relative abundance of Bacteroidetes in feces. At the genus level, the relative abundance of unclassified Ruminococcaceae and Paludibacter which may have the potential to degrade forage decreased linearly (q ≤ 0.02) with increasing dietary concentrate levels, while the relative abundance of Roseburia and Succinivibrio which may be non-fibrous carbohydrate degrading bacteria increased linearly (q ≤ 0.05). Some core microbiota operational taxonomic units (OTUs) also showed significant association with fecal VFAs, NDF, and/or acid detergent fiber (ADF) content. Meanwhile, the relative abundance of most detected taxa in archaea were similar across different F:C, and only Methanosphaera showed a linear decrease (P = 0.01) in high concentrate diets. Our study provides a better understanding of fecal fermentation parameters and microbiota under a wide range of dietary F:C. These findings support the potential for microbial manipulation by diet, which could enhance feed digestibility and relieve environmental problems associated with heifer rearing. PMID:29867879
Cantalapiedra-Hijar, G; Yáñez-Ruiz, D R; Martín-García, A I; Molina-Alcaide, E
2009-02-01
The effects of forage type and forage:concentrate ratio (F:C) on apparent nutrient digestibility, ruminal fermentation, and microbial growth were investigated in goats. A comparison between liquid (LAB) and solid (SAB)-associated bacteria to estimate microbial N flow (MNF) from urinary purine derivative excretion was also examined. Treatments were a 2 x 2 factorial arrangement of forage type (grass hay vs. alfalfa hay) and high vs. low F:C (70:30 and 30:70, respectively). Four ruminally cannulated goats were fed, at maintenance intake, 4 experimental diets according to a 4 x 4 Latin square design. High-concentrate diets resulted in greater (P < 0.001) nutrient digestibility except for ADF. However, CP digestibility increased (P < 0.001) only for the high-concentrate diets including grass hay. Likewise, N retention, ruminal NH(3)-N concentration, and urinary excretion of purine derivatives increased (P < 0.05) with increasing concentrate in animals fed diets based on grass hay (0.23 vs. 0.13 g of retained N/g of digested N, 30.1 vs. 12.9 mg of NH(3)-N/100 mL, and 11.5 vs. 8.40 mmol/d, respectively), but not (P > 0.05) when diets included alfalfa hay. Total protozoa numbers and holotricha proportion were greater and less (P < 0.001), respectively, in high- than in low-concentrate diets. The F:C affected (P < 0.001) ruminal pH but not total VFA concentration (P = 0.12). Ammonia-N concentration was similar (P = 0.13) over time, whereas pH, VFA concentration, and protozoa numbers differed (P < 0.001) among diets. Estimated MNF was strongly influenced by using either the purine bases:N ratio obtained in our experimental conditions or values reported in the literature for small ruminants. There was a F:C effect (P = 0.006) on MNF estimated from LAB but not from SAB. The effect of F:C shifting from 70:30 to 30:70 in goat diets depends on the type of forage used. The MNF measured in goats fed different diets was influenced by the bacterial pellet (LAB or SAB). In addition, the purine bases:N ratio values found were different from those reported in the literature, which underlines the need for these variables to be analyzed directly in pellets isolated from specific animals and experimental conditions.
FORAGES AND PASTURES SYMPOSIUM: Optimizing the use of fibrous residues in beef and dairy diets.
Watson, A K; MacDonald, J C; Erickson, G E; Kononoff, P J; Klopfenstein, T J
2015-06-01
Increased corn prices over the past decade have altered land use away from traditional forage in favor of corn. Accordingly, beef and dairy producers have had to adopt nontraditional forage resources into their production systems, many of which have become available as a result of increased corn production. Corn residues have become more available due to increases in corn hectares and yield. The individual plant components (i.e., husk, leaf, and stem) vary in fiber digestibility (NDF digestibility estimates = 40.5, 31.4, and 0.6% ± 0.8 for husk, leaf, and stalk, respectively). Stocking cattle to consume 3.6 kg forage/25.5 kg of grain allows cattle to graze selectively; selection of husks and leaves improves cattle performance. Byproducts of the wet and dry milling industries can be supplemented to calves grazing corn residues to provide protein and energy. Optimal gains were observed when these byproducts were supplemented at approximately 2.5 kg/d to 250-kg growing calves. Gestating beef cows do not require supplemental inputs when grazing corn residue, if stocked appropriately. Alkaline treatment of crop residues improves their feeding value. Concentrations of up to 20% harvested corn residue treated with calcium oxide can be included in finishing diets with an average of 1.3% reduction in G:F when diets contain 40% wet or modified distillers grains. Conversely, when untreated corn residues are included in similar finishing diets, G:F is reduced by 13.4%. Calcium oxide-treated residues included in beef growing diets increases DMI and ADG without significant improvements in G:F. Calcium oxide treatment of corn residues has been evaluated in dairy diets by replacing corn or corn silage with variable results. Efficient use of nontraditional fiber sources, such as corn milling byproducts and corn residue, are critical to the future viability of ruminant animal production.
Gut microbiomes of mobile predators vary with landscape context and species identity.
Tiede, Julia; Scherber, Christoph; Mutschler, James; McMahon, Katherine D; Gratton, Claudio
2017-10-01
Landscape context affects predator-prey interactions and predator diet composition, yet little is known about landscape effects on insect gut microbiomes, a determinant of physiology and condition. Here, we combine laboratory and field experiments to examine the effects of landscape context on the gut bacterial community and body condition of predatory insects. Under laboratory conditions, we found that prey diversity increased bacterial richness in insect guts. In the field, we studied the performance and gut microbiota of six predatory insect species along a landscape complexity gradient in two local habitat types (soybean fields vs. prairie). Insects from soy fields had richer gut bacteria and lower fat content than those from prairies, suggesting better feeding conditions in prairies. Species origin mediated landscape context effects, suggesting differences in foraging of exotic and native predators on a landscape scale. Overall, our study highlights complex interactions among gut microbiota, predator identity, and landscape context.
A Model of Extracellular Enzymes in Free-Living Microbes: Which Strategy Pays Off?
Thygesen, Uffe H.; Riemann, Lasse; Stedmon, Colin A.
2015-01-01
An initial modeling approach was applied to analyze how a single, nonmotile, free-living, heterotrophic bacterial cell may optimize the deployment of its extracellular enzymes. Free-living cells live in a dilute and complex substrate field, and to gain enough substrate, their extracellular enzymes must be utilized efficiently. The model revealed that surface-attached and free enzymes generate unique enzyme and substrate fields, and each deployment strategy has distinctive advantages. For a solitary cell, surface-attached enzymes are suggested to be the most cost-efficient strategy. This strategy entails potential substrates being reduced to very low concentrations. Free enzymes, on the other hand, generate a radically different substrate field, which suggests significant benefits for the strategy if free cells engage in social foraging or experience high substrate concentrations. Swimming has a slight positive effect for the attached-enzyme strategy, while the effect is negative for the free-enzyme strategy. The results of this study suggest that specific dissolved organic compounds in the ocean likely persist below a threshold concentration impervious to biological utilization. This could help explain the persistence and apparent refractory state of oceanic dissolved organic matter (DOM). Microbial extracellular enzyme strategies, therefore, have important implications for larger-scale processes, such as shaping the role of DOM in ocean carbon sequestration. PMID:26253668
Lihoreau, Mathieu; Chittka, Lars; Raine, Nigel E
2010-12-01
Animals collecting resources that replenish over time often visit patches in predictable sequences called traplines. Despite the widespread nature of this strategy, we still know little about how spatial memory develops and guides individuals toward suitable routes. Here, we investigate whether flower visitation sequences by bumblebees Bombus terrestris simply reflect the order in which flowers were discovered or whether they result from more complex navigational strategies enabling bees to optimize their foraging routes. We analyzed bee flight movements in an array of four artificial flowers maximizing interfloral distances. Starting from a single patch, we sequentially added three new patches so that if bees visited them in the order in which they originally encountered flowers, they would follow a long (suboptimal) route. Bees' tendency to visit patches in their discovery order decreased with experience. Instead, they optimized their flight distances by rearranging flower visitation sequences. This resulted in the development of a primary route (trapline) and two or three less frequently used secondary routes. Bees consistently used these routes after overnight breaks while occasionally exploring novel possibilities. We discuss how maintaining some level of route flexibility could allow traplining animals to cope with dynamic routing problems, analogous to the well-known traveling salesman problem.
Hybrid foraging search: Searching for multiple instances of multiple types of target
Wolfe, Jeremy M.; Aizenman, Avigael M.; Boettcher, Sage E.P.; Cain, Matthew S.
2016-01-01
This paper introduces the “hybrid foraging” paradigm. In typical visual search tasks, observers search for one instance of one target among distractors. In hybrid search, observers search through visual displays for one instance of any of several types of target held in memory. In foraging search, observers collect multiple instances of a single target type from visual displays. Combining these paradigms, in hybrid foraging tasks observers search visual displays for multiple instances of any of several types of target (as might be the case in searching the kitchen for dinner ingredients or an X-ray for different pathologies). In the present experiment, observers held 8–64 targets objects in memory. They viewed displays of 60–105 randomly moving photographs of objects and used the computer mouse to collect multiple targets before choosing to move to the next display. Rather than selecting at random among available targets, observers tended to collect items in runs of one target type. Reaction time (RT) data indicate searching again for the same item is more efficient than searching for any other targets, held in memory. Observers were trying to maximize collection rate. As a result, and consistent with optimal foraging theory, they tended to leave 25–33% of targets uncollected when moving to the next screen/patch. The pattern of RTs shows that while observers were collecting a target item, they had already begun searching memory and the visual display for additional targets, making the hybrid foraging task a useful way to investigate the interaction of visual and memory search. PMID:26731644
Time optimized path-choice in the termite hunting ant Megaponera analis.
Frank, Erik T; Hönle, Philipp O; Linsenmair, K Eduard
2018-05-10
Trail network systems among ants have received a lot of scientific attention due to their various applications in problem solving of networks. Recent studies have shown that ants select the fastest available path when facing different velocities on different substrates, rather than the shortest distance. The progress of decision-making by these ants is determined by pheromone-based maintenance of paths, which is a collective decision. However, path optimization through individual decision-making remains mostly unexplored. Here we present the first study of time-optimized path selection via individual decision-making by scout ants. Megaponera analis scouts search for termite foraging sites and lead highly organized raid columns to them. The path of the scout determines the path of the column. Through installation of artificial roads around M. analis nests we were able to influence the pathway choice of the raids. After road installation 59% of all recorded raids took place completely or partly on the road, instead of the direct, i.e. distance-optimized, path through grass from the nest to the termites. The raid velocity on the road was more than double the grass velocity, the detour thus saved 34.77±23.01% of the travel time compared to a hypothetical direct path. The pathway choice of the ants was similar to a mathematical model of least time allowing us to hypothesize the underlying mechanisms regulating the behavior. Our results highlight the importance of individual decision-making in the foraging behavior of ants and show a new procedure of pathway optimization. © 2018. Published by The Company of Biologists Ltd.
Heuristic and optimal policy computations in the human brain during sequential decision-making.
Korn, Christoph W; Bach, Dominik R
2018-01-23
Optimal decisions across extended time horizons require value calculations over multiple probabilistic future states. Humans may circumvent such complex computations by resorting to easy-to-compute heuristics that approximate optimal solutions. To probe the potential interplay between heuristic and optimal computations, we develop a novel sequential decision-making task, framed as virtual foraging in which participants have to avoid virtual starvation. Rewards depend only on final outcomes over five-trial blocks, necessitating planning over five sequential decisions and probabilistic outcomes. Here, we report model comparisons demonstrating that participants primarily rely on the best available heuristic but also use the normatively optimal policy. FMRI signals in medial prefrontal cortex (MPFC) relate to heuristic and optimal policies and associated choice uncertainties. Crucially, reaction times and dorsal MPFC activity scale with discrepancies between heuristic and optimal policies. Thus, sequential decision-making in humans may emerge from integration between heuristic and optimal policies, implemented by controllers in MPFC.
Kumar, Manish; Gupta, Asmita; Thakur, Indu Shekhar
2016-08-01
The present work involved screening of a previously reported carbon concentrating oleaginous bacterial strain Serratia sp. ISTD04 for production of PHA and optimization of process parameters for enhanced PHA and biomass generation. The selected bacterial strain was screened for PHA production based on Nile red staining followed by visualization under fluorescence microscope. Spectrofluorometric measurement of Nile red fluorescence of the bacterial culture was also done. Confirmatory analysis of PHA accumulation by GC-MS revealed the presence of 3-hydroxyvalerate. Detection of characteristic peaks in the FT-IR spectrum further confirmed the production of PHA by the bacterium. Response Surface Methodology was used for optimization of pH and carbon sources' concentrations for higher PHA production. There was almost a 2 fold increase in the production of PHA following optimization as compared to un-optimized condition. The study thus establishes the production of PHA by Serratia sp. ISTD04. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Bartumeus, Frederic
2015-09-01
Interdisciplinary research on Lévy walks at the intersection between physics and biology is here to stay, albeit the scope of its role and utility in different areas of biology, including animal foraging, are still to be defined. After a decade, the field is still sorting out relevant questions from misleading interpretations, separating the wheat from the chaff. This task should be easy but it is not. Some reasons are the interdisciplinarity of the subject (maths, physics, biology), which multiplies semantic problems and the questions of interest, and the tight combination of theory and data that is needed to advance in the field.
Stress Impairs Optimal Behavior in a Water Foraging Choice Task in Rats
ERIC Educational Resources Information Center
Graham, Lauren K.; Yoon, Taejib; Kim, Jeansok J.
2010-01-01
Stress is a biologically significant social-environmental factor that plays a pervasive role in influencing human and animal behaviors. While stress effects on various types of memory are well characterized, its effects on other cognitive functions are relatively unknown. Here, we investigated the effects of acute, uncontrollable stress on…
USDA-ARS?s Scientific Manuscript database
The model grass Brachypodium distachyon (Brachypodium) is an excellent system for studying the basic biology underlying traits relevant to the use of grasses as food, forage and energy crops. To add to the growing collection of Brachypodium resources available to plant scientists, we further optim...
Risk Reduction and Resource Pooling on a Cooperation Task
ERIC Educational Resources Information Center
Pietras, Cynthia J.; Cherek, Don R.; Lane, Scott D.; Tcheremissine, Oleg
2006-01-01
Two experiments investigated choice in adult humans on a simulated cooperation task to evaluate a risk-reduction account of sharing based on the energy-budget rule. The energy-budget rule is an optimal foraging model that predicts risk-averse choices when net energy gains exceed energy requirements (positive energy budget) and risk-prone choices…
NASA Astrophysics Data System (ADS)
Murakami, Hisashi; Gunji, Yukio-Pegio
2017-07-01
Although foraging patterns have long been predicted to optimally adapt to environmental conditions, empirical evidence has been found in recent years. This evidence suggests that the search strategy of animals is open to change so that animals can flexibly respond to their environment. In this study, we began with a simple computational model that possesses the principal features of an intermittent strategy, i.e., careful local searches separated by longer steps, as a mechanism for relocation, where an agent in the model follows a rule to switch between two phases, but it could misunderstand this rule, i.e., the agent follows an ambiguous switching rule. Thanks to this ambiguity, the agent's foraging strategy can continuously change. First, we demonstrate that our model can exhibit an optimal change of strategy from Brownian-type to Lévy-type depending on the prey density, and we investigate the distribution of time intervals for switching between the phases. Moreover, we show that the model can display higher search efficiency than a correlated random walk.
Patra, A K; Yu, Z
2015-07-01
To investigate the effect of garlic oil (G), nitrate (N), saponin (S) and their combinations supplemented to different forage to concentrate substrates on methanogenesis, fermentation, diversity and abundances of bacteria and Archaea in vitro. The study was conducted in an 8 × 2 factorial design with eight treatments and two substrates using mixed ruminal batch cultures obtained. Quillaja S (0·6 g l(-1) ), N (5 mmol l(-1) ) and G (0·27 g l(-1) ) were used separately or in binary and tertiary combinations. The two substrates contained grass hay and a dairy concentrate mixture at a 70 : 30 (high-forage substrate) ratio or a 30 : 70 (high-concentrate substrate) ratio. Ruminal fermentation and cellulolytic bacterial populations were affected by interaction between substrate and anti-methanogenic compounds. The inhibitor combinations decreased the methane production additively regardless of substrate. For the high-concentrate substrate, S decreased methane production to a greater extent, so did G and N individually for the high-forage substrate. Feed degradability and total volatile fatty acid (VFA) concentrations were not decreased by any of the treatments. Fibre degradability was actually improved by N+S for the high-forage substrate. VFA concentrations and profiles were affected differently by different anti-methanogenic inhibitors and their combinations. All treatments inhibited the growth of Archaea, but the effect on Fibrobacter succinogenes, Ruminococcus albus and Ruminococcus flavefaciens varied. The results suggest that substrate influences the efficacy of these inhibitors when they are used separately, but in combinations, they can lower methanogenesis additively without much influence from the substrate. The presented research provided evidence that binary and tertiary combination of garlic oil, nitrate and saponin can lower the methane production additively without adversely impacting rumen fermentation and degradability, and forage to concentrate ratio does not change the above effects. These anti-methanogenic inhibitors in combination may have practical application to mitigate methane emission from ruminants. © 2015 The Society for Applied Microbiology.
The predatory mite Phytoseiulus persimilis adjusts patch-leaving to own and progeny prey needs.
Vanas, V; Enigl, M; Walzer, A; Schausberger, P
2006-01-01
Integration of optimal foraging and optimal oviposition theories suggests that predator females should adjust patch leaving to own and progeny prey needs to maximize current and future reproductive success. We tested this hypothesis in the predatory mite Phytoseiulus persimilis and its patchily distributed prey, the two-spotted spider mite Tetranychus urticae. In three separate experiments we assessed (1) the minimum number of prey needed to complete juvenile development, (2) the minimum number of prey needed to produce an egg, and (3) the ratio between eggs laid and spider mites left when a gravid P. persimilis female leaves a patch. Experiments (1) and (2) were the pre-requirements to assess the fitness costs associated with staying or leaving a prey patch. Immature P. persimilis needed at least 7 and on average 14+/-3.6 (SD) T. urticae eggs to reach adulthood. Gravid females needed at least 5 and on average 8.5+/-3.1 (SD) T. urticae eggs to produce an egg. Most females left the initial patch before spider mite extinction, leaving prey for progeny to develop to adulthood. Females placed in a low density patch left 5.6+/-6.1 (SD) eggs per egg laid, whereas those placed in a high density patch left 15.8+/-13.7 (SD) eggs per egg laid. The three experiments in concert suggest that gravid P. persimilis females are able to balance the trade off between optimal foraging and optimal oviposition and adjust patch-leaving to own and progeny prey needs.
Woo, Kerry J; Elliott, Kyle Hamish; Davidson, Melissa; Gaston, Anthony J; Davoren, Gail K
2008-11-01
1. We studied chick diet in a known-age, sexed population of a long-lived seabird, the Brünnich's guillemot (Uria lomvia), over 15 years (N = 136; 1993-2007) and attached time-depth-temperature recorders to examine foraging behaviour in multiple years (N = 36; 2004-07). 2. Adults showed specialization in prey fed to offspring, described by multiple indices calculated over 15 years: 27% of diet diversity was attributable to among-individual variation (within-individual component of total niche width = 0.73); average similarity of an individual's diet to the overall diet was 65% (mean proportional similarity between individuals and population = 0.65); diet was significantly more specialized than expected for 70% of individuals (mean likelihood = 0.53). These indices suggest higher specialization than the average for an across-taxa comparison of 49 taxa. 3. Foraging behaviour varied along three axes: flight time, dive depth and dive shape. Individuals showed specialized individual foraging behaviour along each axis. These foraging strategies were reflected in the prey type delivered to their offspring and were maintained over scales of hours to years. 4. Specialization in foraging behaviour and diet was greater over short time spans (hours, days) than over long time spans (years). Regardless of sex or age, the main component of variation in foraging behaviour and chick diet was between individuals. 5. Plasma stable isotope values were similar across years, within a given individual, and variance was low relative to that expected from prey isotope values, suggesting adult diet specialized across years. Stable isotope values were similar among individuals that fed their nestlings similar prey items and there was no difference in trophic level between adults and chicks. We suggest that guillemots specialize on a single foraging strategy regardless of whether chick-provisioning and self-feeding. With little individual difference in body mass and physiology, specialization likely represents learning and memorizing optimal feeding locations and behaviours. 6. There was no difference in survival or reproductive success between specialists and generalists, suggesting these are largely equivalent strategies in terms of evolutionary fitness, presumably because different strategies were advantageous at different levels of prey abundance or predictability. The development of individual specialization may be an important precursor to diversification among seabirds.
Depletion of deep marine food patches forces divers to give up early.
Thums, Michele; Bradshaw, Corey J A; Sumner, Michael D; Horsburgh, Judy M; Hindell, Mark A
2013-01-01
Many optimal foraging models for diving animals examine strategies that maximize time spent in the foraging zone, assuming that prey acquisition increases linearly with search time. Other models have considered the effect of patch quality and predict a net energetic benefit if dives where no prey is encountered early in the dive are abandoned. For deep divers, however, the energetic benefit of giving up is reduced owing to the elevated energy costs associated with descending to physiologically hostile depths, so patch residence time should be invariant. Others consider an asymptotic gain function where the decision to leave a patch is driven by patch-depletion effects - the marginal value theorem. As predator behaviour is increasingly being used as an index of marine resource density and distribution, it is important to understand the nature of this gain function. We investigated the dive behaviour of the world's deepest-diving seal, the southern elephant seal Mirounga leonina, in response to patch quality. Testing these models has largely been limited to controlled experiments on captive animals. By integrating in situ measurements of the seal's relative lipid content obtained from drift rate data (a measure of foraging success) with area-restricted search behaviour identified from first-passage time analysis, we identified regions of high- and low-quality patches. Dive durations and bottom times were not invariant and did not increase in regions of high quality; rather, both were longer when patches were of relatively low quality. This is consistent with the predictions of the marginal value theorem and provides support for a nonlinear relationship between search time and prey acquisition. We also found higher descent and ascent rates in high-quality patches suggesting that seals minimized travel time to the foraging patch when quality was high; however, this was not achieved by increasing speed or dive angle. Relative body lipid content was an important predictor of dive behaviour. Seals did not schedule their diving to maximize time spent in the foraging zone in higher-quality patches, challenging the widely held view that maximizing time in the foraging zone translates to greater foraging success. © 2012 The Authors. Journal of Animal Ecology © 2012 British Ecological Society.
Behavior of bumble bee pollinators of Aralia hispida Vent. (Araliaceae).
Thomson, James D; Maddison, Wayne P; Plowright, R C
1982-09-01
The andromonoecious plant Aralia hispida has a complicated blooming schedule involving alternations between male and female phases.Nectar and pollen are released gradually through the day. Plants vary considerably in number of flowers per umbel and number of umbels per plant. The major pollinators, bumble bees, show several characteristic behaviors in response to the plant's presentation. 1. Foraging bees preferentially visit umbels that bear large numbers of open, male-phase flowers. They also prefer shoots with large numbers of umbels. 2. If bees have received high nectar rewards at one umbel, they are more likely to visit a neighboring umbel rather than leaving the area. On drained umbels, bees probe more empty flowers before rejecting the umbel if they have been rewarded just previously. 3. Individual bees restrict their foraging to limited areas. Within these areas, they concentrate their visits on certain shoots which they tend to visit in repeatable sequences, or "traplines". It is inappropriate to consider these bees as "searching". 4. We discuss some of the implications of these data for two areas of current theoretical interest: plant reproductive strategies and optimal foraging.
Artificial Bee Colony Optimization for Short-Term Hydrothermal Scheduling
NASA Astrophysics Data System (ADS)
Basu, M.
2014-12-01
Artificial bee colony optimization is applied to determine the optimal hourly schedule of power generation in a hydrothermal system. Artificial bee colony optimization is a swarm-based algorithm inspired by the food foraging behavior of honey bees. The algorithm is tested on a multi-reservoir cascaded hydroelectric system having prohibited operating zones and thermal units with valve point loading. The ramp-rate limits of thermal generators are taken into consideration. The transmission losses are also accounted for through the use of loss coefficients. The algorithm is tested on two hydrothermal multi-reservoir cascaded hydroelectric test systems. The results of the proposed approach are compared with those of differential evolution, evolutionary programming and particle swarm optimization. From numerical results, it is found that the proposed artificial bee colony optimization based approach is able to provide better solution.
Predator bioenergetics and the prey size spectrum: do foraging costs determine fish production?
Giacomini, Henrique C; Shuter, Brian J; Lester, Nigel P
2013-09-07
Most models of fish growth and predation dynamics assume that food ingestion rate is the major component of the energy budget affected by prey availability, while active metabolism is invariant (here called constant activity hypothesis). However, increasing empirical evidence supports an opposing view: fish tend to adjust their foraging activity to maintain reasonably constant ingestion levels in the face of varying prey density and/or quality (the constant satiation hypothesis). In this paper, we use a simple but flexible model of fish bioenergetics to show that constant satiation is likely to occur in fish that optimize both net production rate and life history. The model includes swimming speed as an explicit measure of foraging activity leading to both energy gains (through prey ingestion) and losses (through active metabolism). The fish is assumed to be a particulate feeder that has to swim between consecutive individual prey captures, and that shifts its diet ontogenetically from smaller to larger prey. The prey community is represented by a negative power-law size spectrum. From these rules, we derive the net production of fish as a function of the size spectrum, and this in turn establishes a formal link between the optimal life history (i.e. maximum body size) and prey community structure. In most cases with realistic parameter values, optimization of life history ensures that: (i) a constantly satiated fish preying on a steep size spectrum will stop growing and invest all its surplus energy in reproduction before satiation becomes too costly; (ii) conversely, a fish preying on a shallow size spectrum will grow large enough for satiation to be present throughout most of its ontogeny. These results provide a mechanistic basis for previous empirical findings, and call for the inclusion of active metabolism as a major factor limiting growth potential and the numerical response of predators in theoretical studies of food webs. Copyright © 2013 Elsevier Ltd. All rights reserved.
High manoeuvring costs force narrow-winged molossid bats to forage in open space.
Voigt, Christian C; Holderied, Marc W
2012-04-01
Molossid bats are specialised aerial-hawkers that, like their diurnal ecological counterparts, swallows and swifts, hunt for insects in open spaces. The long and narrow wings of molossids are considered energetically adapted to fast flight between resource patches, but less suited for manoeuvring in more confined spaces, such as between tree-tops or in forest gaps. To understand whether a potential increase in metabolic costs of manoeuvring excludes molossids from foraging in more confined spaces, we measured energy costs and speed of manoeuvring flight in two tropical molossids, 18 g Molossus currentium and 23 g Molossus sinaloae, when flying in a ~500 m(3) hexagonal enclosure (~120 m(2) area), which is of similar dimensions as typical forest gaps. Flight metabolism averaged 10.21 ± 3.00 and 11.32 ± 3.54 ml CO(2) min(-1), and flight speeds 5.65 ± 0.47 and 6.27 ± 0.68 m s(-1) for M. currentium and M. sinaloae respectively. Metabolic rate during flight was higher for the M. currentium than for the similar-sized, but broader-winged frugivore Carollia sowelli, corroborating that broad-winged bats are better adapted to flying in confined spaces. These higher metabolic costs of manoeuvring flight may be caused by having to fly slower than the optimal foraging speed, and by the additional metabolic costs for centripetal acceleration in curves. This may preclude molossids from foraging efficiently between canopy trees or in forest gaps. The surprisingly brief burst of foraging activity at dusk of many molossids might be related to the cooling of the air column after sunset, which drives airborne insects to lower strata. Accordingly, foraging activity of molossids may quickly turn unprofitable when the abundance of insects decreases above the canopy.
Young, Lindsay C.; Vanderlip, Cynthia; Duffy, David C.; Afanasyev, Vsevolod; Shaffer, Scott A.
2009-01-01
When searching for prey, animals should maximize energetic gain, while minimizing energy expenditure by altering their movements relative to prey availability. However, with increasing amounts of marine debris, what once may have been ‘optimal’ foraging strategies for top marine predators, are leading to sub-optimal diets comprised in large part of plastic. Indeed, the highly vagile Laysan albatross (Phoebastria immutabilis) which forages throughout the North Pacific, are well known for their tendency to ingest plastic. Here we examine whether Laysan albatrosses nesting on Kure Atoll and Oahu Island, 2,150 km apart, experience different levels of plastic ingestion. Twenty two geolocators were deployed on breeding adults for up to two years. Regurgitated boluses of undigestable material were also collected from chicks at each site to compare the amount of plastic vs. natural foods. Chicks from Kure Atoll were fed almost ten times the amount of plastic compared to chicks from Oahu despite boluses from both colonies having similar amounts of natural food. Tracking data indicated that adults from either colony did not have core overlapping distributions during the early half of the breeding period and that adults from Kure had a greater overlap with the putative range of the Western Garbage Patch corroborating our observation of higher plastic loads at this colony. At-sea distributions also varied throughout the year suggesting that Laysan albatrosses either adjusted their foraging behavior according to constraints on time away from the nest or to variation in resources. However, in the non-breeding season, distributional overlap was greater indicating that the energy required to reach the foraging grounds was less important than the total energy available. These results demonstrate how a marine predator that is not dispersal limited alters its foraging strategy throughout the reproductive cycle to maximize energetic gain and how this has led to differences in plastic ingestion. PMID:19862322
Comparison of hay and haylage from permanent Alpine meadows in winter dairy cow diets.
Borreani, G; Giaccone, D; Mimosi, A; Tabacco, E
2007-12-01
In an Alpine environment, diets based on local forage resources are needed to maintain the link with the territory and confer special characteristics to typical cheeses. Harvesting at a late stage of maturity, high mechanical losses, and frequent rainfall often make the hay that is harvested of a poor quality. The aim of this study was to evaluate the effects of 2 different conservation methods (late hay, LH, vs. early haylage, ES) of natural permanent meadows on milk production in dairy cows, on the chemical and microbiological characteristics of the milk, and on the quality of the cheese over the winter period. Haylage and hay were harvested from the same permanent meadow at the Vittorino Vezzani experimental farm in Sauze d'Oulx (45 degrees 02'N, 6 degrees 53'E, Italy). The ES forage was cut 4 wk earlier than traditional hay, wilted for 30 h, baled at a dry matter (DM) content of about 50%, wrapped with 6 layers of stretch film, and stored in a protected area. The LH forage was harvested later, when the weather conditions were favorable and, after a 3-d wilting, it was baled and stored indoors. After an 8-mo storage period, the ES had a greater crude protein concentration, organic matter digestibility, and net energy for lactation than LH and a lower neutral detergent fiber and acid detergent fiber. Forty multiparous lactating Aosta Red Pied cows were used in a 19-d period crossover design to assess the nutritional value of the stored forages. The diets included ES fed ad libitum and 3.5 kg of DM per cow of concentrate or LH fed ad libitum and 5.1 kg of DM per cow of concentrate. The dietary DM was 90.1% for the LH and 59.9% for the ES. The diets contained 12.6 and 13.0% crude protein and 48.6 and 48.0% neutral detergent fiber, for the LH and ES, respectively. The forage intake was greater in the ES treatment than in the LH treatment. The ES treatment produced more milk (1.7 kg/d) and more 3.5% fat-corrected milk (1.5 kg/d) than the cows on the LH treatment. The milk fat and protein concentrations were similar in both diets, resulting in a greater protein yield in the ES treatment. The lactose, pH, total bacterial count, and somatic cell count were not different for the treatments. The clostridial spores did not differ between the treatments from preharvest forage to cheese, and no differences were found in terms of cheese quality after maturation. Conserving forage as wrapped bale silage combined with an earlier harvesting date than traditional hay resulted in a suitable method to improve forage quality without increasing the risk of clostridial contamination in the milk and cheeses.
Agricultural area impacts within a natural area: Cades cove, a case history
NASA Astrophysics Data System (ADS)
Bratton, Susan Power; Mathews, Raymond C.; White, Peter S.
1980-09-01
Agricultural management in Cades Cove, an historic district in Great Smoky Mountains National Park, has affected natural resources both within the district and in the adjoining natural areas. Aquatic impacts of haying and cattle grazing included increases in water temperatures, turbidity, nutrient loading, and bacterial counts and decreases in benthic macroinvertebrate density and fish biomass. Wildlife populations, including groundhogs, wild turkeys, and white-tailed deer, have increased in the open fields and around the periphery of the historic district. Intensive deer foraging has removed deciduous seedlings and saplings from woodlots, lowering species diversity and favoring coniferous reproduction. Cades Cove has limestone habitats unique in the park, and both deer browse and cattle grazing may have disturbed populations of rare plant species. Effects on water quality are detectable at a campground 15 stream km from the agricultural area, and the effects of deer foraging extend about 1 km beyond the open fields. Since “historic landscape” preservation is presently a goal of the park, managing for open vistas in Cades Cove will require some sort of continuing disturbance. Conversion of cattle pastures to hayfields would reduce aquatic impacts but the deer herd might increase as a result of reduced competition for forage. Retarding old field succession would increase populations of native plant species dependent on sunlight, but would require government-funded mowing. Other options are discussed. Completely eliminating the effects of the historic district on adjoining areas may be impossible, at least under present economic constraints.
Treatment of bacterial meningitis: an update.
Shin, Seon Hee; Kim, Kwang Sik
2012-10-01
The introduction of protein conjugate vaccines for Haemophilus influenzae type b (Hib), Streptococcus pneumoniae (S. pneumoniae) and Neisseria meningitidis (N. menigitidis) has changed the epidemiology of bacterial meningitis. Bacterial meningitis continues to be an important cause of mortality and morbidity, and our incomplete knowledge of its pathogenesis and emergence of antimicrobial resistant bacteria contribute to such mortality and morbidity. An early empiric antibiotic treatment is critical for the management of patients with bacterial meningitis. This article gives an overview on optimal treatment strategies of bacterial meningitis, along with considerations of new insights on epidemiology, clinical and laboratory findings supportive of bacterial meningitis, chemoprophylaxis, selection of initial antimicrobial agents for suspected bacterial meningitis, antimicrobial resistance and utility of new antibiotics, status on anti-inflammatory agents and adjunctive therapy, and pathogenesis of bacterial meningitis. Prompt treatment of bacterial meningitis with an appropriate antibiotic is essential. Optimal antimicrobial treatment of bacterial meningitis requires bactericidal agents able to penetrate the blood-brain barrier (BBB), with efficacy in cerebrospinal fluid (CSF). Several new antibiotics have been introduced for the treatment of meningitis caused by resistant bacteria, but their use in human studies has been limited. More complete understanding of the microbial and host interactions that are involved in the pathogenesis of bacterial meningitis and associated neurologic sequelae is likely to help in developing new strategies for the prevention and therapy of bacterial meningitis.
Rapid target foraging with reach or gaze: The hand looks further ahead than the eye
2017-01-01
Real-world tasks typically consist of a series of target-directed actions and often require choices about which targets to act on and in what order. Such choice behavior can be assessed from an optimal foraging perspective whereby target selection is shaped by a balance between rewards and costs. Here we evaluated such decision-making in a rapid movement foraging task. On a given trial, participants were presented with 15 targets of varying size and value and were instructed to harvest as much reward as possible by either moving a handle to the targets (hand task) or by briefly fixating them (eye task). The short trial duration enabled participants to harvest about half the targets, ensuring that total reward was due to choice behavior. We developed a probabilistic model to predict target-by-target harvesting choices that considered the rewards and movement-related costs (i.e., target distance and size) associated with the current target as well as future targets. In the hand task, in comparison to the eye task, target choice was more strongly influenced by movement-related costs and took into account a greater number of future targets, consistent with the greater costs associated with arm movement. In both tasks, participants exhibited near-optimal behaviour and in a constrained version of the hand task in which choices could only be based on target positions, participants consistently chose among the shortest movement paths. Our results demonstrate that people can rapidly and effectively integrate values and movement-related costs associated with current and future targets when sequentially harvesting targets. PMID:28683138
Namboodiri, Vijay Mohan K.; Levy, Joshua M.; Mihalas, Stefan; Sims, David W.; Hussain Shuler, Marshall G.
2016-01-01
Understanding the exploration patterns of foragers in the wild provides fundamental insight into animal behavior. Recent experimental evidence has demonstrated that path lengths (distances between consecutive turns) taken by foragers are well fitted by a power law distribution. Numerous theoretical contributions have posited that “Lévy random walks”—which can produce power law path length distributions—are optimal for memoryless agents searching a sparse reward landscape. It is unclear, however, whether such a strategy is efficient for cognitively complex agents, from wild animals to humans. Here, we developed a model to explain the emergence of apparent power law path length distributions in animals that can learn about their environments. In our model, the agent’s goal during search is to build an internal model of the distribution of rewards in space that takes into account the cost of time to reach distant locations (i.e., temporally discounting rewards). For an agent with such a goal, we find that an optimal model of exploration in fact produces hyperbolic path lengths, which are well approximated by power laws. We then provide support for our model by showing that humans in a laboratory spatial exploration task search space systematically and modify their search patterns under a cost of time. In addition, we find that path length distributions in a large dataset obtained from free-ranging marine vertebrates are well described by our hyperbolic model. Thus, we provide a general theoretical framework for understanding spatial exploration patterns of cognitively complex foragers. PMID:27385831
Evolution of brains and behavior for optimal foraging: A tale of two predators
Catania, Kenneth C.
2012-01-01
Star-nosed moles and tentacled snakes have exceptional mechanosensory systems that illustrate a number of general features of nervous system organization and evolution. Star-nosed moles use the star for active touch—rapidly scanning the environment with the nasal rays. The star has the densest concentration of mechanoreceptors described for any mammal, with a central tactile fovea magnified in anatomically visible neocortical modules. The somatosensory system parallels visual system organization, illustrating general features of high-resolution sensory representations. Star-nosed moles are the fastest mammalian foragers, able to identify and eat small prey in 120 ms. Optimal foraging theory suggests that the star evolved for profitably exploiting small invertebrates in a competitive wetland environment. The tentacled snake’s facial appendages are superficially similar to the mole’s nasal rays, but they have a very different function. These snakes are fully aquatic and use tentacles for passive detection of nearby fish. Trigeminal afferents respond to water movements and project tentacle information to the tectum in alignment with vision, illustrating a general theme for the integration of different sensory modalities. Tentacled snakes act as rare enemies, taking advantage of fish C-start escape responses by startling fish toward their strike—often aiming for the future location of escaping fish. By turning fish escapes to their advantage, snakes increase strike success and reduce handling time with head-first captures. The latter may, in turn, prevent snakes from becoming prey when feeding. Findings in these two unusual predators emphasize the importance of a multidisciplinary approach for understanding the evolution of brains and behavior. PMID:22723352
Optimal foraging on the roof of the world: Himalayan langurs and the classical prey model
Sayers, Ken; Norconk, Marilyn A.; Conklin-Brittain, Nancy L.
2009-01-01
Optimal foraging theory has only been sporadically applied to nonhuman primates. The classical prey model, modified for patch choice, predicts a sliding “profitability threshold” for dropping patch types from the diet, preference for profitable foods, dietary niche breadth reduction as encounter rates increase, and that exploitation of a patch type is unrelated to its own abundance. We present results from a one-year study testing these predictions with Himalayan langurs (Semnopithecus entellus) at Langtang National Park, Nepal. Behavioral data included continuous recording of feeding bouts and between-patch travel times. Encounter rates were estimated for 55 food types, which were analyzed for crude protein, lipid, free simple sugar, and fibers. Patch types were entered into the prey model algorithm for eight seasonal time periods and differing age-sex classes and nutritional currencies. Although the model consistently underestimated diet breadth, the majority of non-predicted patch types represented rare foods. Profitability was positively related to annual/seasonal dietary contribution by organic matter estimates, while time estimates provided weaker relationships. Patch types utilized did not decrease with increasing encounter rates involving profitable foods, although low-ranking foods available year-round were taken predominantly when high-ranking foods were scarce. High-ranking foods were taken in close relation to encounter rates, while low-ranking foods were not. The utilization of an energetic currency generally resulted in closest conformation to model predictions, and it performed best when assumptions were most closely approximated. These results suggest that even simple models from foraging theory can provide a useful framework for the study of primate feeding behavior. PMID:19844998
Death of the (traveling) salesman: primates do not show clear evidence of multi-step route planning.
Janson, Charles
2014-05-01
Several comparative studies have linked larger brain size to a fruit-eating diet in primates and other animals. The general explanation for this correlation is that fruit is a complex resource base, consisting of many discrete patches of many species, each with distinct nutritional traits, the production of which changes predictably both within and between seasons. Using this information to devise optimal spatial foraging strategies is among the most difficult problems to solve in all of mathematics, a version of the famous Traveling Salesman Problem. Several authors have suggested that primates might use their large brains and complex cognition to plan foraging strategies that approximate optimal solutions to this problem. Three empirical studies have examined how captive primates move when confronted with the simplest version of the problem: a spatial array of equally valuable goals. These studies have all concluded that the subjects remember many food source locations and show very efficient travel paths; some authors also inferred that the subjects may plan their movements based on considering combinations of three or more future goals at a time. This analysis re-examines critically the claims of planned movement sequences from the evidence presented. The efficiency of observed travel paths is largely consistent with use of the simplest of foraging rules, such as visiting the nearest unused "known" resource. Detailed movement sequences by test subjects are most consistent with a rule that mentally sums spatial information from all unused resources in a given trial into a single "gravity" measure that guides movements to one destination at a time. © 2013 Wiley Periodicals, Inc.
Focks, Andreas; Belgers, Dick; van der Steen, Jozef J.M.; Boesten, Jos J.T.I.; Roessink, Ivo
2016-01-01
Estimating the exposure of honeybees to pesticides on a landscape scale requires models of their spatial foraging behaviour. For this purpose, we developed a mechanistic, energetics-based model for a single day of nectar foraging in complex landscape mosaics. Net energetic efficiency determined resource patch choice. In one version of the model a single optimal patch was selected each hour. In another version, recruitment of foragers was simulated and several patches could be exploited simultaneously. Resource availability changed during the day due to depletion and/or intrinsic properties of the resource (anthesis). The model accounted for the impact of patch distance and size, resource depletion and replenishment, competition with other nectar foragers, and seasonal and diurnal patterns in availability of nectar-providing crops and wild flowers. From the model we derived simple rules for resource patch selection, e.g., for landscapes with mass-flowering crops only, net energetic efficiency would be proportional to the ratio of the energetic content of the nectar divided by distance to the hive. We also determined maximum distances at which resources like oilseed rape and clover were still energetically attractive. We used the model to assess the potential for pesticide exposure dilution in landscapes of different composition and complexity. Dilution means a lower concentration in nectar arriving at the hive compared to the concentration in nectar at a treated field and can result from foraging effort being diverted away from treated fields. Applying the model for all possible hive locations over a large area, distributions of dilution factors were obtained that were characterised by their 90-percentile value. For an area for which detailed spatial data on crops and off-field semi-natural habitats were available, we tested three landscape management scenarios that were expected to lead to exposure dilution: providing alternative resources than the target crop (oilseed rape) in the form of (i) other untreated crop fields, (ii) flower strips of different widths at field edges (off-crop in-field resources), and (iii) resources on off-field (semi-natural) habitats. For both model versions, significant dilution occurred only when alternative resource patches were equal or more attractive than oilseed rape, nearby and numerous and only in case of flower strips and off-field habitats. On an area-base, flower strips were more than one order of magnitude more effective than off-field habitats, the main reason being that flower strips had an optimal location. The two model versions differed in the predicted number of resource patches exploited over the day, but mainly in landscapes with numerous small resource patches. In landscapes consisting of few large resource patches (crop fields) both versions predicted the use of a small number of patches. PMID:27602273
Inouye, Satoshi; Suzuki, Takahiro
2016-12-01
The protein expressions of three preferred human codon-optimized Gaussia luciferase genes (pGLuc, EpGLuc, and KpGLuc) were characterized in mammalian and bacterial cells by comparing them with those of wild-type Gaussia luciferase gene (wGLuc) and human codon-optimized Gaussia luciferase gene (hGLuc). Two synthetic genes of EpGLuc and KpGLuc containing the complete preferred human codons have an artificial open-reading frame; however, they had the similar protein expression levels to those of pGLuc and hGLuc in mammalian cells. In bacterial cells, the protein expressions of pGLuc, EpGLuc, and KpGLuc with approximately 65% GC content were the same and showed approximately 60% activities of wGLuc and hGLuc. The artificial open-reading frame in EpGLuc and KpGLuc did not affect the protein expression in mammalian and bacterial cells. Copyright © 2016 Elsevier Inc. All rights reserved.
Movements of wintering surf scoters: Predator responses to different prey landscapes
Kirk, M.; Esler, Daniel N.; Iverson, S.A.; Boyd, W.S.
2008-01-01
The distribution of predators is widely recognized to be intimately linked to the distribution of their prey. Foraging theory suggests that predators will modify their behaviors, including movements, to optimize net energy intake when faced with variation in prey attributes or abundance. While many studies have documented changes in movement patterns of animals in response to temporal changes in food, very few have contrasted movements of a single predator species naturally occurring in dramatically different prey landscapes. We documented variation in the winter movements, foraging range size, site fidelity, and distribution patterns of a molluscivorous sea duck, the surf scoter (Melanitta perspicillata), in two areas of coastal British Columbia with very different shellfish prey features. Baynes Sound has extensive tidal flats with abundant clams, which are high-quality and temporally stable prey for scoters. Malaspina Inlet is a rocky fjord-like inlet where scoters consume mussels that are superabundant and easily accessible in some patches but are heavily depleted over the course of winter. We used radio telemetry to track surf scoter movements in both areas and found that in the clam habitats of Baynes Sound, surf scoters exhibited limited movement, small winter ranges, strong foraging site fidelity, and very consistent distribution patterns. By contrast, in mussel habitats in the Malaspina Inlet, surf scoters displayed more movement, larger ranges, little fidelity to specific foraging sites, and more variable distribution patterns. We conclude that features associated with the different prey types, particularly the higher depletion rates of mussels, strongly influenced seasonal space use patterns. These findings are consistent with foraging theory and confirm that predator behavior, specifically movements, is environmentally mediated. ?? 2008 Springer-Verlag.
Toomey, Matthew B.; McGraw, Kevin J.
2011-01-01
Background For many bird species, vision is the primary sensory modality used to locate and assess food items. The health and spectral sensitivities of the avian visual system are influenced by diet-derived carotenoid pigments that accumulate in the retina. Among wild House Finches (Carpodacus mexicanus), we have found that retinal carotenoid accumulation varies significantly among individuals and is related to dietary carotenoid intake. If diet-induced changes in retinal carotenoid accumulation alter spectral sensitivity, then they have the potential to affect visually mediated foraging performance. Methodology/Principal Findings In two experiments, we measured foraging performance of house finches with dietarily manipulated retinal carotenoid levels. We tested each bird's ability to extract visually contrasting food items from a matrix of inedible distracters under high-contrast (full) and dimmer low-contrast (red-filtered) lighting conditions. In experiment one, zeaxanthin-supplemented birds had significantly increased retinal carotenoid levels, but declined in foraging performance in the high-contrast condition relative to astaxanthin-supplemented birds that showed no change in retinal carotenoid accumulation. In experiments one and two combined, we found that retinal carotenoid concentrations predicted relative foraging performance in the low- vs. high-contrast light conditions in a curvilinear pattern. Performance was positively correlated with retinal carotenoid accumulation among birds with low to medium levels of accumulation (∼0.5–1.5 µg/retina), but declined among birds with very high levels (>2.0 µg/retina). Conclusion/Significance Our results suggest that carotenoid-mediated spectral filtering enhances color discrimination, but that this improvement is traded off against a reduction in sensitivity that can compromise visual discrimination. Thus, retinal carotenoid levels may be optimized to meet the visual demands of specific behavioral tasks and light environments. PMID:21747917
Nagy-Reis, Mariana B; Setz, Eleonore Z F
2017-01-01
Many primates have to cope with a temporal scarcity in food availability that shapes their foraging strategies. Here we investigated the changes in diet, activity, and ranging behavior of a group of black-fronted titi monkeys (Callicebus nigrifrons) according to the availability of the main high-nutritional-density item in their diet and the foraging strategy adopted when this food is scarce. We monitored one habituated group using instantaneous scan sampling over 1 year (533 h of observation, 61 days) in a seasonal tropical forest fragment (245 ha). We simultaneously collected data on food availability with fruit traps. The titi monkeys consumed fleshy fruits, the main high-nutritional-density item of their diet, in accordance with its availability, and the availability of this item modulated the ingestion of vegetative plant parts, a relatively low-nutritional-density food. During high fleshy fruit availability, the titi monkeys consumed more fleshy fruits, flowers, and invertebrates. They also traveled more, but concentrated their activity in a central area of their home range. Conversely, during fleshy fruit scarcity, they increased the breadth of their diet, switching to one richer in seeds and vegetative plant parts, and with greater plant diversity. At the same time, they reduced most energy-demanding activities, traveling less and over shorter distances, but using their home range more broadly. Corroborating the optimal foraging theory, titi monkeys altered foraging strategies according to temporal food fluctuations and responded to low fleshy fruit availability by changing their diet, activity, and ranging behavior. The adoption of a low-cost/low-yield strategy allowed us to classify them as energy minimizers.
Kovac, Helmut; Stabentheiner, Anton; Schmaranzer, Sigurd
2010-12-01
Foraging honeybees are subjected to considerable variations of microclimatic conditions challenging their thermoregulatory ability. Solar heat is a gain in the cold but may be a burden in the heat. We investigated the balancing of endothermic activity with radiative heat gain and physiological functions of water foraging Apis mellifera carnica honeybees in the whole range of ambient temperatures (T(a)) and solar radiation they are likely to be exposed in their natural environment in Middle Europe. The mean thorax temperature (T(th)) during foraging stays was regulated at a constantly high level (37.0-38.5 °C) in a broad range of T(a) (3-30 °C). At warmer conditions (T(a)=30-39 °C) T(th) increased to a maximal level of 45.3 °C. The endothermic temperature excess (difference of T(body)-T(a) of living and dead bees) was used to assess the endogenously generated temperature elevation as a correlate of energy turnover. Up to a T(a) of ∼30 °C bees used solar heat gain for a double purpose: to reduce energetic expenditure and to increase T(th) by about 1-3 °C to improve force production of flight muscles. At higher T(a) they exhibited cooling efforts to get rid of excess heat. A high T(th) also allowed regulation of the head temperature high enough to guarantee proper function of the bees' suction pump even at low T(a). This shortened the foraging stays and this way reduced energetic costs. With decreasing T(a) bees also reduced arrival body weight and crop loading to do both minimize costs and optimize flight performance. Copyright © 2010 Elsevier Ltd. All rights reserved.
Microeconomic principles explain an optimal genome size in bacteria.
Ranea, Juan A G; Grant, Alastair; Thornton, Janet M; Orengo, Christine A
2005-01-01
Bacteria can clearly enhance their survival by expanding their genetic repertoire. However, the tight packing of the bacterial genome and the fact that the most evolved species do not necessarily have the biggest genomes suggest there are other evolutionary factors limiting their genome expansion. To clarify these restrictions on size, we studied those protein families contributing most significantly to bacterial-genome complexity. We found that all bacteria apply the same basic and ancestral 'molecular technology' to optimize their reproductive efficiency. The same microeconomics principles that define the optimum size in a factory can also explain the existence of a statistical optimum in bacterial genome size. This optimum is reached when the bacterial genome obtains the maximum metabolic complexity (revenue) for minimal regulatory genes (logistic cost).
Limiting factors and landscape connectivity: the American marten in the Rocky Mountains
S. A. Cushman; M. G. Raphael; L. F. Ruggiero; A. S. Shirk; T. N. Wasserman; E. C. O' Doherty
2011-01-01
In mobile animals, movement behavior can maximize fitness by optimizing access to critical resources and minimizing risk of predation. We sought to evaluate several hypotheses regarding the effects of landscape structure on American marten foraging path selection in a landscape experiencing forest perforation by patchcut logging. We hypothesized that in the uncut pre-...
Feng, Wei; Wang, Xiao-Qiang; Zhou, Wei; Liu, Guang-Ying; Wan, Yong-Ji
2011-01-01
The silkworm, Bombyx mori L. (Lepidoptera: Bombycidae), an oligophagous insect that mainly feeds on mulberry leaves, is susceptible to entomopathogen infection when reared with tricuspid cudrania leaves. A total of 56 dominant bacterial strains, classified into 12 phylotypes based on bacteriological properties and analysis of 16S rRNA genes, were isolated from the intestine of the fourth and fifth instar silkworm larvae. Ten and seven phylotypes exist in the intestine of the silkworm larvae reared with mulberry leaves and tricuspid cudrania leaves, respectively. Four of them are common in the intestine of the two treatment groups. By screening their lipolytic ability on a Rhodamine B agar plate, nine lipase-producing bacterial strains were obtained and classified into six genera, including Bacillus, Brevibacterium, Corynebacterium, Staphylococcus, Klebsiella, and Stenotrophomonas. Except for Stenotrophomonas, which is common in both, the other genera only exist in the intestine of the silkworm larvae fed with mulberry leaves. In addition, by culture and fermentation in vitro, the maximum cell density and lipase activity of lipase-producing bacteria were examined at about 48 hours. The results indicate that diet has a significant impact on the gut bacterial community, especially lipase-producing bacteria. We suggest that the difference of lipase-producing bacterial diversity might be related to disease resistance of the silkworm.
The bacterial communities associated with honey bee (Apis mellifera) foragers.
Corby-Harris, Vanessa; Maes, Patrick; Anderson, Kirk E
2014-01-01
The honey bee is a key pollinator species in decline worldwide. As part of a commercial operation, bee colonies are exposed to a variety of agricultural ecosystems throughout the year and a multitude of environmental variables that may affect the microbial balance of individuals and the hive. While many recent studies support the idea of a core microbiota in guts of younger in-hive bees, it is unknown whether this core is present in forager bees or the pollen they carry back to the hive. Additionally, several studies hypothesize that the foregut (crop), a key interface between the pollination environment and hive food stores, contains a set of 13 lactic acid bacteria (LAB) that inoculate collected pollen and act in synergy to preserve pollen stores. Here, we used a combination of 454 based 16S rRNA gene sequencing of the microbial communities of forager guts, crops, and corbicular pollen and crop plate counts to show that (1) despite a very different diet, forager guts contain a core microbiota similar to that found in younger bees, (2) corbicular pollen contains a diverse community dominated by hive-specific, environmental or phyllosphere bacteria that are not prevalent in the gut or crop, and (3) the 13 LAB found in culture-based studies are not specific to the crop but are a small subset of midgut or hindgut specific bacteria identified in many recent 454 amplicon-based studies. The crop is dominated by Lactobacillus kunkeei, and Alpha 2.2 (Acetobacteraceae), highly osmotolerant and acid resistant bacteria found in stored pollen and honey. Crop taxa at low abundance include core hindgut bacteria in transit to their primary niche, and potential pathogens or food spoilage organisms seemingly vectored from the pollination environment. We conclude that the crop microbial environment is influenced by worker task, and may function in both decontamination and inoculation.
The Bacterial Communities Associated with Honey Bee (Apis mellifera) Foragers
Corby-Harris, Vanessa; Maes, Patrick; Anderson, Kirk E.
2014-01-01
The honey bee is a key pollinator species in decline worldwide. As part of a commercial operation, bee colonies are exposed to a variety of agricultural ecosystems throughout the year and a multitude of environmental variables that may affect the microbial balance of individuals and the hive. While many recent studies support the idea of a core microbiota in guts of younger in-hive bees, it is unknown whether this core is present in forager bees or the pollen they carry back to the hive. Additionally, several studies hypothesize that the foregut (crop), a key interface between the pollination environment and hive food stores, contains a set of 13 lactic acid bacteria (LAB) that inoculate collected pollen and act in synergy to preserve pollen stores. Here, we used a combination of 454 based 16S rRNA gene sequencing of the microbial communities of forager guts, crops, and corbicular pollen and crop plate counts to show that (1) despite a very different diet, forager guts contain a core microbiota similar to that found in younger bees, (2) corbicular pollen contains a diverse community dominated by hive-specific, environmental or phyllosphere bacteria that are not prevalent in the gut or crop, and (3) the 13 LAB found in culture-based studies are not specific to the crop but are a small subset of midgut or hindgut specific bacteria identified in many recent 454 amplicon-based studies. The crop is dominated by Lactobacillus kunkeei, and Alpha 2.2 (Acetobacteraceae), highly osmotolerant and acid resistant bacteria found in stored pollen and honey. Crop taxa at low abundance include core hindgut bacteria in transit to their primary niche, and potential pathogens or food spoilage organisms seemingly vectored from the pollination environment. We conclude that the crop microbial environment is influenced by worker task, and may function in both decontamination and inoculation. PMID:24740297
NASA Astrophysics Data System (ADS)
Reynolds, A. M.
2008-04-01
A random Lévy-looping model of searching is devised and optimal random Lévy-looping searching strategies are identified for the location of a single target whose position is uncertain. An inverse-square power law distribution of loop lengths is shown to be optimal when the distance between the centre of the search and the target is much shorter than the size of the longest possible loop in the searching pattern. Optimal random Lévy-looping searching patterns have recently been observed in the flight patterns of honeybees (Apis mellifera) when attempting to locate their hive and when searching after a known food source becomes depleted. It is suggested that the searching patterns of desert ants (Cataglyphis) are consistent with the adoption of an optimal Lévy-looping searching strategy.
Li, Zhipeng; Wright, André-Denis G; Liu, Hanlu; Bao, Kun; Zhang, Tietao; Wang, Kaiying; Cui, Xuezhe; Yang, Fuhe; Zhang, Zhigang; Li, Guangyu
2015-02-01
Sika deer (Cervus nippon) rely on microorganisms living in the rumen to convert plant materials into chemical compounds, such as volatile fatty acids (VFAs), but how the rumen bacterial community is affected by different forages and adapt to altered diets remains poorly understood. The present study used 454-pyrosequencing of bacterial 16S ribosomal RNA (rRNA) genes to examine the relationship between rumen bacterial diversity and metabolic phenotypes using three sika deer in a 3 × 3 latin square design. Three sika deer were fed oak leaves (OL), corn stover (CS), or corn silage (CI), respectively. After a 7-day feeding period, when compared to the CS and CI groups, the OL group had a lower proportion of Prevotella spp. and a higher proportion of unclassified bacteria belonging to the families Succinivibrionaceae and Paraprevotellaceae (P<0.05). Meanwhile, the concentration of isobutyrate was significantly lower (P<0.05) in the OL group than in the CS and CI groups. There was no significant change of dominant bacterial genera in the OL group after 28 days of feeding. Conversely, total volatile fatty acids (TVFAs) showed an increase after 28 days of feeding, mainly due to the increasing of acetate, propionate, and valerate (P<0.05). The interplay between bacteria and metabolism in the OL group differed from that in the CS and CI groups, especially for the interaction of TVFAs and acetate/propionate. Overall, the current study suggested that Prevotella spp. played critical roles in the fermentation of feed in the rumen of sika deer. However, the differences in interplay patterns between rumen bacterial community composition and metabolic phenotypes were altered in the native and domesticated diets indicating the changed fermentation patterns in the rumen of sika deer.
Adaptive fine root foraging patterns in climate experiments and natural gradients
NASA Astrophysics Data System (ADS)
Ostonen, Ivika; Truu, Marika; Parts, Kaarin; Truu, Jaak
2017-04-01
Site based manipulative experiments and studies along climatic gradients have long been keystones of ecological research. We aimed to compare the response of ectomycorrhizal (EcM) and fine roots in manipulative studies and along climate gradient to describe the universal trends in root traits and to raise hypotheses about general mechanisms in fine root system adaptation of forest trees in global change. The root traits from two climate manipulation experiments - Bangor FACE and FAHM in Estonia, manipulated by CO2 concentration and relative air humidity in silver birch forest ecosystems, respectively and the data for three most ubiquitous tree species - Norway spruce (Picea abies), Scots pine (Pinus sylvestris) and silver birch (Betula pendula) stands along natural gradient encompassing different climate and forest zones in Northern Europe were analysed. There are two main strategies in response of fine root system of trees: A) an extensive increase in absorptive root biomass, surface area and length, or B) a greater reliance on root-associated EcM fungi and bacterial communities with a smaller investment to absorptive root biomass. Trees in all studies tended to increase the EcM root biomass and the proportion of EcM root biomass of total fine root biomass towards harsh (northern boreal forests) or changed conditions (stress created by the increase in CO2 concentration or relative air humidity). We envisage a role of trilateral relation between the morphological traits of absorptive fine roots, exploration types of colonising EcM fungi and rhizosphere and bulk soil bacterial community structure. A significant change in EcM absorptive fine root biomass in all experiments and for all studied tree species coincided with changes in absorptive root morphology, being longer and thinner root tips with higher root tissue density in poor/treated sites. These changes were associated with significant shifts in community structure of dominating EcM fungi as well as soil and rhizosphere bacterial communities. We suggest a multidimensional concept of absorptive fine root foraging strategies involving both qualitative and quantitative changes in root-mycorhizosphere along environmental gradients and in climate experiments.
Koch, L E; Gomez, N A; Bowyer, A; Lascano, G J
2017-12-01
The addition of dietary fiber can alter nutrient and N utilization in precision-fed dairy heifers and may further benefit from higher inclusion levels of RUP. The objective of this experiment was to determine the effects of feeding a high-RUP diet when dietary fiber content was manipulated within differing forage-to-concentrate ratios (F:C) on nutrient utilization of precision-fed dairy heifers. Six rumen-cannulated Holstein heifers (555.4 ± 31.4 kg BW; 17.4 ± 0.1 mo) were randomly assigned to 2 levels of forage, high forage (HF; 60% forage) or low forage (LF; 45% forage), and to a fiber proportion sequence (low fiber: 100% oat hay and silage [OA], 0% wheat straw [WS]; medium fiber: 83.4% OA, 16.6% WS; and high fiber: 66.7% OA, 33.3% WS) administered according to a split-plot 3 × 3 Latin square design (21-d periods). Similar levels of N intake (1.70 g N/kg BW) and RUP (55% of CP) were provided. Data were analyzed as a split-plot, 3 × 3 Latin square design using a mixed model with fixed effects of period and treatment. A repeated measures model was used with data that had multiple measurements over time. No differences were observed for DM, OM, NDF, or ADF apparent digestibility coefficients (dC) between HF- and LF-fed heifers. Heifers receiving LF diets had greater starch dC compared to HF heifers. Increasing the fiber level through WS addition resulted in a linear reduction of OM dC. There was a linear interaction for DM dC with a concurrent linear interaction in NDF dC. Nitrogen intake, dC, and retention did not differ; however, urine and total N excretion increased linearly with added fiber. Predicted microbial CP flow (MP) linearly decreased with WS inclusion mainly in LF heifers, as indicated by a significant interaction between F:C and WS. Rumen pH linearly increased with WS addition, although no F:C effect was detected. Ruminal ammonia concentration had an opposite linear effect with respect to MP as WS increased. Diets with the higher proportion of fiber benefited the most from a high RUP supply, complementing the substantial reduction in predicted MP caused by the incremental dietary fiber concentration. These results suggest that RUP supplementation is a practical method for reestablishing optimal ruminal N balance in the event of increased dietary fiber through forage inclusion in precision-fed dairy heifer diets.
Task Allocation of Wasps Governed by Common Stomach: A Model Based on Electric Circuits
2016-01-01
Simple regulatory mechanisms based on the idea of the saturable ‘common stomach’ can control the regulation of construction behavior and colony-level responses to environmental perturbations in Metapolybia wasp societies. We mapped the different task groups to mutual inductance electrical circuits and used Kirchoff’s basic voltage laws to build a model that uses master equations from physics, yet is able to provide strong predictions for this complex biological phenomenon. Similar to real colonies, independently of the initial conditions, the system shortly sets into an equilibrium, which provides optimal task allocation for a steady construction, depending on the influx of accessible water. The system is very flexible and in the case of perturbations, it reallocates its workforce and adapts to the new situation with different equilibrium levels. Similar to the finding of field studies, decreasing any task groups caused decrease of construction; increasing or decreasing water inflow stimulated or reduced the work of other task groups while triggering compensatory behavior in water foragers. We also showed that only well connected circuits are able to produce adequate construction and this agrees with the finding that this type of task partitioning only exists in larger colonies. Studying the buffer properties of the common stomach and its effect on the foragers revealed that it provides stronger negative feedback to the water foragers, while the connection between the pulp foragers and the common stomach has a strong fixed-point attractor, as evidenced by the dissipative trajectory. PMID:27861633
NASA Astrophysics Data System (ADS)
Sturbois, Anthony; Ponsero, Alain; Desroy, Nicolas; Le Mao, Patrick; Fournier, Jérôme
2015-02-01
The feeding ecology of the red knot has been widely studied across its wintering range. Red knots mainly select bivalves and gastropods, with differences between sites due to variation in prey availability. The shorebird's diet is also influenced or controlled by the tidal regime. The aim of this paper is to demonstrate the adaptation of foraging red knots to the megatidal environment. The variation in their diet during tidal cycles was studied in the bay of Saint-Brieuc, a functional unit for this species. The method used combined macrofauna, distribution of foraging birds and diet data. Comparative spatial analyses of macrofauna and distribution of foraging red knots have shown that the bay's four benthic assemblages are exploited by birds. By analysing droppings, we highlighted that bivalve molluscs are the main component of their diet, as shown in most overwintering sites. Fifteen types of prey were identified and Donax vittatus was discovered to be a significant prey item. The relative proportion of each main prey item differs significantly depending on the benthic assemblage used to forage. All available benthic assemblages and all potential feeding resources can be used during a single tidal cycle, reflecting an adaptation to megatidal conditions. This approach develops accurate knowledge about the feeding ecology of birds which managers need in order to identify optimal areas for the conservation of waders based on the areas and resources actually used by the birds.
Kareiva, Peter; Morse, Douglass H; Eccleston, Jill
1989-03-01
We compared the patch-choice performances of an ambush predator, the crab spider Misumena vatia (Thomisidae) hunting on common milkweed Asclepias syriaca (Asclepiadaceae) umbles, with two stochastic rule-of-thumb simulation models: one that employed a threshold giving-up time and one that assumed a fixed probability of moving. Adult female Misumena were placed on milkweed plants with three umbels, each with markedly different numbers of flower-seeking prey. Using a variety of visitation regimes derived from observed visitation patterns of insect prey, we found that decreases in among-umbel variance in visitation rates or increases in overall mean visitation rates reduced the "clarity of the optimum" (the difference in the yield obtained as foraging behavior changes), both locally and globally. Yield profiles from both models were extremely flat or jagged over a wide range of prey visitation regimes; thus, differences between optimal and "next-best" strategies differed only modestly over large parts of the "foraging landscape". Although optimal yields from fixed probability simulations were one-third to one-half those obtained from threshold simulations, spiders appear to depart umbels in accordance with the fixed probability rule.
Belanche, Alejandro; Newbold, Charles J.; Lin, Wanchang; Rees Stevens, Pauline; Kingston-Smith, Alison H.
2017-01-01
Increasing the efficiency of utilization of fresh and preserved forage is a key target for ruminant science. Vitamin E is often used as additive to improve product quality but its impact of the rumen function is unknown. This study investigated the successional microbial colonization of ryegrass (GRA) vs. ryegrass hay (HAY) in presence of zero or 50 IU/d supplementary vitamin E, using a rumen simulation technique. A holistic approach was used to link the dynamics of feed degradation with the structure of the liquid-associated (LAB) and solid-associated bacteria (SAB). Results showed that forage colonization by SAB was a tri-phasic process highly affected by the forage conservation method: Early colonization (0–2 h after feeding) by rumen microbes was 2× faster for GRA than HAY diets and dominated by Lactobacillus and Prevotella which promoted increased levels of lactate (+56%) and ammonia (+18%). HAY diets had lower DM degradation (-72%) during this interval being Streptococcus particularly abundant. During secondary colonization (4–8 h) the SAB community increased in size and decreased in diversity as the secondary colonizers took over (Pseudobutyrivibrio) promoting the biggest differences in the metabolomics profile between diets. Secondary colonization was 3× slower for HAY vs. GRA diets, but this delay was compensated by a greater bacterial diversity (+197 OTUs) and network complexity resulting in similar feed degradations. Tertiary colonization (>8 h) consisted of a slowdown in the colonization process and simplification of the bacterial network. This slowdown was less evident for HAY diets which had higher levels of tertiary colonizers (Butyrivibrio and Ruminococcus) and may explain the higher DM degradation (+52%) during this interval. The LAB community was particularly active during the early fermentation of GRA and during the late fermentation for HAY diets indicating that the availability of nutrients in the liquid phase reflects the dynamics of feed degradation. Vitamin E supplementation had minor effects but promoted a simplification of the LAB community and a slight acceleration in the SAB colonization sequence which could explain the higher DM degradation during the secondary colonization. Our findings suggest that when possible, grass should be fed instead of hay, in order to accelerate feed utilization by rumen microbes. PMID:28824585
NASA Astrophysics Data System (ADS)
Farzan, Shahla; Young, Derek J. N.; Dedrick, Allison G.; Hamilton, Matthew; Porse, Erik C.; Coates, Peter S.; Sampson, Gabriel
2015-09-01
Western juniper ( Juniperus occidentalis subsp. occidentalis) range expansion into sagebrush steppe ecosystems has affected both native wildlife and economic livelihoods across western North America. The potential listing of the greater sage-grouse ( Centrocercus urophasianus) under the U.S. Endangered Species Act has spurred a decade of juniper removal efforts, yet limited research has evaluated program effectiveness. We used a multi-objective spatially explicit model to identify optimal juniper removal sites in Northeastern California across weighted goals for ecological (sage-grouse habitat) and economic (cattle forage production) benefits. We also extended the analysis through alternative case scenarios that tested the effects of coordination among federal agencies, budgetary constraints, and the use of fire as a juniper treatment method. We found that sage-grouse conservation and forage production goals are somewhat complementary, but the extent of complementary benefits strongly depends on spatial factors and management approaches. Certain management actions substantially increase achievable benefits, including agency coordination and the use of prescribed burns to remove juniper. Critically, our results indicate that juniper management strategies designed to increase cattle forage do not necessarily achieve measurable sage-grouse benefits, underscoring the need for program evaluation and monitoring.
Farzan, Shahla; Young, Derek J.N.; Dedrick, Allison G.; Hamilton, Mattew; Porse, Erik C.; Coates, Peter S.; Sampson, Gabriel
2015-01-01
Western juniper (Juniperus occidentalis subsp. occidentalis) range expansion into sagebrush steppe ecosystems has affected both native wildlife and economic livelihoods across western North America. The potential listing of the greater sage-grouse (Centrocercus urophasianus) under the U.S. Endangered Species Act has spurred a decade of juniper removal efforts, yet limited research has evaluated program effectiveness. We used a multi-objective spatially explicit model to identify optimal juniper removal sites in Northeastern California across weighted goals for ecological (sage-grouse habitat) and economic (cattle forage production) benefits. We also extended the analysis through alternative case scenarios that tested the effects of coordination among federal agencies, budgetary constraints, and the use of fire as a juniper treatment method. We found that sage-grouse conservation and forage production goals are somewhat complementary, but the extent of complementary benefits strongly depends on spatial factors and management approaches. Certain management actions substantially increase achievable benefits, including agency coordination and the use of prescribed burns to remove juniper. Critically, our results indicate that juniper management strategies designed to increase cattle forage do not necessarily achieve measurable sage-grouse benefits, underscoring the need for program evaluation and monitoring.
Seeing is believing: information content and behavioural response to visual and chemical cues
Gonzálvez, Francisco G.; Rodríguez-Gironés, Miguel A.
2013-01-01
Predator avoidance and foraging often pose conflicting demands. Animals can decrease mortality risk searching for predators, but searching decreases foraging time and hence intake. We used this principle to investigate how prey should use information to detect, assess and respond to predation risk from an optimal foraging perspective. A mathematical model showed that solitary bees should increase flower examination time in response to predator cues and that the rate of false alarms should be negatively correlated with the relative value of the flower explored. The predatory ant, Oecophylla smaragdina, and the harmless ant, Polyrhachis dives, differ in the profile of volatiles they emit and in their visual appearance. As predicted, the solitary bee Nomia strigata spent more time examining virgin flowers in presence of predator cues than in their absence. Furthermore, the proportion of flowers rejected decreased from morning to noon, as the relative value of virgin flowers increased. In addition, bees responded differently to visual and chemical cues. While chemical cues induced bees to search around flowers, bees detecting visual cues hovered in front of them. These strategies may allow prey to identify the nature of visual cues and to locate the source of chemical cues. PMID:23698013
Coexistence and community structure in a consumer resource model with implicit stoichiometry.
Orlando, Paul A; Brown, Joel S; Wise, David H
2012-09-01
We combine stoichiometry theory and optimal foraging theory into the MacArthur consumer-resource model. This generates predictions for diet choice, coexistence, and community structure of heterotroph communities. Tradeoffs in consumer resource-garnering traits influence community outcomes. With scarce resources, consumers forage opportunistically for complementary resources and may coexist via tradeoffs in resource encounter rates. In contrast to single currency models, stoichiometry permits multiple equilibria. These alternative stable states occur when tradeoffs in resource encounter rates are stronger than tradeoffs in elemental conversion efficiencies. With abundant resources consumers exhibit partially selective diets for essential resources and may coexist via tradeoffs in elemental conversion efficiencies. These results differ from single currency models, where adaptive diet selection is either opportunistic or selective. Interestingly, communities composed of efficient consumers share many of the same properties as communities based on substitutable resources. However, communities composed of relatively inefficient consumers behave similarly to plant communities as characterized by Tilman's consumer resource theory. The results of our model indicate that the effects of stoichiometry theory on community ecology are dependent upon both consumer foraging behavior and the nature of resource garnering tradeoffs. Copyright © 2012 Elsevier Inc. All rights reserved.
Farzan, Shahla; Young, Derek J N; Dedrick, Allison G; Hamilton, Matthew; Porse, Erik C; Coates, Peter S; Sampson, Gabriel
2015-09-01
Western juniper (Juniperus occidentalis subsp. occidentalis) range expansion into sagebrush steppe ecosystems has affected both native wildlife and economic livelihoods across western North America. The potential listing of the greater sage-grouse (Centrocercus urophasianus) under the U.S. Endangered Species Act has spurred a decade of juniper removal efforts, yet limited research has evaluated program effectiveness. We used a multi-objective spatially explicit model to identify optimal juniper removal sites in Northeastern California across weighted goals for ecological (sage-grouse habitat) and economic (cattle forage production) benefits. We also extended the analysis through alternative case scenarios that tested the effects of coordination among federal agencies, budgetary constraints, and the use of fire as a juniper treatment method. We found that sage-grouse conservation and forage production goals are somewhat complementary, but the extent of complementary benefits strongly depends on spatial factors and management approaches. Certain management actions substantially increase achievable benefits, including agency coordination and the use of prescribed burns to remove juniper. Critically, our results indicate that juniper management strategies designed to increase cattle forage do not necessarily achieve measurable sage-grouse benefits, underscoring the need for program evaluation and monitoring.
Gautestad, Arild O; Mysterud, Atle
2013-01-01
The Lévy flight foraging hypothesis predicts a transition from scale-free Lévy walk (LW) to scale-specific Brownian motion (BM) as an animal moves from resource-poor towards resource-rich environment. However, the LW-BM continuum implies a premise of memory-less search, which contradicts the cognitive capacity of vertebrates. We describe methods to test if apparent support for LW-BM transitions may rather be a statistical artifact from movement under varying intensity of site fidelity. A higher frequency of returns to previously visited patches (stronger site fidelity) may erroneously be interpreted as a switch from LW towards BM. Simulations of scale-free, memory-enhanced space use illustrate how the ratio between return events and scale-free exploratory movement translates to varying strength of site fidelity. An expanded analysis of GPS data of 18 female red deer, Cervus elaphus, strengthens previous empirical support of memory-enhanced and scale-free space use in a northern forest ecosystem. A statistical mechanical model architecture that describes foraging under environment-dependent variation of site fidelity may allow for higher realism of optimal search models and movement ecology in general, in particular for vertebrates with high cognitive capacity.
Vision for navigation: What can we learn from ants?
Graham, Paul; Philippides, Andrew
2017-09-01
The visual systems of all animals are used to provide information that can guide behaviour. In some cases insects demonstrate particularly impressive visually-guided behaviour and then we might reasonably ask how the low-resolution vision and limited neural resources of insects are tuned to particular behavioural strategies. Such questions are of interest to both biologists and to engineers seeking to emulate insect-level performance with lightweight hardware. One behaviour that insects share with many animals is the use of learnt visual information for navigation. Desert ants, in particular, are expert visual navigators. Across their foraging life, ants can learn long idiosyncratic foraging routes. What's more, these routes are learnt quickly and the visual cues that define them can be implemented for guidance independently of other social or personal information. Here we review the style of visual navigation in solitary foraging ants and consider the physiological mechanisms that underpin it. Our perspective is to consider that robust navigation comes from the optimal interaction between behavioural strategy, visual mechanisms and neural hardware. We consider each of these in turn, highlighting the value of ant-like mechanisms in biomimetic endeavours. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.
Adaptability of non-genetic diversity in bacterial chemotaxis
Frankel, Nicholas W; Pontius, William; Dufour, Yann S; Long, Junjiajia; Hernandez-Nunez, Luis; Emonet, Thierry
2014-01-01
Bacterial chemotaxis systems are as diverse as the environments that bacteria inhabit, but how much environmental variation can cells tolerate with a single system? Diversification of a single chemotaxis system could serve as an alternative, or even evolutionary stepping-stone, to switching between multiple systems. We hypothesized that mutations in gene regulation could lead to heritable control of chemotactic diversity. By simulating foraging and colonization of E. coli using a single-cell chemotaxis model, we found that different environments selected for different behaviors. The resulting trade-offs show that populations facing diverse environments would ideally diversify behaviors when time for navigation is limited. We show that advantageous diversity can arise from changes in the distribution of protein levels among individuals, which could occur through mutations in gene regulation. We propose experiments to test our prediction that chemotactic diversity in a clonal population could be a selectable trait that enables adaptation to environmental variability. DOI: http://dx.doi.org/10.7554/eLife.03526.001 PMID:25279698
Opdahl, Lee James; Gonda, Michael G.
2018-01-01
The ability of ruminants to utilize cellulosic biomass is a result of the metabolic activities of symbiotic microbial communities that reside in the rumen. To gain further insight into this complex microbial ecosystem, a selection-based batch culturing approach was used to identify candidate cellulose-utilizing bacterial consortia. Prior to culturing with cellulose, rumen contents sampled from three beef cows maintained on a forage diet shared 252 Operational Taxonomic Units (OTUs), accounting for 41.6–50.0% of bacterial 16S rRNA gene sequences in their respective samples. Despite this high level of overlap, only one OTU was enriched in cellulose-supplemented cultures from all rumen samples. Otherwise, each set of replicate cellulose supplemented cultures originating from a sampled rumen environment was found to have a distinct bacterial composition. Two of the seven most enriched OTUs were closely matched to well-established rumen cellulose utilizers (Ruminococcus flavefaciens and Fibrobacter succinogenes), while the others did not show high nucleotide sequence identity to currently defined bacterial species. The latter were affiliated to Prevotella (1 OTU), Ruminococcaceae (3 OTUs), and the candidate phylum Saccharibacteria (1 OTU), respectively. While further investigations will be necessary to elucidate the metabolic function(s) of each enriched OTU, these results together further support cellulose utilization as a ruminal metabolic trait shared across vast phylogenetic distances, and that the rumen is an environment conducive to the selection of a broad range of microbial adaptations for the digestion of plant structural polysaccharides. PMID:29495256
Opdahl, Lee James; Gonda, Michael G; St-Pierre, Benoit
2018-02-24
The ability of ruminants to utilize cellulosic biomass is a result of the metabolic activities of symbiotic microbial communities that reside in the rumen. To gain further insight into this complex microbial ecosystem, a selection-based batch culturing approach was used to identify candidate cellulose-utilizing bacterial consortia. Prior to culturing with cellulose, rumen contents sampled from three beef cows maintained on a forage diet shared 252 Operational Taxonomic Units (OTUs), accounting for 41.6-50.0% of bacterial 16S rRNA gene sequences in their respective samples. Despite this high level of overlap, only one OTU was enriched in cellulose-supplemented cultures from all rumen samples. Otherwise, each set of replicate cellulose supplemented cultures originating from a sampled rumen environment was found to have a distinct bacterial composition. Two of the seven most enriched OTUs were closely matched to well-established rumen cellulose utilizers ( Ruminococcus flavefaciens and Fibrobacter succinogenes ), while the others did not show high nucleotide sequence identity to currently defined bacterial species. The latter were affiliated to Prevotella (1 OTU), Ruminococcaceae (3 OTUs), and the candidate phylum Saccharibacteria (1 OTU), respectively. While further investigations will be necessary to elucidate the metabolic function(s) of each enriched OTU, these results together further support cellulose utilization as a ruminal metabolic trait shared across vast phylogenetic distances, and that the rumen is an environment conducive to the selection of a broad range of microbial adaptations for the digestion of plant structural polysaccharides.
Assessing Social – Ecological Trade-Offs to Advance Ecosystem-Based Fisheries Management
Voss, Rudi; Quaas, Martin F.; Schmidt, Jörn O.; Tahvonen, Olli; Lindegren, Martin; Möllmann, Christian
2014-01-01
Modern resource management faces trade-offs in the provision of various ecosystem goods and services to humanity. For fisheries management to develop into an ecosystem-based approach, the goal is not only to maximize economic profits, but to consider equally important conservation and social equity goals. We introduce such a triple-bottom line approach to the management of multi-species fisheries using the Baltic Sea as a case study. We apply a coupled ecological-economic optimization model to address the actual fisheries management challenge of trading-off the recovery of collapsed cod stocks versus the health of ecologically important forage fish populations. Management strategies based on profit maximization would rebuild the cod stock to high levels but may cause the risk of stock collapse for forage species with low market value, such as Baltic sprat (Fig. 1A). Economically efficient conservation efforts to protect sprat would be borne almost exclusively by the forage fishery as sprat fishing effort and profits would strongly be reduced. Unless compensation is paid, this would challenge equity between fishing sectors (Fig. 1B). Optimizing equity while respecting sprat biomass precautionary levels would reduce potential profits of the overall Baltic fishery, but may offer an acceptable balance between overall profits, species conservation and social equity (Fig. 1C). Our case study shows a practical example of how an ecosystem-based fisheries management will be able to offer society options to solve common conflicts between different resource uses. Adding equity considerations to the traditional trade-off between economy and ecology will greatly enhance credibility and hence compliance to management decisions, a further footstep towards healthy fish stocks and sustainable fisheries in the world ocean. PMID:25268117
Mangipane, Lindsey S.; Belant, Jerrold L.; Lafferty, Diana J. R.; Gustine, David D.; Hiller, Tim L.; Colvin, Michael E.; Mangipane, Buck A.; Hilderbrand, Grant V.
2018-01-01
Behavioral differences within a population can allow use of a greater range of resources among individuals. The brown bear (Ursus arctos) is a generalist omnivore that occupies diverse habitats and displays considerable plasticity in food use. We evaluated whether brown bear foraging that resulted in deviations from a proposed optimal diet influenced body condition and, in turn, denning duration in Lake Clark National Park and Preserve, Alaska. To assess assimilated diet, we used sectioned guard hair samples (n = 23) collected in autumn to determine stable carbon and nitrogen isotope ratios. To index proportional contributions of meat and vegetation to assimilated diets, we compared the carbon (δ13C) and nitrogen (δ15N) values of hair samples with the values identified for major food categories. We then compared percentage body fat and body mass in relation to the proportion of assimilated meat in the diet using linear models. We also examined the influence of autumn percentage body fat and mass on denning duration. Percentage body fat was not influenced by the proportion of assimilated meat in the diet. Additionally, percentage body fat and body mass did not influence denning duration. However, body mass of bears assimilating proportionately more meat was greater than bears assimilating less meat. Our results provide support for previous findings that larger bears consume higher amounts of protein to maintain their body size and therefore forage further from the proposed optimal diet. Additionally, our results demonstrate that individuals can achieve similar biological outcomes (e.g., percentage body fat) despite variable foraging strategies, suggesting that individuals within generalist populations may confer an adaptive advantage through behavioral plasticity.
Wittek, Peter; Liu, Ying-Hsang; Darányi, Sándor; Gedeon, Tom; Lim, Ik Soo
2016-01-01
Information foraging connects optimal foraging theory in ecology with how humans search for information. The theory suggests that, following an information scent, the information seeker must optimize the tradeoff between exploration by repeated steps in the search space vs. exploitation, using the resources encountered. We conjecture that this tradeoff characterizes how a user deals with uncertainty and its two aspects, risk and ambiguity in economic theory. Risk is related to the perceived quality of the actually visited patch of information, and can be reduced by exploiting and understanding the patch to a better extent. Ambiguity, on the other hand, is the opportunity cost of having higher quality patches elsewhere in the search space. The aforementioned tradeoff depends on many attributes, including traits of the user: at the two extreme ends of the spectrum, analytic and wholistic searchers employ entirely different strategies. The former type focuses on exploitation first, interspersed with bouts of exploration, whereas the latter type prefers to explore the search space first and consume later. Our findings from an eye-tracking study of experts' interactions with novel search interfaces in the biomedical domain suggest that user traits of cognitive styles and perceived search task difficulty are significantly correlated with eye gaze and search behavior. We also demonstrate that perceived risk shifts the balance between exploration and exploitation in either type of users, tilting it against vs. in favor of ambiguity minimization. Since the pattern of behavior in information foraging is quintessentially sequential, risk and ambiguity minimization cannot happen simultaneously, leading to a fundamental limit on how good such a tradeoff can be. This in turn connects information seeking with the emergent field of quantum decision theory.
Reynolds, Andrew M.; Lihoreau, Mathieu; Chittka, Lars
2013-01-01
Pollinating bees develop foraging circuits (traplines) to visit multiple flowers in a manner that minimizes overall travel distance, a task analogous to the travelling salesman problem. We report on an in-depth exploration of an iterative improvement heuristic model of bumblebee traplining previously found to accurately replicate the establishment of stable routes by bees between flowers distributed over several hectares. The critical test for a model is its predictive power for empirical data for which the model has not been specifically developed, and here the model is shown to be consistent with observations from different research groups made at several spatial scales and using multiple configurations of flowers. We refine the model to account for the spatial search strategy of bees exploring their environment, and test several previously unexplored predictions. We find that the model predicts accurately 1) the increasing propensity of bees to optimize their foraging routes with increasing spatial scale; 2) that bees cannot establish stable optimal traplines for all spatial configurations of rewarding flowers; 3) the observed trade-off between travel distance and prioritization of high-reward sites (with a slight modification of the model); 4) the temporal pattern with which bees acquire approximate solutions to travelling salesman-like problems over several dozen foraging bouts; 5) the instability of visitation schedules in some spatial configurations of flowers; 6) the observation that in some flower arrays, bees' visitation schedules are highly individually different; 7) the searching behaviour that leads to efficient location of flowers and routes between them. Our model constitutes a robust theoretical platform to generate novel hypotheses and refine our understanding about how small-brained insects develop a representation of space and use it to navigate in complex and dynamic environments. PMID:23505353
Optimization of 15 parameters influencing the long-term survival of bacteria in aquatic systems
NASA Technical Reports Server (NTRS)
Obenhuber, D. C.
1993-01-01
NASA is presently engaged in the design and development of a water reclamation system for the future space station. A major concern in processing water is the control of microbial contamination. As a means of developing an optimal microbial control strategy, studies were undertaken to determine the type and amount of contamination which could be expected in these systems under a variety of changing environmental conditions. A laboratory-based Taguchi optimization experiment was conducted to determine the ideal settings for 15 parameters which influence the survival of six bacterial species in aquatic systems. The experiment demonstrated that the bacterial survival period could be decreased significantly by optimizing environmental conditions.
Large Scale Bacterial Colony Screening of Diversified FRET Biosensors
Litzlbauer, Julia; Schifferer, Martina; Ng, David; Fabritius, Arne; Thestrup, Thomas; Griesbeck, Oliver
2015-01-01
Biosensors based on Förster Resonance Energy Transfer (FRET) between fluorescent protein mutants have started to revolutionize physiology and biochemistry. However, many types of FRET biosensors show relatively small FRET changes, making measurements with these probes challenging when used under sub-optimal experimental conditions. Thus, a major effort in the field currently lies in designing new optimization strategies for these types of sensors. Here we describe procedures for optimizing FRET changes by large scale screening of mutant biosensor libraries in bacterial colonies. We describe optimization of biosensor expression, permeabilization of bacteria, software tools for analysis, and screening conditions. The procedures reported here may help in improving FRET changes in multiple suitable classes of biosensors. PMID:26061878
A model of extracellular enzymes in free-living microbes: which strategy pays off?
Traving, Sachia J; Thygesen, Uffe H; Riemann, Lasse; Stedmon, Colin A
2015-11-01
An initial modeling approach was applied to analyze how a single, nonmotile, free-living, heterotrophic bacterial cell may optimize the deployment of its extracellular enzymes. Free-living cells live in a dilute and complex substrate field, and to gain enough substrate, their extracellular enzymes must be utilized efficiently. The model revealed that surface-attached and free enzymes generate unique enzyme and substrate fields, and each deployment strategy has distinctive advantages. For a solitary cell, surface-attached enzymes are suggested to be the most cost-efficient strategy. This strategy entails potential substrates being reduced to very low concentrations. Free enzymes, on the other hand, generate a radically different substrate field, which suggests significant benefits for the strategy if free cells engage in social foraging or experience high substrate concentrations. Swimming has a slight positive effect for the attached-enzyme strategy, while the effect is negative for the free-enzyme strategy. The results of this study suggest that specific dissolved organic compounds in the ocean likely persist below a threshold concentration impervious to biological utilization. This could help explain the persistence and apparent refractory state of oceanic dissolved organic matter (DOM). Microbial extracellular enzyme strategies, therefore, have important implications for larger-scale processes, such as shaping the role of DOM in ocean carbon sequestration. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Souza, Mayara S T; de Baura, Valter A; Santos, Sandra A; Fernandes-Júnior, Paulo Ivan; Reis Junior, Fábio B; Marques, Maria Rita; Paggi, Gecele Matos; da Silva Brasil, Marivaine
2017-04-01
A sustainable alternative to improve yield and the nutritive value of forage is the use of plant growth-promoting bacteria (PGPB) that release nutrients, synthesize plant hormones and protect against phytopathogens (among other mechanisms). Azospirillum genus is considered an important PGPB, due to the beneficial effects observed when inoculated in several plants. The aim of this study was to evaluate the diversity of new Azospirillum isolates and select bacteria according to the plant growth promotion ability in three forage species from the Brazilian Pantanal floodplain: Axonopus purpusii, Hymenachne amplexicaulis and Mesosetum chaseae. The identification of bacterial isolates was performed using specific primers for Azospirillum in PCR reactions and partial sequencing of the 16S rRNA and nifH genes. The isolates were evaluated in vitro considering biological nitrogen fixation (BNF) and indole-3-acetic acid (IAA) production. Based on the results of BNF and IAA, selected isolates and two reference strains were tested by inoculation. At 31 days after planting the plant height, shoot dry matter, shoot protein content and root volume were evaluated. All isolates were able to fix nitrogen and produce IAA, with values ranging from 25.86 to 51.26 mg N mL -1 and 107-1038 µmol L -1 , respectively. The inoculation of H. amplexicaulis and A. purpusii increased root volume and shoot dry matter. There were positive effects of Azospirillum inoculation on Mesosetum chaseae regarding plant height, shoot dry matter and root volume. Isolates MAY1, MAY3 and MAY12 were considered promising for subsequent inoculation studies in field conditions.
Judkins, M B; Krysl, L J; Barton, R K; Holcombe, D W; Gunter, S A; Broesder, J T
1991-09-01
Four ruminally cannulated Holstein steers (average BW 303 kg) were used in a 4 x 4 Latin square design digestion trial to study the influence of daily cottonseed meal (CSM; 1.6 g of CP/kg of BW) supplementation time on forage intake and ruminal fluid kinetics and fermentation. Steers were housed individually in tie stalls and were fed chopped fescue hay on an ad libitum basis at 0600 and 1400. Treatments were 1) control, grass hay only (CON) and grass hay and CSM fed once daily at 2) 0600 (EAM) 3) 1000 (MAM), or 4) 1400 (PM). Ruminal NH3 N concentrations reflected a time of supplementation x sampling time interaction (P less than .05); CON steers had the lowest (P less than .05) ruminal NH3 N concentrations at all times other than at 0600, 1000, 1200, and 2400, when they did not differ (P greater than .05) from at least one of the supplemented groups. Forage intake, ratio of bacterial purine:N, rate of DM and NDF disappearance, and ruminal fluid kinetics were not influenced (P greater than .05) by supplementation time. Total ruminal VFA differed (P less than .05) between CON and supplemented steers, as well as among supplemented steers (linear and quadratic effects P less than .05). Acetate, propionate, and valerate proportions were influenced (P less than .05) by a sampling time X supplementation time interaction. Under the conditions of this study, greater peak ammonia concentrations with morning supplementation than with afternoon supplementation did not stimulate ruminal fermentation or rate of NDF disappearance.
Diversity of Hindgut Bacterial Population in Subterranean Termite, Reticulitermes flavipes
Olanrewaju Raji; Dragica Jeremic-Nikolic; Juliet D. Tang
2017-01-01
The termite hindgut contains a bacterial community that symbiotically aids in digestion of cellulosic materials. For this paper, a species survey of bacterial hindgut symbionts in termites collected from Saucier, Mississippi was examined. Two methods were tested for optimal genetic material isolation. Genomic DNA was isolated from the hindgut luminal contents of five...
Seashols-Williams, Sarah; Green, Raquel; Wohlfahrt, Denise; Brand, Angela; Tan-Torres, Antonio Limjuco; Nogales, Francy; Brooks, J Paul; Singh, Baneshwar
2018-05-17
Sequencing and classification of microbial taxa within forensically relevant biological fluids has the potential for applications in the forensic science and biomedical fields. The quantity of bacterial DNA from human samples is currently estimated based on quantity of total DNA isolated. This method can miscalculate bacterial DNA quantity due to the mixed nature of the sample, and consequently library preparation is often unreliable. We developed an assay that can accurately and specifically quantify bacterial DNA within a mixed sample for reliable 16S ribosomal DNA (16S rDNA) library preparation and high throughput sequencing (HTS). A qPCR method was optimized using universal 16S rDNA primers, and a commercially available bacterial community DNA standard was used to develop a precise standard curve. Following qPCR optimization, 16S rDNA libraries from saliva, vaginal and menstrual secretions, urine, and fecal matter were amplified and evaluated at various DNA concentrations; successful HTS data were generated with as low as 20 pg of bacterial DNA. Changes in bacterial DNA quantity did not impact observed relative abundances of major bacterial taxa, but relative abundance changes of minor taxa were observed. Accurate quantification of microbial DNA resulted in consistent, successful library preparations for HTS analysis. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Zhang, Jun; Shi, Haitao; Wang, Yajing; Li, Shengli; Cao, Zhijun; Ji, Shoukun; He, Yuan; Zhang, Hongtao
2017-01-01
A better understanding of global ruminal microbiota and metabolites under extensive feeding conditions is a prerequisite for optimizing rumen function and improving ruminant feed efficiency. Furthermore, the gap between the information on the ruminal microbiota and metabolites needs to be bridged. The aim of this study was to investigate the effects of a wide range of forage to concentrate ratios (F:C) on changes and interactions of ruminal microbiota and metabolites. Four diets with different F:C (80:20, 60:40, 40:60, and 20:80) were limit-fed to 24 Holstein heifers, and Illumina MiSeq sequencing and gas chromatography time-of-flight/mass spectrometry were used to investigate the profile changes of the ruminal microbes and metabolites, and the interaction between them. The predominant bacterial phyla in the rumen were Bacteroidetes (57.2 ± 2.6%) and Firmicutes (26.8 ± 1.6%), and the predominant anaerobic fungi were Neocallimastigomycota (64.3 ± 3.8%) and Ascomycota (22.6 ± 2.4%). In total, 44, 9, 25, and 2 genera, respectively, were identified as the core rumen bacteria, ciliate protozoa, anaerobic fungi, and archaea communities across all samples. An increased concentrate level linearly decreased the relative abundance of cellulolytic bacteria and ciliates, namely Fibrobacter, Succinimonas, Polyplastron, and Ostracodinium (q < 0.05), and linearly increased the relative abundance of Entodinium (q = 0.04), which is a non-fibrous carbohydrate degrader. Dietary F:C had no effect on the communities of anaerobic fungi and archaea. Rumen metabolomics analysis revealed that ruminal amino acids, lipids, organic acids, and carbohydrates were altered significantly by altering the dietary F:C. With increasing dietary concentrate levels, the proportions of propionate and butyrate linearly increased in the rumen (P ≤ 0.01). Correlation analysis revealed that there was some utilization relationship or productive association between candidate metabolites and affected microbe groups. This study provides a better understanding of ruminal microbiota and metabolites under a wide range of dietary F:C, which could further reveal integrative information of rumen function and lead to an improvement in ruminant production. PMID:29170660
Odili, Julius Beneoluchi; Mohmad Kahar, Mohd Nizam; Noraziah, A
2017-01-01
In this paper, an attempt is made to apply the African Buffalo Optimization (ABO) to tune the parameters of a PID controller for an effective Automatic Voltage Regulator (AVR). Existing metaheuristic tuning methods have been proven to be quite successful but there were observable areas that need improvements especially in terms of the system's gain overshoot and steady steady state errors. Using the ABO algorithm where each buffalo location in the herd is a candidate solution to the Proportional-Integral-Derivative parameters was very helpful in addressing these two areas of concern. The encouraging results obtained from the simulation of the PID Controller parameters-tuning using the ABO when compared with the performance of Genetic Algorithm PID (GA-PID), Particle-Swarm Optimization PID (PSO-PID), Ant Colony Optimization PID (ACO-PID), PID, Bacteria-Foraging Optimization PID (BFO-PID) etc makes ABO-PID a good addition to solving PID Controller tuning problems using metaheuristics.
Dervishi, E; Joy, M; Alvarez-Rodriguez, J; Serrano, M; Calvo, J H
2012-01-01
Meat intramuscular fat (IMF) contributes to meat quality and consumer acceptance. Molecular events that occur during IMF deposition and the identification of genes that are differentially expressed during this process are important to the design of an optimal nutrition plan for animals. In the present study, we examined the effect of the forage type (grazing vs. hay pasture) fed to ewes and the effect of lamb sex on the LM fatty acid (FA) profile and gene expression of suckling lambs (10 to 12 kg of BW at slaughter); ewes received pasture hay (PH) or grazed pasture (GRE). Forage type had a significant effect on IMF FA profile. Ewes grazing green forage (GRE) promoted the formation and deposition of vaccenic acid (C18:1n-7), CLA, and PUFA n-3 in LM from their suckling lambs (P < 0.05). We found that forage type affected the expression of the sterol regulatory element binding transcription factor 1 (SREBF1) gene in females. However, in males, it modulated stearoyl CoA desaturase (SCD) gene expression (P < 0.05). Moreover, our results showed that females, independent of the diet of the ewes (PH or GRE), are predisposed to develop fat and to upregulate the expression of key genes of transcriptional factors PPARA, CEBPB, SREBF1, and lipoprotein lipase (LPL) and SCD (P < 0.05). The data suggest that SREBF1, SCD, and most likely CEBPB gene expression in young suckling lambs is modulated by both lamb sex and forage type fed to ewes. Fatty acid indicators PUFA, n-6/n-3, CLA, and SFA are closely related to LPL, SCD, PPARA, and CEBPB gene expression depending on animal sex or the diet of ewes. This study suggests that grazing pasture affects FA composition promoting greater vaccenic, CLA, and total PUFA n-3 FA in female and male suckling lambs, and it is mediated through the regulation of lipogenic enzyme expression.
Pierre-Olivier, Jean; Bradley, Robert L; Tremblay, Jean-Pierre; Côté, Steeve D
2015-09-01
An important asset for the management of wild ungulates is recognizing the spatial distribution of forage quality across heterogeneous landscapes. To do so typically requires knowledge of which plant species are eaten, in what abundance they are eaten, and what their nutritional quality might be. Acquiring such data, however, may be difficult and time consuming. Here, we are proposing a rapid and cost-effective forage quality monitoring tool that combines near infrared (NIR) spectra of fecal samples and easily obtained data on plant community composition. Our approach rests on the premise that NIR spectra of fecal samples collected within low population density exclosures reflect the optimal forage quality of a given landscape. Forage quality can thus be based on the Mahalanobis distance of fecal spectral scans across the landscape relative to fecal spectral scans inside exclosures (referred to as DISTEX). The Gi* spatial autocorrelation statistic can then be applied among neighboring DISTEX values to detect and map "hot spots" and "cold spots" of nutritional quality over the landscape. We tested our approach in a heterogeneous boreal landscape on Anticosti Island (Québec, Canada), where white-tailed deer (Odocoileus virginianus) populations over the landscape have ranged from 20 to 50 individuals/km2 for at least 80 years, resulting in a loss of most palatable and nutritious plant species. Our results suggest that hot spots of forage quality occur when old-growth balsam fir stands comprise >39.8% of 300 ha neighborhoods, whereas cold spots occur in laggs (i.e., transition zones from forest to peatland). In terms of ground-level indicator plant species, the presence of Canada bunchberry (Cornus canadensis) was highly correlated with hot spots, whereas tamarack (Larix laricina) was highly correlated with cold spots. Mean DISTEX values were positively and significantly correlated with the neutral detergent fiber and acid detergent lignin contents of feces. While our approach would need more independent field trials before it is fully validated, its low cost and ease of execution should make it a valuable tool for advancing both the basic and applied ecology of large herbivores.
NASA Astrophysics Data System (ADS)
Dragon, Anne-Cecile; Monestiez, P.; Bar-Hen, A.; Guinet, C.
2010-10-01
In the Southern Ocean, mesoscale features, such as fronts and eddies, have been shown to have a significant impact in structuring and enhancing primary productivity. They are therefore likely to influence the spatial structure of prey fields and play a key role in the creation of preferred foraging regions for oceanic top-predators. Optimal foraging theory predicts that predators should adjust their movement behaviour in relation to prey density. While crossing areas with sufficient prey density, we expect predators would change their behaviour by, for instance, decreasing their speed and increasing their turning frequency. Diving predators would as well increase the useful part of their dive i.e. increase bottom-time thereby increasing the fraction of time spent capturing prey. Southern elephant seals from the Kerguelen population have several foraging areas: in Antarctic waters, on the Kerguelen Plateau and in the interfrontal zone between the Subtropical and Polar Fronts. This study investigated how the movement and diving behaviour of 22 seals equipped with satellite-relayed data loggers changed in relation to mesoscale structures typical of the interfrontal zone. We studied the links between oceanographic variables including temperature and sea level anomalies, and diving and movement behaviour such as displacement speed, diving duration and bottom-time. Correlation coefficients between each of the time series were calculated and their significance tested with a parametric bootstrap. We focused on oceanographic changes, both temporal and spatial, occurring during behavioural transitions in order to clarify the connections between the behaviour and the marine environment of the animals. We showed that a majority of seals displayed a specific foraging behaviour related to the presence of both cyclonic and anticyclonic eddies. We characterized mesoscale oceanographic zones as either favourable or unfavourable based on the intensity of foraging activity as identified by the behavioural variables. Our findings highlight the importance of mesoscale features for top-predators’ behaviour and introduce a new approach for evaluating the importance to the seals of the origin and intensity of these features.
Iebba, Valerio; Totino, Valentina; Santangelo, Floriana; Gagliardi, Antonella; Ciotoli, Luana; Virga, Alessandra; Ambrosi, Cecilia; Pompili, Monica; De Biase, Riccardo V; Selan, Laura; Artini, Marco; Pantanella, Fabrizio; Mura, Francesco; Passariello, Claudio; Nicoletti, Mauro; Nencioni, Lucia; Trancassini, Maria; Quattrucci, Serena; Schippa, Serena
2014-01-01
Bdellovibrio bacteriovorus is a predator bacterial species found in the environment and within the human gut, able to attack Gram-negative prey. Cystic fibrosis (CF) is a genetic disease which usually presents lung colonization by Pseudomonas aeruginosa or Staphylococcus aureus biofilms. Here, we investigated the predatory behavior of B. bacteriovorus against these two pathogenic species with: (1) broth culture; (2) "static" biofilms; (3) field emission scanning electron microscope (FESEM); (4) "flow" biofilms; (5) zymographic technique. We had the first evidence of B. bacteriovorus survival with a Gram-positive prey, revealing a direct cell-to-cell contact with S. aureus and a new "epibiotic" foraging strategy imaged with FESEM. Mean attaching time of HD100 to S. aureus cells was 185 s, while "static" and "flow" S. aureus biofilms were reduced by 74 (at 24 h) and 46% (at 20 h), respectively. Furthermore, zymograms showed a differential bacteriolytic activity exerted by the B. bacteriovorus lysates on P. aeruginosa and S. aureus. The dual foraging system against Gram-negative (periplasmic) and Gram-positive (epibiotic) prey could suggest the use of B. bacteriovorus as a "living antibiotic" in CF, even if further studies are required to simulate its in vivo predatory behavior.
Rúa, Megan A.; Wilson, Emily C.; Steele, Sarah; Munters, Arielle R.; Hoeksema, Jason D.; Frank, Anna C.
2016-01-01
Studies of the ecological and evolutionary relationships between plants and their associated microbes have long been focused on single microbes, or single microbial guilds, but in reality, plants associate with a diverse array of microbes from a varied set of guilds. As such, multitrophic interactions among plant-associated microbes from multiple guilds represent an area of developing research, and can reveal how complex microbial communities are structured around plants. Interactions between coniferous plants and their associated microbes provide a good model system for such studies, as conifers host a suite of microorganisms including mutualistic ectomycorrhizal (ECM) fungi and foliar bacterial endophytes. To investigate the potential role ECM fungi play in structuring foliar bacterial endophyte communities, we sampled three isolated, native populations of Monterey pine (Pinus radiata), and used constrained analysis of principal coordinates to relate the community matrices of the ECM fungi and bacterial endophytes. Our results suggest that ECM fungi may be important factors for explaining variation in bacterial endophyte communities but this effect is influenced by population and environmental characteristics, emphasizing the potential importance of other factors — biotic or abiotic — in determining the composition of bacterial communities. We also classified ECM fungi into categories based on known fungal traits associated with substrate exploration and nutrient mobilization strategies since variation in these traits allows the fungi to acquire nutrients across a wide range of abiotic conditions and may influence the outcome of multi-species interactions. Across populations and environmental factors, none of the traits associated with fungal foraging strategy types significantly structured bacterial assemblages, suggesting these ECM fungal traits are not important for understanding endophyte-ECM interactions. Overall, our results suggest that both biotic species interactions and environmental filtering are important for structuring microbial communities but emphasize the need for more research into these interactions. PMID:27065966
Temporal changes of the bacterial community colonizing wheat straw in the cow rumen.
Jin, Wei; Wang, Ying; Li, Yuanfei; Cheng, Yanfen; Zhu, Weiyun
2018-04-01
This study used Miseq pyrosequencing and scanning electron microscopy to investigate the temporal changes in the bacterial community tightly attached to wheat straw in the cow rumen. The wheat straw was incubated in the rumens and samples were recovered at various times. The wheat straw degradation exhibited three phases: the first degradation phase occurred within 0.5 h, and the second degradation phase occurred after 6 h, with a stalling phase occurring between 0.5 and 6 h. Scanning electron microscopy revealed the colonization of the microorganisms on the wheat straw over time. The bacterial communities at 0.5, 6, 24, and 72 h were determined, corresponding to the degradation phases. Firmicutes and Bacteroidetes were the two most dominant phyla in the bacterial communities at the four time points. Principal coordinate analysis (PCoA) showed that the bacterial communities at the four time points were distinct from each other. The wheat straw-associated bacteria stabilized at the phylum level after 0.5 h of rumen incubation, and only modest phylum-level and family-level changes were observed for most taxa between 0.5 h and 72 h. The relative abundance of the dominant genera, Butyrivibrio, Coprococcus, Ruminococcus, Succiniclasticum, Clostridium, Prevotella, YRC22, CF231, and Treponema, changed significantly over time (P < .05). However, at the genus level, unclassified taxa accounted for 70.3% ± 6.1% of the relative abundance, indicating their probable importance in the degradation of wheat straw as well as in the temporal changes of the bacterial community. Thus, understanding the function of these unclassified taxa is of great importance for targeted improvement of forage use efficiency in ruminants. Collectively, our results revealed distinct degradation phases of wheat straw and corresponding changes in the colonized bacterial community. Copyright © 2018 Elsevier Ltd. All rights reserved.
USDA-ARS?s Scientific Manuscript database
Although cationic amino acids (CAA) are consid-ered essential to maximize optimal growth of cattle, transporters responsible for CAA absorption by bovine small intestinal epithelia have not been described. This study was conducted to test 2 hypotheses: 1) the duo¬denal, jejunal, and ileal epithelia ...
Trees and livestock together: silvopasture research and application for Virginia farms
Gregory E. Frey; John H. Fike; Adam K. Downing; Marcus M. Comer; Timothy A. Mize; Christopher D. Teutsch
2017-01-01
Silvopasture is the intentional combination of trees, forage, and livestock on a parcel of land to optimize multiple outputs and has been shown to have benefits for production in various parts of the world. There is strong interest in silvopasture in the Southern United States, likely driven by multiple motivations. However, silvopasture practices have not been...
Gwak, Jae Ha; Lee, Bo Kyeong; Lee, Won Kyung; Sohn, So Young
2017-03-15
This study proposes a new framework for the selection of optimal locations for green roofs to achieve a sustainable urban ecosystem. The proposed framework selects building sites that can maximize the benefits of green roofs, based not only on the socio-economic and environmental benefits to urban residents, but also on the provision of urban foraging sites for honeybees. The framework comprises three steps. First, building candidates for green roofs are selected considering the building type. Second, the selected building candidates are ranked in terms of their expected socio-economic and environmental effects. The benefits of green roofs are improved energy efficiency and air quality, reduction of urban flood risk and infrastructure improvement costs, reuse of storm water, and creation of space for education and leisure. Furthermore, the estimated cost of installing green roofs is also considered. We employ spatial data to determine the expected effects of green roofs on each building unit, because the benefits and costs may vary depending on the location of the building. This is due to the heterogeneous spatial conditions. In the third step, the final building sites are proposed by solving the maximal covering location problem (MCLP) to determine the optimal locations for green roofs as urban honeybee foraging sites. As an illustrative example, we apply the proposed framework in Seoul, Korea. This new framework is expected to contribute to sustainable urban ecosystems. Copyright © 2016 Elsevier Ltd. All rights reserved.
Ibáñez, Javier; Martínez-Valderrama, Jaime
2018-07-01
This paper presents a modelling study that evaluated the global effectiveness of a range of group decision-making strategies for commercial farming areas in rangelands affected by temporal variations in forage production. The assessment utilised an integrated system dynamics model (86 equations) to examine the broad and long-term group decision outcomes. This model considers aspects usually neglected in related studies, such as the dynamics of the main local prices, the dynamics of the number of active farmers, the supplementary feeding of livestock, and certain behavioural traits of farmers and traders. The assessment procedure was based on an analysis of the outcomes of the model under 330,000 simulation scenarios. The results indicated that only if all the farmers in an area are either opportunistic or conservative that is, are either responsive or unresponsive to expected profits, the exploitation of the grazing resources were optimal in some senses. A widespread opportunism proved optimal only from an economic viewpoint. However, it is very unlikely that most of the farmers would agree to be opportunistic in practice. By contrast, a widespread conservatism, which in principle is perfectly feasible, proved optimal from economic, social, and ecological perspectives. Notably, it was found that the presence of a relatively small number of opportunistic farmers would suffice to considerably reduce the economic results of widespread conservatism. Copyright © 2018 Elsevier Ltd. All rights reserved.
Efficient search of multiple types of targets
NASA Astrophysics Data System (ADS)
Wosniack, M. E.; Raposo, E. P.; Viswanathan, G. M.; da Luz, M. G. E.
2015-12-01
Random searches often take place in fragmented landscapes. Also, in many instances like animal foraging, significant benefits to the searcher arise from visits to a large diversity of patches with a well-balanced distribution of targets found. Up to date, such aspects have been widely ignored in the usual single-objective analysis of search efficiency, in which one seeks to maximize just the number of targets found per distance traversed. Here we address the problem of determining the best strategies for the random search when these multiple-objective factors play a key role in the process. We consider a figure of merit (efficiency function), which properly "scores" the mentioned tasks. By considering random walk searchers with a power-law asymptotic Lévy distribution of step lengths, p (ℓ ) ˜ℓ-μ , with 1 <μ ≤3 , we show that the standard optimal strategy with μopt≈2 no longer holds universally. Instead, optimal searches with enhanced superdiffusivity emerge, including values as low as μopt≈1.3 (i.e., tending to the ballistic limit). For the general theory of random search optimization, our findings emphasize the necessity to correctly characterize the multitude of aims in any concrete metric to compare among possible candidates to efficient strategies. In the context of animal foraging, our results might explain some empirical data pointing to stronger superdiffusion (μ <2 ) in the search behavior of different animal species, conceivably associated to multiple goals to be achieved in fragmented landscapes.
Prey selection and foraging period of the predaceous rocky intertidal snail, Acanthina punctulata.
Menge, Jane Lubchenco
1974-12-01
The diet and foraging period of the neogastropod Acanthina punctulata were investigated in order to test various aspects of recent optimal foraging strategy models. This intertidal snail is an actively searching predator which preys on snails and barnacles by boring a hole in the shell and rasping out the flesh. Unlike many gastropod predators, Acanthina drill its gastropod prey at a very specific location on the columella, the thickest portion of the shell. Acanthina's foraging period can be interpreted as a compromise between maximizing the energy obtained by feeding and minimizing risk of mortality from exposure to wave action. That foraging period minimizing risk of being dislodged by waves appears to be during low tide when the predators can be in shallow pools. However, prey cannot be captured and consumed during one low tide. Thus Acanthina must be exposed during some high tides, and its strategy appears to be to restrict movement while exposed. Thus search is not initiated during high tide, but drilling and prey consumption are continued during that time. A snail not drilling or consuming prey seeks the protection of crevices or large anemones during high tide. A model is presented to indicate the relative amounts of risk and net energy for Acanthina at successive low and high tides. Predictions from the model, e.g., minimizing search time to avoid being exposed for an additional high tide and no movement during high tide are supported by field data. Acanthina commences foraging at the beginning of low tide, searches initially for preferred prey, but if unsuccessful, settles for a less preferred prey and begins drilling this prey before the end of low tide. Drilling and ingestion of prey occur during the following high and sometimes low tides. These "handling times" take 95% of the total foraging time in the field, while search time takes only 5% (pursuit time is negligible). Drilling alone accounts for 48-70% of the total drilling and eating time. In the laboratory, drilling and eating time for littorine food ranged from 15-60 hrs per item. The time to drill and eat a littorine increases exponentially with prey length. Since handling and processing prey items represents such a large investment of time, Acanthina would be expected to be very selective with respect to choice of prey items. Electivity coefficients from field data suggest that littorines are preferred over barnacles. Acanthina in the laboratory optimizes the amount of biomass ingested per time by choosing larger littorines over smaller ones and by preferring the more readily drilled species.It is suggested that Acanthina obtains information about the range of prey available initially by encountering and evaluating quite a few prey before making a selection, but usually by comparing an item of prey encountered to the prey it recently ingested. This latter method should provide a basis for evaluating prey encountered and has the advantage of reducing search time, the total amount of time spent feeding and thus the high-tide time exposed to wave action.In a similar manner, the decrease in the level of acceptability of prey as search time increases represents a compromise between maximizing energy obtained and minimizing risk from mortality.
Zhang, Zejun; Zhan, Xiangjiang; Yan, Li; Li, Ming; Hu, Jinchu; Wei, Fuwen
2009-01-01
Foraging patches can be described as a nested hierarchy of aggregated resources, implying that study of foraging by wild animals should be directed across different spatial scales. However, almost all previous research on habitat selection by the giant panda has concentrated upon one scale. In this research, we carried out a field study to understand foraging patch selection by giant pandas in winter at both microhabitat and feeding site scales and, for the first time, attempted to understand how long it would stay at the feeding sites before moving on. The field survey was conducted from November 2002 to March 2003 at Fengtongzhai Nature Reserve (102 degrees 48'-103 degrees 00' E, 30 degrees 19'-30 degrees 47' N), Baoxing County of Sichuan Province, China, to collect data in both microhabitat and control plots. The microhabitat plots were located by fresh feces or foraging traces left by giant pandas, and the control plots were established to reflect the environment. Within each microhabitat plot, one 1x1 m2 plot was centralized at the center of each feeding site, in which numbers of old bamboos and old shoots, including eaten and uneaten, were counted, respectively. The results showed that winter microhabitats selected by this species were characteristic of gentle slopes and high old-shoot proportions and that the latter was even higher at feeding sites. Two selection processes, namely, from the environment to microhabitats and from the latter to feeding sites, were found during this species' foraging patch utilization. Giant pandas preferred to eat old shoots to old bamboo at feeding sites in winter and did not leave unless old-shoot density fell to lower than the average in the environment. Both microhabitats and feeding sites selected by giant pandas were characteristic of high old-shoot density, indicating that the preferred food item had a significant influence upon its foraging patch selection. The preference for gentle slopes by giant pandas was presumed to save energy in movement or reflect the need to sit and free its fore-limbs to grasp bamboo culms when feeding but also seemed to be correlated with an easier access to old shoots. The utilization of old shoots at feeding sites was assumed to help maximize energy or nutrient intake during their foraging. The difference between microhabitat plots and control plots and between microhabitats and feeding sites uncovered a continuous selection process from the environment via microhabitats to feeding sites. The utilization of old shoots at feeding sites was parallel to the marginal value theorem. The selection and abandonment of foraging patches by giant pandas was an optimal behavioral strategy adapted to their peculiar food with high cellulose and low protein. Our results uncovered the importance of multiple scales in habitat selection research. To further understand the process of habitat selection, future research should pay more attention to resolve the question of how to locate foraging patches under dense bamboo forests by the giant panda, which was traditionally considered to have poor eyesight, although our research has answered what type of habitats the giant panda prefers and when to leave.
Chen, Yongsheng; Zein, Imad; Brenner, Everton Alen; Andersen, Jeppe Reitan; Landbeck, Mathias; Ouzunova, Milena; Lübberstedt, Thomas
2010-01-15
Reduced lignin content leads to higher cell wall digestibility and, therefore, better forage quality and increased conversion of lignocellulosic biomass into ethanol. However, reduced lignin content might lead to weaker stalks, lodging, and reduced biomass yield. Genes encoding enzymes involved in cell wall lignification have been shown to influence both cell wall digestibility and yield traits. In this study, associations between monolignol biosynthetic genes and plant height (PHT), days to silking (DTS), dry matter content (DMC), and dry matter yield (DMY) were identified by using a panel of 39 European elite maize lines. In total, 10 associations were detected between polymorphisms or tight linkage disequilibrium (LD) groups within the COMT, CCoAOMT2, 4CL1, 4CL2, F5H, and PAL genomic fragments, respectively, and the above mentioned traits. The phenotypic variation explained by these polymorphisms or tight LD groups ranged from 6% to 25.8% in our line collection. Only 4CL1 and F5H were found to have polymorphisms associated with both yield and forage quality related characters. However, no pleiotropic polymorphisms affecting both digestibility of neutral detergent fiber (DNDF), and PHT or DMY were discovered, even under less stringent statistical conditions. Due to absence of pleiotropic polymorphisms affecting both forage yield and quality traits, identification of optimal monolignol biosynthetic gene haplotype(s) combining beneficial quantitative trait polymorphism (QTP) alleles for both quality and yield traits appears possible within monolignol biosynthetic genes. This is beneficial to maximize forage and bioethanol yield per unit land area.
A Day in the Life of Fish Larvae: Modeling Foraging and Growth Using Quirks
Huebert, Klaus B.; Peck, Myron A.
2014-01-01
This article introduces “Quirks,” a generic, individual-based model synthesizing over 40 years of empirical and theoretical insights into the foraging behavior and growth physiology of marine fish larvae. In Quirks, different types of larvae are defined by a short list of their biological traits, and all foraging and growth processes (including the effects of key environmental factors) are modeled following one unified set of mechanistic rules. This approach facilitates ecologically meaningful comparisons between different species and environments. We applied Quirks to model young exogenously feeding larvae of four species: 5.5-mm European anchovy (Engraulis encrasicolus), 7-mm Atlantic cod (Gadus morhua), 13-mm Atlantic herring (Clupea harengus), and 7-mm European sprat (Sprattus sprattus). Modeled growth estimates explained the majority of variability among 53 published empirical growth estimates, and displayed very little bias: 0.65%±1.2% d−1 (mean ± standard error). Prey organisms of ∼67% the maximum ingestible prey length were optimal for all larval types, in terms of the expected ingestion per encounter. Nevertheless, the foraging rate integrated over all favorable prey sizes was highest when smaller organisms made up >95% of the prey biomass under the assumption of constant normalized size spectrum slopes. The overall effect of turbulence was consistently negative, because its detrimental influence on prey pursuit success exceeded its beneficial influence on prey encounter rate. Model sensitivity to endogenous traits and exogenous environmental factors was measured and is discussed in depth. Quirks is free software and open source code is provided. PMID:24901937
Learning the opportunity cost of time in a patch-foraging task
Constantino, Sara; Daw, Nathaniel D.
2015-01-01
Although most decision research concerns choice between simultaneously presented options, in many situations options are encountered serially and the decision is whether to exploit an option or search for a better one. Such problems have a rich history in animal foraging but we know little about the psychological processes involved. In particular, it is unknown whether learning in these problems is supported by the well studied neurocomputational mechanisms involved in more conventional tasks. We investigated how humans learn in a foraging task, which requires deciding whether to harvest a depleting resource or switch to a replenished one. The optimal choice (given by the Marginal Value Theorem; MVT) requires comparing the immediate return from harvesting to the opportunity cost of time, which is given by the long-run average reward. In two experiments, we varied opportunity cost across blocks. Subjects adjusted their behavior to blockwise changes in environmental characteristics. We examined how subjects learned their choice strategies by comparing choice adjustments to a learning rule suggested by the MVT (where the opportunity cost threshold is estimated as an average over previous rewards) and to the predominant incremental learning theory in neuroscience, temporal-difference learning (TD). Trial-by-trial decisions were better explained by the MVT threshold learning rule. These findings expand on the foraging literature, which has focused on steady-state behavior, by elucidating a computational mechanism for learning in switching tasks that is distinct from those used in traditional tasks, and suggest connections to research on average reward rates in other domains of neuroscience. PMID:25917000
Pollinator Competition as a Driver of Floral Divergence: An Experimental Test.
Temeles, Ethan J; Newman, Julia T; Newman, Jennifer H; Cho, Se Yeon; Mazzotta, Alexandra R; Kress, W John
2016-01-01
Optimal foraging models of floral divergence predict that competition between two different types of pollinators will result in partitioning, increased assortative mating, and divergence of two floral phenotypes. We tested these predictions in a tropical plant-pollinator system using sexes of purple-throated carib hummingbirds (Anthracothorax jugularis) as the pollinators, red and yellow inflorescence morphs of Heliconia caribaea as the plants, and fluorescent dyes as pollen analogs in an enclosed outdoor garden. When foraging alone, males exhibited a significant preference for the yellow morph of H. caribaea, whereas females exhibited no preference. In competition, males maintained their preference for the yellow morph and through aggression caused females to over-visit the red morph, resulting in resource partitioning. Competition significantly increased within-morph dye transfer (assortative mating) relative to non-competitive environments. Competition and partitioning of color morphs by sexes of purple-throated caribs also resulted in selection for floral divergence as measured by dye deposition on stigmas. Red and yellow morphs did not differ significantly in dye deposition in the competition trials, but differences in dye deposition and preferences for morphs when sexes of purple-throated caribs foraged alone implied fixation of one or the other color morph in the absence of competition. Competition also resulted in selection for divergence in corolla length, with the red morph experiencing directional selection for longer corollas and the yellow morph experiencing stabilizing selection on corolla length. Our results thus support predictions of foraging models of floral divergence and indicate that pollinator competition is a viable mechanism for divergence in floral traits of plants.
Pollinator Competition as a Driver of Floral Divergence: An Experimental Test
Temeles, Ethan J.; Newman, Julia T.; Newman, Jennifer H.; Cho, Se Yeon; Mazzotta, Alexandra R.; Kress, W. John
2016-01-01
Optimal foraging models of floral divergence predict that competition between two different types of pollinators will result in partitioning, increased assortative mating, and divergence of two floral phenotypes. We tested these predictions in a tropical plant-pollinator system using sexes of purple-throated carib hummingbirds (Anthracothorax jugularis) as the pollinators, red and yellow inflorescence morphs of Heliconia caribaea as the plants, and fluorescent dyes as pollen analogs in an enclosed outdoor garden. When foraging alone, males exhibited a significant preference for the yellow morph of H. caribaea, whereas females exhibited no preference. In competition, males maintained their preference for the yellow morph and through aggression caused females to over-visit the red morph, resulting in resource partitioning. Competition significantly increased within-morph dye transfer (assortative mating) relative to non-competitive environments. Competition and partitioning of color morphs by sexes of purple-throated caribs also resulted in selection for floral divergence as measured by dye deposition on stigmas. Red and yellow morphs did not differ significantly in dye deposition in the competition trials, but differences in dye deposition and preferences for morphs when sexes of purple-throated caribs foraged alone implied fixation of one or the other color morph in the absence of competition. Competition also resulted in selection for divergence in corolla length, with the red morph experiencing directional selection for longer corollas and the yellow morph experiencing stabilizing selection on corolla length. Our results thus support predictions of foraging models of floral divergence and indicate that pollinator competition is a viable mechanism for divergence in floral traits of plants. PMID:26814810
2010-01-01
Background Reduced lignin content leads to higher cell wall digestibility and, therefore, better forage quality and increased conversion of lignocellulosic biomass into ethanol. However, reduced lignin content might lead to weaker stalks, lodging, and reduced biomass yield. Genes encoding enzymes involved in cell wall lignification have been shown to influence both cell wall digestibility and yield traits. Results In this study, associations between monolignol biosynthetic genes and plant height (PHT), days to silking (DTS), dry matter content (DMC), and dry matter yield (DMY) were identified by using a panel of 39 European elite maize lines. In total, 10 associations were detected between polymorphisms or tight linkage disequilibrium (LD) groups within the COMT, CCoAOMT2, 4CL1, 4CL2, F5H, and PAL genomic fragments, respectively, and the above mentioned traits. The phenotypic variation explained by these polymorphisms or tight LD groups ranged from 6% to 25.8% in our line collection. Only 4CL1 and F5H were found to have polymorphisms associated with both yield and forage quality related characters. However, no pleiotropic polymorphisms affecting both digestibility of neutral detergent fiber (DNDF), and PHT or DMY were discovered, even under less stringent statistical conditions. Conclusion Due to absence of pleiotropic polymorphisms affecting both forage yield and quality traits, identification of optimal monolignol biosynthetic gene haplotype(s) combining beneficial quantitative trait polymorphism (QTP) alleles for both quality and yield traits appears possible within monolignol biosynthetic genes. This is beneficial to maximize forage and bioethanol yield per unit land area. PMID:20078869
Foraging behavior by Daphnia in stoichiometric gradients of food quality.
Schatz, Greg S; McCauley, Edward
2007-10-01
Mismatches in the elemental composition of herbivores and their resources can impact herbivore growth and reproduction. In aquatic systems, the ratio of elements, such as C, P, and N, is used to characterize the food quality of algal prey. For example, large increases in the C:P ratio of edible algae can decrease rates of growth and reproduction in Daphnia. Current theory emphasizes that Daphnia utilize only assimilation and respiration processes to maintain an optimal elemental composition, yet studies of terrestrial herbivores implicate behavioral processes in coping with local variation in food quality. We tested the ability of juvenile and adult Daphnia to locate regions of high-quality food within a spatial gradient of algal prey differing in C:P ratio, while holding food density constant over space. Both juveniles and adults demonstrated similar behavior by quickly locating (i.e., <10 min) the region of high food quality. Foraging paths were centred on regions of high food quality and these differed significantly from paths of individuals exposed to a homogeneous environment of both food density and food quality. Ingestion rate experiments on algal prey of differing stoichiometric ratio show that individuals can adjust their intake rate over fast behavioral time-scales, and we use these data to examine how individuals choose foraging locations when presented with a spatial gradient that trades off food quality and food quantity. Daphnia reared under low food quality conditions chose to forage in regions of high food quality even though they could attain the same C ingestion rate elsewhere along a spatial gradient. We argue that these aspects of foraging behavior by Daphnia have important implications for how these herbivores manage their elemental composition and our understanding of the dynamics of these herbivore-plant systems in lakes and ponds where spatial variation in food quality is present.
A network-based approach for resistance transmission in bacterial populations.
Gehring, Ronette; Schumm, Phillip; Youssef, Mina; Scoglio, Caterina
2010-01-07
Horizontal transfer of mobile genetic elements (conjugation) is an important mechanism whereby resistance is spread through bacterial populations. The aim of our work is to develop a mathematical model that quantitatively describes this process, and to use this model to optimize antimicrobial dosage regimens to minimize resistance development. The bacterial population is conceptualized as a compartmental mathematical model to describe changes in susceptible, resistant, and transconjugant bacteria over time. This model is combined with a compartmental pharmacokinetic model to explore the effect of different plasma drug concentration profiles. An agent-based simulation tool is used to account for resistance transfer occurring when two bacteria are adjacent or in close proximity. In addition, a non-linear programming optimal control problem is introduced to minimize bacterial populations as well as the drug dose. Simulation and optimization results suggest that the rapid death of susceptible individuals in the population is pivotal in minimizing the number of transconjugants in a population. This supports the use of potent antimicrobials that rapidly kill susceptible individuals and development of dosage regimens that maintain effective antimicrobial drug concentrations for as long as needed to kill off the susceptible population. Suggestions are made for experiments to test the hypotheses generated by these simulations.
Hanif, Muhammad; Atsuta, Yoichi; Fujie, Koichi; Daimon, Hiroyuki
2012-01-01
Supercritical fluid extraction (SFE) was used in the analysis of bacterial respiratory quinone (RQ), bacterial phospholipid fatty acid (PLFA), and archaeal phospholipid ether lipid (PLEL) from anaerobically digested sludge. Bacterial RQ were determined using ultra performance liquid chromatography (UPLC). Determination of bacterial PLFA and archaeal PLEL was simultaneously performed using gas chromatography-mass spectrometry (GC-MS). The effects of pressure, temperature, and modifier concentration on the total amounts of RQ, PLFA, and PLEL were investigated by 23 experiments with five settings chosen for each variable. The optimal extraction conditions that were obtained through a multiple-response optimization included a pressure of 23.6 MPa, temperature of 77.6 °C, and 10.6% (v/v) of methanol as the modifier. Thirty nine components of microbial lipid biomarkers were identified in the anaerobically digested sludge. Overall, the SFE method proved to be more effective, rapid, and quantitative for simultaneously extracting bacterial and archaeal lipid biomarkers, compared to conventional organic solvent extraction. This work shows the potential application of SFE as a routine method for the comprehensive analysis of microbial community structures in environmental assessments using the lipid biomarkers profile. PMID:22489140
Managing for Multifunctionality in Perennial Grain Crops
Ryan, Matthew R; Crews, Timothy E; Culman, Steven W; DeHaan, Lee R; Hayes, Richard C; Jungers, Jacob M; Bakker, Matthew G
2018-01-01
Abstract Plant breeders are increasing yields and improving agronomic traits in several perennial grain crops, the first of which is now being incorporated into commercial food products. Integration strategies and management guidelines are needed to optimize production of these new crops, which differ substantially from both annual grain crops and perennial forages. To offset relatively low grain yields, perennial grain cropping systems should be multifunctional. Growing perennial grains for several years to regenerate soil health before rotating to annual crops and growing perennial grains on sloped land and ecologically sensitive areas to reduce soil erosion and nutrient losses are two strategies that can provide ecosystem services and support multifunctionality. Several perennial cereals can be used to produce both grain and forage, and these dual-purpose crops can be intercropped with legumes for additional benefits. Highly diverse perennial grain polycultures can further enhance ecosystem services, but increased management complexity might limit their adoption. PMID:29662249
Individual lifetime pollen and nectar foraging preferences in bumble bees
NASA Astrophysics Data System (ADS)
Hagbery, Jessica; Nieh, James C.
2012-10-01
Foraging specialization plays an important role in the ability of social insects to efficiently allocate labor. However, relatively little is known about the degree to which individual bumble bees specialize on collecting nectar or pollen, when such preferences manifest, and if individuals can alter their foraging preferences in response to changes in the colony workforce. Using Bombus impatiens, we monitored all foraging visits made by every bee in multiple colonies and showed that individual foragers exhibit consistent lifetime foraging preferences. Based upon the distribution of foraging preferences, we defined three forager types (pollen specialists, nectar specialists, and generalists). In unmanipulated colonies, 16-36 % of individuals specialized (≥90 % of visits) on nectar or pollen only. On its first day of foraging, an individual's foraging choices (nectar only, pollen only, or nectar and pollen) significantly predicted its lifetime foraging preferences. Foragers that only collected pollen on their first day of foraging made 1.61- to 1.67-fold more lifetime pollen foraging visits (as a proportion of total trips) than foragers that only collected nectar on their first foraging day. Foragers were significantly larger than bees that stayed only in the nest. We also determined the effect of removing pollen specialists at early (brood present) or later (brood absent) stages in colony life. These results suggest that generalists can alter their foraging preferences in response to the loss of a small subset of foragers. Thus, bumble bees exhibit individual lifetime foraging preferences that are established early in life, but generalists may be able to adapt to colony needs.
Cressler, Clayton E; King, Aaron A; Werner, Earl E
2010-09-01
Inducible defense, which is phenotypic plasticity in traits that affect predation risk, is taxonomically widespread and has been shown to have important ecological consequences. However, it remains unclear what factors promote the evolution of qualitatively different defense strategies and when evolution should favor strategies that involve modification of multiple traits. Previous theory suggests that individual-level trade-offs play a key role in defense evolution, but most of this work has assumed that trade-offs are independent. Here we show that the shape of the behavioral trade-off between foraging gain and predation risk determines the interaction between this trade-off and the life-history trade-off between growth and reproduction. The interaction between these fundamental trade-offs determines the optimal investment into behavioral and life-history defenses. Highly nonlinear foraging-predation risk trade-offs favor the evolution of behavioral defenses, while linear trade-offs favor life-history defenses. Between these extremes, integrated defense responses are optimal, with defense expression strongly depending on ontogeny. We suggest that these predictions may be general across qualitatively different defenses. Our results have important implications for theory on the ecological effects of inducible defense, which has not considered how qualitatively different defenses might alter ecological interactions.
NASA Astrophysics Data System (ADS)
Lihoreau, Mathieu; Ings, Thomas C.; Chittka, Lars; Reynolds, Andy M.
2016-07-01
Simulated annealing is a powerful stochastic search algorithm for locating a global maximum that is hidden among many poorer local maxima in a search space. It is frequently implemented in computers working on complex optimization problems but until now has not been directly observed in nature as a searching strategy adopted by foraging animals. We analysed high-speed video recordings of the three-dimensional searching flights of bumblebees (Bombus terrestris) made in the presence of large or small artificial flowers within a 0.5 m3 enclosed arena. Analyses of the three-dimensional flight patterns in both conditions reveal signatures of simulated annealing searches. After leaving a flower, bees tend to scan back-and forth past that flower before making prospecting flights (loops), whose length increases over time. The search pattern becomes gradually more expansive and culminates when another rewarding flower is found. Bees then scan back and forth in the vicinity of the newly discovered flower and the process repeats. This looping search pattern, in which flight step lengths are typically power-law distributed, provides a relatively simple yet highly efficient strategy for pollinators such as bees to find best quality resources in complex environments made of multiple ephemeral feeding sites with nutritionally variable rewards.
Scaling laws of marine predator search behaviour.
Sims, David W; Southall, Emily J; Humphries, Nicolas E; Hays, Graeme C; Bradshaw, Corey J A; Pitchford, Jonathan W; James, Alex; Ahmed, Mohammed Z; Brierley, Andrew S; Hindell, Mark A; Morritt, David; Musyl, Michael K; Righton, David; Shepard, Emily L C; Wearmouth, Victoria J; Wilson, Rory P; Witt, Matthew J; Metcalfe, Julian D
2008-02-28
Many free-ranging predators have to make foraging decisions with little, if any, knowledge of present resource distribution and availability. The optimal search strategy they should use to maximize encounter rates with prey in heterogeneous natural environments remains a largely unresolved issue in ecology. Lévy walks are specialized random walks giving rise to fractal movement trajectories that may represent an optimal solution for searching complex landscapes. However, the adaptive significance of this putative strategy in response to natural prey distributions remains untested. Here we analyse over a million movement displacements recorded from animal-attached electronic tags to show that diverse marine predators-sharks, bony fishes, sea turtles and penguins-exhibit Lévy-walk-like behaviour close to a theoretical optimum. Prey density distributions also display Lévy-like fractal patterns, suggesting response movements by predators to prey distributions. Simulations show that predators have higher encounter rates when adopting Lévy-type foraging in natural-like prey fields compared with purely random landscapes. This is consistent with the hypothesis that observed search patterns are adapted to observed statistical patterns of the landscape. This may explain why Lévy-like behaviour seems to be widespread among diverse organisms, from microbes to humans, as a 'rule' that evolved in response to patchy resource distributions.
Withered on the stem: is bamboo a seasonally limiting resource for giant pandas?
Li, Youxu; Swaisgood, Ronald R; Wei, Wei; Nie, Yonggang; Hu, Yibo; Yang, Xuyu; Gu, Xiaodong; Zhang, Zejun
2017-04-01
In response to seasonal variation in quality and quantity of available plant biomass, herbivorous foragers may alternate among different plant resources to meet nutritional requirements. Giant pandas (Ailuropoda melanoleuca) are reliant almost exclusively on bamboo which appears omnipresent in most occupied habitat, but subtle temporal variation in bamboo quality may still govern foraging strategies, with population-level effects. In this paper, we investigated the possibility that temporal variation in the quality of this resource is involved in population regulation and examined pandas' adaptive foraging strategies in response to temporal variation in bamboo quality. Giant pandas in late winter and early spring consumed a less optimal diet in Foping Nature Reserve, as the availability of the most nutritious and preferred components and age classes of Bashania fargesii declined, suggesting that bamboo may be a seasonally limiting resource. Most panda mortalities and rescues occurred during the same period of seasonal food limitation. Our findings raised the possibility that while total bamboo biomass may not be a limiting factor, carrying capacity may be influenced by subtle seasonal variation in bamboo quality. We recommend that managers and policy-makers should consider more than just the quantity of bamboo in the understory and that carrying capacity estimates should be revised downward to reflect the fact that all bamboos are not equal.
Information Foraging Across the Life Span: Search and Switch in Unknown Patches.
Chin, Jessie; Payne, Brennan R; Fu, Wai-Tat; Morrow, Daniel G; Stine-Morrow, Elizabeth A L
2015-07-01
In this study, we used a word search puzzle paradigm to investigate age differences in the rate of information gain (RG; i.e., word gain as a function of time) and the cues used to make patch-departure decisions in information foraging. The likelihood of patch departure increased as the profitability of the patch decreased generally. Both younger and older adults persisted past the point of optimality as defined by the marginal value theorem (Charnov, 1976), which assumes perfect knowledge of the foraging ecology. Nevertheless, there was evidence that adults were rational in terms of being sensitive to the change in RG for making the patch-departure decisions. However, given the limitations in cognitive resources and knowledge about the ecology, the estimation of RG may not be accurate. Younger adults were more likely to leave the puzzle as the long-term RG incrementally decreased, whereas older adults were more likely to leave the puzzle as the local RG decreased. However, older adults with better executive control were more likely to adjust their likelihood of patch-departure decisions to the long-term change in RG. Thus, age-dependent reliance on the long-term or local change in RG to make patch-departure decisions might be due to individual differences in executive control. Copyright © 2015 Cognitive Science Society, Inc.
Zou, Yang; Zou, XinPing; Li, XiZhi; Guo, Gang; Ji, Peng; Wang, Yan; Li, ShengLi; Wang, YaJing; Cao, ZhiJun
2018-01-01
Objective The impact of forage feeding strategy on growth performance, ruminal fermentation and nutrient digestibility in post-weaning calves was investigated. Methods Forty-five female Holstein calves (body weight [BW] = 79.79±0.38 kg) were enrolled in the 35-d study at one week after weaning and randomly assigned to one of three dietary treatments. All diets were fed as total mixed ration containing 60% (dry matter [DM] basis) of basal starter feed and 40% (DM basis) of forage, but varied in composition of forage source including i) alfalfa (40% DM, AH); ii) alfalfa hay (26.7% DM)+oat hay (13.3% DM; OH); iii) alfalfa hay (26.7% DM)+corn silage (13.3% DM; WS). Results Dry matter intake was not different among treatment groups (p>0.05). However, BW (p<0.05) and average daily gain (p<0.05) of calves fed AH and OH were greater than WS-fed calves, whereas heart girth was greater in OH-fed calves than those fed AH and WS (p<0.05). Ruminal fermentation parameters including proportion of butyric acid, acetated-to-propionate ratio, concentration of total volatile fatty acid, protozoal protein, bacterial protein, and microbial protein in rumen were the highest in OH (p<0.05) and the lowest in WS. Compared with the AH and WS, feeding oat hay to postweaning calves increased crude protein digestibility (p<0.05), and decreased duration of diarrhea (p<0.05) and fecal index (p<0.05). Conclusion Our results suggested that partially replacing alfalfa hay with oat hay improved ruminal fermentation, nitrogen utilization, and reduced incidence of diarrhea in post-weaning dairy calves. PMID:28728373
Effects of feeding selenium-enriched alfalfa hay on immunity and health of weaned beef calves.
Hall, Jean A; Bobe, Gerd; Vorachek, William R; Hugejiletu; Gorman, M Elena; Mosher, Wayne D; Pirelli, Gene J
2013-12-01
Previously, we reported that feeding selenium (Se)-enriched forage improves antibody titers in mature beef cows, and whole-blood Se concentrations and growth rates in weaned beef calves. Our current objective was to test whether beef calves fed Se-enriched alfalfa hay during the transition period between weaning and movement to a feedlot also have improved immune responses and slaughter weights. Recently weaned beef calves (n = 60) were fed an alfalfa-hay-based diet for 7 weeks, which was harvested from fields fertilized with sodium selenate at 0, 22.5, 45.0, or 89.9 g Se/ha. All calves were immunized with J-5 Escherichia coli bacterin. Serum was collected for antibody titers 2 weeks after the third immunization. Whole-blood neutrophils collected at 6 or 7 weeks were evaluated for total antioxidant potential, bacterial killing activity, and expression of genes associated with selenoproteins and innate immunity. Calves fed the highest versus the lowest level of Se-enriched alfalfa hay had higher antibody titers (P = 0.02), thioredoxin reductase-2 mRNA levels (P = 0.07), and a greater neutrophil total antioxidant potential (P = 0.10), whereas mRNA levels of interleukin-8 receptor (P = 0.02), L-selectin (P = 0.07), and thioredoxin reductase-1 (P = 0.07) were lower. In the feedlot, calves previously fed the highest-Se forage had lower mortality (P = 0.04) and greater slaughter weights (P = 0.02). Our results suggest that, in areas with low-forage Se concentrations, feeding beef calves Se-enriched alfalfa hay during the weaning transition period improves vaccination responses and subsequent growth and survival in the feedlot.
Hinsberger, Stefan; Hüsecken, Kristina; Groh, Matthias; Negri, Matthias; Haupenthal, Jörg; Hartmann, Rolf W
2013-11-14
The bacterial RNA polymerase (RNAP) is a validated target for broad spectrum antibiotics. However, the efficiency of drugs is reduced by resistance. To discover novel RNAP inhibitors, a pharmacophore based on the alignment of described inhibitors was used for virtual screening. In an optimization process of hit compounds, novel derivatives with improved in vitro potency were discovered. Investigations concerning the molecular mechanism of RNAP inhibition reveal that they prevent the protein-protein interaction (PPI) between σ(70) and the RNAP core enzyme. Besides of reducing RNA formation, the inhibitors were shown to interfere with bacterial lipid biosynthesis. The compounds were active against Gram-positive pathogens and revealed significantly lower resistance frequencies compared to clinically used rifampicin.
Computational tool for optimizing the essential oils utilization in inhibiting the bacterial growth
El-Attar, Noha E; Awad, Wael A
2017-01-01
Day after day, the importance of relying on nature in many fields such as food, medical, pharmaceutical industries, and others is increasing. Essential oils (EOs) are considered as one of the most significant natural products for use as antimicrobials, antioxidants, antitumorals, and anti-inflammatories. Optimizing the usage of EOs is a big challenge faced by the scientific researchers because of the complexity of chemical composition of every EO, in addition to the difficulties to determine the best in inhibiting the bacterial activity. The goal of this article is to present a new computational tool based on two methodologies: reduction by using rough sets and optimization with particle swarm optimization. The developed tool dubbed as Essential Oil Reduction and Optimization Tool is applied on 24 types of EOs that have been tested toward 17 different species of bacteria. PMID:28919787
Sr Vadas, R L; Burrows, M T; Hughes, R N
1994-12-01
The effects of diet history, hunger and predation risk on short-term behavioral decisions of dogwhelks were tested in a specially designed test apparatus, termed a linear feeding array (LFA). The LFA consists of a sequential series of prey items mounted in a flume with unidirectional current directed towards a test (predatory) animal, and into which potential olfactory cues regarding predation risk are introduced. For dogwhelks the array was constructed vertically to accomodate intertidal foraging movements and is termed a vertical linear array (VLA). The behaviors exhibited by the dogwhelks were interpreted from distribution patterns in the VLA. Recent experimental studies and advances in optimal foraging theory provided the basis for the hypotheses tested in the VLA, which included: foraging and other behaviors are affected by predation, animals will avoid risk in the presence of predation threat, responses to predation threat will be proportional to the number and kinds of predator cues present, and starved animals will take greater risks than fed animals. We also test the proposition that foraging decisions are further modified by age. Three groups of juvenile and adult animals were maintained on diets of barnacles, mussels or no food (starved). The scent of crabs and damaged conspecifics served as olfactory cues to predation risk. Dogwhelks exhibited a range of behaviors in the VLA including: sheltering, searching, feeding, and aerial climbing. Distribution of animals in the tank assumed a relatively stable pattern after 2-3 h. These patterns were interpreted as the consequence of heirarchial decision making including: (i) a decision to become active, leaving the resting place or water refuge adopted during initial placement, followed by (ii) a decision to move vertically upwards or downwards, and (iii) a decision to attack prey when encountered. Analysis of movement patterns revealed that the initial decision, analogous to leaving a crevice as the tide comes in, was influenced in adults by predator cues and in juveniles by both predator cues and diet history. Perceived risk, as crab and damaged-conspecific odors, made individuals more likely to remain inactive, a risk-avoiding strategy for animals already in a refuge. Starved animals were more likely to descend into the tank and attack prey than fed animals. Our results support the hypotheses that higher-order predators affect the foraging decisions of dogwhelks and that juveniles and satiated animals are more sensitive to predation risk than starved ones. Together, these and earlier studies suggest that dogwhelks assess their environment before foraging, and that they are attuned to reducing the risks of mortality.
Sympatric cattle grazing and desert bighorn sheep foraging
Garrison, Kyle R.; Cain, James W.; Rominger, Eric M.; Goldstein, Elise J.
2015-01-01
Foraging behavior affects animal fitness and is largely dictated by the resources available to an animal. Understanding factors that affect forage resources is important for conservation and management of wildlife. Cattle sympatry is proposed to limit desert bighorn population performance, but few studies have quantified the effect of cattle foraging on bighorn forage resources or foraging behavior by desert bighorn. We estimated forage biomass for desert bighorn sheep in 2 mountain ranges: the cattle-grazed Caballo Mountains and the ungrazed San Andres Mountains, New Mexico. We recorded foraging bout efficiency of adult females by recording feeding time/step while foraging, and activity budgets of 3 age-sex classes (i.e., adult males, adult females, yearlings). We also estimated forage biomass at sites where bighorn were observed foraging. We expected lower forage biomass in the cattle-grazed Caballo range than in the ungrazed San Andres range and lower biomass at cattle-accessible versus inaccessible areas within the Caballo range. We predicted bighorn would be less efficient foragers in the Caballo range. Groundcover forage biomass was low in both ranges throughout the study (Jun 2012–Nov 2013). Browse biomass, however, was 4.7 times lower in the Caballo range versus the San Andres range. Bighorn in the Caballo range exhibited greater overall daily travel time, presumably to locate areas of higher forage abundance. By selecting areas with greater forage abundance, adult females in the Caballo range exhibited foraging bout efficiency similar to their San Andres counterparts but lower overall daily browsing time. We did not find a significant reduction in forage biomass at cattle-accessible areas in the Caballo range. Only the most rugged areas in the Caballo range had abundant forage, potentially a result of intensive historical livestock use in less rugged areas. Forage conditions in the Caballo range apparently force bighorn to increase foraging effort by feeding only in areas where adequate forage remains.
Eldridge, David J; Delgado-Baquerizo, Manuel; Woodhouse, Jason N; Neilan, Brett A
2016-11-01
The effects of mammalian ecosystem engineers on soil microbial communities and ecosystem functions in terrestrial ecosystems are poorly known. Disturbance from livestock has been widely reported to reduce soil function, but disturbance by animals that forage in the soil may partially offset these negative effects of livestock, directly and/or indirectly by shifting the composition and diversity of soil microbial communities. Understanding the role of disturbance from livestock and ecosystem engineers in driving soil microbes and functions is essential for formulating sustainable ecosystem management and conservation policies. We compared soil bacterial community composition and enzyme concentrations within four microsites: foraging pits of two vertebrates, the indigenous short-beaked echidna (Tachyglossus aculeatus) and the exotic European rabbit (Oryctolagus cuniculus), and surface and subsurface soils along a gradient in grazing-induced disturbance in an arid woodland. Microbial community composition varied little across the disturbance gradient, but there were substantial differences among the four microsites. Echidna pits supported a lower relative abundance of Acidobacteria and Cyanobacteria, but a higher relative abundance of Proteobacteria than rabbit pits and surface microsites. Moreover, these microsite differences varied with disturbance. Rabbit pits had a similar profile to the subsoil or the surface soils under moderate and high, but not low disturbance. Overall, echidna foraging pits had the greatest positive effect on function, assessed as mean enzyme concentrations, but rabbits had the least. The positive effects of echidna foraging on function were indirectly driven via microbial community composition. In particular, increasing activity was positively associated with increasing relative abundance of Proteobacteria, but decreasing Acidobacteria. Our study suggests that soil disturbance by animals may offset, to some degree, the oft-reported negative effects of grazing-induced disturbance on soil function. Further, our results suggest that most of this effect will be derived from echidnas, with little positive effects due to rabbits. Activities that enhance the habitat for echidnas or reduce rabbit populations are likely to have a positive effect on soil function in these systems. © 2016 The Authors. Journal of Animal Ecology © 2016 British Ecological Society.
Interactions Increase Forager Availability and Activity in Harvester Ants.
Pless, Evlyn; Queirolo, Jovel; Pinter-Wollman, Noa; Crow, Sam; Allen, Kelsey; Mathur, Maya B; Gordon, Deborah M
2015-01-01
Social insect colonies use interactions among workers to regulate collective behavior. Harvester ant foragers interact in a chamber just inside the nest entrance, here called the 'entrance chamber'. Previous studies of the activation of foragers in red harvester ants show that an outgoing forager inside the nest experiences an increase in brief antennal contacts before it leaves the nest to forage. Here we compare the interaction rate experienced by foragers that left the nest and ants that did not. We found that ants in the entrance chamber that leave the nest to forage experienced more interactions than ants that descend to the deeper nest without foraging. Additionally, we found that the availability of foragers in the entrance chamber is associated with the rate of forager return. An increase in the rate of forager return leads to an increase in the rate at which ants descend to the deeper nest, which then stimulates more ants to ascend into the entrance chamber. Thus a higher rate of forager return leads to more available foragers in the entrance chamber. The highest density of interactions occurs near the nest entrance and the entrances of the tunnels from the entrance chamber to the deeper nest. Local interactions with returning foragers regulate both the activation of waiting foragers and the number of foragers available to be activated.
Beekman, Madeleine
2005-12-01
Honey bees utilise floral food sources that vary temporally in their relative and absolute quality. Via a sophisticated colony organisation, a honey bee colony allocates its foragers such that the colony focuses on the most profitable forage sites while keeping track of changes within its foraging environment. One important mechanism of the allocation of foragers is the ability of experienced foragers to revisit past-profitable forage sites after a period of temporary dearth caused by, for example, inclement weather. The scent of past-profitable forage within the colony brought back by other foragers is sufficient to reactivate these experienced foragers. Here I determine for how long bees react to the scent of a past-profitable forage site. I show that the ability of foragers to revisit the location of a past-profitable food source diminishes rapidly over a period of 10 days, until no forager reacts to the cue (scent). I discuss the implications of these findings with respect to the colony's ability to react rapidly to changing foraging conditions.
Graystock, Peter; Hughes, William O.H.
2016-01-01
Foraging specialization allows social insects to more efficiently exploit resources in their environment. Recent research on honeybees suggests that specialization on pollen or nectar among foragers is linked to reproductive physiology and sensory tuning (the Reproductive Ground-Plan Hypothesis; RGPH). However, our understanding of the underlying physiological relationships in non-Apis bees is still limited. Here we show that the bumblebee Bombus terrestris has specialist pollen and nectar foragers, and test whether foraging specialization in B. terrestris is linked to reproductive physiology, measured as ovarian activation. We show that neither ovary size, sensory sensitivity, measured through proboscis extension response (PER), or whole-body lipid stores differed between pollen foragers, nectar foragers, or generalist foragers. Body size also did not differ between any of these three forager groups. Non-foragers had significantly larger ovaries than foragers. This suggests that potentially reproductive individuals avoid foraging. PMID:27812411
A perspective on forage production in Canada.
Gareau, L
1980-03-01
Over the past decade, the cattle industry has experienced practically a full circle. With the promising beef prices in the early 1970s, with the glut of grain and a generous assist from government incentive programs, the forage acreage and cattle population have increased at a record rate. By 1974, the tide began to turn - grain prices went up sharply and beef prices became sluggish - and by 1976 a major crisis faced the producers. The cattle industry which had been developing on a cheap grain economy was now obliged to rely more on forage for its survival. Unfortunately, the forage was not existent and the only salvation of the industry was the gift of Providence - weather patterns that provided ample moisture conditions and above normal forage crops, the utilization of cereals and the intervention of government cow-calf support programs. Over the past year, the cycle was completed and record beef prices again prevail. The barley bins are full again and the cattlemen are gearing up for a few fat years. Demands for forage seed are brisk and the seeding down of forage acreage is bound to increase substantially over the next few years. And with this increase, cattle population expansion is bound to follow: how much expansion can the economy support? The production cost factors will determine the extent, but one can almost be certain that any expansion will either be modest or of short duration. At least, it should be. If the cattle industry is to establish solid foundations, it cannot be dependent upon the instability of a grain surplus-shortage position. With the present resources and the potential for developing it in direct competition with other crops, one can only expect a small and steady expansion over a long time span. One must agree with the range researchers and specialists of the Canada Research Stations at Lethbridge and Swift Current that pasture and range will continue to be the limiting factors of cattle expansion as they have been for the past 50 years. It is interesting to note that in the Prairie Provinces at least, the number of livestock raised each year has not changed since 1930 although cattle have largely replaced the horses. It is easy to speculate on paper that Canada can double in the next 20 years its forage and cattle production on its large expanses of land on the fringes of the agriculturally settled areas. It is true that these lands, while marginal for cash crops, could produce excellent forage. But at what cost? And what kind of pasture could we grow on them?It is easy to speculate that our livestock geneticists can breed a ruminant-type animal that will feed on poplar saplings and poplar leaves, or develop a new breed of cattle with buffalo vigor that will thrive in the extreme north. But looking at the musk-ox experience in the Northwest Territories and the history of the Wood Buffalo National Park leaves little room for optimism. The present generation is not likely to see in its lifetime the cattle population go beyond the 20 million mark. We can look, however, with good assurance on the present cattle numbers remaining stable and can look forward to gradual increase brought about by normal improvement in both forage and cattle management.Hopefully, both the cattle producer and the veterinarian will be able to reap the benefits of this most important segment of Canada's agricultural industry.
Bacterial meningitis - principles of antimicrobial treatment.
Jawień, Miroslaw; Garlicki, Aleksander M
2013-01-01
Bacterial meningitis is associated with significant morbidity and mortality despite the availability of effective antimicrobial therapy. The management approach to patients with suspected or proven bacterial meningitis includes emergent cerebrospinal fluid analysis and initiation of appropriate antimicrobial and adjunctive therapies. The choice of empirical antimicrobial therapy is based on the patient's age and underlying disease status; once the infecting pathogen is isolated, antimicrobial therapy can be modified for optimal treatment. Successful treatment of bacterial meningitis requires the knowledge on epidemiology including prevalence of antimicrobial resistant pathogens, pathogenesis of meningitis, pharmacokinetics and pharmacodynamics of antimicrobial agents. The emergence of antibiotic-resistant bacterial strains in recent years has necessitated the development of new strategies for empiric antimicrobial therapy for bacterial meningitis.
Evans, Jessica J; Bost, Aaron; Muci-Küchler, Karim H; DeVeaux, Linda C
2018-05-25
Ballistics gelatin is a common tissue surrogate used in bacterial contamination models for projectile wounds. Although these studies have demonstrated that bacteria are transferred from the surface of the gelatin to the wound track by a projectile, quantifiable results have been inconsistent and not repeatable in successive tests. In this study, five areas of a typical contamination model in which bacterial recovery or survival are affected were identified for optimization. The first was a contaminated "skin" surrogate, where the novel use of vacuum filtration of a bacterial culture and buffer onto filter paper was employed. The other possibly problematic areas of the bacterial distribution model included the determination of bacterial survival when the contamination model is dried, survival in solid and molten gelatin, and the effect of high-intensity lights used for recording high-speed video. Vacuum filtration of bacteria and buffer resulted in a consistent bacterial distribution and recovery. The use of phosphate buffer M9 (pH 7) aided in neutralizing the ballistics gelatin and improving bacterial survival in solid gelatin. Additionally, the use of high-intensity lights to record high-speed video and the use of a 42 ° C water bath to melt the gelatin were found to be bactericidal for gram-positive and gram-negative bacteria. Multiple areas of a typical contamination model in which bacterial survival may be impeded were identified, and methods were proposed to improve survival in each area. These methods may be used to optimize the results of bacterial contamination models for medical applications, such as understanding the progression of infection in penetrating wounds and to identify possible sources of contamination for forensic purposes.
Interactions Increase Forager Availability and Activity in Harvester Ants
Pinter-Wollman, Noa; Crow, Sam; Allen, Kelsey; Mathur, Maya B.; Gordon, Deborah M.
2015-01-01
Social insect colonies use interactions among workers to regulate collective behavior. Harvester ant foragers interact in a chamber just inside the nest entrance, here called the 'entrance chamber'. Previous studies of the activation of foragers in red harvester ants show that an outgoing forager inside the nest experiences an increase in brief antennal contacts before it leaves the nest to forage. Here we compare the interaction rate experienced by foragers that left the nest and ants that did not. We found that ants in the entrance chamber that leave the nest to forage experienced more interactions than ants that descend to the deeper nest without foraging. Additionally, we found that the availability of foragers in the entrance chamber is associated with the rate of forager return. An increase in the rate of forager return leads to an increase in the rate at which ants descend to the deeper nest, which then stimulates more ants to ascend into the entrance chamber. Thus a higher rate of forager return leads to more available foragers in the entrance chamber. The highest density of interactions occurs near the nest entrance and the entrances of the tunnels from the entrance chamber to the deeper nest. Local interactions with returning foragers regulate both the activation of waiting foragers and the number of foragers available to be activated. PMID:26539724
Olenicki, Thomas J.; Irby, Lynn R.
2005-01-01
4. Estimate annual production and standing crop available during non-growing seasons for herbaceous and shrub layers in major habitat types in the Hayden Valley. Our efforts to describe forage use by bison focused on assessing finer scale habitat use is a core summer range for bison in YNP. We also collected information on bison food habits and forage quality to begin to explain the “whys” of bison distribution. Short-term impacts of bison forage utilization were addressed by comparing standing biomass in plots protected from grazing with plots exposed to grazing. Historical data were not available to directly address long-term effects of ungulate foraging in the Hayden Valley, but we were able to indirectly assess some aspects of this question by determining the frequency of repeat grazing over a 3-year period and the rate at which trees along the margins of the Hayden Valley were being killed by bison rubbing The third objective, determining the relative efficacy of different vegetation monitoring approaches, was accomplished by comparing estimates of standing biomass and biomas: utilization obtained via conventional exclosure techniques with estimates based on remote sensing techniques (ground-based and satellite-borne multi-spectral radiometry|[MSR]). We addressed efficacy in terms of precision and accuracy of estimates, reliability, and logistical costs at different coverage scales. The fourth objective, estimation of forage available for ungulates in the Hayden Valley, was achieved using conventional exclosure methodology and remote sensing. We were able to estimate herbaceous biomass production during 3 different years. Exclosures allowed us to estimated changes instanding crop of herbaceous vegetation at the plant community (conventional cover types, moisture plant growth form groups, and communities defined by dominant graminoids) and catena (a repeating sequence of communities tied to landscape physiognomy) scales. We developed empirical approaches that allowed us to estimate standing biomass of herbaceous plants from reflectance data obtained from ground-based and satellite-borne multi-spectral radiometry (MSR) units. We demonstrated the potential to estimate biomass of shrubs using the same approaches. We did not have time and resources to complete vegetation maps that would optimize estimates from remote sources, but we have outlined procedures that can be followed in the future to obtain biomass estimates at the landscape scale.
Tan, Ken; Latty, Tanya; Dong, Shihao; Liu, Xiwen; Wang, Chao; Oldroyd, Benjamin P
2015-11-09
Animals may adjust their behavior according to their perception of risk. Here we show that free-flying honey bee (Apis cerana) foragers mitigate the risk of starvation in the field when foraging on a food source that offers variable rewards by carrying more 'fuel' food on their outward journey. We trained foragers to a feeder located 1.2 km from each of four colonies. On average foragers carried 12.7% greater volume of fuel, equivalent to 30.2% more glucose when foraging on a variable source (a random sequence of 0.5, 1.5 and 2.5 M sucrose solution, average sucrose content 1.5 M) than when forging on a consistent source (constant 1.5 M sucrose solution). Our findings complement an earlier study that showed that foragers decrease their fuel load as they become more familiar with a foraging place. We suggest that honey bee foragers are risk sensitive, and carry more fuel to minimize the risk of starvation in the field when a foraging trip is perceived as being risky, either because the forager is unfamiliar with the foraging site, or because the forage available at a familiar site offers variable rewards.
Foraging area fidelity for Kemp's ridleys in the Gulf of Mexico.
Shaver, Donna J; Hart, Kristen M; Fujisaki, Ikuko; Rubio, Cynthia; Sartain, Autumn R; Peña, Jaime; Burchfield, Patrick M; Gamez, Daniel Gomez; Ortiz, Jaime
2013-07-01
For many marine species, locations of key foraging areas are not well defined. We used satellite telemetry and switching state-space modeling (SSM) to identify distinct foraging areas used by Kemp's ridley turtles (Lepidochelys kempii) tagged after nesting during 1998-2011 at Padre Island National Seashore, Texas, USA (PAIS; N = 22), and Rancho Nuevo, Tamaulipas, Mexico (RN; N = 9). Overall, turtles traveled a mean distance of 793.1 km (±347.8 SD) to foraging sites, where 24 of 31 turtles showed foraging area fidelity (FAF) over time (N = 22 in USA, N = 2 in Mexico). Multiple turtles foraged along their migratory route, prior to arrival at their "final" foraging sites. We identified new foraging "hotspots" where adult female Kemp's ridley turtles spent 44% of their time during tracking (i.e., 2641/6009 tracking days in foraging mode). Nearshore Gulf of Mexico waters served as foraging habitat for all turtles tracked in this study; final foraging sites were located in water <68 m deep and a mean distance of 33.2 km (±25.3 SD) from the nearest mainland coast. Distance to release site, distance to mainland shore, annual mean sea surface temperature, bathymetry, and net primary production were significant predictors of sites where turtles spent large numbers of days in foraging mode. Spatial similarity of particular foraging sites selected by different turtles over the 13-year tracking period indicates that these areas represent critical foraging habitat, particularly in waters off Louisiana. Furthermore, the wide distribution of foraging sites indicates that a foraging corridor exists for Kemp's ridleys in the Gulf. Our results highlight the need for further study of environmental and bathymetric components of foraging sites and prey resources contained therein, as well as international cooperation to protect essential at-sea foraging habitats for this imperiled species.
Foraging area fidelity for Kemp's ridleys in the Gulf of Mexico
Shaver, Donna J.; Hart, Kristen M.; Fujisaki, Ikuko; Rubio, Cynthia; Sartain-Iverson, Autumn R.; Peña, Jaime; Burchfield, Patrick M.; Gamez, Daniel Gomez; Ortiz, Jaime
2013-01-01
For many marine species, locations of key foraging areas are not well defined. We used satellite telemetry and switching state-space modeling (SSM) to identify distinct foraging areas used by Kemp's ridley turtles (Lepidochelys kempii) tagged after nesting during 1998–2011 at Padre Island National Seashore, Texas, USA (PAIS; N = 22), and Rancho Nuevo, Tamaulipas, Mexico (RN; N = 9). Overall, turtles traveled a mean distance of 793.1 km (±347.8 SD) to foraging sites, where 24 of 31 turtles showed foraging area fidelity (FAF) over time (N = 22 in USA, N = 2 in Mexico). Multiple turtles foraged along their migratory route, prior to arrival at their "final" foraging sites. We identified new foraging "hotspots" where adult female Kemp's ridley turtles spent 44% of their time during tracking (i.e., 2641/6009 tracking days in foraging mode). Nearshore Gulf of Mexico waters served as foraging habitat for all turtles tracked in this study; final foraging sites were located in water <68 m deep and a mean distance of 33.2 km (±25.3 SD) from the nearest mainland coast. Distance to release site, distance to mainland shore, annual mean sea surface temperature, bathymetry, and net primary production were significant predictors of sites where turtles spent large numbers of days in foraging mode. Spatial similarity of particular foraging sites selected by different turtles over the 13-year tracking period indicates that these areas represent critical foraging habitat, particularly in waters off Louisiana. Furthermore, the wide distribution of foraging sites indicates that a foraging corridor exists for Kemp's ridleys in the Gulf. Our results highlight the need for further study of environmental and bathymetric components of foraging sites and prey resources contained therein, as well as international cooperation to protect essential at-sea foraging habitats for this imperiled species.
Chamaillé-Jammes, Simon; Mtare, Godfrey; Makuwe, Edwin; Fritz, Hervé
2013-01-01
Most organisms need to acquire various resources to survive and reproduce. Individuals should adjust their behavior to make optimal use of the landscape and limit the costs of trade-offs emerging from the use of these resources. Here we study how African elephants Loxodonta africana travel to foraging places between regular visits to waterholes. Elephant herds were tracked using GPS collars during two consecutive dry seasons in Hwange National Park, Zimbabwe. We segmented each individual movement track at each visit to water to define foraging trips, and then used trip-level statistics to build an understanding of movement strategies. Travel speed within these individually-consistent movement bouts was also analyzed to understand if speed was better linked to distance to water or progression in the trip over time. We found that elephants went further from water when drinking less often, which could result from a trade-off between drinking and foraging in less depleted, far from water, places. Speed increased towards the beginning and the end of the trips, and was also greater than observed during the wet season, suggesting that elephants were trying to save time. Numerous short trips traveled at greater speed, particularly when commuting to a different waterhole, was tentatively explained by the inability to drink at specific waterholes due to intra-specific interference. Unexpectedly elephants did not always minimize travel time by drinking at the closest waterhole, but the extra distance traveled remained never more than a few kilometers. Our results show how individuals may adjust movement behavior to deal with resource trade-offs at the landscape scale. We also highlight how behavioral context, here progression in the trip, may be more important than spatial context, here distance to water, in explaining animal movement patterns.
The Impact of Detoxification Costs and Predation Risk on Foraging: Implications for Mimicry Dynamics
Skelhorn, John; Rowe, Candy; Ruxton, Graeme D.; Higginson, Andrew D.
2017-01-01
Prey often evolve defences to deter predators, such as noxious chemicals including toxins. Toxic species often advertise their defence to potential predators by distinctive sensory signals. Predators learn to associate toxicity with the signals of these so-called aposematic prey, and may avoid them in future. In turn, this selects for mildly toxic prey to mimic the appearance of more toxic prey. Empirical evidence shows that mimicry could be either beneficial (‘Mullerian’) or detrimental (‘quasi-Batesian’) to the highly toxic prey, but the factors determining which are unknown. Here, we use state-dependent models to explore how tri-trophic interactions could influence the evolution of prey defences. We consider how predation risk affects predators’ optimal foraging strategies on aposematic prey, and explore the resultant impact this has on mimicry dynamics between unequally defended species. In addition, we also investigate how the potential energetic cost of metabolising a toxin can alter the benefits to eating toxic prey and thus impact on predators’ foraging decisions. Our model predicts that both how predators perceive their own predation risk, and the cost of detoxification, can have significant, sometimes counterintuitive, effects on the foraging decisions of predators. For example, in some conditions predators should: (i) avoid prey they know to be undefended, (ii) eat more mildly toxic prey as detoxification costs increase, (iii) increase their intake of highly toxic prey as the abundance of undefended prey increases. These effects mean that the relationship between a mimic and its model can qualitatively depend on the density of alternative prey and the cost of metabolising toxins. In addition, these effects are mediated by the predators’ own predation risk, which demonstrates that, higher trophic levels than previously considered can have fundamental impacts on interactions among aposematic prey species. PMID:28045959
Food resource effects on diel movements and body size of cisco in north-temperate lakes.
Ahrenstorff, Tyler D; Hrabik, Thomas R; Jacobson, Peter C; Pereira, Donald L
2013-12-01
The movement patterns and body size of fishes are influenced by a host of physical and biological conditions, including temperature and oxygen, prey densities and foraging potential, growth optimization, and predation risk. Our objectives were to (1) investigate variability in vertical movement patterns of cisco (Coregonus artedi) in a variety of inland lakes using hydroacoustics, (2) explore the causal mechanisms influencing movements through the use of temperature/oxygen, foraging, growth, and predation risk models, and (3) examine factors that may contribute to variations in cisco body size by considering all available information. Our results show that cisco vertical movements vary substantially, with different populations performing normal diel vertical migrations (DVM), no DVM, and reverse DVM in lakes throughout Minnesota and northern Wisconsin, USA. Cisco populations with the smallest body size were found in lakes with lower zooplankton densities. These smaller fish showed movements to areas of highest foraging or growth potential during the day and night, despite moving out of preferred temperature and oxygen conditions and into areas of highest predation risk. In lakes with higher zooplankton densities, cisco grew larger and had movements more consistent with behavioral thermoregulation and predator avoidance, while remaining in areas with less than maximum foraging and growth potential. Furthermore, the composition of potential prey items present in each lake was also important. Cisco that performed reverse DVM consumed mostly copepods and cladocerans, while cisco that exhibited normal DVM or no migration consumed proportionally more macro-zooplankton species. Overall, our results show previously undocumented variation in migration patterns of a fish species, the mechanisms underlying those movements, and the potential impact on their growth potential.
Wei, Yuquan; Zhao, Yue; Wang, Huan; Lu, Qian; Cao, Zhenyu; Cui, Hongyang; Zhu, Longji; Wei, Zimin
2016-12-01
The study was conducted to investigate the influence of biochar and/or phosphate-solubilizing bacteria (PSB) inoculants on microbial biomass, bacterial community composition and phosphorus (P) fractions during kitchen waste composting amended with rock phosphate (RP). There were distinct differences in the physic-chemical parameters, the proportion of P fractions and bacterial diversity in different treatments. The contribution of available P fractions increased during composting especially in the treatment with the addition of PSB and biochar. Redundancy analysis showed that bacterial compositions were significantly influenced by P content, inoculation and biochar. Variance partitioning further showed that synergy of inoculated PSB and indigenous bacterial communities and the joint effect between biochar and bacteria explained the largest two proportion of the variation in P fractions. Therefore, the combined application of PSB and biochar to improve the inoculation effect and an optimized regulating method were suggested based on the distribution of P fractions. Copyright © 2016 Elsevier Ltd. All rights reserved.
Iebba, Valerio; Totino, Valentina; Santangelo, Floriana; Gagliardi, Antonella; Ciotoli, Luana; Virga, Alessandra; Ambrosi, Cecilia; Pompili, Monica; De Biase, Riccardo V.; Selan, Laura; Artini, Marco; Pantanella, Fabrizio; Mura, Francesco; Passariello, Claudio; Nicoletti, Mauro; Nencioni, Lucia; Trancassini, Maria; Quattrucci, Serena; Schippa, Serena
2014-01-01
Bdellovibrio bacteriovorus is a predator bacterial species found in the environment and within the human gut, able to attack Gram-negative prey. Cystic fibrosis (CF) is a genetic disease which usually presents lung colonization by Pseudomonas aeruginosa or Staphylococcus aureus biofilms. Here, we investigated the predatory behavior of B. bacteriovorus against these two pathogenic species with: (1) broth culture; (2) “static” biofilms; (3) field emission scanning electron microscope (FESEM); (4) “flow” biofilms; (5) zymographic technique. We had the first evidence of B. bacteriovorus survival with a Gram-positive prey, revealing a direct cell-to-cell contact with S. aureus and a new “epibiotic” foraging strategy imaged with FESEM. Mean attaching time of HD100 to S. aureus cells was 185 s, while “static” and “flow” S. aureus biofilms were reduced by 74 (at 24 h) and 46% (at 20 h), respectively. Furthermore, zymograms showed a differential bacteriolytic activity exerted by the B. bacteriovorus lysates on P. aeruginosa and S. aureus. The dual foraging system against Gram-negative (periplasmic) and Gram-positive (epibiotic) prey could suggest the use of B. bacteriovorus as a “living antibiotic” in CF, even if further studies are required to simulate its in vivo predatory behavior. PMID:24926292
Antibiotic-Resistant Escherichia coli in Migratory Birds Inhabiting Remote Alaska.
Ramey, Andrew M; Hernandez, Jorge; Tyrlöv, Veronica; Uher-Koch, Brian D; Schmutz, Joel A; Atterby, Clara; Järhult, Josef D; Bonnedahl, Jonas
2017-12-11
We explored the abundance of antibiotic-resistant Escherichia coli among migratory birds at remote sites in Alaska and used a comparative approach to speculate on plausible explanations for differences in detection among species. At a remote island site, we detected antibiotic-resistant E. coli phenotypes in samples collected from glaucous-winged gulls (Larus glaucescens), a species often associated with foraging at landfills, but not in samples collected from black-legged kittiwakes (Rissa tridactyla), a more pelagic gull that typically inhabits remote areas year-round. We did not find evidence for antibiotic-resistant E. coli among 347 samples collected primarily from waterfowl at a second remote site in western Alaska. Our results provide evidence that glaucous-winged gulls may be more likely to be infected with antibiotic-resistant E. coli at remote breeding sites as compared to sympatric black-legged kittiwakes. This could be a function of the tendency of glaucous-winged gulls to forage at landfills where antibiotic-resistant bacterial infections may be acquired and subsequently dispersed. The low overall detection of antibiotic-resistant E. coli in migratory birds sampled at remote sites in Alaska is consistent with the premise that anthropogenic inputs into the local environment or the relative lack thereof influences the prevalence of antibiotic-resistant bacteria among birds inhabiting the area.
Bento, C B P; Azevedo, A C; Gomes, D I; Batista, E D; Rufino, L M A; Detmann, E; Mantovani, H C
2016-01-01
In tropical regions, protein supplementation is a common practice in dairy and beef farming. However, the effect of highly degradable protein in ruminal fermentation and microbial community composition has not yet been investigated in a systematic manner. In this work, we aimed to investigate the impact of casein supplementation on volatile fatty acids (VFA) production, specific activity of deamination (SAD), ammonia concentration and bacterial and archaeal community composition. The experimental design was a 4×4 Latin square balanced for residual effects, with four animals (average initial weight of 280±10 kg) and four experimental periods, each with duration of 29 days. The diet comprised Tifton 85 (Cynodon sp.) hay with an average CP content of 9.8%, on a dry matter basis. Animals received basal forage (control) or infusions of pure casein (230 g) administered direct into the rumen, abomasum or divided (50 : 50 ratio) in the rumen/abomasum. There was no differences (P>0.05) in ruminal pH and microbial protein concentration between supplemented v. non-supplemented animals. However, in steers receiving ruminal infusion of casein the SAD and ruminal ammonia concentration increased 33% and 76%, respectively, compared with the control. The total concentration of VFA increased (P0.05) in species richness and diversity of γ-proteobacteria, firmicutes and archaea between non-supplemented Nellore steers and steers receiving casein supplementation in the rumen. However, species richness and the Shannon-Wiener index were lower (P<0.05) for the phylum bacteroidetes in steers supplemented with casein in the rumen compared with non-supplemented animals. Venn diagrams indicated that the number of unique bands varied considerably among individual animals and was usually higher in number for non-supplemented steers compared with supplemented animals. These results add new knowledge about the effects of ruminal and postruminal protein supplementation on metabolic activities of rumen microbes and the composition of bacterial and archaeal communities in the rumen of steers.
Optimization of a new mathematical model for bacterial growth
USDA-ARS?s Scientific Manuscript database
The objective of this research is to optimize a new mathematical equation as a primary model to describe the growth of bacteria under constant temperature conditions. An optimization algorithm was used in combination with a numerical (Runge-Kutta) method to solve the differential form of the new gr...
Climate warming causes life-history evolution in a model for Atlantic cod (Gadus morhua).
Holt, Rebecca E; Jørgensen, Christian
2014-01-01
Climate change influences the marine environment, with ocean warming being the foremost driving factor governing changes in the physiology and ecology of fish. At the individual level, increasing temperature influences bioenergetics and numerous physiological and life-history processes, which have consequences for the population level and beyond. We provide a state-dependent energy allocation model that predicts temperature-induced adaptations for life histories and behaviour for the North-East Arctic stock (NEA) of Atlantic cod (Gadus morhua) in response to climate warming. The key constraint is temperature-dependent respiratory physiology, and the model includes a number of trade-offs that reflect key physiological and ecological processes. Dynamic programming is used to find an evolutionarily optimal strategy of foraging and energy allocation that maximizes expected lifetime reproductive output given constraints from physiology and ecology. The optimal strategy is then simulated in a population, where survival, foraging behaviour, growth, maturation and reproduction emerge. Using current forcing, the model reproduces patterns of growth, size-at-age, maturation, gonad production and natural mortality for NEA cod. The predicted climate responses are positive for this stock; under a 2°C warming, the model predicted increased growth rates and a larger asymptotic size. Maturation age was unaffected, but gonad weight was predicted to more than double. Predictions for a wider range of temperatures, from 2 to 7°C, show that temperature responses were gradual; fish were predicted to grow faster and increase reproductive investment at higher temperatures. An emergent pattern of higher risk acceptance and increased foraging behaviour was also predicted. Our results provide important insight into the effects of climate warming on NEA cod by revealing the underlying mechanisms and drivers of change. We show how temperature-induced adaptations of behaviour and several life-history traits are not only mediated by physiology but also by trade-offs with survival, which has consequences for conservation physiology.
Climate warming causes life-history evolution in a model for Atlantic cod (Gadus morhua)
Holt, Rebecca E.; Jørgensen, Christian
2014-01-01
Climate change influences the marine environment, with ocean warming being the foremost driving factor governing changes in the physiology and ecology of fish. At the individual level, increasing temperature influences bioenergetics and numerous physiological and life-history processes, which have consequences for the population level and beyond. We provide a state-dependent energy allocation model that predicts temperature-induced adaptations for life histories and behaviour for the North-East Arctic stock (NEA) of Atlantic cod (Gadus morhua) in response to climate warming. The key constraint is temperature-dependent respiratory physiology, and the model includes a number of trade-offs that reflect key physiological and ecological processes. Dynamic programming is used to find an evolutionarily optimal strategy of foraging and energy allocation that maximizes expected lifetime reproductive output given constraints from physiology and ecology. The optimal strategy is then simulated in a population, where survival, foraging behaviour, growth, maturation and reproduction emerge. Using current forcing, the model reproduces patterns of growth, size-at-age, maturation, gonad production and natural mortality for NEA cod. The predicted climate responses are positive for this stock; under a 2°C warming, the model predicted increased growth rates and a larger asymptotic size. Maturation age was unaffected, but gonad weight was predicted to more than double. Predictions for a wider range of temperatures, from 2 to 7°C, show that temperature responses were gradual; fish were predicted to grow faster and increase reproductive investment at higher temperatures. An emergent pattern of higher risk acceptance and increased foraging behaviour was also predicted. Our results provide important insight into the effects of climate warming on NEA cod by revealing the underlying mechanisms and drivers of change. We show how temperature-induced adaptations of behaviour and several life-history traits are not only mediated by physiology but also by trade-offs with survival, which has consequences for conservation physiology. PMID:27293671
Does greed help a forager survive?
NASA Astrophysics Data System (ADS)
Bhat, U.; Redner, S.; Bénichou, O.
2017-06-01
We investigate the role of greed on the lifetime of a random-walking forager on an initially resource-rich lattice. Whenever the forager lands on a food-containing site, all the food there is eaten and the forager can hop S more steps without food before starving. Upon reaching an empty site, the forager comes one time unit closer to starvation. The forager is also greedy—given a choice to move to an empty or to a food-containing site in its local neighborhood, the forager moves preferentially toward food. Surprisingly, the forager lifetime varies nonmonotonically with greed, with different senses of the nonmonotonicity in one and two dimensions. Also unexpectedly, the forager lifetime in one dimension has a huge peak for very negative greed where the forager is food averse.
The changes of dominant lactic acid bacteria and their metabolites during corn stover ensiling.
Xu, Zhenshang; Zhang, Susu; Zhang, Rongling; Li, Shixu; Kong, Jian
2018-05-15
Monitoring the succession of bacterial populations during corn stover ensiling are helpful for improving the silage quality. Fermentation characteristics were assessed and bacterial communities were described along with the ensiling process. The ensiled corn stover exhibited chemical traits as low pH value (3.92 ± 0.02) and high levels of lactic acid (66.75 ± 1.97 g kg -1 dry matter) which were associated with well ensiled forages, as well as moderate concentrations of acetic acid (19.69 ± 1.51 g kg -1 dry matter) and small amounts of 1, 2-propanediol (4.4 ± 0.11 g kg -1 dry matter). In the early stages of the ensiling process, a significant increase and then reduction of the abundance of species Lactococcus lactis, Leuconostoc pseudomesenteroides, Pediococcus pentosaceus and Weissella sp. were observed. The species Lactobacillus plantarum (Lb. plantarum) group and Lb. brevis grew vigorously, and the species Lb. farciminis and Lb. parafarraginis gradually increased along with the course of ensiling. High-throughput sequencing was successfully used to describe bacterial communities throughout the process of corn stover ensiling. The knowledge about the ecological succession of the dominant lactic acid bacteria could lead to improved ensiling practices and the selection of corn stover silage inoculants. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Godwin, Scott; Kang, Alicia; Gulino, Lisa-Maree; Manefield, Mike; Gutierrez-Zamora, Maria-Luisa; Kienzle, Marco; Ouwerkerk, Diane; Dawson, Kerri; Klieve, Athol V
2014-01-01
Kangaroos ferment forage material in an enlarged forestomach analogous to the rumen, but in contrast to ruminants, they produce little or no methane. The objective of this study was to identify the dominant organisms and pathways involved in hydrogenotrophy in the kangaroo forestomach, with the broader aim of understanding how these processes are able to predominate over methanogenesis. Stable isotope analysis of fermentation end products and RNA stable isotope probing (RNA-SIP) were used to investigate the organisms and biochemical pathways involved in the metabolism of hydrogen and carbon dioxide in the kangaroo forestomach. Our results clearly demonstrate that the activity of bacterial reductive acetogens is a key factor in the reduced methane output of kangaroos. In in vitro fermentations, the microbial community of the kangaroo foregut produced very little methane, but produced a significantly greater proportion of acetate derived from carbon dioxide than the microbial community of the bovine rumen. A bacterial operational taxonomic unit closely related to the known reductive acetogen Blautia coccoides was found to be associated with carbon dioxide and hydrogen metabolism in the kangaroo foregut. Other bacterial taxa including members of the genera Prevotella, Oscillibacter and Streptococcus that have not previously been reported as containing hydrogenotrophic organisms were also significantly associated with metabolism of hydrogen and carbon dioxide in the kangaroo forestomach. PMID:24621520
Godwin, Scott; Kang, Alicia; Gulino, Lisa-Maree; Manefield, Mike; Gutierrez-Zamora, Maria-Luisa; Kienzle, Marco; Ouwerkerk, Diane; Dawson, Kerri; Klieve, Athol V
2014-09-01
Kangaroos ferment forage material in an enlarged forestomach analogous to the rumen, but in contrast to ruminants, they produce little or no methane. The objective of this study was to identify the dominant organisms and pathways involved in hydrogenotrophy in the kangaroo forestomach, with the broader aim of understanding how these processes are able to predominate over methanogenesis. Stable isotope analysis of fermentation end products and RNA stable isotope probing (RNA-SIP) were used to investigate the organisms and biochemical pathways involved in the metabolism of hydrogen and carbon dioxide in the kangaroo forestomach. Our results clearly demonstrate that the activity of bacterial reductive acetogens is a key factor in the reduced methane output of kangaroos. In in vitro fermentations, the microbial community of the kangaroo foregut produced very little methane, but produced a significantly greater proportion of acetate derived from carbon dioxide than the microbial community of the bovine rumen. A bacterial operational taxonomic unit closely related to the known reductive acetogen Blautia coccoides was found to be associated with carbon dioxide and hydrogen metabolism in the kangaroo foregut. Other bacterial taxa including members of the genera Prevotella, Oscillibacter and Streptococcus that have not previously been reported as containing hydrogenotrophic organisms were also significantly associated with metabolism of hydrogen and carbon dioxide in the kangaroo forestomach.
Optimization of Straight Cylindrical Turning Using Artificial Bee Colony (ABC) Algorithm
NASA Astrophysics Data System (ADS)
Prasanth, Rajanampalli Seshasai Srinivasa; Hans Raj, Kandikonda
2017-04-01
Artificial bee colony (ABC) algorithm, that mimics the intelligent foraging behavior of honey bees, is increasingly gaining acceptance in the field of process optimization, as it is capable of handling nonlinearity, complexity and uncertainty. Straight cylindrical turning is a complex and nonlinear machining process which involves the selection of appropriate cutting parameters that affect the quality of the workpiece. This paper presents the estimation of optimal cutting parameters of the straight cylindrical turning process using the ABC algorithm. The ABC algorithm is first tested on four benchmark problems of numerical optimization and its performance is compared with genetic algorithm (GA) and ant colony optimization (ACO) algorithm. Results indicate that, the rate of convergence of ABC algorithm is better than GA and ACO. Then, the ABC algorithm is used to predict optimal cutting parameters such as cutting speed, feed rate, depth of cut and tool nose radius to achieve good surface finish. Results indicate that, the ABC algorithm estimated a comparable surface finish when compared with real coded genetic algorithm and differential evolution algorithm.
Parental care in Tundra Swans during the pre-fledgling period
Earnst, Susan L.
2002-01-01
Among studies that have quantified the care of precocial young, few have investigated forms of parental care other than vigilance. During the pre-fledging period, Tundra Swan (Cygnus columbianus columbianus) parents provided simultaneous biparental care by foraging near each other and their cygnets, and cygnets spent more time foraging during bouts in which both parents were foraging nearby than when only one parent was foraging nearby. Parents spent nearly twice as much foraging time on land than did non-parents, a habitat in which cygnets foraged more intensely than parents (i.e., spent more time foraging during foraging bouts) and could graze on protein-rich sedges rather than use more difficult below-water foraging methods. Parents also spent more than twice as much time being vigilant and more than three times as much time defending their territory than non-parents, behaviors that presumably benefited cygents by decreasing predation risk and indirect foraging competition, respectively. Parents therefore incurred the costs of foraging less intensely during foraging bouts, spending more time interacting, more time in vigilance, and less time sleeping/preening than non-parents.
Subalpine bumble bee foraging distances and densities in relation to flower availability.
Elliott, Susan E
2009-06-01
Bees feed almost exclusively on nectar and pollen from flowers. However, little is known about how food availability limits bee populations, especially in high elevation areas. Foraging distances and relationships between forager densities and resource availability can provide insights into the potential for food limitation in mobile consumer populations. For example, if floral resources are limited, bee consumers should fly farther to forage, and they should be more abundant in areas with more flowers. I estimated subalpine bumble bee foraging distances by calculating forager recapture probabilities at increasing distances from eight marking locations. I measured forager and flower densities over the flowering season in six half-hectare plots. Because subalpine bumble bees have little time to build their colonies, they may forage over short distances and forager density may not be constrained by flower density. However, late in the season, when floral resources dwindle, foraging distances may increase, and there may be stronger relationships between forager and flower densities. Throughout the flowering season, marked bees were primarily found within 100 m (and never >1,000 m) from their original marking location, suggesting that they typically did not fly far to forage. Although the density of early season foraging queens increased with early-season flower density, the density of mid- and late-season workers and males did not vary with flower density. Short foraging distances and no relationships between mid- and late-season forager and flower densities suggest that high elevation bumble bees may have ample floral resources for colony growth reproduction.
Optic disc detection using ant colony optimization
NASA Astrophysics Data System (ADS)
Dias, Marcy A.; Monteiro, Fernando C.
2012-09-01
The retinal fundus images are used in the treatment and diagnosis of several eye diseases, such as diabetic retinopathy and glaucoma. This paper proposes a new method to detect the optic disc (OD) automatically, due to the fact that the knowledge of the OD location is essential to the automatic analysis of retinal images. Ant Colony Optimization (ACO) is an optimization algorithm inspired by the foraging behaviour of some ant species that has been applied in image processing for edge detection. Recently, the ACO was used in fundus images to detect edges, and therefore, to segment the OD and other anatomical retinal structures. We present an algorithm for the detection of OD in the retina which takes advantage of the Gabor wavelet transform, entropy and ACO algorithm. Forty images of the retina from DRIVE database were used to evaluate the performance of our method.
Yan, Muxia; Li, Weidong; Zhou, Zhenwen; Peng, Hongxia; Luo, Ziyan; Xu, Ling
2017-01-01
In this work, loop-mediated isothermal amplification based detection assay using bacterial culture and bacterial colony for various common pathogens direct detection had been established, evaluated and further applied. A total of five species of common pathogens and nine detection targets (tlh, tdh and trh for V. Parahaemolyticus, rfbE, stx1 and stx2 for E. coli, oprI for P. aeruginosa, invA for Salmonella and hylA for L. monocytogenes) were performed on bacterial culture and bacterial colony LAMP. To evaluate and optimize this assay, a total of 116 standard strains were included. Then, for each detected targets, 20 random selected strains were applied. Results were determined through both visual observation of the changed color by naked eye and electrophoresis, which increased the accuracy of survey. The minimum adding quantity of each primer had been confirmed, and the optimal amplification was obtained under 65 °C for 45 min with 25 μl reaction volume. The detection limit of bacterial culture LAMP and PCR assay were determined to be 10 2 and 10 4 or 10 5 CFU/reaction, respectively. No false positive amplification was observed when subjecting the bacterial -LAMP assay to 116 reference strains. This was the first report of colony-LAMP and culture-LAMP assay, which had been demonstrated to be a fast, reliable, cost-effective and simple method on detection of various common pathogens. Copyright © 2016 Elsevier Ltd. All rights reserved.
Worker honey bee pheromone regulation of foraging ontogeny
NASA Astrophysics Data System (ADS)
Pankiw, Tanya
The evolution of sociality has configured communication chemicals, called primer pheromones, which play key roles in regulating the organization of social life. Primer pheromones exert relatively slow effects that fundamentally alter developmental, physiological, and neural systems. Here, I demonstrate how substances extracted from the surface of foraging and young pre-foraging worker bees regulated age at onset of foraging, a developmental process. Hexane-extractable compounds washed from foraging workers increased foraging age compared with controls, whereas extracts of young pre-foraging workers decreased foraging age. This represents the first known direct demonstration of primer pheromone activity derived from adult worker bees.
Ashley, K; Wilson, S; Young, J R; Chan, H P; Vitou, S; Suon, S; Windsor, P A; Bush, R D
2018-01-01
Forage technology has been successfully introduced into smallholder cattle systems in Cambodia as an alternative feed source to the traditional rice straw and native pastures, improving animal nutrition and reducing labour requirements of feeding cattle. Previous research has highlighted the positive impacts of forage technology including improved growth rates of cattle and household time savings. However, further research is required to understand the drivers, challenges and opportunities of forage technology for smallholder cattle households in Cambodia to facilitate widespread adoption and identify areas for further improvement. A survey of forage-growing households (n = 40) in July-September 2016 examined forage technology adoption experiences, including reasons for forage establishment, use of inputs and labour requirements of forage plot maintenance and use of forages (feeding, fattening, sale of grass or seedlings and silage). Time savings was reported as the main driver of forage adoption with household members spending approximately 1 h per day maintaining forages and feeding it to cattle. Water availability was reported as the main challenge to this activity. A small number of households also reported lack of labour, lack of fencing, competition from natural grasses, cost of irrigation and lack of experience as challenges to forage growing. Cattle fattening and sale of cut forage grass and seedlings was not found to be a widespread activity by interviewed households, with 25 and 10% of households reporting use of forages for these activities, respectively. Currently, opportunities exist for these households to better utilise forages through expansion of forage plots and cattle activities, although assistance is required to support these households in addressing current constraints, particularly availability of water, if the sustainability of this feed technology for smallholder cattle household is to be established in Cambodia.
Fernández-Montraveta, Carmen; González, José Miguel; Cuadrado, Mariano
2014-06-01
Sexual cannibalism is a widespread phenomenon among a few animal taxa. Its occurrence is interpreted as female and/or male optimal reproductive decisions or as a non-adaptive side effect of selection for efficiently foraging females. In spite of the amount of research addressed at understanding its evolutionary origins, we lack accurate information about the proximate causes of sexual cannibalism. In a moderately sexually dimorphic wolf spider (Hogna radiata, Araneae, Lycosidae) we assessed the factors mediating the occurrence of sexual cannibalism and its fitness benefits to females. Sexual cannibalism was a rather common outcome of laboratory mating interactions, occurring in more than a quarter percent of courtship interactions involving virgin females. Sexual cannibalism mostly followed mating. Occurrence of sexual cannibalism depended on male vulnerability to female attacks: relatively smaller males were at higher risk of being attacked and older males were less likely to avoid female attacks. Sexual cannibalism had direct and positive effects on female fitness, as sexually cannibalistic females exhibited increased fecundity irrespective of their size, condition and foraging rate. Male consumption was almost complete and represented a relevant food intake to females. We interpret sexual cannibalism as a strategic foraging decision for H. radiata females that adjust their aggressive behaviour towards males so as to limit its potential costs. Copyright © 2014 Elsevier B.V. All rights reserved.
Sullivan, Michael L; Foster, Jamie L
2013-08-15
Studies of perennial peanut (Arachis glabrata Benth.) suggest its hay and haylage have greater levels of rumen undegraded protein (RUP) than other legume forages such as alfalfa (Medicago sativa L.). Greater RUP can result in more efficient nitrogen utilization by ruminant animals with positive economic and environmental effects. We sought to determine whether, like red clover (Trifolium pretense L.), perennial peanut contains polyphenol oxidase (PPO) and PPO substrates that might be responsible for increased RUP. Perennial peanut extracts contain immunologically detectible PPO protein and high levels of PPO activity (>100 nkatal mg(-1) protein). Addition of caffeic acid (PPO substrate) to perennial peanut extracts depleted of endogenous substrates reduced proteolysis by 90%. Addition of phenolics prepared from perennial peanut leaves to extracts of either transgenic PPO-expressing or control (non-expressing) alfalfa showed peanut phenolics could reduce proteolysis >70% in a PPO-dependent manner. Two abundant likely PPO substrates are present in perennial peanut leaves including caftaric acid. Perennial peanut contains PPO and PPO substrates that together are capable of inhibiting post-harvest proteolysis, suggesting a possible mechanism for increased RUP in this forage. Research related to optimizing the PPO system in other forage crops will likely be applicable to perennial peanut. Published 2013. This article is a U.S. Government work and is in the public domain in the USA.
Le Guen, Camille; Kato, Akiko; Raymond, Ben; Barbraud, Christophe; Beaulieu, Michaël; Bost, Charles-André; Delord, Karine; MacIntosh, Andrew J J; Meyer, Xavier; Raclot, Thierry; Sumner, Michael; Takahashi, Akinori; Thiebot, Jean-Baptiste; Ropert-Coudert, Yan
2018-06-29
The Southern Ocean is currently experiencing major environmental changes, including in sea-ice cover. Such changes strongly influence ecosystem structure and functioning and affect the survival and reproduction of predators such as seabirds. These effects are likely mediated by reduced availability of food resources. As such, seabirds are reliable eco-indicators of environmental conditions in the Antarctic region. Here, based on nine years of sea-ice data, we found that the breeding success of Adélie penguins (Pygoscelis adeliae) reaches a peak at intermediate sea-ice cover (ca. 20%). We further examined the effects of sea-ice conditions on the foraging activity of penguins, measured at multiple scales from individual dives to foraging trips. Analysis of temporal organisation of dives, including fractal and bout analyses, revealed an increasingly consistent behaviour during years with extensive sea-ice cover. The relationship between several dive parameters and sea-ice cover in the foraging area appears to be quadratic. In years of low and high sea-ice cover, individuals adjusted their diving effort by generally diving deeper, more frequently and by resting at the surface between dives for shorter periods of time than in years with intermediate sea-ice cover. Our study therefore suggests that sea-ice cover is likely to affect the reproductive performance of Adélie penguins through its effects on foraging behaviour, as breeding success and most diving parameters share a common optimum. Some years, however, deviated from this general trend, suggesting that other factors (e.g. precipitation during the breeding season) might sometimes become preponderant over the sea-ice effects on breeding and foraging performance. Our study highlights the value of monitoring fitness parameters and individual behaviour concomitantly over the long term to better characterize optimal environmental conditions and potential resilience of wildlife. Such an approach is crucial if we want to anticipate the effects of environmental change on Antarctic penguin populations. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Aquatic prey capture in snakes: the link between morphology, behavior and hydrodynamics
NASA Astrophysics Data System (ADS)
Segall, Marion; Herrel, Anthony; Godoy-Diana, Ramiro; Funevol Team; Pmmh Team
2017-11-01
Natural selection favors animals that are the most successful in their fitness-related behaviors, such as foraging. Secondary adaptations pose the problem of re-adapting an already 'hypothetically optimized' phenotype to new constraints. When animals forage underwater, they face strong physical constraints, particularly when capturing a prey. The capture requires the predator to be fast and to generate a high acceleration to catch the prey. This involves two main constraints due to the surrounding fluid: drag and added mass. Both of these constraints are related to the shape of the animal. We experimentally explore the relationship between shape and performance in the context of an aquatic strike. As a model, we use 3D-printed snake heads of different shapes and frontal strike kinematics based on in vivo observations. By using direct force measurements, we compare the drag and added mass generated by aquatic and non-aquatic snake models during a strike. Our results show that drag is optimized in aquatic snakes. Added mass appears less important than drag for snakes during an aquatic strike. The flow features associated to the hydrodynamic forces measured allows us to propose a mechanism rendering the shape of the head of aquatic snakes well adapted to catch prey underwater. Region Ile de France and the doctoral school Frontieres du Vivant (FdV) - Programme Bettencourt.
Martinez, C M; Chung, Y-H; Ishler, V A; Bailey, K W; Varga, G A
2009-07-01
Two experiments (Exp. 1 and 2) were conducted using a 4 x 4 Latin square design with 2 replications (n = 8) to evaluate effects of feeding Holstein dairy cows a total mixed ration containing 50 or 60% of ration dry matter (DM) from forages with or without supplementation of monensin. In Exp. 1, alfalfa silage (AS) was used as the major forage (55% forage DM), and corn silage (CS; 45% forage DM) was used to make up the rest of the forage portion of diets (55AS:45CS). In Exp. 2, CS was used as the major forage (70% forage DM) and alfalfa hay (AH; 30% forage DM) was used to make up the rest of the forage portion of diets (70CS:30AH). Experimental diets were arranged in a 2 x 2 factorial with 50 or 60% ration DM from forages and monensin supplemented at 0 or 300 mg/cow daily. In Exp. 1 (55AS:45CS), feeding 60% forage diets decreased DM intake (DMI; 27.3 vs. 29.6 kg/d) but maintained the same levels of milk (45.8 vs. 47.0 kg/d) compared with 50% forage diets. The efficiency of converting feed to milk or 3.5% fat-corrected milk was greater for cows fed 60% compared with 50% forage diets (1.7 vs. 1.6 kg milk or 3.5% fat-corrected milk/kg of DMI, respectively). Increasing dietary forage level from 50 to 60% of ration DM increased milk fat percentage (3.4 to 3.5%); however, adding monensin to the 60% forage diet inhibited the increase in milk fat percentage. Feeding 60% forage diets decreased feed cost, but this decrease ($0.5/head per day) in feed cost did not affect income over feed cost. Feeding 60% forage diets decreased fecal excretion of DM (10.6 to 9.6 kg/d) and nitrogen (N; 354 to 324 g/d) and improved apparent digestibility of neutral detergent fiber from 43 to 49% and apparent efficiency of feed N utilization from 32.3 to 35.9% compared with 50% forage diets. In Exp. 2 (70CS:30AH), feeding 60% forage diets decreased DMI from 29.6 to 28.2 kg but maintained the same level of milk (41.1 vs. 40.8 kg/d) and therefore increased the efficiency of converting feed to milk (1.46 vs. 1.38 kg milk/kg DMI) compared with 50% forage diets. Daily feed cost for feeding 60% forage diets was $0.3/head lower than for the 50% forage diets. Fecal excretion of DM (10.3 vs. 11.5 kg/d) was lower and fecal excretion of N (299 vs. 328 g/d) tended to be lower for 60% compared with 50% forage diets. Results from these 2 experiments suggest that a 60% forage diet consisting of either AS or CS as the major forage can be fed to high producing Holstein dairy cows without affecting milk production while improving or maintaining the efficiency of converting feed to milk and the apparent efficiency of utilization of feed N. Cows receiving a 60% forage diet had a similar or improved digestibility of nutrients with a similar or reduced fecal excretion of nutrients. Effects of monensin under the conditions of the current experiments were minimal.
Chang, Lun-Hsien; Barron, Andrew B; Cheng, Ken
2015-06-01
Worker honey bees change roles as they age as part of a hormonally regulated process of behavioural development that ends with a specialised foraging phase. The rate of behavioural development is highly plastic and responsive to changes in colony condition such that forager losses, disease or nutritional stresses accelerate behavioural development and cause an early onset of foraging in workers. It is not clear to what degree the behavioural development of workers can be accelerated without there being a cost in terms of reduced foraging performance. Here, we compared the foraging performance of bees induced to accelerate their behavioural development by treatment with the juvenile hormone analogue methoprene with that of controls that developed at a normal rate. Methoprene treatment accelerated the onset of both flight and foraging behaviour in workers, but it also reduced foraging span, the total time spent foraging and the number of completed foraging trips. Methoprene treatment did not alter performance in a short-range navigation task, however. These data indicate a limitation to the physiological plasticity of bees, and a trade off between forager performance and the speed at which bees begin foraging. Chronic stressors will be expected to reduce the mean age of the foraging force, and therefore also reduce the efficiency of the foraging force. This interaction may explain why honey bee colonies react to sustained stressors with non-linear population decline. © 2015. Published by The Company of Biologists Ltd.
Foraging depths of sea otters and implications to coastal marine communities
Bodkin, James L.; Esslinger, George G.; Monson, Daniel H.
2004-01-01
We visually observed 1,251 dives, of 14 sea otters instrumented with TDRs in southeast Alaska, and used attribute values from observed dives to classify 180,848 recorded dives as foraging (0.64), or traveling (0.36). Foraging dives were significantly deeper, with longer durations, bottom times, and postdive surface intervals, and greater descent and ascent rates, compared to traveling dives. Most foraging occurred in depths between 2 and 30 m (0.84), although 0.16 of all foraging was between 30 and 100 m. Nine animals, including all five males, demonstrated bimodal patterns in foraging depths, with peaks between 5 and 15 m and 30 and 60 m, whereas five of nine females foraged at an average depth of 10 m. Mean shallow foraging depth was 8 m, and mean deep foraging depth was 44 m. Maximum foraging depths averaged 61 m (54 and 82 for females and males, respectively) and ranged from 35 to 100 m. Female sea otters dove to depths ≤20 m on 0.85 of their foraging dives while male sea otters dove to depths ≥45 m on 0.50 of their foraging dives. Less than 0.02 of all foraging dives were >55 m, suggesting that effects of sea otter foraging on nearshore marine communities should diminish at greater depths. However, recolonization of vacant habitat by high densities of adult male sea otters may result in initial reductions of some prey species at depths >55 m.
Do linden trees kill bees? Reviewing the causes of bee deaths on silver linden (Tilia tomentosa).
Koch, Hauke; Stevenson, Philip C
2017-09-01
For decades, linden trees (basswoods or lime trees), and particularly silver linden ( Tilia tomentosa ), have been linked to mass bee deaths. This phenomenon is often attributed to the purported occurrence of the carbohydrate mannose, which is toxic to bees, in Tilia nectar. In this review, however, we conclude that from existing literature there is no experimental evidence for toxicity to bees in linden nectar. Bee deaths on Tilia probably result from starvation, owing to insufficient nectar resources late in the tree's flowering period. We recommend ensuring sufficient alternative food sources in cities during late summer to reduce bee deaths on silver linden. Silver linden metabolites such as floral volatiles, pollen chemistry and nectar secondary compounds remain underexplored, particularly their toxic or behavioural effects on bees. Some evidence for the presence of caffeine in linden nectar may mean that linden trees can chemically deceive foraging bees to make sub-optimal foraging decisions, in some cases leading to their starvation. © 2017 The Author(s).
Effect of Interactions between Harvester Ants on Forager Decisions
Davidson, Jacob D.; Arauco-Aliaga, Roxana P.; Crow, Sam; Gordon, Deborah M.; Goldman, Mark S.
2017-01-01
Harvester ant colonies adjust their foraging activity to day-to-day changes in food availability and hour-to-hour changes in environmental conditions. This collective behavior is regulated through interactions, in the form of brief antennal contacts, between outgoing foragers and returning foragers with food. Here we consider how an ant, waiting in the entrance chamber just inside the nest entrance, uses its accumulated experience of interactions to decide whether to leave the nest to forage. Using videos of field observations, we tracked the interactions and foraging decisions of ants in the entrance chamber. Outgoing foragers tended to interact with returning foragers at higher rates than ants that returned to the deeper nest and did not forage. To provide a mechanistic framework for interpreting these results, we develop a decision model in which ants make decisions based upon a noisy accumulation of individual contacts with returning foragers. The model can reproduce core trends and realistic distributions for individual ant interaction statistics, and suggests possible mechanisms by which foraging activity may be regulated at an individual ant level. PMID:28758093
Aoki, Kagari; Sato, Katsufumi; Isojunno, Saana; Narazaki, Tomoko; Miller, Patrick J O
2017-10-15
To maximize foraging duration at depth, diving mammals are expected to use the lowest cost optimal speed during descent and ascent transit and to minimize the cost of transport by achieving neutral buoyancy. Here, we outfitted 18 deep-diving long-finned pilot whales with multi-sensor data loggers and found indications that their diving strategy is associated with higher costs than those of other deep-diving toothed whales . Theoretical models predict that optimal speed is proportional to (basal metabolic rate/drag) 1/3 and therefore to body mass 0.05 The transit speed of tagged animals (2.7±0.3 m s -1 ) was substantially higher than the optimal speed predicted from body mass (1.4-1.7 m s -1 ). According to the theoretical models, this choice of high transit speed, given a similar drag coefficient (median, 0.0035) to that in other cetaceans, indicated greater basal metabolic costs during diving than for other cetaceans. This could explain the comparatively short duration (8.9±1.5 min) of their deep dives (maximum depth, 444±85 m). Hydrodynamic gliding models indicated negative buoyancy of tissue body density (1038.8±1.6 kg m -3 , ±95% credible interval, CI) and similar diving gas volume (34.6±0.6 ml kg -1 , ±95% CI) to those in other deep-diving toothed whales. High diving metabolic rate and costly negative buoyancy imply a 'spend more, gain more' strategy of long-finned pilot whales, differing from that in other deep-diving toothed whales, which limits the costs of locomotion during foraging. We also found that net buoyancy affected the optimal speed: high transit speeds gradually decreased during ascent as the whales approached neutral buoyancy owing to gas expansion. © 2017. Published by The Company of Biologists Ltd.
Elekwachi, Chijioke O.; Wang, Zuo; Wu, Xiaofeng; Rabee, Alaa; Forster, Robert J.
2017-01-01
Advances in high throughput, next generation sequencing technologies have allowed an in-depth examination of biological environments and phenomena, and are particularly useful for culture-independent microbial community studies. Recently the use of RNA for metatranscriptomic studies has been used to elucidate the role of active microbes in the environment. Extraction of RNA of appropriate quality is critical in these experiments and TRIzol reagent is often used for maintaining stability of RNA molecules during extraction. However, for studies using rumen content there is no consensus on (1) the amount of rumen digesta to use or (2) the amount of TRIzol reagent to be used in RNA extraction procedures. This study evaluated the effect of using various quantities of ground rumen digesta and of TRIzol reagent on the yield and quality of extracted RNA. It also investigated the possibility of using lower masses of solid-phase rumen digesta and lower amounts of TRIzol reagent than is used currently, for extraction of RNA for metatranscriptomic studies. We found that high quality RNA could be isolated from 2 g of ground rumen digesta sample, whilst using 0.6 g of ground matter for RNA extraction and using 3 mL (a 5:1 TRIzol : extraction mass ratio) of TRIzol reagent. This represents a significant savings in the cost of RNA isolation. These lower masses and volumes were then applied in the RNA-Seq analysis of solid-phase rumen samples obtained from 6 Angus X Hereford beef heifers which had been fed a high forage diet (comprised of barley straw in a forage-to-concentrate ratio of 70:30) for 102 days. A bioinformatics analysis pipeline was developed in-house that generated relative abundance values of archaea, protozoa, fungi and bacteria in the rumen and also allowed the extraction of individual rRNA variable regions that could be analyzed in downstream molecular ecology programs. The average relative abundances of rRNA transcripts of archaea, bacteria, protozoa and fungi in our samples were 1.4 ± 0.06, 44.16 ± 1.55, 35.38 ± 1.64, and 16.37 ± 0.65% respectively. This represents the first study to define the relative active contributions of these populations to the rumen ecosystem and is especially important in defining the role of the anaerobic fungi and protozoa. PMID:28983291
Elekwachi, Chijioke O; Wang, Zuo; Wu, Xiaofeng; Rabee, Alaa; Forster, Robert J
2017-01-01
Advances in high throughput, next generation sequencing technologies have allowed an in-depth examination of biological environments and phenomena, and are particularly useful for culture-independent microbial community studies. Recently the use of RNA for metatranscriptomic studies has been used to elucidate the role of active microbes in the environment. Extraction of RNA of appropriate quality is critical in these experiments and TRIzol reagent is often used for maintaining stability of RNA molecules during extraction. However, for studies using rumen content there is no consensus on (1) the amount of rumen digesta to use or (2) the amount of TRIzol reagent to be used in RNA extraction procedures. This study evaluated the effect of using various quantities of ground rumen digesta and of TRIzol reagent on the yield and quality of extracted RNA. It also investigated the possibility of using lower masses of solid-phase rumen digesta and lower amounts of TRIzol reagent than is used currently, for extraction of RNA for metatranscriptomic studies. We found that high quality RNA could be isolated from 2 g of ground rumen digesta sample, whilst using 0.6 g of ground matter for RNA extraction and using 3 mL (a 5:1 TRIzol : extraction mass ratio) of TRIzol reagent. This represents a significant savings in the cost of RNA isolation. These lower masses and volumes were then applied in the RNA-Seq analysis of solid-phase rumen samples obtained from 6 Angus X Hereford beef heifers which had been fed a high forage diet (comprised of barley straw in a forage-to-concentrate ratio of 70:30) for 102 days. A bioinformatics analysis pipeline was developed in-house that generated relative abundance values of archaea, protozoa, fungi and bacteria in the rumen and also allowed the extraction of individual rRNA variable regions that could be analyzed in downstream molecular ecology programs. The average relative abundances of rRNA transcripts of archaea, bacteria, protozoa and fungi in our samples were 1.4 ± 0.06, 44.16 ± 1.55, 35.38 ± 1.64, and 16.37 ± 0.65% respectively. This represents the first study to define the relative active contributions of these populations to the rumen ecosystem and is especially important in defining the role of the anaerobic fungi and protozoa.
Code of Federal Regulations, 2012 CFR
2012-01-01
... Coverage of Forage Intended for Animal Consumption § 1437.401 Forage. (a) Forage eligible for benefits... impact of disaster conditions, as determined by CCC, shall not be penalized. Benefits are not available..., except claims on forage for grazing benefits will be determined according to paragraph (f) of this...
Code of Federal Regulations, 2011 CFR
2011-01-01
... Coverage of Forage Intended for Animal Consumption § 1437.401 Forage. (a) Forage eligible for benefits... impact of disaster conditions, as determined by CCC, shall not be penalized. Benefits are not available..., except claims on forage for grazing benefits will be determined according to paragraph (f) of this...
Code of Federal Regulations, 2013 CFR
2013-01-01
... Coverage of Forage Intended for Animal Consumption § 1437.401 Forage. (a) Forage eligible for benefits... impact of disaster conditions, as determined by CCC, shall not be penalized. Benefits are not available..., except claims on forage for grazing benefits will be determined according to paragraph (f) of this...
Code of Federal Regulations, 2010 CFR
2010-01-01
... Coverage of Forage Intended for Animal Consumption § 1437.401 Forage. (a) Forage eligible for benefits... impact of disaster conditions, as determined by CCC, shall not be penalized. Benefits are not available..., except claims on forage for grazing benefits will be determined according to paragraph (f) of this...
Code of Federal Regulations, 2014 CFR
2014-01-01
... Coverage of Forage Intended for Animal Consumption § 1437.401 Forage. (a) Forage eligible for benefits... impact of disaster conditions, as determined by CCC, shall not be penalized. Benefits are not available..., except claims on forage for grazing benefits will be determined according to paragraph (f) of this...
Wang, Zhengwen; van Kleunen, Mark; During, Heinjo J; Werger, Marinus J A
2013-01-01
Plastic root-foraging responses have been widely recognized as an important strategy for plants to explore heterogeneously distributed resources. However, the benefits and costs of root foraging have received little attention. In a greenhouse experiment, we grew pairs of connected ramets of 22 genotypes of the stoloniferous plant Potentilla reptans in paired pots, between which the contrast in nutrient availability was set as null, medium and high, but with the total nutrient amount kept the same. We calculated root-foraging intensity of each individual ramet pair as the difference in root mass between paired ramets divided by the total root mass. For each genotype, we then calculated root-foraging ability as the slope of the regression of root-foraging intensity against patch contrast. For all genotypes, root-foraging intensity increased with patch contrast and the total biomass and number of offspring ramets were lowest at high patch contrast. Among genotypes, root-foraging intensity was positively related to production of offspring ramets and biomass in the high patch-contrast treatment, which indicates an evolutionary benefit of root foraging in heterogeneous environments. However, we found no significant evidence that the ability of plastic foraging imposes costs under homogeneous conditions (i.e. when foraging is not needed). Our results show that plants of P. reptans adjust their root-foraging intensity according to patch contrast. Moreover, the results show that the root foraging has an evolutionary advantage in heterogeneous environments, while costs of having the ability of plastic root foraging were absent or very small.
Climate change in fish: effects of respiratory constraints on optimal life history and behaviour.
Holt, Rebecca E; Jørgensen, Christian
2015-02-01
The difference between maximum metabolic rate and standard metabolic rate is referred to as aerobic scope, and because it constrains performance it is suggested to constitute a key limiting process prescribing how fish may cope with or adapt to climate warming. We use an evolutionary bioenergetics model for Atlantic cod (Gadus morhua) to predict optimal life histories and behaviours at different temperatures. The model assumes common trade-offs and predicts that optimal temperatures for growth and fitness lie below that for aerobic scope; aerobic scope is thus a poor predictor of fitness at high temperatures. Initially, warming expands aerobic scope, allowing for faster growth and increased reproduction. Beyond the optimal temperature for fitness, increased metabolic requirements intensify foraging and reduce survival; oxygen budgeting conflicts thus constrain successful completion of the life cycle. The model illustrates how physiological adaptations are part of a suite of traits that have coevolved. © 2015 The Author(s) Published by the Royal Society. All rights reserved.
Is there an endogenous tidal foraging rhythm in marine iguanas?
Wikelski, M; Hau, M
1995-12-01
As strictly herbivorous reptiles, Galápagos marine iguanas graze on algae in the intertidal areas during low tide. Daily foraging rhythms were observed on two islands during 3 years to determine the proximate factors underlying behavioral synchrony with the tides. Marine iguanas walked to their intertidal foraging grounds from far-off resting areas in anticipation of the time of low tide. Foraging activity was restricted to daytime, resulting in a complex bitidal rhythm including conspicuous switches from afternoon foraging to foraging during the subsequent morning when low tide occurred after dusk. The animals anticipated the daily low tide by a maximum of 4 h. The degree of anticipation depended on environmental parameters such as wave action and food supply. "Early foragers" survived in greater numbers than did animals arriving later at foraging sites, a result indicating selection pressure on the timing of anticipation. The timing of foraging trips was better predicted by the daily changes in tabulated low tide than it was by the daily changes in actual exposure of the intertidal foraging flats, suggesting an endogenous nature of the foraging rhythms. Endogenous rhythmicity would also explain why iguanas that had spontaneously fasted for several days nevertheless went foraging at the "right" time of day. A potential lunar component of the foraging rhythmicity of marine iguanas showed up in their assemblage on intertidal rocks during neap tide nights. This may indicate that iguanas possessed information on the semi-monthly rhythms in tide heights. Enclosure experiments showed that bitidal foraging rhythms of iguanas may free run in the absence of direct cues from the intertidal areas and operate independent of the light:dark cycle and social stimuli. Therefore, the existence of a circatidal oscillator in marine iguanas is proposed. The bitidal foraging pattern may result from an interaction of a circadian system with a circatidal system. Food intake or related stimuli may be used as tidal zeitgebers in synchronizing the foraging rhythms of these reptiles under natural conditions.
Berlincourt, Maud; Arnould, John P Y
2015-01-01
Establishing patterns of movements of free-ranging animals in marine ecosystems is crucial for a better understanding of their feeding ecology, life history traits and conservation. As central place foragers, the habitat use of nesting seabirds is heavily influenced by the resources available within their foraging range. We tested the prediction that during years with lower resource availability, short-tailed shearwaters (Puffinus tenuirostris) provisioning chicks should increase their foraging effort, by extending their foraging range and/or duration, both when foraging in neritic (short trips) and distant oceanic waters (long trips). Using both GPS and geolocation data-loggers, at-sea movements and habitat use were investigated over three breeding seasons (2012-14) at two colonies in southeastern Australia. Most individuals performed daily short foraging trips over the study period and inter-annual variations observed in foraging parameters where mainly due to few individuals from Griffith Island, performing 2-day trips in 2014. When performing long foraging trips, this study showed that individuals from both colonies exploited similar zones in the Southern Ocean. The results of this study suggest that individuals could increase their foraging range while exploiting distant feeding zones, which could indicate that short-tailed shearwaters forage in Antarctic waters not only to maintain their body condition but may also do so to buffer against local environmental stochasticity. Lower breeding performances were associated with longer foraging trips to distant oceanic waters in 2013 and 2014 indicating they could mediate reductions in food availability around the breeding colonies by extending their foraging range in the Southern Ocean. This study highlights the importance of foraging flexibility as a fundamental aspect of life history in coastal/pelagic marine central place foragers living in highly variable environments and how these foraging strategies are use to buffer this variability.
Computer-Aided Evaluation of Forage Management: Forage Manager.
ERIC Educational Resources Information Center
Panciera, M. T.; And Others
1993-01-01
Presents the Forage Manager spreadsheet, developed as a forage management teaching tool to integrate agronomic, livestock, and cost data to demonstrate the impact of forage management on livestock production costs. Teaching applications, examples involving agronomic data and conventional agronomic evaluation, and limitations of the program are…
Sunagawa, Katsunori; Nagamine, Itsuki
2016-01-01
The goats raised in the barn are usually fed on fresh grass. As dry forage can be stored for long periods in large amounts, dry forage feeding makes it possible to feed large numbers of goats in barns. This review explains the physiological factors involved in suppressing dry forage intake and the cause of drinking following dry forage feeding. Ruminants consume an enormous amount of dry forage in a short time. Eating rates of dry forage rapidly decreased in the first 40 min of feeding and subsequently declined gradually to low states in the remaining time of the feeding period. Saliva in large-type goats is secreted in large volume during the first hour after the commencement of dry forage feeding. It was elucidated that the marked suppression of dry forage intake during the first hour was caused by a feeding-induced hypovolemia and the loss of NaHCO3 due to excessive salivation during the initial stages of dry forage feeding. On the other hand, it was indicated that the marked decrease in feed intake observed in the second hour of the 2 h feeding period was related to ruminal distension caused by the feed consumed and the copious amount of saliva secreted during dry forage feeding. In addition, results indicate that the marked decreases in dry forage intake after 40 min of feeding are caused by increases in plasma osmolality and subsequent thirst sensations produced by dry forage feeding. After 40 min of the 2 h dry forage feeding period, the feed salt content is absorbed into the rumen and plasma osmolality increases. The combined effects of ruminal distension and increased plasma osmolality accounted for 77.6% of the suppression of dry forage intake 40 min after the start of dry forage feeding. The results indicate that ruminal distension and increased plasma osmolality are the main physiological factors in suppression of dry forage intake in large-type goats. There was very little drinking behavior observed during the first hour of the 2 h feeding period most water consumption occurring in the second hour. The cause of this thirst sensation during the second hour of dry forage feeding period was not hypovolemia brought about by excessive salivation, but rather increases in plasma osmolality due to the ruminal absorption of salt from the consumed feed. This suggests the water intake following dry forage feeding is determined by the level of salt content in the feed. PMID:26732440
Gupta, Asmita; Kumar, Madan; Thakur, Indu Shekhar
2017-10-01
A previously reported biodegrading bacterial strain Serratia sp. ISTVKR1 was studied for polyhydroxyalkanoate (PHA) production along with wastewater contaminant removal. Nile red fluorescence, GC-MS, FT-IR, NMR and TEM confirmed the accumulation of homopolymer poly-3-hydroxyvalerate (PHV) within the bacterial cells. Analysis of culture after 72h of bacterial treatment showed maximum COD removal (8.4-fold), non-detection of organic contaminants such as 1H-Cyclopropa [a] naphthalene (R.T.=10.12) using GC-MS and increased proportion of elements like Cr, Mn, Fe, Ni, Cu, Cd and Pb in the bacterial cell pellets by SEM-EDX analysis. Optimization of process parameters for enhanced PHA production along with wastewater treatment done using Response Surface Methodology (RSM) showed 5% and 0.74% increase in the PHA production (0.3368±0.13gL -1 ) and % COD reduction (88.93±2.41) of wastewater, respectively. The study, thus established the production of PHA along with wastewater contaminant removal by Serratia sp. ISTVKR1. Copyright © 2017 Elsevier Ltd. All rights reserved.
Bacterial diversity at different stages of the composting process
2010-01-01
Background Composting is an aerobic microbiological process that is facilitated by bacteria and fungi. Composting is also a method to produce fertilizer or soil conditioner. Tightened EU legislation now requires treatment of the continuously growing quantities of organic municipal waste before final disposal. However, some full-scale composting plants experience difficulties with the efficiency of biowaste degradation and with the emission of noxious odours. In this study we examine the bacterial species richness and community structure of an optimally working pilot-scale compost plant, as well as a full-scale composting plant experiencing typical problems. Bacterial species composition was determined by isolating total DNA followed by amplifying and sequencing the gene encoding the 16S ribosomal RNA. Results Over 1500 almost full-length 16S rRNA gene sequences were analysed and of these, over 500 were present only as singletons. Most of the sequences observed in either one or both of the composting processes studied here were similar to the bacterial species reported earlier in composts, including bacteria from the phyla Actinobacteria, Bacteroidetes, Firmicutes, Proteobacteria and Deinococcus-Thermus. In addition, a number of previously undetected bacterial phylotypes were observed. Statistical calculations estimated a total bacterial diversity of over 2000 different phylotypes in the studied composts. Conclusions Interestingly, locally enriched or evolved bacterial variants of familiar compost species were observed in both composts. A detailed comparison of the bacterial diversity revealed a large difference in composts at the species and strain level from the different composting plants. However, at the genus level, the difference was much smaller and illustrated a delay of the composting process in the full-scale, sub-optimally performing plants. PMID:20350306
Biomimicry of quorum sensing using bacterial lifecycle model.
Niu, Ben; Wang, Hong; Duan, Qiqi; Li, Li
2013-01-01
Recent microbiologic studies have shown that quorum sensing mechanisms, which serve as one of the fundamental requirements for bacterial survival, exist widely in bacterial intra- and inter-species cell-cell communication. Many simulation models, inspired by the social behavior of natural organisms, are presented to provide new approaches for solving realistic optimization problems. Most of these simulation models follow population-based modelling approaches, where all the individuals are updated according to the same rules. Therefore, it is difficult to maintain the diversity of the population. In this paper, we present a computational model termed LCM-QS, which simulates the bacterial quorum-sensing (QS) mechanism using an individual-based modelling approach under the framework of Agent-Environment-Rule (AER) scheme, i.e. bacterial lifecycle model (LCM). LCM-QS model can be classified into three main sub-models: chemotaxis with QS sub-model, reproduction and elimination sub-model and migration sub-model. The proposed model is used to not only imitate the bacterial evolution process at the single-cell level, but also concentrate on the study of bacterial macroscopic behaviour. Comparative experiments under four different scenarios have been conducted in an artificial 3-D environment with nutrients and noxious distribution. Detailed study on bacterial chemotatic processes with quorum sensing and without quorum sensing are compared. By using quorum sensing mechanisms, artificial bacteria working together can find the nutrient concentration (or global optimum) quickly in the artificial environment. Biomimicry of quorum sensing mechanisms using the lifecycle model allows the artificial bacteria endowed with the communication abilities, which are essential to obtain more valuable information to guide their search cooperatively towards the preferred nutrient concentrations. It can also provide an inspiration for designing new swarm intelligence optimization algorithms, which can be used for solving the real-world problems.
Biomimicry of quorum sensing using bacterial lifecycle model
2013-01-01
Background Recent microbiologic studies have shown that quorum sensing mechanisms, which serve as one of the fundamental requirements for bacterial survival, exist widely in bacterial intra- and inter-species cell-cell communication. Many simulation models, inspired by the social behavior of natural organisms, are presented to provide new approaches for solving realistic optimization problems. Most of these simulation models follow population-based modelling approaches, where all the individuals are updated according to the same rules. Therefore, it is difficult to maintain the diversity of the population. Results In this paper, we present a computational model termed LCM-QS, which simulates the bacterial quorum-sensing (QS) mechanism using an individual-based modelling approach under the framework of Agent-Environment-Rule (AER) scheme, i.e. bacterial lifecycle model (LCM). LCM-QS model can be classified into three main sub-models: chemotaxis with QS sub-model, reproduction and elimination sub-model and migration sub-model. The proposed model is used to not only imitate the bacterial evolution process at the single-cell level, but also concentrate on the study of bacterial macroscopic behaviour. Comparative experiments under four different scenarios have been conducted in an artificial 3-D environment with nutrients and noxious distribution. Detailed study on bacterial chemotatic processes with quorum sensing and without quorum sensing are compared. By using quorum sensing mechanisms, artificial bacteria working together can find the nutrient concentration (or global optimum) quickly in the artificial environment. Conclusions Biomimicry of quorum sensing mechanisms using the lifecycle model allows the artificial bacteria endowed with the communication abilities, which are essential to obtain more valuable information to guide their search cooperatively towards the preferred nutrient concentrations. It can also provide an inspiration for designing new swarm intelligence optimization algorithms, which can be used for solving the real-world problems. PMID:23815296
Red-cockaded woodpecker foraging behavior
D. Craig Rudolph; Richard N. Conner; Richard R. Schaefer; Nancy E. Koerth
2007-01-01
We studied Red-cockaded Woodpeckers (Picoides borealis) to examine the effect of status and gender on foraging behavior. Foraging behavior of breeding pairs extended beyond separation by foraging height to include zones (bole, trunk in crown, primary limb, secondary limb) of the tree used and foraging methods (scaling, probing, excavating). Helper...
75 FR 4279 - Pendimethalin; Pesticide Tolerances
Federal Register 2010, 2011, 2012, 2013, 2014
2010-01-27
...-dimethyl-2,6- dinitrobenzenamine, in or on grass forage, fodder, and hay crop group 17, forage; grass forage, fodder, and hay crop group 17, hay; and grass forage, fodder, and hay crop group 17, straw. BASF...-dinitrobenzyl alcohol, expressed as the stoichiometric equivalent of pendimethalin, in or on grass forage...
7 CFR 457.117 - Forage production crop insurance provisions.
Code of Federal Regulations, 2010 CFR
2010-01-01
.... Cutting. The severance of the forage plant from its roots. Direct marketing. Sale of the forage crop... broker. An example of direct marketing is selling directly to other producers. Fall planted. A forage... be sold by direct marketing unless you have records verifying that the forage was direct marketed...
Octopamine influences honey bee foraging preference.
Giray, Tugrul; Galindo-Cardona, Alberto; Oskay, Devrim
2007-07-01
Colony condition and differences in individual preferences influence forage type collected by bees. Physiological bases for the changing preferences of individual foragers are just beginning to be examined. Recently, for honey bees octopamine is shown to influence age at onset of foraging and probability of dance for rewards. However, octopamine has not been causally linked with foraging preference in the field. We tested the hypothesis that changes in octopamine may alter forage type (preference hypothesis). We treated identified foragers orally with octopamine or its immediate precursor, tyramine, or sucrose syrup (control). Octopamine-treated foragers switched type of material collected; control bees did not. Tyramine group results were not different from the control group. In addition, sugar concentrations of nectar collected by foragers after octopamine treatment were lower than before treatment, indicating change in preference. In contrast, before and after nectar concentrations for bees in the control group were similar. These results, taken together, support the preference hypothesis.
NASA Astrophysics Data System (ADS)
Gil, Mariana; Farina, Walter Marcelo
2002-05-01
This paper addresses, what determines that experienced forager honeybees return to places where they have previously exploited nectar. Although there was already some evidence that dance and trophallaxis can cause bees to return to feed, the fraction of unemployed foragers that follow dance or receive food from employed foragers before revisiting the feeder was unknown. We found that 27% of the experienced foragers had no contact with the returning foragers inside the hive. The most common interactions were dance following (64%) and trophallaxis (21%). The great variability found in the amount of interactions suggests that individual bees require different stimulation before changing to the foraging mode. This broad disparity negatively correlated with the number of days after marking at the feeder, a variable that is closely related to the foraging experience, suggesting that a temporal variable might affect the decision-making in reactivated foragers.
NASA Astrophysics Data System (ADS)
Harano, Ken-ichi; Mitsuhata-Asai, Akiko; Sasaki, Masami
2014-07-01
Before foraging honeybees leave the hive, each bee loads its crop with some amount of honey "fuel" depending on the distance to the food source and foraging experience. For pollen collection, there is evidence that foragers carry additional honey as "glue" to build pollen loads. This study examines whether pollen foragers of the European honeybee Apis mellifera regulate the size of the crop load according to food-source distances upon leaving the hive and how foraging experience affects load regulation. The crop contents of bees foraging on crape myrtle Lagerstroemia indica, which has no nectary, were larger than those foraging on nectar from other sources, confirming a previous finding that pollen foragers carry glue in addition to fuel honey from the hive. Crop contents of both waggle dancers and dance followers showed a significant positive correlation with waggle-run durations. These results suggest that bees carry a distance-dependent amount of fuel honey in addition to a fixed amount of glue honey. Crop contents on leaving the hive were statistically larger in dancers than followers. Based on these results, we suggest that pollen foragers use information obtained through foraging experience to adjust crop contents on leaving the hive.
Starvation dynamics of a greedy forager
NASA Astrophysics Data System (ADS)
Bhat, U.; Redner, S.; Bénichou, O.
2017-07-01
We investigate the dynamics of a greedy forager that moves by random walking in an environment where each site initially contains one unit of food. Upon encountering a food-containing site, the forager eats all the food there and can subsequently hop an additional S steps without food before starving to death. Upon encountering an empty site, the forager goes hungry and comes one time unit closer to starvation. We investigate the new feature of forager greed; if the forager has a choice between hopping to an empty site or to a food-containing site in its nearest neighborhood, it hops preferentially towards food. If the neighboring sites all contain food or are all empty, the forager hops equiprobably to one of these neighbors. Paradoxically, the lifetime of the forager can depend non-monotonically on greed, and the sense of the non-monotonicity is opposite in one and two dimensions. Even more unexpectedly, the forager lifetime in one dimension is substantially enhanced when the greed is negative; here the forager tends to avoid food in its local neighborhood. We also determine the average amount of food consumed at the instant when the forager starves. We present analytic, heuristic, and numerical results to elucidate these intriguing phenomena.
Harano, Ken-ichi; Mitsuhata-Asai, Akiko; Sasaki, Masami
2014-07-01
Before foraging honeybees leave the hive, each bee loads its crop with some amount of honey "fuel" depending on the distance to the food source and foraging experience. For pollen collection, there is evidence that foragers carry additional honey as "glue" to build pollen loads. This study examines whether pollen foragers of the European honeybee Apis mellifera regulate the size of the crop load according to food-source distances upon leaving the hive and how foraging experience affects load regulation. The crop contents of bees foraging on crape myrtle Lagerstroemia indica, which has no nectary, were larger than those foraging on nectar from other sources, confirming a previous finding that pollen foragers carry glue in addition to fuel honey from the hive. Crop contents of both waggle dancers and dance followers showed a significant positive correlation with waggle-run durations. These results suggest that bees carry a distance-dependent amount of fuel honey in addition to a fixed amount of glue honey. Crop contents on leaving the hive were statistically larger in dancers than followers. Based on these results, we suggest that pollen foragers use information obtained through foraging experience to adjust crop contents on leaving the hive.
Fight or flight? - Flight increases immune gene expression but does not help to fight an infection.
Woestmann, L; Kvist, J; Saastamoinen, M
2017-03-01
Flight represents a key trait in most insects, being energetically extremely demanding, yet often necessary for foraging and reproduction. Additionally, dispersal via flight is especially important for species living in fragmented landscapes. Even though, based on life-history theory, a negative relationship may be expected between flight and immunity, a number of previous studies have indicated flight to induce an increased immune response. In this study, we assessed whether induced immunity (i.e. immune gene expression) in response to 15-min forced flight treatment impacts individual survival of bacterial infection in the Glanville fritillary butterfly (Melitaea cinxia). We were able to confirm previous findings of flight-induced immune gene expression, but still observed substantially stronger effects on both gene expression levels and life span due to bacterial infection compared to flight treatment. Even though gene expression levels of some immunity-related genes were elevated due to flight, these individuals did not show increased survival of bacterial infection, indicating that flight-induced immune activation does not completely protect them from the negative effects of bacterial infection. Finally, an interaction between flight and immune treatment indicated a potential trade-off: flight treatment increased immune gene expression in naïve individuals only, whereas in infected individuals no increase in immune gene expression was induced by flight. Our results suggest that the up-regulation of immune genes upon flight is based on a general stress response rather than reflecting an adaptive response to cope with potential infections during flight or in new habitats. © 2016 The Authors. Journal of Evolutionary Biology Published by John Wiley & Sons ltd on behalf of European Society for Evolutionary Biology.
Duponnois, R; Kisa, M; Assigbetse, K; Prin, Y; Thioulouse, J; Issartel, M; Moulin, P; Lepage, M
2006-11-01
Cd-tolerant bacterial strains of fluorescent pseudomonads, mostly belonging to Pseudomonas monteillii, were isolated from termite mound soil (Macrotermes subhyalinus, a litter-forager and fungus-growing termite), in a Sudanese shrubby savanna, Burkina Faso. Such large mounds appeared as sites of great bacterial diversity and could be considered as hot spots of metal-tolerant fluorescent pseudomonads. Microbial isolates were inoculated to Sorghum plants (S. bicolor) in glasshouse experiments with soil amended with CdCl(2) (560 mg Cd kg(-1) soil). Microbial functional diversity was assessed at the end of the experiment by measurement of in situ patterns of catabolic potentials. All the bacteria isolates significantly improved the shoot and total biomass of sorghum plants compared to the control. Results concerning root biomass were not significant with some strains. Arbuscular mycorrhiza (AM) was greatly reduced by CdCl(2) amendment, and fluorescent pseudomonad inoculation significantly increased AM colonisation in the contaminated soil. The bacterial inoculation significantly improved Cd uptake by sorghum plants. Measurement of catabolic potentials on 16 substrates showed that the microbial communities were different according to the soil amendment. Soils samples inoculated with pseudomonad strains presented a higher use of ketoglutaric and hydroxybutiric acids, as opposed to fumaric acid in soil samples not inoculated. It is suggested that fluorescent pseudomonads could act indirectly in such metabolic processes by involving a lower rate of degradation of citric acid, in line with the effect of small organic acid on phytoextraction of heavy metals from soil. This is a first contribution to bioremediation of metal-contaminated sites with soil-to-plant transfer, using termite built structures. Further data are required on the efficiency of the bacterial strains isolated and on the processes involved.
Fall, S; Nazaret, S; Chotte, J L; Brauman, A
2004-08-01
The building and foraging activities of termites are known to modify soil characteristics such as the heterogeneity. In tropical savannas the impact of the activity of soil-feeding termites ( Cubitermes niokoloensis) has been shown to affect the properties of the soil at the aggregate level by creating new soil microenvironments (aggregate size fractions) [13]. These changes were investigated in greater depth by looking at the microbial density (AODC) and the genetic structure (automated rRNA intergenic spacer analysis: ARISA) of the communities in the different aggregate size fractions (i.e., coarse sand, fine sand, coarse silt, fine silt, and dispersible clays) separated from compartments (internal and external wall) of three Cubitermes niokoloensis mounds. The bacterial density of the mounds was significantly higher (1.5 to 3 times) than that of the surrounding soil. Within the aggregate size fractions, the termite building activity resulted in a significant increase in bacterial density within the coarser fractions (>20 mum). Multivariate analysis of the ARISA profiles revealed that the bacterial genetic structures of unfractionated soil and soil aggregate size fractions of the three mounds was noticeably different from the savanna soil used as a reference. Moreover, the microbial community associated with the different microenvironments in the three termite mounds revealed three distinct clusters formed by the aggregate size fractions of each mound. Except for the 2-20 mum fraction, these results suggest that the mound microbial genetic structure is more dependent upon microbial pool affiliation (the termite mound) than on the soil location (aggregate size fraction). The causes of the specificity of the microbial community structure of termite mound aggregate size fractions are discussed.
Chen, Tinggui; Xiao, Renbin
2014-01-01
Artificial bee colony (ABC) algorithm, inspired by the intelligent foraging behavior of honey bees, was proposed by Karaboga. It has been shown to be superior to some conventional intelligent algorithms such as genetic algorithm (GA), artificial colony optimization (ACO), and particle swarm optimization (PSO). However, the ABC still has some limitations. For example, ABC can easily get trapped in the local optimum when handing in functions that have a narrow curving valley, a high eccentric ellipse, or complex multimodal functions. As a result, we proposed an enhanced ABC algorithm called EABC by introducing self-adaptive searching strategy and artificial immune network operators to improve the exploitation and exploration. The simulation results tested on a suite of unimodal or multimodal benchmark functions illustrate that the EABC algorithm outperforms ACO, PSO, and the basic ABC in most of the experiments.
Chen, Tinggui; Xiao, Renbin
2014-01-01
Artificial bee colony (ABC) algorithm, inspired by the intelligent foraging behavior of honey bees, was proposed by Karaboga. It has been shown to be superior to some conventional intelligent algorithms such as genetic algorithm (GA), artificial colony optimization (ACO), and particle swarm optimization (PSO). However, the ABC still has some limitations. For example, ABC can easily get trapped in the local optimum when handing in functions that have a narrow curving valley, a high eccentric ellipse, or complex multimodal functions. As a result, we proposed an enhanced ABC algorithm called EABC by introducing self-adaptive searching strategy and artificial immune network operators to improve the exploitation and exploration. The simulation results tested on a suite of unimodal or multimodal benchmark functions illustrate that the EABC algorithm outperforms ACO, PSO, and the basic ABC in most of the experiments. PMID:24772023
2011-01-01
Dairy cows are often fed high grain diets to meet the energy demand for high milk production or simply due to a lack of forages at times. As a result, ruminal acidosis, especially subacute ruminal acidosis (SARA), occurs frequently in practical dairy production. When SARA occurs, bacterial endotoxin (or lipopolysaccharide, LPS) is released in the rumen and the large intestine in a large amount. Many other bacterial immunogens may also be released in the digestive tract following feeding dairy cows diets containing high proportions of grain. LPS can be translocated into the bloodstream across the epithelium of the digestive tract, especially the lower tract, due to possible alterations of permeability and injuries of the epithelial tissue. As a result, the concentration of blood LPS increases. Immune responses are subsequently caused by circulating LPS, and the systemic effects include increases in concentrations of neutrophils and the acute phase proteins such as serum amyloid-A (SAA), haptoglobin (Hp), LPS binding protein (LBP), and C-reactive protein (CRP) in blood. Entry of LPS into blood can also result in metabolic alterations. Blood glucose and nonesterified fatty acid concentrations are enhanced accompanying an increase of blood LPS after increasing the amount of grain in the diet, which adversely affects feed intake of dairy cows. As the proportions of grain in the diet increase, patterns of plasma β-hydoxybutyric acid, cholesterol, and minerals (Ca, Fe, and Zn) are also perturbed. The bacterial immunogens can also lead to reduced supply of nutrients for synthesis of milk components and depressed functions of the epithelial cells in the mammary gland. The immune responses and metabolic alterations caused by circulating bacterial immunogens will exert an effect on milk production. It has been demonstrated that increases in concentrations of ruminal LPS and plasma acute phase proteins (CRP, SAA, and LBP) are associated with declines in milk fat content, milk fat yield, 3.5% fat-corrected milk yield, as well as milk energy efficiency. PMID:21824438
Comparison of rumen bacterial communities in dairy herds of different production.
Indugu, Nagaraju; Vecchiarelli, Bonnie; Baker, Linda D; Ferguson, James D; Vanamala, Jairam K P; Pitta, Dipti W
2017-08-30
The purpose of this study was to compare the rumen bacterial composition in high and low yielding dairy cows within and between two dairy herds. Eighty five Holstein dairy cows in mid-lactation (79-179 days in milk) were selected from two farms: Farm 12 (M305 = 12,300 kg; n = 47; 24 primiparous cows, 23 multiparous cows) and Farm 9 (M305 = 9700 kg; n = 38; 19 primiparous cows, 19 multiparous cows). Each study cow was sampled once using the stomach tube method and processed for 16S rRNA gene amplicon sequencing using the Ion Torrent (PGM) platform. Differences in bacterial communities between farms were greater (Adonis: R 2 = 0.16; p < 0.001) than within farm. Five bacterial lineages, namely Prevotella (48-52%), unclassified Bacteroidales (10-12%), unclassified bacteria (5-8%), unclassified Succinivibrionaceae (1-7%) and unclassified Prevotellaceae (4-5%) were observed to differentiate the community clustering patterns among the two farms. A notable finding is the greater (p < 0.05) contribution of Succinivibrionaceae lineages in Farm 12 compared to Farm 9. Furthermore, in Farm 12, Succinivibrionaceae lineages were higher (p < 0.05) in the high yielding cows compared to the low yielding cows in both primiparous and multiparous groups. Prevotella, S24-7 and Succinivibrionaceae lineages were found in greater abundance on Farm 12 and were positively correlated with milk yield. Differences in rumen bacterial populations observed between the two farms can be attributed to dietary composition, particularly differences in forage type and proportion in the diets. A combination of corn silage and alfalfa silage may have contributed to the increased proportion of Proteobacteria in Farm 12. It was concluded that Farm 12 had a greater proportion of specialist bacteria that have the potential to enhance rumen fermentative digestion of feedstuffs to support higher milk yields.
Jennings, David E; Krupa, James J; Rohr, Jason R
2016-07-01
Foraging modalities (e.g. passive, sit-and-wait, active) and traits are plastic in some species, but the extent to which this plasticity affects interspecific competition remains unclear. Using a long-term laboratory mesocosm experiment, we quantified competition strength and the plasticity of foraging traits in a guild of generalist predators of arthropods with a range of foraging modalities. Each mesocosm contained eight passively foraging pink sundews, and we employed an experimental design where treatments were the presence or absence of a sit-and-wait foraging spider and actively foraging toad crossed with five levels of prey abundance. We hypothesized that actively foraging toads would outcompete the other species at low prey abundance, but that spiders and sundews would exhibit plasticity in foraging traits to compensate for strong competition when prey were limited. Results generally supported our hypotheses. Toads had a greater effect on sundews at low prey abundances, and toad presence caused spiders to locate webs higher above the ground. Additionally, the closer large spider webs were to the ground, the greater the trichome densities produced by sundews. Also, spider webs were larger with than without toads and as sundew numbers increased, and these effects were more prominent as resources became limited. Finally, spiders negatively affected toad growth only at low prey abundance. These findings highlight the long-term importance of foraging modality and plasticity of foraging traits in determining the strength of competition within and across taxonomic kingdoms. Future research should assess whether plasticity in foraging traits helps to maintain coexistence within this guild and whether foraging modality can be used as a trait to reliably predict the strength of competitive interactions. © 2016 The Authors. Journal of Animal Ecology © 2016 British Ecological Society.
Foraging location and site fidelity of the Double-crested Cormorant on Oneida Lake, New York
Coleman, J.T.H.; Richmond, M.E.; Rudstam, L. G.; Mattison, P.M.
2005-01-01
We studied the foraging behavior of the Double-crested Cormorant (Phalacrocorax auritus) on Oneida Lake, New York, by monitoring the activities of 27 radio-tagged birds in July and August of 1999 and 2000. A total of 224 locations were obtained of cormorants actively diving, and presumed foraging, at the time of detection. A geographic information system was used to examine foraging distances from the nesting island, the water depth and type of substrate at preferred foraging sites, and to estimate kernel home ranges for analysis of individual foraging site fidelity. An explanatory model was developed to determine parameters affecting the distance to cormorant foraging sites. The mean distance to foraging locations of tagged cormorants from the colony site was 2,920 m (SE ?? 180 m, max = 14,190 m), and 52% of the locations were within 2,000 m of the nesting island. No cormorant was observed making daily foraging trips to outside water bodies. Mean foraging distance was greater during morning than in the afternoon, and there was a significant effect of the time of day on distance. There was no significant effect of sex date, a seasonal measure on distance to foraging location. Individual cormorants exhibited fidelity to specific foraging sites. Most cormorants foraged in close proximity to the nesting island much of the time, while those detected further from the island tended to return repeatedly to the same locations. Ninety percent of the foraging locations were in water depths ???7.5 m, and most were in water 2.5-5 m deep. Compositional analysis of habitat use revealed a preference for these depths, along with substrates of cobble with rubble, and silt with clay.
Effects of preservation method on canine (Canis lupus familiaris) fecal microbiota.
Horng, Katti R; Ganz, Holly H; Eisen, Jonathan A; Marks, Stanley L
2018-01-01
Studies involving gut microbiome analysis play an increasing role in the evaluation of health and disease in humans and animals alike. Fecal sampling methods for DNA preservation in laboratory, clinical, and field settings can greatly influence inferences of microbial composition and diversity, but are often inconsistent and under-investigated between studies. Many laboratories have utilized either temperature control or preservation buffers for optimization of DNA preservation, but few studies have evaluated the effects of combining both methods to preserve fecal microbiota. To determine the optimal method for fecal DNA preservation, we collected fecal samples from one canine donor and stored aliquots in RNAlater, 70% ethanol, 50:50 glycerol:PBS, or without buffer at 25 °C, 4 °C, and -80 °C. Fecal DNA was extracted, quantified, and 16S rRNA gene analysis performed on Days 0, 7, 14, and 56 to evaluate changes in DNA concentration, purity, and bacterial diversity and composition over time. We detected overall effects on bacterial community of storage buffer ( F -value = 6.87, DF = 3, P < 0.001), storage temperature ( F -value=1.77, DF = 3, P = 0.037), and duration of sample storage ( F -value = 3.68, DF = 3, P < 0.001). Changes in bacterial composition were observed in samples stored in -80 °C without buffer, a commonly used method for fecal DNA storage, suggesting that simply freezing samples may be suboptimal for bacterial analysis. Fecal preservation with 70% ethanol and RNAlater closely resembled that of fresh samples, though RNAlater yielded significantly lower DNA concentrations ( DF = 8.57, P < 0.001). Although bacterial composition varied with temperature and buffer storage, 70% ethanol was the best method for preserving bacterial DNA in canine feces, yielding the highest DNA concentration and minimal changes in bacterial diversity and composition. The differences observed between samples highlight the need to consider optimized post-collection methods in microbiome research.
Responses of horses offered a choice between stables containing single or multiple forages.
Goodwin, D; Davidson, H P B; Harris, P
2007-04-21
To investigate the choices of foraging location of horses, 10 to 12 horses were introduced for five minutes into each of two similar stables containing a single forage or six forages, in four replicated trials. The horses were then removed and released into the gangway between the stables, and allowed five minutes to choose between the stables. Their initial and final choices, mean duration in each stable and proportional frequency of change of location were compared. Most of the horses initially entered the closest stable on release (P<0.05); if the closest stable contained a single hay, most horses transferred to the stable containing multiple forages (P<0.001). The length of time spent by the horses in the two stables suggested that they preferred multiple forages in multiple locations (P<0.001). Eleven horses moved from one stable to the other on one or more occasions during trials when hay or a preferred forage was available in both stables, possibly indicating a motivation to move between foraging locations regardless of the palatability of the forages offered or the horses' preference for a forage.
Effect of delignification upon in vitro digestion of forage cellulose.
Darcy, B K; Belyea, R L
1980-10-01
Orchardgrass forages harvested at two maturities (early and late) were ground through two screens (1 and 8 mm) and digested in vitro as intact forage and forage delignified by permanganate oxidation. Initial and residual cell wall, initial and residual cellulose and potentially digestible cellulose were greater in late intact forage than in the early. In the delignified forage, late cut forage had less residual cellulose than did the early, but initial and potentially digestible cellulose were similar. Particle size had less consistent and smaller effects upon cell wall and cellulose than did maturity. Cellulose of intact orchardgrass was 64% digested at 72 h vs 94% for cellulose of delignified orchardgrass. Digestion rate of cellulose was .0197 and .0220 logn units/hr for early and late cut intact forage and .0554 and .0719 logn units/hr for early and late cut delignified forage. Removal of the inhibitory effects of lignin increased the amount of digestible cellulose, increased the rate at which cellulose degraded and decreased the indigestible cellulose residue. Reduction in lignin could greatly improve forage intake and utilization at moderate levels of animal production.
Feliform carnivores have a distinguished constitutive innate immune response
Heinrich, Sonja K.; Wachter, Bettina; Aschenborn, Ortwin H. K.; Thalwitzer, Susanne; Melzheimer, Jörg; Hofer, Heribert; Czirják, Gábor Á.
2016-01-01
ABSTRACT Determining the immunological phenotype of endangered and threatened populations is important to identify those vulnerable to novel pathogens. Among mammals, members of the order Carnivora are particularly threatened by diseases. We therefore examined the constitutive innate immune system, the first line of protection against invading microbes, of six free-ranging carnivore species; the black-backed jackal (Canis mesomelas), the brown hyena (Hyena brunnea), the caracal (Caracal caracal), the cheetah (Acinonyx jubatus), the leopard (Panthera pardus) and the lion (Panthera leo) using a bacterial killing assay. The differences in immune responses amongst the six species were independent of their foraging behaviour, body mass or social organisation but reflected their phylogenetic relatedness. The bacterial killing capacity of black-backed jackals, a member of the suborder Caniformia, followed the pattern established for a wide variety of vertebrates. In contrast, the five representatives of the suborder Feliformia demonstrated a killing capacity at least an order of magnitude higher than any species reported previously, with a particularly high capacity in caracals and cheetahs. Our results suggest that the immunocompetence of threatened felids such as the cheetah has been underestimated and its assessment ought to consider both innate and adaptive components of the immune system. PMID:27044323
Nishino, Naoki; Ogata, Yu; Han, Hongyan; Yamamoto, Yasunari
2015-01-01
As a forage source for total mixed ration (TMR) silage production, locally produced crop silage is now used in addition to imported hay. This type of TMR ensiling is regarded as a two-step fermentation process; hence, a survey was carried out to determine whether the bacteria in crop silage affect the subsequent TMR ensiling. Fermentation product contents and bacterial community were determined for TMR silage and its ingredient silages collected in August, October and November. August product contained corn, sorghum and Italian ryegrass silages, October product had wheat silage exclusively and November product did not include any crop silages. Acetic acid, lactic acid, 2,3-butanediol and ethanol were predominant fermentation products in corn, sorghum, Italian ryegrass and wheat silages, respectively. Robust lactic acid fermentation was seen in TMR silage, even if acetate-type and alcohol-type silages were mixed as ingredients. The finding that bacterial community of the TMR silage appeared unrelated to those of ingredient silage supported this. Silages of various fermentation types can therefore be formulated without interfering with lactate-type fermentation in TMR silage. © 2014 Japanese Society of Animal Science.
Foraging behaviour in Drosophila larvae: mushroom body ablation.
Osborne, K A; de Belle, J S; Sokolowski, M B
2001-02-01
Drosophila larvae and adults exhibit a naturally occurring genetically based behavioural polymorphism in locomotor activity while foraging. Larvae of the rover morph exhibit longer foraging trails than sitters and forage between food patches, while sitters have shorter foraging trails and forage within patches. This behaviour is influenced by levels of cGMP-dependent protein kinase (PGK) encoded by the foraging (for) gene. Rover larvae have higher expression levels and higher PGK activities than do sitters. Here we discuss the importance of the for gene for studies of the mechanistic and evolutionary significance of individual differences in behaviour. We also show how structure-function analysis can be used to investigate a role for mushroom bodies in larval behaviour both in the presence and in the absence of food. Hydroxyurea fed to newly hatched larvae prevents the development of all post-embryonically derived mushroom body (MB) neuropil. This method was used to ablate MBs in rover and sitter genetic variants of foraging to test whether these structures mediate expression of the foraging behavioural polymorphism. We found that locomotor activity levels during foraging of both the rover and sitter larval morphs were not significantly influenced by MB ablation. Alternative hypotheses that may explain how variation in foraging behaviour is generated are discussed.
Behavioural environments and niche construction: the evolution of dim-light foraging in bees.
Wcislo, William T; Tierney, Simon M
2009-02-01
Most bees forage for floral resources during the day, but temporal patterns of foraging activity vary extensively, and foraging in dim-light environments has evolved repeatedly. Facultative dim-light foraging behaviour is known in five of nine families of bees, while obligate behaviour is known in four families and evolved independently at least 19 times. The light intensity under which bees forage varies by a factor of 10(8), and therefore the evolution of dim-light foraging represents the invasion of a new, extreme niche. The repeated evolution of dim-light foraging behaviour in bees allows tests of the hypothesis that behaviour acts as an evolutionary pacemaker. With the exception of one species of Apis, facultative dim-light foragers show no external structural traits that are thought to enable visually mediated flight behaviour in low-light environments. By contrast, most obligate dim-light foragers show a suite of convergent optical traits such as enlarged ocelli and compound eyes. In one intensively studied species (Megalopta genalis) these optical changes are associated with neurobiological changes to enhance photon capture. The available ecological evidence suggests that an escape from competition for pollen and nectar resources and avoidance of natural enemies are driving factors in the evolution of obligate dim-light foraging.
Lewison, R.L.; Carter, J.
2004-01-01
Herbivore foraging theories have been developed for and tested on herbivores across a range of sizes. Due to logistical constraints, however, little research has focused on foraging behavior of megaherbivores. Here we present a research approach that explores megaherbivore foraging behavior, and assesses the applicability of foraging theories developed on smaller herbivores to megafauna. With simulation models as reference points for the analysis of empirical data, we investigate foraging strategies of the common hippopotamus (Hippopotamus amphibius). Using a spatially explicit individual based foraging model, we apply traditional herbivore foraging strategies to a model hippopotamus, compare model output, and then relate these results to field data from wild hippopotami. Hippopotami appear to employ foraging strategies that respond to vegetation characteristics, such as vegetation quality, as well as spatial reference information, namely distance to a water source. Model predictions, field observations, and comparisons of the two support that hippopotami generally conform to the central place foraging construct. These analyses point to the applicability of general herbivore foraging concepts to megaherbivores, but also point to important differences between hippopotami and other herbivores. Our synergistic approach of models as reference points for empirical data highlights a useful method of behavioral analysis for hard-to-study megafauna. ?? 2003 Elsevier B.V. All rights reserved.
Habitat-specific foraging of prothonotary warblers: Deducing habitat quality
Lyons, J.E.
2005-01-01
Foraging behavior often reflects food availability in predictable ways. For example, in habitats where food availability is high, predators should attack prey more often and move more slowly than in habitats where food availability is low. To assess relative food availability and habitat quality, I studied the foraging behavior of breeding Prothonotary Warblers (Protonotaria citrea) in two forest habitat types, cypress-gum swamp forest and coastal-plain levee forest. I quantified foraging behavior with focal animal sampling and continuous recording during foraging bouts. I measured two aspects of foraging behavior: 1) prey attack rate (attacks per minute), using four attack maneuvers (glean, sally, hover, strike), and 2) foraging speed (movements per minute), using three types of movement (hop, short flight [???1 m], long flight [>1 m]). Warblers attacked prey more often in cypress-gum swamp forest than in coastal-plain levee forest. Foraging speed, however, was not different between habitats. I also measured foraging effort (% time spent foraging) and relative frequency of attack maneuvers employed in each habitat; neither of these variables was influenced by forest type. I conclude that Prothonotary Warblers encounter more prey when foraging in cypress-gum swamps than in coastal-plain levee forest, and that greater food availability results in higher density and greater reproductive success for birds breeding in cypress-gum swamp.
Sex-specific foraging behaviour in a seabird with reversed sexual dimorphism: the red-footed booby.
Weimerskirch, Henri; Le Corre, Matthieu; Ropert-Coudert, Yan; Kato, Akiko; Marsac, Francis
2006-01-01
Most hypotheses attempting to explain the evolution of reversed sexual dimorphism (RSD) assume that size-related differences in foraging ability are of prime importance, but the studies on sex-specific differences in foraging behaviour remain scarce. We compare the foraging behaviour of males and females in a seabird species with a RSD by using several miniaturised activity and telemetry loggers. In red-footed boobies males are 5% smaller and 15% lighter than females, but have a longer tail than females. Both sexes spend similar time on the nest while incubating or brooding. When foraging at sea, males and females spend similar time foraging in oceanic waters, forage in similar areas, spend similar proportion of their foraging trip in flight, and feed on similar prey-flying fishes and flying squids-of similar size. However, compared to males, females range farther during incubation (85 km vs. 50 km), and furthermore feed mostly at the extremity of their foraging trip, whereas males actively forage throughout the trip. Males are much more active than females, landing and diving more often. During the study period, males lost mass, whereas females showed no significant changes. These results indicate that males and females of the red-footed boobies differ in several aspects in their foraging behaviour. Although some differences found in the study may be the direct result of the larger size of females, that is, the slightly higher speeds and deeper depths attained by females, others indicate clearly different foraging strategies between the sexes. The smaller size and longer tail of males confer them a higher agility, and could allow them to occupy a foraging niche different from that of females. The higher foraging effort of males related to its different foraging strategy is probably at the origin of the rapid mass loss of males during the breeding period. These results suggest that foraging differences are probably the reason for the differential breeding investment observed in boobies, and are likely to be involved in the evolution and maintenance of RSD.
Antibiotic-resistant Escherichia coli in migratory birds inhabiting remote Alaska
Ramey, Andy M.; Hernandez, Jorge; Tyrlöv, Veronica; Uher-Koch, Brian D.; Schmutz, Joel A.; Atterby, Clara; Järhult, Josef D.; Bonnedahl, Jonas
2018-01-01
We explored the abundance of antibiotic-resistant Escherichia coli among migratory birds at remote sites in Alaska and used a comparative approach to speculate on plausible explanations for differences in detection among species. At a remote island site, we detected antibiotic-resistant E. coli phenotypes in samples collected from glaucous-winged gulls (Larus glaucescens), a species often associated with foraging at landfills, but not in samples collected from black-legged kittiwakes (Rissa tridactyla), a more pelagic gull that typically inhabits remote areas year-round. We did not find evidence for antibiotic-resistant E. coli among 347 samples collected primarily from waterfowl at a second remote site in western Alaska. Our results provide evidence that glaucous-winged gulls may be more likely to be infected with antibiotic-resistant E. coli at remote breeding sites as compared to sympatric black-legged kittiwakes. This could be a function of the tendency of glaucous-winged gulls to forage at landfills where antibiotic-resistant bacterial infections may be acquired and subsequently dispersed. The low overall detection of antibiotic-resistant E. coli in migratory birds sampled at remote sites in Alaska is consistent with the premise that anthropogenic inputs into the local environment or the relative lack thereof influences the prevalence of antibiotic-resistant bacteria among birds inhabiting the area.
40 CFR 180.361 - Pendimethalin; tolerances for residues.
Code of Federal Regulations, 2010 CFR
2010-07-01
..., pome, group 11 0.10 Fruit, stone, group 12 0.10 Garlic 0.1 Grape 0.1 Grass forage, fodder, and hay crop group 17, forage 20 Grass forage, fodder, and hay crop group 17, hay 13 Grass forage, fodder, and hay... specified in the table. Commodity Parts per million Expiration/revocation date Bermuda grass, forage 25 12...
75 FR 17564 - Chlorantraniliprole; Extension of Time-Limited Pesticide Tolerances
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-07
... at 0.20 ppm; grass, forage, fodder and hay, crop group 17 at 0.20 ppm; vegetable, leaves of root and... hay (includes cowpea, forage and hay; field pea, vines and hay); grass, forage, fodder and hay, crop...-limited tolerances for cowpea, forage and hay; field pea, vines and hay; grass, forage, fodder and hay...
40 CFR 180.361 - Pendimethalin; tolerances for residues.
Code of Federal Regulations, 2011 CFR
2011-07-01
..., pome, group 11 0.10 Fruit, stone, group 12 0.10 Garlic 0.1 Grape 0.1 Grass forage, fodder, and hay crop group 17, forage 20 Grass forage, fodder, and hay crop group 17, hay 13 Grass forage, fodder, and hay... specified in the table. Commodity Parts per million Expiration/revocation date Bermuda grass, forage 25 12...
Sharma, Praveen; Singh, Lakhvinder; Dilbaghi, Neeraj
2009-05-30
Decolorization of textile azo dye Disperse Yellow 211 (DY 211) was carried out from simulated aqueous solution by bacterial strain Bacillus subtilis. Response surface methodology (RSM), involving Box-Behnken design matrix in three most important operating variables; temperature, pH and initial dye concentration was successfully employed for the study and optimization of decolorization process. The total 17 experiments were conducted in the study towards the construction of a quadratic model. According to analysis of variance (ANOVA) results, the proposed model can be used to navigate the design space. Under optimized conditions the bacterial strain was able to decolorize DY 211 up to 80%. Model indicated that initial dye concentration of 100 mgl(-1), pH 7 and a temperature of 32.5 degrees C were found optimum for maximum % decolorization. Very high regression coefficient between the variables and the response (R(2)=0.9930) indicated excellent evaluation of experimental data by polynomial regression model. The combination of the three variables predicted through RSM was confirmed through confirmatory experiments, hence the bacterial strain holds a great potential for the treatment of colored textile effluents.
[Application of near infrared spectroscopy technology (NIRS) in forage field].
Yan, Xu; Bai, Shi-Qie; Yan, Jia-Jun; Gan, You-Min; Dao, Zhi-Xue
2012-07-01
The majority of nutrients in ruminants and other herbivores come from forages. Forage quality not only affects the growth and production efficiency of livestock, but also determines the final output and quality of livestock products. Forage quality mainly depends on nutrient concentrations and their digestibility, palatability and the level of presence of antiquality factors and mycotoxins in forage. Near infrared reflectance spectroscopy (NIRS) has been widely used in many research areas because it is a inexpensive, rapid, simple and nondestructive technique offering the potential for qualitative and quantitative analysis. The present paper briefly introduces the principle and characteristics of NIRS, detailedly expounds the application of NIRS in forage quality. In addition, other applications of near infrared spectroscopy technique in forage are also discussed, including forage breeding, identification of variety and classification by kind. This paper comprehensively reviews the status quo of application of NIRS in forage filed, in order to contribute to promoting development of NIRS in this field in China.
Annual variation in foraging ecology of prothonotary warblers during the breeding season
Petit, L.J.; Petit, D.R.; Petit, K.E.; Fleming, W.J.
1990-01-01
We studied foraging ecology of Prothonotary Warblers (Protonotaria citrea) along the Tennessee River in west-central Tennessee during the breeding seasons of 1984-1987. We analyzed seven foraging variables to determine if this population exhibited annual variation in foraging behavior. Based on nearly 3,000 foraging maneuvers, most variables showed significant interyear variation during the four prenestling and three nestling periods we studied. This interyear variation probably was due -to proximate, environmental cues--such as distribution and abundance of arthropods - which, in turn, were influenced by local weather conditions. Researchers should consider the consequences of combining foraging behavior data collected in different years, because resolution of ecological trends may be sacrificed by considering only general patterns of foraging ecology and not the dynamics of those activities. In addition, because of annual variability, foraging data collected in only one year, regardless of the number of observations gathered, may not provide an accurate concept of the foraging ecology in insectivorous birds.
NASA Astrophysics Data System (ADS)
Wang, H.; Jing, X. J.
2017-02-01
This paper proposes a novel method for the fault diagnosis of complex structures based on an optimized virtual beam-like structure approach. A complex structure can be regarded as a combination of numerous virtual beam-like structures considering the vibration transmission path from vibration sources to each sensor. The structural 'virtual beam' consists of a sensor chain automatically obtained by an Improved Bacterial Optimization Algorithm (IBOA). The biologically inspired optimization method (i.e. IBOA) is proposed for solving the discrete optimization problem associated with the selection of the optimal virtual beam for fault diagnosis. This novel virtual beam-like-structure approach needs less or little prior knowledge. Neither does it require stationary response data, nor is it confined to a specific structure design. It is easy to implement within a sensor network attached to the monitored structure. The proposed fault diagnosis method has been tested on the detection of loosening screws located at varying positions in a real satellite-like model. Compared with empirical methods, the proposed virtual beam-like structure method has proved to be very effective and more reliable for fault localization.
Exploring the plant-associated bacterial communities in Medicago sativa L
2012-01-01
Background Plant-associated bacterial communities caught the attention of several investigators which study the relationships between plants and soil and the potential application of selected bacterial species in crop improvement and protection. Medicago sativa L. is a legume crop of high economic importance as forage in temperate areas and one of the most popular model plants for investigations on the symbiosis with nitrogen fixing rhizobia (mainly belonging to the alphaproteobacterial species Sinorhizobium meliloti). However, despite its importance, no studies have been carried out looking at the total bacterial community associated with the plant. In this work we explored for the first time the total bacterial community associated with M. sativa plants grown in mesocosms conditions, looking at a wide taxonomic spectrum, from the class to the single species (S. meliloti) level. Results Results, obtained by using Terminal-Restriction Fragment Length Polymorphism (T-RFLP) analysis, quantitative PCR and sequencing of 16 S rRNA gene libraries, showed a high taxonomic diversity as well as a dominance by members of the class Alphaproteobacteria in plant tissues. Within Alphaproteobacteria the families Sphingomonadaceae and Methylobacteriaceae were abundant inside plant tissues, while soil Alphaproteobacteria were represented by the families of Hyphomicrobiaceae, Methylocystaceae, Bradyirhizobiaceae and Caulobacteraceae. At the single species level, we were able to detect the presence of S. meliloti populations in aerial tissues, nodules and soil. An analysis of population diversity on nodules and soil showed a relatively low sharing of haplotypes (30-40%) between the two environments and between replicate mesocosms, suggesting drift as main force shaping S. meliloti population at least in this system. Conclusions In this work we shed some light on the bacterial communities associated with M. sativa plants, showing that Alphaproteobacteria may constitute an important part of biodiversity in this system, which includes also the well known symbiont S. meliloti. Interestingly, this last species was also found in plant aerial part, by applying cultivation-independent protocols, and a genetic diversity analysis suggested that population structure could be strongly influenced by random drift. PMID:22607312
Summertime blues: August foraging leaves honey bees empty-handed.
Couvillon, Margaret J; Fensome, Katherine A; Quah, Shaun Kl; Schürch, Roger
2014-01-01
A successful honey bee forager tells her nestmates the location of good nectar and pollen with the waggle dance, a symbolic language that communicates a distance and direction. Because bees are adept at scouting out profitable forage and are very sensitive to energetic reward, we can use the distance that bees communicate via waggle dances as a proxy for forage availability, where the further the bees fly, the less forage can be found locally. Previously we demonstrated that bees fly furthest in the summer compared with spring or autumn to bring back forage that is not necessarily of better quality. Here we show that August is also the month when significantly more foragers return with empty crops (P = 7.63e-06). This provides additional support that summer may represent a seasonal foraging challenge for honey bees.
NASA Astrophysics Data System (ADS)
Liu, S.; Pan, B.
2015-12-01
The logging evaluation of tuffaceous sandstone reservoirs is always a difficult problem. Experiments show that the tuff and shale have different logging responses. Since the tuff content exerts an influence on the computation of shale content and the parameters of the reservoir, and the accuracy of saturation evaluation is reduced. Therefore, the effect of tuff on the calculation of saturation cannot be ignored. This study takes the tuffaceous sandstone reservoirs in the X depression of Hailar-Tamtsag basin as an example to analyze. And the electric conduction model of tuffaceous sandstone reservoirs is established. The method which combines bacterial foraging algorithm and particle swarm optimization algorithm is used to calculate the content of reservoir components in well logging for the first time, and the calculated content of tuff and shale corresponds to the results analysis of thin sections. The experiment on cation exchange capacity (CEC) proves that tuff has conductivity, and the conversion relationship between CEC and resistivity proposed by Toshinobu Iton has been improved. According to the rock electric experiment under simulated reservoir conditions, the rock-electro parameters (a, b, m and n) are determined. The improved relationship between CEC and resistivity and the rock-electro parameters are used in the calculation of saturation. Formula (1) shows the saturation equation of the tuffaceous reservoirs:According to the comparative analysis between irreducible water saturation and the calculated saturation, we find that the saturation equation used CEC data and rock-electro parameters has a better application effect at oil layer than Archie's formulas.
NASA Astrophysics Data System (ADS)
Sur, Chiranjib; Shukla, Anupam
2018-03-01
Bacteria Foraging Optimisation Algorithm is a collective behaviour-based meta-heuristics searching depending on the social influence of the bacteria co-agents in the search space of the problem. The algorithm faces tremendous hindrance in terms of its application for discrete problems and graph-based problems due to biased mathematical modelling and dynamic structure of the algorithm. This had been the key factor to revive and introduce the discrete form called Discrete Bacteria Foraging Optimisation (DBFO) Algorithm for discrete problems which exceeds the number of continuous domain problems represented by mathematical and numerical equations in real life. In this work, we have mainly simulated a graph-based road multi-objective optimisation problem and have discussed the prospect of its utilisation in other similar optimisation problems and graph-based problems. The various solution representations that can be handled by this DBFO has also been discussed. The implications and dynamics of the various parameters used in the DBFO are illustrated from the point view of the problems and has been a combination of both exploration and exploitation. The result of DBFO has been compared with Ant Colony Optimisation and Intelligent Water Drops Algorithms. Important features of DBFO are that the bacteria agents do not depend on the local heuristic information but estimates new exploration schemes depending upon the previous experience and covered path analysis. This makes the algorithm better in combination generation for graph-based problems and combination generation for NP hard problems.
Miranda, M; Díaz, L; Sicilia, M; Cristóbal, I; Cassinello, J
2011-01-01
We report evidence of hierarchical resource selection by large herbivores and plant neighbouring effects in a Mediterranean ecosystem. Plant palatability was assessed according to herbivore foraging decisions. We hypothesize that under natural conditions large herbivores follow a hierarchical foraging pattern, starting at the landscape scale, and then selecting patches and individual plants. A between- and within-patch selection study was carried out in an area formed by scrubland and pasture patches, connected by habitat edges. With regard to between-patch selection, quality-dependent resource selection is reported: herbivores mainly consume pasture in spring and woody plants in winter. Within-patch selection was also observed in scrub habitats, influenced by season, relative patch palatability and edge effect. We defined a Proximity Index (PI) between palatable and unpalatable plants, which allowed verification of neighbouring effects. In spring, when the preferred food resource (i.e. herbs) is abundant, we observed that in habitat edges large herbivores basically select the relatively scarce palatable shrubs, whereas inside scrubland, unpalatable shrub consumption was related to increasing PI. In winter, a very different picture was observed; there was low consumption of palatable species surrounded by unpalatable species in habitat edges, where the latter were more abundant. These outcomes could be explained though different plant associations described in the literature. We conclude that optimal foraging theory provides a conceptual framework behind the observed interactions between plants and large herbivores in Mediterranean ecosystems. © 2010 German Botanical Society and The Royal Botanical Society of the Netherlands.
Sayers, Ken; Menzel, Charles R.
2012-01-01
Many models from foraging theory and movement ecology assume that resources are encountered randomly. If food locations, types and values are retained in memory, however, search time could be significantly reduced, with concurrent effects on biological fitness. Despite this, little is known about what specific characteristics of foods, particularly those relevant to profitability, nonhuman animals can remember. Building upon previous observations, we hypothesized that chimpanzees (Pan troglodytes), after observing foods being hidden in a large wooded test area they could not enter, and after long delays, would direct (through gesture and vocalization) experimentally naïve humans to the reward locations in an order that could be predicted beforehand by the spatial and physical characteristics of those items. In the main experiment, various quantities of almonds, both in and out of shells and sealed in transparent bags, were hidden in the test area. The chimpanzees later directed searchers to those items in a nonrandom order related to quantity, shell presence/absence, and the distance they were hidden from the subject. The recovery sequences were closely related to the actual e/h profitability of the foods. Predicted recovery orders, based on the energetic value of almonds and independently-measured, individual-specific expected pursuit and processing times, were closely related to observed recovery orders. We argue that the information nonhuman animals possess regarding their environment can be extensive, and that further comparative study is vital for incorporating realistic cognitive variables into models of foraging and movement. PMID:23226837
Linking Dynamic Habitat Selection with Wading Bird Foraging Distributions across Resource Gradients
Beerens, James M.; Noonburg, Erik G.; Gawlik, Dale E.
2015-01-01
Species distribution models (SDM) link species occurrence with a suite of environmental predictors and provide an estimate of habitat quality when the variable set captures the biological requirements of the species. SDMs are inherently more complex when they include components of a species’ ecology such as conspecific attraction and behavioral flexibility to exploit resources that vary across time and space. Wading birds are highly mobile, demonstrate flexible habitat selection, and respond quickly to changes in habitat quality; thus serving as important indicator species for wetland systems. We developed a spatio-temporal, multi-SDM framework using Great Egret (Ardea alba), White Ibis (Eudocimus albus), and Wood Stork (Mycteria Americana) distributions over a decadal gradient of environmental conditions to predict species-specific abundance across space and locations used on the landscape over time. In models of temporal dynamics, species demonstrated conditional preferences for resources based on resource levels linked to differing temporal scales. Wading bird abundance was highest when prey production from optimal periods of inundation was concentrated in shallow depths. Similar responses were observed in models predicting locations used over time, accounting for spatial autocorrelation. Species clustered in response to differing habitat conditions, indicating that social attraction can co-vary with foraging strategy, water-level changes, and habitat quality. This modeling framework can be applied to evaluate the multi-annual resource pulses occurring in real-time, climate change scenarios, or restorative hydrological regimes by tracking changing seasonal and annual distribution and abundance of high quality foraging patches. PMID:26107386
Linking dynamic habitat selection with wading bird foraging distributions across resource gradients
Beerens, James M.; Noonberg, Erik G.; Gawlik, Dale E.
2015-01-01
Species distribution models (SDM) link species occurrence with a suite of environmental predictors and provide an estimate of habitat quality when the variable set captures the biological requirements of the species. SDMs are inherently more complex when they include components of a species' ecology such as conspecific attraction and behavioral flexibility to exploit resources that vary across time and space. Wading birds are highly mobile, demonstrate flexible habitat selection, and respond quickly to changes in habitat quality; thus serving as important indicator species for wetland systems. We developed a spatio-temporal, multi-SDM framework using Great Egret (Ardea alba), White Ibis (Eudocimus albus), and Wood Stork (Mycteria Americana) distributions over a decadal gradient of environmental conditions to predict species-specific abundance across space and locations used on the landscape over time. In models of temporal dynamics, species demonstrated conditional preferences for resources based on resource levels linked to differing temporal scales. Wading bird abundance was highest when prey production from optimal periods of inundation was concentrated in shallow depths. Similar responses were observed in models predicting locations used over time, accounting for spatial autocorrelation. Species clustered in response to differing habitat conditions, indicating that social attraction can co-vary with foraging strategy, water-level changes, and habitat quality. This modeling framework can be applied to evaluate the multi-annual resource pulses occurring in real-time, climate change scenarios, or restorative hydrological regimes by tracking changing seasonal and annual distribution and abundance of high quality foraging patches.
Marine foraging ecology influences mercury bioaccumulation in deep-diving northern elephant seals
Peterson, Sarah H.; Ackerman, Joshua T.; Costa, Daniel P.
2015-01-01
Mercury contamination of oceans is prevalent worldwide and methylmercury concentrations in the mesopelagic zone (200–1000 m) are increasing more rapidly than in surface waters. Yet mercury bioaccumulation in mesopelagic predators has been understudied. Northern elephant seals (Mirounga angustirostris) biannually travel thousands of kilometres to forage within coastal and open-ocean regions of the northeast Pacific Ocean. We coupled satellite telemetry, diving behaviour and stable isotopes (carbon and nitrogen) from 77 adult females, and showed that variability among individuals in foraging location, diving depth and δ13C values were correlated with mercury concentrations in blood and muscle. We identified three clusters of foraging strategies, and these resulted in substantially different mercury concentrations: (i) deeper-diving and offshore-foraging seals had the greatest mercury concentrations, (ii) shallower-diving and offshore-foraging seals had intermediate levels, and (iii) coastal and more northerly foraging seals had the lowest mercury concentrations. Additionally, mercury concentrations were lower at the end of the seven-month-long foraging trip (n = 31) than after the two-month- long post-breeding trip (n = 46). Our results indicate that foraging behaviour influences mercury exposure and mesopelagic predators foraging in the northeast Pacific Ocean may be at high risk for mercury bioaccumulation.
Habitat-specific foraging strategies in Australasian gannets
Wells, Melanie R.; Arnould, John P. Y.
2016-01-01
ABSTRACT Knowledge of top predator foraging adaptability is imperative for predicting their biological response to environmental variability. While seabirds have developed highly specialised techniques to locate prey, little is known about intraspecific variation in foraging strategies with many studies deriving information from uniform oceanic environments. Australasian gannets (Morus serrator) typically forage in continental shelf regions on small schooling prey. The present study used GPS and video data loggers to compare habitat-specific foraging strategies at two sites of contrasting oceanographic regimes (deep water near the continental shelf edge, n=23; shallow inshore embayment, n=26), in south-eastern Australia. Individuals from the continental shelf site exhibited pelagic foraging behaviours typical of gannet species, using local enhancement to locate and feed on small schooling fish; in contrast only 50% of the individuals from the inshore site foraged offshore, displaying the typical pelagic foraging strategy. The remainder adopted a strategy of searching sand banks in shallow inshore waters in the absence of conspecifics and other predators for large, single prey items. Furthermore, of the individuals foraging inshore, 93% were male, indicating that the inshore strategy may be sex-specific. Large inter-colony differences in Australasian gannets suggest strong plasticity in foraging behaviours, essential for adapting to environmental change. PMID:27305927
Cox, Melissa D; Myerscough, Mary R
2003-07-21
This paper develops and explores a model of foraging in honey bee colonies. The model may be applied to forage sources with various properties, and to colonies with different foraging-related parameters. In particular, we examine the effect of five foraging-related parameters on the foraging response and consequent nectar intake of a homogeneous colony. The parameters investigated affect different quantities critical to the foraging cycle--visit rate (affected by g), probability of dancing (mpd and bpd), duration of dancing (mcirc), or probability of abandonment (A). We show that one parameter, A, affects nectar intake in a nonlinear way. Further, we show that colonies with a midrange value of any foraging parameter perform better than the average of colonies with high- and low-range values, when profitable sources are available. Together these observations suggest that a heterogeneous colony, in which a range of parameter values are present, may perform better than a homogeneous colony. We modify the model to represent heterogeneous colonies and use it to show that the most important effect of heterogeneous foraging behaviour within the colony is to reduce the variance in the average quantity of nectar collected by heterogeneous colonies.
Echolocation click rates and behavior of foraging Hawaiian spinner dolphins
NASA Astrophysics Data System (ADS)
Benoit-Bird, Kelly J.; Au, Whitlow W. L.
2004-05-01
Groups of spinner dolphins work together to actively aggregate small animals in the deep-scattering layer that serve as their prey. Detailed information on dolphin foraging behavior, obtained with a 200-kHz multibeam sonar (Simrad MS2000), made it possible to correlate echolocation and foraging. Fifty-six groups of spinner dolphins foraging at night within a midwater micronekton sound-scattering layer were observed with the sonar. During sonar surveys, the rates of whistles and echolocation clicks were measured using four hydrophones at 6-m depth intervals. Significant differences in click rates were found between depths and between the different stages of foraging. Groups of foraging dolphins ranged in size from 16 to 28 dolphins. Click rates were not significantly affected by the number of dolphins in a foraging group. Contrary to initial predictions, click rates were relatively low when sonar data indicated that pairs of dolphins were actively feeding. Highest echolocation rates occurred within the scattering layer, during transitions between foraging states. Whistles were only detected when dolphins were not in a foraging formation and when animals were surfacing. This suggests clicks may be used directly or indirectly to cue group movement during foraging.
Suboptimal foraging behavior: A new perspective on gambling
Addicott, Merideth A.; Pearson, John M.; Kaiser, Nicole; Platt, Michael L.; McClernon, F. Joseph
2015-01-01
Why do people gamble? Conventional views hold that gambling may be motivated by irrational beliefs, risk-seeking, impulsive temperament, or dysfunction within the same reward circuitry affected by drugs of abuse. An alternate, unexplored perspective is that gambling is an extension of natural foraging behavior to a financial environment. However, when these foraging algorithms are applied to stochastic gambling outcomes, undesirable results may occur. To test this hypothesis, we recruited participants based on their frequency of gambling – yearly (or less), monthly, and weekly – and investigated how gambling frequency related to irrational beliefs, risk-taking/impulsivity, and foraging behavior. We found that increased gambling frequency corresponded to greater gambling-related beliefs, more exploratory choices on an explore/exploit foraging task, and fewer points earned on a patchy foraging task. Gambling-related beliefs negatively related to performance on the patchy foraging task, indicating that individuals with more gambling-related cognitions tended to leave a patch too quickly. This indicates that frequent gamblers have reduced foraging ability to maximize rewards; however, gambling frequency- and by extension, poor foraging ability- was not related to risk-taking or impulsive behavior. These results suggest that gambling reflects the application of a dysfunctional foraging process to financial outcomes. PMID:26191945
Suboptimal foraging behavior: a new perspective on gambling.
Addicott, Merideth A; Pearson, John M; Kaiser, Nicole; Platt, Michael L; McClernon, F Joseph
2015-10-01
Why do people gamble? Conventional views hold that gambling may be motivated by irrational beliefs, risk-seeking, impulsive temperament, or dysfunction within the same reward circuitry affected by drugs of abuse. An alternate, unexplored perspective is that gambling is an extension of natural foraging behavior to a financial environment. However, when these foraging algorithms are applied to stochastic gambling outcomes, undesirable results may occur. To test this hypothesis, we recruited participants based on their frequency of gambling-yearly (or less), monthly, and weekly-and investigated how gambling frequency related to irrational beliefs, risk-taking/impulsivity, and foraging behavior. We found that increased gambling frequency corresponded to greater gambling-related beliefs, more exploratory choices on an explore/exploit foraging task, and fewer points earned on a Patchy Foraging Task. Gambling-related beliefs negatively related to performance on the Patchy Foraging Task, indicating that individuals with more gambling-related cognitions tended to leave a patch too quickly. This indicates that frequent gamblers have reduced foraging ability to maximize rewards; however, gambling frequency -and by extension, poor foraging ability- was not related to risk-taking or impulsive behavior. These results suggest that gambling reflects the application of a dysfunctional foraging process to financial outcomes. (c) 2015 APA, all rights reserved).
Rossman, Sam; Ostrom, Peggy H.; Stolen, Megan; Barros, Nélio B.; Gandhi, Hasand; Stricker, Craig A.; Wells, Randall S.
2015-01-01
We examine individual specialization in foraging habits (foraging habitat and trophic level) of female bottlenose dolphins (Tursiops truncatus) resident in Sarasota Bay, Florida, USA, by analyzing time series of stable isotope (δ15N and δ13C) values in sequential growth layer groups within teeth. The isotope data provide a chronology of foraging habits over the lifetime of the individual and allowed us to show that female bottlenose dolphins exhibit a high degree of individual specialization in both foraging habitat and trophic level. The foraging habits used by adult females are similar to those they used as calves and may be passed down from mother to calf through social learning. We also characterized the foraging habits and home range of each individual by constructing standard ellipses from isotope values and dolphin sightings data (latitude and longitude), respectively. These data show that Sarasota Bay bottlenose dolphins forage within a subset of the habitats in which they are observed. Moreover, females with similar observational standard ellipses often possessed different foraging specializations. Female bottlenose dolphins may demonstrate individual specialization in foraging habits because it reduces some of the cost of living in groups, such as competition for prey.
Food limitation of sea lion pups and the decline of forage off central and southern California
McClatchie, Sam; Field, John; Thompson, Andrew R.; Gerrodette, Tim; Lowry, Mark; Fiedler, Paul C.; Watson, William; Nieto, Karen M.; Vetter, Russell D.
2016-01-01
California sea lions increased from approximately 50 000 to 340 000 animals in the last 40 years, and their pups are starving and stranding on beaches in southern California, raising questions about the adequacy of their food supply. We investigated whether the declining sea lion pup weight at San Miguel rookery was associated with changes in abundance and quality of sardine, anchovy, rockfish and market squid forage. In the last decade off central California, where breeding female sea lions from San Miguel rookery feed, sardine and anchovy greatly decreased in biomass, whereas market squid and rockfish abundance increased. Pup weights fell as forage food quality declined associated with changes in the relative abundances of forage species. A model explained 67% of the variance in pup weights using forage from central and southern California and 81% of the variance in pup weights using forage from the female sea lion foraging range. A shift from high to poor quality forage for breeding females results in food limitation of the pups, ultimately flooding animal rescue centres with starving sea lion pups. Our study is unusual in using a long-term, fishery-independent dataset to directly address an important consequence of forage decline on the productivity of a large marine predator. Whether forage declines are environmentally driven, are due to a combination of environmental drivers and fishing removals, or are due to density-dependent interactions between forage and sea lions is uncertain. However, declining forage abundance and quality was coherent over a large area (32.5–38° N) for a decade, suggesting that trends in forage are environmentally driven. PMID:27069651
Rehan, Sandra M; Bulova, Susan J; O'Donnell, Sean
2015-01-01
In social insects, both task performance (foraging) and dominance are associated with increased brain investment, particularly in the mushroom bodies. Whether and how these factors interact is unknown. Here we present data on a system where task performance and social behavior can be analyzed simultaneously: the small carpenter bee Ceratina australensis. We show that foraging and dominance have separate and combined cumulative effects on mushroom body calyx investment. Female C. australensis nest solitarily and socially in the same populations at the same time. Social colonies comprise two sisters: the social primary, which monopolizes foraging and reproduction, and the social secondary, which is neither a forager nor reproductive but rather remains at the nest as a guard. We compare the brains of solitary females that forage and reproduce but do not engage in social interactions with those of social individuals while controlling for age, reproductive status, and foraging experience. Mushroom body calyx volume was positively correlated with wing wear, a proxy for foraging experience. We also found that, although total brain volume did not vary among reproductive strategies (solitary vs. social nesters), socially dominant primaries had larger mushroom body calyx volumes (corrected for both brain and body size variation) than solitary females; socially subordinate secondaries (that are neither dominant nor foragers) had the least-developed mushroom body calyces. These data demonstrate that sociality itself does not explain mushroom body volume; however, achieving and maintaining dominance status in a group was associated with mushroom body calyx enlargement. Dominance and foraging effects were cumulative; dominant social primary foragers had larger mushroom body volumes than solitary foragers, and solitary foragers had larger mushroom body volumes than nonforaging social secondary guards. This is the first evidence for cumulative effects on brain development by dominance and task performance.
Stabentheiner, A
2001-04-01
The thorax surface temperature of dancing honeybees (Apis mellifera carnica) recruiting nestmates to natural sources of nectar and pollen around Graz (Austria) was measured by real-time infrared thermography without touching them or disturbing social interactions. Thorax temperature during dancing was quite variable (31.4-43 degrees C). In the course of a foraging season it varied considerably and was always lower than in bees foraging from a highly profitable food source (2 molar sucrose 120 m from the hive). It averaged 38.0 degrees C (SD=2.24, n=224 dances) in the nectar foragers and 37.4 degrees C (SD=1.64, n=171) in the pollen foragers, resembling that of dancers foraging 0.5 molar sucrose from feeders with unlimited flow. Hive air temperature accounted only for about 3-8% of total variation. Foraging distance modulated dancing temperature in a way that, according to the decrease of the profitability of foraging with distance, maximum temperatures decreased and, in accordance with the increase of the dancing threshold with distance, minumum temperatures increased with distance, this way providing new support for the hypothesis that the dancing temperature is modulated by the profitability of foraging and the dancing and foraging motivation of the bees. Dancing temperature of both nectar and pollen dancers correlated with several parameters of the hive status, increasing with the amount of brood and decreasing with the amount of honey and pollen. These correlations are discussed with respect to literature reports on a colony's need for pollen and nectar, in particular the effect of brood and the amount of pollen on pollen foraging, and the effect of honey stores and demand for nectar on nectar foraging.
Foraging enrichment for stabled horses: effects on behaviour and selection.
Goodwin, D; Davidson, H P B; Harris, P
2002-11-01
The restricted access to pasture experienced by many competition horses has been linked to the exhibition of stereotypic and redirected behaviour patterns. It has been suggested that racehorses provided with more than one source of forage are less likely to perform these patterns; however, the reasons for this are currently unclear. To investigate this in 4 replicated trials, up to 12 horses were introduced into each of 2 identical stables containing a single forage, or 6 forages for 5 min. To detect novelty effects, in the first and third trials the single forage was hay. In the second and fourth, it was the preferred forage from the preceding trial. Trials were videotaped and 12 mutually exclusive behaviour patterns compared. When hay was presented as the single forage (Trials 1 and 3), all recorded behaviour patterns were significantly different between stables; e.g. during Trial 3 in the 'Single' stable, horses looked over the stable door more frequently (P<0.001), moved for longer (P<0.001), foraged on straw bedding longer (P<0.001), and exhibited behaviour indicative of motivation to search for alternative resources (P<0.001) more frequently. When a previously preferred forage was presented as the single forage (Trials 2 and 4) behaviour was also significantly different between stables, e.g in Trial 4 horses looked out over the stable door more frequently (P<0.005) and foraged for longer in their straw bedding (P<0.005). Further study is required to determine whether these effects persist over longer periods. However, these trials indicate that enrichment of the stable environment through provision of multiple forages may have welfare benefits for horses, in reducing straw consumption and facilitating the expression of highly motivated foraging behaviour.
Mulliniks, J T; Rius, A G; Edwards, M A; Edwards, S R; Hobbs, J D; Nave, R L G
2015-06-01
Despite overall increased production in the last century, it is critical that grazing production systems focus on improving beef and dairy efficiency to meet current and future global food demands. For livestock producers, production efficiency is essential to maintain long-term profitability and sustainability. This continued viability of production systems using pasture- and range-based grazing systems requires more rapid adoption of innovative management practices and selection tools that increase profitability by optimizing grazing management and increasing reproductive performance. Understanding the genetic variation in cow herds will provide the ability to select cows that require less energy for maintenance, which can potentially reduce total energy utilization or energy required for production, consequently improving production efficiency and profitability. In the United States, pasture- and range-based grazing systems vary tremendously across various unique environments that differ in climate, topography, and forage production. This variation in environmental conditions contributes to the challenges of developing or targeting specific genetic components and grazing systems that lead to increased production efficiency. However, across these various environments and grazing management systems, grazable forage remains the least expensive nutrient source to maintain productivity of the cow herd. Beef and dairy cattle can capitalize on their ability to utilize these feed resources that are not usable for other production industries. Therefore, lower-cost alternatives to feeding harvested and stored feedstuffs have the opportunity to provide to livestock producers a sustainable and efficient forage production system. However, increasing production efficiency within a given production environment would vary according to genetic potential (i.e., growth and milk potential), how that genetic potential fits the respective production environment, and how the grazing management fits within those genetic parameters. Therefore, matching cow type or genetic potential to the production environment is and will be more important as cost of production increases.
NASA Astrophysics Data System (ADS)
Field, John C.; Elliger, Carl; Baltz, Ken; Gillespie, Graham E.; Gilly, William F.; Ruiz-Cooley, R. I.; Pearse, Devon; Stewart, Julia S.; Matsubu, William; Walker, William A.
2013-10-01
From 2002 to 2010, the jumbo squid (Dosidicus gigas) has been regularly encountered in large numbers throughout the California Current System (CCS). This species, usually found in subtropical waters, could affect coastal pelagic ecosystems and fisheries as both predator and prey. Neither the abundance of jumbo squid nor the optimal ocean conditions in which they flourish are well known. To understand better the potential impacts of this species on both commercial fisheries and on food-web structure we collected nearly 900 specimens from waters of the CCS, covering over 20° of latitude, over a range of depths and seasons. We used demographic information (size, sex, and maturity state) and analyzed stomach contents using morphological and molecular methods to best understand the foraging ecology of this species in different habitats of the CCS. Squid were found to consume a broad array of prey. Prey in offshore waters generally reflected the forage base reported in previous studies (mainly mesopelagic fishes and squids), whereas in more coastal waters (shelf, shelf break and slope habitats) squid foraged on a much broader mix that included substantial numbers of coastal pelagic fishes (Pacific herring and northern anchovy, as well as osmerids and salmonids in northern waters) and groundfish (Pacific hake, several species of rockfish and flatfish). We propose a seasonal movement pattern, based on size and maturity distributions along with qualitative patterns of presence or absence, and discuss the relevance of both the movement and distribution of jumbo squid over space and time. We find that jumbo squid are a generalist predator, which feeds primarily on small, pelagic or mesopelagic micronekton but also on larger fishes when they are available. We also conclude that interactions with and potential impacts on ecosystems likely vary over space and time, in response to both seasonal movement patterns and highly variable year-to-year abundance of the squid themselves.
The ecological economics of kleptoparasitism: pay-offs from self-foraging versus kleptoparasitism.
Flower, Tom P; Child, Matthew F; Ridley, Amanda R
2013-01-01
Animals commonly steal food from other species, termed interspecific kleptoparasitism, but why animals engage in kleptoparasitism compared with alternate foraging tactics, and under what circumstances they do so, is not fully understood. Determining what specific benefits animals gain from kleptoparasitism could provide valuable insight into its evolution. Here, we investigate the benefits of kleptoparasitism for a population of individually recognizable and free-living fork-tailed drongos (Dicrurus adsimilis) in the southern Kalahari Desert. Drongos engaged in two foraging behaviours: self-foraging for small insects or following other species which they kleptoparasitized for larger terrestrial prey that they could not capture themselves. Kleptoparasitism consequently enabled drongos to exploit a new foraging niche. Kleptoparasitism benefitted drongos most in the morning and on colder days because at these times pay-offs from kleptoparasitism remained stable, while those from self-foraging declined. However, drongos engaged in kleptoparasitism less than expected given the overall high (but more variable) pay-offs from this behaviour, suggesting that kleptoparasitism is a risky foraging tactic and may incur additional foraging costs compared with self-foraging. This is the first study to comprehensively investigate the benefits of facultatively engaging in kleptoparasitism, demonstrating that animals may switch to kleptoparasitism to exploit a new foraging niche when pay-offs exceed those from alternate foraging behaviours. © 2012 The Authors. Journal of Animal Ecology © 2012 British Ecological Society.